Thomas Erlebach
Giuseppe Persiano (Eds.)

Approximation and
Online Algorithms

Third International Workshop, WAOA 2005
Palma de Mallorca, Spain, October 2005
Revised Papers

LNCS 3879

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3879

Thomas Erlebach Giuseppe Persiano (Eds.)

Approximation and
Online Algorithms

Third International Workshop, WAOA 2005
Palma de Mallorca, Spain, October 6-7, 2005
Revised Papers

@ Springer

Volume Editors

Thomas Erlebach

University of Leicester

Department of Computer Science
University Road, Leicester, LE1 7RH, UK
E-mail: t.erlebach@mcs.le.ac.uk

Giuseppe Persiano

Universita degli Studi di Salerno
Dipartimento di Informatica ed Applicazioni
Via S. Allende 2, 84081 Baronissi (SA), Italy
E-mail: giuper @dia.unisa.it

Library of Congress Control Number: 200692553

CR Subject Classification (1998): F.2.2, G.2.1-2, G.1.2, G.1.6,1.3.5, E.1
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-32207-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32207-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11671411 06/3142 543210

Preface

The third Workshop on Approximation and Online Algorithms (WAOA 2005)
focused on the design and analysis of algorithms for online and computationally
hard problems. Both kinds of problems have a large number of applications from
a variety of fields. WAOA 2005 took place in Palma de Mallorca, Spain, on 6-7
October 2005. The workshop was part of the ALGO 2005 event that also hosted
ESA, WABI, and ATMOS. The two previous WAOA workshops were held in
Budapest (2003) and Rome (2004).

Topics of interest for WAOA 2005 were: algorithmic game theory, approxi-
mation classes, coloring and partitioning, competitive analysis, computational
finance, cuts and connectivity, geometric problems, inapproximability results,
mechanism design, network design, packing and covering, paradigms, random-
ization techniques, real-world applications, and scheduling problems. In response
to the call for papers we received 68 submissions. Each submission was reviewed
by at least three referees, and the vast majority by at least four referees. The
submissions were mainly judged on originality, technical quality, and relevance
to the topics of the conference. Based on the reviews, the Program Committee
selected 26 papers.

We are grateful to Andrei Voronkov for providing the EasyChair conference
system, which was used to manage the electronic submissions, the review process,
and the electronic PC meeting. It made our task much easier.

We would also like to thank all the authors who submitted papers to WAOA
2005 as well as the local organizers of ALGO 2005.

November 2005 T. Erlebach
G. Persiano

Program Co-chairs

Thomas Erlebach
Giuseppe Persiano

Program Committee

Evripidis Bampis
Markus Blaser
Thomas Erlebach
Klaus Jansen
Christos Kaklamanis
Marc van Kreveld
Pino Persiano
Guido Proietti
Kirk Pruhs

Yuval Rabani

Adi Rosén

Martin Skutella
Roberto Solis-Oba
Frits Spieksma
Berthold Vocking

Referees

Helmut Alt

Ernst Althaus
Pasquale Ambrosio
Eric Angel
Claudio Arbib
Estie Arkin

Takao Asano
Vincenzo Auletta
Yossi Azar

Fabien Baille
Reuven Bar-Yehuda
Nadine Baumann
Davide Bilo
Vittorio Bilo

Hans Bodlaender

Joan Boyar
Toannis Caragiannis
Reuven Cohen
José Correa

Yves Crama,
Roberto De Prisco
Florian Diedrich
Benjamin Doerr
Leah Epstein
Aleksei Fishkin
Luca Forlizzi
Stefan Funke
Olga Gerber
Laurent Gourves
Luciano Guala

Organization

University of Leicester
Universita di Salerno

University of Evry

ETH Ziirich

University of Leicester
Universitéit Kiel

University of Patras

Utrecht University

Universita di Salerno
Universita di L’Aquila
University of Pittsburgh
Technion, Haifa

Technion, Haifa

Universitdat Dortmund
University of Western Ontario
Katholieke Universiteit Leuven
RWTH Aachen

Jurriaan Hage

Han Hoogeveen
Sandy Irani
Panagiotis Kanellopoulos
Lasse Kliemann
Christian Knauer
Reinhard Koch
Ronald Koch
Ekkehard Kohler
Jochen Kénemann
Alexander Kononov
Elias Koutsoupias
Annamaria Kovacs
Sofia Kovaleva
Darek Kowalski

VIII Organization

Christian Laforest
Van Bang Le
Stefano Leonardi
Gitta Marchand
Maren Martens
Giovanna Melideo
Joe Mitchell

Luca Moscardelli
Alfredo Navarra
René van Oostrum

Evi Papaioannou
Paolo Penna

L. Shankar Ram
Fabrizio Rossi
Guido Schéfer
Stefano Smriglio
Rob van Stee
Gerard Tel
Nicolas Thibault
Ralf Thole

Csaba T6th

Marc Uetz
Carmine Ventre
Tjark Vredeveld
Egon Wanke
Gerhard Woeginger
Guochuan Zhang
Michele Zito

Table of Contents

“Almost Stable” Matchings in the Roommates Problem
David J. Abraham, Péter Biré, David F. Manlove

On the Minimum Load Coloring Problem
Nitin Ahuja, Andreas Baltz, Benjamin Doerr, Ales Privétivy,
Anand STivastau

Improved Approximation Algorithms for MAX NAE-SAT and
MAX SAT
Adi Avidor, Ido Berkovitch, Uri Zwickc......

The Hardness of Network Design for Unsplittable Flow with Selfish Users
Yossi Azar, Amir Epstein e

Improved Approximation Algorithm for Convex Recoloring of Trees
Reuven Bar-Yehuda, Ido Feldman, Dror Rawitz

Exploiting Locality: Approximating Sorting Buffers
Reuven Bar-Yehuda, Jonathan Lasersonc.......

Approximate Fair Cost Allocation in Metric Traveling Salesman Games
M. Blaser, L. Shankar Ram i ..

Rounding of Sequences and Matrices, with Applications
Bengjamin Doerr, Tobias Friedrich, Christian Klein, Ralf Osbild

A Note on Semi-online Machine Covering
Tomds Ebenlendr, John Noga, Jiti Sgall, Gerhard Woeginger

SONET ADMs Minimization with Divisible Paths
Leah Epstein, Asaf Levin

The Conference Call Search Problem in Wireless Networks
Leah Epstein, Asaf Levin

Improvements for Truthful Mechanisms with Verifiable One-Parameter
Selfish Agents
A. Ferrante, G. Parlato, F. Sorrentino, C. Ventre.................

Symmetry in Network Congestion Games: Pure Equilibria and Anarchy
Cost
Dimatris Fotakis, Spyros Kontogiannis, Paul Spirakis

15

27

41

55

69

82

96

110

119

133

147

X Table of Contents

A Better-Than-Greedy Algorithm for k-Set Multicover
Toshihiro Fujito, Hidekazu Kurahashi

Deterministic Online Optical Call Admission Revisited
Elisabeth Gassner, Sven O. Krumke

Scheduling Parallel Jobs with Linear Speedup
Alexander Grigoriev, Marc Uetzo i,

Online Removable Square Packing
Xin Han, Kazuo Iwama, Guochuan Zhang

The Online Target Date Assignment Problem
S. Heinz, S.0. Krumke, N. Megow, J. Rambau, A. Tuchscherer,
T. Vredeveld

Approximation and Complexity of k—Splittable Flows
Ronald Koch, Martin Skutella, Ines Spenke

On Minimizing the Maximum Flow Time in the Online Dial-a-Ride
Problem

Sven O. Krumke, Willem E. de Paepe, Diana Poensgen,

Maarten Lipmann, Alberto Marchetti-Spaccamela, Leen Stougie

Tighter Approximations for Maximum Induced Matchings in Regular
Graphs
Zvi Gotthilf, Moshe Lewensteinu i,

On Approximating Restricted Cycle Covers
Bodo Mantheyo

A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs
Tim Nieberg, Johann Hurink

Speed Scaling of Tasks with Precedence Constraints
Kirk Pruhs, Rob van Stee, Patchrawat Uthaisombut

Partial Multicuts in Trees
Asaf Levin, Danny Segev

Approximation Schemes for Packing with Item Fragmentation
Hadas Shachnai, Tami Tamir, Omer Yehezkely

Author Index

176

190

203

216

230

244

258

270

282

296

307

320

“Almost Stable” Matchings in
the Roommates Problem

David J. Abraham!-*, Péter Bir6?**, and David F. Manlove3* * *

! Computer Science Department, Carnegie-Mellon University, USA
dabraham@cs.cmu.edu
2 Department of Algebra, and Department of Computer Science and Information
Theory, Budapest University of Technology and Economics, Hungary
pbiro@cs.bme.hu
3 Department of Computing Science, University of Glasgow, UK
davidm@dcs.gla.ac.uk

Abstract. An instance of the classical Stable Roommates problem (SR)
need not admit a stable matching. This motivates the problem of finding
a matching that is “as stable as possible”, i.e. admits the fewest number
of blocking pairs. In this paper we prove that, given an SR instance with n
agents, in which all preference lists are complete, the problem of finding
a matching with the fewest number of blocking pairs is NP-hard and not
approximable within ne ~¢, for any € > 0, unless P=NP. If the preference
lists contain ties, we improve this result to n'~°. Also, we show that,
given an integer K and an SR instance I in which all preference lists are
complete, the problem of deciding whether I admits a matching with
exactly K blocking pairs is NP-complete. By contrast, if K is constant,
we give a polynomial-time algorithm that finds a matching with at most
(or exactly) K blocking pairs, or reports that no such matching exists.
Finally, we give upper and lower bounds for the minimum number of
blocking pairs over all matchings in terms of some properties of a stable
partition, given an SR instance I.

1 Introduction

The Stable Roommates problem (SR) is a classical combinatorial problem that
has been studied extensively in the literature [3,9,7,4,15,8]. An instance I of SR
contains an undirected graph G = (4, E) where A = {a1,...,a,} and m = |E]|.
We assume that G contains no isolated vertices. We interchangeably refer to
the vertices of G as the agents, and we refer to G as the underlying graph of I.

* Part of this work was done whilst at Department of Computing Science, University
of Glasgow, and Max-Planck-Institut fiir Informatik.
** Partially supported by the Center for Applied Mathematics and Computational
Physics, and by the Hungarian National Science Fund (grant OTKA F 037301).
*** Supported by the Engineering and Physical Sciences Research Council (grant
GR/R84597/01), and by Royal Society of Edinburgh/Scottish Executive Personal
Research Fellowship.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 1-14, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 D.J. Abraham, P. Biré, and D.F. Manlove

The vertices adjacent to a given agent a; € A are the acceptable agents for a;,
denoted by A;. If a; € A;, we say that a; finds a; acceptable. (Note that the
acceptability relation is symmetric, i.e. a; € A; if and only if a; € A;.) Moreover
we assume that in I, a; has a linear order <,, over A;, which we refer to as
a;’s preference list. If a; <q, ar, we say that a; prefers a; to ap. Given a; € A;,
define ranke, (a;) = 1+ [{ax € A; : ar <a, a;}].

Let M be a matching in I. If {a;, a; } € M, we say that a; is matched in M and
M (a;) denotes a;, otherwise a; is unmatched in M. A blocking pair with respect
to M is an edge {a;,a;} € E\M such that (i) either a; is unmatched in M, or
a; is matched in M and prefers a; to M (a;), and (i) either a; is unmatched in
M, or a; is matched in M and prefers a; to M(a;). Let bpr(M) denote the set
of blocking pairs with respect to M in I (we omit the subscript if the instance
is clear from the context). Matching M is stable in I if bp;(M) = 0.

Gale and Shapley [3] showed that an instance of SR need not admit a stable
matching (see for example the SR instance I, in Figure 1 where r = 1). Irving [7]
gave an O(m) algorithm that finds a stable matching or reports that none exists,
given an instance I of SR. The algorithm in [7] assumes that in I, all preference
lists are complete (i.e. A; = A\{a;} for each a; € A) and n is even, though it is
straightforward to generalise the algorithm to the problem model defined here
(i.e. the case of incomplete lists) [4]. Henceforth we denote by SRC the special
case of SR in which all preference lists are complete.

As the problem name suggests, an application of SR arises in the context of
campus accommodation allocation, where we seek to assign students to share
two-person rooms, based on their preferences over one another. Another appli-
cation occurs in the context of forming pairings of players for chess tournaments
[10]. Very recently, a more serious application of SR has been studied, involving
pairwise kidney exchange between incompatible patient-donor pairs [14]. Here,
preference lists can be constructed on the basis of compatibility profiles between
patients and potential donors.

Empirical results [12] suggest that, as n increases, the probability that a
random SR instance with n agents admits a stable matching decreases steeply.
Equivalently, as n grows large, these results suggest that an arbitrary matching in
a random SR instance with n agents is likely to admit at least one blocking pair.
In practical situations, a blocking pair {a;, a;} of a given matching M need not
always lead to M being undermined by a; and a;, since these agents might not
realise that together they block M. For example, in situations where preference
lists are not public knowledge, there may be limited channels of communication
that would lead to the awareness of blocking pairs in practice. Nevertheless, it
is reasonable to assert that the greater the number of blocking pairs of a given
matching M, the greater the likelihood that M would be undermined by a pair
of agents in practice. Hence, given an SR instance that does not admit a stable
matching, one may regard a matching that admits 1 blocking pair as being
“more stable” than a matching that admits 10 blocking pairs, for example. This
motivates the problem of finding, given an SR instance I with no stable matching,

“Almost Stable” Matchings in the Roommates Problem 3

a matching in I that admits the fewest number of blocking pairs [11,2]. Such a
matching is, in the sense described here, “as stable as possible”.

Given an SR instance I, define bp(I) = min{|bp;(M)| : M is a matching in I}.
Define MIN-BP-SR to be the problem of finding, given an SR instance I, a match-
ing M in I such that bp(M) = bp(I). (Note that, if I is an SRC instance where n
is even, clearly M must be a perfect matching in I.) In Section 2, we show that
MIN-BP-SR is NP-hard and very difficult to approximate. In particular we show
that MIN-BP-SR is not approximable within né_e, for any € > 0, unless P=NP.
The result holds even for complete preference lists.

We also consider the variant SRT of SR in which preference lists may include
ties. Ties arise naturally in practical applications: for example in the kidney
exchange context, two donors may be equally compatible for a given patient.
We also denote by SRTC the special case of SRT in which all preference lists
are complete. The definition of a blocking pair in the SRT and SRTC cases is
identical to that given for SR (however the term “prefers” in the Sr definition
is interpreted as “strictly prefers” in the presence of ties). (Note that in [§],
stable matchings in SRT and SRTC are referred to as weakly stable matchings,
where three stability definitions are given; however weak stability is the more
commonly-studied notion in the literature.) Clearly an instance of SRTC need
not admit a stable matching. Moreover it is known [13,8] that the problem of
deciding whether a stable matching exists, given an instance of srrc, is NP-
complete. Let MIN-BP-SRT denote the variant of MIN-BP-SR in which preference
lists may include ties. In Section 2, we show that MIN-BP-SRT is not approximable
within n'=¢, for any € > 0, unless P=NP. The result holds even if all preference
lists are complete, there is at most one tie per list, and each tie has length 2.

We now remark on the format of the inapproximability results that we present
for MIN-BP-SR and MIN-BP-SRT. We implicitly assume that a given instance I of
the former problem is unsolvable, so that bp(I) > 1. Recall that the solvability or
otherwise of I can be determined in O(m) time [7,4]. Hence bp(I) can be regarded
as the objective function for measuring performance guarantee. On the other
hand, given an instance I of MIN-BP-SRT, we do not assume that I is unsolvable,
since the problem of deciding whether this is the case is NP-complete [13,8].
Hence possibly bp(I) = 0, and therefore we use opt(I) to measure performance
guarantee, where opt(I) = 1 + bp(I). In fact our inapproximability result for
MIN-BP-SRT shows that, given any € > 0, it is NP-hard to distinguish between
the cases that I admits a stable matching, and bp(I) > n'~¢.

We also consider the case that we require a matching to admit ezactly K
blocking pairs. Define EXACT-BP-SR to be the problem of deciding, given an
SR instance I and an integer K, whether I admits a matching M such that
bp(M) = K. In Section 2 we show that EXACT-BP-SR is NP-complete (even
for complete preference lists). However by contrast, in Section 3, we prove that
EXACT-BP-SR is solvable in polynomial time if K is a constant. In particular we
give an O(m®+1) algorithm that takes as input an SR instance I and a constant
integer K, and finds a matching M in I such that bp(M) = K, or reports that no

4 D.J. Abraham, P. Biré, and D.F. Manlove

Q441 : Q4it2 Q4i+3 Qditd 0<i<r—1)

G4i42 © G4iy3 Odit1 Oditd

Q4i43 ¢ Qait1 G4i+2 Odita M} = {{a4it1, 0442} : 0 <3 <7 — 1}
Q4it4 @ Qait1 G4i+2 G4it3 M? = M} U{{aai+3,a2i44} :0< i <r—1}

Fig. 1. Instance I, of SR and two matchings M,', M2 in I,

such matching exists. We show how to adapt this algorithm to find a matching
M in I such that bp(M) < K, or report that no such matching exists.

We next give a remark regarding related work. An alternative method has
been considered in the literature for coping with instances of SR that do not
admit a stable matching. Tan [16] defined a stable partition in a given instance I
of SR, which is a generalisation of the concept of a stable matching in /. Following
[12], a stable partition is a permutation IT of A satisfying the following two
properties (which implicitly assume that if a; is a fixed point of IT then a; is
appended to his own preference list):

(i) for each a; € A, a; does not prefer I (a;) to I1(a;);
(i) if a; prefers a; to I~ *(a;) then a; does not prefer a; to I (a;).

Tan [16] showed that every instance I of SR admits a stable partition, and
he also gave an O(n?) algorithm for finding such a structure in I. Moreover,
starting from a stable partition, Tan [17] showed how to construct, also in O(n?)
time, a largest matching M in I with the property that the matched pairs in M
are stable within themselves. However such a matching may only be half the size
of a maximum (cardinality) matching in I. Yet in many applications we seek to
match as many agents as possible, and as discussed above, in order to satisfy this
property, in many cases a certain number of blocking pairs may be tolerated.
For example, suppose that r > 1 and consider the SR instance I, and example
matchings M, M? as shown in Figure 1. Since I, is built up from 7 copies of
insoluble SRC instances with 4 agents, Tan’s algorithm is bound to construct
a matching M in I, of size r (such as M}). Any such matching M satisfies
|bpr,.(M)| > 2r. However M? is a solution to MIN-BP-SR in I, where |M?| = 2r
and |bpy, (M?2)| = r. In particular M is half the size of M? and admits twice as
many blocking pairs.

In Section 4, for a given SR instance I, we give upper and lower bounds for
bp(I) in terms of some properties of a stable partition in I.

2 Inapproximability of MIN-BP-SR and MIN-BP-SRT

In this section we present reductions showing the NP-hardness and inapprox-
imability of each of MIN-BP-SR and MIN-BP-SRT. Define MIN-MM (respectively
EXACT-MM) to be the problem of deciding, given a graph G and integer K,
whether G admits a maximal matching of size at most (respectively exactly)
K. Our reductions utilise the NP-completeness of EXACT-MM in cubic graphs,
which we now establish.

“Almost Stable” Matchings in the Roommates Problem 5

Lemma 1. EXACT-MM is NP-complete, even for cubic graphs.

Proof. Clearly EXACT-MM belongs to NP. To show NP-hardness, we reduce from
MIN-MM, which is NP-complete even for cubic graphs [6]. Let G (a cubic graph)
and K (a positive integer) be an instance of the latter problem. Without loss
of generality we may assume that K < §(G), where 3(G) denotes the size of
a maximum matching of G. Suppose that G admits a maximal matching M,
where |M| =k < K. If k = K, we are done. Otherwise suppose that k < K. We
note that maximal matchings satisfy the interpolation property [5] (i.e. G has
a maximal matching of size j, for &k < j < 3(G)) and hence G has a maximal
matching of size K. The converse is clear. a

We now define some notation. Let I be an instance of SR and let A be the set of
agents in I. Given a; € A, we define a set of agents P(a;) to be a prefiz of a;’s
preference list in I if P(a;) C A; and whenever a; € P(a;) and a; prefers ax to
a;, it follows that ai € P(a;). The following lemma will also be required by our
reduction that establishes the inapproximability of MIN-BP-SR.

Lemma 2. Let I be an instance of SR with underlying graph G = (A, E). Let
a; € A and let P(a;) be a prefiz of a;’s preference list in I. Then, for every k > 1,
there exists an instance I' of SR with underlying graph G' = (A’, E'), where
ACA, |A = |A|l+ 2k and E C F’, satisfying the following two properties:

1. if M is any matching in I in which a; is matched and M(a;) € P(a;) then
there is a matching M’ in I' such that M C M’ and bpp (M') N (E'\E) = 0;

2. if M is any matching in I' in which a; is matched and M'(a;) ¢ P(a;), or
a; is unmatched, then |bpp (M') N (E'\E)| > k.

(If I is an instance of SRC then I' is also an instance of SRC.)

Proof. Let k > 1 be given. We create a set Bj of new agents, where B =
{ba,...,bap+1}. Let A" = AUBy,. Then |A’| = |A|+2k as required. The preference
list of a; in I’ is as follows:

0 [P@)]] b bs - basr | [[AA\P(a))]

where, for S C A;, [[S]] denotes those members of S listed in the order induced
from a;’s preference list in I. For exposition purposes, we also denote a; by b;.
For 2 < r < 2k + 1, the preference list of b, in I’ is as follows:

brlbr_H br_;,_g b2k+1 b1 bg br_1 |

where ... at the end of b,’s list denotes all agents in A in arbitrary strict order.
Let B; = {b1} U By. For any agent b, € By, the agents to the left of the
symbol | in b,’s preference list in I’ are called the proper agents for b,.
Finally, every agent in A\{a;} forms a preference list in I’ by appending
the members of By to their preference list in I (in arbitrary strict order). The
definition of E’ follows by construction of the preference lists in I’; hence £ C E’.

6 D.J. Abraham, P. Biré, and D.F. Manlove

Given a matching M’ in I’ and an agent b, € By, who is matched in M’, define
pr(b., M") to be the set of agents whom b, prefers to M’(b,).

To show (1) above, let M be a matching in I such that a; is matched in M
and M (a;) € P(a;). Let M = M U {{by,bps+r} : 2 <r < k+ 1}. Suppose that
{br,bs} € bpp (M")N(E'\E), where b,, bs € By, and rr < s. We firstly suppose that
2<r <k+1.Then M'(b.) = byyi. As bs € pr(b., M) = {brs1,...,bp1x—1} and
|pr(by, M")| = k—1, it follows that M’ (bs) € {bytk+1,--.,b2k+1,b2,...,br_1}, s0
that b, ¢ pr(bs, M’), a contradiction. Now suppose that k+2 < r < 2k+1. Then
M/(bT) =b,_p. As b, € pr(br, M')\{bl} = {br+1, ey b2k+1, ba, ..., brfkfl} and
lpr(by, M\{b1}| = k — 1, it follows that M’(bs) € {br_k+1,.-.,br_1}, so that
b, & pr(bs, M'), a contradiction. Finally it is easy to see that {a;,b;} ¢ bpr (M')N
(E'\E) for any a; € A and b; € By,. Hence bpp (M) N (E'\E) = () as required.

To show (2) above, let M’ be a matching in I’, and suppose that a; is matched
in M’ and M'(a;) ¢ P(a;), or a; is unmatched in M’. Then there is an agent
b; € By, who is not matched to a proper agent in M’. Define E” to be the edges
in the subgraph of G’ induced by Bj,. Suppose |M' N E”| =t. Then t < k. Also
2(k—t) agents in Bj \{b;} are not matched to a proper agent in M’. Now suppose
that {b,,bs} € M'NE". Then B} \{b,,bs} C pr(b,, M")Upr(bs, M"). Hence either
{bj,b,} or {b;, bs} belongs to bpy (M')N(E'\E). Now suppose that b, € B;\{b;}
is not matched to a proper agent in M’. Then {b;,b,} € bpp (M')N(E'\E). Hence
|bpr (M") N (E'\E)| > t+ 2(k —t) = 2k — t > k as required. O

Henceforth we adopt the following notation, given an instance I of SR. Given
an agent a;, a prefix P(a;) of a;’s preference list and an integer k > 1, the
symbol G (a;) in a;’s preference list following the members of P(a;) denotes the
introduction of the new agents in By together with their preference lists, and the
insertion of the members of By, in subscript order at the relevant point in a;’s
preference list, as described by the proof of Lemma 2. Given two agents a;, a;
and integers k,l > 1, usage of the symbols Gy (a;) and G;(a;) in the preference
lists of a; and a; respectively implies that the agents in By, as introduced for a;
are disjoint from the agents in B; as introduced for a;.

We now present a gap-introducing reduction, starting from EXACT-MM, that
establishes the hardness of approximating MIN-BP-SR.

Theorem 1. MIN-BP-SR s not approximable within néfs, for any e > 0, unless
P=NP. The result holds even for complete preference lists.

Proof. Let € > 0 be given. Let G = (V, E) (a cubic graph) and K (a positive
integer) be an instance of EXACT-MM. Assume that V' = {vy,...,v,} and ¢ = |E].
We assume that 2K < p, for otherwise EXACT-MM trivially has a “no” answer.
Let t = [!] and let C = D = p'. For each i (1 <i < p), let vj,, vy, v;, denote
the three vertices adjacent to v; in G. For each s (1 < s < 4), let U® = {u} :
1< < p}. Let U = U;l:lUs, H = {hl,hz,...,hp_gK}, X = {xl,xg,...,xc},
Y ={y1,y2,...,yctand Z ={zf : 1 <i<pA1l<s<3}

For each {v;,v;} € E, define 0;; = 1,2,3 according as v; is vj,, vg, or

vy, respectively. Also define W, = {w;; : 1 <r < C} (1 < s < 2) and

“Almost Stable” Matchings in the Roommates Problem 7

ab b W W) WA WAL H) IX) .. (1<i<p)

uf szl up [X] (1<i<p)

ul 2} ulm [X] (1<i<p)

up iz oz [X] (1<i<p)

ziuf ul [X] (1<i<pAl1<s<3)
he - [UY] [X] ... (1<k<p-2K)

v [U] [2] [H] W] (1<r<0)

yr: 2 Gp(yr) 1<r<0)
w:;w;} u; wjrf [(X] 1<i<j<pA{v,v}eEAN1<r<CO)
w:f ;22 ;Zl [X] 1<i<j<pA{v,vj}€eEANL1<r<(C)
wgllw:jz uj w;’; [X] 1<i<j<pA{viv;}€e EA1<r<C)
w;fw:; w:f [(X] 1<i<j<pA{v,v}eEAN1<r<CO)

Fig. 2. Preference lists in the constructed SR instance I

Wi =W UW2,. (We remark that {v;,v;} gives rise to both o; j and 0 ;, and
both Wi,]' and Wj7i.) Let W = U{vi,vj}eEWi,j~

We create an instance I of SRC in which the set A of agents includes U U Z U
HUXUY UW and also additional agents that arise from instances of gadgets
that are constructed implicitly by the proof of Lemma 2. The preference lists of
the agents in UUZ U HU X UY UW are shown in Figure 2. In a given agent
a’s preference list, the symbol [S], for S C U U Z U H U X, denotes all members
of S listed in increasing subscript order. Similarly, for S C W, the symbol [S]
denotes all members of S listed in arbitrary strict order. Also, the symbol ...
denotes all remaining agents (other than a) listed in arbitrary strict order. For
certain agents in I, we now define a prefix P(a) of a’s preference list as follows.
For each agent a € U U Z U H UW, define P(a) to be the set of agents whom a
prefers to every member of X. For each agent y, € Y, define P(y,) = {z,}.

It may be verified that the number of agents in [isn=7p+p — 2K 4+ 2C +
2CD +4qC = 2p*' +6p'*t1 +2p' +8p—2K (since G is cubic), which is polynomial
in the size of the given instance of EXACT-MM.

Suppose that M is a maximal matching in G, where |M| = K. We create
a matching M’ in I as follows. Let {v;,v;} € E where i < j. Suppose ﬁrstly
that {v;,v;} € M. Let s; = 0;; and let so = 0;,;. Add the pairs {u}', u’ 2},
{uz’z(1<57£81<3){uw1}{u333(—57£52§3){u3’j}a
{w]"}! i W } {w”, 2} to M’ (1 <7 < C). Now suppose that {vi,v;} ¢ M. If
vj is unmatched in M add the palrs {w”, } {w”, 1<r<0)to

M, otherwise add the pairs {w]} W } {w]? wri b (1< < C’) to M.

There remain p— 2K agents in U* Who are unmatched in M’ —let utl , u%z, ceey

u%p_w denote these agents, where ¢ < to < ... < t,_ox. Add {u%k,hk} and

8 D.J. Abraham, P. Biré, and D.F. Manlove

{uj ,z;"" b to M (2 < s <4,1 <k < p-—2K). Next add {z,,y,} to M’
(1 < r < C). Finally, since M'(y,) € P(y.) for each agent y, € Y, we may
extend M’ by adding the edges that follow from Property 1 of Lemma 2 as
applied to Gp(yy).

For each i (1 < ¢ < p), there exists a unique s (1 < s < 3) such that
{uf, z{} € bp(M’). It may be verified that, by the maximality of M in G, these
are all the blocking pairs of M’ in I, and hence |bp(M’)| = p

Conversely suppose that G does not admit a maximal matching of size K.
Suppose for a contradiction that bp(I) < C. Let M’ be a matching in I such
that [bp(M")| = bp(I) < C. Clearly every agent must be matched in M’, as I
is an instance of SRC and n is even. Also by Property 2 of Lemma 2, it follows
that {y,,z,} € M’ for all y, € Y, for otherwise |bp(M’)| > C, a contradiction.
Hence for each a € UU Z U H UW, it follows that M’(a) € P(a), for otherwise
{@,,a} € bp(M') for all z, € X, so that [bp(M')| = C', a contradiction.

Also for each i (1 <i <p), {ul, 28} € M for some s’ (1 < s’ < 3). It follows
that {z7,uf} € M’ (1 <s # s’ < 3). Now suppose that {uz,w;’jl} € M’ for some
i,7 (1 <id,5 <p)and r (1 <r < (). Then {w”, T’Q} € M’, for otherwise
%4;(;1);12) ¢ P(w]l) Hence {wﬂ, uj} € M, for otherwise M’ (wj) ¢ P(wjrzl)

efine

B L {uZ,J}GM'wherel<51,32<3\/
M—{{v,,vj}EE.z<]/\< L }GM'Wherel<r<C .

It follows that M is a matching in G. Also each agent in H is matched in
M’ to an agent in U!, so that |M| < K. But each agent u € U satisfies
M'(u?) € P(uf), so that |M| = K. Now suppose that M is not maximal in G.
Then there exists some edge {v;,v;} € E such that each of v; and v; is unmatched
in M. Hence {u},h;} € M’ and {u1 hl} E M’ for some hg,h; € H. Let r (1 <
r<C)beg1ven If{{w”, o, {w”, }CM’then{w]l, ul} € bp(M'). I
{{wi} wid} {wi] iy 1) Q M’ then {uz’ wi'}} € bp(M’). Hence [bp(M)| = C,
a contradlctlon Thus M is a maximal matching of size K in G, a contradiction.
Hence bp(I) > C = p* after all.
Next we show that p'~—! > n2=e, Firstly recall that

n = 2p% + 6pttt 4 2p' + 8p — 2K. (1)

As G is cubic, we may assume that p > 4. Hence Equation 1 implies that
1—t
n < 16p2t, and thus pt=! > 162 n2~2. As t > L, it follows that

pi! >4 275, (2)

But Equation 1 also implies that n > p*, since 2K < p. As p > 4, it follows
that n > 42t > 42(51) , and hence 4" > n~ 2. Thus by Inequality 2, it follows
that p'=! > n2—¢ as required.

Hence the existence of an (néfe)—approximation algorithm for MIN-BP-SR

implies a polynomial-time algorithm for EXACT-MM in cubic graphs. This is a
contradiction to Lemma 1 unless P=NP. O

“Almost Stable” Matchings in the Roommates Problem 9

Corollary 1. EXACT-BP-SR is NP-complete, even for complete preference lists.

Proof. We use the same reduction as in the proof of Theorem 1 (for any € < 1)
and set K’ = p. Clearly G admits a maximal matching of size K if and only if
I admits a matching with exactly K’ blocking pairs. O

We now consider the case where preference lists may include ties. For a given
instance I of SRT, we define opt(I) = 1+ bp(I) as discussed in Section 1. The
following result establishes the hardness of approximating MIN-BP-SRT.

Theorem 2. MIN-BP-SRT is not approzimable within n' ¢, for any e > 0, unless
P=NP. The result holds even if all preference lists are complete, there is at most
one tie per list, and each tie is of length 2.

Proof. This result follows by adapting the proof of Theorem 1; we outline only
the modifications here. For the revised reduction, choose t = [i], C = p and
D = pt. Let F = p'~!. Also, for each 2§ € Z, the agents u{ and u} are tied in
joint first place in the preference list of z7. All other preference list entries are
as before. We now create F' copies of each agent ina € UU Z U H U W — each
copy of a is denoted by a(s) (1 < s < F). In the preference list of a(s) in I, we
replace b by b(s) for each agent b € U U Z U H UW who is a proper agent for
a. In the preference list of each agent in X, we replace b by b(1),...,b(F) for
each agent b € UUZUH UW. For each s (1 < s < F), the class of agents C(s)
comprises those agents a(s) such that a e UUZ U H UW.

As in the proof of Theorem 1, if G admits a maximal matching of size K,
we may construct a matching M’ in I. However M’ is modified as follows: if
{a,b} € M’ for a,b € UUZUHUW , we replace {a, b} by {a(s),b(s)} (1 < s < F).
The presence of the ties now implies that M’ is stable in I, so that opt(I) = 1.

Conversely if G does not admit a maximal matching of size K, then as in the
proof of Theorem 1, we let M’ be any matching in I such that [bp(M')| = bp(I). If
{zr,yr} ¢ M’ for some r (1 <r < C), it follows that |bp(M’)| > D. Otherwise,
it may be verified that each class of agents C(s) (1 < s < F) contributes at
least C' blocking pairs of M’, for if not then G admits a maximal matching of
size K. Further, these F' sets of blocking pairs are pairwise disjoint, so that
lbp(M")| > FC = D. Hence opt(I) > D +1=p' + 1.

Next we show that p! > n'~¢. For, we firstly note that n = (8p — 2K +
4¢qC)F +2C +2CD, so that

n = 8p!t! + 8pt — 2Kpt~t + 2p. (3)

Without loss of generality we may assume that p > 9. Hence Equation 3 implies
1
that n < 9pt*+!, and thus pt > 9~ ¢fin! i1, Ast > 2, it follows that

:. (4)

Equation 3 also implies that n > 9¢, since 2K < p. It follows that n > 95024:1),
and hence 97 +f1 > n~2. Thus by Inequality 4, it follows that p¢ > n'~¢ as
required.

pt> 97 n!

10 D.J. Abraham, P. Biré, and D.F. Manlove
Hence the existence of an (n'~¢)-approximation algorithm for MIN-BP-SRT
implies a polynomial-time algorithm for EXACT-MM in cubic graphs. This is a
contradiction to Lemma 1 unless P=NP. O

We denote by EXACT-BP-SRT the extension of EXACT-BP-SR to the SRT case.
Corollary 1 may be strengthened for EXACT-BP-SRT as follows. It is known that
the problem of deciding whether an SRTC instance I admits a stable matching
is NP-complete [13,8]. Form an SRTC instance J by adding to I a new agent a;
such that A; = A\{a;} and P(a;) = (), together with the new agents that are
created by Lemma 2 as applied to a;, with & = K. Clearly I admits a stable
matching if and only if J admits a matching with exactly K blocking pairs. We
have therefore proved:

Theorem 3. EXACT-BP-SRT is NP-complete for each fixred K > 0.

3 Polynomial-Time Algorithm for Fixed K

In this section we consider the case that I is an SR instance with underlying
graph G = (A, E) and K > 1 is a fixed constant. We give an O(m**1) algorithm
that finds a matching M in I such that |bp;(M)| = K, or reports that no such
matching exists. Later, we show how to modify this algorithm if we require that
lbpr(M)| < K.

Our algorithm is based on generating subsets B of edges of G, where |B| = K
— these edges will form the blocking pairs with respect to a matching to be
constructed in a subgraph of G. Given such a set B, we form a subgraph G =
(A, Ep) of G as follows. For each agent a; incident to an edge e = {a;,a,} € B,
if e is a blocking pair of a matching M, it follows that {a;,a;} ¢ M and q;
cannot be matched in M to an agent whom he prefers to a; in /. Hence we
delete {a;,a;} from Ep, and also we delete {a;,ar} from Ep for any aj such
that a; prefers ax to a; in I. If any such edge {a;,ax} is not in B, then we
require that {a;,ar} is not a blocking pair of a constructed matching M. This
can only be achieved if a; is matched in M to an agent whom he prefers to a;
in I. Hence we invoke truncateq, (a;), which represents the operation of deleting
{ak,a;} from Ep, for any a; such that aj, prefers a; to a; in I. Additionally we
add ay to a set P to subsequently check that aj is matched in M.

Having completed the construction of Gp, we denote by Ip the SR instance
with underlying graph G and preference lists obtained by restricting the pref-
erences in I to Ep. By construction of Gp, it is immediate that any matching
M in Gp satisfies B C bp;(M). To avoid any additional blocking pairs in I, we
seek a stable matching in Ip in which all agents in P are matched. We apply
Irving’s algorithm for SR [4] to Ip — suppose it finds a stable matching M in
Ip. If all agents in P are matched then, as we will show, bp;(M) = B, and
hence |bp;(M)| = K — thus we may output M and halt. If some agents in P are
unmatched in M then we need not consider any other stable matching in I,
since Theorem 4.5.2 of [4] asserts that the same agents are matched in all stable
matchings in Ip. Hence (and also in the case that no stable matching in I is

“Almost Stable” Matchings in the Roommates Problem 11

for each B C F such that |B| = K
Ep:=E; //Gp=(A,EpB)is asubgraph of G
P = 0
for each agent a; incident to some {a;,a;} € B
delete {ai,a;} from Ep;
for each agent ax such that a; prefers ax to a; in I
delete {ai,ar} from Ep;
if {ai, ak} ¢ B
truncatea, (a;);
P:=PU{aw};
if there is a stable matching M in Ip
if every agent in P is matched in M
output M and halt;
report that no matching with K blocking pairs exists;

Fig. 3. Algorithm K-BP

found), we may consider the next subset B. If we complete the generation of all
subsets B without having output a matching M, we report that no matching
with the desired property exists. The algorithm is displayed as Algorithm K-BP
in Figure 3. The following theorem establishes its correctness and complexity.

Theorem 4. Given an SR instance I and a fixed constant K, Algorithm K-BP
finds a matching with exactly K blocking pairs, or reports that no such matching
exists, in O(mE+1) time.

Proof. Suppose firstly that the algorithm outputs a matching M when the out-
ermost loop considered a set B. We show that M is a matching in I such
that bp;(M) = B. As previously mentioned, B C bpr(M). We now show that
bpr (M) C B. For, suppose that {ax,a;} € (E\B)Nbpr(M). Then {ax,a;} ¢ Ep,
as M is stable in Ip. Hence {ag,a;} has been deleted by the algorithm. Thus
without loss of generality ax € P, so that ay is matched in M and ay, prefers
M (ay) to a; in I. Hence {ay,a;} ¢ bpr(M) after all, so that bp; (M) = B.

Now suppose that M is a matching in I such that bp;(M) = B, where |B| = K.
By the above paragraph, if, before considering B, the outermost loop had already
output a matching M’ when considering a subset B’, then bp;(M') = B’, and
|B’| = K. Otherwise, when the outermost loop considers the subset B, it must
be the case that no edge of M is deleted when constructing Gg. Hence M C Eg.
Moreover M is stable in Ip, for if not then e € bpy, (M) for some e € Ep, and
hence e € bp;(M). As BN Eg = 0, it follows that e € bp;(M)\ B, a contradiction.
Finally every member of P is matched in M, for suppose a; € P is unmatched
in M. As ay, € P, there is some agent a; such that a; prefers aj to a; in I, where
{a;,a;} € B and {a;,ar} ¢ B. Hence {a;,ar} € bpr(M)\B, a contradiction.
Hence by [4, Theorem 4.5.2], Irving’s algorithm finds a stable matching M’ in Ip
(possibly M’ = M) such that all members of P are matched in M’. Thus the
algorithm outputs M’ in this case. By the above paragraph, bp;(M') = B.

On the other hand suppose that there is no matching M in I such that
|bpr(M)| = K. By the first paragraph, if the algorithm outputs a matching M’

12 D.J. Abraham, P. Biré, and D.F. Manlove

when the outermost loop considered a subset B, then bp;(M') = B, a contra-
diction. Hence the algorithm reports that no such matching M exists.

Clearly the outermost loop iterates O(mf) times. Within a loop iteration,
construction of G g takes O(m) time, as does the invocation of Irving’s algorithm.
All other operations are O(m). O

Note that it is straightforward to modify Algorithm K-BP so that it outputs the
largest stable matching taken over all subsets B — we may then find a matching
M such that (i) |bp;(M)| = K, and (ii) M is of maximum cardinality with respect
to (i). This extension uses the fact that all stable matchings in Iz have the same
size [4, Theorem 4.5.2], so that the choice of stable matching constructed by the
algorithm is not of significance for Condition (ii).

Finally we remark that Algorithm K-BP may easily be modified in order to
find a matching M such that bp;(M) < K: the outermost loop iterates over
all subsets B of F such that |B| < K. Again, one can find a maximum such
matching if required. The time complexity of the algorithm remains unchanged.

4 Upper and Lower Bounds for bp(I)

In this section we present upper and lower bounds for bp(I), given an SR instance
1, in terms of properties of a stable partition as defined in Section 1. The following
results concerning stable partitions were established by Tan [16].

Theorem 5 ([16]). Given an SR instance I,

1. I admits a stable partition II, which may be found in O(n?) time;

2. if C; is an odd-length cycle in IT of length > 1 (henceforth an odd cycle) in
IT then C; is an odd cycle in any stable partition of I1;

3. I admits a stable matching if and only if IT has no odd cycle of length > 3.

Let C denote the set of odd cycles of length > 3 in a stable partition I7. Given
C; € C, let d; = mingec; da(a;), where dg(a;) denotes the degree of vertex a;
in the underlying graph G of I. We firstly give an upper bound for bp([).

Lemma 3. Given an SR instance I, the bound bp(I) < > ¢ co(di — 1) holds.

Proof. We firstly remark that the upper bound is invariant for I by Part 2 of
Theorem 5. It follows by [17, Proposition 4.1] and [16, Proposition 3.2] that,
by deleting a vertex of minimum degree from each odd cycle of C, and then
by decomposing each even length cycle into pairs, we obtain a matching M
that is stable in the instance J of SR so obtained. It then follows by Properties
(i) and (ii) of II as given in Section 1 that every blocking pair of M in I in-
volves a deleted vertex, and moreover for any deleted vertex a;, if IT(a;) = a;
then {a;,a;} ¢ bpr(M) since a; prefers M(a;) = II(a;) to a,. It follows that
bpr(M)] < Y ce(ds — 1). 0

In order to derive our lower bound for bp(I), it will be helpful to utilise a con-
struction due to Cechldrova and Fleiner [1] which involves transforming a given

“Almost Stable” Matchings in the Roommates Problem 13

ap:ai a; ap a;:ay ap
@ al a? atal @l
a :ap af ab:al a; a

Fig. 4. Preference lists of the newly-introduced agents in I,

SR instance I into an SR instance I. as follows. In I, the preference lists of the
agents in A are initially the same as the corresponding preference lists in 1. We
then replace each edge ey = {a;,a;} (where i < j) in the underlylng graph of T
by a 6-cycle 1nvolv1ng vertices a,lc, ai, a‘,z, aﬁ, ag, ak In a;’s preference hst in I,
a; is replaced by ak, whilst in a;’s preference list in I., a; is replaced by ak The
preference lists of the newly-introduced agents are shown in Figure 4.
Cechlarové and Fleiner [1] showed that a stable matching M in I corresponds

to a stable matching M, in I., and vice versa, as follows:

- {aivaj} EM < {alﬁai}v {a%7a%}7 {a%7a2}7 {a27aj} € M.
— {ai,a;} ¢ M and a; prefers M(a;) to a; = {a},ai},{a2, a3}, {a},al} € M.
— {a;,a;} ¢ M and a; prefers a; to M(a;) = {a}ﬂ,a%}, {ai,ag}, {ai,az} e M,

- {aivaj} ¢ M < {allcva%L{a%vaz}v{azvag} € M. or {allwa%L {a27a2}7
{a},a?} € M,

where {a;,a;} = eg. Similarly, given stable partitions II and II. in I and I,
respectively, we can prove that IT(a;) = a; in an odd cycle if and only if, in IT,:

— if i < j then {(a;,a}, a3, a},al, a;) is in an odd cycle and (a},a}) is a cycle;

— if j < then {(a;,al,a}, a},a},a;) is in an odd cycle and (a?,a}) is a cycle.
Lemma 4. Given an SR instance I, the bound bp(I) > { —‘ holds.

Proof. Tt follows from the proof of Theorem 4 that bp(I) = k if and only if
k is the minimum number for which there exists a set S of k edges such that
the SR instance I’ obtained by deleting the edges in S from I admits a stable
matching. To delete an edge ey = {a;,a;} from I is equivalent to deleting the
two vertices aj, and af from I.. That is, after deleting the above set S of edges,
instance I’ has a stable matching if and only if, after deleting the corresponding
k pairs of vertices from I., the obtained instance I/ has a stable matching. But
by [17, Theorem 4.2], the number of odd cycles can decrease by at most one after
deleting one vertex, so after deleting k edges from I, the number of odd cycles
can decrease by at most 2k in I.. Hence if |C| > 2k, then I still has at least one
odd cycle of length > 3, so neither I/ nor I’ can admit a stable matching. a

5 Concluding Remarks

The strong inapproximability results presented in this paper are perhaps sur-
prising, in view of Theorem 5 and the various structural properties of a stable
partition [16,17]. We conclude with two open problems.

14 D.J. Abraham, P. Biré, and D.F. Manlove

Firstly, given an SR instance I and a matching M in I, it follows that bp(M) <
m = O(n?). Is there an approximation algorithm for MIN-BP-SR with perfor-
mance guarantee o(m)?

Secondly, it remains open to determine whether the bounds for bp(I) presented
in Section 4 are tight, and in particular to establish values of k,, and to obtain
a characterisation of I, such that I,, is an SR instance with n agents, in which
bp(I,) = ky, and bp(I,) is maximum over all SR instances with n agents.

Acknowledgements

We would like to thank Katarina Cechlarova and Rob Irving for helpful discus-
sions. The problem of finding a matching with at most K blocking pairs, for a
fixed integer K, was suggested by Rob Irving.

References

1. K. Cechlérova and T. Fleiner. On a generalization of the stable roommates prob-
lem. ACM Transactions on Algorithms, 1(1):143-156, 2005.

2. K. Eriksson and P. Strimling. How unstable are matchings from decentralized mate
search? Preprint, 2005. Submitted for publication.

3. D. Gale and L.S. Shapley. College admissions and the stability of marriage. Amer-
ican Mathematical Monthly, 69:9-15, 1962.

4. D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, 1989.

5. F. Harary. Maximum versus minimum invariants for graphs. J. Graph Theory,
7:275-284, 1983.

6. J.D. Horton and K. Kilakos. Minimum edge dominating sets. SIAM J. Discrete
Mathematics, 6:375-387, 1993.

7. R.W. Irving. An efficient algorithm for the “stable roommates” problem. J. Algo-
rithms, 6:577-595, 1985.

8. R.W. Irving and D.F. Manlove. The Stable Roommates Problem with Ties. J.
Algorithms, 43:85-105, 2002.

9. D.E. Knuth. Mariages Stables, Les Presses de L’Université de Montréal, 1976.

10. E. Kujansuu, T. Lindberg, and E. M&kinen. The stable roommates problem and
chess tournament pairings. Divulgaciones Matemdticas, 7(1):19-28, 1999.

11. M. Niederle and A.E. Roth. Market culture: How norms governing explording
offers affect market performance. NBER working paper 10256, January 2004.

12. B.G. Pittel and R.W. Irving. An upper bound for the solvability probability of a
random stable roommates instance. Rand. Struct. Algorithms, 5(3):465-486, 1994.

13. E. Ronn. NP-complete stable matching problems. J. Algorithms, 11:285-304, 1990.

14. A.E. Roth, T. Sénmez, and M. Utku Unver. Pairwise kidney exchange. To appear
in Journal of Economic Theory.

15. A.E. Roth and M.A.O. Sotomayor. Two-sided matching: a study in game-theoretic
modeling and analysis Cambridge University Press, 1990.

16. J.J.M. Tan. A necessary and sufficient condition for the existence of a complete
stable matching. J. Algorithms, 12:154-178, 1991.

17. J.J.M. Tan. Stable matchings and stable partitions. International J. Computer
Mathematics, 39:11-20, 1991.

On the Minimum Load Coloring Problem
Extended Abtract

Nitin Ahuja', Andreas Baltz?, Benjamin Doerr?,
Ales Piivétivy?, and Anand Srivastav?

! Department of Mathematical Optimization, Technical University Braunschweig,
Pockelsstrasse 14, D-38106 Braunschweig, Germany
n.ahuja@tu-bs.de
2 Department of Computer Science, Christian-Albrechts-University Kiel,
Christian-Albrechts-Platz 4, D-24098 Kiel, Germany
{aba, asr}@numerik.uni-kiel.de
3 Max-Planck-Institute for Computer Science,
Stuhlsatzenhausweg 85, D-66123 Saarbriicken, Germany
doerr@mpi-sb.mpg.de
4 Department of Applied Mathematics, Charles University,
Malostranské nam. 25, 11800 Praha, Czech Republic
privetivy@kam.mff.cuni.cz

Abstract. Given a graph G = (V, E) with n vertices, m edges and
maximum vertex degree A, the load distribution of a coloring ¢ : V —
{red, blue} is a pair d, = (ry,,b,), where r, is the number of edges
with at least one end-vertex colored red and b, is the number of edges
with at least one end-vertex colored blue. Our aim is to find a coloring
® such that the (maximum) load, l, := max{re, b, }, is minimized. The
problem has applications in broadcast WDM communication networks
(Ageev et al., 2004). After proving that the general problem is N P-hard
we give a polynomial time algorithm for optimal colorings of trees and
show that the optimal load is at most m/2 + Alog, n. For graphs with
genus g > 0, we show that a coloring with load OPT(1 + o(1)) can be
computed in O(n + g)-time, if the maximum degree satisfies A = o())
and an embedding is given. In the general situation we show that a
coloring with load at most %m -+ O(v/Am) can be found in deterministic
polynomial time using a derandomized version of Azuma’s martingale
inequality. This bound describes the “typical” situation: in the random
multi-graph model we prove that for almost all graphs, the optimal load
is at least Zm — +/3mn. Finally, we generalize our results to k-colorings
for k > 2.

1 Introduction

We consider the following problem. We are given a graph G = (V,E) on n
vertices and m edges. The load of a k-coloring ¢ : V — {1,...,k} is

cE| ¢ ti)ne#0D},
Z_egg’f{fk}I{e | 7 (i) Ne# 0}

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 15-26, 2006.
© Springer-Verlag Berlin Heidelberg 2006

16 N. Ahuja et al.

the maximum number of edges with at least one end-point in color 7, where
the maximum is taken over all ¢ € {1,...,k}. The problem of minimizing this
load arises naturally in wavelength division multiplexing (WDM) networks with
broadcast traffic: here, the nodes represent senders/receivers each of which wants
to send messages to every other node via one of k available wavelength channels.
The objective is to assign to each node a channel, such that the maximum traffic
taken over all channels is minimized. Ageev et al. [1] consider scheduling aspects
of the capacitated weighted version of this problem. Closely related is the k—
balanced graph partitioning problem [6], where the aim is to find a set of edges
of minimum capacity such that removing these edges partitions the graph into
at most k roughly equally weighted and connected subgraphs.

In this paper the focus is on coloring the vertices of a graph with 2 colors, red
and blue. For a coloring ¢ : V' — {red, blue} we define the load distribution of ¢
by dy, := (ry, by), where 1, counts the number of edges incident with at least one
red vertex, and b, is the number of edges incident with at least one blue vertex.
The aim is to find a coloring ¢ such that the maximum load, l, := max{r,, b,},
is minimized. In the following we shall skip the term “maximum” and refer to
l, simply as the load of the coloring ¢. We call the problem of finding a coloring
¢ that minimizes l, Minimum Load Coloring Problem (MLCP).

1.1 Owur Results

After some preliminaries including the establishment of N P-hardness of the
problem in Section 2, we show how to solve MLCP on trees optimally in O(n?)
time (Section 3). Such an optimal solution is proven to have a load of at most
ém + Alog, n. Section 4 is concerned with graphs of genus g > 0. With a
separator theorem proved with techniques from Djidjev [5] we obtain an O(n+g)-
time algorithm for constructing a coloring with load bounded by m/2+48+/gAn.
This is a (1 + o(1))-approximation in case A = o(’;2). In Section 5 we analyze
arbitrary instances of the problem. We show that a random coloring has load
im + O(v/Am) with high probability. This immediately yields a randomized
algorithm. Furthermore, using an algorithmic version of the Azuma-inequality,
we derive a deterministic O(n®)-time algorithm for computing colorings with
the same load-bound. This is quite strong: in the random multi-graph model
(and similarly in other random models), almost all graphs have no coloring with
load less than Zm — V/3mn. In the last section we extend our results to k > 2
colors.

2 Preliminaries
In this section we state some basic facts. Let
I(G) :==min{l, | ¢ : V — {red,blue}}

denote the optimal load of a graph G = (V| E). Given a red-blue coloring ¢, we
shall denote the number of “cut edges” that connect a red vertex with a blue

On the Minimum Load Coloring Problem 17

vertex by c,. We will refer to the set of red vertices as V;. and to the set of blue
vertices as Vj,.

Since every edge of G is counted as red or blue (or both), [(G) > "}'. Obviously,
every red-blue coloring of G has load at most m, so we see that each two-coloring
of a graph G is a 2-approximation of [(G).

Let G be a star with d + 1 vertices, then I(G) = d. In fact, the maximum
degree A of the input graph is another lower bound on I(G). Tt is also easy to find
an optimal two-coloring of cycles and chains (graphs consisting of a single open
path). Here, each of the two classes in an optimal coloring forms a connected
component. This is already false for trees (cf. Section 3).

Let us observe that for regular graphs, MLCP is equivalent to MINBISECTION.

Lemma 1. Let k € N. Let G = (V, E) be a k-regular graph with n := |V| even,
and let ¢ : V. — {red,blue} be an optimal coloring, then either |V.| = |Vp| or
an optimal coloring with |V,.| = |V4| can be obtained by recoloring an arbitrary
vertex of the larger color class.

_ Vil

Proof. Suppose that |V,.| > |V3|. The number of red edges is r, D+,

= Vol ‘s, hence

and the number of blue edges is b, 5

k
ro—bp = o (Ve = Vi) 2 b

since n is even. If we change the color of an arbitrary red vertex v into blue,
the number of red edges decreases by at most k, while the number of blue edges
increases by at most k. Consequently, [, does not increase and the resulting
coloring is still optimal. On the other hand, I, must not decrease either. This
means that r, has to stay the same or b, has to increase by at least k. Either of
these events can occur only if v has only red neighbors. Since v is an arbitrary
red vertex, we conclude that G consists of monochromatic components. If |V,.| >
|Vi| 42 we can recolor another red vertex v" without increasing l,. But choosing
v as a neighbor of v results in an overall decrease of [, contradicting the choice
of ¢ as an optimal coloring. Hence |V,.| = |V3| 4+ 2, and thus recoloring v yields
an optimal coloring with |V,.| = |V;]. O

Given a k-regular graph with an even number of vertices, we see by Lemma 1
that every optimal coloring ¢ induces a bisection of V' (either at once or after
recoloring an arbitrary vertex of the larger class) with

n k ¢
lp,=_ - g
#T9 2ty
Since ¢ is optimal, c,, the size of the edge cut separating the classes V,. and V;, is

minimum, so we have a minimum bisection. On the other hand, every minimum
bisection Vi, V5 of V' gives rise to a coloring with load

n k |E(Vi,Va)
2 2 2 ’

18 N. Ahuja et al.

which is obviously optimal. Hence MLCP and MINBISECTION are equivalent
on regular graphs. For k > 3, MINBISCTION on k-regular graphs is as hard as
general MINBISECTION (see [3]). Since the decision version of MINBISECTION
is N P-complete [7], and the load of any proposed solution for MLCP can be
evaluated in polynomial time, we have established N P-completeness also for
MLCP.

Theorem 1. The decision version of MLCP is N P-complete.

3 Polynomial Time Algorithms for Trees

In this section, we show how to efficiently compute an optimal solution for the
MLCP on trees. We also show that any tree G with n vertices and maximum
vertex degree A has load at most I(G) < "51 + Alogy n. The key to prove this
result is the following more general lemma.

Lemma 2. Let G = (V, E) be a tree on n vertices and let my,ma € N such
that my + mo = n — 1. Then there is a red-blue coloring of V' such that at least
my + 1 — Alogy n edges are monochromatic red and at least mo +1 — Alog,n
are monochromatic blue.

Proof. We use induction. Clearly, the lemma holds for n < 3. Let us assume that
the lemma holds for all trees on less than n vertices. Let v € V be a vertex such
that deleting v breaks G into k > 2 components C;, i € {1,...,k}, where the
number of vertices n; in component C; is at most n/2. (To show the existence of
v, assume for the sake of a contradiction that each vertex is the origin of at least
one branch with more than 3 nodes. Let v be a vertex whose maximum branch
C'is minimum, and let v be the neighbor of v in C. Denote the maximum branch
of v by C". Then, |C'| < max{n — |C|,|C] =1} < max{}j —1,|C| — 1} < [C]
contradicting the minimality of |C|.) It is easy to see that there exist I1, Iz C
{1,...,k} such that:

(i) LNl =0,
(iil) > ez, mi < ma, and
(iv) 21‘612 n; < ma.

Note that either I; or Iy can also be empty, but not both. Color the vertices
of components with indices in Iy (resp. I) with red (resp. blue). The central
vertex v is arbitrarily colored red or blue. Let C; be the component that is left
uncolored, that is, {1,...,k} \ (1 U I2) = {j}. Let my = my — (D ;c;, mi) — 1
and my = mg — >, ni. Then, mq +m4 = n; — 1 is a partition of the number
of edges of C;. By induction, there is a red-blue coloring of C; such that at least
mj + 1 — Alogyn; of its edges are monochromatic red and at least mf + 1 —
Alog, nj are monochromatic blue. Now, the total number of monochromatic red
edges is at least) ;c; (n; — 1) +mj — Alogn; > my — [I1| — Alogy(n/2), which
is at least m; +1 — Alog, n. Similarly, the total number of monochromatic blue
edges is at least mgo + 1 — Alog, n. a

On the Minimum Load Coloring Problem 19

We did not try to optimize the error term Alog,n. It is clear that it has to
contain a linear dependence on A — this is shown by stars — and a logarithmic
dependence on the number of vertices. The latter is shown by a complete ternary
tree (proof omitted). This example also demonstrates that in an optimal coloring
the color classes may induce disconnected subgraphs. From the lemma, we easily
deduce the following.

Theorem 2. Let G = (V, E) be a tree on n vertices with mazimum vertex degree
A. Then I[(G) < ™, + Alog, n.

Note that the proof of Lemma 2 is constructive. We thus have an efficient algo-
rithm computing colorings with load at most ”51 + Alog, n. However, it is also
possible to compute optimal colorings for trees efficiently.

Theorem 3. On trees with n vertices, MLCP can be solved in time O(n?).

Proof. Let G = (V, E) be a tree on n vertices. Let us consider G as being rooted
in some arbitrary vertex a. We assign each v € V' a distance dist, given by the
length of the path from a to v and view each edge e € F as pointing from lower
to higher level nodes. So, we think of G as a directed tree with the root a at
level 0, the successors N(a) := {v € V | (a,v) € E} of a at level 1, etc. For
each v € V we denote by T, the induced subtree of G rooted in v, i.e.; Ty, is the
subgraph of G induced by v and all of its (iterated) successors. We define for
each arbitrary subtree G’ of G with root a’,

D¢r = {(r,b) | (r,b) = d, for some coloring ¢ of G' with ¢p(a’) = red},

the set of possible load distributions for G’ (we may assume ¢(a’) = red without
loss of generality). Suppose, we can efficiently compute Dg. Since |Dg| < n?,
we can also efficiently find the load I(G) of an optimal coloring by searching D¢
for the load distribution with smallest maximum component. We will show that
D¢ can be determined in polynomial time by iteratively computing Dr, for all
v € V, in reverse breadth first order. The iteration is based on two operations:

(i) Consider a subtree G’ of G with root o’ # a, v € V with (v,a’) € E, and
the tree v + G’ == (V(G') U {v}, E(G") U {(v,a’)}) obtained by appending
the edge (v,a’) to G’. We define

v+ Dgr = {(r+1,b) | (rb) € De} U{(b+1,r+1) | (r,b) € Dar}. (1)

(ii) Consider two subtrees G, G5 of G that do not intersect but in their joint root
a. Let GY + Gy .= (V(GY) UV(GY), E(GY) U E(GY)) denote the composite
tree and define

Dgy + Dgy = {(r1 + 72,01 + b2) | (r1,b1) € D, (r2,b2) € Dy} (2)

Since for each tree G’ we defined D¢ to contain only load distributions of
colorings where the root of G’ is colored red, it will be necessary to eventually
flip colors in the course of our desired iteration. For convenience, let us denote
the inverse coloring of a given coloring ¢ by .

20 N. Ahuja et al.

Claim 1. For all subtrees G' = (V', E') of G with root a’ and all v € V with
(1}, a’) €F, Dyrg =v+ Dgr.

Proof. Let (r,b) € Dyt and let ¢ : V' U {v} — {red, blue} be a coloring with
dy, = (r,b) and p(v) = red. Then ¢ := ¢|y~ is a coloring of G'. If ¢’(a’) = red,
then (1,V') :== dy = (r — 1,b) € Dgr and thus (r,b) = (' +1,b) € v+ D¢,
whereas if ¢’ (a’)= blue, then d,; = (r—1,b—1) and ¢’ induces a load distribution
dg, = (r'b):=(b-1r—-1)€ Dg,so (r,b)=0"+1,7"+1)€v+ De.

Let (r,b) € v+ Dgr. There is a coloring ¢ : V' — {red, blue} with ¢(a’) =
red and either d, = (r — 1,b) or d, = (b— 1,7 — 1). In the first case, extending
@ to V' U {v} by coloring v red gives a coloring ¢’ of v+ G’ with d» = (r,b), in
the second case we similarly extend ¢'. O

Claim 2. For all subtrees G| = (V{, E}), G, = (V3 EY) intersecting only in their
joint root a', Dg1+cy, = Dgy + Day-

Proof. Let (r,b) € Dgr 4y and let o : V{ UV, — {red, blue} be a coloring with
dy = (r,b) and @(a’) = red. Obviously, ¢[y, and ¢|y; are colorings of G} and
5, respectively, with ¢|y- (a') = ply;(a’) =red and dy, ,, +d,),,, = (r,b). Hence
1 2
D¢ 16y € Dy + Day,.

On the other hand, if (r,b) € Dg/ + Dy, then there are colorings ¢1, 2 of G}
and G4, respectively, with dy,, = (r1,b1), dg, = (r2,b2), (r1+7r2,b1+b2) = (1,b),
and @1(a’) = ¢a(a’) = red. Clearly, ¢’ := p1 U s is a coloring of G} + G4 with
ga’(a') = red and d@' = (7”, b), thus Dgll + Dgé - DG’1+G/2. O

As an easy consequence we observe the following fact.

Corollary 1. For allv €V,

Dr, = Z Dyyr, = Z v+ Dr,.

v’ €N (v) v’ €N (v)
Now the algorithm for computing I(G) is straightforward:

1. Let level := max{dist, | v € V} =1, Dz, := {(1,0)} for all v" € V with
dist, = level + 1.

For all v € V with dist, = level : compute Dz, = ZU,GN(U) v+ Dr,.

Set level := level — 1.

If level > 0 then go to 2.

Output min{max{r,b} | (r,b) € Dr, }.

G N

Note that the time required for operation (1) is bounded by 2|Dg/| = O(n?),
since we have to consider each (r,b) € Dg: twice, and (r,b) takes at most n?
values. Operation (2) consists of [Dg: | - [Dgy| = O(n?) steps. The running time
of the algorithm is dominated by the iterated calls of line 2, i.e., by the computa-
tions of Dy, . Computing Dr, involves deg(v) operations of type (2), where each
summand is computed via a type (1) operation. Hence, the overall running time
is bounded by Y, oy deg(v) - O(n* + n?) = O(n°). However, we can reduce the

On the Minimum Load Coloring Problem 21

running time to O(n?) by neglecting “irrelevant” colorings. Note that, if (r, b;)
and (r,b2) € Dr, are possible load distributions for a tree T, imposed by col-
orings ¢1 and g, then the load distribution with larger second component, say
(r,b2), will be irrelevant for computing [(G) (suppose, ¢ is an optimal coloring
of G with ¢, = 2, then replacing ¢ on T), by ¢ will not increase the load).
Thus, for each r we have to store only b := min{d’ | (r,0’) € Dr,}. Defining the
set of relevant load distributions

D¢ :={(r,b) | (r,b) € Dgr,b=min{b' | (r,b') € Dg/}}

for each subtree G’ of G, we have that |[Dg/| = O(n). Obviously, Dg can be
computed iteratively via operations similar to (1) and (2) that are performed on
D¢ instead of D¢ and thus require only O(n) and O(n?) steps, respectively.
This yields the desired O(n?) bound. The iterative procedure for computing Dg
(or bg) can be easily modified such that it gives not only the optimal load, but
also an optimal coloring. All we have to do is store, for each (r,b) € ﬁT and
each v € N(v) a pair ((r',V'),4) =: py(r,b), where (',b') € DTU/ was used in
the computation of (r,b) and ¢ € {1,0} indicates whether of not in computing
(r,b) from (r',b") we swapped the colors of T,.. Starting from an optimal load
distribution d = (rg, by) we trace back the load computations via p and determine
for each node an optimal color with the following algorithm.

Define ¢(a) := red, v := a, d := (rg,by), M = 0.

Set M := M U {(v,v,py(d)) | v' € N(v)}.

If M = () then output ¢ and stop.

Let (v,v', ((r',b),i)) € M, set M := M \ (v,v', ((+',V'),4)).

o(v) ifi=0
5. Defi ") =
efine p(v’) {red,blue} \ ¢(v) otherwise.

6. Set v:=v', d:= (+',b") and go to 2.

= 0o =

This algorithm can be implemented to run in O(n) time. Thus the time required
to solve MLCP on trees with n vertices is O(n?) in total. This ends the proof of
Theorem 3. g

4 An Approximation Algorithm for Graphs with
Genus g

In this section, we show how a (1 + o(1))-approximate solution for the MLCP
for graphs of genus g > 0 can be computed if A = o(:?;). Recall that the genus
of a graph is the smallest integer g such that the graph can be drawn without
crossing itself on a sphere with ¢ “handles”. The problem of determining the
genus of a graph is NP-hard [12]. A trivial upper bound on the genus g of a
graph with m edges and n vertices is m — 1 since each crossing of two edges can
be eliminated by introducing a handle. A lower bound of g > mESn + 1 can be
obtained by generalizing Euler’s formula for planar graphs (see [13]). The main
idea of our algorithm is to partition V into two sets A and B such that

22 N. Ahuja et al.

— the number of edges having both endpoints in A is at most m/2,
— the same holds for B,
— there are only O(y/gAn) edges between the sets A and B.

By coloring A and B with different colors, we obtain a coloring ¢ with [,(G) <
m/2 + ¢v/gAn. Since I[(G) > m/2, for A = O(Zi) we have a (1 + o(1))-
approximate solution. A polynomial time algorithm finding a partition with
small vertex separator for planar graphs (¢ = 0) was described in [8,4] and
then extended for graphs of genus g > 0 in [5]. Let E(A), E(B), and E(A, B)
denote the sets of monochromatic edges in A, B, and the set of bichromatic
edges connecting A and B, respectively. For our purpose we use the following
theorem, given in [11].

Theorem 4 [11]. Let G be a graph of genus g > 0, having nonnegative vertex
weights summing to one such that no weight exceeds 2/3. There is a partition
of V into sets A and B, such that weight(A) < 2/3, weight(B) < 2/3, and
|E(A, B)| < 5v/3gAn. Provided that we are given an embedding of G into its
genus surface, there is an O(n + g)-time algorithm which finds such a partition.

We can use this theorem in the following way: for any graph of genus g > 0
we assign to each vertex v € V a weight w(v) = deggrg”). The theorem yields a
partition of V into A and B, such that |E(A)| < m, |[E(B)| < 2m and there are
at most 51/3gAn edges between A and B. This g factor can be reduced to ; by
iterating the algorithm on the bigger of the sets resulting from the partitioning.
Both, the size of the edge separator and the running time, increase only by a
constant factor. We summarize this in the following theorem. The proof is similar
to the proof of Corollary 3 in [8], and thus will be given only in the full version

of the paper.

Theorem 5. Let G be a graph of genus g > 0. There is a partition of V into
sets A, B, such that |E(A)| < Im, |E(B)| < im, and |E(A, B)| < 48y/gAn.
Provided that we are given an embedding of G into its genus surface, there is an

algorithm which finds such a partition in time O(n + g).

Corollary 2. Let G be any graph of genus g > 0. Given an embedding of G into
its genus surface, a coloring ¢ with l,(G) < m/2+ 48y/gAn can be constructed
in time O(n + g).

For a planar graph G, we can similarly use the separator theorem from [4] to
show that a coloring ¢ with I,(G) < 7 + (6v/2 + 4\/3)\/An can be constructed
in time O(n), provided that an embedding is given.

5 Randomized Approximation

5.1 Approximation for General Graphs

In this section, we study the MLCP on arbitrary graphs. Since the problem is
N P-hard, approximate solutions are the best one can expect to find efficiently.

On the Minimum Load Coloring Problem 23

We first analyze the load of random colorings. With high probability, their load is
less than 3m + O(v/Am). This shows existence of such colorings, and also yields
a randomized algorithm. Using an algorithmic version of the Azuma-inequality,
we derive a deterministic algorithm for computing such colorings. Since ém is
a trivial lower bound for [, these results yield a (1.5 + o(1))-approximation
algorithm if A = o(m).

To analyze random colorings, we use the following martingale inequality'® that
can be found in McDiarmid [9]. It is an application of the well known inequality
of Azuma [2]:

Lemma 3. Let Xi,...,X,, be independent random variables taking values in
some sets Aq,...,An. Let f : [[_; A — R such that |f(z) — f(y)] < ¢
whenever x and y differ only in the ith coordinate. Let X = (X1,...,X,) and
w=E(f(X)). Then for any A >0,

P(f(X)—p= N exp (—207/ Y c2). (3)

Theorem 6. There is a coloring ¢ such that l, < f’lm + \/(ln 2)Am. For all

q > 0, a random coloring satisfies IP(lw > Zm + q\/(ln Q)Am) < 9—a>+1

Proof. We analyze the behavior of a random coloring. Let ¢ : V' — {red, blue}
such that P(¢(v) = red) = } = P(¢p(v) = blue) independently for all v € V.
Clearly, if two colorings 1, @9 differ only in the color of some vertex v € V', then
Irg, — 1, | < deg(v). We compute E(ry,) =3 . P(Fv € e : ¢(v) =red) = Sm.
Since Y, oy deg(v)? < 3 oy deg(v)A = 2Am, for A = \/(In2)Am, we have
P(ry, > im +A) < ; Thus with positive probability, both r, and b, are at
most ‘Zm + A. In particular, a coloring with [, < ‘Zm + X exists. The second

statement follows in a similar way. a
The algorithm behind Theorem 6 can be efficiently derandomized.

Theorem 7. A coloring ¢ such that I, < ‘Zm + \/(ln 4)Am can be constructed
in O(n?) time.

For the proof we invoke an algorithmic version of Azuma’s martingale inequality
proved by Srivastav and Stangier [10]. Let {2 = {0,1}™ be a probability space
with probability measure IP and let ¢ : {2 — R be a quadratic form. Let X =
(X1,...,X5) be a vector of independent random variables with X; € {0, 1},
for all k € {1,...,n}. Further, let P(X; = 1) = p and P(X; = 0) = 1 —
p for all k and p € (0,1). We wish to bound the large deviation probability
P (Jo(X) —E(e(X))| > A), for A > 0.If f satisfies a Lipschitz condition: |¢(X)—
(XN < ¢ if X, X' € 2 differ only in the k-th component, then we can use the
bounded difference inequality (3).

! One advantage of this version is that it can be formulated without introducing the
martingale machinery used in its proof.

24 N. Ahuja et al.

Theorem 8 [10]. Let 6 € (0,1) such that 1 — 0 > 2exp (— 222/ cf)
Then a vector X € {2 which satisfies |o(X) —E(p(X))| < A can be constructed
in O (n®log(671)) time.

Proof of Theorem 7. First we write the objective function [, the load, as the
maximum of two quadratic forms describing r, and b, respectively. We model
a two coloring of the vertex set V as a vector X = (X1,...,X,) € 2 ={0,1}",
where for i € {1,...,n}, X; = 1 if the vertex i is colored red and X; = 0 if
it is colored blue. Let (a;;) be the adjacency matrix of the graph G = (V, E)
under consideration. We may identify a two-coloring ¢ : V. — {red,blue} by
X €{0,1}", so for X € {0,1}" let

n

T S DEAEES 3 SIS S SY

=1 j=1 =1 j=1

and
B 55 DE A DRI X;).

Note that (i) = X; for all ¢ € {1,...,n}. So, r(X) = r,, b(X) = b, and
l, = U(X) = max{r(X),b6(X)}. Theorem 8 can be extended to cover also the
maximum of two quadratic forms, r(X) and b(X), with minor modifications in
the proof (the important thing is to be able to compute conditional expectations
of the form E(f | X; = a1,..., Xk = ag)). Thus, applying Theorem 8 to I(X)
with ¢, = deg(vg), A = 1/(In4)Am and § = 0.5, we can construct a two-coloring
X € {0,1}" in O(n®) time that satisfies {(X) < 3m + /(In4)Am. O

Note that the dependence on A cannot be avoided. This is shown by star graphs.
Moreover, if A = o(m), then the bound of (3 + o(1))m cannot be improved in

general. The complete graph K, = ({1,...,n}, ({1"'2""})) satisfies [, > gnz —
in= (3 4 o(1))m for all colorings .

5.2 Random Multi-graphs

In fact, in some sense almost all graphs have a load of (3 — o(1))m. Without
proof, we state the following.

Theorem 9. Let m > 12n. For a random multi-graph G = (V. E), |[V| = n
obtained by choosing m edges from (‘2/) independently with repetition, we have

Q) > ‘Zm — V/3mn with probability 1 —27™.

In other words, all but a fraction of less than 27" of the multi-graphs having
n vertices and m edges have a load of at least 3m V3mn. If n = o(m), this
shows that almost all multi-graphs have a load of (3 —o(1))m. The use of multi-
graphs has mainly technical reasons. Unless m is close to (g), most multi-graphs
as above have only few multiple edges. Hence the random multi-graph model is
close to the standard random graph model G(n,p(n)).

6

On the Minimum Load Coloring Problem 25

MLCP with More Than Two Colors

Most of our results have a natural extension to MLCP with more than two
colors. For reasons of brevity and readability we omit the proofs, which are
mostly similar (though more technical) to the ones for two colors.

For any fixed number of colors, the MLCP is N P—complete.

For any fixed number of colors, there is a polynomial time algorithm com-
puting a minimal load coloring for trees.

A tree G with m edges can be colored in k colors with load bounded by
" 4+ O(A(G)logm).

For all graphs G = (V, E) there is a k-coloring with load at most Qlfcglm +
V(Ink)A(G)m.

For graphs on n vertices with genus g > 0 we can find a k-coloring with load
bounded by m/k + O(y/gAn).

There are graphs having small load in some numbers of colors and large one in
others. We give three examples.

(1)

(i)

(iii)

Let G be a graph consisting of two disjoint cliques on n vertices. Then the
load in two colors is 1 |E(G)|, shown by coloring both cliques monochromatic
in a different color. This is smallest possible for any graph. Let v = v/3 — 1.
In three colors, an optimal coloring will contain (v + o(1))n red vertices in
the first clique, (7 + o(1))n blue vertices in the second and (1 —y + o(1))n
green vertices in each clique. This yields a load of (2v/3 — 3 + o(1))n? ~
0.4641|E(G)|. Compared to the smallest possible value of ;|E(G)|, this is
quite large.

If G consists of three disjoint cliques of n vertices each, then the 3—color
load is smallest possible with }|E(G)], but the 2-color load is approximately
LIEG).

The same behavior is also displayed by trees. A complete 3—ary tree T" has
a 3—color load of ;|E(T)|+ 2. However, it can be proven to have a 2-color
load of 3|E(G)|+ 2(logn), which is (up to the implicit constant) maximum
possible for trees as shown in Theorem 2.

References

1.

4.

A.A. Ageev, A.V. Fishkin, A.V. Kononov and S.V. Sevastianov, Open Block
Scheduling in Optical Communication Networks. Springer LNCS 2909 (2004), 13 -
26.

K. Azuma, Weighted sums of certain dependent variables. Tohoku Math. Journal
3(1967), 357 - 367.

P. Berman and M. Karpinski, Approzimation Hardness of Bounded Degree MIN-
CSP and MIN-BISECTION, Electronic Colloquium on Computational Complex-
ity, Report No. 26 (2001).

K. Diks, H.N. Djidjev, O. Sykora and I. Vrto, Edge Separators of Planar and
Outerplanar Graphs with Applications, Journal of Algorithms 14(1993), 258 - 279.

26

10.

11.

12.

13.

N. Ahuja et al.

H.N. Djidjev, A separator theorem. Comptes Rendus de I’Academie Bulgare des
Sciences 34(1981), 643 - 645.

G. Even, J. Naor, S. Rao and B. Schieber, Fast Approzimate Graph Partitioning
Algorithms. SIAM J. Comput. 28(6)(1999), 2187 - 2214.

M.R. Garey, D.S. Johnson and L. Stockmeyer, Some simplified N P-complete graph
problems, Theoret. Comput. Sci. 1(33)(1976), 237 - 267.

R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics 36(1979), 177 - 189.

C. McDiarmid, Concentration. In Probabilistic Methods for Algorithmic Discrete
Mathematics, Volume 16 of Algorithms Combin.(1998), Springer, Berlin, 195 - 248.
A. Srivastav, Derandomizing Martingale Inequalities. Preprint (2005). A prelimi-
nary version appeared as A. Srivastav and P. Stangier, On quadratic lattice ap-
prozimations. In Proc. of the 4th Internat. Symp. on Algorithms and Computa-
tion(1993), LNCS 762, Springer, 176 - 184.

O. Sykora and 1. Vrto, Edge Separators for Graphs of Bounded Genus with Appli-
cations. In Proc. of the 17th International Workshop on Graph Theoretic Concepts
in Computer Science (1992), 159 - 168.

C. Thomassen, The graph genus problem is N P-complete. Journal of Algorithms
10(4)(1989), 568 - 576.

D.B. West, Introduction to Graph Theory. Prentice Hall (1996).

Improved Approximation Algorithms
for MAX NAE-SAT and MAX SAT

Adi Avidor*, Ido Berkovitch, and Uri Zwick**

School of Computer Science,
Tel-Aviv University, Tel-Aviv 69978, Israel
{adi, edoberko, zwick}@tau.ac.il

Abstract. MAX SAT and MAX NAE-SAT are central problems in theoretical
computer science. We present an approximation algorithm for MAX NAE-SAT
with a conjectured performance guarantee of 0.8279. This improves a previously
conjectured performance guarantee of 0.7977 of Zwick [Zwi99]. Using a vari-
ant of our MAX NAE-SAT approximation algorithm, combined with other tech-
niques used in [Asa03], we obtain an approximation algorithm for MAX SAT
with a conjectured performance guarantee of 0.8434. This improves on an ap-
proximation algorithm of Asano [Asa03] with a conjectured performance guar-
antee of 0.8353. We also obtain a 0.7968-approximation algorithm for MAX SAT
which is not based on any conjecture, improving a 0.7877-approximation algo-
rithm of Asano [Asa03].

1 Introduction

An instance of MAX NAE-SAT (Maximum Not-All-Equal SAT) in the Boolean
variables x1,...,x, is composed of a collection of clauses C,...,C,, with non-
negative weights wy, ..., w,, associated with them. Each clause C; is of the form
NAE(by,. .., bkj). Each of the b;’s is a literal, i.e., a variable z; or its negation z; and
k; > 2. The clauses may be arbitrarily large and may not all be of the same size. A
clause NAE(b, .. .,by;) is satisfied if at least one of the literal gets the value 1 and
at least one of the literal gets the value 0. The goal is to assign the Boolean variables
Z1,...,2y, values of 0 and 1 so that the total weight of the satisfied clauses is maxi-
mized. We let MAX NAE-{k}-SAT be the restriction of MAX NAE-SAT to instances
in which all clauses are of size exactly k, and MAX NAE-k-SAT the restriction of
MAX NAE-SAT to instances in which all clauses are of size at most k.

An instance of MAX SAT in the Boolean variables x1,...,x, is composed of a
collection of clauses C1,...,C,, with non-negative weights w1, ..., w,, associated
with them. Each clause Cj is of the form by V ...V by, where the b;’s are literals and
k; > 1. Aclause by V...V by, is satisfied if at least one of the literal gets the value 1.
The goal is again to assign the Boolean variables x1, ..., x, values of 0 and 1 so that
the total weight of the satisfied clauses is maximized. We let MAX {k}-SAT be the
restriction of MAX SAT to instances in which all clauses are of size exactly k, and

* Research was supported by the Deutsch Fund.
** Research was supproted by the ISRAEL SCIENCE FOUNDATION (grant no. 246/01).

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 27-40, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

28 A. Avidor, I. Berkovitch, and U. Zwick

MAX k-SAT the restriction of MAX SAT to instances in which all clauses are of size
at most k.

MAX NAE-SAT is a generalization of both MAX SAT and MAX CUT. MAX CUT
is the restriction of MAX NAE-{2}-SAT to instances without negations. An instance of
MAX SAT can be converted to an instance of MAX NAE-SAT by replacing each clause
b1 V...V, by the clause NAE(O, by, ..., br;), where O is a new variable that appears
in all clauses. A solution aq, . . . , a,, (3 to the resulting MAX NAE-SAT instance, where
ai, - .., are the values assigned to 1, . . ., z, and § is the value assigned to O, can
be converted to a solution oy ® G,...,a, ® [of the original MAX SAT instance
with the same cost. MAX NAE-SAT (MAX {k}-NAE-SAT) is also a generalization
of MAX SET-SPLITTING (MAX k-SET-SPLITTING), which are the problems of 2-
coloring the vertices of a hypergraph (k-uniform hypergraph) so as to maximize the
number of non-monochromatic edges. More specifically, MAX SET-SPLITTING and
MAX k-SET-SPLITTING are the restrictions of MAX NAE-SAT and MAX {k}-NAE-
SAT to instances without negations.

Hastdd [Has01] showed that for every k& > 3 and every € > 0, if there is a (1 —
27k 4 ¢)-approximation algorithm for MAX {k}-SAT, then P = N P. Hence, as both
MAX SAT and MAX NAE-SAT generalize MAX {3}-SAT, we get that for every e > 0,
there is no (7/8 4 ¢)-approximation algorithm for these problems, unless P = N P.

The first approximation algorithm for MAX SAT was presented by Johnson [Joh74],
who showed that the greedy algorithm achieves a performance guarantee of 1/2. Twenty
years later, Yannakakis [Yan94] and then Goemans and Williamson [GW94] proposed
two different 3/4-approximation algorithms.

In a seminal paper, Goemans and Williamson [GW95] used semidefinite program-
ming to obtain 0.878-approximation algorithms for MAX CUT and MAX 2-SAT. Feige
and Goemans [FG95] obtained an improved approximation algorithm for MAX 2-SAT
with performance guarantee 0.931. An improved approximation algorithm for the gen-
eral MAX SAT can be obtained by combining one of these MAX 2-SAT approxima-
tion algorithms and the previous 3/4-approximation algorithms. Such improvements
include a 0.7584-approximation algorithm by Goemans and Williamson [GW95], a
0.765-approximation algorithm by Asano, Ono and Hirata [AOH96] and a 0.770-
approximation algorithm by Asano [Asa97].

The approximation ratio of MAX 2-SAT was further improved to 0.935 by Matuura
and Matsui [MMOla, MMOI1b], and then by Lewin, Livnat and Zwick [LLZ02] to
0.9401. An optimal, semidefinite programming based, 7/8-approximation algorithm for
MAX 3-SAT was given by Karloff and Zwick [KZ97] (a rigorous proof of the conjec-
tured approximation ratio of [KZ97] is given in [Zwi02].) A close to optimal 0.8721-
approximation algorithm for MAX 4-SAT was given by Halperin and Zwick [HZO01].

A new rounding technique, “outward rotations”, for rounding semidefinite program-
ming solutions was introduced independently by Nesterov [Nes98], Ye [YeOl] and
Zwick [Zwi99]. Using outward rotations, Han, Ye and Zhang [HYZ04], strengthen-
ing an earlier MAX NAE-SAT 0.7240-approximation algorithm of Andersson and En-
gerbretsen [AE98], obtained a 0.7499-approximation algorithm for MAX NAE-SAT.
Zwick [Zwi99] obtained a 0.9087-approximation algorithm for MAX NAE-{3}-SAT.

Improved Approximation Algorithms for MAX NAE-SAT and MAX SAT 29

Zwick also obtained an approximation algorithm for the MAX NAE-SAT and the
MAX SAT problems with a conjectured approximation ratio of 0.7977.

A 0.7846-approximation algorithm for MAX SAT was given by Asano and
Williamson [AWO02]. This algorithm is based on linear programming with special
rounding functions combined with several other MAX k-SAT algorithms. Asano and
Williamson also gave a 0.8331-approximation algorithm for MAX SAT based on the
previously conjectured 0.7977-approximation algorithm for MAX NAE-SAT. Finally,
Asano [Asa03], using the same techniques and different rounding functions, gave a
0.7877-approximation algorithm for MAX SAT and an additional approximation algo-
rithm with a conjectured performance guarantee of 0.8353.

The outward rotations technique was generalized by Feige and Langberg [FLO1] to
a new rounding technique named RPR? - Random Projection followed by Random-
ized Rounding. Feige and Langberg used RPR? to obtain an improved approximation
algorithm for the “Light MAX CUT” problem. (“Light MAX CUT” is the MAX CUT
problem restricted to instances of a small maximal cut.) Charikar and Wirth [CW04]
extended Feige and Langberg “Light MAX CUT” results and demonstrated the appli-
cability of the RPR? technique for maximizing quadratic forms and maximum corre-
lation clustering. Lately, the results of Charikar and Wirth were extended by Alon et
al. [AMMNO5].

In this paper we use the RPR? technique to obtain new approximation algo-
rithms for MAX NAE-SAT and MAX SAT. We give an approximation algorithm for
MAX NAE-SAT with a conjectured performance guarantee of 0.8279. We also adjust
Asano’s [Asa03] MAX SAT approximation algorithm and obtain an approximation al-
gorithm for MAX SAT with conjectured performance guarantee of 0.8434. In addition,
we give a slightly improved 0.7968-approximation algorithm for MAX SAT which does
not rely on any conjecture.

2 MAX NAE-SAT Approximation Algorithm

Our MAX NAE-SAT approximation algorithm starts by solving a semidefinite pro-
gramming relaxation of the problem, which produces a sequence v, ..., v, of unit
vectors in R™. The algorithm then uses the RPR? rounding technique to round these
vectors to Boolean values.

2.1 A Semidefinite Programming Relaxation for MAX NAE-SAT

We let z,+; = Z;, for 1 < ¢ < n. The j-th clause of a MAX NAE-SAT instance
is therefore of the form NAE(mil,...,xikj), where 1 < iy,...,0, < 2nand 1 <
j < m. We denote the unit sphere in R™ by S™~1, and the set of all permutations
on {1,...,k} by Sk. The semidefinite programming relaxation of MAX NAE-SAT
is given in Figure 1. In this relaxation, a unit vector v; € S™~! is assigned to each
literal x;, where 1 < ¢ < 2n. In addition, a scalar z; is assigned to each clause, where
1 < 7 < m. To ensure that x,,; = T;, we require v; - Vp,; = —1,for1 < ¢ < n.
To check that this is indeed a relaxation of the MAX NAE-SAT instance, note that for
every Boolean assignment 1, . .., o, € {0, 1} to the variables z1, . .., z,, the vectors

30 A. Avidor, I. Berkovitch, and U. Zwick

m
Max ijZj
j=1
"'J_Efil Vie) Yiz(i+1) Cj - NAE(mil Y xikj)
s.t. zj < 4 S Skj, ki < Ekmaz
1<j<m
5 <1 1<j<m
Vi Unys = —1 1<i<n
Vi " Viy + Uiy " Vig + Vi, - Vig > -1 1§i1,i2,i3§2n
vie "t 1<i<2n

Fig. 1. A semidefinite programming relaxation of MAX NAE-SAT

v; = (20; —1,0,...,0) € S ! for1 <i < n,andv; = —v;_,, forn+1 <i < 2n,
satisfy all the required constraints. Also, it is easy to check that

k;
ki — Z v, Cv;
3 : J 1=1 Yirq o
NAE(xil,,,,7xik_) =min< 1, min O] (1+1) ,
7 Weskj 4

where NAE(z;, , . .., x;,) is defined here to be 1 if the clause is satisfied and 0 other-
wise. (In the above expression, we interpret m(k; +1) to be m(1).) These integral assign-
ments also satisfy the so called “triangle constraints” v;, - Vi, +v;, Vi, +Vi, - Vig > —1,
for 1 < iy, 19,13 < 2n. We write the “NAE” constraints only for clauses of size smaller
than the parameter k.., which will be chosen later. To ensure a polynomial number of
constraints k4, must be chosen to be O(1og)1go gn). However, we will only need ka2
to be some constant. Note that, if C; is clause of size bigger than k4., then in an opti-
mal solution of the relaxation z; = 1. This semidefinite program can be solved, to any
desired precision, in polynomial time.

2.2 RPR? - Random Projection Followed by Randomized Rounding

RPR? parameterized by a function f : R — [0, 1] is defined as follows:

1. Let r be a vector distributed according to the n-dimensional standard normal dis-
tribution N (0, I,).
2. For 1 < i < n, set the variable z; to 1 independently with probability f(v; - r).

We typically use RPR? functions that satisfy f(—z) = 1 — f(z), for any
x € R. RPR? is a generalization of the outward rotations rounding technique
([Nes98, YeOl, Zwi99]) that was used to obtain previous MAX NAE-SAT approxima-
tion algorithms. More precisely, let ¢(z) = (2r)~'/2e=*"/2 and &(z) = JE o)t
be the probability density function and the cumulative distribution function of a stan-
dard normal random variable, respectively. Feige and Langberg [FLO1] show that out-
ward rotations with a rotation angle v is equivalent to RPR? parameterized by the
function £ (z) = &(x cot).

Improved Approximation Algorithms for MAX NAE-SAT and MAX SAT 31

2.3 The Algorithm

Our algorithm is parameterized by an RPR? function f and a perturbation probabil-
ity p € [0, é]

1. Solve the MAX NAE-SAT semidefinite programming relaxation of Figure 1.
2. Round vy, . ..,v,, using RPR? parameterized by f.
3. For 1 < < n, set the variable z; to z;, independently, with probability p.

The perturbation step is introduced in order to handle clauses of size larger than k4.
We choose p = 2

max

2.4 Analysis

In this section we shortly describe the way used to obtain a lower bound on the perfor-
mance ratio of our MAX NAE-SAT approximation algorithm.

For any dimension d and any r € RY, let ¢(r) = (277)*”l/2e*"T"“/2 be the prob-
ability density function of a d-dimensional standard normal random variable, and let
ds(r) = ((2m)? det(Z‘))*l/ze*"Tz_l”/2 be the probability density function of a d-
dimensional normal random variable with expectation 0 and covariance matrix Y. Let
v1,...,v; € S"1 be vectors corresponding to a clause NAE(z1, . . ., 1). By the def-
inition of the RPR? procedure, the probability (over the choices of 7) that the clause
NAE(z1, .. .,xy) is satisfied is

probf(vl,...mk)déflf A flor-7r)- ... f(vg - 7)p(r)dr

f/n(l —flor-7)-...- (1= f(vg-7r))o(r)dr.

In addition, if the RPR? function f satisfies f(—x) = 1 — f(x), then

probs(viy,...,vp) =1—2 . flor-r) ... f(vg-7m)p(r)dr.

Let V be the k£ by n matrix whose rows are the vectors vy, ..., v;. W.l.o.g., we may
assume that v1,...,v; are linearly independent (otherwise we can take a maximal
linearly independent subset of them.) By substituting y = Vr we get,

proby(vy,...,vx) =1— Q/Rk f) oo flyk)dvry (y)dy.

In particular, the probability probs(vs,...,vs) depends only on the inner products
v; - v;, for 1 < ¢ < j < k. As the vectors are unit vectors, the probability depends only
on the angles ;; = arccos(v; - v;), for 1 < ¢ < j < k. There seems to be no closed
form formula for the latter integeral for most choices of f, even for k = 2. We therefore
use numerical methods to compute probs(v1, ..., V).

32 A. Avidor, I. Berkovitch, and U. Zwick

We let

E—S" v v
value(vy, ..., v;) = min {1, min 2im1 On(i) V(i) }
TESK 4

be the contribution of the clause to the value of the MAX NAE-SAT semidefinite pro-
gramming relaxation. In addition, we let

proby(vi, ..., vg)

a = inf
#(f) value(vy, ..., vg)
where the infimum is taken over all k-tuples of vectors v1, ..., v, € S*~! that satisfy
the “triangle inequalities” and for which value(vy,...,vx) > 0. If the latter infimum
is attained at v, ..., vy, we call the (k)—tuple of angles (612, ...,0k_1.1) a worst k-

configuration with respect to the RPRszunction f.
In these notations, the probability that the clause NAE(z1, . . ., xk) is satisfied when
using RPR? parameterized by f, followed by perturbation with probability p, is at least

probs(vy, ..., vp)(1 = p(1 —p)*~ 1 = (1 —p)p"~1)
+ (1 —probg(vi,...,vi))(1 —pF - (1 fp)k)‘

Let ¢ > 0 be a small constant. We choose ky,q; = [8/¢]. Then, it is not hard to verify
that the latter expression is bounded below by probs(vi,...,vi)(1 —¢) for k < kmaa
and by (1 — e™2 —¢) for k > Kynq.. In this scenario we may define

an(f) = {ak(f)s if k< kmao

1—e2—¢ ifk>knas

As value(vy,...,vy) is 1 for clauses of size bigger than k4., the probability that
the clause NAE(z1, ..., xy) is satisfied is therefore at least oy (f)value(vy, ..., vg).
Finally, we let o(f) = ming>2 o (f).

Let vi,...,v, € S"! be an optimal solution of the semidefinite programming
relaxation of a MAX NAE-SAT instance. Our algorithm produces an assignment with
an expected cost of:

Z w; Priclause Cj is satisfied] > Z wjoy, (f) - value(v;,, ..., ’U'ikj)
j=1

Jj=1

> a(f) ij -value(v;,, . .. mikj)
j=1
= a(f)OPT
The last inequality holds as the value of the MAX NAE-SAT semidefinite program-

ming relaxation is an upper bound on the value of the optimal assignment O PT'. There-
fore, «(f) is a lower bound on the performance ratio of our approximation algorithm.

Improved Approximation Algorithms for MAX NAE-SAT and MAX SAT 33

Fig.2. (a) The RPR? function fys: used in the MAX NAE-SAT approximation algorithm.
(b) The RPR? function fsar used in the MAX-SAT approximation algorithm.

2.5 The RPR? Function

In this subsection we describe the RPR? function f used to obtain an improved ap-
proximation ratio. We note that for various choices of f, the minimum ming>2 a(f)
is attained at two values of k (which are less than the ky parameter of the previous
subsection). We call a worst k-configuration of such a value of k a worst configuration.

Our search for a good RPR? function was inspired by the previously MAX NAE-
SAT approximation algorithms of [Zwi99]. More specifically, the previous MAX NAE-
SAT approximation algorithm used outward rotations with rotation angle v = 0.4555.
Equivalently, the algorithm rounded the semidefinite programming solution using
RPR? with the function f,(z) = &(xcot(0.4555)). Extensive numerical exper-
iments led to the conjecture that for any rotation angle v and for any k& > 4,
the worst k-configurations with respect to f,(z) = P(xcot+y) are the (g)—tuples
(arccos(1 — }),...,arccos(1 — 1)).

In our algorithm we use the piecewise linear RPR? function frae : R — [0, 1] con-
necting between the points (—o0, 0), (—3.9,0), (—2.262,0.044), (0,0.044), (0, 0.956),
(2.262,0.956), (3.9,1) and (o0,1). The function fy,: is shown in Figure 2(a).
Numerical experiments with the function fy,; lead us to believe that the worst k-
configurations for this function, for any & > 4, are again configurations in which
v, v; =1-— ﬁ, forevery 1 < i < j < k. We thus conjecture:

Conjecture 1. For any k > 4 the infimum in ¢ (fu) is attained when for every 1 <
i<j<kwvi-vi=1-71.

The conjecture implies that &y (fya:) > 0.8279 for all £ > 2. We can choose the
parameter £ of subsection 2.4, to be small enough to have a(fy:) > 0.8279. Our
algorithm achieves its worst case ratio on instances in which all clauses are of size 2 or
12. More specifically, for a worst instance the solution of the semidefinite programming
v1,. .., Uy, satisfies that v;, - v;, ~ —0.7638 for every clause NAE(x;, , x;,) and LA
v, =1-— 142 (1 <1y < ly < 12)forevery clause NAE(zi,, . .., Ty,)-

In our search for an optimal RPR? function we considered various piecewise linear
symmetric monotone RPR? functions with up to eight turnings. Note that the func-

34 A. Avidor, I. Berkovitch, and U. Zwick

tion fy.s used has only six turnings. It should be mentioned that the symmetric RPR?
functions with two turnings (and which are usually referred to as s-linear RPR? func-
tions [FLO1]), achieve approximation ratios worst than outward rotations. Minor im-
provements can be achieved by combining s-linear RPR? functions with outwards
rotations. We believe our choice of RPR? function is not far from being optimal.

3 MAX SAT Approximation Algorithms

As MAX NAE-SAT generalizes MAX SAT, our results so far immediately imply a
MAX SAT approximation algorithm with a conjectured approximation ratio of 0.8279.
In this section we present our approximation algorithms for MAX SAT. We first de-
scribe the methods used to obtain previous MAX SAT approximations algorithms.

3.1 Asano’s MAX SAT Approximations Algorithms

As before let x,4; = Z;, for 1 < i < n. Goemans and Williamson [GW94] formulated
MAX SAT as the following integer programming (IP) problem:

max 307 w2

k; Ci=x;, Vxy, V...V I,
stz <3l Y R "

1<j<m
Yi +Ynti =1 1<e<n
y; € {0,1} 1<i<2n
ZjG{O,l} 1<j<m

If the last two integrality constraints are relaxed, and the variables y; and z; are
allowed to take on any values between O and 1, then an LP relaxation of MAX SAT
is obtained. Let (y*, z*) be an optimal solution of the LP relaxation of MAX SAT.
Goemans and Williamson [GW94] used the following rounding: Let g : [0,1] — [0, 1]
be a rounding function. For 1 < ¢ < n, set the variable x; to be 1 independently with
probability g(y*).

Asano [Asa03], following [AWO02], suggested two families of rounding functions:

a 1—aif ye[0,1—yd
1— %, ifyec(o,l] ay + iy J a
ﬁU={ aaty o and fi) = Y ity € 11—, pal
1o iy €ly 1] ay if Y€ [y, 1]
wherey, = ! — 1.

Asano showed that using the rounding function f$(y) for 1/2 < a < /e/2 =
0.824360..., the approximation ratio obtained for clauses of size k is at least:

o if k=1
G = 1— a2 ifk>2"

Improved Approximation Algorithms for MAX NAE-SAT and MAX SAT 35

m
Max > wiz
=1
k]
s.t. zi < > ui
=1
2 < . 1 3—V0 Vi, —V0Vig —Vi, Vig ki > 9
<]_11§p<q§kj j = L<i<m
1 R .
2j < T > Wiy gy iy kj >3 Cij=ziy V...V Ly,
(%3)1§11<l2<l3§kj
k; N
2 k.i+1leio"iﬂ(1) Vig41) e Skj
7= 4 J < kmax

yi = 1*77720% 1<i<2n

4—2?:011'7(v ~
WUiyigig < ‘ 4(” ‘m(41) TeSs
Wiyinis < 1 1<idy <i2 <ig < kj
z; <1 1<j<m
Vi Upts = —1 1<i<n
Vi)t Vip + Vi - Vig + Viy - Vg > —1 0 <i1,12,13 < 2n

v, €S" 0<i<2n

Fig. 3. A semidefinite programming relaxation of MAX SAT

In addition, he showed that if the rounding function f{(y) for v/e/2 < a < 1is
used, then the approximation ratio obtained for clauses of size k is at least:

k-1
a _ 9 _ k 1\Fk k=2 k 1-yq 1 k
M =1 max{a (1_k-) s e 5 (1_ k—yl) Y (1"'(21_;) }’

fork > 2andn) =afork = 1.

To obtain an improved approximation algorithm for MAX SAT Asano used a hybrid
approach that was also used by Asano and Williamson [AWO02]. In this approach several
algorithms are run in parallel to obtained a solution and the solution with the maximal
value is returned.

More specifically, the algorithm first solves a semidefinite programming relaxation
for MAX SAT which incorporates all relaxations (LP and SDPs) used in pervious al-
gorithms (see Figure 3 discussed in the next subsection). If the solution is rounded
using the rounding procedure of Goemans and Williamson [GW94] with the round-
ing function fg, the MAX 2-SAT rounding procedure of Feige and Goemans [FG95]
and the rounding procedure of Halperin and Zwick [HZ01] for MAX 3-SAT, a perfor-
mance guarantee of 0.7877 is obtained. If the solution is rounded using the rounding
procedure of Goemans and Williamson [GW94] with the rounding function f{ and the
MAX NAE-SAT rounding procedure of [Zwi99], a conjectured performance guarantee
of 0.8353 is obtained.

In the next subsections we use the hybrid approach with improved algorithms to
obtain an improved approximation algorithms for MAX SAT.

36 A. Avidor, I. Berkovitch, and U. Zwick

APPROXMAX-SAT(g, S, p)

1. Solve the MAX SAT semidefinite programming relaxation of Figure 3. (W.lL.o.g vo =
(1,0,...,0) e R**1)
2. Return the maximal solution between
(a) Forl < i < n,setz; = 1independently with probability g(y;)
(b) i Letr = (0,r1,...,7y), where 71,...,7, are independent standard normal
variables. For 1 <1i < n,setz; = lifwv; - r < S(vo - v5)
ii. For1 <4 < n, set x; = T; independently with probability p

Fig.4. Algorithm APPROXMAX-SAT

3.2 A Semidefinite Programming Relaxation for MAX SAT

The semidefinite programming relaxation of MAX SAT is shown in Figure 3. As in
the semidefinite programming relaxation of MAX NAE-SAT, each Boolean variable z;
corresponds to a unit vector v;. Here, the additional vector v corresponds to the value
FALSE and the vector —v corresponds to the value TRUE. We use Sk to denote the set
of all permutation of {0, 1, ..., k}, ig to denote the index 0 and 7(k+1) to denote 7(0).
As before to ensure a program of polynomial size we should take k;,q. = O(log)ﬁ) ’g’f n)
but eventually we take k,,,,, to be some constant.

In an integral solution all the vectors correspond to the value FALSE are set to v
and all the vectors correspond to the value TRUE are set to —vg. Hence, in an integral
solution, the expression } (1 — v - v;) is 1 if and only if v; = —vg and 0 if and only if
v; = vg. Similarly, the expression }1(3 — VgV, — VoV, — U, - ;) is 1 only if and
only if at least one of the vectors v;,, v;, is —vg. It can be easily verified that u;, ;,i, is
1 if and only if at least one of the vectors v;, , v;,, Vi, is —vp.

3.3 A Hybrid 0.7968-Approximation Algorithm for MAX SAT

Our first hybrid algorithm combines the LP rounding of Asano and Williamson [AW02]
with a perturbation of the threshold rounding suggested for MAX 2-SAT by Lewin,
Livnat and Zwick [LLZ02]. Our algorithm is given in Figure 4. The algorithm is
parameterized by an LP rounding function ¢ : [0,1] — [0,1], a threshold func-
tion S : [-1,1] — R and a perturbation probability p € [0, ;]. We choose the
LP rounding function of Asano and Williamson ¢ = f§ and the threshold function
S(x) = — cot(0.5583 arccos(z) 4 0.6466)y/1 — x2 used by Lewin, Livnat and Zwick.

The analysis of the algorithm is similar to the analysis of the MAX NAE-SAT
algorithm. More specifically, for a clause zi,...,x; with corresponding vectors
vg, V1, ..., Vi we denote by probr,;,z(vo, v1,. .., Vi) the probability that the clause is
satisfied using the rounding of step (2(b)i). In addition, let

1=vo-or if k=1
2
3—17()"01—‘00‘1)2—1)1‘1)2 : _
P if k=2

value(vo,v1,..., V) =

min 1a kll Z uiligi;; lf k Z 3
(2)1§i1<i2<i3§k

Improved Approximation Algorithms for MAX NAE-SAT and MAX SAT 37
where

3
. 1 . 4- Zl:o Viay " Vizasn
Uiy igig = I 5 Il'llél 4 .
TED3

A lower bound on the approximation ratio of step (2(b)i) for clauses of size k is there-
fore

. rob Vo, V1,...,0
B = inf probrrz(vo,v1,) k)
value(vg, v1, ..., V)
where the infimum is taken over all (k + 1)-tuples of vectors v, v1,...,v; € S k that
satisfy the “triangle inequalities” and for which value(vg,v1,...,vx) > 0. Note that,

fork >3, 8, > %

probrrz[x1 V...V = TRUE]

1
> (k) Z pTObLLz[xi1 VX, Vo, = TRUE]

3/ 1<ii<ia<iz<k
> ! Z B3Ui inis = ﬁ‘gvalue(vo V..., VE).
- 11273 — k 1) 1))

(g) 1<i1<i2<i3<k

Adding the perturbation step, the performance ratio of the rounding (2b) for clauses of
size k is at least B35 (1 — p)* + (1 —) (1 — (1 — p)*).

The probability probrr,z(vg, v1, .. .,v)) may be written as a (k — 1)-dimensional
integral. However, this integral does not seem to have an analytical representation, even
for k = 2. We used numerical methods to compute lower bounds on . In particular,
61 > 0.9834, 82 > 0.9401 and 5 > 0.8610. It is possible to obtain a rigorous proof
for the latter three bounds using a tool such as REALSEARCH [Zwi02]. However, this
would require a tremendous amount of work.

In this scenario, for any p;, p2 > 0 that satisfy p; + ps = 1, the approximation ratio
of our algorithm is bounded below by the approximation ratio of an algorithm that runs
the rounding of (2a) with probability p; and the rounding of (2b) with probability ps.
We can therefore formulate an optimization problem over the variables a, p, p1, p2 for
which a feasible solution gives values for a and p and a lower bound on the performance
guarantee:

max B

s.t. p1(0.9834(1 — p) + (1 — 0.9834)p) + pa(} >p k=1
p1(0.9401(1 —p)? + (1 —0.9401)(1 — (L —p)?) +p2(2 > B k=2
(P A=)+ 1= "A - A =p)F) G 28 k23

p1t+p2=1

Ve

y<a< -

0<p<;

0<p1,p2<1

A feasible solution is p; = 0.732178, po = 0.267822,a = 0.731649 and p = 0.008741
giving us an approximation ratio of 5 = 0.7968. In this setting, the constraints of

38 A. Avidor, I. Berkovitch, and U. Zwick

APPROXMAX-SAT-RPR?(g, f, p)

1. Solve the MAX SAT semidefinite programming relaxation of Figure 3.
2. Return the maximal solution between
(a) Forl < i < n,setz; = 1independently with probability g(y;)

(b) i. Letr = (ro,71,...,7n), where o, 71, ...,y are independent standard nor-
mal variables. For 0 < ¢ < n, set ; = 1 independently with probability
f(vi-r)

. Ifxg=1,setx; =T;,for0<i<n
iii. For1 <4 < n, set z; = Z; independently with probability p

Fig.5. An RPR? based approximation algorithm for MAX SAT

k = 2,15 are tight and the constraints of £ = 1, 7 are almost tight. Hence, our algorithm
achieves its worst case ratio on instances in which all clauses are of size 2 or 15.

We note that the addition of any combination of the Goemans and Williamson algo-
rithm [GW94] with the rounding function f{ (for any v/e¢/2 < a < 1) and the algo-
rithms of Halperin and Zwick [HZ01] with or without perturbation does not improve
the approximation ratio.

3.4 AnImproved Approximation Algorithm Using RPR?

Our improved hybrid algorithm combines the LP rounding of Asano [Asa03] and
RPR?. Our algorithm is given in Figure 5. The algorithm is parameterized by a round-
ing function g : [0,1] — [0,1], an RPR? function f and a perturbation probability p.
We choose g = ff,p = kfw and an RPR? function f;, that resembles the fy. used
in the previous section. The function fy,, is a piecewise linear connecting between the
points (—o0, 0), (—4,0), (—2.064,0.029), (0,0.029), (0,0.971),(2.064,0.971), (4,1)
and (0o, 1). The RPR? function fy, is given in Figure 2(b).

The analysis of our hybrid algorithm resembles the one of the MAX NAE-SAT algo-
rithm. Similar arguments shows that for sufficiently large n, the parameter a1 (fsar)
(as defined in Subsection 2.4) is a lower bound on the approximation ratio of step (2b)
for clauses of size k. Hence, a lower bound on the performance guarantee of our hybrid
algorithm may be obtained by solving the following optimization problem:

max I6]
st. progeyr (foar) +p2mp > 08 k>1
p1+p2=1
ve<a<l
0<p,p2<1

We conjecture that conjecture 1 holds for f,, as well. Based on the conjecture we cal-
culated lower bounds on Gy (fsar). Using the arguments of subsection 2.5, for a proper
choice of k,q, these bounds are also bounds on «y(fsur). Using these bounds, a fea-
sible solution is p; = 0.648682, po = 0.351318, a = 0.840105 yielding a conjectured
approximation ratio of § = 0.8434. In this setting, the constraints of k = 1, k = 2 and
k = b5 are tight, i.e., our algorithm achieves its worst case ratio on instances in which
all clauses are of size 1, 2 or 5.

Improved Approximation Algorithms for MAX NAE-SAT and MAX SAT 39

We note that the addition of any combination of Goemans and Williamson algo-
rithm [GW94] with the rounding function f§ (forany 1/2 < a < \/e/2), Lewin, Livnat
and Zwick algorithm [LLZ02], Halperin and Zwick algorithms [HZ01] with or without
perturbation does not yield an improved approximation ratio. Again, in our search for
an optimal RPR? function we explored various piecewise linear symmetric monotone
functions with up to eight turning points.

4 Concluding Remarks

We used the RPR? technique to obtain approximation algorithms for the MAX NAE-
SAT and MAX SAT problems with conjectured approximation ratios of 0.8279 and
0.8434, respectively. We also used the MAX 2-SAT algorithm of Lewin Livnat and
Zwick to obtain an 0.7968-approximation algorithm for the MAX SAT problem.

References

[AE98] G. Andersson and L. Engebretsen. Better approximation algorithms for SET
SPLITTING and NOT-ALL-EQUAL SAT. Information Processing Letters, 65:305—
311, 1998.

[AMMNO5] N. Alon, K. Makarychev, Y. Makarychev, and A. Naor. Quadratic forms on graphs.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, Maryland, pages 486—493, 2005.

[AOH96] T. Asano, T. Ono, and T. Hirata. Approximation algorithms for the maximum
satisfiability problem. Nordic Journal of Computing, 3:388-404, 1996.

[Asa97] T. Asano. Approximation algorithms for MAX SAT: Yannakakis vs. Goemans-
Williamson. In Proceedings of the 3nd Israel Symposium on Theory and Comput-
ing Systems, Ramat Gan, Israel, pages 24-37, 1997.

[Asa03] T. Asano. An improved analysis of Goemans and Williamson’s LP-relaxation for
MAX SAT. FCT 2003, LNCS 2751:2-14, 2003.

[AWO02] T. Asano and D. P. Williamson. Improved approximation algorithms for
MAX SAT. Journal of Algorithms, 42:173-202, 2002.

[CWO04] M. Charikar and A. Wirth. = Maximizing Quadratic Programs: Extending

Grothendieck’s Inequality. In Proceedings of the 45th Annual IEEE Symposium
on Foundations of Computer Science, Rome, Italy, pages 54—60, 2004.

[FG95] U. Feige and M. X. Goemans. Approximating the value of two prover proof sys-
tems, with applications to MAX-2SAT and MAX-DICUT. In Proceedings of the
3rd Israel Symposium on Theory and Computing Systems, Tel Aviv, Israel, pages
182-189, 1995.

[FLO1] U. Feige and M. Langberg. The RPR? rounding technique for semidefinite pro-
grams. In Proceedings of the 28th Int. Coll. on Automata, Languages and Pro-
gramming, Crete, Greece, pages 213-224, 2001.

[GW94] M. X. Goemans and D. P. Williamson. New 3/4-approximation algorithms for the
maximum satisfiability problem. SIAM Journal on Discrete Mathematics, 7:656—
666, 1994.

[GWI5] M. X. Goemans and D. P. Williamson. Improved Approximation Algorithms

for Maximum Cut and Satisfiability Problems Using Semidefinite Programming.
Journal of the ACM, 42:1115-1145, 1995.

40 A. Avidor, I. Berkovitch, and U. Zwick

[Has01]
[HYZ04]

[HZ01]

[Joh74]

[KZ97]

[LLZ02]

[MMO1a]

[MMO1b]

[Nes98]

[Yan94]

[YeOl1]

[Zwi99]

[Zwi02]

J. Hastad. Some optimal inapproximability results. Journal of the ACM,
48(4):798-859, 2001.

Q. Han, Y. Ye, and J. Zhang. Improved Approximation for Max Set Splitting and
Max NAE SAT. Discrete Applied Mathematics, 142(1-3):133-149, 2004.

E. Halperin and U. Zwick. Approximation algorithms for MAX 4-SAT and round-
ing procedures for semidefinite programs. Journal of Algorithms, 40:184-211,
2001.

D. S. Johnson. Approximation algorithms for combinatorical problems. Journal
of Computer and System Sciences, 9:256-278, 1974.

H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX 3SAT? In
Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer
Science, Miami Beach, Florida, pages 406—415, 1997.

M. Lewin, D. Livnat, and U. Zwick. Improved rounding techniques for the MAX
2-SAT and MAX DI-CUT problems. In Proceedings of the 9th IPCO, Cambridge,
Massachusetts, pages 67-82, 2002.

S. Matuura and T. Matsui. 0.863-approximation algorithm for MAX DICUT. In
Approximation, Randomization and Combinatorial Optimization: Algorithms and
Techniques, Proceedings of APPROX-RANDOM’01, Berkeley, California, pages
138-146, 2001.

S. Matuura and T. Matsui. 0.935-approximation randomized algorithm for MAX
2SAT and its derandomization. Technical Report METR 2001-03, Department
of Mathematical Engineering and Information Physics, the University of Tokyo,
Japan, September 2001.

Y. E. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization.
Optimization Methods and Software, 9:141-160, 1998.

M. Yannakakis. On the approximation of maximum satisfiability. Journal of
Algorithms, 17:475-502, 1994.

Y. Ye. A .699-approximation algorithm for Max-Bisection. Mathematical Pro-
gramming, 90(1, Ser. A):101-111, 2001.

U. Zwick. Outward rotations: a tool for rounding solutions of semidefinite pro-
gramming relaxations, with applications to MAX CUT and other problems. In
Proceedings of the 31th Annual ACM Symposium on Theory of Computing, At-
lanta, Georgia, pages 679-687, 1999.

U. Zwick. Computer assisted proof of optimal approximability results. In Pro-
ceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, San
Francisco, California, pages 496-505, 2002.

The Hardness of Network Design for
Unsplittable Flow with Selfish Users*

Yossi Azar and Amir Epstein

School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel
azar@tau.ac.il, amirep@tau.ac.il

Abstract. In this paper we consider the network design for selfish users
problem, where we assume the more realistic unsplittable model in which
the users can have general demands and each user must choose a single
path between its source and its destination. This model is also called
atomic (weighted) network congestion game. The problem can be pre-
sented as follows : given a network, which edges should be removed to
minimize the cost of the worst Nash equilibrium?

We consider both computational issues and existential issues (i.e. the
power of network design). We give inapproximability results and ap-
proximation algorithms for this network design problem. For networks
with linear edge latency functions we prove that there is no approx-
imation algorithm for this problem with approximation ratio less then
(3++/5)/2 = 2.618 unless P = NP. We also show that for networks with
polynomials of degree d edge latency functions there is no approximation
algorithm for this problem with approximation ratio less then d®@® un-
less P = N P. Moreover, we observe that the trivial algorithm that builds
the entire network is optimal for linear edge latency functions and has
an approximation ratio of d®® for polynomials of degree d edge latency
functions. Finally, we consider general continuous, non-decreasing edge
latency functions and show that the approximation ratio of any approx-
imation algorithm for this problem is unbounded, assuming P # NP. In
terms of existential issues we show that network design cannot improve
the maximum possible bound on the price of anarchy in the worst case.

Previous results of Roughgarden for networks with n vertices where
each user controls only a negligible fraction of the overall traffic showed
optimal inapproximability results of 4/3 for linear edge latency functions,
O(d/Ind) for polynomial edge latency functions and n/2 for general con-
tinuous non-decreasing edge latency functions. He also showed that the
trivial algorithm that builds the entire network is optimal for that case.

1 Introduction

1.1 Selfish Routing

A major component of any large-scale network system is the routing mechanism,
namely choosing a communication path between a sender and a receiver of traffic.

* Research supported in part by the German-Israeli Foundation.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 41-54, 2006.
© Springer-Verlag Berlin Heidelberg 2006

42 Y. Azar and A. Epstein

In most cases, such as the Internet, wireless networks, or overlay networks built
on top of the Internet, traffic from a sender to a receiver is sent over a single path;
splitting the traffic causes the problem of packet reassembly at the receiver and
thus is generally avoided. When choosing routing paths, the typical objective is
to minimize the total latency. In most of these network systems it is infeasible
to maintain one centralized authority that imposes efficient routing strategies
on the network traffic. As a result users act independently and “selfishly”: each
user tries to minimize his traffic cost based on current network traffic.

This problem can be mathematically formalized using classical game theory
as follows. The network users are viewed as independent agents participating in
a non-cooperative game. Each agent wishes to use the minimum latency path
from its source to its destination, given the link congestion caused by the rest
of the agents. This system is said to be in Nash Equilibrium if no agent has an
incentive to change his path from its source to its destination. It is well known
that Nash Equilibria do not in general optimize the social welfare (see, e.g, ” The
Prisoner’s Dilemma” [7,15]) and can be far from the global optimum.

Equilibria can be defined for pure strategies, where a single path is chosen
by each user and for mixed strategies, where a probability distribution over
the paths is used instead of a single path. Our hardness results hold for pure
strategies and hence also for mixed strategies. Nash equilibrium requires mixed
strategies, but in some cases pure strategies suffice [9,14,17].

The degradation of network performance caused by the lack of a centralized
authority can be measured using the worst-case coordination ratio (price of anar-
chy) suggested by Koutsoupias and Papadimitriou [10] and Papadimitriou [16]
which is the ratio between the worst possible Nash Equilibrium and the social
optimum, see, e.g., [1,4-6,10,11,16,19-21].

Braess’s paradox is the counterintuitive phenomenon that removing edges
from a network can improve its performance. This paradox was first discovered
by Braess [3] and later reported by Murchland [12]. Braess’s paradox motivates
the following network design problem for improving the performance of a network
with selfish users: How can we design selfish users networks to minimize the
inefficiency inherent in Nash equilibrium?

Previous results of Roughgarden [18] for networks of n vertices with single
source-sink pair where each user controls only a negligible fraction of the overall
traffic showed optimal inapproximability results of 4/3 for linear edge latency
functions, ©(d/ Ind) for polynomials of degree d edge latency functions and n/2
for general continuous non-decreasing edge latency functions. He also showed
that the trivial algorithm that builds the entire network is optimal. For linear
and polynomial edge latency functions these follow from price of anarchy results
of Roughgarden and Tardos [21].

1.2 Our Results

We prove the following results for the network design problem for general net-
works with unsplittable flow:

The Hardness of Network Design for Unsplittable Flow with Selfish Users 43

— For linear latency functions we prove that for any € > 0 there is no (5 — €)-
approximation algorithm for network design where 3 = (3 +/5)/2 ~ 2.618,
assuming P # N P. Price of anarchy results appearing in [1] imply that this
hardness result is optimal.

— For latency functions which are polynomials of degree d we prove that there
is no approximation algorithm for network design, with approximation ratio
less then d®@, assuming P # NP. Price of anarchy results appearing in
[1] imply that the trivial algorithm has an approximation ratio of d®(?).
We note that our hardness result is £2(d%/*) where the trivial algorithm’s
approximation ratio is O(2¢d4*1).

— For general continuous, non-decreasing latency functions we show that the
approximation ratio of any polynomial time approximation algorithm for
NETWORK DESIGN is unbounded, assuming P # N P.

The above results deal with the computational issues related to the power of
network design. We also consider the existential issues. Specifically we also con-
sider the question whether network design can reduce the maximum bound on
the price of anarchy in the worst case. We answer this negatively.

— For linear edge latency functions there is a network with coordination ratio
at least 3 — e where 3 = (3 4+ v/5)/2 ~ 2.618 for any ¢ > 0, for polynomi-
als of degree d edge latency functions there is a network with coordination
ratio at least £2(d%/*) and for general latency functions (continuous and non-
decreasing) there is a network with unbounded coordination ratio such that
in these networks network design cannot decrease the cost of the worst Nash
equilibrium.

All our results hold for pure strategies and hence also for mixed strategies,
since these are hardness and non existential results.

Techniques: To prove our hardness results we first prove hardness results to SE-
LECTIVE NETWORK DESIGN which is an harder problem than NETWORK
DESIGN. Then we show a general way to transform many types of hardness
results of selective network design to hardness results of network design.

1.3 Paper Structure

The paper is organized as follows. Section 2 includes formal definitions and
notations. In section 3 we prove inapproximability results for NETWORK DE-
SIGN and observe the approximation ratio of the trivial algorithm for linear and
polynomial latency functions. In section 4 we consider the existential issues of
NETWORK DESIGN and show that it cannot reduce the maximum bound on
the price of anarchy.

2 Definitions and Preliminaries

2.1 The Model

We consider the following model which is called weighted network congestion
game: there is a directed graph G = (V, E). Each edge e € E is given a load-

44 Y. Azar and A. Epstein

dependent latency function f. : Rt — R*. There are n users, where user j
(j = 1,...,n) has a bandwidth request defined by a tuple (s;,t;,w;), where
sj,t; € V are the source/destination pair, and w; € RT corresponds to the
required bandwidth. We denote the set of (simple) s; —t; paths by Q;. Request
J can be assigned to any path @ from the set of paths Q;, such that the required
bandwidth w; has to be reserved along the path Q.

We assume that the users are non-cooperative and each one wishes to mini-
mize its own cost with no regard to the global optimum. In Pure strategies user
J selects a single path) € Q; and assigns his request to it. Each user is aware
of the choices made by all other users when making his decision.

2.2 Pure Strategies Definition

First, we give some simpler notations we use for a system & = (Q1,...,Qn)
of pure strategies. Let (); be the path associated with request j. We define
J(e) = {jle € Q;} the set of requests assigned to a path containing the edge e.
The load on edge e is defined by: I, = ZjEJ(e) wj.

For the optimal routes let Q; be the path associated with request j. We define
J*(e) = {jle € Q}} the set of requests assigned to a path containing the edge e.
We denote the load on edge e by [}.

Definition 1. The latency of user j for assigning his request in system S to
path Q (instead of path Q;) is defined as:

€Q.j = Z fe(le) + Z fe(le +wj). (1)

(e€EQ)N(e€Q;) (e€EQ)N(e€Q;)

2.3 Nash Equilibrium and Coordination Ratio

Nash equilibrium is characterized by the property that there is no incentive for
any user to change its strategy and defined as follows

Definition 2 (Nash Equilibrium). A system S is said to be in pure Nash
Equilibrium if and only if for every j € {1,...,n} and Q € Q;, cq,; < cq,;-

Definition 3. The cost C(S) for a given system S of pure strategies is defined
as the total latency incurred by S, that is C(S) = Y cp fe(le)le.

We are interested in estimating the worst-case coordination ratio when pure
Nash equilibrium exists. We denote the optimal system of pure strategies by S*.

Definition 4 (Coordination Ratio). The coordination ratio is defined as
R = mazg g((g*)), where the maximum is taken over all strategies S in Nash
equilibrium.

The Hardness of Network Design for Unsplittable Flow with Selfish Users 45

2.4 Formalizing the Network Design Problem

Let C(H,S) be the total latency incurred by a given system S of pure strategies
in Nash equilibrium for a subgraph H of G. If there is a user j such that Q; =0
in the subgraph H then C(H,S) = oco. We denote by C(H) the maximum cost
obtained for the graph H, where the maximum is taken over all strategies S in
Nash equilibrium for the graph H. We note that for unsplittable flow we do not
know how to compute the value C'(H) in polynomial time, while for the case of
splittable flow (or alternatively where each user controls a negligible amount of
the traffic) the value C'(H) can be recovered from the subgraph H in polynomial
time via convex programming for positive convex functions (see [2]). Now we
define the network design and selective network design problems for unsplittable
flow.

The Network Design Problem: Given a weighted network congestion game
with directed graph G = (V, E), find a subgraph H of G that minimizes C(H).

The Selective Network Design Problem: Given a weighted network con-
gestion game with directed graph G = (V, E) and E; C E, find a subgraph H
of G containing the edges of E; that minimizes C(H).

The above formulation of the SELECTIVE NETWORK DESIGN problem
is itself interesting, but the main purpose of the presentation of this problem is
for proving inapproximability results for the NETWORK DESIGN problem. In
particular we first prove hardness results for the selective network design problem
(which is a harder problem than the network design problem and hence it is easier
to show hardness results for this problem) and then we modify the instance of
the selective network design problem used in the proof of inapproximability of
selective network design to an instance of the network design problem to show
its inapproximability result.

3 Inapproximabilty of Network Design

In this section we consider the computational issues of NETWORK DESIGN.
Specifically we prove inapproximabilty results for NETWORK DESIGN and
observe the approximation ratio of the trivial algorithm for linear and polynomial
latency functions.

3.1 Linear Latency Functions

In this section we consider the case where the latency of each edge is linear in
the edge congestion. Specifically f.(z) = a.x + b, for each edge e € E, where a,
and b, are nonnegative reals. Let 8 = (3 ++/5)/2 ~ 2.618.

A trivial algorithm for the problem outputs the entire network G. We be-
gin by observing that this trivial algorithm for NETWORK DESIGN is a (-
approximation algorithm, where the latency functions are linear. This will fol-
low easily from a result of Awerbuch et al. [1]. They proved that in every

46 Y. Azar and A. Epstein

network with linear latency functions and unsplittable flow, the cost of unsplit-
table flow at Nash equilibrium is at most § times that of every other feasible
unsplittable flow.

Proposition 1. ([1]) For linear latency functions and weighted demands let S*
be a system of strategies and let S be a system of strategies in Nash equilibrium.

Then C(S) < - C(S*).

Corollary 1. The trivial algorithm is a 3-approximation for linear latency func-
tions and weighted demands.

Proof. Consider an instance of the problem with subgraph H of G minimizing
C(H). Let S and S* denote systems of strategies at Nash equilibrium for the
graphs G and H, respectively. Since S* can be viewed as a system of strategies
for the graph G, it follows from proposition 1 that C(G,S) < 8- C(G, S*) and
hence C(G) < - C(H).

The main result of this section is a lower bound on the approximation ratio of
any polynomial algorithm (unless P=NP).

Fig. 1. Proof of Theorem 1

Theorem 1. For linear latency functions and weighted demands assuming P #
NP there is no (8 — €)-approximation algorithm for SELECTIVE NETWORK
DESIGN (recall that 8 = (3 + /5)/2 =~ 2.618).

Proof. We reduce from the problem 2 Directed Disjoint Paths (2DDP): Given
a directed graph G = (V, E) and distinct vertices sy, s2,t1,t2 € V, are there
si-t; paths P; and P, such that P, and P, are vertex disjoint? Fortune et
al. [8] proved that this problems is NP-complete. We will show that for linear
latency functions and weighted demands (3 — €)-approximation algorithm for the
SELECTIVE NETWORK DESIGN problem can be used to distinguish “yes”
and “no” instances of 2DDP in polynomial time. Consider an instance I of 2DDP,
as above. We add the vertices wy, ws, v1 and vs to the vertex set V' and include
directed edges (t1,w1), (t2, w2), (wi,v1), (wa,v2), (v1,v2), (v2,v1), (v1,ws2) and
(vg,w1) as shown in Figure 1. We denote the new network by G’ = (V', E’). Let
E1 := E’ — E be the group of edges that the subgraph H of G’ should contain.
We define the following linear latency functions f for the edges of E': the edges

The Hardness of Network Design for Unsplittable Flow with Selfish Users 47

(w1, v1), (w2, v2), (v1,v2), (v2,v1) are given the latency functions f(z) = x and all
other edges are given the latency functions f(z) = 0. We later choose ¢ = 1+2‘/5
which is the golden ratio. We consider an atomic weighted network congestion
game with six players that uses the network G’. Player 1 has a bandwidth request
(s1,v1,9) (player 1 has to move ¢ units of bandwidth from s; to v1), player 2
has a bandwidth request (s2,v2, @), player 3 has a bandwidth request (v1,v2,1),
player 4 has a bandwidth request (vs,v1,1), player 5 has a bandwidth request
(s1,t1,1) and player 6 has a bandwidth request (s2,t2,1). The new instance I’
can be constructed from [in polynomial time. To complete the proof, it suffices
to show the following two statements.

1. If I is a “yes” instance of 2DDP, then G’ contains a subgraph H of G’ with
C(H) =24 +2.

2. If I is a “no” instance of 2DDP, then C(H) > 2(¢+1)2+2¢? for all subgraphs
H of G'.

Recall that the subgraph H of G’ should contain the edges in E;. To prove
(1), let Py and P, be vertex-disjoint paths in G, respectively, and obtain H by
deleting all edges of G not contained in some P;. Then, H is a subgraph of G’
that contains the paths s; — t1 — w1 — v1, S9 — to — wo — V2, V1 — V2, Vg — V1,
s1 —t1 and sg —to. These paths are the direct paths of players 1 — 6 respectively.
The optimal solution S; is obtained when each player chooses its direct path
and this solution is the only Nash equilibrium for I’ in which the costs of players
1 —6 are ¢%,¢%, 1, 1,0 and 0 respectively. The total cost C(H,S;) = 2¢? + 2.
This solution is the unique Nash Equilibrium, since the dominant strategy of
each of the players 1,2, 5,6 is to choose its direct path which is its unique simple
path and given these strategies of players 1,2,5,6 the best response of each of
the players 3 and 4 is its direct path. For (2), we may assume that H contains
s1—t1 and sy —to paths. In this case the paths s; —t; and s —to are not disjoint
and hence H must contain s; — to and sy — ¢ paths. Let So be the system of
strategies where player 1 uses its indirect path s; —ts —ws —v2 —v1, player 2 uses
its indirect path s —t; —wy —v1 — o, player 3 uses its indirect path vy —wg —vo,
player 4 uses its indirect path vo — wy; — vy, player 5 uses its direct path s; — t;
and player 6 uses its direct path sy — to. Then this is a Nash equilibrium and
the costs of players 1 — 6 are 29+ 1, 20+ 1, ¢ + 1, ¢ + 1, 0 and 0 respectively.
The total cost C(H, Sy) = 2(¢+ 1)? +2¢2. The ratio of the total costs C(H, Ss)
and C(H, Sy) is :

2(¢+1)% 4+ 2¢?
202 + 2
We choose ¢ = 1+2\/5 which is the golden ratio and get a ratio 8 = ¢+1 =~ 2.618.
This completes the proof.

We call a family X of latency functions nice if all of its functions are non-
negative, continuous and non-decreasing and the family is closed under non-
negative linear combinations. Note that ,obviously, linear and polynomial latency
functions satisfy this definition.

48 Y. Azar and A. Epstein

The following Lemma provides a way to transform inapproximability result of
SELECTIVE NETWORK DESIGN to inapproximability result of NETWORK
DESIGN.

Lemma 1. Given a direct reduction from a hard problem @ to SELECTIVE
NETWORK DESIGN for a nice family of latency functions that shows that it is
hard to c-approximate selective network design, then one can create a similar re-
duction from Q to NETWORK DESIGN for the same family of latency functions
that shows that it is hard to c-approximate network design, if the following condi-
tion applies : for every instance of selective network design created by the reduc-
tion with weighted network congestion game consisting of graph G' = (V', E’),
Ey C E' and every subgraph H C G’ that has been considered in the proof (i.e.
that contains Eq) it holds that in the worst Nash equilibrium each player has a
unique best response (best strategy).

Proof. For every instance of SELECTIVE NETWORK DESIGN created by the
reduction with weighted network congestion game consisting of graph G’ =
(V/,E"), E1 C E’ and every subgraph H C G’ that has been considered in
the proof (i.e. that contains E7) we do the following. Let § > 0. For each edge
e € E; we make the following local modification. First we split the edge by
adding a new vertex w, and replacing the edge e = (u,v) by the two edges
e1 = (u,w,) and ez = (we,v). The new edges e; and ey will posses the latency
function %fe. Then we add two players with requests (u,we,0) and (we,v,J).
We denote the modified network created from H by H* = (V*, E*). Since the
costs of the players change continuously as a function of 4, for sufficiently small
constant § it holds that in the new weighted network congestion game the worst
Nash equilibrium remains a Nash equilibrium where each player uses its original
strategy and this strategy is its unique best response (the new players choose
their unique strategy). Moreover, the total cost changes continuously as a func-
tion of § and hence the new total cost is arbitrarily close to the original total cost
as a function of §. Additionally, each of the edges in F; cannot be deleted since
it is a unique strategy of a new player. Hence the inapproximablity proof for
SELECTIVE NETWORK DESIGN is also a proof for NETWORK DESIGN.

Unfortunately we cannot use Lemma 1 to prove Theorem 2 according to the
result of Theorem 1, hence we have to modify the weighed network conges-
tion game used in the proof of Theorem 1 to satisfy the condition required by
Lemma 1.

Theorem 2. For linear latency functions and weighted demands assuming P #
NP there is no (8—¢)-approzimation algorithm for NETWORK DESIGN (recall
that B = (3 + /5)/2 ~ 2.618).

Proof. We modify the weighted network congestion game defined in the proof
of Theorem 1 as follows : Let ¢ > 0. First we modify the network G’ = (V’, E’)
shown in Figure 1 and obtain the network G” = (V" E") shown in Figure 2.
Next we modify the requests of players 3 and 4. Player 3 has a bandwidth request
(21, 22,1) (its previous request was (v1,v2,1)) and player 4 has a bandwidth

The Hardness of Network Design for Unsplittable Flow with Selfish Users 49

Fig. 2. Proof of Theorem 2

request (22, 21, 1) (its previous request was (z2,v1, 1)). The direct paths of players
1—6ares; —t1 —w1 —y1 —v1, S2—t2 — Wa — Y2 — U2, 21 — Ya — 22, 22 — Y3 — 21,
s1 — t1 and so — to respectively. The indirect paths of players 1 — 4 are s; —
lo — w2 — Y2 — 22 — Y3 — V1, S2g —t1 — W1 — Y1 — 21 — Ya — V2, 21 — W2 — Y2 — 22,
2o — w1 — Y1 — 21 respectively. Now it is easy to verify according to the proof of
Theorem 1 that the following properties hold:

1. The optimum which is the best Nash equilibrium is obtained when each
player chooses its direct path.

2. The worst Nash equilibrium is obtained when each of the players 1—4 chooses
its indirect path and players 5,6 choose their direct path.

3. In the best and worst Nash equilibria the total cost was increased by at most
8e.

4. In the best and worst Nash equilibria each player has a unique best response
(best setrategy).

Let E; = E” — E be the group of edges that the subgraph H of G” should
contain. It follows from the above properties and the proof of Theorem 1 that
the above modified weighted network congestion game can be used to prove
Theorem 1. It also follows that for every subgraph considered in the new proof
of Theorem 1 which uses the modified weighted network congestion game, in the
worst Nash equilibrium each player has a unique best response (best startegy).
Applying Lemma 1 completes the proof.

3.2 Polynomial Latency Functions

In this section we consider the case where the latency of each edge is a polynomial
of degree d in the edge congestion. Specifically f.(x) = >, ac ;2" for each edge
e € I/, where a.; are nonnegative reals.

Proposition 2. ([1]) For polynomial of degree d latency functions and weighted
demands let S* be a system of strategies and let S be a system of strategies in
Nash equilibrium. Then C(S) < O(2¢d%*1) - C(S*).

50 Y. Azar and A. Epstein

Corollary 2. The trivial algorithm is a O(2%d?*1)-approzimation for linear la-
tency functions and weighted demands.

The main results of this section are lower bounds on the approximation ratio of
any polynomial algorithm for weighted demands (unless P=NP).

Fig. 3. Proof of Theorem 3. In this example n = 4.

Theorem 3. For polynomials of degree d latency functions and weighted de-
mands assuming P # NP there is a lower bound of 2(d%/*) on the approxi-
mation ratio of any polynomial time approzimation algorithm for SELECTIVE
NETWORK DESIGN.

Proof. Let ¢ = 2,let d = 2k (we can assume that d is even), let n = kv/k/c. We
reduce from the problem 2 Directed Disjoint Paths (2DDP): Given a directed
graph G = (V, E) and distinct vertices s1, s2,t1,t2 € V, are there s;-t; paths P,
and Py, such that P; and P, are vertex disjoint? Fortune et al. [8] proved that
this problems is NP-complete. We will show that for polynomials of degree d la-
tency functions and weighted demands O(d%/4)-approximation algorithm for the
SELECTIVE NETWORK DESIGN problem can be used to distinguish “yes”
and “no” instances of 2DDP in polynomial time. Consider an instance I of
2DDP, as above. We now build the graph G’ = (V’, E’) shown in Figure 3. Let
E; = E' — E be the group of edges that the subgraph H of G’ should contain.
We begin by adding the vertices w and vy, . . . , v, to the vertex set V' and include
directed edges (vo, $1), (t1,v1), (t2,w), (vi,vi41) fori=1,...,n—1, (v;,vp) for
i=1,...,nand (w,v;) fori = 1,...,n. Next we add the edge latency functions.
Edges (t1,v1) and (v;,vi41) for @ = 1,...,n — 1 will possess the latency func-
tion f(z) = 2%, edge (t2,w) will possess the latency function f(z) = k%z¥, all
other edges will possess the latency function f(x) = 0. Let 6 > 0 be sufficiently
small. We consider an atomic weighted network congestion game with n+3 play-
ers that use the network G’. Player 1 has a bandwidth request (s2,v,,k). For
i =2...n+ 1 player i has a bandwidth request (v;_s,v;_1,cVk). Player n 4 2
has a bandwidth request (s1,¢1,9) and player n + 3 has a bandwidth request

The Hardness of Network Design for Unsplittable Flow with Selfish Users 51

(s2,t2,0). The new instance I’ can be constructed from I in polynomial time.
To complete the proof, it suffices to show the following two statements.

1. If I is a “yes” instance of 2DDP, then G’ contains a subgraph H of G’ with
C(H) — kk+222k + kk+3.

2. If I is a “no” instance of 2DDP, then C(H) > k%4 for all subgraphs H of
G'.

To prove (1), let P; and P; be vertex-disjoint paths in G, respectively, and
obtain H by deleting all edges of G not contained in some P;. Then, H is a
subgraph of G’. There is one simple path for each player. The optimal solution
is obtained when each player chooses its direct path as follows. Player 1 chooses
the path so — to — w — v, ,player 2 chooses the path vy — s; — t1 — v, for
1 =3,...n+1 player ¢ chooses the path v;_o—v;_1, player n+2 chooses the path
s1 — t1 and player n + 3 chooses the path sy — t5. This solution is the only Nash
equilibrium for I’, in which C(H, S) = 3 . fe(le)le = n(2VEk) 2+ 4|2 1 =
kvVE/2(2VE)2FHL 4 B2 Rt = gRH222k 4 kR4 For (2), we may assume that H
contains s; —t1 and s —to paths. In this case H must contain s; —t, and so —
paths to satisfy the requests for paths s; — t; and sy — to. If player 1 uses its
indirect path so—t1 —v1 —v3—...—v,, for i = 2...n+1 player ¢ uses its indirect
path v;_o —vg — 51 —ta —w —v;_1, player n+ 2 uses its direct path s; —t; which
must exist and player n + 3 uses its direct path so — o if it exists, otherwise it
uses its indirect path s —t; — vy — vg — 81 — to, then this is a Nash equilibrium
with C(H, S) > k2 - k242 4 k. g2k+3/2 /9 = [2k+4 | |:2k+5/2 /9 To show that this
is a Nash equilibrium we have to show that no player benefits from changing its
path. We assume that player n+ 3 uses its indirect path so —t1 —v1 —vg — 51 — 2.
The analysis of the case when player n + 3 uses its direct path so — to follows
from this case. The cost of player 1 on path so —t; — vy — vy — ... — v, is
kvVk/2 - k*® = k2F+3/2 /2 The cost of player 1 on path sy — to — w — vy, is
k% (k? +k+0)* > k*+2 which is greater. For i = 2...n+ 1 the cost of player
i on path v;_o — vy — 81 —ta —w — v;_1 is k? - (k® + &) > k?**2. The cost of
player ¢ on path v;_s —v;_1 is (k+ 2\/k)2k > k2 - (k? + 6)* for sufficiently small
0 (but at least one divided by a polynomial in k). Players n+ 2 and n+ 3 cannot
decrease their cost by changing path (if one exists). This completes the proof.

Theorem 4. For polynomials of degree d latency functions and weighted de-
mands assuming P # NP there is a lower bound of Q(dd/4) on the approxi-
mation ratio of any polynomial time approximation algorithm for NETWORK
DESIGN.

Proof. In any Nash equilibrium considered in the proof of Theorem 3 every
player has a unique best response, hence the result follows from Lemma 1.

3.3 General Latency Functions

In this section we consider the case where the latency of each edge is continuous
and non-decreasing in the edge congestion. We show that the approximation
ratio of any approximation algorithm is unbounded even as a function of n.

52 Y. Azar and A. Epstein

—~
\SJR‘V
., 7
.)

b

Fig. 4. Proof of Theorem 5. In this example n = 4.

Theorem 5. For general continuous, non-decreasing latency functions assum-
ing P # NP the approzimation ratio of any polynomial time approximation
algorithm for NETWORK DESIGN is unbounded.

Proof. We show that it is NP-hard to differentiate between zero cost and positive
cost. We reduce from the NP-complete problem PARTITION: we are given ¢
positive integers {a1,as,...,aq} and seek for a subset T' C {1,2,...,¢q} such

q
that Zaj = ; Zaj [13]. Consider an instance I of PARTITION, as above.
jer j=1

We now build the directed graph G = (V, E) shown in Figure 4. Let n = g,
let A= 25:1 a;, V.= {s,t,v1,v2,...,v,} and E includes the edges (s;,v1) for
i=1,...,m, (s;v9) for i = 1,...,n, (v1,t) and (ve,t). The edges (v1,t) and
(va,t) will posses the latency function f satisfying f(z) = 0 for z < A/2 and
flx) = x— A/2 for x > A/2, all other edges will posses the latency function
f(z) = 0. We consider an atomic weighted network congestion game with n
players that uses the network G. For ¢ = 1...n player i has a bandwidth request
(Sia ta (17;) .

The new instance I’ can be constructed from I in polynomial time. To com-
plete the proof, it suffices to show the following two statements.

1. If I is a “yes” instance of PARTITION, then G contains a subgraph H of G
with C(H) = 0.

2. If I is a “no” instance of PARTITION, then C(H) > 0 for all subgraphs H
of G.

To prove (1), let the subset Y be the solution to the instance I, we obtain
H by deleting all edges (s;,v2) for ¢ € Y and deleting all edges (s;,v1) for ¢ not
in Y. Each player has a unique path (strategy) in the graph H. The load on
each of the edges (v1,t) and (ve,t) is A/2 and hence C(H,S) = 0. For (2), we
may assume that H contains s; — t path for each i = 1,...,n. Let Y’ be the
subset of players using paths containing the edge (vi,t) (all other players use
paths containing the edge (vs,t)), then it holds that the load of one of the edges
(v1,t) and (vg,t) is greater then A/2 and hence C'(H,S) > 0.

The Hardness of Network Design for Unsplittable Flow with Selfish Users 53

4 The Limitation on the Power of Network Design

In this section we consider the existential issues of NETWORK DESIGN. Specif-
ically we consider the question whether network design can reduce the maximum
bound on the price of anarchy. We answer this negatively.

Theorem 6. For any € > 0 and for linear latency functions there is a network
with coordination ratio at least B — € in which NETWORK DESIGN cannot
decrease the cost of the worst Nash equilibrium (recall that 8 = (3 +V/5)/2 =~
2.618).

Proof. The proof follows from the weighted network congestion game with the
graph G constructed in the proof of Theorem 2 where the graph G is contracted
to a single vertex. For each edge in the graph G” we apply the local modification
described in the proof of Lemma 1 and obtain a new weighted network congestion
game with coordination ratio at least 3 — ¢ where edges cannot be removed.

Theorem 7. For polynomial of degree d latency functions there is a network
with coordination ratio at least 2(d*) in which NETWORK DESIGN cannot
decrease the cost of the worst Nash equilibrium.

Proof. The proof follows from the weighted network congestion game with the
graph G’ constructed in the proof of Theorem 3 where the graph G is contracted
to a single vertex. For each edge in the graph G’ we apply the local modification
described in the proof of Lemma 1 and obtain a new weighted network congestion
game with coordination ratio at least £2(d%/*) where edges cannot be removed.

Theorem 8. For general latency functions (continuous and non-decreasing)
there is a network with unbounded coordination ratio such that in this network
NETWORK DESIGN cannot decrease the cost of the worst Nash equilibrium.

Proof. We prove the result by showing a weighted network congestion game for
network with edges that cannot be removed (since each edge is a unique path of
a player). In this game there is Nash equilibrium with zero cost and Nash equi-
librium with positive cost as follows. We consider a weighted network congestion
game that uses the network defined in the proof of Theorem 5 and shown in
Figure 4. We denote the new network by G = (V, E). Let the number of source
vertices n = 4 and let A = 12. We define the following players: players 1 —4 have
bandwidth requests (s1,t,2), (s2,t,3), (s3,t,2), (s4,t,3) respectively. For each
i = 1—4 we add two players with requests (s;,v1,1) and (s;,ve,1). Addition-
ally we add two players with requests (v1,¢,1) and (ve,¢,1). When players 1,2
choose their simple paths containing the edge (v1,t), players 3,4 choose their
simple paths containing the edge (ve,t) and all other players use their unique
path, then this is the optimal solution and it is also the best Nash equilibrium
with cost C(H,S;) = 0. Additional Nash equilibrium is obtained when play-
ers 1,3 choose their simple paths containing the edge (v1,t), players 2,4 choose
their simple path containing the edge (vq,t) and all other players use their unique
path. The cost of this Nash equilibrium C'(H, S2) > 0.

54

Y. Azar and A. Epstein

References

1.

2.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

B. Awerbuch, Y. Azar, and A. Epstein. The price of routing unsplittable flow. In
Proc. 37th ACM Symp. on Theory of Computing, 2005. To appear.

M. Beckmann, C.B. McGuire, and C.B. Winsten. Studies in Economics of Trans-
portation. Yale University Press, 1956.

D. Braess. Uber ein paradoxon der verkehrsplanung. Unternehmensforschung,
12:258 268, 1968.

G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion
games. In Proc. 37th ACM Symp. on Theory of Computing, 2005. To appear.

A. Czumaj, P. Krysta, and B. Vocking. Selfish traffic allocation for server farms.
In Proc. 34th ACM Symp. on Theory of Computing, pages 287-296, 2002.

A. Czumaj and B. Vocking. Tight bounds for worst-case equilibria. In Proc. 13rd
ACM-SIAM Symp. on Discrete Algorithms, pages 413—420, 2002.

P. Dubey. Inefficiency of nash equilibria. Mathematics of Operations Research,
11(1):1-8, 1986.

S. Fortune, J.E. Hopcroft, and J.C. Wyllie. The directed subgraph homeomorphism
problem. Theoretical Computer Science, 10(2):111-121, 1980.

D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish unsplittable flows. In In-
ternational Colloquium on Automata, Languages and Programming - ICALP ’04,
2004.

E. Koutsoupias and C.H. Papadimitriou. Worst-case equilibria. In Proc. 16th
Symp. on Theoretical Aspects of Comp. Science, pages 404—413, 1999.

M. Mavronicolas and P. Spirakis. The price of selfish routing. In Proc. 33rd ACM
Symp. on Theory of Computing, pages 510-519, 2001.

J.D. Murchland. Braess’s paradox of traffic flow. Transportation Research, 4:391—
394, 1970.

M.R. Garey nad D.S. Johnson. Computers and Intractabilty: A Guide to the Theory
of NP-Completeness. Freeman, 1979.

J. F. Nash. Equilibrium points in n-person games. In Proceedings of National
Academy of Sciences, volume 36, pages 48—-49, 1950.

G. Owen. Game Theory. Academic Press, third edition, 1995.

C.H. Papadimitriou. Algorithms, games and the internet. In Proc. 33rd ACM
Symp. on Theory of Computing, pages 749-753, 2001.

R. W. Rosenthal. A class of games possesing pure-strategy nash equilibria. Inter-
national Journal of Game Theory, 2:65-67, 1973.

T. Roughgarden. Designing networks for selfish users is hard. In Proc. 42nd IEEE
Symp. on Found. of Comp. Science, pages 472481, 2001.

T. Roughgarden. The price of anarchy is independent of the network topology. In
Proc. 84th ACM Symp. on Theory of Computing, pages 428-437, 2002.

T. Roughgarden. The maximum latency of selfish routing. In Proc. 15vrd ACM-
SIAM Symp. on Discrete Algorithms, pages 973-974, 2004.

T. Roughgarden and E. Tardos. How bad is selfish routing. In Proc. 41st IEEE
Symp. on Found. of Comp. Science, pages 93—102, 2000.

Improved Approximation Algorithm for
Convex Recoloring of Trees

Reuven Bar-Yehuda!, Ido Feldman!, and Dror Rawitz?

! Department of Computer Science, Technion, Haifa 32000, Israel
{reuven, idofeld}@cs.technion.ac.il
2 Caesarea Rothschild Institute, University of Haifa, Haifa 31905, Israel
rawitz@cri.haifa.ac.il

Abstract. A pair (T, C) of a tree T and a coloring C'is called a colored
tree. Given a colored tree (T, C) any coloring C” of T is called a recoloring
of T'. Given a weight function on the vertices of the tree the recoloring
distance of a recoloring is the total weight of recolored vertices. A coloring
of a tree is conver if for any two vertices u and v that are colored by
the same color ¢, every vertex on the path from w to v is also colored
by c. In the minimum convex recoloring problem we are given a colored
tree and a weight function and our goal is to find a convex recoloring of
minimum recoloring distance.

The minimum convex recoloring problem naturally arises in the con-
text of phylogenetic trees. Given a set of related species the goal of phy-
logenetic reconstruction is to construct a tree that would best describe
the evolution of this set of species. In this context a convex coloring
correspond to perfect phylogeny. Since perfect phylogeny is not always
possible the next best thing is to find a tree which is as close to convex
as possible, or, in other words, a tree with minimum recoloring distance.

We present a (2+¢)-approximation algorithm for the minimum convex
recoloring problem, whose running time is O(n? + n(1/¢)?4'/¢). This
result improves the previously known 3-approximation algorithm for this
NP-hard problem.

1 Introduction

Problem statement and motivation. Given a tree T = (V, E) with n vertices,
a coloring of the tree is a function C' : V' — C, where C is a set of colors. A
pair (T, C) of a tree and a coloring is called a colored tree. A coloring C of a
tree is convez if for every two vertices u and v such that C(u) = C(v) = ¢
the color of every vertex on the path from u to v is also ¢. That is, a coloring
is convex if the set of vertices colored by ¢ induces a (possibly empty) subtree
for every color ¢ € C. Examples of a non-convex coloring and a convex coloring
are given in Fig. 1. Given a colored tree (T, C) any coloring C’ of T is called a
recoloring of T. A vertex u is recolored if C'(v) # C’'(v). Given a non-negative
weight function w on the vertices of T the recoloring distance of C’ is the total
weight of recolored vertices. For example, given the coloring in Fig. 1(a) and

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 55-68, 2006.
© Springer-Verlag Berlin Heidelberg 2006

56 R. Bar-Yehuda, I. Feldman, and D. Rawitz

4 4

\ \

4 4 4

(a) Non-convex coloring (b) Convex coloring

Fig. 1. Transforming a non convex coloring into a convex coloring

assuming unit weights, the recoloring cost of the coloring in Fig. 1(b) is 2. In
the minimum convex recoloring problem we are given a colored tree (T, C) and
a non-negative weight function w and our goal is to find a convex recoloring C’
of minimum recoloring distance.

The minimum convex recoloring problem was first introduced by Moran and
Snir [8], who showed that this problem arises in the context of phylogenetic
trees. Given a set of related species the goal of phylogenetic reconstruction is to
construct a tree that would best describe the evolution of this set of species. In
such a phylogenetic tree the leaves represent the species, while internal vertices
represent extinct species. A character is an attribute shared by the entire set
of species represented by the tree. Such a character has different states, and
each species is associated with one of these states. For example, the character
may be as simple as the existence of wings, and the states are wings, and no
wings. It is not hard to see that the states of a given character correspond
to a set of colors, and that the states associated with the species correspond
to a coloring of the tree. A natural biological constraint is that the tree does
not contain reverse or convergent transitions with respect to every character. A
reverse transition occurs when some species has a common character state with
an old ancestor while its direct ancestor is associated with a different character
state. In a convergent transition two species share a character state which is
different from the character state of their least common ancestor. The absence
of reverse and convergent transitions implies that the path in the tree connecting
two species with some character state must contain only species with an identical
character state. In other words, a character with respect to which there are no
convergent and reverse transitions is a convex coloring of the tree. Hence, our
goal is to construct a tree in which every character is a convex coloring. This
problem is known as the perfect phylogeny problem (see, e.g., [1-4]).

Since perfect phylogeny is not always possible the next best thing is to find a
tree which is as close to convex as possible with respect to each character. How-
ever, the meaning of close to convex must be defined first. One possible mea-
sure of closeness is the parsimony score which is the number of mutated edges

Improved Approximation Algorithm for Convex Recoloring of Trees 57

summed over all characters [5, 6]. Another measure is the phylogenetic number [7)
which is defined as the maximum number of connected components induced by
a single state. In [8] Moran and Snir defined a natural distance from a phyloge-
netic tree to a convex one—the recoloring distance. We note that the parsimony
score and the phylogenetic number do not specify a distance to an actual con-
vex coloring of the given tree. Moreover, there are trees with large phylogenetic
numbers and parsimony scores that can be made convex only by changing the
color of one vertex, while other trees with small phylogenetic numbers that can
become convex only by changing the color of a large number of vertices.

For more details about phylogenetic trees and other applications of the min-
imum convex recoloring problem we refer the reader to [8,9].

Previous Results. The minimum convex recoloring problem was first defined by
Moran and Snir [8]. They showed that the problem is NP-Hard even on strings
(trees with two leaves) with unit weights. In addition, they presented dynamic
programming based algorithm for computing an optimal convex recoloring of
trees. The running time of this algorithm is O(n - n* - A”*”), where n* is the
number of colors that violate convexity in the input tree, and A is the maximum
degree of vertices in the tree. In a followup paper [9] Moran and Snir presented
a 3-approximation algorithm based on the local ratio technique [10-14], and a
2-approximation algorithm for strings.

Our Results. We obtain a polynomial time (2 + ¢)-approximation algorithm for
the minimum convex recoloring problem. Our algorithm depends on an accuracy
parameter £ > 2, and consists of two phases. The first phase is a local ratio
algorithm in which we manipulate the weights such that the original weighted
colored tree is transformed into a weighted colored tree we call k-simple. The
approximation ratio of this phase is 2 + k31 and the running time is O(n?). In
the second phase of the algorithm we use dynamic programming to compute an
optimal solution. The running time of this phase is O(n? +nk?2¥). For example,
if we set k =logn/2+ 1 we get a (2 + 4/ logn)-approximation algorithm whose
time complexity is O(n?). In addition, our dynamic programming algorithm for
computing an optimal convex recoloring (for general colored trees) is faster than
the best previously known algorithm presented in [8], since the running time of
our algorithm (in terms of n* and A) is O(n? +n -n* - A™").

Overview. The remainder of the paper is organized as follows. Section 2 contains
most of our definitions and notation. Our dynamic programming algorithm is
given in Sect. 3. In Sect. 4 we define k-simple trees and analyze the algorithm
from the previous section on the special case of k-simple trees. In Sect. 5 we
present our (2 + k31)-approximation algorithm.

2 Preliminaries

In this section we focus on two main issues. First, we define the notion of convex
partial colorings, and show that it is sufficient look for a convex partial recoloring
of a given colored tree. Next, we examine the form of an optimal solution.

58 R. Bar-Yehuda, I. Feldman, and D. Rawitz

2.1 Partial Colorings

A partial coloring of a tree T is function C' : V' — CU{@}, where & stands for no
color. That is, if C(v) = @ then v is assumed to be uncolored. A pair (T, C) of
a tree and a partial coloring is called a partially colored tree. A partial coloring
C' is called convex if it can be extended to a (total) convex coloring.

Observation 1. A conver partial coloring can be completed in O(n?) time.

We consider an extended version of the minimum convex recoloring problem in
which both the input and output colorings may be partial. That is, we are given
atree T = (V, E), and a partial coloring C of the tree and our goal is to compute
a convex partial recoloring C’. We say that a recoloring C’ of C' discolors a vertex
wif C(u) # @ and C'(u) # C(u). That is, C’ discolors w if it changes or removes
its original color. Given a non-negative weight function w on the vertices of T" the
recoloring distance of C' is the total weight of discolored vertices. (Informally,
this means that we pay for removing a color, but not for applying a color.) Hence,
we may assume without loss of generality that if w(u) = 0 then C(u) = @, and
vice versa. Observe that since coloring uncolored vertices cost nothing, turning
a convex partial coloring into a convex coloring incurs no cost.

Observation 2. The weight of an optimal convex partial recoloring is equal to
the weight of an optimal convex recoloring.

Given a partially colored tree (T, C), a vertex set X C V is called a cover if
there is a convex partial recoloring C’ such that X is the set of vertices that
are discolored by C’. For a set of vertices U C V and a weight function w we
define w(U) = >, cy w(u). Hence, the cost of a cover X is defined as w(X),
and the recoloring distance of a corresponding convex partial coloring C’ is
w(C") = w(X).

2.2 Form of an Optimal Solution

Given a subset of vertices U C V we denote the set of colors that are used to
color U by C(U), i.e., C(U) ={c€C : C(u) = c and u € U}. Notice that C(u)
does not include @. Given a subtree T' of T' we denote the set of colors used in
T' by C(T"), i.e., C(T") = C(V(T")).

Given colored tree (T, C), a color block in T is a maximal set of vertices which
induces a monochromatic subtree. A ¢-block is a color block colored by ¢. (For
example, in Fig. 1(a) the tree contains two 2-blocks, and one 3-block.) If C is a
convex coloring then for every color ¢ there exists only one c-block. Moran and
Snir [9] referred to a coloring C” as an ezpanding recoloring of C' if in each block
of C” at least one vertex v is not recolored, i.e., C'(v) = C(v).

Observation 3 ([9]). Let (T, C,w) be a weighted colored tree. Then there exists
an expanding optimal convex recoloring of the tree.

It follows that there exists an optimal convex (partial) recoloring C’ that uses
only colors that were originally used by C. Next, we show that there exists an

Improved Approximation Algorithm for Convex Recoloring of Trees 59

optimal partial recoloring in which each vertex has a limited choice of colors,
and a vertex colored by @ is not located on the path between two c-blocks for
some color c.

Given a tree T" we denote by T\ v the set of subtree obtained when v is
removed from T'. Given a colored tree (T, (), we say that v separates ¢ (with
respect to (') if there are at least two subtrees in 7'\ v that contain a vertex u
such that C'(u) = c. The separation number SEP,(c) of a vertex v with respect to
a color ¢ # @ is defined as the number of subtrees in 7'\ v that contain a vertex u
such that C'(u) = c. Let S(v) be the set of colors that are separated by v, i.e., let
S(v) be the set of colors for which the separation number is greater than 1. That
is, S(v) = {c : sEPy(c) > 1}. We define X', = |S(v)| and 1T, = [] cg(,) SEPu(c).
(If ¥, = 0 then II, = 1.) An example is given in Fig. 2.

Fig.2. S(v) = {1,2,3}, X, =3, and I, = SEP,(1) - SEP,(2) - SEP,(3) =2-2-3 =12

Definition 1. Given a colored tree (T, C) we define the color set of v by G(v) =
S(v)U{C(v),d}. (Recall that C(v) may be @.) A partial recoloring C' is called
good if (1) C'(v) € G(v) for every v € V, and (2) if C'(v) = &, then v does not
separate any color ¢ with respect to C'.

In the next lemma we show that there exists a good optimal convex partial
recoloring. Hence, we can concentrate on finding good partial recolorings, and,
in particular, it is enough to design an algorithm that computes an optimal good
partial recoloring in order to solve the problem.

Lemma 1. Let (T,C,w) be a weighted colored tree. Then there exists a good
optimal convex partial recoloring C'.

Proof. Let C' be an optimal convex recoloring, and let X be the corresponding
cover. We construct a good optimal partial recoloring C” that correspond to the
same cover X . First, we set C”(v) = C(v) for every v ¢ X. Next, we discolor the
vertices in X. Observe that, with respect to C’, every v € X separates at most
1 color (since X is a cover). Hence, for every v € X that separates a color ¢, we
define C"(v) = C'(v) = ¢, and otherwise, we define C” (v) = @. (See Fig. 3 for an
illustration). Clearly, C" is good. Moreover, since we only changed vertices in X,
we get that w(C"”) = w(C"). Also, C" is convex, since it can be extended to C’. O

60 R. Bar-Yehuda, I. Feldman, and D. Rawitz

(a) Non-convex coloring (b) Convex partial recoloring

A
©

(¢) Good convex partial recoloring

Fig. 3. Example of a good convex partial recoloring

Lemma 2. Let v € V be a vertex and T' € T'\ v be a subtree. If C' is a good
partial recoloring, then C'(T") C C(T")U{@}.

Proof. Consider a vertex w in 7. If C'(u) = C(u) or C'(u) = @ we are done.
Otherwise, since C'(u) # C(u) we know that u € X. It follows that u separates
C’(u), and thus C'(u) € C(T"). O

3 Dynamic Programming Algorithm

In this section we describe a dynamic programming algorithm for computing
an optimal convex partial recoloring whose running time is O(n? + Y ovev v -
(deg(v) + II,)), where deg(v) is the degree of the vertex v. This expression
becomes polynomial in n and exponential in k for the special case of k-simple
trees (defined in the next section).

Throughout this section we treat the input tree T as a rooted tree. This is
done by choosing an arbitrary root s. Let v € V be a vertex with » children (i.e.,
deg(v) = r). We denote the ith child of v by v;, and the parent of v by vy. As
before the set of subtrees obtained by the removal of V' is denoted by T\ v. We
denote the subtree of the ith child by T;(v), and by T'(v) the tree rooted at v.

Improved Approximation Algorithm for Convex Recoloring of Trees 61

200000

Fig. 4. To(v) is marked by the dashed line, 71 (v) is marked by the thick dotted line,
and T'(v) is marked by the thin dotted line

We also denote by Ty(v) the subtree obtained by removing T'(v) from T. (If the
tree was unrooted then Tj(v) would be the subtree Tp(v) of the parent vg.) See
Fig. 4.

Let C’ be a convex good partial recoloring of T', and consider a vertex v that
is colored by c. If ¢ # & then C” induces a partition of C\ {c}. A color d # ¢ that
is used in T;(v) cannot be used in T (v) where i # j. If ¢ = & then C’ induces
a partition on C. In both cases, v partitions the color set into r + 1 mutually
disjoint color sets. If ¢ # @ then ¢ may be used to color vertices in more than
one subtree from T\ v. Obviously, the use of this color is possible only if the
vertices colored by it form a subtree.

Definition 2. Let (T,C) be a colored tree, let ¢ be a color, and let v € V be a
vertex with r children. We say that (Do, ..., D,) is a good partition with respect
to v and ¢ if D; C C(T;(v)) fori € {0,...,r}, and (Dy,...,D,) is a partition
of C\ {c} (C when c=@).

GOOD(v, ¢) denotes the set of all good partitions with respect to v and c.

Observation 4. Letv be a vertex, and let ¢ be a color. Then, |GOOD(v,c)| < II,.

Let v be a vertex, and let ¢ be a color. Also, let C' be a coloring that is consitent
with some good partition (Do,...,D,) with respect to v and c. Then, if v is
colored by ¢, the colors in Dy cannot be used in T'(v). We refer to these colors
as forbidden with respect to v.

Definition 3. Let v € V' be a vertex. Define,
FORB(v) = {D : 3¢ € G(v) I(D1,...,D,), (D,D,...,D,) € coOD(v,¢)}

Thus, D € FORB(v) if there is a good partition, where the color set D is used
only in Ty(v).

62 R. Bar-Yehuda, I. Feldman, and D. Rawitz

Lemma 3. [FORB(v)| < 2% for every v € V.

Proof. Let v be a vertex with r children, let ¢ be a color, and let ¢ and j be indices
such that 0 <14 < j < r. Observe that if ¢ € C(T;(v)) and ¢ € C(Tj(v)), then v
separates c. Thus, if v does not separate a color ¢’ then either ¢’ € Dy for every
(Do, ...,D,) € GooD(v,c), or ¢ & Dy for every (Dy,...,D,) € GOOD(v,c).
Therefore, |[FORB(v)| < gl{e/+v separates '} _ 93, O

We now turn to design a dynamic programming algorithm for computing the
optimal good convex partial recoloring of a given colored tree. We construct an
optimal solution bottom-up, by storing intermediate values on the vertices of
the tree.

Definition 4. Let v be a vertez in T, let ¢ € CU{D}, and let D € FORB(v).

— A good convezx recoloring C' of T'(v) is a (v, D)-coloring if it is a recoloring
in which the colors in D are not used to color T'(v), i.e., it is a recoloring
of T(v) such that C'(T'(v)) N D = (). opT(v, D) denotes the weight of an
optimal (v, D)-coloring.

— A good convez recoloring C' of T'(v) is a (v, ¢, D)-coloring if it is a recoloring
in which the colors in D are not used to color T'(v) and v is colored by c,
i.e., it is a (v, D)-coloring of T(v) such that C'(v) = c. OPT(v, ¢, D) denotes
the weight of an optimal (v, ¢, D)-coloring.

Observe that, for a tree T with root s, the weight of an optimal recoloring of
the whole tree is OPT(s, ().
We compute OPT recursively using the following rules:

1. R(v, D) = minceg)\ p R(v,c, D).
2. If C(v) = c then

i,
R D) = i R'(v;,c,C\ D;
(v,e, D) (D,Dl,..A,DrglenGOOD(v,c) {Z (vi, ¢, C'\ ’)}

=1

otherwise
R(v,e, D) = w(v) + min R'(vi,¢,C\ D;)
(D,Dq,...,D,)eGOOD(v,c) P

where R'(v, ¢, D) = min {R(v, D U {c}), R(v,¢, D)}.

where v is a vertex with r children, D € FORB(v), and and ¢ € G(v) \ D. (Recall
that v; is the ith child of v for every i € {1,...,7}.)

In Rule 1 we go through all (v, ¢, D)-colorings and find the best one that
colors the subtree T(v). In Rule 2 we try to glue colorings of the subtrees
T1(v),...,T.(v) to a coloring of v. Notice that, for every ¢ € {1,...,r}, if v
is colored by ¢ then either ¢ is not used in T;(v), or it is used to color v;. (See
Fig. 5.)

Improved Approximation Algorithm for Convex Recoloring of Trees 63

(a) Case 1: R(v1,¢, D) (b) Case 2: R(v1,d, DU{d})

Fig. 5. Combining a recoloring of 71 (v) with a recoloring of v

Theorem 1. Let v be a vertex with r children, let D € FORB(v) be a set of
colors, and let ¢ € G(v) \ D. Then, R(v,c, D) = oPT(v,¢, D), and R(v,D) =
opT(v, D).

Proof. We proof the theorem by induction on the tree. In the induction base v
is a leaf, and in this case

R(v,e. D) = w(v) C(v) 79. ¢,
0 otherwise,

and

w(v) C(v) e D

0 otherwise,

R(v,D) = {

as required.

Next, for the inductive step we assume that R(v;, D) = opT(v;, D) and
R(vi,¢,D) = opPT(v;,¢,D) for every i € {1,...,r}. We first prove that
R(v,¢,D) < opT(v,¢,D). Let C’' be an optimal (v, ¢, D)-coloring. Let D; be
the set of colors which C” uses in coloring T;(v). That is, D, = C'(T;(v)) \ {c}
for every i € {0,...,r}. Since C’ is convex and C’(v) = ¢, we must have that
for ¢ # j, D; N D; = (. By Lemma 2, it follows that D; C C(T;(v)) \ {c} for
every i. Thus, U Ds € Ul C'(Ts(0)\ {e}. Tt ULy D; & ULy C'(Ti(v))\ {c}
we include each missing color d in an arbitrary set D; satisfying d € C'(T;(v)).
Hence, (D, Dy, ...,D,) € GOOD(v, ¢). Furthermore, the recoloring of T;(v) that
is induced by C’ is a good recoloring of T;(v) for every i € {1,...,r}. In addition
this recoloring of T;(v) does not use colors from C \ (D; U {c}), and if it uses ¢
then C'(v;) = c. Therefore, R'(v;,¢,C\ D;) < w(T;(v)) for every i € {1,...,r},
and it follows that R(v,c, D) < oPT(v,¢, D).

Next we show that opT(v, ¢, D) < R(v,¢, D). Let (D, Dy,...,D;) be a good
partition which minimizes the RHS of Rule 2. Let C/ be the recoloring of T;(v)
whose weight is R'(v;,¢,C\ D;) for i € {1,...,r}. We obtain a recoloring of T'(v)
as follows: C'(v) = ¢ and C’(u) = C}(u) for every u that belong to T;(v). By
its construction C” is a good convex recoloring of T'(v) that does not use colors
from D and such that C'(v) = c. Hence, there exists a good convex recoloring
C’' of T'(v) whose weight is R(v, ¢, D). Therefore, opT(C, ¢,v) < R(v, ¢, D).

64 R. Bar-Yehuda, I. Feldman, and D. Rawitz

It remains to show that:

OPT(v,D)= min OPT(v,¢,D)= min R(v,c¢,D)= R(v,D)
ceG(v)\D ceG(v)\D

and we are done. O

The number of entries computed by the dynamic programming algorithm is:
O(X_pev |G(v)| - [FORB(v)[). An additional O(nc) space is needed for storing
G (v) for every vertex v. Hence, the space complexity of the algorithm is O(nc+
ZUEV E'U ’ 22“)'

For each entry of the form R(v, D) the running time is O(]G(v)|). For each
entry of the form R(v,c, D) we need to go through all possibilities of good
partitions of the form (D, Ds,...,D;), and for each such good partition we
perform O(deg(v)) operations. Observe that for every v and ¢ we actually go
through every good partition in GOOD(v, ¢) for computing the values of R(v, ¢, D)
for all D € FORB(v). Since every good partition is visited exactly once, we invest
O(]cooD(v, ¢)| - deg(v)) operations for every pair of vertex v and color ¢. Hence,
by Observation 4, this brings us to O(3_,cy X - II, - deg(v)). An additional
O(n?) is needed to computing G(v) for every v. Hence, the total running time
is O(n? + 3, ey Do - I, - deg(v)).

Note that the computation of R(v, ¢, D) can be modified also to output a
corresponding solution. This can be done by keeping track of which option was
taken in both rules. Afterwards we can reconstruct the optimal recoloring in a
top down manner.

Next, we explain how to improve the running time of the algorithm. Let v
be a vertex v with r children, and ¢ a color. Also, let D = (Dy,...,D,),D’ =
(D, ..., D) € Goop(v,c). We define A(D,D') = {i : D; # D}}. We also define
R(v,¢,D) =Y, R (vi,¢,C\ D;), and w(v,¢,D,D') = R(v,¢,D) — R(v,¢,D'). If
we know the value of R(v,¢, D) and |A(D,D’)| = 2 we can compute R(v, ¢, D’)
by using the equation R(v,c,D) = R(v,¢,D’) + w(v, ¢, D,D’) in O(1) time.

For a vertex v € V, and a color ¢ we say that an ordering D1, . .., DjcoOD(v,c)|
of the set GOOD(v, ¢) is a close order if A(D;, D;+1) = 2 for every i. We now de-
scribe how to construct a close order of GOOD(v, ¢) for any v € V with r children
and a color ¢. A good partition (Do, ..., D,) € GOOD(v, ¢) can be described by a
word o1 - - 0., such that o; = j if ¢; € D;. (Notice that o; = j is possible only
if ¢; € C(Tj(v)).) An order of this set of words in which the hamming distance
between every two consecutive words is 1 defines a close order on GOOD(v, c).
Such a close order can be obtained using the description in [15].

We examine the time complexity for computing the value of R(v,c, D) for
every vertex v, D € FORB(v), and ¢ € G(v) \ D. Computing the value corre-
sponding to the first member in the close order of GOOD(v,¢) takes O(deg(v))
time. For any other member the computation takes O(1). Therefore, the time
complexity for a vertex v is

O(Y (deg(v) +|coon(v,c)))) = O(Y (deg(v) + 1)) -

ceG(v) ceG(v)

It follows that the total running time is: O(n? + 3, oy, Xy - (deg(v) + I1,,)).

Improved Approximation Algorithm for Convex Recoloring of Trees 65

4 Simple Trees

In this section we define the notion of a k-simple tree. Then, we show that
the running time of the dynamic programming algorithm from the previous
section amounts to O(n? + n - k22%) in the special case of k-simple trees.

Let (T,C) be a colored tree and u € V be a vertex. We say that w is a
(t,d)-separator if there are ¢ different colors ci, ..., ¢ such that for 1 < i < ¢,
SEPy(c;) > d. Observe that in this case II, > d. Also, notice that if v is a
(t,d)-separator with r > ¢ children, then for every ¢; € {c1,...,c:} there are
d vertices ui,...,u} on d different components of T\ v such that C(u’) = ¢;
and w(uf) > 0 for every 1 < j < d. We refer to such set of ¢ - d Vertlces as a
(t,d)-separating witness of v.

Definition 5. Let (T, C) be a colored tree, and define
SEP = {(2,k), (3,4), (4,3), (k,2)}

where k > 2. We say that the colored tree is k-simple if v is not a (t, d)-separator
for every v € V and (t,d) € SEP.

Observation 5. Let (T,C) be k-simple for k > 2. Then, X, < k for every
veV.

Consider a vertex v in a k-simple tree. Since X, < k, v separates at most k& — 1
colors, and therefore |G(v)| < k + 1.

Lemma 4. Let (T,C) be k-simple for k > 2. Then, I, = O(deg(v) - k - 2F) for
everyv € V.

Proof. Let C = {c1,...,¢m}, and consider a vertex v € V. Without loss of
generality we assume that SEP,(¢;) > SEP,(ci+1) for every i. We show that
the following conditions hold: (1) SEP,(c1) < deg(v), (2) SEP,(c2) < k — 1,
(3) SEPy(c3) < 3, (4) SEP,(ca) < 2, and (5) SEP,(c;) < 1 for every ¢ > k. Hence,
I, < deg(v) - (k—1)-3-2%"2=0O(deg(v) - k - 2%).

First, sEP,(c1) < |T'\ u| = deg(v). Also, if SEP,(c2) > k then u is a (2, k)-
separator; if SEP,(c3) > 4 then v is a (3,4)-separator; if SEP,(c4) > 3 then
v is a (4, 3)-separator; and if SEP,(c;) > 2 then v is a (k,2)-separator. All in
contradiction to the fact that (T, C) is k-simple.]

Now we analyze the running time of the dynamic programming algorithm for
the special case of k-simple trees. Since ¥, < k and IT, = O(deg(v) - k2*) for
every v, the total running time is

O(n® + > k- deg(v) - k2¥) = O(n® + n - k*2%) .
veV

The number of triplets of the form (v ¢, D) computed by the dynamic program-

ming algorithm is O(nc+ >, oy k- 2%) = O(nc +n - k2%).

66 R. Bar-Yehuda, I. Feldman, and D. Rawitz

5 Local Ratio Algorithm

In this section we develop an algorithm that given a colored tree and an accuracy
parameter k, computes a (2 + kzl)-approximate convex partial recoloring. The
running time of the algorithm is O(n? + n - k2 - 2F).

The algorithm consists of two phases. In the first phase we use the local ratio
technique. We manipulate the weights such that the original weighted colored
tree is transformed into a k-simple tree. The approximation ratio of this phase is
2+ kzl and the running time is O(n?). In the second phase of the algorithm we
use our dynamic programming algorithm to compute an optimal solution. We

note that if we set k = logn + 1 the approximation guarantee is (2 + logn) and

the time complexity is O(n?).

The local ratio technique [10-13] is based on the Local Ratio Theorem, which
applies to optimization problems of the following type. The input is a non-
negative weight vector w € R™ and a set of feasibility constraints F. The problem
is to find a solution vector x € R™ that minimizes (or maximizes) the inner
product w - x subject to the constraints F.

Theorem 2 (Local Ratio [12]). Let F be a set of constraints and let w, w1,
and we be weight vectors such that w = wy + wy. Then, if x is r-approximate
both with respect to (F,w1) and with respect to (F,ws), for some r, then x is
also an r-approxzimate solution with respect to (F,w).

Algorithm CR-LR is our local ratio approximation algorithm. It uses our dy-
namic programming algorithm which is referred to as Algorithm CR-DP. Apart
from a weighted colored tree, the input to our algorithm includes an accuracy
parameter k. As we shall see this algorithm computes (2 + kzl)-approximate
solutions, and its running time is polynomial is n and exponential in k.

We first analyze the time complexity of the algorithm. Observe that given
a vertex v, checking whether v is a (¢, d)-separator, where (¢,d) € SEP, can
be done in linear time. Since in each weight subtraction the weight of at least
one vertex becomes zero, after no more than n subtraction there are no (¢, d)-
separators left in the given tree. Hence, the local ratio phase of the algorithm

Algorithm 1 : CR-LR(T, C, w, k)
if (T,C) is k-simple then
Return CR-DP (T, w)
else
Find v € V and (t,d) € SEP such that v is a (¢, d)-separator
Find a (t, d)-separating witness U of v
Let € = minycv w(u)
e ueuU,
0 otherwise
Return CR-LR(T, w — ws)
end if

Define wy (u) =

Improved Approximation Algorithm for Convex Recoloring of Trees 67

can be implemented to run in O(n?) time. Moreover, since the input to the
dynamic programming algorithm is a k-simple tree, the total running time is
O(n% +n - k%.2k).

The computed solution is feasible since we use our dynamic programming
algorithm the solution returned is feasible. It remains to show that the solution
returned is (2 + k31)-approximate. We prove this by induction on the recursion.
At the recursive base the solution returned is optimal, since it is computed by
the dynamic programming algorithm. For the inductive step, we assume that
the solution returned by the recursive call is (2+ k31)-approximate with respect
to w — wy. We show that every solution is (2 + kil)-approximate with respect

to wy. Thus, by the Local Ratio Theorem the solution is (2 + kzl)-approximate
with respect to w as well.

Lemma 5. FEvery convex partial recoloring is (2+ kil)-approzimate with respect
to wi.

Proof. Obviously, there are four possible types of wy that correspond to the four
members of SEP. Let v be a (¢, d)-separator, where (¢,d) € SEP, and let U be
the (¢, d)-separating witness. Consider a cover X that corresponds to a partial
convex recoloring C”. It is not hard to see that w(X) < e - td.

On the other hand, in a convex partial recoloring, for every v € V there is at
most one color ¢ € C such that v separates c. Therefore, at least (t —1)(d — 1)
vertices in U must be recolored. Thus, w(X) > e-(t—1)(d—1). It follows that the
weight of every cover X is within a factor of (t71§((1 from the optimum with

d—1)
respect to wi. The lemma follows, since for (2, k) and (k,2) we get (tflﬁ’(idfl) =
kz_kl =2+ kil and for (3,4) and (4,3) we get (t—1§?d—1) =2. O

Acknowledgment. We thank the anonymous referees for their helpful com-
ments and suggestions.

References

1. Bodlaender, H.L., Fellows, M.R., Warnow, T.J.: Two strikes against perfect phy-
logeny. In: 19th International Colloquium on Automata, Languages, and Program-
ming. Volume 623 of LNCS., Springer (1992) 273-283

2. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21
(1991) 1928

3. Kannan, S., Warnow, T.: Inferring evolutionary history from DNA sequences.
SIAM Journal on Computing 23 (1994) 713-737

4. Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration
of perfect phylogenies. STAM Journal on Computing 26 (1997) 1749-1763

5. Semple, C., Steel, M.: Phylogenetics. Volume 22 of Mathematics and its Applica-
tions series. Oxford University Press (2003)

6. Sankoff, D.: Minimal mutation trees of sequences. SIAM Journal on Applied
Mathematics 28 (1975) 35-42

68

7

10.

11.

12.

13.

14.

15.

R. Bar-Yehuda, I. Feldman, and D. Rawitz

. Goldberg, L.A., Goldberg, P.W., Phillips, C.A., Sweedyk, E., Warnow, T.: Min-
imizing phylogenetic number to find good evolutionary trees. Discrete Applied
Mathematics 71 (1996) 111-136

. Moran, S., Snir, S.: Convex recoloring of trees and strings: definitions, hardness
results, and algorithms. In: 9th Workshop on Algorithms and Data Structures.
(2005) To appear.

. Moran, S., Snir, S.: Efficient approximation of convex recoloring. In: 8th Inter-

national Workshop on Approximation Algorithms for Combinatorial Optimization

Problems. (2005) To appear.

Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted

vertex cover problem. Annals of Discrete Mathematics 25 (1985) 27-46

Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected

feedback vertex set problem. SIAM Journal on Discrete Mathematics 12 (1999)

289-297

Bar-Yehuda, R.: One for the price of two: A unified approach for approximating

covering problems. Algorithmica 27 (2000) 131-144

Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach

to approximating resource allocation and scheduling. Journal of the ACM 48 (2001)

1069-1090

Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: a unified frame-

work for approximation algorithms. ACM Computing Surveys 36 (2004) 422-463

Er, M.: On generating the n-ary reflected gray codes. IEEE Transactions on

Computers 33 (1984) 739-741

Exploiting Locality:
Approximating Sorting Buffers

Reuven Bar-Yehuda and Jonathan Laserson

Computer Science Department, Technion, Haifa 32000, Israel
{reuven, joni}@cs.technion.ac.il

Abstract. The Sorting Buffers problem is motivated by many appli-
cations in manufacturing processes and computer science, among them
car-painting and file servers architecture. The input is a sequence of items
of various types. All the items must be processed, one by one, by a ser-
vice station. We are given a random-access sorting buffer with a limited
capacity. Whenever a new item arrives it may be moved directly to the
service station or stored in the buffer. Also, at any time items can be
removed from the buffer and assigned to the service station. Our goal
is to give the service station a sequence of items with minimum type
transitions. We generalize the problem to allow items with different sizes
and type transitions with different costs. We give a polynomial-time 9-
approximation algorithm for the maximization variant of this problem,
which improves the best previously known 20-approximation algorithm.

1 Introduction

In the sorting buffers problem, the input is a sequence of items of various types.
All the items must be processed, one at a time, by a service station. When
the service station processes two consecutive items of different types we say
that there is a type transition. Type transitions are expensive, and the goal is
to give the service station a sequence of items with as few type transitions as
possible. To achieve this task we are given a random-access sorting buffer with
a limited capacity. Whenever a new item arrives it may be moved directly to
the service station or stored in the sorting buffer. Also, at any time items can
be removed from the sorting buffer and then assigned to the service station.
Thus, the service station processes a sequence of items which is a permutation
of the input sequence. Using the sorting buffer, we need to rearrange the input
sequence so that the number of type transitions is minimized, or equivalently
(for the maximization variant), so that the number of items which are followed
by an item of the same type is maximized.

The sorting buffers problem is motivated by many applications in manufac-
turing processes. For example, during the manufacturing process in a car plant
(e.g. the Daimler-Benz car plant in Germany), the cars arrive one after the other,
from an assembly-line, to the painting center where each car is painted with its
own top coat. If two consecutive cars are to be painted in different colors, a color

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 69-81, 2006.
© Springer-Verlag Berlin Heidelberg 2006

70 R. Bar-Yehuda and J. Laserson

change is required. Since each such color change causes a waste of paint and re-
quires cleaning chemicals, it makes sense to rearrange the sequence of cars in a
way that cars of the same color preferably appear in consecutive positions. For
this purpose, a small garage with a limited capacity is built before the painting
center, such that cars can be transferred from the assembly line to the garage,
and later from the garage to the painting center. The garage acts as a sorting
buffer and is used to deliver larger subsequences of cars of the same color.

This problem has also many application in computer science. For example, a
file server receives a sequence of read/write requests to files stored on its disk.
In addition to the time it takes to read or write the data to a file, more time is
wasted by locating the file, opening it and closing it after the request is handled.
One can minimize this overhead time by using a sorting buffer to group requests
for the same file together and have them handled in sequence. In a similar way,
this technique can be implemented in communication networks to group requests
which deal with the same server and save the startup cost.

Another application is in computer graphics. During the process of polygon
rendering, a set of polygons is processed one by one. A change of attributes in
two consecutive polygons is denoted as state-change. As the number of state-
changes decreases, the performance improves. By rearranging the sequence of
polygons such that polygons with similar attributes are processed consecutively,
one can effectively boost performance. In this case also, a sorting buffer can come
in handy.

1.1 Owur Contribution

We present a polynomial time 9-approximation algorithm for the maximization
variant of the sorting buffers problem. This result improves the best previously
known 20-approximation algorithm, obtained in [1]. The algorithm we introduce
is also applicable to a generalized variant of the problem, in which each item is
assigned a size and a nonnegative profit. We gain the profit assigned to an item if
at the service station it is followed by another item of the same type (see formal
definition in Problem 3). The goal is to gain maximum profit. The generalized
problem becomes the original maximization problem if all the profits are equal.

We prove some combinatorial lemmas about the optimal solutions for this
problem, and use the Local-Ratio Technique [3] [4] to obtain a polynomial-time
9-approximation algorithm for the generalized problem. This result can be easily
converted to a simple solution in the primal-dual schema [5].

1.2 Previous Work

The first constant-approximation algorithm for the sorting buffers problem was
given by Kohrt and Pruhs [1]. They gave a 20-approximation algorithm for the
maximization variant of the problem. Their algorithm also uses the local-ratio
technique. Kohrt et al. also noted that the problem can be solved exactly in
polynomial time if either the number of types or the buffer size is constant.
The best approximation result known for the minimization problem is actually
an on-line algorithm with a competitive ratio of O(log2 k), where k is the size

Exploiting Locality: Approximating Sorting Buffers 71

of the buffer. Réicke et al. [2] gave a deterministic bounded-waste strategy which
achieved this result.

A related problem is studied by Epping and Hochstattler in [7]. In this prob-
lem, r queues are used to rearrange the items instead of a random-access sorting-
buffer. Epping et al. show equivalence between their problem and the multiple
sequence alignment problem known from molecular biology. They provide a dy-
namic programming algorithm which solves their problem exactly.

Another related problem is the bandwidth-allocation problem, which is stud-
ied in [6]. The input is a set of intervals, each with a width and a profit. The
goal is to choose a subset of these intervals with maximum total profit such that
at any point ¢, the total width of the intervals intersecting ¢ is not larger than
1. Bar-Noy et al. were able to achieve a 5-approximation algorithm for this NP-
hard problem. We will show later that the generalized maximization problem for
sorting buffers is also a generalization of the bandwidth-allocation problem, and
hence the generalized maximization problem is also NP-hard.

2 Preliminaries

The rest of this paper is organized as follows. In Section 2 we give a formal
description of the problem, and make some observations on optimal solutions.
These observations allow us to represent the problem differently, as a maximiza-
tion problem. We also make some observations on a subclass of feasible solutions
denoted as “good” and show how to turn any feasible solution to a good one.
In Section 3 we generalize the problem by adding a profit function, and intro-
duce the local-ratio schema which will be used on the generalized problem. In
Section 4 we provide the rest of the details necessary for applying the schema,
and obtain our approximation algorithm.

2.1 The Model

The input is a sequence of items ¢ = 01,01,02,03,...,0, wWhich are only char-
acterized by a specific attribute. To simplify things, we will assume that the
items are packages, and that they are characterized by color. The input se-
quence is processed from left to right by a sorting buffer which is a random
access buffer with storage capacity for k packages. During this process, packages
may be stored in the buffer and later they are placed back into the sequence.
The resulting sequence is the output sequence (this is the sequence given to the
service station).

We can formalize the rearrangement process as follows. The process consists
of n steps, where at step ¢ (¢ =1,2,...,n) at most one of these actions occur:

1. Any subset of the packages currently in the sorting buffer may be removed
from the buffer and placed back in the sequence (right after o), in any order.

2. If space permits, o; may be removed from the sequence and stored in the
sorting buffer.

72 R. Bar-Yehuda and J. Laserson

We assume that the sorting buffer is initially empty, and at the end of the
process the buffer has to be empty again. Intuitively, we can picture the buffer
as a truck which makes one pass along a line of packages, when the packages are
occasionally loaded on and off the truck along the way.

The goal is to rearrange the input sequence in a way that packages with the
same color preferably appear at consecutive positions in the output sequence.
Let each maximal subsequence of packages of the same color be denoted as color
block. Between two different color blocks there is a color change. Then, the goal
is to minimize the number of color changes in the output sequence.

Problem 1 (Minimum Color Changes). Given a sequence of packages o, rear-
range it using a sorting buffer of capacity k& to minimize the number of color
changes in the output sequence.

A solution S to the above problem is a rearrangement of o. Let the integer
dropg(o;) denote the rearrangement step of S on which o; was removed from the
buffer, where drops(c;) =i if o; was not stored in the buffer at all. We denote
by Bs(j) the set of packages which are in the buffer at the beginning of step j
of S.

2.2 Observations About the Optimal Solution
As noted in [2] and in [1], the following two lemmas hold for any input sequence:

Lemma 1. If two packages of the same color are adjacent in the input sequence,
then there is an optimal solution where these two packages are adjacent in the
outpul sequence.

Lemma 2. For any optimal solution we may assume that for any color, the
order of the packages of this color in the input sequence is preserved in the
output sequence.

Lemma 1 allows us to consider any color block in the input sequence as one big
package. In other words, we can now replace every color block of ¢ packages with
one package of the same color, and assign that package a size of . Having said
that, we can now assume that the input sequence has no adjacent packages of
the same color. Furthermore, we can scale the sizes with respect to the sorting
buffer capacity, i.e. the buffer will have capacity 1 instead of k, and each package
will have a size of]i instead of t. We will denote by Size(o;) the size of package
o;, and for any set of packages A, we will denote by Size(A) the total size of the
packages in A.

Now we turn to look at the maximization variant of the problem. If we
have to pay one dollar for every color change in the output sequence, then we
save a dollar whenever there are two adjacent packages in the output sequence
which share the same color. According to Lemma 2, it suffices to consider only
dollars saved by these adjacent packages which preserve their order from the
input sequence. Each such pair of packages is called a color-saving. The number

Exploiting Locality: Approximating Sorting Buffers 73

of color changes is minimized when the number of dollars we save is maximized,
i.e. when we make the maximum number of color-savings.

Problem 2 (Mazimum Color-Savings). Given a sequence of packages in different
colors and sizes with no two adjacent packages of the same color, rearrange it
using a sorting buffer of capacity 1 to maximize the number of color-savings in
the output.

Problems 1 and 2 are equivalent because we can restrict ourselves to schedules
which comply with the assumptions of Lemma 1 and Lemma 2. However, a
constant approximation algorithm to the maximization problem is probably not
a constant approximation algorithm to the minimization problem, and while
we give a constant approximation algorithm for Problem 2, such algorithm for
Problem 1 is not known.

We now extend our notation and given o = 01,09, ...0, we use 1; to denote
the ith package with color 7 in ¢ and r; to denote the index of that package in
o (i.e. r; = 0,,). For each color r and index ¢ we call r; — r;11 a pair and we say
that r; is the first package of the pair and r;41 the last package of the pair. If in
the output sequence of a solution S, r;41 appears adjacent to the right of r; we
say that the pair r; — r;11 is a color-saving in S.

As an example of the problem and the notation we adopt, consider the follow-
ing. The input sequence is a1biciascabacsas (the letters denote colors and the
indexes distinguish between packages of the same color). There are 8 packages
in the sequence. Assume all the packages have the same size, and that the buffer
has room for 2 packages (i.e. Size(o;) = 0.5 for all i = 1,2,...,8). One of the
optimal solutions S, has the output sequence ajasbibacicocsas. S stores by and
¢1 in the buffer, drops by after as (at step az), stores ¢, and drops ¢; and co
at step be. The output sequence has 3 color-changes and 4 color-savings out of
possible 5, with as — as the only pair which is not a color-saving.

If r; — 711 is a color-saving in S, denote j = dropg(r;). If j < riy1 —1, we say
that it is a passive color-saving. In this case, in order to make a color-saving, r;11
is not stored in the buffer, while all the packages {011,042, .. .Um+1_1} are. We
call these packages the clearance zone of r; — r;;1. Notice that a package cannot
be in more than one clearance-zone. In the above example, the color savings
a1 — a2 and by — by are passive, with dropg(a1) = a1 = 1 and dropg(b1) = as =
4 < 6 = by — 1. The clearance zone of a1 — az is {b1,¢1} and the clearance zone
of b1 — b2 is {CQ}.

With this terminology, we can make further assumptions on the optimal so-
lution. We now assume that every package that gets on the buffer does it for a
reason - either to make a color-saving, or to help another package make a color-
saving (a passive one). We further assume that in the latter case, the package
leaves the buffer as soon as it is no longer needed. And lastly, if a package gets
on the buffer in order to make a color-saving, but that color-saving is passive
(e.g. the package is dropped before reaching its destination), we assume that it is
because one of the packages in the clearance zone starts a color-saving (otherwise
- why not go all the way and make an active color-saving?).

74 R. Bar-Yehuda and J. Laserson

Lemma 3. For any optimal solution we may assume:

1. Ifr; is stored in the buffer then either r; is the first package of a color-saving
or r; is in the clearance zone of another color-saving.

2. Let cs—cs41—Cs42—- - —Csyt be a mazimal sequence of passive color-savings
from the same color c. Let r; be a package in a clearance zone of one of these
color-savings, and assume r; is not the first package of a color-saving. Then,
r; is removed from the buffer at step coqs.

8. If r; is stored in the buffer and it is the first-package of a passive color-
saving, then one of the packages in the clearance zone of that saving is the
first-package of a color-saving.

Proof. Given any solution S, we can easily transform it into one that follows
the Lemma’s conditions without loss of performance. We simply prevent .S from
storing any package that does not satisfy the conditions of part 1, and remove
from the cache any package which satisfy the conditions of part 2 as soon as the
buffer reaches cyy+ (together with all other packages in the buffer of the same
color). It is easily seen that these changes in S did not interfere with any of the
color-savings it had made. For part 3, if S stores r; in the buffer and no package
in the clearance-zone of r; — ;11 starts a color-saving, then we can change S to
carry r; all the way to r; 1 (without storing any of the packages that were in the
clearance-zone). Clearly, this change also does not reduce S’s performance. 0O

Corollary 1. Let r; and b; be packages, such that b; € Bs(r;) in a solution S.
If r; is not stored in the buffer and b; is not starting a color-saving then r;_1 —r;
s a color-saving in S.

Proof. According to part 1 of Lemma 3, b; was in the clearance zone of another
color-saving c¢; — ¢s41. Let cs4¢ be the last package in the maximal sequence of
passive color-savings to which ¢; — ¢441 belongs. Notice that since all the color-
savings in the above sequence are passive, any package between b; and c,i¢
which is not stored in the buffer is the last-package of a color-saving of color c.
Now, because b; is still in the buffer even though it is not starting a color-saving
we know (according to part 2 of the lemma) that b; < r; < ce4¢. Since 7; is
not stored in the buffer, it implies that r; is the last-package of a color-saving of
color ¢, and specifically, that r;_; — r; is a color-saving in S. g

2.3 Deleting Pairs from the Input Sequence

We recall that the input sequence is a line of packages of different colors, and
a pair consists of two consecutive packages of the same color. Given an input
sequence ¢ = 01,02,...,0, and a pair r; — ;41 in o, we can delete the pair
r; — ri+1 by switching the color of all the packages {r;},;>i+1 to a new color s
(i.e. for each j > i+ 1 the package r; becomes s;_;). Let ¢/ = o{,0%,...,0),
be the input sequence after the deletion. It is easily seen that except in the case of

Exploiting Locality: Approximating Sorting Buffers 75

i — Tig1, & pair 0, — oy is in o if and only if the pair ¢, — o} is in o’. As an
example, consider the sequence a1bjasbsasbzasbsas. If we delete the pair as —ag,
the sequence changes to aibiasbacibzcabycs.

If we know that we cannot gain a profit by making a color-saving r; — 741,
then deleting that pair from the input sequence does not affect the optimum
solution. We will use this fact extensively in the following sections, and we will
also use it now to make another assumption on the input sequence.

Let r; — r;41 be a pair in the input sequence. Notice that if Size(r;) > 1
and the total size of the packages between r; and r;;; is also greater than 1, a
feasible solution cannot make the color-saving r; —r;4.1. Therefore, we can delete
that pair from the input sequence. By repeating this process until no such pairs
exist, we get the following:

Corollary 2. If r; — ;11 is a pair in the input sequence and Size(r;) > 1 then
the total size of the packages between r; and r;y1 is at most 1.

2.4 Classification of Intersecting Color-Savings

For every package r; and pair b; — bj41, if r; € [bj,b;41] we say that r; and
b; — bj11 intersect. Define Z(r;) to be the set of pairs intersecting r;.

Let S be a solution and r; a package. We classify every color-saving I € Z(r;)
of S into three types:

— Type A If T S {7"1',1 — Ty, ry — 7’7;+1}.
— Type B: If r; is in the clearance-zone of I.
— Type C: Otherwise.

The following two observations are immediate from the definition:

Lemma 4. Among the color-savings, there is at most one of type B.

Proof. Immediate, since r; cannot be in more than one clearance-zone. a
Lemma 5. Ifb; — bjy1 is of type C then b; € Bg(r;)

Proof. Since b; — bj1+1 is not of type A or B it implies b; < r; < dropg(b;) and
the lemma follows. O
2.5 A Good Solution

Given o, a sequence of packages, let r; — r;11 be the pair whose first-package is
the last to appear in o (“the pair which starts last”). We say that a solution S
is good if S either makes the r; — ;41 color-saving, or, otherwise, it has a reason
not to (for example - the buffer is full when r; is reached). In a sense, a good
solution is a solution which is “maximal” with respect to the last pair.

Definition 1 (good). Let r; — r;y1 be the pair which starts last. Then, S is
good if one of the following is true:

76 R. Bar-Yehuda and J. Laserson

~

r; — Ti+1 98 a color-saving in S.
i>1 and r;—1 — r; is a color-saving in S.
3. Ifr;—mriy1 is not a color-saving in S, S cannot be trivially changed to include
it. Specifically:
— Changing S to store r; until step r;11 — 1 will render it infeasible.
— If Bs(r;) = 0, then changing S to store all the packages between r; and
ri+1 will render it infeasible.

o

Notice that if condition 3 is false regarding a solution S, then S can be easily
changed, without damaging existing color-savings, to include the r; — ;41 color-
saving and thus become good. We denote by make good(S) the function that
applies the above procedure to a solution S and returns the (good) result.

The following lemma states some facts about the state of the buffer after it
reaches 7; in a good solution:

Lemma 6. Let r; — r;11 be the pair which starts last in o and let S be a good
solution which does not make the r; — ;11 and r;—1 —r; color-savings. Then, at
step r;:

1. There is no room to store r; in the buffer (i.e. Size(Bg(r;))+ Size(r;) > 1).
2. All the packages in Bg(r;) are first-packages of color-savings.

Proof. For part 1, assume on the contrary that it is possible to store r; in the
buffer at step r;. Then, since S is good, there is not enough room to store r; all
the way to 7;4+1. Therefore, there must be another package b; which S stores in
the buffer after step dropg(r;). Why is b; in the buffer? It cannot start a color-
saving, since r; is the last package which starts a color-saving. So according to
part 1 of Lemma 3, b; is in the clearance zone of another color-saving ¢, — ci41
(where ¢ < 1), and that clearance zone must lie entirely after dropg(r;). To
summarize, we have ¢ < r; < drops(r;) < drops(ck), which means ¢, was
stored in the buffer. By part 3 of Lemma 3, it follows that there is a color-
saving which starts in the clearance zone of ¢ — cx41 and hence after r;, a
Contradiction.

For part 2, let b; € Bg(r;), and assume on the contrary that b; is not the
first-package of a color-saving. Then, according to Corollary 1, ;1 — r; is a
color-saving in S. contradiction. 0

3 Local Ratio Schema

In order to use the local-ratio technique, we must have a profit function we can
work with. Thus, we need to further generalize the problem by assigning a profit
to every pair. When a pair becomes a color-saving, we gain the profit which was
assigned to the pair. The goal is to make the maximum profit. This problem
is equivalent to the Maximum Color-Savings Problem if we assign each pair a
profit of 1.

Exploiting Locality: Approximating Sorting Buffers 7

Problem 8 (Mazimum Color Savings with Profits).

Input:
— A sequence of packages in different colors and sizes with no two adjacent
packages of the same color.
— A nonnegative profit assigned to every pair in the sequence.

Goal:
Rearrange the sequence using a sorting buffer of capacity 1 to make color-savings
with maximum profit.

Notice that as long as the profit is nonnegative, all the lemmas and corollaries
which were proved earlier in this paper also apply to optimal solutions of this
generalized problem (with the same proofs).

This problem contains the bandwidth-allocation problem [6]. Indeed, we can
represent each interval as a pair of packages 1 —ro and set its profit to the profit
of the interval. We set the size of r; as the width of the interval. We organize
the packages such that pairs intersect iff their corresponding intervals intersect.
Next, we insert a heavy (Size > 1) package before the last package of each
pair, so no passive color-savings could be made (The heavy packages we add
are from distinct colors so no new pairs are created). Now, every color-saving
made by a feasible solution in our problem corresponds to a scheduled instance
in the bandwidth-allocation problem. Since the bandwidth-allocation problem is
NP-hard, it follows Problem 3 is NP-Hard too.

We are now going to examine a general instance of the above problem. Let
P be the set of all pairs in the input sequence o. Given a solution S, let x be
a vector of the boolean variables {«7|I € P} such that z; = 1 iff I is a color-
saving in S (z; = 0 otherwise). We call = the color-savings vector of S. The
profit made by a solution S can be represented by the inner product p - x where
x is the color-savings vector of S and p is the profit vector, with p; the profit
gained if I is a color-saving in S.

A solution S is an r-approrimation to an instance of Problem 3, if p-a >
}a -p - a*, where x is the color-savings vector of S and z* is the color-savings
vector of an optimal solution. An algorithm is an r-approximation algorithm if
for every instance of the problem it computes an r-approximation.

Theorem 1 (Local Ratio Theorem). Let o be the input sequence of an in-
stance of Problem 3, and let p, p1, and ps be profit vectors such that p = p1 + pa.
Let S be a solution to the above instance, and let x be its color-savings vector.
Then, if S is an r-approzimation with respect to p1 and with respect to pa, then
S is also an r-approximation with respect to p.

Proof. Let §*, Sy, S5 be optimal solutions of the instance with respect to the
profit vectors p, p1, and ps respectively, and let x*, x7, 23 be their corresponding
color-savings vectors. Then:

p-x=p1-x+pz~x2T~p1-x1+r-pz~x2=T~(p1-x1+pz-xz)2Tp-x

O

78 R. Bar-Yehuda and J. Laserson

3.1 Schema

We present a generic schema based on the local-ratio technique to approximate
the maximum color-savings problem.

1. Delete all pairs with zero profit from the input sequence. Let P be the set
of all the remaining pairs.

2. If P = 0, return the empty solution (no package is stored in the buffer).

3. Decompose p by p = p1 + p2 (The decomposition will be discussed later).

4. Solve the problem recursively using ps as the profit function. Let S’ be the
solution returned.

5. return S = make good(S").

We now analyze the quality of the solution produced by the above schema.

Lemma 7. Let r be a constant. Suppose that the method for decomposing the
profit function is such that:

1. po is nonnegative.
2. There is a pair I € P such that p2(I) = 0.
3. Ewvery good solution is an r-approzimation with respect to p;.

Then, the solution S returned by the schema is an r-approximation.

Proof. First of all, since in each recursive call one of the pairs has a zero profit
(p2(I) = 0), at least one pair is deleted in every call. Thus the number of
recursive calls is bounded by the finite number of pairs, and hence the algorithm
terminates in polynomial time.

Second, the first step in which pairs with zero profit are deleted clearly does
not change the optimal value. Thus, it is sufficient to show that S is an r-
approximation with respect to the new input sequence. The proof is by induction
on the number of recursive calls. At the basis of the recursion, the returned
solution is optimal (and hence an r-approximation), since no pairs remain in the
input. For the inductive step, assume that S’ is an r-approximation with respect
to pe. Then, since S = make good(S’) has (at least) all the color-savings in S’
and p, is nonnegative, it follows that S is an r-approximation with respect to
p2. Since S is good, it is also an r-approximation with respect to p;. By the
Local-Ratio Theorem, it is an r-approximation with respect to p. a

4 Applying the Schema

We call a pair a heavy pair if its first-package has a size greater than é, and a

light pair otherwise. We are now going to apply the above schema to two types
of instances of the Maximum Color-Savings Problem with Profits - a light type
and a heavy type. In the light type all the pairs are light and by applying the
schema we will obtain a 6-approximation. In the heavy type, all the pairs are
heavy and we will obtain a 3-approximation.

Using these results, the following algorithm returns a 9-approximation solu-
tion. Let o be the input sequence and p the profit function. Then:

Exploiting Locality: Approximating Sorting Buffers 79

Let ¢’ be the resulting sequence after deleting all the heavy pairs in o.
Apply the schema to o’ (light instance) and let S’ be the returned solution.
Let ¢’ be the resulting sequence after deleting all the light pairs in o.
Apply the schema to ¢” (heavy instance) and let S” be the returned solution.
Return the solution, between S’ and S”, which gains maximum profit with
respect to p.

Gl o=

Theorem 2. The solution returned by the above algorithm is a 9-approximation.

Proof. Let S* be the optimal solution, with profit P*. Let P’ and P” be the
profits S* gained from light pairs and heavy pairs, respectively, such that P* =
P’ + P”. Then, if P’ > gP*, S’ is a 9-approximation. Otherwise, P" > ;’P*
and S” is a 9-approximation. Hence, the better solution of the two is always a
9-approximation. 0

4.1 Applying the Schema on a Heavy Instance

Consider an instance of the Maximum Color-Savings problem with profits, in which
all the pairs are heavy. In order to apply the schema it remains to show how to de-
compose the nonnegative profit function p to p = p; +p2 such that all the conditions
of Lemma 7 are satisfied. Let r; — ;11 € P be the pair which starts last (recall that
P refers to the pairs in the input sequence after pairs with zero profit have been
deleted). Now, we can define the profit function pj as follows:

,(I)_{l IEI(TZ‘)

1 0 Otherwise
Claim. Every good solution is a 3-approximation with respect to p}

Proof. First, we will show that the profit of a good solution is at least 1. Let .S be
a good solution. If either one of the color-savings r;_; —r; and r; — ;41 are made
by S then we are done. Otherwise, by Lemma 6, every package in the buffer at
step 1; is the first package of a color-saving. Since all pairs are heavy, the buffer
is either empty or has exactly one package. In the latter case, it follows that the
package in the buffer is the first package of a color-saving which intersects r;,
and hence here also S makes a profit of 1.

We are left with the case the buffer is empty when it reaches r;. This case
is not possible: By Lemma 6, there is no place in the buffer to store r;, which
implies Size(r;) > 1. But if that is true, S can be trivially changed to store all
the packages between r; and r;11 in the empty buffer (because by Corollary 2
their total size is no more than 1). This contradicts the fact that S is a good
solution which does not make the r; — r; 41 color-saving.

Second, we will prove that the maximum profit is at most 3. Let S be any
feasible solution. Classify the color-savings of S in Z(r;) to 3 types, as in Sec-
tion 2.4. S can make a profit of at most 2 from type A color-savings. If r; is not
stored in the buffer, S does not profit from type B color-savings and gains at
most 1 (because all pairs are heavy) from type C. If r; is stored in the buffer, S
does not profit from type C color-savings and gains at most 1 from type B. In
both cases, S profits no more than 3. O

80 R. Bar-Yehuda and J. Laserson

We note that for every e > 0, every good solution is a 3-approximation with
respect to ep]. It is easily seen that by choosing ey = max{e|p — ep} > 0} to
define p1 = €op) and ps = p— €op) we ensure that one of the pairs has a pa-profit
of 0 and still keep all the prices nonnegative. This decomposition satisfies all
the conditions of Lemma 7, and it allows us to apply the schema on any heavy
instance of the problem to receive a solution which is a 3-approximation.

4.2 Applying the Schema on a Light Instance

Consider an instance of the Maximum Color-Savings problem with profits, in
which all the pairs are light. In order to obtain a 6-approximation we are going
to decompose the problem once more. For each color r, a pair r; — 7,41 is even
(odd, respectively) if 4 is even (odd). We call an instance of the maximum color-
savings with profits problem reduced if every package belongs to at most one pair,
or in other words, if there are at most 2 packages of each color. We observe that
if we delete all the even (odd) pairs, we are left with a reduced instance. We will
later show that by applying the schema to a reduced-light instance, we can obtain
a 3-approximation. The following algorithm will thus yield a 6-approximation:

Let ¢’ be the resulting sequence after deleting all the even pairs in o.
Apply the schema to ¢’ (reduced-light) and let S’ be the returned solution.
Let o be the resulting sequence after deleting all the odd pairs in o
Apply the schema to o” (reduced-light) and let S” be the returned solution.
Return the solution, between S’ and S”, which gains maximum profit with
respect to p.

G o=

Lemma 8. The solution returned by the above algorithm is a 6-approximation.

Proof. Let S* be the the optimum solution, with profit P*. Let P’ and P" be
the profits S* gained from even and odd pairs, respectively (P* = P’ + P”).
Then, either P’ > JP* or P” > 1P*. Since S’ and S” are 3-approximations
with respect to ¢’ and ¢”, the better solution of the two is a 6-approximation.

d

Applying the Schema on a Reduced-Light Instance. It remains to show
how to apply the schema on a reduced-light instance to obtain a 3-approximation.
As in the previous subsection, we need to show how to decompose the nonneg-
ative profit function p by p = p; + p2 such that all the conditions of Lemma 7
are satisfied. Since the instance is reduced, all the pairs in P are of the form
by — by where b is a color. Let 1y — r9 € P be the pair which starts last, and
define § £ 1 — Size(r1) (notice that § > 1). We define p} as follows:

) b1 — b2 =Ty —T2
pi(by —bo) =< Size(b) by —be € Z(r1) \ {r1 —ra}
0 Otherwise

Exploiting Locality: Approximating Sorting Buffers 81

Claim. Every good solution is a 3-approximation with respect to p}

Proof. First, we will show that the profit of a good solution is at least 4. Let S
be a good solution. If 1 — r5 is a color-saving in S then we are done. Otherwise,
by Lemma 6 we know that Size(Bg(r1)) > 1 — Size(r1) = 6. Let b; be a
package in Bg(r1). Then, by part 2 of Lemma 6, b; is the first-package of a
color-saving in S. Since the instance is reduced it follows that ¢ = 1, b ¢ Bg(r1),
and hence by — bs is a color-saving in S which intersects r;. Therefore, S gains
P} (by — ba) = Size(by) = Size(b;) for every b; € Bg(r1). It follows that S makes
a profit of at least Size(Bg(r1)) > 4.

Second, we will prove that the maximum profit is at most 34. Let S be
any feasible solution. Classify the color-saving of S in Z(r1) into 3 types, as
in Section 2.4. S can make a profit of at most § from type A color-savings
(namely r; — ro). If 71 is not stored in the buffer, S does not profit from type
B color-savings and gains at most Size(Bg(r1)) < 1 from type C, for a to-
tal of no more than § + 1. If r; is stored in the buffer, S can profit at most
Size(Bg(r1)) < 1 — Size(r;) = ¢ from type C color-savings and at most |
from type B (because there is no more than one color-savings of type B, and
it is light), for a maximum total of 26 + é In both cases, S profits no more
than 36. O

As before, by choosing eg = max{e|p—ep} > 0} to define p; = egp) and ps = p—
eop} we get the required decomposition, and obtain a 6-approximation algorithm
for heavy instances.

References

1. J. S. Kohrt and K. Pruhs. A constant approximation algorithm for sorting buffers.
Proceedings of the Sizth Latin American Symposium (LATIN 2004), volume 2976 of
Lecture Notes in Computer Science, pages 193-202. Springer-Verlag, 2004.

2. H. Récke, C. Sohler, and M. Westermann. Online Scheduling for Sorting Buffers.
Proceedings of the 10th ESA (Rome), pp. 820-832, 2002.

3. R. Bar-Yehuda. One for the price of two: a unified approach for approximating
covering problems. Algorithmica 27, 131-144, 2000.

4. R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics 25, 27-46, 1985.

5. R. Bar-Yehuda and D. Rawitz. On the Equivalence between the Primal-Dual Schema
and the Local-Ratio Technique. Proceedings of RANDOM-APPROX 2001, p.24-35,
2001.

6. A. Bar-Noy, R. Bar-Yehuda, A. Freund , J. Naor , B. Schieber. A unified approach
to approximating resource allocation and scheduling, Journal of the ACM (JACM),
v.48 n.5, p.1069-1090, September 2001.

7. Th. Epping, W. Hochstéttler. Storage and Retrieval of Car Bodies by the Use of
Line Storage Systems. Technical report btu-lsgdi-001.02, BTU Cottbus, Germany,
2002.

Approximate Fair Cost Allocation in Metric Traveling
Salesman Games

M. Bliser* and L. Shankar Ram

Institut fiir Theoretische Informatik, ETH Ziirich, CH-8092, Ziirich, Switzerland
{mblaeser, lshankar}@inf.ethz.ch

Abstract. A traveling salesman game is a cooperative game G = (N, cp). Here
N, the set of players is the set of cities (or the vertices of the complete graph)
and cp is the characteristic function where D is the underlying cost matrix. For
all S C N, define ¢p(S) to be the cost of a minimum cost Hamiltonian tour
through the vertices of S U {0} where 0 ¢ N is called as the home city. De-
fine Core(G) = {z € R : 2(N) = cp(N) and VS C N,z(S) < cp(S)} as
the core of a traveling salesman game G. Okamoto [15] conjectured that for
the traveling salesman game G = (N, c¢p) with D satisfying triangle inequal-
ity, the problem of testing whether Core(G) is empty or not is NP-hard. We
prove that this conjecture is true. This result directly implies the NP—hardness
for the general case when D is asymmetric. We also study approximate fair
cost allocations for these games. For this, we introduce the cycle cover games
and show that the core of a cycle cover game is non—-empty by finding a fair
cost allocation vector in polynomial time. For a traveling salesman game, let
eCore(G) = {z €RY : 2(N) > cp(N) and VS C N, z(S) < e-cp(S)}
be an e—approximate core, for a given ¢ > 1. By viewing an approximate fair
cost allocation vector for this game as a sum of exact fair cost allocation vectors
of several related cycle cover games, we provide a polynomial time algorithm
demonstrating the non—emptiness of the log, (| N| — 1)— approximate core by ex-
hibiting a vector in this approximate core for the asymmetric traveling salesman
game. We also show that there exists an €y > 1 such that it is NP-hard to decide
whether ep—Core(G) is empty or not.

1 Introduction

The cooperative game related with the traveling salesman problem is very well-studied.
Any cooperative game is characterized by the set of players (or agents) and a cost func-
tion that is defined for any coalition of these players. In a traveling salesman game, the
players are the cities which the salesman has to visit. The cost function is intuitively the
cost incurred by visiting a given subset of the cities, and returning to the home city.
Several problems can be posed with respect to a given combinatorial optimization
game. One prominent question is to test the non-emptiness of the core of a game. Prob-
ably [18] is the first paper which studied a cooperative game, namely, the assignment
game. The underlying combinatorial optimization problem is the assignment problem
(or equivalently, the maximum weighted matching problem on bipartite graphs). Testing

* Author’s new address: FR Informatik, Universitidt des Saarlandes, Postfac 151150, 66041
Saarbriicken, Germany. email: mblaeser @cs.uni-sb.de

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 82-95, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

Approximate Fair Cost Allocation in Metric Traveling Salesman Games 83

the core non-emptiness of this game is essentially the same as the polynomial solvabil-
ity of the optimization problem by the Hungarian method [14]. Another example is the
minimum spanning tree game wherein the core was shown to be non-empty by an ex-
plicit construction of a vector in the core [2,11]. In these examples and some more, a
clear relationship exists between the polynomial solvability of the underlying optimiza-
tion problem and testing the non-emptiness of the core of the game.

Another characterization of the core non-emptiness of a game is from linear pro-
gramming. A result of Deng et. al. [3] states that a necessary and sufficient condition
for the core of a maximum packing game and a minimum covering game to be non-
empty is that the linear programming relaxations of these problems have integral opti-
mal solutions. Note that the underlying optimization problems in this case are NP-hard.
Other characterizations in this direction are for the facility location games [13], partition
games [7], and delivery games [10] to mention a few.

On the other hand, several papers deal with the intractability of the core non—
emptiness of certain games. For example, Deng et. al. [3], showed that testing the non-
emptiness of the core of the minimum coloring game is NP—complete. The underlying
combinatorial optimization problem in the case is also NP—hard. Thus, this reinstates
again the relationship between these two problems. Goemans and Skutella [9] showed
the NP—completeness of the core non-emptiness of a facility location game.

In this paper, we study traveling salesman games, introduced by Potters et. al.
[17]. More formally, a cooperative game is given by the tuple (N, f) where N =
{1,2,...,n} and f : 2V — R is a characteristic function. In the case of a travel-
ing salesman game, N = {1,2,...,n} (the cities) with a given symmetric distance
matrix D (referred to as a cost function defined on all pairs of cities) on the set of cities
and for a subset S C N, we have the characteristic function cp(S) defined to be the
cost of a minimum cost Hamiltonian tour which visits all the cities in S U {0} where
0 ¢ N is called the home city or home node. Note that the cost matrix D is defined
over all pairs (4, j) where i,7 € N U {0}. The core of a game (X, f) is defined to be
the following:

Core(N, f) ={z € R" : 2(N) = f(N)and VS C N,z(S) < f(9)}

where 2(S) =), g (i) with & = (2())i=1...n. The interpretation of this definition
for the traveling salesman game can be motivated as follows. Consider home node 0 as
the home city of a professor who has to give talks at the universities located in vertices
1,...,n. The total travel cost is ¢ (IV). So, the problem is to find a fair cost allocation
(a vector in the core) such that no coalition S will split off because they pay more than
the actual cost of an optimal subtour through .S U {0} and invite the professor to visit
only the universities ¢ € S.

Various aspects of the traveling salesman games have already been covered in the
literature. Tamir [19] showed that a metric (i.e., satisfying triangle inequality) traveling
salesman game with at most four players always has a non-empty core and also the
existence of a game with six players whose core is empty. Further, Faigle et. al. [6]
designed an instance of a 2-dimensional Euclidean game with six players such that
the core is empty. More recently, Okamoto [15] showed that the problem of deciding
whether a general traveling salesman game has an empty core or not, is NP-Aard. But

84 M. Bliser and L.S. Ram

for the special case of metric traveling salesman games, the same question was left open
and conjectured to be NP—hard. In this paper, we show that this is indeed the case.
In fact, we prove that testing the core—emptiness of a {1, 2} traveling salesman game
where the costs on any pair of cities is either one or two and the costs are symmetric
(i.e., cost on a pair (i, j) is the same as that on (j,4)) is NP-hard. This also proves
that it is NP-hard to decide if the core of an asymmetric traveling salesman game
with triangle inequality, is empty or not. Note that an asymmetric traveling salesman
game is a generalization of the symmetric game. We then consider approximate fair
cost allocations, i.e., find a cost allocation vector z € RY such that V'S C N, z(9) <
€-cp(S)and z(N) > ¢p(N), for some e. Our reduction also yields that it is NP-hard
to find an ep—approximate cost allocation vector for some ¢y > 1 for the asymmetric
traveling salesman game, using a result of Berman et. al. [1].

We introduce cycle cover games on the same underlying complete directed graph,
where the characteristic function is the cost of a minimum cost cycle cover. We show
that the core is always non—empty for such a game and provide a O(|N|*) time algo-
rithm for finding a fair cost allocation vector. We also show that an approximate fair
cost allocation vector for an asymmetric traveling salesman game is the sum of exact
fair cost allocation vectors of several related cycle cover games.

The question of finding an approximate fair cost allocation vector has already
been considered for several cooperative games where testing the core non-emptiness
problem is NP-hard. Faigle et. al. [6] find a 1.5-approximate fair cost allocation
vector for symmetric traveling salesman game. For this, they make use of the well
known Christofides’ approximation algorithm for symmetric traveling salesman opti-
mization problem. In this paper, we provide a polynomial time algorithm that finds a
log,(|N| — 1)-approximate cost allocation vector for the asymmetric traveling sales-
man game. We make use of an approximation algorithm for the minimum asymmetric
traveling salesman problem of Frieze et. al [8].

2 Preliminaries

Let N ={1,2,...,n}.Define D : (NU{0}) x (NU{0}) — {1,2} tobean (n+1) x
(n + 1) symmetric matrix. Let cp : 2 — Z be such that V'S C N,

IS|—1
en(8) = min § d(0, p(i0) + D d(plis),plizin)) + dlplis),0)
: =
over all permutations p on S = {41,142, ..., }. In other words, cp(S) is the cost of

a minimum cost Hamiltonian tour through S U {0}, with 0 ¢ N called the home node,
when we consider the complete graph on N U {0}. The tuple (N, ¢p) is the symmetric
traveling salesman game. The core of the game is defined as

Core(N,cp) ={x € R" : (N) = cp(N) and VS C N,z(S) < cp(9)}

where z(S) = . g (i) with x = (2(i))i=1..n. Any vector x € Core(N,cp) is
called a fair cost allocation vector. Whenever x is a vector, (i) will refer to the corre-
sponding value at the ith coordinate.

Approximate Fair Cost Allocation in Metric Traveling Salesman Games 85

Consider the following decision problem : given a matrix D, is Core(N, cp) = () or
not?

We denote the problem as Core—ATS or the problem of testing the core non-
emptiness of a metric traveling salesman game. Note that the input to the decision
problem is the matrix D and not the function cp(.). We remark that one does not need
to compute ¢p (V) and hence testing whether (N, ¢p) has an empty core may be easier
than testing membership in the core, i.e., whether a given z satisfies the two properties
of fair cost allocation. We show that Core—ATS is NP—hard by a polynomial time re-
duction from the following SAT problem (3SAT4), also called the Bounded Occurence
Satisfiability problem:

Given a boolean formula ¢ as a conjunction of disjunctive clauses with exactly three
literals per clause and the number of occurences of a literal is four, does there exist a
truth assignment to the variables of the formula such that all the clauses are satisfied?

3SAT4 was shown to be NP—complete in [20] . Recently, it was shown in [1], that it
is NP—hard to approximate the corresponding maximization problem to within a con-
stant ¢ > 1.

3 The Reduction

In this section, we elaborate the polynomial time reduction from 3SAT4 to Core—ATS.

3.1 The Basic Gadgets

The usual reductions to the traveling salesman problem make use of special components
called gadgets or devices. A gadget forces an optimal Hamiltonian tour to have a special
structure. We use gadgets similar to those given in [5,16] — the former reduces from a
NP-hard problem related to Linear Equations, while the latter reduces from 3SAT4
— for the reductions to the minimum symmetric traveling salesman problem. A basic
gadget used in the construction is the ex-OR device, shown in Fig. 1(a). The structure
of the device is so that there can be only two possible traversals of this gadget by any
optimum Hamiltonian tour since the gadget is connected to the rest of the graph only at
the boundary vertices. We shall think of an ex-OR subgraph as two edges connected by
an extrinsic device (Fig. 1(b)). This will be useful in visualizing the Hamiltonian cycle
in the whole graph.

For each variable of the boolean formula, we have a device as shown in Fig. 2. It
has two paths, one for each truth value of the variable. We refer to these paths as “true
path” and “false path” respectively. Each path is an arrangement of 29 ex-ORs - four

bl b2

b3 b4

(a) (b)

Fig. 1. (a)The ex-OR gadget. b1, b2, b3, b4 are called boundary vertices. (b) Representation of an
ex-OR device.

86 M. Bliser and L.S. Ram

to clauses
(occurence edge)
"true path" "false path"

a "battery” of 5 ex—-ORs

Fig. 2. The variable gadget. There are four “occurence” edges corresponding to the four oc-
curences of literal = or Z, in the respective paths.

to "occurence" edge

Fig. 3. The clause gadget. There are three ex-OR devices corresponding to the three literals of the
clause. b3, b4 vertices are the boundary vertices of the corresponding ex-ORs.

of them are connected to the clause devices (one for each occurence of a literal called
occurence edge), and the others (five “batteries” or “series” of five ex-ORs each) are
connected within to the other path of the same variable device. The intuition behind
such a construction is consistency, i.e., to ensure that an optimal tour does not traverse
both paths. So, any optimal Hamiltonian tour traverses exactly one of the two paths and
also all the vertices of this path appear successively on the tour.

For each clause, we have a triangle device with each edge connected to the occurence
edge of the literal in the clause via an ex-OR device. Please refer to Fig. 3. Note that
there are three edges between the boundary points of adjacent ex-OR devices of the gad-
get. These edges will be referred to as boundary-boundary edges. This is an important
difference from the clause gadget of [16], which will be essential for the NP—hardness
proof.

3.2 The Construction

We now describe the actual graph that will be constructed from a given boolean formula.
Let 9 = C1 A Ca A -+ A C,, be the given boolean formula where each C; = (a; V
b; V ¢;). Also any variable v appears at most four times as the literal v and at most
four times as the literal ¥ in ¢. We construct graph G as follows. Fix an order of the
variables and connect the variable gadgets as a series, as shown in Fig. 4. The set of all
m clause gadgets are connected so that the 3m corners are pairwise connected amongst
themselves and also to the first and last vertices of the variable series.

The distance matrix D for this graph G is simply : d(i,j) = 1 if (i,5) € E,
and otherwise d(i,7) = 2. This means that all the edges which are mentioned in the

Approximate Fair Cost Allocation in Metric Traveling Salesman Games 87

JAN

"complete subgraph" A

Fig. 4. The graph G. Home node “0” is not considered to be part of G. Corners of clause gadgets,
the nodes s and ¢, and the home node “0” form a complete subgraph of G U {0}.

construction are of cost one and the remaining edges (note that an instance of a TSP
game is a complete graph) are of cost two. We consider G to be the graph consisting of
only these cost one edges.

3.3 Structure of an Optimal Tour
We show the following lemmas on the structure of optimal Hamiltonian tours in G.

Definition 1. Nodes of G which are traversed by an optimal Hamiltonian tour with one
edge of cost one and another of cost two are called endpoints. Those nodes which are
traversed with both edges of cost two are called double endpoints and will be seen as
two endpoints each.

Lemma 1. Let A be a truth assignment to the variables of ¢ such that maximum num-
ber of clauses are satisfied. If, under A, ¢ has k unsatisfied clauses, then there exists
an optimal Hamiltonian tour through the vertices of G with k or k + 1 endpoints, de-
pending on k being even or odd respectively. Moreover, these endpoints are present in
the clause part of G.

Proof : Consider the following tour. The variable part of G is traversed according to
the assignment A, i.e., if a; = 1 in A, then we take the “true path” of the variable
a;, otherwise the “false path” of the variable. In the clause part, the tour traverses the
satisfied clause gadgets first (this means that at most two edges of such a triangle are
not covered by the variable part traversal of the tour). Then, in the unsatisfied clause
gadgets, one endpoint per each gadget is introduced. This is because, any Hamiltonian
tour , for optimality, needs to leave an unsatisfied clause from a non-corner vertex at
least once and this vertex becomes an endpoint. For parity reasons, one may have to
introduce another endpoint. Thus, in this tour there are either k£ or k + 1 endpoints
and all of them are introduced in the clause devices. It remains to show that such a
tour is optimal. The proof of this fact is essentially the same as given in [16] which
exhaustively lists the various possibilities of traversal and in each case how one can
modify the tour to have the required structure without increasing costs. However, there
is one issue that needs to be taken care of. The clause gadget of [16] and ours differ
in the introduction of additional cost one edges between the adjacent boundary points
in our construction (the boundary-boundary edges). So, we need to make sure that

88 M. Bliser and L.S. Ram

cl c2 cl 2

¥c3

Fig. 5. (a) shows an optimal Hamiltonian tour using the boundary-boundary edge (b1, b2). Such
a tour can be modified as shown in (b).

the traversal of any optimal Hamiltonian tour through our clause gadget can also be
assumed to follow the same traversal pattern as that of the gadget given in [16]. This
modification is illustrated in Fig. 5. In Fig. 5(a), the optimal tour uses the boundary
edge (b1, b2). This can be overcome by the modification suggested in (b). Since for
optimality, any clause gadget can be entered only from corner vertices, the vertices
c1, co are indeed corner vertices and hence are connected by an edge of cost one. Putting
it all together, the Lemma follows. g

Lemma 2. Letn be the number of vertices in G. If ¢ is satisfiable, the cost of an optimal
Hamiltonian tour in G is n. If ¢ is unsatisfiable and there exists an optimal (in the sense
of satisfying maximum number of clauses) assignment with k unsatisfied clauses, then
the cost of an optimal Hamiltonian tour in G is n + [g]

Proof : Consider the optimal Hamiltonian tour constructed in Lemma 1. If ¢ is sat-
isfiable or in other words k£ = 0, then this tour has no endpoints. So, its cost is n.
Otherwise, the tour has k or k + 1 endpoints. Each endpoint has one edge of cost two
in the tour, and hence the number of cost two edges in the tour is ’5 or "';1 when
k is even or odd respectively, i.e., [g] cost two edges. Thus, the cost of the tour is

(0= T5D 1+ 5] -2 =0+ 5] :

4 Hardness Results

Let n be the number of vertices in G. Define N = {1,2,...,n}, the vertices of G.
Also, let cp : 2V — R, be defined as follows. For any S C N, cp(S) is the cost of a
minimum cost tour through the vertices of S U {0}. Recall that in our construction, the
home node 0 is connected to the corner vertices of all clause gadgets by cost one edges.

Theorem 1. If N = {1,2,...,n} and D isa (n + 1) x (n + 1) symmetric matrix
satisfying triangle inequality, then the problem of deciding if Core(N, cp) is empty or
not, is NP-hard.

Proof : We show the NP—hardness of Core—ATS by showing the following equivalent
claim.

Claim : ¢ is satisfiable if and only if Core(N, ¢p) is non-empty.

Approximate Fair Cost Allocation in Metric Traveling Salesman Games 89

Suppose ¢ is satisfiable. We show a fair cost allocation in the TSP game (N, cp)
thereby proving the core to be non-empty. Since ¢ is satisfiable, by Lemma 2, the cost
of an optimal Hamiltonian tour is n + 1. Note that this tour passes through the home
node *0’. Let us define the vector € R" to be (™!, ™F . "+1) We claim that
x €Core(N, cp). Clearly, (N) = n+ 1 = ¢p(N). Consider any S C N. We have,
ep(8) > |S|+1.But a(8) = Yies "1 = (1)18 =[S+ < [S]+1 < ep(9).
Hence, z €Core(N, cp).

Now, suppose ¢ is unsatisfiable. Consider an optimal truth assignment .4 (optimal
in terms of maximum number of satisfiable clauses) which satisfies all but k& clauses
(k > 2). We deal with k = 1, 2 cases later. Depending on the truth value of a variable in
A, let T denote all the vertices of G occuring in the “true paths” of all variables (i.e., if
variable v; = 1 in A, then we take the path in the variable device of v; corresponding to
the literal v;, otherwise that of a@;) , the vertices of all the ex-OR batteries on the “false
paths” and finally all the remaining vertices of satisfied clause devices (with respect
to .A). This means that we consider all the vertices in the variable part of G except
those present in the occurence edges on the “false paths” with respect to A. It also
implies that vertices of ex-OR devices of occurence edges in “true paths” present on the
satisfied clauses (with respect to A) are also in T'. Let C' denote the corner vertices of
the unsatisfied clause gadgets. Let R := N\{T U C'}. Suppose, for contradiction, that
Core(N,cp) # 0. Let z € Core(N, cp). Since x € R™ is a fair cost allocation vector,
the following structural properties must hold for x.

Lemma 3. If © is a fair cost allocation vector, and T is defined as above, then x(T) <
|T| + 1.

Proof : There is a Hamiltonian tour through the vertices of 7" which uses only cost one
edges, as follows. First, traverse the vertices of 7" on the variable part of G according to
the assignment 4. Now, consider the vertices of satisfied clause devices that have not
yet been covered by the tour. There are three possibilities as to the arrangement of these
vertices :

1. only the corner vertices of a satisfied clause device are not traversed.

2. an edge of the satisfied clause device and the corner vertices are not traversed.

3. two edges of the satisfied clause device alongwith the corner vertices are not tra-
versed.

Clearly, all these vertices can be traversed with cost one edges by recalling the fact
that all corner vertices and the home node 0 are interconnected by cost one edges.
Hence, cp(T) = |T'| + 1. Since z(T") < ¢p(T), the claim follows. O

Lemma 4. Let C be the set of corner vertices of unsatisfied clause gadgets, and R be
the set of remaining vertices in unsatisfied clause gadgets. If x is a fair cost allocation
vector; then z(C) + z(R) > |C| + |R| + [%].

Proof : Since x is a fair cost allocation vector, z(N) = ¢p(N). Now, there is a
Hamiltonian tour through the vertices of G of cost n + [lﬂ ,by Lemma 2. So, cp(N) =
n + {g] + 1, by recalling the fact that ¢ (V) is an optimal tour including the home

90 M. Bliser and L.S. Ram

R(1,2) R(3,1) R(1,2) R(3,1)

» R23) 3 52 R23 3

(a) (b) ()

Fig.6. (a), (b), (c) show the traversals of three tours Hi, Ho, H3 respectively on an unsatisfied
clause gadget. In H1, the corner vertex 1 and all the vertices of the ex-OR on the edge R(2, 3)
are not traversed. The complete tours can be visualized easily since all the corner vertices are
pairwise connected.

node 0. Also, z(N) = z(C) + z(R) + x(T), since the sets C, R, T are disjoint. Now,
by Lemma 3, z(T") < |T'| + 1, and hence the Lemma follows. O

We consider three tours Hy, Ho, H3 through the vertices of C' U R as shown in Fig.
6, Let an unsatisfied clause gadget C;, fori = 1,2,...,k, be given by (3¢ — 2,3i —
1,3i,R(3i —2,3i—1), R(3i — 1, 37), R(3i, 3i — 2)), where the first three are the corner
vertices and R(p, ¢) denotes the vertices in the ex-OR gadget between (p, ¢) of C; and
the corresponding occurence edge in the variable part of G. Thus, the tour H; is then
{2,R(1,2),R(3,1),3,5,R(5,4), R(6,4),6,...,3k—1, R(3k—2,3k—1), R(3k, 3k —
2),3k,2}. The tours Hy and Hj are similarly defined. Let H be one of these tours with
the maximum z(.) value, i.e., x(H) := max{z(H1),z(H2), x(Hs)}. This implies that
v(H) > 3{x(H) + 2(H>) + z(Hs)}.

For all w € C' U R, x(u) contributes twice in the sum x(H;) + x(H2) + x(H3).
Therefore,

s> a0+ utmp =3 et +]

But, |H| = |H:| = |Hz| = |Hs| = >{|C|+|R|} and z(H) < |H|+1, by the definition
of the tours Hj, i.e., ; {|C| + |R| + (5]} <=(H) < 31C|+ 2|R| + 1, a contradiction
when k& > 3.

We employ the following technique in order to overcome the difficulty in getting a
contradiction for £ < 2. Instead of considering the formula ¢, we look at the formula
@' = ¢1 A 2 A ¢3. The formula ¢’ is a conjunction of the formulas ¢;, fori = 1,2, 3,
where each ¢; is a copy of the old formula ¢ but with new, distinct variables. This
means that ¢’ has 3n variables and 3m clauses. It is easy to see that both ¢ and ¢’ are
equivalent because the variables of each ¢; are distinct. Now, if there is an optimal
truth assignment that satisfies all but £ clauses of ¢, then there is an optimal truth
assignment that satisfies all but 3k clauses of ¢’. Thus, when k = 1 or k = 2, the
number of unsatisfied clauses in ¢’ is respectively 3 and 6. The above proof holds good
for ¢'. Hence, Core(N, cp) = (). This proves the claim that ¢ is satisfiable if and only
if Core (N, cp) is non—empty. Clearly, the construction of the graph G from ¢ can be

Approximate Fair Cost Allocation in Metric Traveling Salesman Games 91

done in polynomial time (in the size of ¢ and the number of variables). Therefore,
Core—ATS is NP-hard. O

Theorem 2. If N = {1,2,...,n} and D is a (n + 1) X (n + 1) matrix, not nec-
essarily symmetric but satisfying triangle inequality, then the problem of deciding if
Core(N, cp) is empty or not, is NP-hard.

Proof : Let the problem mentioned in the statement of the theorem be referred to as
Core—AATS. But since Core—ATS is shown to be NP—Aard by Theorem 1, and it is a
special case of Core—AATS, the claim of the theorem follows. O

5 Approximate Fair Cost Allocation

Since the core emptiness problem is NP-hard for traveling salesman games, we turn our
attention towards finding approximate fair cost allocation vectors. Define, for a (V, f)
game and a given € > 1, an e—approximate core as :

eCore(N, f) = {z € RY : o(N) > f(N) and VS C N,z(S) < e- f(5)}

Towards finding such approximate fair cost allocations, we introduce new games
called as cycle cover games.

5.1 Cycle Cover Games

Let G = (V, E) be a complete directed graph with a cost function D : E — R. A
cycle cover C in G is a collection of vertex—disjoint cycles that span V. A minimum
cost cycle cover is a cycle cover of minimum cost with respect to D. We define a cycle
cover game to be the tuple (N, fp) where N = V, and fp : 2V — R is defined for
a subset S C N as the cost of a minimum cost cycle cover on the vertices of S. For
this game, we show that the core is non-empty by finding a fair cost allocation vector in
polynomial time.

Theorem 3. For a cycle cover game (N, fp), the core is not empty. A fair cost alloca-
tion vector in the core can be found in O(|N|?) time.

Proof : Consider the following integer program formulation for the minimum cost cycle
cover problem:

min Z d(i,j)y;; subjectto
i,jEN
Z ywzl Vi € N and Z yijzl VJEN
JEN\{d} i€N\{j}
where y;; € {0,1}
We relax the final set of constraints to y;; > 0, to obtain a linear program £(N). It is

known that in fact £(N) has an integer optimum solution. Next, we consider the dual
program of L(N).

92 M. Bliser and L.S. Ram

max Z rt(v) + Z x” (v) where z7(i)+ 27 (j) <d(i,j) Vi,j €N
vEN veEN

Let us denote the dual program by D(N). Let z(v) = 2+ (v) + 2~ (v) forallv € N.
We claim that an optimal solution x = (x(v))yen of D(NN) is a fair cost allocation vec-
tor to the cycle cover game (N, fp). By the duality theorem, we know that the optimal
value of the objective function of £(N) which is fp(IN) by definition, is the same as
x(N). Consider any subset S C N. Let Cs denote a minimum cost cycle cover on S,
i.e., the cost of this cycle coveris fp(S). Now, fp(S) = X cecy 2o vyec AU, v) =
Ycecs 2umec KXW +x7(0)) = Fes (X (u) +x7(u) = Fegx(u) =
x(S). Here, C' € Cg denotes a cycle in the cycle cover and the inequality in the middle
follows because of the feasibility of x in D(N). Thus, we have shown that x € RV
is a fair cost allocation vector of the cycle cover game (N, fp), thereby showing the
non-emptiness of the core. Also x is computed in O(|N|?) time using the algorithm of
[4] which is a primal-dual type algorithm. a

5.2 A Traveling Salesman Game as a Combination of Several Cycle Cover
Games

We show how one can view a traveling salesman game to be a combination of several
cycle cover games. Formally, what we prove is that an approximate fair cost allocation
vector for a traveling salesman game can be seen as the sum of (exact) fair cost alloca-
tion vectors of several related cycle cover games. We provide an algorithm to find such
an approximate fair cost allocation vector, followed by the proof of the claimed degree
of approximation.

Here, the traveling salesman game refers to the asymmetric traveling salesman game
where the cost matrix fulfills the triangle inequality. For the purpose of proving the
main theorem of this section, we adapt the approximation algorithm of Frieze et. al.
[8], for the asymmetric traveling salesman optimization problem. This approximation
algorithm achieves a performance guarantee of log, (|V|), where V' is the set of vertices
of the underlying complete directed graph.

The algorithm to find an approximate fair cost allocation vector for an asymmetric
traveling salesman game is given in Fig. 1. Note that the home node “0” is included
only in the first cycle cover game.

Theorem 4. Let (N, cp) be an asymmetric traveling salesman game, with D satisfying
triangle inequality. If xX* is the vector returned by Algorithm 1 for this game, then it
is a logy(|N| — 1)—approximate fair cost allocation vector. The running time of the
algorithm is O(|N|”).

Proof : First, let us consider the following linear program for asymmetric traveling
salesman problem, 7 (N) :

min Z d(i,7)y;; subject to
i,7ENU{0}

Approximate Fair Cost Allocation in Metric Traveling Salesman Games 93

Algorithm 1

Input: An asymmetric game (N, cp) with a complete directed graph on N U {0}, and D satis-
fying triangle inequality
Output: A vector x* € RV,
1: Setj:=0,V; := N,and let x* € RN be the all zero vector.
2: Compute a fair cost allocation vector x; € RIVil*1 for the cycle cover game on the complete
graph induced on V;; U {0}. Let C be a minimum cost cycle cover in this graph.
3: Set, foralll <i < |N|,x"(3) :=x;(i) + xljj\(](;) and then set j := 1. Let zg € RI™V! denote
the current x*.
4: Pick one vertex from each cycle of C such that the vertex set picked, V;, does not contain
“0”.
5: while [V;| > 2do
6: Compute a minimum cost cycle cover C in the induced complete graph on V;.
7: Compute a fair cost allocation vector x; € RIV3 | by using Theorem 3 for the cycle cover
game (Vj,cp).
8: Update x* (i) := x" (i) + ZMGVJ x; (i), foralli € N.
r =7+ 1L
10: Pick exactly one vertex from each of the cycles of the cycle cover C. Set V; to be the set
of such vertices.
11: end while
12: return the vector x*.

Z yijzl Vi € N and Z yijzl VJEN

JENU{0}\{i} ie NU{0}\{s}
Z y,»jZlVSQNand Z yij21VS§N
1€8,jEe NU{O}\S JESAENU{O}\S

where y;; >0

The third and the fourth set of constraints together are usually referred to as subtour
elimination constraints. Note the inclusion of the home node “0” in the program. This
program is the asymmetric version of the program for symmetric game given in [6].
It can be easily verified that the actual integer linear program corresponding to 7 (N)
has an optimum value ¢p (V). When the subtour elimination constraints are dropped
from 7 (), the linear program obtained is the same as the linear program £(N U {0})
formulated in the proof of Theorem 3. This can be seen as follows: the only issue is
to verify that not having the in-degree and out-degree constraints at home node “0” is
equivalent to having the constraints. Suppose “0” appears in more than one cycle of
an optimal solution y (we can assume that y is integral). Let u,v € N be such that
Yuo = 1 = yo, Where u, v are in the same cycle in this cycle cover y. Then by changing
Yuv from O to 1 and resetting y,,0, Yo, both to 0, we obtain a solution of cost at most
that of y as dyo + doy > dyy by triangle inequality.

From the algorithm, x*(N) = Z?:o > ien X;(i) where k is such that [V | = 1, i.e.
the number of times the while—loop gets executed. By duality theorem, this means that
x*(N) is the sum of the costs of all k cycle covers computed in the algorithm. Now, the

94 M. Bliser and L.S. Ram

union of all these cycle covers is an Eulerian graph (the in-degree of any vertex is equal
to its out-degree). But, any Hamiltonian tour obtained by short-cutting through such an
Eulerian graph is of cost at most that of the whole Eulerian graph because of triangle
inequality. Hence, x*(N') > ¢p(N) since ¢p(N) is the cost of an optimal Hamiltonian
tour.

Consider any subset R C N. We claim that x*(R) < log,(|R|)cp(R). By def-
inition, x*(R) = zo(R) + Y.5_, x;(RNV;). First, we show that z(R) < cp(R).
Now, since xo € RIVI+L (refer to step 2 of the algorithm) is an exact fair cost
allocation vector for the cycle cover game on N U {0}, we have xo(R U {0}) is
at most the cost of a minimum cost cycle cover on R U {0}. But, by definition,

xo(RU{0}) = xo(R)+x0(0) = {x0(R)+|R| (" }+(IN|=|R|)] > z0(R) since
|N|—|R| > 0. Thus, zo(R) is at most the cost of a minimum cost cycle cover on RU{0}
which is at most ¢p (R), the cost of an optimal Hamiltonian tour through RU{0}. Next,
we show that forall 0 < j < k, x;(RNV;) < ¢p(R). Denote by T'S P}, the optimal
value of the linear program 7 (V; N R). Then, since any feasible solution to 7 (V; N R)
is a cycle cover on V; N R, we have that Z?:l x; (R N'V;) is bounded by Z?:l TSP;.
The only non-zero T'SP; values are those for which |V; N R| # 0. By triangle in-
equality, we have that for all j, TSP; < T'SP, where T'SF, is the cost of an optimal
solution to the LP, 7 (N N R). As shown before, zo(R) < ¢p(R). Hence, x*(R) <
Zo(R) + ZjZLIanRl?éO TSP < CD(R) + (logg(\RD — 1)TSP() < 10g2(|RDCD(R).
The last inequality is true because the linear program optimal value is a lower bound on
the integer optimal value. Since, R C N, |R| < n — 1. So, for any R C N, we have
x*(R) < log,(IN| — L)ep(R).

From the above two paragraphs, we deduce that x* € R is alog, (| N|—1)- approx-
imate fair cost allocation vector for the asymmetric traveling salesman game (N, cp).

As for the running time of the algorithm, to find a minimum cost cycle cover there
is O(|N|?) algorithm due to [4]. Also, as mentioned in Theorem 3, finding a fair cost
allocation vector for a cycle cover game takes O(|N|*) time. The while-loop is ex-
ecuted at most log,(|N|) — 1 times, where |V;11| < |V;|/2 with j = 0,1,...,k
where |Vix| = 1 and Vj = N. Thus the total running time of the algorithm is

O(X% 4 (IN1/21)°) = O(INP®). O

Since it is NP—hard to approximate 3SAT4 to within a certain constant ¢ > 1 [1] and
by Theorem 2, we have:

Theorem 5. Let (N, cp) be an asymmetric traveling salesman game, with D satisfying
triangle inequality. There exists an eg > 1 such that it is NP-hard to decide whether ey—
Core(N, cp) is empty or not. In other words, it is NP-hard fo find an eq—approximate
fair cost allocation vector for the game. a

Acknowledgements

We thank the anonymous referees for useful comments.

Approximate Fair Cost Allocation in Metric Traveling Salesman Games 95

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

P. Berman, M. Karpinski, and A. D. Scott. Approximation hardness and satisfiability of
bounded occurrence instances of SAT. Technical Report TR03-022, ECCC, 2003.

C. G. Bird. On cost allocation for a spanning tree: a game theoretic approach. Networks,
6:335-350, 1976.

. X. Deng, T. Ibaraki, and H. Nagamochi. Algorithmic aspects of the core of combinatorial

optimization games. Math. Oper. Res., 24:751-766, 1999.

. J. Edmonds and L. Johnson. Matching: A well-solved class of integer linear programs.

In Proceedings of Calgary International conference on combinatorial structures and their
applications, Gordon and Breach, pages 89-92, 1970.

. L. Engebretsen. An explicit lower bound for TSP with distances one and two. Algorithmica,

35(4):301-319, 2003.

. U. Faigle, S. P. Fekete, W. Hochstittler, and W. Kern. On approximately fair cost allocation

in Euclidean TSP games. OR Spektrum, 20:29-37, 1998.

. U. Faigle and W. Kern. On the core of ordered submodular cost games. Math. Program.,

87:483-499, 2000.

. A. Frieze, G. Galbiati, and F. Maffioli. On the worst—case performance of some algorithms

for the asymmetric travelling salesman problem. Networks, 12:23-39, 1982.

. M. X. Goemans and M. Skutella. Cooperative facility location games. In Proc. 11th SODA,

pages 7685, 2000.

D. Granot, H. Hamers, and S. Tijs. On some balanced, totally balanced and submodular
delivery games. Math. Program., 86:355-366, 1999.

D. Granot and G. Huberman. Minimum cost spanning tree games. Math. Program., 21:1-18,
1981.

H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. A 2/3 approximation for maxi-
mum asymmetric TSP by decomposing directed regular multi graphs. In Proc. of the 44th
Annual IEEE Symposium on Foundations of Computer Science, 2003.

A. Kolen. Solving covering problems and the uncapacitated plant location algorithms. Eur.
J. Oper. Res., 12:266-278, 1983.

H. W. Kuhn. The Hungarian method for the assignment problem. Nav. Res. Logist. Q.,
2:83-97, 1955.

Y. Okamoto. Traveling salesman games with the Monge property. Disc. Appl. Math.,
138:349-369, 2004.

C. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one
and two. Math. Oper: Res., 18:1-11, 1993.

J. A. M. Potters, L. J. Curiel, and S. H. Tijs. Traveling salesman games. Math. Program.,
53:199-211, 1992.

L. Shapley and M. Shubik. The assignment game I: the core. Int. J. Game Theory, 1:111-130,
1972.

A. Tamir. On the core of a traveling salesman cost allocation game. Oper: Res. Lett., 8:31-34,
1988.

C. A. Tovey. A simplified NP-complete satisfiability problem. Disc. Appl. Math., 8:85-89,
1984.

Rounding of Sequences and Matrices,
with Applications

Benjamin Doerr, Tobias Friedrich, Christian Klein, and Ralf Osbild

Max-Planck-Institut fiir Informatik, Saarbriicken, Germany

Abstract. We show that any real matrix can be rounded to an inte-
ger matrix in such a way that the rounding errors of all row sums are
less than one, and the rounding errors of all column sums as well as all
sums of consecutive row entries are less than two. Such roundings can be
computed in linear time. This extends and improves previous results on
rounding sequences and matrices in several directions. It has particular
applications in just-in-time scheduling, where balanced schedules on ma-
chines with negligible switch over costs are sought after. Here we extend
existing results to multiple machines and non-constant production rates.

1 Introduction

In this paper, we analyze a rounding problem with connections to different areas
in discrete mathematics, computer science, and operations research. Roughly
speaking, we show that any real matrix can be rounded to an integer one in such
a way that the rounding errors of all row and column sums are less than one,
and the rounding errors of all sums of consecutive row entries are less than two.

Let m,n be positive integers. For some set S, we write S™*™ to denote the
set of m x n matrices with entries in S. For real numbers a,b let [a..b] := {z €
Zla < z < b}.

Theorem 1. Let X € R™*™ having integral column sums. Then there is a
Y € Z™*"™ such that

NE

V] € [1TL] : (xij — yij) =0,

<.

.ﬁv Il

Ve [lnie [Lom]:|S (i — y,-j)‘ <1

J=1

Such a matriz' Y can be computed in time O(mn).

It is easy to see that the second condition implies that for all a,b € [1..n] and
i € [1..m] we have \Z?:a(xij — ¥i;)| < 2. Also, the theorem can easily be
extended to matrices having arbitrary column sums. See Section 3 for the details.

Theorem 1 extends and improves a number of results from different
applications.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 96-109, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Rounding of Sequences and Matrices, with Applications 97

1.1 Rounding of Sequences

One of the most basic rounding results states that any sequence x1,...,x, of
numbers can be rounded to an integer one y1,...,y, in such a way that the
rounding errors | Z?:a (x;—yj;)| are less than one for all a, b € [1..n]. Such round-
ings can be computed efficiently in linear time by a one-pass algorithm resembling
Kadane’s scanning algorithm (described in Bentley’s Programming Pearls [4]).
Extensions in different directions have been obtained in [9,10,13,16,18]. This
rounding problem has found a number of applications, among others in image
processing [1,17].

Theorem 1 yields a multi-sequence analogue of this result. Assume that we
have m sequences :rgi), P ie [1..m], such that for all k € [1..n], the k-th
terms sum up to at most one (that is, > ", :v,(;) < 1). Then we may simul-

taneously round the sequences such that (i) all errors |Z§:a(:ﬂ§2) - y§l))| are
less than two and (ii) no two sequences have a 1 in the same position, that is,
yj(-“) = yj(-”) =1 implies i1 = is.

While we solve this problem in linear time, one has to be more careful than
in the one-dimensional case. A simple greedy algorithm may produce a rounding

error of 2(logm) as shown in Section 5.1.

1.2 Linear Discrepancy in More Than Two Colors

Let k € Nx>o. Denote by Ej, the set of the k unit vectors in R¥ and by Ej, the
convex hull of Ej. In other words, E = {v € [0,1]* | ||v||; = 1}. Let H = (X,)
be a hypergraph. The linear discrepancy problem of H in k& colors is to find for
given mixed coloring p : X — F} a pure coloring ¢ : X — FEj such that

S () - q<x>>Hm

lil’ldiSC 71 = max
(P q) EeE&
zel

is small. The linear discrepancy of H in k colors is lindisc(H, k) := max, min,
lindisc(H, p,). This notion introduced in [11] extends the classical linear dis-
crepancy notion (see e.g. Beck and Sés [3]), which refers to two colors only.

Let H,, be the hypergraph of intervals in [n], that is, H,, = ([r], {[a..b] | a,b €
[n]}. Then Theorem 2, a slight variant of Theorem 1, shows lindisc(H,,, k) < 2
for all n and k. Theorem 4 shows that for all £ > 3 and all n, lindisc(H,, k) >
1.5 — 6n~1/2. The lower bound shows that the bound lindisc(H,,k) < 1 only
holds for kK = 2. Note that H,, is a unimodular hypergraph, and that we have
lindisc(H, 2) < 1 for all unimodular hypergraphs.

1.3 Baranyai’s Rounding Lemma and Applications in Statistics

Baranyai [2] used a similar rounding result to obtain his famous results on color-
ing and partitioning complete uniform hypergraphs. He showed that any matrix
can be rounded in a way that the errors in all rows, all columns and the whole
matrix are less than one. He used a formulation as flow problem to prove this
statement.

98 B. Doerr et al.

Independently, this result was obtained by Causey, Cox and Ernst [6]. In
statistics, there are two applications for such rounding results [8]. Note first
that instead of rounding to integers, our results also applies to rounding to
multiples of any other base (e.g., whole multiples of one percent). This can be
used in statistic to improve the readability of data tables. A second reason to
apply such rounding procedures is confidentiality. Frequency counts that directly
or indirectly disclose small counts may permit the identification of individual
respondents. In this case, rounding to multiples of e.g. 10 can prevent such risks.
However, in both applications one would like to have that rounding errors in
columns and rows are small. This allows to use the rounded matrix to obtain
information on the row and column totals.

Our result allows to retrieve further reliable information from the rounded
matrix, namely also on the sums of consecutive elements in rows. Such queries
make sense if there is a linear ordering on statistical attributes. Here is an ex-
ample. Let x;; be the number of people in country ¢ that are j years old. Say
Y is such that 10100Y is a rounding of 10100X as in Theorem 1. Now 2?220 Yij
is the number of people in country i that are between 20 to 40 years old, apart
from an error of less than 2000. Note that such guarantees are not provided by
the results of Baranyai and Causey, Cox and Ernst.

Also, our result is algorithmically highly efficient. Both Baranyai, who was not
interested in algorithmic issues, and Causey, Cox and Ernst used a reduction of
the rounding problem to a flow or transportation problem. Though such prob-
lems can be solved relatively efficiently, our linear time solution clearly beats
their runtimes.

1.4 Flexible Transfer Line Scheduling

Surprisingly, our matrix rounding problem remains non-trivial if all columns are
equal. This problem occurs as a scheduling problem. In the flexible transfer line
scheduling problem we try to produce m different goods on a single machine in
a balanced manner. We know the demands d; € N, i € [1..m], for each good in
advance. We assume that our machine (typically a mixed-model assembly line)
can produce any good in one unit of time. Furthermore, there are no switch-over
costs, that is, we may change from one product to another at no cost.

Our goal is to design a production schedule for n = 2211 d; time steps such
that exactly d; units of product ¢ are produced. Moreover, at any time and
for any product we want our production rate to be close to the average rate
r; = d;/n: After j time steps, we hope to have produced jr; units of product i.
Such production lines are a central part of many just-in-time systems, see e.g.
Monden’s work [14,15] on Toyota’s production system.

Denote by p;; the number of units of product i produced up to time step j.
In the mazimum deviation just-in-time scheduling problem (MDJIT), our aim
is to keep the maximum deviation of these production numbers from the aimed
at values jr; small. In other words, we are looking for a schedule minimizing
max{|p;; — jri| | ¢ € [L.m],j € [1.n]}.

Rounding of Sequences and Matrices, with Applications 99

For this problem, Steiner and Yeomans [19] as well as Brauner and Crama [5]
give a number of interesting results. In particular, they show that the MDJIT
can be solved with maximum error less than one. Via Theorem 1, we extend this
result to significantly more general settings. (i) We allow non-constant produc-
tion rates. Instead of only prescribing that the total production of d; units of
product ¢ ideally should be obtained by producing r; units in each time step, we
allow arbitrary aimed at production rates r;; for each product ¢ and time step
j. Of course, 221 r;; should be one for each time step since we assumed that
we may produce a single item each time. This generalized setting makes sense if
we know or expect changing demands over a period of time.

(ii) We also allow the use of more than one machine. If we have k machines, we
may simply use larger rates satisfying Y. | r;; = k. In fact, we are quite flexible
in this respect. We may use a different number of machines each time step, that
is, have)", r;; = k; with different k;. We may also have non-integral k; and
in this case use between |k;| — 1 and [k;]| machines.

1.5 Lower Bounds

We also present a non-trivial lower bound for the error in arbitrary intervals.
Earlier works only regarded errors in initial intervals [1..t]. From the view-point
of balanced schedules approximating average expected demands, it also makes
sense to investigate errors in arbitrary intervals. For upper bounds, the simple
triangle inequality argument of Lemma 5 extends any upper bound for initial
intervals to twice this bound for arbitrary intervals. For lower bounds, things
are more complicated. In particular, the example of Brauner and Crama [5]
showing a lower bound of 1 —1/m for initial intervals yields no better bound for
arbitrary intervals. We present a three product instance (in the simple model
with constant rates and one machine) such that any schedule produces an error
of at least 1.5 — . Note that this also yields an error of 0.75 — ¢ for initial
intervals, that cannot be derived from existing works.

2 The Algorithm

In this section, we present an algorithm solving the matrix rounding problem
of Theorem 1. For a region R C [l..m] x [L..n], the rounding error in R is
| 2.5 er(@i; — ¥iz)|- Our aim is to achieve low rounding errors in all columns
and in all intervals of rows. Note that by subtracting integer part, we may always
assume that X € [0,1)™*",

We denote by X; and X7 the i-th row and j-th column of X, respectively.
We define the partial sums s;; := Y 7_,; @y for all i € [1.m] and j € [1..n].

2.1 Basic Algorithm

Here we consider the restricted problem with uniform column sums || X7|; = 1
for all j € [1..n]. Note that in this case each column of the rounded matrix Y

100 B. Doerr et al.

contains just a single 1. The solution to this special problem is later on called
basic algorithm.

First we give a motivation for the solution. By Lemma 5, it suffices to keep
the errors

(zij —yij)|, Vi€ [l.m], Vb e [1.n], (1)

b
=1

J

small in all initial intervals. For the moment, consider a single row i € [1..m].
The idea is to place 1s into Y; between the row indices where the partial sums
of row X; exceed the next integral values at that time. Formally, we require to
place the k-th 1 in row 4 onto position y;;, where j is some column index in
the range IF := [af..b¥] with limits af := min{j € [1.n] | k — 1 < s;;} and
bY :=max{j € [L.n] | s;5 < kV (s;j =k Awzy; #0)}. We call IF the k-th index
interval of row i. One particularity of this definition is, that no 1 is placed onto a
0 (say z;; = 0), if the row sum s;; is integral. This way, all errors in Equation (1)
are less than 1.

The algorithm works as follows. The columns of Y are computed successively,
Y7 at time j € [1..n], that is, we have to place a single 1 into Y. To select an
appropriate position in column Y7, we regard the set C7 of all index intervals
that contain j and whose corresponding entries in Y are still zeros, i.e., IF € C7,
if and only if j € IF and y;;, = 0 for all h € IF, h < j. Now, C7 contains implicitly
all the positions where the 1 could be placed. From those we choose the position
¢ that belongs to the earliest ending interval [a,..bg] of C?. (In case of a tie we
choose the uppermost row.) Then we set column Y7 to the /-th canonical unit
column vector, i.e., y7; = 1. Then we proceed with Y71 in the same way.

The index intervals I¥ can be computed as follows. The initial step of the
algorithm is to determine the limits a} and b} of the intervals I} for all rows X,
i € [1..m]. For that purpose, each partial row sum is computed up to the first
entry where the sum is no longer smaller than 1 or until we reach the end of
the row. (The latter case is indicated by any index larger than n.) The values
a; = min (I}), b; := max (I}) and s; := s, 5, are stored in three arrays of length
m each. With this information we compute the first column Y. Each time after
we have placed a 1 in Y, an update step is necessary, because then the demand
of a current index interval for a 1 is just satisfied. Hence we replace this interval
by its succeeding interval I[SiHl. This can be done similar to the initial step.
We continue computing the partial row sum of X; up to the first entry where
the sum is no longer smaller than the next integral value (which is [s;] + 1) or
until we reach the end of the row. As before the current values of the interval
limits and the sum so far are stored in the arrays.

COMPUTEROUNDING(X € [0,1]™*"™)

> Initialization
fori«+— 1tom
do s[i] < 0
bm —0

Rounding of Sequences and Matrices, with Applications 101

(al?], bi], s]i]) <« GETNEXTINTERVAL(%)
> Main Loop
for j— 1ton

do C «—{ie€[l.m]]|j € [a]z]..b]i]]}
£ «— argmin bl
. iec

Y7 « £-th unit column vector

(alf],b[€], s[€]) < GETNEXTINTERVAL({)
return Y € {0,1}m*"

GETNEXTINTERVAL(%)
j e bli] +1
while j <n and z;; =0
doj«—j+1
if j>n
then return (n + 2,n + 2, s[i])
ali] —j
k—T[s[i]]+1
while S[’L] + Tij < k
do s[i] « s[i] + z;
if s[i| =k
then return (ali], j, s[i])
Je=g+1
if j>n
then return (a[i], j, s[i])
return (ali],7 — 1, s[i])

2.2 Time and Space Complexity

For the time being we ignore the calls of GETNEXTINTERVAL in the analysis
of the runtime. Then the initialization loop has runtime ©(m) and the main
loop, which is executed exactly n times, needs ©(m) time for each of the three
non-trivial assignments. Together that takes ©(mn) time.

It remains to add the time spend in GETNEXTINTERVAL. Be aware that the
row index ¢ never changes within this procedure. Hence its total runtime can
be estimated by multiplying the maximal time spend in a single row X; by m.
Each of the commands in GETNEXTINTERVAL can be executed in constant time
except the while loop. Since this loop successively increases j — which is swapped
to b[i] when the procedure returns — ©(n) time is needed for each row X;. It
follows that the runtime of the entire algorithm is ©(mn).

The algorithm only needs to keep track of the m current intervals and the m
accumulated row sums. So ©(m) space suffices in addition to the space needed
for input and output.

2.3 Correctness

To show that our algorithm returns a valid solution, we have to show that (i)
each column vector Y7 contains ezactly one 1 and (ii) each index interval gets

102 B. Doerr et al.

assigned ezactly one column with 1. For this it will be convenient to assume
integrality of the row sums, i.e., Z;;l x;; € N for all 4. This can by achieved by
adding additional columns at the end. If the algorithm returns a valid solution
even for these columns, it is also correct for the original matrix. Note that it is
not necessary to actually compute these additional columns, i.e., they are only
needed for the analysis. The following lemma gives the main property of the
algorithm. It shows that at each step there are enough unsatisfied intervals to
choose from.

Lemma 1. Let k;; be the number of intervals which have started until column
j in the i-th row. Then Y ", ki; > j for all j € [1..n].

Proof (by induction on j). For j = 1 at least one interval has to start due to
the norm condition ;" @;; = 1 for the first column. Now assume the lemma
has been established until column j. If there are already more than j intervals,
there is nothing to prove for j + 1. So let us assume that there are exactly j
intervals so far, that is to say, Y .-, kij = j. Since Y"1 85 = D ory D vy Tie =

I=1 2oim Tie = Dy 1 =J, we get 30, kij = 370, sij. With 0 < sj5 < ki
and k;; € N for all ¢ € [1..m], it follows that S? = K’ and hence S? € N™.
This means that all intervals have ended until column j. So at least one interval
has to start at position j + 1, analogously to the start of the induction base. So
itk 2 Ny ki £ 12541 0

That there is (i<1) no column with more than one 1 is guaranteed by the al-
gorithm as it chooses the uppermost 1 in the case that there are two closest
ending intervals at one time. Due to Lemma 1 the algorithm has passed at least
j intervals till the j-th column and has by construction satisfied only 7 — 1 of
them. Therefore the algorithm can always satisfy at least one interval and will
(i>1) not return any empty column.

Also (ii<1) no interval will get more than one 1, because a 1 is only assigned
to unsatisfied intervals. We furthermore know || X7||; = 1 for all columns j and
hence Z?=1 Z:’;l x;5 = n. The integrality assumption of the row sums gives that
we have exactly n intervals overall. Since each column contains exactly one 1, we
have assigned n 1s to intervals. Due to the pigeonhole principle there is (ii>1) no
interval with no assigned 1 because there is no interval with more than one 1.

2.4 Error Bounds

J
Lemma 2. ‘ Z (i — yw)’ <1 forallie[l.m] and j € [1..n].
=1

Proof. x;; belongs to the k;;-th interval in the i-th row, that is, to Iikij. The
algorithm assigns to each interval exactly one 1 (cf. Section 2.3). So depending

on whether the 1 that corresponds to If “ is in some column at most J or later,
ZLI Yie is either k;; —1 or k;;, respectively. Hence we have k;; —1 < ZL1 T <
ki; as well as k;; — 1 < Z%=1 yie < kij, where the second sum equals k;; if the
first sum does. This shows | ZLI Tip — Zizl y¢z| < 1. a

Rounding of Sequences and Matrices, with Applications 103

b
Lemma 3. ‘Z(xij —yij)’ <2foralll<a<b<nandié€[l.m].

j=a
Proof. This follows immediately from Lemma 2 using Lemma 5. g

The results of the basic algorithm can be subsumed as follows.

Theorem 2. Let X € [0, 1]™*" with || X7||1 = 1 for all j € [1..n]. Then there is
aY € {0,1}™*" such that |Y7|; = 1 and

b
Vb e [l.n],i € : ‘Z (xij — Yij) ‘ < 1.
J=1

Such a matriz Y can be computed in time O(mn).

The following example shows that the above error bound is tight for our algo-
rithm, i.e. that it may indeed generate errors arbitrarily close to two. To see this
let € € (0,1/2) and

€ 1—¢/2 1—2¢ €/2 €
X.=| (1-¢)/2 e/4 5 1/2—¢/4 (1—¢)/2
(1—-¢)/2 e/4 € 1/2—¢/4 (1—¢)/2

This yields the index intervals [1..1] and [2..5] for the first row, and [1..3] and [4..5]
for the second and third row. Hence the algorithm puts the first 1 into row one,
followed by 1s into row two and three. This yields an error of (1—¢/2)+(1—2¢) =
2 — 5¢/2 in the interval [2..3] in the first row.

2.5 Naive Generalization

We now show that the basic algorithm of Section 2.1 can be utilized for input
matrices with arbitrary column sums || X7[|; = ¢; € N for j € [1..n]. In this case,
the output matrix Y € N™*" has to satisfy ||Y7[|; = ¢;. The error on arbitrary
intervals is still at most two. First we show how to reduce this generalization to
the unitary problem and solve it with the basic algorithm in @(m?n) time. We
then modify the algorithm in such a way that it can handle the general problem
directly in time @(mn). Note that we can still assume z;; € [0,1) (and hence
¢; <m) for all j € [1..n],7 € [1..m] as discussed in Section 2.

A simple way to solve the general problem is to preprocess the input by
expanding each vector X7 into c¢; identical vectors X4, ..., X4+t each of
the form (z1;/¢j, ..., Tm;/cj)T. With this preprocessing we obtain a new matrix
X having Z;;l ¢; columns, each having sum one. The basic algorithm applied

to X yields a matrix Y with errors at most two on arbitrary intervals.

In a postprocessing step we then condense for each j € [1..n] the ¢; output
vectors Y4, ..., Y4 +¢~1 to one vector Y7 (having column sum ¢;) by summing
them up. This yields a solution Y to the original problem. Since all intervals

104 B. Doerr et al.

[a..b] C [1..n] of the general problem correspond to an interval [¢,..(¢, + cp — 1)]
of the expanded problem, Y satisfies the properties of Theorem 1.

Observe that this approach may produce entries of value two in the solution.
This can happen if an unsatisfied interval ends in the expansion of an input
vector and the following index interval ends “close enough” after this expansion.
The behavior of the expanding algorithm and the solution it computes can be
characterized as follows.

Lemma 4. Let é;,j € [1..n], be the number of index intervals that end in (or
directly after) the expansion of X7 and are not satisfied before the expansion.

(a) No indez interval is fully contained in the expansion.

(b) éj S Cj.

(c) The basic algorithm applied to the expanded matriz will first satisfy the ¢é;
unsatisfied intervals ending in the expansion. If ¢; < c¢; it will then satisfy
the c; — ¢&; first ending unsatisfied intervals (all of them ending after the
expansion).

Proof. The first claim follows since all entries are smaller than one, the second
claim follows directly from the correctness of the basic algorithm.

For the third claim observe that there are two types of unsatisfied intervals
in the expansion: those ending in (or directly after) it and those continuing
afterward. As argued for the second claim, the unsatisfied intervals ending in
the expansion are satisfied by the algorithm. Furthermore, all other crossing
intervals end after the expansion and hence later than these ¢; intervals. Thus
the algorithm will distribute the remaining 1s to these intervals. O

2.6 Linear Time Generalization

Since expanding X and running the basic algorithm worsens the runtime, we
now give an algorithm that simulates this approach and needs nothing more
than the basic algorithm of Section 2.1. To achieve this the algorithm has to
satisfy c¢; intervals instead of just a single one in each step j € [1..n]. According
to Lemma 4(c), this can be done in two distribution steps: First identify the ¢;
unsatisfied index intervals ending in the expansion of X7 and assign them a 1.
Then satisfy the remaining c; — ¢; earliest ending index intervals in the data
structure. According to Lemma 4(a) it is not necessary to update and search
the data structure after each assigned 1. Instead this can be postponed until the
end of each distribution step.

The first distribution step can be done in time @(m) by scanning the data
structure once and extracting the ¢; just ending intervals. Then 1 is added to
the entries in Y7 corresponding to those index intervals and their consecutive
index intervals are added to the data structure.

For the second distribution step we first extract the (¢; —¢;)-th earliest ending
interval. This too is possible using @(m) time (see e.g. Chapter 10, Medians and
Order Statistics, in Cormen et al. [7]). Knowing this interval, the algorithm can
locate the other (c; — ¢é;) — 1 earliest ending intervals by just doing a pass over

Rounding of Sequences and Matrices, with Applications 105

the data structure, again taking ©(m) time. Finally, as after the first step, we
add 1 to each entry in Y7 corresponding to those index intervals and update the
data structure by adding their consecutive index intervals.

Since each update of the data structure takes constant time, the generalized
algorithm still needs time ©(mn).

The only detail still missing is how to detect if an interval would end inside the
expansion of a column X7 and how to compare the endpoints of index intervals
ending in the same expansion. For this, first consider the unexpanded input. Let
x;;—1 be the last entry belonging to the k-th interval. Then s; ;1 < k < s;;
holds. But in the expanded input, the interval would still have a value of 0 <
k— ;-1 < <1left to cover vectors in X%, ..., X%*¢~1 of XJ. Since the
expansion of X7 has entries z;;/c; in the i-th row, the interval would continue for

e [F 2]
ij /¢
entries into the expansion of X7,
Hence the end of each index interval is represented by a tuple (j,¢) instead
of just by the number j as in the basic algorithm. Interval endpoints can then

be compared lexicographically.
All in all we can conclude that Theorem 1 holds.

3 Extensions

In this section, we provide two easy extensions of Theorem 1 that are useful in
some of the applications described in the introduction. First, it is easy to see that
we immediately obtain rounding errors of less than two in arbitrary intervals in
rows. This is supplied by the following lemma.

Lemma 5. Let Y be a rounding of X such that the errors |Z§-:1(.’L‘,’j — ;)| in
all initial intervals of rows are at most d. Then the errors in arbitrary intervals
of rows are at most 2d, that is, for alli € [1.m] and all 1 <a <b<n,

b
Z Tij — ym

Proof. Let i € [1..m] and 1 < a < b <mn. Then

< 2d.

b a—1
§ Tij — yz] § Tij — ym
Jj=1

a—1

—yis)| | D (@i — i)

j=1 j=1

< 2d.

106 B. Doerr et al.

Second, we may extend Theorem 1 to include matrices having non-integral
column sums.

Theorem 3. Let X € R™*™. Then there is a Y € Z™*"™ such that

V] € [177,} : ’Z(l‘,’j — yij)’ < 2,

i=1

Vb e [1.n,i € [1.m] : ‘Xb:(x,»j - yij)‘ <1.

j=1
Such a matriz Y can be computed in time O(mn).

Proof. For an arbitrary matrix X, we add an extra row taking what is missing
towards integral column sums: Let X € [0,1)(™+1)*" be such that #;; = x;; for
alli € [1.m], j € [L.n], and Zpy1,; = [Doiey @ij| — Yoiey @iy for all 5.

Clearly X has integral column sums. Using Theorem 1, we can compute a
rounding Y € {0,1}(m+Dx"? of X as described in Theorem 1. Note that there
are no rounding errors in the columns, i.e., we have Z:’Sl Uiy = Z?:{l Z;; for
all j € [1..n].

Define Y € {0,1}"™*"™ by y;; = yi; for all i € [1.m], j € [1..n]. Now the
errors in the columns are | Y" | (24 — ¥ij)| = |Zm+1,j — Um+1,;|- By Lemma 5,
all single entry rounding errors |z;; — y;;| are less than two, proving the first set
of inequalities.

The errors in initial intervals in row 1 to m naturally remain unchanged,
proving the second set of inequalities. O

4 Lower Bounds

We present a new lower bound for the matrix rounding problem. Theorem 4
shows that there are 3 x n matrices such that any rounding has an error of 1.5 —¢
in arbitrary intervals. Via a triangle inequality argument similar to Lemma 5,
this matrix also yields an error of 0.75 — € in initial intervals. The latter is
particularly interesting for the MDJIT problem (see Section 1.4), where Steiner
and Yeomans [19] showed a lower bound of 1—1/m by means of an m xm matrix.
So for the three-part type MDJIT problem we could raise the lower bound from
2/3 to 3/4.

Theorem 4 (Lower Bound). For all € € (0,1) there are problem instances
X € [0,1]>*" such that for all solutions Y € {0,1}3*™ there are i € [1..3] and

1<a<b<n with ’Z?:a (245 —yij)’ >15—¢.
Proof. Let n > 1.5/¢% and X € [0,1]3*" with

1—¢ 1—¢ 1—¢

Xi=[e—e2 -2 ... g—¢2

g? g? g?

Rounding of Sequences and Matrices, with Applications 107

Assume that there is a valid solution Y with | Z?:a (ij — yij)| < 1.5 — 4e for
all i € [1..3] and 1 < a < b < n. By choice of n, there is at least one column j
having a 1 in the third row. Let p > 0 and ¢ > 0 be the number of consecutive
columns equal to (1,0,0)7 to the left and right of column j, respectively. Thus

0O 1...1. 0 1...1 O
Y=|--- ? 0...0 0 0...0 7
? 0...0 1 0...0 7
N 7 N7
ptl es T qtl es
colum

The rounding error of the interval [(j —p — 1)..(j + ¢ + 1)] in the first row is

| 051 e =y = (0+a+3)-(1-)—(p+q) = 3-(1—¢) —¢-(p+q). Since
this is less than 1.5 —4e, we have p+¢ > (3-(1—¢)—1.54+4¢)/e = 1.5/ +1. The
error of the interval [j—p..j+¢] in the second row now is | Zz:?_p (o, — y2’£)| =
(p+q+1)-(e—€?) > (1.5/e+2)- (e — &%) = 1.5+ 0.5¢ — 262 > 1.5 — 4e. This
contradicts our assumption. O

5 Alternative Approaches

5.1 Greedy Algorithm

A greedy algorithm traverses the matrix X column by column and sets the 1s
in Y only based on the columns previously read. The 1 is assigned to a row i
with the highest difference between the accumulated sum s;; and the number of
1s in this row so far. That this may produce a rounding error of £2(logn) can be
shown by the following example:

L0 0 0 0
1 1
" o1 0 0 0
X = c [O,l}nxn
1 1 1
poongtomr 0D
n n—1 n—2 2 0
1 1 1 1 1
n n—1 n—2 2

The greedy algorithm returns the identity matrix whereby the discrepancy of
the interval [1,n-1] in the last row becomes | Z;L:_f (Tnj — Yny)| = Z?:z 1/j =
H, —1>logn — 1 with H, being the harmonic number of n.

5.2 Row Intervals

If one accepts a quadratic runtime we can extend Theorem 2 in such a way that
not only the initial row intervals, but also the initial column intervals are small:

108 B. Doerr et al.

Theorem 5. Let X € [0,1)™*™. Then there is a Y € {0,1}™*™ such that

Vb e [L.n],i€ [1.m] : ‘zb:(xij - y,»j)] <1,

j=1
b

Vb e [1m},j S [177,] : ‘Z(IE” — y”)’ < 1.
i=1

Such a matriz Y can be computed in time O(m?n?).

Proof. Knuth [13] showed how to round a sequence of n real numbers z; to
yi € {|x:i],[zi]} such that for two given permutations o; and o2, we have
Zle(xgl(i) — Yo (i) < 1 as well as Zle(xaz(i) — You(s)) < 1 for all k. To
apply this to our problem of rounding a matrix X € R™*" we first assume
integrality of the row and column sums without loss of generality as detailed
in Section 3. Consider all elements z;; of the matrix X as the sequence to be
rounded. With a permutation o1, which enumerates the x;; row by row, Knuth’s

two-way rounding gives Zle Z?Zl(:rij —yi;) < 1 for all k € [1..m]. Note that

the integrality of the row sums yields by induction Zle Z?:l(xij —yi;) =0
for all k, which in turn shows for the initial row intervals Z?Zl(ﬂcij — i) <1
for all b € [1..n] and ¢ € [1..m]. For initial column intervals one can achieve
Z?=1(=Tij — ;) <1forall b e [l.m] and j € [1..n] in an analogous manner by
choosing a permutation ¢z, which enumerates the z;; column by column. His
proof employs integer flows in a certain network [12]. On account of this he only

achieves a runtime of O(m?n?). O

Note that both inequalities in Theorem 5 are actually |Z(:r” — yij)| <
mn/(mn + 1).

Acknowledgments

The authors wish to thank Pavol Hell for pointing out the relation to controlled
rounding.

References

1. T. Asano. Digital halftoning: Algorithm engineering challenges. IEICE Trans. on
Inf. and Syst., E86-D:159-178, 2003.

2. Zs. Baranyai. On the factorization of the complete uniform hypergraph. In In-
finite and finite sets (Collog., Keszthely, 1973; dedicated to P. Erdds on his 60th
birthday), Vol. I, pages 91-108. Colloq. Math. Soc. Janos Bolyai, Vol. 10. North-
Holland, Amsterdam, 1975.

3. J. Beck and V. T. Sés. Discrepancy theory. In R. Graham, M. Grotschel, and
L. Lovasz, editors, Handbook of Combinatorics, pages 1405-1446. Elsevier, 1995.

4. J. L. Bentley. Algorithm design techniques. Commun. ACM, 27:865-871, 1984.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

Rounding of Sequences and Matrices, with Applications 109

N. Brauner and Y. Crama. The maximum deviation just-in-time scheduling prob-
lem. Discrete Appl. Math., 134:25-50, 2004.

B. D. Causey, L. H. Cox, and L. R. Ernst. Applications of transportation theory
to statistical problems. Journal of the American Statistical Association.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT
Press, Cambridge, MA, 1990.

L. H. Cox and L. R. Ernst. Controlled rounding. Informes, 20(4):423-432, 1982.
B. Doerr. Lattice approximation and linear discrepancy of totally unimodular
matrices. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 119-125, 2001.

B. Doerr. Global roundings of sequences. Information Processing Letters, 92:113—
116, 2004.

B. Doerr and A. Srivastav. Multicolour discrepancies. Combinatorics, Probability
and Computing, 12:365-399, 2003.

L. R. Ford, Jr., and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

D. E. Knuth. Two-way rounding. SIAM J. Discrete Math., 8:281-290, 1995.

Y. Monden. What makes the Toyota production system really tick? Industrial
Eng., 13:36-46, 1981.

Y. Monden. Toyota Production System. Industrial Engineering and Management
Press, Norcross, GA, 1983.

K. Sadakane, N. Takki-Chebihi, and T. Tokuyama. Combinatorics and algorithms
on low-discrepancy roundings of a real sequence. In ICALP 2001, volume 2076
of Lecture Notes in Computer Science, pages 166-177, Berlin Heidelberg, 2001.
Springer-Verlag.

K. Sadakane, N. Takki-Chebihi, and T. Tokuyama. Discrepancy-based digital
halftoning: Automatic evaluation and optimization. In Geometry, Morphology,
and Computational Imaging, volume 2616 of Lecture Notes in Computer Science,
pages 301-319, Berlin Heidelberg, 2003. Springer-Verlag.

J. Spencer. Ten lectures on the probabilistic method, volume 64 of CBMS-NSF
Regional Conference Series in Applied Mathematics. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1994.

G. Steiner and S. Yeomans. Level schedules for mixed-model, just-in-time pro-
cesses. Management Science, 39:728-735, 1993.

A Note on Semi-online Machine Covering

Tomas Ebenlendr!, John Noga?, Jii{ Sgall', and Gerhard Woeginger3

! Mathematical Institute, AS CR, Zitna 25, CZ-11567 Praha 1, The Czech Republic
{ebik, sgall}@math.cas.cz
2 Department of Computer Science, California State University,
Northridge, CA 91330, USA
jnoga@ecs.csun.edu
3 Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
gwoegi@win.tue.nl

Abstract. In the machine cover problem we are given m machines and
n jobs to be assigned (scheduled) so that the smallest load of a machine
is as large as possible. A semi-online algorithm is given in advance the
optimal value of the smallest load for the given instance, and then the
jobs are scheduled one by one as they arrive, without any knowledge of
the following jobs. We present a deterministic algorithm with competitive
ratio 11/6 < 1.834 for machine covering with any number of machines
and a lower bound showing that no deterministic algorithm can have a
competitive ratio below 43/24 > 1.791.

1 Introduction

In the machine cover problem we are given m identical machines and n jobs to be
assigned (scheduled) so that the smallest load of a machine is as large as possible.

The motivation for this objective function comes from applications where the
jobs correspond to supplies (like fuel tanks) needed to keep the machines alive,
and the overall goal is to keep the whole system alive as long as possible. The
same objective was studied before for example in [5], where some additional
motivation can be found.

Similarly to the classical makespan problem, the ideal schedule is perfectly
balanced. Thus the exact solution is NP-hard, and using similar techniques as
for makespan scheduling, approximation schemes can be constructed even for
uniformly related machines [6,2,1,4].

It is easy to see that in the online setting with jobs arriving one by one, no
non-trivial deterministic algorithm is possible [3]. If m jobs with processing times
equal to 1 arrive, the algorithm has to assign them to distinct machines, as this
may be the whole sequence. Then m — 1 jobs with processing time m arrive, and
the online algorithm achieves objective 1 while the optimum is m.

With this in mind, Azar and Epstein [3] considered semi-online algorithms
which are given in advance the value of the optimum. Among other results, they
showed that a simple greedy algorithm is 2 — 1/m competitive, this is optimal
for m = 2,3,4 for deterministic algorithms, and no semi-online deterministic
algorithm for m > 4 is better than 1.75-competitive.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 110-118, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Note on Semi-online Machine Covering 111

1.1 Owur Results

We focus on semi-online algorithms for large m. We present a deterministic
algorithm with competitive ratio 11/6 < 1.834 for machine covering with any
number of machines. This is the first semi-online algorithm whose competitive
ratio is strictly smaller than 2.

We also present a lower bound showing that no deterministic algorithm can
have a competitive ratio below 43/24 > 1.791. This improves the previous lower
bound of 1.75 and is reasonably close to the upper bound.

2 Preliminaries

We are given m machines and n jobs with processing times (or size) p; > 0. A
schedule is an assignment of jobs to machines S : {1,...,n} — {1,...,m}.

The load of machine i is the sum of the processing times of the jobs assigned
to that machine, denoted by L; = Zjes—l(i) pj. A machine is L-covered (for a
number L) if its load is at least L in the given schedule (L; > L).

The objective is to maximize the minimal load of a machine, min; L;. An
optimal schedule for the given instance I is denoted OPT'(I) and its objective
value is denoted LOFT(I).

A semi-online algorithm A is given in advance the value LOFT = LOFPT(J)
(and the value m). Then the jobs of the instance I are scheduled one by one
as they arrive, without any knowledge of the following jobs. Its objective on
the given instance I is denoted LA(I). The algorithm is called R-competitive if
LOPT(I) < R- LA(I) for any instance I.

Note that, given the desired competitive ratio R, a semi-online algorithm
knows the covering level LOFPT /R which it needs to achieve. After some partial
sequence, if there exists an assignment with m’ of LOPT-covered machines, then
the algorithm actually needs to guarantee that it has at least m’ of LOFT/R-
covered machines. The reason is that the instance can continue with m — m/’
jobs with p; = LOPT TIntuitively, this means that if the number of machines is
sufficiently large, the exact value of m does not really matter.

Since the value LOFT is known to the algorithm, we may always assume that
the instances are rescaled so that LOFT and LOPT/R are convenient numbers
(as specified later in the paper).

We call a job huge if p; > LOPT/R. Every reasonable algorithm schedules
huge jobs on separate machines, because scheduling such a job in any other way
wastes the jobs that are assigned to the same machine.

3 The Upper Bound

We analyze our algorithm using an appropriate weight function—a classical
technique used for bin packing and related problems.

112 T. Ebenlendr et al.

A weight function w : Rt — RT assigns a weight to each job, based on its
processing time. The weight of job j is denoted w; = w(p;), the total weight of
jobs is denoted W = > ;W Finally, the weight of machine 7 is defined as

Wi: Z wj .

JEST(4)

We illustrate the use of weight functions on a greedy algorithm INIT which is
known to be (2 —1/m)-competitive [3]. Assume that LOPT = 2 —1/m (otherwise
scale the instance). FILL schedules all jobs greedily on one machine, called an
active machine, until it is 1-covered; then it uses a new active machine. As an
exception, huge jobs (with p; > 1) are always scheduled on a new machine. If
no new machine is available, all the remaining jobs are scheduled on the last
machine. (This description slightly deviates from [3], however, the behavior is
different only when all machines are already 1-covered, so it does not matter for
the analysis.)

We define the weight function as w; = 2 for huge jobs (i.e., for jobs with
p; > 1) and w; = p; otherwise. Now every (2—1/m)-covered machine has weight
W; > 2—1/m. Since OPT covers all the machines, it follows that W > 2m—1. On
the other hand, every 1-covered machine generated by FILL has weight W; < 2,
possibly with the exception of the last machine. Assume that only m’ < m
machines are 1-covered at the end of the algorithm. Then the 1-covered machines
have weight W, < 2 each, the last active machine has weight W; < 1, and
the remaining machines are empty. Thus the total weight is strictly less than
2m’ +1 < 2m — 1, a contradiction.

To improve upon FILL, we use two active machines in place of a single one.
This allows us to avoid the situation when the active machine is almost 1-covered
by small jobs and a job of size 1 — ¢ arrives, causing the final load to be close
to 2 in FILL.

Theorem 3.1. There exists a semi-online algorithm for machine cover which
is 11/6-competitive.

Proof. Without loss of generality, we assume that LOPT = 11 (otherwise scale
the instance). We design an algorithm A so that each machine is 6-covered.

The weight function and the total weight. We define the weight function as
follows:
W — 10 if p; > 6 (huge jobs)

77 | min(5, p;) otherwise

Every 11-covered machine has weight W; > 10: It contains either a single huge
job, or two jobs of weight 5 (with p; € [5,6)), or one job of weight 5 and some
jobs with p; < 5 and total weight at least 5, or only jobs with p; < 5 of total
weight at least 11.

Since OPT has all the m machines 11-covered, the total weight is at least
W > 10m.

A Note on Semi-online Machine Covering 113

The invariants of the algorithm. Our algorithm is designed so that at any time,
the total weight of 6-covered machines is at most 10 times their number. In
addition, the total weight of jobs on machines that are not 6-covered is strictly
less than 10.

Strictly speaking, the invariants may be violated when all the machines but
the last one are 6-covered. This final phase of the algorithm needs to be handled
separately.

The algorithm. Intuitively, we would like to design the algorithm so that the
weight of each machine is at most 10. However, it is not possible to maintain
this for each machine. In some cases the algorithm creates pairs of machines with
weights at most 9 and 11. The key is to try to create a machine with load (and
thus weight) between 2 and 4; upon arrival of a job with p; > 4 it is 6-covered
with weight at most 9.

The main part of the algorithm is described in Table 1. The algorithm main-
tains two active machines ¢ and h. All the other machines are at all times either
6-covered or empty.

The leftmost three columns describe four different types of configurations of
the algorithm by the conditions on the active machines. The remaining columns
describe where a new job is scheduled, depending on its size, and which actions
are taken to get back to one of the permitted type of configuration. If a new active
machine is requested by the algorithm and none is available, the algorithm enters
its final phase described later.

As a rule not included in Table 1, whenever a huge job (p; > 6) arrives, it
is scheduled on an empty machine, which is 6-covered afterwards. If no empty
machine is available, the algorithm enters its final phase described later.

Table 1. The main loop of the 11/6-competitive algorithm

Old configuration New Action New
Label Active machines job j Put j on config.
INIT Lp,=0 L;<2 p; <2 i if Li +p; <2 INIT
otherwise swap i < h GOOD
p; €1[2,4) h GOOD

p; >4 h BIG

BIG Lp>4 L;<2 p;j<2 i if Li +p; <2 BIG
W, <5 otherwise swap ¢ < h GOOD

pj > 2 h close h, get a new active ma- INIT

chine h

GOOD Ly, € [2,4) L; <6 pi < 4 7 if L; + pi < 6 GOOD

otherwise close i, get a new GOOD
active machine ¢

pj =>4 h SPEC
SPEC L, >6 L;<6 any 7 if Ly +p; <6 SPEC
W, <9 otherwise close i and h, get INIT

new machines ¢ and h

114 T. Ebenlendr et al.

Initially, the active machines are chosen arbitrarily; they are empty and the
configuration is INIT. BIG denotes a configuration in which the active machine
h actually always contains a single job with p; € [4,6) (as is easily verified by the
inspection of Table 1); this guarantees the condition W}, < 5. GOOD denotes the
safe configuration from the intuitive description above with L, € [2,4). Finally,
SPEC is a possible successor configuration of GOOD where h is 6-covered with
weight at most 9; we still consider this machine active even though no more jobs
are scheduled on it. The condition W; < 9 in SPEC follows since h contains
a single job with p; € [4,6) and possibly some other jobs with total load and
weight less than 4.

It is easily verified that when an active machine is closed in BIG or GOOD
configurations, its weight is at most 10. When both machines are closed in SPEC,
we have Wj, < 9 and W; < 11. Also the active 6-covered machine h in SPEC
has Wj < 9. Summarizing, the invariant concerning the weight of 6-covered
machines is always preserved. Finally, note that in each state, the weight of all
the not 6-covered machines is less than 10, as required by the second invariant.

The final phase. It remains to describe and analyze the final phase of the
algorithm.

If all the machines are 6-covered upon reaching the final phase, then schedule
the remaining jobs on any of the machines.

If a single machine is not 6-covered, schedule all the remaining jobs on this
machine. By the invariants, the 6-covered machines have total weight at most
10(m — 1), the total weight of all jobs is W > 10m, thus after all jobs are
scheduled, the last machine has weight at least 10 and thus it is 6-covered.

If two machines are not 6-covered upon reaching the final phase, then the new
machine was requested for a huge job. Schedule this huge job on the machine
with the smallest load and all the remaining jobs on the remaining not 6-covered
machine. Inspecting the possible configurations, the huge job is scheduled on an
active machine with load and weight at most 4. Consequently, similarly to the
previous case, after all jobs are scheduled, the last machine has weight at least
6 and thus is 6-covered.

In all the cases, at the end all the machines are 6-covered by the semi-online
algorithm, and we conclude that the algorithm is 11/6-competitive.

4 The Lower Bound

Theorem 4.1. Any deterministic semi-online algorithm for machine cover has
competitive ratio at least 43/24.

Proof. Let € be such that 1/e is a large integer, let m be sufficiently large (m =
44+ 6-43 /¢ works). Without loss of generality, assume that LOPT = 43. Assume
for a contradiction that there exists semi-online algorithm A with competitive
ratio 43/(24 +). We construct a counterexample, i.e., an instance for which
LA <24+

A Note on Semi-online Machine Covering 115

Table 2. The strategy of the adversary in phase 1. The machines marked by star are
newly covered (and thus removed from the configuration).

Old configuration New job Possible new configurations

0 5 {5}
(5} 15 {5,15}
{5}, {15}
(5,15} 24 {5,15,24}*, 0
{5,15}, {24} — the adversary wins
{5}, {15} 9 {5},{9,15}

{5,9}, {15} — the adversary wins

{5},{9}, {15} — the adversary wins
{5}, {9, 15} 19 {9,15,19}*, {5}

{9,15}, {5, 19} - the adversary wins

{9,15}, {5}, {19} — the adversary wins

We formulate the counterexample as a strategy for the adversary, based on
how the algorithm A scheduled the jobs so far. The adversary wins the game
when it is possible to modify the schedule produced by the algorithm A to get
some (possibly suboptimal) schedule which has more 43-covered machines than
is the number of (24 4 €)-covered machines of A. Strictly speaking, after this the
adversary continues with jobs of size 43 until all the machines are covered.

Finally, we can assume without loss of generality that the algorithm A never
schedules a job on any (24 + ¢)-covered machine. (A new machine is always
available as m is large.)

Throughout the proof, the content of a machine is written in braces as num-
bers denoting jobs of those sizes In addition, a number in square brackets denotes
a set of jobs with this total size. Thus, for example, {9, 9, 10, [15]} denotes a ma-
chine with total load 43 which contains two jobs of size 9, one job of size 10 and
some other jobs.

Phase 0. The instance starts with a sequence of 2 - 43 /¢ jobs of size 24. The
optimum can create 43/¢ of 43-covered machines, each containing two of the
jobs. Thus at the end of the phase, the algorithm A also has 43/¢ machines with
two jobs, i.e., {24,24}, as otherwise the adversary wins.

Phase 1. The goal of phase 1 is to make the algorithm A to create 4 - 43/ ma-
chines of form {5, 15,24} or alternatively 2-43 machines {9, 15, 19}. Table 2 shows
the strategy of the adversary for this phase. The table shows only nonempty ma-
chines that are not (24 + ¢)-covered, or are newly covered (marked by a star).
The first column describes possible configurations of the schedule of A in this
phase. The second column gives the job submitted by the adversary for each
configuration, and the last column describes all the possible configurations of A
after the new job is scheduled.

It is easy to verify that all the machines (24 + ¢)-covered by the algorithm A
so far are also 43-covered.

116 T. Ebenlendr et al.

The adversary stops in the situations marked in the table as winning. If
the configuration is {5,15}, {24} or {9,15}, {5,19} or {9,15}, {5}, {19} then the
load on the uncovered machines is more than 43, and the adversary wins by
reassigning these jobs on a single 43-covered machine (all the other machines
stay as in the schedule of A). In configurations {15},{9,5} and {15},{9}, {5}
the adversary submits two additional jobs, one of size 5 and one of size 4. The
algorithm A cannot cover another machine, but the adversary can convert the
schedule using one {24, 24} machine to a schedule with two machines {24, 15,4}
and {24,9,5,5}, so the adversary wins again.

If no such situation is encountered, then the adversary waits until the algo-
rithm A covers 4 - 43 /e machines by jobs {5,15,24} or 2 - 43 machines by jobs
{9,15,19}, and then continues with phase 2. Note that in the final configuration,
either there is no non-empty (not covered) machine, or there is one machine {5}.

Phase 2. During this phase, let i; and iy be the indices of the two uncovered
machines with the largest loads. Le., L;; is the maximal load of an uncovered
machine.

The phase proceeds in 43/ rounds. The adversary maintains a rearranged
schedule, starting with the schedule of the algorithm A after phase 1. After each
round, if the adversary has not yet won, it rearranges some of the machines from
the previous phases and the new jobs so that it has as many 43-covered machines
as A has (244 ¢)-covered. In addition, in each such rearrangement the adversary
saves at least one job of size ¢.

At the beginning of each round, we have some not covered machines with
loads at most 14, containing jobs of size ¢ and possibly one job of size 5. The
not covered machines in the rearranged schedule of the adversary may contain
jobs different from the jobs on the machines of A, but the loads are the same.

Now we describe one round of phase 2. The adversary submits jobs of size
e until L;; = 24. If L;, > 14, the adversary converts the schedule using one
machine {24,24} to create two machines {24, [19]} and wins. Otherwise L;, <
14 — € and the adversary submits a job of size X = 24 — L;, > 10 + €. The
algorithm A has to create a machine {X, [24]}, as otherwise the adversary uses
the jobs from not covered machines to create one 43-covered machine and wins.
Finally, the adversary submits jobs of size € until L;; > 5.

Now we describe how the machines are rearranged. First, if the newly covered
machine {X, [24]} contains the job of size 5, then this job is exchanged with 5/¢
jobs of size £ from machine ;. At this point, the machine {X,[24]} contains
only X and jobs of size €. Next, using this machine and some machines from the
previous phases, the adversary uses one of following conversions (see Figure 1
for an illustration of the conversion (1)):

(24,24}, 4x {5, 15, 24}, { X, [24]}
— {24,5,5,5, [4]}, 4 {24, 15, [4]}, {24, X,5,[4— €] },e (1)

2% {24, 24}, 2x {9, 15,19}, { X, [24]}
— 2x{24,19},2x {24, 15, [4]},{9,9, X, [15]}, [1] (2)

A Note on Semi-online Machine Covering 117

43 - 43
24
] 243243247324 1 1241241241241 24124%
24 24 4 3
5 A
1245155151151 151[24]¢ P54 15%15%15%15 X_
o 5 5
0 55\ 5\5 0 R e e i ST
M, My Mz M,y My Mg My My Mz My Ms Mg

Fig. 1. Conversion (1) of the schedule of the semi-online algorithm (left) to a better
schedule (right) with a saved job of size . Machine M; is from phase 0, machines
Mo, ... Ms from phase 1, and machine Mg is created in phase 2.

After this conversion, the number 43-covered machines in the schedule of the
adversary is equal to the number of (24 + ¢)-covered machines in the schedule
of A. So the adversary may continue with another round of the phase 2.

The number of machines covered in phases 0 and 1 guarantees that 43 /¢ con-
versions (1) or 43 conversions (2) are always possible in phase 2. When phase 2
is complete, the adversary saved at least 43 /¢ jobs of size . Now the adversary
uses these jobs to create a new 43-covered machine and wins.

As the adversary eventually always wins, we conclude that there is no 43/24-
competitive algorithm.

Acknowledgments

We are grateful to anonymous referees for many useful comments. T. Eben-
lendr and J. Sgall were partially supported by Institutional Research Plan No.
AV0Z10190503, by Inst. for Theor. Comp. Sci., Prague (project 1M0545 of
MSMT CR), and grant 201/05/0124 of GA CR.

References

1. N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for
scheduling on parallel machines. J. Sched., 1:55-66, 1998.

2. Y. Azar and L. Epstein. Approximation schemes for covering and scheduling on
related machines. In APPROX, volume 1444 of Lecture Notes in Comput. Sci.,
pages 39-47. Springer, 1998.

3. Y. Azar and L. Epstein. On-line machine covering. J. Sched., 1:67-77, 1998.

118 T. Ebenlendr et al.

4. L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly related
and identical parallel machines. Algorithmica, 39:43-57, 2004.

5. D. Friesen and B. Deuermeyer. Analysis of greedy solutions for a replacement part
sequencing problem. Math. Oper. Res., 6:74-87, 1981.

6. G. J. Woeginger. A polynomial time approximation scheme for maximizing the
minimum machine completion time. Oper. Res. Lett., 20:149-154, 1997.

SONET ADMs Minimization with Divisible
Paths

Leah Epstein'* and Asaf Levin?

! Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il
2 Department of Statistics, The Hebrew University, Jerusalem, Israel
levinas@mscc.huji.ac.il

Abstract. We consider an optical routing problem. SONET add-drop
multiplexers (ADMs) are the dominant cost factor in SONET /WDM
rings. The number of SONET ADMs required by a set of traffic streams
is determined by the routing and wavelength assignment of the traffic
streams. In this paper we consider the version where a traffic stream
may be divided into several parts and assigned different wavelengths. A
specific division may increase or decrease the number of ADMs needed
for a given input. Following previous work, we consider two versions. In
the arc version, the route of each traffic stream is given as input, and we
need to decide on divisions of streams, and then to assign wavelengths
so as to minimize the total number of used SONET ADMs. In the chord
version, the route is not prespecified, but is assigned by the algorithm,
and only after this step the divisions are done and wavelengths are as-
signed. The previously best known approximation algorithm for the arc
version has a performance guarantee of i = 1.25 whereas the previ-
ously best known approximation algorithm for the chord version has a
performance guarantee of g = 1.5. We improve both these results. We
present a gg = 1.24138-approximation algorithm for the arc version and
a g = 1.4-approximation algorithm for the chord version.

1 Introduction

WDM (Wavelength Division Multiplexing)/SONET (Synchronous Optical NET-
works) rings form a very attractive network architecture that is being deployed by
a growing number of telecom carriers. In this architecture each wavelength chan-
nel carries a high-speed SONET ring. The key terminating equipments are opti-
cal add-drop multiplexers (OADM) and SONET add-drop multiplexers (ADM).
Each vertex is equipped with exactly one OADM. The OADM can selectively
drop wavelengths at a vertex. Thus, if a wavelength does not carry any traffic
from or to a vertex, its OADM allows that wavelength to optically bypass the
vertex. Therefore, in each SONET ring a SONET ADM is required at a vertex
if and only if the ring carries some traffic terminating at this vertex. In this pa-
per we study the problem of minimizing the total cost incurred by the SONET
ADMs.

* Research supported by Israel Science Foundation (grant no. 250/01).

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 119-132, 2006.
© Springer-Verlag Berlin Heidelberg 2006

120 L. Epstein and A. Levin

Earlier studies of problems related to minimizing the total number of SONET
ADMSs focused on the case of wavelength continuity. I.e., the same wavelength
is used on all the links of the path established for a traffic stream. Such earlier
studies include [6,5,8,2,4,3]. We later describe some of their results. However,
Gerstel et al. [5] illustrated that the number of ADMSs can be reduced by allowing
a traffic stream to be locally transferred from one ADM in a wavelength to
another ADM in a different wavelength at any intermediate vertex. Such traffic
stream is divided. Calinescu and Wan [1] studied this problem. They showed that
allowing division of traffic streams may decrease the cost of the optimal solution
by a factor of ;, where the route of each traffic stream is prespecified. This
major decrease motivated the study of the problem. The paper [1] also proves
NP-hardness, and presents approximation algorithms for both versions where
the routing along the ring of each traffic stream is either prespecified or need to
be decided. The first version is called the arc version whereas the second version
is called the chord version. For the arc version [1] presents a i-approximation
algorithm, and for the chord version it presents a g-approximation algorithm.

For a pair of vertices a,b we denote by (a,b) the directed edge that connects
a to b, and we denote by {a, b} the undirected edge between the two vertices.

The ARC VERSION OF MINIMIZING THE NUMBER OF ADMS WITH DIVISION
(arc version) is defined as follows. We are given a set E of circular arcs over the
vertices 0,1,...,n — 1, where the vertices are ordered clockwise. A pair of arcs
(i,7), (k,1) is non intersecting if the clockwise path along the cycle 0,1,...,n —
1,0 that connects i to j and the clockwise path that connects k to [do not share
any arc of the cycle. A set S of arcs is non intersecting if each pair of arcs from
S is non intersecting. A division of an arc (a,b) is defined as a clockwise path
(that does not intersect itself) which connects a and b. A division of a subset S
of arcs is defined as a (multi) set of arcs resulting from the division of each arc
in S. A feasible solution is a partition of a division of E into non intersecting
subsets of arcs E1, Es, ..., E, (i.e., we find a division of E and also a partition
of it into non intersecting subsets). The cost of F; is the number of different
vertices of the ring that are endpoints of the arcs of E;. The cost of the solution
is the sum of the costs of F; for all i. The goal is to find a minimum cost feasible
solution.

The CHORD VERSION OF MINIMIZING THE NUMBER OF ADMS WITH DIVI-
SION (chord version) is defined as follows. We are given a set of undirected edges
(chords) E over the vertices 0,1,...,n— 1, where the vertices are ordered clock-
wise. First, we need to orient each edge {a, b}, i.e., to transform it to either (a, b)
or (b,a). Last, we obtain an instance of the (divisible) arc version problem that
we Solve.

The NON-DIVISIBLE ARC VERSION and NON-DIVISIBLE CHORD VERSION of
the problem are the variants of the arc version problem and the chord version
problem, respectively, where division of arcs or chords is not allowed. These
non-divisible problems were studied before in [5,6,8,2,4,3,7]. Calinescu and Wan
[2] provided a 3-approximation algorithms for both non-divisible problems. In

[4] we considered the non-divisible arc version problem and obtained a °-

SONET ADMSs Minimization with Divisible Paths 121

approximation algorithm. A different approximation algorithm of approximation
ratio '° + ¢ was given by Shalom and Zaks [7]. In [3] we considered the non-
divisible chord version problem and obtained a 17°-approximation algorithm as
well (using a different approach).

For an arc (i,7), we define its length as £(i,j) = j — ¢ mod n. For a subset
of arcs (a subgraph), the length of the subset (subgraph) is the total length of
its arcs. A chain is an open directed path of length at most n — 1, and a cycle
is a closed directed path of length exactly n. W.l.o.g. we can assume that the
arcs in each E; form a connected component (either a chain or a cycle). This
is so because if the arcs in F; are disconnected, then we can partition E; to its
connected components without increasing its total cost. Therefore, we ask for a
partition of F into cycles and (open) chains.

We define the deficiency of a vertex v, def(v), in the arc version in the fol-
lowing way. Let in(v) be the number of ingoing arcs of v, and let out(v) be the
number of outgoing arcs of V. Then, def(v) = }|in(v) — out(v)|. In the chord
version the deficiency of a vertex v is simply zero if v has an even degree, and
5 otherwise. The deficiency of a set of arcs (chords) S, def(S) is defined as
the sum of deficiencies over all vertices of the subgraph with arc (chord) set S.
These definitions appeared in [1]. Note that for a set of arcs or chords C, the
value |C|+def(C) is a lower bound on the optimal cost for this set, both in the
version of the problem where divisions are not allowed, and also in the divisible
problem that we study in this paper.

Algorithm Eulerian Rounding (ER) was introduced in [1] as well. For the
arc version ER works as follows: Let S be the set of arcs. Add a minimum size
set of fake arcs F' between pairs of vertices with non zero deficiency such that
def(SUF) = 0. This results in an Eulerian (not necessarily connected) graph.
Now choose an Eulerian tour, and divide it into def(S) (not necessarily valid)
chains and possibly some (not necessarily valid) cycles. In order to get valid
chains and cycles, we apply the following process. Consider a chain or cycle
which starts at a vertex x. All arcs in that chain or cycle, that contain the ring
vertex x, are divided into two arcs. Specifically, an arc (a,b) (such that z is on
the clockwise path along the ring from a to b) is divided into (a,x) and (z,b).
This converts the Eulerian tour into def(S) valid chains, and some valid cycles.

For the chord version ER works as follows. The set S is a set of edges. In
this case F' is a matching of odd degree vertices, and therefore def(S U F) = 0.
We choose an Eulerian tour, and we perform the previous algorithm in the two
possible directions of the tour. Once the tour is directed, we get a set of arcs,
and we apply ER for the arc version. It was shown in [1] that running ER in
both directions, and choosing the best solution produces a solution that costs at
most 3|S| + def(S).

Our results. We give improved upper bounds for both versions of the divisible
problem. In both cases we combine two algorithms, each of which performs well
on different classes of subgraphs.

For the arc version, we combine PIM and GP-ER into Arc-Combination (AC).
PIM was already introduced in [2] for the non-divisible problem. It removes cycles

122 L. Epstein and A. Levin

and then creates chains from remaining arcs. It does not divide arcs. GP-ER has
a detailed preprocessing phase, where small but dominant subgraphs are greedily
removed (very small subgraphs are removed optimally). Then, it runs ER on the
remaining instance. We prove that the performance guarantee of AC is at most
5o and at least .

For the chord version, we combine D-DAG and P-ER into Chord-Combination
(CC). The algorithm D-DAG was already introduced in [2] where it is called
Edge Avoidance Routing algorithm, and further discussed and used in [3]. This
algorithm orients the edges so that the resulting graph is acyclic, and then solves
this instance optimally. D-DAG does not divide any edge, but in the resulting
directed instance the optimal solution does not need to divide arcs, as shown in
Section 3.2. The algorithm P-ER combines the ideas of PIM and ER. It removes
cycles greedily (as PIM does), but runs ER (and not IM as PIM does) on the
remaining instance. We prove that the performance guarantee of CC is exactly
T=14.

5

2 Algorithms for the Arc Version

In this section we introduce algorithm Greedy Preprocessed-ER (GP-ER) for the
arc version and afterwards combine it with PIM to produce algorithm AC that
is shown to be a ;S-approximation algorithm. We first state some properties of
optimal solutions.

The following lemma appears as Lemma 3 in [1]. (The proof in [1] is not
complete as it fails to consider all cases, in the full version of this paper we
provide a complete proof.)

Lemma 1. For an input arc set E’, denote its optimal solution by OPTg:. Let
a,b,a be a two-arc cycle in £, then OPTr = OPTg\((ab),(b,a)} T 2-

By the above lemma, we see that it is possible to assume that the optimal solution
has a maximal number of two-arc cycles. These cycles can be found optimally
as a preprocessing step of any applied algorithm. We further characterize the
optimal solutions we would like to analyze.

A feasible solution SOL induces a partition of the arcs into an Eulerian sub-
graph and a set of mega-chains as follows: We consider the set of cycles and chains
used by SOL as a set of arcs in a directed auxiliary graph over {0,1,...,n—1}
where cycles are loops and a chain is a directed arc from its starting vertex to its
end vertex. In this directed graph we find a maximal subgraph in which the in-
degree of each vertex equals its out-degree. The remaining arcs define a minimal
set of chains such that each such chain is directed from a vertex whose out-
degree is greater than its in-degree, towards a vertex whose in-degree is greater
than its out-degree. Each such chain in the auxiliary graph corresponds to a
mega-chain in the original graph (by replacing each arc in the auxiliary graph
by its corresponding chain). Therefore, each mega-chain is composed of chains.
The remaining arcs in the original graph are the arcs of the Fulerian subgraph.
Note that the Eulerian subgraph does not need to be connected. Note that the

SONET ADMSs Minimization with Divisible Paths 123

number of mega-chains in SOL is independent of SOL, and is common to all
feasible solutions.

We omit the proof of the following lemma which characterizes the mega-chains
in OPT.

Lemma 2. W.l.o.g. each mega-chain in OPT has length at most n — 1.

2.1 Algorithm GP-ER

We are ready to define the first algorithm we use. The algorithm has several fast
preprocessing steps, and then it applies Eulerian Rounding. It is not difficult to
show that it runs in polynomial time. To be able to analyze the algorithm, we
need to know the exact number of mega-chains in OPT which consist of a single
arc. Since we do not have this information, we apply the algorithm for every
possible such value (between 0 and |E|), and choose the best solution we get.
Therefore, in the analysis, we can assume that this number, which we denote
M4, is known. We use two paramaters 0 < ps < 1 and 0 < pug < 1 which are
optimized later.

begin Algorithm GP-ER

Preprocessing phase:

1. Remove a maximum number of cycles each of them having exactly two arcs.

2. Construct the following bipartite graph B = (R, L, Eg): The right hand
side, R, contains the set of vertices whose in-degree in (V, E) is greater than
its out-degree, and the left hand side Lp contains the set of vertices whose
out-degree in (V, E) is greater than its in-degree. For an arc (u,v) € E,
such that both v € Rg and v € Lg, we add an edge to Ep between the
two corresponding vertices. The weight of an edge is simply the length of
the corresponding arc. Among all possible b-matchings of cardinality M C,
we find a maximum weight b-matching in B where the degree bound of a
vertex w is twice the deficiency of its corresponding vertex in (V, E). For each
edge in the optimal b-matching, we remove the arc between its corresponding
vertices.

3. As long as there exists a closed walk of three arcs (i.e., a circuit of three arcs,
if its total length is n then it is a cycle called also triangle, and otherwise its
length is 2n and we call it invalid triangle), remove such triangle or invalid
triangle. If we remove an invalid triangle, we divide one of its arcs and obtain
two cycles, each of them with two arcs.

4. As long as there exists a four arc cycle, remove such a cycle.

5. As long as there exists a two-arc chain of length at least us - n that connects
a vertex whose out-degree is greater than its in-degree, to a vertex whose
in-degree is greater than its out-degree, we remove such a chain of two arcs.

6. As long as there exists a three arc chain of length at least ps-n that connects
a vertex whose out-degree is greater than its in-degree, to a vertex whose
in-degree is greater than its out-degree, remove such a three arc chain.

Eulerian rounding phase: Apply Algorithm ER on the remaining instance.
end of Algorithm GP-ER

124 L. Epstein and A. Levin

2.2 Algorithm PIM ([2])

In this subsection we introduce two algorithms IM and PIM given in [2], the
second builds on the first, and later we will use the second algorithm. Both
algorithms do not divide arcs. In the previous analysis of these algorithms [2,4]
the quality of the resulting Solution was compared to an optimal solution of the
non-divisible arc version problem. This means that this analysis does not hold
for the divisible problem.

We first define the algorithm Iterative Matching (IM) (see [2]). The algorithm
maintains a set of valid chains of arcs P that covers E throughout its execution.
Initially, P consists of chains each of which is an arc in E. The fit graph F(P)
is defined as follows: its vertex set is P, and two of its vertices are connected
by an edge if the two corresponding chains have a common endpoint, and they
can be concatenated to form a valid chain. The algorithm constructs F(P), and
if its edge set is not empty, then it finds a maximum matching M in F(P).
Then, it merges each matched pair of chains of arcs in M into a longer chain.
When the edge set of F(P) is empty, P is the valid chain generation that is
returned as output. Calinescu and Wan [2] showed that the approximation ratio
of Algorithm IM for the non-divisible arc version problem is in the interval [3, 3].
These bounds were improved to the interval [2,5) (if two-arc cycles are not
removed as a preprocessing step) and the interval [194, >) (if this preprocessing
is performed) in [4].

Calinescu and Wan considered a variant of Algorithm IM: Algorithm Prepro-
cessed Iterative Matching (PIM) defined as follows:

1. Preprocessing phase: repeatedly remove cycles consisting of remaining arcs
until no more cycle can be obtained (the two-arc cycles are removed first).

2. Matching phase: apply Algorithm IM to the arcs remaining after the first
phase.

For the non-divisible arc version problem, they showed that Algorithm PIM
has an approximation ratio of at most 3, and at least 5. The lower bound was
improved to g in [4]. We apply PIM exactly as it is defined in [2], and therefore
it is a polynomial time algorithm.

2.3 Analysis of PIM and GP-ER

We fix an optimal solution OPT which has a maximal number of two arc cycles
(with no divided arcs) and each of its mega-chains has length at most n — 1.
Note that such a mega-chain is a chain of OPT. Such an optimal solution exists
by Lemmas 1 and 2. Consider first cycles of OPT with no divided arcs. For
i =2,3,4, let CY; be the number of cycles with 4 arcs and no divided arcs that
OPT has, and let CY be the total number of cycles in OPT with at least five
arcs in each and no divided arcs.

Consider next two-arc cycles of OPT such that each has exactly one divided
arc. A pair of such cycles, that have the two parts of an arc that is divided into
exactly two parts, is called an invalid triangle of OPT. Clearly, these two cycles

SONET ADMSs Minimization with Divisible Paths 125

belong to the Eulerian subgraph. We denote by ICY5; the number of invalid
triangles in OPT.

Consider the set of all arcs which belong to the Eulerian subgraph of OPT.
From this set remove all arcs that belong to cycles of OPT with no divided arcs
and all arcs that belong to invalid triangles of OPT. The total length of the
remaining arcs in this subset is denoted by L.

Consider next the sets of all arcs which are mega-chains which consist of
a single arc. We denote the total length of all these arcs by L;. Recall that
M (4 denotes the number of mega-chains with a single arc, and this is the exact
number of mega-chains with a single arc removed by Algorithm GP-ER.

In addition, we use the following notations.

— MC - the total number of mega-chains.

— MC%, MC¥ - the number of mega-chains of exactly two and three arcs, re-
spectively, with length in the interval [uon, n—1] and [ugn, n—1], respectively.
MCs, MC§ - the number of mega-chains with exactly two and three arcs,
respectively, and lengths less than uon and psn, respectively.

— MCy - the number of mega-chains with at least four arcs.

The ¢, s superscripts stand for long and short, respectively.

The length of Eisat most UBL, = (CY2+CY3+CY,;+CY) -n+ICY5-2n+
Ly + L+ (MC5+ MCS+ MCy) -n + puanMC5 + uznMCs.

Denote by A the number of cycles removed in step 1, B = M (4 - the number
of mega-chains removed in step 2, and L g the total length of these mega-chains.
C and D are the number of valid triangles and of invalid triangles removed in
step 3, respectively, F' - the number of cycles removed in step 4, G - the number
of mega-chains removed in step 5, and H - the number of mega-chains removed
in step 6.

Then, by the optimality of step 1 using Lemma 1, we get A = CY5. Moreover,
step 1 is performed optimally, not only in terms of number of removed cycles,
but in the sense that the removed cycles are exactly the same one as OPT
has. Therefore this step cannot affect the next steps in any way. Due to the
optimality of step 2 in terms of removed total length, we get Ly > L;. By
definition, B = M C}.

The greedy selection rule at the step 3 implies that B+3C+3D > ICY3+CYs5.
This holds since step 3 is not over until there are no closed walks of three arcs
left. Each removed (valid or invalid) triangle destroys at most three (valid or
invalid) triangles of OPT. Each chain removed at step 2 can destroy at most one
cycle.

The greedy selection rule at the step 4 implies that B + 3C' + 3D + 4F >
ICY; + CY3 + CYy. As before, each removed chain in Step 2 destroys at most
one structure among valid or invalid triangles, and four-arc cycles. Among the
structures of OPT that are left after step 2, each structure removed at step 3
destroys at most three structures such that each of these is either a (valid or
invalid) triangle of OPT or a four arc cycle. Step 4 is not over until there are no
valid four arc cycles. Each such removed cycle can destroy up to four four-arc
cycles of OPT.

126 L. Epstein and A. Levin

In the next step, long mega-chains of two arcs are removed. This step, unlike
the two previous ones, can stop even if there still exist in the input long mega-
chains of OPT with two arcs. The reason is that if the deficiency of at least one
endpoint of such a chain becomes zero (as a result of removals in this step or
before), we do not remove this mega-chain.

In step 2, the removal of a single mega-chain can destroy at most two mega-
chains that belong to M C%. Consider such an arc (a, b). If (a, b) does not partic-
ipate in any chain of OPT in M C$, then it can still cause a reduction of } in the
deficiencies of a and b, and thus a reduction in the amount of mega-chains that
needs to be removed for each of them by 1 each. Otherwise, assume without loss
of generality that (a,b) participates in the mega-chain a — b — ¢ of OPT. In this
case the following two things happen. The mega-chain a — b — ¢ is destroyed,
and on top of that, there may be a decrease of ; in the deficiency of b, which
can lead to a decrease of 1 in the number of mega-chains to be removed. In the
first case, it could still be that (a,b) destroys also a cycle that could be removed
in step 3 or step 4. The argument regarding step 5 is similar, each removed
mega-chain can prevent from two other mega-chains from being removed. Note
that steps 3 and 4 cannot change the deficiency of any vertex, therefore the only
way that they can destroy a mega-chain is by removing one of its arcs as an
arc in a removed structure. Therefore, each removed structure of step 3 may
destroy at most three mega-chains, and of step 4 at most four. We conclude that
3B+ 3C +3D +4F +4G > ICY3 + CY3 + CYy + MCS.

In the very last step, we remove long mega-chains of three arcs. We can see
that each arc removed at step 2 may destroy or prevent from removal up to three
mega-chains at the current step. That is since on top of reducing the deficiency
for the endpoints of this arc, it can be the middle arc in a mega-chain of OPT.
The situation regarding the cycle removal steps is as before, since they do not
change deficiency. A removed chain of the previous step can destroy at most two
chains by using their arcs, and two additional chains by decreasing deficiency.
A removed chain of the current step is has a similar effect, but can destroy
up to three chains by using their arcs, and two additional chains by decreasing
deficiency. We get 3B +3C +3D +4F +4G+5H > ICY3+ CY3+CYy+ MCS +
MCE.

We note that the cost of the approximated solution is at most the sum of
|E| + MC and the cost of arc divisions, that is one per n units of length. This
holds since chains are produced by the algorithm at each time only between pairs
of vertices with non zero deficiency. The number of chains is thus no larger than
the sum of deficiencies, which is a lower bound on M C. Let UB/, be an upper
bound on the total length of arcs which are not removed in the pre-processing
step.

Therefore, the cost of the approximated solution of GP-ER satisfies GP-ER <
|E| +MC + USIL + D. To be able to use this bound, we would like to find an
upper bound on the value U B} 4+ Dn. Since we have an upper bound on U By, we
can get this from a lower bound on the length of removed structures. This length
isatleast An+ Lp+Cn+2Dn+ Fn+ psGn+ usHn, therefore we need a lower

SONET ADMSs Minimization with Divisible Paths 127

bound on An+ L + Cn + Dn + Fn + usGn + usHn. Since we have A = CY;
and Lp > Ly, we focus on Cn + Dn + Fn + usGn + pusHn. Let o, 5,7 and 0
be non—negative values. We further have the requirements a + 8+~ + 4§ < ;,,
BAr+6< |, y+0 <120 <" po+~+6 <1, ug+6 < 1. Using these values
as multlphers for the hnear 1nequa11t1es above, we get the following.

a(B+3C +3D)+ 3(B+3C+ 3D +4F)
+v(BB+3C+3D+4F +4G)+6(3B+3C+3D +4F + 4G + 5H)
> (ICY3 + CY3)(a+ B+ +8) + CYs(B+~y+) + MC5(y +8) + MC4s.

The left hand size of the above expression is

a(B+3C+3D)+ ((B+3C+ 3D +4F)
+v(BB+3C+3D+4F +4G)+6(3B+3C+3D +4F + 4G + 5H)
<MCi(a+B+3v+30)+C+ D+ F+ pueG+ usH.

Therefore, we have An+ L+ Cn+ Dn+ Fn+ puoGn+pusHn > CYon+ Ly +
(ICY3 + CYs)n(a+ B+~ +8) + CYan(B +~ +) + MCin(y + 6) + MC4né —
MCi(a+ B+ 3y + 39).

Finally, we derive the following corollary.

Corollary 1.

GP-ER<|E|+ MC+CY3(1—a—-03—7—=0)+ICY32—a—3—~v—90)
+CY (1 =B —7—0)+CY + MC.(1 —~ — &) + MCL(1 —) + MCy

+/L2MC§+M3MC§+MC1(O[+ﬁ+3’Y+3(5)+

We denote by E’ the set of arcs in OPT (after dividing some of the arcs in the
original set F). Then, OPT = |E’'| + MC.

We allocate the cost of GP-ER among the subgraphs of OPT (a cycle with or
without divided arcs in the Eulerian subgraph, or a mega-chain). To do so, we
define a size of an arc in E’. We use a parameter s = § If the arc was already in
E (i.e., if the arc is not a result of division), then its size is one If it is a result
of d1v1510n of an arc of F into k parts we define its size to be . We will change
the definition of size for arcs with size 2 in the following way. Conslder a pair of
twin arcs e, e’ € E’ that result from dividing a common arc of E (and each has
size). Consider the subgraphs of OPT that contain e and ¢’. If at least one
of these subgraphs contains also another arc whose size is less than one, then
we pick either e or ¢’ that belongs to such a subgraph, and we increase its size
to s whereas we reduce the size of its twin arc to 1 — s. We apply this as long
as there exists such pair with at least one of them in a subgraph that contains
another divided arc. If there is a pair of twin arcs e, e’ such that e is contained
in a mega-chain and €’ is contained in the Eulerian subgraph of OPT, then we
increase the size of e to s and decrease the size of ¢/ to 1 — s. We apply this
procedure for all possible pairs. At the end of this procedure, each arc with size
5 has its twin arc with size also j and such that the subgraphs of OPT that

128 L. Epstein and A. Levin

contain them belong to the Eulerian subgraph and they do not have any other
divided arc.

We allocate the cost of GP-ER as follows: for each subgraph of OPT we
initialize its allocated cost as the total size of its arc set (this will allocate |E|
of the total cost). For each mega-chain of OPT we increase its allocated cost by
one (in order to take into account the term M ('), and apply the following.

For a three arc cycle of OPT we increase its allocated cost by 1 —a— 3 —~v—4.
For a four arc cycle of OPT we increase its allocated cost by 1 — 5 — v — 4. For
a one-arc mega-chain of OPT we increase its allocated cost by o+ 3 + 3y + 36.
For a two-arc mega-chain of OPT we increase its allocated cost by 1 —~ —§. For
a three arcs mega-chain of OPT we increase its allocated cost by 1 — 4. For a
mega-chain of OPT with at least four arcs, we increase its allocated cost by 1.
The remaining cost corresponds to the part of the Eulerian subgraph that does
not consist of cycles. For each such cycle in OPT (that contains divided arc), we
check if it is part of a pair that results from division of an arc along an invalid
triangle. If so we increase the allocated cost of such cycle by >~ 5~77 and
otherwise we increase the allocated cost of the cycle by 1.

Therefore, by Corollary 1, the total allocated cost is at least the cost of the
solution returned by GP-ER. Next, we do a similar allocation for PIM. We do
not allocate the real cost of PIM but the cost of the following algorithm that is
inferior to PIM (i.e. its cost it at least the cost of PIM). This algorithm removes
cycles in the exact same way as PIM does. Next, it considers each cycle and
chain of OPT. A valid matching is created on the arcs which are not removed
in the preprocessing step. The cost of removed cycles together with the cost
of this matching is an upper bound on the cost of PIM. This holds since PIM
finds a maximum size matching on the remaining arcs (and continues further
to combine chains afterwards) whereas we define some valid (not necessarily
maximum) matching on the same arc set. The first step in creating our matching
is removal of all divided arcs. We leave these arcs unmatched. After removal of
cycles and divided arcs from OPT, we are left with chains. A cycle where i arcs
were removed results in at most ¢ chains. A chain where i arcs were removed
results in at most <+ 1 chains. Note that according to the definition of PIM, each
cycle has at least one removed arc. PIM does not apply IM until the instance
does not contain cycles (composed of non-divided arcs). If a cycle has a divided
arc, then this arc is removed as well. Clearly, we are left with chains only at this
time. Next, each remaining chain is partitioned into pairs of consecutive arcs
that form the matching. Each chain may have one unmatched arc (the last one).
The cost per divided arc is 2 as it is unmatched. However, since it is divided, we
allocate a unit cost for every part of it, and this covers the cost of these arcs.
The cost per arc that is removed in the preprocessing is 1 as well. The cost for
a remaining chain of j arcs is " if j is odd, and ? if j is even. The cost
of a component of OPT is simply the sum of the allocated cost of its removed
arcs and the cost of the matching defined on its remaining arcs. Therefore, the
allocated cost of a cycle of OPT with k arcs, where ¢ arcs were removed, is at
most i + 3(k — 7)/2 + /2 = 3k /2. The allocated cost of a chain of OPT with &

SONET ADMSs Minimization with Divisible Paths 129

arcs, where i arcs were removed, is at most i +3(k—1)/2+(i+1)/2 = (3k+1)/2.
We need to consider six special cases where the cost allocated to a cycle or chain
is actually slightly smaller.

1. A cycle of OPT with two arcs, none of them being a divided arc. T'hese cycles
are removed optimally, and therefore the cost allocated to each of them is 2.

2. A chain of OPT which consists of a single divided arc. We allocated a unit
cost to this chain.

3. A cycle of OPT with three arcs, none of them being a divided arc (this was
considered in [4]). If it has a single removed arc, the remaining chain has
an even number of arcs (two), and therefore the allocated cost is 4. If it has
two removed arcs, then the remaining chain has cost 2, and the total cost is
again 4.

4. A cycle of OPT with five arcs, none of them being a divided arc (this was
considered in [4]). If it has a single removed arc, the remaining chain has an
even number of arcs (four), and therefore the allocated cost is 7. If it has
two removed arcs, three arcs are left, and there is always an adjacent pair
of arcs among these three, thus the arcs are split into two chains, of lengths
1 and 2, and the total cost is again 7. If it has three or more removed arcs,
then the cost per remaining arc is not larger than 2, and thus the total cost
is no larger than 7.

5. A chain of OPT with two arcs, none of them being a divided arc. If no arcs
are removed, the allocated cost is 3 (the two arcs are matched exactly as in
OPT). If one of them is removed, then the cost for the other one is 2 and in
total 3.

6. An invalid cycle of OPT with four arcs. This is a pair of cycles of OPT, each
of which contains a single divided arc, and the two divided parts are the
only two parts of the same original arc. Considering the resulting cycles of
OPT we get two cycles, one of three arcs and the other one of two arcs. The
cost of PIM for the two-arc cycle is at most 3. In the longer cycle, if at least
one arc is removed in the pre-processing, then the total cost is at most 4.
Otherwise, a two-arc chain can be built from the two non-divided arcs, and
the cost of the longer cycle is 4 again. This gives a total of at most 7.

2.4 Algorithm Arc-Combination

Algorithm AC is defined as applying both PIM and GP-ER and choosing the
better solution. The parameters used for GP-ER are s = pis = pu3 = 3, a = |,
B =% v=0and = . This algorithm has a performance guarantee that is

better than i as we establish in the following theorem.
Theorem 1. Algorithm AC has an approximation ratio of at most ;g ~ 1.24138.

The proof is done by a careful analysis of the costs allocated by each algorithm
to each subgraph of OPT. In the full version of the paper, we show an example
where the approximation ratio of AC is exactly '}, therefore the approximation
ratio of AC is at least) ~ 1.22222.

130 L. Epstein and A. Levin

3 Algorithms for the Chord Version

In this section we study the chord version of the problem. We develop a g
approximation algorithm that improves the earlier ‘;’-approximation algorithm
of [1]. Our algorithm is composed of a pair of algorithms: a new algorithm named
P-ER and algorithm D-DAG that was studied in [2,3] for the non-divisible chord

version problem.

3.1 Algorithm P-ER

In this subsection we introduce algorithm Preprocessed-ER which is a version
of algorithm ER for the chord version (see Section 1). The preprocessing phase
works as follows. Remove valid cycles one by one until the instance contains no
valid cycles. Then, perform algorithm ER.

Therefore, the algorithm is composed of a preprocessing step that was sug-
gested in [2] for PIM, and afterwards applying algorithm ER.

Let S be the input set of edges. Let S; be the set of edges that we remove
during the preprocessing phase, and let So = S\ S;. Since the preprocessing
phase removes cycles only, we have def(S) = def(S1). The cost of the cycles
removed in the preprocessing phase is |Si|. The cost of the solution returned
by ER when applied to S, is 3|S2| + def(S2). Therefore, the total cost of the
solution returned by algorithm P-ER satisfies P-ER = |S| + 5|Sa| + def(S).

Consider a given optimal solution. Let C H; denote the number of chains in
the optimal solution which contain 4 (original or divided) edges. Let C; denote
the number of cycles in the optimal solution which contain 4 (original or divided)
edges. We are interested in the performance of P-ER as a function of the values
CH; for i > 1 and C; for i > 2.

We charge the cost of P-ER to the components of OPT so that the total
charged amount is at least the cost of P-ER.

Each edge of S; is charged one unit, and each edge of Sy is charged 3/2 units.
If an edge was divided into k£ parts in OPT, each part is charged by an equal
share (i.e., 1/k) so that the total is the amount charged for the edge. On top of
that, each chain of OPT is charged by 1. In this way we cover at least the cost
of def(S) that we have (the number of chains in OPT is at least this number).
We are ready to prove the following lemma.

n i n .
Lemma 3. The cost of P-ER is at most 2 (3; + 1) CH; + Z (32Z — é) C;.

1=1 =2

Proof. Consider a cycle of OPT with p (original or divided) edges, we show that
its charged cost is at most 321’ - ; We show that for a chain of OPT with p
(original or divided) edges, its charged cost is at most 32?’ + 1.

Consider first a chain of OPT with p edges. The charged cost of each (original
or divided) edge is at most 3/2. Recall that we charge an extra unit for each
chain, therefore we charged at most 3p/2 + 1 in total to the chain.

It is left to consider cycles of OPT. On one hand if the cycle consists of original
edges only, then it has at least one edge in 57, since otherwise it would have been

SONET ADMSs Minimization with Divisible Paths 131

removed before P-ER completes the preprocessing. This edge is charged by 1,
and the other edges are charged by at most ; We conclude that the charged cost
isat most 3(p—1)/2+1 = 3p/2—1/2. On the other hand, if the cycle has at least
one divided edge, then its charged cost is at most 3(p—1)/2+3/4 = 3p/2 —3/4,
since at least one of its edges is charged a cost of at most j, and the other edges
have charged cost of at most g each. The worst case (i.e. with higher charged
cost) is 3p/2 —1/2.

3.2 Algorithm Directed-DAG

In this subsection we suggest to use algorithm Directed-DAG (D-DAG) that was
previously considered by [2,3] for the non-divisible chord version problem.

Algorithm D-DAG. Choose an arbitrary edge e of the ring e.g. the edge
(n—1,0). Direct all edges into arcs such that they do not traverse e. The resulting
instance is a directed acyclic graph, whose topological order is 0,1,...,n — 1.
Solve this instance optimally (for the non-divisible version) using the Greedy
Sweeping algorithm as in [5]. For completeness, we describe the Greedy Sweeping
algorithm. This procedure starts with opening a new chain for every arc starting
at 0. Then, for every vertex in i = 2,...,n — 1 (in this order), it merges the
existing chains which end at the vertex i with arcs starting at 7. A new chain is
opened for every arc starting at vertex ¢ that has not been merged.

Note that D-DAG does not divide any chords. We now show that given a
directed acyclic graph whose topological order is 0,1,...,n — 1, there exists
an optimal solution for the chord version problem that does not divide any
edge. Consider a solution where an edge f is divided into at least two arcs, two
of which are (a,b) and (b, c¢). Consider the two chains in which the two arcs
participate (if they belong to a common chain, there is no reason for division).
Let x and y be the left endpoints, and z and ¢ the right endpoints, respectively.
We create a pair of new chains in the following way. We use the sub-chain from
x to b, and concatenate the sub-chain from b to t to it. The other chain that
we create, consists of the two remainders, i.e. the sub-chain from y to b and the
sub-chain from b to z. In the first created chain, we no longer need an ADM at
b, and therefore the cost of the solution is reduced by 1. Therefore, we obtain a
contradiction to the optimality of the original solution. Therefore, as we claimed
an optimal solution does not divide any arc in the resulting instance.

Let OPT be the value of the optimal solution for the original instance. Let
OPT’ be the value of the optimal solution for the directed instance. Note that
each cycle and chain of OPT contains at most one edge that traverses the ring
edge e. Therefore, by directing the edges, a cycle of OPT is partitioned into two
chains. A chain of OPT may be partitioned into at most three chains in this
process.

The proof of the following lemma appears in the full version.

Lemma 4. The cost of D-DAG is at most > (i +3)CH; + > (i +2)C;.
=1 =2

?

132 L. Epstein and A. Levin

3.3 Algorithm Chord-Combination

Algorithm Combination (CC) runs both P-ER and D-DAG, and chooses the
cheaper solution.

Theorem 2. The approzimation ratio of CC is exactly g =14.

The upper bound proof is based on the analysis in the previous sections. The
complete proof can be found in the full version of the paper.

4 Conclusion

‘We presented improved algorithms for the divisible ADM minimization problem
on rings, both for the arc version and the chord version. Obtaining better approx-
imation algorithms is left as future work. An interesting open problem is whether
the (divisible) arc version is actually easier than the (divisible) chord version.
In the non-divisible problem, the current best known upper bounds are equal
(though achieved by different algorithms using different approaches). The same
question can be asked there as well; which version is harder to approximate?

References

1. G. Cilinescu and P.-J. Wan. Splittable traffic partition in WDM/SONET rings to
minimize SONET ADMSs. Theoretical Computer Science, 276(1-2):33-50, 2002.

2. G. Cailinescu and P.-J. Wan. Traffic partition in WDM/SONET rings to minimize
SONET ADMs. Journal of Combinatorial Optimization, 6(4):425-453, 2002.

3. L. Epstein and A. Levin. The chord version for SONET ADMSs minimization. The-
oretical Computer Science. To appear.

4. L. Epstein and A. Levin. Better bounds for minimizing SONET ADMs. In Proc.
of the 2nd Workshop on Approzimation and online Algorithms (WAOA2004), pages
281-294, 2004.

5. O. Gerstel, P. Lin, and G. Sasaki. Wavelength assignment in a WDM ring to
minimize cost of embedded SONET rings. In INFOCOM1998, volume 1, pages
94-101, 1998.

6. L. Liu, X.-Y. Li, P.-J. Wan, and O. Frieder. Wavelength assignment in WDM rings
to minimize SONET ADMs. In INFOCOMZ2000, volume 2, pages 1020-1025, 2000.

7. M. Shalom and S. Zaks. A 10/7 + ¢ approximation for minimizing the number of
adms in sonet rings. In Proc. of the First International Conference on Broadband
Networks (BROADNETS’04), pages 254-262, 2004.

8. P.-J. Wan, G. Calinescu, L. Liu, and O. Frieder. Grooming of arbitrary traffic
in SONET/WDM BLSRs. [EEE Journal on Selected Areas in Communications,
18:1995-2003, 2000.

The Conference Call Search Problem
in Wireless Networks

Leah Epstein'* and Asaf Levin?

! Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il
2 Department of Statistics, The Hebrew University, Jerusalem, Israel
levinas@mscc.huji.ac.il

Abstract. Cellular telephony systems, where locations of mobile users
are unknown at some times, are becoming more common. Mobile users
are roaming in a zone. A user reports its location only if it leaves the zone
entirely. The Conference Call Search problem (CCS) deals with tracking
a set of mobile users in order to establish a call. To find a single roaming
user, the system may need to search each cell where the user may be
located. The goal is to identify the location of all users, within bounded
time, satisfying some additional constraints on the search scheme.

We consider cellular systems with n cells and m mobile users (cellu-
lar phones). The uncertain location of users is given by m probability
distribution vectors. Whenever the system needs to find the users, it con-
ducts a search operation lasting at most d rounds. A request for a single
search step specifies a user and a cell. In this search step, the cell is
asked whether the given user is located there. In each round the system
may perform an arbitrary number of such requests. An integer number
B > 1 bounds the number of distinct requests per cell in every round.
The bounds d and B result from quality of service considerations. Every
search step consumes expensive wireless links, which motivates search
techniques minimizing the expected number of requests thus reducing
the total search costs.

We distinguish between oblivious, semi-adaptive and adaptive search
protocols. An oblivious search protocol decides on all requests in ad-
vance, and stops only when all users are found. A semi-adaptive search
protocol decides on all the requests in advance, but it stops searching for
a user once it is found. An adaptive search protocol stops searching for
a user once it has been found (and its search strategy may depend on
the subsets of users that were found in each previous round). We estab-
lish the difference between those three search models. We show that for
oblivious “single query per cell” systems (B = 1), and a tight environ-
ment (d = m), it is NP-hard to compute an optimal solution (the case
d = m = 2 was proven to be NP-hard already by Bar-Noy and Naor) and
we develop a PTAS for these cases (for fixed values of d = m). However,
we show that semi-adaptive systems allow polynomial time algorithms.
This last result also shows that the case B =1 and d = m = 2 is poly-
nomially solvable also for adaptive search systems, answering an open
question of Bar-Noy and Naor.

* Research supported by Israel Science Foundation (grant no. 250/01).

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 133-146, 2006.
© Springer-Verlag Berlin Heidelberg 2006

134 L. Epstein and A. Levin

1 Introduction

Cellular phone systems allow us to contact and talk to people that are not
residing in pre-determined locations. In systems where a user reports its new
location each time it moves to a new cell, the task of finding the user is simple.
Many existing systems allow the users to report their locations more rarely.
Furthermore, future systems are planned to have more and smaller cells, which
makes it infeasible for a user to report each time it crosses a border between a
pair of cells.

The Conference Call Search problem (CCS) deals with establishing wireless
conference calls under delay and bandwidth constraints. The goal is to establish
a conference call between m roaming users in a cellular network consisting of n
cells. The search for the users places another step in the process of establishment
of the conference call. I.e., the system needs to find out to which cell each user
is connected at the moment. Using historical data the system has an a-priori
assumption of the likelihood of each user to reside in each cell. This is represented
by a probability vector for each user describing the probabilities for the system
to find the user in each cell. We denote by p; ; the probability to find user 4 in
cell j. Following previous work [1], we assume that p; ; > 0 for all values of 7, j.
We assume that each user is connected to exactly one cell in the system and
that the locations of the different users are independent random variables. The
tool for finding the users are search requests. Given a request for a user ¢ and
a cell j, the system pages cell j and asks whether user i is located there. Delay
constraints limit the whole search process into d synchronous search rounds (such
that 1 < d < mn). Bandwidth constraints limit the number of requests per cell in
each round to at most a given integer number B such that 1 < B < m. Both delay
and bandwidth constraints are motivated by quality of service considerations. We
are interested in designing search protocols which efficiently utilize the wireless
links, i.e. given the constraints, minimize the expected cost of the search, where
each search request incurs a uniform cost of 1.

Note that even if at some time it is already clear that a given user must be
located in a specific cell, (i.e., this user was paged in all other cells and was not
located there), we still need to page this user in the cell where it is located in
order to be able to initiate a communication link.

We consider three types of search protocols. An oblivious search protocol
makes a full plan of search requests for d rounds, and does not change it. It
stops completely if all users are found. We can view this protocol as one where
we are not notified when a single user was located, but only at the time that all
of them were found. A semi-adaptive search protocol makes a full plan of search
requests for d rounds, and does not change it, however once a user is found we
stop search for it. An adaptive search protocol decides on the search requests per
round after it is notified which users were found in the previous round. It never
continues a search for a user that has already been found. As one can imagine
an optimal adaptive search protocol is much more complex than the optimal
oblivious search protocol or the optimal semi-adaptive search protocol, as it has

The Conference Call Search Problem in Wireless Networks 135

to define the search strategy according to the subsets of users that were found
in each of the previous rounds.

We define a tight instance of the conference call search problem to be an
instance where B = 1 and d = m. To motivate our study of tight instances we
note that the case of B = 1 is the elementary case where each cell can be asked
about a single user in each round. Clearly this means that the process of finding
all users may take up to m rounds. In order to minimize the worst case delay, we
require that all users are found within exactly m rounds (i.e. d = m). Note that
when B = 1 then d = m is the minimum number of rounds that enables a feasible
solution to the problem. So one may consider the restriction to tight instances
to have a primary goal of minimizing the worst case delay and minimizing the
maximum load on a cell within a particular round, and a secondary goal that
is to minimize the consumption of wireless bandwidth defined as the expected
number of requests.

Previous work. The paper [2] introduced the model where search requests for
different users for the same cell are made separately (i.e., we can not ask a cell
what is the subset of the users that are currently connected to it). They showed
that the case B = 1, d = m = 2, is NP-hard for oblivious search protocols. It was
left open to find out whether the same case is NP-hard for the adaptive search
protocol as well. A similar model was introduced by Bar-Noy and Malewicz [1].
In that model once a cell is requested in some round, it does not search for a
single user (or a limited number of users), but outputs a list of all users in that
cell. The paper focuses on oblivious search techniques. It is shown in that paper
that for any constant number of users (m > 1,d > 1), and any constant number
of rounds 1 < d < n, the problem is NP-hard. Note that the problem for a single
user, which is equivalent to the problem studied in this paper in this case, is
polynomially solvable using a simple dynamic programming [5,6]. Bar-Noy and
Malewicz [1] suggested a simple algorithm which combines users and reduces to
the algorithm for the case m = 1. This is a g-approximation form =d =2 and
.5y ~ 1.581977-approximation for other values of d,m. In a previous paper [3]
we designed a PTAS for that last problem. The PTAS is defined for the oblivious
search model, but can be modified easily to work for the adaptive search model
as well.

Paper outline. In Section 2 we prove that finding an optimal oblivious search
protocol of a tight instance is NP-hard for all fixed values of d > 2. This last
result extends an earlier result of Bar-Noy and Naor [2] for d = 2. We also
show that if d is a part of the input, then finding an optimal oblivious search
protocol of a tight instance becomes NP-hard in the strong sense. In Section
3 we present our PTAS for oblivious search problems that are tight. We first
present a relatively simple PTAS for the case d = m = 2 and afterwards we
present a more complicated PTAS for an arbitrary constant d = m. Finally,
in Section 4 we show that computing an optimal semi-adaptive search protocol
for tight instances where the number of users is a constant, can be done in a
polynomial time. This last result shows the barrier in the tractability of the

136 L. Epstein and A. Levin

conference call search problem between the oblivious and semi-adaptive search
protocols; the first is NP-hard whereas the second is polynomially solvable. The
case of semi-adaptive search protocol with d = m = 2 also implies a polynomial
time algorithm for computing an optimal adaptive search protocol.

2 NP-Hardness for the Oblivious Problem

We recall that Bar-Noy and Naor [2] proved that finding the optimal oblivious
search protocol is NP-hard for B =1 and d = m = 2. In this section we extend
this result to the general tight case.

Theorem 1. Finding an optimal oblivious search protocol is NP-hard even when
restricted to tight instances with d = m rounds and B = 1 for all fized values of
d>2.

Proof. The claim for d = m = 2 is proved in [2]. We prove the claim for d > 3
using a reduction from the PARTITION problem (see problem SP12 in []). In this
problem we are given N integer numbers a(1),...,a(N), such that Z a(i) =28

for some integer S > 2, and the question is whether there exists a subset J €
{1,..., N} such that Z a(i) = S. We create an instance of the oblivious search

ieJ
problem as follows. Let 6 > 0 be a small positive value such that § < ¢ 52 42+ There
are N+m—2cells, ¢, ...,cn+m—2. The (identical) probabilities of the first two

users are as follows. The probability for cell ¢;, j < N is p; J =p2;=(1-0)%% a(7)
The probability of every other cell j > N isp; ; =p2; =, ° 2 As for the other
m — 2 users, user i (3 < ¢ < m) has probability of 1 — ¢ in cell i + N — 2
(piitN—2 = 1 —0) and probability p; ; = for all j # i + N — 2. This
completes the description of the reduction.

We upper-bound the cost of an optimal oblivious search protocol in case there
exists an exact partition (i.e., the PARTITION instance is a YES instance). Let

J be the subset of {1,..., N} such that " a(i) = S. In the first round, the
i€J

requests are as follows. The cells in J are asked about the first user and the cells

in {1,...,N} — J are asked about the second user. Note that }_ a(i) = S as

8
N+m—3

¢ J
well. Each other cell N + k is asked for user k + 2. Recall that thegprobabﬂity of
this user and cell is 1 — 4. In the second round, the cells in J are asked about the
second user. The cells in {1,..., N} —J are asked about the first user. All other
search requests are made in some arbitrary order. The probability to find each
one of the first two users in the first round is exactly * 5 . The probability to
find any other user in the first round is exactly 1 — 6. Therefore, the probability
to find all the users in the first round is “‘f)m, and so the probability to have
a second round is 1 — (1’4‘5)”1‘ For every user, the probability to find it within

the first two rounds is at least 1 — §. Therefore, the probability to find all the
users within the first two rounds is at least (1 —)™, and thus the probability

The Conference Call Search Problem in Wireless Networks 137

that the search will last at least three rounds (and at most m rounds) is at most
1 — (1 —4)™. We conclude that the total cost is at most

n+n (1 _a _46)m> +n(m-2)(1-(1-4§")<

3 mo n 2 n n
n+n<4+ 4 >+nm(m2)5§ 4 +nmd < 4 +852
where the first inequality holds since (1 — §)™ > 1 — md, the second inequality
follows by simple algebra and the last inequality holds as § < .. = ¢ »-
Consider now the situation where there is no exact partition (i.e., the PAR-
TITION instance is a NO instance). Therefore, for every subset J’ C {1,..., N}

either > a(i) < S—1or > a(i) > S+ 1. First note that if one of the cells
=g =g
N + 1,?..7N +m —21is nf)t paged in the first round for the user who has
probability 1 — § to be in this cell, then the probability for a second round is
at least 1 — 0, and the cost is at least 2n — nd. Otherwise, consider the cells
1,...,N. A subset A; C {1,...,N} of these cells is paged for the first user
in the first round, and a disjoint subset A, C {1,..., N} is paged for the sec-
ond user in the first round. Let p(1) (p(2)) be the sum of probabilities of cells
paged for the first (second) user in the first round. Le., p(1) = > .., p1,; and
p(2) = > ca, P2, Since A1 N Ay = and p1; = po; for all j, we conclude
that p(1) + p(2) < 1 — 4. Due to the definitions of probabilities for the first

two users in the first N cells, we know that p(i) = (1 — 9));g), where X (¢) for
i = 1,2 are integers. Since there is no exact partition, we know that X (i) # S. If

X (i) < S—1fori = 1,2, then the probability to reach the second round is at least

1—(1-8)2 (5512 > 1—(1-6)%5,5" where the last inequality holds since S > 1.
Otherwise, since X (1)4X (2) < 25, and none of the values can be S, we have that
if for one of the users ¢, X (i) = S+u > S+1, then for the other user 3—i we have

X(3—1i) < S—u < S—1. In this case the probability for a second round is at least

(1= (%) (%54 (1=06)?) > 1—(1—5)2~ng1 (since u > 1). The cost in the last two

cases is therefore at least n +n(1 — 542531 (1-6)%) >n+n(l— éfsgl) =T n,.
Note that the cost we got in the first case (2n — nd) is not smaller since
2n—nd > T+ %, is equivalent to § + ,¢. < ; which holds since § < g, and
S,d > 2.

We got that if there is an exact partition, then the optimal cost is at most
7; + 442, whereas if there is no exact partition, the optimal cost is at least ™4
152+ Therefore we got that the question, whether the cost is at most 74" + 16825
is NP-hard. O

In the full version of the paper we prove the following theorem. We show that if
d is not fixed, but a part of the input, the problem becomes strongly NP-hard.

Theorem 2. Finding an optimal oblivious search protocol is strongly NP-hard
even when restricted to tight instances with d = m rounds and B = 1.

138 L. Epstein and A. Levin

3 A PTAS for the Oblivious Problem

Properties. Recall that we assume non-zero probabilities for each pair of user
and cell. In this case, each cell must be asked regarding exactly one user per
round. Therefore, each cell needs to be assigned a permutation of the users.
Recall that an oblivious search is defined in advance, and lasts as long as some
user is still not located. Since we solve tight instances, already the first round
costs n, and therefore OPT > n.

Let € be a value such that 0 < € < (207”),}&1%! . We show polynomial time
approximation schemes where the running time is polynomial in n, but the values
€, and also m are seen as constants. The approximation ratios of the algorithms
are 1+ 6O(e).

Our schemes are composed of several guessing steps. In these guessing steps
we guess certain information about the structure of OPT. Each guessing step
can be emulated via an exhaustive enumeration of all the possibilities for this
piece of information. Our algorithm runs all the possibilities, and among them
chooses the best solution achieved. In the analysis it is sufficient to consider the
solution obtained when we check the correct guess.

3.1 Two Users

We start with a relatively simple PTAS for this case. Here the search takes one
or two rounds. For a given algorithm, its cost is simply 2n — n(1 — p)(1 — q),
where p and ¢ are the probabilities of finding the first user and the second user
(respectively) in the second round. In this section, let p and ¢ denote these
probabilities in an optimal solution.

Let p; = p1,; be the probability for the first user to be located in cell j, and
let g; = po ; be the probability of the second user to be located in that cell.

Denote the probability intervals I = (0, £], and for 1 < i < [log, . (")],

€ i-1 € i
L= (n(1+5) e]

First guessing step. we guess k, which is the number of cells that are paged
in the second round for the first user. Moreover, we guess the probability p of
finding the first user in the second round. That is, we guess the index ¢ such that
pE IZ

Lemma 1. The number of possibilities for the first guessing step is

o(nfon () +7)

Proof. Clearly 0 < k < n, since paging all cells for the same user in the first
round always results in a second round, which gives cost 2n, and this is sub-
optimal. To conclude the proof, note that the number of intervals is at most
log;, . (Z)—&—Q. O

The Conference Call Search Problem in Wireless Networks 139

By Lemma 1, performing an exhaustive enumeration for the first guessing step
can be done in polynomial time. We continue to analyze the iteration of this
step in which we guess the “correct” values that correspond to OPT'. We denote
the guess of p by p' to be the upper bound of ;; i.e., p’ = © (1 + g)t.

The next step is to scale the probabilities of only the first user as follows. For
all j define r; = p;/p’ to be the scaled probability of cell j and the first user.
We consider the vector R = (r;) of the scaled probabilities that the first user
is in cell 7. We remove all cells with scaled probability larger than 1. Such cells
cannot be paged for the first user in the second round, and therefore must be
paged for the first user in the first round.

We further assign a type to each cell according to the following way. We
define a set of intervals J as follows: Jo = (0,¢], and for all ¢ > 1, J, =
(e-(1+e)fte - (1+¢), and J = {Jo,J1,...}. For each cell 1 < j < n,
we find the interval from J that contains r;. That is, we compute a value t;
such that r; € J;;. The index t; is the type of cell j. For values of ¢; such that
t; > 0, we replace r; with 7 which is the upper bound of the interval J; , i.e.,
7 = e(1+¢)%. Otherwise the value remains unchanged, i.e., 7 = ;. Note that
the number of types is at most log,, . (1) +2 =0 (log, . (!)). We let S be the
sum of scaled probabilities for type 0 cells (paged in round 2 for the first user).
Let S’ be the upper bound of this interval that contains S.

Second guessing step. We guess the amount of cells of each type that are
paged for the first user in the second round. Moreover, we guess the value of S".

Lemma 2. The number of possibilities in the second guessing step is

O (n10g1+s(i)+2 loglJrE (i)) .

Proof. The number of cells from each type is an integer between 0 and £ <n—1
(clearly, bounded from above by the number of cells that exist for this type).
The number of options for guessing S’ is equal the number of intervals in 7 that

is O (logy 4. (1)). O

Note that the number of possibilities for this guessing step is polynomial (for a
fixed value of ¢).

Next, for a given type of cell, i > 0, consider the cells which belong to this
type. After the rounding, the difference between these cells is the probability of
the second user to reside in this cell. Clearly, given that s such cells need to be
paged for the first user in round 2, it means that the same set of cells should
be paged for the second user in the first round. We prefer to page the cells with
highest probability for the second user among the cells with a common type. A
simple exchange argument shows that considering this option only (for rounded
instances) may never increase the cost of the solution. For cells of type 0, define
the density of a cell j to be g;/p;, this is the ratio between probabilities of the
two users. Sort all cells of type 0 by non-increasing densities. Afterwards, take
a minimal prefix of the sorted cells, such that the sum of scaled probabilities of

140 L. Epstein and A. Levin

the first user is at least S’ = ¢ - (1 +¢)*. If the sum of all the scaled probabilities
of type 0 cells does not exceed S, then all these cells will be paged for the first
user in round 2. If S’ > ¢, then the second user would prefer to page the most
profitable such cells in round 1. We allow a slightly higher probability in the
second round, and pick the most profitable cells greedily. Therefore, we may
only increase the probability of finding the second user in round 1. If we could
not exceed S/, but instead page all type 0 cells in round 2 for the first user, then
this may slightly harm the first user (see details below), but again may only
increase the probability of finding the second user in round 1.

Consider the guess which guesses correctly the value k, the amounts of cells
from each type, and the value of S’. The first step in the analysis would be to
bound the relation between the probabilities of finding the users in the first step
in the optimal solution and the solution we find. Let p and ¢ be the corresponding
probabilities to p and ¢ in the resulting Solution. Since the probability of the
second user to be found in the first round may only increase, we get 1—¢ > 1—gq,
ie. ¢g<gq.

To bound p in terms of p, note that p’ < (1 + ¢)p + . The rounding for
cells whose rounded probabilities are not of type 0, results in a possible increase
of probabilities by a multiplicative factor of 1 4 ¢. For cells of type 0, assume
that S’ € J,. If £ > 0, we allow the sum (of scaled probabilities) for the chosen
cells to exceed the value ¢ - (1 +). However, since all values are at most &,
we get an additive error of at most that amount, in addition to a multiplicative
rounding error of 1+¢. For type 0, the worst case would be that the sum of scaled
probabilities should have been zero, but it reaches ¢ and exceeds it by the same
amount. Therefore, p < p'(1+¢)+2ep” = (1+3¢)p’ < (1+3¢)(14+e)p+(14+3¢); <
(1+7¢)p+ 2. The last inequality holds since ¢ < 1.

The cost is therefore

APX =n(l+p+q4—pg) =n(l+p+q(l —p)) <n(l+p+q(l—p))
= n(14+ 51— 0) +0) Sa(L+ L+ TP -) + - +0)
<(A+79)n(l+p+qg—pq) +4e < (14 11e)OPT = (1 4+ O(e))OPT

The last inequality follows from OPT > 1 which holds for any instance of the
problem. Therefore, we have established the following theorem:

Theorem 3. Problem CCS with two users, two rounds and B = 1 has a poly-
nomial time approrimation scheme.

Remark 1. We can easily extend the scheme of this section to the case where
there are also zero probabilities. To do so, we first guess the number of cells ny
(n2) to page the first (second) user in the first round such that the second (first)
user has zero probability to be placed in this cell. Over the set of cells where both
users have positive probability we apply the scheme of this section. Among the
cells where the first (second) user has zero probability we will page for the second
(first) user in the first round in the set of the ny (ni) cells with the highest
probability.

The Conference Call Search Problem in Wireless Networks 141

3.2 m Users

We continue with a PTAS for a general (constant) number of users. We prove
the following theorem.

Theorem 4. Problem CCS with a constant d =m and B =1 has a polynomial
time approximation scheme.

The number of rounds that the search takes is at least 1 and at most m. Since
locations of users are again independent, we can compute the expectation of
the number of requests by calculating for each r, the probability of finding all
users in at most r rounds. Given an algorithm (search scheme) let ¢;, be the
probability of finding user ¢ in round r by a given Ssolution, Then, the cost of
this solution is

£ A(E) -0 £

i=1 \s=1 =1

In this section we use these (g;,) notations to denote the values in a fixed
optimal solution.

We start with a uniform rounding of the values p; ;. In this section we use
the following set of intervals for all rounding procedures. We define 7 as follows:
Jo = (0,e2m%5] and for all k > 1, J, = (£2mF5 - (1 +g)k~1,e2m+5 . (1 4 ¢)k],
and J = {Jo, J1,...}. Let s be such that 1 € J,. We replace the interval J;,
by (e2m+5. (1 4 ¢)*~1 1], and use only the s + 1 first intervals. For each pair
i,j where 1 < ¢ < m, 1 < j < n, we find the interval from 7 that contains
pi,j- That is, we compute a value ¢; ; such that p; ; € J;, ;, and we define the
type of the cell j to be the vector (t1;,...,tn, ;). For values of p; ; such that

> 0, we replace p; ; with p;’j which is the upper bound of the interval J, .,
ie., pj; = e . (1 + e)'s. Otherwise, the value remains unchanged, i.e.,

Pij = Pij-
Corollary 1. Ift;; >0 then p;; <p;; < (1 +¢)pi;-

We assign sub types to cells, based on the (unchanged) values of probabilities
of type 0. If for all users 1 < ¢ < m, t;; > 0, there is no further partition
to sub types. Otherwise, let the weight of cell j denoted as w; be defined as
wj = Maxy;, ;—o} Pi,j- For a type vector of a given cell j, create the following

vector a’ of length m. The i-th entry o] is —1if ¢; ; > 0, and otherwise a] = ’Zj .
We use the same partltlon into intervals in order to round and clasmfy the
vectors a’. For an entry o/, find the interval from J that contains a]. Compute

a value t’ such that aj e Jt/ ; then the sub type of the cell j is the vector

(th - 7t;nj) (where] ; = 1 if t;; > 0). We use the vector a’’, where a’} is
the upper bound of the mterval Ty I al = —1 then also a/ = —1. We scale the
probablhtles again in the followmg way: if t; ; > 0 then p =i, ; and otherwise

_ /J
p %,J = wjay

142 L. Epstein and A. Levin
Corollary 2. Ift;; =0, p; < w, ((1 +e)al + 62m+5) = (1+e)p;,j+w;e?m+>.

Note that at least one entry in a’/ is 1, that is an entry ¢; for which w; = De; -
We call the user ¢; the leader of the cell. Note that there may be other such unit
entries, in the case that the maximum is not unique (in that case, ¢; is picked
to be such a user with a minimum index), or if some user has a slightly smaller
probability, but still in the last interval.

A cell is specified by its type, sub type, leader and weight (excluding cells
with no sub type). Two cells j1, jo have the same general type if they both have
no sub type, or if they have the same type, same sub type and same leader. Their
weights w;, and w;, may both take arbitrary values in (0,2). Therefore, the
number of general types is at most

m

2m—+5
1 m
m (2 log, . . (5> + 3) < c2m

This follows from the choice of ¢ < (and fromIn ! < ! In(1+¢) > ¢,
and m > 2.

Given a cell, in order to specify a solution when restricted to this cell, we need
to give a permutation of the users. That would be the order in which the cell is

paged for the users.

1
20m)mt1l.m! 2

Guessing step. For every general type and every permutation 7 (out of the m!
possible ones), we guess the number of cells of this general type that are paged
in the order of the permutation 7. Note that the sum of these numbers should
be exactly the total number of cells of this general type. For every general type
t, excluding the general type with no sub types, we also guess an interval for
the total probability P(¢,) that the cells of the general type ¢, paged using
the permutation 7, induce in the round where the leader of this general type is
paged (i.e., the sum of their weights belongs to the guessed interval).

Lemma 3. The number of possibilities for the first guessing step is polynomial.

Proof. The number of combinations of general types and permutations is at most
Zg'm The number of possible guesses for a given permutation and cell is at most

n + 1 (this is an integer between 0 and n). The number of possibilities for a
probability guess is ((2m + 5)log,,. (1) +2) < L. Therefore, the number of

g
m!m

possibilities for the guessing step is at most ("5") <> . 0

Given a guess, we distribute the cells to the permutations as follows. For a
general type with no sub types, allocate the guessed number of cells of this type
to each permutation, if possible. The exact distribution is not important. For
other general types (i.e., with subtypes), given a specific general type, let ¢ be
its leader. Denote the permutations by 71, ..., 7. Given a permutation ;, let
t; be the index for the probability interval guessed for this class, and let a; be
the number of cells guessed for it. Let n’ be the number of cells that need to

The Conference Call Search Problem in Wireless Networks 143

be distributed. Re-number the cells from 1 to »’ and denote by w; the weight
associated with cell j. We need to distribute the n’ cells to the m! permutations,
where for every permutation, an upper bound is given on the sum of probabilities
of the cells allocated to it as well as an upper bound on the number of these
cells. This corresponds to the following integer program. Let X; ; be an indicator
variable whose value is 1 if cell j is allocated to permutation i. We apply the
upper bounds of numbers and probabilities as follows. For each 1 < i < m!,

n’ n
ZXi’j <a; and ij -X,'J' < 52m+5(1 + E)t
=1 i

m!

We clearly have Z X;; >1forall 1 <j <n/,since each cell is assigned to at

least one permutatlon If it is assigned to more than one, one of its occurences
can be removed without violating the other constraints. The goal is to find a
feasible integer point.

We relax the integrality constraint, and replace it with X;; > 0. We are
left with a linear program which clearly has a solution if the original integer
program does. Solving the linear program we can find a basic solution. This basic
solution has at most 2m!+ n’ non zero variables (as the number of constraints).
Clearly, each cell j has at least one non zero variable X; ; and thus we get that
the number of cells that are not assigned completely to a permutation (i.e.,
that have more than one non zero variable associated with them) is at most
2m!. These cells are removed and re-distributed to the permutations in order to
satisfy the amounts of cells. In the worst case, all additional cells are assigned to
one permutation, increasing its total probability in the round of the leader (i.e.,
its total weight) by an additive factor of 2m!w;e?™ ">, and values which are no
larger than 2m!w;e*™*5 in other rounds.

From now on, we consider the correct set of guesses. We would like to compute
the differences between the values ¢; , used by an optimal algorithm and the ones
used by our scheme. Let ¢; . be the values used by the algorithm. IL.e., ¢; . is the
total probability of finding user 7 during round r by the scheme.

Lemma 4. ¢}, < (1+7¢)q;r +€°.

Proof. There are two types of changes in the value ¢;,, multiplicative changes
and additive changes. The first two rounding steps are taken for pairs of cells
and users. By Corollary 1 and 2, we conclude that p; < (1+¢)p; ; + w;e*™*>.
Therefore, the sum of additive changes in all pairs of cells and leaders is bounded
by £2™*5 times the sum of all probabilities, which is m. Hence, me?™*® bounds
the resulting additive change in each value g; ;.

The next rounding is of P(¢,7). Another multiplicative factor of 1 + ¢ is
introduced at this time. Moreover, the probability of a given permutation = may
increase by an additive factor of (2m!+ 1)e?™*3. In the worst case, this additive
growth may happen for every pair of general type and permutation. The term
2m!e?™*3 is due to the last phase where the fractional solution to the linear

144 L. Epstein and A. Levin

program is rounded. An additional £2™*5 is due to the rounding of P(¢,7) to
right end points of probability intervals.

Recall that the number of combinations of general types and permutations is
at most (52,”), thus the additive factor is at most (’E’;'m) (2m! + 1)e?m+5 < g4,
Summarizing we get,

q, » < ((1+e)gir —|—52'”+4)(1 +e)+ et < (14 3¢)gir +e2. m]

‘We compute an upper bound for the change in the goal function value.

ni@n(lzng)) (1)
(1 - zj: (1 +3¢)gi,s + 52))) (2)

S=r

§n(m€+1+3€i(ﬁ(iq))) ()

1=1

< eOPT + (1 + 32)OPT = (1 + 4¢)OPT , (6)

where (2) follows by Lemma 4, and (3),(5) follow by simple algebra. Next, (4)
follows since given a set of m independent random events, the probability of their
union is multiplied by at most (1 + 3¢) if we multiply the probability of each
event in this set by that amount, and if we increase the probability of each event
by an additive factor of p = me2, then the probability of the union increases
by at most mp = m?¢?. Finally (6) follows since OPT > n and e < !;. This
completes the proof of Theorem 4.

4 Polynomial Time Algorithms for Finding Optimal
Semi-adaptive Search Protocols

In this section we consider the problem of computing an optimal semi-adaptive
search protocol for tight instances of CCS. We show polynomial time algorithms
for solving this problem. We describe a fast algorithm to solve the two-users two-
rounds case (this solution holds for adaptive systems as well). In the full version
of the paper we present a dynamic programming based algorithm to solve the
CCS problem with a constant number of users.

Two users. We assume that there are two users and two rounds and B = 1.
Bar-Noy and Naor [2] showed that computing an optimal oblivious protocol for
this case is an NP-hard problem. They left as an open question to decide if com-
puting an optimal adaptive search protocol is polynomially solvable. We note

The Conference Call Search Problem in Wireless Networks 145

that in this case the semi-adaptive search protocol is equivalent to the adap-
tive search protocol. Therefore, by computing an optimal semi-adaptive search
protocol in polynomial time, we provide a positive answer for this question.

Our algorithm, denoted by Alg, guesses k£ that is defined as the number of
cells that an optimal solution pages for the first user in the first round. This
guess is implemented by an exhaustive enumeration using the fact that & is an
integer in the interval [0, n], and then returning the best solution obtained during
the exhaustive enumeration. We next analyze the iteration in which the guess is
correct.

Denote by IF =py ;- (n — k) — p2; - k the indez of cell i in the k-th iteration.
Our algorithm sorts the indices of the cells in non-decreasing order, and then it
picks the first & cells (in the sorted list). These picked cells are paged for the
first user in the first round, whereas the other cells are paged for the second user
in the first round.

Theorem 5. Alg returns an optimal semi-adaptive search protocol.

Proof. To prove the theorem, it is sufficient to prove the following claim: Assume
that there exists a pair of cells i, with I} > I such that the optimal solution
pages j for the first user in the first round, and it pages 7 for the second user in
the first round. Then, replacing the role of ¢ and j (i.e., the new solution pages
1 for the first user in the first round, and it pages j for the second user in the
first round), results in another optimal solution.

To prove the claim we first argue that the decrease in the solution cost re-
sulting by this replacement is (n — k) - (p1,; — p1,5) + k- (p2,; — p2,:). To see this,
note that the probability of finding the first user in the first round increases by
P1,; — P15, thus gaining an expected decrease of the cost by (n — k) - (p1,; —p15)-
Similarly for the second user the expected decrease in the cost is k- (p2,; — p2.4)-

However, (n — k) - (p1,; —p1,;) + k- (p2,; — p24) = pri- (n— k) —pai -k —
[prj - (n—k)—paj-k] = I} — I} >0, where the last inequality follows by the
assumption. Therefore, the replacement of the roles of i and j results in another
optimal solution, as we claimed. O

The next corollary answers the open question implied by [2].

Corollary 3. Alg returns an optimal adaptive search protocol.

5 Open Questions

We list several open questions that are left for future research:

— Determine the complexity status of computing an optimal adaptive search
protocol for tight instances with d = m > 2.

— Find an FPTAS or prove its non-existence (by showing that the problem is
NP-hard in the strong sense for fixed constant values of d = m) for computing
an optimal oblivious search protocol for tight instances with a fixed constant
number of users.

146 L. Epstein and A. Levin

— Find a PTAS or prove its non-existence (by showing that the problem is
APX-hard) for computing an optimal oblivious search protocol for an arbi-
trary tight instance. The running time of the PTAS should be polynomial
inn andin d = m.

References

1. A. Bar-Noy and G. Malewicz. Establishing wireless conference calls under delay
constraints. Journal of Algorithms, 51(2):145-169, 2004.

2. A. Bar-Noy and Z. Naor. Establishing a mobile conference call under delay and
bandwidth constraints. In The 23rd Conference of the IEEE Communications So-
ciety (INFOCOM2004), volume 1, pages 310— 318, 2004.

3. L. Epstein and A. Levin. A PTAS for delay minimization in establishing wire-
less conference calls. In Proc. of the 2nd Workshop on Approximation and Online
Algorithms (WAOA2004), pages 36-47, 2004.

4. M. R. Garey and D. S. Johnson. Computer and Intractability. W. H. Freeman and
Company, New York, 1979.

5. D. Goodman, P. Krishnan, and B. Sugla. Minimizing queuing delays and number of
messages in mobile phone location. Mobile Networks and Applications, 1(1):39-48,
1996.

6. C. Rose and R. Yates. Minimizing the average cost of paging under delay constraints.
Wireless Networks, 1(2):211-219, 1995.

Improvements for Truthful Mechanisms with
Verifiable One-Parameter Selfish Agents

A. Ferrante, G. Parlato, F. Sorrentino, and C. Ventre*

Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”, Universitd di Salerno,
via S. Allende 2, I-84081 Baronissi (SA), Italy
{ferrante, parlato, sorrentino, ventre}@dia.unisa. it

Abstract. In this paper we study optimization problems with verifiable
one-parameter selfish agents introduced by Auletta et al. [CALP 2004].
Our goal is to allocate load among the agents, provided that the secret
data of each agent is a single positive rational number: the cost they
incur per unit load. In such a setting the payment is given after the
load completion, therefore if a positive load is assigned to an agent, we
are able to verify if the agent declared to be faster than she actually is.
We design truthful mechanisms when the agents’ type sets are upper-
bounded by a finite value. We provide a truthful mechanism that is
¢ (14 e)-approximate if the underlying algorithm is c-approximate and
weakly-monotone. Moreover, if type sets are also discrete, we provide
a truthful mechanism preserving the approximation ratio of the used
algorithm. Our results improve the existing ones which provide truthful
mechanisms dealing only with finite type sets and do not preserve the
approximation ratio of the underlying algorithm. Finally we give a full
characterization of the Q||Ciae problem by using only our results. Even
if our payment schemes need upper-bounded type sets, every instance
of Q||Cmaz can be "mapped” into an instance with upper-bounded type
sets preserving the approximation ratio.

1 Introduction

Optimization problems dealing with resource allocation are classical algorithmic
problems and they have been studied for decades in several models: centralized
vs. distributed algorithms, on-line vs. off-line algorithms and so on. The under-
lying hypothesis has been that the input is available to the algorithm (either
from the beginning in off-line algorithms or during its execution in on-line algo-
rithms). This assumption turns out to be unrealistic in the context of modern
networks like the Internet. Here, the various parts of the input are owned by
selfish (but rational) agents as part of their private information (called the type)
and thus the optimization algorithm will have to ask the agents for their type
and then work on the reported types. In this context, it is realistic to assume

* Research supported by the European Project FP6-15964, Algorithmic Principles for
Building Efficient Overlay Computers (AEOLUS). (Contract number 015964.)

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 147-160, 2006.
© Springer-Verlag Berlin Heidelberg 2006

148 A. Ferrante et al.

that an agent will lie about her type if this leads to a solution S that she prefers,
even in spite of the fact that S is not globally optimal.

The field of mechanism design is the branch of Game Theory and Microeco-
nomics that studies ways of inducing, through payments, the agents to report
their true type so that the optimization problem can be solved on the real input.
In this paper we study the design of algorithms for solving (or approximately
solving) combinatorial optimization problems in presence of selfish agents.

Following the standard notation used in the study of approximation of com-
binatorial optimization problems (see, e.g., [10]), we consider problems defined
as four-tuples (Z, m,sol, goal), where Z is the set of instances of the problem;
sol(I) is the set of feasible solutions of instance I; m(S,I) is the measure of the
feasible solution S of instance I and goal is either min or max. Thus, the opti-
mization problem consists in finding a feasible solution S* for instance I such
that m(S*,I) = opt(I) := goaISGSOKUm(S7 I). A c-approzimation algorithm
A for IT = (Z,m,sol, goal) is such that for all I € Z, max{m(A(I),I)/opt(I),
opt(I)/m(A(I), 1)} < c.

In an optimization problem II with selfish agents, there are m agents which
privately know part of the input. Thus every instance I € Z consists of two parts
I = (T,0), where the vector T = (t1,ta,...,ty) iS the private part of the input
and o is the public part of the input. In particular, we assume that ¢; is known
only to agent i, for i = 1,2,...,m and we call ¢; the type of agent i. The type
set ©; of agent i is the set of the possible types of agent i. In this setting, each
agent will report some value b; € ©; (which can be different from her true type
t;). An algorithm A for the optimization problem IT with selfish agents receives
as input the vector of bids B = (b1, b2, ..., by,), instead of the true instance T it
is supposed to solve. Each selfish agent incurs some monetary cost, cost;(S,t;),
depending on the feasible solution S and her private data ¢;. Since every agent
i is selfish, she might declare b; # ¢; So to induce A to return a cheaper solution
for agent i. Unfortunately, even though A is c-approximating for the instance 7',
for B # T the solution returned by A on input B might have measure, w.r.t.
the true instance T, far-off the optimum opt(7T).

In order to obtain a correct solution, algorithm A is equipped with a payment
scheme P = (Py,..., P,) in order to induce every agent to report her true type.
After a solution S = A(B, o) is computed, each agent ¢ is awarded payment
P;(S, B,o). We assume that each agent ¢ is rational in the sense that she picks
her type declaration b; so to maximize her profit.

Definition 1. Let Il be an optimization problem with one-parameter selfish
agents and A be an algorithm for II, and P be a payment scheme. The profit
function profit of agent i with respect to the pair (A, P) when B is the sequence of
bids, o is the public information, t; is the true type of agent i, and S = A(B, o),
is defined as profit, (S, B, o0,t;) := P;(S, B,0) — cost; (S, t;).

It is natural to consider mechanisms in which the profit of the i-th agent is
maximized when she reports b; = t;. We have thus the following classical no-
tion of a truthful mechanism. In the definition of a truthful mechanism (and

Improvements for Truthful Mechanisms 149

in the rest of the paper) the following notation turns out to be useful. Let
X = (z1,...,x) be a vector. For any 1 < ¢ < k, the writing X_; denotes the
vector X_; := (x1,...,%i—1,%i+1-..,2) and the writing (y, X_;) denotes the
vector (y, X_;) := (1, ., &im1, Yy Tig1 - -+, Tk)-

Definition 2. The pair M = (A, P) is a truthful mechanism for selfish agents
if and only if for all o, for all agents i, and all type declarations B, it holds
profit,(A((t;, B_;),0), (ti, B_;),0,t;) > profit,(A(B, o), B,o,t;).

In such a way, every agent maximizes her profit when she is truthful. Thus, we
assume that in a truthful mechanism every agent always reports her true type,
and algorithm A always works on the true instance 7. As a consequence, we say
that a truthful mechanism M = (A, P) is c-approzimating for an optimization
problem II with selfish agents, if A is a c-approximating algorithm for every
instance I of I1. Since, in a truthful mechanism, agents are not sure to have a
positive profit, they would not participate in such a mechanism unless they were
coerced. This motivates the following definition.

Definition 3. A truthful mechanism satisfies voluntary participation condition
if agents who bid truthfully never incur a net loss, i.e. for all public information
o, for all agents i, and for all other agents’ bids B_;,

profit,(A((t;, B—i),0), (t;, B_i),0,t;) > 0.

‘We now review the concept of optimization problem I7 with one-parameter selfish
agents (as discussed in [2]). Here, each agent ¢ has as private information a single
parameter t; € Q. Moreover, a feasible solution S of an instance I of I defines,
for each agent ¢, an amount w;(S) of assigned work. We call such a solution S
schedule. Notice that in the definition of one-parameter problem ([2]) the total
amount of work to schedule can depend on the private part of the input B.
However we restrict ourselves, as in wide part of literature, to the case in which
the amount of work assigned to all agents depends only on the public information
(and not on the agent bids). We denote such an amount of load just as WV > 0.
The cost function of agent ¢ has the following special form.

Definition 4. Let S be a feasible solution of II. Then, the cost function cost;(.S,
t;) is defined as cost;(S,t;) == w;(S) - ;.

Scheduling problems are typical examples of optimization problem for one-
parameter selfish agents. In a scheduling problem, the input consists of m machine
speeds s = (s1, 82, ..., Sm) and n job weights W = (wy,ws, ..., w,). A schedule
S'is an assignment of jobs to machines. Let w; (.S) be the sum of the weights of the
jobs assigned to machine i by schedule S. In a scheduling problem the task con-
sists in computing a schedule that minimizes a certain cost function associated
with the schedule. For instance, in the Q||C),.. problem the cost of a schedule S
is the makespan M S(S) that is the maximum completion time of the machines.

Formally, M S(S) = maxlgjgm{w’gs) }. We consider the setting in which each

S

150 A. Ferrante et al.

machine ¢ is owned by a different agent and the speed s; of machine ¢ is the
private information of agent . To be in a setting of one-parameter selfish agents,
we consider t; = 1/s; as the type of agent i. The public information o is the
sequence W = (wy, ws,...,w,) of job weights. We recall that Q||C.,,... problem
is NP-hard. Throughout the paper we use Q||Ciuqz @S our main example.

A mechanism M for verifiable one-parameter selfish agents is a pair M =
(A, P) working as follows.

1. The allocation algorithm A takes as input the sequence of bids B = (b1, ba,

.., bmy) and the public part o and outputs a schedule S = A(B, o) for the m

agents. We recall that w;(.S) denotes the amount of load assigned to agent ¢
by the schedule S computed by algorithm A on input B and o.

2. Each agent i is observed to complete her assigned load in time 7; > w;(S)-¢;.
Notice that agent ; completes the load w;(S) assigned to her in time w;(.5)-;.
Agent 7 can however delay the release of the works and thus obtain a larger
observed completion time and the mechanism has no way of detecting it.
However, agent ¢ cannot be observed to finish her load before the actual
completion time w;(.S) - ¢;. Since w;(S) - ¢; is the request time for agent i to
complete the load w;(S), we denote with s; = t{ the speed of agent i.

3. Finally, after agent i releases the assigned works, she is awarded payment
computed by applying function P; on arguments S, B, o, and the observed
completion time T; of machine 1.

We stress that in this setting, payments are provided after the execution of
the load and thus agents are (partially) verifiable in the following sense. If agent
i receives an amount of load greater then 0, the mechanism can find out whether
agent 7 has declared to be faster than she actually is (that is, b; < ¢;). Indeed,
in this case the claimed completion time w;(S) - b; is smaller than the actual
completion time w;(S) - ¢; and thus we have that 7; > w;(S) - t; > w;(S) - b;.
Since payments are provided after the completion of loads, the mechanism can
make it inconvenient to claim faster speeds. On the other hand, the mechanism
cannot find out if an agent has declared to be slower than she actually is, since
the agent can decide to delay some of the jobs.

Henceforward we refer to I1 as an optimization problem for verifiable one-
parameter selfish agents. Let us now instantiate the definitions of profit and
truthful mechanism in this new scenario.

Definition 5. Let A be an algorithm for II, and P be a payment scheme. The
profit function profit of agent i with respect to the pair (A, P), when B is the
sequence of bids, o is the public information, t; is the true type of agent i,
S = A(B,o), and T; is the observed completion time of agent i for the load
w;(S), is defined as profit,(S, B,o,t;,T;) := Pi(S, B,0,7T;) — cost; (S, t;).

Definition 6. Let A be an algorithm for II, and P be a payment scheme. A pair
M = (A, P) is a truthful mechanism with respect to I, if for all o, for all i, for
all bid vectors B, and for all observed completion times T; > w;(A(B,0)) - t;, it
holds that profit; (S, (ti, B—;), o, t;,w;(S)-t;) > profit,(A(B,0), B,o,t;,T;) where
S = A((tz, B,Z'), 0).

Improvements for Truthful Mechanisms 151

Note that these new definitions are not redundant, since in this case we have to
take into account the observed completion time also.

Given a truthful mechanism M = (A, P) for II, in [4] the authors give a
necessary condition that algorithm A must satisfy.

Definition 7 (weakly-monotone algorithm). Let IT be an optimization
problem for verifiable one-parameter selfish agents and A be an algorithm for
II. Algorithm A is weakly-monotone if and only if, for all o, for all i, for all
declared bid vectors B such that w;(A(B, o)) = 0 and for all b, € ©; with b, > b;
it holds that w;(A((b;, B_;),0)) = 0.

In other words a weakly-monotone algorithm A has the following property. Fix
some input (B, o) for which algorithm A assigns no load to agent . If agent i
declares to be slower (that is, she declares b, > b;) and the declared bids of the
other agents remain the same, then A assigns no load to agent i.

Lemma 1 ([4]). Let IT be an optimization problem for verifiable one-parameter
selfish agents. If M = (A, P) is a truthful mechanism for I1, then A is a weakly-
monotone algorithm.

2 Previous Works and Our Contribution

The celebrated VCG mechanism [5,6,7,11] is the prominent technique to derive
truthful mechanisms for optimization problems. However, this technique applies
only to wutilitarian problems, that are problems where the objective function is
equal to the sum of the cost functions of the agent (e.g., shortest path, min-
imum spanning tree, etc.). In the seminal papers by Nisan and Ronen [8,9] it
is pointed out that VCG mechanisms do not completely fit in a context where
computational issues play a crucial role since they assume that it is possible to
compute an optimal solution of the corresponding optimization problem (maybe
a NP-hard problem). Scheduling is a classical optimization problem that is not
utilitarian (since we aim at minimizing the maximum over all machines of their
completion times) and it is NP-hard. Moreover, scheduling models important fea-
tures of different allocation and routing problems in communication networks.
Thus, it has been the first problem for which non VCG-based techniques have
been introduced.

Nisan and Ronen [8,9] give an m-approximation truthful mechanism for the
problem of scheduling tasks on m wunrelated machines, when each machine is
owned by a different agent that declares the processing times of the tasks as-
signed to her machine and the algorithm has to compute the scheduling based
on the values declared by the agents. In [2], is considered the simpler variant
of the task scheduling on uniformly related machines (in short Q||Ciqz), where
each machine ¢ has a speed s; and the processing time of a task is given by
the ratio between the weight of the task and the speed of the machine. They
characterized the class of allocation algorithms A for one-parameter problems
that admit payment scheme P for which M = (A, P) is a truthful mechanism.

152 A. Ferrante et al.

Essentially, truthful mechanisms for one-parameter selfish agents must use mono-
tone algorithms and, in this case, the payment scheme is uniquely determined
(up to an additive factor). Intuitively, monotonicity means that increasing the
speed of exactly one machine does not make the algorithm decrease the work
assigned to that machine. The result of [2] reduces the problem of designing a
truthful mechanism for Q||C),.... to the algorithmic problem of designing a good
algorithm which also satisfies the additional monotonicity requirement. Efficient
mechanisms for computing scheduling on related machines with small makespan
(a special case of one-parameter agents) have been provided by Archer and Tar-
dos [2] and, subsequently by Auletta et al. [3] and by Andelman, Azar and
Sorani [1].

Afterwards, Auletta et al [4] consider optimization problem for verifiable one-
parameter problems. In this model, payments are given to the agents only after
the agents have completed the load assigned. This means that for each agent
that receives a positive load, the mechanism can verify if the agent declared to
be faster than she actually is. They showed that, in order to have a truthful
mechanism for verifiable one-parameter selfish agents, a necessary condition is
that the used algorithm must be weakly-monotone.

Our Contribution. In this work, we extend some results given in [4]. The au-
thors were the first to study optimization problems for verifiable one-parameter
selfish agents. Intuitively a verifiable agent is an agent that may lie in reporting
its types but the mechanism can verify whether agent 7 underbids (i.e. declares a
b; < t;), provided that the load assigned to this agent is positive. For instance, for
scheduling problems the mechanism can verify, through the observed completion
time of agent 4, if she declares to be faster than she actually is, provided that at
least one job has been assigned to her. In [4] was showed that if M = (A, P) is
a truthful mechanism for an optimization problem for verifiable one-parameter
selfish agents then A must be weakly-monotone. They also provide a payment
scheme P which allows to have a truthful mechanism, when the cardinality of
type sets is finite.

In Section 3, we give very simple and efficient payment schemes, leading to
polynomial-time truthful mechanisms, for a wide class of optimization problems
with verifiable one-parameter selfish agents. In particular, we provide a payment
P that works for discrete and upper-bounded type sets (see Section 3). In this
setting, we need that agents bid from sets in which there is always a gap between
the inverse of two types. Considering scheduling problems (where types are the
inverse of machines’ speed), our assumption is satisfied when it is not possible
to have machines executing j instructions per second, for every possible j € Q.
Indeed, in the market there are only machines of certain (sufficiently far apart)
speeds. Moreover, we need that the agents cannot declare more than a finite
value. In scheduling problems, this means that an infinitely slow machine does
not exist. Thus our hypothesis applies to many real life applications.

From a theoretical point of view, our results improve the ones given in [4],
as follows: (i) the class of the discrete and upper-bounded type sets properly
includes the class of finite type sets; (i7) our mechanism preserves the approxi-

Improvements for Truthful Mechanisms 153

Table 1. Comparing Results (¢ is the approximation of a given weakly monotone
algorithm)

Problem Version Payments Time Complexity Apx Ratio
©; finite and discrete [4] poly(|©i],m,n) c
Smooth problems [4] poly(log,_ . |©i],m,n) c-(1+e€)
©; upper bounded and discrete poly(m,n) c

Smooth problems with ©;

upper bounded (continuous) poly(m,n) c:(1+¢

mation ratio ¢ of the algorithm it uses, while the mechanism given in the paper [4]
needs that the problem is smooth (see Def. 11) in order to obtain a ¢ - (1 + ¢)-
approximation. (This assumption is required to round the input bids in order to
have payments computable in polynomial time.)

In Section 4, we give a payment scheme P(®)| leading to polynomial-time
truthful mechanisms (Theorem 3), for agents having rational type sets upper-
bounded (but not discrete). In order to obtain truthful mechanism we round the
agents’ bid. Using this rounding technique, if the algorithm used by the mech-
anism is c-approximate, then nothing can be said about the approximation of
the same algorithm when it runs on rounded bids. However, if the problem is
smooth then the mechanism is ¢ (1 + €)-approximate (see Theorem 4). To best
of our knowledge this is the first result showing that weakly-monotonicity of
algorithms is a sufficient condition for the existence of truthful mechanisms for
optimization problems with verifiable one-parameter selfish agents with contin-
uous type sets. It left open the case when type sets are not upper-bounded. In
Table 1 we summarize our results comparing them to the previous ones.

Finally, in Section 5, as application of our results, we fully characterize
Q||Chmaz problem with verifiable one-parameter selfish agents reducing any un-
bounded instance to a bounded one, so obtaining a polynomial-time ¢ - (1 +
€)-approximate truthful mechanism, given a c-approximate weakly-monotone
polynomial-time algorithm.

3 A Payment Scheme for Discrete Types

In this section, we consider only type sets ©; having the following property.

Definition 8. A set ©; is said discrete and upper-bounded if: (i) there exists
a value A; € RY such that, for all b,b € ©;, b# b, b~ —b~1| > A, (discrete),
and (i) there exists a finite value sup, € RT such that sup, > b, Vb € 6;
(upper-bounded).

Next we define a payment scheme which allows us to construct truthful mecha-
nism for I1, when agents have type sets discrete and upper-bounded.

Definition 9. Let S be a schedule, B be a bid vector, o be the public part of
the input, 7; be the observed completion time and 01(1) € R be a constant (to be
given). For each i =1,...,m, we define

154 A. Ferrante et al.

ﬁw&amzy_{waﬁMwhmmﬁﬂ—m@ym

0 otherwise.

The idea behind the payment Pl.(l) is to give the agent i a disincentive to declare
to be slower than she actually is. On the other hand, agent i is also discouraged
to declare to be faster, if we use verification and weakly-monotone algorithms,
as shown in the next theorem.

Theorem 1. Let II be an optimization problem for verifiable one-parameter
selfish agents and A be a polynomial-time weakly-monotone algorithm for II.
If every ©; is upper-bounded by a finite value sup; and discrete w.r.t. a known
value A;, then for every 1 < i < m there exists a value for the constant 01(1) such
that M = (A, P(l)) is a polynomial-time truthful mechanism for II. Moreover,

M satisfies voluntary participation condition.

Proof. Let Sy, be the schedule computed by A when takes as input (¢;, B_;),
and S, be the one on the input (b;, B_;). To demonstrate that M is a truthful
mechanism, we show that for all b; € ©; and for all 7; > w;(Ss,) - t; the following
relation holds

Ai = profiti(Sti, (ti, B,i), g, t“Wl(Stl) . tz) — profiti(Sbi,B, g, tz,,.TZ) Z 0

For sake of readability we denote (¢;, B_;) as T and w;(Sy,) - t; as 7;*. We first
consider the case w;(Sy,) = 0. Since profit,(Ss,, B, 0,t;, 7;) = 0 we have

w
e

A = g G

(1)
—w;(Sg,) -t =W - (scljp - supi> >0 (1)

for all the values c,(” > sup?. By the above calculations, we also have that

profit, (St,, T, 0,t;, ;") > 0, and thus M satisfies voluntary participation condi-

tion. Let w;(Sp,) > 0. We distinguish two cases.

Case 1(b; > t;). Since A is weakly-monotone it holds that w;(S;,) > 0. If
profit,(Sy,, B, 0,t;,7;) < 0, from Eq. 1 we have A; > 0 for cgl) > sup?.
Let profit;(Sy,, B, 0,t;,7;) > 0. Then we have:

1 1
A=W <t4 - b») el (wi(Sy,) — wi(Sn,)) -t
>W- AV —Wsup, >0

for all the values ¢!” > sup;/A;.

Case 2 (b; <t;). Since T > w;(Sp,) - b;, we have that Pi(l)(Sbi,B,a,Z) =0
and profit;(Sy,, B,o,t;,7;) < 0. Therefore, from Eg. 1 we have A; >
profit,(Sy,, T, 0, t;, T;*) > 0 for c§1> > sup?.

Hence, for 62(1) > max{sup?, Sip }, M is truthful. It is straightforward that
payment scheme P(!) is computable in polynomial time. i

Improvements for Truthful Mechanisms 155

As argued in Section 1, if A is the algorithm used in a truthful mechanism, then
it always works on true types, since every agent always reports her true type. As
a consequence, if A is c-approximate and M = (A, P) is a truthful mechanism
then M is c-approximate as well. Thus, from Theorem 1 we have the following.

Theorem 2. Let II be an optimization problem for verifiable one-parameter
selfish agents and A be a polynomial-time c-approximating weakly-monotone al-
gorithm for I1. If every ©; is upper-bounded by a finite value SUp,; and is discrete
w.r.t. a known value A;, then M = (A, PM) is a polynomial-time c-approzimate
truthful mechanism for I, satisfying voluntary participation condition.

Notice that if a type set is finite then it is discrete and finitely upper-bounded.
Conversely if a type set is discrete and finitely upper-bounded it could contain
infinite values. For instance consider the case in which for every i = 1,...,m,
O, C {i~!}i € N}. This is a special case of the discrete and upper-bounded type
set: A, =1 and sup, = 1, for every type set O;.

4 A Payment Scheme for Rational Types

In this section, we show how to extend our payments in order to deal with
rational type set which are only upper-bounded by a finite value sup,. To do
that, we apply a rounding technique on types. Given a bid vector B, we denote
by B the vector obtained by B by replacing each element b; with a rounded
value b2 of b;. If a7 < by < a7 +1, then bF = 1/a7*! for some v € Z. Thus, if
B = (b1, ba,...,by) then BE = (bE bl ... bE). Given an algorithm A for IT,
we define algorithm A, as the algorithm that, on input B and o, simply run
algorithm A on input B and o.

Definition 10. Let S be a schedule, B be a bid vector, o be the public part of
the input, 7; be the observed completion time and CEQ) € RT be a constant (to be
given). For each i =1,...,m, we define

wo(2) e W by
Pi(z)(S,B,a,’Z}) _Jera if w;(S) # 0 and 7; = w;(S) - b;;
0 otherwise.

The idea behind payment scheme P(?) is similar to the one for P("). The differ-
ence is that we consider the rounded bid b instead of the declared bid b; and

the used constant c§2) is essentially different from cf.l). In the next theorem, we
will better clarify the meaning of constant c§2).

Theorem 3. Let II be an optimization problem for verifiable one-parameter
selfish agents whose types are positive rational, and let A be a polynomial-time
weakly-monotone algorithm for II. If every ©; is upper-bounded by a finite value
sup;, then for every 1 < i < m there exists a value for the constant CEZ), such
that M = (Aa, P(z)) s a polynomial-time truthful mechanism for I1. Moreover,
M satisfies voluntary participation condition.

156 A. Ferrante et al.

Proof. First note that, if A is weakly-monotone then A, is weakly-monotone as
well. Let B be a vector of bids, and S;, be the schedule computed by algorithm
A, when it takes as input (¢;, B_;), and S, be the one on input (b;, B_;). To
show that M is truthful, we prove that for all b; € ©; and 7; > w;(Sy,) - t;,

Ai = profiti(Sti, (ti, B,i), g, t“Wl(Stl) . tz) — profiti(Sbi,B, g, tz,,.TZ) Z 0

For the sake of readability we denote T = (¢;, B_;) and 7;" = w;(Sy,) - t;. We
first consider the case w;(Sp,) = 0. In this case we have:

1
A; = profit, (S, T,0,t, ;") > W - (oﬂ“ -052) — oﬂ) >0 (2)

when

log S|
> Tem
1= 2 2
At the end of the theorem, we discuss how to choose c§2) in order M to be
truthful. From Eq. 2, we also have that profit,(S;,, T,o,t;, 7;*) > 0, thus M

satisfies voluntary participation condition.

It remains to show the case w;(Sp,) > 0. We distinguish two cases:

Case 1(b; > t;). Since A is weakly-monotone and bF > £ it holds
that w;(S;,) > 0. W.lo.g. we only consider the case in which
profit; (Sy,, B,o,t;,7;) > 0. We first analyze the case b? = ¢, ie. b, and
t; are rounded to the same power of a.

1 1
A= <tR - bR> el — (wi(Sh,) — wi(S,)) - t; = 0.

Here, we analyze the remaining case in which b2 > ¢*. Then, for some v € Z,
it holds:

A=W (Pt > P (wi(Sy,) — wil(Sp,)) -t >

R R
1Y @ oy @ L
>W- thiblR =Wt >2W (0T —aY) g “ o (4)

By simple calculations we have that Eq. 4 is greater or equal to 0 when:

log (0(2)) log, (@ —1)

> _ a\™g _ « . 5

v > N) (5)
As in the previous case, we postpone the discussion of choosing c§2> for the
end of the theorem.

Case 2 (b; <'t;). Since T > w;(Sy,)-b;, we have that Pi(Z)(Sbi,B, 0,7;) =0and
profit;(Ss,, B, 0, t;, 7;) < 0, implying that A; > profit,(S;,, T, 0, t;, 7;*) > 0.

Improvements for Truthful Mechanisms 157

Here we discuss how to choose the constant cl(.z) in order to satisfy both Eqg. 3
and Eq. 5, for any value of ~. In particular, we just show for the case in
which v = ~ymin, where ymin iS the minimal value that v can have. Since

Sulpi < (Sulpi)R = a¥min by simple calculations we have vy, = [log,, sulpﬂ‘
(2)

Since loga(cf)) can have as value any real number by varying ¢;*’, we can com-

pute a value of c§2) such that both Eq. 3 and Eq. 5 are satisfied when v = vyyin.
Hence, it is straightforward that payment scheme P(?) is computable in polyno-
mial time. g

Note that, if in Def. 10 the constant cEQ) is not used, then from Eq. 3 and Eqg. 5
we may observe that in order M to be truthful, type sets ©; must be upper-
bounded by a constant which depends on the value of max {—}, —'°g«{o=1},

Thus, c§2) allows us to deal with any type set ©; that is upper-bounded by any
constant sup,.

In order to have truthful mechanism for the problem at hand, involving agents
having type set upper-bounded by a finite value, we round the bids. But what
about the approximation? If A is a c-approximation algorithm, then nothing can
be said about the approximation of A,. Next, we define the class of problems
for which the rounding increases the approximation of A, by a guarantee factor
with respect to the approximation guarantee of A. Henceforth, we restrict our
attention only to minimization problems. We stress that similar arguments can
be applied for maximization problems as well.

Definition 11. Fix ¢ > 0 and 6 > 1. A one-parameter minimization problem
II = (Z, m, sol,min) is (J, €)-smooth if, for any pair of instances I = (T, o) and

I =(T,0) such that t; < t;- <6t fori=1,2,...,m, and for all S € sol(o), it
holds that m(S,I) < m(S,I) < (1+¢€) -m(S,I).

For instance, observe that Q||Ciaq 1S (a, & — 1)-smooth for all @ > 1. From the
above definition, the following remark is straightforward.

Remark 1. Let IT be a (J, ¢)-smooth one-parameter minimization problem and
let I = (T,0) and I = (T, o) be two instances of IT such that t; < t; < § - t;, for
i=1,2,...,m. Then, any c-approximate solution S for I is ¢-(1+e¢)-approximate
for I and any c-approximate solution S for I is ¢ - (1 4 €)-approximate for I.

From Theorem 3 and the above remark we have the next theorem.

Theorem 4. Let IT be a (o, — 1)-smooth optimization problem for verifi-
able one-parameter selfish agents whose types are positive rational, and let A be
polynomial-time c-approximate weakly-monotone algorithm for II. If every ©; is
upper-bounded by a finite value sup;, then M = (A, P?) is (a- c)-approzimate
polynomial-time truthful mechanism for II, satisfying voluntary participation
condition.

158 A. Ferrante et al.

5 Applications to Q||C)nae Problem

In this section we give a non-trivial application of our results to the well known
Q||Cmaz problem. In the case in which type sets are discrete, then given a
c-approximate polynomial-time weakly-monotone algorithm for Q||C),q. prob-
lem, we can construct c-approximate polynomial-time truthful mechanism for
Q||Craz- On the other hand, when we have no constraints on the type sets, then
given a c-approximate polynomial-time weakly-monotone algorithm for Q||C/nqz
problem, we can construct ¢- (1+e¢)-approximate polynomial-time truthful mech-
anism for Q||Cinaz, for every € > 0.

We refer to the Section 1 for the definition of the problem. In the Q|Cpuax
problem with verifiable one-parameter selfish agents!, the machines are owned
by verifiable selfish agents wishing to maximize their own profit (as discussed
in the section 1) disregarding the global makespan minimization. In particular,
the job weights W = (wy,ws,...,w,), are the public part of the input, and the
speeds of the machines are the private part of the input, that is, each agent
privately knows the speed of her machine. As usual, we assume that the types
of the agents are the inverse of the speed.

As shown in Theorem 1 and Theorem 3, to apply our payment schemes, type
sets must be upper-bounded by a finite value. For Q||C),... problem, since types
are the inverse of the speeds, it means that the speed of every agent (the inverse
of the declared bid) has to be lower-bounded by a constant greater than 0, but
this could not be the case. Therefore, here we show a method to deal with these
cases. We show that it is always possible to reduce any instance of Q||Cyuaz to
the one where every type set is upper-bounded by a finite value preserving the
optimum of the instance.

The idea is to give a lower bound on the speed (an upper bound on the
declared bid) to each agent depending on the declaration of the other agents.
Thus, if an agent declares a speed value too small with respect to the other
declared speeds, then she can be discarded. Let us proceed more formally.

To compute the lower bound of each agent we execute the following algorithm
taking as input the bid vector B and the weight of the jobs W. (We call this
algorithm BoundTypes(B,W).)

1. For all i € {1,...,m}, if s; is lower-bounded by a constant s; > 0, then
use this value as lower bound for the machine i, otherwise execute the steps
2—-3.

2. Let k be a fastest machine in {1,...,i — 1} U{i+1,...,m} w.r.t. the bid
vector B (that is a machine with a smallest bid without considering machine
i); let time; be the time needed (considering the bid b;) for machine & to
execute all the jobs: time; = W - by.

3. Let w; be a minimum weight job; use the value 3, = ;7 as a lower bound
for the speed of machine .

! Tn the rest of the paper, with an abuse of notation, we will simply call Q||Crmax
problem the one with verifiable one-parameter selfish agents since here we deal only
with the latter.

Improvements for Truthful Mechanisms 159

To understand the motivation of this method, we consider the following: if
the machine 7 declares b; > 51,.7 then for any optimum solution OPT we have
w;(OPT) = 0, since there exists a machine requiring less time to execute all
jobs with respect to the time needed to machine i to complete a job having the
smallest weight. Let A be a weakly-monotone algorithm for Q||C,,q. problem.
Now, we describe a weakly-monotone algorithm A’ for Q||C/,.. which uses A
as a subroutine. A’ has the same approximation ratio of A and can be used to
deal with machines having unbounded speeds. It takes as input the bid vector
B and the weight vector W and outputs a schedule S.

1. Let (81,--+,8m) = BoundTypes(B W); let B the bids vector B without the
machines blddmg b; > A, . let S be the schedule returned by A executed on

B and W; R
2. Let S be a schedule equal to S for all machines declaring b; < j assigning
0 to all the other machines; return .S as the schedule.

Now, we show that this algorithm leads to a truthful mechanism (together
with our payment schemes) and that it has the same approximation ratio as the
algorithm A.

Lemma 2. If A is a weakly-monotone c-approximate algorithm for Q||Cmaz
problem, then A’ is a weakly-monotone c-approzimate algorithm for Q||Crax
problem.

Proof. We first show that A’ is a scheduling algorithm. Since A is a scheduling
algorithm, we only have to show that at least one machine is given as input
to algorithm A. Now, we show that we never discard the fastest machines. Let
i be a fastest machine in {1,...,m} and k a fastest machine in {1,...,7 —
1} u{i+1,...,m}. Then, obv10usly Sp = b1 < bl, = s;. Let T be the time
needed by machme k to execute all jobs and let w be a smallest job. From
the definition of $;, we have s; = 7 = JI) - s < s < s;. This implies that
the fastest machines are surely not discarded. We now prove that A’ is weakly-
monotone. Fix a bid vector B, and suppose that w;(A’(B,W)) = 0. We prove
that w; (A'((V/, B_;),W)) = 0, for every b’ > b;. In the case b’ > ! trivially
w; (A ((V/,B_;),W)) = 0, since machine ¢ will be discarded. If o, < ., then
machine is not discarded and w;(A’((/, B—;),W)) = 0, given that algorlthm A
is weakly-monotone. Finally, to show that the algonthm A’ is a c-approximate
algorithm, we only prove that the deletion of the ”slowest” machines that does
not modify the optimum. More specifically, let I be the initial instance of the
problem and OPT be an optimum solution for I. If b; > ! (i.e. machine i is a
discarded machine), then w;(OPT) = 0. In fact, the time needed by the machine
i to complete the smallest job w is greater then the time needed to the fastest
machine to complete the overall jobs. O

Algorithm A’, using the algorithm BoundT'ypes, reduces any (potentially un-
bounded) instance I of Q||Cynaz to @ bounded instance I of Q||Cinaz- Thus we
can apply our payment scheme. By Lemma 2 and Theorem 2 we have:

160 A. Ferrante et al.

Theorem 5. Let A be a c-approzimate polynomial-time weakly-monotone algo-
rithm for Q||Cimaz problem. If every ©; is discrete w.r.t. a known value A;, then
there exists a c-approximate polynomial-time truthful mechanism M = (A’, P(l))
for Q||Craz, satisfying voluntary participation condition.

By Lemma 2, Theorem 4 and since Q||Cinq problem is (1 + €, ¢€)-smooth we
have:

Theorem 6. Let A be a c-approzimate polynomial-time weakly-monotone al-
gorithm for Q||Craz problem. Then, for any € > 0, there exists a ¢ - (1 + €)-
approzimate polynomial-time truthful mechanism M = (A', P®) for Q||Crmae,
satisfying voluntary participation condition.

Acknowledgments. We wish to thank the authors of [4] for providing us with a
full version of their paper.

References

1. N. Andelman, Y. Azar, and M.Sorani. Truthful approximation mechanisms for
scheduling selfish related machines. In Proceedings of the 22nd Annual Symposium
on Theoretical Aspects of Computer Science (STACS). LNCS, 2005.

2. A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In
Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science
(FOCS), pages 482-491, 2001.

3. V. Auletta, R. De Prisco, P. Penna, and P. Persiano. Deterministic Truthful Mech-
anisms for Scheduling on Selfish Machines. In Proceedings of the 21st Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS), volume 2996, pages
608-619. LNCS, 2004.

4. V. Auletta, R. De Prisco, P. Penna, and P. Persiano. The Power of Verification

for One-Parameter Agents. In Proceedings of the 31st International Colloquium on

Automata, Languages and Programming (ICALP), volume 3142, pages 171-182.

LNCS, 2004.

E. H. Clarke. Multipart pricing of public goods. Public Choice, pages 17-33, 1971.

6. R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Tech-
nical Journal, (45):1563-1581, 1966.

7. R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of
Applied Mathematic, 17(2), 1969.

8. N. Nisan and A. Ronen. Algorithmic Mechanism Design. In Proceedings of the
31st Annual ACM Symposium on Theory of Computing (STOC), pages 129-140,
1999.

9. N. Nisan and A. Ronen. Computationally Feasible VCG Mechanisms. In Proceed-
ings of the 2nd ACM Conference on Electronic Commerce (EC), pages 242-252,
2000.

10. V. Vazirani. Approximation Algorithms. Springer, 2001.

11. W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal

of Finance, 16:8-37, 1961.

o

Symmetry in Network Congestion Games:
Pure Equilibria and Anarchy Cost*

Dimitris Fotakis!, Spyros Kontogiannis??, and Paul Spirakis?

! Dept. of Information and Communication Systems Engineering,
University of the Aegean, 83200 Samos, Greece
fotakis@aegean.gr
2 Research Academic Computer Technology Institute,

26500 Patras, Greece
{kontog, spirakis}@cti.gr
3 Dept. of Computer Science, University of Ioannina, 45110 Ioannina, Greece

Abstract. We study computational and coordination efficiency issues of
Nash equilibria in symmetric network congestion games. We first propose
a simple and natural greedy method that computes a pure Nash equi-
librium with respect to traffic congestion in a network. In this algorithm
each user plays only once and allocates her traffic to a path selected via
a shortest path computation. We then show that this algorithm works
for series-parallel networks when users are identical or when users are of
varying demands but have the same best response strategy for any initial
network traffic. We also give constructions where the algorithm fails if
either the above condition is violated (even for series-parallel networks)
or the network is not series-parallel (even for identical users). Thus, we
essentially indicate the limits of the applicability of this greedy approach.

We also study the price of anarchy for the objective of maximum
latency. We prove that for any network of m uniformly related links and

for identical users, the price of anarchy is @(102)%5;”7,1)‘

1 Introduction

Network congestion games provide a sound model for selfish routing of unsplit-
table traffic and have recently been the subject of intensive research. The prevail-
ing questions in recent work have to do with the performance degradation due
to lack of users’ coordination (e.g., [23,12,10,1,3]) and the efficient computation
of pure Nash equilibria (e.g., [8,11,10]).

A natural greedy approach for computing a pure Nash equilibrium (PNE) is
Greedy Best Response (GBR). Let us consider a dynamic setting with new users
arriving in the network. The users play only once and irrevocably choose their
strategy upon arrival. Each new user routes her traffic on the minimum delay
path given the paths of the users currently in the network. Hopefully the existing

* This work was partially supported by the EU within the Future and Emerging
Technologies Programme under contract IST-2001-33135 (CRESCCO) and within
the 6th Framework Programme under contract 001907 (DELIS).

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 161-175, 2006.
© Springer-Verlag Berlin Heidelberg 2006

162 D. Fotakis, S. Kontogiannis, and P. Spirakis

users are not affected by the new one and the network configuration remains at
a PNE without any defections taking place. This approach is not only intuitive
and computationally efficient, but also resembles how things work in practice.
A natural question is whether there are any interesting classes of networks for
which Greedy Best Response maintains a PNE.

Greedy Best Response can be regarded as a generalization of Graham’s LPT
algorithm [13]. The restriction of GBR to parallel-link networks is known to
maintain a PNE for arbitrary non-decreasing latency functions and weighted
users arriving in non-increasing order of weights [17,9]. In this work, we prove
that GBR maintains a PNE for symmetric congestion games in series-parallel
networks. This result is extended to weighted congestion games with a certain
notion of symmetry, namely that the users have the same best response strategies
for any initial network traffic.

The second important research direction has to do with the inefficiency of
Nash equilibria. The coordination ratio or price of anarchy was introduced in
[16] for measuring the performance degradation due to lack of users’ coordination
in resource sharing. The price of anarchy is the worst-case ratio between the
cost of a Nash equilibrium and the cost of an optimal solution. For network
congestion games, there are two natural notions of cost for defining the price of
anarchy: the total and the mazimum latency. As the price of anarchy for non-
atomic congestion games becomes well-understood (e.g., [23,21] for total latency
and [22,4] for maximum latency), the interest moves to the atomic setting (e.g.
[18,12,10,1,3].) In both settings, the case of linear latencies is prominent and has
been the focus of most of the previous work.

In this paper, we study the price of anarchy relative to the objective of max-
imum latency for symmetric network congestion games and latency functions
de(z) = aex,a. > 0. This corresponds to uniformly related links, with the coeffi-
cient a. denoting the inverse speed of link e. We show that the price of anarchy

for any network of m links is @(logi;nm).

Related Work. Rosenthal [20] initiated the study of congestion games and
proved that their PNE correspond to the local optima of a natural potential
function. Therefore, the best response dynamics converges to a PNE. On the
other hand, it is PLS-complete to find a PNE in symmetric (not necessarily
network) and non-symmetric network congestion games [8]. On the positive side,
[8] shows that in symmetric network congestion games, a PNE can be found
by a min-cost flow computation. For weighted congestion games, [11] considers
the case of identical parallel links and restricted assignments and shows how to
compute a PNE in strongly-polynomial time. [10] shows that weighted congestion
games with linear latencies admit a weighted potential function. Thus, the best
response dynamics converges to a PNE in pseudo-polynomial time.

In a seminal paper, Koutsoupias and Papadimitriou [16] introduce the price
of anarchy and consider the objective of maximum latency for a weighted con-
gestion game on m uniformly related parallel links. The price of anarchy for

that game is @(log)ig?m) if either the users or the links are identical [19,15,5]

and @(log}gi logm) Otherwise [5]. For uniformly related parallel links, identical

Symmetry in Network Congestion Games 163

users, and the objective of total latency, the price of anarchy is 2 — o(1) for the
general case of mixed equilibria and 4/3 for pure equilibria [18,12].

Similar results have been obtained recently for network congestion games with
linear latency functions. The price of anarchy for the objective of total latency is
3+2‘/5 if weighted congestion games and mixed equilibria are considered [1]. This
drops to 5/2 for the special case of identical users and pure equilibria ([1] and
independently in [3]). The price of anarchy for maximum latency is also 5/2 for
pure Nash equilibria and symmetric games (with identical users) and becomes
O(y/n) for non-symmetric games [3].

On the other hand, the price of anarchy for m identical links and the objec-
tive of maximum latency is Q(log)lgo «m) if mixed Nash equilibria are considered
[16,19]. [10] studies weighted single-commodity congestion games in layered net-
works with m identical links and shows that the price of anarchy for maximum
latency remains 9(10550 ’g"m) for the general case of mixed Nash equilibria.

The bounds above apply to the atomic setting, with users controlling a non-
negligible amount of traffic demand, and consider both pure and mixed equilibria
(with the exception of the results in [3] on maximum latency). Improved bounds
can be obtained in the non-atomic setting, where each user controls a negligible
amount of demand and pure and mixed equilibria are equivalent. [23] initiates
the study of the price of anarchy for the objective of total latency in the non-
atomic setting and shows that the price of anarchy for linear latencies is 4/3.
[21] proves that the price of anarchy depends on the class of latency functions
and not on the network topology and gives a tight bound for every class.

As for the objective of maximum latency in the non-atomic setting, the upper
bounds for total latency also apply to maximum latency in single-commodity
networks [4]. For multi-commodity networks, the price of anarchy is 22(|V|) even
for linear latencies [4]. On the other hand, the price of anarchy for maximum
latency is at most |V| — 1 in single-commodity networks [22].

Contribution. If the users are identical, GBR behaves as an online algorithm.
For weighted users, GBR is the most natural greedy algorithm since it determines
a fixed order in which the users are considered and each user makes an irrevocable
greedy choice given the choices of the previous users.

In this paper, we essentially characterize the class of network congestion games
for which GBR maintains a PNE. More specifically, we prove that GBR main-
tains a PNE for symmetric congestion games in series-parallel networks. This is
extended to weighted congestion games with the common best response property.
This property requires that the users have the same best response strategies for
any initial network traffic. In addition to symmetric network congestion games,
this class includes weighted congestion games in layered networks with identical
edges (i.e., edge delays are given by a common linear latency function). We also
prove that the restriction to series-parallel networks and games with the common
best response property is essentially necessary for GBR to maintain a PNE.

For the price of anarchy, we focus on the objective of maximum latency. We
consider symmetric network congestion games and linear latencies with no ad-
ditive term, thus extending to arbitrary networks the widely-studied setting of

164 D. Fotakis, S. Kontogiannis, and P. Spirakis

identical users and uniformly related parallel links (e.g., [16,9,19,5]). We con-
sider the general case of mixed equilibria and show that the price of anarchy
remains @(lolgf)ﬁ) o m) for identical users and networks of m links. The setting of
identical users and arbitrary networks is orthogonal to the setting of [10] where
the network has a notion of symmetry, namely all paths have the same length
and consist of identical edges, and the users have different weights.

The results on the price of anarchy were obtained independently of results
of [1,3]. Our approach is fundamentally different and may be of independent
interest. It is based on a natural correspondence between mixed strategies and
fractional s — ¢ flows (see also [10]). To motivate the approach, we first show
that the optimal solution of a quadratic program corresponds to a symmetric
mixed Nash equilibrium. We use quadratic programming duality and show that
the expected cost of any user in a (pure or mixed) Nash equilibrium is at most 3
times the optimal maximum latency. A Chernoff-Hoeffding bound yields that the

expected maximum latency is 0(101;1%0 ’g”m) times the optimal maximum latency.

2 Definitions and Preliminaries

The Model. A network congestion game is a tuple (N, G, (d¢)ccr), where N =
{1,...,n} is the set of users controlling a unit of traffic demand each, G(V, E) is
a directed graph representing the communication network, and d, is the latency
function associated with edge e € F. We assume that d.’s are non-negative
and non-decreasing functions of the edge loads. If the edge delays are given by a
common linear latency function, we say that the edges are identical. For identical
edges, we assume wlog. that the edge delays are given by the identity function,
i.e. Ve € E,d.(x) = x. We restrict our attention to single-commodity network
congestion games, where the network GG has a single source s and destination ¢
and the set of users’ strategies is the set of s — ¢ paths, denoted P. Wlog. we
assume that G is connected and every vertex of G lies on a directed s — t path.

‘We also consider weighted single-commodity network congestion games, where
user i controls w; units of traffic demand!. The users are indexed in non-
increasing order of weights, i.e., wy > ws > ... > w,. Single-commodity network
congestion games are symmetric2. However, weighted games are non-symmetric
in general because the users’ cost functions are different and non-symmetric due
to different user weights.

A vector P = (p1,...,pn) Consisting of an s — ¢ path p; for each user i is a
pure strategies profile. Let £.(P) = 3, ., w; denote the load of edge e in P.
The cost)\;(P) of user ¢ for routing her demand on path p in the profile P is

)\;(P) = Zerﬁpi de(ge(P)) + Zer\pi de(ge(P) + ’LUi)
The cost X*(P) of user i in P is X} (P), namely the total delay along her path.

"' In (unweighted) congestion games, w1 = w2 = ... = wy = 1.

2 A game is symmetric if all users have the same strategy set and the users’ costs
are given by identical symmetric functions of other users’ strategies. In congestion
games, the users are identical and a common strategy set implies symmetry.

Symmetry in Network Congestion Games 165

A vector Q = (q1,---,qn) consisting of a probability distribution ¢; over P
for each user i is a mized strategies profile. For each path p, ¢;(p) denotes the
probability that user i routes her demand on p. Let £,(Q) = Z;”:l q;(p)w; be
the expected load routed on path p in Q, and let £,(Q~%) = £,(Q) — qi(p)w; be
the expected load on p excluding the contribution of user . Similarly, let £.(Q) =
D pecp to(Q) and £(Q™") =37, £o(Q™") be the expected load on edge e with
and without user i respectively. The cost)\;(Q) of user ¢ for routing her demand
on path p in the mixed strategies profile Q is the expectation according to Q¢
of AL (P~" @ p) over all pure strategies profiles* P~*. The cost A'(Q) of user i in
Q is the expectation according to Q of \(P) over all pure strategies profiles P.

For a strategies profile Q, let \™**(Q) = max;en{\(Q)} be the maximum
user cost in Q.

In this paper, we consider mixed strategies profiles only for identical users and
linear latency functions d.(x) = a.z. Then, simply A/ (Q) = > eep ae(le(Q™1)+1)
and \'(Q) = Y cp ¢i(p)\,(Q) by linearity of expectation.

A mixed (in general) strategies profile Q is a Nash equilibrium if for every
user 7 and every p,p’ € P with ¢i(p) > 0, A/(Q) < X,(Q). Therefore, if Q is a
Nash equilibrium, A (Q) = X!, (Q) = A(Q) for every user i and every p,p’ € P
with both ¢;(p), ¢:(p") > 0.

We evaluate strategies profiles using the objective of maximum latency. The
maximum latency L(P) of a pure strategies profile P is the maximum user cost
in P, L(P) = A™**(P). The maximum latency L(Q) of a mixed strategies profile
Q is the expectation according to @ of L(P) over all pure strategies profiles P,
L(Q) = X pepn P(P,Q)L(P), where P(P,Q) = [];_; ¢i(pi) is the occurrence
probability of P in). The optimal solution, denoted P*, corresponds to a pure
strategies profile and the optimal cost is L(P*). The price of anarchy is defined
as worst-case ratio L(Q)/L(P*) over all Nash equilibria Q.

Flows. A feasible flow is a function f : P+ Rxq such that 3~ f, = >_1, w;.
We also use f to denote the |P|-dimensional vector corresponding to the flow
f. A flow is unsplittable if each user’s demand is routed on a single path and
splittable otherwise. Let f, = Zp:eep fp denote the flow on edge e.

Greedy Best Response. GBR considers the users one-by-one in non-increasing
order of weight. Each user adopts her best response strategy given the strategies
of previous users. The choice is irrevocable since no user can change her strategy
in the future. In simple words, each user plays only once and selects its best
response strategy at the moment she is considered by the algorithm.

Formally, let p; be the path of user i, and let P® = (py,...,p;) be the pure
strategies profile for users 1,...,4. Then, the path p;; of user i + 1 is

pi+1 = arg minpep{zeep de(Le(P) + wiy1)} (1)

We say that GBR succeeds if every profile P? is a Nash equilibrium.

3 For a n-dimensional vector X, X% = (21,...,%i—1,Tit1,...,%,) and X " Pz =
(1'1,...,x¢71,$,$¢+1,...,$n).

166 D. Fotakis, S. Kontogiannis, and P. Spirakis

Common Best Response. The single-commodity network congestion game
((wi)ien, G, (de)ecr) has the common best response property if for every initial
flow f (not necessarily feasible), all users have the same set of best response
strategies wrt the edge loads induced by f. In other words, if a path p is a best
response wrt f for some user, then the following inequality holds for all users j
and all paths p':

Zeep’ de(fe + wj) > ZeEp de(fe + UJj)

Furthermore, every segment 7 of a best response path p is a best response for
routing the demand of any user between 7’s endpoints. We should highlight that
in the definition above, best responses are computed without taking into account
that some users may already contribute to the initial flow f. The common best
response property requires a notion of symmetry between the users, namely that
all of them have the same topmost preferences for any initial traffic conditions.
This notion of symmetry is weaker than that of a symmetric game but still strong
enough to make GBR work in series-parallel networks.

Layered and Series-Parallel Graphs. A directed (multi)graph G(V, E) with
a distinguished source s and destination ¢ is layered if all directed s — ¢t paths
have exactly the same length and each vertex lies on a directed s — ¢ path.
A multigraph is series-parallel with terminals (s,t) if it is either a single edge
(s,t) or can be obtained from two series-parallel graphs with terminals (sy,¢1)
and (s2,t2) connected either in series or in parallel. In a series connection, ¢ is
identified with so, s; becomes s, and ¢ty becomes ¢. In a parallel connection, s;
is identified with so and becomes s, and ¢ is identified with ¢ and becomes ¢.
A directed graph with terminals (s,) is series-parallel if and only if it does not
contain a ¢-graph with degree-2 terminals as a topological minor (Fig. 1.b) [7].

Proposition 1. Let G(V, E) be a series-parallel graph with terminals (s,t), and
let vertices u,v connected by two disjoint paths, denoted m and ©', only sharing
their endpoints. Every s — t path having at least one edge in common with =
contains both u and v.

3 Greedy Best Response in Series-Parallel Networks

We first show that GBR succeeds if the network is series-parallel and the game
has the common best response property.

Theorem 1. If G is a series-parallel graph with terminals (s,t) and the game
((wi)ien, G, (de)ecr) has the common best response property, GBR succeeds and
computes a pure Nash equilibrium in time O(nmlogm).

Proof. The proof is by induction on the number of users considered by the
algorithm. The claim holds for the first user, since she adopts her best response
strategy and is the only user in the network. We inductively assume that after
user i has been considered, P* = (py,...,p;) is a Nash equilibrium. Let p;

Symmetry in Network Congestion Games 167

be the path chosen by user i + 1 according to (1). To reach a contradiction, we
assume that P! = (py,...,p;, pi+1) is not a Nash equilibrium.

Consequently, there is a user j, j < i, preferring another path p to her path
p;j. Let u be a split point where p departs from p; (u may be s). Any pair of
different paths has at least one split point because they have a common Source.
Let v be the first merge point after u where p joins p; again (v may be ¢).
Each split point is followed by a merge point because the paths have a common
destination.

For simplicity of notation, let m and 7; denote the segments of p and p;
respectively between u and v. By the definition of v, 7 and 7; are edge disjoint
and have only their endpoints u and v in common.

Since j wants to defect from 7; in P! but not in P?, it is p;;; that shares
some edges with 7; and makes it inferior to 7 for user j. Since p;+; and 7; have
at least one edge in common, p;41 Contains both u and v by Proposition 1. Let
mi+1 be the segment of p;,; between w and v (Fig. 1.a).

The path p;; is a best response for user i+1 wrt the flow induced by P?. Since
the game has the common best response property, p;+1 iS also a best response
for user j wrt the flow induced by P! (ignoring that w; already contributes to
the flow). Therefore, the path segment 7, ;1 is a best response wrt P? for routing
the demand of user j from u to v:

D de(le(P) +wi) = > de(Ce(P) +wy) (2)

ecT eemit1

Since j prefers 7 to 7; after user ¢+ 1 routing her traffic on m;11,

S delle(P) 4+ D de(le(P) + wig) >

e€m;i\Tit1 eEm;NMi41
D de(le(P) +wy) > > de(be(PY) +wj) >
ecm eEmit
S delte(PYtwp)+ Y de(le(PY) + winh)
e€mi41\7; eEmi1NT;

The second inequality follows from Ineq. (2). The last inequality holds because
the latency functions are non-decreasing and w; > wj41.

If m; = w41, the contradiction is immediate. If w; # m; 41, user j prefers the
path segment 741 \ 7; to the path segment 7; \ ;41 even in P
A;J\WLH (Pi) - Z de(ﬂe(Pi)) > Z de(ﬁe(Pi) + wj) = Ajriﬂ\frj (PZ)

eEm\miq1 e€mit1\m;

This contradicts to the inductive hypothesis that P’ is a Nash equilibrium.
Therefore, p and p; does not have any split points and p coincides with p;.
Consequently, P! is a Nash equilibrium.

GBR performs n s —t shortest path computations in a graph of m edges. This
can be done in time O(nmlogm) using Dijkstra’s algorithm. O

168 D. Fotakis, S. Kontogiannis, and P. Spirakis

Single-commodity network congestion games with identical users have the com-
mon best response property because the users’ cost functions are identical func-
tions of the edge loads. We are also aware of a class of weighted single-commodity
network congestion games with the common best response property.

Proposition 2. A weighted single-commodity congestion game in a layered net-
work with identical edges has the common best response property for any set of
user weights.

Corollary 1. GBR succeeds for single-commodity congestion games in Series-
parallel networks:

1. if the users are identical (for arbitrary non-decreasing edge delays).
2. if the graph is layered and the edges are identical (for arbitrary user weights).

GBR has a natural distributed implementation based on a leader election al-
gorithm. There is a process corresponding to each player. We assume that the
processes know the network and the edge latency functions. We also assume a
message passing subsystem and an underlying Synchronization mechanism (e.g.
logical timestamps) allowing a distributed algorithm to proceed in logical rounds.

Initially, all processes are active. In each round, they run a leader election
algorithm and determine the active process of largest weight. This process routes
its demand on its best response path, announces its strategy to the remaining
active processes, and becomes passive. Notice that all processes can compute
their best responses locally. In the offline setting, the algorithm terminates as
soon as there are no active processes. In the online setting, new users/processes
may enter the system at any point in time.

We conclude the study of GBR by providing some simple examples demon-
strating that GBR may not succeed in maintaining a PNE if either the network is
not series-parallel or the game does not have the common best response property.
Hence both conditions of Theorem 1 are necessary for GBR to succeed.

If the network is not series-parallel, the simplest symmetric game for which
GBR fails consists of two identical users and the 3-layered equivalent of the -
graph with identical edges (Fig. 1.b). The pure Nash equilibrium assigns one
user to 7 and the other to w3. If GBR assigns the first user to w5, there is no
strategy for the second user that yields a Nash equilibrium. We can force GBR
to assign the first user to mo by slightly decreasing the latency function of the
second edge to (1 — €)x, where ¢ is a small positive constant.

The common best response property is also necessary for series-parallel net-
works other than a sequence of parallel-link graphs connected in series*. For
example, let us consider the 2-layered series-parallel graph of Fig. 1.c and three
users of weights wy, = 100, we = 10, and w3 = 4. The corresponding congestion
game does not have the common best response property. GBR assigns the first
user to the path 71, the second user to 75, and the third user to w3, while in
every pure Nash equilibrium the first two users are assigned to .

4 If the network consists of bunches of parallel-link connected in series, a pure Nash
equilibrium can be computed by independently applying GBR to each bunch of
parallel links.

Symmetry in Network Congestion Games 169

Wi
u v
w2

I

(@) (b)

Fig. 1. (a) The graph in the proof of Theorem 1. GBR may fail if (b) the network is
not series-parallel (even if the game is symmetric) and (c) the game does not have the
common best response property (even if the network is series-parallel).

4 The Price of Anarchy in Networks of Uniformly
Related Links

We proceed to bound the price of anarchy in symmetric network congestion
games with uniformly related links. We consider n identical users routing their
(unit) traffic demands on a directed graph G(V, E') with a unique source s and
destination ¢, and m = |E| edges. There is a linear latency function d.(x) = a.xz,
a. > 0, associated with each edge e. We regard a. as the inverse speed of edge

e. For each path p € P, let a, = > . a. denote the inverse speed of p.

Flows and Mixed Strategies Profiles. A feasible flow is a function f : P —
Rxosuchthat}® ., f, =n. Let0,(f) =)., acfe denote the total delay along
the path p wrt f. We map a mixed (in general) strategies profile Q = (¢1,. .., qn)
to a feasible flow f as follows: For each s —t path p € P, f@ = £,(Q). In other
words, we handle the expected load routed on p in @ as a splittable flow, where
user ¢ routes a fraction ¢;(p) of her demand on p. If Q) is a pure strategies profile,
the corresponding flow is unsplittable.

We say that a feasible flow f@ corresponding to a strategies profile @ is at
Nash equilibrium with the understanding that actually () is a Nash equilibrium.
For every Nash equilibrium @ and the corresponding flow f©,

)\max(Q) < [r)rél?gl{ep(fQ) + ap} = (Smin(fQ) (3)

Otherwise, a user of cost A™**(Q) in @ could improve her cost by switching to
the path minimizing 6, (f<) + a,. Furthermore, for any path p € P with f§ > 0,

max{0,(f9), a,} < X"™(Q) < 6™ (f9) (4)

For simplicity, we drop the superscript of Q from its corresponding flow f©
when the strategies profile is clear from the context.

Total Latency and Total Load. A flow f can be evaluated by its total latency
defined as

C(f) = ZpG'P fpap(f) = ZeGE aefe2

170 D. Fotakis, S. Kontogiannis, and P. Spirakis

In addition, a flow f can be evaluated by its total load defined as

W(f) = ZeeE aefe = ZeeE Qe Zp:e&p fp = ZpEP apfp

We sometimes use W (P*) to denote the total load of the flow corresponding to
the optimal solution P*.

Propositiop 3. Let f be a feasible flow at Nash equilibrium. Then
C(f) < nd™m(f).

Proof. By Ineq. (4), for every path p € P, f,0,(f) < f, 8™"(f). Summing over
all paths, we conclude that C(f) < nd™in(f). O

Let M be the |P| x |P| square matrix defined as M([p,p'] =3 -, a. for each
pair of paths p, p’ € P. By definition, M is a symmetric matrix. For every flow f,
M f is the |P|-dimensional vector with coordinates 6, (f). Thus, the total latency
of f can be expressed as C(f) = f"Mf. Since C(f) = fTMf = cpacf? the
matrix M is positive semi-definite®.

Let A be the |P|-dimensional vector with A[p] = a, for each path p € P. The
total load of every flow f can be expressed as W (f) = AT f.

The mazimum latency of an unsplittable flow f is L(f) = maxy.;,~0{0,(f)}.
Notice that for every pure strategies profile P and its corresponding unsplittable

flow ¥, L(P) = L(f7).
4.1 Computing a Symmetric Nash Equilibrium

We next prove that the flow minimizing " 'C(f) + W(f) corresponds to a
symmetric Nash equilibrium. Formally, let f be the optimal fractional solution
to the following quadratic program min{"; ' f'M f + ATf : 17f > n, f > 0},
where 1 (resp. 0) denotes the |P|-dimensional vector with 1 (resp. 0) in each
coordinate. We observe that f is a splittable flow of value n.

Lemma 1. Let Q be the mized strategies profile where each user i routes its
demand on every path p with probability ¢;(p) = f(p)/n. Then, Q is a symmetric
Nash equilibrium.

Proof. The mixed strategies profile @) is symmetric by definition. We only have
to show that @ is a Nash ethbnum By construction, for every user ¢ and
every path p, £,(Q™%) = fp Therefore, for every user ¢ and every edge e

0.(Q7Y = ”;1]‘2. Thus, the cost of a user 7 routing her demand on a path p in
the mixed strategies profile @Q is

= Zae(ge(Q_i) +1)= Zae(n;lfe +1)= ";1917(f) +ap

eep eep

5 A n X n matrix M is positive semi-definite if for every vector € R™, 2T Ma > 0.

Symmetry in Network Congestion Games 171

The flow f minimizes the convex function 3", (" ac f2 +ac f.). Therefore,

for every p,p/ € P with f, > 0, the following inequality holds (e.g., [2], [23,
Lemma 2.5)):

n/;lgp(f) tap = Z(ﬂ;laefe +ac) < Z(n;laefe +ae) = nr_Llap’(f) +apy

eEp e€p’

Consequently, for every user ¢ and every p,p’ € P with ¢;(p) = fp/n >0,

A;(Q) = "}_ngp(f) +ap < n,_Llap’(f) +ap = A;’(Q)
and the mixed strategies profile @ is a Nash equilibrium. O

Remark. If the network consists of m uniformly related parallel links, the equi-
librium of Lemma 1 is identical to the generalized fully mized Nash equilibrium
of [9, Theorem 5].

4.2 Bounding the Price of Anarchy

We first apply the Chernoff-Hoeffding bound and prove that for every Nash
equilibrium @ with A™*(Q) < « L(P*) for some constant a > 1, L(Q) =
« O(log’i;”m) L(P*) (Lemma 2). We then prove that for every Nash equilibrium
Q, \™™(Q) < L(P*)4 2 W(P*) (Theorem 2). The proof is based on Dorn’s The-
orem [6] establishing strong duality in quadratic programming. As an immediate
consequence, we obtain that for every Nash equilibrium @, A™**(Q) < 3 L(P*)
(Corollary 2). The results in this section can be extended to symmetric (not nec-
essarily network) congestion games with identical users, resource set E, strategy
set P, and resource costs d.(z) = a.z, a. > 0.

Lemma 2. Let QQ be any strategies profile at Nash equilibrium. If there exists
some constant o > 1 such that \"*(Q) < a L(P*), L(Q) < aO(, 8™) L(P*).

loglog m

Proof. For every edge e and every user ¢, let X.; be the random variable de-
scribing the actual load routed on e by i. The random variable X, ; is 1 if ¢
routes its demand on a path containing e and 0 otherwise. The expectation of
X s E[X. ;] = Zp:eep gi(p) . Since the users select their paths independently,
for every edge e, the random variables {X. ;, i € N} are mutually independent.

For each edge ¢, let X, = a, Z?zl X.,; be the random variable that describes
the actual delay incurred by any user traversing e. Multiplying each X.; by a.,
we can regard X, as the sum of n independent random variables with values in
{0,a.}. By linearity of expectation,

n

E[Xe} = Q¢ ZE[Xe,i] = Qe Z Zqz(p) = Qe Z gp(Q) = aege(Q)

i=1 p:e€p i=1 p:e€Ep

172 D. Fotakis, S. Kontogiannis, and P. Spirakis

The Hoeffding bound® for w = a. and t = e x a. max{¢.(Q), 1}, yields that for
every K > 1,

P[X,. >era.max{l.(Q),1}] < k™"
Applying the union bound, we conclude that

PlEec E: X, > erxa.max{l.(Q),1}] <mr™°" (5)

For every path p € P with £,(Q) > 0, we define the random variable
Xp = Zeep X, describing the actual delay along p. The maximum latency of @
cannot exceed the expected maximum delay among paths p with ¢,(Q) > 0.
Formally,

L <E max {X
(@) <E[max {X,}]
Let us assume that for all edges e € E, X, < ek a. max{l.(Q),1}. Let p be any
path with ¢,(Q) > 0, and let 7 be any user with ¢;(p) > 0. Then,

X, = Zeep X, < e;‘izeep a. Max{l.(Q),1} < e,%zeep ac(le(Q™1) + 1)
=er M (Q) <erA™™X(Q) < era L(P*)

The second inequality follows from max{/.(Q), 1} < £.(Q~*)+ 1 which holds for
every edge e € p and every user ¢ with ¢;(p) > 0. Since ¢;(p) > 0 and @ is a Nash
equilibrium, \(Q) = >°,c, a(£.(Q™") + 1) and the next equality follows. The
third inequality follows from the definition of A™**(Q) and the last inequality
by hypothesis. Therefore, using Ineq. (5), we conclude that

P[] max {X,} >erxaL(P")] <mk™°"
[max (X} zenal(P) <
In words, the probability that the actual maximum delay caused by @Q exceeds

the optimal maximum delay by a factor greater than e x « is at most mx=°".
Therefore, for every ko > 2,

L(Q) < E[p:&gﬁo{xp}] <eaL(P*)(ko+ Y., mk™eF)

<ea L(P*)(ko + 2mkg ©™°)

For ko = 210%™, we obtain that L(Q) <2ea (5" +1)L(P"). O

Theorem 2. For every strategies profile Q at Nash equilibrium,
AP(Q) < L(P*) + 2 W(P*).

6 We use the standard version of Hoeffding bound [14]: Let X1, Xa,..., X, be inde-
pendent random variables with values in the interval [0,w]. Let X = > " | X; and

let IE[X] denote its expectation. Then, Vt > 0, P[X > t] < (eEt[X] Y,

Symmetry in Network Congestion Games 173

Proof. Let f denote the optimal fractional solution of the following quadratic
program: QP = min{fT(;M)f + ATf : 17f > n, f > 0}. Notice that f is a
splittable flow of value n. We first prove that nA™**(Q) < C(f) + 2 W (f).

We use Dorn’s Theorem [6], which establishes strong duality in quadratic
programming’, and prove that for every flow f,

The quadratic program QP = min{fT(JM)f + ATf : 17f > n,f > 0}
is always feasible and its optimal value is JC(f) + W(f). The Dorn’s dual of
QP is DP = max{z -n — fT(GM)f : Mf+ A > 1z,z > 0} (eg., [6], [2,
Chapter 6]). Every flow f becomes a feasible solution to DP by setting z =
min,ep{0,(f) + ap} = d™"(f). Hence, both the primal and the dual programs
are feasible. Since the matrix M is symmetric and positive semi-definite, by
Dorn’s Theorem, the objective value of the optimal dual solution is exactly
2C(F) + W |

Consequently, for every flow f, (f,d™=(f)) is a feasible solution to DP and

Let £ be the flow corresponding to the strategies profile Q. Since @ is a Nash
equilibrium, C(f¥) < né™"(f9) by Proposition 3. Hence, n 6™ (fQ) < C(f)+
2W(f). Using \™2%(Q) < 6™in(f?Q) by Ineq. (3), we obtain that nA™>*(Q) <
C(f) +2W(f).

To conclude the proof, let f* be the unsplittable flow corresponding to the
pure strategies profile P*, namely the optimal solution wrt. the objective of
maximum latency. Then,

nA"(Q) < 2[,C(F) + W(H] < 2[LC(F) + W(f*)]
< nL(f*) + 2W(f*) = nL(P*) + 2W (P*)

The second inequality holds because f* is a feasible solution to QP. The third
inequality holds because the average latency of f* cannot exceed its maximum
latency. For the last equality, since P* is a pure strategies profile, its maximum
latency and total load coincide with those of f*. O

7 Let min{mTMm +cTz . Az > bx > 0} be the primal quadratic program. The
Dorn’s dual of this program is max{—y” My + b"u : ATu — 2My < ¢,u > 0}. Dorn
[6] proved strong duality when the matrix M is symmetric and positive semi-definite.
Thus, if M is symmetric and positive semi-definite and both the primal and the dual
programs are feasible, their optimal solutions have the same objective value.

8 The optimal dual solution is obtained from f by setting z = 6™ (f). Since f is an
optimal solution to the primal program, we can use Karush-Kuhn-Tucker optimality
conditions (e.g. [2]) and prove that for any s — ¢ path p with f, > 0, 0,(f) +ap =
§™in(). Multiplying this equality by f, and summing over all p € P, we obtain that

z2-n=0" ()Y ep fp = Xpep [o(0p(f) +ap) = C(f) + W(f)
Therefore, the dual objective value of (f, 6™ (f)) is exactly ;C(f) + W(f).

174 D. Fotakis, S. Kontogiannis, and P. Spirakis

Corollary 2. For every strategies profile Q at Nash equilibrium, A\™**(Q) <
3L(P*).

Proof. We observe that W (P*) < n L(P*) because P* is a pure strategies profile.
The corollary follows from Theorem 2. O

Theorem 3. The price of anarchy for single-commodity network congestion

games with identical users and latencies d.(x) = acx is at most 6e (lolg?ﬁgm +1).

Acknowledgements. We wish to thank Burkhard Monien for suggesting the
significance and the possibility of obtaining stronger results on the efficient com-
putation of PNE in series-parallel networks.

References

1. B. Awerbuch, Y. Azar, and A. Epstein. The Price of Routing Unsplittable Flow.
STOC ’05, pp. 57-66, 2005.

2. M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming: Theory
and Algorithms (2nd edition). John Wiley and Sons, Inc., 1993.

3. G. Christodoulou and E. Koutsoupias. The Price of Anarchy of Finite Congestion
Games. STOC 05, pp. 67-73, 2005.

4. J.R. Correa, A.S. Schulz, and N.E. Stier Moses. Computational Complexity, Fair-
ness, and the Price of Anarchy of the Maximum Latency Problem. IPCO 04,
LNCS 3064, pp. 59-73, 2004.

5. A. Czumaj and B. Vicking. Tight Bounds for Worst-case Equilibria. SODA 02,
pp. 413-420, 2002.

6. W.S. Dorn. Duality in Quadratic Programming. Quarterly of Applied Mathematics,
18(2):155-162, 1960.

7. R.J. Duffin. Topology of Series-Parallel Networks. J. of Mathematical Analysis
and Applications, 10:303-318, 1965.

8. A. Fabrikant, C. Papadimitriou, and K. Talwar. The Complexity of Pure Nash
Equilibria. STOC 04, pp. 604-612, 2004.

9. D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. Spirakis.
The Structure and Complexity of Nash Equilibria for a Selfish Routing Game.
ICALP 02, LNCS 2380, pp. 123-134, 2002.

10. D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish Unsplittable Flows.
ICALP ’04, LNCS 3142, pp. 593-605, 2004.

11. M. Gairing, T. Liicking, M. Mavronicolas, and B. Monien. Computing Nash Equi-
libria for Scheduling on Restricted Parallel Links. STOC ’04, pp. 613-622, 2004.

12. M. Gairing, T. Liicking, M. Mavronicolas, B. Monien, and M. Rode. Nash Equilib-
ria in Discrete Routing Games with Convex Latency Functions. ICALP ’04, LNCS
3142, pp. 645657, 2004.

13. R. L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal of
Applied Mathematics, 17(2):416-429, 1969.

14. W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. J.
of the American Statistical Association, 58(301):13-30, 1963.

15. E. Koutsoupias, M. Mavronicolas, and P. Spirakis. Approximate Equilibria and
Ball Fusion. Theory of Computing Systems, 36:683-693, 2003.

16

17.

18.

19.

20.

21.

22.

23.

Symmetry in Network Congestion Games 175

. E. Koutsoupias and C. Papadimitriou. Worst-case Equilibria. STACS ’99, LNCS
1563, pp. 404-413, 1999.

L. Libman and A. Orda. Atomic Resource Sharing in Noncooperative Networks.
Telecommunication Systems, 17(4):385-409, 2001.

T. Liicking, M. Mavronicolas, B. Monien, and M. Rode. A New Model for Selfish
Routing. STACS 04, LNCS 2996, pp. 547-558, 2004.

M. Mavronicolas and P. Spirakis. The Price of Selfish Routing. STOC 01, pp.
510-519, 2001.

R.W. Rosenthal. A Class of Games Possessing Pure-Strategy Nash Equilibria.
International Journal of Game Theory, 2:65—67, 1973.

T. Roughgarden. The Price of Anarchy is Independent of the Network Topology.
STOC 02, pp. 428-437, 2002.

T. Roughgarden. The Maximum Latency of Selfish Routing. SODA ’04, pp. 980—
981, 2004.

T. Roughgarden and E. Tardos. How Bad is Selfish Routing? J. of the ACM,
49(2):236—259, 2002.

A Better-Than-Greedy Algorithm
for k-Set Multicover

Toshihiro Fujito!* and Hidekazu Kurahashi?**

! Dept. of Inform. & Comp. Sciences, Toyohashi University of Technology,
Toyohashi 441-8580, Japan
fujito@nuee.nagoya-u.ac.jp
2 @raduate School of Information Science, Nagoya University,

Furo, Chikusa, Nagoya 464-8603, Japan

Abstract. The set multicover (MC) problem is a natural extension of
the set cover problem s.t. each element requires to be covered a pre-
scribed number of times (instead of just once as in set cover). The k-set
multicover (k-MC) problem is a variant in which every subset is of size
at most k. Due to the multiple coverage requirement, two versions of
MC have been studied; the one in which each subset can be chosen only
once (constrained MC') and the other in which each subset can be cho-
sen any number of times (unconstrained MC'). For both versions the best
approximation algorithm known so far is the classical greedy heuristic,
whose performance ratio is H(k), where H(k) = Ele(l/z) It is no
hard, however, to come up with a natural modification of the greedy
algorithm such that the resulting performance is never worse, but could
also be strictly better. This paper will verify that this is indeed the case
by showing that such a modification leads to an improved performance
ratio of H (k) — 1/6 for both versions of k-MC.

1 Introduction

Given a base set U and a family S of subsets of U, the set cover (SC) problem
asks to find a smallest subfamily C C S that covers all the elements of U (i.e.,
Ugee S = U). When every subset in S is of size bounded from above by a
constant k, it is called k-set cover (k-SC). The set cover problem, or even k-
SC for k > 3, is known to be NP-hard [13] as well as APX-hard [15]. The
main subject of the paper is the set multicover (MC) problem (or multicover for
short), a natural generalization of the SC problem, where each element v € U
is associated with an integer r, called coverage requirement, and u has to be
covered (at least) r,, times. The k-set multicover (k-MC) problem is a variant in
which every subset in S is of size at most k.

The greedy strategy is a simple yet quite successful approach in approximating
SC; pick iteratively a most “cost-effective” subset until all the elements of U

* Supported in part by a Grant in Aid for Scientific Research of the Ministry of
Education, Science, Sports and Culture of Japan. Also affiliated with Intelligent
Sensing System Research Center, Toyohashi Univ. of Tech.

** Currently at Fuji Photo Film Co., Ltd.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 176-189, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Better-Than-Greedy Algorithm for k-Set Multicover 177

become covered (by some picked subset). Call an element alive if it is not yet
covered by any of the picked subsets. The cost effectiveness of a subset S is then
measured by the average cost at which S covers alive elements in it. In other
words, if A(S) denotes the number of alive elements in .S and C the family of
subsets already picked, A(S) =[S\ Upee T, and S can newly cover only those
elements in S\ Uy T; hence, the cost effectiveness of S with respect to C is
1/A(S). Tt was first shown by Johnson [12] that the performance ratio of the
greedy algorithm is bounded by the nth Harmonic number H(n) = >°1" , (1/i)
for SC,! or H(k) for k-SC, and Lovasz obtained the same result by making use of
fractional covers [14]. While the same performance ratio was later shown to hold
even for the case of general subset costs [2] by extension of these analysis via
the linear program duality, Slavik proved that the exact bound is Inn —Inlnn +
©(1) [18]. It turns out, moreover, that the greedy bound is likely to be nearly
the best possible one for SC because the interactive proof based hardness result
of Feige shows that SC is not approximable within a factor of (1 —¢€) Inn for any
fixed ¢ > 0 unless NP C DTIME(n®cglosn)) [7].

As stated above the greedy algorithm for k-SC repeatedly picks S € S with
minimum 1/A(S), and everytime S is picked during the process, S is removed
from S and all the elements in S from U. As A(S) is monotonically non-increasing
and the process continues as long as there exists S with A(S) > 0, A(S) even-
tually becomes no larger than 2 for any S € S. When this happens, it can be
observed, the system (U, S) is reduced to a graph and k-SC to 2-SC, or to edge
cover on this graph, which is the problem of computing a minimum edge subset
covering all the vertices in a graph. Edge cover is solvable in time complexity
of maximum matching, and hence, as soon as an instance is reduced to the one
for edge cover (2-SC), we may finish up the entire procedure by computing an
optimal solution for it. This is exactly what the algorithm of Goldschmidt et
al. [9] does, and they proved that such a modification leads to an improvement
upon the greedy bound for k-SC, namely, H (k) — 1/6. Additionally applying
various local search techniques to ordinary greedy was found useful in further
lowering the performance ratio [10,11], and the best bound known to date is
H(k)—1/2[6].

Extending the coverage requirement from uniformly equal to 1 (in SC) to
arbitrary r,, (u € U) gives rise naturally to two versions of the problem settings
for MC; the one in which each subset can be chosen only once (constrained MC)
and the other in which each can be chosen any number of times (unconstrained
MC). Whereas the effectiveness of the greedy approach in approximating SC has
been shown extensible to either version of MC (and in fact to more general cov-
ering problems such as multiset multicover and covering integer program) [5,16],
no algorithm is yet proven to outperform the greedy algorithm even for k-MC.2

! Note: In(n +1) < H(n) < 1+ Inn.

2 The only possible exception is the following recent result of Berman, DasGupta and
Sontag; they presented a randomized algorithm for a variant of k-MC with uniform
coverage requirement r. = r, and its expected performance ratio was shown better
than 1+ Ink for large r [1].

178 T. Fujito and H. Kurahashi

It is, however, possible to “non-polynomially” reduce unconstrained k-MC to
k-SC, and the performance analysis for £-SC can be usually carried over to that
for unconstrained k-MC. It then becomes only an issue of how to simulate the
SC heuristic of your choice in polynomial time in approximating unconstrained
MC, and it is clearly doable in some cases. To the best of our knowledge, on
the other hand, no such reduction is known for constrained MC and it is not
clear in this case how to make a profit out of various results known for SC. For
these reasons we omit further discussions on unconstrained MC, and concentrate
henceforth on the constrained one only.

Recall how the greedy heuristic for k-SC was modified by Goldschmidt et
al. [9], and it appears to be a sensible attempt to patch the greedy k-MC
algorithm as well in a similar fashion. An element « is redefined to be alive under
the current contexts if the number of picked subsets covering it is less than r,
(and let A(S) denote the # of alive elements in S as before). Let us start with
the greedy phase in which the ordinary greedy procedure iteratively picks S with
minimum 1/A(S) until A(S) < 2 for any subset S. At this point the problem is
reduced to constrained 2-MC,? and fortunately, it is polynomially solvable as 1)
constrained 2-MC can be seen to be equivalent to simple b-edge cover (SHEC)
on graphs, the problem of computing a smallest edge subset F' C F, given a
graph G = (V,E) and b € ZK, s.t. the # of edges in F' among those incident
to v is no less than b(v) for each v € V, and 2) SHEC is known solvable in
time O(mnlogn) [8]. We may thus switch to the optimal phase and solve 2-MC
optimally. All the subsets picked in either phase constitute a final solution.

The rest of the paper is devoted to the analysis of this algorithm. It will be
based on so called the “dual-fitting” method (following Chvéatal’s approach [2]),
and this is in contrast with the analysis of the better-than-greedy algorithms
for k-SC, which are all based on purely combinatorial arguments [9,10,11,6]. A
detailed exposition of the dual-fitting based analysis of the standard greedy for
k-MC is presented in the book of Vazirani[19], which we naturally follow in the
part of the greedy phase. In the part of the optimal phase an LP representation of
SHEC plays a main role, and we study in depth the structural properties of an op-
timal dual solution to it. Using these properties, an optimal dual solution of SBEC
will be made fitting into a dual solution of k-MC by “rounding” certain variables
in it. It will be shown that the modified version of greedy for k-MC performs
strictly better than the ordinary one, yielding performance ratio of H(k) — 1/6.
This bound is also tight as it is shown tight already for k-SC with £ > 3 [9].

2 Preliminaries

2.1 LP Relaxation

The constrained MC problem for an instance of (U,S,r), where S C 2V,
UsesS = Uandr € ZS{, can be formulated by the following simple integer
program:

3 Well, not exactly as different sets in k-MC might correspond to a same set in 2-MC,
but we don’t have to care so much about it.

A Better-Than-Greedy Algorithm for k-Set Multicover 179

SeSs

(IP-MC) subject to: > s>y VueU
S:ues
xs € {0, 1} vSes

where xg = 1iff S is chosen in a solution. The LP relaxation of (IP-MC), denoted
(P-MC), is then obtained by replacing the integral constraints z¢ € {0, 1} in (IP-
MC) by linear constraints 0 < zg <1 forall S € S:

Ses

(P-MC) subject to: Z TS > Ty YueU
S:ueSsS
—xg > —1 vSeS
zg >0 vSesS

where —xg > —1 are not redundant constraints unlike in the case of uncon-
strained MC, and its dual is:

max Z Pl — Z 29

uelU SeSs

(D-MC) subject to: Z Yu — 25 <1 vSeS
ues
Yu > 0 YueU
zg >0 VS es

Let OPT denote the optimal value of (P-MC), with which the size of our
solution will be compared. Suppose that we now have a multicover C C S and
dual variables (y, z) satisfying

1. ‘C| < ZueU Tulu — ZSeS zg, and
2. Y esYu—2s < aforeach S €S,

for some a € R;. Then, since (1/a)(} ,cs¥u — 25) < 1 (VS € 9),
((1/a)y, (1/a)z) is feasible to (D-MC), and its objective value is (1/«)
(> wer TuYu — Y_ges 2s)- The LP duality theorem asserts that an objective
value of (D-MC) is always a lower bound for OPT, i.e., > . Tulu— D gcs 25 <
a - OPT. As OPT in turn lower bounds the optimum of (IP-MC),

Proposition 1. If a multicover C and dual variables (y, z) satisfy the two con-
ditions given above, |C| < a- OPT < « - |optimal multicover].

(This is the approach presented by Chvatal [2] in establishing the greedy SC
bound of H(n).)

180 T. Fujito and H. Kurahashi

2.2 Simple b-Edge Cover

For undirected graph G = (V,E), X CV, and v € V let E[X] = {{v,w} € F |
{v,w} C X}, §(X) = {{v,w} € E| {v,w} NX| =1}, and §(v) = §({v}). For
G and b € ZY, x € ZE is called a b-edge cover for G if 2(6(v)) > b, for all
v €V, and it is called a simple b-edge cover for G if x additionally satisfies that
z. € {0,1}, Ve € E. Thus, any simple b-edge cover can be identified with some
edge subset, and the simple b-edge cover problem is to compute such an edge set
of minimum size. The problem is known not only to be polynomially solvable,
but also to have the following LP description.

Proposition 2 ([4,17]). The simple b-edge cover problem can be formulated by
the following LP:

min Z Te

eelE
subject to: 0 <z, <1 Vee E
(P-SbEC) x(6(v)) > b(v) YoeV

b(X) —|F|

z(E[X]) +z(0(X)\ F) > [9

W VX CV,F C§(X)

Let¥ = {(X,F) | X CV,F C§X),E[X]U(§(X)\F) # 0}, and 0p(X) =
E[X]U (6(X)\ F). The dual LP of (P-SbEC) is given by:

max Z b(v)y, — Z Ze + Z F)(X); Fw - W(X,F)

veV ecFE (X,F)ew
subject to: y, >0 YoeV
(D-SbEC) z. >0 Ve € E
wix,F) =0 V(X,F)ew
Yu + Yo — Ze + > wxp <1 Ve={uv}eE

(X,F)eW:ecdpr(X)

To avoid introducing a singleton edge (self-loop) when 2-MC on (U, S,r) is
reduced to SbEC on a graph G = (V, E), let vy be a new vertex (element) not
existentin U, V = U U{w},and E = {S € S| |S| =2} U {{u,vo} | {u} € S}.
We also let b, = r, for v € U and b,, = 0.

3 Analysis

3.1 Structural Properties of the Optimal Dual for Simple b-Edge
Cover

For the later analysis we need the following lemma concerning the structural
properties of an optimal solution to (D-SbEC), the LP dual of simple b-edge
cover.

A Better-Than-Greedy Algorithm for k-Set Multicover 181

Lemma 3. If (D-SbEC) has an optimal solution (y,z,w), there exists one sat-
isfying all the following properties:

wix,p) =0 V(X,F) e W with | X| =1 (1)
Yy € {0,1} YveV (2)
W(X,F) < {0,1} V(X,F) cv (3)

If wix, r) >0 and wix, g,y > 0 for different (X1, F1) and (X2, Fy),

X1 ﬂ XQ = (Z) (4)
and FyNFy=10 ()
]fw(X,F) >0,
yp =0 Yo e X (6)
and z.=0 Vee F (7)

By simple reasoning it can be also assumed w.l.0.g. that y,, = 0 and wx) =0
if vg € X. The proof of this lemma will be given in Section 3.4.

3.2 Rounding the Optimal Dual for Simple b-Edge Cover

Recall in Proposition 1 that the quality of solutions computed by the algorithm
is measured, relative to the value of (infeasible) solutions for (D-MC). It is then
more reasonable to represent the size of an optimal simple b-edge cover computed
in the optimal phase by the value of its dual in (D-SbEC) as well. It can be seen,
however, that, when (D-MC) and (D-SbEC) are compared, y, and z. in the
latter respectively have their counterparts in the former (that is, y, and zg for
u=wvand S = e), but w(x ry has none. This suggests that we need to somehow
represent an optimal SOEC solution (y, z,w) in terms of only y and z, and we
do so by “rounding” all the w-variables to zero; at the same time, not to lower
the value of a solution obtained, y and z will be raised to compensate for it.

For an optimal solution (y, z,w) for (D-SbEC) satisfying all the conditions
of Lemma 3, let ¥ = {(X,F) € ¥ | wixr) = 1}, X = Uix pyen, X; and F =
Ucx,ryew, I For each (X, F) € ¥, we have

Wx,F) :L yUZO(VUGX) by (6)a Ze:() (VeGF) by (7)3
and we set these y’s and z’s as follows:

o= IO IFDAHEYS o,

2e=1/3 Vee I
whenever w(x) is rounded to 0. Note: Due to (4) and (5), each of v €

X and e € F receives a new value as above only once by the uniquely corre-
sponding (X, F)) € ¥;.

182 T. Fujito and H. Kurahashi

Lemma 4. The rounding of w given above causes mo change in the objective
value of (D-SbEC).

Proof. Resetting wx g to 0 drops the objective value by [*) 117 whereas
setting new values to y,’s and z.’s raises it by

[((X) = [F])/2] + |F[/3 L 0(X) = [F[, FL |
1;(b(X) b(’l))—;?)—([9 -|+ 3)_ 3
for each (X, F) € ;. |

The value of a rounded solution (y, z) is thus no smaller than that of the original
(optimal) solution (y, z, w), and this is why it can be used in our analysis in place
of the actual solution. It will be further shown in the next two lemmas that a
rounded solution is not so far from dual feasibility either.

Lemma 5. After rounding w as above, we have
1 ifvgX
Yo < 9o =
3 fvelX
for each v € V.

Proof. For v ¢ X y, does not change its value, and hence, y, € {0,1} (by (2)).
For any v € V, b(v) > 0 except for vy. As vg ¢ X, if v € X with (X, F) € ¥,
b(v) > 0 and |X| > 2 (by (1)), which implies that b(X) > 2. If b(X) = 2,
_ [@=IED2T+F/3 _ L= |FI/21+[FI/3 _ [1=1/2]+1/3 _ 2
Yo = = < =
2 2 2 3
and if b(X) > 3,

[(b(X) = [F])/2] + |F|/3

Yo = b(X)
o OX) = |FI+1)/2+|F[/3
= b(X)
_ ((X)+1)/2-|F|/6
b(X)
GX)+1/2 1 12
S) T2 Tax) =3

O

Lemma 6. After rounding w as above, we have y, + Yy — ze < g for each
e={u,v} € E.

Proof. Recall that, due to feasible (y, z, w), we had
Yu + Yo — Ze + Z W(x,F) <1 (8>
(X,F)ew:e€dr(X)

before the rounding for each e = {u,v} € E.

A Better-Than-Greedy Algorithm for k-Set Multicover 183

Case u ¢ X,v ¢ X: Since wx,py) = 0,V(X, F) € ¥ withu € X or v € X before
the rounding, > v r.ce5,.(x) Wix,F) = 0, and (8) reduces to y, +y, —ze < 1
this still holds even after the rounding because ., y, nor z. changes its value.

Case u€ X,v¢ X,e € F: By Lemma 5, y, < 2/3 and y, < 1. Since z, = 1/3,
Yu+ Yo — 2 <2/3+1—1/3=4/3.

Case u € X,v ¢ X,e ¢ I: Before the rounding, y, = 0, and there must exist
(X,F) with wx) = 1st. u € X and e ¢ F. Then, e is in §p(X), and
hence, y, — z. < 0 by (8) before the rounding. After the rounding, while y,
does not change its value, y, < 2/3 by Lemma 5 since u € X, and we have
Yu T Yo — Ze < 2/3~

Case u € X,v € X: Since each of y, and v, is <2/3, yu +y» — 2. <4/3. O

3.3 Performance Ratio

We’re here ready to set values to a solution (y, z) for (D-MC), and to distinguish
from it, the one obtained by rounding an optimal dual solution for SbEC will be
denoted by (g, 2).

Suppose that each element v € U is covered [,, times (by the picked subsets)
during the greedy phase, where 0 <[, < r,. When a set S is picked, its cost
is distributed among the alive elements it covers, and if S covers u for the jth
time, we set price(u, j) as follows:

price(u, /) = {?(13) %f S ?s p?cked ?n the gree.:dy phase (i..e., 1<y g l)

Tu if S is picked in the optimal phase (i.e., I, < j < ry)
From the way the algorithm works, it is clear that price(u, 1) < price(u,2) <
... price(u,l,) < 1/3 for each u € U, and that the # of subsets picked during the

greedy phase coincides with) Z;“: 1 price(u, 7). Let Sg = {S picked in the
greedy phase}, and now set values to the dual variables y and z as follows:

yu = max {price(u,j)} = max{price(u, lu), gu}
1<j<ry

> (yu—price(u,j,)) if S € S

u:covered by S

zg = { Ze if S appears as an edge ¢ in the optimal
phase
0 otherwise

where j, is the copy of u that is covered by S in the greedy phase.
The following two lemmas show that (y, z) satisfies the two conditions referred
to in Proposition 1.

Lemma 7. For (y,z) defined as above, # of sets picked by the algorithm <
> uev Tulu — Qises S

184 T. Fujito and H. Kurahashi

Proof. The number of sets picked in the greedy phase =} ., Zé.“:l price(u, j),
whereas

of sets picked in the optimal phase = > b(u)ju — Y _ 2

ueV eceE
Tu
=3) price(u,§) = > z
weV j=ly+1 ecE

by Lemma 4. It follows that

of sets picked in total = » > price(u,j) — Y z

uelU j=1 ecE
T
= Z TuYu — Z Z(prlce u j Z Ze
uelU uelU j=1 ecEl
< Z TuYu — Z Ze — Z Z (yu - price(uaju))
uelU ecE S€Sg ueU:covered by S
= Z TuYu — Z zs U

uelU Ses
Lemma 8. For (y, z) defined as above, Y., coyu — 25 < H(k) — §,VS € S.

Proof. Assume S = {uj,ug,...,u;} and S is “fully” covered in this order (of
uj,j = 1,2,...,k). If the last copy of u; is covered in the greedy phase, as S
contains k£ — i + 1 alive elements at this point, y,, = price(u;,r,,) < k,_% 4 in
general (for ¢ < k—2), but also y,, < 1/3 even for ¢ > k — 1 since any set picked
in the greedy phase is of size at least 3. If the last copy of u is covered in the
optimal phase, y,, < max{1/3,7,} <1 by Lemma 5, and for any edge e = {u, v}
remaining not fully covered, 3, + 9, — ze < 4/3 by Lemma 6.

Case S is picked in the greedy phase: Suppose k' elements are already fully
covered when S is picked (and hence, k&’ elements are dead), where it must
be the case that 0 < k¥’ < k — 3. Then,

k

k
Zym zZ8 = Zyul - Z w; T price(uiajui))
i=1

i=k'+1
—Zyul“" Z price(ws, ju,)
i=k/+1
as yu, = price(us,ry,) < i, for i€ {l,...,F}, and

D i1 Price(ug, ju,) = 1,

A Better-Than-Greedy Algorithm for k-Set Multicover 185

k:,
1
< E 1
_(i=1k7i+1)+

1 1 1
< ..
_(k+k_1+ 4)+1
5
:H —_
k)~

Case S is not picked in the greedy phase:
Subcase A(S) = 0 at the end of the greedy phase: Since S is not picked
after all by the algorithm, zg = 0. Since y,, = price(u,l,), Yu € S,
Yu, < 1/(k—i+1) as well as y,, < 1/3. It follows that

k

1 1 1. 1 1 5
Yy, — 25 < = H(k) -
i:ly“ ZS_(k+k—1+ +)+3+ (k)

Subcase A(S) = 1 at the end of the greedy phase: Since u; gets fully
covered only in the optimal phase, y,, <1 by Lemma 5, and hence,

k
Zyuv—zs<(1+ ! +-~-—|—1) 1—|—yu —z. where e = {ug,vo}
i ko k-1 373 T ’
1 1 1,1
1
St Tty tgt
1
=H(k)—
(k)=

Subcase A(S) =2 at the end of the greedy phase:

k k—2
Zyui —2s = Z price(ui, lu;) + Yup—y + Yu, — ze where e = {up—1, ur}
i=1 i=1
1 1 1, 4
< by Lemma 6
SGTpor Tty Y
1
= H(k) —

a

Now that both of the conditions used in Proposition 1 are shown satisfiable, by
Lemmas 7 and 8, with oo = H(k) — 1/6,

Theorem 9. The performance ratio of the modified greedy algorithm is at most
H(k)-1/6.

Since our analysis is throughout based on the LP duality, we additionally have

Corollary 10. The integrality gap of (P-MC) is bounded above by H(k) —1/6
when |S| <k (VS € 8).

186 T. Fujito and H. Kurahashi

3.4 Proof of Lemma 3

Due to the total dual integrality of the linear system in (P-SbEC) [3], if the
optima exists for (D-SbEC), it can be achieved by an integer solution; we may
thus start the proof with such an optimal dual solution (y, z, w).

LetY, = y, +y, and W, = Z(X,F)GlP:eGSF(X) for e = {u,v} € E. Also let
A. and Agp; denote, respectively, the amount increased in the value of Y, —
ze + W, and that in the objective function value in (D-SbEC). To show in what
follows the feasibility of a new Solution, we verify that all the variables remain
to be of nonnegative values and that A. < 0 (Ve € E), whereas we verify that
Aobj > 0 to show the optimality of a new solution. To distinguish a variable with
new value from the same variable with old value, the one with newly assigned
value will be denoted with dash.

We’ll show first that an optimal solution having the first three properties can
be obtained by applying a sequence of operations to any optimal solution that
is integral.

(1) For any ({u},F) € ¥ with w((u,p) > 0, reset w,,) = 0, increase
yu and z. (Ve € F) by wy},r). Feasibility: Y. goes up (by wu},r))
iff e € 6(u). As z. goes up by w,y,r) if e € F while W, goes down
by wuy,rpy if e € 6(u) \ F, Ac < 0 for all e € §(u). Optimality:
Acvj = b(wa — |Fla— ["711 0 = a(b(u) — |F| - ["71F17]) > 0.

(2) For any v € V with y, > 1, reset yy/, = 1, and decrease z. by y, — 1 (Ve €
d(v)). Feasibility: As z. > Yo+ W, -1 >y, — 1 for e € §(v), 2, > 0.
Asyl — 2z, =1 —(2z¢ — (Yo — 1)) = y» — 2z, Tor e € §(v), the value of
Y. — 2. is unchanged (and hence, A. = 0) at e € 6(v). Optimality: Aqp; =
b(o)(L—) + [3(0) (5 — 1) = (g — 1)(13(v)] = b(v)) > 0.

(3) For any (X, F) € ¥ with w(x) > 1, reset wiy) = 1 and decrease z.
by wix,ry — 1 (Ve € 6p(X)). Feasibility: z; > 0 for e € 0r(X) as z. >
Yo +We — 1> wx,ry— 1. For each e € r(X), z. as well as W, goes down
by w(x,7)—1, and hence, A, = 0. Optimality: Aop; = (wix,7)—1)[0r(X)|—
[N (wexm = 1) = (wem = DIEXTUEEONF) - [*X5 1) > 0.

At this point we have an optimal solution having Properties (1) through (3),
and it will be further modified to satisfy those remaining properties required
in the order given below. In doing so, however, a solution at hand may lose
some of (1) through (3); it is to be understood that, whenever it happens, the
corresponding operations given above will be applied to the solution and the
required property will be recovered. Any modification made by the operations
above has no effect on the rest of required properties except for the following
scenario. The operations in (4) and (6) may lead to violation of Property (1),
and if we try to fix it, it may next lead to violation of (6). When we are working
on Property (4), whenever Property (1) is lost, we fix it and take care of new
violation of (6) later on. When we are working on Property (6) and if Property
(1) is lost, we will fix it again, but it will not lead to another loss of Property (6);
as Property (4) is already enforced here, even if Property (1) becomes unsatisfied

A Better-Than-Greedy Algorithm for k-Set Multicover 187

as a result of enforcement of (6), say at v € V' with positive w((,,r,), there is
no other (X, Fy) € ¥ s.t. wx,r,) > 0and v € X. Therefore, even if y, gets
increased to fix Property 1 at v, it cannot infringe upon Property (6).

(4) Suppose there exist two different (X, ;) and (Xo, F») in ¥ s.t. X;NXy # 0
and WXy, F) = WXy, F) = 1.
Claim. We may always choose (X1, F1) and (X3, F5) such that (§(X;) N
§(X2)) U (6(X1) N E[X2]) U (E[X1]Nd(X2)) C Fi U Fy.

Proof. Suppose there exists e’ € (§(X1) N (E[X2] Ud(X2))) \ (F1 U F) (the
case in which 3¢’ € (6(X2) N (E[X1]Ud(X1))) \ (F1 U Fy) is similar). We
then apply the following operations (and repeat as long as such an edge
exists); reset wle, ry = 0, decrement z., by 1, and increment wx, ruer)
by 1. The resulting solution can be seen feasible for the following reasons:
Since Wer > 2, 2o > Yo + Wer — 1 > 1, and hence, 2/, > 0. At e = €/, both
z. and W, go down by 1, whereas neither changes at e # ¢’. Thus, A, <0
in either case. The optimality also can be easily verified. O

Assume henceforth that (X, Fy) and (X», F) satisfy the claimed property,
which implies that §(X3) is partitioned to the following three sets: F| =
§(X3)N(FL\ Fy), F5 =6(X3)N (Fa \ F1), and Fj = §(X3) N (FL N Fy).

In general it must be the case that 2| E[X]|+ |d(X)| > b(X) for any X C V,

if a feasible solution exists. We divide into two cases:

Case b(Xg) < Q‘E[Xg]‘ + |(5(X3)‘ — 1. Lettlng X4 = X1 UXs and Fy =

6(Xa) N ((Fr \ FT) U (F2 \ F3)), set wix, gy = Wix, gy = 0, W(x,) =
wix, m) 120 = 2ze—1 (Ve € E[X3]), and z; = 2. +1 (Ve € Fy'), where
F{ = (F1 N Fy)\ 6(X3).
Feasibility: Since W, > 2 for any e € E[X3], ze > Y.+ W.—1 > 1, and
hence, 2z, > 0. As for the effect of increased w(x, r,)-value, notice that
W(x,,F,) OCCUIS inW, iff e € E[X4] @] ((5(X4) \ F4)‘

Case e € E[X,]. If e € E[X3], the values of both z, and W, go down by
1, whereas, if e € FY/, the values of both z. and W, go up by 1. Else
(i.e., e € (E[X4]\ E[X3])\ FY') no changes in the value of W, (nor z.)
because e is in either E[X;|U(d(X1)\ F1) or E[X2]U(6(X2)\ F2), but
not in both (due to the assumption at top on (X1, F1) and (X2, F3)).

Case e € §(X4)\ Fy. By the same reason as given just above, no changes
in We.

Optimality: The objective value is down by [b(Xl)Q_lF1|1 + fb(XQ)Q_IFQI] +

|FY/| and up by [471417 | B[X)), from which it follows that A,p,; > 0.

Case b(Xg) = 2|E[X3H+‘(5(X3)| Lettlng X5 = Xl\XQ, X6 = Xg\Xl, Fs =
6(X5) N (F1 U Fy), Fs = 6(Xg) N (F2 U FY), set wiy, py = Wiy, g =
O’wEXS,Fg,) = W(x5,F5) T 1’wEX6,F6) = W(xg,Fe) T LYy = Yo +1 (Vv €
X3), 2L =z + 1 (Ve € Fj).

Feasibility:

Case e ¢ E[X3]Ud(X3). Neither Y, nor W, changes its value.

188

()

T. Fujito and H. Kurahashi

Case e € E[X3] Ud(X3). The value of Y. goes up. More specifically, Y,
up by 2 but W, down by 2 if e € E[X3]. In case when e € §(X3)
Y. is up by 1, but either z. is also up by 1 (if e € F}) or W, is also
down by 1 (if e € F| U F}).
Optimality: The objective value is down by [b(X1)2—|F1| 1+ fb(X2)2_|F2| 1+
|F}| and up by [P 1F517 1 6(Xe)=IF6l] 1 p(X)) from which it follows
that Aobj > 0.
Suppose there exist (X,F) € Yandv € X s.t. wx,p = landy, = 1.
Letting X' = X\v,dp(v) = §(v)NF,éz(v) = d(v)\ F, and F’' = §(X")N(FU
6(v)), set wiy gy =0, W) pry = Wixs gy +1, @and 2, = z. — 1 (Ve € 05(v)).
Feasibility: In general z. > Y.+ W, — 1, and Y, > 1 and W, > 1 for
e € dp(v), which implies that z. > 1, and hence, z. > 0. If z. drops (by 1),
e € 0p(v), but then, W, also drops by 1 at such e. On the other hand, W,
increases iff e is in E[X’] U (6(X’) \ F’) but not in E[X]U (6(X) \ F), but
this is impossible since E[X']U (6(X')\ F') C E[X]U (6(X) \ F).
Optimality: Aop; = |07(v)] — [P 171 4 P07 > 0 because

b(X') — |F

0

12 15 {6(X) ~ b{o) — (1F] ~ [80(0)] + [3£))]

> (;{b(X) — 6| = (1F| = [6r ()| + [67(v)])}]

= PO s

2
S A

Suppose there exist two different (X7, 1) and (Xo, F3) in ¥ s.t. Fy N Fy #
0 and wix,) = Wiy, m) = 1. For € € F1 N Fy, set wiy,) = 0 and
“’EXhFl\e') = w(x,,m\e) + 1, and then repeat the procedure on (X1, Fy \
e’) and (Xo, F,) as long they are crossing and |F; \ ¢/| > 1 (in case when
|F1\ €| = 1, the operations for recovering Property (3) will be applied here).
Feasibility: At e € E[X;] U (6(X1) \ F1), as w(x,,r,) is down by 1 and
w(x, F\e’) UP by 1, W, does not change its value. On the other hand, W/
goes up by 1. Assuming that Property (4) is satisfied, because w(x, r) =
w(x,,m) = 1 and e’ € F1 N Fp, X; N X, = () and there cannot exist (X, F)
with wx) = 1 s.t. ¢ € E[X]U (§(X) \ F'). This indicates that W, was
equal to 0 before it goes up. Moreover, y,, = y, = 0 assuming that Property
(4) is satisfied, where ¢/ = {u,v}. It follows that Y., — z., + W, < 0 before
changing the w-values, and hence, Y., — z.» + W, < 1 even after changing
them.

Optimality: Clearly Agp; > 0.

We claim that Property (7) is a natural consequence of having an optimal so-
lution satisfying all the previous properties required. Consider any (X', F') €
v and e = {u,v} € F withv € X' s.t. wx/ py = 1. Since w(x, gy = 0 for
any (X, F) with v € X if (X, F) 7£ (X/,F/), Z(X,F)Z’UEX,SIGSF(X) W(x,F) = 0

A Better-Than-Greedy Algorithm for k-Set Multicover 189

(by Property (4)). By Property (6) y, = 0. If g = 1, 3- ¢ p).ue x Wix,F) =0
(by Property (6)) whereas > v ry.,ex wx,r) < 1 even if y, = 0 (by Prop-
erty (4)), which implies that y, + > x py..ex Wx,r) < 1. Therefore, we
have Y., + W, <1, and hence, Y, — zes + W, < 1 for any nonnegative z.
If the solution is optimal, z., must be = 0.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19

Berman, P., DasGupta, B., Sontag, E., Randomized approximation algorithms

for set multicover problems with applications to reverse engineering of protein

and gene networks, 7th International Workshop on Approximation Algorithms for

Combinatorial Optimization Problems (APPROX), LNCS 3122 (2004) 39-50.

. Chvatal, V., A greedy heuristic for the set-covering problem, Math. Oper. Res.
4(3) (1979) 233-235.

. Cook, W.J., On some aspects of totally dual integral systems, PH.D. Thesis, De-
partment of Combinatorics and Optimization, University of Waterloo, Waterloo,
Ontario (1983)

. Cook, W., Pulleyblank, W.R., Linear systems for constrained matching problems,
Math. Oper. Res. 12 (1987) 97-120.

. Dobson, G., Worst-case analysis of greedy heuristics for integer programming with
nonnegative data, Math. Oper. Res. 7(4) (1982) 515-531.

. Duh, R., Fiirer, M., Approximation of k-set cover by semi-local optimization, in:
Proc. 29th Annual ACM Symp. Theory of Computing (1997) 256-264.

. Feige, U., A threshold of Inn for approximating set cover, J. ACM 45(4) (1998)
634-652.

. Gabow, H.N., An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems, in: Proc. 15th ACM Symp. Theory of Comput-
ing, (1983) 448-456.

. Goldschmidt, O., Hochbaum, D.S., Yu, G., A modified greedy heuristic for the

Set Covering problem with improved worst case bound, Inform. Process. Lett. 48

(1993) 305-310.

Halld6rsson, M.M., Approximating discrete collections via local improvements, in:

Proc. 6th Annual ACM-SIAM Symp. Discrete Algorithms (1995) 160-169.

Halldérsson, M.M., Approximating k-set cover and complementary graph coloring,

in: Proc. IPCO V (1996) 118-131.

Johnson, D.S., Approximation algorithms for combinatorial problems, J. Comput.

System Sci. 9 (1974) 256-278.

Karp, R.M., Reducibility among combinatorial problems, in: Miller, R.E.,

Thatcher, JJW. (eds.): Complexity of Computer Computations (Plenum Press,

New York, 1972) 85-103.

Lovasz, L., On the ratio of optimal integral and fractional covers, Discrete Math.

13 (1975) 383-390.

Papadimitriou, C., Yannakakis, M., Optimization, approximation and complexity

classes, J. Comput. System Sci. 43 (1991) 425-440.

Rajagopalan, S., Vazirani, V.V., Primal-dual RNC approximation algorithms for

set cover and covering integer programs, STAM J. Comput. 28 (1999) 526-541.

Schrijver, A., Combinatorial Optimization (vol.A), Springer, Berlin (2003).

Slavik, P., A tight analysis of the greedy algorithm for set cover, J. Algorithms

25(2) (1997) 237-254.

. V. Vazirani, Approximation Algorithms, Springer, Berlin (2001).

Deterministic Online Optical Call
Admission Revisited*

Elisabeth Gassner' and Sven O. Krumke?

! Technische Universitit Graz, Institut fiir Mathematik B,
Steyrergasse 30, 8010 Graz, Austria
gassner@opt.math.tu-graz.ac.at

2 University of Kaiserslautern, Department of Mathematics, P.O. Box 3049,
Paul-Ehrlich-Str. 14, 67653 Kaiserslautern, Germany
krumke@mathematik.uni-kl.de

Abstract. In the problem of Online Call Admission in Optical Net-
works, briefly called 0CA, we are given a graph G = (V, E) together with
a set of wavelengths W (x := |W|) and a finite sequence o = 71,72, ...
of calls which arrive in an online fashion. Each call r; specifies a pair
of nodes to be connected. A lightpath is a path in G together with a
wavelength \ € W.

Upon arrival of a call, an online algorithm must decide immediately
and irrevocably whether to accept or to reject the call without any knowl-
edge of calls which appear later in the sequence. If the call is accepted,
the algorithm must provide a lightpath to connect the specified nodes.
The essential restriction is the wavelength conflict constraint: each wave-
length is available only once per edge, which implies that two lightpaths
sharing an edge must have different wavelengths. The objective in oca
is to maximize the overall profit, that is, the number of accepted calls.

A result by Awerbuch et al. states that a c-competitive algorithm for
OCA with one wavelength, i.e., x := |W/| = 1, implies a (c+1)-competitive
algorithm for general numbers of wavelengths. However, for instance,
for the line with n 4+ 1 nodes, a lower bound of n for the competitive
ratio of deterministic algorithms for xy = 1 makes this result void in
many cases. We provide a deterministic competitive algorithm for x > 1
wavelengths which achieves a competitive ratio of x(/n -+ 2) on the line
with n + 1 nodes. As long as x > 1 is fixed, this is the first competitive
ratio which is sublinear in n + 1, the number of nodes.

1 Introduction

In current telecommunication networks, the wavelength division multiplexing
technique (WDM) enables the provider to send several optical signals in par-
allel over the same glass fiber cable by assigning different wavelengths to them.
However, the optical signals are converted back into electronic form at inter-
mediate nodes in order to switch them. This so-called “o-e-o-conversion” limits

* Supported by the Priority Programme “Mathematik und Praxis” at the University

of Kaiserslautern.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 190-202, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Deterministic Online Optical Call Admission Revisited 191

the speed of the connections. In next generation’s fully optical networks, optical
signals are no longer converted back into electronic form at intermediate nodes
but switched optically. This requires a change in the underlying mathematical
model, because the wavelength on which a signal enters the network remains
unchanged until the signal reaches its destination.

A connection in a fully optical network is modeled as a lightpath, that is, a path
together with a wavelength. Since each wavelength is available only once per fiber,
simultaneously routed lightpaths which use the same fiber must have different
wavelengths. This crucial restriction is called the wavelength conflict constraint.

1.1 Problem Definition

An instance of the Online Call Admission Problem in Optical Networks (OCA)
consists of an undirected graph G = (V, E) together with a set of x eligible
wavelengths W = {1,..., x} and a finite request sequence o = r1,79,..., 7y, of
calls. Each of the wavelengths in W is available once per edge. A lightpath is a
pair (P, \), where P is a path in G and X is one of the wavelengths in W. In the
sequel, we will use the terms wavelength and color interchangeably.

A call 7; = (s;,t;) specifies the nodes s; € V and ¢; € V to be connected.
Upon arrival of a new request r; = (s;,t;), an algorithm for oca must decide
whether to route or to reject r;. If the call is accepted, the algorithm must
provide a lightpath, thereby obeying the wavelength conflict constraint. Once
accepted, a call can not be preempted: the lightpaths used for the call can not
be changed or removed anymore. Each accepted call ; contributes a benefit of
one to the total profit obtained by an algorithm. The overall goal of ocA is to
maximize the overall profit, that is, the total accepted demand.

An online algorithm for oca must base its decision for call ; without knowl-
edge of calls r; with ¢ > j. A standard tool to measure the quality of an online
algorithm ALG iS competitive analysis, where one compares for each input se-
quence o the profit ALG(o) obtained by ALG to the optimal profit achievable on
that sequence, denoted by opT(0).

A deterministic online algorithm ALG for ocaA is c-competitive if for any re-
quest sequence o the inequality ALG(c) > | -0PT(c) holds. For randomized algo-
rithms against an oblivious adversary one uses the expected benefit E [ALG(0)]
instead. The competitive ratio of an algorithm is defined to be the infimum over
all ¢ such that the algorithm is c-competitive.

1.2 Previous Work

If the set of eligible wavelengths W contains only a single wavelength, the prob-
lem of providing lightpaths reduces to the problem of finding edge disjoint paths
in the given graph, which we will refer to as Online Edge Disjoint Path Allocation
(oEDPA). Competitive algorithms for oEDPA are known for special graphs like
lines, trees, and meshes. For some specific topologies such as expander graphs
deterministic competitive algorithms with logarithmic competitive ratio are
possible [10].

192 E. Gassner and S.O. Krumke

The currently best competitive ratios of randomized algorithms against an
oblivious adversary for these topologies are [log(n 4 1)] for the line with n +
1 nodes [5,2], 2logn and O(log D) for a tree with n nodes and with diameter D,
respectively, [5,2,13] and O(log n) for the n x n-mesh [11,13].

Awerbuch et al. [2] developed the competitive algorithm rrc (First-Fit-
Coloring), which is based on a “virtual” online algorithm for OEDPA:

Theorem 1 (Awerbuch et al. [2]). Let ALG be a c-competitive (determin-
istic or randomized) algorithm for OEDPA. Then there is a (¢ + 1)-competitive
algorithm FFC for the special case of OCA where each call requires one lightpath.

The downside of the above result is that one can easily derive a lower bound of n
for the competitive ratio of any deterministic algorithm for oEDPA for instance
on the line with n vertices. A polynomial lower bound on the competitive ratio
of deterministic online algorithms was given in [3] which holds even for the line
(where it collapses to the aforementioned bound of n).

As mentioned above randomized competitive algorithms for oEDPA which
achieve a logarithmic competitiveness (in the number of vertices in the graph)
are known for special graphs like lines, trees, and meshes [5,2,13,11].

So far, to the best of our knowledge no deterministic algorithm with sublinear
competititive ratio has been known.

The competitiveness of online call admission algorithms was first studied by
Garay and Gopal [8] when call preemption is allowed and the benefit of a call
is its holding time. Calls which are accepted may be preempted later on, but
calls which are rejected upon arrival remain rejected. Garay et al. [9] consider
variants for different benefit functions. Adler et al. [1] developed a randomized
algorithms which achieves a constant competitive ratio for OEDPA when preemp-
tion is allowed. Further work on preemptive algorithms has been done in [6].

1.3 Owur Contribution

We present the first deterministic competitive algorithms on the (n + 1) node
line for oca with x > 1 wavelengths which beat the linear competitive ratio that
would be obtained by blindly applying Theorem 1. More specifically, we present
a x(/n -+ 2)-competitive algorithm. For any fixed x > 1, this bound is sublinear
m n.

We complement our results in establishing a lower bound of ", x({/n — 1)
on the competitive ratio of any determinstic algorithm for ocaA on the line with
(n+ 1) nodes and x wavelengths.

Intuitively the call-admission problem starts to lose its “optical combinatorial
nature”, if the number of wavelengths y goes to infinity. Since lim, o x(/n —
1) = ", In(n), our lower bound nicely compares to the O(lnn) competitive
algorithm for non-optical call admission of [3].

The remainder of this paper is organized as follows. In Section 2 we describe
and analyze the deterministic call admission algorithm which achieves a sublinear
competitive ratio on the line. Section 3 contains the lower bound result.

Deterministic Online Optical Call Admission Revisited 193

2 An Algorithm with Sublinear Competitive Ratio

Let P = (V, E) be the node line with (n + 1) vertices!, V = {v,...,v,}, and
edge set £ = {[v;,vi+1] : ¢ = 0,...,n}. Moreover, let W with |W| = x be the
set of wavelengths which we assume to be available on each edge of P. Suppose
that o = rq,79,..., 7, 1S @ Sequence of requests which are subject to the call-
admission problem. Each request r; = (s;,t;) uniquely determines a path in P
between s; and ¢;. We will call the length of this path (measured in the number
of edges) the length of the call length(r;).

Intuitively, a good online algorithm should try to accept and route preferrably
“short” calls, since a short call does not block as many potential future calls as
a longer one. However, if we restrict ourselves to a fixed threshold value, say ¢,
and only accept calls of length at most ¢, then an adversary might present only
calls with length at least ¢ 4+ 1 and thus to no bounded competitiveness.

Algorithm 1 Online Call Admission Algorithm

GETSHORTY/
Input: A line P = (V, E) where every edge e € P has y > 1 available wavelengths
and a sequence o = r1,72,... of requests

1 Let r be a new call.
2 if r can be routed on at least one wavelength then
3 Determine the smallest wavelength A € W = {1,...,x} such that r can be
routed on .
if length(r) < £(\) then
Accept r and route r on wavelength A
else
Reject r
end if
else
10 Reject r
11 end if

© 00 3 O Ut i~

Our algorithm GETSHORTY, (displayed in Algorithm 1) attempts to be
smarter. It is equipped with a monotonously decreasing function ¢: W — R,
with £(1) = n. In each wavelength A only calls of length at most £(\) will be
routed. Upon arrival of a new call r, GETSHORTY, determines the first wave-
length A where r can still be routed and then routes r if r is short enough,
that is, if the length of r is at most ¢(\). Our main result of this section is the
following theorem:

Theorem 2. Algorithm GETSHORTY, equipped with threshold function £(\) :=
Y
n"'x " achieves a competitive ratio of x(Yn+2) for the 0OCA on an (n+1) node

line with x wavelengths.

! We deviate from the convention that the number of nodes in a graph is n, since
numbering the vertices from 0 to n yields nicer terms in the proofs later on.

194 E. Gassner and S.O. Krumke

The remainder of this section is dedicated to the proof of Theorem 2.

Fix a request sequence o = ry, 79, ..., 7, which contains at least one request.
We denote by GETSHORTY[o] the set of calls routed by algorithm GETSHORTY,
and by GETSHORTY (o) := |GETSHORTY[o]| its cardinality. Also, let opT be an
optimal offline algorithm for oca. We partition GETSHORTY|o] into the sets
Ay, ..., A, where A, denotes the set of calls routed by GETSHORTY on wave-
length \. Defining ay := |Ax| we have

X
GETSHORTY (o) = |GETSHORTY |[0]| = Z ax.
A=1

We say that GETSHORTY, uses a wavelength)\ on edge e € F, if a call of o

is routed on e on wavelength A. For L C W = {1,...,x} we denote by E, the

edges in F on which exactly the wavelengths in L are used by GETSHORTY,, that
is,

Er = {e € E: GETSHORTY/; Uses exactly the wavelengths in L on e}. (1)

Hence, E is partitioned into £ = |J Er. The sets L; = {1,...,j} for some
LCW
j € W will be of special interest.
Let us examine the solution GETSHORTY[c]. Fix A. Then, the total length of

calls which are routed by GETSHORTY, on wavelength X is given by
> Bl <n. (2)
LCW:AeL

The first call r; in o can be routed on wavelength 1 (since all wavelengths on
all edges are still unused) and has length at most n, the number of edges on the
line P. Thus, GETSHORTY, will route at least one call on the first wavelength:

al Z 1. (3)
For A=2,...,x, every call routed by GETSHORTY, on wavelength A\ has length
at most £(\) = nXFT1=2/X_thus from (2) we get that
1
a > |EL| (4)
), 25

Inequalities (3) and (4) give us a way to bound the number of calls accepted
by GETSHORTY, from below:

GETSHORTY (o)

X
> o
A=

Y

LCW:AEL

BLY oy 9

NEL:A#£L

1
X
1
HAZ:QW) > B
TS
LCW

Deterministic Online Optical Call Admission Revisited 195

We set

b= EL| Y glA for L # {1}. (7)

NEL:A#£L (A)

Then, we can rewrite (5) as:

GETSHORTY (o) > Z br. (8)
LCW

We now consider an optimal solution oPT[o] and partition it into three pair-
wise disjoint sets: opT[c] = X UY U Z where

— X is the set of calls » € OPT[0] \ GETSHORTY][o] such that r uses only edges
of a single set £, for some L C W.

— Y is the set of calls » € OPT[o] \ GETSHORTY|[o] such that r uses edges of at
least two sets £y, and Ey. for L, L' C W.

— Z is the set of calls r € OPT[o] N GETSHORTY|[0].

Lemma 1. Let L C{2,...,x} be a subset of wavelengths that does not contain
the first wavelength. Then there does not exist any call v € X that uses only
edges of Er,.

Proof. Assume that there exists a call » € X that uses only edges of E,. Since the
first wavelength is available on every edge that is used by r and length(r) < n =
£(1) we conclude that r could be routed by GETSHORTY, on the first wavelength.
This contradicts the assumption that » ¢ GETSHORTY o], i.e., that » was rejected
by GETSHORTY/. a

Let us first investigate the cardinality of X. For L C W we denote by x; the
number of calls » € X that use only edges of set ;.

For L = {1,...,x}, by definition of Ey in (1), GETSHORTY, uses all wave-
lengths on all edges in E. Hence, GETSHORTY, has to reject all further calls
that use at least one edge of E even if they are of length 1. Since opT could
potentially route |E},| calls, each of length 1, on every wavelength, we can bound
2z, from above by

xp < x|Ep| for L={1,...,x}. 9)
Now let L € W be of the form L ={1,...,j} UL where L' C{j +2,...,x}
for some j =1,...,x — 1, i.e., all wavelengths A =1,...,; are used by calls in

GETSHORTY[o] and j + 1 is the first wavelength that is not used by any call in
GETSHORTY[c|. Hence, wavelength j + 1 is available on every edge in EJ,.

Let » € X be a call that uses only edges of E'r. Notice that » could be routed
by GETSHORTY, on wavelength j+1. The only reason why GETSHORTY rejected r
must be its length. We conclude that length(r) > £(j + 1) holds for every r € X
that uses only edges of Ey,. This gives us:

196 E. Gassner and S.O. Krumke

|EL|
j+1)

In order to bound the number of calls in Y U Z we use a charging scheme, in
which we charge each request » € Y U Z to a request ' GETSHORTY [o] such that
each element in GETSHORTY[o] gets assigned at most 2y request from X UY.

First consider the requests in the set Y, that is, the set of calls r € opT[o] \
GETSHORTY [o] such that r uses edges of at least two sets £, and Ey, for L, L’ C
W. Since any r € Y uses at least two different kinds of edges, there exists at
least one call 7 € GETSHORTY[o] such that either the start vertex or the end
vertex of v’ and the corresponding start or end edge of 7’ is on the path of r.We
assign r to r’.

If r € Z, then r was accepted by GETSHORTY,. We assign r to itself, that is,
to v’ := r € GETSHORTY|o] and, again, either the start vertex or the end vertex
of v’ and the corresponding final edge is on the path of r.

Observe, that there are at most 2x calls » € X UY that can be assigned to
a call ¥ € GETSHORTY|o] in the above charging scheme, because there are x
wavelengths and one start- and one end-edge of 7’. This allows us to conclude
that

ngxg(for L={1,...,5} UL, where L' C{j +2,...,x} (10)

|Y| +|Z| < 2x - GETSHORTY(0)
holds. Using this bound we obtain:

oPT(0) < Y ar+|Y|+[Z] <) x1 + 2XGETSHORTY(0)
LCW LCW

and, dividing this inequality by GETSHORTY (o) this yields
orr(o) _ Yrcwrr ® doLcw TL

<2 .
GETSHORTY (o) GETSHORTY (o) ~— X+ >rcw b

The remainder of this section is dedicated to bounding the term

ZLgW TL
ZLgW br
appropriately. For Q C 2" we define

H(Q) = ZeQ
ZLGQ br
In the end, we wish to bound r(2").

Lemma 2. Let Q C 2% such that r(2V') < 7(Q). Furthermore let N € Q such
that N is of the following form: N ={1,...,j} UN’ for some j € {1,...,x —2}
with N' # 0 and N' C{j+2,...,x}. Then either

r(Q) < x¥n or r(Q) <r(Q\N).

Proof. Recall the definition of b, for some L C W in (6) and (7). Since N
contains at least one wavelength of the set {j + 2,..., x}, definition (7) applies

1 1 1
by =1Exl D > |En| Y. > Byl
AEN,A#L g()\) AENT A£L g()\) g(] =+ 2)

Deterministic Online Optical Call Admission Revisited 197

Together with inequality (10) we get

|EN|
ZLEQ\N T+ TN < ZLEQ\N L+ Xe(y+1)

(G5 . g(|Bx).

r(Q) =
>req\n br +bn 2L\ b+ it

Simple calculuations show the following: If

X
w2 B e 2

LeEQ\N LeQ\N

then g(|Ex|) is monotone increasing in |Ey|. Otherwise g(|Ex|) is montone
decreasing. Hence, we distinguish two cases.

Case 1: g is monotone increasing Then we have

r(Q) < g(n)
_ 2reqw T Xy

ZLGQ\N br + é(jﬁ-Z)

0j+2)
PR §+1) 2req\wbr + Xf(g+1)

N dreqwbr + 12)
L5 +2)
= X . .

(G +1)

For our choice of the length threshold function ¢(\) = n 7 we get r(Q) <
X /n.

Case 2: g is monotone decreasing In this case

r(@) < g(0) = r(Q\N).
This proves the lemma. O
Consider now the subset of wavelengths W = {L; : j = 1,...,x} = {{1,...,j} :

Jj=1,...,x}. We use the following notation: ¢; := |E}|, x; := 21, and b; := br,
for j =1,...,x. As a simple consequence of Lemma 2 we get either

ZLQW TL < Z;‘;l Ty

J

ZLQW by — ;(:1 b,
or
Zrcw tL < ynl/x
ZLCW by —

The rest of this section is dedicated to a proper bound for J ! J . Recall the
following two already known bounds: -

198 E. Gassner and S.O. Krumke

4j
T < .
T=X0+1)
, . o
by > szszzeo\) fOI’j.—Q,...,X
1 forj =1

Using the fact that 3°_, ¢; < n and herewith ¢; < n — Y77, ¢; we conclude
that

2= <X oy + Xz e(;]il))
=X oy + 22 0 (z(j1+1) - 5(12)))
= Xz(nz) L+ Z;'(:z 4qj (n;}g‘?l) - Tll))
<Xy (1 St)
Now we set /(\) =n " x and get the following two equations

02 _ 1

nl(G+1) £)

02~ Vn

Herewith we get
X X
1
>z <x¥n 1+qu€(‘) (11)
j=1 j=2 J

On the other hand, we know that

zx:bj21+zx:qj2j: ! 21+zx:qj 1, (12)
Jj=1 j=2 A=2 () =2 £(4)
Combining inequalities (11) and (12) we get
;‘(:1 T

X)
j=1 b

< xi¥n

and together with Lemma 2 we conclude that

ZLQW L
ZLQW br

Putting all together this results in

< x¥n.

oPT(0) <o+ drcw L

< 2).
GETSHORTY (0) — Srewbs x(¥/n+2)

This completes the proof of Theorem 2.

Deterministic Online Optical Call Admission Revisited 199

Observe that the competitive ratio x(/n + 2) is monotone decreasing in x
for 0 < x <In(n) and monotone increasing for x > In(n).

3 Lower Bounds

In this section we prove a lower bound on the competitive ratio of any deter-
ministic algorithm for the oca with x wavelengths on the line.

In order to get the intuition for the lower bound construction, it is useful to
briefly review the well-known lower bound of n for the competitive ratio of any
deterministic algorithm for a single wavelength (xy = 1), the path P = (V, E)
with vertices V' = {wp,...,v,} and edge set F = {[v;,v;41] : ¢ = 0,...,n}.
The first request given by the adversary is 1 = (vo,v,). Any deterministic
online algorithm ALG must accept ry, since otherwise the adversary stops and
ALG(r1) = 0, while opT(r;) = 1 which makes opT(r1)/ALG(r;) unbounded. Now,
the adversary gives n requests r; = (v;,vit1), ¢ = 0,...,n — 1, none of which
ALG can accept, so at the end orT(0) = n and ALG(0) = 1.

Our lower bound construction for x > 1 wavelengths works along the same
spirit: Roughly speaking, if ALG rejects a call r, then no further calls will be
issued on the path of . On the other hand, if r is accepted by ALG, then r will
be “split” into n'/X “smaller calls” of equal length which in the next round will
be released.

Theorem 3. No deterministic algorithm for the OCA with x wavelengths on an
(n 4 1) node path can achieve a competitive ratio smaller than " x(/n —1).

Proof. Let us denote the path by P = (V, E) with V = {wg,...,v,}. Let ALG
be an arbitrary deterministic online algorithm for oca on P with x available
wavelengths. Our adversial strategy is described algorithmically in Algorithm 2.
Let o denote the request sequence resulting from the interaction of the adversary
with ALG.

Observe that ALG[o] = Uij:ll C}, is the set of calls accepted by the online
algorithm. The calls in ALG[o] are pairwise different (because as soon as the
online algorithm accepts a call r, no more copies of r arrive).

Let z; = |Ckl, then 0 < 2, < zp_1n'/X holds for k = 2,...,x + 1 and
21 € {0,1}. There are n'/Xz,_; different types of calls in iteration k& among
them 2z, calls are accepted by the algorithm. Hence, z; < zlnkil holds for
k=2,...,x+1.

If the online algorithm does not accept any of the x copies of a call » then an
optimal solution can route x copies of this type of call. In iteration & there are
n'/Xz,_1 — z, different calls that are rejected by the online algorithm and can
be accepted x times by an optimum.

Finally, an optimal solution can route x copies of every call in X, while the
online algorithm can not route any call of X, (because the online algorithm
has already accepted x calls that use the same edges as the calls in X, 4, and
hence C\ 11 = 0).

200 E. Gassner and S.O. Krumke

Algorithm 2 Strategy for the adversary to enforce a competitive ratio of at
least " x(/n—1).

1 The first call is of the form r1 = (vo, vn)
2 Set C1:={r1}
3 for k=1tox+1do
4 For each accepted call r € Cy with r = (vs,vi1;) the set Xp4+1 contains nl/x
calls (V4 () 1)jn—1/x - Vyypjn—1/x) for p=1,.. ,nt/X
{ Each accepted call is splitted into n/X calls of equal length. }

5 while X411 # 0 do
6 Let r € Xi41
7 while The online algorithm rejects r do
8 X copies of r arrive
9 end while
10 if The online algorithm accepts r for the first time then
11 Cit1 = Crs1 U {T’} and Xp+1 = X1 \ {7’}
{ the investigation of calls of type r is finished }
12 else { The online algorithm rejects all copies of v}
13 Ck+1 = Ck+1 and Xk+1 = Xk \ {7’}
{ the investigation of calls of type r is finished }
14 end if
15 end while
16 end for

Hence, the value of an optimal solution opT can be bounded by

X
OPT(0) > X <Z (nl/XZk-—l — Zk) + Zx+1>

k=2
X
. (nl/le I sz (nux _ 1))
k=2

On the other hand, the objective value of the online algorithm is equal to

X
ALG(0) = Z £
k=1

Every online algorithm has to accept the first call, otherwise the competitive ratio

would be unbounded. Hence, we get z; > 1 and 2z > n'x" for k = 2,...,x+1
and the competitive ratio can be bounded by

oPT(7) an/x)T, (z": zk)

ALG(0) 1+ 5% 52k

Deterministic Online Optical Call Admission Revisited 201

Observe that function & is monotone decreasing and

holds. Putting all together we get
opPT(0) sn(n ¥n
ALG(0) — Yn—1

This completes the proof. O

Observe that, if the number of wavelengths tends to infinity, our lower bound in
Theorem 3 above converges to

Xh_)moox(Yn—1) = i1 In(n)
and thus, no deterministic algorithm can achieve a competitive ratio better
than 2(In(n)) for all numbers of wavelengths.

References

1. R. Adler and Y. Azar. Beating the logarithmic lower bound: randomized preemp-
tive disjoint paths and call control algorithms. In Proceedings of the 10th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1-10, 1999.

2. B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosén. On-line competitive
algorithms for call admission in optical networks. In Proceedings of the 4th Annual
European Symposium on Algorithms, volume 1136, pages 431-444, 1996.

3. B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive online routing. In
Proceedings of the 34th Annual IEEE Symposium on the Foundations of Computer
Science, pages 32-40, 1993.

4. B. Awerbuch, R. Gawlick, F.T. Leighton, and R. Rabani. On-line admission con-
trol and curcuit routing for high performance computing and communication. In
Proceedings of the 35th Annual IEEE Symposium on the Foundations of Computer
Science, pages 412—-423, 1994.

5. B. Awerbuch, Y.Bartal, A. Fiat, and A. Rosén. Competitive, non-preemptive call
control. In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 312-320, 1994.

6. A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and B. Schieber. Bandwidth
allocation with preemption. In Proceedings of the 27th Annual ACM Symposium
on the Theory of Computing, pages 616-625, 1995.

7. Y. Bartal, A. Fiat, and S. Leonardi. Lower bounds for on-line graph problems
with applications to on-line curcuit and optimal routing. In Proceedings of the
28th Annual ACM Symposium on the Theory of Computing, pages 531-540, 1996.

8. J. A. Garay and I. S. Gopal. Call preemption in communication networks. In
Proceedings of INFOCOM 92, pages 1043-1050, 1992.

202

9.

10.

11.

12.

13.

E. Gassner and S.O. Krumke

J. A. Garay, I. S. Gopal, S. Kutten, Y. Mansour, and M. Yung. Efficient on-line
call control algorithms. Journal of Algorithms, 23(1):180-194, 1997.

J. Kleinberg and R. Rubenfield. Short paths in expander networks. In Proceedings
of the 37th Annual IEEE Symposium on the Foundations of Computer Science,
pages 86-95, 1996.

J. Kleinberg and E. Tardos. Disjoint paths in densely embedded graphs. In Pro-
ceedings of the 36th Annual IEEE Symposium on the Foundations of Computer
Science, pages 531-540, 1995.

S. O. Krumke and D. Poensgen. Online call admission in optical networks with
larger wavelength demands. In Proceedings of the 28th International Workshop on
Graph-Theoretic Concepts in Computer Science, volume 2573 of Lecture Notes in
Computer Science, pages 333-344. Springer, 2002.

S. Leonardi, A. Marchetti-Spaccamela, A. Presciutti, and A. Rosén. On-line ran-
domized call-control revisited. In Proceedings of the 9th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 323-332, 1998.

Scheduling Parallel Jobs with Linear Speedup

Alexander Grigoriev and Marc Uetz

Maastricht University, Quantitative Economics, P.O. Box 616,
6200 MD Maastricht, The Netherlands
{a.grigoriev, m.uetz}@ke.unimaas.nl

Abstract. We consider a scheduling problem where a set of jobs is a-
priori distributed over parallel machines. The processing time of any job
is dependent on the usage of a scarce renewable resource, e.g. personnel.
An amount of k units of that resource can be allocated to the jobs at
any time, and the more of that resource is allocated to a job, the smaller
its processing time. The dependence of processing times on the amount
of resources is linear for any job. The objective is to find a resource allo-
cation and a schedule that minimizes the makespan. Utilizing an integer
quadratic programming relaxation, we show how to obtain a (3 + ¢)-
approximation algorithm for that problem, for any ¢ > 0. This gener-
alizes and improves previous results, respectively. Our approach relies
on a fully polynomial time approximation scheme to solve the quadratic
programming relaxation. This result is interesting in itself, because the
underlying quadratic program is NP-hard to solve. We also derive lower
bounds, and discuss further generalizations of the results.

1 Introduction and Related Work

Consider a scheduling problem where n jobs j € V, with integral processing
times p;, and each jobs is already assigned to one of m parallel machines. There
is a renewable discrete resource, e.g. personnel, that can be allocated to jobs
in order to reduce their processing requirements. We assume that the tradeoff
between usage of the resource and the resulting processing requirement of a job
can be described succinctly by a corresponding linear compression rate b; > 0.
In other words, each job has a default processing time of p;, and when s resources
are assigned to job j, its processing requirement becomes p;s = p; —b; s. At any
point in time, only k& units of that resource are available. Once resources have
been assigned to the jobs, a schedule is called feasible if it does not consume
more than the available & units of the resource, at any time. The goal is to
find a resource allocation and a corresponding feasible schedule that minimizes
the makespan, the completion time of the job that finishes latest. This problem
describes a typical situation in production logistics, where additional resources,
such as personnel, can be utilized in order to reduce the production cycle time.

As a matter of fact, scheduling problems with a nonrenewable resource, such
as a total budget constraint, have received a lot of attention in the literature as
time-cost-tradeoff problems, e.g., [2,11,12,20,21]. Surprisingly, the corresponding

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 203-215, 2006.
© Springer-Verlag Berlin Heidelberg 2006

204 A. Grigoriev and M. Uetz

problems with a renewable resource, such as a personnel constraint, have received
much less attention, although they are not less appealing from a practical view-
point. We will refer to them as time-resource-tradeoff problems, in analogy to
the former.

Related work. In [8], we have considered the more general problem of unrelated
machine scheduling with resource dependent processing times. There, jobs can
be processed on any of the machines, and if a job is scheduled on machine 4, using
s of the k available units of the resource, the processing time is p;;s. Assuming
that processing times are monotone in the resources (and not necessarily linear),
the existence of a (4 + 2v/2)-approximation algorithm is proved in [8]. The same
paper contains a (3 + 2v/2)-approximation algorithm for the special case where
the jobs are distributed over the machines beforehand. The approach presented
in [8] is based upon a linear programming relaxation that essentially uses nk
variables. The problem with linear resource-time tradeoff functions, however, can
be encoded more succinctly by O(n) numbers: for each job, we need to specify
its machine 4, the maximum processing time p;, and the compression rate b,
respectively. Therefore, the results of [8] only lead to a pseudo polynomial time
(3 4+ v/2)-approximation algorithm for the problem at hand.

In a manuscript by Grigoriev et al. [7], a restricted version of the problem
at hand is addressed. They assume that the additional resource is binary, that
is, any job may be processed either with or without using that resource, with
a reduced processing time if the resource is used. Finally, the number of ma-
chines m in their paper is considered fixed, and not part of the input. For that
problem, they derive a (3 + ¢)—-approximation, and for the problem with m = 2
machines, they derive weak NP-hardness and a fully polynomial time approxi-
mation scheme [7].

The scheduling of jobs with resource dependent processing times is also known
as malleable or parallelizable task scheduling; see, e.g., [10,16,17,22]. In these
models, independent, non-preemptive jobs can be processed on one or more par-
allel processors, and they have non-increasing processing times p; in the number
s of processors used. Any processor can only handle one job at a time, and the
goal is to minimize the schedule makespan. Turek et al. [22] introduced this prob-
lem; they derive a 2—-approximation algorithm. In fact, the model considered in
[22] closely relates to, but also differs from the problem considered in this paper.
Interpreting the parallel processors of [22] as a generic ‘resource’ that must be
allocated to jobs, the problem of [22], when restricted to linear resource-time
tradeoff functions p;s, is a special case of the problem considered in this paper:
It corresponds to the case where n jobs are processed on m = n machines, in-
stead of m < n machines. Mounie et al. [16] consider yet another restriction of
the problem of [22], in that the processor allocations must be contiguous and the
‘total work functions’ sp;s are non-decreasing in s. For that problem, a (v/3+¢)—
approximation is derived [16]. An unpublished journal version of that paper [17]
claims an improved performance bound of (3/2 4 €). An asymptotic fully poly-
nomial approximation scheme for malleable task scheduling was proposed by
Jansen [10].

Scheduling Parallel Jobs with Linear Speedup 205

When we restrict even further, and assume that the decision on the allocation
of resources to jobs is fixed beforehand, we are back at (machine) scheduling
under resource constraints as introduced by Blazewicz et al. [1]. More recently,
such problems with the assumption that jobs are distributed over the machines
beforehand have been discussed by Kellerer and Strusevich [13,14]. They use
the term dedicated machine scheduling. We refer to these papers for various
complexity results, and note that NP-hardness of dedicated machine scheduling
and a binary resource was established in [13]. More precisely, they show weak
NP-hardness for the case where the number of machines is fixed, and strong
NP-hardness for an arbitrary number of machines.

Results and methodology. We derive a (3 + ¢)-approximation algorithm for
scheduling parallel jobs with linear speedup. Our result holds for an arbitrary
number m of machines and an arbitrary number k& of available resources. In
that sense, our result generalizes the previous (3 + ¢)-approximation of [7] to
an arbitrary number of machines, and arbitrary, linear resource dependent pro-
cessing times (recall that they consider the special case k¥ = 1, which may be
interpreted as linear resource-time functions, too). Although we obtain the same
performance bound, we stress that our result relies on a completely different
approach. Moreover, restricted to linear resource-time functions, our result con-
siderably improves upon the (3 + v/2)-approximation from [8]. In addition, our
algorithm is indeed a strongly polynomial time algorithm, while the result of [8]
only yields a pseudo polynomial time algorithm.

Apart from improving previous results in the scheduling context, we see the
main contribution of the paper rather on the methodology side. In fact, we obtain
our result by using a constrained quadratic programming formulation that con-
stitutes a relaxation of the problem. More precisely, the mathematical program
is an integer, concave minimization problem with linear constraints. Although
such problems are NP-hard to solve in general [18,9], even without integrality
constraints, we show how to solve this quadratic programming relaxation with
arbitrary precision in polynomial time; a result of interest in its own. Based
on the solution of this mathematical program, we assign resources to the jobs.
Finally, the jobs are scheduled using (an adaption of) Graham’s greedy schedul-
ing algorithm [4]. Making use of the lower bound provided by the quadratic
programming relaxation, we derive the performance guarantee of (3 + ¢).

Moreover, we provide a parametric example to show that our analysis cannot
be improved further than a factor of 1.46, by showing that the allocation of
resources that is computed with the quadratic program can indeed provide the
‘wrong’ answer. The same example even shows that it may happen that the
scheduling algorithm we use, based on the resource allocation as suggested by
the quadratic program, is a factor 2 away from the optimum.

Finally, we briefly discuss two possible generalizations of the problem at hand,
that can be handled by the proposed techniques as well. For a more detailed
treatment of these issues, we refer to the full version of this paper.

206 A. Grigoriev and M. Uetz

2 Problem Definition

Let V = {1,...,n} be a set of jobs. Jobs must be processed non-preemptively
on a set of m parallel machines, and the objective is to find a schedule that
minimizes the makespan Ci,.x, that is, the time of the last job completion. Each
job 7 is assigned to exactly one of the machines, and V; denotes the set of jobs
assigned to machine 4, such that V' = | J, V; forms a partition of the jobs. During
its processing, a job 7 may be assigned an amount s € {0, 1,...,k} of a discrete
resource, for instance personnel, that may speed up its processing. If s resources
are allocated to a job j, the processing time of that job is p;s, s = 0,...,k.
The amount of resources assigned to a job must be constant throughout its
processing. The resource constraint now consists of the fact that in a feasible
schedule, at any time no more than k& units of the resource may be used. Clearly,
k > 1, since the problem is trivial otherwise.

We assume that the resource dependent processing time p;, of any job can be
encoded succinctly by the default processing time, p;, together with the linear
compression rate b;, which we w.l.o.g. assume to be integral as well. Hence, the
actual (integral) processing time becomes

pjs =Pj —bjs,

given that s € {0,...,k} resources are assigned to job j, j € V. To exclude
trivial solutions, we also assume that p; > b;k for all jobs j € V. The encoding
length of the problem therefore is in O(nlogp), where p = max;cv p;.

3 Quadratic Programming Relaxation

The approach of [8] could be used to obtain a (3 + 2+/2)-approximation algo-
rithm for the problem at hand. The approach, however, is explicitly based upon
an integer linear programming formulation that would require @(nk) binary
variables to represent all the different processing times of jobs p;,. Obviously,
this would generally only lead to a pseudo polynomial time algorithm.

For the linear case considered in this paper, however, we can set up a poly-
nomial size, quadratic formulation, using O(n) integer variables s; € {0, ..., k}
that denote the number of resources allocated to job j, j € V. Then p;; =
Dj — bjs; is the processing time of a job j. Since the compression rate b; is in-
tegral for all jobs j, and since the resource is discrete, the processing times pj
are integral, too.

The following integer quadratic program has a solution if there is a feasible
schedule with makespan C'.

> (B —bis;) <C Vi=1,...,m, (1)
i€V,
> (pysj —bys3) <kC (2)

jev

Scheduling Parallel Jobs with Linear Speedup 207

0<s; <k, VieV, (3)
s; € LT, VievV. (4)

The logic behind this program is the following; (1) states that the total pro-
cessing on each machine is a lower bound for the makespan, and (2) states that
the total resource consumption of the schedule cannot exceed the maximum
value of kC. Our goal is to compute an integer feasible solution (C*,s*) for
program (1)—(4), such that C* is a lower bound for the makespan C°FT of an
optimal schedule. A candidate for C* is the smallest integer value, say C?F, for
which this program is feasible. But since we do not know how to compute CQF
exactly, we will compute an approximation C* < CQF.

In order to decide on feasibility for program (1)—(4), notice that we may as
well solve the following constrained integer quadratic minimization problem.

min. Y (pjs; — b;s}) ()
JEV

st Y (pj—bjs;) <C Vi=1,...,m, (6)
JEV;
0<s; <k, Vjev @)
s; € LT, Vjiev. (8)

Obviously, (1)—(4) is feasible if and only if the constrained quadratic minimiza-
tion problem (5)—(8) has a solution at most & C'. It is well known that constrained
quadratic programming is NP-hard in general [18], even without integrality con-
straints. More specifically, we have a constrained concave minimization problem,
which is generally known to be NP-hard as well [9]. It is not too hard to show
that even the specific quadratic program we consider here is NP-hard to solve to
optimality; for a proof we refer to a full version of the paper. However, we next
show that the integer quadratic program (5)—(8) can be solved with arbitrary
precision in polynomial time.

Lemma 1. For any 0 < § < 1, we can find a solution for the constrained
quadratic minimization problem (5)—(8) that is not more than a factor (1 + 9)
away from the optimal solution, in time polynomial in the input size and 1/4.

In other words, (5)—(8) admits an FPTAS, a fully polynomial time approximation
scheme. The proof of this lemma is of interest in its own. We first show how to
reduce the constrained quadratic program to a certain single machine scheduling
problem, and then show that this scheduling problem admits an FPTAS, using
the framework of Pruhs and Woeginger [19].

Proof (of Lemma 1). First observe that (5)—(8) decomposes into m independent,
constrained quadratic programs, one for each machine i:

min. Z (ﬁij - b]’S?) R (9)

JEV;

208 A. Grigoriev and M. Uetz

st Y (9 —bys;) <C (10)
jeVi
0<s; <k, Vi eV, (11)
s; €LT, Viev;. (12)

We now consider an even more restrictive problem, where instead of con-
straints (11)-(12), we restrict the resource consumptions s;,j € V;, to rounded
powers of (1 4 €1). More precisely, we set

E={0,k}U{[(1+e)]: 0<(4e) <k, LteZ"},

where 0 < g1 < 1 is to be defined later. We claim that if in program (9)-(12)
there exists a solution s of value X, then in this even more restricted program
there exists a solution s’ of value X’ such that X’ < (1+3¢1)X and s/; € £ for all
j € V;. To see this, we consider a solution s with objective value X. We define
a new solution s’ by simply rounding up the values s;,j € V;, to the nearest
integer number in £. This way all resource consumptions are rounded up, and
we have that s; < s for all j € V;, thus constraint (10) is satisfied by s, too.
Therefore, the obtained solution s’ is an integer feasible solution for program
(9)-(12) with s, € &€ for all j € V.

Now consider an arbitrary 5 € V; and the corresponding ¢ € Z* such that
(1+e1)" 71 < sj < (14¢1)". Since s; is integer, we have that [(1+¢1)71] < s; <
[(14e1)"] = s < (14e1)"+1. Now, if (14+¢1)"+1 < (1+&1)"" we immediately
derive that s} < (1 +&1)%s; < (1+ 3e1)s;. If (1 + e1) + 1> (1+¢e1)*L, this
implies that (1 +&1)"' +1 > (1 +¢&1)", and thus s; = s} = [(1+¢e1)" 1]
Therefore, s < (1+3¢1)s;, for all j € Vi. Consequently, for the objective X' we
have

X = Z S;(ﬁ] — bjsg-) < Z(l + 381)53‘(]5]' — bij) = (1 + 351)X,
JEV: JEV:

as claimed before.

We next claim that the problem (9)-(12) restricted to s; € £,5 € V;, admits
an FPTAS. To this end, observe that this problem is in fact a single machine
scheduling problem where each job has at most 4 € O(log,, ., k) possible dif-
ferent processing times p; — b;s; with associated costs p;s; — b;s7, where s; € €.
Problem (9)-(12) thus asks for a schedule with makespan at most C' and mini-
mal total cost. The proof that this problem admits an FPTAS, in terms of its
input size, is presented below in Lemma 2. This input size consists of not more
than O(log,, ., k) possible processing times and costs, hence it is polynomially
bounded in terms of 1/e; and the original problem size. As a consequence, we
have that for any 0 < ¢; < 1 and for any 5 > 0 we can compute in time poly-
nomial in the original input size, 1/e1, and 1/e4, a solution that is no more than
a factor of (1 + 3¢1)(1 + e3) away from the optimal solution. Letting €1 = §/6
and €2 = /3, we derive (14 3¢1)(1 +¢e2) < (1 +9), finishing the proof. |

Scheduling Parallel Jobs with Linear Speedup 209

Lemma 2. Consider a single machine scheduling problem where we have a due
date C, and n jobs, each having h possible modes s = 1,... h at which its
processing time s pjs and its cost is wjs, s = 1,...,h. The problem is to find
a mode s for each job with Zj pjs < C, such that the total cost Zj Wis 15
minimized. This problem admits a fully polynomial time approximation scheme
(FPTAS).

Proof. Utilizing the framework of Pruhs and Woeginger [19], it suffices to show
that the problem admits an algorithm that solves the problem to optimality, with
a computation time that is polynomially bounded in terms of nh, W =" wjs,
and the input size of the problem. Then Theorem 1 of [19] yields that the problem
admits an FPTAS.
The following dynamic program does the job. For ¢ = 1,...,n and z =
., W, denote by PJq, z] the smallest total processing time of ¢ jobs such that
their total weight equals z. More precisely, P[q, z] is the smallest number such
that there exists a subset @) of ¢ jobs with processing times p;s and costs wjs,
such that 3., pjs = Plg, 2] and ;. w;s = z. The initialization of P[1, z] is
trivial for any value z =0..., W, and

Plg+1,z] =min{P[g; z — w] +p | (p, w) = (p;s, w;s) for some j and s} .

Once we completed this dynamic programming table, we find the optimum value
as
max{z | Pln,z] < C}.

The total time required to run this dynamic program is polynomially bounded
in nh, W =3, wjs, and the input size of the problem. O

Now, coming back to the original problem, we can use the FPTAS of Lemma 1
in order to obtain an approximation of the smallest integer value C®F for which
(1)—(4) has a feasible solution. This is achieved as follows. For fixed § > 0, we
find by binary search the smallest integer value C* for which the FPTAS of
Lemma 1 yields a solution for (5)—(8) with value

zer < (148 kC*. (13)

Consider C := C* — 1. By definition of C* as the smallest integer with property
(13), on value C the FPTAS yields a solution with z¢ > (1 + 0)kC, and by
Lemma 1, the optimal solution for (5)—(8) is larger than kC, and hence (1)-
(4) is infeasible for C. Hence, the smallest integer value for which (1)—(4) has
a feasible solution is at least C* = C + 1, or C* < CQF. Therefore, C* is a
lower bound on COPT, the makespan of an optimal solution. Moreover, using
the FPTAS of Lemma 1 and (13), we have an integral solution (sj,...,s}) that
is feasible for (1)—(4) with constraint (2) relaxed to

> (pjs;—bis3) < (L +6)kC* . (14)

JjeEV

210 A. Grigoriev and M. Uetz

Therefore, we conclude that we can derive an approximate solution for (1)-(4)
in the following sense.

Lemma 3. For any 6 > 0, we can find in polynomial time an integer value C*

such that C* < COPT and an integer solution s* = (s%,...,s%) for the resource
consumptions of jobs such that
> (B —bish) <C* i=1,...,m, (15)
JEV;
> (Bst = bi(s3)?) < (146) kC*. (16)
jeV

4 QP Based Greedy Algorithm

Our approach to obtain a constant factor approximation for the scheduling prob-
lem is now the following. We first use the solution for the quadratic program-
ming relaxation from the previous section in order to decide on the amount
of resources allocated to every individual job j. More precisely, job j must be
processed using s; additional resources. Then the jobs are scheduled according
to (an adaptation of) the greedy list scheduling algorithm of Graham [4], in
arbitrary order.

Algorithm QP-GREEDY: Let the resource allocations be fixed as de-
termined by the solution to the quadratic program QP. The algorithm
iterates over time epochs ¢, starting at ¢t = 0. We do the following until
all jobs are scheduled.

— Check if some yet unscheduled job can be started at time ¢ on an idle
machine without violating the resource constraint. If yes, schedule
the job to start at time ¢; ties are broken arbitrarily.

— If no job can be scheduled on any of the machines at time ¢, update
t to the next smallest job completion time ¢’ > ¢.

Obviously, this algorithm can be implemented in polynomial time. Now we
claim the following.

Theorem 1. For any e > 0, algorithm QP-GREEDY is a (34 ¢)—approzimation
algorithm for scheduling parallel jobs with linear speedup. The computation time
of the algorithm is polynomial in the input size and the precision 1/c.

Note that the result of Theorem 1 improves considerably on the performance
bound of (34 21/2) from [8] for the more general case of nonlinear resource-time
tradeoff functions. Moreover, also recall that the approach of [8] only yields a
pseudo polynomial time algorithm for the linear problem at hand.

Proof. In order to do the binary search for the integer value C* in the quadratic
programming relaxation (1)—(4), we first use the FPTAS of Lemma 1, with
0 = €/2. As described previously, this yields a lower bound C* on the makespan

Scheduling Parallel Jobs with Linear Speedup 211

COFT of an optimal schedule, together with an integer solution s* for (1),(3),(4),
and (14). We then fix the assignments of resources to the jobs as suggested by
the solution s*, and apply the greedy algorithm. The analysis of the greedy
algorithm itself is based on the same basic idea as in our previous paper [8]. For
convenience, we present the complete proof here.

Consider some schedule S produced by algorithm QP-GREEDY, and denote
by CQPS the corresponding makespan. Denote by COPT the makespan of an
optimal solution. For schedule S, let #(3) be the earliest point in time after
which only big jobs are processed, big jobs being defined as jobs that have a
resource consumption larger than k/2. Moreover, let 3 = C?PS — ¢(53) be the
length of the period in which only big jobs are processed (possibly g = 0).

Next, we fix a machine, say machine ¢, on which some job completes at
time ¢(3) which is not a big job. Due to the definition of ¢(5), such a ma-
chine must exist, because otherwise all machines were idle right before ¢(3),
contradicting the definition of the greedy algorithm. Note that, between time 0
and ¢(), periods may exist where machine i is idle. Denote by « the total length
of busy periods on machine ¢ between 0 and ¢(53), and by ~ the total length of
idle periods on machine ¢ between 0 and ¢(3). We then have that

C®C =a+3+7. (17)

Due to (15), we get that for machine 4

a< Y pj—bis;<CF (18)
JEV;

The next step is an upper bound on 3 + +, the length of the final period
where only big jobs are processed, together with the length of idle periods on
machine 7. We claim that

B+v<2146)C*. (19)

To see this, observe that the total resource consumption of schedule S is at least
B+~ % This is because, on the one hand, all jobs after ¢(3) are big jobs and
require at least & /2 resources, by definition of ¢(3). On the other hand, during all
idle periods on machine i between 0 and ¢(53), at least k/2 of the resources must
be in use as well. Assuming the contrary, there was an idle period on machine 4
with at least k/2 free resources. But after that idle period, due to the selection
of t(3) and machine i, some job is processed on machine ¢ which is not a big job.
This job could have been processed earlier during the idle period, contradicting
the definition of the greedy algorithm. Next, recall that (1 + ¢) kC* is an upper
bound on the total resource consumption of the jobs, due to (16). Hence, we

obtain

k k
(1+6)k0*2ﬁ2+72.

Dividing by 2/k yields the claimed bound on 5 + .

212 A. Grigoriev and M. Uetz

Now we are ready to prove the performance bound of Theorem 1. First,
use (17) together with (18) and (19) to obtain

COPG < C* +2(1+6)C* = (3+20)C*.

Eventually, because C* is a lower bound on COPT, this yields a performance
bound for QP-GREEDY of 3+ 20 = 3 + ¢, due to the choice of § =¢/2.

The claim on the polynomial computation time follows from the fact that we
use an FPTAS in Lemma 1, and since the greedy algorithm obviously runs in
polynomial time. O

5 Lower Bounds

Concerning lower bounds on approximation, we know that the problem at hand
is a generalization of the dedicated machine scheduling problem as considered
by Kellerer and Strusevich [13], hence it follows that it is strongly NP-hard.
Unlike for the nonlinear problem, where an inapproximability result of 3/2 is
known [8], we did not succeed to derive a stronger negative result without further
generalizing the problem. See Section 6 for a brief discussion of this issue. We
next show, however, that our approach may yield a solution that is a factor 2—¢
away from the optimal solution, for any ¢ > 0.

Ezxample 1. Consider an instance with m = 3 machines and & = 2 units of the
additional resource. Let an integer £ be fixed. The first two machines are assigned
two jobs each, symmetrically. One of these two jobs has a compression rate of
0, thus a constant processing time p;s = £ — 3, for any s = 0,...,2. The other
job has a processing time p;, = 3 + 2¢ — ¢s if assigned s units of the resource,
thus the only way to get this job reasonably small is to assign all 2 resources,
such that p;» = 3. On the third machine, we have three jobs. T'wo identical short
jobs with processing times p;, = 3 — s, and one long job with processing time
pjs = —3s,s=0,...,2. See Figure 1 for an example. O

Proposition 1. There exists an instance where the assignment of resources to
the jobs as proposed by the solution to the quadratic programming relaxation
is wrong in the sense that any scheduling algorithm yields a solution that is a
factor at least 19/13 = 1.46 away from the optimum. Moreover, for any e > 0,
there exist instances where algorithm QP-GREEDY may yield a solution that is
a factor 2 — e away from the optimum.

Proof. Consider the parametric instance defined in Example 1, with parameter
£ > 13. The assignment of resources to the jobs on the first two machines is
essentially fixed by construction of the instance, for any reasonable makespan
(i.e., less than 2¢): the two jobs with the high compression rate consume 2 units
of the resource, yielding a total processing time of £ on the first two machines.
In the optimal solution, the makespan is exactly ¢, by assigning 2 resources
to the long job on the third machine, and no resources to the small jobs. The

Scheduling Parallel Jobs with Linear Speedup 213

(a) optimal solution (b) best solution after assigning resources as QP
L -) >
t t t > t t +— t t >
0 3 (-3 ¢ 0 3 6 7 9 14 {46

(c) possible solution QP-Greedy

e

' ' ' M -
T T T >

P
—
0 3 4 6 14 20—-3

Fig. 1. Black jobs consume 2 resources, gray jobs 1, and white jobs 0 resources

corresponding schedule is depicted in Figure 1(a). The smallest value C' such
that the quadratic programming relaxation (1)—(4) is feasible is C' = ¢, too. We
claim that our solution to the quadratic programming relaxation would assign
one unit of the resource to both, the big and one of the small jobs, and two units
of the resource to the remaining small job. This is due to the fact that, in solving
the QP, we minimize the total resource consumption of the schedule, subject to
the constraint that the total processing time on each machine is bounded by
C = ¢. On the third machine, the minimal resource consumption, subject to the
condition that the makespan is at most /¢ is achieved as explained, yielding a
total resource consumption of £ + 1. All other assignments of resources to the
jobs on the third machine either violate the makespan bound of ¢, or require
more resources (in fact, at least 2(¢ — 6) > ¢+ 1). Now, it is straightforward to
verify that any schedule with this resource assignment will provide a solution
that has a makespan of at least 3+ 3+ ({ —3) + 1+ 2 = £ + 6, since no two
resource consuming jobs can be processed in parallel. Figure 1(b) depicts such a
schedule. Since ¢ would be optimal, this yields the claimed ratio of 19/13 when
utilizing ¢ = 13. On the other hand, if the scheduling algorithm fails to compute
this particular solution, the makespan becomes 2¢— 3, as depicted in Figure 1(c).
This yields a ratio of (2¢ — 3)/¢, which is arbitrarily close to 2 for large ¢. O

It remains open at this point whether there exist instances of the problem on
which algorithm QP-GREEDY outputs a solution with performance ratio worse
than 2. More interesting, however, would be a lower bound on the approxima-
bility for the scheduling problem considered in this paper; the so far strongest
result is NP-hardness [13].

6 Generalizations

Two interesting generalizations of the problem can be handled with the proposed
techniques as well. We briefly discuss them here; for a detailed treatment, we
refer to a full version of this paper.

214 A. Grigoriev and M. Uetz

Firstly, consider the more general case where each job has an individual upper
bound on the maximal resource consumption, so p;js = p; — bjs;, and 0 < s; <
k; for each job j. The problem discussed in this paper then corresponds to
the special case where k; = k for all jobs j. It is not hard to see that our
approximation result holds for that generalized version of the problem, too.
Moreover, this generalized version does not admit an approximation algorithm
with a performance ratio better than 3/2, which follows by a simple adaption of
the gap-reduction from PARTITION in Theorem 3 of [8].

Secondly, our results can be generalized to problems where the functions that
describe the resource-time tradeoff are not necessarily linear, but polynomial.
Whenever the maximum degree of these polynomials is bounded, our proofs can
be adapted to that case as well.

Acknowledgements. We thank Gerhard Woeginger for several helpful sug-
gestions. In particular, Gerhard pointed us to the paper [19], and proposed the
proof for the FPTAS for the single machine scheduling problem in Lemma 2. We
also thank Frits Spieksma for some helpful remarks.

References

1. J. Brazewicz, J. K. LENSTRA AND A. H. G. RINNOOY KAN, Scheduling subject
to resource constraints: Classification and complexity, Discr. Appl. Math. 5 (1983),
pp. 11-24.

2. Z.-L. CHEN, Simultaneous Job Scheduling and Resource Allocation on Parallel
Machines, Ann. Oper. Res. 129 (2004), pp. 135-153.

3. M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the
Theory of NP-Completenes, W. H. Freeman, New York, 1979.

4. R. L. GRAHAM, Bounds for certain multiprocessing anomalies, Bell System Tech-
nical Journal 45 (1966), pp. 1563-1581. See also [5].

5. R. L. GRAHAM, Bounds on multiprocessing timing anomalies, SIAM J. Applied
Math. 17 (1969), pp. 416-429.

6. R. L. GRaAHAM, E. L. LAWLER, J. K. LENSTRA, AND A. H. G. RINNOOY KAN,
Optimization and approximation in deterministic sequencing and scheduling: A
survey, Ann. Discr. Math. 5 (1979), pp. 287-326.

7. A. GRIGORIEV, H. KELLERER, AND V. A. STRUSEVICH, Scheduling parallel ded-
icated machines with the speeding-up resource, manuscript (2003). Extended ab-
stract in: Proceedings of the 6th Workshop on Models and Algorithms for Planning
and Scheduling Problems, Aussois, France, 2003, pp. 131-132.

8. A. GRIGORIEV, M. SVIRIDENKO, AND M. UETZ, Unrelated Parallel Machine
Scheduling with Resource Dependent Processing Times, Proceedings of the 11th
Conference on Integer Programming and Combinatorial Optimization, M. Jiinger
and V. Kaibel (eds.), Lecture Notes in Computer Science 3509, 2005, pp. 182-195.

9. R. HOrST AND P. M. PARDALOS, Editors, Handbook of Global Optimization, vol-
ume 2 of Nonconvex Optimization and Its Applications, Springer, 1995.

10. K. JANSEN, Scheduling Malleable Parallel Tasks: An Asymptotic Fully Polynomial
Time Approximation Scheme, Algorithmica 39 (2004), pp. 59-81.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Scheduling Parallel Jobs with Linear Speedup 215

K. JANSEN, M. MASTROLILLI AND R. SOLIS-OBA, Approximation Schemes for Job
Shop Scheduling Problems with Controllable Processing Times, European Journal
of Operational Research 167 (2005), pp. 297-319.

J. E. KEeLLEY AND M. R. WALKER, Critical path planning and scheduling: An
introduction, Mauchly Associates, Ambler (PA), 1959.

H. KELLERER AND V. A. STRUSEVICH, Scheduling parallel dedicated machines
under a single non-shared resource, Europ. J. Oper. Res. 147 (2003), pp. 345-364.
H. KELLERER AND V. A. STRUSEVICH, Scheduling problems for parallel dedi-
cated machines under multiple resource constraints, Discr. Appl. Math. 133 (2004),
pp. 45-68.

J. K. LENSTRA, D. B. SHMOYS AND E. TARDOS, Approximation algorithms for
scheduling unrelated parallel machines, Math. Prog. 46 (1990), pp. 259-271.

G. MouNIE, C. RAPINE, AND D. TRYSTRAM, Efficient Approximation Algorithms
for Scheduling Malleable Tasks, Proceedings of the 11th Annual ACM Symposium
on Parallel Algorithms and Architectures, 1999, pp. 23-32.

G. MOUNIE, C. RAPINE, AND D. TRYSTRAM, A 3/2-Dual Approximation Algo-
rithm for Scheduling Independent Monotonic Malleable Tasks, Manuscript, Re-
trieved from http://citeseer.csail.mit.edu/558879.html

P. M. PARDALOS AND G. SCHNITGER, Checking Local Optimality in Constrained
Quadratic Programming is NP-hard, Oper. Res. Lett. 7 (1988), pp. 33-35.

K. Pruns AND G. J. WOEGINGER, Approximation Schemes for a Class of Subset
Selection Problems, Proceedings of the 6th Latin American Symposium on Theo-
retical Informatics, M. Farach-Colton (ed.), Lecture Notes in Computer Science
2976, Springer, 2004, pp. 203-211.

D. B. SHMOYS AND E. TARDOS, An approximation algorithm for the generalized
assignment problem, Math. Prog. 62 (1993), pp. 461-474.

M. SKUTELLA, Approximation algorithms for the discrete time-cost tradeoff prob-
lem, Math. Oper. Res. 23 (1998), pp. 909-929.

J. TUREK, J. L. WoOLF, AND P. S. YU, Approximate Algorithms for Scheduling
Parallelizable Tasks, Proceedings of the 4th Annual ACM Symposium on Parallel
Algorithms and Architectures, 1992, pp. 323-332.

Online Removable Square Packing

Xin Han'!, Kazuo Iwama!, and Guochuan Zhang?*

1 School of Informatics, Kyoto University, Kyoto 606-8501, Japan
{hanxin, iwama}@kuis.kyoto-u.ac.jp
2 Department of Mathematics, Zhejiang University, China,
zgc@zju.edu.cn

Abstract. The online removable square packing problem is a two di-
mensional version of the online removable Knapsack problem. For a se-
quence of squares with side length at most 1, we are requested to pack a
subset of them into a unit square in an online fashion where the online
player can decide whether to take the current square or not and which
squares currently in the unit square to remove. The goal is to maximize
the total packed area. Our results include: (i) Any online algorithm can-
not achieve a better competitive ratio than (v/5 -+ 3)/2 = 2.618. (ii) The
matching upper bound is achieved by a relatively simple online algorithm
if repacking is allowed. (iii) Without repacking, we can achieve an upper
bound of 3 by using the concept of bricks by Januszewski and Lassak
[11]. (iv) The offline version of the problem admits a PTAS.

1 Introduction

The Bin Packing and Knapsack problems are both very popular in the field
of combinatorial optimization. However, the situation is quite different in their
online versions: Bin Packing has a long history of online algorithms where im-
portant notions like competitive analysis already appeared, due to [8], in the
early stage of the literature. In contrast, the Knapsack problem has an intrin-
sic hostility against an online algorithm which has to decide, for each item Q
sequentially given, whether it takes @) or not, i.e., whether it puts @ into the
knapsack (or we will call it a bin) or not. This decision is irrevocable, which
cannot cope with the following simple instance: Suppose that the online player
receives a sequence of small items of size €. If the player does not take any of
them, then the competitive ratio gradually worsens and if the player takes one,
then the adversary immediately gives an item of size 1 which cannot be taken
because of the small item already in the bin. Thus one can easily see that there
are no competitive algorithms.

Recently, Iwama and Taketomi [9] bypassed this difficulty by introducing
“removability.” Namely, in each step, the online player can also remove one or
More items currently in the bin other than deciding whether or not it takes
the current item. They considered the one-bin and two- or more-bin cases and
showed that there exist optimal online algorithms for both cases. This is one of
the successful attempts to relax the online condition, which has been popular

* Research supported by NSFC (10231060).

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 216-229, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Online Removable Square Packing 217

in many fields such as scheduling (see e.g.,[15]) and even towards more general
algorithmic paradigm such as priority algorithms [2].

This paper discusses the online square packing problem which can be regarded
as a two-dimensional version of this online Knapsack. Suppose that a sequence
of squares (a;, a;) arrives one by one, where 0 < a; < 1 is the side length of the
square. In each step i, the online player has to decide whether or not it packs
(ai, a;) into the bin of size (1, 1) before the next square comes. We allow removing
just as the one-dimensional case, namely we allow to discard one or more items
already in the bin but the items once discarded will never be considered again.
It is easy to see as before that there is no competitive algorithm without this
discarding rule. It should also be noted (see Sec. 2) that if each item may be a
rectangle, then we cannot achieve a constant competitive ratio, either.

Our contribution. The basic difference between the one-dimensional and two-
dimensional packing problems is that in the latter we need to assign the item into
a specific position inside the unit square. This also means that it is important
whether we allow repacking in each step or not, where repacking means after
deciding whether the current item is taken or not and which item(s) are removed,
we can once take out all the items that should be packed and can reassign them
into the bin using some (off-line) algorithm. In the one dimensional case, since
items are naturally packed from the bottom of the bin without space, repacking
is implicitly allowed. However, it turns out from the algorithm in [9] that we
actually do not need repacking to obtain the optimal competitive ratio in the
one-bin case.

Our results are the following: (i) Any online algorithm for which both remov-
ing and repacking are allowed cannot achieve any competitive ratio better than
(v/5+3)/2 (~ 2.618). (ii) The matching upper bound can be achieved by a rela-
tively simple but a bit tricky algorithm if we allow repacking. (iii) We give an on-
line algorithm which achieves a competitive ratio of at most 3 without repacking.
This algorithm is borrowing the interesting notion of brick by Januszewski and
Lassak [11] together with a couple of new ideas for packing and removing. In par-
ticular, our new partition of the bin improves the main result in [11] as a byprod-
uct. (iv) We also consider the offline version of the problem, which is known to
be strongly NP-hard [13]. And we prove the offline version admits a PTAS.

Related problems and previous work. Basically there are two categories
of rectangle packing problems. Let B be the set of rectangular bins and L be
the set of rectangles to be packed. In the mazimization category, one is asked
to pack a subset X of L, without any overlap, into the bins so that f(X) is
maximized, where f(-) is a function of rectangles. In the minimization category,
all rectangles of L have to be packed, without any overlap, into a subset of B
so that g(Y") is minimized, where g(-) is a function of bins. In this category, the
set of bins is assumed to be large enough (e.g., there are unlimited number of
bins). In fact we can also name the two categories the knapsack class and the bin
packing class, respectively. For each category of rectangle packing we can define
the off-line version and the online version.

218 X. Han, K. Iwama, and G. Zhang

For the off-line version of the maximization category, Caprara and Monaci
[3] first considered the problem to maximize the total area of packed rectangles.
They mainly focused on exact algorithms. A polynomial (3 + &)-approximation
algorithm was also derived. Then Jansen and Zhang [10] considered a problem
to maximize the total profit of packed rectangles. In the problem the bin set
contains exactly one bin and each rectangle R; is associated with a profit p;.
The objective function is f(X) = > p cx pi- The problem is to pack a subset
X of L into the bin to maximize f(X). Several approximation algorithms were
presented, the best of which has a worst-case ratio of at most 2 + ¢ for any
given € > 0. Our result (iv) claims that there exists a PTAS if input items are
unweighted (i.e., p; = its area) squares.

Some online problems of the maximization category were also investigated.
Januszewski and Lassak [11] proposed a novel concept brick. They partitioned
the unit square into bricks and pack different squares into appropriate bricks.
They showed that each list of squares with total area bounded above by 5/16
can be online packed into a unit square (In fact, in their paper, the main result
dealt with the d-dimensional problem. They showed that every sequence of d-
dimensional cubes of total volume 2(1/2)% can be online packed into a unit cube,
for d > 5). However, their algorithm is not competitive against general inputs
given in an online manner. Caramia et al. [4] designed an online algorithm to
maximize the total area of rectangles packed into a rectangular bin, but only the
experimental analysis based on implementation was given.

For the minimization category there have been many results on the two-
dimensional bin packing problem in which all rectangles have to be packed into
a minimum number of square bins. Here we only mention some results on packing
squares. For the off-line case, Ferreira et al. [7] gave an approximation algorithm
with asymptotic worst-case ratio bounded above by 1.988. Kohayakawa et al. [12]
and Seiden and van Stee [16] independently obtained approximation algorithms
with asymptotic worst-case ratio of at most 14/94-¢ (for any & > 0). These results
were recently improved by Correa and Kenyon [5], and Bansal and Sviridenko
[1]. They independently proposed asymptotic PTASes for packing d-dimensional
cubes into the minimum number of unit cubes. For the online case, if the number
of bins is bounded, the best known asymptotic worst case ratio is 2.271 [6].

Competitive Ratio. To evaluate an online algorithm, we use the standard
Measure called competitive ratio. For any input sequence L, let A(L) be the area
packed in the bin by an online algorithm A and OPT(L) be the packed area
by an optimal off-line algorithm. The competitive ratio of algorithm A is then

defined as R4 = sup OIZ(TL()L).
L

2 Lower Bounds

We first mention the impossibility of competitive algorithms.
Fact 1. If the removal is not allowed, then any online algorithm cannot achieve
a constant competitive ratio.

Online Removable Square Packing 219

Fact 2. No algorithm can achieve a constant ratio for packing rectangles.

Now we prove our mMain lower-bound result:

Theorem 1. For any online algorithm with removing and repacking allowed, its
competitive ratio is at least (v/5+ 3)/2 (~ 2.618).

Proof. Let A be any online algorithm. The adversary gives the first and second
squares whose sizes are (¢2, ¢?) and (g+¢, ¢+¢), respectively. Here, ¢ = (v/5—1)/2
(i.e., ¢ +¢*> = 1) and € > 0, and hence these two squares cannot coexist in
the bin. If A takes (¢%,¢*) (and gives up (¢ + &,q + ¢)), then the game is over
because OPT(L)/A(L) for this input sequence L is (¢+¢)?/q¢* > ¢*/¢* = 1/¢*> =
(v/5 4 3)/2. So, suppose that (q + ¢,q + €) is now in the bin. Then the third
and forth squares given by the adversary are both (g2, ¢%). For the same reason
as above, the algorithm A must discard both. Then the adversary gives four
identical squares of size (1/2,1/2). There are two cases:

Case 1. Algorithm A takes one of those (1/2,1/2) squares and discards (g +
€, q+¢). Then the adversary stops the game immediately and we have A(L) = 1/4
and OPT(L) > 3¢* + 1/4 > 0.6875 since OPT can pack three (¢2,¢%) and one
(1/2,1/2). Thus OPT(L)/A(L) > 2.75.

Case 2. Algorithm A gives up all four (1/2,1/2)’s. Then OPT(L) is obviously
1 and OPT(L)/A(L) = 1/(q + ¢)? which tends to (/5 + 3)/2 as € goes to zero.

Thus, we have R4 = sup OPT(L)/A(L) > (v/5 + 3)/2.

L

3 Optimal Algorithm with Repacking

In this section, we give a simple online algorithm called RPK, which achieves the
optimal competitive ratio given in Theorem 1. RPK uses the well-known (off-
line) square packing algorithm called NFDH (Next Fit Decreasing Height) [14].
We omit the details of NFDH, but it is enough to see Fig 1 (a) to understand its
basic idea. Namely, we sort the squares by their sizes and then pack them from
the largest one using level-1 area. If level-1 becomes full then we use level-2 and
so on. Here is a key property of NFDH.

level 3
level 2 level 21 83 | g4

S1

level 1 level 1 $2

(@) ®)

Fig. 1. NFDH packing

220 X. Han, K. Iwama, and G. Zhang

Lemma 1. [14], Any set of squares with total area < 1/2 can be always packed
into the unit square by NFDH.

Now, a single round of our RPK can be described as follows. Note that S1, Sa, - - -,
S, denotes the items currently in the bin whose side lengths are x1,xs2, -, xn,
respectively. W.l.o.g., we assume that 1 > xo > --- > x,. Let @ be the current
item whose size is (2541, Zn11), and let ¢ = (v/5 —1)/2.

1. If the packed area in the bin is at least ¢2, then we discard Q.

2. Otherwise, if @ is large enough (that is, 2,41 > ¢), then we remove every-

thing in the bin and pack Q.

Else, if all of Sy, .59,---,5,, and @ can be packed by NFDH, then do so.

4. Otherwise, if (21 + zp41) > 1 then we take the smaller one of S and @ and
pack it together with So,---,S,, by NFDH.

5. Otherwise, we find a maximum k such that Si,S5,---, S, and @ can be
packed by NFDH but 51,52, -+, Sk, Sk+1 and @ cannot. Pack S1, 5, -+, Sk
and @ by NFDH.

@

Theorem 2. The competitive ratio of RPK is at most (v/5+ 3)/2 (~ 2.618).

Proof. Apparently the first square is taken by RPK and therefore the com-
petitive ratio at the end of round 1 is 1. Suppose that the competitive ratio
OPT;_1/RPK;_1 at the end of round i — 1 (i > 2, or at the beginning of round
i) is at most (3 4 1/5)/2. Then we shall show that the competitive ratio is also
at most (3 +1/5)/2 at the end of round i. Recall that if ¢ = (v/5 — 1)/2, then
1/¢> = (3+5)/2.
In round 7, one of the five steps 1 ~ 5 above is executed.
Case 1. Step 1 or 2 is executed. This case is trivial since the total area is at
least ¢2.
Case 2. Step 3 is executed. The current item @ is just added to the bin. So
we have
OPT; _ OPTi 1 +|Q| _ OPTi
RPK; RPK;, ;+|Q| ~— RPK;

Case 3. Step 5 is executed (Step 4 will be considered next). We first show the
following property of NFDH.

< (3+V5)/2.

Lemma 2. Suppose that a sorted sequence of squares Si,Sa,---,Sk can be
packed by NFDH but S1,S2,- -+, Sk, Sg+1 cannot. Then k=1 or k > 4.

Proof. Suppose that k # 1. Then by assumption we can pack at least S; and
So. One can see that this packing needs only level 1. So, we must have a space
for S5 above S7 and a space for Sy to the right of S3, as shown in Fig. 1 (b).
Thus we can pack at least up to Sy.

Now, suppose that Si,Ss,- -, S, and @ can be packed but Sy,Ss, -+, Sk, Sk+1
and @ cannot. Since S1,S52,- -+, Sk and @ include at least two squares (recall
that at least S7 and @ can be packed), we have k > 3 by lemma 2. Since the

Online Removable Square Packing 221

total amount of area for Si,Ss,---,S, is less than ¢? (otherwise the packing
should have been ended), the total area for Si,S2, - -, Sk, Sk+1 is also less than
q?. Since Siy1 is the smallest among S1,S2, -+, Sk, Sk+1 and k > 3, |Sky1| <
q?>/4 < 0.1. Moreover, because Si,Sa, -+, Sk, Sr+1 and Q cannot be packed
by NFDH, |S1| + -+ + |Sk+1| + |@| > 1/2 by Lemma 1. It then follows that
|S1] + -+ |Sk| +1Q| > (1/2 — 0.1) > ¢*. Thus the packed area after this step
is at least ¢2.

Case 4. Step 4 is executed. Recall that if Step 1, 2, or 5 is once executed,
then we have an enough packed area and we can stop packing. Also, in Step 3,
nothing is discarded. Therefore, we can classify all the squares received so far
into two groups G; and G2 such that squares in GG; are in the bin and squares
in G5 have been discarded only in Step 4. Thus we can prove the following facts:

(i) Let y be a side length of an arbitrary square Y in Ga. Then, 0.5 < y
since it was not able to coexist with another single (smaller) square. Also y < ¢
since otherwise this single item would be enough for the target ratio. Namely
0.25 < |Y| < ¢%.

(ii) Let X be the largest item in G;. Then |X| > ¢*. (The reason: Let Y be
the square in G which is discarded in this step. Then |Y| < ¢* by (i) and hence
X and Y could coexist if | X| < ¢*.)

(iii) This largest X cannot coexist with the smallest square, denoted by Y,
in G3. (The reason: Since Y was discarded, it was compared with some X’ such
that |Y| > |X'|. If |X’| < |X| then we are done, so let us assume | X'| > |X|.
Since X' is not in G now, it has to be moved to G5 later. For this to occur, we
eventually need another X" such that |X| < |[X”| < |X']. If | X| = |X"”| then
we are done since X" (and also X) cannot coexist with X’ or Y. Otherwise, X"
should be moved to G2 but this violates the assumption that Y is the smallest.)

Since any two squares in G cannot coexist by (i). Also by (iii), OPT can take
at most one square say Y, in G2 and G;— {X}, while RPK holds G;. Therefore

OPT _ Gy~ X[+|Y| _ G1—|X[+4* _ 1
RPK = G —|X|+|X| = G — |X|+¢* ~ ¢*

which was what we wanted to show.

4 Online Algorithm Without Repacking

In this section, we first review the on-line packing algorithm by Januszewski
and Lassak [11], called the JS algorithm in this section, which uses a beautiful
technique based on bricks. Unfortunately this algorithm is not competitive but
it guarantees a certain amount of total packed area. We then give our new
ideas that make this algorithm both more efficient and competitive. A detailed
description of our algorithm and its analysis follow.

4.1 Packing by Using Bricks

A rectangle (w, h) is called a brick if w/h = v/2 or h/w = /2. A brick has the
following two important properties:

222 X. Han, K. Iwama, and G. Zhang

Fact 3. If (w,h) is a brick, then either (w/2,h) or (w,h/2) is a brick. In other
words, a brick can be partitioned into two congruent bricks.

Fact 4. If a square Q fits in a brick (w,h) (w > h) but not in (w/2,h), then
wh/2v/2 < |Q| < wh.

As shown in Fig 2, brick B(w, h) can be continuously partitioned into smaller
bricks, sometimes called subbricks (w/2,h), (w/2,h/2),(w/4,h/2), and so on.
For a square @Q = (a,a), we use S(Q) to denote a brick which “just” fits for
the square). More precisely, S(Q) = (w/2%, h/2") if w/2"T! < a < h/2% or
S5(Q) = (w/271 h/21) if h/2F < a < w/2!L for some integer i. |B| denotes
the area of brick B. If a brick contains a square, then it is said to be used,
otherwise unused.

0.707

[E]
w cl 2 DI D2 (5
Q 0.75 0701 ==
/ \ 2/3
(w/2,h/2) O O
— (W2h
(w/2,h) (/2 / A
J B
(w/4,h/2)(w/4,h/2) (W2h2) / x
(0]
(W/4h/2) (wWi4h/2) (a) (b)
Fig. 2. partitioning bricks Fig. 3. Previous partition vs ours

Suppose that we are given a square () and a brick B which may be partitioned
into subbricks and some of them may be already used. The JS algorithm packs
Q@ into the “right position” of B by the following subroutine:

Algorithm PB (Packing a Brick).

1. If all bricks in B are used or all unused bricks are smaller than S(Q), then
give up packing @,
2. else pack @ into B depending on the following two cases.

(a) If there is an unused brick congruent to S(Q), then pack @ into it,

(b) else find a smallest brick among all the unused ones whose area is larger
than |S(Q)|. Denote such a brick by P, and partition P into a sequence of
bricks whose areas are ”23', “Zl o, 218(Q)], 1S(Q)], |S(Q)], respectively.
Pack @ into an arbitrary one of the last two bricks whose area is |S(Q)].

The entire JS algorithm is quite simple, which packs a sequence of items @1, @2,
-+, Qp as follows: (i) Before packing @y, construct three bricks A = (1,/2/2),
Cy = (V2/4,1/4) and Cy = (v/2/4,1/4) within the bin (a unit square) as shown
in Fig. 3 (a). (ii) For packing current item @);, pick up the bricks one by one
in the order of Cy, Cs and A and apply algorithm PB, respectively. Once @Q;
is packed, consider the next item; otherwise, if); can be packed into neither
of them, stop with failure. (iii) If we can pack all of @1, -, @y, then stop with
success.

Online Removable Square Packing 223

Proposition 1 [11]. If |Q1|+: - -+|Qn| < 5/16, then the above algorithm always
stops with success.

4.2 New Ideas

(i) We construct six bricks in the bin as shown in Fig. 3 (b), B = (2v/2/3,2/3),
Dy = Dy = (v/2/3,1/3) and Ey = Ey = E3 = (x,v/2x), where © = 1 — 21/2/3.
(ii) Recall that each item is a square but a brick is a rectangle. Hence a brick
holding an item must have a space. The original JS algorithm never uses such
a space, but our algorithm does, namely, two or more items may share a single
brick.

The modification (i) is quite powerful; we can prove the following theorem.

Theorem 3. By the modification (i), the JS algorithm can pack the items whose
total area is up to 1/3.

4.3 Competitive Algorithm

The basic strategy of our algorithm denoted by RSP (Removable Square Pack-
ing), is as follows: Suppose that the coming item @ is large (to be defined later).
Then if it can be packed in the bin together with other large items, then we
pack it without using the concept of brick, else we remove some small items to
make a space for . On the other hand, suppose that the coming item is small.
Then if there is a large item P in the bin, then we first try to append @ into the
brick now being used by P. If there is no such a space in that brick, then we will
remove some small items relatively smaller than Q.

A square (a,a) is called small, if a < 1/3, otherwise large. Moreover, if a <
1—2v/2/3, we call it tiny. As mentioned before, the bin is divided into six bricks
(Fig. 3 (b)) at the beginning. In the course of the algorithm, an item is packed
into some brick and a brick is partitioned into smaller ones if necessary. At any
stage there are two kinds of bricks, one which has not been partitioned yet is
called t-brick, the other is called n-brick. For example, before packing any square,
all bricks B, D1, Do, F1, Es, E3 are t-bricks. In order to pack a square @), we may
divide brick B into two sub-bricks By and Bs and use one of them to pack Q.
At this moment, By and By are t-bricks, one is a used t-brick, the other is an
unused t-brick, but B became an n-brick.

In each round, algorithm RSP receives an input item @Q and decides: (i)
whether or not @ should be packed, (ii) if yes, which position Q should take,
and (iii) to do so, which items should be removed. It should be noted that if the
current amount of total packed area in the bin is 1/3 or more, then our target
competitive ratio (= 3) is already achieved. So the algorithm can ignore (auto-
matically discard) all the following items. For example, if B U Dy U Dy do not
include any unused (sub)brick and if every used (sub)brick just fits its holding
item then the packed area is greater than 1/3. (To see this, note that the total
area of BU Dy U Dy is greater than 2v/2/3. Then by Fact 4, the packed area is
greater than (2v/2/3)(1/2v/2)=1/3.)

224 X. Han, K. Iwama, and G. Zhang

Now here is a detailed description of each round of RSP, which consists of
three steps:

Step 1. The packing stops when one of the following two cases occurs.

(1.1) The total area of the squares already packed is at least 1/3.

(1.2) The current item @ is “very” large, Then empty the bin and pack Q.
Step 2. Pick up the bricks one by one in the order of FEy, FEs, F3, D1, D2, B
and apply algorithm PB to pack item @, respectively. Otherwise (@) cannot be
packed into any brick), goto step 3.

Step 3. There exist unused bricks and all of them are smaller than S(Q).

— Q| <1/9.
| (?|>1) '%here is one t-brick of area 2¢|S(Q)| in Dy U Dy U B for some i > 2.
(Such a t-brick is used, but as shown later, there must be room for the
square) within that ¢-brick). Then pack @ into it and halt.

(3.2) The largest ¢-brick in D1 U Do U B is of area 2|S(Q)|. Then if @ can
be packed into it, then pack Q); else select an n-brick whose packed area
is the smallest among all n-bricks congruent to S(Q) in D; U Da U B.
Empty this brick and pack @ in it. Halt.

(3.3) The largest t-brick in Dy U Dy U B is not larger than S(Q) Then find
an n-brick P which is congruent to S(Q) and contains the largest unused
brick in D7 U Dy U B (such a brick can be determined with the help of
the binary tree as shown in Fig. 2). Remove all squares from P and pack
Q into it.

-2/9<|Q|<1/3.

(3.4) There is at least one small square in B. Then remove all squares from
B, except a small one at a corner of B. Pack Q into B and halt.

(3.5) There is exactly one large square and no small ones in B. Then pack
Q) in the rest space of the unit square, if Q) can be packed, and stop.
Otherwise, remove the larger one of (@ and the large square already in
B, and pack the smaller into B.

(3.6) There are two large squares in B. Then keep the smaller one, remove
the larger as well as all small squares if needed, then pack @ in the
reMaining space of the bin. Halt.

- 1/9<|Q<2/9

(3.7) There are two large squares in B. Then remove all squares from Dy U
D if needed, then pack @ in the remaining space of the bin. Halt.

(3.8) There is only one square in B and its area is greater than 2/9 (B is a
t-brick). Then if @ can be packed to the remaining space of the square
bin, then pack @ (@ may go beyond the borders of bricks) and stop.
Otherwise, remove the square in B and pack @ (at this point, we also
get a new t-brick (v/2/3,2/3) since B is partitioned).

(3.9) Else, there are two subcases.

1. If there is one large square, then remove all small squares from B
and pack Q.

2. There are two n-bricks of (v/2/3,2/3). Empty the one whose packed
area is smaller then pack Q.

Online Removable Square Packing 225

4.4 Analysis of Competitive Ratio

The packing ends either by the stopping rules of algorithm RSP or by the in-
stance itself. Note that in Step 2, we never remove any squares, i.e, our packing
is the same as optimal packing, so our analysis only focuses on Step 1,3. If RSP
stops at Step 1 for some round, the competitive ratio is obviously achieved.
Therefore, to analyze the algorithm, we only need to consider Step 3. We first
show that if RSP stops packing, the packed area of the bin is at least 1/3. Then
we prove, for other cases, the competitive ratio is at most 3.

The following two lemmas 3 and 4 come from [11], which are useful for the
analysis of our algorithm. Let B be a brick. Recall that we use algorihtm PB for
packing a square @) into a brick B and S(Q) denotes the brick which just fits Q.

Lemma 3. If algorithm PB cannot pack a square Q, then all unused bricks in
B are smaller than S(Q), and there is at most one unused brick of area |S(Q)|/2¢
for eachi=1,2,....

Lemma 4. If PB algorithm cannot pack @, then the total area of used bricks is
at least |B| — S(Q)].

Lemma 5. Given a brick A, any two squares with a total area of at most |A|//2
can be packed together into A.

Lemma 6. If there is a tiny square in Dy U Dy U B, then the packed area in
FEy U E5y U E3 is greater than x2, where x =1 — 2\/2/3.

Proof. In this case, there is at least one tiny square in F3. Otherwise the tiny
square in Dy U Dy U B would have been packed into F3 by the algorithm. Anal-
ogously, any square in E3 can not be packed into E; U E5. By Lemma 4, the
packed area in F; U Ey U E3 is greater than 2x\/2x/(2\/2) = 2.

Let m be the counter that the execution pass through Case (3.3),

Lemma 7. In Case (3.3), the packed area in Dy U Dy U B is greater than
1/3 —27™/18, the total removed area in Case (3.3) is at most 1/18 +27™/36.
Moreover, if m =5, the packed area in the unit square is greater than 1/3.

Proof. Since @ is a small square, S(Q) is not larger than (v/2/3,1/3). In Case
(3.3), the largest one of all t-bricks in Dy U Ds U B is not larger than S(Q).
If there is no n-brick congruent to S(Q) in D1 U Do U B, then all t-bricks in
D1 UD3sU B are congruent to S(Q). Furthermore the area packed in D; UDyU B
is at least 1/3, which causes a contradiction. Hence, there is at least one n-brick
congruent to S(Q) in D; U Dy U B.

By the algorithm, we always pick the n-brick containing the largest unused
brick, and further remove all squares from it (it becomes a t-brick) and pack
square @ into it. Note that since @ is a small square, the number of unused
bricks S(Q)/2" in D; U D> U B is at most 1 by Lemma 3, for each i > 1, and the
largest one of all unused bricks in Dy U Dy U B is not larger than (v/2/6,1/3)

226 X. Han, K. Iwama, and G. Zhang

(whose area is v/2/18), when m = 0. After Case (3.3) occurs m times, the area
of the largest one of all unused bricks is not greater than (v/2/18)-2~™ and the
total area of the unused bricks in D; U Dy U B is less than (\/2/9) - 27™ gince
the number of every kind of unused brick is at most one. Hence, the packed area
in Dy U Dy U B is greater than

2v2 V2 1 1 11

== .am

Oy 9'2m)'2¢2_3 18

Next, we estimate the total area which has been removed from the bin, when
we pack the current square Q. Recall that the area of the largest one of unused
bricks in Dy U Dy U B is not greater than (v/2/18) -27™. Except the largest one,
the total area of unused bricks in D; U Dy U B is less than (v/2/18) - 27™. By
the algorithm, the selected n-brick is emptied and its area is equal to |S(Q)|. By
Lemma 4 and Fact 4, except squares in that removed n-brick, the total area of
squares in D1 UDyUB is at least (|BUD1UDs|—|S(Q)|— (v/2/18)-27™)/2/2 =
1/3 — |S(Q)|/2v/2 — 27™/36. Note that before removing the old squares, the
packed area in the bin is less than 1/3 (otherwise the packing stops). Then
the area packed in that n-brick, i.e., the area that we removed is less than
1S(Q)]/2v2+27™/36 < 1/18 4+ 27™/36, since |S(Q)| < v/2/9.

If m = 5, the largest one of all unused bricks in D; U Dy U B is not larger
than brick (v/2/24,1/24). Since 1/24 < 1 — 24/2/3, there must exist a tiny
square in D1 U Dy U B. By Lemma 6, the packed area in E; U Fy U E3 is
greater than 2. Therefore, the packed area in the square bin is greater than
1/3—-27%/18 + 2% > 1/3.

Lemma 8. If algorithm RSP stops packing, then the area packed in the unit
square is at least :15

Proof. Let @ be the last square immediately before the packing is terminated.
We will consider all the cases in which the packing is stopped. It is not difficult
to see that in Cases (3.5) and (3.8), when the packing stops, the total area of
two large squares in the bin is greater than 1/3.

Case (3.1). Before packing @, by Lemma 4, the area of all packed bricks in
D1UDyUB is at least 21/2/3—|S(Q)|. Except the t-brick of area 2¢|S(Q)|, the area
of all packed bricks is at least 21/2/3 — [S(Q)| — 2¢|S(Q)|. So, except the square
S in that t-brick, the packed area in the bin is at least 1/3 — |S(Q)|/(2v/2) —
2¢1S(Q)|/(2v/2), where i > 2. Since before packing @, the packing does not
stop, the packed area in the bin is less than 1/3, meaning [S| < (]S(Q)] +
25(Q))/(2v/2). Since Q] < S(Q)I/V2, we have S| + Q] < 2IS(Q)|/V?2
(i > 2). By Lemma 5, S and Q can be packed together in the t-brick of area
245(Q)|. After packing Q, the packed area is at least 1/3.

Case (3.2). Before packing @, the packed area is at least (2v/2/3—|S(Q)[)/(2v/2)
by Lemma 4 and Fact 4. If @ can be packed in the ¢-brick of area 2|S(Q)|, then
after packing @, the area packed in the square bin is at least 1/3. Otherwise,
by Lemma 5, we have |P| + |Q| > 2|S(Q)|/v/2, where P is the square in that

Online Removable Square Packing 227

t-brick. Except P and @, by Lemma 4 and Fact 4, the area packed in the bin is
at least 1/3 — [S(Q)]/(2v/2) — 2|S(Q)|/(2v/2). If the packed area in any n-brick
congruent to S(Q) is not less than |S(Q)|/(2v/2), then the total area packed in
the bin is greater than 1/3. Because we pick the one whose packed area is the
smallest among all n-bricks congruent to S(Q), the area packed in that n-brick
is less than |S(Q)|/(2v/2). So, after removing all squares in that n-brick and
packing @ into it, the total area packed in the bin is greater than

(Lo 1S(@) _2[S@), | 215@)] _[S(@) _1

3 22 2v/2)+ V2 22 3

Case (3.4). By using the techniques mentioned in Subsection 4.3, we can guar-
antee that at any moment, if there are small squares in brick B, then at least one
of four corners of brick B is occupied by a small square. Moreover, it is possible
to pack @ together with such a small square into B according to Lemma 5. By
Lemma 4 and Fact 4, the total area of the squares in D; U Dy and the small
square in B is at least 1/9. Hence, the packed area in the square bin is greater
than 1/9+2/9 =1/3.

Case (3.6). The area of the smaller one of the two large squares must be smaller
than 1/6, and that smaller square is in the bottom of the bin. Since the side
length of the current item @ is less than v/3/3 < (1 — v/6/6), Q can be packed
in the remaining space of the bin. After packing @), the packed area in the bin
is at least 1/3.

Case (3.7). This case is similar with Case (3.6). After packing Q, the area in
the bin is at least 1/3.

Lemma 9. If there are no more squares coming, the competitive ratio of RSP
15 at most 3.

Proof. Case (3.5) and Case (3.8). In both cases, B contains exactly one large
square before consider @Q. It shows that Cases (3.1)-(3.3) and (3.9) have not
yet occurred. In other words, no small squares have been removed so far. Note
that the large square in B cannot be packed together with Q. Recall that the
algorithm removes the larger one, whose area is greater than 1/4 but smaller
than 1/3, while the area of the packed one is greater than (1 —+/3/3)? > 1/6. If
the packing stops after this step, the packed area is greater than z + 1/6, where
z is the total area of all the small squares in the instance. Note that when Case
(3.5) or Case (3.8) occurs, the removed one is always larger. It means that any
two large squares cannot be packed together in the bin and the larger square
has an area less than 1/3. Then the packed area by an optimal algorithm is less
than z+ 1/3. It follows that the competitive ratio of algorithm RSP is less than
2 in this case.
Case (3.9). In this case, there are some small squares in B, before considering
Q. By Lemma 4 and Fact 4, the total area of the squares in Dy U D5 is greater
than 1/18. And, there are two subcases. Let z be the total area of the squares
in the bin and let y be the total area of all squares removed in Case (3.3).
First consider the case of one large square in B. If Case (3.5) or Case (3.8)
has occurred before, the area of the large square in B is at least 1/6. After

228 X. Han, K. Iwama, and G. Zhang

packing @, the packed area will exceed 1/3 (= 1/18 +1/6+1/9). If neither Case
(3.5) nor Case (3.8) has occurred, we have not removed any large square so far.
After packing @, the packed area in the bin is at least 1/3 — 27" /18. Obviously,
z>1/3—27"/18. By Lemma 7, if m > 0, then y < S0 ' (L + & - 279).
Otherwise y = 0. We can assume that m < 4. The reason is that if m > 5,
by Lemma 7, the packed area is greater than 1/3 and the packing would have
stopped at Case (1.1).

Note that each subcase of Case (3.9) occurs at most once. Recall that the
packed area in Dq U Dy is at least 1/18. In the first subcase of Case (3.9), the
area of the squares removed from the n-brick is less than 1/6, since otherwise
the packed area is over 1/3. In the second subcase, the total area packed in
brick B is less than 5/18. Then the area of the squares removed is less than
5/36. With calculations for each 0 < m < 4, the competitive ratio is less than
(z+y+5/36+1/6)/z < 3.

Now let us consider the latter case of Case (3.9), i.e., there are only small

squares in B. Then neither of Cases (3.5), (3.8) and the first subcase of Case
(3.9) has occurred. Analogously as the first subcase, it can be shown that the
competitive ratio is at most (z +y + 5/36)/z < 3.
Case (3.3). In this case, we claim that neither of Cases (3.5), (3.8) and (3.9) has
occurred so far. If it is not the case, then there is at least one large square in the
bin, and the packing would have stopped in Case (3.1) or Case (3.2). Therefore,
no large squares have been considered so far. As in the proof for Case (3.9), let z
be the total area of the squares in the bin and y be the total area of all squares
removed. Then z > 1/3 —27™/18 and y < 22161(1/18 +27%/36), for m < 4.
The competitive ratio is at most (z +y)/z < 3.

The following theorem immediately follows from lemmas 8 and 9.

Theorem 4. The competitive ratio of RSP is 3.

5 A PTAS for Offline Packing

The problem is, given a set S of n squares of side length at most one, how to pack
a subset of S into a fixed rectangle of size (1 x k) so that the packed area becomes
maximum (previously h was 1, which can be generalized). The algorithm is based
on the same idea as [5]: (i) Select an integer k such that k > §(1 4+ h), which
is associated with the error bound of the PTAS. (ii) The region (0,1] is divided
into k + 2 sub-intervals, Rg, Ry, -, Rg+1, where R; = (P, Pi—1], Ry = (P, 1]
and Ri11 = (0,FP] and P; = k=3" and Py = 1/k, 1 < i < k. Decompose S
into Sp, -+, Sk+1 such that Q € S; if and only if its side length is in R;. |S;]
denotes the total area of squares in S;. (iii) Pack all squares in S — Sy by NFDH.
If there remain one or more squares unpacked, then output that packing. (iv)
Otherwise, i.e., if all squares in S — Sy are packed, then find an index ¢ such that
|Sz‘ = MZH{‘Sl‘, sy ‘Sk+1|} Let X; = SoU---US;_1 and X, = ir1 U - USk41-
(Here it is important to remove S;, which makes a “gap” between large and
small items.) (v) Obtain an optimal packing for the “large” items in X; using

Online Removable Square Packing 229

the exhaustive method [5]. The unpacked region in the bin can be decomposed
into a limited number of rectangles. Then the “small” items in X, are packed
into those rectangles (in an arbitrary order) by NFDH.

Theorem 5. The worst case ratio of the algorithm is (1 + 6(1 + h)/k). (The
proof is similar to [5] and may be omitted.)

6 Concluding Remarks

As mentioned earlier, it is still open if we can achieve the bound of Theorem
1 without using repacking. Our algorithm RSP borrows the concept of brick.
If we stay on this line, then it seems hard to obtain a better bound than 2v/2.
Extending to online rectangle packing with reasonable restrictions should also
be nice future work.

References

1. N. Bansal and M. Sviridenko, New approximability and inapproximability results
for 2-dimensional bin packing, SODA 2004, 189-196.

2. A. Borodin, M. N. Nielsen, C. Rackoff: (Incremental) Priority agorithms. Algorith-
mica 2003,37(4): 295-326.

3. A. Caprara and M. Monaci, On the two-dimensional knapsack problem, Operations
Research Letters 2004, 32: 5-14.

4. M. Caramia, S. Giordan, and A. Iovanella, An on-line algorithm for the rectangle
packing problem with rejection, Proc. WEA 2003, LNCS 2647, 2003, pp. 59-69.

5. J.R. Correa and C. Kenyon, Approximation schemes for multidimensional packing,
SODA, 179-188, 2004.

6. L. Epstein and R. van Stee, Optimal online bounded space multidimensional pack-
ing, SODA 2004, 207-216.

7. C.E. Ferreira, E.K. Miyazawa, and Y. Wakabayashi, Packing squares into squares,
Pesquisa Operacional, 1999, 19: 223-237.

8. A.Fiat and G.J.Woeginger, Online Algorithms, LNCS 1442 1998.

9. K. Iwama and S. Taketomi, Removable online knapsack problems, Proc.
ICALP2002, LNCS 2380, pp. 293-305.

10. K. Jansen and G. Zhang, On rectangle packing: maximizing benefits, SODA 2004,
197-206.

11. J. Januszewski and M. Lassak, On-line packing sequences of cubes in the unit cube,
Geometriae Dedicata 1997, 67: 285-293.

12. Y. Kohayakawa, F.K. Miyazawa, P. Raghavan, and Y. Wakabayashi, Multidimen-
sional cube packing, Algorithmica, 40(3) 173-187,2004.

13. J.Y.-T. Leung, T.W. Tam, C.S. Wong, G.H. Young, and F.Y.L. Chin, Packing
squares into a square, J. Parallel Distrib. Comput. 1990, 10: 271-275.

14. A.Meir and L. Moser, On packing of squares and cubes, Journal of combinatorial
theory, 1968, 5: 126-134.

15. P. Sanders, N. Sivadasan, M. Skutella, Online Scheduling with Bounded Migration,
ICALP 2004,1111-1122 .

16. S.S. Seiden and R. van Stee, New bounds for multidimensional packing, Algorith-
mica 2003, 36: 261-293.

The Online Target Date Assignment Problem*

S. Heinz!, S.0. Krumke?, N. Megow?, J. Rambau?,
A. Tuchscherer!, and T. Vredeveld®

! Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Department Optimization,
Takustr. 7, 14195 Berlin, Germany
{heinz, tuchscherer}@zib.de
2 University of Kaiserslautern, Department of Mathematics,
P.O. Box 3049, Paul-Ehrlich-Str. 14, 67653 Kaiserslautern, Germany
krumke@mathematik.uni-kl.de
3 Technische Universitit Berlin, Institut fiir Mathematik,
Strasse des 17. Juni 136, 10623 Berlin, Germany
nmegow@math.tu-berlin.de
4 Universitit Bayreuth, Lehrstuhl fiir Wirtschaftsmathematik,
95440 Bayreuth, Germany
Joerg.Rambau@uni-bayreuth.de
5 Maastricht University, Department of Quantitative Economics,
P.O. Box 616, 6200 MD Maastricht, The Netherlands

T.Vredeveld@KE.unimaas.nl

Abstract. Many online problems encountered in real-life involve a two-
stage decision process: upon arrival of a new request, an irrevocable first-
stage decision (the assignment of a specific resource to the request) must
be made immediately, while in a second stage process, certain “subin-
stances” (that is, the instances of all requests assigned to a particular
resource) can be solved to optimality (offline) later.

We introduce the novel concept of an Online Target Date Assignment
Problem (ONLINETDAP) as a general framework for online problems
with this nature. Requests for the ONLINETDAP become known at cer-
tain dates. An online algorithm has to assign a target date to each re-
quest, specifying on which date the request should be processed (e. g., an
appointment with a customer for a washing machine repair). The cost
at a target date is given by the downstream cost, the optimal cost of
processing all requests at that date w.r.t. some fixed downstream offline
optimization problem (e.g., the cost of an optimal dispatch for service
technicians). We provide general competitive algorithms for the ONLINE-
TDAP independently of the particular downstream problem, when the
overall objective is to minimize either the sum or the maximum of all
downstream costs. As the first basic examples, we analyze the compet-
itive ratios of our algorithms for the particular academic downstream
problems of bin-packing, nonpreemptive scheduling on identical parallel
machines, and routing a traveling salesman.

* Supported by the DFG Research Center MATHEON Mathematics for key technologies
in Berlin.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 230-243, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Online Target Date Assignment Problem 231

1 Introduction

Many real-world online problems exhibit a two-stage structure. In a first stage, an
immediate online action has to be taken, while in a second stage “certain offline
subproblems” (which we will refer to as downstream optimization problems) can
be solved to optimality offline. In this paper we provide a general framework for
online problems of this type, the Online Target Date Assignment Problem (ON-
LINETDAP).

As an illustration, consider the following scenario arising in the dispatching of
service technicians. When a customer calls in, requesting a maintenance service
for his washing machine, one of the service technicians has to visit the customer
at its location and fix the problem. This service can be done within a certain time
frame, say within a week. The customer must be given the day (and possibly
a more narrow time window) when the technician will arrive, while he is on
the phone and without knowledge of future service requests, that is, it must be
given online. However, until the promised service day arrives, the decision which
service technician to send and in which order the customers should be visited can
be safely deferred. In other words, the exact scheduling and routing of service
technicians for a fixed day can be done optimally offline at the night before.

In this paper, we introduce structures that account for the following di-
chotomy in many day-to-day resource dispatching problems: First, a resource
has to be assigned to a request (e. g., assign a service vehicle to a repair request)
and then the processing of all requests assigned to a certain resource can be op-
timized (find an optimal tour for each service vehicle). The assignment decisions
influence the overall cost because they determine the input and thus the optimal
costs of the single resource dispatching problems, the downstream optimization
problems.

Offline, both stages can be integrated to obtain an overall optimal solution,
even in Many practical applications. However, if for each request the first deci-
sion, i.e., the assignment decision, has to be made online, the situation changes:
the resulting problem is not offline anymore, but it is neither just the online
version of the integrated dispatching problem; it is something in between. In
stochastic programming the optimal decisions of a second stage optimization
are called a recourse. In a way, in this paper we introduce competitive analysis
with recourse.

Our object of study can be seen as the most extreme distinction between
the online requirement of the first decision and the downstream optimization:
We present a model where the first decision has to be made immediately and
irrevocably before the next request is revealed (no knowledge about the input),
while the downstream optimization can be carried out offline (complete knowl-
edge about the input). The resource that has to be assigned to requests in our
main actor, the ONLINETDAP, is a target date, a date at which the service
should take place.

There are many variants conceivable of this concept: if the current day is
allowed as a target date then the downstream optimization becomes an online
problem as well, although a large portion of the data is known before the target

232 S. Heinz et al.

date. It is also possible to relax the online requirement of the assignment decision:
all requests on a single day might be collected, and the target dates are chosen
and communicated at the end of the day. And there are, of course, variants where
resources other than dates have to be assigned online (machines, vehicles) before
a single resource offline problem has to be solved.

Problems of this type are abundant in reality, and very often the first deci-
sion is online. There is, however, almost no theoretical background published on
this topic for the case where no stochastic information about future requests is
available. And many of the stochastic models, e. g., Markov Decision Processes
[5], cannot be solved for practical problem sizes. Therefore we feel that the in-
vestigation of the most basic structures in such problems seems adequate. Thus,
we get started in this paper by investigating competitive online algorithms for
the ONLINETDAP w.r.t. to classical downstream problems.

We think that the introduction of the ONLINETDAP will foster various lines
of research, e.g., dealing with competitive analysis for ONLINETDAP w.r.t.
various other, maybe more sophisticated downstream problems, with variants of
the ONLINETDARP itself, but also with decision support methods for variants of
the ONLINETDAP outside competitive analysis.

Problem description. An instance of the ONLINETDAP consists of a sequence
of requests o = rq,7s,... and a downstream problem II, an offline optimization
problem for which arbitrary subsets of o are feasible inputs.

Each request r; has an integral release date t(r;) and must be assigned immedi-
ately and irrevocably to a target date in the time period ¢(r;)+1, ..., t(r;)+d(rs),
where 6(r;) is the allowed time for deferring the service of request r; (one week in
our service technician scenario), which is also revealed upon arrival of the request.
In this paper we consider only the case of uniform deferral times, that is, §(r;) = §
for all requests r;, where 1 < § < +00. For an algorithm ALG we denote the par-
ticular date to which request r; is assigned by ALG[r;] € {t(r;)+1,...,t(r;)+}.

A solution for an ONLINETDAP w.r.t. to downstream problem IT is feasible if

— each request is assigned to a feasible target date, and
— for each single target date, the corresponding instance of IT is feasible, too.

Let o4 be the subset of requests assigned to date d by an online algorithm ALG.
The optimal cost of IT on g4 is called downstream cost of ALG at date d, and
we denote it by downcost(og).

The overall online cost ALG(0) of an online algorithm ALG is defined as either
the sum of the incurred downstream costs over all dates (min-total problems), or
the maximum of the incurred downstream costs over all dates (min-max prob-
lems). The goal is to find online algorithms whose competitive ratios are as small
as possible. An online algorithm ALG is called c-competitive if the cost of ALG is
never larger than ¢ times the cost of an optimal offline solution. The competitive
ratio of ALG is the infimum over all ¢ > 1 such ALG is c-competitive [2].

Our results. The ONLINETDAP provides a general framework for a large class
of online problems and gives a novel view on online optimization. We provide

The Online Target Date Assignment Problem 233

Table 1. Main bounds on the competitive ratio of best possible deterministic online
algorithms for the ONLINETDAP with a certain downstream problem minimizing the
total or maximum downstream cost

downstream problem lower upper downstream problem lower upper
bound bound bound bound
bin-packing 3/2 2 bin-packing 2 min{4, 4§}
scheduling V2 2 scheduling 3/2 3-1/6
traveling salesman V2 2 traveling salesman 2 26 — 1

Minimizing the total downstream cost Minimizing the maximum downstream
(min-total objective). cost (min-max objective).

general competitive online algorithms for the ONLINETDAP and analyze them
in greater detail w.r.t. classical combinatorial downstream problems such as
bin-packing [4, SR1], nonpreemptive parallel machine scheduling [4, SS8] and
the traveling salesman problem [4, ND22]. The algorithms we propose do not
depend on the downstream problem (although the analysis does). We emphasize
that the particular downstream problems discussed in this paper should be seen
Mainly as illustrating examples for the general framework. Concerning standard
online investigations on these problems, [3] gives surveys on online bin-packing
and scheduling; the online traveling salesman problem has been considered in [1].

Within the ONLINETDAP framework, our results are online algorithms and
lower and upper bounds on their performance guarantees, the competitive ratio,
obtained by classical competitive analysis for online algorithms (see, e. g. [2]). In
Section 2 we present a 2-competitive algorithm for the min-total objective, i.e.,
the objective to minimize the total cost summed over all target dates.

In Section 3 we consider min-max problems for which the objective is to
minimize the maximum downstream cost that occurs on a target date. Here, we
give a general online assignment algorithm that we prove to be 4-competitive
for the ONLINETDAP with the bin-packing downstream problem and which
is 3-competitive for the scheduling setting. Our main results are summarized in
Table 1. Finally, we observe for both objective functions that special profiles for
the downstream problem, as e.g., (un-) bounded number of machines or bins
per target date, lead to trivial problems or prevent any deterministic online
algorithm from achieving a constant competitive ratio.

2 Minimizing Total Downstream Cost

In this section, we consider the ONLINETDAP with the objective to minimize the
total downstream cost summed up over all target dates (min-total objective).
Particular downstream problems we deal with are bin-packing, scheduling on
parallel machines, and the traveling salesman problem.

We first present our main competitiveness result which is an online algorithm
formulated independently of the downstream problem. Let us say that a target
date is used, if a request has been assigned to it.

234 S. Heinz et al.

Algorithm PackTogetherOrDelay (PTD) Assign a request r to the earliest
date in the feasible range ¢(r) + 1,...,¢(r) + § which is already used. If no
used target date is feasible for request r, then assign it to the latest feasible
target date, that is, to t(r) + 4.

The above algorithm always finds a feasible solution under the assumption that
the amount of requests that can be assigned to the same target date is not
restricted (we call this the case of unlimited resources). Under this assumption
at any moment in time at most one feasible target date is used by PTD.

Theorem 1. Consider the ONLINETDAP w. r. t. downstream problem II with
the min-total objective. Assume that there are unlimited resources in Il and
suppose that the following properties hold for any subinstance & of o:

i. The optimal offline cost for the downstream problem II is a monotonously
increasing function, that is, OPT(5) < OPT(0) (i. e., II is monotone).

ii. For each disjoint partition oV, ... o) of the subsequence & the inequality
downcost(d) < Zle downcost(c") holds (i. e., IT allows for synergy).

Then, algorithm PTD is 2-competitive.

Proof. For a given sequence of requests o consider the target dates di < do <
. < dj that PTD chooses. Denote by 0odd4 (and oeven) the subsequence of
requests that the algorithm assigns to target dates d; with odd (respective even)
index 1.
Observe that, if the input to PTD were solely 0,qq Or Oeven, then each request
would still be assigned to the same target date as when operating on ¢. Therefore,

PTD(0) = PTD(00d4) + PTD(Teven)- (1)

Moreover, we know by definition of the algorithm that the difference between
any two used target dates is at least . Thus, the distance between any two dif-
ferent target dates designated for two requests of the subsequence ood4q (0T Geven,
respectively) is at least 2. This implies that no two requests of the same sub-
sequence oodd (Or Oeven, respectively) that have not been assigned to the same
target date share a single feasible target date. Therefore, no algorithm can assign
such two requests to the same target date. With property (ii) we conclude that

PTD(O’Odd) = OPT(JOdd) and PTD(Jeven) = OPT(O’even).
It follows with (1) and the monotonicity condition (i) that we have online cost
PTD(0) = OPT(06dd) + OPT(Geven) < 2OPT(0). O

Note, that in the case that property (ii) only holds in a relaxed version with a
factor «, i.e., downcost(d) < « Zf downcost(c?), PTD is 2a-competitive.

We will now demonstrate the power of Theorem 1 by applying it to various
instantiations of the ONLINETDAP.

The Online Target Date Assignment Problem 235

2.1 Downstream Bin-Packing

In bin-packing n items with sizes s1, ..., s, need to be packed in unit sized bins.
The objective is to find a packing such that the total size of the items packed
in one bin does not exceed the bin’s capacity and the total number of bins
needed to pack the items is minimized. In ONLINETDAP w.r.t. bin-packing, a
request r = (¢(r), s(r)) is given by its release date t(r) and its size 0 < s(r) < 1.
We assume that the number of available bins per day is not bounded because
this would disable any deterministic online algorithm to guarantee a feasible
solution. The objective is to find an assignment of requests to feasible target
dates that minimizes the total sum of used bins of all target dates.

The following theorem gives a lower bound on the competitive ratio of any
deterministic online algorithm.

Theorem 2. No deterministic online algorithm for ONLINETDAP w. r. t. bin-
packing minimizing the min-total objective has a competitive ratio less than 3/2.

Proof. The adversarial sequence starts with a request r; released at time 0 with
size s(r1) < 1/2. Consider an online algorithm, ALG, that does not assign this
request to its deadline . Then at time ALG[r;] a second request is released with
size s(rg) = 1 — s(r1). ALG cannot assign this request to the same date as the
first request and therefore it needs two bins, whereas the optimum needs only
one.

Now consider an online algorithm ALG that assigns the first request to its
deadline §. Then at time ¢(re) = 1 a second request with size s(rq) = s(r1) is
released. If the algorithm does not pack this item with the first request, then it
needs two bins and the optimum needs only one. Otherwise, at time t(r3) = d—1
and t(ry) = § two requests are released both with size s(r3) = s(ry) = 1 —s(r1).
To pack these items, ALG needs two extra bins, thus in total three bins, whereas
the optimum would pack request r; and r3 to date § and item r, and r4 to § + 1,
needing only two bins. O

Since the properties of Theorem 1 are met, we immediately have the following
result.

Theorem 3. The competitive ratio of PTD minimizing the total number of used
bins for ONLINETDAP w. r. t. bin-packing is 2.

That PTD cannot achieve a better competitive ratio than 2, can be shown by
the following instance. For given k € NJk > 3, let ¢ < 1/(2k — 4) and 0 =
oM u...uc®. ¢ consists of the following three requests:

r1=(0,1), r2=1(1,1/2—¢), r3=(51/2+¢).
For i = 2,...,k, the subsequence ¢(*) is defined by

oW = ((i6 —1,1/2+ (i — 2)e), (i5,1/2 — (i — 2)¢)).

236 S. Heinz et al.

The cost of PTD on this sequence is PTD(0) = 2k + 1. On the other hand, the
number of required bins of the optimal offline algorithm is OpT(c) = k + 1. By
letting k& — oo, the lower bound follows.

We conjecture that the following online algorithm, PACKFIRSTORDELAY, has
a better performance guarantee than PTD although the analysis for the general
problem seems more difficult.

Algorithm PackFirstOrDelay (PrD) If there is a used target date to which
the current request r can be assigned without increasing the number of
necessary bins, then the earliest of these dates is chosen. Otherwise, assign
the latest possible date, ¢(r) + 0.

This algorithm achieves a better solution on the lower bound instance for PTD
from above. However, there exist instances for which PFD performs worse than
PTD, as for example: 1 = (0,2/5), ro = (0,1/5), r3 = (0,1/5), r4 = (§ —
1,2/5), r5 = (6 — 1,2/5), and r¢ = (6 — 1,2/5).

If all items have identical size the problem becomes much easier.

Theorem 4. Consider the ONLINETDAP w. r. t. bin-packing with the min-total
objective. Then, PFD is optimal if all item sizes are equal.

Proof. Assume that the bin-packing instance at each date is solved in such a way
that at most one bin is partially filled. Given a sequence o, let PFD(c) = f + p,
where f is the number of full bins and p is the number of partially filled bins.
Let dy < di < ... < dp be the dates on which PFD has partially filled bins.
Let ¢’ be the subsequence consisting of all requests that are packed in a full
bin and for each partially filled bin the request that opened this bin. Note that
PFD(0’) = PFD(0).

We partition ¢’ into subsequences o, consisting of all requests r € ¢’ with
de—1 < t(r) < dg. As the last request in oy and the first request in oy41 are
both assigned using the delay tactic of PFD, we know that there is no overlap in
the feasible target dates of requests of different subsequences. Hence, OPT(0’) =
>0 OpPT(0¢). Moreover, PFD packs the items of a subsequence in all but one
fully filled bins and thus PFD(o¢) = OPT(0,). Combining these equalities, we
get

PFp(0) = PFD(0') = Y PFD(0y) = Y _ OPT(0¢) = OPT(0’) < OPT(0).
14 14

2.2 Downstream Parallel-Machine Scheduling

In this section, we consider the ONLINETDAP w.r.t. nonpreemptive machine
scheduling of jobs on identical parallel machines to minimize the makespan, i.e.,
the latest completion time of all jobs on all machines of one date. The overall
objective is now to minimize the sum of makespans over all target dates. For
convenience we will use standard scheduling terminology, i.e., a request r is a

The Online Target Date Assignment Problem 237

job that has a processing time denoted by p(r). We denote a request by an
ordered pair of release date and processing time, r = (¢(r),p(r)). The number
of machines available per date is denoted by m. Note, that in case m = 1, the
problem is trivial since any target date assignment yields a total downstream
cost of »_ . p(r), for any sequence o. Therefore, we assume for the remainder
of this section that more than one machine are available each date.

Consider the general online algorithm PTD. Also for this setting with the
scheduling downstream problem, Theorem 1 applies and PTD is 2-competitive.
The analysis is tight as the following sequence shows:

r = (O,E), ro = (PTD[’I“l] — 1, 1), rg = (PTD[’I“l]7 1),

where ¢ < 1. The costs incurred by the algorithm are PTD(0) = 2, whereas
optimal offline costs are OPT(0) = 1 + &. Thus, we have shown:

Theorem 5. The deterministic online algorithm PTD has a competitive ratio
of 2 for the ONLINETDAP for downstream scheduling on identical parallel ma-
chines (m > 1) subject to minimize the sum of makespans induced on all target
dates.

Moreover, we obtain the following general lower bound result for this problem
setting.

Theorem 6. No deterministic online algorithm can achieve a competitive ratio
less than \/2 for the ONLINETDAP minimizing the total downstream cost caused
by nonpreemptive scheduling on more than one machine.

Proof. In order to obtain this bound consider for a given online algorithm ALG
the following sequence:

r1=(0,1), 7= (ALG[r1] —1,1+V2).

If ALG assigns a target date different from ALG[r1] to request r2, then no further
requests are given. Thus, ALG’s cost is ALG(r1,72) = 24 /2, whereas an offline
optimum yields a solution with cost OPT(ry,72) = 1 ++/2 , which gives a ratio
of V2.

Assume that ALG assigns request ro to the same date as r1, and a third
request 73 = (ALG[r1], 1 + +/2) is given. Then the cost of the online algorithm
is 2 4+ 2v/2, whereas the optimal offline costs are 2 4+ v/2. Again, the ratio of the
incurred costs of ALG and OPT is v/2. O

Note that the lower bound construction heavily depends on different process-
ing times of jobs. Let us briefly consider the restricted setting where we as-
sume that all requests have equal processing time. In this case, we can easily
transform the ONLINETDAP w.r.t. parallel machine scheduling into an ON-
LINETDAP w.r.t. bin-packing: Each request (¢(r;),p(r;)) is transformed into a
request (t(r;),s(r;) = 1/m), i.e., to each job corresponds an item of size 1/m,
where m is the number of machines in the scheduling problem and we assume

238 S. Heinz et al.

unit bin capacity in the bin-packing problem. Both problems are equivalent;
therefore the results from the previous section carry over, and thus, we have
with PFD an optimal online algorithm.

Corollary 1. PFD is an optimal algorithm for the ONLINETDAP with down-
stream problem scheduling of jobs with equal processing times for the min-total
objective.

2.3 Traveling Salesman Problem

In this section, we consider the ONLINETDAP with the downstream problem
of finding a minimal tour of a traveling salesman problem, i.e., for a given set
of points in a metric space (request set) a tour has to be found, from the origin
through all points ending in the origin. The overall objective is now to minimize
the sum of the optimal tour lengths on all target dates.

For this problem setting we provide the following general lower bound.

Theorem 7. No deterministic online algorithm has a competitive ratio less
than /2 for the ONLINETDAP w.r.t. a traveling salesman problem on R,
as the downstream problem minimizing the total downstream cost.

Proof. Consider the following simple instance: At time 0, request r; with dis-
tance 1 from the origin is given. In order to be better than 2-competitive an
algorithm has to assign the request to target date &, because otherwise an iden-
tical request would be given at the chosen target date. Now, a second request o
appears at time 1 with distance 14 /2 to the origin. If the algorithm assigns it
to some target date different from 4, then no more requests are released and the
ratio of costs of an online algorithm to those of the optimum is v/2. Otherwise,
a third request at the same location of request ro is released at time J. In this
case the ratio of costs is v/2. O

As before, the conditions in Theorem 1 are also met for the traveling salesman
problem as the downstream problem.

Theorem 8. PTD has a competitive ratio of 2 for the ONLINETDAP w.r. .
minimizing the tour length in a traveling salesman problem as a downstream
problem for the min-total objective.

In order to show that this result is tight, consider two requests released at time 0
and 1, with distances ¢ and 1 from the origin, respectively. Let the distance
between r1 and 72 be equal to the sum of their distances to the origin, 1 + ¢. If
a third request is released at time § in exactly the same position as ry, then the
ratio of total sum of route length for PTD to OPT tends to 2 for ¢ — 0.

3 Minimizing Maximum Downstream Cost

In this section, we consider ONLINETDAP subject to minimize the maximum
downstream cost over all target dates for the downstream problems bin-packing,
scheduling on parallel machines, and the traveling salesman problem.

The Online Target Date Assignment Problem 239

As in the previous section, we firstly present a general online algorithm that
is independent of the specific downstream problem.

Algorithm Balance (BAL) Assign a given request to the earliest feasible tar-
get date such that the increase in the objective value, i.e., the maximum
downstream cost over all dates, is minimal.

Notice that processing each request requires BAL to solve several instances of the
downstream problem optimally. However, computing optimal solutions may not
be feasible under real-time aspects because of the complexity of the downstream
problem. But in the analysis of our algorithm we only use such upper bounds on
the offline optimum that are also satisfied by simple approximation algorithms.
Therefore, all results presented in this section still hold true if the optimization
is done approximately and all algorithmic computations can be accomplished in
polynomial time.

3.1 Downstream Bin-Packing

We analyze the ONLINETDAP with bin-packing as downstream problem subject
to Minimizing the maximum number of used bins over all target dates. The
notation and downstream problem definition is similar as in Section 2.1.

Our first result is a general lower bound on the competitive ratio of any online
algorithm.

Theorem 9. For the ONLINETDAP with min-max objective for downstream

bin-packing no deterministic online algorithm has a competitive ratio of less
than 2.

Proof. In order to obtain this bound we consider a sequence o with the following
two first requests: 1, = (0,¢) and 7o = (0,¢) for some € < 1/2.

If the considered online algorithm ALG assigns the same target date to both
requests, then sequence ¢ is completed by the requests:

rs=(0,1—¢), ra=(0,1—¢), r;=(0,1) 5<j<d+2.

Obviously, we have ALG(c) > 2 and OpT(0) = 1.
Suppose now that the online algorithm assigns different target dates to the
requests 71 and 79, then the following additional requests are given:

rs=(0,1—2¢), r;=(0,1) 4<j<d+2.

Again, any deterministic online algorithm is forced to open at least two bins on
some date, i.e., ALG(0) > 2, whereas the optimum has only cost OpT(0) = 1.
O

Next we analyze the algorithm BAL for the ONLINETDAP with downstream
bin-packing.

Theorem 10. The algorithm BAL is 4-competitive for the ONLINETDAP with
downstream bin-packing subject to minimizing the mazimum number of used bins
over all target dates.

240 S. Heinz et al.

Proof. The crucial observation is the following: Given a request r, the total size
of all items assigned by BAL within the time frame ¢(r)+1, ..., t(r)+¢ is bounded
from below by half the number of bins required, whenever more than one bin is
used in this period of dates.

This claim can be shown by induction on the number of requests assigned
to any of the considered dates. Obviously, the claim holds when none of the
considered dates has yet been used. Assume that the claim is true after k requests
have been assigned to the dates t(r) +1,...,¢(r) + 0 and let rr41 be another
request. If s(rg41) > 1/2, the claim obviously also holds after assigning rgy1.
So assume that s(rg4+1) < 1/2. If BAL can assign 7,41 to some date without
increasing the number of used bins at that date, we are also done. But if BAL
needs to use a new bin at the assigned date, we know that previously the load of
each bin at the dates t(r) +1,...,t(r) + ¢ was at least 1 — s(rg4+1) > 1/2, which
proves the claim.

Now we can prove that BAL is 4-competitive. Let r; be the first request
in a given sequence o such that the maximum downstream cost is attained,
i.e., BAL(r1,...,7x) = BAL(0). Notice that the assigned target date for ry is
BAL[rg] = t(rx) + 1. Let & be the subsequence of all requests from o up to ry
that have been assigned a target date d > t(ry) + 1. On the one hand, we have:

OPT(0) > 2517 s > 215 S s(r). @)

rEC reo

On the other hand, BAL uses in total §(BAL(o) — 1) + 1 bins in the time period
from ¢(ry) + 1 to t(rg) + 0. Since we may assume BAL(c) > 1 (otherwise there
is nothing to show), the sum of all item sizes assigned to theses dates is at least
half the number of bins required by BAL. This implies,

; (O(BaL(e) — 1) +1) < 3 s(r).

reoc

Together with (2), we can bound the cost of BAL by

2 1 1
BaL(0) < 528(”*1* 5 <40PT(0) +1- .

reo
Finally, the integrality of BAL(0) and OpT(0) gives BAL(0) < 4 OpPT(0). O

For small values § the FIRSTFIT Algorithm that assigns a given request r to
its earliest feasible target date t(r) + 1, improves the competitiveness result of
Theorem 10. It is easy to see that FIRSTFIT has a competitive ratio of 4.

As in Section 2.1, the situation improves significantly for equal item sizes.

Theorem 11. The algorithm BAL is 2-competitive for the ONLINETDAP with
downstream bin-packing subject to minimizing the maximum number of used bins
over all target dates if all requests have equal sizes.

The Online Target Date Assignment Problem 241

Proof. Let 7, be the first request in a given sequence ¢ such that the maximum
downstream cost is attained, i.e., BAL(rq,...,7;) = BAL(0). Moreover consider
on date #(ry) + 1 an optimal packing which only uses one bin partially. With
respect to such an optimal packing all bins at the dates d > t(ry) except one on
the date t(rx) + 1 are filled with a maximum number of items, because of equal
item sizes. Since OPT requires the same number of bins distributed onto at most
25 — 1 dates, we have

OP1(0) 5(BaL(o) —1) > ;(BAL(U) —).

>

—20—1
This implies BAL(0) < 2 0PT(0) 4+ 1, which gives the theorem by the integrality
of BAL(0) and OPT(0). O

Theorem 12. For the ONLINETDAP with min-max objective for downstream
bin-packing where all requests have equal sizes, no deterministic online algorithm
has a competitive ratio of less than 3/2.

Proof. Let s denote the size of all requests, and consider an arbitrary online
algorithm ALG and the following sequence o of requests. §|1/s| requests are
given at date 0. In order to achieve a competitive ratio better than 2, ALG must
not use more than one bin each date. Next, at date 1 additionally (6 +2)|1/s]
requests are given, which gives ALG(0) > 3 and OpT(0) = 2. O

3.2 Downstream Parallel-Machine Scheduling

In this section we consider the ONLINETDAP w.r.t. nonpreemptive machine
scheduling on parallel machines subject to minimize the maximum makespan
over all target dates. Notations and the exact downstream problem definition is
used as in Section 2.2. Note, that if an infinite number of machines is available
at each date, i.e., m = oo, then the problem becomes trivial since any feasible
solution yields a downstream cost of Max,¢c, p(r), for any sequence o. In the
following we assume a bounded number of machines.

In this problem setting where the number of available machines per date is
bounded (m < o) the following instance shows a lower bound of 3/2 on the
competitive ratio of any deterministic online algorithm. Given md requests with
release date 0 and processing time 1, only an algorithm ALG that assigns m
jobs to each date can be better than 2-competitive. However, at date 1 are
given m(d + 2) more requests with processing time 1, then ALG has a makespan
of at least 3 whereas the optimum makespan over all dates equals 2. Note that
this request sequence contains only requests with equal processing time. Thus,
we have shown the following:

Theorem 13. No deterministic online algorithm can achieve a competitive ratio
less than 3/2 for the ONLINETDAP w. r. t. scheduling to minimize the mazimum
makespan over all target dates, where the number of available machines per date
1s bounded and the processing times for all requests are equal.

242 S. Heinz et al.

We next prove that the general algorithm BAL for the ONLINETDAP w.r.t.
scheduling on parallel machines is (3 — 1/d)-competitive.

Theorem 14. BAL is (3 — 1/0)-competitive for the ONLINETDAP with down-
stream scheduling to minimize the maximum makespan over all target dates for
a bounded number of available machines per date.

Proof. Consider a request sequence o served by BAL and let r denote the first
request that causes the maximum makespan. Consider the schedule obtained by
BAL before r is released with respect to the offline optimum and let w denote
the load of a least loaded machine over all feasible target dates.

Then, the BAL’s makespan is at most w + p(r). Since all feasible target dates
for r have load of at least wm, the total load in that time period is at least wmd+
p(r).

Any of the corresponding requests in that time period could not be issued
earlier than § dates before the release date of request r. Hence, even an optimal
offline algorithm OPT obeying feasibility conditions has at least the following
cost on sequence o:

wmd + p(r) wé
> .
OPT(@) 2 o5 _1ym ~ 25-1

< (2 - ;) Opt(0).

Since OPT(0) is bounded from below by p(r), we conclude

Hence, we have:

BAL(0) < w + p(r) < <2 - ;) OPT(0) + OPT(0) = (3 - ;) OPT (o).

O

The following sequence ¢ shows for ¢ — 0 that BAL is not better than 2-
competitive:

(0,1/24¢) ifie{l,...,m(6—1)},
i =4 (0,1) ifie{m(@d-1)+1,...,md},
(6—1,1) ifie{md+1,...,m(26—1)+1}.

Note, that this lower bound construction is based on jobs with different process-
ing times. Now, let us briefly consider the restricted setting where we assume
that all requests have equal processing time. Then, the downstream problem
scheduling is equivalent to the bin-packing problem of uniform items as we de-
scribed in Section 2.2. Hence, the results from the previous section carry over.

Corollary 2. The algorithm BAL is 2-competitive for the ONLINETDAP with
min-mazx objective for downstream scheduling if all jobs have identical processing
times. Furthermore, no deterministic online algorithm can achieve a competitive
ratio of less than 3/2 in this setting.

The Online Target Date Assignment Problem 243

3.3 Traveling Salesman Problem

In this section we analyze the traveling salesman problem as downstream prob-
lem for the ONLINETDAP with objective to minimize the maximum downstream
cost. Similar to the downstream problems considered before, the algorithm BAL
is trivially (26 — 1)-competitive since the requests assigned to the date at which
the maximum tour length is attained can at most be spread over 2§ — 1 dates.
On the other hand, we have the following lower bound on the competitive ratio
of any online algorithm.

Theorem 15. No deterministic online algorithm for the ONLINETDAP w. r. t.
the traveling salesman problem as downstream problem minimizing the mazimum
tour length achieves a competitive ratio less than 2.

Proof. Consider a metric space induced by the unweighted star graph with at
least 0 + 1 leaves. First, d requests in § different leaves are given at date 0. In
case an algorithm ALG assigns more than one request to one date, it cannot
be better than 2-competitive. Otherwise, let r be the request with ArLa[r] = 1.
At date 1 another request associated with the point not yet used is released as
well as a request for the point of request r, yielding ALG(c) > 2. In contrast,
OpT(0) = 1 since OPT is able to assign both requests for the same point to the
same target date. a

References

1. Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maurizio
Talamo, A