

Lecture Notes in Computer Science 3879
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Thomas Erlebach Giuseppe Persiano (Eds.)

Approximation and
Online Algorithms

Third International Workshop, WAOA 2005
Palma de Mallorca, Spain, October 6-7, 2005
Revised Papers

13

Volume Editors

Thomas Erlebach
University of Leicester
Department of Computer Science
University Road, Leicester, LE1 7RH, UK
E-mail: t.erlebach@mcs.le.ac.uk

Giuseppe Persiano
Università degli Studi di Salerno
Dipartimento di Informatica ed Applicazioni
Via S. Allende 2, 84081 Baronissi (SA), Italy
E-mail: giuper@dia.unisa.it

Library of Congress Control Number: 200692553

CR Subject Classification (1998): F.2.2, G.2.1-2, G.1.2, G.1.6, I.3.5, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-32207-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32207-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11671411 06/3142 5 4 3 2 1 0

Preface

The third Workshop on Approximation and Online Algorithms (WAOA 2005)
focused on the design and analysis of algorithms for online and computationally
hard problems. Both kinds of problems have a large number of applications from
a variety of fields. WAOA 2005 took place in Palma de Mallorca, Spain, on 6–7
October 2005. The workshop was part of the ALGO 2005 event that also hosted
ESA, WABI, and ATMOS. The two previous WAOA workshops were held in
Budapest (2003) and Rome (2004).

Topics of interest for WAOA 2005 were: algorithmic game theory, approxi-
mation classes, coloring and partitioning, competitive analysis, computational
finance, cuts and connectivity, geometric problems, inapproximability results,
mechanism design, network design, packing and covering, paradigms, random-
ization techniques, real-world applications, and scheduling problems. In response
to the call for papers we received 68 submissions. Each submission was reviewed
by at least three referees, and the vast majority by at least four referees. The
submissions were mainly judged on originality, technical quality, and relevance
to the topics of the conference. Based on the reviews, the Program Committee
selected 26 papers.

We are grateful to Andrei Voronkov for providing the EasyChair conference
system, which was used to manage the electronic submissions, the review process,
and the electronic PC meeting. It made our task much easier.

We would also like to thank all the authors who submitted papers to WAOA
2005 as well as the local organizers of ALGO 2005.

November 2005 T. Erlebach
G. Persiano

Organization

Program Co-chairs

Thomas Erlebach University of Leicester
Giuseppe Persiano Università di Salerno

Program Committee

Evripidis Bampis University of Evry
Markus Bläser ETH Zürich
Thomas Erlebach University of Leicester
Klaus Jansen Universität Kiel
Christos Kaklamanis University of Patras
Marc van Kreveld Utrecht University
Pino Persiano Università di Salerno
Guido Proietti Università di L’Aquila
Kirk Pruhs University of Pittsburgh
Yuval Rabani Technion, Haifa
Adi Rosén Technion, Haifa
Martin Skutella Universität Dortmund
Roberto Solis-Oba University of Western Ontario
Frits Spieksma Katholieke Universiteit Leuven
Berthold Vöcking RWTH Aachen

Referees

Helmut Alt
Ernst Althaus
Pasquale Ambrosio
Eric Angel
Claudio Arbib
Estie Arkin
Takao Asano
Vincenzo Auletta
Yossi Azar
Fabien Baille
Reuven Bar-Yehuda
Nadine Baumann
Davide Bilò
Vittorio Bilò
Hans Bodlaender

Joan Boyar
Ioannis Caragiannis
Reuven Cohen
José Correa
Yves Crama
Roberto De Prisco
Florian Diedrich
Benjamin Doerr
Leah Epstein
Aleksei Fishkin
Luca Forlizzi
Stefan Funke
Olga Gerber
Laurent Gourvès
Luciano Gualà

Jurriaan Hage
Han Hoogeveen
Sandy Irani
Panagiotis Kanellopoulos
Lasse Kliemann
Christian Knauer
Reinhard Koch
Ronald Koch
Ekkehard Köhler
Jochen Könemann
Alexander Kononov
Elias Koutsoupias
Annamaria Kovacs
Sofia Kovaleva
Darek Kowalski

VIII Organization

Christian Laforest
Van Bang Le
Stefano Leonardi
Gitta Marchand
Maren Martens
Giovanna Melideo
Joe Mitchell
Luca Moscardelli
Alfredo Navarra
René van Oostrum

Evi Papaioannou
Paolo Penna
L. Shankar Ram
Fabrizio Rossi
Guido Schäfer
Stefano Smriglio
Rob van Stee
Gerard Tel
Nicolas Thibault
Ralf Thöle

Csaba Tóth
Marc Uetz
Carmine Ventre
Tjark Vredeveld
Egon Wanke
Gerhard Woeginger
Guochuan Zhang
Michele Zito

Table of Contents

“Almost Stable” Matchings in the Roommates Problem
David J. Abraham, Péter Biró, David F. Manlove 1

On the Minimum Load Coloring Problem
Nitin Ahuja, Andreas Baltz, Benjamin Doerr, Aleš Př́ıvětivý,
Anand Srivastav . 15

Improved Approximation Algorithms for MAX NAE-SAT and
MAX SAT

Adi Avidor, Ido Berkovitch, Uri Zwick . 27

The Hardness of Network Design for Unsplittable Flow with Selfish Users
Yossi Azar, Amir Epstein . 41

Improved Approximation Algorithm for Convex Recoloring of Trees
Reuven Bar-Yehuda, Ido Feldman, Dror Rawitz 55

Exploiting Locality: Approximating Sorting Buffers
Reuven Bar-Yehuda, Jonathan Laserson . 69

Approximate Fair Cost Allocation in Metric Traveling Salesman Games
M. Bläser, L. Shankar Ram . 82

Rounding of Sequences and Matrices, with Applications
Benjamin Doerr, Tobias Friedrich, Christian Klein, Ralf Osbild 96

A Note on Semi-online Machine Covering
Tomáš Ebenlendr, John Noga, Jiř́ı Sgall, Gerhard Woeginger 110

SONET ADMs Minimization with Divisible Paths
Leah Epstein, Asaf Levin . 119

The Conference Call Search Problem in Wireless Networks
Leah Epstein, Asaf Levin . 133

Improvements for Truthful Mechanisms with Verifiable One-Parameter
Selfish Agents

A. Ferrante, G. Parlato, F. Sorrentino, C. Ventre 147

Symmetry in Network Congestion Games: Pure Equilibria and Anarchy
Cost

Dimitris Fotakis, Spyros Kontogiannis, Paul Spirakis 161

X Table of Contents

A Better-Than-Greedy Algorithm for k-Set Multicover
Toshihiro Fujito, Hidekazu Kurahashi . 176

Deterministic Online Optical Call Admission Revisited
Elisabeth Gassner, Sven O. Krumke . 190

Scheduling Parallel Jobs with Linear Speedup
Alexander Grigoriev, Marc Uetz . 203

Online Removable Square Packing
Xin Han, Kazuo Iwama, Guochuan Zhang . 216

The Online Target Date Assignment Problem
S. Heinz, S.O. Krumke, N. Megow, J. Rambau, A. Tuchscherer,
T. Vredeveld . 230

Approximation and Complexity of k–Splittable Flows
Ronald Koch, Martin Skutella, Ines Spenke . 244

On Minimizing the Maximum Flow Time in the Online Dial-a-Ride
Problem

Sven O. Krumke, Willem E. de Paepe, Diana Poensgen,
Maarten Lipmann, Alberto Marchetti-Spaccamela, Leen Stougie 258

Tighter Approximations for Maximum Induced Matchings in Regular
Graphs

Zvi Gotthilf, Moshe Lewenstein . 270

On Approximating Restricted Cycle Covers
Bodo Manthey . 282

A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs
Tim Nieberg, Johann Hurink . 296

Speed Scaling of Tasks with Precedence Constraints
Kirk Pruhs, Rob van Stee, Patchrawat Uthaisombut 307

Partial Multicuts in Trees
Asaf Levin, Danny Segev . 320

Approximation Schemes for Packing with Item Fragmentation
Hadas Shachnai, Tami Tamir, Omer Yehezkely 334

Author Index . 349

“Almost Stable” Matchings in
the Roommates Problem

David J. Abraham1,�, Péter Biró2,��, and David F. Manlove3,� � �

1 Computer Science Department, Carnegie-Mellon University, USA
dabraham@cs.cmu.edu

2 Department of Algebra, and Department of Computer Science and Information
Theory, Budapest University of Technology and Economics, Hungary

pbiro@cs.bme.hu
3 Department of Computing Science, University of Glasgow, UK

davidm@dcs.gla.ac.uk

Abstract. An instance of the classical Stable Roommates problem (sr)
need not admit a stable matching. This motivates the problem of finding
a matching that is “as stable as possible”, i.e. admits the fewest number
of blocking pairs. In this paper we prove that, given an sr instance with n
agents, in which all preference lists are complete, the problem of finding
a matching with the fewest number of blocking pairs is NP-hard and not
approximable within n

1
2−ε, for any ε > 0, unless P=NP. If the preference

lists contain ties, we improve this result to n1−ε. Also, we show that,
given an integer K and an sr instance I in which all preference lists are
complete, the problem of deciding whether I admits a matching with
exactly K blocking pairs is NP-complete. By contrast, if K is constant,
we give a polynomial-time algorithm that finds a matching with at most
(or exactly) K blocking pairs, or reports that no such matching exists.
Finally, we give upper and lower bounds for the minimum number of
blocking pairs over all matchings in terms of some properties of a stable
partition, given an sr instance I .

1 Introduction

The Stable Roommates problem (sr) is a classical combinatorial problem that
has been studied extensively in the literature [3,9,7,4,15,8]. An instance I of sr
contains an undirected graph G = (A, E) where A = {a1, . . . , an} and m = |E|.
We assume that G contains no isolated vertices. We interchangeably refer to
the vertices of G as the agents, and we refer to G as the underlying graph of I.

� Part of this work was done whilst at Department of Computing Science, University
of Glasgow, and Max-Planck-Institut für Informatik.

�� Partially supported by the Center for Applied Mathematics and Computational
Physics, and by the Hungarian National Science Fund (grant OTKA F 037301).

� � � Supported by the Engineering and Physical Sciences Research Council (grant
GR/R84597/01), and by Royal Society of Edinburgh/Scottish Executive Personal
Research Fellowship.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 1–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 D.J. Abraham, P. Biró, and D.F. Manlove

The vertices adjacent to a given agent ai ∈ A are the acceptable agents for ai,
denoted by Ai. If aj ∈ Ai, we say that ai finds aj acceptable. (Note that the
acceptability relation is symmetric, i.e. aj ∈ Ai if and only if ai ∈ Aj .) Moreover
we assume that in I, ai has a linear order ≺ai over Ai, which we refer to as
ai’s preference list. If aj ≺ai ak, we say that ai prefers aj to ak. Given aj ∈ Ai,
define rankai(aj) = 1 + |{ak ∈ Ai : ak ≺ai aj}|.

Let M be a matching in I. If {ai, aj} ∈ M , we say that ai is matched in M and
M(ai) denotes aj , otherwise ai is unmatched in M . A blocking pair with respect
to M is an edge {ai, aj} ∈ E\M such that (i) either ai is unmatched in M , or
ai is matched in M and prefers aj to M(ai), and (ii) either aj is unmatched in
M , or aj is matched in M and prefers ai to M(aj). Let bpI(M) denote the set
of blocking pairs with respect to M in I (we omit the subscript if the instance
is clear from the context). Matching M is stable in I if bpI(M) = ∅.

Gale and Shapley [3] showed that an instance of sr need not admit a stable
matching (see for example the sr instance Ir in Figure 1 where r = 1). Irving [7]
gave an O(m) algorithm that finds a stable matching or reports that none exists,
given an instance I of sr. The algorithm in [7] assumes that in I, all preference
lists are complete (i.e. Ai = A\{ai} for each ai ∈ A) and n is even, though it is
straightforward to generalise the algorithm to the problem model defined here
(i.e. the case of incomplete lists) [4]. Henceforth we denote by src the special
case of sr in which all preference lists are complete.

As the problem name suggests, an application of sr arises in the context of
campus accommodation allocation, where we seek to assign students to share
two-person rooms, based on their preferences over one another. Another appli-
cation occurs in the context of forming pairings of players for chess tournaments
[10]. Very recently, a more serious application of sr has been studied, involving
pairwise kidney exchange between incompatible patient-donor pairs [14]. Here,
preference lists can be constructed on the basis of compatibility profiles between
patients and potential donors.

Empirical results [12] suggest that, as n increases, the probability that a
random sr instance with n agents admits a stable matching decreases steeply.
Equivalently, as n grows large, these results suggest that an arbitrary matching in
a random sr instance with n agents is likely to admit at least one blocking pair.
In practical situations, a blocking pair {ai, aj} of a given matching M need not
always lead to M being undermined by ai and aj , since these agents might not
realise that together they block M . For example, in situations where preference
lists are not public knowledge, there may be limited channels of communication
that would lead to the awareness of blocking pairs in practice. Nevertheless, it
is reasonable to assert that the greater the number of blocking pairs of a given
matching M , the greater the likelihood that M would be undermined by a pair
of agents in practice. Hence, given an sr instance that does not admit a stable
matching, one may regard a matching that admits 1 blocking pair as being
“more stable” than a matching that admits 10 blocking pairs, for example. This
motivates the problem of finding, given an sr instance I with no stable matching,

“Almost Stable” Matchings in the Roommates Problem 3

a matching in I that admits the fewest number of blocking pairs [11,2]. Such a
matching is, in the sense described here, “as stable as possible”.

Given an sr instance I, define bp(I) = min{|bpI(M)| : M is a matching in I}.
Define min-bp-sr to be the problem of finding, given an sr instance I, a match-
ing M in I such that bp(M) = bp(I). (Note that, if I is an src instance where n
is even, clearly M must be a perfect matching in I.) In Section 2, we show that
min-bp-sr is NP-hard and very difficult to approximate. In particular we show
that min-bp-sr is not approximable within n

1
2−ε, for any ε > 0, unless P=NP.

The result holds even for complete preference lists.
We also consider the variant srt of sr in which preference lists may include

ties. Ties arise naturally in practical applications: for example in the kidney
exchange context, two donors may be equally compatible for a given patient.
We also denote by srtc the special case of srt in which all preference lists
are complete. The definition of a blocking pair in the srt and srtc cases is
identical to that given for sr (however the term “prefers” in the sr definition
is interpreted as “strictly prefers” in the presence of ties). (Note that in [8],
stable matchings in srt and srtc are referred to as weakly stable matchings,
where three stability definitions are given; however weak stability is the more
commonly-studied notion in the literature.) Clearly an instance of srtc need
not admit a stable matching. Moreover it is known [13,8] that the problem of
deciding whether a stable matching exists, given an instance of srtc, is NP-
complete. Let min-bp-srt denote the variant of min-bp-sr in which preference
lists may include ties. In Section 2, we show that min-bp-srt is not approximable
within n1−ε, for any ε > 0, unless P=NP. The result holds even if all preference
lists are complete, there is at most one tie per list, and each tie has length 2.

We now remark on the format of the inapproximability results that we present
for min-bp-sr and min-bp-srt. We implicitly assume that a given instance I of
the former problem is unsolvable, so that bp(I) ≥ 1. Recall that the solvability or
otherwise of I can be determined in O(m) time [7,4]. Hence bp(I) can be regarded
as the objective function for measuring performance guarantee. On the other
hand, given an instance I of min-bp-srt, we do not assume that I is unsolvable,
since the problem of deciding whether this is the case is NP-complete [13,8].
Hence possibly bp(I) = 0, and therefore we use opt(I) to measure performance
guarantee, where opt(I) = 1 + bp(I). In fact our inapproximability result for
min-bp-srt shows that, given any ε > 0, it is NP-hard to distinguish between
the cases that I admits a stable matching, and bp(I) ≥ n1−ε.

We also consider the case that we require a matching to admit exactly K
blocking pairs. Define exact-bp-sr to be the problem of deciding, given an
sr instance I and an integer K, whether I admits a matching M such that
bp(M) = K. In Section 2 we show that exact-bp-sr is NP-complete (even
for complete preference lists). However by contrast, in Section 3, we prove that
exact-bp-sr is solvable in polynomial time if K is a constant. In particular we
give an O(mK+1) algorithm that takes as input an sr instance I and a constant
integer K, and finds a matching M in I such that bp(M) = K, or reports that no

4 D.J. Abraham, P. Biró, and D.F. Manlove

a4i+1 : a4i+2 a4i+3 a4i+4 (0 ≤ i ≤ r − 1)
a4i+2 : a4i+3 a4i+1 a4i+4

a4i+3 : a4i+1 a4i+2 a4i+4 M1
r = {{a4i+1, a4i+2} : 0 ≤ i ≤ r − 1}

a4i+4 : a4i+1 a4i+2 a4i+3 M2
r = M1

r ∪ {{a4i+3, a4i+4} : 0 ≤ i ≤ r − 1}

Fig. 1. Instance Ir of sr and two matchings M1
r , M2

r in Ir

such matching exists. We show how to adapt this algorithm to find a matching
M in I such that bp(M) ≤ K, or report that no such matching exists.

We next give a remark regarding related work. An alternative method has
been considered in the literature for coping with instances of sr that do not
admit a stable matching. Tan [16] defined a stable partition in a given instance I
of sr, which is a generalisation of the concept of a stable matching in I. Following
[12], a stable partition is a permutation Π of A satisfying the following two
properties (which implicitly assume that if ai is a fixed point of Π then ai is
appended to his own preference list):

(i) for each ai ∈ A, ai does not prefer Π−1(ai) to Π(ai);
(ii) if ai prefers aj to Π−1(ai) then aj does not prefer ai to Π−1(aj).

Tan [16] showed that every instance I of sr admits a stable partition, and
he also gave an O(n2) algorithm for finding such a structure in I. Moreover,
starting from a stable partition, Tan [17] showed how to construct, also in O(n2)
time, a largest matching M in I with the property that the matched pairs in M
are stable within themselves. However such a matching may only be half the size
of a maximum (cardinality) matching in I. Yet in many applications we seek to
match as many agents as possible, and as discussed above, in order to satisfy this
property, in many cases a certain number of blocking pairs may be tolerated.
For example, suppose that r ≥ 1 and consider the sr instance Ir and example
matchings M1

r , M2
r as shown in Figure 1. Since Ir is built up from r copies of

insoluble src instances with 4 agents, Tan’s algorithm is bound to construct
a matching M in Ir of size r (such as M1

r). Any such matching M satisfies
|bpIr(M)| ≥ 2r. However M2

r is a solution to min-bp-sr in Ir, where |M2
r | = 2r

and |bpIr(M2
r)| = r. In particular M1

r is half the size of M2
r and admits twice as

many blocking pairs.
In Section 4, for a given sr instance I, we give upper and lower bounds for

bp(I) in terms of some properties of a stable partition in I.

2 Inapproximability of min-bp-sr and min-bp-srt

In this section we present reductions showing the NP-hardness and inapprox-
imability of each of min-bp-sr and min-bp-srt. Define min-mm (respectively
exact-mm) to be the problem of deciding, given a graph G and integer K,
whether G admits a maximal matching of size at most (respectively exactly)
K. Our reductions utilise the NP-completeness of exact-mm in cubic graphs,
which we now establish.

“Almost Stable” Matchings in the Roommates Problem 5

Lemma 1. exact-mm is NP-complete, even for cubic graphs.

Proof. Clearly exact-mm belongs to NP. To show NP-hardness, we reduce from
min-mm, which is NP-complete even for cubic graphs [6]. Let G (a cubic graph)
and K (a positive integer) be an instance of the latter problem. Without loss
of generality we may assume that K ≤ β(G), where β(G) denotes the size of
a maximum matching of G. Suppose that G admits a maximal matching M ,
where |M | = k ≤ K. If k = K, we are done. Otherwise suppose that k < K. We
note that maximal matchings satisfy the interpolation property [5] (i.e. G has
a maximal matching of size j, for k ≤ j ≤ β(G)) and hence G has a maximal
matching of size K. The converse is clear. ��

We now define some notation. Let I be an instance of sr and let A be the set of
agents in I. Given ai ∈ A, we define a set of agents P (ai) to be a prefix of ai’s
preference list in I if P (ai) ⊆ Ai and whenever aj ∈ P (ai) and ai prefers ak to
aj , it follows that ak ∈ P (ai). The following lemma will also be required by our
reduction that establishes the inapproximability of min-bp-sr.

Lemma 2. Let I be an instance of sr with underlying graph G = (A, E). Let
ai ∈ A and let P (ai) be a prefix of ai’s preference list in I. Then, for every k ≥ 1,
there exists an instance I ′ of sr with underlying graph G′ = (A′, E′), where
A ⊆ A′, |A′| = |A| + 2k and E ⊆ E′, satisfying the following two properties:

1. if M is any matching in I in which ai is matched and M(ai) ∈ P (ai) then
there is a matching M ′ in I ′ such that M ⊆ M ′ and bpI′(M ′)∩ (E′\E) = ∅;

2. if M ′ is any matching in I ′ in which ai is matched and M ′(ai) /∈ P (ai), or
ai is unmatched, then |bpI′(M ′) ∩ (E′\E)| ≥ k.

(If I is an instance of src then I ′ is also an instance of src.)

Proof. Let k ≥ 1 be given. We create a set Bk of new agents, where Bk =
{b2, . . . , b2k+1}. Let A′ = A∪Bk. Then |A′| = |A|+2k as required. The preference
list of ai in I ′ is as follows:

ai : [[P (ai)]] b2 b3 . . . b2k+1 | [[Ai\P (ai)]]

where, for S ⊆ Ai, [[S]] denotes those members of S listed in the order induced
from ai’s preference list in I. For exposition purposes, we also denote ai by b1.

For 2 ≤ r ≤ 2k + 1, the preference list of br in I ′ is as follows:

br : br+1 br+2 . . . b2k+1 b1 b2 . . . br−1 | . . .

where . . . at the end of br’s list denotes all agents in A in arbitrary strict order.
Let B′

k = {b1} ∪ Bk. For any agent br ∈ B′
k, the agents to the left of the

symbol | in br’s preference list in I ′ are called the proper agents for br.
Finally, every agent in A\{ai} forms a preference list in I ′ by appending

the members of Bk to their preference list in I (in arbitrary strict order). The
definition of E′ follows by construction of the preference lists in I ′; hence E ⊆ E′.

6 D.J. Abraham, P. Biró, and D.F. Manlove

Given a matching M ′ in I ′ and an agent br ∈ Bk who is matched in M ′, define
pr(br, M

′) to be the set of agents whom br prefers to M ′(br).
To show (1) above, let M be a matching in I such that ai is matched in M

and M(ai) ∈ P (ai). Let M ′ = M ∪ {{br, bk+r} : 2 ≤ r ≤ k + 1}. Suppose that
{br, bs} ∈ bpI′(M ′)∩(E′\E), where br, bs ∈ Bk and r < s. We firstly suppose that
2 ≤ r ≤ k+1. Then M ′(br) = br+k. As bs ∈ pr(br, M

′) = {br+1, . . . , br+k−1} and
|pr(br, M

′)| = k−1, it follows that M ′(bs) ∈ {br+k+1, . . . , b2k+1, b2, . . . , br−1}, so
that br /∈ pr(bs, M

′), a contradiction. Now suppose that k+2 ≤ r ≤ 2k+1. Then
M ′(br) = br−k. As bs ∈ pr(br, M

′)\{b1} = {br+1, . . . , b2k+1, b2, . . . , br−k−1} and
|pr(br, M

′)\{b1}| = k − 1, it follows that M ′(bs) ∈ {br−k+1, . . . , br−1}, so that
br /∈ pr(bs, M

′), a contradiction. Finally it is easy to see that {aj, bl} /∈ bpI′(M ′)∩
(E′\E) for any aj ∈ A and bl ∈ Bk. Hence bpI′(M ′) ∩ (E′\E) = ∅ as required.

To show (2) above, let M ′ be a matching in I ′, and suppose that ai is matched
in M ′ and M ′(ai) /∈ P (ai), or ai is unmatched in M ′. Then there is an agent
bj ∈ B′

k who is not matched to a proper agent in M ′. Define E′′ to be the edges
in the subgraph of G′ induced by B′

k. Suppose |M ′ ∩ E′′| = t. Then t ≤ k. Also
2(k−t) agents in B′

k\{bj} are not matched to a proper agent in M ′. Now suppose
that {br, bs} ∈ M ′∩E′′. Then B′

k\{br, bs} ⊆ pr(br , M
′)∪pr(bs, M

′). Hence either
{bj, br} or {bj, bs} belongs to bpI′(M ′)∩(E′\E). Now suppose that br ∈ B′

k\{bj}
is not matched to a proper agent in M ′. Then {bj, br} ∈ bpI′(M ′)∩(E′\E). Hence
|bpI′(M ′) ∩ (E′\E)| ≥ t + 2(k − t) = 2k − t ≥ k as required. ��

Henceforth we adopt the following notation, given an instance I of sr. Given
an agent ai, a prefix P (ai) of ai’s preference list and an integer k ≥ 1, the
symbol Gk(ai) in ai’s preference list following the members of P (ai) denotes the
introduction of the new agents in Bk together with their preference lists, and the
insertion of the members of Bk in subscript order at the relevant point in ai’s
preference list, as described by the proof of Lemma 2. Given two agents ai, aj

and integers k, l ≥ 1, usage of the symbols Gk(ai) and Gl(aj) in the preference
lists of ai and aj respectively implies that the agents in Bk as introduced for ai

are disjoint from the agents in Bl as introduced for aj .
We now present a gap-introducing reduction, starting from exact-mm, that

establishes the hardness of approximating min-bp-sr.

Theorem 1. min-bp-sr is not approximable within n
1
2−ε, for any ε > 0, unless

P=NP. The result holds even for complete preference lists.

Proof. Let ε > 0 be given. Let G = (V, E) (a cubic graph) and K (a positive
integer) be an instance of exact-mm. Assume that V = {v1, . . . , vp} and q = |E|.
We assume that 2K ≤ p, for otherwise exact-mm trivially has a “no” answer.
Let t = � 1

ε and let C = D = pt. For each i (1 ≤ i ≤ p), let vji , vki , vli denote
the three vertices adjacent to vi in G. For each s (1 ≤ s ≤ 4), let Us = {us

i :
1 ≤ i ≤ p}. Let U = ∪4

s=1U
s, H = {h1, h2, . . . , hp−2K}, X = {x1, x2, . . . , xC},

Y = {y1, y2, . . . , yC} and Z = {zs
i : 1 ≤ i ≤ p ∧ 1 ≤ s ≤ 3}.

For each {vi, vj} ∈ E, define σi,j = 1, 2, 3 according as vj is vji , vki or
vli respectively. Also define W s

i,j = {wr,s
i,j : 1 ≤ r ≤ C} (1 ≤ s ≤ 2) and

“Almost Stable” Matchings in the Roommates Problem 7

u1
i : z1

i u
σji,i

ji
[W 1

i,ji
] [W 1

i,ki
] [W 1

i,li
] [H] [X] . . . (1 ≤ i ≤ p)

u2
i : z2

i u
σki,i

ki
[X] . . . (1 ≤ i ≤ p)

u3
i : z3

i u
σli,i

li
[X] . . . (1 ≤ i ≤ p)

u4
i : z1

i z2
i z3

i [X] . . . (1 ≤ i ≤ p)
zs

i : us
i u4

i [X] . . . (1 ≤ i ≤ p ∧ 1 ≤ s ≤ 3)
hk : [U1] [X] . . . (1 ≤ k ≤ p − 2K)
xr : [U] [Z] [H] [W] yr . . . (1 ≤ r ≤ C)
yr : xr GD(yr) . . . (1 ≤ r ≤ C)

wr,1
i,j : wr,1

j,i u1
i wr,2

j,i [X] . . . (1 ≤ i < j ≤ p ∧ {vi, vj} ∈ E ∧ 1 ≤ r ≤ C)

wr,2
i,j : wr,2

j,i wr,1
j,i [X] . . . (1 ≤ i < j ≤ p ∧ {vi, vj} ∈ E ∧ 1 ≤ r ≤ C)

wr,1
j,i : wr,2

i,j u1
j wr,1

i,j [X] . . . (1 ≤ i < j ≤ p ∧ {vi, vj} ∈ E ∧ 1 ≤ r ≤ C)

wr,2
j,i : wr,1

i,j wr,2
i,j [X] . . . (1 ≤ i < j ≤ p ∧ {vi, vj} ∈ E ∧ 1 ≤ r ≤ C)

Fig. 2. Preference lists in the constructed sr instance I

Wi,j = W 1
i,j ∪W 2

i,j . (We remark that {vi, vj} gives rise to both σi,j and σj,i, and
both Wi,j and Wj,i.) Let W = ∪{vi,vj}∈EWi,j .

We create an instance I of src in which the set A of agents includes U ∪Z ∪
H ∪ X ∪ Y ∪ W and also additional agents that arise from instances of gadgets
that are constructed implicitly by the proof of Lemma 2. The preference lists of
the agents in U ∪ Z ∪ H ∪ X ∪ Y ∪ W are shown in Figure 2. In a given agent
a’s preference list, the symbol [S], for S ⊆ U ∪Z ∪H ∪X , denotes all members
of S listed in increasing subscript order. Similarly, for S ⊆ W , the symbol [S]
denotes all members of S listed in arbitrary strict order. Also, the symbol . . .
denotes all remaining agents (other than a) listed in arbitrary strict order. For
certain agents in I, we now define a prefix P (a) of a’s preference list as follows.
For each agent a ∈ U ∪Z ∪H ∪ W , define P (a) to be the set of agents whom a
prefers to every member of X . For each agent yr ∈ Y , define P (yr) = {xr}.

It may be verified that the number of agents in I is n = 7p + p− 2K + 2C +
2CD+4qC = 2p2t+6pt+1+2pt+8p−2K (since G is cubic), which is polynomial
in the size of the given instance of exact-mm.

Suppose that M is a maximal matching in G, where |M | = K. We create
a matching M ′ in I as follows. Let {vi, vj} ∈ E where i < j. Suppose firstly
that {vi, vj} ∈ M . Let s1 = σi,j and let s2 = σj,i. Add the pairs {us1

i , us2
j },

{us
i , z

s
i } (1 ≤ s �= s1 ≤ 3), {u4

i , z
s1
i }, {us

j , z
s
j} (1 ≤ s �= s2 ≤ 3), {u4

j , z
s2
j },

{wr,1
i,j , wr,1

j,i }, {w
r,2
i,j , wr,2

j,i } to M ′ (1 ≤ r ≤ C). Now suppose that {vi, vj} /∈ M . If
vj is unmatched in M , add the pairs {wr,1

i,j , wr,2
j,i }, {w

r,2
i,j , wr,1

j,i } (1 ≤ r ≤ C) to
M ′, otherwise add the pairs {wr,1

i,j , wr,1
j,i }, {w

r,2
i,j , wr,2

j,i } (1 ≤ r ≤ C) to M ′.
There remain p−2K agents in U1 who are unmatched in M ′ – let u1

t1 , u
1
t2 , . . . ,

u1
tp−2K

denote these agents, where t1 < t2 < . . . < tp−2K . Add {u1
tk

, hk} and

8 D.J. Abraham, P. Biró, and D.F. Manlove

{us
tk

, zs−1
tk

} to M ′ (2 ≤ s ≤ 4, 1 ≤ k ≤ p − 2K). Next add {xr, yr} to M ′

(1 ≤ r ≤ C). Finally, since M ′(yr) ∈ P (yr) for each agent yr ∈ Y , we may
extend M ′ by adding the edges that follow from Property 1 of Lemma 2 as
applied to GD(yr).

For each i (1 ≤ i ≤ p), there exists a unique s (1 ≤ s ≤ 3) such that
{us

i , z
s
i } ∈ bp(M ′). It may be verified that, by the maximality of M in G, these

are all the blocking pairs of M ′ in I, and hence |bp(M ′)| = p.
Conversely suppose that G does not admit a maximal matching of size K.

Suppose for a contradiction that bp(I) < C. Let M ′ be a matching in I such
that |bp(M ′)| = bp(I) < C. Clearly every agent must be matched in M ′, as I
is an instance of src and n is even. Also by Property 2 of Lemma 2, it follows
that {yr, xr} ∈ M ′ for all yr ∈ Y , for otherwise |bp(M ′)| ≥ C, a contradiction.
Hence for each a ∈ U ∪ Z ∪ H ∪ W , it follows that M ′(a) ∈ P (a), for otherwise
{xr, a} ∈ bp(M ′) for all xr ∈ X , so that |bp(M ′)| ≥ C, a contradiction.

Also for each i (1 ≤ i ≤ p), {u4
i , z

s′
i } ∈ M ′ for some s′ (1 ≤ s′ ≤ 3). It follows

that {zs
i , u

s
i} ∈ M ′ (1 ≤ s �= s′ ≤ 3). Now suppose that {u1

i , w
r,1
i,j } ∈ M ′ for some

i, j (1 ≤ i, j ≤ p) and r (1 ≤ r ≤ C). Then {wr,2
i,j , wr,2

j,i } ∈ M ′, for otherwise
M ′(wr,2

j,i) /∈ P (wr,2
j,i). Hence {wr,1

j,i , u1
j} ∈ M ′, for otherwise M ′(wr,1

j,i) /∈ P (wr,1
j,i).

Define

M =
{
{vi, vj} ∈ E : i < j ∧

({us1
i , us2

j } ∈ M ′ where 1 ≤ s1, s2 ≤ 3 ∨
{u1

i , w
r,1
i,j } ∈ M ′ where 1 ≤ r ≤ C

)}
.

It follows that M is a matching in G. Also each agent in H is matched in
M ′ to an agent in U1, so that |M | ≤ K. But each agent us

i ∈ U satisfies
M ′(us

i) ∈ P (us
i), so that |M | = K. Now suppose that M is not maximal in G.

Then there exists some edge {vi, vj} ∈ E such that each of vi and vj is unmatched
in M . Hence {u1

i , hk} ∈ M ′ and {u1
j , hl} ∈ M ′ for some hk, hl ∈ H . Let r (1 ≤

r ≤ C) be given. If {{wr,1
i,j , wr,1

j,i }, {w
r,2
i,j , wr,2

j,i }} ⊆ M ′ then {wr,1
j,i , u1

j} ∈ bp(M ′). If
{{wr,1

i,j , wr,2
j,i }, {w

r,2
i,j , wr,1

j,i }} ⊆ M ′ then {u1
i , w

r,1
i,j } ∈ bp(M ′). Hence |bp(M ′)| ≥ C,

a contradiction. Thus M is a maximal matching of size K in G, a contradiction.
Hence bp(I) ≥ C = pt after all.

Next we show that pt−1 > n
1
2−ε. Firstly recall that

n = 2p2t + 6pt+1 + 2pt + 8p − 2K. (1)

As G is cubic, we may assume that p ≥ 4. Hence Equation 1 implies that
n < 16p2t, and thus pt−1 > 16

1−t
2t n

1
2− 1

2t . As t ≥ 1
ε , it follows that

pt−1 > 4
1−t

t n
1
2− ε

2 . (2)

But Equation 1 also implies that n ≥ p2t, since 2K ≤ p. As p ≥ 4, it follows
that n ≥ 42t ≥ 4

2(t−1)
εt , and hence 4

1−t
t ≥ n− ε

2 . Thus by Inequality 2, it follows
that pt−1 > n

1
2−ε as required.

Hence the existence of an (n
1
2−ε)-approximation algorithm for min-bp-sr

implies a polynomial-time algorithm for exact-mm in cubic graphs. This is a
contradiction to Lemma 1 unless P=NP. ��

“Almost Stable” Matchings in the Roommates Problem 9

Corollary 1. exact-bp-sr is NP-complete, even for complete preference lists.

Proof. We use the same reduction as in the proof of Theorem 1 (for any ε < 1)
and set K ′ = p. Clearly G admits a maximal matching of size K if and only if
I admits a matching with exactly K ′ blocking pairs. ��

We now consider the case where preference lists may include ties. For a given
instance I of srt, we define opt(I) = 1 + bp(I) as discussed in Section 1. The
following result establishes the hardness of approximating min-bp-srt.

Theorem 2. min-bp-srt is not approximable within n1−ε, for any ε > 0, unless
P=NP. The result holds even if all preference lists are complete, there is at most
one tie per list, and each tie is of length 2.

Proof. This result follows by adapting the proof of Theorem 1; we outline only
the modifications here. For the revised reduction, choose t = � 2

ε, C = p and
D = pt. Let F = pt−1. Also, for each zs

i ∈ Z, the agents us
i and u4

i are tied in
joint first place in the preference list of zs

i . All other preference list entries are
as before. We now create F copies of each agent in a ∈ U ∪ Z ∪ H ∪ W – each
copy of a is denoted by a(s) (1 ≤ s ≤ F). In the preference list of a(s) in I, we
replace b by b(s) for each agent b ∈ U ∪ Z ∪ H ∪ W who is a proper agent for
a. In the preference list of each agent in X , we replace b by b(1), . . . , b(F) for
each agent b ∈ U ∪Z ∪H ∪W . For each s (1 ≤ s ≤ F), the class of agents C(s)
comprises those agents a(s) such that a ∈ U ∪ Z ∪ H ∪ W .

As in the proof of Theorem 1, if G admits a maximal matching of size K,
we may construct a matching M ′ in I. However M ′ is modified as follows: if
{a, b} ∈ M ′ for a, b ∈ U∪Z∪H∪W , we replace {a, b} by {a(s), b(s)} (1 ≤ s ≤ F).
The presence of the ties now implies that M ′ is stable in I, so that opt(I) = 1.

Conversely if G does not admit a maximal matching of size K, then as in the
proof of Theorem 1, we let M ′ be any matching in I such that |bp(M ′)| = bp(I). If
{xr, yr} /∈ M ′ for some r (1 ≤ r ≤ C), it follows that |bp(M ′)| ≥ D. Otherwise,
it may be verified that each class of agents C(s) (1 ≤ s ≤ F) contributes at
least C blocking pairs of M ′, for if not then G admits a maximal matching of
size K. Further, these F sets of blocking pairs are pairwise disjoint, so that
|bp(M ′)| ≥ FC = D. Hence opt(I) ≥ D + 1 = pt + 1.

Next we show that pt ≥ n1−ε. For, we firstly note that n = (8p − 2K +
4qC)F + 2C + 2CD, so that

n = 8pt+1 + 8pt − 2Kpt−1 + 2p. (3)

Without loss of generality we may assume that p ≥ 9. Hence Equation 3 implies
that n ≤ 9pt+1, and thus pt ≥ 9−

t
t+1 n1− 1

t+1 . As t ≥ 2
ε , it follows that

pt ≥ 9−
t

t+1 n1− ε
2 . (4)

Equation 3 also implies that n ≥ 9t, since 2K ≤ p. It follows that n ≥ 9
2t

ε(t+1) ,
and hence 9−

t
t+1 ≥ n− ε

2 . Thus by Inequality 4, it follows that pt ≥ n1−ε as
required.

10 D.J. Abraham, P. Biró, and D.F. Manlove

Hence the existence of an (n1−ε)-approximation algorithm for min-bp-srt
implies a polynomial-time algorithm for exact-mm in cubic graphs. This is a
contradiction to Lemma 1 unless P=NP. ��

We denote by exact-bp-srt the extension of exact-bp-sr to the srt case.
Corollary 1 may be strengthened for exact-bp-srt as follows. It is known that
the problem of deciding whether an srtc instance I admits a stable matching
is NP-complete [13,8]. Form an srtc instance J by adding to I a new agent ai

such that Ai = A\{ai} and P (ai) = ∅, together with the new agents that are
created by Lemma 2 as applied to ai, with k = K. Clearly I admits a stable
matching if and only if J admits a matching with exactly K blocking pairs. We
have therefore proved:

Theorem 3. exact-bp-srt is NP-complete for each fixed K ≥ 0.

3 Polynomial-Time Algorithm for Fixed K

In this section we consider the case that I is an sr instance with underlying
graph G = (A, E) and K ≥ 1 is a fixed constant. We give an O(mK+1) algorithm
that finds a matching M in I such that |bpI(M)| = K, or reports that no such
matching exists. Later, we show how to modify this algorithm if we require that
|bpI(M)| ≤ K.

Our algorithm is based on generating subsets B of edges of G, where |B| = K
– these edges will form the blocking pairs with respect to a matching to be
constructed in a subgraph of G. Given such a set B, we form a subgraph GB =
(A, EB) of G as follows. For each agent ai incident to an edge e = {ai, aj} ∈ B,
if e is a blocking pair of a matching M , it follows that {ai, aj} /∈ M and ai

cannot be matched in M to an agent whom he prefers to aj in I. Hence we
delete {ai, aj} from EB , and also we delete {ai, ak} from EB for any ak such
that ai prefers ak to aj in I. If any such edge {ai, ak} is not in B, then we
require that {ai, ak} is not a blocking pair of a constructed matching M . This
can only be achieved if ak is matched in M to an agent whom he prefers to ai

in I. Hence we invoke truncateak
(ai), which represents the operation of deleting

{ak, al} from EB , for any al such that ak prefers ai to al in I. Additionally we
add ak to a set P to subsequently check that ak is matched in M .

Having completed the construction of GB, we denote by IB the sr instance
with underlying graph GB and preference lists obtained by restricting the pref-
erences in I to EB. By construction of GB, it is immediate that any matching
M in GB satisfies B ⊆ bpI(M). To avoid any additional blocking pairs in I, we
seek a stable matching in IB in which all agents in P are matched. We apply
Irving’s algorithm for sr [4] to IB – suppose it finds a stable matching M in
IB . If all agents in P are matched then, as we will show, bpI(M) = B, and
hence |bpI(M)| = K – thus we may output M and halt. If some agents in P are
unmatched in M then we need not consider any other stable matching in IB ,
since Theorem 4.5.2 of [4] asserts that the same agents are matched in all stable
matchings in IB . Hence (and also in the case that no stable matching in IB is

“Almost Stable” Matchings in the Roommates Problem 11

for each B ⊆ E such that |B| = K
EB := E; // GB = (A,EB) is a subgraph of G
P := ∅;
for each agent ai incident to some {ai, aj} ∈ B

delete {ai, aj} from EB;
for each agent ak such that ai prefers ak to aj in I

delete {ai, ak} from EB ;
if {ai, ak} /∈ B

truncateak(ai);
P := P ∪ {ak};

if there is a stable matching M in IB

if every agent in P is matched in M
output M and halt;

report that no matching with K blocking pairs exists;

Fig. 3. Algorithm K-BP

found), we may consider the next subset B. If we complete the generation of all
subsets B without having output a matching M , we report that no matching
with the desired property exists. The algorithm is displayed as Algorithm K-BP
in Figure 3. The following theorem establishes its correctness and complexity.

Theorem 4. Given an sr instance I and a fixed constant K, Algorithm K-BP
finds a matching with exactly K blocking pairs, or reports that no such matching
exists, in O(mK+1) time.

Proof. Suppose firstly that the algorithm outputs a matching M when the out-
ermost loop considered a set B. We show that M is a matching in I such
that bpI(M) = B. As previously mentioned, B ⊆ bpI(M). We now show that
bpI(M) ⊆ B. For, suppose that {ak, al} ∈ (E\B)∩bpI(M). Then {ak, al} /∈ EB ,
as M is stable in IB . Hence {ak, al} has been deleted by the algorithm. Thus
without loss of generality ak ∈ P , so that ak is matched in M and ak prefers
M(ak) to al in I. Hence {ak, al} /∈ bpI(M) after all, so that bpI(M) = B.

Now suppose that M is a matching in I such that bpI(M) = B, where |B| = K.
By the above paragraph, if, before considering B, the outermost loop had already
output a matching M ′ when considering a subset B′, then bpI(M ′) = B′, and
|B′| = K. Otherwise, when the outermost loop considers the subset B, it must
be the case that no edge of M is deleted when constructing GB. Hence M ⊆ EB .
Moreover M is stable in IB, for if not then e ∈ bpIB (M) for some e ∈ EB , and
hence e ∈ bpI(M). As B∩EB = ∅, it follows that e ∈ bpI(M)\B, a contradiction.
Finally every member of P is matched in M , for suppose ak ∈ P is unmatched
in M . As ak ∈ P , there is some agent ai such that ai prefers ak to aj in I, where
{ai, aj} ∈ B and {ai, ak} /∈ B. Hence {ai, ak} ∈ bpI(M)\B, a contradiction.
Hence by [4, Theorem 4.5.2], Irving’s algorithm finds a stable matching M ′ in IB

(possibly M ′ = M) such that all members of P are matched in M ′. Thus the
algorithm outputs M ′ in this case. By the above paragraph, bpI(M ′) = B.

On the other hand suppose that there is no matching M in I such that
|bpI(M)| = K. By the first paragraph, if the algorithm outputs a matching M ′

12 D.J. Abraham, P. Biró, and D.F. Manlove

when the outermost loop considered a subset B, then bpI(M ′) = B, a contra-
diction. Hence the algorithm reports that no such matching M exists.

Clearly the outermost loop iterates O(mK) times. Within a loop iteration,
construction of GB takes O(m) time, as does the invocation of Irving’s algorithm.
All other operations are O(m). ��

Note that it is straightforward to modify Algorithm K-BP so that it outputs the
largest stable matching taken over all subsets B – we may then find a matching
M such that (i) |bpI(M)| = K, and (ii) M is of maximum cardinality with respect
to (i). This extension uses the fact that all stable matchings in IB have the same
size [4, Theorem 4.5.2], so that the choice of stable matching constructed by the
algorithm is not of significance for Condition (ii).

Finally we remark that Algorithm K-BP may easily be modified in order to
find a matching M such that bpI(M) ≤ K: the outermost loop iterates over
all subsets B of E such that |B| ≤ K. Again, one can find a maximum such
matching if required. The time complexity of the algorithm remains unchanged.

4 Upper and Lower Bounds for bp(I)

In this section we present upper and lower bounds for bp(I), given an sr instance
I, in terms of properties of a stable partition as defined in Section 1. The following
results concerning stable partitions were established by Tan [16].

Theorem 5 ([16]). Given an sr instance I,

1. I admits a stable partition Π, which may be found in O(n2) time;
2. if Ci is an odd-length cycle in Π of length ≥ 1 (henceforth an odd cycle) in

Π then Ci is an odd cycle in any stable partition of Π;
3. I admits a stable matching if and only if Π has no odd cycle of length ≥ 3.

Let C denote the set of odd cycles of length ≥ 3 in a stable partition Π . Given
Ci ∈ C, let di = minaj∈Ci dG(aj), where dG(aj) denotes the degree of vertex aj

in the underlying graph G of I. We firstly give an upper bound for bp(I).

Lemma 3. Given an sr instance I, the bound bp(I) ≤
∑

Ci∈C(di − 1) holds.

Proof. We firstly remark that the upper bound is invariant for I by Part 2 of
Theorem 5. It follows by [17, Proposition 4.1] and [16, Proposition 3.2] that,
by deleting a vertex of minimum degree from each odd cycle of C, and then
by decomposing each even length cycle into pairs, we obtain a matching M
that is stable in the instance J of sr so obtained. It then follows by Properties
(i) and (ii) of Π as given in Section 1 that every blocking pair of M in I in-
volves a deleted vertex, and moreover for any deleted vertex ai, if Π(ai) = aj

then {ai, aj} /∈ bpI(M) since aj prefers M(aj) = Π(aj) to ai. It follows that
|bpI(M)| ≤

∑
Ci∈C(di − 1). ��

In order to derive our lower bound for bp(I), it will be helpful to utilise a con-
struction due to Cechlárová and Fleiner [1] which involves transforming a given

“Almost Stable” Matchings in the Roommates Problem 13

a1
k : a2

k ai a4
k a2

k : a3
k a1

k

a3
k : a6

k a2
k a4

k : a1
k a5

k

a5
k : a4

k a6
k a6

k : a5
k aj a3

k

Fig. 4. Preference lists of the newly-introduced agents in Ie

sr instance I into an sr instance Ie as follows. In Ie, the preference lists of the
agents in A are initially the same as the corresponding preference lists in I. We
then replace each edge ek = {ai, aj} (where i < j) in the underlying graph of I
by a 6-cycle involving vertices a1

k, a2
k, a3

k, a4
k, a5

k, a6
k. In ai’s preference list in Ie,

aj is replaced by a1
k, whilst in aj ’s preference list in Ie, ai is replaced by a6

k. The
preference lists of the newly-introduced agents are shown in Figure 4.

Cechlárová and Fleiner [1] showed that a stable matching M in I corresponds
to a stable matching Me in Ie, and vice versa, as follows:

– {ai, aj} ∈ M ⇔ {ai, a
1
k}, {a2

k, a3
k}, {a4

k, a5
k}, {a6

k, aj} ∈ Me

– {ai, aj} /∈ M and ai prefers M(ai) to aj ⇒ {a1
k, a4

k}, {a2
k, a3

k}, {a5
k, a6

k} ∈ Me

– {ai, aj} /∈ M and ai prefers aj to M(ai) ⇒ {a1
k, a2

k}, {a3
k, a6

k}, {a4
k, a5

k} ∈ Me

– {ai, aj} /∈ M ⇐ {a1
k, a4

k}, {a2
k, a3

k}, {a5
k, a

6
k} ∈ Me or {a1

k, a2
k}, {a3

k, a6
k},

{a4
k, a5

k} ∈ Me

where {ai, aj} = ek. Similarly, given stable partitions Π and Πe in I and Ie

respectively, we can prove that Π(ai) = aj in an odd cycle if and only if, in Πe:

– if i < j then 〈ai, a
1
k, a2

k, a3
k, a6

k, aj〉 is in an odd cycle and 〈a4
k, a5

k〉 is a cycle;
– if j < i then 〈ai, a

6
k, a5

k, a4
k, a1

k, aj〉 is in an odd cycle and 〈a2
k, a3

k〉 is a cycle.

Lemma 4. Given an sr instance I, the bound bp(I) ≥
⌈
|C|
2

⌉
holds.

Proof. It follows from the proof of Theorem 4 that bp(I) = k if and only if
k is the minimum number for which there exists a set S of k edges such that
the sr instance I ′ obtained by deleting the edges in S from I admits a stable
matching. To delete an edge ek = {ai, aj} from I is equivalent to deleting the
two vertices a1

k and a6
k from Ie. That is, after deleting the above set S of edges,

instance I ′ has a stable matching if and only if, after deleting the corresponding
k pairs of vertices from Ie, the obtained instance I ′e has a stable matching. But
by [17, Theorem 4.2], the number of odd cycles can decrease by at most one after
deleting one vertex, so after deleting k edges from I, the number of odd cycles
can decrease by at most 2k in Ie. Hence if |C| > 2k, then I ′e still has at least one
odd cycle of length ≥ 3, so neither I ′e nor I ′ can admit a stable matching. ��

5 Concluding Remarks

The strong inapproximability results presented in this paper are perhaps sur-
prising, in view of Theorem 5 and the various structural properties of a stable
partition [16,17]. We conclude with two open problems.

14 D.J. Abraham, P. Biró, and D.F. Manlove

Firstly, given an sr instance I and a matching M in I, it follows that bp(M) ≤
m = O(n2). Is there an approximation algorithm for min-bp-sr with perfor-
mance guarantee o(m)?

Secondly, it remains open to determine whether the bounds for bp(I) presented
in Section 4 are tight, and in particular to establish values of kn and to obtain
a characterisation of In such that In is an sr instance with n agents, in which
bp(In) = kn and bp(In) is maximum over all sr instances with n agents.

Acknowledgements

We would like to thank Kataŕına Cechlárová and Rob Irving for helpful discus-
sions. The problem of finding a matching with at most K blocking pairs, for a
fixed integer K, was suggested by Rob Irving.

References

1. K. Cechlárová and T. Fleiner. On a generalization of the stable roommates prob-
lem. ACM Transactions on Algorithms, 1(1):143–156, 2005.

2. K. Eriksson and P. Strimling. How unstable are matchings from decentralized mate
search? Preprint, 2005. Submitted for publication.

3. D. Gale and L.S. Shapley. College admissions and the stability of marriage. Amer-
ican Mathematical Monthly, 69:9–15, 1962.

4. D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, 1989.

5. F. Harary. Maximum versus minimum invariants for graphs. J. Graph Theory,
7:275–284, 1983.

6. J.D. Horton and K. Kilakos. Minimum edge dominating sets. SIAM J. Discrete
Mathematics, 6:375–387, 1993.

7. R.W. Irving. An efficient algorithm for the “stable roommates” problem. J. Algo-
rithms, 6:577–595, 1985.

8. R.W. Irving and D.F. Manlove. The Stable Roommates Problem with Ties. J.
Algorithms, 43:85–105, 2002.

9. D.E. Knuth. Mariages Stables, Les Presses de L’Université de Montréal, 1976.
10. E. Kujansuu, T. Lindberg, and E. Mäkinen. The stable roommates problem and

chess tournament pairings. Divulgaciones Matemáticas, 7(1):19–28, 1999.
11. M. Niederle and A.E. Roth. Market culture: How norms governing explording

offers affect market performance. NBER working paper 10256, January 2004.
12. B.G. Pittel and R.W. Irving. An upper bound for the solvability probability of a

random stable roommates instance. Rand. Struct. Algorithms, 5(3):465–486, 1994.
13. E. Ronn. NP-complete stable matching problems. J. Algorithms, 11:285–304, 1990.
14. A.E. Roth, T. Sönmez, and M. Utku Ünver. Pairwise kidney exchange. To appear

in Journal of Economic Theory.
15. A.E. Roth and M.A.O. Sotomayor. Two-sided matching: a study in game-theoretic

modeling and analysis Cambridge University Press, 1990.
16. J.J.M. Tan. A necessary and sufficient condition for the existence of a complete

stable matching. J. Algorithms, 12:154–178, 1991.
17. J.J.M. Tan. Stable matchings and stable partitions. International J. Computer

Mathematics, 39:11–20, 1991.

On the Minimum Load Coloring Problem
Extended Abtract

Nitin Ahuja1, Andreas Baltz2, Benjamin Doerr3,
Aleš Př́ıvětivý4, and Anand Srivastav2

1 Department of Mathematical Optimization, Technical University Braunschweig,
Pockelsstrasse 14, D-38106 Braunschweig, Germany

n.ahuja@tu-bs.de
2 Department of Computer Science, Christian-Albrechts-University Kiel,

Christian-Albrechts-Platz 4, D-24098 Kiel, Germany
{aba, asr}@numerik.uni-kiel.de

3 Max-Planck-Institute for Computer Science,
Stuhlsatzenhausweg 85, D-66123 Saarbrücken, Germany

doerr@mpi-sb.mpg.de
4 Department of Applied Mathematics, Charles University,

Malostranské nám. 25, 11800 Praha, Czech Republic
privetivy@kam.mff.cuni.cz

Abstract. Given a graph G = (V, E) with n vertices, m edges and
maximum vertex degree Δ, the load distribution of a coloring ϕ : V →
{red, blue} is a pair dϕ = (rϕ, bϕ), where rϕ is the number of edges
with at least one end-vertex colored red and bϕ is the number of edges
with at least one end-vertex colored blue. Our aim is to find a coloring
ϕ such that the (maximum) load, lϕ := max{rϕ, bϕ}, is minimized. The
problem has applications in broadcast WDM communication networks
(Ageev et al., 2004). After proving that the general problem is NP -hard
we give a polynomial time algorithm for optimal colorings of trees and
show that the optimal load is at most m/2 + Δ log2 n. For graphs with
genus g > 0, we show that a coloring with load OPT(1 + o(1)) can be
computed in O(n + g)-time, if the maximum degree satisfies Δ = o(m2

ng
)

and an embedding is given. In the general situation we show that a
coloring with load at most 3

4
m+O(

√
Δm) can be found in deterministic

polynomial time using a derandomized version of Azuma’s martingale
inequality. This bound describes the “typical” situation: in the random
multi-graph model we prove that for almost all graphs, the optimal load
is at least 3

4
m−√

3mn. Finally, we generalize our results to k–colorings
for k > 2.

1 Introduction

We consider the following problem. We are given a graph G = (V, E) on n
vertices and m edges. The load of a k-coloring ϕ : V → {1, . . . , k} is

max
i∈{1,...,k}

|{e ∈ E | ϕ−1(i) ∩ e �= ∅}|,

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 15–26, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

16 N. Ahuja et al.

the maximum number of edges with at least one end-point in color i, where
the maximum is taken over all i ∈ {1, . . . , k}. The problem of minimizing this
load arises naturally in wavelength division multiplexing (WDM) networks with
broadcast traffic: here, the nodes represent senders/receivers each of which wants
to send messages to every other node via one of k available wavelength channels.
The objective is to assign to each node a channel, such that the maximum traffic
taken over all channels is minimized. Ageev et al. [1] consider scheduling aspects
of the capacitated weighted version of this problem. Closely related is the k–
balanced graph partitioning problem [6], where the aim is to find a set of edges
of minimum capacity such that removing these edges partitions the graph into
at most k roughly equally weighted and connected subgraphs.

In this paper the focus is on coloring the vertices of a graph with 2 colors, red
and blue. For a coloring ϕ : V → {red, blue} we define the load distribution of ϕ
by dϕ := (rϕ, bϕ), where rϕ counts the number of edges incident with at least one
red vertex, and bϕ is the number of edges incident with at least one blue vertex.
The aim is to find a coloring ϕ such that the maximum load, lϕ := max{rϕ, bϕ},
is minimized. In the following we shall skip the term “maximum” and refer to
lϕ simply as the load of the coloring ϕ. We call the problem of finding a coloring
ϕ that minimizes lϕ Minimum Load Coloring Problem (MLCP).

1.1 Our Results

After some preliminaries including the establishment of NP -hardness of the
problem in Section 2, we show how to solve MLCP on trees optimally in O(n3)
time (Section 3). Such an optimal solution is proven to have a load of at most
1
2m + Δ log2 n. Section 4 is concerned with graphs of genus g > 0. With a
separator theorem proved with techniques from Djidjev [5] we obtain an O(n+g)-
time algorithm for constructing a coloring with load bounded by m/2+48

√
gΔn.

This is a (1 + o(1))-approximation in case Δ = o(m2

ng). In Section 5 we analyze
arbitrary instances of the problem. We show that a random coloring has load
3
4m + O(

√
Δm) with high probability. This immediately yields a randomized

algorithm. Furthermore, using an algorithmic version of the Azuma-inequality,
we derive a deterministic O(n3)–time algorithm for computing colorings with
the same load-bound. This is quite strong: in the random multi-graph model
(and similarly in other random models), almost all graphs have no coloring with
load less than 3

4m −
√

3mn. In the last section we extend our results to k > 2
colors.

2 Preliminaries

In this section we state some basic facts. Let

l(G) := min{lϕ | ϕ : V → {red,blue}}

denote the optimal load of a graph G = (V, E). Given a red-blue coloring ϕ, we
shall denote the number of “cut edges” that connect a red vertex with a blue

On the Minimum Load Coloring Problem 17

vertex by cϕ. We will refer to the set of red vertices as Vr and to the set of blue
vertices as Vb.

Since every edge of G is counted as red or blue (or both), l(G) ≥ m
2 . Obviously,

every red-blue coloring of G has load at most m, so we see that each two-coloring
of a graph G is a 2-approximation of l(G).

Let G be a star with d + 1 vertices, then l(G) = d. In fact, the maximum
degree Δ of the input graph is another lower bound on l(G). It is also easy to find
an optimal two-coloring of cycles and chains (graphs consisting of a single open
path). Here, each of the two classes in an optimal coloring forms a connected
component. This is already false for trees (cf. Section 3).

Let us observe that for regular graphs, MLCP is equivalent to MinBisection.

Lemma 1. Let k ∈ . Let G = (V, E) be a k-regular graph with n := |V | even,
and let ϕ : V → {red,blue} be an optimal coloring, then either |Vr| = |Vb| or
an optimal coloring with |Vr| = |Vb| can be obtained by recoloring an arbitrary
vertex of the larger color class.

Proof. Suppose that |Vr| > |Vb|. The number of red edges is rϕ = |Vr|·k
2 + cϕ

2 ,
and the number of blue edges is bϕ = |Vb|·k

2 + cϕ

2 , hence

rϕ − bϕ =
k

2
(|Vr | − |Vb|) ≥ k

since n is even. If we change the color of an arbitrary red vertex v into blue,
the number of red edges decreases by at most k, while the number of blue edges
increases by at most k. Consequently, lϕ does not increase and the resulting
coloring is still optimal. On the other hand, lϕ must not decrease either. This
means that rϕ has to stay the same or bϕ has to increase by at least k. Either of
these events can occur only if v has only red neighbors. Since v is an arbitrary
red vertex, we conclude that G consists of monochromatic components. If |Vr| >
|Vb|+2 we can recolor another red vertex v′ without increasing lϕ. But choosing
v′ as a neighbor of v results in an overall decrease of lϕ contradicting the choice
of ϕ as an optimal coloring. Hence |Vr | = |Vb| + 2, and thus recoloring v yields
an optimal coloring with |Vr| = |Vb|. ��

Given a k-regular graph with an even number of vertices, we see by Lemma 1
that every optimal coloring ϕ induces a bisection of V (either at once or after
recoloring an arbitrary vertex of the larger class) with

lϕ =
n

2
· k

2
+

cϕ

2
.

Since ϕ is optimal, cϕ, the size of the edge cut separating the classes Vr and Vb, is
minimum, so we have a minimum bisection. On the other hand, every minimum
bisection V1, V2 of V gives rise to a coloring with load

n

2
· k

2
+

|E(V1, V2)|
2

,

18 N. Ahuja et al.

which is obviously optimal. Hence MLCP and MinBisection are equivalent
on regular graphs. For k ≥ 3, MinBisction on k-regular graphs is as hard as
general MinBisection (see [3]). Since the decision version of MinBisection
is NP -complete [7], and the load of any proposed solution for MLCP can be
evaluated in polynomial time, we have established NP -completeness also for
MLCP.

Theorem 1. The decision version of MLCP is NP -complete.

3 Polynomial Time Algorithms for Trees

In this section, we show how to efficiently compute an optimal solution for the
MLCP on trees. We also show that any tree G with n vertices and maximum
vertex degree Δ has load at most l(G) ≤ n−1

2 + Δ log2 n. The key to prove this
result is the following more general lemma.

Lemma 2. Let G = (V, E) be a tree on n vertices and let m1, m2 ∈ such
that m1 + m2 = n − 1. Then there is a red-blue coloring of V such that at least
m1 + 1 − Δ log2 n edges are monochromatic red and at least m2 + 1 − Δ log2 n
are monochromatic blue.

Proof. We use induction. Clearly, the lemma holds for n ≤ 3. Let us assume that
the lemma holds for all trees on less than n vertices. Let v ∈ V be a vertex such
that deleting v breaks G into k ≥ 2 components Ci, i ∈ {1, . . . , k}, where the
number of vertices ni in component Ci is at most n/2. (To show the existence of
v, assume for the sake of a contradiction that each vertex is the origin of at least
one branch with more than n

2 nodes. Let v be a vertex whose maximum branch
C is minimum, and let v′ be the neighbor of v in C. Denote the maximum branch
of v′ by C′. Then, |C′| ≤ max{n − |C|, |C| − 1} ≤ max{n

2 − 1, |C| − 1} < |C|
contradicting the minimality of |C|.) It is easy to see that there exist I1, I2 ⊆
{1, . . . , k} such that:

(i) I1 ∩ I2 = ∅,
(ii) |{1, . . . , k} \ (I1 ∪ I2)| = 1,
(iii)

∑
i∈I1

ni ≤ m1, and
(iv)

∑
i∈I2

ni ≤ m2.

Note that either I1 or I2 can also be empty, but not both. Color the vertices
of components with indices in I1 (resp. I2) with red (resp. blue). The central
vertex v is arbitrarily colored red or blue. Let Cj be the component that is left
uncolored, that is, {1, . . . , k} \ (I1 ∪ I2) = {j}. Let m′

1 = m1 − (
∑

i∈I1
ni) − 1

and m′
2 = m2 −

∑
i∈I2

ni. Then, m′
1 + m′

2 = nj − 1 is a partition of the number
of edges of Cj . By induction, there is a red-blue coloring of Cj such that at least
m′

1 + 1 − Δ log2 nj of its edges are monochromatic red and at least m′
2 + 1 −

Δ log2 nj are monochromatic blue. Now, the total number of monochromatic red
edges is at least

∑
i∈I1

(ni − 1)+ m′
1 −Δ log nj ≥ m1 − |I1| −Δ log2(n/2), which

is at least m1 +1−Δ log2 n. Similarly, the total number of monochromatic blue
edges is at least m2 + 1 − Δ log2 n. ��

On the Minimum Load Coloring Problem 19

We did not try to optimize the error term Δ log2 n. It is clear that it has to
contain a linear dependence on Δ — this is shown by stars — and a logarithmic
dependence on the number of vertices. The latter is shown by a complete ternary
tree (proof omitted). This example also demonstrates that in an optimal coloring
the color classes may induce disconnected subgraphs. From the lemma, we easily
deduce the following.

Theorem 2. Let G = (V, E) be a tree on n vertices with maximum vertex degree
Δ. Then l(G) ≤ n−1

2 + Δ log2 n.

Note that the proof of Lemma 2 is constructive. We thus have an efficient algo-
rithm computing colorings with load at most n−1

2 +Δ log2 n. However, it is also
possible to compute optimal colorings for trees efficiently.

Theorem 3. On trees with n vertices, MLCP can be solved in time O(n3).

Proof. Let G = (V, E) be a tree on n vertices. Let us consider G as being rooted
in some arbitrary vertex a. We assign each v ∈ V a distance distv given by the
length of the path from a to v and view each edge e ∈ E as pointing from lower
to higher level nodes. So, we think of G as a directed tree with the root a at
level 0, the successors N(a) := {v ∈ V | (a, v) ∈ E} of a at level 1, etc. For
each v ∈ V we denote by Tv the induced subtree of G rooted in v, i.e., Tv is the
subgraph of G induced by v and all of its (iterated) successors. We define for
each arbitrary subtree G′ of G with root a′,

DG′ := {(r, b) | (r, b) = dϕ for some coloring ϕ of G′ with ϕ(a′) = red},

the set of possible load distributions for G′ (we may assume ϕ(a′) = red without
loss of generality). Suppose, we can efficiently compute DG. Since |DG| ≤ n2,
we can also efficiently find the load l(G) of an optimal coloring by searching DG

for the load distribution with smallest maximum component. We will show that
DG can be determined in polynomial time by iteratively computing DTv for all
v ∈ V , in reverse breadth first order. The iteration is based on two operations:

(i) Consider a subtree G′ of G with root a′ �= a, v ∈ V with (v, a′) ∈ E, and
the tree v + G′ := (V (G′) ∪ {v}, E(G′) ∪ {(v, a′)}) obtained by appending
the edge (v, a′) to G′. We define

v + DG′ := {(r + 1, b) | (r, b) ∈ DG′} ∪ {(b + 1, r + 1) | (r, b) ∈ DG′}. (1)

(ii) Consider two subtrees G′
1, G

′
2 of G that do not intersect but in their joint root

a′. Let G′
1 + G′

2 := (V (G′
1) ∪ V (G′

2), E(G′
1) ∪ E(G′

2)) denote the composite
tree and define

DG′
1
+ DG′

2
:= {(r1 + r2, b1 + b2) | (r1, b1) ∈ DG′

1
, (r2, b2) ∈ DG′

2
}. (2)

Since for each tree G′ we defined DG′ to contain only load distributions of
colorings where the root of G′ is colored red, it will be necessary to eventually
flip colors in the course of our desired iteration. For convenience, let us denote
the inverse coloring of a given coloring ϕ by ϕ.

20 N. Ahuja et al.

Claim 1. For all subtrees G′ = (V ′, E′) of G with root a′ and all v ∈ V with
(v, a′) ∈ E, Dv+G′ = v + DG′ .

Proof. Let (r, b) ∈ Dv+G′ and let ϕ : V ′ ∪ {v} → {red, blue} be a coloring with
dϕ = (r, b) and ϕ(v) = red. Then ϕ′ := ϕ|V ′ is a coloring of G′. If ϕ′(a′) = red,
then (r′, b′) := dϕ′ = (r − 1, b) ∈ DG′ and thus (r, b) = (r′ + 1, b) ∈ v + DG′ ,
whereas if ϕ′(a′)= blue, then dϕ′ = (r−1, b−1) and ϕ′ induces a load distribution
dϕ′ = (r′, b′) := (b − 1, r − 1) ∈ D′

G, so (r, b) = (b′ + 1, r′ + 1) ∈ v + DG′ .
Let (r, b) ∈ v + DG′ . There is a coloring ϕ : V ′ → {red, blue} with ϕ(a′) =

red and either dϕ = (r − 1, b) or dϕ = (b − 1, r − 1). In the first case, extending
ϕ to V ′ ∪ {v} by coloring v red gives a coloring ϕ′ of v + G′ with dϕ′ = (r, b), in
the second case we similarly extend ϕ′. ��

Claim 2. For all subtrees G′
1 = (V ′

1 , E′
1), G

′
2 = (V ′

2 , E′
2) intersecting only in their

joint root a′, DG′
1+G′

2
= DG′

1
+ DG′

2
.

Proof. Let (r, b) ∈ DG′
1+G′

2
and let ϕ : V ′

1 ∪ V ′
2 → {red, blue} be a coloring with

dϕ = (r, b) and ϕ(a′) = red. Obviously, ϕ|V ′
1

and ϕ|V ′
2

are colorings of G′
1 and

G′
2, respectively, with ϕ|V ′

1
(a′) = ϕ|V ′

2
(a′) = red and dϕ|V ′

1
+dϕ|V ′

2
= (r, b). Hence

DG′
1+G′

2
⊆ DG′

1
+ DG′

2
.

On the other hand, if (r, b) ∈ DG′
1
+DG′

2
, then there are colorings ϕ1, ϕ2 of G′

1

and G′
2, respectively, with dϕ1 = (r1, b1), dϕ2 = (r2, b2), (r1 +r2, b1 +b2) = (r, b),

and ϕ1(a′) = ϕ2(a′) = red. Clearly, ϕ′ := ϕ1 ∪ ϕ2 is a coloring of G′
1 + G′

2 with
ϕ′(a′) = red and dϕ′ = (r, b), thus DG′

1
+ DG′

2
⊆ DG′

1+G′
2
. ��

As an easy consequence we observe the following fact.

Corollary 1. For all v ∈ V ,

DTv =
∑

v′∈N(v)

Dv+Tv′ =
∑

v′∈N(v)

v + DTv′ .

Now the algorithm for computing l(G) is straightforward:

1. Let level := max{distv | v ∈ V } − 1, DTv′ := {(1, 0)} for all v′ ∈ V with
distv′ = level + 1.

2. For all v ∈ V with distv = level : compute DTv =
∑

v′∈N(v) v + DTv′ .
3. Set level := level − 1.
4. If level ≥ 0 then go to 2.
5. Output min{max{r, b} | (r, b) ∈ DTa}.

Note that the time required for operation (1) is bounded by 2|DG′| = O(n2),
since we have to consider each (r, b) ∈ DG′ twice, and (r, b) takes at most n2

values. Operation (2) consists of |DG′
1
| · |DG′

2
| = O(n4) steps. The running time

of the algorithm is dominated by the iterated calls of line 2, i.e., by the computa-
tions of DTv . Computing DTv involves deg(v) operations of type (2), where each
summand is computed via a type (1) operation. Hence, the overall running time
is bounded by

∑
v∈V deg(v) · O(n4 + n2) = O(n5). However, we can reduce the

On the Minimum Load Coloring Problem 21

running time to O(n3) by neglecting “irrelevant” colorings. Note that, if (r, b1)
and (r, b2) ∈ DTv are possible load distributions for a tree Tv imposed by col-
orings ϕ1 and ϕ2, then the load distribution with larger second component, say
(r, b2), will be irrelevant for computing l(G) (suppose, ϕ is an optimal coloring
of G with ϕ|Tv

= ϕ2, then replacing ϕ on Tv by ϕ1 will not increase the load).
Thus, for each r we have to store only b := min{b′ | (r, b′) ∈ DTv}. Defining the
set of relevant load distributions

D̂G′ := {(r, b) | (r, b) ∈ DG′ , b = min{b′ | (r, b′) ∈ DG′}}

for each subtree G′ of G, we have that |D̂G′ | = O(n). Obviously, D̂G can be
computed iteratively via operations similar to (1) and (2) that are performed on
D̂G′ instead of DG′ and thus require only O(n) and O(n2) steps, respectively.
This yields the desired O(n3) bound. The iterative procedure for computing DG

(or D̂G) can be easily modified such that it gives not only the optimal load, but
also an optimal coloring. All we have to do is store, for each (r, b) ∈ D̂Tv and
each v′ ∈ N(v) a pair ((r′, b′), i) =: pv′(r, b), where (r′, b′) ∈ D̂Tv′ was used in
the computation of (r, b) and i ∈ {1, 0} indicates whether of not in computing
(r, b) from (r′, b′) we swapped the colors of Tv′ . Starting from an optimal load
distribution d = (r0, b0) we trace back the load computations via p and determine
for each node an optimal color with the following algorithm.

1. Define ϕ(a) := red, v := a, d := (r0, b0), M = ∅.
2. Set M := M ∪ {(v, v′, pv′(d)) | v′ ∈ N(v)}.
3. If M = ∅ then output ϕ and stop.
4. Let (v, v′, ((r′, b′), i)) ∈ M , set M := M \ (v, v′, ((r′, b′), i)).

5. Define ϕ(v′) :=

{
ϕ(v) if i = 0
{red,blue} \ ϕ(v) otherwise.

6. Set v := v′, d := (r′, b′) and go to 2.

This algorithm can be implemented to run in O(n) time. Thus the time required
to solve MLCP on trees with n vertices is O(n3) in total. This ends the proof of
Theorem 3. ��

4 An Approximation Algorithm for Graphs with
Genus g

In this section, we show how a (1 + o(1))-approximate solution for the MLCP
for graphs of genus g > 0 can be computed if Δ = o(m2

ng). Recall that the genus
of a graph is the smallest integer g such that the graph can be drawn without
crossing itself on a sphere with g “handles”. The problem of determining the
genus of a graph is NP -hard [12]. A trivial upper bound on the genus g of a
graph with m edges and n vertices is m− 1 since each crossing of two edges can
be eliminated by introducing a handle. A lower bound of g ≥ m−3n

6 + 1 can be
obtained by generalizing Euler’s formula for planar graphs (see [13]). The main
idea of our algorithm is to partition V into two sets A and B such that

22 N. Ahuja et al.

– the number of edges having both endpoints in A is at most m/2,
– the same holds for B,
– there are only O(

√
gΔn) edges between the sets A and B.

By coloring A and B with different colors, we obtain a coloring ϕ with lϕ(G) ≤
m/2 + c

√
gΔn. Since l(G) ≥ m/2, for Δ = o(m2

gn) we have a (1 + o(1))-
approximate solution. A polynomial time algorithm finding a partition with
small vertex separator for planar graphs (g = 0) was described in [8,4] and
then extended for graphs of genus g > 0 in [5]. Let E(A), E(B), and E(A, B)
denote the sets of monochromatic edges in A, B, and the set of bichromatic
edges connecting A and B, respectively. For our purpose we use the following
theorem, given in [11].

Theorem 4 [11]. Let G be a graph of genus g > 0, having nonnegative vertex
weights summing to one such that no weight exceeds 2/3. There is a partition
of V into sets A and B, such that weight(A) ≤ 2/3, weight(B) ≤ 2/3, and
|E(A, B)| ≤ 5

√
3gΔn. Provided that we are given an embedding of G into its

genus surface, there is an O(n + g)-time algorithm which finds such a partition.

We can use this theorem in the following way: for any graph of genus g > 0
we assign to each vertex v ∈ V a weight w(v) = deg(v)

2m . The theorem yields a
partition of V into A and B, such that |E(A)| ≤ 2

3m, |E(B)| ≤ 2
3m and there are

at most 5
√

3gΔn edges between A and B. This 2
3 factor can be reduced to 1

2 by
iterating the algorithm on the bigger of the sets resulting from the partitioning.
Both, the size of the edge separator and the running time, increase only by a
constant factor. We summarize this in the following theorem. The proof is similar
to the proof of Corollary 3 in [8], and thus will be given only in the full version
of the paper.

Theorem 5. Let G be a graph of genus g > 0. There is a partition of V into
sets A, B, such that |E(A)| ≤ 1

2m, |E(B)| ≤ 1
2m, and |E(A, B)| ≤ 48

√
gΔn.

Provided that we are given an embedding of G into its genus surface, there is an
algorithm which finds such a partition in time O(n + g).

Corollary 2. Let G be any graph of genus g > 0. Given an embedding of G into
its genus surface, a coloring ϕ with lϕ(G) ≤ m/2 + 48

√
gΔn can be constructed

in time O(n + g).

For a planar graph G, we can similarly use the separator theorem from [4] to
show that a coloring ϕ with lϕ(G) ≤ m

2 + (6
√

2 + 4
√

3)
√

Δn can be constructed
in time O(n), provided that an embedding is given.

5 Randomized Approximation

5.1 Approximation for General Graphs

In this section, we study the MLCP on arbitrary graphs. Since the problem is
NP–hard, approximate solutions are the best one can expect to find efficiently.

On the Minimum Load Coloring Problem 23

We first analyze the load of random colorings. With high probability, their load is
less than 3

4m+O(
√

Δm). This shows existence of such colorings, and also yields
a randomized algorithm. Using an algorithmic version of the Azuma-inequality,
we derive a deterministic algorithm for computing such colorings. Since 1

2m is
a trivial lower bound for lϕ, these results yield a (1.5 + o(1))–approximation
algorithm if Δ = o(m).

To analyze random colorings, we use the following martingale inequality1 that
can be found in McDiarmid [9]. It is an application of the well known inequality
of Azuma [2]:

Lemma 3. Let X1, . . . , Xn be independent random variables taking values in
some sets A1, . . . , An. Let f :

∏n
i=1 Ai → such that |f(x) − f(y)| ≤ ci

whenever x and y differ only in the ith coordinate. Let X = (X1, . . . , Xn) and
μ = (f(X)). Then for any λ ≥ 0,

(f(X) − μ ≥ λ) ≤ exp
(
− 2λ2/

n∑
i=1

c2
i

)
. (3)

Theorem 6. There is a coloring ϕ such that lϕ ≤ 3
4m +

√
(ln 2)Δm. For all

q ≥ 0, a random coloring satisfies
(
lϕ ≥ 3

4m + q
√

(ln 2)Δm
)
≤ 2−q2+1.

Proof. We analyze the behavior of a random coloring. Let ϕ : V → {red, blue}
such that (ϕ(v) = red) = 1

2 = (ϕ(v) = blue) independently for all v ∈ V .
Clearly, if two colorings ϕ1, ϕ2 differ only in the color of some vertex v ∈ V , then
|rϕ1 − rϕ2 | ≤ deg(v). We compute (rϕ) =

∑
e∈E (∃v ∈ e : ϕ(v) = red) = 3

4m.
Since

∑
v∈V deg(v)2 ≤

∑
v∈V deg(v)Δ = 2Δm, for λ =

√
(ln 2)Δm, we have

(rϕ > 3
4m + λ) < 1

2 . Thus with positive probability, both rϕ and bϕ are at
most 3

4m + λ. In particular, a coloring with lϕ ≤ 3
4m + λ exists. The second

statement follows in a similar way. ��

The algorithm behind Theorem 6 can be efficiently derandomized.

Theorem 7. A coloring ϕ such that lϕ ≤ 3
4m +

√
(ln 4)Δm can be constructed

in O(n3) time.

For the proof we invoke an algorithmic version of Azuma’s martingale inequality
proved by Srivastav and Stangier [10]. Let Ω = {0, 1}n be a probability space
with probability measure and let ϕ : Ω → be a quadratic form. Let X =
(X1, . . . , Xn) be a vector of independent random variables with Xk ∈ {0, 1},
for all k ∈ {1, . . . , n}. Further, let (Xk = 1) = p and (Xk = 0) = 1 −
p for all k and p ∈ (0, 1). We wish to bound the large deviation probability

(|ϕ(X) − (ϕ(X))| ≥ λ), for λ > 0. If f satisfies a Lipschitz condition: |ϕ(X)−
ϕ(X ′)| ≤ ck if X, X ′ ∈ Ω differ only in the k-th component, then we can use the
bounded difference inequality (3).

1 One advantage of this version is that it can be formulated without introducing the
martingale machinery used in its proof.

24 N. Ahuja et al.

Theorem 8 [10]. Let δ ∈ (0, 1) such that 1 − δ ≥ 2 exp
(
− 2λ2/

∑n
i=1 c2

i

)
.

Then a vector X ∈ Ω which satisfies |ϕ(X) − (ϕ(X))| ≤ λ can be constructed
in O

(
n3 log(δ−1)

)
time.

Proof of Theorem 7. First we write the objective function lϕ, the load, as the
maximum of two quadratic forms describing rϕ and bϕ respectively. We model
a two coloring of the vertex set V as a vector X = (X1, . . . , Xn) ∈ Ω = {0, 1}n,
where for i ∈ {1, . . . , n}, Xi = 1 if the vertex i is colored red and Xi = 0 if
it is colored blue. Let (aij) be the adjacency matrix of the graph G = (V, E)
under consideration. We may identify a two-coloring ϕ : V → {red,blue} by
X ∈ {0, 1}n, so for X ∈ {0, 1}n let

r(X) =
n∑

i=1

n∑
j=1

aij Xi Xj

2
+

n∑
i=1

n∑
j=1

aij Xi (1 − Xj) ,

and

b(X) =
n∑

i=1

n∑
j=1

aij (1 − Xi) (1 − Xj)
2

+
n∑

i=1

n∑
j=1

aij Xi (1 − Xj) .

Note that ϕ(i) = Xi for all i ∈ {1, . . . , n}. So, r(X) = rϕ, b(X) = bϕ and
lϕ = l(X) := max{r(X), b(X)}. Theorem 8 can be extended to cover also the
maximum of two quadratic forms, r(X) and b(X), with minor modifications in
the proof (the important thing is to be able to compute conditional expectations
of the form (f | X1 = a1, . . . , Xk = ak)). Thus, applying Theorem 8 to l(X)
with ck = deg(vk), λ =

√
(ln 4)Δm and δ = 0.5, we can construct a two-coloring

X ∈ {0, 1}n in O(n3) time that satisfies l(X) ≤ 3
4m +

√
(ln 4)Δm. �

Note that the dependence on Δ cannot be avoided. This is shown by star graphs.
Moreover, if Δ = o(m), then the bound of (3

4 + o(1))m cannot be improved in
general. The complete graph Kn = ({1, . . . , n},

({1,...,n}
2

)
) satisfies lϕ ≥ 3

8n2 −
1
4n = (3

4 + o(1))m for all colorings ϕ.

5.2 Random Multi-graphs

In fact, in some sense almost all graphs have a load of (3
4 − o(1))m. Without

proof, we state the following.

Theorem 9. Let m ≥ 12n. For a random multi-graph G = (V, E), |V | = n
obtained by choosing m edges from

(
V
2

)
independently with repetition, we have

l(G) ≥ 3
4m −

√
3mn with probability 1 − 2−n.

In other words, all but a fraction of less than 2−n of the multi-graphs having
n vertices and m edges have a load of at least 3

4m −
√

3mn. If n = o(m), this
shows that almost all multi-graphs have a load of (3

4 − o(1))m. The use of multi-
graphs has mainly technical reasons. Unless m is close to

(
n
2

)
, most multi-graphs

as above have only few multiple edges. Hence the random multi-graph model is
close to the standard random graph model G(n, p(n)).

On the Minimum Load Coloring Problem 25

6 MLCP with More Than Two Colors

Most of our results have a natural extension to MLCP with more than two
colors. For reasons of brevity and readability we omit the proofs, which are
mostly similar (though more technical) to the ones for two colors.

– For any fixed number of colors, the MLCP is NP–complete.
– For any fixed number of colors, there is a polynomial time algorithm com-

puting a minimal load coloring for trees.
– A tree G with m edges can be colored in k colors with load bounded by

m
k + O(Δ(G) log m).

– For all graphs G = (V, E) there is a k-coloring with load at most 2k−1
k2 m +√

(ln k)Δ(G)m.
– For graphs on n vertices with genus g > 0 we can find a k-coloring with load

bounded by m/k + O(
√

gΔn).

There are graphs having small load in some numbers of colors and large one in
others. We give three examples.

(i) Let G be a graph consisting of two disjoint cliques on n vertices. Then the
load in two colors is 1

2 |E(G)|, shown by coloring both cliques monochromatic
in a different color. This is smallest possible for any graph. Let γ =

√
3− 1.

In three colors, an optimal coloring will contain (γ + o(1))n red vertices in
the first clique, (γ + o(1))n blue vertices in the second and (1 − γ + o(1))n
green vertices in each clique. This yields a load of (2

√
3 − 3 + o(1))n2 ≈

0.4641|E(G)|. Compared to the smallest possible value of 1
3 |E(G)|, this is

quite large.
(ii) If G consists of three disjoint cliques of n vertices each, then the 3–color

load is smallest possible with 1
3 |E(G)|, but the 2–color load is approximately

7
12 |E(G)|.

(iii) The same behavior is also displayed by trees. A complete 3–ary tree T has
a 3–color load of 1

3 |E(T)| + 2. However, it can be proven to have a 2–color
load of 1

2 |E(G)|+Ω(log n), which is (up to the implicit constant) maximum
possible for trees as shown in Theorem 2.

References

1. A.A. Ageev, A.V. Fishkin, A.V. Kononov and S.V. Sevastianov, Open Block
Scheduling in Optical Communication Networks. Springer LNCS 2909 (2004), 13 -
26.

2. K. Azuma, Weighted sums of certain dependent variables. Tohoku Math. Journal
3(1967), 357 - 367.

3. P. Berman and M. Karpinski, Approximation Hardness of Bounded Degree MIN-
CSP and MIN-BISECTION, Electronic Colloquium on Computational Complex-
ity, Report No. 26 (2001).

4. K. Diks, H.N. Djidjev, O. Sýkora and I. Vrťo, Edge Separators of Planar and
Outerplanar Graphs with Applications, Journal of Algorithms 14(1993), 258 - 279.

26 N. Ahuja et al.

5. H.N. Djidjev, A separator theorem. Comptes Rendus de l’Academie Bulgare des
Sciences 34(1981), 643 - 645.

6. G. Even, J. Naor, S. Rao and B. Schieber, Fast Approximate Graph Partitioning
Algorithms. SIAM J. Comput. 28(6)(1999), 2187 - 2214.

7. M.R. Garey, D.S. Johnson and L. Stockmeyer, Some simplified NP -complete graph
problems, Theoret. Comput. Sci. 1(33)(1976), 237 - 267.

8. R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics 36(1979), 177 - 189.

9. C. McDiarmid, Concentration. In Probabilistic Methods for Algorithmic Discrete
Mathematics, Volume 16 of Algorithms Combin.(1998), Springer, Berlin, 195 - 248.

10. A. Srivastav, Derandomizing Martingale Inequalities. Preprint (2005). A prelimi-
nary version appeared as A. Srivastav and P. Stangier, On quadratic lattice ap-
proximations. In Proc. of the 4th Internat. Symp. on Algorithms and Computa-
tion(1993), LNCS 762, Springer, 176 - 184.

11. O. Sýkora and I. Vrťo, Edge Separators for Graphs of Bounded Genus with Appli-
cations. In Proc. of the 17th International Workshop on Graph Theoretic Concepts
in Computer Science (1992), 159 - 168.

12. C. Thomassen, The graph genus problem is NP -complete. Journal of Algorithms
10(4)(1989), 568 - 576.

13. D.B. West, Introduction to Graph Theory. Prentice Hall (1996).

Improved Approximation Algorithms
for MAX NAE-SAT and MAX SAT

Adi Avidor�, Ido Berkovitch, and Uri Zwick��

School of Computer Science,
Tel-Aviv University, Tel-Aviv 69978, Israel

{adi, edoberko, zwick}@tau.ac.il

Abstract. MAX SAT and MAX NAE-SAT are central problems in theoretical
computer science. We present an approximation algorithm for MAX NAE-SAT
with a conjectured performance guarantee of 0.8279. This improves a previously
conjectured performance guarantee of 0.7977 of Zwick [Zwi99]. Using a vari-
ant of our MAX NAE-SAT approximation algorithm, combined with other tech-
niques used in [Asa03], we obtain an approximation algorithm for MAX SAT
with a conjectured performance guarantee of 0.8434. This improves on an ap-
proximation algorithm of Asano [Asa03] with a conjectured performance guar-
antee of 0.8353. We also obtain a 0.7968-approximation algorithm for MAX SAT
which is not based on any conjecture, improving a 0.7877-approximation algo-
rithm of Asano [Asa03].

1 Introduction

An instance of MAX NAE-SAT (Maximum Not-All-Equal SAT) in the Boolean
variables x1, . . . , xn is composed of a collection of clauses C1, . . . , Cm with non-
negative weights w1, . . . , wm associated with them. Each clause Cj is of the form
NAE(b1, . . . , bkj). Each of the bi’s is a literal, i.e., a variable xl or its negation x̄l and
kj ≥ 2. The clauses may be arbitrarily large and may not all be of the same size. A
clause NAE(b1, . . . , bkj) is satisfied if at least one of the literal gets the value 1 and
at least one of the literal gets the value 0. The goal is to assign the Boolean variables
x1, . . . , xn values of 0 and 1 so that the total weight of the satisfied clauses is maxi-
mized. We let MAX NAE-{k}-SAT be the restriction of MAX NAE-SAT to instances
in which all clauses are of size exactly k, and MAX NAE-k-SAT the restriction of
MAX NAE-SAT to instances in which all clauses are of size at most k.

An instance of MAX SAT in the Boolean variables x1, . . . , xn is composed of a
collection of clauses C1, . . . , Cm with non-negative weights w1, . . . , wm associated
with them. Each clause Cj is of the form b1 ∨ . . . ∨ bkj where the bi’s are literals and
kj ≥ 1. A clause b1 ∨ . . . ∨ bkj is satisfied if at least one of the literal gets the value 1.
The goal is again to assign the Boolean variables x1, . . . , xn values of 0 and 1 so that
the total weight of the satisfied clauses is maximized. We let MAX {k}-SAT be the
restriction of MAX SAT to instances in which all clauses are of size exactly k, and

� Research was supported by the Deutsch Fund.
�� Research was supproted by the ISRAEL SCIENCE FOUNDATION (grant no. 246/01).

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 27–40, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

28 A. Avidor, I. Berkovitch, and U. Zwick

MAX k-SAT the restriction of MAX SAT to instances in which all clauses are of size
at most k.

MAX NAE-SAT is a generalization of both MAX SAT and MAX CUT. MAX CUT
is the restriction of MAX NAE-{2}-SAT to instances without negations. An instance of
MAX SAT can be converted to an instance of MAX NAE-SAT by replacing each clause
b1∨ . . .∨bkj by the clause NAE(O, b1, . . . , bkj), where O is a new variable that appears
in all clauses. A solution α1, . . . , αn, β to the resulting MAX NAE-SAT instance, where
α1, . . . , αn are the values assigned to x1, . . . , xn and β is the value assigned to O, can
be converted to a solution α1 ⊕ β, . . . , αn ⊕ β of the original MAX SAT instance
with the same cost. MAX NAE-SAT (MAX {k}-NAE-SAT) is also a generalization
of MAX SET-SPLITTING (MAX k-SET-SPLITTING), which are the problems of 2-
coloring the vertices of a hypergraph (k-uniform hypergraph) so as to maximize the
number of non-monochromatic edges. More specifically, MAX SET-SPLITTING and
MAX k-SET-SPLITTING are the restrictions of MAX NAE-SAT and MAX {k}-NAE-
SAT to instances without negations.

Haståd [Hås01] showed that for every k ≥ 3 and every ε > 0, if there is a (1 −
2−k + ε)-approximation algorithm for MAX {k}-SAT, then P = NP . Hence, as both
MAX SAT and MAX NAE-SAT generalize MAX {3}-SAT, we get that for every ε > 0,
there is no (7/8 + ε)-approximation algorithm for these problems, unless P = NP .

The first approximation algorithm for MAX SAT was presented by Johnson [Joh74],
who showed that the greedy algorithm achieves a performance guarantee of 1/2. Twenty
years later, Yannakakis [Yan94] and then Goemans and Williamson [GW94] proposed
two different 3/4-approximation algorithms.

In a seminal paper, Goemans and Williamson [GW95] used semidefinite program-
ming to obtain 0.878-approximation algorithms for MAX CUT and MAX 2-SAT. Feige
and Goemans [FG95] obtained an improved approximation algorithm for MAX 2-SAT
with performance guarantee 0.931. An improved approximation algorithm for the gen-
eral MAX SAT can be obtained by combining one of these MAX 2-SAT approxima-
tion algorithms and the previous 3/4-approximation algorithms. Such improvements
include a 0.7584-approximation algorithm by Goemans and Williamson [GW95], a
0.765-approximation algorithm by Asano, Ono and Hirata [AOH96] and a 0.770-
approximation algorithm by Asano [Asa97].

The approximation ratio of MAX 2-SAT was further improved to 0.935 by Matuura
and Matsui [MM01a, MM01b], and then by Lewin, Livnat and Zwick [LLZ02] to
0.9401. An optimal, semidefinite programming based, 7/8-approximation algorithm for
MAX 3-SAT was given by Karloff and Zwick [KZ97] (a rigorous proof of the conjec-
tured approximation ratio of [KZ97] is given in [Zwi02].) A close to optimal 0.8721-
approximation algorithm for MAX 4-SAT was given by Halperin and Zwick [HZ01].

A new rounding technique, “outward rotations”, for rounding semidefinite program-
ming solutions was introduced independently by Nesterov [Nes98], Ye [Ye01] and
Zwick [Zwi99]. Using outward rotations, Han, Ye and Zhang [HYZ04], strengthen-
ing an earlier MAX NAE-SAT 0.7240-approximation algorithm of Andersson and En-
gerbretsen [AE98], obtained a 0.7499-approximation algorithm for MAX NAE-SAT.
Zwick [Zwi99] obtained a 0.9087-approximation algorithm for MAX NAE-{3}-SAT.

Improved Approximation Algorithms for MAX NAE-SAT and MAX SAT 29

Zwick also obtained an approximation algorithm for the MAX NAE-SAT and the
MAX SAT problems with a conjectured approximation ratio of 0.7977.

A 0.7846-approximation algorithm for MAX SAT was given by Asano and
Williamson [AW02]. This algorithm is based on linear programming with special
rounding functions combined with several other MAX k-SAT algorithms. Asano and
Williamson also gave a 0.8331-approximation algorithm for MAX SAT based on the
previously conjectured 0.7977-approximation algorithm for MAX NAE-SAT. Finally,
Asano [Asa03], using the same techniques and different rounding functions, gave a
0.7877-approximation algorithm for MAX SAT and an additional approximation algo-
rithm with a conjectured performance guarantee of 0.8353.

The outward rotations technique was generalized by Feige and Langberg [FL01] to
a new rounding technique named RPR2 - Random Projection followed by Random-
ized Rounding. Feige and Langberg used RPR2 to obtain an improved approximation
algorithm for the “Light MAX CUT” problem. (“Light MAX CUT” is the MAX CUT
problem restricted to instances of a small maximal cut.) Charikar and Wirth [CW04]
extended Feige and Langberg “Light MAX CUT” results and demonstrated the appli-
cability of the RPR2 technique for maximizing quadratic forms and maximum corre-
lation clustering. Lately, the results of Charikar and Wirth were extended by Alon et
al. [AMMN05].

In this paper we use the RPR2 technique to obtain new approximation algo-
rithms for MAX NAE-SAT and MAX SAT. We give an approximation algorithm for
MAX NAE-SAT with a conjectured performance guarantee of 0.8279. We also adjust
Asano’s [Asa03] MAX SAT approximation algorithm and obtain an approximation al-
gorithm for MAX SAT with conjectured performance guarantee of 0.8434. In addition,
we give a slightly improved 0.7968-approximation algorithm for MAX SAT which does
not rely on any conjecture.

2 MAX NAE-SAT Approximation Algorithm

Our MAX NAE-SAT approximation algorithm starts by solving a semidefinite pro-
gramming relaxation of the problem, which produces a sequence v1, . . . ,vn of unit
vectors in Rn. The algorithm then uses the RPR2 rounding technique to round these
vectors to Boolean values.

2.1 A Semidefinite Programming Relaxation for MAX NAE-SAT

We let xn+i = x̄i, for 1 ≤ i ≤ n. The j-th clause of a MAX NAE-SAT instance
is therefore of the form NAE(xi1 , . . . , xikj

), where 1 ≤ i1, . . . , ikj ≤ 2n and 1 ≤
j ≤ m. We denote the unit sphere in Rn by Sn−1, and the set of all permutations
on {1, . . . , k} by Sk. The semidefinite programming relaxation of MAX NAE-SAT
is given in Figure 1. In this relaxation, a unit vector vi ∈ Sn−1 is assigned to each
literal xi, where 1 ≤ i ≤ 2n. In addition, a scalar zj is assigned to each clause, where
1 ≤ j ≤ m. To ensure that xn+i = x̄i, we require vi · vn+i = −1, for 1 ≤ i ≤ n.
To check that this is indeed a relaxation of the MAX NAE-SAT instance, note that for
every Boolean assignment α1, . . . , αn ∈ {0, 1} to the variables x1, . . . , xn, the vectors

30 A. Avidor, I. Berkovitch, and U. Zwick

Max
m

j=1

wjzj

s.t. zj ≤ kj−
kj
l=1 viπ(l)

·viπ(l+1)
4

Cj = NAE(xi1 , . . . , xikj
)

π ∈ Skj , kj ≤ kmax

1 ≤ j ≤ m

zj ≤ 1 1 ≤ j ≤ m
vi · vn+i = −1 1 ≤ i ≤ n

vi1 · vi2 + vi1 · vi3 + vi2 · vi3 ≥ −1 1 ≤ i1, i2, i3 ≤ 2n

vi ∈ Sn−1 1 ≤ i ≤ 2n

Fig. 1. A semidefinite programming relaxation of MAX NAE-SAT

vi = (2αi−1, 0, . . . , 0) ∈ Sn−1, for 1 ≤ i ≤ n, and vi = −vi−n, for n+1 ≤ i ≤ 2n,
satisfy all the required constraints. Also, it is easy to check that

NAE(xi1 , . . . , xikj
) = min

{
1, min

π∈Skj

kj −
∑kj

l=1 viπ(l) · viπ(l+1)

4

}
,

where NAE(xi1 , . . . , xikj
) is defined here to be 1 if the clause is satisfied and 0 other-

wise. (In the above expression, we interpret π(kj +1) to be π(1).) These integral assign-
ments also satisfy the so called “triangle constraints” vi1 ·vi2 +vi1 ·vi3 +vi2 ·vi3 ≥ −1,
for 1 ≤ i1, i2, i3 ≤ 2n. We write the “NAE” constraints only for clauses of size smaller
than the parameter kmax, which will be chosen later. To ensure a polynomial number of
constraints kmax must be chosen to be O(log n

log log n). However, we will only need kmax

to be some constant. Note that, if Cj is clause of size bigger than kmax, then in an opti-
mal solution of the relaxation zj = 1. This semidefinite program can be solved, to any
desired precision, in polynomial time.

2.2 RPR2 - Random Projection Followed by Randomized Rounding

RPR2 parameterized by a function f : R → [0, 1] is defined as follows:

1. Let r be a vector distributed according to the n-dimensional standard normal dis-
tribution N(0, In).

2. For 1 ≤ i ≤ n, set the variable xi to 1 independently with probability f(vi · r).

We typically use RPR2 functions that satisfy f(−x) = 1 − f(x), for any
x ∈ R. RPR2 is a generalization of the outward rotations rounding technique
([Nes98, Ye01, Zwi99]) that was used to obtain previous MAX NAE-SAT approxima-
tion algorithms. More precisely, let φ(x) = (2π)−1/2e−x2/2 and Φ(x) =

∫ x

−∞ φ(t)dt
be the probability density function and the cumulative distribution function of a stan-
dard normal random variable, respectively. Feige and Langberg [FL01] show that out-
ward rotations with a rotation angle γ is equivalent to RPR2 parameterized by the
function fγ(x) = Φ(x cot γ).

Improved Approximation Algorithms for MAX NAE-SAT and MAX SAT 31

2.3 The Algorithm

Our algorithm is parameterized by an RPR2 function f and a perturbation probabil-
ity p ∈ [0, 1

2]:

1. Solve the MAX NAE-SAT semidefinite programming relaxation of Figure 1.
2. Round v1, . . . ,vn using RPR2 parameterized by f .
3. For 1 ≤ i ≤ n, set the variable xi to x̄i, independently, with probability p.

The perturbation step is introduced in order to handle clauses of size larger than kmax.
We choose p = 2

kmax
.

2.4 Analysis

In this section we shortly describe the way used to obtain a lower bound on the perfor-
mance ratio of our MAX NAE-SAT approximation algorithm.

For any dimension d and any r ∈ Rd, let φ(r) = (2π)−d/2e−rT ·r/2 be the prob-
ability density function of a d-dimensional standard normal random variable, and let
φΣ(r) = ((2π)d det(Σ))−1/2e−rT Σ−1r/2 be the probability density function of a d-
dimensional normal random variable with expectation 0 and covariance matrix Σ. Let
v1, . . . ,vk ∈ Sn−1 be vectors corresponding to a clause NAE(x1, . . . , xk). By the def-
inition of the RPR2 procedure, the probability (over the choices of r) that the clause
NAE(x1, . . . , xk) is satisfied is

probf (v1, . . . ,vk)
def
= 1 −

∫
Rn

f(v1 · r) · . . . · f(vk · r)φ(r)dr

−
∫

Rn

(1 − f(v1 · r)) · . . . · (1 − f(vk · r))φ(r)dr.

In addition, if the RPR2 function f satisfies f(−x) = 1 − f(x), then

probf (v1, . . . ,vk) = 1 − 2
∫

Rn

f(v1 · r) · . . . · f(vk · r)φ(r)dr.

Let V be the k by n matrix whose rows are the vectors v1, . . . ,vk. W.l.o.g., we may
assume that v1, . . . ,vk are linearly independent (otherwise we can take a maximal
linearly independent subset of them.) By substituting y = V r we get,

probf (v1, . . . ,vk) = 1 − 2
∫

Rk

f(y1) · . . . · f(yk)φV T V (y)dy.

In particular, the probability probf (v1, . . . ,vk) depends only on the inner products
vi ·vj , for 1 ≤ i < j ≤ k. As the vectors are unit vectors, the probability depends only
on the angles θij = arccos(vi · vj), for 1 ≤ i < j ≤ k. There seems to be no closed
form formula for the latter integeral for most choices of f , even for k = 2. We therefore
use numerical methods to compute probf (v1, . . . ,vk).

32 A. Avidor, I. Berkovitch, and U. Zwick

We let

value(v1, . . . ,vk) = min

{
1, min

π∈Sk

k −
∑k

i=1 vπ(i) · vπ(i+1)

4

}

be the contribution of the clause to the value of the MAX NAE-SAT semidefinite pro-
gramming relaxation. In addition, we let

α̂k(f) = inf
probf (v1, . . . ,vk)
value(v1, . . . ,vk)

where the infimum is taken over all k-tuples of vectors v1, . . . ,vk ∈ Sk−1 that satisfy
the “triangle inequalities” and for which value(v1, . . . ,vk) > 0. If the latter infimum
is attained at v1, . . . ,vk, we call the

(
k
2

)
-tuple of angles (θ12, . . . , θk−1,k) a worst k-

configuration with respect to the RPR2 function f .
In these notations, the probability that the clause NAE(x1, . . . , xk) is satisfied when

using RPR2 parameterized by f , followed by perturbation with probability p, is at least

probf (v1, . . . ,vk)(1 − p(1 − p)k−1 − (1 − p)pk−1)

+ (1 − probf (v1, . . . ,vk))(1 − pk − (1 − p)k).

Let ε > 0 be a small constant. We choose kmax = �8/ε. Then, it is not hard to verify
that the latter expression is bounded below by probf (v1, . . . ,vk)(1 − ε) for k ≤ kmax

and by (1 − e−2 − ε) for k > kmax. In this scenario we may define

αk(f) =
{

α̂k(f) − ε if k ≤ kmax

1 − e−2 − ε if k > kmax

As value(v1, . . . ,vk) is 1 for clauses of size bigger than kmax, the probability that
the clause NAE(x1, . . . , xk) is satisfied is therefore at least αk(f)value(v1, . . . ,vk).
Finally, we let α(f) = mink≥2 αk(f).

Let v1, . . . ,vn ∈ Sn−1 be an optimal solution of the semidefinite programming
relaxation of a MAX NAE-SAT instance. Our algorithm produces an assignment with
an expected cost of:

m∑
j=1

wjPr[clause Cj is satisfied] ≥
m∑

j=1

wjαkj (f) · value(vi1 , . . . ,vikj
)

≥ α(f)
m∑

j=1

wj · value(vi1 , . . . ,vikj
)

≥ α(f)OPT

The last inequality holds as the value of the MAX NAE-SAT semidefinite program-
ming relaxation is an upper bound on the value of the optimal assignment OPT . There-
fore, α(f) is a lower bound on the performance ratio of our approximation algorithm.

Improved Approximation Algorithms for MAX NAE-SAT and MAX SAT 33

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Fig. 2. (a) The RPR2 function fNAE used in the MAX NAE-SAT approximation algorithm.
(b) The RPR2 function fSAT used in the MAX-SAT approximation algorithm.

2.5 The RPR2 Function

In this subsection we describe the RPR2 function f used to obtain an improved ap-
proximation ratio. We note that for various choices of f , the minimum mink≥2 αk(f)
is attained at two values of k (which are less than the k0 parameter of the previous
subsection). We call a worst k-configuration of such a value of k a worst configuration.

Our search for a good RPR2 function was inspired by the previously MAX NAE-
SAT approximation algorithms of [Zwi99]. More specifically, the previous MAX NAE-
SAT approximation algorithm used outward rotations with rotation angle γ = 0.4555.
Equivalently, the algorithm rounded the semidefinite programming solution using
RPR2 with the function fγ(x) = Φ(x cot(0.4555)). Extensive numerical exper-
iments led to the conjecture that for any rotation angle γ and for any k ≥ 4,
the worst k-configurations with respect to fγ(x) = Φ(x cot γ) are the

(
k
2

)
-tuples

(arccos(1 − 4
k), . . . , arccos(1 − 4

k)).
In our algorithm we use the piecewise linear RPR2 function fNAE : R → [0, 1] con-

necting between the points (−∞, 0), (−3.9, 0), (−2.262, 0.044), (0, 0.044), (0, 0.956),
(2.262, 0.956), (3.9, 1) and (∞, 1). The function fNAE is shown in Figure 2(a).
Numerical experiments with the function fNAE lead us to believe that the worst k-
configurations for this function, for any k ≥ 4, are again configurations in which
vi · vj = 1 − 4

k , for every 1 ≤ i < j ≤ k. We thus conjecture:

Conjecture 1. For any k ≥ 4 the infimum in α̂k(fNAE) is attained when for every 1 ≤
i < j ≤ k, vi · vj = 1 − 4

k .

The conjecture implies that α̂k(fNAE) > 0.8279 for all k ≥ 2. We can choose the
parameter ε of subsection 2.4, to be small enough to have α(fNAE) > 0.8279. Our
algorithm achieves its worst case ratio on instances in which all clauses are of size 2 or
12. More specifically, for a worst instance the solution of the semidefinite programming
v1, . . . ,vn satisfies that vi1 · vi2 � −0.7638 for every clause NAE(xi1 , xi2) and vil1

·
vil2

= 1 − 4
12 (1 ≤ l1 < l2 ≤ 12) for every clause NAE(xi1 , . . . , xi12).

In our search for an optimal RPR2 function we considered various piecewise linear
symmetric monotone RPR2 functions with up to eight turnings. Note that the func-

34 A. Avidor, I. Berkovitch, and U. Zwick

tion fNAE used has only six turnings. It should be mentioned that the symmetric RPR2

functions with two turnings (and which are usually referred to as s-linear RPR2 func-
tions [FL01]), achieve approximation ratios worst than outward rotations. Minor im-
provements can be achieved by combining s-linear RPR2 functions with outwards
rotations. We believe our choice of RPR2 function is not far from being optimal.

3 MAX SAT Approximation Algorithms

As MAX NAE-SAT generalizes MAX SAT, our results so far immediately imply a
MAX SAT approximation algorithm with a conjectured approximation ratio of 0.8279.
In this section we present our approximation algorithms for MAX SAT. We first de-
scribe the methods used to obtain previous MAX SAT approximations algorithms.

3.1 Asano’s MAX SAT Approximations Algorithms

As before let xn+i = x̄i, for 1 ≤ i ≤ n. Goemans and Williamson [GW94] formulated
MAX SAT as the following integer programming (IP) problem:

max
∑m

j=1 wjzj

s.t. zj ≤
∑kj

l=1 yil

Cj = xi1 ∨ xi2 ∨ . . . ∨ xikj
,

1 ≤ j ≤ m

yi + yn+i = 1 1 ≤ i ≤ n

yi ∈ {0, 1} 1 ≤ i ≤ 2n
zj ∈ {0, 1} 1 ≤ j ≤ m

If the last two integrality constraints are relaxed, and the variables yi and zj are
allowed to take on any values between 0 and 1, then an LP relaxation of MAX SAT
is obtained. Let (y∗, z∗) be an optimal solution of the LP relaxation of MAX SAT.
Goemans and Williamson [GW94] used the following rounding: Let g : [0, 1] → [0, 1]
be a rounding function. For 1 ≤ i ≤ n, set the variable xi to be 1 independently with
probability g(y∗).

Asano [Asa03], following [AW02], suggested two families of rounding functions:

fa
3 (y) =

{
1 − a

(4a2)y if y ∈ [0, 1
2]

(4a2)y

4a if y ∈ [12 , 1]
and fa

4 (y) =

⎧⎨
⎩

ay + 1 − a if y ∈ [0, 1 − ya]
ay
2 + 1

2 − a
4 if y ∈ [1 − ya, ya]

ay if y ∈ [ya, 1]

where ya = 1
a − 1

2 .
Asano showed that using the rounding function fa

3 (y) for 1/2 ≤ a ≤
√

e/2 =
0.824360..., the approximation ratio obtained for clauses of size k is at least:

ζa
k =

{
a if k = 1

1 − 1
4ak−2 if k ≥ 2 .

Improved Approximation Algorithms for MAX NAE-SAT and MAX SAT 35

Max
mX

j=1

wjzj

s.t. zj ≤
kjP
l=1

yil

zj ≤ 1
kj−1

P
1≤p<q≤kj

3−v0·vip
−v0·viq

−vip
·viq

4
kj ≥ 2

zj ≤ 1

(kj−1
2)

P
1≤l1<l2<l3≤kj

uil1 il2 il3
kj ≥ 3

zj ≤
kj+1−

Pkj

l=0 viπ(l)
·viπ(l+1)

4

π ∈ Ŝkj

kj ≤ kmax

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

1 ≤ j ≤ m
Cj = xi1 ∨ . . . ∨ xikj

yi = 1−v0·vi

2
1 ≤ i ≤ 2n

ui1i2i3 ≤
4−

P3
l=0 viπ(l)

·viπ(l+1)
4

π ∈ Ŝ3

ui1i2i3 ≤ 1 1 ≤ i1 < i2 < i3 ≤ kj

zj ≤ 1 1 ≤ j ≤ m

vi · vn+i = −1 1 ≤ i ≤ n

vi1 · vi2 + vi1 · vi3 + vi2 · vi3 ≥ −1 0 ≤ i1, i2, i3 ≤ 2n

vi ∈ Sn 0 ≤ i ≤ 2n

Fig. 3. A semidefinite programming relaxation of MAX SAT

In addition, he showed that if the rounding function fa
4 (y) for

√
e/2 ≤ a ≤ 1 is

used, then the approximation ratio obtained for clauses of size k is at least:

ηa
k = 1 − max

{
ak

(
1 − 1

k

)k
, ak−2

4 , ak

2

(
1 − 1−ya

k−1

)k−1

, 1
2k

(
1 + a

2 − a
k

)k

}
,

for k ≥ 2 and ηa
k = a for k = 1.

To obtain an improved approximation algorithm for MAX SAT Asano used a hybrid
approach that was also used by Asano and Williamson [AW02]. In this approach several
algorithms are run in parallel to obtained a solution and the solution with the maximal
value is returned.

More specifically, the algorithm first solves a semidefinite programming relaxation
for MAX SAT which incorporates all relaxations (LP and SDPs) used in pervious al-
gorithms (see Figure 3 discussed in the next subsection). If the solution is rounded
using the rounding procedure of Goemans and Williamson [GW94] with the round-
ing function fa

3 , the MAX 2-SAT rounding procedure of Feige and Goemans [FG95]
and the rounding procedure of Halperin and Zwick [HZ01] for MAX 3-SAT, a perfor-
mance guarantee of 0.7877 is obtained. If the solution is rounded using the rounding
procedure of Goemans and Williamson [GW94] with the rounding function fa

4 and the
MAX NAE-SAT rounding procedure of [Zwi99], a conjectured performance guarantee
of 0.8353 is obtained.

In the next subsections we use the hybrid approach with improved algorithms to
obtain an improved approximation algorithms for MAX SAT.

36 A. Avidor, I. Berkovitch, and U. Zwick

APPROXMAX-SAT(g, S , p)

1. Solve the MAX SAT semidefinite programming relaxation of Figure 3. (W.l.o.g v0 =
(1, 0, . . . , 0) ∈ Rn+1.)

2. Return the maximal solution between
(a) For 1 ≤ i ≤ n, set xi = 1 independently with probability g(yi)
(b) i. Let r = (0, r1, . . . , rn), where r1, . . . , rn are independent standard normal

variables. For 1 ≤ i ≤ n, set xi = 1 if vi · r ≤ S(v0 · vi)
ii. For 1 ≤ i ≤ n, set xi = x̄i independently with probability p

Fig. 4. Algorithm APPROXMAX-SAT

3.2 A Semidefinite Programming Relaxation for MAX SAT

The semidefinite programming relaxation of MAX SAT is shown in Figure 3. As in
the semidefinite programming relaxation of MAX NAE-SAT, each Boolean variable xi

corresponds to a unit vector vi. Here, the additional vector v0 corresponds to the value
FALSE and the vector −v0 corresponds to the value TRUE. We use Ŝk to denote the set
of all permutation of {0, 1, . . . , k}, i0 to denote the index 0 and π(k+1) to denote π(0).
As before to ensure a program of polynomial size we should take kmax = O(log n

log log n),
but eventually we take kmax to be some constant.

In an integral solution all the vectors correspond to the value FALSE are set to v0

and all the vectors correspond to the value TRUE are set to −v0. Hence, in an integral
solution, the expression 1

2 (1 − v0 · vi) is 1 if and only if vi = −v0 and 0 if and only if
vi = v0. Similarly, the expression 1

4 (3−v0 ·vip − v0 · viq −vip · viq) is 1 only if and
only if at least one of the vectors vip , viq is −v0. It can be easily verified that ui1i2i3 is
1 if and only if at least one of the vectors vi1 , vi2 , vi3 is −v0.

3.3 A Hybrid 0.7968-Approximation Algorithm for MAX SAT

Our first hybrid algorithm combines the LP rounding of Asano and Williamson [AW02]
with a perturbation of the threshold rounding suggested for MAX 2-SAT by Lewin,
Livnat and Zwick [LLZ02]. Our algorithm is given in Figure 4. The algorithm is
parameterized by an LP rounding function g : [0, 1] → [0, 1], a threshold func-
tion S : [−1, 1] → R and a perturbation probability p ∈ [0, 1

2]. We choose the
LP rounding function of Asano and Williamson g = fa

3 and the threshold function
S(x) = − cot(0.5583 arccos(x) + 0.6466)

√
1 − x2 used by Lewin, Livnat and Zwick.

The analysis of the algorithm is similar to the analysis of the MAX NAE-SAT
algorithm. More specifically, for a clause x1, . . . , xk with corresponding vectors
v0, v1, . . . ,vk we denote by probLLZ(v0, v1, . . . ,vk) the probability that the clause is
satisfied using the rounding of step (2(b)i). In addition, let

value(v0, v1, . . . ,vk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1−v0·v1
2 if k = 1

3−v0·v1−v0·v2−v1·v2
4 if k = 2

min

{
1, 1

(k−1
2)

∑
1≤i1<i2<i3≤k

ui1i2i3

}
if k ≥ 3

Improved Approximation Algorithms for MAX NAE-SAT and MAX SAT 37

where

ui1i2i3 = min

{
1, min

π∈Ŝ3

4 −
∑3

l=0 viπ(l) · viπ(l+1)

4

}
.

A lower bound on the approximation ratio of step (2(b)i) for clauses of size k is there-
fore

βk = inf
probLLZ(v0, v1, . . . ,vk)
value(v0, v1, . . . ,vk)

.

where the infimum is taken over all (k + 1)-tuples of vectors v0, v1, . . . ,vk ∈ Sk that
satisfy the “triangle inequalities” and for which value(v0, v1, . . . ,vk) > 0. Note that,
for k ≥ 3, βk ≥ β3

k

probLLZ [x1 ∨ . . . ∨ xk = TRUE]

≥ 1(
k
3

) ∑
1≤i1<i2<i3≤k

probLLZ [xi1 ∨ xi2 ∨ xi3 = TRUE]

≥ 1(
k
3

) ∑
1≤i1<i2<i3≤k

β3ui1i2i3 ≥ β3

k
value(v0, v1, . . . ,vk).

Adding the perturbation step, the performance ratio of the rounding (2b) for clauses of
size k is at least βk(1 − p)k + (1 − βk)(1 − (1 − p)k).

The probability probLLZ(v0, v1, . . . ,vk) may be written as a (k − 1)-dimensional
integral. However, this integral does not seem to have an analytical representation, even
for k = 2. We used numerical methods to compute lower bounds on βk. In particular,
β1 > 0.9834, β2 > 0.9401 and β3 > 0.8610. It is possible to obtain a rigorous proof
for the latter three bounds using a tool such as REALSEARCH [Zwi02]. However, this
would require a tremendous amount of work.

In this scenario, for any p1, p2 ≥ 0 that satisfy p1 + p2 = 1, the approximation ratio
of our algorithm is bounded below by the approximation ratio of an algorithm that runs
the rounding of (2a) with probability p1 and the rounding of (2b) with probability p2.
We can therefore formulate an optimization problem over the variables a, p, p1, p2 for
which a feasible solution gives values for a and p and a lower bound on the performance
guarantee:

max β
s.t. p1(0.9834(1− p) + (1 − 0.9834)p) + p2ζ

a
k ≥ β k = 1

p1(0.9401(1− p)2 + (1 − 0.9401)(1− (1 − p)2) + p2ζ
a
k ≥ β k = 2

p1(0.8610
k (1 − p)k + (1 − 0.8610

k)(1 − (1 − p)k) + p2ζ
a
k ≥ β k ≥ 3

p1 + p2 = 1
1
2 ≤ a ≤

√
e

2
0 ≤ p ≤ 1

2
0 ≤ p1, p2 ≤ 1

A feasible solution is p1 = 0.732178, p2 = 0.267822, a = 0.731649 and p = 0.008741
giving us an approximation ratio of β = 0.7968. In this setting, the constraints of

38 A. Avidor, I. Berkovitch, and U. Zwick

APPROXMAX-SAT–RPR2(g, f , p)

1. Solve the MAX SAT semidefinite programming relaxation of Figure 3.
2. Return the maximal solution between

(a) For 1 ≤ i ≤ n, set xi = 1 independently with probability g(yi)
(b) i. Let r = (r0, r1, . . . , rn), where r0, r1, . . . , rn are independent standard nor-

mal variables. For 0 ≤ i ≤ n, set xi = 1 independently with probability
f(vi · r)

ii. If x0 = 1, set xi = x̄i, for 0 ≤ i ≤ n
iii. For 1 ≤ i ≤ n, set xi = x̄i independently with probability p

Fig. 5. An RPR2 based approximation algorithm for MAX SAT

k = 2, 15 are tight and the constraints of k = 1, 7 are almost tight. Hence, our algorithm
achieves its worst case ratio on instances in which all clauses are of size 2 or 15.

We note that the addition of any combination of the Goemans and Williamson algo-
rithm [GW94] with the rounding function fa

4 (for any
√

e/2 ≤ a ≤ 1) and the algo-
rithms of Halperin and Zwick [HZ01] with or without perturbation does not improve
the approximation ratio.

3.4 An Improved Approximation Algorithm Using RPR2

Our improved hybrid algorithm combines the LP rounding of Asano [Asa03] and
RPR2. Our algorithm is given in Figure 5. The algorithm is parameterized by a round-
ing function g : [0, 1] → [0, 1], an RPR2 function f and a perturbation probability p.
We choose g = fa

4 , p = 2
kmax

and an RPR2 function fSAT that resembles the fNAE used
in the previous section. The function fSAT is a piecewise linear connecting between the
points (−∞, 0), (−4, 0), (−2.064, 0.029), (0, 0.029), (0, 0.971),(2.064, 0.971), (4, 1)
and (∞, 1). The RPR2 function fSAT is given in Figure 2(b).

The analysis of our hybrid algorithm resembles the one of the MAX NAE-SAT algo-
rithm. Similar arguments shows that for sufficiently large n, the parameter αk+1(fSAT)
(as defined in Subsection 2.4) is a lower bound on the approximation ratio of step (2b)
for clauses of size k. Hence, a lower bound on the performance guarantee of our hybrid
algorithm may be obtained by solving the following optimization problem:

max β
s.t. p1αk+1(fSAT) + p2η

a
k ≥ β k ≥ 1

p1 + p2 = 1√
e

2 ≤ a ≤ 1
0 ≤ p1, p2 ≤ 1

We conjecture that conjecture 1 holds for fSAT as well. Based on the conjecture we cal-
culated lower bounds on α̂k(fSAT). Using the arguments of subsection 2.5, for a proper
choice of kmax these bounds are also bounds on αk(fSAT). Using these bounds, a fea-
sible solution is p1 = 0.648682, p2 = 0.351318, a = 0.840105 yielding a conjectured
approximation ratio of β = 0.8434. In this setting, the constraints of k = 1, k = 2 and
k = 5 are tight, i.e., our algorithm achieves its worst case ratio on instances in which
all clauses are of size 1, 2 or 5.

Improved Approximation Algorithms for MAX NAE-SAT and MAX SAT 39

We note that the addition of any combination of Goemans and Williamson algo-
rithm [GW94] with the rounding function fa

3 (for any 1/2 ≤ a ≤
√

e/2), Lewin, Livnat
and Zwick algorithm [LLZ02], Halperin and Zwick algorithms [HZ01] with or without
perturbation does not yield an improved approximation ratio. Again, in our search for
an optimal RPR2 function we explored various piecewise linear symmetric monotone
functions with up to eight turning points.

4 Concluding Remarks

We used the RPR2 technique to obtain approximation algorithms for the MAX NAE-
SAT and MAX SAT problems with conjectured approximation ratios of 0.8279 and
0.8434, respectively. We also used the MAX 2-SAT algorithm of Lewin Livnat and
Zwick to obtain an 0.7968-approximation algorithm for the MAX SAT problem.

References

[AE98] G. Andersson and L. Engebretsen. Better approximation algorithms for SET

SPLITTING and NOT-ALL-EQUAL SAT. Information Processing Letters, 65:305–
311, 1998.

[AMMN05] N. Alon, K. Makarychev, Y. Makarychev, and A. Naor. Quadratic forms on graphs.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, Maryland, pages 486–493, 2005.

[AOH96] T. Asano, T. Ono, and T. Hirata. Approximation algorithms for the maximum
satisfiability problem. Nordic Journal of Computing, 3:388–404, 1996.

[Asa97] T. Asano. Approximation algorithms for MAX SAT: Yannakakis vs. Goemans-
Williamson. In Proceedings of the 3nd Israel Symposium on Theory and Comput-
ing Systems, Ramat Gan, Israel, pages 24–37, 1997.

[Asa03] T. Asano. An improved analysis of Goemans and Williamson’s LP-relaxation for
MAX SAT. FCT 2003, LNCS 2751:2–14, 2003.

[AW02] T. Asano and D. P. Williamson. Improved approximation algorithms for
MAX SAT. Journal of Algorithms, 42:173–202, 2002.

[CW04] M. Charikar and A. Wirth. Maximizing Quadratic Programs: Extending
Grothendieck’s Inequality. In Proceedings of the 45th Annual IEEE Symposium
on Foundations of Computer Science, Rome, Italy, pages 54–60, 2004.

[FG95] U. Feige and M. X. Goemans. Approximating the value of two prover proof sys-
tems, with applications to MAX-2SAT and MAX-DICUT. In Proceedings of the
3rd Israel Symposium on Theory and Computing Systems, Tel Aviv, Israel, pages
182–189, 1995.

[FL01] U. Feige and M. Langberg. The RPR2 rounding technique for semidefinite pro-
grams. In Proceedings of the 28th Int. Coll. on Automata, Languages and Pro-
gramming, Crete, Greece, pages 213–224, 2001.

[GW94] M. X. Goemans and D. P. Williamson. New 3/4-approximation algorithms for the
maximum satisfiability problem. SIAM Journal on Discrete Mathematics, 7:656–
666, 1994.

[GW95] M. X. Goemans and D. P. Williamson. Improved Approximation Algorithms
for Maximum Cut and Satisfiability Problems Using Semidefinite Programming.
Journal of the ACM, 42:1115–1145, 1995.

40 A. Avidor, I. Berkovitch, and U. Zwick

[Hås01] J. Håstad. Some optimal inapproximability results. Journal of the ACM,
48(4):798–859, 2001.

[HYZ04] Q. Han, Y. Ye, and J. Zhang. Improved Approximation for Max Set Splitting and
Max NAE SAT. Discrete Applied Mathematics, 142(1-3):133–149, 2004.

[HZ01] E. Halperin and U. Zwick. Approximation algorithms for MAX 4-SAT and round-
ing procedures for semidefinite programs. Journal of Algorithms, 40:184–211,
2001.

[Joh74] D. S. Johnson. Approximation algorithms for combinatorical problems. Journal
of Computer and System Sciences, 9:256–278, 1974.

[KZ97] H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX 3SAT? In
Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer
Science, Miami Beach, Florida, pages 406–415, 1997.

[LLZ02] M. Lewin, D. Livnat, and U. Zwick. Improved rounding techniques for the MAX
2-SAT and MAX DI-CUT problems. In Proceedings of the 9th IPCO, Cambridge,
Massachusetts, pages 67–82, 2002.

[MM01a] S. Matuura and T. Matsui. 0.863-approximation algorithm for MAX DICUT. In
Approximation, Randomization and Combinatorial Optimization: Algorithms and
Techniques, Proceedings of APPROX-RANDOM’01, Berkeley, California, pages
138–146, 2001.

[MM01b] S. Matuura and T. Matsui. 0.935-approximation randomized algorithm for MAX
2SAT and its derandomization. Technical Report METR 2001-03, Department
of Mathematical Engineering and Information Physics, the University of Tokyo,
Japan, September 2001.

[Nes98] Y. E. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization.
Optimization Methods and Software, 9:141–160, 1998.

[Yan94] M. Yannakakis. On the approximation of maximum satisfiability. Journal of
Algorithms, 17:475–502, 1994.

[Ye01] Y. Ye. A .699-approximation algorithm for Max-Bisection. Mathematical Pro-
gramming, 90(1, Ser. A):101–111, 2001.

[Zwi99] U. Zwick. Outward rotations: a tool for rounding solutions of semidefinite pro-
gramming relaxations, with applications to MAX CUT and other problems. In
Proceedings of the 31th Annual ACM Symposium on Theory of Computing, At-
lanta, Georgia, pages 679–687, 1999.

[Zwi02] U. Zwick. Computer assisted proof of optimal approximability results. In Pro-
ceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, San
Francisco, California, pages 496–505, 2002.

The Hardness of Network Design for
Unsplittable Flow with Selfish Users�

Yossi Azar and Amir Epstein

School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel
azar@tau.ac.il, amirep@tau.ac.il

Abstract. In this paper we consider the network design for selfish users
problem, where we assume the more realistic unsplittable model in which
the users can have general demands and each user must choose a single
path between its source and its destination. This model is also called
atomic (weighted) network congestion game. The problem can be pre-
sented as follows : given a network, which edges should be removed to
minimize the cost of the worst Nash equilibrium?

We consider both computational issues and existential issues (i.e. the
power of network design). We give inapproximability results and ap-
proximation algorithms for this network design problem. For networks
with linear edge latency functions we prove that there is no approx-
imation algorithm for this problem with approximation ratio less then
(3+

√
5)/2 ≈ 2.618 unless P = NP . We also show that for networks with

polynomials of degree d edge latency functions there is no approximation
algorithm for this problem with approximation ratio less then dΘ(d) un-
less P = NP . Moreover, we observe that the trivial algorithm that builds
the entire network is optimal for linear edge latency functions and has
an approximation ratio of dΘ(d) for polynomials of degree d edge latency
functions. Finally, we consider general continuous, non-decreasing edge
latency functions and show that the approximation ratio of any approx-
imation algorithm for this problem is unbounded, assuming P �= NP . In
terms of existential issues we show that network design cannot improve
the maximum possible bound on the price of anarchy in the worst case.

Previous results of Roughgarden for networks with n vertices where
each user controls only a negligible fraction of the overall traffic showed
optimal inapproximability results of 4/3 for linear edge latency functions,
Θ(d/ ln d) for polynomial edge latency functions and n/2 for general con-
tinuous non-decreasing edge latency functions. He also showed that the
trivial algorithm that builds the entire network is optimal for that case.

1 Introduction

1.1 Selfish Routing

A major component of any large-scale network system is the routing mechanism,
namely choosing a communication path between a sender and a receiver of traffic.

� Research supported in part by the German-Israeli Foundation.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 41–54, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

42 Y. Azar and A. Epstein

In most cases, such as the Internet, wireless networks, or overlay networks built
on top of the Internet, traffic from a sender to a receiver is sent over a single path;
splitting the traffic causes the problem of packet reassembly at the receiver and
thus is generally avoided. When choosing routing paths, the typical objective is
to minimize the total latency. In most of these network systems it is infeasible
to maintain one centralized authority that imposes efficient routing strategies
on the network traffic. As a result users act independently and “selfishly”: each
user tries to minimize his traffic cost based on current network traffic.

This problem can be mathematically formalized using classical game theory
as follows. The network users are viewed as independent agents participating in
a non-cooperative game. Each agent wishes to use the minimum latency path
from its source to its destination, given the link congestion caused by the rest
of the agents. This system is said to be in Nash Equilibrium if no agent has an
incentive to change his path from its source to its destination. It is well known
that Nash Equilibria do not in general optimize the social welfare (see, e.g, ”The
Prisoner’s Dilemma” [7, 15]) and can be far from the global optimum.

Equilibria can be defined for pure strategies, where a single path is chosen
by each user and for mixed strategies, where a probability distribution over
the paths is used instead of a single path. Our hardness results hold for pure
strategies and hence also for mixed strategies. Nash equilibrium requires mixed
strategies, but in some cases pure strategies suffice [9, 14, 17].

The degradation of network performance caused by the lack of a centralized
authority can be measured using the worst-case coordination ratio (price of anar-
chy) suggested by Koutsoupias and Papadimitriou [10] and Papadimitriou [16]
which is the ratio between the worst possible Nash Equilibrium and the social
optimum, see, e.g., [1,4–6,10,11,16,19–21].

Braess’s paradox is the counterintuitive phenomenon that removing edges
from a network can improve its performance. This paradox was first discovered
by Braess [3] and later reported by Murchland [12]. Braess’s paradox motivates
the following network design problem for improving the performance of a network
with selfish users: How can we design selfish users networks to minimize the
inefficiency inherent in Nash equilibrium?

Previous results of Roughgarden [18] for networks of n vertices with single
source-sink pair where each user controls only a negligible fraction of the overall
traffic showed optimal inapproximability results of 4/3 for linear edge latency
functions, Θ(d/ ln d) for polynomials of degree d edge latency functions and n/2
for general continuous non-decreasing edge latency functions. He also showed
that the trivial algorithm that builds the entire network is optimal. For linear
and polynomial edge latency functions these follow from price of anarchy results
of Roughgarden and Tardos [21].

1.2 Our Results

We prove the following results for the network design problem for general net-
works with unsplittable flow:

The Hardness of Network Design for Unsplittable Flow with Selfish Users 43

– For linear latency functions we prove that for any ε > 0 there is no (β − ε)-
approximation algorithm for network design where β = (3 +

√
5)/2 ≈ 2.618,

assuming P �= NP . Price of anarchy results appearing in [1] imply that this
hardness result is optimal.

– For latency functions which are polynomials of degree d we prove that there
is no approximation algorithm for network design, with approximation ratio
less then dΘ(d), assuming P �= NP . Price of anarchy results appearing in
[1] imply that the trivial algorithm has an approximation ratio of dΘ(d).
We note that our hardness result is Ω(dd/4) where the trivial algorithm’s
approximation ratio is O(2ddd+1).

– For general continuous, non-decreasing latency functions we show that the
approximation ratio of any polynomial time approximation algorithm for
NETWORK DESIGN is unbounded, assuming P �= NP .

The above results deal with the computational issues related to the power of
network design. We also consider the existential issues. Specifically we also con-
sider the question whether network design can reduce the maximum bound on
the price of anarchy in the worst case. We answer this negatively.

– For linear edge latency functions there is a network with coordination ratio
at least β − ε where β = (3 +

√
5)/2 ≈ 2.618 for any ε > 0, for polynomi-

als of degree d edge latency functions there is a network with coordination
ratio at least Ω(dd/4) and for general latency functions (continuous and non-
decreasing) there is a network with unbounded coordination ratio such that
in these networks network design cannot decrease the cost of the worst Nash
equilibrium.

All our results hold for pure strategies and hence also for mixed strategies,
since these are hardness and non existential results.

Techniques: To prove our hardness results we first prove hardness results to SE-
LECTIVE NETWORK DESIGN which is an harder problem than NETWORK
DESIGN. Then we show a general way to transform many types of hardness
results of selective network design to hardness results of network design.

1.3 Paper Structure

The paper is organized as follows. Section 2 includes formal definitions and
notations. In section 3 we prove inapproximability results for NETWORK DE-
SIGN and observe the approximation ratio of the trivial algorithm for linear and
polynomial latency functions. In section 4 we consider the existential issues of
NETWORK DESIGN and show that it cannot reduce the maximum bound on
the price of anarchy.

2 Definitions and Preliminaries

2.1 The Model

We consider the following model which is called weighted network congestion
game: there is a directed graph G = (V, E). Each edge e ∈ E is given a load-

44 Y. Azar and A. Epstein

dependent latency function fe : R+ → R+. There are n users, where user j
(j = 1, . . . , n) has a bandwidth request defined by a tuple (sj , tj , wj), where
sj , tj ∈ V are the source/destination pair, and wj ∈ R+ corresponds to the
required bandwidth. We denote the set of (simple) sj − tj paths by Qj. Request
j can be assigned to any path Q from the set of paths Qj , such that the required
bandwidth wj has to be reserved along the path Q.

We assume that the users are non-cooperative and each one wishes to mini-
mize its own cost with no regard to the global optimum. In Pure strategies user
j selects a single path Q ∈ Qj and assigns his request to it. Each user is aware
of the choices made by all other users when making his decision.

2.2 Pure Strategies Definition

First, we give some simpler notations we use for a system S = (Q1, . . . , Qn)
of pure strategies. Let Qj be the path associated with request j. We define
J(e) = {j|e ∈ Qj} the set of requests assigned to a path containing the edge e.
The load on edge e is defined by: le =

∑
j∈J(e) wj .

For the optimal routes let Q∗
j be the path associated with request j. We define

J∗(e) = {j|e ∈ Q∗
j} the set of requests assigned to a path containing the edge e.

We denote the load on edge e by l∗e .

Definition 1. The latency of user j for assigning his request in system S to
path Q (instead of path Qj) is defined as:

cQ,j =
∑

(e∈Q)∧(e∈Qj)

fe(le) +
∑

(e∈Q)∧(e�∈Qj)

fe(le + wj). (1)

2.3 Nash Equilibrium and Coordination Ratio

Nash equilibrium is characterized by the property that there is no incentive for
any user to change its strategy and defined as follows

Definition 2 (Nash Equilibrium). A system S is said to be in pure Nash
Equilibrium if and only if for every j ∈ {1, . . . , n} and Q ∈ Qj, cQj ,j ≤ cQ,j.

Definition 3. The cost C(S) for a given system S of pure strategies is defined
as the total latency incurred by S, that is C(S) =

∑
e∈E fe(le)le.

We are interested in estimating the worst-case coordination ratio when pure
Nash equilibrium exists. We denote the optimal system of pure strategies by S∗.

Definition 4 (Coordination Ratio). The coordination ratio is defined as
R = maxS

C(S)
C(S∗) , where the maximum is taken over all strategies S in Nash

equilibrium.

The Hardness of Network Design for Unsplittable Flow with Selfish Users 45

2.4 Formalizing the Network Design Problem

Let C(H,S) be the total latency incurred by a given system S of pure strategies
in Nash equilibrium for a subgraph H of G. If there is a user j such that Qj = ∅
in the subgraph H then C(H,S) = ∞. We denote by C(H) the maximum cost
obtained for the graph H , where the maximum is taken over all strategies S in
Nash equilibrium for the graph H . We note that for unsplittable flow we do not
know how to compute the value C(H) in polynomial time, while for the case of
splittable flow (or alternatively where each user controls a negligible amount of
the traffic) the value C(H) can be recovered from the subgraph H in polynomial
time via convex programming for positive convex functions (see [2]). Now we
define the network design and selective network design problems for unsplittable
flow.

The Network Design Problem: Given a weighted network congestion game
with directed graph G = (V, E), find a subgraph H of G that minimizes C(H).

The Selective Network Design Problem: Given a weighted network con-
gestion game with directed graph G = (V, E) and E1 ⊆ E, find a subgraph H
of G containing the edges of E1 that minimizes C(H).

The above formulation of the SELECTIVE NETWORK DESIGN problem
is itself interesting, but the main purpose of the presentation of this problem is
for proving inapproximability results for the NETWORK DESIGN problem. In
particular we first prove hardness results for the selective network design problem
(which is a harder problem than the network design problem and hence it is easier
to show hardness results for this problem) and then we modify the instance of
the selective network design problem used in the proof of inapproximability of
selective network design to an instance of the network design problem to show
its inapproximability result.

3 Inapproximabilty of Network Design

In this section we consider the computational issues of NETWORK DESIGN.
Specifically we prove inapproximabilty results for NETWORK DESIGN and
observe the approximation ratio of the trivial algorithm for linear and polynomial
latency functions.

3.1 Linear Latency Functions

In this section we consider the case where the latency of each edge is linear in
the edge congestion. Specifically fe(x) = aex + be for each edge e ∈ E, where ae

and be are nonnegative reals. Let β = (3 +
√

5)/2 ≈ 2.618.
A trivial algorithm for the problem outputs the entire network G. We be-

gin by observing that this trivial algorithm for NETWORK DESIGN is a β-
approximation algorithm, where the latency functions are linear. This will fol-
low easily from a result of Awerbuch et al. [1]. They proved that in every

46 Y. Azar and A. Epstein

network with linear latency functions and unsplittable flow, the cost of unsplit-
table flow at Nash equilibrium is at most β times that of every other feasible
unsplittable flow.

Proposition 1. ([1]) For linear latency functions and weighted demands let S∗

be a system of strategies and let S be a system of strategies in Nash equilibrium.
Then C(S) ≤ β · C(S∗).

Corollary 1. The trivial algorithm is a β-approximation for linear latency func-
tions and weighted demands.

Proof. Consider an instance of the problem with subgraph H of G minimizing
C(H). Let S and S∗ denote systems of strategies at Nash equilibrium for the
graphs G and H , respectively. Since S∗ can be viewed as a system of strategies
for the graph G, it follows from proposition 1 that C(G, S) ≤ β · C(G, S∗) and
hence C(G) ≤ β · C(H).

The main result of this section is a lower bound on the approximation ratio of
any polynomial algorithm (unless P=NP).

Fig. 1. Proof of Theorem 1

Theorem 1. For linear latency functions and weighted demands assuming P �=
NP there is no (β − ε)-approximation algorithm for SELECTIVE NETWORK
DESIGN (recall that β = (3 +

√
5)/2 ≈ 2.618).

Proof. We reduce from the problem 2 Directed Disjoint Paths (2DDP): Given
a directed graph G = (V, E) and distinct vertices s1, s2, t1, t2 ∈ V , are there
si-ti paths P1 and P2, such that P1 and P2 are vertex disjoint? Fortune et
al. [8] proved that this problems is NP-complete. We will show that for linear
latency functions and weighted demands (β−ε)-approximation algorithm for the
SELECTIVE NETWORK DESIGN problem can be used to distinguish “yes”
and “no” instances of 2DDP in polynomial time. Consider an instance I of 2DDP,
as above. We add the vertices w1, w2, v1 and v2 to the vertex set V and include
directed edges (t1, w1), (t2, w2), (w1, v1), (w2, v2), (v1, v2), (v2, v1), (v1, w2) and
(v2, w1) as shown in Figure 1. We denote the new network by G′ = (V ′, E′). Let
E1 := E′ − E be the group of edges that the subgraph H of G′ should contain.
We define the following linear latency functions f for the edges of E′: the edges

The Hardness of Network Design for Unsplittable Flow with Selfish Users 47

(w1, v1), (w2, v2), (v1, v2), (v2, v1) are given the latency functions f(x) = x and all
other edges are given the latency functions f(x) = 0. We later choose φ = 1+

√
5

2
which is the golden ratio. We consider an atomic weighted network congestion
game with six players that uses the network G′. Player 1 has a bandwidth request
(s1, v1, φ) (player 1 has to move φ units of bandwidth from s1 to v1), player 2
has a bandwidth request (s2, v2, φ), player 3 has a bandwidth request (v1, v2, 1),
player 4 has a bandwidth request (v2, v1, 1), player 5 has a bandwidth request
(s1, t1, 1) and player 6 has a bandwidth request (s2, t2, 1). The new instance I ′

can be constructed from I in polynomial time. To complete the proof, it suffices
to show the following two statements.

1. If I is a “yes” instance of 2DDP, then G′ contains a subgraph H of G′ with
C(H) = 2φ2 + 2.

2. If I is a “no” instance of 2DDP, then C(H) ≥ 2(φ+1)2+2φ2 for all subgraphs
H of G′.

Recall that the subgraph H of G′ should contain the edges in E1. To prove
(1), let P1 and P2 be vertex-disjoint paths in G, respectively, and obtain H by
deleting all edges of G not contained in some Pi. Then, H is a subgraph of G′

that contains the paths s1 − t1 − w1 − v1, s2 − t2 − w2 − v2, v1 − v2, v2 − v1,
s1− t1 and s2− t2. These paths are the direct paths of players 1−6 respectively.
The optimal solution S1 is obtained when each player chooses its direct path
and this solution is the only Nash equilibrium for I ′ in which the costs of players
1 − 6 are φ2, φ2, 1, 1,0 and 0 respectively. The total cost C(H, S1) = 2φ2 + 2.
This solution is the unique Nash Equilibrium, since the dominant strategy of
each of the players 1, 2, 5, 6 is to choose its direct path which is its unique simple
path and given these strategies of players 1, 2, 5, 6 the best response of each of
the players 3 and 4 is its direct path. For (2), we may assume that H contains
s1− t1 and s2− t2 paths. In this case the paths s1− t1 and s2− t2 are not disjoint
and hence H must contain s1 − t2 and s2 − t1 paths. Let S2 be the system of
strategies where player 1 uses its indirect path s1−t2−w2−v2−v1, player 2 uses
its indirect path s2− t1−w1−v1−v2, player 3 uses its indirect path v1−w2−v2,
player 4 uses its indirect path v2 − w1 − v1, player 5 uses its direct path s1 − t1
and player 6 uses its direct path s2 − t2. Then this is a Nash equilibrium and
the costs of players 1 − 6 are 2φ + 1, 2φ + 1, φ + 1, φ + 1, 0 and 0 respectively.
The total cost C(H, S2) = 2(φ+1)2 + 2φ2. The ratio of the total costs C(H, S2)
and C(H, S1) is :

2(φ + 1)2 + 2φ2

2φ2 + 2
.

We choose φ = 1+
√

5
2 which is the golden ratio and get a ratio β = φ+1 ≈ 2.618.

This completes the proof.

We call a family X of latency functions nice if all of its functions are non-
negative, continuous and non-decreasing and the family is closed under non-
negative linear combinations. Note that ,obviously, linear and polynomial latency
functions satisfy this definition.

48 Y. Azar and A. Epstein

The following Lemma provides a way to transform inapproximability result of
SELECTIVE NETWORK DESIGN to inapproximability result of NETWORK
DESIGN.

Lemma 1. Given a direct reduction from a hard problem Q to SELECTIVE
NETWORK DESIGN for a nice family of latency functions that shows that it is
hard to c-approximate selective network design, then one can create a similar re-
duction from Q to NETWORK DESIGN for the same family of latency functions
that shows that it is hard to c-approximate network design, if the following condi-
tion applies : for every instance of selective network design created by the reduc-
tion with weighted network congestion game consisting of graph G′ = (V ′, E′),
E1 ⊆ E′ and every subgraph H ⊆ G′ that has been considered in the proof (i.e.
that contains E1) it holds that in the worst Nash equilibrium each player has a
unique best response (best strategy).

Proof. For every instance of SELECTIVE NETWORK DESIGN created by the
reduction with weighted network congestion game consisting of graph G′ =
(V ′, E′), E1 ⊆ E′ and every subgraph H ⊆ G′ that has been considered in
the proof (i.e. that contains E1) we do the following. Let δ > 0. For each edge
e ∈ E1 we make the following local modification. First we split the edge by
adding a new vertex we and replacing the edge e = (u, v) by the two edges
e1 = (u, we) and e2 = (we, v). The new edges e1 and e2 will posses the latency
function 1

2fe. Then we add two players with requests (u, we, δ) and (we, v, δ).
We denote the modified network created from H by H∗ = (V ∗, E∗). Since the
costs of the players change continuously as a function of δ, for sufficiently small
constant δ it holds that in the new weighted network congestion game the worst
Nash equilibrium remains a Nash equilibrium where each player uses its original
strategy and this strategy is its unique best response (the new players choose
their unique strategy). Moreover, the total cost changes continuously as a func-
tion of δ and hence the new total cost is arbitrarily close to the original total cost
as a function of δ. Additionally, each of the edges in E1 cannot be deleted since
it is a unique strategy of a new player. Hence the inapproximablity proof for
SELECTIVE NETWORK DESIGN is also a proof for NETWORK DESIGN.

Unfortunately we cannot use Lemma 1 to prove Theorem 2 according to the
result of Theorem 1, hence we have to modify the weighed network conges-
tion game used in the proof of Theorem 1 to satisfy the condition required by
Lemma 1.

Theorem 2. For linear latency functions and weighted demands assuming P �=
NP there is no (β−ε)-approximation algorithm for NETWORK DESIGN (recall
that β = (3 +

√
5)/2 ≈ 2.618).

Proof. We modify the weighted network congestion game defined in the proof
of Theorem 1 as follows : Let ε > 0. First we modify the network G′ = (V ′, E′)
shown in Figure 1 and obtain the network G′′ = (V ′′, E′′) shown in Figure 2.
Next we modify the requests of players 3 and 4. Player 3 has a bandwidth request
(z1, z2, 1) (its previous request was (v1, v2, 1)) and player 4 has a bandwidth

The Hardness of Network Design for Unsplittable Flow with Selfish Users 49

Fig. 2. Proof of Theorem 2

request (z2, z1, 1) (its previous request was (z2, v1, 1)). The direct paths of players
1− 6 are s1 − t1 −w1 − y1 − v1, s2 − t2 −w2 − y2 − v2, z1 − y4 − z2, z2 − y3 − z1,
s1 − t1 and s2 − t2 respectively. The indirect paths of players 1 − 4 are s1 −
t2 − w2 − y2 − z2 − y3 − v1, s2 − t1 − w1 − y1 − z1 − y4 − v2, z1 − w2 − y2 − z2,
z2 −w1 − y1 − z1 respectively. Now it is easy to verify according to the proof of
Theorem 1 that the following properties hold:

1. The optimum which is the best Nash equilibrium is obtained when each
player chooses its direct path.

2. The worst Nash equilibrium is obtained when each of the players 1−4 chooses
its indirect path and players 5, 6 choose their direct path.

3. In the best and worst Nash equilibria the total cost was increased by at most
8ε.

4. In the best and worst Nash equilibria each player has a unique best response
(best setrategy).

Let E1 = E′′ − E be the group of edges that the subgraph H of G′′ should
contain. It follows from the above properties and the proof of Theorem 1 that
the above modified weighted network congestion game can be used to prove
Theorem 1. It also follows that for every subgraph considered in the new proof
of Theorem 1 which uses the modified weighted network congestion game, in the
worst Nash equilibrium each player has a unique best response (best startegy).
Applying Lemma 1 completes the proof.

3.2 Polynomial Latency Functions

In this section we consider the case where the latency of each edge is a polynomial
of degree d in the edge congestion. Specifically fe(x) =

∑
i ae,ix

i for each edge
e ∈ E, where ae,i are nonnegative reals.

Proposition 2. ([1]) For polynomial of degree d latency functions and weighted
demands let S∗ be a system of strategies and let S be a system of strategies in
Nash equilibrium. Then C(S) ≤ O(2ddd+1) · C(S∗).

50 Y. Azar and A. Epstein

Corollary 2. The trivial algorithm is a O(2ddd+1)-approximation for linear la-
tency functions and weighted demands.

The main results of this section are lower bounds on the approximation ratio of
any polynomial algorithm for weighted demands (unless P=NP).

Fig. 3. Proof of Theorem 3. In this example n = 4.

Theorem 3. For polynomials of degree d latency functions and weighted de-
mands assuming P �= NP there is a lower bound of Ω(dd/4) on the approxi-
mation ratio of any polynomial time approximation algorithm for SELECTIVE
NETWORK DESIGN.

Proof. Let c = 2,let d = 2k (we can assume that d is even), let n = k
√

k/c. We
reduce from the problem 2 Directed Disjoint Paths (2DDP): Given a directed
graph G = (V, E) and distinct vertices s1, s2, t1, t2 ∈ V , are there si-ti paths P1

and P2, such that P1 and P2 are vertex disjoint? Fortune et al. [8] proved that
this problems is NP-complete. We will show that for polynomials of degree d la-
tency functions and weighted demands O(dd/4)-approximation algorithm for the
SELECTIVE NETWORK DESIGN problem can be used to distinguish “yes”
and “no” instances of 2DDP in polynomial time. Consider an instance I of
2DDP, as above. We now build the graph G′ = (V ′, E′) shown in Figure 3. Let
E1 = E′ − E be the group of edges that the subgraph H of G′ should contain.
We begin by adding the vertices w and v0, . . . , vn to the vertex set V and include
directed edges (v0, s1), (t1, v1), (t2, w), (vi, vi+1) for i = 1, . . . , n − 1, (vi, v0) for
i = 1, . . . , n and (w, vi) for i = 1, . . . , n. Next we add the edge latency functions.
Edges (t1, v1) and (vi, vi+1) for i = 1, . . . , n − 1 will possess the latency func-
tion f(x) = x2k, edge (t2, w) will possess the latency function f(x) = k2xk, all
other edges will possess the latency function f(x) = 0. Let δ > 0 be sufficiently
small. We consider an atomic weighted network congestion game with n+3 play-
ers that use the network G′. Player 1 has a bandwidth request (s2, vn, k). For
i = 2 . . . n + 1 player i has a bandwidth request (vi−2, vi−1, c

√
k). Player n + 2

has a bandwidth request (s1, t1, δ) and player n + 3 has a bandwidth request

The Hardness of Network Design for Unsplittable Flow with Selfish Users 51

(s2, t2, δ). The new instance I ′ can be constructed from I in polynomial time.
To complete the proof, it suffices to show the following two statements.

1. If I is a “yes” instance of 2DDP, then G′ contains a subgraph H of G′ with
C(H) = kk+222k + kk+3.

2. If I is a “no” instance of 2DDP, then C(H) ≥ k2k+4 for all subgraphs H of
G′.

To prove (1), let P1 and P2 be vertex-disjoint paths in G, respectively, and
obtain H by deleting all edges of G not contained in some Pi. Then, H is a
subgraph of G′. There is one simple path for each player. The optimal solution
is obtained when each player chooses its direct path as follows. Player 1 chooses
the path s2 − t2 − w − vn ,player 2 chooses the path v0 − s1 − t1 − v1, for
i = 3, . . . n+1 player i chooses the path vi−2−vi−1, player n+2 chooses the path
s1 − t1 and player n + 3 chooses the path s2 − t2. This solution is the only Nash
equilibrium for I ′, in which C(H, S) =

∑
e∈E fe(le)le = n(2

√
k)2k+1+k2 ·kk+1 =

k
√

k/2(2
√

k)2k+1 + k2 · kk+1 = kk+222k + kk+3. For (2), we may assume that H
contains s1− t1 and s2− t2 paths. In this case H must contain s1− t2 and s2− t1
paths to satisfy the requests for paths s1 − t1 and s2 − t2. If player 1 uses its
indirect path s2−t1−v1−v2− . . .−vn, for i = 2 . . . n+1 player i uses its indirect
path vi−2−v0−s1− t2−w−vi−1, player n+2 uses its direct path s1− t1 which
must exist and player n + 3 uses its direct path s2 − t2 if it exists, otherwise it
uses its indirect path s2 − t1 − v1 − v0 − s1 − t2, then this is a Nash equilibrium
with C(H, S) ≥ k2 ·k2k+2 +k ·k2k+3/2/2 = k2k+4 +k2k+5/2/2. To show that this
is a Nash equilibrium we have to show that no player benefits from changing its
path. We assume that player n+3 uses its indirect path s2−t1−v1−v0−s1−t2.
The analysis of the case when player n + 3 uses its direct path s2 − t2 follows
from this case. The cost of player 1 on path s2 − t1 − v1 − v2 − . . . − vn is
k
√

k/2 · k2k = k2k+3/2/2. The cost of player 1 on path s2 − t2 − w − vn is
k2 · (k2 + k + δ)k > k2k+2, which is greater. For i = 2 . . . n + 1 the cost of player
i on path vi−2 − v0 − s1 − t2 − w − vi−1 is k2 · (k2 + δ)k ≥ k2k+2. The cost of
player i on path vi−2 − vi−1 is (k + 2

√
k)2k > k2 · (k2 + δ)k for sufficiently small

δ (but at least one divided by a polynomial in k). Players n+2 and n+3 cannot
decrease their cost by changing path (if one exists). This completes the proof.

Theorem 4. For polynomials of degree d latency functions and weighted de-
mands assuming P �= NP there is a lower bound of Ω(dd/4) on the approxi-
mation ratio of any polynomial time approximation algorithm for NETWORK
DESIGN.

Proof. In any Nash equilibrium considered in the proof of Theorem 3 every
player has a unique best response, hence the result follows from Lemma 1.

3.3 General Latency Functions

In this section we consider the case where the latency of each edge is continuous
and non-decreasing in the edge congestion. We show that the approximation
ratio of any approximation algorithm is unbounded even as a function of n.

52 Y. Azar and A. Epstein

Fig. 4. Proof of Theorem 5. In this example n = 4.

Theorem 5. For general continuous, non-decreasing latency functions assum-
ing P �= NP the approximation ratio of any polynomial time approximation
algorithm for NETWORK DESIGN is unbounded.

Proof. We show that it is NP-hard to differentiate between zero cost and positive
cost. We reduce from the NP-complete problem PARTITION: we are given q
positive integers {a1, a2, . . . , aq} and seek for a subset T ⊆ {1, 2, . . . , q} such

that
∑
j∈T

aj =
1
2

q∑
j=1

aj [13]. Consider an instance I of PARTITION, as above.

We now build the directed graph G = (V, E) shown in Figure 4. Let n = q,
let A =

∑q
j=1 aj , V = {s, t, v1, v2, . . . , vn} and E includes the edges (si, v1) for

i = 1, . . . , n, (si, v2) for i = 1, . . . , n, (v1, t) and (v2, t). The edges (v1, t) and
(v2, t) will posses the latency function f satisfying f(x) = 0 for x ≤ A/2 and
f(x) = x − A/2 for x ≥ A/2, all other edges will posses the latency function
f(x) = 0. We consider an atomic weighted network congestion game with n
players that uses the network G. For i = 1 . . . n player i has a bandwidth request
(si, t, ai).

The new instance I ′ can be constructed from I in polynomial time. To com-
plete the proof, it suffices to show the following two statements.

1. If I is a “yes” instance of PARTITION, then G contains a subgraph H of G
with C(H) = 0.

2. If I is a “no” instance of PARTITION, then C(H) > 0 for all subgraphs H
of G.

To prove (1), let the subset Y be the solution to the instance I, we obtain
H by deleting all edges (si, v2) for i ∈ Y and deleting all edges (si, v1) for i not
in Y . Each player has a unique path (strategy) in the graph H . The load on
each of the edges (v1, t) and (v2, t) is A/2 and hence C(H, S) = 0. For (2), we
may assume that H contains si − t path for each i = 1, . . . , n. Let Y ′ be the
subset of players using paths containing the edge (v1, t) (all other players use
paths containing the edge (v2, t)), then it holds that the load of one of the edges
(v1, t) and (v2, t) is greater then A/2 and hence C(H, S) > 0.

The Hardness of Network Design for Unsplittable Flow with Selfish Users 53

4 The Limitation on the Power of Network Design

In this section we consider the existential issues of NETWORK DESIGN. Specif-
ically we consider the question whether network design can reduce the maximum
bound on the price of anarchy. We answer this negatively.

Theorem 6. For any ε > 0 and for linear latency functions there is a network
with coordination ratio at least β − ε in which NETWORK DESIGN cannot
decrease the cost of the worst Nash equilibrium (recall that β = (3 +

√
5)/2 ≈

2.618).

Proof. The proof follows from the weighted network congestion game with the
graph G′′ constructed in the proof of Theorem 2 where the graph G is contracted
to a single vertex. For each edge in the graph G′′ we apply the local modification
described in the proof of Lemma 1 and obtain a new weighted network congestion
game with coordination ratio at least β − ε where edges cannot be removed.

Theorem 7. For polynomial of degree d latency functions there is a network
with coordination ratio at least Ω(dd/4) in which NETWORK DESIGN cannot
decrease the cost of the worst Nash equilibrium.

Proof. The proof follows from the weighted network congestion game with the
graph G′ constructed in the proof of Theorem 3 where the graph G is contracted
to a single vertex. For each edge in the graph G′ we apply the local modification
described in the proof of Lemma 1 and obtain a new weighted network congestion
game with coordination ratio at least Ω(dd/4) where edges cannot be removed.

Theorem 8. For general latency functions (continuous and non-decreasing)
there is a network with unbounded coordination ratio such that in this network
NETWORK DESIGN cannot decrease the cost of the worst Nash equilibrium.

Proof. We prove the result by showing a weighted network congestion game for
network with edges that cannot be removed (since each edge is a unique path of
a player). In this game there is Nash equilibrium with zero cost and Nash equi-
librium with positive cost as follows. We consider a weighted network congestion
game that uses the network defined in the proof of Theorem 5 and shown in
Figure 4. We denote the new network by G = (V, E). Let the number of source
vertices n = 4 and let A = 12. We define the following players: players 1−4 have
bandwidth requests (s1, t, 2), (s2, t, 3), (s3, t, 2), (s4, t, 3) respectively. For each
i = 1 − 4 we add two players with requests (si, v1, 1) and (si, v2, 1). Addition-
ally we add two players with requests (v1, t, 1) and (v2, t, 1). When players 1, 2
choose their simple paths containing the edge (v1, t), players 3, 4 choose their
simple paths containing the edge (v2, t) and all other players use their unique
path, then this is the optimal solution and it is also the best Nash equilibrium
with cost C(H, S1) = 0. Additional Nash equilibrium is obtained when play-
ers 1, 3 choose their simple paths containing the edge (v1, t), players 2, 4 choose
their simple path containing the edge (v2, t) and all other players use their unique
path. The cost of this Nash equilibrium C(H, S2) > 0.

54 Y. Azar and A. Epstein

References

1. B. Awerbuch, Y. Azar, and A. Epstein. The price of routing unsplittable flow. In
Proc. 37th ACM Symp. on Theory of Computing, 2005. To appear.

2. M. Beckmann, C.B. McGuire, and C.B. Winsten. Studies in Economics of Trans-
portation. Yale University Press, 1956.

3. D. Braess. Uber ein paradoxon der verkehrsplanung. Unternehmensforschung,
12:258–268, 1968.

4. G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion
games. In Proc. 37th ACM Symp. on Theory of Computing, 2005. To appear.

5. A. Czumaj, P. Krysta, and B. Vöcking. Selfish traffic allocation for server farms.
In Proc. 34th ACM Symp. on Theory of Computing, pages 287–296, 2002.

6. A. Czumaj and B. Vöcking. Tight bounds for worst-case equilibria. In Proc. 13rd
ACM-SIAM Symp. on Discrete Algorithms, pages 413–420, 2002.

7. P. Dubey. Inefficiency of nash equilibria. Mathematics of Operations Research,
11(1):1–8, 1986.

8. S. Fortune, J.E. Hopcroft, and J.C. Wyllie. The directed subgraph homeomorphism
problem. Theoretical Computer Science, 10(2):111–121, 1980.

9. D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish unsplittable flows. In In-
ternational Colloquium on Automata, Languages and Programming - ICALP ’04,
2004.

10. E. Koutsoupias and C.H. Papadimitriou. Worst-case equilibria. In Proc. 16th
Symp. on Theoretical Aspects of Comp. Science, pages 404–413, 1999.

11. M. Mavronicolas and P. Spirakis. The price of selfish routing. In Proc. 33rd ACM
Symp. on Theory of Computing, pages 510–519, 2001.

12. J.D. Murchland. Braess’s paradox of traffic flow. Transportation Research, 4:391–
394, 1970.

13. M.R. Garey nad D.S. Johnson. Computers and Intractabilty: A Guide to the Theory
of NP-Completeness. Freeman, 1979.

14. J. F. Nash. Equilibrium points in n-person games. In Proceedings of National
Academy of Sciences, volume 36, pages 48–49, 1950.

15. G. Owen. Game Theory. Academic Press, third edition, 1995.
16. C.H. Papadimitriou. Algorithms, games and the internet. In Proc. 33rd ACM

Symp. on Theory of Computing, pages 749–753, 2001.
17. R. W. Rosenthal. A class of games possesing pure-strategy nash equilibria. Inter-

national Journal of Game Theory, 2:65–67, 1973.
18. T. Roughgarden. Designing networks for selfish users is hard. In Proc. 42nd IEEE

Symp. on Found. of Comp. Science, pages 472–481, 2001.
19. T. Roughgarden. The price of anarchy is independent of the network topology. In

Proc. 34th ACM Symp. on Theory of Computing, pages 428–437, 2002.
20. T. Roughgarden. The maximum latency of selfish routing. In Proc. 15rd ACM-

SIAM Symp. on Discrete Algorithms, pages 973–974, 2004.
21. T. Roughgarden and É. Tardos. How bad is selfish routing. In Proc. 41st IEEE

Symp. on Found. of Comp. Science, pages 93–102, 2000.

Improved Approximation Algorithm for
Convex Recoloring of Trees

Reuven Bar-Yehuda1, Ido Feldman1, and Dror Rawitz2

1 Department of Computer Science, Technion, Haifa 32000, Israel
{reuven, idofeld}@cs.technion.ac.il

2 Caesarea Rothschild Institute, University of Haifa, Haifa 31905, Israel
rawitz@cri.haifa.ac.il

Abstract. A pair (T, C) of a tree T and a coloring C is called a colored
tree. Given a colored tree (T, C) any coloring C′ of T is called a recoloring
of T . Given a weight function on the vertices of the tree the recoloring
distance of a recoloring is the total weight of recolored vertices. A coloring
of a tree is convex if for any two vertices u and v that are colored by
the same color c, every vertex on the path from u to v is also colored
by c. In the minimum convex recoloring problem we are given a colored
tree and a weight function and our goal is to find a convex recoloring of
minimum recoloring distance.

The minimum convex recoloring problem naturally arises in the con-
text of phylogenetic trees. Given a set of related species the goal of phy-
logenetic reconstruction is to construct a tree that would best describe
the evolution of this set of species. In this context a convex coloring
correspond to perfect phylogeny. Since perfect phylogeny is not always
possible the next best thing is to find a tree which is as close to convex
as possible, or, in other words, a tree with minimum recoloring distance.

We present a (2+ε)-approximation algorithm for the minimum convex
recoloring problem, whose running time is O(n2 + n(1/ε)241/ε). This
result improves the previously known 3-approximation algorithm for this
NP-hard problem.

1 Introduction

Problem statement and motivation. Given a tree T = (V, E) with n vertices,
a coloring of the tree is a function C : V → C, where C is a set of colors. A
pair (T, C) of a tree and a coloring is called a colored tree. A coloring C of a
tree is convex if for every two vertices u and v such that C(u) = C(v) = c
the color of every vertex on the path from u to v is also c. That is, a coloring
is convex if the set of vertices colored by c induces a (possibly empty) subtree
for every color c ∈ C. Examples of a non-convex coloring and a convex coloring
are given in Fig. 1. Given a colored tree (T, C) any coloring C′ of T is called a
recoloring of T . A vertex u is recolored if C(v) �= C′(v). Given a non-negative
weight function w on the vertices of T the recoloring distance of C′ is the total
weight of recolored vertices. For example, given the coloring in Fig. 1(a) and

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 55–68, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

56 R. Bar-Yehuda, I. Feldman, and D. Rawitz

1

1

2

2

3

3

4

4

4

2

(a) Non-convex coloring

1

1

1

2

3

3

3

4

4

2

(b) Convex coloring

Fig. 1. Transforming a non convex coloring into a convex coloring

assuming unit weights, the recoloring cost of the coloring in Fig. 1(b) is 2. In
the minimum convex recoloring problem we are given a colored tree (T, C) and
a non-negative weight function w and our goal is to find a convex recoloring C′

of minimum recoloring distance.
The minimum convex recoloring problem was first introduced by Moran and

Snir [8], who showed that this problem arises in the context of phylogenetic
trees. Given a set of related species the goal of phylogenetic reconstruction is to
construct a tree that would best describe the evolution of this set of species. In
such a phylogenetic tree the leaves represent the species, while internal vertices
represent extinct species. A character is an attribute shared by the entire set
of species represented by the tree. Such a character has different states, and
each species is associated with one of these states. For example, the character
may be as simple as the existence of wings, and the states are wings, and no
wings. It is not hard to see that the states of a given character correspond
to a set of colors, and that the states associated with the species correspond
to a coloring of the tree. A natural biological constraint is that the tree does
not contain reverse or convergent transitions with respect to every character. A
reverse transition occurs when some species has a common character state with
an old ancestor while its direct ancestor is associated with a different character
state. In a convergent transition two species share a character state which is
different from the character state of their least common ancestor. The absence
of reverse and convergent transitions implies that the path in the tree connecting
two species with some character state must contain only species with an identical
character state. In other words, a character with respect to which there are no
convergent and reverse transitions is a convex coloring of the tree. Hence, our
goal is to construct a tree in which every character is a convex coloring. This
problem is known as the perfect phylogeny problem (see, e.g., [1–4]).

Since perfect phylogeny is not always possible the next best thing is to find a
tree which is as close to convex as possible with respect to each character. How-
ever, the meaning of close to convex must be defined first. One possible mea-
sure of closeness is the parsimony score which is the number of mutated edges

Improved Approximation Algorithm for Convex Recoloring of Trees 57

summed over all characters [5, 6]. Another measure is the phylogenetic number [7]
which is defined as the maximum number of connected components induced by
a single state. In [8] Moran and Snir defined a natural distance from a phyloge-
netic tree to a convex one—the recoloring distance. We note that the parsimony
score and the phylogenetic number do not specify a distance to an actual con-
vex coloring of the given tree. Moreover, there are trees with large phylogenetic
numbers and parsimony scores that can be made convex only by changing the
color of one vertex, while other trees with small phylogenetic numbers that can
become convex only by changing the color of a large number of vertices.

For more details about phylogenetic trees and other applications of the min-
imum convex recoloring problem we refer the reader to [8, 9].

Previous Results. The minimum convex recoloring problem was first defined by
Moran and Snir [8]. They showed that the problem is NP-Hard even on strings
(trees with two leaves) with unit weights. In addition, they presented dynamic
programming based algorithm for computing an optimal convex recoloring of
trees. The running time of this algorithm is O(n · n∗ · Δn∗+2), where n∗ is the
number of colors that violate convexity in the input tree, and Δ is the maximum
degree of vertices in the tree. In a followup paper [9] Moran and Snir presented
a 3-approximation algorithm based on the local ratio technique [10–14], and a
2-approximation algorithm for strings.

Our Results. We obtain a polynomial time (2 + ε)-approximation algorithm for
the minimum convex recoloring problem. Our algorithm depends on an accuracy
parameter k ≥ 2, and consists of two phases. The first phase is a local ratio
algorithm in which we manipulate the weights such that the original weighted
colored tree is transformed into a weighted colored tree we call k-simple. The
approximation ratio of this phase is 2 + 2

k−1 and the running time is O(n2). In
the second phase of the algorithm we use dynamic programming to compute an
optimal solution. The running time of this phase is O(n2 +nk22k). For example,
if we set k = log n/2 + 1 we get a (2 + 4/ logn)-approximation algorithm whose
time complexity is O(n2). In addition, our dynamic programming algorithm for
computing an optimal convex recoloring (for general colored trees) is faster than
the best previously known algorithm presented in [8], since the running time of
our algorithm (in terms of n∗ and Δ) is O(n2 + n · n∗ · Δn∗

).

Overview. The remainder of the paper is organized as follows. Section 2 contains
most of our definitions and notation. Our dynamic programming algorithm is
given in Sect. 3. In Sect. 4 we define k-simple trees and analyze the algorithm
from the previous section on the special case of k-simple trees. In Sect. 5 we
present our (2 + 2

k−1)-approximation algorithm.

2 Preliminaries

In this section we focus on two main issues. First, we define the notion of convex
partial colorings, and show that it is sufficient look for a convex partial recoloring
of a given colored tree. Next, we examine the form of an optimal solution.

58 R. Bar-Yehuda, I. Feldman, and D. Rawitz

2.1 Partial Colorings

A partial coloring of a tree T is function C : V → C∪{∅}, where ∅ stands for no
color. That is, if C(v) = ∅ then v is assumed to be uncolored. A pair (T, C) of
a tree and a partial coloring is called a partially colored tree. A partial coloring
C is called convex if it can be extended to a (total) convex coloring.

Observation 1. A convex partial coloring can be completed in O(n2) time.

We consider an extended version of the minimum convex recoloring problem in
which both the input and output colorings may be partial. That is, we are given
a tree T = (V, E), and a partial coloring C of the tree and our goal is to compute
a convex partial recoloring C′. We say that a recoloring C′ of C discolors a vertex
u if C(u) �= ∅ and C′(u) �= C(u). That is, C′ discolors u if it changes or removes
its original color. Given a non-negative weight function w on the vertices of T the
recoloring distance of C′ is the total weight of discolored vertices. (Informally,
this means that we pay for removing a color, but not for applying a color.) Hence,
we may assume without loss of generality that if w(u) = 0 then C(u) = ∅, and
vice versa. Observe that since coloring uncolored vertices cost nothing, turning
a convex partial coloring into a convex coloring incurs no cost.

Observation 2. The weight of an optimal convex partial recoloring is equal to
the weight of an optimal convex recoloring.

Given a partially colored tree (T, C), a vertex set X ⊆ V is called a cover if
there is a convex partial recoloring C′ such that X is the set of vertices that
are discolored by C′. For a set of vertices U ⊆ V and a weight function w we
define w(U) =

∑
u∈U w(u). Hence, the cost of a cover X is defined as w(X),

and the recoloring distance of a corresponding convex partial coloring C′ is
w(C′) = w(X).

2.2 Form of an Optimal Solution

Given a subset of vertices U ⊆ V we denote the set of colors that are used to
color U by C(U), i.e., C(U) = {c ∈ C : C(u) = c and u ∈ U}. Notice that C(u)
does not include ∅. Given a subtree T ′ of T we denote the set of colors used in
T ′ by C(T ′), i.e., C(T ′) = C(V (T ′)).

Given colored tree (T, C), a color block in T is a maximal set of vertices which
induces a monochromatic subtree. A c-block is a color block colored by c. (For
example, in Fig. 1(a) the tree contains two 2-blocks, and one 3-block.) If C is a
convex coloring then for every color c there exists only one c-block. Moran and
Snir [9] referred to a coloring C′ as an expanding recoloring of C if in each block
of C′ at least one vertex v is not recolored, i.e., C′(v) = C(v).

Observation 3 ([9]). Let (T, C, w) be a weighted colored tree. Then there exists
an expanding optimal convex recoloring of the tree.

It follows that there exists an optimal convex (partial) recoloring C′ that uses
only colors that were originally used by C. Next, we show that there exists an

Improved Approximation Algorithm for Convex Recoloring of Trees 59

optimal partial recoloring in which each vertex has a limited choice of colors,
and a vertex colored by ∅ is not located on the path between two c-blocks for
some color c.

Given a tree T we denote by T \ v the set of subtree obtained when v is
removed from T . Given a colored tree (T, C), we say that v separates c (with
respect to C) if there are at least two subtrees in T \ v that contain a vertex u
such that C(u) = c. The separation number sepv(c) of a vertex v with respect to
a color c �= ∅ is defined as the number of subtrees in T \v that contain a vertex u
such that C(u) = c. Let S(v) be the set of colors that are separated by v, i.e., let
S(v) be the set of colors for which the separation number is greater than 1. That
is, S(v) = {c : sepv(c) > 1}. We define Σv = |S(v)| and Πv =

∏
c∈S(v) sepv(c).

(If Σv = 0 then Πv = 1.) An example is given in Fig. 2.

1

v

2

1

3

3 2

3

4

3

Fig. 2. S(v) = {1, 2, 3}, Σv = 3, and Πv = sepv(1) · sepv(2) · sepv(3) = 2 · 2 · 3 = 12

Definition 1. Given a colored tree (T, C) we define the color set of v by G(v) �=
S(v) ∪ {C(v), ∅}. (Recall that C(v) may be ∅.) A partial recoloring C′ is called
good if (1) C′(v) ∈ G(v) for every v ∈ V , and (2) if C′(v) = ∅, then v does not
separate any color c with respect to C′.

In the next lemma we show that there exists a good optimal convex partial
recoloring. Hence, we can concentrate on finding good partial recolorings, and,
in particular, it is enough to design an algorithm that computes an optimal good
partial recoloring in order to solve the problem.

Lemma 1. Let (T, C, w) be a weighted colored tree. Then there exists a good
optimal convex partial recoloring C′.

Proof. Let C′ be an optimal convex recoloring, and let X be the corresponding
cover. We construct a good optimal partial recoloring C′′ that correspond to the
same cover X . First, we set C′′(v) = C(v) for every v �∈ X . Next, we discolor the
vertices in X . Observe that, with respect to C′, every v ∈ X separates at most
1 color (since X is a cover). Hence, for every v ∈ X that separates a color c, we
define C′′(v) = C′(v) = c, and otherwise, we define C′′(v) = ∅. (See Fig. 3 for an
illustration). Clearly, C′′ is good. Moreover, since we only changed vertices in X ,
we get that w(C′′) = w(C′). Also, C′′ is convex, since it can be extended to C′. ��

60 R. Bar-Yehuda, I. Feldman, and D. Rawitz

4

2

4

1 2

1 3

2

(a) Non-convex coloring

4

2

∅

∅ 2

1 ∅

2

(b) Convex partial recoloring

4

2

2

∅ 2

1 2

2

(c) Good convex partial recoloring

Fig. 3. Example of a good convex partial recoloring

Lemma 2. Let v ∈ V be a vertex and T ′ ∈ T \ v be a subtree. If C′ is a good
partial recoloring, then C′(T ′) ⊆ C(T ′) ∪ {∅}.

Proof. Consider a vertex u in T ′. If C′(u) = C(u) or C′(u) = ∅ we are done.
Otherwise, since C′(u) �= C(u) we know that u ∈ X . It follows that u separates
C′(u), and thus C′(u) ∈ C(T ′). ��

3 Dynamic Programming Algorithm

In this section we describe a dynamic programming algorithm for computing
an optimal convex partial recoloring whose running time is O(n2 +

∑
v∈V Σv ·

(deg(v) + Πv)), where deg(v) is the degree of the vertex v. This expression
becomes polynomial in n and exponential in k for the special case of k-simple
trees (defined in the next section).

Throughout this section we treat the input tree T as a rooted tree. This is
done by choosing an arbitrary root s. Let v ∈ V be a vertex with r children (i.e.,
deg(v) = r). We denote the ith child of v by vi, and the parent of v by v0. As
before the set of subtrees obtained by the removal of V is denoted by T \ v. We
denote the subtree of the ith child by Ti(v), and by T (v) the tree rooted at v.

Improved Approximation Algorithm for Convex Recoloring of Trees 61

s

v0

v

v1 v2 v3

Fig. 4. T0(v) is marked by the dashed line, T1(v) is marked by the thick dotted line,
and T (v) is marked by the thin dotted line

We also denote by T0(v) the subtree obtained by removing T (v) from T . (If the
tree was unrooted then T0(v) would be the subtree T0(v) of the parent v0.) See
Fig. 4.

Let C′ be a convex good partial recoloring of T , and consider a vertex v that
is colored by c. If c �= ∅ then C′ induces a partition of C \{c}. A color d �= c that
is used in Ti(v) cannot be used in Tj(v) where i �= j. If c = ∅ then C′ induces
a partition on C. In both cases, v partitions the color set into r + 1 mutually
disjoint color sets. If c �= ∅ then c may be used to color vertices in more than
one subtree from T \ v. Obviously, the use of this color is possible only if the
vertices colored by it form a subtree.

Definition 2. Let (T, C) be a colored tree, let c be a color, and let v ∈ V be a
vertex with r children. We say that (D0, . . . , Dr) is a good partition with respect
to v and c if Di ⊆ C(Ti(v)) for i ∈ {0, . . . , r}, and (D0, . . . , Dr) is a partition
of C \ {c} (C when c = ∅).
good(v, c) denotes the set of all good partitions with respect to v and c.

Observation 4. Let v be a vertex, and let c be a color. Then, |good(v, c)| ≤ Πv.

Let v be a vertex, and let c be a color. Also, let C be a coloring that is consitent
with some good partition (D0, . . . , Dr) with respect to v and c. Then, if v is
colored by c, the colors in D0 cannot be used in T (v). We refer to these colors
as forbidden with respect to v.

Definition 3. Let v ∈ V be a vertex. Define,

forb(v) = {D : ∃c ∈ G(v) ∃(D1, . . . , Dr), (D, D1, . . . , Dr) ∈ good(v, c)}

Thus, D ∈ forb(v) if there is a good partition, where the color set D is used
only in T0(v).

62 R. Bar-Yehuda, I. Feldman, and D. Rawitz

Lemma 3. |forb(v)| ≤ 2Σv for every v ∈ V .

Proof. Let v be a vertex with r children, let c be a color, and let i and j be indices
such that 0 ≤ i < j ≤ r. Observe that if c ∈ C(Ti(v)) and c ∈ C(Tj(v)), then v
separates c. Thus, if v does not separate a color c′ then either c′ ∈ D0 for every
(D0, . . . , Dr) ∈ good(v, c), or c′ �∈ D0 for every (D0, . . . , Dr) ∈ good(v, c).
Therefore, |forb(v)| ≤ 2|{c′ : v separates c′}| = 2Σv . ��

We now turn to design a dynamic programming algorithm for computing the
optimal good convex partial recoloring of a given colored tree. We construct an
optimal solution bottom-up, by storing intermediate values on the vertices of
the tree.

Definition 4. Let v be a vertex in T , let c ∈ C ∪ {∅}, and let D ∈ forb(v).

– A good convex recoloring C′ of T (v) is a (v, D)-coloring if it is a recoloring
in which the colors in D are not used to color T (v), i.e., it is a recoloring
of T (v) such that C′(T (v)) ∩ D = ∅. opt(v, D) denotes the weight of an
optimal (v, D)-coloring.

– A good convex recoloring C′ of T (v) is a (v, c, D)-coloring if it is a recoloring
in which the colors in D are not used to color T (v) and v is colored by c,
i.e., it is a (v, D)-coloring of T (v) such that C′(v) = c. opt(v, c, D) denotes
the weight of an optimal (v, c, D)-coloring.

Observe that, for a tree T with root s, the weight of an optimal recoloring of
the whole tree is opt(s, ∅).

We compute opt recursively using the following rules:

1. R(v, D) = minc∈G(v)\D R(v, c, D).
2. If C(v) = c then

R(v, c, D) = min
(D,D1,...,Dr)∈good(v,c)

{
r∑

i=1

R′(vi, c, C \ Di)

}

otherwise

R(v, c, D) = w(v) + min
(D,D1,...,Dr)∈good(v,c)

{
r∑

i=1

R′(vi, c, C \ Di)

}

where R′(v, c, D) �= min {R(v, D ∪ {c}), R(v, c, D)}.

where v is a vertex with r children, D ∈ forb(v), and and c ∈ G(v) \D. (Recall
that vi is the ith child of v for every i ∈ {1, . . . , r}.)

In Rule 1 we go through all (v, c, D)-colorings and find the best one that
colors the subtree T (v). In Rule 2 we try to glue colorings of the subtrees
T1(v), . . . , Tr(v) to a coloring of v. Notice that, for every i ∈ {1, . . . , r}, if v
is colored by c then either c is not used in Ti(v), or it is used to color vi. (See
Fig. 5.)

Improved Approximation Algorithm for Convex Recoloring of Trees 63

v

v1

(a) Case 1: R(v1, c, D)

v

v1

(b) Case 2: R(v1, d, D∪{d})

Fig. 5. Combining a recoloring of T1(v) with a recoloring of v

Theorem 1. Let v be a vertex with r children, let D ∈ forb(v) be a set of
colors, and let c ∈ G(v) \ D. Then, R(v, c, D) = opt(v, c, D), and R(v, D) =
opt(v, D).

Proof. We proof the theorem by induction on the tree. In the induction base v
is a leaf, and in this case

R(v, c, D) =

{
w(v) C(v) �= c,

0 otherwise,

and

R(v, D) =

{
w(v) C(v) ∈ D

0 otherwise,

as required.
Next, for the inductive step we assume that R(vi, D) = opt(vi, D) and

R(vi, c, D) = opt(vi, c, D) for every i ∈ {1, . . . , r}. We first prove that
R(v, c, D) ≤ opt(v, c, D). Let C′ be an optimal (v, c, D)-coloring. Let Di be
the set of colors which C′ uses in coloring Ti(v). That is, D′

i = C′(Ti(v)) \ {c}
for every i ∈ {0, . . . , r}. Since C′ is convex and C′(v) = c, we must have that
for i �= j, Di ∩ Dj = ∅. By Lemma 2, it follows that Di ⊆ C(Ti(v)) \ {c} for
every i. Thus,

⋃r
i=0 Di ⊆

⋃r
i=0 C′(Ti(v))\{c}. If

⋃r
i=0 Di �

⋃r
i=0 C′(Ti(v))\{c}

we include each missing color d in an arbitrary set Di satisfying d ∈ C′(Ti(v)).
Hence, (D, D1, . . . , Dr) ∈ good(v, c). Furthermore, the recoloring of Ti(v) that
is induced by C′ is a good recoloring of Ti(v) for every i ∈ {1, . . . , r}. In addition
this recoloring of Ti(v) does not use colors from C \ (Di ∪ {c}), and if it uses c
then C′(vi) = c. Therefore, R′(vi, c, C \ Di) ≤ w(Ti(v)) for every i ∈ {1, . . . , r},
and it follows that R(v, c, D) ≤ opt(v, c, D).

Next we show that opt(v, c, D) ≤ R(v, c, D). Let (D, D1, . . . , Dr) be a good
partition which minimizes the RHS of Rule 2. Let C′

i be the recoloring of Ti(v)
whose weight is R′(vi, c, C \Di) for i ∈ {1, . . . , r}. We obtain a recoloring of T (v)
as follows: C′(v) = c and C′(u) = C′

i(u) for every u that belong to Ti(v). By
its construction C′ is a good convex recoloring of T (v) that does not use colors
from D and such that C′(v) = c. Hence, there exists a good convex recoloring
C′ of T (v) whose weight is R(v, c, D). Therefore, opt(C, c, v) ≤ R(v, c, D).

64 R. Bar-Yehuda, I. Feldman, and D. Rawitz

It remains to show that:

opt(v, D) = min
c∈G(v)\D

opt(v, c, D) = min
c∈G(v)\D

R(v, c, D) = R(v, D)

and we are done. ��
The number of entries computed by the dynamic programming algorithm is:
O(

∑
v∈V |G(v)| · |forb(v)|). An additional O(nc) space is needed for storing

G(v) for every vertex v. Hence, the space complexity of the algorithm is O(nc +∑
v∈V Σv · 2Σv).
For each entry of the form R(v, D) the running time is O(|G(v)|). For each

entry of the form R(v, c, D) we need to go through all possibilities of good
partitions of the form (D, D1, . . . , Dr), and for each such good partition we
perform O(deg(v)) operations. Observe that for every v and c we actually go
through every good partition in good(v, c) for computing the values of R(v, c, D)
for all D ∈ forb(v). Since every good partition is visited exactly once, we invest
O(|good(v, c)| ·deg(v)) operations for every pair of vertex v and color c. Hence,
by Observation 4, this brings us to O(

∑
v∈V Σv · Πv · deg(v)). An additional

O(n2) is needed to computing G(v) for every v. Hence, the total running time
is O(n2 +

∑
v∈V Σv · Πv · deg(v)).

Note that the computation of R(v, c, D) can be modified also to output a
corresponding solution. This can be done by keeping track of which option was
taken in both rules. Afterwards we can reconstruct the optimal recoloring in a
top down manner.

Next, we explain how to improve the running time of the algorithm. Let v
be a vertex v with r children, and c a color. Also, let D = (D0, . . . , Dr),D′ =
(D′

0, . . . , D
′
r) ∈ good(v, c). We define Δ(D,D′) �= {i : Di �= D′

i}. We also define
R(v, c,D) =

∑
i R′(vi, c, C \ Di), and w(v, c,D,D′) �= R(v, c,D) − R(v, c,D′). If

we know the value of R(v, c,D) and |Δ(D,D′)| = 2 we can compute R(v, c,D′)
by using the equation R(v, c,D) = R(v, c,D′) + w(v, c,D,D′) in O(1) time.

For a vertex v ∈ V , and a color c we say that an ordering D1, . . . ,D|good(v,c)|
of the set good(v, c) is a close order if Δ(Di,Di+1) = 2 for every i. We now de-
scribe how to construct a close order of good(v, c) for any v ∈ V with r children
and a color c. A good partition (D0, ..., Dr) ∈ good(v, c) can be described by a
word σ1 · · ·σm such that σi = j if ci ∈ Dj. (Notice that σi = j is possible only
if ci ∈ C(Tj(v)).) An order of this set of words in which the hamming distance
between every two consecutive words is 1 defines a close order on good(v, c).
Such a close order can be obtained using the description in [15].

We examine the time complexity for computing the value of R(v, c, D) for
every vertex v, D ∈ forb(v), and c ∈ G(v) \ D. Computing the value corre-
sponding to the first member in the close order of good(v, c) takes O(deg(v))
time. For any other member the computation takes O(1). Therefore, the time
complexity for a vertex v is

O(
∑

c∈G(v)

(deg(v) + |good(v, c)|)) = O(
∑

c∈G(v)

(deg(v) + Πv)) .

It follows that the total running time is: O(n2 +
∑

v∈V Σv · (deg(v) + Πv)).

Improved Approximation Algorithm for Convex Recoloring of Trees 65

4 Simple Trees

In this section we define the notion of a k-simple tree. Then, we show that
the running time of the dynamic programming algorithm from the previous
section amounts to O(n2 + n · k22k) in the special case of k-simple trees.

Let (T, C) be a colored tree and u ∈ V be a vertex. We say that u is a
(t, d)-separator if there are t different colors c1, . . . , ct such that for 1 ≤ i ≤ t,
sepu(ci) ≥ d. Observe that in this case Πv ≥ dt. Also, notice that if v is a
(t, d)-separator with r ≥ t children, then for every ci ∈ {c1, . . . , ct} there are
d vertices ui

1, . . . , u
i
d on d different components of T \ v such that C(ui

j) = ci

and w(ui
j) > 0 for every 1 ≤ j ≤ d. We refer to such set of t · d vertices as a

(t, d)-separating witness of v.

Definition 5. Let (T, C) be a colored tree, and define

SEP �= {(2, k), (3, 4), (4, 3), (k, 2)}

where k ≥ 2. We say that the colored tree is k-simple if v is not a (t, d)-separator
for every v ∈ V and (t, d) ∈ SEP.

Observation 5. Let (T, C) be k-simple for k ≥ 2. Then, Σv < k for every
v ∈ V .

Consider a vertex v in a k-simple tree. Since Σv < k, v separates at most k − 1
colors, and therefore |G(v)| ≤ k + 1.

Lemma 4. Let (T, C) be k-simple for k ≥ 2. Then, Πv = O(deg(v) · k · 2k) for
every v ∈ V .

Proof. Let C = {c1, . . . , cm}, and consider a vertex v ∈ V . Without loss of
generality we assume that sepv(ci) ≥ sepv(ci+1) for every i. We show that
the following conditions hold: (1) sepv(c1) ≤ deg(v), (2) sepv(c2) ≤ k − 1,
(3) sepv(c3) ≤ 3, (4) sepv(c4) ≤ 2, and (5) sepv(ci) ≤ 1 for every i ≥ k. Hence,
Πv ≤ deg(v) · (k − 1) · 3 · 2Σv−2 = O(deg(v) · k · 2k).

First, sepu(c1) ≤ |T \ u| = deg(v). Also, if sepv(c2) ≥ k then u is a (2, k)-
separator; if sepv(c3) ≥ 4 then v is a (3, 4)-separator; if sepv(c4) ≥ 3 then
v is a (4, 3)-separator; and if sepv(ck) ≥ 2 then v is a (k, 2)-separator. All in
contradiction to the fact that (T, C) is k-simple. ��

Now we analyze the running time of the dynamic programming algorithm for
the special case of k-simple trees. Since Σv < k and Πv = O(deg(v) · k2k) for
every v, the total running time is

O(n2 +
∑
v∈V

k · deg(v) · k2k) = O(n2 + n · k22k) .

The number of triplets of the form (v, c, D) computed by the dynamic program-
ming algorithm is O(nc +

∑
v∈V k · 2k) = O(nc + n · k2k).

66 R. Bar-Yehuda, I. Feldman, and D. Rawitz

5 Local Ratio Algorithm

In this section we develop an algorithm that given a colored tree and an accuracy
parameter k, computes a (2 + 2

k−1)-approximate convex partial recoloring. The
running time of the algorithm is O(n2 + n · k2 · 2k).

The algorithm consists of two phases. In the first phase we use the local ratio
technique. We manipulate the weights such that the original weighted colored
tree is transformed into a k-simple tree. The approximation ratio of this phase is
2+ 2

k−1 and the running time is O(n2). In the second phase of the algorithm we
use our dynamic programming algorithm to compute an optimal solution. We
note that if we set k = log n

2 + 1 the approximation guarantee is (2 + 4
log n) and

the time complexity is O(n2).
The local ratio technique [10–13] is based on the Local Ratio Theorem, which

applies to optimization problems of the following type. The input is a non-
negative weight vector w ∈ Rn and a set of feasibility constraints F . The problem
is to find a solution vector x ∈ Rn that minimizes (or maximizes) the inner
product w · x subject to the constraints F .

Theorem 2 (Local Ratio [12]). Let F be a set of constraints and let w, w1,
and w2 be weight vectors such that w = w1 + w2. Then, if x is r-approximate
both with respect to (F , w1) and with respect to (F , w2), for some r, then x is
also an r-approximate solution with respect to (F , w).

Algorithm CR-LR is our local ratio approximation algorithm. It uses our dy-
namic programming algorithm which is referred to as Algorithm CR-DP. Apart
from a weighted colored tree, the input to our algorithm includes an accuracy
parameter k. As we shall see this algorithm computes (2 + 2

k−1)-approximate
solutions, and its running time is polynomial is n and exponential in k.

We first analyze the time complexity of the algorithm. Observe that given
a vertex v, checking whether v is a (t, d)-separator, where (t, d) ∈ SEP, can
be done in linear time. Since in each weight subtraction the weight of at least
one vertex becomes zero, after no more than n subtraction there are no (t, d)-
separators left in the given tree. Hence, the local ratio phase of the algorithm

Algorithm 1 : CR-LR(T, C, w, k)
if (T, C) is k-simple then

Return CR-DP(T, w)
else

Find v ∈ V and (t, d) ∈ SEP such that v is a (t, d)-separator
Find a (t, d)-separating witness U of v
Let ε = minu∈U w(u)

Define w1(u) =
ε u ∈ U,

0 otherwise
Return CR-LR(T, w − w1)

end if

Improved Approximation Algorithm for Convex Recoloring of Trees 67

can be implemented to run in O(n2) time. Moreover, since the input to the
dynamic programming algorithm is a k-simple tree, the total running time is
O(n2 + n · k2 · 2k).

The computed solution is feasible since we use our dynamic programming
algorithm the solution returned is feasible. It remains to show that the solution
returned is (2+ 2

k−1)-approximate. We prove this by induction on the recursion.
At the recursive base the solution returned is optimal, since it is computed by
the dynamic programming algorithm. For the inductive step, we assume that
the solution returned by the recursive call is (2+ 2

k−1)-approximate with respect
to w − w1. We show that every solution is (2 + 2

k−1)-approximate with respect
to w1. Thus, by the Local Ratio Theorem the solution is (2 + 2

k−1)-approximate
with respect to w as well.

Lemma 5. Every convex partial recoloring is (2+ 2
k−1)-approximate with respect

to w1.

Proof. Obviously, there are four possible types of w1 that correspond to the four
members of SEP. Let v be a (t, d)-separator, where (t, d) ∈ SEP, and let U be
the (t, d)-separating witness. Consider a cover X that corresponds to a partial
convex recoloring C′. It is not hard to see that w1(X) ≤ ε · td.

On the other hand, in a convex partial recoloring, for every v ∈ V there is at
most one color c ∈ C such that v separates c. Therefore, at least (t − 1)(d − 1)
vertices in U must be recolored. Thus, w(X) ≥ ε·(t−1)(d−1). It follows that the
weight of every cover X is within a factor of td

(t−1)(d−1) from the optimum with
respect to w1. The lemma follows, since for (2, k) and (k, 2) we get td

(t−1)(d−1) =
2k

k−1 = 2 + 2
k−1 and for (3, 4) and (4, 3) we get td

(t−1)(d−1) = 2. ��

Acknowledgment. We thank the anonymous referees for their helpful com-
ments and suggestions.

References

1. Bodlaender, H.L., Fellows, M.R., Warnow, T.J.: Two strikes against perfect phy-
logeny. In: 19th International Colloquium on Automata, Languages, and Program-
ming. Volume 623 of LNCS., Springer (1992) 273–283

2. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21
(1991) 19–28

3. Kannan, S., Warnow, T.: Inferring evolutionary history from DNA sequences.
SIAM Journal on Computing 23 (1994) 713–737

4. Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration
of perfect phylogenies. SIAM Journal on Computing 26 (1997) 1749–1763

5. Semple, C., Steel, M.: Phylogenetics. Volume 22 of Mathematics and its Applica-
tions series. Oxford University Press (2003)

6. Sankoff, D.: Minimal mutation trees of sequences. SIAM Journal on Applied
Mathematics 28 (1975) 35–42

68 R. Bar-Yehuda, I. Feldman, and D. Rawitz

7. Goldberg, L.A., Goldberg, P.W., Phillips, C.A., Sweedyk, E., Warnow, T.: Min-
imizing phylogenetic number to find good evolutionary trees. Discrete Applied
Mathematics 71 (1996) 111–136

8. Moran, S., Snir, S.: Convex recoloring of trees and strings: definitions, hardness
results, and algorithms. In: 9th Workshop on Algorithms and Data Structures.
(2005) To appear.

9. Moran, S., Snir, S.: Efficient approximation of convex recoloring. In: 8th Inter-
national Workshop on Approximation Algorithms for Combinatorial Optimization
Problems. (2005) To appear.

10. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics 25 (1985) 27–46

11. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM Journal on Discrete Mathematics 12 (1999)
289–297

12. Bar-Yehuda, R.: One for the price of two: A unified approach for approximating
covering problems. Algorithmica 27 (2000) 131–144

13. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach
to approximating resource allocation and scheduling. Journal of the ACM 48 (2001)
1069–1090

14. Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: a unified frame-
work for approximation algorithms. ACM Computing Surveys 36 (2004) 422–463

15. Er, M.: On generating the n-ary reflected gray codes. IEEE Transactions on
Computers 33 (1984) 739–741

Exploiting Locality:
Approximating Sorting Buffers

Reuven Bar-Yehuda and Jonathan Laserson

Computer Science Department, Technion, Haifa 32000, Israel
{reuven, joni}@cs.technion.ac.il

Abstract. The Sorting Buffers problem is motivated by many appli-
cations in manufacturing processes and computer science, among them
car-painting and file servers architecture. The input is a sequence of items
of various types. All the items must be processed, one by one, by a ser-
vice station. We are given a random-access sorting buffer with a limited
capacity. Whenever a new item arrives it may be moved directly to the
service station or stored in the buffer. Also, at any time items can be
removed from the buffer and assigned to the service station. Our goal
is to give the service station a sequence of items with minimum type
transitions. We generalize the problem to allow items with different sizes
and type transitions with different costs. We give a polynomial-time 9-
approximation algorithm for the maximization variant of this problem,
which improves the best previously known 20-approximation algorithm.

1 Introduction

In the sorting buffers problem, the input is a sequence of items of various types.
All the items must be processed, one at a time, by a service station. When
the service station processes two consecutive items of different types we say
that there is a type transition. Type transitions are expensive, and the goal is
to give the service station a sequence of items with as few type transitions as
possible. To achieve this task we are given a random-access sorting buffer with
a limited capacity. Whenever a new item arrives it may be moved directly to
the service station or stored in the sorting buffer. Also, at any time items can
be removed from the sorting buffer and then assigned to the service station.
Thus, the service station processes a sequence of items which is a permutation
of the input sequence. Using the sorting buffer, we need to rearrange the input
sequence so that the number of type transitions is minimized, or equivalently
(for the maximization variant), so that the number of items which are followed
by an item of the same type is maximized.

The sorting buffers problem is motivated by many applications in manufac-
turing processes. For example, during the manufacturing process in a car plant
(e.g. the Daimler-Benz car plant in Germany), the cars arrive one after the other,
from an assembly-line, to the painting center where each car is painted with its
own top coat. If two consecutive cars are to be painted in different colors, a color

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 69–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

70 R. Bar-Yehuda and J. Laserson

change is required. Since each such color change causes a waste of paint and re-
quires cleaning chemicals, it makes sense to rearrange the sequence of cars in a
way that cars of the same color preferably appear in consecutive positions. For
this purpose, a small garage with a limited capacity is built before the painting
center, such that cars can be transferred from the assembly line to the garage,
and later from the garage to the painting center. The garage acts as a sorting
buffer and is used to deliver larger subsequences of cars of the same color.

This problem has also many application in computer science. For example, a
file server receives a sequence of read/write requests to files stored on its disk.
In addition to the time it takes to read or write the data to a file, more time is
wasted by locating the file, opening it and closing it after the request is handled.
One can minimize this overhead time by using a sorting buffer to group requests
for the same file together and have them handled in sequence. In a similar way,
this technique can be implemented in communication networks to group requests
which deal with the same server and save the startup cost.

Another application is in computer graphics. During the process of polygon
rendering, a set of polygons is processed one by one. A change of attributes in
two consecutive polygons is denoted as state-change. As the number of state-
changes decreases, the performance improves. By rearranging the sequence of
polygons such that polygons with similar attributes are processed consecutively,
one can effectively boost performance. In this case also, a sorting buffer can come
in handy.

1.1 Our Contribution

We present a polynomial time 9-approximation algorithm for the maximization
variant of the sorting buffers problem. This result improves the best previously
known 20-approximation algorithm, obtained in [1]. The algorithm we introduce
is also applicable to a generalized variant of the problem, in which each item is
assigned a size and a nonnegative profit. We gain the profit assigned to an item if
at the service station it is followed by another item of the same type (see formal
definition in Problem 3). The goal is to gain maximum profit. The generalized
problem becomes the original maximization problem if all the profits are equal.

We prove some combinatorial lemmas about the optimal solutions for this
problem, and use the Local-Ratio Technique [3] [4] to obtain a polynomial-time
9-approximation algorithm for the generalized problem. This result can be easily
converted to a simple solution in the primal-dual schema [5].

1.2 Previous Work

The first constant-approximation algorithm for the sorting buffers problem was
given by Kohrt and Pruhs [1]. They gave a 20-approximation algorithm for the
maximization variant of the problem. Their algorithm also uses the local-ratio
technique. Kohrt et al. also noted that the problem can be solved exactly in
polynomial time if either the number of types or the buffer size is constant.

The best approximation result known for the minimization problem is actually
an on-line algorithm with a competitive ratio of O(log2 k), where k is the size

Exploiting Locality: Approximating Sorting Buffers 71

of the buffer. Räcke et al. [2] gave a deterministic bounded-waste strategy which
achieved this result.

A related problem is studied by Epping and Hochstaẗtler in [7]. In this prob-
lem, r queues are used to rearrange the items instead of a random-access sorting-
buffer. Epping et al. show equivalence between their problem and the multiple
sequence alignment problem known from molecular biology. They provide a dy-
namic programming algorithm which solves their problem exactly.

Another related problem is the bandwidth-allocation problem, which is stud-
ied in [6]. The input is a set of intervals, each with a width and a profit. The
goal is to choose a subset of these intervals with maximum total profit such that
at any point t, the total width of the intervals intersecting t is not larger than
1. Bar-Noy et al. were able to achieve a 5-approximation algorithm for this NP-
hard problem. We will show later that the generalized maximization problem for
sorting buffers is also a generalization of the bandwidth-allocation problem, and
hence the generalized maximization problem is also NP-hard.

2 Preliminaries

The rest of this paper is organized as follows. In Section 2 we give a formal
description of the problem, and make some observations on optimal solutions.
These observations allow us to represent the problem differently, as a maximiza-
tion problem. We also make some observations on a subclass of feasible solutions
denoted as “good” and show how to turn any feasible solution to a good one.
In Section 3 we generalize the problem by adding a profit function, and intro-
duce the local-ratio schema which will be used on the generalized problem. In
Section 4 we provide the rest of the details necessary for applying the schema,
and obtain our approximation algorithm.

2.1 The Model

The input is a sequence of items σ = σ1, σ1, σ2, σ3, . . . , σn which are only char-
acterized by a specific attribute. To simplify things, we will assume that the
items are packages, and that they are characterized by color. The input se-
quence is processed from left to right by a sorting buffer which is a random
access buffer with storage capacity for k packages. During this process, packages
may be stored in the buffer and later they are placed back into the sequence.
The resulting sequence is the output sequence (this is the sequence given to the
service station).

We can formalize the rearrangement process as follows. The process consists
of n steps, where at step i (i = 1, 2, . . . , n) at most one of these actions occur:

1. Any subset of the packages currently in the sorting buffer may be removed
from the buffer and placed back in the sequence (right after σi), in any order.

2. If space permits, σi may be removed from the sequence and stored in the
sorting buffer.

72 R. Bar-Yehuda and J. Laserson

We assume that the sorting buffer is initially empty, and at the end of the
process the buffer has to be empty again. Intuitively, we can picture the buffer
as a truck which makes one pass along a line of packages, when the packages are
occasionally loaded on and off the truck along the way.

The goal is to rearrange the input sequence in a way that packages with the
same color preferably appear at consecutive positions in the output sequence.
Let each maximal subsequence of packages of the same color be denoted as color
block. Between two different color blocks there is a color change. Then, the goal
is to minimize the number of color changes in the output sequence.

Problem 1 (Minimum Color Changes). Given a sequence of packages σ, rear-
range it using a sorting buffer of capacity k to minimize the number of color
changes in the output sequence.

A solution S to the above problem is a rearrangement of σ. Let the integer
dropS(σi) denote the rearrangement step of S on which σi was removed from the
buffer, where dropS(σi) = i if σi was not stored in the buffer at all. We denote
by BS(j) the set of packages which are in the buffer at the beginning of step j
of S.

2.2 Observations About the Optimal Solution

As noted in [2] and in [1], the following two lemmas hold for any input sequence:

Lemma 1. If two packages of the same color are adjacent in the input sequence,
then there is an optimal solution where these two packages are adjacent in the
output sequence.

Lemma 2. For any optimal solution we may assume that for any color, the
order of the packages of this color in the input sequence is preserved in the
output sequence.

Lemma 1 allows us to consider any color block in the input sequence as one big
package. In other words, we can now replace every color block of t packages with
one package of the same color, and assign that package a size of t. Having said
that, we can now assume that the input sequence has no adjacent packages of
the same color. Furthermore, we can scale the sizes with respect to the sorting
buffer capacity, i.e. the buffer will have capacity 1 instead of k, and each package
will have a size of t

k instead of t. We will denote by Size(σi) the size of package
σi, and for any set of packages A, we will denote by Size(A) the total size of the
packages in A.

Now we turn to look at the maximization variant of the problem. If we
have to pay one dollar for every color change in the output sequence, then we
save a dollar whenever there are two adjacent packages in the output sequence
which share the same color. According to Lemma 2, it suffices to consider only
dollars saved by these adjacent packages which preserve their order from the
input sequence. Each such pair of packages is called a color-saving. The number

Exploiting Locality: Approximating Sorting Buffers 73

of color changes is minimized when the number of dollars we save is maximized,
i.e. when we make the maximum number of color-savings.

Problem 2 (Maximum Color-Savings). Given a sequence of packages in different
colors and sizes with no two adjacent packages of the same color, rearrange it
using a sorting buffer of capacity 1 to maximize the number of color-savings in
the output.

Problems 1 and 2 are equivalent because we can restrict ourselves to schedules
which comply with the assumptions of Lemma 1 and Lemma 2. However, a
constant approximation algorithm to the maximization problem is probably not
a constant approximation algorithm to the minimization problem, and while
we give a constant approximation algorithm for Problem 2, such algorithm for
Problem 1 is not known.

We now extend our notation and given σ = σ1, σ2, . . . σn we use ri to denote
the ith package with color r in σ and ri to denote the index of that package in
σ (i.e. ri = σri

). For each color r and index i we call ri − ri+1 a pair and we say
that ri is the first package of the pair and ri+1 the last package of the pair. If in
the output sequence of a solution S, ri+1 appears adjacent to the right of ri we
say that the pair ri − ri+1 is a color-saving in S.

As an example of the problem and the notation we adopt, consider the follow-
ing. The input sequence is a1b1c1a2c2b2c3a3 (the letters denote colors and the
indexes distinguish between packages of the same color). There are 8 packages
in the sequence. Assume all the packages have the same size, and that the buffer
has room for 2 packages (i.e. Size(σi) = 0.5 for all i = 1, 2, . . . , 8). One of the
optimal solutions S, has the output sequence a1a2b1b2c1c2c3a3. S stores b1 and
c1 in the buffer, drops b1 after a2 (at step a2), stores c2, and drops c1 and c2

at step b2. The output sequence has 3 color-changes and 4 color-savings out of
possible 5, with a2 − a3 the only pair which is not a color-saving.

If ri −ri+1 is a color-saving in S, denote j = dropS(ri). If j < ri+1−1, we say
that it is a passive color-saving. In this case, in order to make a color-saving, ri+1

is not stored in the buffer, while all the packages {σj+1, σj+2, . . . σri+1−1} are. We
call these packages the clearance zone of ri − ri+1. Notice that a package cannot
be in more than one clearance-zone. In the above example, the color savings
a1 − a2 and b1 − b2 are passive, with dropS(a1) = a1 = 1 and dropS(b1) = a2 =
4 < 6 = b2 − 1. The clearance zone of a1 − a2 is {b1, c1} and the clearance zone
of b1 − b2 is {c2}.

With this terminology, we can make further assumptions on the optimal so-
lution. We now assume that every package that gets on the buffer does it for a
reason - either to make a color-saving, or to help another package make a color-
saving (a passive one). We further assume that in the latter case, the package
leaves the buffer as soon as it is no longer needed. And lastly, if a package gets
on the buffer in order to make a color-saving, but that color-saving is passive
(e.g. the package is dropped before reaching its destination), we assume that it is
because one of the packages in the clearance zone starts a color-saving (otherwise
- why not go all the way and make an active color-saving?).

74 R. Bar-Yehuda and J. Laserson

Lemma 3. For any optimal solution we may assume:

1. If ri is stored in the buffer then either ri is the first package of a color-saving
or ri is in the clearance zone of another color-saving.

2. Let cs−cs+1−cs+2−· · ·−cs+t be a maximal sequence of passive color-savings
from the same color c. Let rj be a package in a clearance zone of one of these
color-savings, and assume rj is not the first package of a color-saving. Then,
rj is removed from the buffer at step cs+t.

3. If ri is stored in the buffer and it is the first-package of a passive color-
saving, then one of the packages in the clearance zone of that saving is the
first-package of a color-saving.

Proof. Given any solution S, we can easily transform it into one that follows
the Lemma’s conditions without loss of performance. We simply prevent S from
storing any package that does not satisfy the conditions of part 1, and remove
from the cache any package which satisfy the conditions of part 2 as soon as the
buffer reaches cs+t (together with all other packages in the buffer of the same
color). It is easily seen that these changes in S did not interfere with any of the
color-savings it had made. For part 3, if S stores ri in the buffer and no package
in the clearance-zone of ri − ri+1 starts a color-saving, then we can change S to
carry ri all the way to ri+1 (without storing any of the packages that were in the
clearance-zone). Clearly, this change also does not reduce S’s performance. ��

Corollary 1. Let ri and bj be packages, such that bj ∈ BS(ri) in a solution S.
If ri is not stored in the buffer and bj is not starting a color-saving then ri−1−ri

is a color-saving in S.

Proof. According to part 1 of Lemma 3, bj was in the clearance zone of another
color-saving cs − cs+1. Let cs+t be the last package in the maximal sequence of
passive color-savings to which cs − cs+1 belongs. Notice that since all the color-
savings in the above sequence are passive, any package between bj and cs+t

which is not stored in the buffer is the last-package of a color-saving of color c.
Now, because bj is still in the buffer even though it is not starting a color-saving
we know (according to part 2 of the lemma) that bj < ri ≤ cs+t. Since ri is
not stored in the buffer, it implies that ri is the last-package of a color-saving of
color c, and specifically, that ri−1 − ri is a color-saving in S. ��

2.3 Deleting Pairs from the Input Sequence

We recall that the input sequence is a line of packages of different colors, and
a pair consists of two consecutive packages of the same color. Given an input
sequence σ = σ1, σ2, . . . , σn and a pair ri − ri+1 in σ, we can delete the pair
ri − ri+1 by switching the color of all the packages {rj}j≥i+1 to a new color s
(i.e. for each j ≥ i + 1 the package rj becomes sj−i). Let σ′ = σ′

1, σ
′
2, . . . , σ

′
n

be the input sequence after the deletion. It is easily seen that except in the case of

Exploiting Locality: Approximating Sorting Buffers 75

ri − ri+1, a pair σa − σb is in σ if and only if the pair σ′
a − σ′

b is in σ′. As an
example, consider the sequence a1b1a2b2a3b3a4b4a5. If we delete the pair a2−a3,
the sequence changes to a1b1a2b2c1b3c2b4c3.

If we know that we cannot gain a profit by making a color-saving ri − ri+1,
then deleting that pair from the input sequence does not affect the optimum
solution. We will use this fact extensively in the following sections, and we will
also use it now to make another assumption on the input sequence.

Let ri − ri+1 be a pair in the input sequence. Notice that if Size(ri) > 1
and the total size of the packages between ri and ri+1 is also greater than 1, a
feasible solution cannot make the color-saving ri−ri+1. Therefore, we can delete
that pair from the input sequence. By repeating this process until no such pairs
exist, we get the following:

Corollary 2. If ri − ri+1 is a pair in the input sequence and Size(ri) > 1 then
the total size of the packages between ri and ri+1 is at most 1.

2.4 Classification of Intersecting Color-Savings

For every package ri and pair bj − bj+1, if ri ∈ [bj , bj+1] we say that ri and
bj − bj+1 intersect. Define I(ri) to be the set of pairs intersecting ri.

Let S be a solution and ri a package. We classify every color-saving I ∈ I(ri)
of S into three types:

– Type A: If I ∈ {ri−1 − ri, ri − ri+1}.
– Type B: If ri is in the clearance-zone of I.
– Type C: Otherwise.

The following two observations are immediate from the definition:

Lemma 4. Among the color-savings, there is at most one of type B.

Proof. Immediate, since ri cannot be in more than one clearance-zone. ��

Lemma 5. If bj − bj+1 is of type C then bj ∈ BS(ri)

Proof. Since bj − bj+1 is not of type A or B it implies bj < ri ≤ dropS(bj) and
the lemma follows. ��

2.5 A Good Solution

Given σ, a sequence of packages, let ri − ri+1 be the pair whose first-package is
the last to appear in σ (“the pair which starts last”). We say that a solution S
is good if S either makes the ri − ri+1 color-saving, or, otherwise, it has a reason
not to (for example - the buffer is full when ri is reached). In a sense, a good
solution is a solution which is “maximal” with respect to the last pair.

Definition 1 (good). Let ri − ri+1 be the pair which starts last. Then, S is
good if one of the following is true:

76 R. Bar-Yehuda and J. Laserson

1. ri − ri+1 is a color-saving in S.
2. i > 1 and ri−1 − ri is a color-saving in S.
3. If ri−ri+1 is not a color-saving in S, S cannot be trivially changed to include

it. Specifically:
– Changing S to store ri until step ri+1 − 1 will render it infeasible.
– If BS(ri) = ∅, then changing S to store all the packages between ri and

ri+1 will render it infeasible.

Notice that if condition 3 is false regarding a solution S, then S can be easily
changed, without damaging existing color-savings, to include the ri − ri+1 color-
saving and thus become good. We denote by make good(S) the function that
applies the above procedure to a solution S and returns the (good) result.

The following lemma states some facts about the state of the buffer after it
reaches ri in a good solution:

Lemma 6. Let ri − ri+1 be the pair which starts last in σ and let S be a good
solution which does not make the ri − ri+1 and ri−1 − ri color-savings. Then, at
step ri:

1. There is no room to store ri in the buffer (i.e. Size(BS(ri))+Size(ri) > 1).
2. All the packages in BS(ri) are first-packages of color-savings.

Proof. For part 1, assume on the contrary that it is possible to store ri in the
buffer at step ri. Then, since S is good, there is not enough room to store ri all
the way to ri+1. Therefore, there must be another package bj which S stores in
the buffer after step dropS(ri). Why is bj in the buffer? It cannot start a color-
saving, since ri is the last package which starts a color-saving. So according to
part 1 of Lemma 3, bj is in the clearance zone of another color-saving ck − ck+1

(where ck < ri), and that clearance zone must lie entirely after dropS(ri). To
summarize, we have ck < ri ≤ dropS(ri) ≤ dropS(ck), which means ck was
stored in the buffer. By part 3 of Lemma 3, it follows that there is a color-
saving which starts in the clearance zone of ck − ck+1 and hence after ri, a
Contradiction.

For part 2, let bj ∈ BS(ri), and assume on the contrary that bj is not the
first-package of a color-saving. Then, according to Corollary 1, ri−1 − ri is a
color-saving in S. contradiction. ��

3 Local Ratio Schema

In order to use the local-ratio technique, we must have a profit function we can
work with. Thus, we need to further generalize the problem by assigning a profit
to every pair. When a pair becomes a color-saving, we gain the profit which was
assigned to the pair. The goal is to make the maximum profit. This problem
is equivalent to the Maximum Color-Savings Problem if we assign each pair a
profit of 1.

Exploiting Locality: Approximating Sorting Buffers 77

Problem 3 (Maximum Color Savings with Profits).

Input:
– A sequence of packages in different colors and sizes with no two adjacent

packages of the same color.
– A nonnegative profit assigned to every pair in the sequence.

Goal:
Rearrange the sequence using a sorting buffer of capacity 1 to make color-savings
with maximum profit.

Notice that as long as the profit is nonnegative, all the lemmas and corollaries
which were proved earlier in this paper also apply to optimal solutions of this
generalized problem (with the same proofs).

This problem contains the bandwidth-allocation problem [6]. Indeed, we can
represent each interval as a pair of packages r1−r2 and set its profit to the profit
of the interval. We set the size of r1 as the width of the interval. We organize
the packages such that pairs intersect iff their corresponding intervals intersect.
Next, we insert a heavy (Size > 1) package before the last package of each
pair, so no passive color-savings could be made (The heavy packages we add
are from distinct colors so no new pairs are created). Now, every color-saving
made by a feasible solution in our problem corresponds to a scheduled instance
in the bandwidth-allocation problem. Since the bandwidth-allocation problem is
NP-hard, it follows Problem 3 is NP-Hard too.

We are now going to examine a general instance of the above problem. Let
P be the set of all pairs in the input sequence σ. Given a solution S, let x be
a vector of the boolean variables {xI |I ∈ P} such that xI = 1 iff I is a color-
saving in S (xI = 0 otherwise). We call x the color-savings vector of S. The
profit made by a solution S can be represented by the inner product p · x where
x is the color-savings vector of S and p is the profit vector, with pI the profit
gained if I is a color-saving in S.

A solution S is an r-approximation to an instance of Problem 3, if p · x ≥
1
r · p · x∗, where x is the color-savings vector of S and x∗ is the color-savings
vector of an optimal solution. An algorithm is an r-approximation algorithm if
for every instance of the problem it computes an r-approximation.

Theorem 1 (Local Ratio Theorem). Let σ be the input sequence of an in-
stance of Problem 3, and let p, p1, and p2 be profit vectors such that p = p1 +p2.
Let S be a solution to the above instance, and let x be its color-savings vector.
Then, if S is an r-approximation with respect to p1 and with respect to p2, then
S is also an r-approximation with respect to p.

Proof. Let S∗, S∗
1 , S∗

2 be optimal solutions of the instance with respect to the
profit vectors p, p1, and p2 respectively, and let x∗, x∗

1, x∗
2 be their corresponding

color-savings vectors. Then:

p · x = p1 · x + p2 · x ≥ 1
r
· p1 · x∗

1 +
1
r
· p2 · x∗

2 =
1
r
· (p1 · x∗

1 + p2 · x∗
2) ≥

1
r
p · x∗

��

78 R. Bar-Yehuda and J. Laserson

3.1 Schema

We present a generic schema based on the local-ratio technique to approximate
the maximum color-savings problem.

1. Delete all pairs with zero profit from the input sequence. Let P be the set
of all the remaining pairs.

2. If P = ∅, return the empty solution (no package is stored in the buffer).
3. Decompose p by p = p1 + p2 (The decomposition will be discussed later).
4. Solve the problem recursively using p2 as the profit function. Let S′ be the

solution returned.
5. return S = make good(S′).

We now analyze the quality of the solution produced by the above schema.

Lemma 7. Let r be a constant. Suppose that the method for decomposing the
profit function is such that:

1. p2 is nonnegative.
2. There is a pair I ∈ P such that p2(I) = 0.
3. Every good solution is an r-approximation with respect to p1.

Then, the solution S returned by the schema is an r-approximation.

Proof. First of all, since in each recursive call one of the pairs has a zero profit
(p2(I) = 0), at least one pair is deleted in every call. Thus the number of
recursive calls is bounded by the finite number of pairs, and hence the algorithm
terminates in polynomial time.

Second, the first step in which pairs with zero profit are deleted clearly does
not change the optimal value. Thus, it is sufficient to show that S is an r-
approximation with respect to the new input sequence. The proof is by induction
on the number of recursive calls. At the basis of the recursion, the returned
solution is optimal (and hence an r-approximation), since no pairs remain in the
input. For the inductive step, assume that S′ is an r-approximation with respect
to p2. Then, since S = make good(S′) has (at least) all the color-savings in S′

and p2 is nonnegative, it follows that S is an r-approximation with respect to
p2. Since S is good, it is also an r-approximation with respect to p1. By the
Local-Ratio Theorem, it is an r-approximation with respect to p. ��

4 Applying the Schema

We call a pair a heavy pair if its first-package has a size greater than 1
2 , and a

light pair otherwise. We are now going to apply the above schema to two types
of instances of the Maximum Color-Savings Problem with Profits - a light type
and a heavy type. In the light type all the pairs are light and by applying the
schema we will obtain a 6-approximation. In the heavy type, all the pairs are
heavy and we will obtain a 3-approximation.

Using these results, the following algorithm returns a 9-approximation solu-
tion. Let σ be the input sequence and p the profit function. Then:

Exploiting Locality: Approximating Sorting Buffers 79

1. Let σ′ be the resulting sequence after deleting all the heavy pairs in σ.
2. Apply the schema to σ′ (light instance) and let S′ be the returned solution.
3. Let σ′′ be the resulting sequence after deleting all the light pairs in σ.
4. Apply the schema to σ′′ (heavy instance) and let S′′ be the returned solution.
5. Return the solution, between S′ and S′′, which gains maximum profit with

respect to p.

Theorem 2. The solution returned by the above algorithm is a 9-approximation.

Proof. Let S∗ be the optimal solution, with profit P ∗. Let P ′ and P ′′ be the
profits S∗ gained from light pairs and heavy pairs, respectively, such that P ∗ =
P ′ + P ′′. Then, if P ′ ≥ 2

3P ∗, S′ is a 9-approximation. Otherwise, P ′′ ≥ 1
3P ∗

and S′′ is a 9-approximation. Hence, the better solution of the two is always a
9-approximation. ��

4.1 Applying the Schema on a Heavy Instance

Consider an instance of theMaximumColor-Savings problemwith profits, inwhich
all the pairs are heavy. In order to apply the schema it remains to show how to de-
compose thenonnegative profit function p to p = p1+p2 such that all the conditions
of Lemma 7 are satisfied. Let ri−ri+1 ∈ P be the pair which starts last (recall that
P refers to the pairs in the input sequence after pairs with zero profit have been
deleted). Now, we can define the profit function p′1 as follows:

p′1(I) =
{

1 I ∈ I(ri)
0 Otherwise

.

Claim. Every good solution is a 3-approximation with respect to p′1

Proof. First, we will show that the profit of a good solution is at least 1. Let S be
a good solution. If either one of the color-savings ri−1−ri and ri−ri+1 are made
by S then we are done. Otherwise, by Lemma 6, every package in the buffer at
step ri is the first package of a color-saving. Since all pairs are heavy, the buffer
is either empty or has exactly one package. In the latter case, it follows that the
package in the buffer is the first package of a color-saving which intersects ri,
and hence here also S makes a profit of 1.

We are left with the case the buffer is empty when it reaches ri. This case
is not possible: By Lemma 6, there is no place in the buffer to store ri, which
implies Size(ri) > 1. But if that is true, S can be trivially changed to store all
the packages between ri and ri+1 in the empty buffer (because by Corollary 2
their total size is no more than 1). This contradicts the fact that S is a good
solution which does not make the ri − ri+1 color-saving.

Second, we will prove that the maximum profit is at most 3. Let S be any
feasible solution. Classify the color-savings of S in I(ri) to 3 types, as in Sec-
tion 2.4. S can make a profit of at most 2 from type A color-savings. If ri is not
stored in the buffer, S does not profit from type B color-savings and gains at
most 1 (because all pairs are heavy) from type C. If ri is stored in the buffer, S
does not profit from type C color-savings and gains at most 1 from type B. In
both cases, S profits no more than 3. ��

80 R. Bar-Yehuda and J. Laserson

We note that for every ε ≥ 0, every good solution is a 3-approximation with
respect to εp′1. It is easily seen that by choosing ε0 = max{ε|p − εp′1 ≥ 0} to
define p1 = ε0p

′
1 and p2 = p− ε0p

′
1 we ensure that one of the pairs has a p2-profit

of 0 and still keep all the prices nonnegative. This decomposition satisfies all
the conditions of Lemma 7, and it allows us to apply the schema on any heavy
instance of the problem to receive a solution which is a 3-approximation.

4.2 Applying the Schema on a Light Instance

Consider an instance of the Maximum Color-Savings problem with profits, in
which all the pairs are light. In order to obtain a 6-approximation we are going
to decompose the problem once more. For each color r, a pair ri − ri+1 is even
(odd, respectively) if i is even (odd). We call an instance of the maximum color-
savings with profits problem reduced if every package belongs to at most one pair,
or in other words, if there are at most 2 packages of each color. We observe that
if we delete all the even (odd) pairs, we are left with a reduced instance. We will
later show that by applying the schema to a reduced-light instance, we can obtain
a 3-approximation. The following algorithm will thus yield a 6-approximation:

1. Let σ′ be the resulting sequence after deleting all the even pairs in σ.
2. Apply the schema to σ′ (reduced-light) and let S′ be the returned solution.
3. Let σ′′ be the resulting sequence after deleting all the odd pairs in σ
4. Apply the schema to σ′′ (reduced-light) and let S′′ be the returned solution.
5. Return the solution, between S′ and S′′, which gains maximum profit with

respect to p.

Lemma 8. The solution returned by the above algorithm is a 6-approximation.

Proof. Let S∗ be the the optimum solution, with profit P ∗. Let P ′ and P ′′ be
the profits S∗ gained from even and odd pairs, respectively (P ∗ = P ′ + P ′′).
Then, either P ′ ≥ 1

2P ∗ or P ′′ ≥ 1
2P ∗. Since S′ and S′′ are 3-approximations

with respect to σ′ and σ′′, the better solution of the two is a 6-approximation.
��

Applying the Schema on a Reduced-Light Instance. It remains to show
how to apply the schema on a reduced-light instance to obtain a 3-approximation.
As in the previous subsection, we need to show how to decompose the nonneg-
ative profit function p by p = p1 + p2 such that all the conditions of Lemma 7
are satisfied. Since the instance is reduced, all the pairs in P are of the form
b1 − b2 where b is a color. Let r1 − r2 ∈ P be the pair which starts last, and
define δ � 1 − Size(r1) (notice that δ ≥ 1

2). We define p′1 as follows:

p′1(b1 − b2) =

⎧⎨
⎩

δ b1 − b2 = r1 − r2

Size(b1) b1 − b2 ∈ I(r1) \ {r1 − r2}
0 Otherwise

.

Exploiting Locality: Approximating Sorting Buffers 81

Claim. Every good solution is a 3-approximation with respect to p′1

Proof. First, we will show that the profit of a good solution is at least δ. Let S
be a good solution. If r1 − r2 is a color-saving in S then we are done. Otherwise,
by Lemma 6 we know that Size(BS(r1)) > 1 − Size(r1) = δ. Let bi be a
package in BS(r1). Then, by part 2 of Lemma 6, bi is the first-package of a
color-saving in S. Since the instance is reduced it follows that i = 1, b2 /∈ BS(r1),
and hence b1 − b2 is a color-saving in S which intersects r1. Therefore, S gains
p′1(b1 − b2) = Size(b1) = Size(bi) for every bi ∈ BS(r1). It follows that S makes
a profit of at least Size(BS(r1)) > δ.

Second, we will prove that the maximum profit is at most 3δ. Let S be
any feasible solution. Classify the color-saving of S in I(r1) into 3 types, as
in Section 2.4. S can make a profit of at most δ from type A color-savings
(namely r1 − r2). If r1 is not stored in the buffer, S does not profit from type
B color-savings and gains at most Size(BS(r1)) ≤ 1 from type C, for a to-
tal of no more than δ + 1. If r1 is stored in the buffer, S can profit at most
Size(BS(r1)) ≤ 1 − Size(r1) = δ from type C color-savings and at most 1

2
from type B (because there is no more than one color-savings of type B, and
it is light), for a maximum total of 2δ + 1

2 . In both cases, S profits no more
than 3δ. ��

As before, by choosing ε0 = max{ε|p− εp′1 ≥ 0} to define p1 = ε0p
′
1 and p2 = p−

ε0p
′
1 we get the required decomposition, and obtain a 6-approximation algorithm

for heavy instances.

References

1. J. S. Kohrt and K. Pruhs. A constant approximation algorithm for sorting buffers.
Proceedings of the Sixth Latin American Symposium (LATIN 2004), volume 2976 of
Lecture Notes in Computer Science, pages 193-202. Springer-Verlag, 2004.

2. H. Räcke, C. Sohler, and M. Westermann. Online Scheduling for Sorting Buffers.
Proceedings of the 10th ESA (Rome), pp. 820–832, 2002.

3. R. Bar-Yehuda. One for the price of two: a unified approach for approximating
covering problems. Algorithmica 27, 131–144, 2000.

4. R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics 25, 27-46, 1985.

5. R. Bar-Yehuda and D. Rawitz. On the Equivalence between the Primal-Dual Schema
and the Local-Ratio Technique. Proceedings of RANDOM-APPROX 2001, p.24–35,
2001.

6. A. Bar-Noy, R. Bar-Yehuda, A. Freund , J. Naor , B. Schieber. A unified approach
to approximating resource allocation and scheduling, Journal of the ACM (JACM),
v.48 n.5, p.1069-1090, September 2001.

7. Th. Epping, W. Hochstättler. Storage and Retrieval of Car Bodies by the Use of
Line Storage Systems. Technical report btu-lsgdi-001.02, BTU Cottbus, Germany,
2002.

Approximate Fair Cost Allocation in Metric Traveling
Salesman Games

M. Bläser� and L. Shankar Ram

Institut für Theoretische Informatik, ETH Zürich, CH-8092, Zürich, Switzerland
{mblaeser, lshankar}@inf.ethz.ch

Abstract. A traveling salesman game is a cooperative game G = (N, cD). Here
N , the set of players is the set of cities (or the vertices of the complete graph)
and cD is the characteristic function where D is the underlying cost matrix. For
all S ⊆ N , define cD(S) to be the cost of a minimum cost Hamiltonian tour
through the vertices of S ∪ {0} where 0 �∈ N is called as the home city. De-
fine Core(G) = x ∈ 	N : x(N) = cD(N) and ∀S ⊆ N, x(S) ≤ cD(S) as
the core of a traveling salesman game G. Okamoto [15] conjectured that for
the traveling salesman game G = (N, cD) with D satisfying triangle inequal-
ity, the problem of testing whether Core(G) is empty or not is NP–hard. We
prove that this conjecture is true. This result directly implies the NP–hardness
for the general case when D is asymmetric. We also study approximate fair
cost allocations for these games. For this, we introduce the cycle cover games
and show that the core of a cycle cover game is non–empty by finding a fair
cost allocation vector in polynomial time. For a traveling salesman game, let
ε–Core(G) = x ∈ 	N : x(N) ≥ cD(N) and ∀S ⊆ N, x(S) ≤ ε · cD(S)
be an ε–approximate core, for a given ε > 1. By viewing an approximate fair
cost allocation vector for this game as a sum of exact fair cost allocation vectors
of several related cycle cover games, we provide a polynomial time algorithm
demonstrating the non–emptiness of the log2(|N |−1)– approximate core by ex-
hibiting a vector in this approximate core for the asymmetric traveling salesman
game. We also show that there exists an ε0 > 1 such that it is NP–hard to decide
whether ε0–Core(G) is empty or not.

1 Introduction

The cooperative game related with the traveling salesman problem is very well–studied.
Any cooperative game is characterized by the set of players (or agents) and a cost func-
tion that is defined for any coalition of these players. In a traveling salesman game, the
players are the cities which the salesman has to visit. The cost function is intuitively the
cost incurred by visiting a given subset of the cities, and returning to the home city.

Several problems can be posed with respect to a given combinatorial optimization
game. One prominent question is to test the non-emptiness of the core of a game. Prob-
ably [18] is the first paper which studied a cooperative game, namely, the assignment
game. The underlying combinatorial optimization problem is the assignment problem
(or equivalently, the maximum weighted matching problem on bipartite graphs). Testing

� Author’s new address: FR Informatik, Universität des Saarlandes, Postfac 151150, 66041
Saarbrücken, Germany. email: mblaeser@cs.uni-sb.de

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 82–95, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximate Fair Cost Allocation in Metric Traveling Salesman Games 83

the core non-emptiness of this game is essentially the same as the polynomial solvabil-
ity of the optimization problem by the Hungarian method [14]. Another example is the
minimum spanning tree game wherein the core was shown to be non-empty by an ex-
plicit construction of a vector in the core [2,11]. In these examples and some more, a
clear relationship exists between the polynomial solvability of the underlying optimiza-
tion problem and testing the non-emptiness of the core of the game.

Another characterization of the core non-emptiness of a game is from linear pro-
gramming. A result of Deng et. al. [3] states that a necessary and sufficient condition
for the core of a maximum packing game and a minimum covering game to be non-
empty is that the linear programming relaxations of these problems have integral opti-
mal solutions. Note that the underlying optimization problems in this case are NP–hard.
Other characterizations in this direction are for the facility location games [13], partition
games [7], and delivery games [10] to mention a few.

On the other hand, several papers deal with the intractability of the core non–
emptiness of certain games. For example, Deng et. al. [3], showed that testing the non-
emptiness of the core of the minimum coloring game is NP–complete. The underlying
combinatorial optimization problem in the case is also NP–hard. Thus, this reinstates
again the relationship between these two problems. Goemans and Skutella [9] showed
the NP–completeness of the core non-emptiness of a facility location game.

In this paper, we study traveling salesman games, introduced by Potters et. al.
[17]. More formally, a cooperative game is given by the tuple (N, f) where N =
{1, 2, . . . , n} and f : 2N → � is a characteristic function. In the case of a travel-
ing salesman game, N = {1, 2, . . . , n} (the cities) with a given symmetric distance
matrix D (referred to as a cost function defined on all pairs of cities) on the set of cities
and for a subset S ⊆ N , we have the characteristic function cD(S) defined to be the
cost of a minimum cost Hamiltonian tour which visits all the cities in S ∪ {0} where
0 �∈ N is called the home city or home node. Note that the cost matrix D is defined
over all pairs (i, j) where i, j ∈ N ∪ {0}. The core of a game (N, f) is defined to be
the following:

Core(N, f) = {x ∈ �n : x(N) = f(N) and ∀S ⊆ N, x(S) ≤ f(S)}
where x(S) =

∑
i∈S x(i) with x = (x(i))i=1...n. The interpretation of this definition

for the traveling salesman game can be motivated as follows. Consider home node 0 as
the home city of a professor who has to give talks at the universities located in vertices
1, . . . , n. The total travel cost is cD(N). So, the problem is to find a fair cost allocation
(a vector in the core) such that no coalition S will split off because they pay more than
the actual cost of an optimal subtour through S ∪ {0} and invite the professor to visit
only the universities i ∈ S.

Various aspects of the traveling salesman games have already been covered in the
literature. Tamir [19] showed that a metric (i.e., satisfying triangle inequality) traveling
salesman game with at most four players always has a non-empty core and also the
existence of a game with six players whose core is empty. Further, Faigle et. al. [6]
designed an instance of a 2-dimensional Euclidean game with six players such that
the core is empty. More recently, Okamoto [15] showed that the problem of deciding
whether a general traveling salesman game has an empty core or not, is NP–hard. But

84 M. Bläser and L.S. Ram

for the special case of metric traveling salesman games, the same question was left open
and conjectured to be NP–hard. In this paper, we show that this is indeed the case.
In fact, we prove that testing the core–emptiness of a {1, 2} traveling salesman game
where the costs on any pair of cities is either one or two and the costs are symmetric
(i.e., cost on a pair (i, j) is the same as that on (j, i)) is NP–hard. This also proves
that it is NP–hard to decide if the core of an asymmetric traveling salesman game
with triangle inequality, is empty or not. Note that an asymmetric traveling salesman
game is a generalization of the symmetric game. We then consider approximate fair
cost allocations, i.e., find a cost allocation vector x ∈ �N such that ∀S ⊆ N , x(S) ≤
ε · cD(S) and x(N) ≥ cD(N), for some ε. Our reduction also yields that it is NP–hard
to find an ε0–approximate cost allocation vector for some ε0 > 1 for the asymmetric
traveling salesman game, using a result of Berman et. al. [1].

We introduce cycle cover games on the same underlying complete directed graph,
where the characteristic function is the cost of a minimum cost cycle cover. We show
that the core is always non–empty for such a game and provide a O(|N |3) time algo-
rithm for finding a fair cost allocation vector. We also show that an approximate fair
cost allocation vector for an asymmetric traveling salesman game is the sum of exact
fair cost allocation vectors of several related cycle cover games.

The question of finding an approximate fair cost allocation vector has already
been considered for several cooperative games where testing the core non-emptiness
problem is NP–hard. Faigle et. al. [6] find a 1.5-approximate fair cost allocation
vector for symmetric traveling salesman game. For this, they make use of the well
known Christofides’ approximation algorithm for symmetric traveling salesman opti-
mization problem. In this paper, we provide a polynomial time algorithm that finds a
log2(|N | − 1)-approximate cost allocation vector for the asymmetric traveling sales-
man game. We make use of an approximation algorithm for the minimum asymmetric
traveling salesman problem of Frieze et. al [8].

2 Preliminaries

Let N = {1, 2, ..., n}. Define D : (N ∪{0})× (N ∪{0}) → {1, 2} to be an (n +1)×
(n + 1) symmetric matrix. Let cD : 2N → Z be such that ∀S ⊆ N ,

cD(S) = min
ρ:S→S

⎧⎨
⎩d(0, ρ(i1)) +

|S|−1∑
j=1

d(ρ(ij), ρ(ij+1)) + d(ρ(i|S|), 0)

⎫⎬
⎭

over all permutations ρ on S = {i1, i2, . . . , i|S|}. In other words, cD(S) is the cost of
a minimum cost Hamiltonian tour through S ∪ {0}, with 0 �∈ N called the home node,
when we consider the complete graph on N ∪ {0}. The tuple (N, cD) is the symmetric
traveling salesman game. The core of the game is defined as

Core(N, cD) = {x ∈ �n : x(N) = cD(N) and ∀S ⊆ N, x(S) ≤ cD(S)}

where x(S) =
∑

i∈S x(i) with x = (x(i))i=1...n. Any vector x ∈ Core(N, cD) is
called a fair cost allocation vector. Whenever x is a vector, x(i) will refer to the corre-
sponding value at the ith coordinate.

Approximate Fair Cost Allocation in Metric Traveling Salesman Games 85

Consider the following decision problem : given a matrix D, is Core(N, cD) = ∅ or
not?

We denote the problem as Core–ΔTS or the problem of testing the core non-
emptiness of a metric traveling salesman game. Note that the input to the decision
problem is the matrix D and not the function cD(.). We remark that one does not need
to compute cD(N) and hence testing whether (N, cD) has an empty core may be easier
than testing membership in the core, i.e., whether a given x satisfies the two properties
of fair cost allocation. We show that Core–ΔTS is NP–hard by a polynomial time re-
duction from the following SAT problem (3SAT4), also called the Bounded Occurence
Satisfiability problem:

Given a boolean formula φ as a conjunction of disjunctive clauses with exactly three
literals per clause and the number of occurences of a literal is four, does there exist a
truth assignment to the variables of the formula such that all the clauses are satisfied?

3SAT4 was shown to be NP–complete in [20] . Recently, it was shown in [1], that it
is NP–hard to approximate the corresponding maximization problem to within a con-
stant c > 1.

3 The Reduction

In this section, we elaborate the polynomial time reduction from 3SAT4 to Core–ΔTS.

3.1 The Basic Gadgets

The usual reductions to the traveling salesman problem make use of special components
called gadgets or devices. A gadget forces an optimal Hamiltonian tour to have a special
structure. We use gadgets similar to those given in [5,16] – the former reduces from a
NP–hard problem related to Linear Equations, while the latter reduces from 3SAT4
– for the reductions to the minimum symmetric traveling salesman problem. A basic
gadget used in the construction is the ex-OR device, shown in Fig. 1(a). The structure
of the device is so that there can be only two possible traversals of this gadget by any
optimum Hamiltonian tour since the gadget is connected to the rest of the graph only at
the boundary vertices. We shall think of an ex-OR subgraph as two edges connected by
an extrinsic device (Fig. 1(b)). This will be useful in visualizing the Hamiltonian cycle
in the whole graph.

For each variable of the boolean formula, we have a device as shown in Fig. 2. It
has two paths, one for each truth value of the variable. We refer to these paths as “true
path” and “false path” respectively. Each path is an arrangement of 29 ex-ORs - four

(a) (b)

b3

b1 b2

b4

Fig. 1. (a)The ex-OR gadget. b1, b2, b3, b4 are called boundary vertices. (b) Representation of an
ex-OR device.

86 M. Bläser and L.S. Ram

"true path" "false path"

a "battery" of 5 ex−ORs

to clauses
(occurence edge)

Fig. 2. The variable gadget. There are four “occurence” edges corresponding to the four oc-
curences of literal x or x̄, in the respective paths.

b3

b4 b3

b4

b3b4

to "occurence" edge

Fig. 3. The clause gadget. There are three ex-OR devices corresponding to the three literals of the
clause. b3, b4 vertices are the boundary vertices of the corresponding ex-ORs.

of them are connected to the clause devices (one for each occurence of a literal called
occurence edge), and the others (five “batteries” or “series” of five ex-ORs each) are
connected within to the other path of the same variable device. The intuition behind
such a construction is consistency, i.e., to ensure that an optimal tour does not traverse
both paths. So, any optimal Hamiltonian tour traverses exactly one of the two paths and
also all the vertices of this path appear successively on the tour.

For each clause, we have a triangle device with each edge connected to the occurence
edge of the literal in the clause via an ex-OR device. Please refer to Fig. 3. Note that
there are three edges between the boundary points of adjacent ex-OR devices of the gad-
get. These edges will be referred to as boundary-boundary edges. This is an important
difference from the clause gadget of [16], which will be essential for the NP–hardness
proof.

3.2 The Construction

We now describe the actual graph that will be constructed from a given boolean formula.
Let φ = C1 ∧ C2 ∧ · · · ∧ Cm be the given boolean formula where each Ci = (ai ∨
bi ∨ ci). Also any variable v appears at most four times as the literal v and at most
four times as the literal v̄ in φ. We construct graph G as follows. Fix an order of the
variables and connect the variable gadgets as a series, as shown in Fig. 4. The set of all
m clause gadgets are connected so that the 3m corners are pairwise connected amongst
themselves and also to the first and last vertices of the variable series.

The distance matrix D for this graph G is simply : d(i, j) = 1 if (i, j) ∈ E,
and otherwise d(i, j) = 2. This means that all the edges which are mentioned in the

Approximate Fair Cost Allocation in Metric Traveling Salesman Games 87

s

t

0

"complete subgraph"

clause partvariable part

Fig. 4. The graph G. Home node “0” is not considered to be part of G. Corners of clause gadgets,
the nodes s and t, and the home node “0” form a complete subgraph of G ∪ {0}.

construction are of cost one and the remaining edges (note that an instance of a TSP
game is a complete graph) are of cost two. We consider G to be the graph consisting of
only these cost one edges.

3.3 Structure of an Optimal Tour

We show the following lemmas on the structure of optimal Hamiltonian tours in G.

Definition 1. Nodes of G which are traversed by an optimal Hamiltonian tour with one
edge of cost one and another of cost two are called endpoints. Those nodes which are
traversed with both edges of cost two are called double endpoints and will be seen as
two endpoints each.

Lemma 1. Let A be a truth assignment to the variables of φ such that maximum num-
ber of clauses are satisfied. If, under A, φ has k unsatisfied clauses, then there exists
an optimal Hamiltonian tour through the vertices of G with k or k + 1 endpoints, de-
pending on k being even or odd respectively. Moreover, these endpoints are present in
the clause part of G.

Proof : Consider the following tour. The variable part of G is traversed according to
the assignment A, i.e., if ai = 1 in A, then we take the “true path” of the variable
ai, otherwise the “false path” of the variable. In the clause part, the tour traverses the
satisfied clause gadgets first (this means that at most two edges of such a triangle are
not covered by the variable part traversal of the tour). Then, in the unsatisfied clause
gadgets, one endpoint per each gadget is introduced. This is because, any Hamiltonian
tour , for optimality, needs to leave an unsatisfied clause from a non-corner vertex at
least once and this vertex becomes an endpoint. For parity reasons, one may have to
introduce another endpoint. Thus, in this tour there are either k or k + 1 endpoints
and all of them are introduced in the clause devices. It remains to show that such a
tour is optimal. The proof of this fact is essentially the same as given in [16] which
exhaustively lists the various possibilities of traversal and in each case how one can
modify the tour to have the required structure without increasing costs. However, there
is one issue that needs to be taken care of. The clause gadget of [16] and ours differ
in the introduction of additional cost one edges between the adjacent boundary points
in our construction (the boundary-boundary edges). So, we need to make sure that

88 M. Bläser and L.S. Ram

(a) (b)

c1 c2

c3
b1

c1c2

c3
b1 b2 b2

Fig. 5. (a) shows an optimal Hamiltonian tour using the boundary-boundary edge (b1, b2). Such
a tour can be modified as shown in (b).

the traversal of any optimal Hamiltonian tour through our clause gadget can also be
assumed to follow the same traversal pattern as that of the gadget given in [16]. This
modification is illustrated in Fig. 5. In Fig. 5(a), the optimal tour uses the boundary
edge (b1, b2). This can be overcome by the modification suggested in (b). Since for
optimality, any clause gadget can be entered only from corner vertices, the vertices
c1, c2 are indeed corner vertices and hence are connected by an edge of cost one. Putting
it all together, the Lemma follows. �

Lemma 2. Let n be the number of vertices in G. If φ is satisfiable, the cost of an optimal
Hamiltonian tour in G is n. If φ is unsatisfiable and there exists an optimal (in the sense
of satisfying maximum number of clauses) assignment with k unsatisfied clauses, then
the cost of an optimal Hamiltonian tour in G is n +

⌈
k
2

⌉
.

Proof : Consider the optimal Hamiltonian tour constructed in Lemma 1. If φ is sat-
isfiable or in other words k = 0, then this tour has no endpoints. So, its cost is n.
Otherwise, the tour has k or k + 1 endpoints. Each endpoint has one edge of cost two
in the tour, and hence the number of cost two edges in the tour is k

2 or k+1
2 when

k is even or odd respectively, i.e.,
⌈

k
2

⌉
cost two edges. Thus, the cost of the tour is

(n −
⌈

k
2

⌉
) · 1 +

⌈
k
2

⌉
· 2 = n +

⌈
k
2

⌉
. �

4 Hardness Results

Let n be the number of vertices in G. Define N = {1, 2, . . . , n}, the vertices of G.
Also, let cD : 2N → �, be defined as follows. For any S ⊆ N , cD(S) is the cost of a
minimum cost tour through the vertices of S ∪ {0}. Recall that in our construction, the
home node 0 is connected to the corner vertices of all clause gadgets by cost one edges.

Theorem 1. If N = {1, 2, . . . , n} and D is a (n + 1) × (n + 1) symmetric matrix
satisfying triangle inequality, then the problem of deciding if Core(N, cD) is empty or
not, is NP–hard.

Proof : We show the NP–hardness of Core–ΔTS by showing the following equivalent
claim.

Claim : φ is satisfiable if and only if Core(N, cD) is non-empty.

Approximate Fair Cost Allocation in Metric Traveling Salesman Games 89

Suppose φ is satisfiable. We show a fair cost allocation in the TSP game (N, cD)
thereby proving the core to be non-empty. Since φ is satisfiable, by Lemma 2, the cost
of an optimal Hamiltonian tour is n + 1. Note that this tour passes through the home
node ’0’. Let us define the vector x ∈ �n to be (n+1

n , n+1
n , . . . , n+1

n). We claim that
x ∈Core(N, cD). Clearly, x(N) = n + 1 = cD(N). Consider any S ⊆ N . We have,
cD(S) ≥ |S|+1. But, x(S) =

∑
i∈S

n+1
n = (1+ 1

n)|S| = |S|+ |S|
n ≤ |S|+1 ≤ cD(S).

Hence, x ∈Core(N, cD).
Now, suppose φ is unsatisfiable. Consider an optimal truth assignment A (optimal

in terms of maximum number of satisfiable clauses) which satisfies all but k clauses
(k > 2). We deal with k = 1, 2 cases later. Depending on the truth value of a variable in
A, let T denote all the vertices of G occuring in the “true paths” of all variables (i.e., if
variable vi = 1 in A, then we take the path in the variable device of vi corresponding to
the literal vi, otherwise that of āi) , the vertices of all the ex-OR batteries on the “false
paths” and finally all the remaining vertices of satisfied clause devices (with respect
to A). This means that we consider all the vertices in the variable part of G except
those present in the occurence edges on the “false paths” with respect to A. It also
implies that vertices of ex-OR devices of occurence edges in “true paths” present on the
satisfied clauses (with respect to A) are also in T . Let C denote the corner vertices of
the unsatisfied clause gadgets. Let R := N\{T ∪ C}. Suppose, for contradiction, that
Core(N, cD) �= ∅. Let x ∈ Core(N, cD). Since x ∈ �n is a fair cost allocation vector,
the following structural properties must hold for x.

Lemma 3. If x is a fair cost allocation vector, and T is defined as above, then x(T) ≤
|T |+ 1.

Proof : There is a Hamiltonian tour through the vertices of T which uses only cost one
edges, as follows. First, traverse the vertices of T on the variable part of G according to
the assignment A. Now, consider the vertices of satisfied clause devices that have not
yet been covered by the tour. There are three possibilities as to the arrangement of these
vertices :

1. only the corner vertices of a satisfied clause device are not traversed.
2. an edge of the satisfied clause device and the corner vertices are not traversed.
3. two edges of the satisfied clause device alongwith the corner vertices are not tra-

versed.

Clearly, all these vertices can be traversed with cost one edges by recalling the fact
that all corner vertices and the home node 0 are interconnected by cost one edges.
Hence, cD(T) = |T |+ 1. Since x(T) ≤ cD(T), the claim follows. �

Lemma 4. Let C be the set of corner vertices of unsatisfied clause gadgets, and R be
the set of remaining vertices in unsatisfied clause gadgets. If x is a fair cost allocation
vector, then x(C) + x(R) ≥ |C| + |R| +

⌈
k
2

⌉
.

Proof : Since x is a fair cost allocation vector, x(N) = cD(N). Now, there is a
Hamiltonian tour through the vertices of G of cost n+

⌈
k
2

⌉
, by Lemma 2. So, cD(N) =

n +
⌈

k
2

⌉
+ 1, by recalling the fact that cD(N) is an optimal tour including the home

90 M. Bläser and L.S. Ram

(b) (c)(a)

2 3

1 1 1

2 233

R(1,2) R(1,2) R(1,2)

R(2,3) R(2,3) R(2,3)

R(3,1) R(3,1) R(3,1)

Fig. 6. (a), (b), (c) show the traversals of three tours H1, H2, H3 respectively on an unsatisfied
clause gadget. In H1, the corner vertex 1 and all the vertices of the ex-OR on the edge R(2, 3)
are not traversed. The complete tours can be visualized easily since all the corner vertices are
pairwise connected.

node 0. Also, x(N) = x(C) + x(R) + x(T), since the sets C, R, T are disjoint. Now,
by Lemma 3, x(T) ≤ |T |+ 1, and hence the Lemma follows. �

We consider three tours H1, H2, H3 through the vertices of C ∪ R as shown in Fig.
6, Let an unsatisfied clause gadget Ci, for i = 1, 2, . . . , k, be given by (3i − 2, 3i −
1, 3i, R(3i−2, 3i−1), R(3i−1, 3i), R(3i, 3i−2)), where the first three are the corner
vertices and R(p, q) denotes the vertices in the ex-OR gadget between (p, q) of Ci and
the corresponding occurence edge in the variable part of G. Thus, the tour H1 is then
{2, R(1, 2), R(3, 1), 3, 5, R(5, 4), R(6, 4), 6, . . . , 3k−1, R(3k−2, 3k−1), R(3k, 3k−
2), 3k, 2}. The tours H2 and H3 are similarly defined. Let H be one of these tours with
the maximum x(.) value, i.e., x(H) := max{x(H1), x(H2), x(H3)}. This implies that
x(H) ≥ 1

3{x(H1) + x(H2) + x(H3)}.
For all u ∈ C ∪ R, x(u) contributes twice in the sum x(H1) + x(H2) + x(H3).

Therefore,

x(H) ≥ 1
3
{2x(C) + 2x(R)} =

2
3

{
|C| + |R| +

⌈
k

2

⌉}

But, |H | = |H1| = |H2| = |H3| = 2
3{|C|+|R|} and x(H) ≤ |H |+1, by the definition

of the tours Hj , i.e., 2
3

{
|C| + |R| +

⌈
k
2

⌉}
≤ x(H) ≤ 2

3 |C|+ 2
3 |R|+1, a contradiction

when k ≥ 3.
We employ the following technique in order to overcome the difficulty in getting a

contradiction for k ≤ 2. Instead of considering the formula φ, we look at the formula
φ′ = φ1 ∧ φ2 ∧ φ3. The formula φ′ is a conjunction of the formulas φi, for i = 1, 2, 3,
where each φi is a copy of the old formula φ but with new, distinct variables. This
means that φ′ has 3n variables and 3m clauses. It is easy to see that both φ and φ′ are
equivalent because the variables of each φi are distinct. Now, if there is an optimal
truth assignment that satisfies all but k clauses of φ, then there is an optimal truth
assignment that satisfies all but 3k clauses of φ′. Thus, when k = 1 or k = 2, the
number of unsatisfied clauses in φ′ is respectively 3 and 6. The above proof holds good
for φ′. Hence, Core(N, cD) = ∅. This proves the claim that φ is satisfiable if and only
if Core (N, cD) is non–empty. Clearly, the construction of the graph G from φ can be

Approximate Fair Cost Allocation in Metric Traveling Salesman Games 91

done in polynomial time (in the size of φ and the number of variables). Therefore,
Core–ΔTS is NP–hard. �

Theorem 2. If N = {1, 2, . . . , n} and D is a (n + 1) × (n + 1) matrix, not nec-
essarily symmetric but satisfying triangle inequality, then the problem of deciding if
Core(N, cD) is empty or not, is NP–hard.

Proof : Let the problem mentioned in the statement of the theorem be referred to as
Core–ΔATS. But since Core–ΔTS is shown to be NP–hard by Theorem 1, and it is a
special case of Core–ΔATS, the claim of the theorem follows. �

5 Approximate Fair Cost Allocation

Since the core emptiness problem is NP-hard for traveling salesman games, we turn our
attention towards finding approximate fair cost allocation vectors. Define, for a (N, f)
game and a given ε > 1, an ε–approximate core as :

ε–Core(N, f) =
{
x ∈ �N : x(N) ≥ f(N) and ∀S ⊆ N, x(S) ≤ ε · f(S)

}
Towards finding such approximate fair cost allocations, we introduce new games

called as cycle cover games.

5.1 Cycle Cover Games

Let G = (V, E) be a complete directed graph with a cost function D : E → �. A
cycle cover C in G is a collection of vertex–disjoint cycles that span V . A minimum
cost cycle cover is a cycle cover of minimum cost with respect to D. We define a cycle
cover game to be the tuple (N, fD) where N = V , and fD : 2V → � is defined for
a subset S ⊆ N as the cost of a minimum cost cycle cover on the vertices of S. For
this game, we show that the core is non-empty by finding a fair cost allocation vector in
polynomial time.

Theorem 3. For a cycle cover game (N, fD), the core is not empty. A fair cost alloca-
tion vector in the core can be found in O(|N |3) time.

Proof : Consider the following integer program formulation for the minimum cost cycle
cover problem:

min
∑

i,j∈N

d(i, j)yij subject to

∑
j∈N\{i}

yij = 1 ∀i ∈ N and
∑

i∈N\{j}
yij = 1 ∀j ∈ N

where yij ∈ {0, 1}
We relax the final set of constraints to yij ≥ 0, to obtain a linear program L(N). It is
known that in fact L(N) has an integer optimum solution. Next, we consider the dual
program of L(N).

92 M. Bläser and L.S. Ram

max
∑
v∈N

x+(v) +
∑
v∈N

x−(v) where x+(i) + x−(j) ≤ d(i, j) ∀i, j ∈ N

Let us denote the dual program by D(N). Let x(v) = x+(v)+x−(v) for all v ∈ N .
We claim that an optimal solution x = (x(v))v∈N of D(N) is a fair cost allocation vec-
tor to the cycle cover game (N, fD). By the duality theorem, we know that the optimal
value of the objective function of L(N) which is fD(N) by definition, is the same as
x(N). Consider any subset S ⊂ N . Let CS denote a minimum cost cycle cover on S,
i.e., the cost of this cycle cover is fD(S). Now, fD(S) =

∑
C∈CS

∑
(u,v)∈C d(u, v) ≥∑

C∈CS

∑
(u,v)∈C (x+(u) + x−(v)) =

∑
u∈S (x+(u) + x−(u)) =

∑
u∈S x(u) =

x(S). Here, C ∈ CS denotes a cycle in the cycle cover and the inequality in the middle
follows because of the feasibility of x in D(N). Thus, we have shown that x ∈ �N

is a fair cost allocation vector of the cycle cover game (N, fD), thereby showing the
non-emptiness of the core. Also x is computed in O(|N |3) time using the algorithm of
[4] which is a primal-dual type algorithm. �

5.2 A Traveling Salesman Game as a Combination of Several Cycle Cover
Games

We show how one can view a traveling salesman game to be a combination of several
cycle cover games. Formally, what we prove is that an approximate fair cost allocation
vector for a traveling salesman game can be seen as the sum of (exact) fair cost alloca-
tion vectors of several related cycle cover games. We provide an algorithm to find such
an approximate fair cost allocation vector, followed by the proof of the claimed degree
of approximation.

Here, the traveling salesman game refers to the asymmetric traveling salesman game
where the cost matrix fulfills the triangle inequality. For the purpose of proving the
main theorem of this section, we adapt the approximation algorithm of Frieze et. al.
[8], for the asymmetric traveling salesman optimization problem. This approximation
algorithm achieves a performance guarantee of log2(|V |), where V is the set of vertices
of the underlying complete directed graph.

The algorithm to find an approximate fair cost allocation vector for an asymmetric
traveling salesman game is given in Fig. 1. Note that the home node “0” is included
only in the first cycle cover game.

Theorem 4. Let (N, cD) be an asymmetric traveling salesman game, with D satisfying
triangle inequality. If x∗ is the vector returned by Algorithm 1 for this game, then it
is a log2(|N | − 1)–approximate fair cost allocation vector. The running time of the
algorithm is O(|N |3).

Proof : First, let us consider the following linear program for asymmetric traveling
salesman problem, T (N) :

min
∑

i,j∈N∪{0}
d(i, j)yij subject to

Approximate Fair Cost Allocation in Metric Traveling Salesman Games 93

Algorithm 1
Input: An asymmetric game (N, cD) with a complete directed graph on N ∪ {0}, and D satis-

fying triangle inequality.
Output: A vector x∗ ∈ 	|N|.
1: Set j := 0, Vj := N , and let x∗ ∈ 	|N| be the all zero vector.
2: Compute a fair cost allocation vector xj ∈ 	|Vj |+1 for the cycle cover game on the complete

graph induced on Vj ∪ {0}. Let C be a minimum cost cycle cover in this graph.

3: Set, for all 1 ≤ i ≤ |N |, x∗(i) := xj(i) + xj(0)

|N| and then set j := 1. Let z0 ∈ 	|N| denote
the current x∗.

4: Pick one vertex from each cycle of C such that the vertex set picked, Vj , does not contain
“0”.

5: while |Vj | ≥ 2 do
6: Compute a minimum cost cycle cover C in the induced complete graph on Vj .
7: Compute a fair cost allocation vector xj ∈ 	|Vj | by using Theorem 3 for the cycle cover

game (Vj , cD).
8: Update x∗(i) := x∗(i) + j:i∈Vj

xj(i), for all i ∈ N .
9: j := j + 1.

10: Pick exactly one vertex from each of the cycles of the cycle cover C. Set Vj to be the set
of such vertices.

11: end while
12: return the vector x∗.

∑
j∈N∪{0}\{i}

yij = 1 ∀i ∈ N and
∑

i∈N∪{0}\{j}
yij = 1 ∀j ∈ N

∑
i∈S,j∈N∪{0}\S

yij ≥ 1 ∀S ⊆ N and
∑

j∈S,i∈N∪{0}\S

yij ≥ 1 ∀S ⊆ N

where yij ≥ 0

The third and the fourth set of constraints together are usually referred to as subtour
elimination constraints. Note the inclusion of the home node “0” in the program. This
program is the asymmetric version of the program for symmetric game given in [6].
It can be easily verified that the actual integer linear program corresponding to T (N)
has an optimum value cD(N). When the subtour elimination constraints are dropped
from T (N), the linear program obtained is the same as the linear program L(N ∪ {0})
formulated in the proof of Theorem 3. This can be seen as follows: the only issue is
to verify that not having the in-degree and out-degree constraints at home node “0” is
equivalent to having the constraints. Suppose “0” appears in more than one cycle of
an optimal solution y (we can assume that y is integral). Let u, v ∈ N be such that
yu0 = 1 = y0v where u, v are in the same cycle in this cycle cover y. Then by changing
yuv from 0 to 1 and resetting yu0, y0v both to 0, we obtain a solution of cost at most
that of y as du0 + d0v ≥ duv by triangle inequality.

From the algorithm, x∗(N) =
∑k

j=0

∑
i∈N xj(i) where k is such that |Vk| = 1, i.e.

the number of times the while–loop gets executed. By duality theorem, this means that
x∗(N) is the sum of the costs of all k cycle covers computed in the algorithm. Now, the

94 M. Bläser and L.S. Ram

union of all these cycle covers is an Eulerian graph (the in-degree of any vertex is equal
to its out-degree). But, any Hamiltonian tour obtained by short-cutting through such an
Eulerian graph is of cost at most that of the whole Eulerian graph because of triangle
inequality. Hence, x∗(N) ≥ cD(N) since cD(N) is the cost of an optimal Hamiltonian
tour.

Consider any subset R ⊂ N . We claim that x∗(R) ≤ log2(|R|)cD(R). By def-
inition, x∗(R) = z0(R) +

∑k
j=1 xj(R ∩ Vj). First, we show that z0(R) ≤ cD(R).

Now, since x0 ∈ �|N |+1 (refer to step 2 of the algorithm) is an exact fair cost
allocation vector for the cycle cover game on N ∪ {0}, we have x0(R ∪ {0}) is
at most the cost of a minimum cost cycle cover on R ∪ {0}. But, by definition,
x0(R∪{0}) = x0(R)+x0(0) = {x0(R)+|R|x0(0)

|N | }+(|N |−|R|)x0(0)
|N | ≥ z0(R) since

|N |−|R| > 0. Thus, z0(R) is at most the cost of a minimum cost cycle cover on R∪{0}
which is at most cD(R), the cost of an optimal Hamiltonian tour through R∪{0}. Next,
we show that for all 0 < j ≤ k, xj(R ∩ Vj) ≤ cD(R). Denote by TSPj , the optimal
value of the linear program T (Vj ∩R). Then, since any feasible solution to T (Vj ∩R)
is a cycle cover on Vj ∩R, we have that

∑k
j=1 xj(R ∩ Vj) is bounded by

∑k
j=1 TSPj .

The only non-zero TSPj values are those for which |Vj ∩ R| �= 0. By triangle in-
equality, we have that for all j, TSPj ≤ TSP0 where TSP0 is the cost of an optimal
solution to the LP, T (N ∩ R). As shown before, z0(R) ≤ cD(R). Hence, x∗(R) ≤
z0(R) +

∑
j≥1:|Vj∩R|�=0 TSP0 ≤ cD(R) + (log2(|R|) − 1)TSP0 ≤ log2(|R|)cD(R).

The last inequality is true because the linear program optimal value is a lower bound on
the integer optimal value. Since, R ⊂ N , |R| ≤ n − 1. So, for any R ⊂ N , we have
x∗(R) ≤ log2(|N | − 1)cD(R).

From the above two paragraphs, we deduce that x∗ ∈ �N is a log2(|N |−1)- approx-
imate fair cost allocation vector for the asymmetric traveling salesman game (N, cD).

As for the running time of the algorithm, to find a minimum cost cycle cover there
is O(|N |3) algorithm due to [4]. Also, as mentioned in Theorem 3, finding a fair cost
allocation vector for a cycle cover game takes O(|N |3) time. The while–loop is ex-
ecuted at most log2(|N |) − 1 times, where |Vj+1| ≤ |Vj |/2 with j = 0, 1, . . . , k
where |Vk| = 1 and V0 = N . Thus the total running time of the algorithm is
O(

∑k
i=0 (|N |/2i)3) = O(|N |3). �

Since it is NP–hard to approximate 3SAT4 to within a certain constant c > 1 [1] and
by Theorem 2, we have:

Theorem 5. Let (N, cD) be an asymmetric traveling salesman game, with D satisfying
triangle inequality. There exists an ε0 > 1 such that it is NP–hard to decide whether ε0–
Core(N, cD) is empty or not. In other words, it is NP–hard to find an ε0–approximate
fair cost allocation vector for the game. ��

Acknowledgements

We thank the anonymous referees for useful comments.

Approximate Fair Cost Allocation in Metric Traveling Salesman Games 95

References

1. P. Berman, M. Karpinski, and A. D. Scott. Approximation hardness and satisfiability of
bounded occurrence instances of SAT. Technical Report TR03-022, ECCC, 2003.

2. C. G. Bird. On cost allocation for a spanning tree: a game theoretic approach. Networks,
6:335–350, 1976.

3. X. Deng, T. Ibaraki, and H. Nagamochi. Algorithmic aspects of the core of combinatorial
optimization games. Math. Oper. Res., 24:751–766, 1999.

4. J. Edmonds and L. Johnson. Matching: A well-solved class of integer linear programs.
In Proceedings of Calgary International conference on combinatorial structures and their
applications, Gordon and Breach, pages 89–92, 1970.

5. L. Engebretsen. An explicit lower bound for TSP with distances one and two. Algorithmica,
35(4):301–319, 2003.

6. U. Faigle, S. P. Fekete, W. Hochstättler, and W. Kern. On approximately fair cost allocation
in Euclidean TSP games. OR Spektrum, 20:29–37, 1998.

7. U. Faigle and W. Kern. On the core of ordered submodular cost games. Math. Program.,
87:483–499, 2000.

8. A. Frieze, G. Galbiati, and F. Maffioli. On the worst–case performance of some algorithms
for the asymmetric travelling salesman problem. Networks, 12:23–39, 1982.

9. M. X. Goemans and M. Skutella. Cooperative facility location games. In Proc. 11th SODA,
pages 76–85, 2000.

10. D. Granot, H. Hamers, and S. Tijs. On some balanced, totally balanced and submodular
delivery games. Math. Program., 86:355–366, 1999.

11. D. Granot and G. Huberman. Minimum cost spanning tree games. Math. Program., 21:1–18,
1981.

12. H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. A 2/3 approximation for maxi-
mum asymmetric TSP by decomposing directed regular multi graphs. In Proc. of the 44th
Annual IEEE Symposium on Foundations of Computer Science, 2003.

13. A. Kolen. Solving covering problems and the uncapacitated plant location algorithms. Eur.
J. Oper. Res., 12:266–278, 1983.

14. H. W. Kuhn. The Hungarian method for the assignment problem. Nav. Res. Logist. Q.,
2:83–97, 1955.

15. Y. Okamoto. Traveling salesman games with the Monge property. Disc. Appl. Math.,
138:349–369, 2004.

16. C. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one
and two. Math. Oper. Res., 18:1–11, 1993.

17. J. A. M. Potters, I. J. Curiel, and S. H. Tijs. Traveling salesman games. Math. Program.,
53:199–211, 1992.

18. L. Shapley and M. Shubik. The assignment game I: the core. Int. J. Game Theory, 1:111–130,
1972.

19. A. Tamir. On the core of a traveling salesman cost allocation game. Oper. Res. Lett., 8:31–34,
1988.

20. C. A. Tovey. A simplified NP-complete satisfiability problem. Disc. Appl. Math., 8:85–89,
1984.

Rounding of Sequences and Matrices,
with Applications

Benjamin Doerr, Tobias Friedrich, Christian Klein, and Ralf Osbild

Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. We show that any real matrix can be rounded to an inte-
ger matrix in such a way that the rounding errors of all row sums are
less than one, and the rounding errors of all column sums as well as all
sums of consecutive row entries are less than two. Such roundings can be
computed in linear time. This extends and improves previous results on
rounding sequences and matrices in several directions. It has particular
applications in just-in-time scheduling, where balanced schedules on ma-
chines with negligible switch over costs are sought after. Here we extend
existing results to multiple machines and non-constant production rates.

1 Introduction

In this paper, we analyze a rounding problem with connections to different areas
in discrete mathematics, computer science, and operations research. Roughly
speaking, we show that any real matrix can be rounded to an integer one in such
a way that the rounding errors of all row and column sums are less than one,
and the rounding errors of all sums of consecutive row entries are less than two.

Let m, n be positive integers. For some set S, we write Sm×n to denote the
set of m × n matrices with entries in S. For real numbers a, b let [a..b] := {z ∈
Z|a ≤ z ≤ b}.

Theorem 1. Let X ∈ Rm×n having integral column sums. Then there is a
Y ∈ Zm×n such that

∀j ∈ [1..n] :
m∑

i=1

(xij − yij) = 0,

∀b ∈ [1..n], i ∈ [1..m] :
∣∣∣ b∑

j=1

(xij − yij)
∣∣∣ < 1.

Such a matrix Y can be computed in time O(mn).

It is easy to see that the second condition implies that for all a, b ∈ [1..n] and
i ∈ [1..m] we have |

∑b
j=a(xij − yij)| < 2. Also, the theorem can easily be

extended to matrices having arbitrary column sums. See Section 3 for the details.
Theorem 1 extends and improves a number of results from different

applications.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 96–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Rounding of Sequences and Matrices, with Applications 97

1.1 Rounding of Sequences

One of the most basic rounding results states that any sequence x1, . . . , xn of
numbers can be rounded to an integer one y1, . . . , yn in such a way that the
rounding errors |

∑b
j=a(xj−yj)| are less than one for all a, b ∈ [1..n]. Such round-

ings can be computed efficiently in linear time by a one-pass algorithm resembling
Kadane’s scanning algorithm (described in Bentley’s Programming Pearls [4]).
Extensions in different directions have been obtained in [9,10,13,16,18]. This
rounding problem has found a number of applications, among others in image
processing [1,17].

Theorem 1 yields a multi-sequence analogue of this result. Assume that we
have m sequences x

(i)
1 , . . . , x

(i)
n , i ∈ [1..m], such that for all k ∈ [1..n], the k-th

terms sum up to at most one (that is,
∑m

i=1 x
(i)
k ≤ 1). Then we may simul-

taneously round the sequences such that (i) all errors |
∑b

j=a(x(i)
j − y

(i)
j)| are

less than two and (ii) no two sequences have a 1 in the same position, that is,
y
(i1)
j = y

(i2)
j = 1 implies i1 = i2.

While we solve this problem in linear time, one has to be more careful than
in the one-dimensional case. A simple greedy algorithm may produce a rounding
error of Ω(log m) as shown in Section 5.1.

1.2 Linear Discrepancy in More Than Two Colors

Let k ∈ N≥2. Denote by Ek the set of the k unit vectors in Rk and by Ek the
convex hull of Ek. In other words, Ek = {v ∈ [0, 1]k | ‖v‖1 = 1}. Let H = (X, E)
be a hypergraph. The linear discrepancy problem of H in k colors is to find for
given mixed coloring p : X → Ek a pure coloring q : X → Ek such that

lindisc(H, p, q) := max
E∈E

∥∥∥∥∑
x∈E

(p(x) − q(x))
∥∥∥∥
∞

is small. The linear discrepancy of H in k colors is lindisc(H, k) := maxp minq

lindisc(H, p, q). This notion introduced in [11] extends the classical linear dis-
crepancy notion (see e.g. Beck and Sós [3]), which refers to two colors only.

Let Hn be the hypergraph of intervals in [n], that is, Hn = ([n], {[a..b] | a, b ∈
[n]}. Then Theorem 2, a slight variant of Theorem 1, shows lindisc(Hn, k) < 2
for all n and k. Theorem 4 shows that for all k ≥ 3 and all n, lindisc(Hn, k) ≥
1.5 − 6n−1/2. The lower bound shows that the bound lindisc(Hn, k) < 1 only
holds for k = 2. Note that Hn is a unimodular hypergraph, and that we have
lindisc(H, 2) < 1 for all unimodular hypergraphs.

1.3 Baranyai’s Rounding Lemma and Applications in Statistics

Baranyai [2] used a similar rounding result to obtain his famous results on color-
ing and partitioning complete uniform hypergraphs. He showed that any matrix
can be rounded in a way that the errors in all rows, all columns and the whole
matrix are less than one. He used a formulation as flow problem to prove this
statement.

98 B. Doerr et al.

Independently, this result was obtained by Causey, Cox and Ernst [6]. In
statistics, there are two applications for such rounding results [8]. Note first
that instead of rounding to integers, our results also applies to rounding to
multiples of any other base (e.g., whole multiples of one percent). This can be
used in statistic to improve the readability of data tables. A second reason to
apply such rounding procedures is confidentiality. Frequency counts that directly
or indirectly disclose small counts may permit the identification of individual
respondents. In this case, rounding to multiples of e.g. 10 can prevent such risks.
However, in both applications one would like to have that rounding errors in
columns and rows are small. This allows to use the rounded matrix to obtain
information on the row and column totals.

Our result allows to retrieve further reliable information from the rounded
matrix, namely also on the sums of consecutive elements in rows. Such queries
make sense if there is a linear ordering on statistical attributes. Here is an ex-
ample. Let xij be the number of people in country i that are j years old. Say
Y is such that 1

1000Y is a rounding of 1
1000X as in Theorem 1. Now

∑40
j=20 yij

is the number of people in country i that are between 20 to 40 years old, apart
from an error of less than 2000. Note that such guarantees are not provided by
the results of Baranyai and Causey, Cox and Ernst.

Also, our result is algorithmically highly efficient. Both Baranyai, who was not
interested in algorithmic issues, and Causey, Cox and Ernst used a reduction of
the rounding problem to a flow or transportation problem. Though such prob-
lems can be solved relatively efficiently, our linear time solution clearly beats
their runtimes.

1.4 Flexible Transfer Line Scheduling

Surprisingly, our matrix rounding problem remains non-trivial if all columns are
equal. This problem occurs as a scheduling problem. In the flexible transfer line
scheduling problem we try to produce m different goods on a single machine in
a balanced manner. We know the demands di ∈ N, i ∈ [1..m], for each good in
advance. We assume that our machine (typically a mixed-model assembly line)
can produce any good in one unit of time. Furthermore, there are no switch-over
costs, that is, we may change from one product to another at no cost.

Our goal is to design a production schedule for n =
∑m

i=1 di time steps such
that exactly di units of product i are produced. Moreover, at any time and
for any product we want our production rate to be close to the average rate
ri = di/n: After j time steps, we hope to have produced jri units of product i.
Such production lines are a central part of many just-in-time systems, see e.g.
Monden’s work [14,15] on Toyota’s production system.

Denote by pij the number of units of product i produced up to time step j.
In the maximum deviation just-in-time scheduling problem (MDJIT), our aim
is to keep the maximum deviation of these production numbers from the aimed
at values jri small. In other words, we are looking for a schedule minimizing
max{|pij − jri| | i ∈ [1..m], j ∈ [1..n]}.

Rounding of Sequences and Matrices, with Applications 99

For this problem, Steiner and Yeomans [19] as well as Brauner and Crama [5]
give a number of interesting results. In particular, they show that the MDJIT
can be solved with maximum error less than one. Via Theorem 1, we extend this
result to significantly more general settings. (i) We allow non-constant produc-
tion rates. Instead of only prescribing that the total production of di units of
product i ideally should be obtained by producing ri units in each time step, we
allow arbitrary aimed at production rates rij for each product i and time step
j. Of course,

∑m
i=1 rij should be one for each time step since we assumed that

we may produce a single item each time. This generalized setting makes sense if
we know or expect changing demands over a period of time.

(ii) We also allow the use of more than one machine. If we have k machines, we
may simply use larger rates satisfying

∑m
i=1 rij = k. In fact, we are quite flexible

in this respect. We may use a different number of machines each time step, that
is, have

∑m
i=1 rij = kj with different kj . We may also have non-integral kj and

in this case use between !kj" − 1 and �kj machines.

1.5 Lower Bounds

We also present a non-trivial lower bound for the error in arbitrary intervals.
Earlier works only regarded errors in initial intervals [1..t]. From the view-point
of balanced schedules approximating average expected demands, it also makes
sense to investigate errors in arbitrary intervals. For upper bounds, the simple
triangle inequality argument of Lemma 5 extends any upper bound for initial
intervals to twice this bound for arbitrary intervals. For lower bounds, things
are more complicated. In particular, the example of Brauner and Crama [5]
showing a lower bound of 1− 1/m for initial intervals yields no better bound for
arbitrary intervals. We present a three product instance (in the simple model
with constant rates and one machine) such that any schedule produces an error
of at least 1.5 − ε. Note that this also yields an error of 0.75 − ε for initial
intervals, that cannot be derived from existing works.

2 The Algorithm

In this section, we present an algorithm solving the matrix rounding problem
of Theorem 1. For a region R ⊆ [1..m] × [1..n], the rounding error in R is
|
∑

(i,j)∈R(xij − yij)|. Our aim is to achieve low rounding errors in all columns
and in all intervals of rows. Note that by subtracting integer part, we may always
assume that X ∈ [0, 1)m×n.

We denote by Xi and Xj the i-th row and j-th column of X , respectively.
We define the partial sums sij :=

∑j
�=1 xi� for all i ∈ [1..m] and j ∈ [1..n].

2.1 Basic Algorithm

Here we consider the restricted problem with uniform column sums ‖Xj‖1 = 1
for all j ∈ [1..n]. Note that in this case each column of the rounded matrix Y

100 B. Doerr et al.

contains just a single 1. The solution to this special problem is later on called
basic algorithm.

First we give a motivation for the solution. By Lemma 5, it suffices to keep
the errors ∣∣∣∣ b∑

j=1

(xij − yij)
∣∣∣∣, ∀i ∈ [1..m], ∀b ∈ [1..n], (1)

small in all initial intervals. For the moment, consider a single row i ∈ [1..m].
The idea is to place 1s into Yi between the row indices where the partial sums
of row Xi exceed the next integral values at that time. Formally, we require to
place the k-th 1 in row i onto position yij , where j is some column index in
the range Ik

i := [ak
i ..bk

i] with limits ak
i := min {j ∈ [1..n] | k − 1 < sij} and

bk
i := max {j ∈ [1..n] | sij < k ∨ (sij = k ∧ xij �= 0)}. We call Ik

i the k-th index
interval of row i. One particularity of this definition is, that no 1 is placed onto a
0 (say xij = 0), if the row sum sij is integral. This way, all errors in Equation (1)
are less than 1.

The algorithm works as follows. The columns of Y are computed successively,
Y j at time j ∈ [1..n], that is, we have to place a single 1 into Y j . To select an
appropriate position in column Y j, we regard the set Cj of all index intervals
that contain j and whose corresponding entries in Y are still zeros, i.e., Ik

i ∈ Cj ,
if and only if j ∈ Ik

i and yih = 0 for all h ∈ Ik
i , h < j. Now, Cj contains implicitly

all the positions where the 1 could be placed. From those we choose the position
� that belongs to the earliest ending interval [a�..b�] of Cj . (In case of a tie we
choose the uppermost row.) Then we set column Y j to the �-th canonical unit
column vector, i.e., y�j = 1. Then we proceed with Y j+1 in the same way.

The index intervals Ik
i can be computed as follows. The initial step of the

algorithm is to determine the limits a1
i and b1

i of the intervals I1
i for all rows Xi,

i ∈ [1..m]. For that purpose, each partial row sum is computed up to the first
entry where the sum is no longer smaller than 1 or until we reach the end of
the row. (The latter case is indicated by any index larger than n.) The values
ai := min (I1

i), bi := max (I1
i) and si := si,bi are stored in three arrays of length

m each. With this information we compute the first column Y 1. Each time after
we have placed a 1 in Y, an update step is necessary, because then the demand
of a current index interval for a 1 is just satisfied. Hence we replace this interval
by its succeeding interval I

�si�+1
i . This can be done similar to the initial step.

We continue computing the partial row sum of Xi up to the first entry where
the sum is no longer smaller than the next integral value (which is �si + 1) or
until we reach the end of the row. As before the current values of the interval
limits and the sum so far are stored in the arrays.

ComputeRounding(X ∈ [0, 1]m×n)
� Initialization
for i ← 1 to m

do s [i] ← 0
b[i] ← 0

Rounding of Sequences and Matrices, with Applications 101

(a[i], b[i], s[i]) ← GetNextInterval(i)
� Main Loop
for j ← 1 to n

do C ← {i ∈ [1..m] | j ∈ [a[i]..b[i]]}
� ← argmin

i∈C
b[i]

Y j ← �-th unit column vector
(a[�], b[�], s[�]) ← GetNextInterval(�)

return Y ∈ {0, 1}m×n

GetNextInterval(i)
j ← b[i] + 1
while j ≤ n and xij = 0

do j ← j + 1
if j > n

then return (n + 2, n + 2, s[i])
a[i] ← j

k ← �s[i] + 1
while s [i] + xij ≤ k

do s [i] ← s [i] + xij

if s[i] = k
then return (a[i], j, s[i])

j ← j + 1
if j > n

then return (a[i], j, s[i])
return (a[i], j − 1, s[i])

2.2 Time and Space Complexity

For the time being we ignore the calls of GetNextInterval in the analysis
of the runtime. Then the initialization loop has runtime Θ(m) and the main
loop, which is executed exactly n times, needs Θ(m) time for each of the three
non-trivial assignments. Together that takes Θ(mn) time.

It remains to add the time spend in GetNextInterval. Be aware that the
row index i never changes within this procedure. Hence its total runtime can
be estimated by multiplying the maximal time spend in a single row Xi by m.
Each of the commands in GetNextInterval can be executed in constant time
except the while loop. Since this loop successively increases j – which is swapped
to b[i] when the procedure returns – Θ(n) time is needed for each row Xi. It
follows that the runtime of the entire algorithm is Θ(mn).

The algorithm only needs to keep track of the m current intervals and the m
accumulated row sums. So Θ(m) space suffices in addition to the space needed
for input and output.

2.3 Correctness

To show that our algorithm returns a valid solution, we have to show that (i)
each column vector Y j contains exactly one 1 and (ii) each index interval gets

102 B. Doerr et al.

assigned exactly one column with 1. For this it will be convenient to assume
integrality of the row sums, i.e.,

∑n
j=1 xij ∈ N for all i. This can by achieved by

adding additional columns at the end. If the algorithm returns a valid solution
even for these columns, it is also correct for the original matrix. Note that it is
not necessary to actually compute these additional columns, i.e., they are only
needed for the analysis. The following lemma gives the main property of the
algorithm. It shows that at each step there are enough unsatisfied intervals to
choose from.

Lemma 1. Let kij be the number of intervals which have started until column
j in the i-th row. Then

∑m
i=1 kij ≥ j for all j ∈ [1..n].

Proof (by induction on j). For j = 1 at least one interval has to start due to
the norm condition

∑m
i=1 xi1 = 1 for the first column. Now assume the lemma

has been established until column j. If there are already more than j intervals,
there is nothing to prove for j + 1. So let us assume that there are exactly j
intervals so far, that is to say,

∑m
i=1 kij = j. Since

∑m
i=1 sij =

∑m
i=1

∑j
�=1 xi� =∑j

�=1

∑m
i=1 xi� =

∑j
�=1 1 = j, we get

∑m
i=1 kij =

∑m
i=1 sij . With 0 ≤ sij ≤ kij

and kij ∈ N for all i ∈ [1..m], it follows that Sj = Kj and hence Sj ∈ Nm.
This means that all intervals have ended until column j. So at least one interval
has to start at position j + 1, analogously to the start of the induction base. So∑m

i=1 k(i+1),j ≥
∑m

i=1 kij + 1 ≥ j + 1. ��

That there is (i≤1) no column with more than one 1 is guaranteed by the al-
gorithm as it chooses the uppermost 1 in the case that there are two closest
ending intervals at one time. Due to Lemma 1 the algorithm has passed at least
j intervals till the j-th column and has by construction satisfied only j − 1 of
them. Therefore the algorithm can always satisfy at least one interval and will
(i≥1) not return any empty column.

Also (ii≤1) no interval will get more than one 1, because a 1 is only assigned
to unsatisfied intervals. We furthermore know ‖Xj‖1 = 1 for all columns j and
hence

∑n
j=1

∑m
i=1 xij = n. The integrality assumption of the row sums gives that

we have exactly n intervals overall. Since each column contains exactly one 1, we
have assigned n 1s to intervals. Due to the pigeonhole principle there is (ii≥1) no
interval with no assigned 1 because there is no interval with more than one 1.

2.4 Error Bounds

Lemma 2.
∣∣∣ j∑

�=1

(xi� − yi�)
∣∣∣ < 1 for all i ∈ [1..m] and j ∈ [1..n].

Proof. xij belongs to the kij -th interval in the i-th row, that is, to I
kij

i . The
algorithm assigns to each interval exactly one 1 (cf. Section 2.3). So depending
on whether the 1 that corresponds to I

kij

i is in some column at most j or later,∑j
�=1 yi� is either kij −1 or kij , respectively. Hence we have kij −1 <

∑j
�=1 xi� ≤

kij as well as kij − 1 ≤
∑j

�=1 yi� ≤ kij , where the second sum equals kij if the
first sum does. This shows

∣∣∑j
�=1 xi� −

∑j
�=1 yi�

∣∣ < 1. ��

Rounding of Sequences and Matrices, with Applications 103

Lemma 3.
∣∣∣ b∑

j=a

(xij − yij)
∣∣∣ < 2 for all 1 ≤ a ≤ b ≤ n and i ∈ [1..m].

Proof. This follows immediately from Lemma 2 using Lemma 5. ��

The results of the basic algorithm can be subsumed as follows.

Theorem 2. Let X ∈ [0, 1]m×n with ‖Xj‖1 = 1 for all j ∈ [1..n]. Then there is
a Y ∈ {0, 1}m×n such that ‖Y j‖1 = 1 and

∀b ∈ [1..n], i ∈ [1..m] :
∣∣∣ b∑

j=1

(xij − yij)
∣∣∣ < 1.

Such a matrix Y can be computed in time O(mn).

The following example shows that the above error bound is tight for our algo-
rithm, i.e. that it may indeed generate errors arbitrarily close to two. To see this
let ε ∈ (0, 1/2) and

Xε :=

⎛
⎝ ε 1 − ε/2 1 − 2ε ε/2 ε

(1 − ε)/2 ε/4 ε 1/2 − ε/4 (1 − ε)/2
(1 − ε)/2 ε/4 ε 1/2 − ε/4 (1 − ε)/2

⎞
⎠ .

This yields the index intervals [1..1] and [2..5] for the first row, and [1..3] and [4..5]
for the second and third row. Hence the algorithm puts the first 1 into row one,
followed by 1s into row two and three. This yields an error of (1−ε/2)+(1−2ε) =
2 − 5ε/2 in the interval [2..3] in the first row.

2.5 Näıve Generalization

We now show that the basic algorithm of Section 2.1 can be utilized for input
matrices with arbitrary column sums ‖Xj‖1 = cj ∈ N for j ∈ [1..n]. In this case,
the output matrix Y ∈ Nm×n has to satisfy ‖Y j‖1 = cj . The error on arbitrary
intervals is still at most two. First we show how to reduce this generalization to
the unitary problem and solve it with the basic algorithm in Θ(m2n) time. We
then modify the algorithm in such a way that it can handle the general problem
directly in time Θ(mn). Note that we can still assume xij ∈ [0, 1) (and hence
cj < m) for all j ∈ [1..n], i ∈ [1..m] as discussed in Section 2.

A simple way to solve the general problem is to preprocess the input by
expanding each vector Xj into cj identical vectors X̃�j , . . . , X̃�j+cj−1 each of
the form (x1j/cj, . . . , xmj/cj)T . With this preprocessing we obtain a new matrix
X̃ having

∑n
j=1 cj columns, each having sum one. The basic algorithm applied

to X̃ yields a matrix Ỹ with errors at most two on arbitrary intervals.
In a postprocessing step we then condense for each j ∈ [1..n] the cj output

vectors Ỹ �j , . . . , Ỹ �j+cj−1 to one vector Y j (having column sum cj) by summing
them up. This yields a solution Y to the original problem. Since all intervals

104 B. Doerr et al.

[a..b] ⊆ [1..n] of the general problem correspond to an interval [�a..(�b + cb − 1)]
of the expanded problem, Y satisfies the properties of Theorem 1.

Observe that this approach may produce entries of value two in the solution.
This can happen if an unsatisfied interval ends in the expansion of an input
vector and the following index interval ends “close enough” after this expansion.
The behavior of the expanding algorithm and the solution it computes can be
characterized as follows.

Lemma 4. Let ĉj , j ∈ [1..n], be the number of index intervals that end in (or
directly after) the expansion of Xj and are not satisfied before the expansion.

(a) No index interval is fully contained in the expansion.
(b) ĉj ≤ cj.
(c) The basic algorithm applied to the expanded matrix will first satisfy the ĉj

unsatisfied intervals ending in the expansion. If ĉj < cj it will then satisfy
the cj − ĉj first ending unsatisfied intervals (all of them ending after the
expansion).

Proof. The first claim follows since all entries are smaller than one, the second
claim follows directly from the correctness of the basic algorithm.

For the third claim observe that there are two types of unsatisfied intervals
in the expansion: those ending in (or directly after) it and those continuing
afterward. As argued for the second claim, the unsatisfied intervals ending in
the expansion are satisfied by the algorithm. Furthermore, all other crossing
intervals end after the expansion and hence later than these ĉj intervals. Thus
the algorithm will distribute the remaining 1s to these intervals. ��

2.6 Linear Time Generalization

Since expanding X and running the basic algorithm worsens the runtime, we
now give an algorithm that simulates this approach and needs nothing more
than the basic algorithm of Section 2.1. To achieve this the algorithm has to
satisfy cj intervals instead of just a single one in each step j ∈ [1..n]. According
to Lemma 4(c), this can be done in two distribution steps: First identify the ĉj

unsatisfied index intervals ending in the expansion of Xj and assign them a 1.
Then satisfy the remaining cj − ĉj earliest ending index intervals in the data
structure. According to Lemma 4(a) it is not necessary to update and search
the data structure after each assigned 1. Instead this can be postponed until the
end of each distribution step.

The first distribution step can be done in time Θ(m) by scanning the data
structure once and extracting the ĉj just ending intervals. Then 1 is added to
the entries in Y j corresponding to those index intervals and their consecutive
index intervals are added to the data structure.

For the second distribution step we first extract the (cj− ĉj)-th earliest ending
interval. This too is possible using Θ(m) time (see e.g. Chapter 10, Medians and
Order Statistics, in Cormen et al. [7]). Knowing this interval, the algorithm can
locate the other (cj − ĉj) − 1 earliest ending intervals by just doing a pass over

Rounding of Sequences and Matrices, with Applications 105

the data structure, again taking Θ(m) time. Finally, as after the first step, we
add 1 to each entry in Y j corresponding to those index intervals and update the
data structure by adding their consecutive index intervals.

Since each update of the data structure takes constant time, the generalized
algorithm still needs time Θ(mn).

The only detail still missing is how to detect if an interval would end inside the
expansion of a column Xj and how to compare the endpoints of index intervals
ending in the same expansion. For this, first consider the unexpanded input. Let
xi,j−1 be the last entry belonging to the k-th interval. Then si,j−1 ≤ k < si,j

holds. But in the expanded input, the interval would still have a value of 0 ≤
k − si,j−1 < xi,j < 1 left to cover vectors in X̃�j , . . . , X̃�j+cj−1 of Xj . Since the
expansion of Xj has entries xij/cj in the i-th row, the interval would continue for

� :=
⌊

k − si,j−1

xij/cj

⌋

entries into the expansion of Xj .
Hence the end of each index interval is represented by a tuple (j, �) instead

of just by the number j as in the basic algorithm. Interval endpoints can then
be compared lexicographically.

All in all we can conclude that Theorem 1 holds.

3 Extensions

In this section, we provide two easy extensions of Theorem 1 that are useful in
some of the applications described in the introduction. First, it is easy to see that
we immediately obtain rounding errors of less than two in arbitrary intervals in
rows. This is supplied by the following lemma.

Lemma 5. Let Y be a rounding of X such that the errors |
∑b

j=1(xij − yij)| in
all initial intervals of rows are at most d. Then the errors in arbitrary intervals
of rows are at most 2d, that is, for all i ∈ [1..m] and all 1 ≤ a ≤ b ≤ n,∣∣∣∣ b∑

j=a

(xij − yij)
∣∣∣∣ ≤ 2d.

Proof. Let i ∈ [1..m] and 1 ≤ a ≤ b ≤ n. Then

∣∣∣∣ b∑
j=a

(xij − yij)
∣∣∣∣ =

∣∣∣∣ b∑
j=1

(xij − yij) −
a−1∑
j=1

(xij − yij)
∣∣∣∣

≤
∣∣∣∣ b∑

j=1

(xij − yij)
∣∣∣∣+

∣∣∣∣ a−1∑
j=1

(xij − yij)
∣∣∣∣ ≤ 2d.

��

106 B. Doerr et al.

Second, we may extend Theorem 1 to include matrices having non-integral
column sums.

Theorem 3. Let X ∈ Rm×n. Then there is a Y ∈ Zm×n such that

∀j ∈ [1..n] :
∣∣∣ m∑

i=1

(xij − yij)
∣∣∣ < 2,

∀b ∈ [1..n], i ∈ [1..m] :
∣∣∣ b∑

j=1

(xij − yij)
∣∣∣ < 1.

Such a matrix Y can be computed in time O(mn).

Proof. For an arbitrary matrix X , we add an extra row taking what is missing
towards integral column sums: Let X̃ ∈ [0, 1)(m+1)×n be such that x̃ij = xij for
all i ∈ [1..m], j ∈ [1..n], and x̃m+1,j = �

∑m
i=1 xij −

∑m
i=1 xij for all j.

Clearly X̃ has integral column sums. Using Theorem 1, we can compute a
rounding Ỹ ∈ {0, 1}(m+1)×n of X̃ as described in Theorem 1. Note that there
are no rounding errors in the columns, i.e., we have

∑m+1
i=1 ỹij =

∑m+1
i=1 x̃ij for

all j ∈ [1..n].
Define Y ∈ {0, 1}m×n by yij = ỹij for all i ∈ [1..m], j ∈ [1..n]. Now the

errors in the columns are |
∑m

i=1(xij − yij)| = |x̃m+1,j − ỹm+1,j|. By Lemma 5,
all single entry rounding errors |xij − yij | are less than two, proving the first set
of inequalities.

The errors in initial intervals in row 1 to m naturally remain unchanged,
proving the second set of inequalities. ��

4 Lower Bounds

We present a new lower bound for the matrix rounding problem. Theorem 4
shows that there are 3×n matrices such that any rounding has an error of 1.5−ε
in arbitrary intervals. Via a triangle inequality argument similar to Lemma 5,
this matrix also yields an error of 0.75 − ε in initial intervals. The latter is
particularly interesting for the MDJIT problem (see Section 1.4), where Steiner
and Yeomans [19] showed a lower bound of 1−1/m by means of an m×m matrix.
So for the three-part type MDJIT problem we could raise the lower bound from
2/3 to 3/4.

Theorem 4 (Lower Bound). For all ε ∈ (0, 1) there are problem instances
X ∈ [0, 1]3×n such that for all solutions Y ∈ {0, 1}3×n there are i ∈ [1..3] and
1 ≤ a ≤ b ≤ n with

∣∣∑b
j=a (xij − yij)

∣∣ ≥ 1.5 − ε.

Proof. Let n > 1.5/ε2 and X ∈ [0, 1]3×n with

X :=

⎛
⎝ 1 − ε 1 − ε 1 − ε

ε − ε2 ε − ε2 · · · ε − ε2

ε2 ε2 ε2

⎞
⎠ .

Rounding of Sequences and Matrices, with Applications 107

Assume that there is a valid solution Y with
∣∣∑b

j=a (xij − yij)
∣∣ < 1.5 − 4ε for

all i ∈ [1..3] and 1 ≤ a ≤ b ≤ n. By choice of n, there is at least one column j
having a 1 in the third row. Let p ≥ 0 and q ≥ 0 be the number of consecutive
columns equal to (1, 0, 0)T to the left and right of column j, respectively. Thus

Y =

⎛
⎝ 0 1 . . . 1 0 1 . . . 1 0

· · · ? 0 . . . 0 0 0 . . . 0 ? · · ·
? 0 . . . 0︸ ︷︷ ︸

p times

1 0 . . . 0︸ ︷︷ ︸
q times

?

⎞
⎠ .

column j

The rounding error of the interval [(j − p − 1) .. (j + q + 1)] in the first row is∣∣∑j+q+1
�=j−p−1 (x1,� − y1,�)

∣∣ = (p+q+3)·(1−ε)−(p+q) = 3·(1−ε)−ε·(p+q). Since
this is less than 1.5−4ε, we have p+q > (3 ·(1−ε)−1.5+4ε)/ε = 1.5/ε+1. The
error of the interval [j−p..j+q] in the second row now is

∣∣∑j+q
�=j−p (x2,� − y2,�)

∣∣ =
(p + q + 1) · (ε − ε2) > (1.5/ε + 2) · (ε − ε2) = 1.5 + 0.5ε − 2ε2 > 1.5 − 4ε. This
contradicts our assumption. ��

5 Alternative Approaches

5.1 Greedy Algorithm

A greedy algorithm traverses the matrix X column by column and sets the 1s
in Y only based on the columns previously read. The 1 is assigned to a row i
with the highest difference between the accumulated sum sij and the number of
1s in this row so far. That this may produce a rounding error of Ω(log n) can be
shown by the following example:

X :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
n 0 0 · · · 0 0
1
n

1
n−1 0 · · · 0 0

...
...

...
. . .

...
...

1
n

1
n−1

1
n−2 · · · 0 0

1
n

1
n−1

1
n−2 · · · 1

2 0
1
n

1
n−1

1
n−2 · · · 1

2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ [0, 1]n×n

The greedy algorithm returns the identity matrix whereby the discrepancy of
the interval [1,n-1] in the last row becomes

∣∣∑n−1
j=1 (xn,j − yn,j)

∣∣ =
∑n

j=2 1/j =
Hn − 1 > log n − 1 with Hn being the harmonic number of n.

5.2 Row Intervals

If one accepts a quadratic runtime we can extend Theorem 2 in such a way that
not only the initial row intervals, but also the initial column intervals are small:

108 B. Doerr et al.

Theorem 5. Let X ∈ [0, 1)m×n. Then there is a Y ∈ {0, 1}m×n such that

∀b ∈ [1..n], i ∈ [1..m] :
∣∣∣ b∑

j=1

(xij − yij)
∣∣∣ < 1,

∀b ∈ [1..m], j ∈ [1..n] :
∣∣∣ b∑

i=1

(xij − yij)
∣∣∣ < 1.

Such a matrix Y can be computed in time O(m2n2).

Proof. Knuth [13] showed how to round a sequence of n real numbers xi to
yi ∈ {!xi", �xi} such that for two given permutations σ1 and σ2, we have∑k

i=1(xσ1(i) − yσ1(i)) < 1 as well as
∑k

i=1(xσ2(i) − yσ2(i)) < 1 for all k. To
apply this to our problem of rounding a matrix X ∈ Rm×n, we first assume
integrality of the row and column sums without loss of generality as detailed
in Section 3. Consider all elements xij of the matrix X as the sequence to be
rounded. With a permutation σ1, which enumerates the xij row by row, Knuth’s
two-way rounding gives

∑k
i=1

∑n
j=1(xij − yij) < 1 for all k ∈ [1..m]. Note that

the integrality of the row sums yields by induction
∑k

i=1

∑n
j=1(xij − yij) = 0

for all k, which in turn shows for the initial row intervals
∑b

j=1(xij − yij) < 1
for all b ∈ [1..n] and i ∈ [1..m]. For initial column intervals one can achieve∑b

i=1(xij − yij) < 1 for all b ∈ [1..m] and j ∈ [1..n] in an analogous manner by
choosing a permutation σ2, which enumerates the xij column by column. His
proof employs integer flows in a certain network [12]. On account of this he only
achieves a runtime of O(m2n2). ��

Note that both inequalities in Theorem 5 are actually
∣∣∑(xij − yij)

∣∣ ≤
mn/(mn + 1).

Acknowledgments

The authors wish to thank Pavol Hell for pointing out the relation to controlled
rounding.

References

1. T. Asano. Digital halftoning: Algorithm engineering challenges. IEICE Trans. on
Inf. and Syst., E86-D:159–178, 2003.

2. Zs. Baranyai. On the factorization of the complete uniform hypergraph. In In-
finite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th
birthday), Vol. I, pages 91–108. Colloq. Math. Soc. Jánōs Bolyai, Vol. 10. North-
Holland, Amsterdam, 1975.

3. J. Beck and V. T. Sós. Discrepancy theory. In R. Graham, M. Grötschel, and
L. Lovász, editors, Handbook of Combinatorics, pages 1405–1446. Elsevier, 1995.

4. J. L. Bentley. Algorithm design techniques. Commun. ACM, 27:865–871, 1984.

Rounding of Sequences and Matrices, with Applications 109

5. N. Brauner and Y. Crama. The maximum deviation just-in-time scheduling prob-
lem. Discrete Appl. Math., 134:25–50, 2004.

6. B. D. Causey, L. H. Cox, and L. R. Ernst. Applications of transportation theory
to statistical problems. Journal of the American Statistical Association.

7. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT
Press, Cambridge, MA, 1990.

8. L. H. Cox and L. R. Ernst. Controlled rounding. Informes, 20(4):423–432, 1982.
9. B. Doerr. Lattice approximation and linear discrepancy of totally unimodular

matrices. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 119–125, 2001.

10. B. Doerr. Global roundings of sequences. Information Processing Letters, 92:113–
116, 2004.

11. B. Doerr and A. Srivastav. Multicolour discrepancies. Combinatorics, Probability
and Computing, 12:365–399, 2003.

12. L. R. Ford, Jr., and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

13. D. E. Knuth. Two-way rounding. SIAM J. Discrete Math., 8:281–290, 1995.
14. Y. Monden. What makes the Toyota production system really tick? Industrial

Eng., 13:36–46, 1981.
15. Y. Monden. Toyota Production System. Industrial Engineering and Management

Press, Norcross, GA, 1983.
16. K. Sadakane, N. Takki-Chebihi, and T. Tokuyama. Combinatorics and algorithms

on low-discrepancy roundings of a real sequence. In ICALP 2001, volume 2076
of Lecture Notes in Computer Science, pages 166–177, Berlin Heidelberg, 2001.
Springer-Verlag.

17. K. Sadakane, N. Takki-Chebihi, and T. Tokuyama. Discrepancy-based digital
halftoning: Automatic evaluation and optimization. In Geometry, Morphology,
and Computational Imaging, volume 2616 of Lecture Notes in Computer Science,
pages 301–319, Berlin Heidelberg, 2003. Springer-Verlag.

18. J. Spencer. Ten lectures on the probabilistic method, volume 64 of CBMS-NSF
Regional Conference Series in Applied Mathematics. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1994.

19. G. Steiner and S. Yeomans. Level schedules for mixed-model, just-in-time pro-
cesses. Management Science, 39:728–735, 1993.

A Note on Semi-online Machine Covering

Tomáš Ebenlendr1, John Noga2, Jǐŕı Sgall1, and Gerhard Woeginger3

1 Mathematical Institute, AS CR, Žitná 25, CZ-11567 Praha 1, The Czech Republic
{ebik, sgall}@math.cas.cz

2 Department of Computer Science, California State University,
Northridge, CA 91330, USA

jnoga@ecs.csun.edu
3 Department of Mathematics and Computer Science, Technische Universiteit

Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
gwoegi@win.tue.nl

Abstract. In the machine cover problem we are given m machines and
n jobs to be assigned (scheduled) so that the smallest load of a machine
is as large as possible. A semi-online algorithm is given in advance the
optimal value of the smallest load for the given instance, and then the
jobs are scheduled one by one as they arrive, without any knowledge of
the following jobs. We present a deterministic algorithm with competitive
ratio 11/6 ≤ 1.834 for machine covering with any number of machines
and a lower bound showing that no deterministic algorithm can have a
competitive ratio below 43/24 ≥ 1.791.

1 Introduction

In the machine cover problem we are given m identical machines and n jobs to be
assigned (scheduled) so that the smallest load of a machine is as large as possible.

The motivation for this objective function comes from applications where the
jobs correspond to supplies (like fuel tanks) needed to keep the machines alive,
and the overall goal is to keep the whole system alive as long as possible. The
same objective was studied before for example in [5], where some additional
motivation can be found.

Similarly to the classical makespan problem, the ideal schedule is perfectly
balanced. Thus the exact solution is NP-hard, and using similar techniques as
for makespan scheduling, approximation schemes can be constructed even for
uniformly related machines [6,2,1,4].

It is easy to see that in the online setting with jobs arriving one by one, no
non-trivial deterministic algorithm is possible [3]. If m jobs with processing times
equal to 1 arrive, the algorithm has to assign them to distinct machines, as this
may be the whole sequence. Then m−1 jobs with processing time m arrive, and
the online algorithm achieves objective 1 while the optimum is m.

With this in mind, Azar and Epstein [3] considered semi-online algorithms
which are given in advance the value of the optimum. Among other results, they
showed that a simple greedy algorithm is 2 − 1/m competitive, this is optimal
for m = 2, 3, 4 for deterministic algorithms, and no semi-online deterministic
algorithm for m ≥ 4 is better than 1.75-competitive.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 110–118, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Note on Semi-online Machine Covering 111

1.1 Our Results

We focus on semi-online algorithms for large m. We present a deterministic
algorithm with competitive ratio 11/6 ≤ 1.834 for machine covering with any
number of machines. This is the first semi-online algorithm whose competitive
ratio is strictly smaller than 2.

We also present a lower bound showing that no deterministic algorithm can
have a competitive ratio below 43/24 ≥ 1.791. This improves the previous lower
bound of 1.75 and is reasonably close to the upper bound.

2 Preliminaries

We are given m machines and n jobs with processing times (or size) pj ≥ 0. A
schedule is an assignment of jobs to machines S : {1, . . . , n} → {1, . . . , m}.

The load of machine i is the sum of the processing times of the jobs assigned
to that machine, denoted by Li =

∑
j∈S−1(i) pj . A machine is L-covered (for a

number L) if its load is at least L in the given schedule (Li ≥ L).
The objective is to maximize the minimal load of a machine, mini Li. An

optimal schedule for the given instance I is denoted OPT (I) and its objective
value is denoted LOPT(I).

A semi-online algorithm A is given in advance the value LOPT = LOPT(I)
(and the value m). Then the jobs of the instance I are scheduled one by one
as they arrive, without any knowledge of the following jobs. Its objective on
the given instance I is denoted LA(I). The algorithm is called R-competitive if
LOPT(I) ≤ R · LA(I) for any instance I.

Note that, given the desired competitive ratio R, a semi-online algorithm
knows the covering level LOPT/R which it needs to achieve. After some partial
sequence, if there exists an assignment with m′ of LOPT-covered machines, then
the algorithm actually needs to guarantee that it has at least m′ of LOPT/R-
covered machines. The reason is that the instance can continue with m − m′

jobs with pj = LOPT. Intuitively, this means that if the number of machines is
sufficiently large, the exact value of m does not really matter.

Since the value LOPT is known to the algorithm, we may always assume that
the instances are rescaled so that LOPT and LOPT/R are convenient numbers
(as specified later in the paper).

We call a job huge if pj ≥ LOPT/R. Every reasonable algorithm schedules
huge jobs on separate machines, because scheduling such a job in any other way
wastes the jobs that are assigned to the same machine.

3 The Upper Bound

We analyze our algorithm using an appropriate weight function—a classical
technique used for bin packing and related problems.

112 T. Ebenlendr et al.

A weight function w : R+ → R+ assigns a weight to each job, based on its
processing time. The weight of job j is denoted wj = w(pj), the total weight of
jobs is denoted W =

∑
j wj . Finally, the weight of machine i is defined as

Wi =
∑

j∈S−1(i)

wj .

We illustrate the use of weight functions on a greedy algorithm Init which is
known to be (2−1/m)-competitive [3]. Assume that LOPT = 2−1/m (otherwise
scale the instance). Fill schedules all jobs greedily on one machine, called an
active machine, until it is 1-covered; then it uses a new active machine. As an
exception, huge jobs (with pj ≥ 1) are always scheduled on a new machine. If
no new machine is available, all the remaining jobs are scheduled on the last
machine. (This description slightly deviates from [3], however, the behavior is
different only when all machines are already 1-covered, so it does not matter for
the analysis.)

We define the weight function as wj = 2 for huge jobs (i.e., for jobs with
pj ≥ 1) and wj = pj otherwise. Now every (2−1/m)-covered machine has weight
Wi ≥ 2−1/m. Since OPT covers all the machines, it follows that W ≥ 2m−1. On
the other hand, every 1-covered machine generated by Fill has weight Wi ≤ 2,
possibly with the exception of the last machine. Assume that only m′ < m
machines are 1-covered at the end of the algorithm. Then the 1-covered machines
have weight Wi ≤ 2 each, the last active machine has weight Wi < 1, and
the remaining machines are empty. Thus the total weight is strictly less than
2m′ + 1 ≤ 2m − 1, a contradiction.

To improve upon Fill, we use two active machines in place of a single one.
This allows us to avoid the situation when the active machine is almost 1-covered
by small jobs and a job of size 1 − ε arrives, causing the final load to be close
to 2 in Fill.

Theorem 3.1. There exists a semi-online algorithm for machine cover which
is 11/6-competitive.

Proof. Without loss of generality, we assume that LOPT = 11 (otherwise scale
the instance). We design an algorithm A so that each machine is 6-covered.

The weight function and the total weight. We define the weight function as
follows:

wj =
{

10 if pj ≥ 6 (huge jobs)
min(5, pj) otherwise

Every 11-covered machine has weight Wi ≥ 10: It contains either a single huge
job, or two jobs of weight 5 (with pj ∈ [5, 6)), or one job of weight 5 and some
jobs with pj < 5 and total weight at least 5, or only jobs with pj < 5 of total
weight at least 11.

Since OPT has all the m machines 11-covered, the total weight is at least
W ≥ 10m.

A Note on Semi-online Machine Covering 113

The invariants of the algorithm. Our algorithm is designed so that at any time,
the total weight of 6-covered machines is at most 10 times their number. In
addition, the total weight of jobs on machines that are not 6-covered is strictly
less than 10.

Strictly speaking, the invariants may be violated when all the machines but
the last one are 6-covered. This final phase of the algorithm needs to be handled
separately.

The algorithm. Intuitively, we would like to design the algorithm so that the
weight of each machine is at most 10. However, it is not possible to maintain
this for each machine. In some cases the algorithm creates pairs of machines with
weights at most 9 and 11. The key is to try to create a machine with load (and
thus weight) between 2 and 4; upon arrival of a job with pj ≥ 4 it is 6-covered
with weight at most 9.

The main part of the algorithm is described in Table 1. The algorithm main-
tains two active machines i and h. All the other machines are at all times either
6-covered or empty.

The leftmost three columns describe four different types of configurations of
the algorithm by the conditions on the active machines. The remaining columns
describe where a new job is scheduled, depending on its size, and which actions
are taken to get back to one of the permitted type of configuration. If a new active
machine is requested by the algorithm and none is available, the algorithm enters
its final phase described later.

As a rule not included in Table 1, whenever a huge job (pj ≥ 6) arrives, it
is scheduled on an empty machine, which is 6-covered afterwards. If no empty
machine is available, the algorithm enters its final phase described later.

Table 1. The main loop of the 11/6-competitive algorithm

Old configuration New Action New
Label Active machines job j Put j on config.
INIT Lh = 0 Li < 2 pj < 2 i if Li + pj < 2 INIT

otherwise swap i ↔ h GOOD
pj ∈ [2, 4) h GOOD

pj ≥ 4 h BIG
BIG Lh ≥ 4 Li < 2 pj < 2 i if Li + pj < 2 BIG

Wh ≤ 5 otherwise swap i ↔ h GOOD
pj ≥ 2 h close h, get a new active ma-

chine h
INIT

GOOD Lh ∈ [2, 4) Li < 6 pj < 4 i if Li + pj < 6 GOOD
otherwise close i, get a new
active machine i

GOOD

pj ≥ 4 h SPEC
SPEC Lh ≥ 6 Li < 6 any i if Li + pj < 6 SPEC

Wh ≤ 9 otherwise close i and h, get
new machines i and h

INIT

114 T. Ebenlendr et al.

Initially, the active machines are chosen arbitrarily; they are empty and the
configuration is INIT. BIG denotes a configuration in which the active machine
h actually always contains a single job with pj ∈ [4, 6) (as is easily verified by the
inspection of Table 1); this guarantees the condition Wh ≤ 5. GOOD denotes the
safe configuration from the intuitive description above with Lh ∈ [2, 4). Finally,
SPEC is a possible successor configuration of GOOD where h is 6-covered with
weight at most 9; we still consider this machine active even though no more jobs
are scheduled on it. The condition Wh ≤ 9 in SPEC follows since h contains
a single job with pj ∈ [4, 6) and possibly some other jobs with total load and
weight less than 4.

It is easily verified that when an active machine is closed in BIG or GOOD
configurations, its weight is at most 10. When both machines are closed in SPEC,
we have Wh ≤ 9 and Wi ≤ 11. Also the active 6-covered machine h in SPEC
has Wh ≤ 9. Summarizing, the invariant concerning the weight of 6-covered
machines is always preserved. Finally, note that in each state, the weight of all
the not 6-covered machines is less than 10, as required by the second invariant.

The final phase. It remains to describe and analyze the final phase of the
algorithm.

If all the machines are 6-covered upon reaching the final phase, then schedule
the remaining jobs on any of the machines.

If a single machine is not 6-covered, schedule all the remaining jobs on this
machine. By the invariants, the 6-covered machines have total weight at most
10(m − 1), the total weight of all jobs is W ≥ 10m, thus after all jobs are
scheduled, the last machine has weight at least 10 and thus it is 6-covered.

If two machines are not 6-covered upon reaching the final phase, then the new
machine was requested for a huge job. Schedule this huge job on the machine
with the smallest load and all the remaining jobs on the remaining not 6-covered
machine. Inspecting the possible configurations, the huge job is scheduled on an
active machine with load and weight at most 4. Consequently, similarly to the
previous case, after all jobs are scheduled, the last machine has weight at least
6 and thus is 6-covered.

In all the cases, at the end all the machines are 6-covered by the semi-online
algorithm, and we conclude that the algorithm is 11/6-competitive.

4 The Lower Bound

Theorem 4.1. Any deterministic semi-online algorithm for machine cover has
competitive ratio at least 43/24.

Proof. Let ε be such that 1/ε is a large integer, let m be sufficiently large (m =
44+6 ·43/ε works). Without loss of generality, assume that LOPT = 43. Assume
for a contradiction that there exists semi-online algorithm A with competitive
ratio 43/(24 + ε). We construct a counterexample, i.e., an instance for which
LA < 24 + ε.

A Note on Semi-online Machine Covering 115

Table 2. The strategy of the adversary in phase 1. The machines marked by star are
newly covered (and thus removed from the configuration).

Old configuration New job Possible new configurations
∅ 5 {5}
{5} 15 {5, 15}

{5}, {15}
{5, 15} 24 {5, 15, 24}∗, ∅

{5, 15}, {24} – the adversary wins
{5}, {15} 9 {5}, {9, 15}

{5, 9}, {15} – the adversary wins
{5}, {9}, {15} – the adversary wins

{5}, {9, 15} 19 {9, 15, 19}∗, {5}
{9, 15}, {5, 19} – the adversary wins
{9, 15}, {5}, {19} – the adversary wins

We formulate the counterexample as a strategy for the adversary, based on
how the algorithm A scheduled the jobs so far. The adversary wins the game
when it is possible to modify the schedule produced by the algorithm A to get
some (possibly suboptimal) schedule which has more 43-covered machines than
is the number of (24+ε)-covered machines of A. Strictly speaking, after this the
adversary continues with jobs of size 43 until all the machines are covered.

Finally, we can assume without loss of generality that the algorithm A never
schedules a job on any (24 + ε)-covered machine. (A new machine is always
available as m is large.)

Throughout the proof, the content of a machine is written in braces as num-
bers denoting jobs of those sizes In addition, a number in square brackets denotes
a set of jobs with this total size. Thus, for example, {9, 9, 10, [15]} denotes a ma-
chine with total load 43 which contains two jobs of size 9, one job of size 10 and
some other jobs.

Phase 0. The instance starts with a sequence of 2 · 43/ε jobs of size 24. The
optimum can create 43/ε of 43-covered machines, each containing two of the
jobs. Thus at the end of the phase, the algorithm A also has 43/ε machines with
two jobs, i.e., {24,24}, as otherwise the adversary wins.

Phase 1. The goal of phase 1 is to make the algorithm A to create 4 · 43/ε ma-
chines of form {5, 15, 24} or alternatively 2·43 machines {9, 15, 19}. Table 2 shows
the strategy of the adversary for this phase. The table shows only nonempty ma-
chines that are not (24 + ε)-covered, or are newly covered (marked by a star).
The first column describes possible configurations of the schedule of A in this
phase. The second column gives the job submitted by the adversary for each
configuration, and the last column describes all the possible configurations of A
after the new job is scheduled.

It is easy to verify that all the machines (24 + ε)-covered by the algorithm A
so far are also 43-covered.

116 T. Ebenlendr et al.

The adversary stops in the situations marked in the table as winning. If
the configuration is {5, 15}, {24} or {9, 15}, {5, 19} or {9, 15}, {5}, {19} then the
load on the uncovered machines is more than 43, and the adversary wins by
reassigning these jobs on a single 43-covered machine (all the other machines
stay as in the schedule of A). In configurations {15}, {9, 5} and {15}, {9}, {5}
the adversary submits two additional jobs, one of size 5 and one of size 4. The
algorithm A cannot cover another machine, but the adversary can convert the
schedule using one {24, 24} machine to a schedule with two machines {24, 15, 4}
and {24, 9, 5, 5}, so the adversary wins again.

If no such situation is encountered, then the adversary waits until the algo-
rithm A covers 4 · 43/ε machines by jobs {5, 15, 24} or 2 · 43 machines by jobs
{9, 15, 19}, and then continues with phase 2. Note that in the final configuration,
either there is no non-empty (not covered) machine, or there is one machine {5}.

Phase 2. During this phase, let i1 and i2 be the indices of the two uncovered
machines with the largest loads. I.e., Li1 is the maximal load of an uncovered
machine.

The phase proceeds in 43/ε rounds. The adversary maintains a rearranged
schedule, starting with the schedule of the algorithm A after phase 1. After each
round, if the adversary has not yet won, it rearranges some of the machines from
the previous phases and the new jobs so that it has as many 43-covered machines
as A has (24+ε)-covered. In addition, in each such rearrangement the adversary
saves at least one job of size ε.

At the beginning of each round, we have some not covered machines with
loads at most 14, containing jobs of size ε and possibly one job of size 5. The
not covered machines in the rearranged schedule of the adversary may contain
jobs different from the jobs on the machines of A, but the loads are the same.

Now we describe one round of phase 2. The adversary submits jobs of size
ε until Li1 = 24. If Li2 ≥ 14, the adversary converts the schedule using one
machine {24, 24} to create two machines {24, [19]} and wins. Otherwise Li2 ≤
14 − ε and the adversary submits a job of size X = 24 − Li2 ≥ 10 + ε. The
algorithm A has to create a machine {X, [24]}, as otherwise the adversary uses
the jobs from not covered machines to create one 43-covered machine and wins.
Finally, the adversary submits jobs of size ε until Li1 ≥ 5.

Now we describe how the machines are rearranged. First, if the newly covered
machine {X, [24]} contains the job of size 5, then this job is exchanged with 5/ε
jobs of size ε from machine i1. At this point, the machine {X, [24]} contains
only X and jobs of size ε. Next, using this machine and some machines from the
previous phases, the adversary uses one of following conversions (see Figure 1
for an illustration of the conversion (1)):

{24, 24}, 4×{5, 15, 24}, {X, [24]}
→ {24, 5, 5, 5, [4]}, 4×{24, 15, [4]}, {24, X, 5, [4− ε]}, ε (1)

2×{24, 24}, 2×{9, 15, 19}, {X, [24]}
→ 2×{24, 19}, 2×{24, 15, [4]}, {9, 9, X, [15]}, [1] (2)

A Note on Semi-online Machine Covering 117

M1 M2 M3 M4 M5 M6
0

24

43

24

24

5

15

24

5

15

24

5

15

24

5

15

24

[24]

X

M1 M2 M3 M4 M5 M6
0

24

43

[4]

5

5

5

24

[4]

15

24

[4]

15

24

[4]

15

24

[4]

15

24

[4 − ε]

5

X

24

Fig. 1. Conversion (1) of the schedule of the semi-online algorithm (left) to a better
schedule (right) with a saved job of size ε. Machine M1 is from phase 0, machines
M2, . . . M5 from phase 1, and machine M6 is created in phase 2.

After this conversion, the number 43-covered machines in the schedule of the
adversary is equal to the number of (24 + ε)-covered machines in the schedule
of A. So the adversary may continue with another round of the phase 2.

The number of machines covered in phases 0 and 1 guarantees that 43/ε con-
versions (1) or 43 conversions (2) are always possible in phase 2. When phase 2
is complete, the adversary saved at least 43/ε jobs of size ε. Now the adversary
uses these jobs to create a new 43-covered machine and wins.

As the adversary eventually always wins, we conclude that there is no 43/24-
competitive algorithm.

Acknowledgments

We are grateful to anonymous referees for many useful comments. T. Eben-
lendr and J. Sgall were partially supported by Institutional Research Plan No.
AV0Z10190503, by Inst. for Theor. Comp. Sci., Prague (project 1M0545 of
MŠMT ČR), and grant 201/05/0124 of GA ČR.

References

1. N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for
scheduling on parallel machines. J. Sched., 1:55–66, 1998.

2. Y. Azar and L. Epstein. Approximation schemes for covering and scheduling on
related machines. In APPROX, volume 1444 of Lecture Notes in Comput. Sci.,
pages 39–47. Springer, 1998.

3. Y. Azar and L. Epstein. On-line machine covering. J. Sched., 1:67–77, 1998.

118 T. Ebenlendr et al.

4. L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly related
and identical parallel machines. Algorithmica, 39:43–57, 2004.

5. D. Friesen and B. Deuermeyer. Analysis of greedy solutions for a replacement part
sequencing problem. Math. Oper. Res., 6:74–87, 1981.

6. G. J. Woeginger. A polynomial time approximation scheme for maximizing the
minimum machine completion time. Oper. Res. Lett., 20:149–154, 1997.

SONET ADMs Minimization with Divisible
Paths

Leah Epstein1,� and Asaf Levin2

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

2 Department of Statistics, The Hebrew University, Jerusalem, Israel
levinas@mscc.huji.ac.il

Abstract. We consider an optical routing problem. SONET add-drop
multiplexers (ADMs) are the dominant cost factor in SONET /WDM
rings. The number of SONET ADMs required by a set of traffic streams
is determined by the routing and wavelength assignment of the traffic
streams. In this paper we consider the version where a traffic stream
may be divided into several parts and assigned different wavelengths. A
specific division may increase or decrease the number of ADMs needed
for a given input. Following previous work, we consider two versions. In
the arc version, the route of each traffic stream is given as input, and we
need to decide on divisions of streams, and then to assign wavelengths
so as to minimize the total number of used SONET ADMs. In the chord
version, the route is not prespecified, but is assigned by the algorithm,
and only after this step the divisions are done and wavelengths are as-
signed. The previously best known approximation algorithm for the arc
version has a performance guarantee of 5

4
= 1.25 whereas the previ-

ously best known approximation algorithm for the chord version has a
performance guarantee of 3

2
= 1.5. We improve both these results. We

present a 36
29

≈ 1.24138-approximation algorithm for the arc version and
a 7

5
= 1.4-approximation algorithm for the chord version.

1 Introduction

WDM (Wavelength Division Multiplexing)/SONET (Synchronous Optical NET-
works) rings form a very attractive network architecture that is being deployed by
a growing number of telecom carriers. In this architecture each wavelength chan-
nel carries a high-speed SONET ring. The key terminating equipments are opti-
cal add-drop multiplexers (OADM) and SONET add-drop multiplexers (ADM).
Each vertex is equipped with exactly one OADM. The OADM can selectively
drop wavelengths at a vertex. Thus, if a wavelength does not carry any traffic
from or to a vertex, its OADM allows that wavelength to optically bypass the
vertex. Therefore, in each SONET ring a SONET ADM is required at a vertex
if and only if the ring carries some traffic terminating at this vertex. In this pa-
per we study the problem of minimizing the total cost incurred by the SONET
ADMs.
� Research supported by Israel Science Foundation (grant no. 250/01).

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 119–132, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

120 L. Epstein and A. Levin

Earlier studies of problems related to minimizing the total number of SONET
ADMs focused on the case of wavelength continuity. I.e., the same wavelength
is used on all the links of the path established for a traffic stream. Such earlier
studies include [6,5,8,2,4,3]. We later describe some of their results. However,
Gerstel et al. [5] illustrated that the number of ADMs can be reduced by allowing
a traffic stream to be locally transferred from one ADM in a wavelength to
another ADM in a different wavelength at any intermediate vertex. Such traffic
stream is divided. Calinescu and Wan [1] studied this problem. They showed that
allowing division of traffic streams may decrease the cost of the optimal solution
by a factor of 1

3 , where the route of each traffic stream is prespecified. This
major decrease motivated the study of the problem. The paper [1] also proves
NP-hardness, and presents approximation algorithms for both versions where
the routing along the ring of each traffic stream is either prespecified or need to
be decided. The first version is called the arc version whereas the second version
is called the chord version. For the arc version [1] presents a 5

4 -approximation
algorithm, and for the chord version it presents a 3

2 -approximation algorithm.
For a pair of vertices a, b we denote by (a, b) the directed edge that connects

a to b, and we denote by {a, b} the undirected edge between the two vertices.
The arc version of minimizing the number of ADMs with division

(arc version) is defined as follows. We are given a set E of circular arcs over the
vertices 0, 1, . . . , n − 1, where the vertices are ordered clockwise. A pair of arcs
(i, j), (k, l) is non intersecting if the clockwise path along the cycle 0, 1, . . . , n −
1, 0 that connects i to j and the clockwise path that connects k to l do not share
any arc of the cycle. A set S of arcs is non intersecting if each pair of arcs from
S is non intersecting. A division of an arc (a, b) is defined as a clockwise path
(that does not intersect itself) which connects a and b. A division of a subset S
of arcs is defined as a (multi) set of arcs resulting from the division of each arc
in S. A feasible solution is a partition of a division of E into non intersecting
subsets of arcs E1, E2, . . . , Ep (i.e., we find a division of E and also a partition
of it into non intersecting subsets). The cost of Ei is the number of different
vertices of the ring that are endpoints of the arcs of Ei. The cost of the solution
is the sum of the costs of Ei for all i. The goal is to find a minimum cost feasible
solution.

The chord version of minimizing the number of ADMs with divi-
sion (chord version) is defined as follows. We are given a set of undirected edges
(chords) E over the vertices 0, 1, . . . , n− 1, where the vertices are ordered clock-
wise. First, we need to orient each edge {a, b}, i.e., to transform it to either (a, b)
or (b, a). Last, we obtain an instance of the (divisible) arc version problem that
we solve.

The non-divisible arc version and non-divisible chord version of
the problem are the variants of the arc version problem and the chord version
problem, respectively, where division of arcs or chords is not allowed. These
non-divisible problems were studied before in [5,6,8,2,4,3,7]. Calinescu and Wan
[2] provided a 3

2 -approximation algorithms for both non-divisible problems. In
[4] we considered the non-divisible arc version problem and obtained a 10

7 -

SONET ADMs Minimization with Divisible Paths 121

approximation algorithm. A different approximation algorithm of approximation
ratio 10

7 + ε was given by Shalom and Zaks [7]. In [3] we considered the non-
divisible chord version problem and obtained a 10

7 -approximation algorithm as
well (using a different approach).

For an arc (i, j), we define its length as �(i, j) = j − i mod n. For a subset
of arcs (a subgraph), the length of the subset (subgraph) is the total length of
its arcs. A chain is an open directed path of length at most n − 1, and a cycle
is a closed directed path of length exactly n. W.l.o.g. we can assume that the
arcs in each Ei form a connected component (either a chain or a cycle). This
is so because if the arcs in Ei are disconnected, then we can partition Ei to its
connected components without increasing its total cost. Therefore, we ask for a
partition of E into cycles and (open) chains.

We define the deficiency of a vertex v, def(v), in the arc version in the fol-
lowing way. Let in(v) be the number of ingoing arcs of v, and let out(v) be the
number of outgoing arcs of V . Then, def(v) = 1

2 |in(v) − out(v)|. In the chord
version the deficiency of a vertex v is simply zero if v has an even degree, and
1
2 otherwise. The deficiency of a set of arcs (chords) S, def(S) is defined as
the sum of deficiencies over all vertices of the subgraph with arc (chord) set S.
These definitions appeared in [1]. Note that for a set of arcs or chords C, the
value |C|+ def(C) is a lower bound on the optimal cost for this set, both in the
version of the problem where divisions are not allowed, and also in the divisible
problem that we study in this paper.

Algorithm Eulerian Rounding (ER) was introduced in [1] as well. For the
arc version ER works as follows: Let S be the set of arcs. Add a minimum size
set of fake arcs F between pairs of vertices with non zero deficiency such that
def(S ∪ F) = 0. This results in an Eulerian (not necessarily connected) graph.
Now choose an Eulerian tour, and divide it into def(S) (not necessarily valid)
chains and possibly some (not necessarily valid) cycles. In order to get valid
chains and cycles, we apply the following process. Consider a chain or cycle
which starts at a vertex x. All arcs in that chain or cycle, that contain the ring
vertex x, are divided into two arcs. Specifically, an arc (a, b) (such that x is on
the clockwise path along the ring from a to b) is divided into (a, x) and (x, b).
This converts the Eulerian tour into def(S) valid chains, and some valid cycles.

For the chord version ER works as follows. The set S is a set of edges. In
this case F is a matching of odd degree vertices, and therefore def(S ∪ F) = 0.
We choose an Eulerian tour, and we perform the previous algorithm in the two
possible directions of the tour. Once the tour is directed, we get a set of arcs,
and we apply ER for the arc version. It was shown in [1] that running ER in
both directions, and choosing the best solution produces a solution that costs at
most 3

2 |S| + def(S).

Our results. We give improved upper bounds for both versions of the divisible
problem. In both cases we combine two algorithms, each of which performs well
on different classes of subgraphs.

For the arc version, we combine PIM and GP-ER into Arc-Combination (AC).
PIM was already introduced in [2] for the non-divisible problem. It removes cycles

122 L. Epstein and A. Levin

and then creates chains from remaining arcs. It does not divide arcs. GP-ER has
a detailed preprocessing phase, where small but dominant subgraphs are greedily
removed (very small subgraphs are removed optimally). Then, it runs ER on the
remaining instance. We prove that the performance guarantee of AC is at most
36
29 and at least 11

9 .
For the chord version, we combine D-DAG and P-ER into Chord-Combination

(CC). The algorithm D-DAG was already introduced in [2] where it is called
Edge Avoidance Routing algorithm, and further discussed and used in [3]. This
algorithm orients the edges so that the resulting graph is acyclic, and then solves
this instance optimally. D-DAG does not divide any edge, but in the resulting
directed instance the optimal solution does not need to divide arcs, as shown in
Section 3.2. The algorithm P-ER combines the ideas of PIM and ER. It removes
cycles greedily (as PIM does), but runs ER (and not IM as PIM does) on the
remaining instance. We prove that the performance guarantee of CC is exactly
7
5 = 1.4.

2 Algorithms for the Arc Version

In this section we introduce algorithm Greedy Preprocessed-ER (GP-ER) for the
arc version and afterwards combine it with PIM to produce algorithm AC that
is shown to be a 36

29 -approximation algorithm. We first state some properties of
optimal solutions.

The following lemma appears as Lemma 3 in [1]. (The proof in [1] is not
complete as it fails to consider all cases, in the full version of this paper we
provide a complete proof.)

Lemma 1. For an input arc set E′, denote its optimal solution by OPTE′ . Let
a, b, a be a two-arc cycle in E, then OPTE = OPTE\{(a,b),(b,a)} + 2.

By the above lemma, we see that it is possible to assume that the optimal solution
has a maximal number of two-arc cycles. These cycles can be found optimally
as a preprocessing step of any applied algorithm. We further characterize the
optimal solutions we would like to analyze.

A feasible solution SOL induces a partition of the arcs into an Eulerian sub-
graph and a set of mega-chains as follows: We consider the set of cycles and chains
used by SOL as a set of arcs in a directed auxiliary graph over {0, 1, . . . , n− 1}
where cycles are loops and a chain is a directed arc from its starting vertex to its
end vertex. In this directed graph we find a maximal subgraph in which the in-
degree of each vertex equals its out-degree. The remaining arcs define a minimal
set of chains such that each such chain is directed from a vertex whose out-
degree is greater than its in-degree, towards a vertex whose in-degree is greater
than its out-degree. Each such chain in the auxiliary graph corresponds to a
mega-chain in the original graph (by replacing each arc in the auxiliary graph
by its corresponding chain). Therefore, each mega-chain is composed of chains.
The remaining arcs in the original graph are the arcs of the Eulerian subgraph.
Note that the Eulerian subgraph does not need to be connected. Note that the

SONET ADMs Minimization with Divisible Paths 123

number of mega-chains in SOL is independent of SOL, and is common to all
feasible solutions.

We omit the proof of the following lemma which characterizes the mega-chains
in OPT.

Lemma 2. W.l.o.g. each mega-chain in OPT has length at most n − 1.

2.1 Algorithm GP-ER

We are ready to define the first algorithm we use. The algorithm has several fast
preprocessing steps, and then it applies Eulerian Rounding. It is not difficult to
show that it runs in polynomial time. To be able to analyze the algorithm, we
need to know the exact number of mega-chains in OPT which consist of a single
arc. Since we do not have this information, we apply the algorithm for every
possible such value (between 0 and |E|), and choose the best solution we get.
Therefore, in the analysis, we can assume that this number, which we denote
MC1, is known. We use two paramaters 0 ≤ μ2 ≤ 1 and 0 ≤ μ3 ≤ 1 which are
optimized later.

begin Algorithm GP-ER

Preprocessing phase:

1. Remove a maximum number of cycles each of them having exactly two arcs.
2. Construct the following bipartite graph B = (RB, LB, EB): The right hand

side, RB, contains the set of vertices whose in-degree in (V, E) is greater than
its out-degree, and the left hand side LB contains the set of vertices whose
out-degree in (V, E) is greater than its in-degree. For an arc (u, v) ∈ E,
such that both u ∈ RB and v ∈ LB, we add an edge to EB between the
two corresponding vertices. The weight of an edge is simply the length of
the corresponding arc. Among all possible b-matchings of cardinality MC1,
we find a maximum weight b-matching in B where the degree bound of a
vertex u is twice the deficiency of its corresponding vertex in (V, E). For each
edge in the optimal b-matching, we remove the arc between its corresponding
vertices.

3. As long as there exists a closed walk of three arcs (i.e., a circuit of three arcs,
if its total length is n then it is a cycle called also triangle, and otherwise its
length is 2n and we call it invalid triangle), remove such triangle or invalid
triangle. If we remove an invalid triangle, we divide one of its arcs and obtain
two cycles, each of them with two arcs.

4. As long as there exists a four arc cycle, remove such a cycle.
5. As long as there exists a two-arc chain of length at least μ2 ·n that connects

a vertex whose out-degree is greater than its in-degree, to a vertex whose
in-degree is greater than its out-degree, we remove such a chain of two arcs.

6. As long as there exists a three arc chain of length at least μ3 ·n that connects
a vertex whose out-degree is greater than its in-degree, to a vertex whose
in-degree is greater than its out-degree, remove such a three arc chain.

Eulerian rounding phase: Apply Algorithm ER on the remaining instance.

end of Algorithm GP-ER

124 L. Epstein and A. Levin

2.2 Algorithm PIM ([2])

In this subsection we introduce two algorithms IM and PIM given in [2], the
second builds on the first, and later we will use the second algorithm. Both
algorithms do not divide arcs. In the previous analysis of these algorithms [2,4]
the quality of the resulting solution was compared to an optimal solution of the
non-divisible arc version problem. This means that this analysis does not hold
for the divisible problem.

We first define the algorithm Iterative Matching (IM) (see [2]). The algorithm
maintains a set of valid chains of arcs P that covers E throughout its execution.
Initially, P consists of chains each of which is an arc in E. The fit graph F(P)
is defined as follows: its vertex set is P , and two of its vertices are connected
by an edge if the two corresponding chains have a common endpoint, and they
can be concatenated to form a valid chain. The algorithm constructs F(P), and
if its edge set is not empty, then it finds a maximum matching M in F(P).
Then, it merges each matched pair of chains of arcs in M into a longer chain.
When the edge set of F(P) is empty, P is the valid chain generation that is
returned as output. Calinescu and Wan [2] showed that the approximation ratio
of Algorithm IM for the non-divisible arc version problem is in the interval [32 , 5

3].
These bounds were improved to the interval [85 , 5

3) (if two-arc cycles are not
removed as a preprocessing step) and the interval [149 , 5

3) (if this preprocessing
is performed) in [4].

Calinescu and Wan considered a variant of Algorithm IM: Algorithm Prepro-
cessed Iterative Matching (PIM) defined as follows:

1. Preprocessing phase: repeatedly remove cycles consisting of remaining arcs
until no more cycle can be obtained (the two-arc cycles are removed first).

2. Matching phase: apply Algorithm IM to the arcs remaining after the first
phase.

For the non-divisible arc version problem, they showed that Algorithm PIM
has an approximation ratio of at most 3

2 , and at least 4
3 . The lower bound was

improved to 3
2 in [4]. We apply PIM exactly as it is defined in [2], and therefore

it is a polynomial time algorithm.

2.3 Analysis of PIM and GP-ER

We fix an optimal solution OPT which has a maximal number of two arc cycles
(with no divided arcs) and each of its mega-chains has length at most n − 1.
Note that such a mega-chain is a chain of OPT. Such an optimal solution exists
by Lemmas 1 and 2. Consider first cycles of OPT with no divided arcs. For
i = 2, 3, 4, let CYi be the number of cycles with i arcs and no divided arcs that
OPT has, and let CY be the total number of cycles in OPT with at least five
arcs in each and no divided arcs.

Consider next two-arc cycles of OPT such that each has exactly one divided
arc. A pair of such cycles, that have the two parts of an arc that is divided into
exactly two parts, is called an invalid triangle of OPT. Clearly, these two cycles

SONET ADMs Minimization with Divisible Paths 125

belong to the Eulerian subgraph. We denote by ICY3 the number of invalid
triangles in OPT.

Consider the set of all arcs which belong to the Eulerian subgraph of OPT.
From this set remove all arcs that belong to cycles of OPT with no divided arcs
and all arcs that belong to invalid triangles of OPT. The total length of the
remaining arcs in this subset is denoted by L.

Consider next the sets of all arcs which are mega-chains which consist of
a single arc. We denote the total length of all these arcs by L1. Recall that
MC1 denotes the number of mega-chains with a single arc, and this is the exact
number of mega-chains with a single arc removed by Algorithm GP-ER.

In addition, we use the following notations.

– MC - the total number of mega-chains.
– MC�

2, MC�
3 - the number of mega-chains of exactly two and three arcs, re-

spectively, with length in the interval [μ2n, n−1] and [μ3n, n−1], respectively.
– MCs

2 , MCs
3 - the number of mega-chains with exactly two and three arcs,

respectively, and lengths less than μ2n and μ3n, respectively.
– MC4 - the number of mega-chains with at least four arcs.

The �, s superscripts stand for long and short, respectively.
The length of E is at most UBL = (CY2 +CY3 +CY4 +CY) ·n+ ICY3 ·2n+

L1 + L + (MC�
2 + MC�

3 + MC4) · n + μ2nMCs
2 + μ3nMCs

3 .
Denote by A the number of cycles removed in step 1, B = MC1 - the number

of mega-chains removed in step 2, and LB the total length of these mega-chains.
C and D are the number of valid triangles and of invalid triangles removed in
step 3, respectively, F - the number of cycles removed in step 4, G - the number
of mega-chains removed in step 5, and H - the number of mega-chains removed
in step 6.

Then, by the optimality of step 1 using Lemma 1, we get A = CY2. Moreover,
step 1 is performed optimally, not only in terms of number of removed cycles,
but in the sense that the removed cycles are exactly the same one as OPT
has. Therefore this step cannot affect the next steps in any way. Due to the
optimality of step 2 in terms of removed total length, we get LB ≥ L1. By
definition, B = MC1.

The greedy selection rule at the step 3 implies that B+3C+3D ≥ ICY3+CY3.
This holds since step 3 is not over until there are no closed walks of three arcs
left. Each removed (valid or invalid) triangle destroys at most three (valid or
invalid) triangles of OPT. Each chain removed at step 2 can destroy at most one
cycle.

The greedy selection rule at the step 4 implies that B + 3C + 3D + 4F ≥
ICY3 + CY3 + CY4. As before, each removed chain in Step 2 destroys at most
one structure among valid or invalid triangles, and four-arc cycles. Among the
structures of OPT that are left after step 2, each structure removed at step 3
destroys at most three structures such that each of these is either a (valid or
invalid) triangle of OPT or a four arc cycle. Step 4 is not over until there are no
valid four arc cycles. Each such removed cycle can destroy up to four four-arc
cycles of OPT.

126 L. Epstein and A. Levin

In the next step, long mega-chains of two arcs are removed. This step, unlike
the two previous ones, can stop even if there still exist in the input long mega-
chains of OPT with two arcs. The reason is that if the deficiency of at least one
endpoint of such a chain becomes zero (as a result of removals in this step or
before), we do not remove this mega-chain.

In step 2, the removal of a single mega-chain can destroy at most two mega-
chains that belong to MC�

2. Consider such an arc (a, b). If (a, b) does not partic-
ipate in any chain of OPT in MC�

2, then it can still cause a reduction of 1
2 in the

deficiencies of a and b, and thus a reduction in the amount of mega-chains that
needs to be removed for each of them by 1 each. Otherwise, assume without loss
of generality that (a, b) participates in the mega-chain a− b− c of OPT. In this
case the following two things happen. The mega-chain a − b − c is destroyed,
and on top of that, there may be a decrease of 1

2 in the deficiency of b, which
can lead to a decrease of 1 in the number of mega-chains to be removed. In the
first case, it could still be that (a, b) destroys also a cycle that could be removed
in step 3 or step 4. The argument regarding step 5 is similar, each removed
mega-chain can prevent from two other mega-chains from being removed. Note
that steps 3 and 4 cannot change the deficiency of any vertex, therefore the only
way that they can destroy a mega-chain is by removing one of its arcs as an
arc in a removed structure. Therefore, each removed structure of step 3 may
destroy at most three mega-chains, and of step 4 at most four. We conclude that
3B + 3C + 3D + 4F + 4G ≥ ICY3 + CY3 + CY4 + MC�

2.
In the very last step, we remove long mega-chains of three arcs. We can see

that each arc removed at step 2 may destroy or prevent from removal up to three
mega-chains at the current step. That is since on top of reducing the deficiency
for the endpoints of this arc, it can be the middle arc in a mega-chain of OPT.
The situation regarding the cycle removal steps is as before, since they do not
change deficiency. A removed chain of the previous step can destroy at most two
chains by using their arcs, and two additional chains by decreasing deficiency.
A removed chain of the current step is has a similar effect, but can destroy
up to three chains by using their arcs, and two additional chains by decreasing
deficiency. We get 3B +3C +3D+4F +4G+5H ≥ ICY3 +CY3 +CY4 +MC�

2 +
MC�

3.
We note that the cost of the approximated solution is at most the sum of

|E| + MC and the cost of arc divisions, that is one per n units of length. This
holds since chains are produced by the algorithm at each time only between pairs
of vertices with non zero deficiency. The number of chains is thus no larger than
the sum of deficiencies, which is a lower bound on MC. Let UB′

L be an upper
bound on the total length of arcs which are not removed in the pre-processing
step.

Therefore, the cost of the approximated solution of GP-ER satisfies GP-ER ≤
|E| + MC + UB′

L

n + D. To be able to use this bound, we would like to find an
upper bound on the value UB′

L+Dn. Since we have an upper bound on UBL, we
can get this from a lower bound on the length of removed structures. This length
is at least An+LB +Cn+2Dn+Fn+μ2Gn+μ3Hn, therefore we need a lower

SONET ADMs Minimization with Divisible Paths 127

bound on An + LB + Cn + Dn + Fn + μ2Gn + μ3Hn. Since we have A = CY2

and LB ≥ L1, we focus on Cn + Dn + Fn + μ2Gn + μ3Hn. Let α, β, γ and δ
be non-negative values. We further have the requirements α + β + γ + δ ≤ 1

3 ,
β + γ + δ ≤ 1

4 , γ + δ ≤ μ2
4 , δ ≤ μ3

5 , μ2 + γ + δ ≤ 1, μ3 + δ ≤ 1. Using these values
as multipliers for the linear inequalities above, we get the following.

α(B + 3C + 3D) + β(B + 3C + 3D + 4F)
+ γ(3B + 3C + 3D + 4F + 4G) + δ(3B + 3C + 3D + 4F + 4G + 5H)
≥ (ICY3 + CY3)(α + β + γ + δ) + CY4(β + γ + δ) + MC�

2(γ + δ) + MC�
3δ.

The left hand size of the above expression is

α(B + 3C + 3D) + β(B + 3C + 3D + 4F)
+ γ(3B + 3C + 3D + 4F + 4G) + δ(3B + 3C + 3D + 4F + 4G + 5H)
≤ MC1(α + β + 3γ + 3δ) + C + D + F + μ2G + μ3H.

Therefore, we have An+LB +Cn+Dn+Fn+μ2Gn+μ3Hn ≥ CY2n+L1 +
(ICY3 + CY3)n(α + β + γ + δ) + CY4n(β + γ + δ) + MC�

2n(γ + δ) + MC�
3nδ −

MC1(α + β + 3γ + 3δ).
Finally, we derive the following corollary.

Corollary 1.

GP-ER ≤ |E| + MC + CY3(1 − α − β − γ − δ) + ICY3(2 − α − β − γ − δ)
+ CY4(1 − β − γ − δ) + CY + MC�

2(1 − γ − δ) + MC�
3(1 − δ) + MC4

+ μ2MCs
2 + μ3MCs

3 + MC1(α + β + 3γ + 3δ) +
L

n
.

We denote by E′ the set of arcs in OPT (after dividing some of the arcs in the
original set E). Then, OPT = |E′| + MC.

We allocate the cost of GP-ER among the subgraphs of OPT (a cycle with or
without divided arcs in the Eulerian subgraph, or a mega-chain). To do so, we
define a size of an arc in E′. We use a parameter s = 2

3 . If the arc was already in
E (i.e., if the arc is not a result of division), then its size is one. If it is a result
of division of an arc of E into k parts we define its size to be 1

k . We will change
the definition of size for arcs with size 1

2 in the following way. Consider a pair of
twin arcs e, e′ ∈ E′ that result from dividing a common arc of E (and each has
size 1

2). Consider the subgraphs of OPT that contain e and e′. If at least one
of these subgraphs contains also another arc whose size is less than one, then
we pick either e or e′ that belongs to such a subgraph, and we increase its size
to s whereas we reduce the size of its twin arc to 1 − s. We apply this as long
as there exists such pair with at least one of them in a subgraph that contains
another divided arc. If there is a pair of twin arcs e, e′ such that e is contained
in a mega-chain and e′ is contained in the Eulerian subgraph of OPT, then we
increase the size of e to s and decrease the size of e′ to 1 − s. We apply this
procedure for all possible pairs. At the end of this procedure, each arc with size
1
2 has its twin arc with size also 1

2 and such that the subgraphs of OPT that

128 L. Epstein and A. Levin

contain them belong to the Eulerian subgraph and they do not have any other
divided arc.

We allocate the cost of GP-ER as follows: for each subgraph of OPT we
initialize its allocated cost as the total size of its arc set (this will allocate |E|
of the total cost). For each mega-chain of OPT we increase its allocated cost by
one (in order to take into account the term MC), and apply the following.

For a three arc cycle of OPT we increase its allocated cost by 1−α−β−γ−δ.
For a four arc cycle of OPT we increase its allocated cost by 1 − β − γ − δ. For
a one-arc mega-chain of OPT we increase its allocated cost by α + β + 3γ + 3δ.
For a two-arc mega-chain of OPT we increase its allocated cost by 1−γ− δ. For
a three arcs mega-chain of OPT we increase its allocated cost by 1 − δ. For a
mega-chain of OPT with at least four arcs, we increase its allocated cost by 1.
The remaining cost corresponds to the part of the Eulerian subgraph that does
not consist of cycles. For each such cycle in OPT (that contains divided arc), we
check if it is part of a pair that results from division of an arc along an invalid
triangle. If so we increase the allocated cost of such cycle by 2−α−β−γ−δ

2 and
otherwise we increase the allocated cost of the cycle by 1.

Therefore, by Corollary 1, the total allocated cost is at least the cost of the
solution returned by GP-ER. Next, we do a similar allocation for PIM. We do
not allocate the real cost of PIM but the cost of the following algorithm that is
inferior to PIM (i.e. its cost it at least the cost of PIM). This algorithm removes
cycles in the exact same way as PIM does. Next, it considers each cycle and
chain of OPT. A valid matching is created on the arcs which are not removed
in the preprocessing step. The cost of removed cycles together with the cost
of this matching is an upper bound on the cost of PIM. This holds since PIM
finds a maximum size matching on the remaining arcs (and continues further
to combine chains afterwards) whereas we define some valid (not necessarily
maximum) matching on the same arc set. The first step in creating our matching
is removal of all divided arcs. We leave these arcs unmatched. After removal of
cycles and divided arcs from OPT, we are left with chains. A cycle where i arcs
were removed results in at most i chains. A chain where i arcs were removed
results in at most i+1 chains. Note that according to the definition of PIM, each
cycle has at least one removed arc. PIM does not apply IM until the instance
does not contain cycles (composed of non-divided arcs). If a cycle has a divided
arc, then this arc is removed as well. Clearly, we are left with chains only at this
time. Next, each remaining chain is partitioned into pairs of consecutive arcs
that form the matching. Each chain may have one unmatched arc (the last one).
The cost per divided arc is 2 as it is unmatched. However, since it is divided, we
allocate a unit cost for every part of it, and this covers the cost of these arcs.
The cost per arc that is removed in the preprocessing is 1 as well. The cost for
a remaining chain of j arcs is 3j+1

2 if j is odd, and 3j
2 if j is even. The cost

of a component of OPT is simply the sum of the allocated cost of its removed
arcs and the cost of the matching defined on its remaining arcs. Therefore, the
allocated cost of a cycle of OPT with k arcs, where i arcs were removed, is at
most i + 3(k − i)/2 + i/2 = 3k/2. The allocated cost of a chain of OPT with k

SONET ADMs Minimization with Divisible Paths 129

arcs, where i arcs were removed, is at most i+3(k− i)/2+(i+1)/2 = (3k+1)/2.
We need to consider six special cases where the cost allocated to a cycle or chain
is actually slightly smaller.

1. A cycle of OPT with two arcs, none of them being a divided arc. These cycles
are removed optimally, and therefore the cost allocated to each of them is 2.

2. A chain of OPT which consists of a single divided arc. We allocated a unit
cost to this chain.

3. A cycle of OPT with three arcs, none of them being a divided arc (this was
considered in [4]). If it has a single removed arc, the remaining chain has
an even number of arcs (two), and therefore the allocated cost is 4. If it has
two removed arcs, then the remaining chain has cost 2, and the total cost is
again 4.

4. A cycle of OPT with five arcs, none of them being a divided arc (this was
considered in [4]). If it has a single removed arc, the remaining chain has an
even number of arcs (four), and therefore the allocated cost is 7. If it has
two removed arcs, three arcs are left, and there is always an adjacent pair
of arcs among these three, thus the arcs are split into two chains, of lengths
1 and 2, and the total cost is again 7. If it has three or more removed arcs,
then the cost per remaining arc is not larger than 2, and thus the total cost
is no larger than 7.

5. A chain of OPT with two arcs, none of them being a divided arc. If no arcs
are removed, the allocated cost is 3 (the two arcs are matched exactly as in
OPT). If one of them is removed, then the cost for the other one is 2 and in
total 3.

6. An invalid cycle of OPT with four arcs. This is a pair of cycles of OPT, each
of which contains a single divided arc, and the two divided parts are the
only two parts of the same original arc. Considering the resulting cycles of
OPT we get two cycles, one of three arcs and the other one of two arcs. The
cost of PIM for the two-arc cycle is at most 3. In the longer cycle, if at least
one arc is removed in the pre-processing, then the total cost is at most 4.
Otherwise, a two-arc chain can be built from the two non-divided arcs, and
the cost of the longer cycle is 4 again. This gives a total of at most 7.

2.4 Algorithm Arc-Combination

Algorithm AC is defined as applying both PIM and GP-ER and choosing the
better solution. The parameters used for GP-ER are s = μ2 = μ3 = 2

3 , α = 1
12 ,

β = 1
8 , γ = 0 and δ = 1

8 . This algorithm has a performance guarantee that is
better than 5

4 as we establish in the following theorem.

Theorem 1. Algorithm AC has an approximation ratio of at most 36
29 ≈ 1.24138.

The proof is done by a careful analysis of the costs allocated by each algorithm
to each subgraph of OPT. In the full version of the paper, we show an example
where the approximation ratio of AC is exactly 11

9 , therefore the approximation
ratio of AC is at least 11

9 ≈ 1.22222.

130 L. Epstein and A. Levin

3 Algorithms for the Chord Version

In this section we study the chord version of the problem. We develop a 7
5 -

approximation algorithm that improves the earlier 3
2 -approximation algorithm

of [1]. Our algorithm is composed of a pair of algorithms: a new algorithm named
P-ER and algorithm D-DAG that was studied in [2,3] for the non-divisible chord
version problem.

3.1 Algorithm P-ER

In this subsection we introduce algorithm Preprocessed-ER which is a version
of algorithm ER for the chord version (see Section 1). The preprocessing phase
works as follows. Remove valid cycles one by one until the instance contains no
valid cycles. Then, perform algorithm ER.

Therefore, the algorithm is composed of a preprocessing step that was sug-
gested in [2] for PIM, and afterwards applying algorithm ER.

Let S be the input set of edges. Let S1 be the set of edges that we remove
during the preprocessing phase, and let S2 = S \ S1. Since the preprocessing
phase removes cycles only, we have def(S) = def(S1). The cost of the cycles
removed in the preprocessing phase is |S1|. The cost of the solution returned
by ER when applied to S2, is 3

2 |S2| + def(S2). Therefore, the total cost of the
solution returned by algorithm P-ER satisfies P-ER = |S1| + 3

2 |S2| + def(S).
Consider a given optimal solution. Let CHi denote the number of chains in

the optimal solution which contain i (original or divided) edges. Let Ci denote
the number of cycles in the optimal solution which contain i (original or divided)
edges. We are interested in the performance of P-ER as a function of the values
CHi for i ≥ 1 and Ci for i ≥ 2.

We charge the cost of P-ER to the components of OPT so that the total
charged amount is at least the cost of P-ER.

Each edge of S1 is charged one unit, and each edge of S2 is charged 3/2 units.
If an edge was divided into k parts in OPT, each part is charged by an equal
share (i.e., 1/k) so that the total is the amount charged for the edge. On top of
that, each chain of OPT is charged by 1. In this way we cover at least the cost
of def(S) that we have (the number of chains in OPT is at least this number).
We are ready to prove the following lemma.

Lemma 3. The cost of P-ER is at most
n∑

i=1

(
3i
2 + 1

)
CHi +

n∑
i=2

(
3i
2 − 1

2

)
Ci.

Proof. Consider a cycle of OPT with p (original or divided) edges, we show that
its charged cost is at most 3p

2 − 1
2 . We show that for a chain of OPT with p

(original or divided) edges, its charged cost is at most 3p
2 + 1.

Consider first a chain of OPT with p edges. The charged cost of each (original
or divided) edge is at most 3/2. Recall that we charge an extra unit for each
chain, therefore we charged at most 3p/2 + 1 in total to the chain.

It is left to consider cycles of OPT. On one hand if the cycle consists of original
edges only, then it has at least one edge in S1, since otherwise it would have been

SONET ADMs Minimization with Divisible Paths 131

removed before P-ER completes the preprocessing. This edge is charged by 1,
and the other edges are charged by at most 3

2 . We conclude that the charged cost
is at most 3(p−1)/2+1 = 3p/2−1/2. On the other hand, if the cycle has at least
one divided edge, then its charged cost is at most 3(p−1)/2+3/4 = 3p/2−3/4,
since at least one of its edges is charged a cost of at most 3

4 , and the other edges
have charged cost of at most 3

2 each. The worst case (i.e. with higher charged
cost) is 3p/2 − 1/2.

3.2 Algorithm Directed-DAG

In this subsection we suggest to use algorithm Directed-DAG (D-DAG) that was
previously considered by [2,3] for the non-divisible chord version problem.

Algorithm D-DAG. Choose an arbitrary edge e of the ring e.g. the edge
(n−1, 0). Direct all edges into arcs such that they do not traverse e. The resulting
instance is a directed acyclic graph, whose topological order is 0, 1, . . . , n − 1.
Solve this instance optimally (for the non-divisible version) using the Greedy
Sweeping algorithm as in [5]. For completeness, we describe the Greedy Sweeping
algorithm. This procedure starts with opening a new chain for every arc starting
at 0. Then, for every vertex in i = 2, . . . , n − 1 (in this order), it merges the
existing chains which end at the vertex i with arcs starting at i. A new chain is
opened for every arc starting at vertex i that has not been merged.

Note that D-DAG does not divide any chords. We now show that given a
directed acyclic graph whose topological order is 0, 1, . . . , n − 1, there exists
an optimal solution for the chord version problem that does not divide any
edge. Consider a solution where an edge f is divided into at least two arcs, two
of which are (a, b) and (b, c). Consider the two chains in which the two arcs
participate (if they belong to a common chain, there is no reason for division).
Let x and y be the left endpoints, and z and t the right endpoints, respectively.
We create a pair of new chains in the following way. We use the sub-chain from
x to b, and concatenate the sub-chain from b to t to it. The other chain that
we create, consists of the two remainders, i.e. the sub-chain from y to b and the
sub-chain from b to z. In the first created chain, we no longer need an ADM at
b, and therefore the cost of the solution is reduced by 1. Therefore, we obtain a
contradiction to the optimality of the original solution. Therefore, as we claimed
an optimal solution does not divide any arc in the resulting instance.

Let OPT be the value of the optimal solution for the original instance. Let
OPT ′ be the value of the optimal solution for the directed instance. Note that
each cycle and chain of OPT contains at most one edge that traverses the ring
edge e. Therefore, by directing the edges, a cycle of OPT is partitioned into two
chains. A chain of OPT may be partitioned into at most three chains in this
process.

The proof of the following lemma appears in the full version.

Lemma 4. The cost of D-DAG is at most
n∑

i=1

(i + 3)CHi +
n∑

i=2

(i + 2)Ci.

132 L. Epstein and A. Levin

3.3 Algorithm Chord-Combination

Algorithm Combination (CC) runs both P-ER and D-DAG, and chooses the
cheaper solution.

Theorem 2. The approximation ratio of CC is exactly 7
5 = 1.4.

The upper bound proof is based on the analysis in the previous sections. The
complete proof can be found in the full version of the paper.

4 Conclusion

We presented improved algorithms for the divisible ADM minimization problem
on rings, both for the arc version and the chord version. Obtaining better approx-
imation algorithms is left as future work. An interesting open problem is whether
the (divisible) arc version is actually easier than the (divisible) chord version.
In the non-divisible problem, the current best known upper bounds are equal
(though achieved by different algorithms using different approaches). The same
question can be asked there as well; which version is harder to approximate?

References

1. G. Călinescu and P.-J. Wan. Splittable traffic partition in WDM/SONET rings to
minimize SONET ADMs. Theoretical Computer Science, 276(1–2):33–50, 2002.

2. G. Călinescu and P.-J. Wan. Traffic partition in WDM/SONET rings to minimize
SONET ADMs. Journal of Combinatorial Optimization, 6(4):425–453, 2002.

3. L. Epstein and A. Levin. The chord version for SONET ADMs minimization. The-
oretical Computer Science. To appear.

4. L. Epstein and A. Levin. Better bounds for minimizing SONET ADMs. In Proc.
of the 2nd Workshop on Approximation and online Algorithms (WAOA2004), pages
281–294, 2004.

5. O. Gerstel, P. Lin, and G. Sasaki. Wavelength assignment in a WDM ring to
minimize cost of embedded SONET rings. In INFOCOM1998, volume 1, pages
94–101, 1998.

6. L. Liu, X.-Y. Li, P.-J. Wan, and O. Frieder. Wavelength assignment in WDM rings
to minimize SONET ADMs. In INFOCOM2000, volume 2, pages 1020–1025, 2000.

7. M. Shalom and S. Zaks. A 10/7 + ε approximation for minimizing the number of
adms in sonet rings. In Proc. of the First International Conference on Broadband
Networks (BROADNETS’04), pages 254–262, 2004.

8. P.-J. Wan, G. Călinescu, L. Liu, and O. Frieder. Grooming of arbitrary traffic
in SONET/WDM BLSRs. IEEE Journal on Selected Areas in Communications,
18:1995–2003, 2000.

The Conference Call Search Problem
in Wireless Networks

Leah Epstein1,� and Asaf Levin2

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

2 Department of Statistics, The Hebrew University, Jerusalem, Israel
levinas@mscc.huji.ac.il

Abstract. Cellular telephony systems, where locations of mobile users
are unknown at some times, are becoming more common. Mobile users
are roaming in a zone. A user reports its location only if it leaves the zone
entirely. The Conference Call Search problem (CCS) deals with tracking
a set of mobile users in order to establish a call. To find a single roaming
user, the system may need to search each cell where the user may be
located. The goal is to identify the location of all users, within bounded
time, satisfying some additional constraints on the search scheme.

We consider cellular systems with n cells and m mobile users (cellu-
lar phones). The uncertain location of users is given by m probability
distribution vectors. Whenever the system needs to find the users, it con-
ducts a search operation lasting at most d rounds. A request for a single
search step specifies a user and a cell. In this search step, the cell is
asked whether the given user is located there. In each round the system
may perform an arbitrary number of such requests. An integer number
B ≥ 1 bounds the number of distinct requests per cell in every round.
The bounds d and B result from quality of service considerations. Every
search step consumes expensive wireless links, which motivates search
techniques minimizing the expected number of requests thus reducing
the total search costs.

We distinguish between oblivious, semi-adaptive and adaptive search
protocols. An oblivious search protocol decides on all requests in ad-
vance, and stops only when all users are found. A semi-adaptive search
protocol decides on all the requests in advance, but it stops searching for
a user once it is found. An adaptive search protocol stops searching for
a user once it has been found (and its search strategy may depend on
the subsets of users that were found in each previous round). We estab-
lish the difference between those three search models. We show that for
oblivious “single query per cell” systems (B = 1), and a tight environ-
ment (d = m), it is NP-hard to compute an optimal solution (the case
d = m = 2 was proven to be NP-hard already by Bar-Noy and Naor) and
we develop a PTAS for these cases (for fixed values of d = m). However,
we show that semi-adaptive systems allow polynomial time algorithms.
This last result also shows that the case B = 1 and d = m = 2 is poly-
nomially solvable also for adaptive search systems, answering an open
question of Bar-Noy and Naor.

� Research supported by Israel Science Foundation (grant no. 250/01).

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 133–146, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

134 L. Epstein and A. Levin

1 Introduction

Cellular phone systems allow us to contact and talk to people that are not
residing in pre-determined locations. In systems where a user reports its new
location each time it moves to a new cell, the task of finding the user is simple.
Many existing systems allow the users to report their locations more rarely.
Furthermore, future systems are planned to have more and smaller cells, which
makes it infeasible for a user to report each time it crosses a border between a
pair of cells.

The Conference Call Search problem (CCS) deals with establishing wireless
conference calls under delay and bandwidth constraints. The goal is to establish
a conference call between m roaming users in a cellular network consisting of n
cells. The search for the users places another step in the process of establishment
of the conference call. I.e., the system needs to find out to which cell each user
is connected at the moment. Using historical data the system has an a-priori
assumption of the likelihood of each user to reside in each cell. This is represented
by a probability vector for each user describing the probabilities for the system
to find the user in each cell. We denote by pi,j the probability to find user i in
cell j. Following previous work [1], we assume that pi,j > 0 for all values of i, j.
We assume that each user is connected to exactly one cell in the system and
that the locations of the different users are independent random variables. The
tool for finding the users are search requests. Given a request for a user i and
a cell j, the system pages cell j and asks whether user i is located there. Delay
constraints limit the whole search process into d synchronous search rounds (such
that 1 ≤ d ≤ mn). Bandwidth constraints limit the number of requests per cell in
each round to at most a given integer number B such that 1 ≤ B ≤ m. Both delay
and bandwidth constraints are motivated by quality of service considerations. We
are interested in designing search protocols which efficiently utilize the wireless
links, i.e. given the constraints, minimize the expected cost of the search, where
each search request incurs a uniform cost of 1.

Note that even if at some time it is already clear that a given user must be
located in a specific cell, (i.e., this user was paged in all other cells and was not
located there), we still need to page this user in the cell where it is located in
order to be able to initiate a communication link.

We consider three types of search protocols. An oblivious search protocol
makes a full plan of search requests for d rounds, and does not change it. It
stops completely if all users are found. We can view this protocol as one where
we are not notified when a single user was located, but only at the time that all
of them were found. A semi-adaptive search protocol makes a full plan of search
requests for d rounds, and does not change it, however once a user is found we
stop search for it. An adaptive search protocol decides on the search requests per
round after it is notified which users were found in the previous round. It never
continues a search for a user that has already been found. As one can imagine
an optimal adaptive search protocol is much more complex than the optimal
oblivious search protocol or the optimal semi-adaptive search protocol, as it has

The Conference Call Search Problem in Wireless Networks 135

to define the search strategy according to the subsets of users that were found
in each of the previous rounds.

We define a tight instance of the conference call search problem to be an
instance where B = 1 and d = m. To motivate our study of tight instances we
note that the case of B = 1 is the elementary case where each cell can be asked
about a single user in each round. Clearly this means that the process of finding
all users may take up to m rounds. In order to minimize the worst case delay, we
require that all users are found within exactly m rounds (i.e. d = m). Note that
when B = 1 then d = m is the minimum number of rounds that enables a feasible
solution to the problem. So one may consider the restriction to tight instances
to have a primary goal of minimizing the worst case delay and minimizing the
maximum load on a cell within a particular round, and a secondary goal that
is to minimize the consumption of wireless bandwidth defined as the expected
number of requests.

Previous work. The paper [2] introduced the model where search requests for
different users for the same cell are made separately (i.e., we can not ask a cell
what is the subset of the users that are currently connected to it). They showed
that the case B = 1, d = m = 2, is NP-hard for oblivious search protocols. It was
left open to find out whether the same case is NP-hard for the adaptive search
protocol as well. A similar model was introduced by Bar-Noy and Malewicz [1].
In that model once a cell is requested in some round, it does not search for a
single user (or a limited number of users), but outputs a list of all users in that
cell. The paper focuses on oblivious search techniques. It is shown in that paper
that for any constant number of users (m > 1,d > 1), and any constant number
of rounds 1 ≤ d ≤ n, the problem is NP-hard. Note that the problem for a single
user, which is equivalent to the problem studied in this paper in this case, is
polynomially solvable using a simple dynamic programming [5,6]. Bar-Noy and
Malewicz [1] suggested a simple algorithm which combines users and reduces to
the algorithm for the case m = 1. This is a 4

3 -approximation for m = d = 2 and
e

e−1 ∼ 1.581977-approximation for other values of d, m. In a previous paper [3]
we designed a PTAS for that last problem. The PTAS is defined for the oblivious
search model, but can be modified easily to work for the adaptive search model
as well.

Paper outline. In Section 2 we prove that finding an optimal oblivious search
protocol of a tight instance is NP-hard for all fixed values of d ≥ 2. This last
result extends an earlier result of Bar-Noy and Naor [2] for d = 2. We also
show that if d is a part of the input, then finding an optimal oblivious search
protocol of a tight instance becomes NP-hard in the strong sense. In Section
3 we present our PTAS for oblivious search problems that are tight. We first
present a relatively simple PTAS for the case d = m = 2 and afterwards we
present a more complicated PTAS for an arbitrary constant d = m. Finally,
in Section 4 we show that computing an optimal semi-adaptive search protocol
for tight instances where the number of users is a constant, can be done in a
polynomial time. This last result shows the barrier in the tractability of the

136 L. Epstein and A. Levin

conference call search problem between the oblivious and semi-adaptive search
protocols; the first is NP-hard whereas the second is polynomially solvable. The
case of semi-adaptive search protocol with d = m = 2 also implies a polynomial
time algorithm for computing an optimal adaptive search protocol.

2 NP-Hardness for the Oblivious Problem

We recall that Bar-Noy and Naor [2] proved that finding the optimal oblivious
search protocol is NP-hard for B = 1 and d = m = 2. In this section we extend
this result to the general tight case.

Theorem 1. Finding an optimal oblivious search protocol is NP-hard even when
restricted to tight instances with d = m rounds and B = 1 for all fixed values of
d ≥ 2.

Proof. The claim for d = m = 2 is proved in [2]. We prove the claim for d ≥ 3
using a reduction from the partition problem (see problem SP12 in [4]). In this

problem we are given N integer numbers a(1), . . . , a(N), such that
N∑

i=1

a(i) = 2S

for some integer S ≥ 2, and the question is whether there exists a subset J ∈
{1, . . . , N} such that

∑
i∈J

a(i) = S. We create an instance of the oblivious search

problem as follows. Let δ > 0 be a small positive value such that δ < 1
8S2d2 . There

are N +m−2 cells, c1, . . . , cN+m−2. The (identical) probabilities of the first two
users are as follows. The probability for cell cj , j ≤ N is p1,j = p2,j = (1−δ)a(j)

2S .
The probability of every other cell j > N is p1,j = p2,j = δ

m−2 . As for the other
m − 2 users, user i (3 ≤ i ≤ m) has probability of 1 − δ in cell i + N − 2
(pi,i+N−2 = 1 − δ) and probability pi,j = δ

N+m−3 for all j �= i + N − 2. This
completes the description of the reduction.

We upper-bound the cost of an optimal oblivious search protocol in case there
exists an exact partition (i.e., the partition instance is a YES instance). Let
J be the subset of {1, . . . , N} such that

∑
i∈J

a(i) = S. In the first round, the

requests are as follows. The cells in J are asked about the first user and the cells
in {1, . . . , N} − J are asked about the second user. Note that

∑
i/∈J

a(i) = S as

well. Each other cell N + k is asked for user k + 2. Recall that the probability of
this user and cell is 1− δ. In the second round, the cells in J are asked about the
second user. The cells in {1, . . . , N}−J are asked about the first user. All other
search requests are made in some arbitrary order. The probability to find each
one of the first two users in the first round is exactly 1−δ

2 . The probability to
find any other user in the first round is exactly 1− δ. Therefore, the probability
to find all the users in the first round is (1−δ)m

4 , and so the probability to have
a second round is 1 − (1−δ)m

4 . For every user, the probability to find it within
the first two rounds is at least 1 − δ. Therefore, the probability to find all the
users within the first two rounds is at least (1 − δ)m, and thus the probability

The Conference Call Search Problem in Wireless Networks 137

that the search will last at least three rounds (and at most m rounds) is at most
1 − (1 − δ)m. We conclude that the total cost is at most

n + n

(
1 − (1 − δ)m

4

)
+ n(m − 2)(1 − (1 − δ)m) ≤

n + n

(
3
4

+
mδ

4

)
+ nm(m − 2)δ ≤ 7n

4
+ nm2δ <

7n

4
+

n

8S2

where the first inequality holds since (1 − δ)m ≥ 1 − mδ, the second inequality
follows by simple algebra and the last inequality holds as δ < 1

8Sd2 = 1
8Sm2 .

Consider now the situation where there is no exact partition (i.e., the par-
tition instance is a NO instance). Therefore, for every subset J ′ ⊆ {1, . . . , N}
either

∑
i∈J′

a(i) ≤ S − 1 or
∑

i∈J′
a(i) ≥ S + 1. First note that if one of the cells

N + 1, . . . , N + m − 2 is not paged in the first round for the user who has
probability 1 − δ to be in this cell, then the probability for a second round is
at least 1 − δ, and the cost is at least 2n − nδ. Otherwise, consider the cells
1, . . . , N . A subset A1 ⊆ {1, . . . , N} of these cells is paged for the first user
in the first round, and a disjoint subset A2 ⊆ {1, . . . , N} is paged for the sec-
ond user in the first round. Let p(1) (p(2)) be the sum of probabilities of cells
paged for the first (second) user in the first round. I.e., p(1) =

∑
j∈A1

p1,j and
p(2) =

∑
j∈A2

p2,j . Since A1 ∩ A2 = ∅ and p1,j = p2,j for all j, we conclude
that p(1) + p(2) ≤ 1 − δ. Due to the definitions of probabilities for the first
two users in the first N cells, we know that p(i) = (1 − δ)X(i)

2S , where X(i) for
i = 1, 2 are integers. Since there is no exact partition, we know that X(i) �= S. If
X(i) ≤ S−1 for i = 1, 2, then the probability to reach the second round is at least
1−(1−δ)2 ·(S−1

2S)2 > 1−(1−δ)2 S2−1
4S2 where the last inequality holds since S ≥ 1.

Otherwise, since X(1)+X(2) ≤ 2S, and none of the values can be S, we have that
if for one of the users i, X(i) = S+u ≥ S+1, then for the other user 3−i we have
X(3−i) ≤ S−u ≤ S−1. In this case the probability for a second round is at least
(1−(S+u

2S)(S−u
2S)(1−δ)2) ≥ 1−(1−δ)2 S2−1

4S2 (since u ≥ 1). The cost in the last two
cases is therefore at least n+n(1− S2−1

4S2 (1− δ)2) ≥ n+n(1− S2−1
4S2) = 7n

4 + n
4S2 .

Note that the cost we got in the first case (2n − nδ) is not smaller since
2n−nδ ≥ 7n

4 + n
4S2 is equivalent to δ + 1

4S2 ≤ 1
4 which holds since δ < 1

8Sd2 and
S, d ≥ 2.

We got that if there is an exact partition, then the optimal cost is at most
7n
4 + n

8S2 , whereas if there is no exact partition, the optimal cost is at least 7n
4 +

n
4S2 . Therefore we got that the question, whether the cost is at most 7n

4 + 3n
16S2 ,

is NP-hard. ��

In the full version of the paper we prove the following theorem. We show that if
d is not fixed, but a part of the input, the problem becomes strongly NP-hard.

Theorem 2. Finding an optimal oblivious search protocol is strongly NP-hard
even when restricted to tight instances with d = m rounds and B = 1.

138 L. Epstein and A. Levin

3 A PTAS for the Oblivious Problem

Properties. Recall that we assume non-zero probabilities for each pair of user
and cell. In this case, each cell must be asked regarding exactly one user per
round. Therefore, each cell needs to be assigned a permutation of the users.
Recall that an oblivious search is defined in advance, and lasts as long as some
user is still not located. Since we solve tight instances, already the first round
costs n, and therefore OPT ≥ n.

Let ε be a value such that 0 < ε < 1
(20m)m+1·m! . We show polynomial time

approximation schemes where the running time is polynomial in n, but the values
ε, and also m are seen as constants. The approximation ratios of the algorithms
are 1 + Θ(ε).

Our schemes are composed of several guessing steps. In these guessing steps
we guess certain information about the structure of OPT . Each guessing step
can be emulated via an exhaustive enumeration of all the possibilities for this
piece of information. Our algorithm runs all the possibilities, and among them
chooses the best solution achieved. In the analysis it is sufficient to consider the
solution obtained when we check the correct guess.

3.1 Two Users

We start with a relatively simple PTAS for this case. Here the search takes one
or two rounds. For a given algorithm, its cost is simply 2n − n(1 − p)(1 − q),
where p and q are the probabilities of finding the first user and the second user
(respectively) in the second round. In this section, let p and q denote these
probabilities in an optimal solution.

Let pj = p1,j be the probability for the first user to be located in cell j, and
let qj = p2,j be the probability of the second user to be located in that cell.

Denote the probability intervals I0 = (0, ε
n], and for 1 ≤ i ≤

⌈
log1+ε

(
n
ε

)⌉
,

Ii =
(ε

n
(1 + ε)i−1,

ε

n
(1 + ε)i

]
.

First guessing step we guess k, which is the number of cells that are paged
in the second round for the first user. Moreover, we guess the probability p of
finding the first user in the second round. That is, we guess the index i such that
p ∈ Ii.

Lemma 1. The number of possibilities for the first guessing step is

O
(
n
[
log1+ε

(n

ε

)
+ 2

])
.

Proof. Clearly 0 < k < n, since paging all cells for the same user in the first
round always results in a second round, which gives cost 2n, and this is sub-
optimal. To conclude the proof, note that the number of intervals is at most
log1+ε

(
n
ε

)
+ 2. ��

.

The Conference Call Search Problem in Wireless Networks 139

By Lemma 1, performing an exhaustive enumeration for the first guessing step
can be done in polynomial time. We continue to analyze the iteration of this
step in which we guess the “correct” values that correspond to OPT . We denote
the guess of p by p′ to be the upper bound of Ii; i.e., p′ = ε

n (1 + ε)i.
The next step is to scale the probabilities of only the first user as follows. For

all j define rj = pj/p′ to be the scaled probability of cell j and the first user.
We consider the vector R = (rj) of the scaled probabilities that the first user
is in cell j. We remove all cells with scaled probability larger than 1. Such cells
cannot be paged for the first user in the second round, and therefore must be
paged for the first user in the first round.

We further assign a type to each cell according to the following way. We
define a set of intervals J as follows: J0 = (0, ε], and for all � ≥ 1, J� =
(ε · (1 + ε)�−1, ε · (1 + ε)�], and J = {J0, J1, . . .}. For each cell 1 ≤ j ≤ n,
we find the interval from J that contains rj . That is, we compute a value tj
such that rj ∈ Jtj . The index tj is the type of cell j. For values of tj such that
tj > 0, we replace rj with r′j which is the upper bound of the interval Jtj , i.e.,
r′j = ε(1 + ε)tj . Otherwise the value remains unchanged, i.e., r′j = rj . Note that
the number of types is at most log1+ε

(
1
ε

)
+ 2 = O

(
log1+ε

(
1
ε

))
. We let S be the

sum of scaled probabilities for type 0 cells (paged in round 2 for the first user).
Let S′ be the upper bound of this interval that contains S.

Second guessing step We guess the amount of cells of each type that are
paged for the first user in the second round. Moreover, we guess the value of S′.

Lemma 2. The number of possibilities in the second guessing step is

O

(
nlog1+ε(1

ε)+2 log1+ε

(
1
ε

))
.

Proof. The number of cells from each type is an integer between 0 and k ≤ n−1
(clearly, bounded from above by the number of cells that exist for this type).
The number of options for guessing S′ is equal the number of intervals in J that
is O

(
log1+ε

(
1
ε

))
. ��

Note that the number of possibilities for this guessing step is polynomial (for a
fixed value of ε).

Next, for a given type of cell, i > 0, consider the cells which belong to this
type. After the rounding, the difference between these cells is the probability of
the second user to reside in this cell. Clearly, given that s such cells need to be
paged for the first user in round 2, it means that the same set of cells should
be paged for the second user in the first round. We prefer to page the cells with
highest probability for the second user among the cells with a common type. A
simple exchange argument shows that considering this option only (for rounded
instances) may never increase the cost of the solution. For cells of type 0, define
the density of a cell j to be qj/pj, this is the ratio between probabilities of the
two users. Sort all cells of type 0 by non-increasing densities. Afterwards, take
a minimal prefix of the sorted cells, such that the sum of scaled probabilities of

.

140 L. Epstein and A. Levin

the first user is at least S′ = ε · (1 + ε)�. If the sum of all the scaled probabilities
of type 0 cells does not exceed S′, then all these cells will be paged for the first
user in round 2. If S′ > ε, then the second user would prefer to page the most
profitable such cells in round 1. We allow a slightly higher probability in the
second round, and pick the most profitable cells greedily. Therefore, we may
only increase the probability of finding the second user in round 1. If we could
not exceed S′, but instead page all type 0 cells in round 2 for the first user, then
this may slightly harm the first user (see details below), but again may only
increase the probability of finding the second user in round 1.

Consider the guess which guesses correctly the value k, the amounts of cells
from each type, and the value of S′. The first step in the analysis would be to
bound the relation between the probabilities of finding the users in the first step
in the optimal solution and the solution we find. Let p̂ and q̂ be the corresponding
probabilities to p and q in the resulting solution. Since the probability of the
second user to be found in the first round may only increase, we get 1− q̂ ≥ 1−q,
i.e. q̂ ≤ q.

To bound p̂ in terms of p, note that p′ ≤ (1 + ε)p + ε
n . The rounding for

cells whose rounded probabilities are not of type 0, results in a possible increase
of probabilities by a multiplicative factor of 1 + ε. For cells of type 0, assume
that S′ ∈ J�. If � > 0, we allow the sum (of scaled probabilities) for the chosen
cells to exceed the value ε · (1 + ε)�. However, since all values are at most ε,
we get an additive error of at most that amount, in addition to a multiplicative
rounding error of 1+ε. For type 0, the worst case would be that the sum of scaled
probabilities should have been zero, but it reaches ε and exceeds it by the same
amount. Therefore, p̂ ≤ p′(1+ε)+2εp′ = (1+3ε)p′ ≤ (1+3ε)(1+ε)p+(1+3ε) ε

n ≤
(1 + 7ε)p + 4ε

n . The last inequality holds since ε < 1.
The cost is therefore

APX = n(1 + p̂ + q̂ − p̂q̂) = n(1 + p̂ + q̂(1 − p̂)) ≤ n(1 + p̂ + q(1 − p̂))

= n(1 + p̂(1 − q) + q) ≤ n(1 + (1 + 7ε)p(1 − q) +
4ε

n
+ q)

≤ (1 + 7ε)n(1 + p + q − pq) + 4ε ≤ (1 + 11ε)OPT = (1 + Θ(ε))OPT

The last inequality follows from OPT ≥ 1 which holds for any instance of the
problem. Therefore, we have established the following theorem:

Theorem 3. Problem CCS with two users, two rounds and B = 1 has a poly-
nomial time approximation scheme.

Remark 1. We can easily extend the scheme of this section to the case where
there are also zero probabilities. To do so, we first guess the number of cells n1

(n2) to page the first (second) user in the first round such that the second (first)
user has zero probability to be placed in this cell. Over the set of cells where both
users have positive probability we apply the scheme of this section. Among the
cells where the first (second) user has zero probability we will page for the second
(first) user in the first round in the set of the n2 (n1) cells with the highest
probability.

The Conference Call Search Problem in Wireless Networks 141

3.2 m Users

We continue with a PTAS for a general (constant) number of users. We prove
the following theorem.

Theorem 4. Problem CCS with a constant d = m and B = 1 has a polynomial
time approximation scheme.

The number of rounds that the search takes is at least 1 and at most m. Since
locations of users are again independent, we can compute the expectation of
the number of requests by calculating for each r, the probability of finding all
users in at most r rounds. Given an algorithm (search scheme) let qi,r be the
probability of finding user i in round r by a given solution, Then, the cost of
this solution is

n

m∑
r=1

(
1 −

m∏
i=1

(
r−1∑
s=1

qi,s

))
= n

m∑
r=1

(
1 −

m∏
i=1

(
1 −

m∑
s=r

qi,s

))
.

In this section we use these (qi,r) notations to denote the values in a fixed
optimal solution.

We start with a uniform rounding of the values pi,j . In this section we use
the following set of intervals for all rounding procedures. We define J as follows:
J0 = (0, ε2m+5], and for all k ≥ 1, Jk = (ε2m+5 · (1 + ε)k−1, ε2m+5 · (1 + ε)k],
and J = {J0, J1, . . .}. Let s be such that 1 ∈ Js. We replace the interval Js

by (ε2m+5 · (1 + ε)s−1, 1], and use only the s + 1 first intervals. For each pair
i, j where 1 ≤ i ≤ m, 1 ≤ j ≤ n, we find the interval from J that contains
pi,j . That is, we compute a value ti,j such that pi,j ∈ Jti,j , and we define the
type of the cell j to be the vector (t1,j , . . . , tm,j). For values of pi,j such that
ti,j > 0, we replace pi,j with p′i,j which is the upper bound of the interval Jti,j ,
i.e., p′i,j = ε2m+5 · (1 + ε)ti,j . Otherwise, the value remains unchanged, i.e.,
p′i,j = pi,j.

Corollary 1. If ti,j > 0 then pi,j ≤ p′i,j ≤ (1 + ε)pi,j.

We assign sub types to cells, based on the (unchanged) values of probabilities
of type 0. If for all users 1 ≤ i ≤ m, ti,j > 0, there is no further partition
to sub types. Otherwise, let the weight of cell j denoted as wj be defined as
wj = max{i|ti,j=0} pi,j . For a type vector of a given cell j, create the following
vector aj of length m. The i-th entry aj

i is −1 if ti,j > 0, and otherwise aj
i = pi,j

wj
.

We use the same partition into intervals in order to round and classify the
vectors aj . For an entry aj

i , find the interval from J that contains aj
i . Compute

a value t′i,j such that aj
i ∈ Jt′i,j

, then the sub type of the cell j is the vector

(t′1,j , . . . , t
′
m,j) (where t′i,j = −1 if ti,j > 0). We use the vector a′j , where a′j

i is
the upper bound of the interval Jt′i,j

. If aj
i = −1 then also a′j

i = −1. We scale the
probabilities again in the following way: if ti,j > 0 then p′′i,j = p′i,j and otherwise
p′′i,j = wja

′j
i .

142 L. Epstein and A. Levin

Corollary 2. If ti,j = 0, p′′i,j ≤ wj

(
(1 + ε)aj

i + ε2m+5
)

= (1+ε)pi,j +wjε
2m+5.

Note that at least one entry in a′j is 1, that is an entry �j for which wj = p�j ,j .
We call the user �j the leader of the cell. Note that there may be other such unit
entries, in the case that the maximum is not unique (in that case, �j is picked
to be such a user with a minimum index), or if some user has a slightly smaller
probability, but still in the last interval.

A cell is specified by its type, sub type, leader and weight (excluding cells
with no sub type). Two cells j1, j2 have the same general type if they both have
no sub type, or if they have the same type, same sub type and same leader. Their
weights wj1 and wj2 may both take arbitrary values in (0, ε2m+5]. Therefore, the
number of general types is at most

m

(
2 log1+ε

(
1
ε

)2m+5

+ 3

)m

≤ m

ε2m
.

This follows from the choice of ε < 1
(20m)m+1·m! , and from ln 1

ε ≤ 1
ε , ln(1+ε) ≥ ε

2 ,
and m ≥ 2.

Given a cell, in order to specify a solution when restricted to this cell, we need
to give a permutation of the users. That would be the order in which the cell is
paged for the users.

Guessing step For every general type and every permutation π (out of the m!
possible ones), we guess the number of cells of this general type that are paged
in the order of the permutation π. Note that the sum of these numbers should
be exactly the total number of cells of this general type. For every general type
t, excluding the general type with no sub types, we also guess an interval for
the total probability P (t, π) that the cells of the general type t, paged using
the permutation π, induce in the round where the leader of this general type is
paged (i.e., the sum of their weights belongs to the guessed interval).

Lemma 3. The number of possibilities for the first guessing step is polynomial.

Proof. The number of combinations of general types and permutations is at most
m!m
ε2m . The number of possible guesses for a given permutation and cell is at most
n + 1 (this is an integer between 0 and n). The number of possibilities for a
probability guess is

(
(2m + 5) log1+ε

(
1
ε

)
+ 2

)
≤ 1

ε2 . Therefore, the number of

possibilities for the guessing step is at most
(

n+1
ε2

)m!m
ε2m . ��

Given a guess, we distribute the cells to the permutations as follows. For a
general type with no sub types, allocate the guessed number of cells of this type
to each permutation, if possible. The exact distribution is not important. For
other general types (i.e., with subtypes), given a specific general type, let � be
its leader. Denote the permutations by π1, . . . , πm!. Given a permutation πi, let
ti be the index for the probability interval guessed for this class, and let ai be
the number of cells guessed for it. Let n′ be the number of cells that need to

.

The Conference Call Search Problem in Wireless Networks 143

be distributed. Re-number the cells from 1 to n′ and denote by wj the weight
associated with cell j. We need to distribute the n′ cells to the m! permutations,
where for every permutation, an upper bound is given on the sum of probabilities
of the cells allocated to it as well as an upper bound on the number of these
cells. This corresponds to the following integer program. Let Xi,j be an indicator
variable whose value is 1 if cell j is allocated to permutation i. We apply the
upper bounds of numbers and probabilities as follows. For each 1 ≤ i ≤ m!,

n′∑
i=1

Xi,j ≤ ai and
n′∑

i=1

wj · Xi,j ≤ ε2m+5(1 + ε)t .

We clearly have
m!∑
i=1

Xi,j ≥ 1 for all 1 ≤ j ≤ n′, since each cell is assigned to at

least one permutation. If it is assigned to more than one, one of its occurences
can be removed without violating the other constraints. The goal is to find a
feasible integer point.

We relax the integrality constraint, and replace it with Xi,j ≥ 0. We are
left with a linear program which clearly has a solution if the original integer
program does. Solving the linear program we can find a basic solution. This basic
solution has at most 2m! + n′ non zero variables (as the number of constraints).
Clearly, each cell j has at least one non zero variable Xi,j and thus we get that
the number of cells that are not assigned completely to a permutation (i.e.,
that have more than one non zero variable associated with them) is at most
2m!. These cells are removed and re-distributed to the permutations in order to
satisfy the amounts of cells. In the worst case, all additional cells are assigned to
one permutation, increasing its total probability in the round of the leader (i.e.,
its total weight) by an additive factor of 2m!wjε

2m+5, and values which are no
larger than 2m!wjε

2m+5 in other rounds.
From now on, we consider the correct set of guesses. We would like to compute

the differences between the values qi,r used by an optimal algorithm and the ones
used by our scheme. Let q′i,r be the values used by the algorithm. I.e., q′i,r is the
total probability of finding user i during round r by the scheme.

Lemma 4. q′i,r ≤ (1 + 7ε)qi,r + ε2.

Proof. There are two types of changes in the value qi,r, multiplicative changes
and additive changes. The first two rounding steps are taken for pairs of cells
and users. By Corollary 1 and 2, we conclude that p′′i,j ≤ (1 + ε)pi,j + wjε

2m+5.
Therefore, the sum of additive changes in all pairs of cells and leaders is bounded
by ε2m+5 times the sum of all probabilities, which is m. Hence, mε2m+5 bounds
the resulting additive change in each value qi,r.

The next rounding is of P (t, π). Another multiplicative factor of 1 + ε is
introduced at this time. Moreover, the probability of a given permutation π may
increase by an additive factor of (2m!+1)ε2m+5. In the worst case, this additive
growth may happen for every pair of general type and permutation. The term
2m!ε2m+5 is due to the last phase where the fractional solution to the linear

144 L. Epstein and A. Levin

program is rounded. An additional ε2m+5 is due to the rounding of P (t, π) to
right end points of probability intervals.

Recall that the number of combinations of general types and permutations is
at most

(
m!m
ε2m

)
, thus the additive factor is at most

(
m!m
ε2m

)
(2m! + 1)ε2m+5 ≤ ε4.

Summarizing we get,

q′i,r ≤ ((1 + ε)qi,r + ε2m+4)(1 + ε) + ε4 ≤ (1 + 3ε)qi,r + ε2 . ��

We compute an upper bound for the change in the goal function value.

n

m

r=1

1 −
m

i=1

1 −
m

s=r

q′i,s (1)

≤ n

m

r=1

1 −
m

i=1

1 −
m

s=r

(1 + 3ε)qi,s + ε2 (2)

≤ n
m

r=1

1 −
m

i=1

1 − mε2 − (1 + 3ε)
m

s=r

qi,s (3)

≤ n
m

r=1

m2ε2 + (1 + 3ε) 1 −
m

i=1

1 −
m

s=r

qi,s (4)

≤ n m3ε2 + (1 + 3ε)
m

r=1

1 −
m

i=1

1 −
m

s=r

qi,s (5)

≤ εOPT + (1 + 3ε)OPT = (1 + 4ε)OPT , (6)

where (2) follows by Lemma 4, and (3),(5) follow by simple algebra. Next, (4)
follows since given a set of m independent random events, the probability of their
union is multiplied by at most (1 + 3ε) if we multiply the probability of each
event in this set by that amount, and if we increase the probability of each event
by an additive factor of ρ = mε2, then the probability of the union increases
by at most mρ = m2ε2. Finally (6) follows since OPT ≥ n and ε < 1

m3 . This
completes the proof of Theorem 4.

4 Polynomial Time Algorithms for Finding Optimal
Semi-adaptive Search Protocols

In this section we consider the problem of computing an optimal semi-adaptive
search protocol for tight instances of CCS. We show polynomial time algorithms
for solving this problem. We describe a fast algorithm to solve the two-users two-
rounds case (this solution holds for adaptive systems as well). In the full version
of the paper we present a dynamic programming based algorithm to solve the
CCS problem with a constant number of users.

Two users. We assume that there are two users and two rounds and B = 1.
Bar-Noy and Naor [2] showed that computing an optimal oblivious protocol for
this case is an NP-hard problem. They left as an open question to decide if com-
puting an optimal adaptive search protocol is polynomially solvable. We note

The Conference Call Search Problem in Wireless Networks 145

that in this case the semi-adaptive search protocol is equivalent to the adap-
tive search protocol. Therefore, by computing an optimal semi-adaptive search
protocol in polynomial time, we provide a positive answer for this question.

Our algorithm, denoted by Alg, guesses k that is defined as the number of
cells that an optimal solution pages for the first user in the first round. This
guess is implemented by an exhaustive enumeration using the fact that k is an
integer in the interval [0, n], and then returning the best solution obtained during
the exhaustive enumeration. We next analyze the iteration in which the guess is
correct.

Denote by Ik
i = p1,i · (n− k)− p2,i · k the index of cell i in the k-th iteration.

Our algorithm sorts the indices of the cells in non-decreasing order, and then it
picks the first k cells (in the sorted list). These picked cells are paged for the
first user in the first round, whereas the other cells are paged for the second user
in the first round.

Theorem 5. Alg returns an optimal semi-adaptive search protocol.

Proof. To prove the theorem, it is sufficient to prove the following claim: Assume
that there exists a pair of cells i, j with Ik

i ≥ Ik
j such that the optimal solution

pages j for the first user in the first round, and it pages i for the second user in
the first round. Then, replacing the role of i and j (i.e., the new solution pages
i for the first user in the first round, and it pages j for the second user in the
first round), results in another optimal solution.

To prove the claim we first argue that the decrease in the solution cost re-
sulting by this replacement is (n− k) · (p1,i − p1,j) + k · (p2,j − p2,i). To see this,
note that the probability of finding the first user in the first round increases by
p1,i − p1,j, thus gaining an expected decrease of the cost by (n− k) · (p1,i − p1,j).
Similarly for the second user the expected decrease in the cost is k · (p2,j − p2,i).

However, (n − k) · (p1,i − p1,j) + k · (p2,j − p2,i) = p1,i · (n − k) − p2,i · k −
[p1,j · (n − k) − p2,j · k] = Ik

i − Ik
j ≥ 0, where the last inequality follows by the

assumption. Therefore, the replacement of the roles of i and j results in another
optimal solution, as we claimed. ��

The next corollary answers the open question implied by [2].

Corollary 3. Alg returns an optimal adaptive search protocol.

5 Open Questions

We list several open questions that are left for future research:

– Determine the complexity status of computing an optimal adaptive search
protocol for tight instances with d = m > 2.

– Find an FPTAS or prove its non-existence (by showing that the problem is
NP-hard in the strong sense for fixed constant values of d = m) for computing
an optimal oblivious search protocol for tight instances with a fixed constant
number of users.

146 L. Epstein and A. Levin

– Find a PTAS or prove its non-existence (by showing that the problem is
APX-hard) for computing an optimal oblivious search protocol for an arbi-
trary tight instance. The running time of the PTAS should be polynomial
in n and in d = m.

References

1. A. Bar-Noy and G. Malewicz. Establishing wireless conference calls under delay
constraints. Journal of Algorithms, 51(2):145–169, 2004.

2. A. Bar-Noy and Z. Naor. Establishing a mobile conference call under delay and
bandwidth constraints. In The 23rd Conference of the IEEE Communications So-
ciety (INFOCOM2004), volume 1, pages 310– 318, 2004.

3. L. Epstein and A. Levin. A PTAS for delay minimization in establishing wire-
less conference calls. In Proc. of the 2nd Workshop on Approximation and Online
Algorithms (WAOA2004), pages 36–47, 2004.

4. M. R. Garey and D. S. Johnson. Computer and Intractability. W. H. Freeman and
Company, New York, 1979.

5. D. Goodman, P. Krishnan, and B. Sugla. Minimizing queuing delays and number of
messages in mobile phone location. Mobile Networks and Applications, 1(1):39–48,
1996.

6. C. Rose and R. Yates. Minimizing the average cost of paging under delay constraints.
Wireless Networks, 1(2):211–219, 1995.

Improvements for Truthful Mechanisms with
Verifiable One-Parameter Selfish Agents

A. Ferrante, G. Parlato, F. Sorrentino, and C. Ventre�

Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”, Universitá di Salerno,
via S. Allende 2, I-84081 Baronissi (SA), Italy

{ferrante, parlato, sorrentino, ventre}@dia.unisa.it

Abstract. In this paper we study optimization problems with verifiable
one-parameter selfish agents introduced by Auletta et al. [ICALP 2004].
Our goal is to allocate load among the agents, provided that the secret
data of each agent is a single positive rational number: the cost they
incur per unit load. In such a setting the payment is given after the
load completion, therefore if a positive load is assigned to an agent, we
are able to verify if the agent declared to be faster than she actually is.
We design truthful mechanisms when the agents’ type sets are upper-
bounded by a finite value. We provide a truthful mechanism that is
c · (1 + ε)-approximate if the underlying algorithm is c-approximate and
weakly-monotone. Moreover, if type sets are also discrete, we provide
a truthful mechanism preserving the approximation ratio of the used
algorithm. Our results improve the existing ones which provide truthful
mechanisms dealing only with finite type sets and do not preserve the
approximation ratio of the underlying algorithm. Finally we give a full
characterization of the Q||Cmax problem by using only our results. Even
if our payment schemes need upper-bounded type sets, every instance
of Q||Cmax can be ”mapped” into an instance with upper-bounded type
sets preserving the approximation ratio.

1 Introduction

Optimization problems dealing with resource allocation are classical algorithmic
problems and they have been studied for decades in several models: centralized
vs. distributed algorithms, on-line vs. off-line algorithms and so on. The under-
lying hypothesis has been that the input is available to the algorithm (either
from the beginning in off-line algorithms or during its execution in on-line algo-
rithms). This assumption turns out to be unrealistic in the context of modern
networks like the Internet. Here, the various parts of the input are owned by
selfish (but rational) agents as part of their private information (called the type)
and thus the optimization algorithm will have to ask the agents for their type
and then work on the reported types. In this context, it is realistic to assume

� Research supported by the European Project FP6-15964, Algorithmic Principles for
Building Efficient Overlay Computers (AEOLUS). (Contract number 015964.)

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 147–160, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

148 A. Ferrante et al.

that an agent will lie about her type if this leads to a solution S that she prefers,
even in spite of the fact that S is not globally optimal.

The field of mechanism design is the branch of Game Theory and Microeco-
nomics that studies ways of inducing, through payments, the agents to report
their true type so that the optimization problem can be solved on the real input.
In this paper we study the design of algorithms for solving (or approximately
solving) combinatorial optimization problems in presence of selfish agents.

Following the standard notation used in the study of approximation of com-
binatorial optimization problems (see, e.g., [10]), we consider problems defined
as four-tuples (I, m, sol, goal), where I is the set of instances of the problem;
sol(I) is the set of feasible solutions of instance I; m(S, I) is the measure of the
feasible solution S of instance I and goal is either min or max. Thus, the opti-
mization problem consists in finding a feasible solution S∗ for instance I such
that m(S∗, I) = opt(I) := goalS∈sol(I)m(S, I). A c-approximation algorithm
A for Π = (I, m, sol, goal) is such that for all I ∈ I, max{m(A(I), I)/opt(I),
opt(I)/m(A(I), I)} ≤ c.

In an optimization problem Π with selfish agents, there are m agents which
privately know part of the input. Thus every instance I ∈ I consists of two parts
I = (T, σ), where the vector T = (t1, t2, . . . , tm) is the private part of the input
and σ is the public part of the input. In particular, we assume that ti is known
only to agent i, for i = 1, 2, . . . , m and we call ti the type of agent i. The type
set Θi of agent i is the set of the possible types of agent i. In this setting, each
agent will report some value bi ∈ Θi (which can be different from her true type
ti). An algorithm A for the optimization problem Π with selfish agents receives
as input the vector of bids B = (b1, b2, . . . , bm), instead of the true instance T it
is supposed to solve. Each selfish agent incurs some monetary cost, costi(S, ti),
depending on the feasible solution S and her private data ti. Since every agent
i is selfish, she might declare bi �= ti so to induce A to return a cheaper solution
for agent i. Unfortunately, even though A is c-approximating for the instance T ,
for B �= T the solution returned by A on input B might have measure, w.r.t.
the true instance T , far-off the optimum opt(T).

In order to obtain a correct solution, algorithm A is equipped with a payment
scheme P = (P1, . . . , Pm) in order to induce every agent to report her true type.
After a solution S = A(B, σ) is computed, each agent i is awarded payment
Pi(S, B, σ). We assume that each agent i is rational in the sense that she picks
her type declaration bi so to maximize her profit.

Definition 1. Let Π be an optimization problem with one-parameter selfish
agents and A be an algorithm for Π, and P be a payment scheme. The profit
function profit of agent i with respect to the pair (A, P) when B is the sequence of
bids, σ is the public information, ti is the true type of agent i, and S = A(B, σ),
is defined as profiti(S, B, σ, ti) := Pi(S, B, σ) − costi(S, ti).

It is natural to consider mechanisms in which the profit of the i-th agent is
maximized when she reports bi = ti. We have thus the following classical no-
tion of a truthful mechanism. In the definition of a truthful mechanism (and

Improvements for Truthful Mechanisms 149

in the rest of the paper) the following notation turns out to be useful. Let
X = (x1, . . . , xk) be a vector. For any 1 ≤ i ≤ k, the writing X−i denotes the
vector X−i := (x1, . . . , xi−1, xi+1 . . . , xk) and the writing (y, X−i) denotes the
vector (y, X−i) := (x1, . . . , xi−1, y, xi+1 . . . , xk).

Definition 2. The pair M = (A, P) is a truthful mechanism for selfish agents
if and only if for all σ, for all agents i, and all type declarations B, it holds
profiti(A((ti, B−i), σ), (ti, B−i), σ, ti) ≥ profiti(A(B, σ), B, σ, ti).

In such a way, every agent maximizes her profit when she is truthful. Thus, we
assume that in a truthful mechanism every agent always reports her true type,
and algorithm A always works on the true instance T . As a consequence, we say
that a truthful mechanism M = (A, P) is c-approximating for an optimization
problem Π with selfish agents, if A is a c-approximating algorithm for every
instance I of Π . Since, in a truthful mechanism, agents are not sure to have a
positive profit, they would not participate in such a mechanism unless they were
coerced. This motivates the following definition.

Definition 3. A truthful mechanism satisfies voluntary participation condition
if agents who bid truthfully never incur a net loss, i.e. for all public information
σ, for all agents i, and for all other agents’ bids B−i,

profiti(A((ti, B−i), σ), (ti, B−i), σ, ti) ≥ 0.

We now review the concept of optimization problem Π with one-parameter selfish
agents (as discussed in [2]). Here, each agent i has as private information a single
parameter ti ∈ Q. Moreover, a feasible solution S of an instance I of Π defines,
for each agent i, an amount wi(S) of assigned work. We call such a solution S
schedule. Notice that in the definition of one-parameter problem ([2]) the total
amount of work to schedule can depend on the private part of the input B.
However we restrict ourselves, as in wide part of literature, to the case in which
the amount of work assigned to all agents depends only on the public information
(and not on the agent bids). We denote such an amount of load just as W > 0.
The cost function of agent i has the following special form.

Definition 4. Let S be a feasible solution of Π. Then, the cost function costi(S,
ti) is defined as costi(S, ti) := wi(S) · ti.

Scheduling problems are typical examples of optimization problem for one-
parameter selfish agents. In a scheduling problem, the input consists of m machine
speeds s = (s1, s2, . . . , sm) and n job weights W = (w1, w2, . . . , wn). A schedule
S is an assignment of jobs to machines. Let wi(S) be the sum of the weights of the
jobs assigned to machine i by schedule S. In a scheduling problem the task con-
sists in computing a schedule that minimizes a certain cost function associated
with the schedule. For instance, in the Q||Cmax problem the cost of a schedule S
is the makespan MS(S) that is the maximum completion time of the machines.
Formally, MS(S) = max1≤j≤m{wj(S)

sj
}. We consider the setting in which each

150 A. Ferrante et al.

machine i is owned by a different agent and the speed si of machine i is the
private information of agent i. To be in a setting of one-parameter selfish agents,
we consider ti = 1/si as the type of agent i. The public information σ is the
sequence W = (w1, w2, . . . , wn) of job weights. We recall that Q||Cmax problem
is NP-hard. Throughout the paper we use Q||Cmax as our main example.

A mechanism M for verifiable one-parameter selfish agents is a pair M =
(A, P) working as follows.

1. The allocation algorithm A takes as input the sequence of bids B = (b1, b2,
. . . , bm) and the public part σ and outputs a schedule S = A(B, σ) for the m
agents. We recall that wi(S) denotes the amount of load assigned to agent i
by the schedule S computed by algorithm A on input B and σ.

2. Each agent i is observed to complete her assigned load in time Ti ≥ wi(S) ·ti.
Notice that agent i completes the load wi(S) assigned to her in time wi(S)·ti.
Agent i can however delay the release of the works and thus obtain a larger
observed completion time and the mechanism has no way of detecting it.
However, agent i cannot be observed to finish her load before the actual
completion time wi(S) · ti. Since wi(S) · ti is the request time for agent i to
complete the load wi(S), we denote with si = 1

ti
the speed of agent i.

3. Finally, after agent i releases the assigned works, she is awarded payment
computed by applying function Pi on arguments S, B, σ, and the observed
completion time Ti of machine i.

We stress that in this setting, payments are provided after the execution of
the load and thus agents are (partially) verifiable in the following sense. If agent
i receives an amount of load greater then 0, the mechanism can find out whether
agent i has declared to be faster than she actually is (that is, bi < ti). Indeed,
in this case the claimed completion time wi(S) · bi is smaller than the actual
completion time wi(S) · ti and thus we have that Ti ≥ wi(S) · ti > wi(S) · bi.
Since payments are provided after the completion of loads, the mechanism can
make it inconvenient to claim faster speeds. On the other hand, the mechanism
cannot find out if an agent has declared to be slower than she actually is, since
the agent can decide to delay some of the jobs.

Henceforward we refer to Π as an optimization problem for verifiable one-
parameter selfish agents. Let us now instantiate the definitions of profit and
truthful mechanism in this new scenario.

Definition 5. Let A be an algorithm for Π, and P be a payment scheme. The
profit function profit of agent i with respect to the pair (A, P), when B is the
sequence of bids, σ is the public information, ti is the true type of agent i,
S = A(B, σ), and Ti is the observed completion time of agent i for the load
wi(S), is defined as profiti(S, B, σ, ti, Ti) := Pi(S, B, σ, Ti) − costi(S, ti).

Definition 6. Let A be an algorithm for Π, and P be a payment scheme. A pair
M = (A, P) is a truthful mechanism with respect to Π, if for all σ, for all i, for
all bid vectors B, and for all observed completion times Ti ≥ wi(A(B, σ)) · ti, it
holds that profiti(S, (ti, B−i), σ, ti, wi(S) · ti) ≥ profiti(A(B, σ), B, σ, ti, Ti) where
S = A((ti, B−i), σ).

Improvements for Truthful Mechanisms 151

Note that these new definitions are not redundant, since in this case we have to
take into account the observed completion time also.

Given a truthful mechanism M = (A, P) for Π , in [4] the authors give a
necessary condition that algorithm A must satisfy.

Definition 7 (weakly-monotone algorithm). Let Π be an optimization
problem for verifiable one-parameter selfish agents and A be an algorithm for
Π. Algorithm A is weakly-monotone if and only if, for all σ, for all i, for all
declared bid vectors B such that wi(A(B, σ)) = 0 and for all b′i ∈ Θi with b′i > bi

it holds that wi(A((b′i, B−i), σ)) = 0.

In other words a weakly-monotone algorithm A has the following property. Fix
some input (B, σ) for which algorithm A assigns no load to agent i. If agent i
declares to be slower (that is, she declares b′i > bi) and the declared bids of the
other agents remain the same, then A assigns no load to agent i.

Lemma 1 ([4]). Let Π be an optimization problem for verifiable one-parameter
selfish agents. If M = (A, P) is a truthful mechanism for Π, then A is a weakly-
monotone algorithm.

2 Previous Works and Our Contribution

The celebrated VCG mechanism [5,6,7,11] is the prominent technique to derive
truthful mechanisms for optimization problems. However, this technique applies
only to utilitarian problems, that are problems where the objective function is
equal to the sum of the cost functions of the agent (e.g., shortest path, min-
imum spanning tree, etc.). In the seminal papers by Nisan and Ronen [8,9] it
is pointed out that VCG mechanisms do not completely fit in a context where
computational issues play a crucial role since they assume that it is possible to
compute an optimal solution of the corresponding optimization problem (maybe
a NP-hard problem). Scheduling is a classical optimization problem that is not
utilitarian (since we aim at minimizing the maximum over all machines of their
completion times) and it is NP-hard. Moreover, scheduling models important fea-
tures of different allocation and routing problems in communication networks.
Thus, it has been the first problem for which non VCG-based techniques have
been introduced.

Nisan and Ronen [8,9] give an m-approximation truthful mechanism for the
problem of scheduling tasks on m unrelated machines, when each machine is
owned by a different agent that declares the processing times of the tasks as-
signed to her machine and the algorithm has to compute the scheduling based
on the values declared by the agents. In [2], is considered the simpler variant
of the task scheduling on uniformly related machines (in short Q||Cmax), where
each machine i has a speed si and the processing time of a task is given by
the ratio between the weight of the task and the speed of the machine. They
characterized the class of allocation algorithms A for one-parameter problems
that admit payment scheme P for which M = (A, P) is a truthful mechanism.

152 A. Ferrante et al.

Essentially, truthful mechanisms for one-parameter selfish agents must use mono-
tone algorithms and, in this case, the payment scheme is uniquely determined
(up to an additive factor). Intuitively, monotonicity means that increasing the
speed of exactly one machine does not make the algorithm decrease the work
assigned to that machine. The result of [2] reduces the problem of designing a
truthful mechanism for Q||Cmax to the algorithmic problem of designing a good
algorithm which also satisfies the additional monotonicity requirement. Efficient
mechanisms for computing scheduling on related machines with small makespan
(a special case of one-parameter agents) have been provided by Archer and Tar-
dos [2] and, subsequently by Auletta et al. [3] and by Andelman, Azar and
Sorani [1].

Afterwards, Auletta et al [4] consider optimization problem for verifiable one-
parameter problems. In this model, payments are given to the agents only after
the agents have completed the load assigned. This means that for each agent
that receives a positive load, the mechanism can verify if the agent declared to
be faster than she actually is. They showed that, in order to have a truthful
mechanism for verifiable one-parameter selfish agents, a necessary condition is
that the used algorithm must be weakly-monotone.

Our Contribution. In this work, we extend some results given in [4]. The au-
thors were the first to study optimization problems for verifiable one-parameter
selfish agents. Intuitively a verifiable agent is an agent that may lie in reporting
its types but the mechanism can verify whether agent i underbids (i.e. declares a
bi < ti), provided that the load assigned to this agent is positive. For instance, for
scheduling problems the mechanism can verify, through the observed completion
time of agent i, if she declares to be faster than she actually is, provided that at
least one job has been assigned to her. In [4] was showed that if M = (A, P) is
a truthful mechanism for an optimization problem for verifiable one-parameter
selfish agents then A must be weakly-monotone. They also provide a payment
scheme P which allows to have a truthful mechanism, when the cardinality of
type sets is finite.

In Section 3, we give very simple and efficient payment schemes, leading to
polynomial-time truthful mechanisms, for a wide class of optimization problems
with verifiable one-parameter selfish agents. In particular, we provide a payment
P (1) that works for discrete and upper-bounded type sets (see Section 3). In this
setting, we need that agents bid from sets in which there is always a gap between
the inverse of two types. Considering scheduling problems (where types are the
inverse of machines’ speed), our assumption is satisfied when it is not possible
to have machines executing j instructions per second, for every possible j ∈ Q.
Indeed, in the market there are only machines of certain (sufficiently far apart)
speeds. Moreover, we need that the agents cannot declare more than a finite
value. In scheduling problems, this means that an infinitely slow machine does
not exist. Thus our hypothesis applies to many real life applications.

From a theoretical point of view, our results improve the ones given in [4],
as follows: (i) the class of the discrete and upper-bounded type sets properly
includes the class of finite type sets; (ii) our mechanism preserves the approxi-

Improvements for Truthful Mechanisms 153

Table 1. Comparing Results (c is the approximation of a given weakly monotone
algorithm)

Problem Version Payments Time Complexity Apx Ratio

Θi finite and discrete [4] poly(|Θi|, m, n) c

Smooth problems [4] poly(log1+ε |Θi|, m,n) c · (1 + ε)
Θi upper bounded and discrete poly(m, n) c

Smooth problems with Θi

upper bounded (continuous) poly(m, n) c · (1 + ε)

mation ratio c of the algorithm it uses, while the mechanism given in the paper [4]
needs that the problem is smooth (see Def. 11) in order to obtain a c · (1 + ε)-
approximation. (This assumption is required to round the input bids in order to
have payments computable in polynomial time.)

In Section 4, we give a payment scheme P (2), leading to polynomial-time
truthful mechanisms (Theorem 3), for agents having rational type sets upper-
bounded (but not discrete). In order to obtain truthful mechanism we round the
agents’ bid. Using this rounding technique, if the algorithm used by the mech-
anism is c-approximate, then nothing can be said about the approximation of
the same algorithm when it runs on rounded bids. However, if the problem is
smooth then the mechanism is c · (1 + ε)-approximate (see Theorem 4). To best
of our knowledge this is the first result showing that weakly-monotonicity of
algorithms is a sufficient condition for the existence of truthful mechanisms for
optimization problems with verifiable one-parameter selfish agents with contin-
uous type sets. It left open the case when type sets are not upper-bounded. In
Table 1 we summarize our results comparing them to the previous ones.

Finally, in Section 5, as application of our results, we fully characterize
Q||Cmax problem with verifiable one-parameter selfish agents reducing any un-
bounded instance to a bounded one, so obtaining a polynomial-time c · (1 +
ε)-approximate truthful mechanism, given a c-approximate weakly-monotone
polynomial-time algorithm.

3 A Payment Scheme for Discrete Types

In this section, we consider only type sets Θi having the following property.

Definition 8. A set Θi is said discrete and upper-bounded if: (i) there exists
a value Δi ∈ R+ such that, for all b, b̄ ∈ Θi, b �= b̄, |b−1 − b̄−1| ≥ Δi (discrete),
and (ii) there exists a finite value supi ∈ R+ such that supi ≥ b, ∀b ∈ Θi

(upper-bounded).

Next we define a payment scheme which allows us to construct truthful mecha-
nism for Π , when agents have type sets discrete and upper-bounded.

Definition 9. Let S be a schedule, B be a bid vector, σ be the public part of
the input, Ti be the observed completion time and c

(1)
i ∈ R+ be a constant (to be

given). For each i = 1, . . . , m, we define

154 A. Ferrante et al.

P
(1)
i (S, B, σ, Ti) :=

{
W
bi

· c(1)
i if wi(S) �= 0 and Ti = wi(S) · bi;

0 otherwise.

The idea behind the payment P
(1)
i is to give the agent i a disincentive to declare

to be slower than she actually is. On the other hand, agent i is also discouraged
to declare to be faster, if we use verification and weakly-monotone algorithms,
as shown in the next theorem.

Theorem 1. Let Π be an optimization problem for verifiable one-parameter
selfish agents and A be a polynomial-time weakly-monotone algorithm for Π.
If every Θi is upper-bounded by a finite value supi and discrete w.r.t. a known
value Δi, then for every 1 ≤ i ≤ m there exists a value for the constant c

(1)
i such

that M = (A, P (1)) is a polynomial-time truthful mechanism for Π. Moreover,
M satisfies voluntary participation condition.

Proof. Let Sti be the schedule computed by A when takes as input (ti, B−i),
and Sbi be the one on the input (bi, B−i). To demonstrate that M is a truthful
mechanism, we show that for all bi ∈ Θi and for all Ti ≥ wi(Sbi) · ti the following
relation holds

Λi = profiti(Sti , (ti, B−i), σ, ti, wi(Sti) · ti) − profiti(Sbi , B, σ, ti, Ti) ≥ 0.

For sake of readability we denote (ti, B−i) as T and wi(Sti) · ti as Ti
∗. We first

consider the case wi(Sbi) = 0. Since profiti(Sbi , B, σ, ti, Ti) = 0 we have

Λi =
W
ti

· c(1)
i − wi(Sti) · ti ≥ W ·

(
c
(1)
i

supi

− supi

)
≥ 0 (1)

for all the values c
(1)
i ≥ sup2

i . By the above calculations, we also have that
profiti(Sti ,T, σ, ti, Ti

∗) ≥ 0, and thus M satisfies voluntary participation condi-
tion. Let wi(Sbi) > 0. We distinguish two cases.

Case 1(bi > ti). Since A is weakly-monotone it holds that wi(Sti) > 0. If
profiti(Sbi , B, σ, ti, Ti) < 0, from Eq. 1 we have Λi > 0 for c

(1)
i ≥ sup2

i .
Let profiti(Sbi , B, σ, ti, Ti) ≥ 0. Then we have:

Λi = W ·
(

1
ti

− 1
bi

)
· c(1)

i − (wi(Sti) − wi(Sbi)) · ti

≥ W · Δi · c(1)
i −W · supi ≥ 0

for all the values c
(1)
i ≥ supi/Δi.

Case 2 (bi ≤ ti). Since T > wi(Sbi) · bi, we have that P
(1)
i (Sbi , B, σ, Ti) = 0

and profiti(Sbi , B, σ, ti, Ti) < 0. Therefore, from Eq. 1 we have Λi >

profiti(Sti ,T, σ, ti, Ti
∗) ≥ 0 for c

(1)
i ≥ sup2

i .

Hence, for c
(1)
i ≥ max{sup2

i ,
supi

Δi
}, M is truthful. It is straightforward that

payment scheme P (1) is computable in polynomial time. ��

Improvements for Truthful Mechanisms 155

As argued in Section 1, if A is the algorithm used in a truthful mechanism, then
it always works on true types, since every agent always reports her true type. As
a consequence, if A is c-approximate and M = (A, P) is a truthful mechanism
then M is c-approximate as well. Thus, from Theorem 1 we have the following.

Theorem 2. Let Π be an optimization problem for verifiable one-parameter
selfish agents and A be a polynomial-time c-approximating weakly-monotone al-
gorithm for Π. If every Θi is upper-bounded by a finite value supi and is discrete
w.r.t. a known value Δi, then M = (A, P (1)) is a polynomial-time c-approximate
truthful mechanism for Π, satisfying voluntary participation condition.

Notice that if a type set is finite then it is discrete and finitely upper-bounded.
Conversely if a type set is discrete and finitely upper-bounded it could contain
infinite values. For instance consider the case in which for every i = 1, . . . , m,
Θi ⊆ {i−1|i ∈ N}. This is a special case of the discrete and upper-bounded type
set: Δi = 1 and supi = 1, for every type set Θi.

4 A Payment Scheme for Rational Types

In this section, we show how to extend our payments in order to deal with
rational type set which are only upper-bounded by a finite value supi. To do
that, we apply a rounding technique on types. Given a bid vector B, we denote
by BR the vector obtained by B by replacing each element bi with a rounded
value bR

i of bi. If αγ < b−1
i ≤ αγ+1, then bR

i = 1/αγ+1 for some γ ∈ Z. Thus, if
B = (b1, b2, . . . , bm) then BR = (bR

1 , bR
2 , . . . , bR

m). Given an algorithm A for Π ,
we define algorithm Aα as the algorithm that, on input B and σ, simply run
algorithm A on input BR and σ.

Definition 10. Let S be a schedule, B be a bid vector, σ be the public part of
the input, Ti be the observed completion time and c

(2)
i ∈ R+ be a constant (to be

given). For each i = 1, . . . , m, we define

P
(2)
i (S, B, σ, Ti) :=

{
W
bR

i

· c(2)
i if wi(S) �= 0 and Ti = wi(S) · bi;

0 otherwise.

The idea behind payment scheme P (2) is similar to the one for P (1). The differ-
ence is that we consider the rounded bid bR

i instead of the declared bid bi and
the used constant c

(2)
i is essentially different from c

(1)
i . In the next theorem, we

will better clarify the meaning of constant c
(2)
i .

Theorem 3. Let Π be an optimization problem for verifiable one-parameter
selfish agents whose types are positive rational, and let A be a polynomial-time
weakly-monotone algorithm for Π. If every Θi is upper-bounded by a finite value
supi, then for every 1 ≤ i ≤ m there exists a value for the constant c

(2)
i , such

that M = (Aα, P (2)) is a polynomial-time truthful mechanism for Π. Moreover,
M satisfies voluntary participation condition.

156 A. Ferrante et al.

Proof. First note that, if A is weakly-monotone then Aα is weakly-monotone as
well. Let B be a vector of bids, and Sti be the schedule computed by algorithm
Aα when it takes as input (ti, B−i), and Sbi be the one on input (bi, B−i). To
show that M is truthful, we prove that for all bi ∈ Θi and Ti ≥ wi(Sbi) · ti,

Λi = profiti(Sti , (ti, B−i), σ, ti, wi(Sti) · ti) − profiti(Sbi , B, σ, ti, Ti) ≥ 0.

For the sake of readability we denote T = (ti, B−i) and Ti
∗ = wi(Sti) · ti. We

first consider the case wi(Sbi) = 0. In this case we have:

Λi = profiti(Sti ,T, σ, ti, Ti
∗) ≥ W ·

(
αγ+1 · c(2)

i − 1
αγ

)
≥ 0 (2)

when

γ ≥ − logα c
(2)
i

2
− 1

2
. (3)

At the end of the theorem, we discuss how to choose c
(2)
i in order M to be

truthful. From Eq. 2, we also have that profiti(Sti ,T, σ, ti, Ti
∗) ≥ 0, thus M

satisfies voluntary participation condition.
It remains to show the case wi(Sbi) > 0. We distinguish two cases:

Case 1(bi > ti). Since A is weakly-monotone and bR
i ≥ tRi it holds

that wi(Sti) > 0. W.l.o.g. we only consider the case in which
profiti(Sbi , B, σ, ti, Ti) ≥ 0. We first analyze the case bR

i = tRi , i.e. bi and
ti are rounded to the same power of α.

Λi = W ·
(

1
tRi

− 1
bR
i

)
· c(2)

i − (wi(Sti) − wi(Sbi)) · ti = 0.

Here, we analyze the remaining case in which bR
i > tRi . Then, for some γ ∈ Z,

it holds:

Λi = W ·
(

1
tRi

− 1
bR
i

)
· c(2)

i − (wi(Sti) − wi(Sbi)) · ti ≥

≥ W ·
(

1
tRi

− 1
bR
i

)
· c(2)

i −W · ti ≥ W ·
(

(αγ+1 − αγ) · c(2)
i − 1

αγ

)
(4)

By simple calculations we have that Eq. 4 is greater or equal to 0 when:

γ ≥ − logα(c(2)
i)

2
− logα (α − 1)

2
. (5)

As in the previous case, we postpone the discussion of choosing c
(2)
i for the

end of the theorem.
Case 2 (bi ≤ ti). Since T > wi(Sbi)·bi, we have that P

(2)
i (Sbi , B, σ, Ti) = 0 and

profiti(Sbi , B, σ, ti, Ti) < 0, implying that Λi ≥ profiti(Sti ,T, σ, ti, Ti
∗) ≥ 0.

Improvements for Truthful Mechanisms 157

Here we discuss how to choose the constant c
(2)
i in order to satisfy both Eq. 3

and Eq. 5, for any value of γ. In particular, we just show for the case in
which γ = γmin, where γmin is the minimal value that γ can have. Since

1
supi

≤ (1
supi

)R = αγmin , by simple calculations we have γmin = �logα
1

supi
.

Since logα(c(2)
i) can have as value any real number by varying c

(2)
i , we can com-

pute a value of c
(2)
i such that both Eq. 3 and Eq. 5 are satisfied when γ = γmin.

Hence, it is straightforward that payment scheme P (2) is computable in polyno-
mial time. ��

Note that, if in Def. 10 the constant c
(2)
i is not used, then from Eq. 3 and Eq. 5

we may observe that in order M to be truthful, type sets Θi must be upper-
bounded by a constant which depends on the value of max {− 1

2 ,− logα(α−1)
2 }.

Thus, c
(2)
i allows us to deal with any type set Θi that is upper-bounded by any

constant supi.
In order to have truthful mechanism for the problem at hand, involving agents

having type set upper-bounded by a finite value, we round the bids. But what
about the approximation? If A is a c-approximation algorithm, then nothing can
be said about the approximation of Aα. Next, we define the class of problems
for which the rounding increases the approximation of Aα by a guarantee factor
with respect to the approximation guarantee of A. Henceforth, we restrict our
attention only to minimization problems. We stress that similar arguments can
be applied for maximization problems as well.

Definition 11. Fix ε > 0 and δ > 1. A one-parameter minimization problem
Π = (I, m, sol, min) is (δ, ε)-smooth if, for any pair of instances I = (T, σ) and
Ĩ = (T̃ , σ) such that ti ≤ t̃i ≤ δ · ti for i = 1, 2, . . . , m, and for all S ∈ sol(σ), it
holds that m(S, I) ≤ m(S, Ĩ) ≤ (1 + ε) · m(S, I).

For instance, observe that Q||Cmax is (α, α − 1)-smooth for all α > 1. From the
above definition, the following remark is straightforward.

Remark 1. Let Π be a (δ, ε)-smooth one-parameter minimization problem and
let I = (T, σ) and Ĩ = (T̃ , σ) be two instances of Π such that ti ≤ t̃i ≤ δ · ti, for
i = 1, 2, . . . , m. Then, any c-approximate solution S for I is c·(1+ε)-approximate
for Ĩ and any c-approximate solution S̃ for Ĩ is c · (1 + ε)-approximate for I.

From Theorem 3 and the above remark we have the next theorem.

Theorem 4. Let Π be a (α, α − 1)-smooth optimization problem for verifi-
able one-parameter selfish agents whose types are positive rational, and let A be
polynomial-time c-approximate weakly-monotone algorithm for Π. If every Θi is
upper-bounded by a finite value supi, then M = (Aα, P (2)) is (α · c)-approximate
polynomial-time truthful mechanism for Π, satisfying voluntary participation
condition.

158 A. Ferrante et al.

5 Applications to Q||Cmax Problem

In this section we give a non-trivial application of our results to the well known
Q||Cmax problem. In the case in which type sets are discrete, then given a
c-approximate polynomial-time weakly-monotone algorithm for Q||Cmax prob-
lem, we can construct c-approximate polynomial-time truthful mechanism for
Q||Cmax. On the other hand, when we have no constraints on the type sets, then
given a c-approximate polynomial-time weakly-monotone algorithm for Q||Cmax

problem, we can construct c·(1+ε)-approximate polynomial-time truthful mech-
anism for Q||Cmax, for every ε > 0.

We refer to the Section 1 for the definition of the problem. In the Q||Cmax

problem with verifiable one-parameter selfish agents1, the machines are owned
by verifiable selfish agents wishing to maximize their own profit (as discussed
in the section 1) disregarding the global makespan minimization. In particular,
the job weights W = (w1, w2, . . . , wn), are the public part of the input, and the
speeds of the machines are the private part of the input, that is, each agent i
privately knows the speed of her machine. As usual, we assume that the types
of the agents are the inverse of the speed.

As shown in Theorem 1 and Theorem 3, to apply our payment schemes, type
sets must be upper-bounded by a finite value. For Q||Cmax problem, since types
are the inverse of the speeds, it means that the speed of every agent (the inverse
of the declared bid) has to be lower-bounded by a constant greater than 0, but
this could not be the case. Therefore, here we show a method to deal with these
cases. We show that it is always possible to reduce any instance of Q||Cmax to
the one where every type set is upper-bounded by a finite value preserving the
optimum of the instance.

The idea is to give a lower bound on the speed (an upper bound on the
declared bid) to each agent depending on the declaration of the other agents.
Thus, if an agent declares a speed value too small with respect to the other
declared speeds, then she can be discarded. Let us proceed more formally.

To compute the lower bound of each agent we execute the following algorithm
taking as input the bid vector B and the weight of the jobs W . (We call this
algorithm BoundTypes(B, W).)

1. For all i ∈ {1, . . . , m}, if si is lower-bounded by a constant ŝi > 0, then
use this value as lower bound for the machine i, otherwise execute the steps
2 − 3.

2. Let k be a fastest machine in {1, . . . , i − 1} ∪ {i + 1, . . . , m} w.r.t. the bid
vector B (that is a machine with a smallest bid without considering machine
i); let timei be the time needed (considering the bid bk) for machine k to
execute all the jobs: timei = W · bk.

3. Let wj be a minimum weight job; use the value ŝi = wj

timei
as a lower bound

for the speed of machine i.
1 In the rest of the paper, with an abuse of notation, we will simply call Q||Cmax

problem the one with verifiable one-parameter selfish agents since here we deal only
with the latter.

Improvements for Truthful Mechanisms 159

To understand the motivation of this method, we consider the following: if
the machine i declares bi > 1

ŝi
, then for any optimum solution OPT we have

wi(OPT) = 0, since there exists a machine requiring less time to execute all
jobs with respect to the time needed to machine i to complete a job having the
smallest weight. Let A be a weakly-monotone algorithm for Q||Cmax problem.
Now, we describe a weakly-monotone algorithm A′ for Q||Cmax which uses A
as a subroutine. A′ has the same approximation ratio of A and can be used to
deal with machines having unbounded speeds. It takes as input the bid vector
B and the weight vector W and outputs a schedule S.

1. Let (ŝ1, · · · , ŝm) = BoundTypes(B, W); let B̂ the bids vector B without the
machines bidding bi > 1

ŝi
; let Ŝ be the schedule returned by A executed on

B̂ and W ;
2. Let S be a schedule equal to Ŝ for all machines declaring bi < 1

ŝi
assigning

0 to all the other machines; return S as the schedule.

Now, we show that this algorithm leads to a truthful mechanism (together
with our payment schemes) and that it has the same approximation ratio as the
algorithm A.

Lemma 2. If A is a weakly-monotone c-approximate algorithm for Q||Cmax

problem, then A′ is a weakly-monotone c-approximate algorithm for Q||Cmax

problem.

Proof. We first show that A′ is a scheduling algorithm. Since A is a scheduling
algorithm, we only have to show that at least one machine is given as input
to algorithm A. Now, we show that we never discard the fastest machines. Let
i be a fastest machine in {1, . . . , m} and k a fastest machine in {1, . . . , i −
1} ∪ {i + 1, . . . , m}. Then, obviously sk = 1

bk
≤ 1

bi
= si. Let T be the time

needed by machine k to execute all jobs and let w be a smallest job. From
the definition of ŝi, we have ŝi = w

T = w
W · sk ≤ sk ≤ si. This implies that

the fastest machines are surely not discarded. We now prove that A′ is weakly-
monotone. Fix a bid vector B, and suppose that wi(A′(B, W)) = 0. We prove
that wi(A′((b′, B−i), W)) = 0, for every b′ ≥ bi. In the case b′ > 1

ŝi
, trivially

wi(A′((b′, B−i), W)) = 0, since machine i will be discarded. If b′i ≤ 1
ŝi

, then
machine is not discarded and wi(A′((b′, B−i), W)) = 0, given that algorithm A
is weakly-monotone. Finally, to show that the algorithm A′ is a c-approximate
algorithm, we only prove that the deletion of the ”slowest” machines that does
not modify the optimum. More specifically, let I be the initial instance of the
problem and OPT be an optimum solution for I. If bi > 1

ŝi
(i.e. machine i is a

discarded machine), then wi(OPT) = 0. In fact, the time needed by the machine
i to complete the smallest job w is greater then the time needed to the fastest
machine to complete the overall jobs. ��

Algorithm A′, using the algorithm BoundTypes, reduces any (potentially un-
bounded) instance I of Q||Cmax to a bounded instance Î of Q||Cmax. Thus we
can apply our payment scheme. By Lemma 2 and Theorem 2 we have:

160 A. Ferrante et al.

Theorem 5. Let A be a c-approximate polynomial-time weakly-monotone algo-
rithm for Q||Cmax problem. If every Θi is discrete w.r.t. a known value Λi, then
there exists a c-approximate polynomial-time truthful mechanism M = (A′, P (1))
for Q||Cmax, satisfying voluntary participation condition.

By Lemma 2, Theorem 4 and since Q||Cmax problem is (1 + ε, ε)-smooth we
have:

Theorem 6. Let A be a c-approximate polynomial-time weakly-monotone al-
gorithm for Q||Cmax problem. Then, for any ε > 0, there exists a c · (1 + ε)-
approximate polynomial-time truthful mechanism M = (A′, P (2)) for Q||Cmax,
satisfying voluntary participation condition.

Acknowledgments. We wish to thank the authors of [4] for providing us with a
full version of their paper.

References

1. N. Andelman, Y. Azar, and M.Sorani. Truthful approximation mechanisms for
scheduling selfish related machines. In Proceedings of the 22nd Annual Symposium
on Theoretical Aspects of Computer Science (STACS). LNCS, 2005.

2. A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In
Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science
(FOCS), pages 482–491, 2001.

3. V. Auletta, R. De Prisco, P. Penna, and P. Persiano. Deterministic Truthful Mech-
anisms for Scheduling on Selfish Machines. In Proceedings of the 21st Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS), volume 2996, pages
608–619. LNCS, 2004.

4. V. Auletta, R. De Prisco, P. Penna, and P. Persiano. The Power of Verification
for One-Parameter Agents. In Proceedings of the 31st International Colloquium on
Automata, Languages and Programming (ICALP), volume 3142, pages 171–182.
LNCS, 2004.

5. E. H. Clarke. Multipart pricing of public goods. Public Choice, pages 17–33, 1971.
6. R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Tech-

nical Journal, (45):1563–1581, 1966.
7. R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of

Applied Mathematic, 17(2), 1969.
8. N. Nisan and A. Ronen. Algorithmic Mechanism Design. In Proceedings of the

31st Annual ACM Symposium on Theory of Computing (STOC), pages 129–140,
1999.

9. N. Nisan and A. Ronen. Computationally Feasible VCG Mechanisms. In Proceed-
ings of the 2nd ACM Conference on Electronic Commerce (EC), pages 242–252,
2000.

10. V. Vazirani. Approximation Algorithms. Springer, 2001.
11. W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal

of Finance, 16:8–37, 1961.

Symmetry in Network Congestion Games:
Pure Equilibria and Anarchy Cost�

Dimitris Fotakis1, Spyros Kontogiannis2,3, and Paul Spirakis2

1 Dept. of Information and Communication Systems Engineering,
University of the Aegean, 83200 Samos, Greece

fotakis@aegean.gr
2 Research Academic Computer Technology Institute,

26500 Patras, Greece
{kontog, spirakis}@cti.gr

3 Dept. of Computer Science, University of Ioannina, 45110 Ioannina, Greece

Abstract. We study computational and coordination efficiency issues of
Nash equilibria in symmetric network congestion games. We first propose
a simple and natural greedy method that computes a pure Nash equi-
librium with respect to traffic congestion in a network. In this algorithm
each user plays only once and allocates her traffic to a path selected via
a shortest path computation. We then show that this algorithm works
for series-parallel networks when users are identical or when users are of
varying demands but have the same best response strategy for any initial
network traffic. We also give constructions where the algorithm fails if
either the above condition is violated (even for series-parallel networks)
or the network is not series-parallel (even for identical users). Thus, we
essentially indicate the limits of the applicability of this greedy approach.

We also study the price of anarchy for the objective of maximum
latency. We prove that for any network of m uniformly related links and
for identical users, the price of anarchy is Θ(log m

log log m
).

1 Introduction

Network congestion games provide a sound model for selfish routing of unsplit-
table traffic and have recently been the subject of intensive research. The prevail-
ing questions in recent work have to do with the performance degradation due
to lack of users’ coordination (e.g., [23,12,10,1,3]) and the efficient computation
of pure Nash equilibria (e.g., [8,11,10]).

A natural greedy approach for computing a pure Nash equilibrium (PNE) is
Greedy Best Response (GBR). Let us consider a dynamic setting with new users
arriving in the network. The users play only once and irrevocably choose their
strategy upon arrival. Each new user routes her traffic on the minimum delay
path given the paths of the users currently in the network. Hopefully the existing
� This work was partially supported by the EU within the Future and Emerging

Technologies Programme under contract IST-2001-33135 (CRESCCO) and within
the 6th Framework Programme under contract 001907 (DELIS).

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 161–175, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

162 D. Fotakis, S. Kontogiannis, and P. Spirakis

users are not affected by the new one and the network configuration remains at
a PNE without any defections taking place. This approach is not only intuitive
and computationally efficient, but also resembles how things work in practice.
A natural question is whether there are any interesting classes of networks for
which Greedy Best Response maintains a PNE.

Greedy Best Response can be regarded as a generalization of Graham’s LPT
algorithm [13]. The restriction of GBR to parallel-link networks is known to
maintain a PNE for arbitrary non-decreasing latency functions and weighted
users arriving in non-increasing order of weights [17,9]. In this work, we prove
that GBR maintains a PNE for symmetric congestion games in series-parallel
networks. This result is extended to weighted congestion games with a certain
notion of symmetry, namely that the users have the same best response strategies
for any initial network traffic.

The second important research direction has to do with the inefficiency of
Nash equilibria. The coordination ratio or price of anarchy was introduced in
[16] for measuring the performance degradation due to lack of users’ coordination
in resource sharing. The price of anarchy is the worst-case ratio between the
cost of a Nash equilibrium and the cost of an optimal solution. For network
congestion games, there are two natural notions of cost for defining the price of
anarchy: the total and the maximum latency. As the price of anarchy for non-
atomic congestion games becomes well-understood (e.g., [23,21] for total latency
and [22,4] for maximum latency), the interest moves to the atomic setting (e.g.
[18,12,10,1,3].) In both settings, the case of linear latencies is prominent and has
been the focus of most of the previous work.

In this paper, we study the price of anarchy relative to the objective of max-
imum latency for symmetric network congestion games and latency functions
de(x) = aex, ae ≥ 0. This corresponds to uniformly related links, with the coeffi-
cient ae denoting the inverse speed of link e. We show that the price of anarchy
for any network of m links is Θ(log m

log log m).

Related Work. Rosenthal [20] initiated the study of congestion games and
proved that their PNE correspond to the local optima of a natural potential
function. Therefore, the best response dynamics converges to a PNE. On the
other hand, it is PLS-complete to find a PNE in symmetric (not necessarily
network) and non-symmetric network congestion games [8]. On the positive side,
[8] shows that in symmetric network congestion games, a PNE can be found
by a min-cost flow computation. For weighted congestion games, [11] considers
the case of identical parallel links and restricted assignments and shows how to
compute a PNE in strongly-polynomial time. [10] shows that weighted congestion
games with linear latencies admit a weighted potential function. Thus, the best
response dynamics converges to a PNE in pseudo-polynomial time.

In a seminal paper, Koutsoupias and Papadimitriou [16] introduce the price
of anarchy and consider the objective of maximum latency for a weighted con-
gestion game on m uniformly related parallel links. The price of anarchy for
that game is Θ(log m

log log m) if either the users or the links are identical [19,15,5]
and Θ(log m

log log log m) otherwise [5]. For uniformly related parallel links, identical

Symmetry in Network Congestion Games 163

users, and the objective of total latency, the price of anarchy is 2 − o(1) for the
general case of mixed equilibria and 4/3 for pure equilibria [18,12].

Similar results have been obtained recently for network congestion games with
linear latency functions. The price of anarchy for the objective of total latency is
3+

√
5

2 if weighted congestion games and mixed equilibria are considered [1]. This
drops to 5/2 for the special case of identical users and pure equilibria ([1] and
independently in [3]). The price of anarchy for maximum latency is also 5/2 for
pure Nash equilibria and symmetric games (with identical users) and becomes
Θ(

√
n) for non-symmetric games [3].

On the other hand, the price of anarchy for m identical links and the objec-
tive of maximum latency is Ω(log m

log log m) if mixed Nash equilibria are considered
[16,19]. [10] studies weighted single-commodity congestion games in layered net-
works with m identical links and shows that the price of anarchy for maximum
latency remains Θ(log m

log log m) for the general case of mixed Nash equilibria.
The bounds above apply to the atomic setting, with users controlling a non-

negligible amount of traffic demand, and consider both pure and mixed equilibria
(with the exception of the results in [3] on maximum latency). Improved bounds
can be obtained in the non-atomic setting, where each user controls a negligible
amount of demand and pure and mixed equilibria are equivalent. [23] initiates
the study of the price of anarchy for the objective of total latency in the non-
atomic setting and shows that the price of anarchy for linear latencies is 4/3.
[21] proves that the price of anarchy depends on the class of latency functions
and not on the network topology and gives a tight bound for every class.

As for the objective of maximum latency in the non-atomic setting, the upper
bounds for total latency also apply to maximum latency in single-commodity
networks [4]. For multi-commodity networks, the price of anarchy is Ω(|V |) even
for linear latencies [4]. On the other hand, the price of anarchy for maximum
latency is at most |V | − 1 in single-commodity networks [22].

Contribution. If the users are identical, GBR behaves as an online algorithm.
For weighted users, GBR is the most natural greedy algorithm since it determines
a fixed order in which the users are considered and each user makes an irrevocable
greedy choice given the choices of the previous users.

In this paper, we essentially characterize the class of network congestion games
for which GBR maintains a PNE. More specifically, we prove that GBR main-
tains a PNE for symmetric congestion games in series-parallel networks. This is
extended to weighted congestion games with the common best response property.
This property requires that the users have the same best response strategies for
any initial network traffic. In addition to symmetric network congestion games,
this class includes weighted congestion games in layered networks with identical
edges (i.e., edge delays are given by a common linear latency function). We also
prove that the restriction to series-parallel networks and games with the common
best response property is essentially necessary for GBR to maintain a PNE.

For the price of anarchy, we focus on the objective of maximum latency. We
consider symmetric network congestion games and linear latencies with no ad-
ditive term, thus extending to arbitrary networks the widely-studied setting of

164 D. Fotakis, S. Kontogiannis, and P. Spirakis

identical users and uniformly related parallel links (e.g., [16,9,19,5]). We con-
sider the general case of mixed equilibria and show that the price of anarchy
remains Θ(log m

log log m) for identical users and networks of m links. The setting of
identical users and arbitrary networks is orthogonal to the setting of [10] where
the network has a notion of symmetry, namely all paths have the same length
and consist of identical edges, and the users have different weights.

The results on the price of anarchy were obtained independently of results
of [1,3]. Our approach is fundamentally different and may be of independent
interest. It is based on a natural correspondence between mixed strategies and
fractional s − t flows (see also [10]). To motivate the approach, we first show
that the optimal solution of a quadratic program corresponds to a symmetric
mixed Nash equilibrium. We use quadratic programming duality and show that
the expected cost of any user in a (pure or mixed) Nash equilibrium is at most 3
times the optimal maximum latency. A Chernoff-Hoeffding bound yields that the
expected maximum latency is O(log m

log log m) times the optimal maximum latency.

2 Definitions and Preliminaries

The Model. A network congestion game is a tuple (N, G, (de)e∈E), where N =
{1, . . . , n} is the set of users controlling a unit of traffic demand each, G(V, E) is
a directed graph representing the communication network, and de is the latency
function associated with edge e ∈ E. We assume that de’s are non-negative
and non-decreasing functions of the edge loads. If the edge delays are given by a
common linear latency function, we say that the edges are identical. For identical
edges, we assume wlog. that the edge delays are given by the identity function,
i.e. ∀e ∈ E, de(x) = x. We restrict our attention to single-commodity network
congestion games, where the network G has a single source s and destination t
and the set of users’ strategies is the set of s − t paths, denoted P . Wlog. we
assume that G is connected and every vertex of G lies on a directed s − t path.

We also consider weighted single-commodity network congestion games, where
user i controls wi units of traffic demand1. The users are indexed in non-
increasing order of weights, i.e., w1 ≥ w2 ≥ . . . ≥ wn. Single-commodity network
congestion games are symmetric2. However, weighted games are non-symmetric
in general because the users’ cost functions are different and non-symmetric due
to different user weights.

A vector P = (p1, . . . , pn) consisting of an s − t path pi for each user i is a
pure strategies profile. Let �e(P) ≡

∑
i:e∈pi

wi denote the load of edge e in P .
The cost λi

p(P) of user i for routing her demand on path p in the profile P is

λi
p(P) ≡

∑
e∈p∩pi

de(�e(P)) +
∑

e∈p\pi
de(�e(P) + wi)

The cost λi(P) of user i in P is λi
pi

(P), namely the total delay along her path.
1 In (unweighted) congestion games, w1 = w2 = . . . = wn = 1.
2 A game is symmetric if all users have the same strategy set and the users’ costs

are given by identical symmetric functions of other users’ strategies. In congestion
games, the users are identical and a common strategy set implies symmetry.

Symmetry in Network Congestion Games 165

A vector Q = (q1, . . . , qn) consisting of a probability distribution qi over P
for each user i is a mixed strategies profile. For each path p, qi(p) denotes the
probability that user i routes her demand on p. Let �p(Q) ≡

∑n
j=1 qj(p)wj be

the expected load routed on path p in Q, and let �p(Q−i) ≡ �p(Q) − qi(p)wi be
the expected load on p excluding the contribution of user i. Similarly, let �e(Q) ≡∑

p:e∈p �p(Q) and �e(Q−i) ≡
∑

p:e∈p �p(Q−i) be the expected load on edge e with
and without user i respectively. The cost λi

p(Q) of user i for routing her demand
on path p in the mixed strategies profile Q is the expectation according to Q−i

of λi
p(P

−i ⊕ p) over all pure strategies profiles3 P−i. The cost λi(Q) of user i in
Q is the expectation according to Q of λi(P) over all pure strategies profiles P .

For a strategies profile Q, let λmax(Q) ≡ maxi∈N{λi(Q)} be the maximum
user cost in Q.

In this paper, we consider mixed strategies profiles only for identical users and
linear latency functions de(x) = aex. Then, simply λi

p(Q) ≡
∑

e∈p ae(�e(Q−i)+1)
and λi(Q) ≡

∑
p∈P qi(p)λi

p(Q) by linearity of expectation.
A mixed (in general) strategies profile Q is a Nash equilibrium if for every

user i and every p, p′ ∈ P with qi(p) > 0, λi
p(Q) ≤ λi

p′(Q). Therefore, if Q is a
Nash equilibrium, λi

p(Q) = λi
p′(Q) = λi(Q) for every user i and every p, p′ ∈ P

with both qi(p), qi(p′) > 0.
We evaluate strategies profiles using the objective of maximum latency. The

maximum latency L(P) of a pure strategies profile P is the maximum user cost
in P , L(P) ≡ λmax(P). The maximum latency L(Q) of a mixed strategies profile
Q is the expectation according to Q of L(P) over all pure strategies profiles P ,
L(Q) ≡

∑
P∈Pn IP(P, Q)L(P), where IP(P, Q) =

∏n
i=1 qi(pi) is the occurrence

probability of P in Q. The optimal solution, denoted P ∗, corresponds to a pure
strategies profile and the optimal cost is L(P ∗). The price of anarchy is defined
as worst-case ratio L(Q)/L(P ∗) over all Nash equilibria Q.

Flows. A feasible flow is a function f : P &→ IR≥0 such that
∑

p∈P fp =
∑n

i=1 wi.
We also use f to denote the |P|-dimensional vector corresponding to the flow
f . A flow is unsplittable if each user’s demand is routed on a single path and
splittable otherwise. Let fe ≡

∑
p:e∈p fp denote the flow on edge e.

Greedy Best Response. GBR considers the users one-by-one in non-increasing
order of weight. Each user adopts her best response strategy given the strategies
of previous users. The choice is irrevocable since no user can change her strategy
in the future. In simple words, each user plays only once and selects its best
response strategy at the moment she is considered by the algorithm.

Formally, let pi be the path of user i, and let P i = (p1, . . . , pi) be the pure
strategies profile for users 1, . . . , i. Then, the path pi+1 of user i + 1 is

pi+1 = arg minp∈P{
∑

e∈p de(�e(P i) + wi+1)} (1)

We say that GBR succeeds if every profile P i is a Nash equilibrium.
3 For a n-dimensional vector X, X−i ≡ (x1, . . . , xi−1, xi+1, . . . , xn) and X−i ⊕ x ≡

(x1, . . . , xi−1, x, xi+1, . . . , xn).

166 D. Fotakis, S. Kontogiannis, and P. Spirakis

Common Best Response. The single-commodity network congestion game
((wi)i∈N , G, (de)e∈E) has the common best response property if for every initial
flow f (not necessarily feasible), all users have the same set of best response
strategies wrt the edge loads induced by f . In other words, if a path p is a best
response wrt f for some user, then the following inequality holds for all users j
and all paths p′: ∑

e∈p′ de(fe + wj) ≥
∑

e∈p de(fe + wj)

Furthermore, every segment π of a best response path p is a best response for
routing the demand of any user between π’s endpoints. We should highlight that
in the definition above, best responses are computed without taking into account
that some users may already contribute to the initial flow f . The common best
response property requires a notion of symmetry between the users, namely that
all of them have the same topmost preferences for any initial traffic conditions.
This notion of symmetry is weaker than that of a symmetric game but still strong
enough to make GBR work in series-parallel networks.

Layered and Series-Parallel Graphs. A directed (multi)graph G(V, E) with
a distinguished source s and destination t is layered if all directed s − t paths
have exactly the same length and each vertex lies on a directed s − t path.
A multigraph is series-parallel with terminals (s, t) if it is either a single edge
(s, t) or can be obtained from two series-parallel graphs with terminals (s1, t1)
and (s2, t2) connected either in series or in parallel. In a series connection, t1 is
identified with s2, s1 becomes s, and t2 becomes t. In a parallel connection, s1

is identified with s2 and becomes s, and t1 is identified with t2 and becomes t.
A directed graph with terminals (s, t) is series-parallel if and only if it does not
contain a θ-graph with degree-2 terminals as a topological minor (Fig. 1.b) [7].

Proposition 1. Let G(V, E) be a series-parallel graph with terminals (s, t), and
let vertices u, v connected by two disjoint paths, denoted π and π′, only sharing
their endpoints. Every s − t path having at least one edge in common with π′

contains both u and v.

3 Greedy Best Response in Series-Parallel Networks

We first show that GBR succeeds if the network is series-parallel and the game
has the common best response property.

Theorem 1. If G is a series-parallel graph with terminals (s, t) and the game
((wi)i∈N , G, (de)e∈E) has the common best response property, GBR succeeds and
computes a pure Nash equilibrium in time O(nm log m).

Proof. The proof is by induction on the number of users considered by the
algorithm. The claim holds for the first user, since she adopts her best response
strategy and is the only user in the network. We inductively assume that after
user i has been considered, P i = (p1, . . . , pi) is a Nash equilibrium. Let pi+1

Symmetry in Network Congestion Games 167

be the path chosen by user i + 1 according to (1). To reach a contradiction, we
assume that P i+1 = (p1, . . . , pi, pi+1) is not a Nash equilibrium.

Consequently, there is a user j, j ≤ i, preferring another path p to her path
pj . Let u be a split point where p departs from pj (u may be s). Any pair of
different paths has at least one split point because they have a common source.
Let v be the first merge point after u where p joins pj again (v may be t).
Each split point is followed by a merge point because the paths have a common
destination.

For simplicity of notation, let π and πj denote the segments of p and pj

respectively between u and v. By the definition of v, π and πj are edge disjoint
and have only their endpoints u and v in common.

Since j wants to defect from πj in P i+1 but not in P i, it is pi+1 that shares
some edges with πj and makes it inferior to π for user j. Since pi+1 and πj have
at least one edge in common, pi+1 contains both u and v by Proposition 1. Let
πi+1 be the segment of pi+1 between u and v (Fig. 1.a).

The path pi+1 is a best response for user i+1 wrt the flow induced by P i. Since
the game has the common best response property, pi+1 is also a best response
for user j wrt the flow induced by P i (ignoring that wj already contributes to
the flow). Therefore, the path segment πi+1 is a best response wrt P i for routing
the demand of user j from u to v:∑

e∈π

de(�e(P i) + wj) ≥
∑

e∈πi+1

de(�e(P i) + wj) (2)

Since j prefers π to πj after user i + 1 routing her traffic on πi+1,∑
e∈πj\πi+1

de(�e(P i)) +
∑

e∈πj∩πi+1

de(�e(P i) + wi+1) >

∑
e∈π

de(�e(P i) + wj) ≥
∑

e∈πi+1

de(�e(P i) + wj) ≥

∑
e∈πi+1\πj

de(�e(P i) + wj) +
∑

e∈πi+1∩πj

de(�e(P i) + wi+1)

The second inequality follows from Ineq. (2). The last inequality holds because
the latency functions are non-decreasing and wj ≥ wi+1.

If πj = πi+1, the contradiction is immediate. If πj �= πi+1, user j prefers the
path segment πi+1 \ πj to the path segment πj \ πi+1 even in P i:

λj
πj\πi+1

(P i) =
∑

e∈πj\πi+1

de(�e(P i)) >
∑

e∈πi+1\πj

de(�e(P i) + wj) = λj
πi+1\πj

(P i)

This contradicts to the inductive hypothesis that P i is a Nash equilibrium.
Therefore, p and pj does not have any split points and p coincides with pj .
Consequently, P i+1 is a Nash equilibrium.

GBR performs n s− t shortest path computations in a graph of m edges. This
can be done in time O(nm log m) using Dijkstra’s algorithm. ��

168 D. Fotakis, S. Kontogiannis, and P. Spirakis

Single-commodity network congestion games with identical users have the com-
mon best response property because the users’ cost functions are identical func-
tions of the edge loads. We are also aware of a class of weighted single-commodity
network congestion games with the common best response property.

Proposition 2. A weighted single-commodity congestion game in a layered net-
work with identical edges has the common best response property for any set of
user weights.

Corollary 1. GBR succeeds for single-commodity congestion games in series-
parallel networks:

1. if the users are identical (for arbitrary non-decreasing edge delays).
2. if the graph is layered and the edges are identical (for arbitrary user weights).

GBR has a natural distributed implementation based on a leader election al-
gorithm. There is a process corresponding to each player. We assume that the
processes know the network and the edge latency functions. We also assume a
message passing subsystem and an underlying synchronization mechanism (e.g.
logical timestamps) allowing a distributed algorithm to proceed in logical rounds.

Initially, all processes are active. In each round, they run a leader election
algorithm and determine the active process of largest weight. This process routes
its demand on its best response path, announces its strategy to the remaining
active processes, and becomes passive. Notice that all processes can compute
their best responses locally. In the offline setting, the algorithm terminates as
soon as there are no active processes. In the online setting, new users/processes
may enter the system at any point in time.

We conclude the study of GBR by providing some simple examples demon-
strating that GBR may not succeed in maintaining a PNE if either the network is
not series-parallel or the game does not have the common best response property.
Hence both conditions of Theorem 1 are necessary for GBR to succeed.

If the network is not series-parallel, the simplest symmetric game for which
GBR fails consists of two identical users and the 3-layered equivalent of the θ-
graph with identical edges (Fig. 1.b). The pure Nash equilibrium assigns one
user to π1 and the other to π3. If GBR assigns the first user to π2, there is no
strategy for the second user that yields a Nash equilibrium. We can force GBR
to assign the first user to π2 by slightly decreasing the latency function of the
second edge to (1 − ε)x, where ε is a small positive constant.

The common best response property is also necessary for series-parallel net-
works other than a sequence of parallel-link graphs connected in series4. For
example, let us consider the 2-layered series-parallel graph of Fig. 1.c and three
users of weights w1 = 100, w2 = 10, and w3 = 4. The corresponding congestion
game does not have the common best response property. GBR assigns the first
user to the path π1, the second user to π2, and the third user to π3, while in
every pure Nash equilibrium the first two users are assigned to π1.
4 If the network consists of bunches of parallel-link connected in series, a pure Nash

equilibrium can be computed by independently applying GBR to each bunch of
parallel links.

Symmetry in Network Congestion Games 169

Fig. 1. (a) The graph in the proof of Theorem 1. GBR may fail if (b) the network is
not series-parallel (even if the game is symmetric) and (c) the game does not have the
common best response property (even if the network is series-parallel).

4 The Price of Anarchy in Networks of Uniformly
Related Links

We proceed to bound the price of anarchy in symmetric network congestion
games with uniformly related links. We consider n identical users routing their
(unit) traffic demands on a directed graph G(V, E) with a unique source s and
destination t, and m ≡ |E| edges. There is a linear latency function de(x) = aex,
ae ≥ 0, associated with each edge e. We regard ae as the inverse speed of edge
e. For each path p ∈ P , let ap ≡

∑
e∈p ae denote the inverse speed of p.

Flows and Mixed Strategies Profiles. A feasible flow is a function f : P &→
IR≥0 such that

∑
p∈P fp = n. Let θp(f) ≡

∑
e∈p aefe denote the total delay along

the path p wrt f . We map a mixed (in general) strategies profile Q = (q1, . . . , qn)
to a feasible flow fQ as follows: For each s− t path p ∈ P , fQ

p ≡ �p(Q). In other
words, we handle the expected load routed on p in Q as a splittable flow, where
user i routes a fraction qi(p) of her demand on p. If Q is a pure strategies profile,
the corresponding flow is unsplittable.

We say that a feasible flow fQ corresponding to a strategies profile Q is at
Nash equilibrium with the understanding that actually Q is a Nash equilibrium.
For every Nash equilibrium Q and the corresponding flow fQ,

λmax(Q) ≤ min
p∈P

{θp(fQ) + ap} ≡ δmin(fQ) (3)

Otherwise, a user of cost λmax(Q) in Q could improve her cost by switching to
the path minimizing θp(fQ)+ap. Furthermore, for any path p ∈ P with fQ

p > 0,

max{θp(fQ), ap} ≤ λmax(Q) ≤ δmin(fQ) (4)

For simplicity, we drop the superscript of Q from its corresponding flow fQ

when the strategies profile is clear from the context.

Total Latency and Total Load. A flow f can be evaluated by its total latency
defined as

C(f) ≡
∑

p∈P fpθp(f) =
∑

e∈E aef
2
e

170 D. Fotakis, S. Kontogiannis, and P. Spirakis

In addition, a flow f can be evaluated by its total load defined as

W (f) ≡
∑

e∈E aefe =
∑

e∈E ae

∑
p:e∈p fp =

∑
p∈P apfp

We sometimes use W (P ∗) to denote the total load of the flow corresponding to
the optimal solution P ∗.

Proposition 3. Let f be a feasible flow at Nash equilibrium. Then
C(f) ≤ n δmin(f).

Proof. By Ineq. (4), for every path p ∈ P , fp θp(f) ≤ fp δmin(f). Summing over
all paths, we conclude that C(f) ≤ n δmin(f). ��

Let M be the |P| × |P| square matrix defined as M [p, p′] ≡
∑

e∈p∩p′ ae for each
pair of paths p, p′ ∈ P . By definition, M is a symmetric matrix. For every flow f ,
Mf is the |P|-dimensional vector with coordinates θp(f). Thus, the total latency
of f can be expressed as C(f) = fT Mf . Since C(f) = fT Mf =

∑
e∈E aef

2
e the

matrix M is positive semi-definite5.
Let A be the |P|-dimensional vector with A[p] ≡ ap for each path p ∈ P . The

total load of every flow f can be expressed as W (f) = AT f .
The maximum latency of an unsplittable flow f is L(f) ≡ maxp:fp>0{θp(f)}.

Notice that for every pure strategies profile P and its corresponding unsplittable
flow fP , L(P) = L(fP).

4.1 Computing a Symmetric Nash Equilibrium

We next prove that the flow minimizing n−1
2n C(f) + W (f) corresponds to a

symmetric Nash equilibrium. Formally, let f̂ be the optimal fractional solution
to the following quadratic program min{n−1

2n fT Mf + AT f : 1T f ≥ n, f ≥ 0},
where 1 (resp. 0) denotes the |P|-dimensional vector with 1 (resp. 0) in each
coordinate. We observe that f̂ is a splittable flow of value n.

Lemma 1. Let Q be the mixed strategies profile where each user i routes its
demand on every path p with probability qi(p) = f̂(p)/n. Then, Q is a symmetric
Nash equilibrium.

Proof. The mixed strategies profile Q is symmetric by definition. We only have
to show that Q is a Nash equilibrium. By construction, for every user i and
every path p, �p(Q−i) = n−1

n f̂p. Therefore, for every user i and every edge e,
�e(Q−i) = n−1

n f̂e. Thus, the cost of a user i routing her demand on a path p in
the mixed strategies profile Q is

λi
p(Q) =

∑
e∈p

ae(�e(Q−i) + 1) =
∑
e∈p

ae(n−1
n f̂e + 1) = n−1

n θp(f̂) + ap

5 A n × n matrix M is positive semi-definite if for every vector x ∈ IRn, xT Mx ≥ 0.

Symmetry in Network Congestion Games 171

The flow f̂ minimizes the convex function
∑

e∈E(n−1
2n aef

2
e +aefe). Therefore,

for every p, p′ ∈ P with f̂p > 0, the following inequality holds (e.g., [2], [23,
Lemma 2.5]):

n−1
n θp(f̂) + ap =

∑
e∈p

(n−1
n aef̂e + ae) ≤

∑
e∈p′

(n−1
n aef̂e + ae) = n−1

n θp′(f̂) + ap′

Consequently, for every user i and every p, p′ ∈ P with qi(p) = f̂p/n > 0,

λi
p(Q) = n−1

n θp(f̂) + ap ≤ n−1
n θp′(f̂) + ap′ = λi

p′ (Q)

and the mixed strategies profile Q is a Nash equilibrium. ��

Remark. If the network consists of m uniformly related parallel links, the equi-
librium of Lemma 1 is identical to the generalized fully mixed Nash equilibrium
of [9, Theorem 5].

4.2 Bounding the Price of Anarchy

We first apply the Chernoff-Hoeffding bound and prove that for every Nash
equilibrium Q with λmax(Q) ≤ α L(P ∗) for some constant α ≥ 1, L(Q) =
α O(log m

log log m)L(P ∗) (Lemma 2). We then prove that for every Nash equilibrium
Q, λmax(Q) ≤ L(P ∗)+ 2

n W (P ∗) (Theorem 2). The proof is based on Dorn’s The-
orem [6] establishing strong duality in quadratic programming. As an immediate
consequence, we obtain that for every Nash equilibrium Q, λmax(Q) ≤ 3 L(P ∗)
(Corollary 2). The results in this section can be extended to symmetric (not nec-
essarily network) congestion games with identical users, resource set E, strategy
set P , and resource costs de(x) = aex, ae ≥ 0.

Lemma 2. Let Q be any strategies profile at Nash equilibrium. If there exists
some constant α ≥ 1 such that λmax(Q) ≤ α L(P ∗), L(Q) ≤ α O(log m

log log m)L(P ∗).

Proof. For every edge e and every user i, let Xe,i be the random variable de-
scribing the actual load routed on e by i. The random variable Xe,i is 1 if i
routes its demand on a path containing e and 0 otherwise. The expectation of
Xe,i is IE[Xe,i] =

∑
p:e∈p qi(p) . Since the users select their paths independently,

for every edge e, the random variables {Xe,i, i ∈ N} are mutually independent.
For each edge e, let Xe = ae

∑n
i=1 Xe,i be the random variable that describes

the actual delay incurred by any user traversing e. Multiplying each Xe,i by ae,
we can regard Xe as the sum of n independent random variables with values in
{0, ae}. By linearity of expectation,

IE[Xe] = ae

n∑
i=1

IE[Xe,i] = ae

∑
p:e∈p

n∑
i=1

qi(p) = ae

∑
p:e∈p

�p(Q) = ae�e(Q)

172 D. Fotakis, S. Kontogiannis, and P. Spirakis

The Hoeffding bound6 for w = ae and t = e κ ae max{�e(Q), 1}, yields that for
every κ ≥ 1,

IP[Xe ≥ e κ ae max{�e(Q), 1}] ≤ κ−e κ

Applying the union bound, we conclude that

IP[∃e ∈ E : Xe ≥ e κ ae max{�e(Q), 1}] ≤ mκ−e κ (5)

For every path p ∈ P with �p(Q) > 0, we define the random variable
Xp =

∑
e∈p Xe describing the actual delay along p. The maximum latency of Q

cannot exceed the expected maximum delay among paths p with �p(Q) > 0.
Formally,

L(Q) ≤ IE[max
p:�p(Q)>0

{Xp}]

Let us assume that for all edges e ∈ E, Xe < e κ ae max{�e(Q), 1}. Let p be any
path with �p(Q) > 0, and let i be any user with qi(p) > 0. Then,

Xp =
∑

e∈p Xe < e κ
∑

e∈p ae max{�e(Q), 1} ≤ e κ
∑

e∈p ae(�e(Q−i) + 1)

= e κ λi(Q) ≤ e κ λmax(Q) ≤ e κ α L(P ∗)

The second inequality follows from max{�e(Q), 1} ≤ �e(Q−i)+1 which holds for
every edge e ∈ p and every user i with qi(p) > 0. Since qi(p) > 0 and Q is a Nash
equilibrium, λi(Q) =

∑
e∈p ae(�e(Q−i) + 1) and the next equality follows. The

third inequality follows from the definition of λmax(Q) and the last inequality
by hypothesis. Therefore, using Ineq. (5), we conclude that

IP[max
p:�p(Q)>0

{Xp} ≥ e κ α L(P ∗)] ≤ mκ−e κ

In words, the probability that the actual maximum delay caused by Q exceeds
the optimal maximum delay by a factor greater than e κ α is at most mκ−e κ.
Therefore, for every κ0 ≥ 2,

L(Q) ≤ IE[max
p:�p(Q)>0

{Xp}] ≤ e α L(P ∗)
(
κ0 +

∑∞
k=κ0

mk−e k
)

≤ e α L(P ∗)
(
κ0 + 2mκ−e κ0

0

)
For κ0 = 2 log m

log log m , we obtain that L(Q) ≤ 2 e α (log m
log log m + 1)L(P ∗) . ��

Theorem 2. For every strategies profile Q at Nash equilibrium,
λmax(Q) ≤ L(P ∗) + 2

n W (P ∗).

6 We use the standard version of Hoeffding bound [14]: Let X1, X2, . . . , Xn be inde-
pendent random variables with values in the interval [0, w]. Let X = n

i=1 Xi and
let IE[X] denote its expectation. Then, ∀t > 0, IP[X ≥ t] ≤ (e IE[X]

t
)t/w.

Symmetry in Network Congestion Games 173

Proof. Let f denote the optimal fractional solution of the following quadratic
program: QP ≡ min{fT (1

2M)f + AT f : 1T f ≥ n, f ≥ 0}. Notice that f is a
splittable flow of value n. We first prove that nλmax(Q) ≤ C(f) + 2 W (f).

We use Dorn’s Theorem [6], which establishes strong duality in quadratic
programming7, and prove that for every flow f ,

n δmin(f) − 1
2C(f) ≤ 1

2C(f) + W (f) (6)

The quadratic program QP ≡ min{fT (1
2M)f + AT f : 1T f ≥ n, f ≥ 0}

is always feasible and its optimal value is 1
2C(f) + W (f). The Dorn’s dual of

QP is DP ≡ max{z · n − fT (1
2M)f : Mf + A ≥ 1z, z ≥ 0} (e.g., [6], [2,

Chapter 6]). Every flow f becomes a feasible solution to DP by setting z =
minp∈P{θp(f) + ap} ≡ δmin(f). Hence, both the primal and the dual programs
are feasible. Since the matrix M is symmetric and positive semi-definite, by
Dorn’s Theorem, the objective value of the optimal dual solution is exactly
1
2C(f) + W (f)8.

Consequently, for every flow f , (f, δmin(f)) is a feasible solution to DP and

n δmin(f) − 1
2C(f) ≤ 1

2C(f) + W (f)

Let fQ be the flow corresponding to the strategies profile Q. Since Q is a Nash
equilibrium, C(fQ) ≤ n δmin(fQ) by Proposition 3. Hence, n δmin(fQ) ≤ C(f)+
2 W (f). Using λmax(Q) ≤ δmin(fQ) by Ineq. (3), we obtain that nλmax(Q) ≤
C(f) + 2 W (f).

To conclude the proof, let f∗ be the unsplittable flow corresponding to the
pure strategies profile P ∗, namely the optimal solution wrt. the objective of
maximum latency. Then,

nλmax(Q) ≤ 2 [12C(f) + W (f)] ≤ 2 [12C(f∗) + W (f∗)]
≤ nL(f∗) + 2W (f∗) = nL(P ∗) + 2W (P ∗)

The second inequality holds because f∗ is a feasible solution to QP. The third
inequality holds because the average latency of f∗ cannot exceed its maximum
latency. For the last equality, since P ∗ is a pure strategies profile, its maximum
latency and total load coincide with those of f∗. ��
7 Let min{xT Mx + cT x : Ax ≥ b, x ≥ 0} be the primal quadratic program. The

Dorn’s dual of this program is max{−yT My + bT u : AT u − 2My ≤ c, u ≥ 0}. Dorn
[6] proved strong duality when the matrix M is symmetric and positive semi-definite.
Thus, if M is symmetric and positive semi-definite and both the primal and the dual
programs are feasible, their optimal solutions have the same objective value.

8 The optimal dual solution is obtained from f by setting z = δmin(f). Since f is an
optimal solution to the primal program, we can use Karush-Kuhn-Tucker optimality
conditions (e.g. [2]) and prove that for any s − t path p with fp > 0, θp(f) + ap =
δmin(f). Multiplying this equality by fp and summing over all p ∈ P , we obtain that

z · n = δmin(f) p∈P fp = p∈P fp(θp(f) + ap) = C(f) + W (f)

Therefore, the dual objective value of (f, δmin(f)) is exactly 1
2
C(f) + W (f).

174 D. Fotakis, S. Kontogiannis, and P. Spirakis

Corollary 2. For every strategies profile Q at Nash equilibrium, λmax(Q) ≤
3 L(P ∗).

Proof. We observe that W (P ∗) ≤ n L(P ∗) because P ∗ is a pure strategies profile.
The corollary follows from Theorem 2. ��

Theorem 3. The price of anarchy for single-commodity network congestion
games with identical users and latencies de(x) = aex is at most 6 e (log m

log log m +1).

Acknowledgements. We wish to thank Burkhard Monien for suggesting the
significance and the possibility of obtaining stronger results on the efficient com-
putation of PNE in series-parallel networks.

References

1. B. Awerbuch, Y. Azar, and A. Epstein. The Price of Routing Unsplittable Flow.
STOC ’05, pp. 57–66, 2005.

2. M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming: Theory
and Algorithms (2nd edition). John Wiley and Sons, Inc., 1993.

3. G. Christodoulou and E. Koutsoupias. The Price of Anarchy of Finite Congestion
Games. STOC ’05, pp. 67–73, 2005.

4. J.R. Correa, A.S. Schulz, and N.E. Stier Moses. Computational Complexity, Fair-
ness, and the Price of Anarchy of the Maximum Latency Problem. IPCO ’04,
LNCS 3064, pp. 59–73, 2004.

5. A. Czumaj and B. Vöcking. Tight Bounds for Worst-case Equilibria. SODA ’02,
pp. 413–420, 2002.

6. W.S. Dorn. Duality in Quadratic Programming. Quarterly of Applied Mathematics,
18(2):155–162, 1960.

7. R.J. Duffin. Topology of Series-Parallel Networks. J. of Mathematical Analysis
and Applications, 10:303–318, 1965.

8. A. Fabrikant, C. Papadimitriou, and K. Talwar. The Complexity of Pure Nash
Equilibria. STOC ’04, pp. 604–612, 2004.

9. D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. Spirakis.
The Structure and Complexity of Nash Equilibria for a Selfish Routing Game.
ICALP ’02, LNCS 2380, pp. 123–134, 2002.

10. D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish Unsplittable Flows.
ICALP ’04, LNCS 3142, pp. 593–605, 2004.

11. M. Gairing, T. Lücking, M. Mavronicolas, and B. Monien. Computing Nash Equi-
libria for Scheduling on Restricted Parallel Links. STOC ’04, pp. 613–622, 2004.

12. M. Gairing, T. Lücking, M. Mavronicolas, B. Monien, and M. Rode. Nash Equilib-
ria in Discrete Routing Games with Convex Latency Functions. ICALP ’04, LNCS
3142, pp. 645–657, 2004.

13. R. L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal of
Applied Mathematics, 17(2):416–429, 1969.

14. W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. J.
of the American Statistical Association, 58(301):13–30, 1963.

15. E. Koutsoupias, M. Mavronicolas, and P. Spirakis. Approximate Equilibria and
Ball Fusion. Theory of Computing Systems, 36:683–693, 2003.

Symmetry in Network Congestion Games 175

16. E. Koutsoupias and C. Papadimitriou. Worst-case Equilibria. STACS ’99, LNCS
1563, pp. 404–413, 1999.

17. L. Libman and A. Orda. Atomic Resource Sharing in Noncooperative Networks.
Telecommunication Systems, 17(4):385–409, 2001.

18. T. Lücking, M. Mavronicolas, B. Monien, and M. Rode. A New Model for Selfish
Routing. STACS ’04, LNCS 2996, pp. 547–558, 2004.

19. M. Mavronicolas and P. Spirakis. The Price of Selfish Routing. STOC ’01, pp.
510–519, 2001.

20. R.W. Rosenthal. A Class of Games Possessing Pure-Strategy Nash Equilibria.
International Journal of Game Theory, 2:65–67, 1973.

21. T. Roughgarden. The Price of Anarchy is Independent of the Network Topology.
STOC ’02, pp. 428–437, 2002.

22. T. Roughgarden. The Maximum Latency of Selfish Routing. SODA ’04, pp. 980–
981, 2004.

23. T. Roughgarden and É. Tardos. How Bad is Selfish Routing? J. of the ACM,
49(2):236–259, 2002.

A Better-Than-Greedy Algorithm
for k-Set Multicover

Toshihiro Fujito1,� and Hidekazu Kurahashi2,��

1 Dept. of Inform. & Comp. Sciences, Toyohashi University of Technology,
Toyohashi 441-8580, Japan

fujito@nuee.nagoya-u.ac.jp
2 Graduate School of Information Science, Nagoya University,

Furo, Chikusa, Nagoya 464-8603, Japan

Abstract. The set multicover (MC) problem is a natural extension of
the set cover problem s.t. each element requires to be covered a pre-
scribed number of times (instead of just once as in set cover). The k-set
multicover (k-MC) problem is a variant in which every subset is of size
at most k. Due to the multiple coverage requirement, two versions of
MC have been studied; the one in which each subset can be chosen only
once (constrained MC) and the other in which each subset can be cho-
sen any number of times (unconstrained MC). For both versions the best
approximation algorithm known so far is the classical greedy heuristic,
whose performance ratio is H(k), where H(k) = k

i=1(1/i). It is no
hard, however, to come up with a natural modification of the greedy
algorithm such that the resulting performance is never worse, but could
also be strictly better. This paper will verify that this is indeed the case
by showing that such a modification leads to an improved performance
ratio of H(k) − 1/6 for both versions of k-MC.

1 Introduction

Given a base set U and a family S of subsets of U , the set cover (SC) problem
asks to find a smallest subfamily C ⊆ S that covers all the elements of U (i.e.,⋃

S∈C S = U). When every subset in S is of size bounded from above by a
constant k, it is called k-set cover (k-SC). The set cover problem, or even k-
SC for k ≥ 3, is known to be NP-hard [13] as well as APX-hard [15]. The
main subject of the paper is the set multicover (MC) problem (or multicover for
short), a natural generalization of the SC problem, where each element u ∈ U
is associated with an integer ru called coverage requirement, and u has to be
covered (at least) ru times. The k-set multicover (k-MC) problem is a variant in
which every subset in S is of size at most k.

The greedy strategy is a simple yet quite successful approach in approximating
SC; pick iteratively a most “cost-effective” subset until all the elements of U

� Supported in part by a Grant in Aid for Scientific Research of the Ministry of
Education, Science, Sports and Culture of Japan. Also affiliated with Intelligent
Sensing System Research Center, Toyohashi Univ. of Tech.

�� Currently at Fuji Photo Film Co., Ltd.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 176–189, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Better-Than-Greedy Algorithm for k-Set Multicover 177

become covered (by some picked subset). Call an element alive if it is not yet
covered by any of the picked subsets. The cost effectiveness of a subset S is then
measured by the average cost at which S covers alive elements in it. In other
words, if A(S) denotes the number of alive elements in S and C the family of
subsets already picked, A(S) = |S \

⋃
T∈C T |, and S can newly cover only those

elements in S \
⋃

T∈C T ; hence, the cost effectiveness of S with respect to C is
1/A(S). It was first shown by Johnson [12] that the performance ratio of the
greedy algorithm is bounded by the nth Harmonic number H(n) =

∑n
i=1(1/i)

for SC,1 or H(k) for k-SC, and Lovász obtained the same result by making use of
fractional covers [14]. While the same performance ratio was later shown to hold
even for the case of general subset costs [2] by extension of these analysis via
the linear program duality, Slav́ık proved that the exact bound is lnn− ln lnn+
Θ(1) [18]. It turns out, moreover, that the greedy bound is likely to be nearly
the best possible one for SC because the interactive proof based hardness result
of Feige shows that SC is not approximable within a factor of (1− ε) lnn for any
fixed ε > 0 unless NP ⊂ DTIME(nO(log log n)) [7].

As stated above the greedy algorithm for k-SC repeatedly picks S ∈ S with
minimum 1/A(S), and everytime S is picked during the process, S is removed
from S and all the elements in S from U . As A(S) is monotonically non-increasing
and the process continues as long as there exists S with A(S) > 0, A(S) even-
tually becomes no larger than 2 for any S ∈ S. When this happens, it can be
observed, the system (U,S) is reduced to a graph and k-SC to 2-SC, or to edge
cover on this graph, which is the problem of computing a minimum edge subset
covering all the vertices in a graph. Edge cover is solvable in time complexity
of maximum matching, and hence, as soon as an instance is reduced to the one
for edge cover (2-SC), we may finish up the entire procedure by computing an
optimal solution for it. This is exactly what the algorithm of Goldschmidt et
al. [9] does, and they proved that such a modification leads to an improvement
upon the greedy bound for k-SC, namely, H(k) − 1/6. Additionally applying
various local search techniques to ordinary greedy was found useful in further
lowering the performance ratio [10,11], and the best bound known to date is
H(k) − 1/2 [6].

Extending the coverage requirement from uniformly equal to 1 (in SC) to
arbitrary ru (u ∈ U) gives rise naturally to two versions of the problem settings
for MC; the one in which each subset can be chosen only once (constrained MC)
and the other in which each can be chosen any number of times (unconstrained
MC). Whereas the effectiveness of the greedy approach in approximating SC has
been shown extensible to either version of MC (and in fact to more general cov-
ering problems such as multiset multicover and covering integer program) [5,16],
no algorithm is yet proven to outperform the greedy algorithm even for k-MC.2

1 Note: ln(n + 1) ≤ H(n) ≤ 1 + ln n.
2 The only possible exception is the following recent result of Berman, DasGupta and

Sontag; they presented a randomized algorithm for a variant of k-MC with uniform
coverage requirement re ≡ r, and its expected performance ratio was shown better
than 1 + ln k for large r [1].

178 T. Fujito and H. Kurahashi

It is, however, possible to “non-polynomially” reduce unconstrained k-MC to
k-SC, and the performance analysis for k-SC can be usually carried over to that
for unconstrained k-MC. It then becomes only an issue of how to simulate the
SC heuristic of your choice in polynomial time in approximating unconstrained
MC, and it is clearly doable in some cases. To the best of our knowledge, on
the other hand, no such reduction is known for constrained MC and it is not
clear in this case how to make a profit out of various results known for SC. For
these reasons we omit further discussions on unconstrained MC, and concentrate
henceforth on the constrained one only.

Recall how the greedy heuristic for k-SC was modified by Goldschmidt et
al. [9], and it appears to be a sensible attempt to patch the greedy k-MC
algorithm as well in a similar fashion. An element u is redefined to be alive under
the current contexts if the number of picked subsets covering it is less than ru

(and let A(S) denote the # of alive elements in S as before). Let us start with
the greedy phase in which the ordinary greedy procedure iteratively picks S with
minimum 1/A(S) until A(S) ≤ 2 for any subset S. At this point the problem is
reduced to constrained 2-MC,3 and fortunately, it is polynomially solvable as 1)
constrained 2-MC can be seen to be equivalent to simple b-edge cover (SbEC)
on graphs, the problem of computing a smallest edge subset F ⊆ E, given a
graph G = (V, E) and b ∈ ZV

+ , s.t. the # of edges in F among those incident
to v is no less than b(v) for each v ∈ V , and 2) SbEC is known solvable in
time O(mn log n) [8]. We may thus switch to the optimal phase and solve 2-MC
optimally. All the subsets picked in either phase constitute a final solution.

The rest of the paper is devoted to the analysis of this algorithm. It will be
based on so called the “dual-fitting” method (following Chvátal’s approach [2]),
and this is in contrast with the analysis of the better-than-greedy algorithms
for k-SC, which are all based on purely combinatorial arguments [9,10,11,6]. A
detailed exposition of the dual-fitting based analysis of the standard greedy for
k-MC is presented in the book of Vazirani[19], which we naturally follow in the
part of the greedy phase. In the part of the optimal phase an LP representation of
SbEC plays a main role, and we study in depth the structural properties of an op-
timal dual solution to it. Using these properties, an optimal dual solution of SbEC
will be made fitting into a dual solution of k-MC by “rounding” certain variables
in it. It will be shown that the modified version of greedy for k-MC performs
strictly better than the ordinary one, yielding performance ratio of H(k)− 1/6.
This bound is also tight as it is shown tight already for k-SC with k ≥ 3 [9].

2 Preliminaries

2.1 LP Relaxation

The constrained MC problem for an instance of (U,S, r), where S ⊆ 2U ,⋃
S∈S S = U and r ∈ ZU

+, can be formulated by the following simple integer
program:
3 Well, not exactly as different sets in k-MC might correspond to a same set in 2-MC,

but we don’t have to care so much about it.

A Better-Than-Greedy Algorithm for k-Set Multicover 179

min
∑
S∈S

xS

(IP-MC) subject to:
∑

S:u∈S

xS ≥ ru ∀u ∈ U

xS ∈ {0, 1} ∀S ∈ S

where xS = 1 iff S is chosen in a solution. The LP relaxation of (IP-MC), denoted
(P-MC), is then obtained by replacing the integral constraints xS ∈ {0, 1} in (IP-
MC) by linear constraints 0 ≤ xS ≤ 1 for all S ∈ S:

min
∑
S∈S

xS

(P-MC) subject to:
∑

S:u∈S

xS ≥ ru ∀u ∈ U

− xS ≥ −1 ∀S ∈ S
xS ≥ 0 ∀S ∈ S

where −xS ≥ −1 are not redundant constraints unlike in the case of uncon-
strained MC, and its dual is:

max
∑
u∈U

ruyu −
∑
S∈S

zS

(D-MC) subject to:
∑
u∈S

yu − zS ≤ 1 ∀S ∈ S

yu ≥ 0 ∀u ∈ U

zS ≥ 0 ∀S ∈ S

Let OPT denote the optimal value of (P-MC), with which the size of our
solution will be compared. Suppose that we now have a multicover C ⊆ S and
dual variables (y, z) satisfying

1. |C| ≤
∑

u∈U ruyu −
∑

S∈S zS , and
2.

∑
u∈S yu − zS ≤ α for each S ∈ S,

for some α ∈ R+. Then, since (1/α)(
∑

u∈S yu − zS) ≤ 1 (∀S ∈ S),
((1/α)y, (1/α)z) is feasible to (D-MC), and its objective value is (1/α)
(
∑

u∈U ruyu −
∑

S∈S zS). The LP duality theorem asserts that an objective
value of (D-MC) is always a lower bound for OPT, i.e.,

∑
u∈U ruyu−

∑
S∈S zS ≤

α · OPT. As OPT in turn lower bounds the optimum of (IP-MC),

Proposition 1. If a multicover C and dual variables (y, z) satisfy the two con-
ditions given above, |C| ≤ α · OPT ≤ α · |optimal multicover|.

(This is the approach presented by Chvátal [2] in establishing the greedy SC
bound of H(n).)

180 T. Fujito and H. Kurahashi

2.2 Simple b-Edge Cover

For undirected graph G = (V, E), X ⊆ V, and v ∈ V let E[X] = {{v, w} ∈ E |
{v, w} ⊆ X}, δ(X) = {{v, w} ∈ E | |{v, w} ∩ X | = 1}, and δ(v) = δ({v}). For
G and b ∈ ZV

+ , x ∈ ZE
+ is called a b-edge cover for G if x(δ(v)) ≥ bv for all

v ∈ V , and it is called a simple b-edge cover for G if x additionally satisfies that
xe ∈ {0, 1}, ∀e ∈ E. Thus, any simple b-edge cover can be identified with some
edge subset, and the simple b-edge cover problem is to compute such an edge set
of minimum size. The problem is known not only to be polynomially solvable,
but also to have the following LP description.

Proposition 2 ([4,17]). The simple b-edge cover problem can be formulated by
the following LP:

min
∑
e∈E

xe

subject to: 0 ≤ xe ≤ 1 ∀e ∈ E

(P-SbEC) x(δ(v)) ≥ b(v) ∀v ∈ V

x(E[X]) + x(δ(X) \ F) ≥
⌈

b(X) − |F |
2

⌉
∀X ⊆ V, F ⊆ δ(X)

Let Ψ = {(X, F) | X ⊆ V, F ⊆ δ(X), E[X] ∪ (δ(X) \ F) �= ∅}, and δ̄F (X) =
E[X] ∪ (δ(X) \ F). The dual LP of (P-SbEC) is given by:

max
∑
v∈V

b(v)yv −
∑
e∈E

ze +
∑

(X,F)∈Ψ

⌈
b(X) − |F |

2

⌉
· w(X,F)

subject to: yv ≥ 0 ∀v ∈ V

(D-SbEC) ze ≥ 0 ∀e ∈ E

w(X,F) ≥ 0 ∀(X, F) ∈ Ψ

yu + yv − ze +
∑

(X,F)∈Ψ :e∈δ̄F (X)

w(X,F) ≤ 1 ∀e = {u, v} ∈ E

To avoid introducing a singleton edge (self-loop) when 2-MC on (U,S, r) is
reduced to SbEC on a graph G = (V, E), let v0 be a new vertex (element) not
existent in U , V = U ∪ {v0}, and E = {S ∈ S | |S| = 2} ∪ {{u, v0} | {u} ∈ S}.
We also let bv = rv for v ∈ U and bv0 = 0.

3 Analysis

3.1 Structural Properties of the Optimal Dual for Simple b-Edge
Cover

For the later analysis we need the following lemma concerning the structural
properties of an optimal solution to (D-SbEC), the LP dual of simple b-edge
cover.

A Better-Than-Greedy Algorithm for k-Set Multicover 181

Lemma 3. If (D-SbEC) has an optimal solution (y, z, w), there exists one sat-
isfying all the following properties:

w(X,F) = 0 ∀(X, F) ∈ Ψ with |X | = 1 (1)
yv ∈ {0, 1} ∀v ∈ V (2)

w(X,F) ∈ {0, 1} ∀(X, F) ∈ Ψ (3)

If w(X1,F1) > 0 and w(X2,F2) > 0 for different (X1, F1) and (X2, F2),

X1 ∩ X2 = ∅ (4)
and F1 ∩ F2 = ∅ (5)

If w(X,F) > 0,

yv = 0 ∀v ∈ X (6)
and ze = 0 ∀e ∈ F (7)

By simple reasoning it can be also assumed w.l.o.g. that yv0 = 0 and w(X,F) = 0
if v0 ∈ X . The proof of this lemma will be given in Section 3.4.

3.2 Rounding the Optimal Dual for Simple b-Edge Cover

Recall in Proposition 1 that the quality of solutions computed by the algorithm
is measured, relative to the value of (infeasible) solutions for (D-MC). It is then
more reasonable to represent the size of an optimal simple b-edge cover computed
in the optimal phase by the value of its dual in (D-SbEC) as well. It can be seen,
however, that, when (D-MC) and (D-SbEC) are compared, yv and ze in the
latter respectively have their counterparts in the former (that is, yu and zS for
u = v and S = e), but w(X,F) has none. This suggests that we need to somehow
represent an optimal SbEC solution (y, z, w) in terms of only y and z, and we
do so by “rounding” all the w-variables to zero; at the same time, not to lower
the value of a solution obtained, y and z will be raised to compensate for it.

For an optimal solution (y, z, w) for (D-SbEC) satisfying all the conditions
of Lemma 3, let Ψ1 = {(X, F) ∈ Ψ | w(X,F) = 1}, X̄ =

⋃
(X,F)∈Ψ1

X, and F̄ =⋃
(X,F)∈Ψ1

F . For each (X, F) ∈ Ψ1 we have

w(X,F) = 1, yv = 0 (∀v ∈ X) by (6), ze = 0 (∀e ∈ F) by (7),

and we set these y’s and z’s as follows:

yv =
�(b(X) − |F |)/2 + |F |/3

b(X)
∀v ∈ X

ze = 1/3 ∀e ∈ F

whenever w(X,F) is rounded to 0. Note: Due to (4) and (5), each of v ∈
X̄ and e ∈ F̄ receives a new value as above only once by the uniquely corre-
sponding (X, F) ∈ Ψ1.

182 T. Fujito and H. Kurahashi

Lemma 4. The rounding of w given above causes no change in the objective
value of (D-SbEC).

Proof. Resetting w(X,F) to 0 drops the objective value by � b(X)−|F |
2 whereas

setting new values to yv’s and ze’s raises it by∑
v∈X

�(b(X) − |F |)/2 + |F |/3
b(X)

· b(v) −
∑
e∈F

1
3

= (�b(X) − |F |
2

 +
|F |
3

) − |F |
3

for each (X, F) ∈ Ψ1. ��
The value of a rounded solution (y, z) is thus no smaller than that of the original
(optimal) solution (y, z, w), and this is why it can be used in our analysis in place
of the actual solution. It will be further shown in the next two lemmas that a
rounded solution is not so far from dual feasibility either.

Lemma 5. After rounding w as above, we have

yv ≤
{

1 if v �∈ X̄
2
3 if v ∈ X̄

for each v ∈ V .

Proof. For v �∈ X̄ yv does not change its value, and hence, yv ∈ {0, 1} (by (2)).
For any v ∈ V , b(v) > 0 except for v0. As v0 �∈ X̄, if v ∈ X with (X, F) ∈ Ψ1,
b(v) > 0 and |X | ≥ 2 (by (1)), which implies that b(X) ≥ 2. If b(X) = 2,

yv =
�(2 − |F |)/2 + |F |/3

2
=

�1 − |F |/2+ |F |/3
2

≤ �1 − 1/2+ 1/3
2

=
2
3

and if b(X) ≥ 3,

yv =
�(b(X) − |F |)/2 + |F |/3

b(X)

≤ (b(X) − |F | + 1)/2 + |F |/3
b(X)

=
(b(X) + 1)/2 − |F |/6

b(X)

≤ (b(X) + 1)/2
b(X)

=
1
2

+
1

2b(X)
≤ 2

3

��
Lemma 6. After rounding w as above, we have yu + yv − ze ≤ 4

3 for each
e = {u, v} ∈ E.

Proof. Recall that, due to feasible (y, z, w), we had

yu + yv − ze +
∑

(X,F)∈Ψ :e∈δ̄F (X)

w(X,F) ≤ 1 (8)

before the rounding for each e = {u, v} ∈ E.

A Better-Than-Greedy Algorithm for k-Set Multicover 183

Case u �∈ X̄, v �∈ X̄: Since w(X,F) = 0, ∀(X, F) ∈ Ψ with u ∈ X or v ∈ X before
the rounding,

∑
(X,F):e∈δ̄F (X) w(X,F) = 0, and (8) reduces to yu+yv−ze ≤ 1;

this still holds even after the rounding because yu, yv nor ze changes its value.
Case u ∈ X̄, v �∈ X̄, e ∈ F̄ : By Lemma 5, yu ≤ 2/3 and yv ≤ 1. Since ze = 1/3,

yu + yv − ze ≤ 2/3 + 1 − 1/3 = 4/3.
Case u ∈ X̄, v �∈ X̄, e �∈ F̄ : Before the rounding, yu = 0, and there must exist

(X, F) with w(X,F) = 1 s.t. u ∈ X and e �∈ F . Then, e is in δ̄F (X), and
hence, yv − ze ≤ 0 by (8) before the rounding. After the rounding, while yv

does not change its value, yu ≤ 2/3 by Lemma 5 since u ∈ X̄, and we have
yu + yv − ze ≤ 2/3.

Case u ∈ X̄, v ∈ X̄: Since each of yu and yv is ≤ 2/3, yu + yv − ze ≤ 4/3. ��

3.3 Performance Ratio

We’re here ready to set values to a solution (y, z) for (D-MC), and to distinguish
from it, the one obtained by rounding an optimal dual solution for SbEC will be
denoted by (ỹ, z̃).

Suppose that each element u ∈ U is covered lu times (by the picked subsets)
during the greedy phase, where 0 ≤ lu ≤ ru. When a set S is picked, its cost
is distributed among the alive elements it covers, and if S covers u for the jth
time, we set price(u, j) as follows:

price(u, j) =

{
1

A(S) if S is picked in the greedy phase (i.e., 1 ≤ j ≤ lu)

ỹu if S is picked in the optimal phase (i.e., lu < j ≤ ru)

From the way the algorithm works, it is clear that price(u, 1) ≤ price(u, 2) ≤
. . . price(u, lu) ≤ 1/3 for each u ∈ U , and that the # of subsets picked during the
greedy phase coincides with

∑
u∈U

∑lu
j=1 price(u, j). Let SG = {S picked in the

greedy phase}, and now set values to the dual variables y and z as follows:

yu = max
1≤j≤ru

{price(u, j)} = max{price(u, lu), ỹu}

zS =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
u:covered by S

(yu − price(u, ju)) if S ∈ SG

z̃e if S appears as an edge e in the optimal
phase

0 otherwise

where ju is the copy of u that is covered by S in the greedy phase.
The following two lemmas show that (y, z) satisfies the two conditions referred

to in Proposition 1.

Lemma 7. For (y, z) defined as above, # of sets picked by the algorithm ≤∑
u∈U ruyu −

∑
S∈S zS.

184 T. Fujito and H. Kurahashi

Proof. The number of sets picked in the greedy phase =
∑

u∈U

∑lu
j=1 price(u, j),

whereas

of sets picked in the optimal phase =
∑
u∈V

b(u)ỹu −
∑
e∈E

ze

=
∑
u∈V

ru∑
j=lu+1

price(u, j) −
∑
e∈E

ze

by Lemma 4. It follows that

of sets picked in total =
∑
u∈U

ru∑
j=1

price(u, j) −
∑
e∈E

ze

=
∑
u∈U

ruyu −
∑
u∈U

ru∑
j=1

(yu − price(u, j)) −
∑
e∈E

ze

≤
∑
u∈U

ruyu −
∑
e∈E

ze −
∑

S∈SG

∑
u∈U :covered by S

(yu − price(u, ju))

=
∑
u∈U

ruyu −
∑
S∈S

zS ��

Lemma 8. For (y, z) defined as above,
∑

u∈S yu − zS ≤ H(k) − 1
6 , ∀S ∈ S.

Proof. Assume S = {u1, u2, . . . , uk} and S is “fully” covered in this order (of
uj, j = 1, 2, . . . , k). If the last copy of ui is covered in the greedy phase, as S
contains k − i + 1 alive elements at this point, yui = price(ui, rui) ≤ 1

k−i+1 in
general (for i ≤ k− 2), but also yui ≤ 1/3 even for i ≥ k− 1 since any set picked
in the greedy phase is of size at least 3. If the last copy of u is covered in the
optimal phase, yu ≤ max{1/3, ỹu} ≤ 1 by Lemma 5, and for any edge e = {u, v}
remaining not fully covered, ỹu + ỹv − ze ≤ 4/3 by Lemma 6.

Case S is picked in the greedy phase: Suppose k′ elements are already fully
covered when S is picked (and hence, k′ elements are dead), where it must
be the case that 0 ≤ k′ ≤ k − 3. Then,

k∑
i=1

yui − zS =
k∑

i=1

yui −
k∑

i=k′+1

(yui − price(ui, jui))

=
k′∑

i=1

yui +
k∑

i=k′+1

price(ui, jui)

as yui = price(ui, rui) ≤ 1
k−i+1 for i ∈ {1, . . . , k′}, and∑k

i=k′+1 price(ui, jui) = 1,

A Better-Than-Greedy Algorithm for k-Set Multicover 185

≤ (
k′∑

i=1

1
k − i + 1

) + 1

≤ (
1
k

+
1

k − 1
+ . . .

1
4
) + 1

= H(k) − 5
6

Case S is not picked in the greedy phase:
Subcase A(S) = 0 at the end of the greedy phase: Since S is not picked

after all by the algorithm, zS = 0. Since yu = price(u, lu), ∀u ∈ S,
yui ≤ 1/(k − i + 1) as well as yui ≤ 1/3. It follows that

k∑
i=1

yui − zS ≤ (
1
k

+
1

k − 1
+ · · · + 1

3
) +

1
3

+
1
3

= H(k) − 5
6

Subcase A(S) = 1 at the end of the greedy phase: Since uk gets fully
covered only in the optimal phase, yuk

≤ 1 by Lemma 5, and hence,

k∑
i=1

yui − zS ≤ (
1
k

+
1

k − 1
+ · · · + 1

3
) +

1
3

+ yuk
− ze where e = {uk, v0}

≤ (
1
k

+
1

k − 1
+ · · · + 1

3
) +

1
3

+ 1

= H(k) − 1
6

Subcase A(S) = 2 at the end of the greedy phase:

k∑
i=1

yui − zS =
k−2∑
i=1

price(ui, lui) + yuk−1 + yuk
− ze where e = {uk−1, uk}

≤ (
1
k

+
1

k − 1
+ · · · + 1

3
) +

4
3

by Lemma 6

= H(k) − 1
6 ��

Now that both of the conditions used in Proposition 1 are shown satisfiable, by
Lemmas 7 and 8, with α = H(k) − 1/6,

Theorem 9. The performance ratio of the modified greedy algorithm is at most
H(k) − 1/6.

Since our analysis is throughout based on the LP duality, we additionally have

Corollary 10. The integrality gap of (P-MC) is bounded above by H(k) − 1/6
when |S| ≤ k (∀S ∈ S).

186 T. Fujito and H. Kurahashi

3.4 Proof of Lemma 3

Due to the total dual integrality of the linear system in (P-SbEC) [3], if the
optima exists for (D-SbEC), it can be achieved by an integer solution; we may
thus start the proof with such an optimal dual solution (y, z, w).

Let Ye = yu + yv and We =
∑

(X,F)∈Ψ :e∈δ̄F (X) for e = {u, v} ∈ E. Also let
Δe and Δobj denote, respectively, the amount increased in the value of Ye −
ze + We and that in the objective function value in (D-SbEC). To show in what
follows the feasibility of a new solution, we verify that all the variables remain
to be of nonnegative values and that Δe ≤ 0 (∀e ∈ E), whereas we verify that
Δobj ≥ 0 to show the optimality of a new solution. To distinguish a variable with
new value from the same variable with old value, the one with newly assigned
value will be denoted with dash.

We’ll show first that an optimal solution having the first three properties can
be obtained by applying a sequence of operations to any optimal solution that
is integral.

(1) For any ({u}, F) ∈ Ψ with w({u},F) > 0, reset w′
({u},F) = 0, increase

yu and ze (∀e ∈ F) by w({u},F). Feasibility: Ye goes up (by w({u},F))
iff e ∈ δ(u). As ze goes up by w({u},F) if e ∈ F while We goes down
by w({u},F) if e ∈ δ(u) \ F , Δe ≤ 0 for all e ∈ δ(u). Optimality:
Δobj = b(u)a − |F |a − � b(u)−|F |

2 · a = a(b(u) − |F | − � b(u)−|F |
2) ≥ 0.

(2) For any v ∈ V with yv > 1, reset y′
v = 1, and decrease ze by yv − 1 (∀e ∈

δ(v)). Feasibility: As ze ≥ Ye + We − 1 ≥ yv − 1 for e ∈ δ(v), z′e ≥ 0.
As y′

v − z′e = 1 − (ze − (yv − 1)) = yv − ze for e ∈ δ(v), the value of
Ye − ze is unchanged (and hence, Δe = 0) at e ∈ δ(v). Optimality: Δobj =
b(v)(1 − yv) + |δ(v)|(yv − 1) = (yv − 1)(|δ(v)| − b(v)) ≥ 0.

(3) For any (X, F) ∈ Ψ with w(X,F) > 1, reset w′
(X,F) = 1 and decrease ze

by w(X,F) − 1 (∀e ∈ δ̄F (X)). Feasibility: z′e ≥ 0 for e ∈ δ̄F (X) as ze ≥
Ye + We − 1 ≥ w(X,F) − 1. For each e ∈ δ̄F (X), ze as well as We goes down
by w(X,F)−1, and hence, Δe = 0. Optimality: Δobj = (w(X,F)−1)|δ̄F (X)|−
� b(X)−|F |

2 (w(X,F) −1) = (w(X,F) −1)(|E[X]∪ (δ(X)\F)|−� b(X)−|F |
2) ≥ 0.

At this point we have an optimal solution having Properties (1) through (3),
and it will be further modified to satisfy those remaining properties required
in the order given below. In doing so, however, a solution at hand may lose
some of (1) through (3); it is to be understood that, whenever it happens, the
corresponding operations given above will be applied to the solution and the
required property will be recovered. Any modification made by the operations
above has no effect on the rest of required properties except for the following
scenario. The operations in (4) and (6) may lead to violation of Property (1),
and if we try to fix it, it may next lead to violation of (6). When we are working
on Property (4), whenever Property (1) is lost, we fix it and take care of new
violation of (6) later on. When we are working on Property (6) and if Property
(1) is lost, we will fix it again, but it will not lead to another loss of Property (6);
as Property (4) is already enforced here, even if Property (1) becomes unsatisfied

A Better-Than-Greedy Algorithm for k-Set Multicover 187

as a result of enforcement of (6), say at v ∈ V with positive w({v},F1), there is
no other (X, F2) ∈ Ψ s.t. w(X,F2) > 0 and v ∈ X . Therefore, even if yv gets
increased to fix Property 1 at v, it cannot infringe upon Property (6).

(4) Suppose there exist two different (X1, F1) and (X2, F2) in Ψ s.t. X1∩X2 �= ∅
and w(X1,F1) = w(X2,F2) = 1.
Claim. We may always choose (X1, F1) and (X2, F2) such that (δ(X1) ∩
δ(X2)) ∪ (δ(X1) ∩ E[X2]) ∪ (E[X1] ∩ δ(X2)) ⊆ F1 ∪ F2.

Proof. Suppose there exists e′ ∈ (δ(X1) ∩ (E[X2] ∪ δ(X2))) \ (F1 ∪ F2) (the
case in which ∃e′ ∈ (δ(X2) ∩ (E[X1] ∪ δ(X1))) \ (F1 ∪ F2) is similar). We
then apply the following operations (and repeat as long as such an edge
exists); reset w′

(X1,F1)
= 0, decrement ze′ by 1, and increment w(X1,F1∪e′)

by 1. The resulting solution can be seen feasible for the following reasons:
Since We′ ≥ 2, ze′ ≥ Ye′ + We′ − 1 ≥ 1, and hence, z′e′ ≥ 0. At e = e′, both
ze and We go down by 1, whereas neither changes at e �= e′. Thus, Δe ≤ 0
in either case. The optimality also can be easily verified. ��

Assume henceforth that (X1, F1) and (X2, F2) satisfy the claimed property,
which implies that δ(X3) is partitioned to the following three sets: F ′

1 =
δ(X3) ∩ (F1 \ F2), F ′

2 = δ(X3) ∩ (F2 \ F1), and F ′
3 = δ(X3) ∩ (F1 ∩ F2).

In general it must be the case that 2|E[X]|+ |δ(X)| ≥ b(X) for any X ⊆ V ,
if a feasible solution exists. We divide into two cases:
Case b(X3) ≤ 2|E[X3]| + |δ(X3)| − 1. Letting X4 = X1 ∪ X2 and F4 =

δ(X4) ∩ ((F1 \ F ′
1) ∪ (F2 \ F ′

2)), set w′
(X1,F1)

= w′
(X2,F2) = 0, w′

(X4,F4)
=

w(X4,F4) +1, z′e = ze −1 (∀e ∈ E[X3]), and z′e = ze +1 (∀e ∈ F ′′
3), where

F ′′
3 = (F1 ∩ F2) \ δ(X3).

Feasibility: Since We ≥ 2 for any e ∈ E[X3], ze ≥ Ye +We −1 ≥ 1, and
hence, z′e ≥ 0. As for the effect of increased w(X4,F4)-value, notice that
w(X4,F4) occurs in We iff e ∈ E[X4] ∪ (δ(X4) \ F4).
Case e ∈ E[X4]. If e ∈ E[X3], the values of both ze and We go down by

1, whereas, if e ∈ F ′′
3 , the values of both ze and We go up by 1. Else

(i.e., e ∈ (E[X4]\E[X3])\F ′′
3) no changes in the value of We (nor ze)

because e is in either E[X1]∪(δ(X1)\F1) or E[X2]∪(δ(X2)\F2), but
not in both (due to the assumption at top on (X1, F1) and (X2, F2)).

Case e ∈ δ(X4)\F4. By the same reason as given just above, no changes
in We.

Optimality: The objective value is down by � b(X1)−|F1|
2 +� b(X2)−|F2|

2 +
|F ′′

3 | and up by � b(X4)−|F4|
2 + |E[X3]|, from which it follows that Δobj ≥ 0.

Case b(X3) = 2|E[X3]|+|δ(X3)|. Letting X5 = X1\X2, X6 = X2\X1, F5 =
δ(X5) ∩ (F1 ∪ F ′

2), F6 = δ(X6) ∩ (F2 ∪ F ′
1), set w′

(X1,F1)
= w′

(X2,F2) =
0, w′

(X5,F5)
= w(X5,F5) + 1, w′

(X6,F6)
= w(X6,F6) + 1, y′

v = yv + 1 (∀v ∈
X3), z′e = ze + 1 (∀e ∈ F ′

3).
Feasibility:
Case e �∈ E[X3] ∪ δ(X3). Neither Ye nor We changes its value.

188 T. Fujito and H. Kurahashi

Case e ∈ E[X3] ∪ δ(X3). The value of Ye goes up. More specifically, Ye

up by 2 but We down by 2 if e ∈ E[X3]. In case when e ∈ δ(X3)
Ye is up by 1, but either ze is also up by 1 (if e ∈ F ′

3) or We is also
down by 1 (if e ∈ F ′

1 ∪ F ′
2).

Optimality: The objective value is down by � b(X1)−|F1|
2 +� b(X2)−|F2|

2 +
|F ′

3| and up by � b(X5)−|F5|
2 + � b(X6)−|F6|

2 + b(X3), from which it follows
that Δobj ≥ 0.

(5) Suppose there exist (X, F) ∈ Ψ and v ∈ X s.t. w(X,F) = 1 and yv = 1.
Letting X ′ = X\v, δF (v) = δ(v)∩F, δF̄ (v) = δ(v)\F, and F ′ = δ(X ′)∩(F ∪
δ(v)), set w′

(X,F) = 0, w′
(X′,F ′) = w′

(X′,F ′) + 1, and z′e = ze − 1 (∀e ∈ δF̄ (v)).
Feasibility: In general ze ≥ Ye + We − 1, and Ye ≥ 1 and We ≥ 1 for
e ∈ δF̄ (v), which implies that ze ≥ 1, and hence, ze ≥ 0. If ze drops (by 1),
e ∈ δF̄ (v), but then, We also drops by 1 at such e. On the other hand, We

increases iff e is in E[X ′] ∪ (δ(X ′) \ F ′) but not in E[X] ∪ (δ(X) \ F), but
this is impossible since E[X ′] ∪ (δ(X ′) \ F ′) ⊆ E[X] ∪ (δ(X) \ F).
Optimality: Δobj = |δF̄ (v)| − � b(X)−|F |

2 + � b(X′)−|F ′|
2 ≥ 0 because

�b(X ′) − |F ′|
2

 ≥ �1
2
{b(X)− b(v) − (|F | − |δF (v)| + |δF̄ (v)|)}

≥ �1
2
{b(X)− |δ(v)| − (|F | − |δF (v)| + |δF̄ (v)|)}

= �b(X) − |F |
2

− |δF̄ (v)|

= �b(X) − |F |
2

 − |δF̄ (v)|.

(6) Suppose there exist two different (X1, F1) and (X2, F2) in Ψ s.t. F1 ∩ F2 �=
∅ and w(X1,F1) = w(X2,F2) = 1. For e′ ∈ F1 ∩ F2, set w′

(X1,F1) = 0 and
w′

(X1,F1\e′) = w(X1,F1\e′) + 1, and then repeat the procedure on (X1, F1 \
e′) and (X2, F2) as long they are crossing and |F1 \ e′| > 1 (in case when
|F1 \e′| = 1, the operations for recovering Property (3) will be applied here).
Feasibility: At e ∈ E[X1] ∪ (δ(X1) \ F1), as w(X1,F1) is down by 1 and
w(X1,F1\e′) up by 1, We does not change its value. On the other hand, We′

goes up by 1. Assuming that Property (4) is satisfied, because w(X1,F1) =
w(X2,F2) = 1 and e′ ∈ F1 ∩ F2, X1 ∩ X2 = ∅ and there cannot exist (X, F)
with w(X,F) = 1 s.t. e′ ∈ E[X] ∪ (δ(X) \ F). This indicates that We′ was
equal to 0 before it goes up. Moreover, yu = yv = 0 assuming that Property
(4) is satisfied, where e′ = {u, v}. It follows that Ye′ − ze′ + We′ ≤ 0 before
changing the w-values, and hence, Ye′ − ze′ + We′ ≤ 1 even after changing
them.
Optimality: Clearly Δobj ≥ 0.

(7) We claim that Property (7) is a natural consequence of having an optimal so-
lution satisfying all the previous properties required. Consider any (X ′, F ′) ∈
Ψ and e′ = {u, v} ∈ F with v ∈ X ′ s.t. w(X′,F ′) = 1. Since w(X,F) = 0 for
any (X, F) with v ∈ X if (X, F) �= (X ′, F ′),

∑
(X,F):v∈X,e′∈δ̄F (X) w(X,F) = 0

A Better-Than-Greedy Algorithm for k-Set Multicover 189

(by Property (4)). By Property (6) yv = 0. If yu = 1,
∑

(X,F):u∈X w(X,F) = 0
(by Property (6)) whereas

∑
(X,F):u∈X w(X,F) ≤ 1 even if yu = 0 (by Prop-

erty (4)), which implies that yu +
∑

(X,F):u∈X w(X,F) ≤ 1. Therefore, we
have Ye′ + We′ ≤ 1, and hence, Ye′ − ze′ + We′ ≤ 1 for any nonnegative ze′ .
If the solution is optimal, ze′ must be = 0.

References

1. Berman, P., DasGupta, B., Sontag, E., Randomized approximation algorithms
for set multicover problems with applications to reverse engineering of protein
and gene networks, 7th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX), LNCS 3122 (2004) 39-50.

2. Chvátal, V., A greedy heuristic for the set-covering problem, Math. Oper. Res.
4(3) (1979) 233–235.

3. Cook, W.J., On some aspects of totally dual integral systems, PH.D. Thesis, De-
partment of Combinatorics and Optimization, University of Waterloo, Waterloo,
Ontario (1983)

4. Cook, W., Pulleyblank, W.R., Linear systems for constrained matching problems,
Math. Oper. Res. 12 (1987) 97–120.

5. Dobson, G., Worst-case analysis of greedy heuristics for integer programming with
nonnegative data, Math. Oper. Res. 7(4) (1982) 515–531.

6. Duh, R., Fürer, M., Approximation of k-set cover by semi-local optimization, in:
Proc. 29th Annual ACM Symp. Theory of Computing (1997) 256–264.

7. Feige, U., A threshold of ln n for approximating set cover, J. ACM 45(4) (1998)
634–652.

8. Gabow, H.N., An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems, in: Proc. 15th ACM Symp. Theory of Comput-
ing, (1983) 448–456.

9. Goldschmidt, O., Hochbaum, D.S., Yu, G., A modified greedy heuristic for the
Set Covering problem with improved worst case bound, Inform. Process. Lett. 48
(1993) 305–310.

10. Halldórsson, M.M., Approximating discrete collections via local improvements, in:
Proc. 6th Annual ACM-SIAM Symp. Discrete Algorithms (1995) 160–169.

11. Halldórsson, M.M., Approximating k-set cover and complementary graph coloring,
in: Proc. IPCO V (1996) 118–131.

12. Johnson, D.S., Approximation algorithms for combinatorial problems, J. Comput.
System Sci. 9 (1974) 256–278.

13. Karp, R.M., Reducibility among combinatorial problems, in: Miller, R.E.,
Thatcher, J.W. (eds.): Complexity of Computer Computations (Plenum Press,
New York, 1972) 85–103.

14. Lovász, L., On the ratio of optimal integral and fractional covers, Discrete Math.
13 (1975) 383–390.

15. Papadimitriou, C., Yannakakis, M., Optimization, approximation and complexity
classes, J. Comput. System Sci. 43 (1991) 425–440.

16. Rajagopalan, S., Vazirani, V.V., Primal-dual RNC approximation algorithms for
set cover and covering integer programs, SIAM J. Comput. 28 (1999) 526–541.

17. Schrijver, A., Combinatorial Optimization (vol.A), Springer, Berlin (2003).
18. Slav́ık, P., A tight analysis of the greedy algorithm for set cover, J. Algorithms

25(2) (1997) 237-254.
19. V. Vazirani, Approximation Algorithms, Springer, Berlin (2001).

Deterministic Online Optical Call
Admission Revisited�

Elisabeth Gassner1 and Sven O. Krumke2

1 Technische Universität Graz, Institut für Mathematik B,
Steyrergasse 30, 8010 Graz, Austria
gassner@opt.math.tu-graz.ac.at

2 University of Kaiserslautern, Department of Mathematics, P.O. Box 3049,
Paul-Ehrlich-Str. 14, 67653 Kaiserslautern, Germany

krumke@mathematik.uni-kl.de

Abstract. In the problem of Online Call Admission in Optical Net-
works, briefly called oca, we are given a graph G = (V, E) together with
a set of wavelengths W (χ := |W |) and a finite sequence σ = r1, r2, . . .
of calls which arrive in an online fashion. Each call rj specifies a pair
of nodes to be connected. A lightpath is a path in G together with a
wavelength λ ∈ W .

Upon arrival of a call, an online algorithm must decide immediately
and irrevocably whether to accept or to reject the call without any knowl-
edge of calls which appear later in the sequence. If the call is accepted,
the algorithm must provide a lightpath to connect the specified nodes.
The essential restriction is the wavelength conflict constraint: each wave-
length is available only once per edge, which implies that two lightpaths
sharing an edge must have different wavelengths. The objective in oca
is to maximize the overall profit, that is, the number of accepted calls.

A result by Awerbuch et al. states that a c-competitive algorithm for
oca with one wavelength, i.e., χ := |W | = 1, implies a (c+1)-competitive
algorithm for general numbers of wavelengths. However, for instance,
for the line with n + 1 nodes, a lower bound of n for the competitive
ratio of deterministic algorithms for χ = 1 makes this result void in
many cases. We provide a deterministic competitive algorithm for χ > 1
wavelengths which achieves a competitive ratio of χ(χ

√
n +2) on the line

with n + 1 nodes. As long as χ > 1 is fixed, this is the first competitive
ratio which is sublinear in n + 1, the number of nodes.

1 Introduction

In current telecommunication networks, the wavelength division multiplexing
technique (WDM) enables the provider to send several optical signals in par-
allel over the same glass fiber cable by assigning different wavelengths to them.
However, the optical signals are converted back into electronic form at inter-
mediate nodes in order to switch them. This so-called “o-e-o-conversion” limits
� Supported by the Priority Programme “Mathematik und Praxis” at the University

of Kaiserslautern.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 190–202, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Deterministic Online Optical Call Admission Revisited 191

the speed of the connections. In next generation’s fully optical networks, optical
signals are no longer converted back into electronic form at intermediate nodes
but switched optically. This requires a change in the underlying mathematical
model, because the wavelength on which a signal enters the network remains
unchanged until the signal reaches its destination.

A connection in a fully optical network is modeled as a lightpath, that is, a path
together with a wavelength. Since each wavelength is available only once per fiber,
simultaneously routed lightpaths which use the same fiber must have different
wavelengths. This crucial restriction is called the wavelength conflict constraint.

1.1 Problem Definition

An instance of the Online Call Admission Problem in Optical Networks (oca)
consists of an undirected graph G = (V, E) together with a set of χ eligible
wavelengths W = {1, . . . , χ} and a finite request sequence σ = r1, r2, . . . , rm of
calls. Each of the wavelengths in W is available once per edge. A lightpath is a
pair (P, λ), where P is a path in G and λ is one of the wavelengths in W . In the
sequel, we will use the terms wavelength and color interchangeably.

A call rj = (sj , tj) specifies the nodes sj ∈ V and tj ∈ V to be connected.
Upon arrival of a new request rj = (sj , tj), an algorithm for oca must decide
whether to route or to reject rj . If the call is accepted, the algorithm must
provide a lightpath, thereby obeying the wavelength conflict constraint. Once
accepted, a call can not be preempted: the lightpaths used for the call can not
be changed or removed anymore. Each accepted call rj contributes a benefit of
one to the total profit obtained by an algorithm. The overall goal of oca is to
maximize the overall profit, that is, the total accepted demand.

An online algorithm for oca must base its decision for call rj without knowl-
edge of calls ri with i > j. A standard tool to measure the quality of an online
algorithm alg is competitive analysis, where one compares for each input se-
quence σ the profit alg(σ) obtained by alg to the optimal profit achievable on
that sequence, denoted by opt(σ).

A deterministic online algorithm alg for oca is c-competitive if for any re-
quest sequence σ the inequality alg(σ) ≥ 1

c ·opt(σ) holds. For randomized algo-
rithms against an oblivious adversary one uses the expected benefit E [alg(σ)]
instead. The competitive ratio of an algorithm is defined to be the infimum over
all c such that the algorithm is c-competitive.

1.2 Previous Work

If the set of eligible wavelengths W contains only a single wavelength, the prob-
lem of providing lightpaths reduces to the problem of finding edge disjoint paths
in the given graph, which we will refer to as Online Edge Disjoint Path Allocation
(oedpa). Competitive algorithms for oedpa are known for special graphs like
lines, trees, and meshes. For some specific topologies such as expander graphs
deterministic competitive algorithms with logarithmic competitive ratio are
possible [10].

192 E. Gassner and S.O. Krumke

The currently best competitive ratios of randomized algorithms against an
oblivious adversary for these topologies are �log(n + 1) for the line with n +
1 nodes [5,2], 2 log n and O(log D) for a tree with n nodes and with diameter D,
respectively, [5,2, 13] and O(log n) for the n × n-mesh [11, 13].

Awerbuch et al. [2] developed the competitive algorithm ffc (First-Fit-
Coloring), which is based on a “virtual” online algorithm for oedpa:

Theorem 1 (Awerbuch et al. [2]). Let alg be a c-competitive (determin-
istic or randomized) algorithm for oedpa. Then there is a (c + 1)-competitive
algorithm ffc for the special case of oca where each call requires one lightpath.

The downside of the above result is that one can easily derive a lower bound of n
for the competitive ratio of any deterministic algorithm for oedpa for instance
on the line with n vertices. A polynomial lower bound on the competitive ratio
of deterministic online algorithms was given in [3] which holds even for the line
(where it collapses to the aforementioned bound of n).

As mentioned above randomized competitive algorithms for oedpa which
achieve a logarithmic competitiveness (in the number of vertices in the graph)
are known for special graphs like lines, trees, and meshes [5,2, 13, 11].

So far, to the best of our knowledge no deterministic algorithm with sublinear
competititive ratio has been known.

The competitiveness of online call admission algorithms was first studied by
Garay and Gopal [8] when call preemption is allowed and the benefit of a call
is its holding time. Calls which are accepted may be preempted later on, but
calls which are rejected upon arrival remain rejected. Garay et al. [9] consider
variants for different benefit functions. Adler et al. [1] developed a randomized
algorithms which achieves a constant competitive ratio for oedpa when preemp-
tion is allowed. Further work on preemptive algorithms has been done in [6].

1.3 Our Contribution

We present the first deterministic competitive algorithms on the (n + 1) node
line for oca with χ > 1 wavelengths which beat the linear competitive ratio that
would be obtained by blindly applying Theorem 1. More specifically, we present
a χ(χ

√
n+2)-competitive algorithm. For any fixed χ > 1, this bound is sublinear

in n.
We complement our results in establishing a lower bound of n

n−1χ(χ
√

n − 1)
on the competitive ratio of any determinstic algorithm for oca on the line with
(n + 1) nodes and χ wavelengths.

Intuitively the call-admission problem starts to lose its “optical combinatorial
nature”, if the number of wavelengths χ goes to infinity. Since limχ→∞ χ(χ

√
n−

1) = n
n−1 ln(n), our lower bound nicely compares to the O(ln n) competitive

algorithm for non-optical call admission of [3].
The remainder of this paper is organized as follows. In Section 2 we describe

and analyze the deterministic call admission algorithm which achieves a sublinear
competitive ratio on the line. Section 3 contains the lower bound result.

Deterministic Online Optical Call Admission Revisited 193

2 An Algorithm with Sublinear Competitive Ratio

Let P = (V, E) be the node line with (n + 1) vertices1, V = {v0, . . . , vn}, and
edge set E = {[vi, vi+1] : i = 0, . . . , n}. Moreover, let W with |W | = χ be the
set of wavelengths which we assume to be available on each edge of P . Suppose
that σ = r1, r2, . . . , rm is a sequence of requests which are subject to the call-
admission problem. Each request ri = (si, ti) uniquely determines a path in P
between si and ti. We will call the length of this path (measured in the number
of edges) the length of the call length(ri).

Intuitively, a good online algorithm should try to accept and route preferrably
“short” calls, since a short call does not block as many potential future calls as
a longer one. However, if we restrict ourselves to a fixed threshold value, say �,
and only accept calls of length at most �, then an adversary might present only
calls with length at least � + 1 and thus to no bounded competitiveness.

Algorithm 1 Online Call Admission Algorithm
getshorty�

Input: A line P = (V, E) where every edge e ∈ P has χ ≥ 1 available wavelengths
and a sequence σ = r1, r2, . . . of requests

1 Let r be a new call.
2 if r can be routed on at least one wavelength then
3 Determine the smallest wavelength λ ∈ W = {1, . . . , χ} such that r can be

routed on λ.
4 if length(r) ≤ �(λ) then
5 Accept r and route r on wavelength λ
6 else
7 Reject r
8 end if
9 else

10 Reject r
11 end if

Our algorithm getshorty� (displayed in Algorithm 1) attempts to be
smarter. It is equipped with a monotonously decreasing function � : W → R+

with �(1) = n. In each wavelength λ only calls of length at most �(λ) will be
routed. Upon arrival of a new call r, getshorty� determines the first wave-
length λ where r can still be routed and then routes r if r is short enough,
that is, if the length of r is at most �(λ). Our main result of this section is the
following theorem:

Theorem 2. Algorithm getshorty� equipped with threshold function �(λ) :=
n

χ+1−λ
χ achieves a competitive ratio of χ(χ

√
n+2) for the oca on an (n+1) node

line with χ wavelengths.
1 We deviate from the convention that the number of nodes in a graph is n, since

numbering the vertices from 0 to n yields nicer terms in the proofs later on.

194 E. Gassner and S.O. Krumke

The remainder of this section is dedicated to the proof of Theorem 2.
Fix a request sequence σ = r1, r2, . . . , rm which contains at least one request.

We denote by getshorty[σ] the set of calls routed by algorithm getshorty�

and by getshorty(σ) := |getshorty[σ]| its cardinality. Also, let opt be an
optimal offline algorithm for oca. We partition getshorty[σ] into the sets
A1, . . . , Aχ where Aλ denotes the set of calls routed by getshorty on wave-
length λ. Defining aλ := |Aλ| we have

getshorty(σ) = |getshorty[σ]| =
χ∑

λ=1

aλ.

We say that getshorty� uses a wavelength λ on edge e ∈ E, if a call of σ
is routed on e on wavelength λ. For L ⊆ W = {1, . . . , χ} we denote by EL the
edges in E on which exactly the wavelengths in L are used by getshorty�, that
is,

EL = {e ∈ E : getshorty� uses exactly the wavelengths in L on e}. (1)

Hence, E is partitioned into E =
⋃

L⊆W

EL. The sets Lj = {1, . . . , j} for some

j ∈ W will be of special interest.
Let us examine the solution getshorty[σ]. Fix λ. Then, the total length of

calls which are routed by getshorty� on wavelength λ is given by∑
L⊆W :λ∈L

|EL| ≤ n. (2)

The first call r1 in σ can be routed on wavelength 1 (since all wavelengths on
all edges are still unused) and has length at most n, the number of edges on the
line P . Thus, getshorty� will route at least one call on the first wavelength:

a1 ≥ 1. (3)

For λ = 2, . . . , χ, every call routed by getshorty� on wavelength λ has length
at most �(λ) = n(χ+1−λ)/χ, thus from (2) we get that

aλ ≥ 1
�(λ)

∑
L⊆W :λ∈L

|EL| (4)

Inequalities (3) and (4) give us a way to bound the number of calls accepted
by getshorty� from below:

getshorty(σ) =
χ∑

λ=1

aλ

≥ 1 +
χ∑

λ=2

1
�(λ)

∑
L⊆W :λ∈L

|EL|

= 1 +
∑

L⊆W

|EL|
∑

λ∈L:λ�=1

1
�(λ)

. (5)

Deterministic Online Optical Call Admission Revisited 195

We set

b{1} := 1 and (6)

bL := |EL|
∑

λ∈L:λ�=1

1
�(λ)

for L �= {1}. (7)

Then, we can rewrite (5) as:

getshorty(σ) ≥
∑

L⊆W

bL. (8)

We now consider an optimal solution opt[σ] and partition it into three pair-
wise disjoint sets: opt[σ] = X ∪ Y ∪ Z where

– X is the set of calls r ∈ opt[σ] \ getshorty[σ] such that r uses only edges
of a single set EL for some L ⊆ W .

– Y is the set of calls r ∈ opt[σ] \ getshorty[σ] such that r uses edges of at
least two sets EL and EL′ for L, L′ ⊆ W .

– Z is the set of calls r ∈ opt[σ] ∩ getshorty[σ].

Lemma 1. Let L ⊆ {2, . . . , χ} be a subset of wavelengths that does not contain
the first wavelength. Then there does not exist any call r ∈ X that uses only
edges of EL.

Proof. Assume that there exists a call r ∈ X that uses only edges of EL. Since the
first wavelength is available on every edge that is used by r and length(r) ≤ n =
�(1) we conclude that r could be routed by getshorty� on the first wavelength.
This contradicts the assumption that r /∈ getshorty[σ], i.e., that r was rejected
by getshorty�. ��

Let us first investigate the cardinality of X . For L ⊆ W we denote by xL the
number of calls r ∈ X that use only edges of set EL.

For L = {1, . . . , χ}, by definition of EL in (1), getshorty� uses all wave-
lengths on all edges in EL. Hence, getshorty� has to reject all further calls
that use at least one edge of EL even if they are of length 1. Since opt could
potentially route |EL| calls, each of length 1, on every wavelength, we can bound
xL from above by

xL ≤ χ|EL| for L = {1, . . . , χ}. (9)

Now let L ⊂ W be of the form L = {1, . . . , j} ∪ L′ where L′ ⊆ {j + 2, . . . , χ}
for some j = 1, . . . , χ − 1, i. e., all wavelengths λ = 1, . . . , j are used by calls in
getshorty[σ] and j + 1 is the first wavelength that is not used by any call in
getshorty[σ]. Hence, wavelength j + 1 is available on every edge in EL.

Let r ∈ X be a call that uses only edges of EL. Notice that r could be routed
by getshorty� on wavelength j+1. The only reason why getshorty rejected r
must be its length. We conclude that length(r) > �(j + 1) holds for every r ∈ X
that uses only edges of EL. This gives us:

196 E. Gassner and S.O. Krumke

xL ≤ χ
|EL|

�(j + 1)
for L = {1, . . . , j} ∪ L′, where L′ ⊆ {j + 2, . . . , χ}. (10)

In order to bound the number of calls in Y ∪ Z we use a charging scheme, in
which we charge each request r ∈ Y ∪Z to a request r′getshorty[σ] such that
each element in getshorty[σ] gets assigned at most 2χ request from X ∪ Y .

First consider the requests in the set Y , that is, the set of calls r ∈ opt[σ] \
getshorty[σ] such that r uses edges of at least two sets EL and EL′ for L, L′ ⊆
W . Since any r ∈ Y uses at least two different kinds of edges, there exists at
least one call r′ ∈ getshorty[σ] such that either the start vertex or the end
vertex of r′ and the corresponding start or end edge of r′ is on the path of r.We
assign r to r′.

If r ∈ Z, then r was accepted by getshorty�. We assign r to itself, that is,
to r′ := r ∈ getshorty[σ] and, again, either the start vertex or the end vertex
of r′ and the corresponding final edge is on the path of r.

Observe, that there are at most 2χ calls r ∈ X ∪ Y that can be assigned to
a call r′ ∈ getshorty[σ] in the above charging scheme, because there are χ
wavelengths and one start- and one end-edge of r′. This allows us to conclude
that

|Y | + |Z| ≤ 2χ · getshorty(σ)

holds. Using this bound we obtain:

opt(σ) ≤
∑

L⊆W

xL + |Y | + |Z| ≤
∑

L⊆W

xL + 2χgetshorty(σ)

and, dividing this inequality by getshorty(σ) this yields

opt(σ)
getshorty(σ)

≤ 2χ +

∑
L⊆W xL

getshorty(σ)

(8)

≤ 2χ +

∑
L⊆W xL∑
L⊆W bL

.

The remainder of this section is dedicated to bounding the term L⊆W xL

L⊆W bL

appropriately. For Q ⊆ 2W we define

r(Q) :=

∑
L∈Q xL∑
L∈Q bL

.

In the end, we wish to bound r(2W).

Lemma 2. Let Q ⊆ 2W such that r(2W) ≤ r(Q). Furthermore let N ∈ Q such
that N is of the following form: N = {1, . . . , j}∪N ′ for some j ∈ {1, . . . , χ− 2}
with N ′ �= ∅ and N ′ ⊆ {j + 2, . . . , χ}. Then either

r(Q) ≤ χ χ
√

n or r(Q) ≤ r(Q \ N).

Proof. Recall the definition of bL for some L ⊆ W in (6) and (7). Since N
contains at least one wavelength of the set {j + 2, . . . , χ}, definition (7) applies

bN = |EN |
∑

λ∈N,λ�=1

1
�(λ)

≥ |EN |
∑

λ∈N ′,λ�=1

1
�(λ)

≥ |EN | 1
�(j + 2)

.

Deterministic Online Optical Call Admission Revisited 197

Together with inequality (10) we get

r(Q) =

∑
L∈Q\N xL + xN∑
L∈Q\N bL + bN

≤
∑

L∈Q\N xL + χ |EN |
�(j+1)∑

L∈Q\N bL + |EN |
�(j+2)

=: g(|EN |).

Simple calculuations show the following: If

χ

�(j + 1)

∑
L∈Q\N

bL ≥ 1
�(j + 2)

∑
L∈Q\N

xL,

then g(|EN |) is monotone increasing in |EN |. Otherwise g(|EN |) is montone
decreasing. Hence, we distinguish two cases.

Case 1: g is monotone increasing Then we have

r(Q) ≤ g(n)

=

∑
L∈Q\N xL + χ n

�(j+1)∑
L∈Q\N bL + n

�(j+2)

≤
χ �(j+2)

�(j+1)

∑
L∈Q\N bL + χ n

�(j+1)∑
L∈Q\N bL + n

�(j+2)

= χ
�(j + 2)
�(j + 1)

.

For our choice of the length threshold function �(λ) = n
χ+1−λ

χ we get r(Q) ≤
χ χ
√

n.
Case 2: g is monotone decreasing In this case

r(Q) ≤ g(0) = r(Q\N).

This proves the lemma. ��

Consider now the subset of wavelengths W̃ = {Lj : j = 1, . . . , χ} = {{1, . . . , j} :
j = 1, . . . , χ}. We use the following notation: qj := |Ej |, xj := xLj and bj := bLj

for j = 1, . . . , χ. As a simple consequence of Lemma 2 we get either∑
L⊆W xL∑
L⊆W bL

≤
∑χ

j=1 xj∑χ
j=1 bj

or ∑
L⊆W xL∑
L⊆W bL

≤ χn1/χ

The rest of this section is dedicated to a proper bound for
χ
j=1 xj
χ
j=1 bj

. Recall the
following two already known bounds:

198 E. Gassner and S.O. Krumke

xj ≤ χ
qj

�(j + 1)

bj ≥
{

qj

∑j
λ=2

1
�(λ) for j = 2, . . . , χ

1 for j = 1

Using the fact that
∑χ

j=1 qj ≤ n and herewith q1 ≤ n −
∑χ

j=2 qj we conclude
that

∑χ
j=1 xj ≤ χ

(
q1

�(2) +
∑χ

j=2
qj

�(j+1)

)
= χ

(
n

�(2) +
∑χ

j=2 qj

(
1

�(j+1) −
1

�(2)

))
= χ n

�(2)

(
1 +

∑χ
j=2 qj

(
�(2)

n�(j+1) −
1
n

))
≤ χ n

�(2)

(
1 +

∑χ
j=2 qj

�(2)
n�(j+1)

)
Now we set �(λ) = n

χ+1−λ
χ and get the following two equations

�(2)
n�(j + 1)

=
1

�(j)
n

�(2)
= χ

√
n

Herewith we get
χ∑

j=1

xj ≤ χ χ
√

n

⎛
⎝1 +

χ∑
j=2

qj
1

�(j)

⎞
⎠ (11)

On the other hand, we know that

χ∑
j=1

bj ≥ 1 +
χ∑

j=2

qj

j∑
λ=2

1
�(λ)

≥ 1 +
χ∑

j=2

qj
1

�(j)
(12)

Combining inequalities (11) and (12) we get∑χ
j=1 xj∑χ
j=1 bj

≤ χ χ
√

n

and together with Lemma 2 we conclude that∑
L⊆W xL∑
L⊆W bL

≤ χ χ
√

n.

Putting all together this results in

opt(σ)
getshorty(σ)

≤ 2χ +

∑
L⊆W xL∑
L⊆W bL

≤ χ(χ
√

n + 2).

This completes the proof of Theorem 2.

Deterministic Online Optical Call Admission Revisited 199

Observe that the competitive ratio χ(χ
√

n + 2) is monotone decreasing in χ
for 0 ≤ χ ≤ ln(n) and monotone increasing for χ ≥ ln(n).

3 Lower Bounds

In this section we prove a lower bound on the competitive ratio of any deter-
ministic algorithm for the oca with χ wavelengths on the line.

In order to get the intuition for the lower bound construction, it is useful to
briefly review the well-known lower bound of n for the competitive ratio of any
deterministic algorithm for a single wavelength (χ = 1), the path P = (V, E)
with vertices V = {v0, . . . , vn} and edge set E = {[vi, vi+1] : i = 0, . . . , n}.
The first request given by the adversary is r1 = (v0, vn). Any deterministic
online algorithm alg must accept r1, since otherwise the adversary stops and
alg(r1) = 0, while opt(r1) = 1 which makes opt(r1)/alg(r1) unbounded. Now,
the adversary gives n requests ri = (vi, vi+1), i = 0, . . . , n − 1, none of which
alg can accept, so at the end opt(σ) = n and alg(σ) = 1.

Our lower bound construction for χ > 1 wavelengths works along the same
spirit: Roughly speaking, if alg rejects a call r, then no further calls will be
issued on the path of r. On the other hand, if r is accepted by alg, then r will
be “split” into n1/χ “smaller calls” of equal length which in the next round will
be released.

Theorem 3. No deterministic algorithm for the oca with χ wavelengths on an
(n + 1) node path can achieve a competitive ratio smaller than n

n−1χ(χ
√

n − 1).

Proof. Let us denote the path by P = (V, E) with V = {v0, . . . , vn}. Let alg
be an arbitrary deterministic online algorithm for oca on P with χ available
wavelengths. Our adversial strategy is described algorithmically in Algorithm 2.
Let σ denote the request sequence resulting from the interaction of the adversary
with alg.

Observe that alg[σ] =
⋃χ+1

k=1 Ck is the set of calls accepted by the online
algorithm. The calls in alg[σ] are pairwise different (because as soon as the
online algorithm accepts a call r, no more copies of r arrive).

Let zk = |Ck|, then 0 ≤ zk ≤ zk−1n
1/χ holds for k = 2, . . . , χ + 1 and

z1 ∈ {0, 1}. There are n1/χzk−1 different types of calls in iteration k among
them zk calls are accepted by the algorithm. Hence, zk ≤ z1n

k−1
χ holds for

k = 2, . . . , χ + 1.
If the online algorithm does not accept any of the χ copies of a call r then an

optimal solution can route χ copies of this type of call. In iteration k there are
n1/χzk−1 − zk different calls that are rejected by the online algorithm and can
be accepted χ times by an optimum.

Finally, an optimal solution can route χ copies of every call in Xχ+1 while the
online algorithm can not route any call of Xχ+1 (because the online algorithm
has already accepted χ calls that use the same edges as the calls in Xχ+1 and
hence Cχ+1 = ∅).

200 E. Gassner and S.O. Krumke

Algorithm 2 Strategy for the adversary to enforce a competitive ratio of at
least n

n−1χ(χ
√

n − 1).

1 The first call is of the form r1 = (v0, vn)
2 Set C1 := {r1}
3 for k = 1 to χ + 1 do
4 For each accepted call r ∈ Ck with r = (vi, vi+j) the set Xk+1 contains n1/χ

calls (vi+(p−1)jn−1/χ . . . vi+pjn−1/χ) for p = 1, . . . , n1/χ

{ Each accepted call is splitted into n1/χ calls of equal length. }
5 while Xk+1 �= ∅ do
6 Let r ∈ Xk+1

7 while The online algorithm rejects r do
8 χ copies of r arrive
9 end while

10 if The online algorithm accepts r for the first time then
11 Ck+1 = Ck+1 ∪ {r} and Xk+1 = Xk+1 \ {r}

{ the investigation of calls of type r is finished }
12 else { The online algorithm rejects all copies of r }
13 Ck+1 = Ck+1 and Xk+1 = Xk \ {r}

{ the investigation of calls of type r is finished }
14 end if
15 end while
16 end for

Hence, the value of an optimal solution opt can be bounded by

opt(σ) ≥ χ

(
χ∑

k=2

(
n1/χzk−1 − zk

)
+ zχ+1

)

= χ

(
n1/χz1 +

χ∑
k=2

zk

(
n1/χ − 1

))

On the other hand, the objective value of the online algorithm is equal to

alg(σ) =
χ∑

k=1

zk.

Every online algorithm has to accept the first call, otherwise the competitive ratio
would be unbounded. Hence, we get z1 ≥ 1 and zk ≥ n

k−1
χ for k = 2, . . . , χ + 1

and the competitive ratio can be bounded by

opt(σ)
alg(σ)

≥ χ
n1/χ + (n1/χ − 1)

∑χ
k=2 zk

1 +
∑χ

k=2 zk
=: h

(
χ∑

k=2

zk

)

Deterministic Online Optical Call Admission Revisited 201

Observe that function h is monotone decreasing and

χ∑
k=2

zk ≥
χ∑

k=2

n
k−1

χ =
n − χ

√
n

χ
√

n − 1

holds. Putting all together we get

opt(σ)
alg(σ)

≥ h

(
n − χ

√
n

χ
√

n − 1

)
=

n

n − 1
χ(n1/χ − 1)

This completes the proof. ��

Observe that, if the number of wavelengths tends to infinity, our lower bound in
Theorem 3 above converges to

lim
χ→∞ χ(χ

√
n − 1) =

n

n − 1
ln(n)

and thus, no deterministic algorithm can achieve a competitive ratio better
than Ω(ln(n)) for all numbers of wavelengths.

References

1. R. Adler and Y. Azar. Beating the logarithmic lower bound: randomized preemp-
tive disjoint paths and call control algorithms. In Proceedings of the 10th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1–10, 1999.

2. B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosén. On-line competitive
algorithms for call admission in optical networks. In Proceedings of the 4th Annual
European Symposium on Algorithms, volume 1136, pages 431–444, 1996.

3. B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive online routing. In
Proceedings of the 34th Annual IEEE Symposium on the Foundations of Computer
Science, pages 32–40, 1993.

4. B. Awerbuch, R. Gawlick, F.T. Leighton, and R. Rabani. On-line admission con-
trol and curcuit routing for high performance computing and communication. In
Proceedings of the 35th Annual IEEE Symposium on the Foundations of Computer
Science, pages 412–423, 1994.

5. B. Awerbuch, Y.Bartal, A. Fiat, and A. Rosén. Competitive, non-preemptive call
control. In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 312–320, 1994.

6. A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and B. Schieber. Bandwidth
allocation with preemption. In Proceedings of the 27th Annual ACM Symposium
on the Theory of Computing, pages 616–625, 1995.

7. Y. Bartal, A. Fiat, and S. Leonardi. Lower bounds for on-line graph problems
with applications to on-line curcuit and optimal routing. In Proceedings of the
28th Annual ACM Symposium on the Theory of Computing, pages 531–540, 1996.

8. J. A. Garay and I. S. Gopal. Call preemption in communication networks. In
Proceedings of INFOCOM 92, pages 1043–1050, 1992.

202 E. Gassner and S.O. Krumke

9. J. A. Garay, I. S. Gopal, S. Kutten, Y. Mansour, and M. Yung. Efficient on-line
call control algorithms. Journal of Algorithms, 23(1):180–194, 1997.

10. J. Kleinberg and R. Rubenfield. Short paths in expander networks. In Proceedings
of the 37th Annual IEEE Symposium on the Foundations of Computer Science,
pages 86–95, 1996.

11. J. Kleinberg and E. Tardos. Disjoint paths in densely embedded graphs. In Pro-
ceedings of the 36th Annual IEEE Symposium on the Foundations of Computer
Science, pages 531–540, 1995.

12. S. O. Krumke and D. Poensgen. Online call admission in optical networks with
larger wavelength demands. In Proceedings of the 28th International Workshop on
Graph-Theoretic Concepts in Computer Science, volume 2573 of Lecture Notes in
Computer Science, pages 333–344. Springer, 2002.

13. S. Leonardi, A. Marchetti-Spaccamela, A. Presciutti, and A. Rosèn. On-line ran-
domized call-control revisited. In Proceedings of the 9th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 323–332, 1998.

Scheduling Parallel Jobs with Linear Speedup

Alexander Grigoriev and Marc Uetz

Maastricht University, Quantitative Economics, P.O. Box 616,
6200 MD Maastricht, The Netherlands
{a.grigoriev, m.uetz}@ke.unimaas.nl

Abstract We consider a scheduling problem where a set of jobs is a-
priori distributed over parallel machines. The processing time of any job
is dependent on the usage of a scarce renewable resource, e.g. personnel.
An amount of k units of that resource can be allocated to the jobs at
any time, and the more of that resource is allocated to a job, the smaller
its processing time. The dependence of processing times on the amount
of resources is linear for any job. The objective is to find a resource allo-
cation and a schedule that minimizes the makespan. Utilizing an integer
quadratic programming relaxation, we show how to obtain a (3 + ε)-
approximation algorithm for that problem, for any ε > 0. This gener-
alizes and improves previous results, respectively. Our approach relies
on a fully polynomial time approximation scheme to solve the quadratic
programming relaxation. This result is interesting in itself, because the
underlying quadratic program is NP-hard to solve. We also derive lower
bounds, and discuss further generalizations of the results.

1 Introduction and Related Work

Consider a scheduling problem where n jobs j ∈ V , with integral processing
times pj , and each jobs is already assigned to one of m parallel machines. There
is a renewable discrete resource, e.g. personnel, that can be allocated to jobs
in order to reduce their processing requirements. We assume that the tradeoff
between usage of the resource and the resulting processing requirement of a job
can be described succinctly by a corresponding linear compression rate bj ≥ 0.
In other words, each job has a default processing time of p̄j, and when s resources
are assigned to job j, its processing requirement becomes pjs = p̄j − bj s. At any
point in time, only k units of that resource are available. Once resources have
been assigned to the jobs, a schedule is called feasible if it does not consume
more than the available k units of the resource, at any time. The goal is to
find a resource allocation and a corresponding feasible schedule that minimizes
the makespan, the completion time of the job that finishes latest. This problem
describes a typical situation in production logistics, where additional resources,
such as personnel, can be utilized in order to reduce the production cycle time.

As a matter of fact, scheduling problems with a nonrenewable resource, such
as a total budget constraint, have received a lot of attention in the literature as
time-cost-tradeoff problems, e.g., [2,11,12,20,21]. Surprisingly, the corresponding

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 203–215, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

.

204 A. Grigoriev and M. Uetz

problems with a renewable resource, such as a personnel constraint, have received
much less attention, although they are not less appealing from a practical view-
point. We will refer to them as time-resource-tradeoff problems, in analogy to
the former.

Related work. In [8], we have considered the more general problem of unrelated
machine scheduling with resource dependent processing times. There, jobs can
be processed on any of the machines, and if a job is scheduled on machine i, using
s of the k available units of the resource, the processing time is pijs. Assuming
that processing times are monotone in the resources (and not necessarily linear),
the existence of a (4+2

√
2)–approximation algorithm is proved in [8]. The same

paper contains a (3 + 2
√

2)–approximation algorithm for the special case where
the jobs are distributed over the machines beforehand. The approach presented
in [8] is based upon a linear programming relaxation that essentially uses nk
variables. The problem with linear resource-time tradeoff functions, however, can
be encoded more succinctly by O(n) numbers: for each job, we need to specify
its machine i, the maximum processing time p̄j, and the compression rate bj ,
respectively. Therefore, the results of [8] only lead to a pseudo polynomial time
(3 +

√
2)–approximation algorithm for the problem at hand.

In a manuscript by Grigoriev et al. [7], a restricted version of the problem
at hand is addressed. They assume that the additional resource is binary, that
is, any job may be processed either with or without using that resource, with
a reduced processing time if the resource is used. Finally, the number of ma-
chines m in their paper is considered fixed, and not part of the input. For that
problem, they derive a (3 + ε)–approximation, and for the problem with m = 2
machines, they derive weak NP-hardness and a fully polynomial time approxi-
mation scheme [7].

The scheduling of jobs with resource dependent processing times is also known
as malleable or parallelizable task scheduling; see, e.g., [10,16,17,22]. In these
models, independent, non-preemptive jobs can be processed on one or more par-
allel processors, and they have non-increasing processing times pjs in the number
s of processors used. Any processor can only handle one job at a time, and the
goal is to minimize the schedule makespan. Turek et al. [22] introduced this prob-
lem; they derive a 2–approximation algorithm. In fact, the model considered in
[22] closely relates to, but also differs from the problem considered in this paper.
Interpreting the parallel processors of [22] as a generic ‘resource’ that must be
allocated to jobs, the problem of [22], when restricted to linear resource-time
tradeoff functions pjs, is a special case of the problem considered in this paper:
It corresponds to the case where n jobs are processed on m = n machines, in-
stead of m < n machines. Mounie et al. [16] consider yet another restriction of
the problem of [22], in that the processor allocations must be contiguous and the
‘total work functions’ spjs are non-decreasing in s. For that problem, a (

√
3+ε)–

approximation is derived [16]. An unpublished journal version of that paper [17]
claims an improved performance bound of (3/2 + ε). An asymptotic fully poly-
nomial approximation scheme for malleable task scheduling was proposed by
Jansen [10].

Scheduling Parallel Jobs with Linear Speedup 205

When we restrict even further, and assume that the decision on the allocation
of resources to jobs is fixed beforehand, we are back at (machine) scheduling
under resource constraints as introduced by Blazewicz et al. [1]. More recently,
such problems with the assumption that jobs are distributed over the machines
beforehand have been discussed by Kellerer and Strusevich [13,14]. They use
the term dedicated machine scheduling. We refer to these papers for various
complexity results, and note that NP-hardness of dedicated machine scheduling
and a binary resource was established in [13]. More precisely, they show weak
NP-hardness for the case where the number of machines is fixed, and strong
NP-hardness for an arbitrary number of machines.

Results and methodology. We derive a (3 + ε)-approximation algorithm for
scheduling parallel jobs with linear speedup. Our result holds for an arbitrary
number m of machines and an arbitrary number k of available resources. In
that sense, our result generalizes the previous (3 + ε)-approximation of [7] to
an arbitrary number of machines, and arbitrary, linear resource dependent pro-
cessing times (recall that they consider the special case k = 1, which may be
interpreted as linear resource-time functions, too). Although we obtain the same
performance bound, we stress that our result relies on a completely different
approach. Moreover, restricted to linear resource-time functions, our result con-
siderably improves upon the (3 +

√
2)–approximation from [8]. In addition, our

algorithm is indeed a strongly polynomial time algorithm, while the result of [8]
only yields a pseudo polynomial time algorithm.

Apart from improving previous results in the scheduling context, we see the
main contribution of the paper rather on the methodology side. In fact, we obtain
our result by using a constrained quadratic programming formulation that con-
stitutes a relaxation of the problem. More precisely, the mathematical program
is an integer, concave minimization problem with linear constraints. Although
such problems are NP-hard to solve in general [18,9], even without integrality
constraints, we show how to solve this quadratic programming relaxation with
arbitrary precision in polynomial time; a result of interest in its own. Based
on the solution of this mathematical program, we assign resources to the jobs.
Finally, the jobs are scheduled using (an adaption of) Graham’s greedy schedul-
ing algorithm [4]. Making use of the lower bound provided by the quadratic
programming relaxation, we derive the performance guarantee of (3 + ε).

Moreover, we provide a parametric example to show that our analysis cannot
be improved further than a factor of 1.46, by showing that the allocation of
resources that is computed with the quadratic program can indeed provide the
‘wrong’ answer. The same example even shows that it may happen that the
scheduling algorithm we use, based on the resource allocation as suggested by
the quadratic program, is a factor 2 away from the optimum.

Finally, we briefly discuss two possible generalizations of the problem at hand,
that can be handled by the proposed techniques as well. For a more detailed
treatment of these issues, we refer to the full version of this paper.

206 A. Grigoriev and M. Uetz

2 Problem Definition

Let V = {1, . . . , n} be a set of jobs. Jobs must be processed non-preemptively
on a set of m parallel machines, and the objective is to find a schedule that
minimizes the makespan Cmax, that is, the time of the last job completion. Each
job j is assigned to exactly one of the machines, and Vi denotes the set of jobs
assigned to machine i, such that V =

⋃
i Vi forms a partition of the jobs. During

its processing, a job j may be assigned an amount s ∈ {0, 1, . . . , k} of a discrete
resource, for instance personnel, that may speed up its processing. If s resources
are allocated to a job j, the processing time of that job is pjs, s = 0, . . . , k.
The amount of resources assigned to a job must be constant throughout its
processing. The resource constraint now consists of the fact that in a feasible
schedule, at any time no more than k units of the resource may be used. Clearly,
k ≥ 1, since the problem is trivial otherwise.

We assume that the resource dependent processing time pjs of any job can be
encoded succinctly by the default processing time, p̄j , together with the linear
compression rate bj , which we w.l.o.g. assume to be integral as well. Hence, the
actual (integral) processing time becomes

pjs = p̄j − bj s ,

given that s ∈ {0, . . . , k} resources are assigned to job j, j ∈ V . To exclude
trivial solutions, we also assume that p̄j > bjk for all jobs j ∈ V . The encoding
length of the problem therefore is in O(n log p), where p = maxj∈V pj .

3 Quadratic Programming Relaxation

The approach of [8] could be used to obtain a (3 + 2
√

2)–approximation algo-
rithm for the problem at hand. The approach, however, is explicitly based upon
an integer linear programming formulation that would require Θ(nk) binary
variables to represent all the different processing times of jobs pjs. Obviously,
this would generally only lead to a pseudo polynomial time algorithm.

For the linear case considered in this paper, however, we can set up a poly-
nomial size, quadratic formulation, using O(n) integer variables sj ∈ {0, . . . , k}
that denote the number of resources allocated to job j, j ∈ V . Then pjs =
p̄j − bjsj is the processing time of a job j. Since the compression rate bj is in-
tegral for all jobs j, and since the resource is discrete, the processing times pjs

are integral, too.
The following integer quadratic program has a solution if there is a feasible

schedule with makespan C.∑
j∈Vi

(p̄j − bjsj) ≤ C , ∀ i = 1, . . . , m , (1)

∑
j∈V

(p̄jsj − bjs
2
j) ≤ k C , (2)

Scheduling Parallel Jobs with Linear Speedup 207

0 ≤ sj ≤ k, ∀j ∈ V , (3)

sj ∈ Z+, ∀j ∈ V . (4)

The logic behind this program is the following; (1) states that the total pro-
cessing on each machine is a lower bound for the makespan, and (2) states that
the total resource consumption of the schedule cannot exceed the maximum
value of k C. Our goal is to compute an integer feasible solution (C∗, s∗) for
program (1)–(4), such that C∗ is a lower bound for the makespan COPT of an
optimal schedule. A candidate for C∗ is the smallest integer value, say CQP, for
which this program is feasible. But since we do not know how to compute CQP

exactly, we will compute an approximation C∗ ≤ CQP.
In order to decide on feasibility for program (1)–(4), notice that we may as

well solve the following constrained integer quadratic minimization problem.

min.
∑
j∈V

(p̄jsj − bjs
2
j) , (5)

s. t.
∑
j∈Vi

(p̄j − bjsj) ≤ C , ∀ i = 1, . . . , m , (6)

0 ≤ sj ≤ k , ∀j ∈ V (7)

sj ∈ Z+, ∀j ∈ V . (8)

Obviously, (1)–(4) is feasible if and only if the constrained quadratic minimiza-
tion problem (5)–(8) has a solution at most k C. It is well known that constrained
quadratic programming is NP-hard in general [18], even without integrality con-
straints. More specifically, we have a constrained concave minimization problem,
which is generally known to be NP-hard as well [9]. It is not too hard to show
that even the specific quadratic program we consider here is NP-hard to solve to
optimality; for a proof we refer to a full version of the paper. However, we next
show that the integer quadratic program (5)–(8) can be solved with arbitrary
precision in polynomial time.

Lemma 1. For any 0 < δ < 1, we can find a solution for the constrained
quadratic minimization problem (5)–(8) that is not more than a factor (1 + δ)
away from the optimal solution, in time polynomial in the input size and 1/δ.

In other words, (5)–(8) admits an FPTAS, a fully polynomial time approximation
scheme. The proof of this lemma is of interest in its own. We first show how to
reduce the constrained quadratic program to a certain single machine scheduling
problem, and then show that this scheduling problem admits an FPTAS, using
the framework of Pruhs and Woeginger [19].

Proof (of Lemma 1). First observe that (5)–(8) decomposes into m independent,
constrained quadratic programs, one for each machine i:

min.
∑
j∈Vi

(p̄jsj − bjs
2
j) , (9)

208 A. Grigoriev and M. Uetz

s. t.
∑
j∈Vi

(p̄j − bjsj) ≤ C , (10)

0 ≤ sj ≤ k , ∀j ∈ Vi , (11)

sj ∈ Z+, ∀j ∈ Vi . (12)

We now consider an even more restrictive problem, where instead of con-
straints (11)-(12), we restrict the resource consumptions sj , j ∈ Vi, to rounded
powers of (1 + ε1). More precisely, we set

E = {0, k} ∪ {�(1 + ε1)� : 0 ≤ (1 + ε1)� ≤ k, � ∈ Z+} ,

where 0 < ε1 < 1 is to be defined later. We claim that if in program (9)-(12)
there exists a solution s of value X , then in this even more restricted program
there exists a solution s′ of value X ′ such that X ′ ≤ (1+3ε1)X and s′j ∈ E for all
j ∈ Vi. To see this, we consider a solution s with objective value X . We define
a new solution s′ by simply rounding up the values sj , j ∈ Vi, to the nearest
integer number in E . This way all resource consumptions are rounded up, and
we have that sj ≤ s′j for all j ∈ Vi, thus constraint (10) is satisfied by s′, too.
Therefore, the obtained solution s′ is an integer feasible solution for program
(9)-(12) with s′j ∈ E for all j ∈ Vi.

Now consider an arbitrary j ∈ Vi and the corresponding � ∈ Z+ such that
(1+ε1)�−1 ≤ sj < (1+ε1)�. Since sj is integer, we have that �(1+ε1)�−1 ≤ sj <
�(1+ε1)� = s′j < (1+ε1)� +1. Now, if (1+ε1)�+1 ≤ (1+ε1)�+1 we immediately
derive that s′j < (1 + ε1)2sj < (1 + 3ε1)sj . If (1 + ε1)� + 1 > (1 + ε1)�+1, this
implies that (1 + ε1)�−1 + 1 > (1 + ε1)�, and thus sj = s′j = �(1 + ε1)�−1.
Therefore, s′j ≤ (1+3ε1)sj , for all j ∈ Vi. Consequently, for the objective X ′ we
have

X ′ =
∑
j∈Vi

s′j(p̄j − bjs
′
j) ≤

∑
j∈Vi

(1 + 3ε1)sj(p̄j − bjsj) = (1 + 3ε1)X ,

as claimed before.
We next claim that the problem (9)-(12) restricted to sj ∈ E , j ∈ Vi, admits

an FPTAS. To this end, observe that this problem is in fact a single machine
scheduling problem where each job has at most h ∈ O(log1+ε1

k) possible dif-
ferent processing times p̄j − bjsj with associated costs p̄jsj − bjs

2
j , where sj ∈ E .

Problem (9)-(12) thus asks for a schedule with makespan at most C and mini-
mal total cost. The proof that this problem admits an FPTAS, in terms of its
input size, is presented below in Lemma 2. This input size consists of not more
than O(log1+ε1

k) possible processing times and costs, hence it is polynomially
bounded in terms of 1/ε1 and the original problem size. As a consequence, we
have that for any 0 < ε1 < 1 and for any ε2 > 0 we can compute in time poly-
nomial in the original input size, 1/ε1, and 1/ε2, a solution that is no more than
a factor of (1 + 3ε1)(1 + ε2) away from the optimal solution. Letting ε1 = δ/6
and ε2 = δ/3, we derive (1 + 3ε1)(1 + ε2) ≤ (1 + δ), finishing the proof. ��

Scheduling Parallel Jobs with Linear Speedup 209

Lemma 2. Consider a single machine scheduling problem where we have a due
date C, and n jobs, each having h possible modes s = 1, . . . , h at which its
processing time is pjs and its cost is wjs, s = 1, . . . , h. The problem is to find
a mode s for each job with

∑
j pjs ≤ C, such that the total cost

∑
j wjs is

minimized. This problem admits a fully polynomial time approximation scheme
(FPTAS).

Proof. Utilizing the framework of Pruhs and Woeginger [19], it suffices to show
that the problem admits an algorithm that solves the problem to optimality, with
a computation time that is polynomially bounded in terms of nh, W =

∑
j,s wjs,

and the input size of the problem. Then Theorem 1 of [19] yields that the problem
admits an FPTAS.

The following dynamic program does the job. For q = 1, . . . , n and z =
0 . . . , W , denote by P [q, z] the smallest total processing time of q jobs such that
their total weight equals z. More precisely, P [q, z] is the smallest number such
that there exists a subset Q of q jobs with processing times pjs and costs wjs,
such that

∑
j∈Q pjs = P [q, z] and

∑
j∈Q wjs = z. The initialization of P [1, z] is

trivial for any value z = 0 . . . , W , and

P [q + 1, z] = min{P [q; z − w] + p | (p, w) = (pjs, wjs) for some j and s} .

Once we completed this dynamic programming table, we find the optimum value
as

max{z | P [n, z] ≤ C} .

The total time required to run this dynamic program is polynomially bounded
in nh, W =

∑
j,s wjs, and the input size of the problem. ��

Now, coming back to the original problem, we can use the FPTAS of Lemma 1
in order to obtain an approximation of the smallest integer value CQP for which
(1)–(4) has a feasible solution. This is achieved as follows. For fixed δ > 0, we
find by binary search the smallest integer value C∗ for which the FPTAS of
Lemma 1 yields a solution for (5)–(8) with value

zC∗ ≤ (1 + δ) k C∗ . (13)

Consider C := C∗ − 1. By definition of C∗ as the smallest integer with property
(13), on value C the FPTAS yields a solution with zC > (1 + δ) k C, and by
Lemma 1, the optimal solution for (5)–(8) is larger than k C, and hence (1)–
(4) is infeasible for C. Hence, the smallest integer value for which (1)–(4) has
a feasible solution is at least C∗ = C + 1, or C∗ ≤ CQP. Therefore, C∗ is a
lower bound on COPT, the makespan of an optimal solution. Moreover, using
the FPTAS of Lemma 1 and (13), we have an integral solution (s∗1, . . . , s

∗
n) that

is feasible for (1)–(4) with constraint (2) relaxed to∑
j∈V

(p̄jsj − bjs
2
j) ≤ (1 + δ) k C∗ . (14)

210 A. Grigoriev and M. Uetz

Therefore, we conclude that we can derive an approximate solution for (1)-(4)
in the following sense.

Lemma 3. For any δ > 0, we can find in polynomial time an integer value C∗

such that C∗ ≤ COPT, and an integer solution s∗ = (s∗1, . . . , s
∗
n) for the resource

consumptions of jobs such that∑
j∈Vi

(p̄j − bjs
∗
j) ≤ C∗ , i = 1, . . . , m , (15)

∑
j∈V

(p̄js
∗
j − bj(s∗j)

2) ≤ (1 + δ) kC∗ . (16)

4 QP Based Greedy Algorithm

Our approach to obtain a constant factor approximation for the scheduling prob-
lem is now the following. We first use the solution for the quadratic program-
ming relaxation from the previous section in order to decide on the amount
of resources allocated to every individual job j. More precisely, job j must be
processed using s∗j additional resources. Then the jobs are scheduled according
to (an adaptation of) the greedy list scheduling algorithm of Graham [4], in
arbitrary order.

Algorithm QP-Greedy: Let the resource allocations be fixed as de-
termined by the solution to the quadratic program QP. The algorithm
iterates over time epochs t, starting at t = 0. We do the following until
all jobs are scheduled.
– Check if some yet unscheduled job can be started at time t on an idle

machine without violating the resource constraint. If yes, schedule
the job to start at time t; ties are broken arbitrarily.

– If no job can be scheduled on any of the machines at time t, update
t to the next smallest job completion time t′ > t.

Obviously, this algorithm can be implemented in polynomial time. Now we
claim the following.

Theorem 1. For any ε > 0, algorithm QP-Greedy is a (3+ε)–approximation
algorithm for scheduling parallel jobs with linear speedup. The computation time
of the algorithm is polynomial in the input size and the precision 1/ε.

Note that the result of Theorem 1 improves considerably on the performance
bound of (3+2

√
2) from [8] for the more general case of nonlinear resource-time

tradeoff functions. Moreover, also recall that the approach of [8] only yields a
pseudo polynomial time algorithm for the linear problem at hand.

Proof. In order to do the binary search for the integer value C∗ in the quadratic
programming relaxation (1)–(4), we first use the FPTAS of Lemma 1, with
δ = ε/2. As described previously, this yields a lower bound C∗ on the makespan

Scheduling Parallel Jobs with Linear Speedup 211

COPT of an optimal schedule, together with an integer solution s∗ for (1),(3),(4),
and (14). We then fix the assignments of resources to the jobs as suggested by
the solution s∗, and apply the greedy algorithm. The analysis of the greedy
algorithm itself is based on the same basic idea as in our previous paper [8]. For
convenience, we present the complete proof here.

Consider some schedule S produced by algorithm QP-Greedy, and denote
by CQPG the corresponding makespan. Denote by COPT the makespan of an
optimal solution. For schedule S, let t(β) be the earliest point in time after
which only big jobs are processed, big jobs being defined as jobs that have a
resource consumption larger than k/2. Moreover, let β = CQPG − t(β) be the
length of the period in which only big jobs are processed (possibly β = 0).

Next, we fix a machine, say machine i, on which some job completes at
time t(β) which is not a big job. Due to the definition of t(β), such a ma-
chine must exist, because otherwise all machines were idle right before t(β),
contradicting the definition of the greedy algorithm. Note that, between time 0
and t(β), periods may exist where machine i is idle. Denote by α the total length
of busy periods on machine i between 0 and t(β), and by γ the total length of
idle periods on machine i between 0 and t(β). We then have that

CQPG = α + β + γ . (17)

Due to (15), we get that for machine i

α ≤
∑
j∈Vi

p̄j − bjs
∗
j ≤ C∗ . (18)

The next step is an upper bound on β + γ, the length of the final period
where only big jobs are processed, together with the length of idle periods on
machine i. We claim that

β + γ ≤ 2(1 + δ)C∗ . (19)

To see this, observe that the total resource consumption of schedule S is at least
β k

2 + γ k
2 . This is because, on the one hand, all jobs after t(β) are big jobs and

require at least k/2 resources, by definition of t(β). On the other hand, during all
idle periods on machine i between 0 and t(β), at least k/2 of the resources must
be in use as well. Assuming the contrary, there was an idle period on machine i
with at least k/2 free resources. But after that idle period, due to the selection
of t(β) and machine i, some job is processed on machine i which is not a big job.
This job could have been processed earlier during the idle period, contradicting
the definition of the greedy algorithm. Next, recall that (1 + δ) kC∗ is an upper
bound on the total resource consumption of the jobs, due to (16). Hence, we
obtain

(1 + δ)kC∗ ≥ β
k

2
+ γ

k

2
.

Dividing by 2/k yields the claimed bound on β + γ.

212 A. Grigoriev and M. Uetz

Now we are ready to prove the performance bound of Theorem 1. First,
use (17) together with (18) and (19) to obtain

CQPG ≤ C∗ + 2(1 + δ)C∗ = (3 + 2δ)C∗ .

Eventually, because C∗ is a lower bound on COPT, this yields a performance
bound for QP-Greedy of 3 + 2δ = 3 + ε, due to the choice of δ = ε/2.

The claim on the polynomial computation time follows from the fact that we
use an FPTAS in Lemma 1, and since the greedy algorithm obviously runs in
polynomial time. ��

5 Lower Bounds

Concerning lower bounds on approximation, we know that the problem at hand
is a generalization of the dedicated machine scheduling problem as considered
by Kellerer and Strusevich [13], hence it follows that it is strongly NP-hard.
Unlike for the nonlinear problem, where an inapproximability result of 3/2 is
known [8], we did not succeed to derive a stronger negative result without further
generalizing the problem. See Section 6 for a brief discussion of this issue. We
next show, however, that our approach may yield a solution that is a factor 2−ε
away from the optimal solution, for any ε > 0.

Example 1. Consider an instance with m = 3 machines and k = 2 units of the
additional resource. Let an integer � be fixed. The first two machines are assigned
two jobs each, symmetrically. One of these two jobs has a compression rate of
0, thus a constant processing time pjs = � − 3, for any s = 0, . . . , 2. The other
job has a processing time pjs = 3 + 2� − �s if assigned s units of the resource,
thus the only way to get this job reasonably small is to assign all 2 resources,
such that pj2 = 3. On the third machine, we have three jobs. Two identical short
jobs with processing times pjs = 3 − s, and one long job with processing time
pjs = � − 3s, s = 0, . . . , 2. See Figure 1 for an example. ��

Proposition 1. There exists an instance where the assignment of resources to
the jobs as proposed by the solution to the quadratic programming relaxation
is wrong in the sense that any scheduling algorithm yields a solution that is a
factor at least 19/13 ≈ 1.46 away from the optimum. Moreover, for any ε > 0,
there exist instances where algorithm QP-Greedy may yield a solution that is
a factor 2 − ε away from the optimum.

Proof. Consider the parametric instance defined in Example 1, with parameter
� ≥ 13. The assignment of resources to the jobs on the first two machines is
essentially fixed by construction of the instance, for any reasonable makespan
(i.e., less than 2�): the two jobs with the high compression rate consume 2 units
of the resource, yielding a total processing time of � on the first two machines.
In the optimal solution, the makespan is exactly �, by assigning 2 resources
to the long job on the third machine, and no resources to the small jobs. The

Scheduling Parallel Jobs with Linear Speedup 213

3 � − 3 �

(a) optimal solution

0 0 3 � � + 66

(b) best solution after assigning resources as QP

7 9

0 3 � 2� − 34 6

(c) possible solution QP-Greedy

Fig. 1. Black jobs consume 2 resources, gray jobs 1, and white jobs 0 resources

corresponding schedule is depicted in Figure 1(a). The smallest value C such
that the quadratic programming relaxation (1)–(4) is feasible is C = �, too. We
claim that our solution to the quadratic programming relaxation would assign
one unit of the resource to both, the big and one of the small jobs, and two units
of the resource to the remaining small job. This is due to the fact that, in solving
the QP, we minimize the total resource consumption of the schedule, subject to
the constraint that the total processing time on each machine is bounded by
C = �. On the third machine, the minimal resource consumption, subject to the
condition that the makespan is at most � is achieved as explained, yielding a
total resource consumption of � + 1. All other assignments of resources to the
jobs on the third machine either violate the makespan bound of �, or require
more resources (in fact, at least 2(� − 6) ≥ � + 1). Now, it is straightforward to
verify that any schedule with this resource assignment will provide a solution
that has a makespan of at least 3 + 3 + (� − 3) + 1 + 2 = � + 6, since no two
resource consuming jobs can be processed in parallel. Figure 1(b) depicts such a
schedule. Since � would be optimal, this yields the claimed ratio of 19/13 when
utilizing � = 13. On the other hand, if the scheduling algorithm fails to compute
this particular solution, the makespan becomes 2�−3, as depicted in Figure 1(c).
This yields a ratio of (2� − 3)/�, which is arbitrarily close to 2 for large �. ��

It remains open at this point whether there exist instances of the problem on
which algorithm QP-Greedy outputs a solution with performance ratio worse
than 2. More interesting, however, would be a lower bound on the approxima-
bility for the scheduling problem considered in this paper; the so far strongest
result is NP-hardness [13].

6 Generalizations

Two interesting generalizations of the problem can be handled with the proposed
techniques as well. We briefly discuss them here; for a detailed treatment, we
refer to a full version of this paper.

214 A. Grigoriev and M. Uetz

Firstly, consider the more general case where each job has an individual upper
bound on the maximal resource consumption, so pjs = p̄j − bjsj , and 0 ≤ sj ≤
kj for each job j. The problem discussed in this paper then corresponds to
the special case where kj = k for all jobs j. It is not hard to see that our
approximation result holds for that generalized version of the problem, too.
Moreover, this generalized version does not admit an approximation algorithm
with a performance ratio better than 3/2, which follows by a simple adaption of
the gap-reduction from Partition in Theorem 3 of [8].

Secondly, our results can be generalized to problems where the functions that
describe the resource-time tradeoff are not necessarily linear, but polynomial.
Whenever the maximum degree of these polynomials is bounded, our proofs can
be adapted to that case as well.

Acknowledgements. We thank Gerhard Woeginger for several helpful sug-
gestions. In particular, Gerhard pointed us to the paper [19], and proposed the
proof for the FPTAS for the single machine scheduling problem in Lemma 2. We
also thank Frits Spieksma for some helpful remarks.

References

1. J. Blazewicz, J. K. Lenstra and A. H. G. Rinnooy Kan, Scheduling subject
to resource constraints: Classification and complexity, Discr. Appl. Math. 5 (1983),
pp. 11–24.

2. Z.-L. Chen, Simultaneous Job Scheduling and Resource Allocation on Parallel
Machines, Ann. Oper. Res. 129 (2004), pp. 135-153.

3. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completenes, W. H. Freeman, New York, 1979.

4. R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Tech-
nical Journal 45 (1966), pp. 1563–1581. See also [5].

5. R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Applied
Math. 17 (1969), pp. 416–429.

6. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan,
Optimization and approximation in deterministic sequencing and scheduling: A
survey, Ann. Discr. Math. 5 (1979), pp. 287–326.

7. A. Grigoriev, H. Kellerer, and V. A. Strusevich, Scheduling parallel ded-
icated machines with the speeding-up resource, manuscript (2003). Extended ab-
stract in: Proceedings of the 6th Workshop on Models and Algorithms for Planning
and Scheduling Problems, Aussois, France, 2003, pp. 131–132.

8. A. Grigoriev, M. Sviridenko, and M. Uetz, Unrelated Parallel Machine
Scheduling with Resource Dependent Processing Times, Proceedings of the 11th
Conference on Integer Programming and Combinatorial Optimization, M. Jünger
and V. Kaibel (eds.), Lecture Notes in Computer Science 3509, 2005, pp. 182-195.

9. R. Horst and P. M. Pardalos, Editors, Handbook of Global Optimization, vol-
ume 2 of Nonconvex Optimization and Its Applications, Springer, 1995.

10. K. Jansen, Scheduling Malleable Parallel Tasks: An Asymptotic Fully Polynomial
Time Approximation Scheme, Algorithmica 39 (2004), pp. 59-81.

Scheduling Parallel Jobs with Linear Speedup 215

11. K. Jansen, M. Mastrolilli and R. Solis-Oba, Approximation Schemes for Job
Shop Scheduling Problems with Controllable Processing Times, European Journal
of Operational Research 167 (2005), pp. 297-319.

12. J. E. Kelley and M. R. Walker, Critical path planning and scheduling: An
introduction, Mauchly Associates, Ambler (PA), 1959.

13. H. Kellerer and V. A. Strusevich, Scheduling parallel dedicated machines
under a single non-shared resource, Europ. J. Oper. Res. 147 (2003), pp. 345–364.

14. H. Kellerer and V. A. Strusevich, Scheduling problems for parallel dedi-
cated machines under multiple resource constraints, Discr. Appl. Math. 133 (2004),
pp. 45–68.

15. J. K. Lenstra, D. B. Shmoys and E. Tardos, Approximation algorithms for
scheduling unrelated parallel machines, Math. Prog. 46 (1990), pp. 259–271.

16. G. Mounie, C. Rapine, and D. Trystram, Efficient Approximation Algorithms
for Scheduling Malleable Tasks, Proceedings of the 11th Annual ACM Symposium
on Parallel Algorithms and Architectures, 1999, pp. 23–32.

17. G. Mounie, C. Rapine, and D. Trystram, A 3/2-Dual Approximation Algo-
rithm for Scheduling Independent Monotonic Malleable Tasks, Manuscript, Re-
trieved from http://citeseer.csail.mit.edu/558879.html

18. P. M. Pardalos and G. Schnitger, Checking Local Optimality in Constrained
Quadratic Programming is NP-hard, Oper. Res. Lett. 7 (1988), pp. 33–35.

19. K. Pruhs and G. J. Woeginger, Approximation Schemes for a Class of Subset
Selection Problems, Proceedings of the 6th Latin American Symposium on Theo-
retical Informatics, M. Farach-Colton (ed.), Lecture Notes in Computer Science
2976, Springer, 2004, pp. 203–211.

20. D. B. Shmoys and E. Tardos, An approximation algorithm for the generalized
assignment problem, Math. Prog. 62 (1993), pp. 461–474.

21. M. Skutella, Approximation algorithms for the discrete time-cost tradeoff prob-
lem, Math. Oper. Res. 23 (1998), pp. 909–929.

22. J. Turek, J. L. Wolf, and P. S. Yu, Approximate Algorithms for Scheduling
Parallelizable Tasks, Proceedings of the 4th Annual ACM Symposium on Parallel
Algorithms and Architectures, 1992, pp. 323–332.

Online Removable Square Packing

Xin Han1, Kazuo Iwama1, and Guochuan Zhang2,�

1 School of Informatics, Kyoto University, Kyoto 606-8501, Japan
{hanxin, iwama}@kuis.kyoto-u.ac.jp

2 Department of Mathematics, Zhejiang University, China
zgc@zju.edu.cn

Abstract. The online removable square packing problem is a two di-
mensional version of the online removable Knapsack problem. For a se-
quence of squares with side length at most 1, we are requested to pack a
subset of them into a unit square in an online fashion where the online
player can decide whether to take the current square or not and which
squares currently in the unit square to remove. The goal is to maximize
the total packed area. Our results include: (i) Any online algorithm can-
not achieve a better competitive ratio than (

√
5 + 3)/2 ≈ 2.618. (ii) The

matching upper bound is achieved by a relatively simple online algorithm
if repacking is allowed. (iii) Without repacking, we can achieve an upper
bound of 3 by using the concept of bricks by Januszewski and Lassak
[11]. (iv) The offline version of the problem admits a PTAS.

1 Introduction

The Bin Packing and Knapsack problems are both very popular in the field
of combinatorial optimization. However, the situation is quite different in their
online versions: Bin Packing has a long history of online algorithms where im-
portant notions like competitive analysis already appeared, due to [8], in the
early stage of the literature. In contrast, the Knapsack problem has an intrin-
sic hostility against an online algorithm which has to decide, for each item Q
sequentially given, whether it takes Q or not, i.e., whether it puts Q into the
knapsack (or we will call it a bin) or not. This decision is irrevocable, which
cannot cope with the following simple instance: Suppose that the online player
receives a sequence of small items of size ε. If the player does not take any of
them, then the competitive ratio gradually worsens and if the player takes one,
then the adversary immediately gives an item of size 1 which cannot be taken
because of the small item already in the bin. Thus one can easily see that there
are no competitive algorithms.

Recently, Iwama and Taketomi [9] bypassed this difficulty by introducing
“removability.” Namely, in each step, the online player can also remove one or
more items currently in the bin other than deciding whether or not it takes
the current item. They considered the one-bin and two- or more-bin cases and
showed that there exist optimal online algorithms for both cases. This is one of
the successful attempts to relax the online condition, which has been popular

� Research supported by NSFC (10231060).

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 216–229, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Online Removable Square Packing 217

in many fields such as scheduling (see e.g.,[15]) and even towards more general
algorithmic paradigm such as priority algorithms [2].

This paper discusses the online square packing problem which can be regarded
as a two-dimensional version of this online Knapsack. Suppose that a sequence
of squares (ai, ai) arrives one by one, where 0 < ai ≤ 1 is the side length of the
square. In each step i, the online player has to decide whether or not it packs
(ai, ai) into the bin of size (1, 1) before the next square comes. We allow removing
just as the one-dimensional case, namely we allow to discard one or more items
already in the bin but the items once discarded will never be considered again.
It is easy to see as before that there is no competitive algorithm without this
discarding rule. It should also be noted (see Sec. 2) that if each item may be a
rectangle, then we cannot achieve a constant competitive ratio, either.

Our contribution. The basic difference between the one-dimensional and two-
dimensional packing problems is that in the latter we need to assign the item into
a specific position inside the unit square. This also means that it is important
whether we allow repacking in each step or not, where repacking means after
deciding whether the current item is taken or not and which item(s) are removed,
we can once take out all the items that should be packed and can reassign them
into the bin using some (off-line) algorithm. In the one dimensional case, since
items are naturally packed from the bottom of the bin without space, repacking
is implicitly allowed. However, it turns out from the algorithm in [9] that we
actually do not need repacking to obtain the optimal competitive ratio in the
one-bin case.

Our results are the following: (i) Any online algorithm for which both remov-
ing and repacking are allowed cannot achieve any competitive ratio better than
(
√

5+3)/2 (≈ 2.618). (ii) The matching upper bound can be achieved by a rela-
tively simple but a bit tricky algorithm if we allow repacking. (iii) We give an on-
line algorithm which achieves a competitive ratio of at most 3 without repacking.
This algorithm is borrowing the interesting notion of brick by Januszewski and
Lassak [11] together with a couple of new ideas for packing and removing. In par-
ticular, our new partition of the bin improves the main result in [11] as a byprod-
uct. (iv) We also consider the offline version of the problem, which is known to
be strongly NP-hard [13]. And we prove the offline version admits a PTAS.

Related problems and previous work. Basically there are two categories
of rectangle packing problems. Let B be the set of rectangular bins and L be
the set of rectangles to be packed. In the maximization category, one is asked
to pack a subset X of L, without any overlap, into the bins so that f(X) is
maximized, where f(·) is a function of rectangles. In the minimization category,
all rectangles of L have to be packed, without any overlap, into a subset of B
so that g(Y) is minimized, where g(·) is a function of bins. In this category, the
set of bins is assumed to be large enough (e.g., there are unlimited number of
bins). In fact we can also name the two categories the knapsack class and the bin
packing class, respectively. For each category of rectangle packing we can define
the off-line version and the online version.

218 X. Han, K. Iwama, and G. Zhang

For the off-line version of the maximization category, Caprara and Monaci
[3] first considered the problem to maximize the total area of packed rectangles.
They mainly focused on exact algorithms. A polynomial (3 + ε)-approximation
algorithm was also derived. Then Jansen and Zhang [10] considered a problem
to maximize the total profit of packed rectangles. In the problem the bin set
contains exactly one bin and each rectangle Ri is associated with a profit pi.
The objective function is f(X) =

∑
Ri∈X pi. The problem is to pack a subset

X of L into the bin to maximize f(X). Several approximation algorithms were
presented, the best of which has a worst-case ratio of at most 2 + ε for any
given ε > 0. Our result (iv) claims that there exists a PTAS if input items are
unweighted (i.e., pi = its area) squares.

Some online problems of the maximization category were also investigated.
Januszewski and Lassak [11] proposed a novel concept brick. They partitioned
the unit square into bricks and pack different squares into appropriate bricks.
They showed that each list of squares with total area bounded above by 5/16
can be online packed into a unit square (In fact, in their paper, the main result
dealt with the d-dimensional problem. They showed that every sequence of d-
dimensional cubes of total volume 2(1/2)d can be online packed into a unit cube,
for d ≥ 5). However, their algorithm is not competitive against general inputs
given in an online manner. Caramia et al. [4] designed an online algorithm to
maximize the total area of rectangles packed into a rectangular bin, but only the
experimental analysis based on implementation was given.

For the minimization category there have been many results on the two-
dimensional bin packing problem in which all rectangles have to be packed into
a minimum number of square bins. Here we only mention some results on packing
squares. For the off-line case, Ferreira et al. [7] gave an approximation algorithm
with asymptotic worst-case ratio bounded above by 1.988. Kohayakawa et al. [12]
and Seiden and van Stee [16] independently obtained approximation algorithms
with asymptotic worst-case ratio of at most 14/9+ε (for any ε > 0). These results
were recently improved by Correa and Kenyon [5], and Bansal and Sviridenko
[1]. They independently proposed asymptotic PTASes for packing d-dimensional
cubes into the minimum number of unit cubes. For the online case, if the number
of bins is bounded, the best known asymptotic worst case ratio is 2.271 [6].

Competitive Ratio. To evaluate an online algorithm, we use the standard
measure called competitive ratio. For any input sequence L, let A(L) be the area
packed in the bin by an online algorithm A and OPT (L) be the packed area
by an optimal off-line algorithm. The competitive ratio of algorithm A is then

defined as RA = sup
L

OPT (L)
A(L) .

2 Lower Bounds

We first mention the impossibility of competitive algorithms.

Fact 1. If the removal is not allowed, then any online algorithm cannot achieve
a constant competitive ratio.

Online Removable Square Packing 219

Fact 2. No algorithm can achieve a constant ratio for packing rectangles.

Now we prove our main lower-bound result:

Theorem 1. For any online algorithm with removing and repacking allowed, its
competitive ratio is at least (

√
5 + 3)/2 (≈ 2.618).

Proof. Let A be any online algorithm. The adversary gives the first and second
squares whose sizes are (q2, q2) and (q+ε, q+ε), respectively. Here, q = (

√
5−1)/2

(i.e., q + q2 = 1) and ε > 0, and hence these two squares cannot coexist in
the bin. If A takes (q2, q2) (and gives up (q + ε, q + ε)), then the game is over
because OPT (L)/A(L) for this input sequence L is (q+ε)2/q4 > q2/q4 = 1/q2 =
(
√

5 + 3)/2. So, suppose that (q + ε, q + ε) is now in the bin. Then the third
and forth squares given by the adversary are both (q2, q2). For the same reason
as above, the algorithm A must discard both. Then the adversary gives four
identical squares of size (1/2, 1/2). There are two cases:

Case 1. Algorithm A takes one of those (1/2, 1/2) squares and discards (q +
ε, q+ε). Then the adversary stops the game immediately and we have A(L) = 1/4
and OPT (L) ≥ 3q4 + 1/4 > 0.6875 since OPT can pack three (q2, q2) and one
(1/2, 1/2). Thus OPT (L)/A(L) > 2.75.

Case 2. Algorithm A gives up all four (1/2, 1/2)’s. Then OPT (L) is obviously
1 and OPT (L)/A(L) = 1/(q + ε)2 which tends to (

√
5 + 3)/2 as ε goes to zero.

Thus, we have RA = sup
L

OPT (L)/A(L) ≥ (
√

5 + 3)/2.

3 Optimal Algorithm with Repacking

In this section, we give a simple online algorithm called RPK, which achieves the
optimal competitive ratio given in Theorem 1. RPK uses the well-known (off-
line) square packing algorithm called NFDH (Next Fit Decreasing Height) [14].
We omit the details of NFDH, but it is enough to see Fig 1 (a) to understand its
basic idea. Namely, we sort the squares by their sizes and then pack them from
the largest one using level-1 area. If level-1 becomes full then we use level-2 and
so on. Here is a key property of NFDH.

level 1

level 2

level 3

level 1

level 2

(a) (b)

S1
S2

S3 S4

Fig. 1. NFDH packing

220 X. Han, K. Iwama, and G. Zhang

Lemma 1. [14], Any set of squares with total area ≤ 1/2 can be always packed
into the unit square by NFDH.

Now, a single round of our RPK can be described as follows. Note that S1, S2, · · · ,
Sn denotes the items currently in the bin whose side lengths are x1, x2, · · · , xn,
respectively. W.l.o.g., we assume that x1 ≥ x2 ≥ · · · ≥ xn. Let Q be the current
item whose size is (xn+1, xn+1), and let q = (

√
5 − 1)/2.

1. If the packed area in the bin is at least q2, then we discard Q.
2. Otherwise, if Q is large enough (that is, xn+1 ≥ q), then we remove every-

thing in the bin and pack Q.
3. Else, if all of S1, S2, · · · , Sn, and Q can be packed by NFDH, then do so.
4. Otherwise, if (x1 + xn+1) > 1 then we take the smaller one of S1 and Q and

pack it together with S2, · · · , Sn by NFDH.
5. Otherwise, we find a maximum k such that S1, S2, · · · , Sk and Q can be

packed by NFDH but S1, S2, · · · , Sk, Sk+1 and Q cannot. Pack S1, S2, · · · , Sk

and Q by NFDH.

Theorem 2. The competitive ratio of RPK is at most (
√

5 + 3)/2 (≈ 2.618).

Proof. Apparently the first square is taken by RPK and therefore the com-
petitive ratio at the end of round 1 is 1. Suppose that the competitive ratio
OPTi−1/RPKi−1 at the end of round i− 1 (i ≥ 2, or at the beginning of round
i) is at most (3 +

√
5)/2. Then we shall show that the competitive ratio is also

at most (3 +
√

5)/2 at the end of round i. Recall that if q = (
√

5 − 1)/2, then
1/q2 = (3 +

√
5)/2.

In round i, one of the five steps 1 ∼ 5 above is executed.
Case 1. Step 1 or 2 is executed. This case is trivial since the total area is at

least q2.
Case 2. Step 3 is executed. The current item Q is just added to the bin. So

we have
OPTi

RPKi
=

OPTi−1 + |Q|
RPKi−1 + |Q| ≤

OPTi−1

RPKi−1
≤ (3 +

√
5)/2.

Case 3. Step 5 is executed (Step 4 will be considered next). We first show the
following property of NFDH.

Lemma 2. Suppose that a sorted sequence of squares S1, S2, · · · , Sk can be
packed by NFDH but S1, S2, · · ·, Sk, Sk+1 cannot. Then k = 1 or k ≥ 4.

Proof. Suppose that k 	= 1. Then by assumption we can pack at least S1 and
S2. One can see that this packing needs only level 1. So, we must have a space
for S3 above S1 and a space for S4 to the right of S3, as shown in Fig. 1 (b).
Thus we can pack at least up to S4.

Now, suppose that S1, S2, · · · , Sk and Q can be packed but S1, S2, · · · , Sk, Sk+1

and Q cannot. Since S1, S2, · · · , Sk and Q include at least two squares (recall
that at least S1 and Q can be packed), we have k ≥ 3 by lemma 2. Since the

Online Removable Square Packing 221

total amount of area for S1, S2, · · · , Sn is less than q2 (otherwise the packing
should have been ended), the total area for S1, S2, · · · , Sk, Sk+1 is also less than
q2. Since Sk+1 is the smallest among S1, S2, · · · , Sk, Sk+1 and k ≥ 3, |Sk+1| ≤
q2/4 < 0.1. Moreover, because S1, S2, · · · , Sk, Sk+1 and Q cannot be packed
by NFDH, |S1| + · · · + |Sk+1| + |Q| > 1/2 by Lemma 1. It then follows that
|S1| + · · · + |Sk| + |Q| ≥ (1/2 − 0.1) > q2. Thus the packed area after this step
is at least q2.

Case 4. Step 4 is executed. Recall that if Step 1, 2, or 5 is once executed,
then we have an enough packed area and we can stop packing. Also, in Step 3,
nothing is discarded. Therefore, we can classify all the squares received so far
into two groups G1 and G2 such that squares in G1 are in the bin and squares
in G2 have been discarded only in Step 4. Thus we can prove the following facts:

(i) Let y be a side length of an arbitrary square Y in G2. Then, 0.5 < y
since it was not able to coexist with another single (smaller) square. Also y < q
since otherwise this single item would be enough for the target ratio. Namely
0.25 < |Y | < q2.

(ii) Let X be the largest item in G1. Then |X | ≥ q4. (The reason: Let Y be
the square in G2 which is discarded in this step. Then |Y | < q2 by (i) and hence
X and Y could coexist if |X | < q4.)

(iii) This largest X cannot coexist with the smallest square, denoted by Y ,
in G2. (The reason: Since Y was discarded, it was compared with some X ′ such
that |Y | ≥ |X ′|. If |X ′| ≤ |X | then we are done, so let us assume |X ′| > |X |.
Since X ′ is not in G1 now, it has to be moved to G2 later. For this to occur, we
eventually need another X ′′ such that |X | ≤ |X ′′| < |X ′|. If |X | = |X ′′| then
we are done since X ′′ (and also X) cannot coexist with X ′ or Y . Otherwise, X ′′

should be moved to G2 but this violates the assumption that Y is the smallest.)
Since any two squares in G2 cannot coexist by (i). Also by (iii), OPT can take

at most one square say Y , in G2 and G1− {X}, while RPK holds G1. Therefore

OPT

RPK
≤ G1 − |X | + |Y |

G1 − |X |+ |X | ≤
G1 − |X | + q2

G1 − |X | + q4
≤ 1

q2
,

which was what we wanted to show.

4 Online Algorithm Without Repacking

In this section, we first review the on-line packing algorithm by Januszewski
and Lassak [11], called the JS algorithm in this section, which uses a beautiful
technique based on bricks. Unfortunately this algorithm is not competitive but
it guarantees a certain amount of total packed area. We then give our new
ideas that make this algorithm both more efficient and competitive. A detailed
description of our algorithm and its analysis follow.

4.1 Packing by Using Bricks

A rectangle (w, h) is called a brick if w/h =
√

2 or h/w =
√

2. A brick has the
following two important properties:

222 X. Han, K. Iwama, and G. Zhang

Fact 3. If (w, h) is a brick, then either (w/2, h) or (w, h/2) is a brick. In other
words, a brick can be partitioned into two congruent bricks.

Fact 4. If a square Q fits in a brick (w, h) (w > h) but not in (w/2, h), then
wh/2

√
2 < |Q| ≤ wh.

As shown in Fig 2, brick B(w, h) can be continuously partitioned into smaller
bricks, sometimes called subbricks (w/2, h), (w/2, h/2), (w/4, h/2), and so on.
For a square Q = (a, a), we use S(Q) to denote a brick which “just” fits for
the square Q. More precisely, S(Q) = (w/2i, h/2i) if w/2i+1 < a ≤ h/2i, or
S(Q) = (w/2i+1, h/2i) if h/2i+1 < a ≤ w/2i+1, for some integer i. |B| denotes
the area of brick B. If a brick contains a square, then it is said to be used,
otherwise unused.

(w/2,h)

(w/2,h/2)

(w/4,h/2) (w/4,h/2)

h

w

(w/2,h/2)

(w/2,h)

(w/4,h/2)(w/4,h/2)

Fig. 2. partitioning bricks

(a) (b)

A
B

C1

0.75

0.707

C2 D1 D2

0.707
2/3

E1
E2
E3

Fig. 3. Previous partition vs ours

Suppose that we are given a square Q and a brick B which may be partitioned
into subbricks and some of them may be already used. The JS algorithm packs
Q into the “right position” of B by the following subroutine:

Algorithm PB (Packing a Brick).

1. If all bricks in B are used or all unused bricks are smaller than S(Q), then
give up packing Q,

2. else pack Q into B depending on the following two cases.
(a) If there is an unused brick congruent to S(Q), then pack Q into it,
(b) else find a smallest brick among all the unused ones whose area is larger

than |S(Q)|. Denote such a brick by P , and partition P into a sequence of

bricks whose areas are |P |
2 , |P |

4 , · · · , 2|S(Q)|, |S(Q)|, |S(Q)|, respectively.
Pack Q into an arbitrary one of the last two bricks whose area is |S(Q)|.

The entire JS algorithm is quite simple, which packs a sequence of items Q1, Q2,
· · ·, Qn as follows: (i) Before packing Q1, construct three bricks A = (1,

√
2/2),

C1 = (
√

2/4, 1/4) and C2 = (
√

2/4, 1/4) within the bin (a unit square) as shown
in Fig. 3 (a). (ii) For packing current item Qi, pick up the bricks one by one
in the order of C1, C2 and A and apply algorithm PB, respectively. Once Qi

is packed, consider the next item; otherwise, if Qi can be packed into neither
of them, stop with failure. (iii) If we can pack all of Q1, · · · , Qn, then stop with
success.

Online Removable Square Packing 223

Proposition 1 [11]. If |Q1|+· · ·+|Qn| ≤ 5/16, then the above algorithm always
stops with success.

4.2 New Ideas

(i) We construct six bricks in the bin as shown in Fig. 3 (b), B = (2
√

2/3, 2/3),
D1 = D2 = (

√
2/3, 1/3) and E1 = E2 = E3 = (x,

√
2x), where x = 1 − 2

√
2/3.

(ii) Recall that each item is a square but a brick is a rectangle. Hence a brick
holding an item must have a space. The original JS algorithm never uses such
a space, but our algorithm does, namely, two or more items may share a single
brick.

The modification (i) is quite powerful; we can prove the following theorem.

Theorem 3. By the modification (i), the JS algorithm can pack the items whose
total area is up to 1/3.

4.3 Competitive Algorithm

The basic strategy of our algorithm denoted by RSP (Removable Square Pack-
ing), is as follows: Suppose that the coming item Q is large (to be defined later).
Then if it can be packed in the bin together with other large items, then we
pack it without using the concept of brick, else we remove some small items to
make a space for Q. On the other hand, suppose that the coming item is small.
Then if there is a large item P in the bin, then we first try to append Q into the
brick now being used by P . If there is no such a space in that brick, then we will
remove some small items relatively smaller than Q.

A square (a, a) is called small, if a ≤ 1/3, otherwise large. Moreover, if a ≤
1−2

√
2/3, we call it tiny. As mentioned before, the bin is divided into six bricks

(Fig. 3 (b)) at the beginning. In the course of the algorithm, an item is packed
into some brick and a brick is partitioned into smaller ones if necessary. At any
stage there are two kinds of bricks, one which has not been partitioned yet is
called t-brick, the other is called n-brick. For example, before packing any square,
all bricks B, D1, D2, E1, E2, E3 are t-bricks. In order to pack a square Q, we may
divide brick B into two sub-bricks B1 and B2 and use one of them to pack Q.
At this moment, B1 and B2 are t-bricks, one is a used t-brick, the other is an
unused t-brick, but B became an n-brick.

In each round, algorithm RSP receives an input item Q and decides: (i)
whether or not Q should be packed, (ii) if yes, which position Q should take,
and (iii) to do so, which items should be removed. It should be noted that if the
current amount of total packed area in the bin is 1/3 or more, then our target
competitive ratio (= 3) is already achieved. So the algorithm can ignore (auto-
matically discard) all the following items. For example, if B ∪ D1 ∪ D2 do not
include any unused (sub)brick and if every used (sub)brick just fits its holding
item then the packed area is greater than 1/3. (To see this, note that the total
area of B ∪ D1 ∪ D2 is greater than 2

√
2/3. Then by Fact 4, the packed area is

greater than (2
√

2/3)(1/2
√

2)=1/3.)

224 X. Han, K. Iwama, and G. Zhang

Now here is a detailed description of each round of RSP, which consists of
three steps:

Step 1. The packing stops when one of the following two cases occurs.

(1.1) The total area of the squares already packed is at least 1/3.
(1.2) The current item Q is “very” large, Then empty the bin and pack Q.

Step 2. Pick up the bricks one by one in the order of E1, E2, E3, D1, D2, B
and apply algorithm PB to pack item Q, respectively. Otherwise (Q cannot be
packed into any brick), goto step 3.
Step 3. There exist unused bricks and all of them are smaller than S(Q).

– |Q| ≤ 1/9.
(3.1) There is one t-brick of area 2i|S(Q)| in D1 ∪ D2 ∪ B for some i ≥ 2.

(Such a t-brick is used, but as shown later, there must be room for the
square Q within that t-brick). Then pack Q into it and halt.

(3.2) The largest t-brick in D1 ∪ D2 ∪ B is of area 2|S(Q)|. Then if Q can
be packed into it, then pack Q; else select an n-brick whose packed area
is the smallest among all n-bricks congruent to S(Q) in D1 ∪ D2 ∪ B.
Empty this brick and pack Q in it. Halt.

(3.3) The largest t-brick in D1 ∪D2 ∪B is not larger than S(Q) Then find
an n-brick P which is congruent to S(Q) and contains the largest unused
brick in D1 ∪ D2 ∪ B (such a brick can be determined with the help of
the binary tree as shown in Fig. 2). Remove all squares from P and pack
Q into it.

– 2/9 < |Q| < 1/3.
(3.4) There is at least one small square in B. Then remove all squares from

B, except a small one at a corner of B. Pack Q into B and halt.
(3.5) There is exactly one large square and no small ones in B. Then pack

Q in the rest space of the unit square, if Q can be packed, and stop.
Otherwise, remove the larger one of Q and the large square already in
B, and pack the smaller into B.

(3.6) There are two large squares in B. Then keep the smaller one, remove
the larger as well as all small squares if needed, then pack Q in the
remaining space of the bin. Halt.

– 1/9 < |Q| ≤ 2/9
(3.7) There are two large squares in B. Then remove all squares from D1 ∪

D2 if needed, then pack Q in the remaining space of the bin. Halt.
(3.8) There is only one square in B and its area is greater than 2/9 (B is a

t-brick). Then if Q can be packed to the remaining space of the square
bin, then pack Q (Q may go beyond the borders of bricks) and stop.
Otherwise, remove the square in B and pack Q (at this point, we also
get a new t-brick (

√
2/3, 2/3) since B is partitioned).

(3.9) Else, there are two subcases.
1. If there is one large square, then remove all small squares from B

and pack Q.
2. There are two n-bricks of (

√
2/3, 2/3). Empty the one whose packed

area is smaller then pack Q.

Online Removable Square Packing 225

4.4 Analysis of Competitive Ratio

The packing ends either by the stopping rules of algorithm RSP or by the in-
stance itself. Note that in Step 2, we never remove any squares, i.e, our packing
is the same as optimal packing, so our analysis only focuses on Step 1,3. If RSP
stops at Step 1 for some round, the competitive ratio is obviously achieved.
Therefore, to analyze the algorithm, we only need to consider Step 3. We first
show that if RSP stops packing, the packed area of the bin is at least 1/3. Then
we prove, for other cases, the competitive ratio is at most 3.

The following two lemmas 3 and 4 come from [11], which are useful for the
analysis of our algorithm. Let B be a brick. Recall that we use algorihtm PB for
packing a square Q into a brick B and S(Q) denotes the brick which just fits Q.

Lemma 3. If algorithm PB cannot pack a square Q, then all unused bricks in
B are smaller than S(Q), and there is at most one unused brick of area |S(Q)|/2i

for each i = 1, 2,

Lemma 4. If PB algorithm cannot pack Q, then the total area of used bricks is
at least |B| − |S(Q)|.

Lemma 5. Given a brick A, any two squares with a total area of at most |A|/
√

2
can be packed together into A.

Lemma 6. If there is a tiny square in D1 ∪ D2 ∪ B, then the packed area in
E1 ∪ E2 ∪ E3 is greater than x2, where x = 1 − 2

√
2/3.

Proof. In this case, there is at least one tiny square in E3. Otherwise the tiny
square in D1 ∪D2 ∪B would have been packed into E3 by the algorithm. Anal-
ogously, any square in E3 can not be packed into E1 ∪ E2. By Lemma 4, the
packed area in E1 ∪ E2 ∪ E3 is greater than 2x

√
2x/(2

√
2) = x2.

Let m be the counter that the execution pass through Case (3.3),

Lemma 7. In Case (3.3), the packed area in D1 ∪ D2 ∪ B is greater than
1/3 − 2−m/18, the total removed area in Case (3.3) is at most 1/18 + 2−m/36.
Moreover, if m = 5, the packed area in the unit square is greater than 1/3.

Proof. Since Q is a small square, S(Q) is not larger than (
√

2/3, 1/3). In Case
(3.3), the largest one of all t-bricks in D1 ∪ D2 ∪ B is not larger than S(Q).
If there is no n-brick congruent to S(Q) in D1 ∪ D2 ∪ B, then all t-bricks in
D1∪D2∪B are congruent to S(Q). Furthermore the area packed in D1∪D2∪B
is at least 1/3, which causes a contradiction. Hence, there is at least one n-brick
congruent to S(Q) in D1 ∪ D2 ∪ B.

By the algorithm, we always pick the n-brick containing the largest unused
brick, and further remove all squares from it (it becomes a t-brick) and pack
square Q into it. Note that since Q is a small square, the number of unused
bricks S(Q)/2i in D1 ∪D2 ∪B is at most 1 by Lemma 3, for each i ≥ 1, and the
largest one of all unused bricks in D1 ∪ D2 ∪ B is not larger than (

√
2/6, 1/3)

226 X. Han, K. Iwama, and G. Zhang

(whose area is
√

2/18), when m = 0. After Case (3.3) occurs m times, the area
of the largest one of all unused bricks is not greater than (

√
2/18) · 2−m and the

total area of the unused bricks in D1 ∪ D2 ∪ B is less than (
√

2/9) · 2−m, since
the number of every kind of unused brick is at most one. Hence, the packed area
in D1 ∪ D2 ∪ B is greater than

(
2
√

2

3
−

√
2

9
· 1

2m
) · 1

2
√

2
=

1

3
− 1

18
· 2−m.

Next, we estimate the total area which has been removed from the bin, when
we pack the current square Q. Recall that the area of the largest one of unused
bricks in D1 ∪D2 ∪B is not greater than (

√
2/18) · 2−m. Except the largest one,

the total area of unused bricks in D1 ∪ D2 ∪ B is less than (
√

2/18) · 2−m. By
the algorithm, the selected n-brick is emptied and its area is equal to |S(Q)|. By
Lemma 4 and Fact 4, except squares in that removed n-brick, the total area of
squares in D1∪D2∪B is at least (|B∪D1∪D2|−|S(Q)|−(

√
2/18)·2−m)/2

√
2 =

1/3 − |S(Q)|/2
√

2 − 2−m/36. Note that before removing the old squares, the
packed area in the bin is less than 1/3 (otherwise the packing stops). Then
the area packed in that n-brick, i.e., the area that we removed is less than
|S(Q)|/2

√
2 + 2−m/36 ≤ 1/18 + 2−m/36, since |S(Q)| ≤

√
2/9.

If m = 5, the largest one of all unused bricks in D1 ∪ D2 ∪ B is not larger
than brick (

√
2/24, 1/24). Since 1/24 < 1 − 2

√
2/3, there must exist a tiny

square in D1 ∪ D2 ∪ B. By Lemma 6, the packed area in E1 ∪ E2 ∪ E3 is
greater than x2. Therefore, the packed area in the square bin is greater than
1/3 − 2−5/18 + x2 > 1/3.

Lemma 8. If algorithm RSP stops packing, then the area packed in the unit
square is at least 1

3 .

Proof. Let Q be the last square immediately before the packing is terminated.
We will consider all the cases in which the packing is stopped. It is not difficult
to see that in Cases (3.5) and (3.8), when the packing stops, the total area of
two large squares in the bin is greater than 1/3.

Case (3.1). Before packing Q, by Lemma 4, the area of all packed bricks in
D1∪D2∪B is at least 2

√
2/3−|S(Q)|. Except the t-brick of area 2i|S(Q)|, the area

of all packed bricks is at least 2
√

2/3− |S(Q)| − 2i|S(Q)|. So, except the square
S in that t-brick, the packed area in the bin is at least 1/3 − |S(Q)|/(2

√
2) −

2i|S(Q)|/(2
√

2), where i ≥ 2. Since before packing Q, the packing does not
stop, the packed area in the bin is less than 1/3, meaning |S| < (|S(Q)| +
2i|S(Q)|)/(2

√
2). Since |Q| ≤ |S(Q)|/

√
2, we have |S| + |Q| < 2i|S(Q)|/

√
2

(i ≥ 2). By Lemma 5, S and Q can be packed together in the t-brick of area
2i|S(Q)|. After packing Q, the packed area is at least 1/3.
Case (3.2). Before packing Q, the packed area is at least (2

√
2/3−|S(Q)|)/(2

√
2)

by Lemma 4 and Fact 4. If Q can be packed in the t-brick of area 2|S(Q)|, then
after packing Q, the area packed in the square bin is at least 1/3. Otherwise,
by Lemma 5, we have |P | + |Q| > 2|S(Q)|/

√
2, where P is the square in that

Online Removable Square Packing 227

t-brick. Except P and Q, by Lemma 4 and Fact 4, the area packed in the bin is
at least 1/3 − |S(Q)|/(2

√
2) − 2|S(Q)|/(2

√
2). If the packed area in any n-brick

congruent to S(Q) is not less than |S(Q)|/(2
√

2), then the total area packed in
the bin is greater than 1/3. Because we pick the one whose packed area is the
smallest among all n-bricks congruent to S(Q), the area packed in that n-brick
is less than |S(Q)|/(2

√
2). So, after removing all squares in that n-brick and

packing Q into it, the total area packed in the bin is greater than

(
1

3
− |S(Q)|

2
√

2
− 2|S(Q)|

2
√

2
) +

2|S(Q)|√
2

− |S(Q)|
2
√

2
=

1

3
.

Case (3.4). By using the techniques mentioned in Subsection 4.3, we can guar-
antee that at any moment, if there are small squares in brick B, then at least one
of four corners of brick B is occupied by a small square. Moreover, it is possible
to pack Q together with such a small square into B according to Lemma 5. By
Lemma 4 and Fact 4, the total area of the squares in D1 ∪ D2 and the small
square in B is at least 1/9. Hence, the packed area in the square bin is greater
than 1/9 + 2/9 = 1/3.
Case (3.6). The area of the smaller one of the two large squares must be smaller
than 1/6, and that smaller square is in the bottom of the bin. Since the side
length of the current item Q is less than

√
3/3 < (1 −

√
6/6), Q can be packed

in the remaining space of the bin. After packing Q, the packed area in the bin
is at least 1/3.
Case (3.7). This case is similar with Case (3.6). After packing Q, the area in
the bin is at least 1/3.

Lemma 9. If there are no more squares coming, the competitive ratio of RSP
is at most 3.

Proof. Case (3.5) and Case (3.8). In both cases, B contains exactly one large
square before consider Q. It shows that Cases (3.1)-(3.3) and (3.9) have not
yet occurred. In other words, no small squares have been removed so far. Note
that the large square in B cannot be packed together with Q. Recall that the
algorithm removes the larger one, whose area is greater than 1/4 but smaller
than 1/3, while the area of the packed one is greater than (1−

√
3/3)2 > 1/6. If

the packing stops after this step, the packed area is greater than z + 1/6, where
z is the total area of all the small squares in the instance. Note that when Case
(3.5) or Case (3.8) occurs, the removed one is always larger. It means that any
two large squares cannot be packed together in the bin and the larger square
has an area less than 1/3. Then the packed area by an optimal algorithm is less
than z +1/3. It follows that the competitive ratio of algorithm RSP is less than
2 in this case.
Case (3.9). In this case, there are some small squares in B, before considering
Q. By Lemma 4 and Fact 4, the total area of the squares in D1 ∪ D2 is greater
than 1/18. And, there are two subcases. Let z be the total area of the squares
in the bin and let y be the total area of all squares removed in Case (3.3).

First consider the case of one large square in B. If Case (3.5) or Case (3.8)
has occurred before, the area of the large square in B is at least 1/6. After

228 X. Han, K. Iwama, and G. Zhang

packing Q, the packed area will exceed 1/3 (= 1/18+1/6+1/9). If neither Case
(3.5) nor Case (3.8) has occurred, we have not removed any large square so far.
After packing Q, the packed area in the bin is at least 1/3−2−m/18. Obviously,

z ≥ 1/3 − 2−m/18. By Lemma 7, if m > 0, then y ≤
∑m−1

i=0 (1
18 + 1

36 · 2−i).
Otherwise y = 0. We can assume that m ≤ 4. The reason is that if m ≥ 5,
by Lemma 7, the packed area is greater than 1/3 and the packing would have
stopped at Case (1.1).

Note that each subcase of Case (3.9) occurs at most once. Recall that the
packed area in D1 ∪ D2 is at least 1/18. In the first subcase of Case (3.9), the
area of the squares removed from the n-brick is less than 1/6, since otherwise
the packed area is over 1/3. In the second subcase, the total area packed in
brick B is less than 5/18. Then the area of the squares removed is less than
5/36. With calculations for each 0 < m ≤ 4, the competitive ratio is less than
(z + y + 5/36 + 1/6)/z < 3.

Now let us consider the latter case of Case (3.9), i.e., there are only small
squares in B. Then neither of Cases (3.5), (3.8) and the first subcase of Case
(3.9) has occurred. Analogously as the first subcase, it can be shown that the
competitive ratio is at most (z + y + 5/36)/z ≤ 3.
Case (3.3). In this case, we claim that neither of Cases (3.5), (3.8) and (3.9) has
occurred so far. If it is not the case, then there is at least one large square in the
bin, and the packing would have stopped in Case (3.1) or Case (3.2). Therefore,
no large squares have been considered so far. As in the proof for Case (3.9), let z
be the total area of the squares in the bin and y be the total area of all squares
removed. Then z ≥ 1/3 − 2−m/18 and y ≤

∑m−1
i=0 (1/18 + 2−i/36), for m ≤ 4.

The competitive ratio is at most (z + y)/z < 3.

The following theorem immediately follows from lemmas 8 and 9.

Theorem 4. The competitive ratio of RSP is 3.

5 A PTAS for Offline Packing

The problem is, given a set S of n squares of side length at most one, how to pack
a subset of S into a fixed rectangle of size (1×h) so that the packed area becomes
maximum (previously h was 1, which can be generalized). The algorithm is based
on the same idea as [5]: (i) Select an integer k such that k > δ(1 + h), which
is associated with the error bound of the PTAS. (ii) The region (0,1] is divided
into k + 2 sub-intervals, R0, R1, · · · , Rk+1, where Ri = (Pi, Pi−1], R0 = (P0, 1]

and Rk+1 = (0, Pk] and Pi = k−3i

and P0 = 1/k, 1 ≤ i ≤ k. Decompose S
into S0, · · · , Sk+1 such that Q ∈ Si if and only if its side length is in Ri. |Si|
denotes the total area of squares in Si. (iii) Pack all squares in S−S0 by NFDH.
If there remain one or more squares unpacked, then output that packing. (iv)
Otherwise, i.e., if all squares in S−S0 are packed, then find an index i such that
|Si| = min{|S1|, · · · , |Sk+1|}. Let Xl = S0∪· · ·∪Si−1 and Xs = Si+1∪· · ·∪Sk+1.
(Here it is important to remove Si, which makes a “gap” between large and
small items.) (v) Obtain an optimal packing for the “large” items in Xl using

Online Removable Square Packing 229

the exhaustive method [5]. The unpacked region in the bin can be decomposed
into a limited number of rectangles. Then the “small” items in Xs are packed
into those rectangles (in an arbitrary order) by NFDH.

Theorem 5. The worst case ratio of the algorithm is (1 + 6(1 + h)/k). (The
proof is similar to [5] and may be omitted.)

6 Concluding Remarks

As mentioned earlier, it is still open if we can achieve the bound of Theorem
1 without using repacking. Our algorithm RSP borrows the concept of brick.
If we stay on this line, then it seems hard to obtain a better bound than 2

√
2.

Extending to online rectangle packing with reasonable restrictions should also
be nice future work.

References

1. N. Bansal and M. Sviridenko, New approximability and inapproximability results
for 2-dimensional bin packing, SODA 2004, 189-196.

2. A. Borodin, M. N. Nielsen, C. Rackoff: (Incremental) Priority agorithms. Algorith-
mica 2003,37(4): 295-326.

3. A. Caprara and M. Monaci, On the two-dimensional knapsack problem, Operations
Research Letters 2004, 32: 5-14.

4. M. Caramia, S. Giordan, and A. Iovanella, An on-line algorithm for the rectangle
packing problem with rejection, Proc. WEA 2003, LNCS 2647, 2003, pp. 59-69.

5. J.R. Correa and C. Kenyon, Approximation schemes for multidimensional packing,
SODA, 179-188, 2004.

6. L. Epstein and R. van Stee, Optimal online bounded space multidimensional pack-
ing, SODA 2004, 207-216.

7. C.E. Ferreira, E.K. Miyazawa, and Y. Wakabayashi, Packing squares into squares,
Pesquisa Operacional, 1999, 19: 223-237.

8. A.Fiat and G.J.Woeginger, Online Algorithms, LNCS 1442 1998.
9. K. Iwama and S. Taketomi, Removable online knapsack problems, Proc.

ICALP2002, LNCS 2380, pp. 293-305.
10. K. Jansen and G. Zhang, On rectangle packing: maximizing benefits, SODA 2004,

197-206.
11. J. Januszewski and M. Lassak, On-line packing sequences of cubes in the unit cube,

Geometriae Dedicata 1997, 67: 285-293.
12. Y. Kohayakawa, F.K. Miyazawa, P. Raghavan, and Y. Wakabayashi, Multidimen-

sional cube packing, Algorithmica, 40(3) 173-187,2004.
13. J.Y.-T. Leung, T.W. Tam, C.S. Wong, G.H. Young, and F.Y.L. Chin, Packing

squares into a square, J. Parallel Distrib. Comput. 1990, 10: 271-275.
14. A.Meir and L. Moser, On packing of squares and cubes, Journal of combinatorial

theory, 1968, 5: 126-134.
15. P. Sanders, N. Sivadasan, M. Skutella, Online Scheduling with Bounded Migration,

ICALP 2004,1111-1122 .
16. S.S. Seiden and R. van Stee, New bounds for multidimensional packing, Algorith-

mica 2003, 36: 261-293.

The Online Target Date Assignment Problem�

S. Heinz1, S.O. Krumke2, N. Megow3, J. Rambau4,
A. Tuchscherer1, and T. Vredeveld5

1 Konrad-Zuse-Zentrum für Informationstechnik Berlin, Department Optimization,
Takustr. 7, 14195 Berlin, Germany
{heinz, tuchscherer}@zib.de

2 University of Kaiserslautern, Department of Mathematics,
P.O. Box 3049, Paul-Ehrlich-Str. 14, 67653 Kaiserslautern, Germany

krumke@mathematik.uni-kl.de
3 Technische Universität Berlin, Institut für Mathematik,

Strasse des 17. Juni 136, 10623 Berlin, Germany
nmegow@math.tu-berlin.de

4 Universität Bayreuth, Lehrstuhl für Wirtschaftsmathematik,
95440 Bayreuth, Germany

Joerg.Rambau@uni-bayreuth.de
5 Maastricht University, Department of Quantitative Economics,

P.O. Box 616, 6200 MD Maastricht, The Netherlands
T.Vredeveld@KE.unimaas.nl

Abstract. Many online problems encountered in real-life involve a two-
stage decision process: upon arrival of a new request, an irrevocable first-
stage decision (the assignment of a specific resource to the request) must
be made immediately, while in a second stage process, certain “subin-
stances” (that is, the instances of all requests assigned to a particular
resource) can be solved to optimality (offline) later.

We introduce the novel concept of an Online Target Date Assignment
Problem (OnlineTDAP) as a general framework for online problems
with this nature. Requests for the OnlineTDAP become known at cer-
tain dates. An online algorithm has to assign a target date to each re-
quest, specifying on which date the request should be processed (e. g., an
appointment with a customer for a washing machine repair). The cost
at a target date is given by the downstream cost, the optimal cost of
processing all requests at that date w. r. t. some fixed downstream offline
optimization problem (e. g., the cost of an optimal dispatch for service
technicians). We provide general competitive algorithms for the Online-
TDAP independently of the particular downstream problem, when the
overall objective is to minimize either the sum or the maximum of all
downstream costs. As the first basic examples, we analyze the compet-
itive ratios of our algorithms for the particular academic downstream
problems of bin-packing, nonpreemptive scheduling on identical parallel
machines, and routing a traveling salesman.

� Supported by the DFG Research Center Matheon Mathematics for key technologies
in Berlin.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 230–243, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Online Target Date Assignment Problem 231

1 Introduction

Many real-world online problems exhibit a two-stage structure. In a first stage, an
immediate online action has to be taken, while in a second stage “certain offline
subproblems” (which we will refer to as downstream optimization problems) can
be solved to optimality offline. In this paper we provide a general framework for
online problems of this type, the Online Target Date Assignment Problem (On-
lineTDAP).

As an illustration, consider the following scenario arising in the dispatching of
service technicians. When a customer calls in, requesting a maintenance service
for his washing machine, one of the service technicians has to visit the customer
at its location and fix the problem. This service can be done within a certain time
frame, say within a week. The customer must be given the day (and possibly
a more narrow time window) when the technician will arrive, while he is on
the phone and without knowledge of future service requests, that is, it must be
given online. However, until the promised service day arrives, the decision which
service technician to send and in which order the customers should be visited can
be safely deferred. In other words, the exact scheduling and routing of service
technicians for a fixed day can be done optimally offline at the night before.

In this paper, we introduce structures that account for the following di-
chotomy in many day-to-day resource dispatching problems: First, a resource
has to be assigned to a request (e. g., assign a service vehicle to a repair request)
and then the processing of all requests assigned to a certain resource can be op-
timized (find an optimal tour for each service vehicle). The assignment decisions
influence the overall cost because they determine the input and thus the optimal
costs of the single resource dispatching problems, the downstream optimization
problems.

Offline, both stages can be integrated to obtain an overall optimal solution,
even in many practical applications. However, if for each request the first deci-
sion, i.e., the assignment decision, has to be made online, the situation changes:
the resulting problem is not offline anymore, but it is neither just the online
version of the integrated dispatching problem; it is something in between. In
stochastic programming the optimal decisions of a second stage optimization
are called a recourse. In a way, in this paper we introduce competitive analysis
with recourse.

Our object of study can be seen as the most extreme distinction between
the online requirement of the first decision and the downstream optimization:
We present a model where the first decision has to be made immediately and
irrevocably before the next request is revealed (no knowledge about the input),
while the downstream optimization can be carried out offline (complete knowl-
edge about the input). The resource that has to be assigned to requests in our
main actor, the OnlineTDAP, is a target date, a date at which the service
should take place.

There are many variants conceivable of this concept: if the current day is
allowed as a target date then the downstream optimization becomes an online
problem as well, although a large portion of the data is known before the target

232 S. Heinz et al.

date. It is also possible to relax the online requirement of the assignment decision:
all requests on a single day might be collected, and the target dates are chosen
and communicated at the end of the day. And there are, of course, variants where
resources other than dates have to be assigned online (machines, vehicles) before
a single resource offline problem has to be solved.

Problems of this type are abundant in reality, and very often the first deci-
sion is online. There is, however, almost no theoretical background published on
this topic for the case where no stochastic information about future requests is
available. And many of the stochastic models, e. g., Markov Decision Processes
[5], cannot be solved for practical problem sizes. Therefore we feel that the in-
vestigation of the most basic structures in such problems seems adequate. Thus,
we get started in this paper by investigating competitive online algorithms for
the OnlineTDAP w. r. t. to classical downstream problems.

We think that the introduction of the OnlineTDAP will foster various lines
of research, e. g., dealing with competitive analysis for OnlineTDAP w. r. t.
various other, maybe more sophisticated downstream problems, with variants of
the OnlineTDAP itself, but also with decision support methods for variants of
the OnlineTDAP outside competitive analysis.

Problem description. An instance of the OnlineTDAP consists of a sequence
of requests σ = r1, r2, . . . and a downstream problem Π , an offline optimization
problem for which arbitrary subsets of σ are feasible inputs.

Each request ri has an integral release date t(ri) and must be assigned immedi-
ately and irrevocably to a target date in the time period t(ri)+1, . . . , t(ri)+δ(ri),
where δ(ri) is the allowed time for deferring the service of request ri (one week in
our service technician scenario), which is also revealed upon arrival of the request.
In this paper we consider only the case of uniform deferral times, that is, δ(ri) = δ
for all requests ri, where 1 ≤ δ < +∞. For an algorithm Alg we denote the par-
ticular date to which request ri is assigned by Alg[ri] ∈ {t(ri)+1, . . . , t(ri)+δ}.

A solution for an OnlineTDAP w. r. t. to downstream problem Π is feasible if

– each request is assigned to a feasible target date, and
– for each single target date, the corresponding instance of Π is feasible, too.

Let σd be the subset of requests assigned to date d by an online algorithm Alg.
The optimal cost of Π on σd is called downstream cost of Alg at date d, and
we denote it by downcost(σd).

The overall online cost Alg(σ) of an online algorithm Alg is defined as either
the sum of the incurred downstream costs over all dates (min-total problems), or
the maximum of the incurred downstream costs over all dates (min-max prob-
lems). The goal is to find online algorithms whose competitive ratios are as small
as possible. An online algorithm Alg is called c-competitive if the cost of Alg is
never larger than c times the cost of an optimal offline solution. The competitive
ratio of Alg is the infimum over all c ≥ 1 such Alg is c-competitive [2].

Our results. The OnlineTDAP provides a general framework for a large class
of online problems and gives a novel view on online optimization. We provide

The Online Target Date Assignment Problem 233

Table 1. Main bounds on the competitive ratio of best possible deterministic online
algorithms for the OnlineTDAP with a certain downstream problem minimizing the
total or maximum downstream cost

downstream problem lower
bound

upper
bound

bin-packing 3/2 2
scheduling

√
2 2

traveling salesman
√

2 2

Minimizing the total downstream cost
(min-total objective).

downstream problem lower
bound

upper
bound

bin-packing 2 min{4, δ}
scheduling 3/2 3 − 1/δ
traveling salesman 2 2δ − 1

Minimizing the maximum downstream
cost (min-max objective).

general competitive online algorithms for the OnlineTDAP and analyze them
in greater detail w. r. t. classical combinatorial downstream problems such as
bin-packing [4, SR1], nonpreemptive parallel machine scheduling [4, SS8] and
the traveling salesman problem [4, ND22]. The algorithms we propose do not
depend on the downstream problem (although the analysis does). We emphasize
that the particular downstream problems discussed in this paper should be seen
mainly as illustrating examples for the general framework. Concerning standard
online investigations on these problems, [3] gives surveys on online bin-packing
and scheduling; the online traveling salesman problem has been considered in [1].

Within the OnlineTDAP framework, our results are online algorithms and
lower and upper bounds on their performance guarantees, the competitive ratio,
obtained by classical competitive analysis for online algorithms (see, e. g. [2]). In
Section 2 we present a 2-competitive algorithm for the min-total objective, i. e.,
the objective to minimize the total cost summed over all target dates.

In Section 3 we consider min-max problems for which the objective is to
minimize the maximum downstream cost that occurs on a target date. Here, we
give a general online assignment algorithm that we prove to be 4-competitive
for the OnlineTDAP with the bin-packing downstream problem and which
is 3-competitive for the scheduling setting. Our main results are summarized in
Table 1. Finally, we observe for both objective functions that special profiles for
the downstream problem, as e. g., (un-) bounded number of machines or bins
per target date, lead to trivial problems or prevent any deterministic online
algorithm from achieving a constant competitive ratio.

2 Minimizing Total Downstream Cost

In this section, we consider the OnlineTDAP with the objective to minimize the
total downstream cost summed up over all target dates (min-total objective).
Particular downstream problems we deal with are bin-packing, scheduling on
parallel machines, and the traveling salesman problem.

We first present our main competitiveness result which is an online algorithm
formulated independently of the downstream problem. Let us say that a target
date is used, if a request has been assigned to it.

234 S. Heinz et al.

Algorithm PackTogetherOrDelay (Ptd) Assign a request r to the earliest
date in the feasible range t(r) + 1, . . . , t(r) + δ which is already used. If no
used target date is feasible for request r, then assign it to the latest feasible
target date, that is, to t(r) + δ.

The above algorithm always finds a feasible solution under the assumption that
the amount of requests that can be assigned to the same target date is not
restricted (we call this the case of unlimited resources). Under this assumption
at any moment in time at most one feasible target date is used by Ptd.

Theorem 1. Consider the OnlineTDAP w. r. t. downstream problem Π with
the min-total objective. Assume that there are unlimited resources in Π and
suppose that the following properties hold for any subinstance σ̄ of σ:

i. The optimal offline cost for the downstream problem Π is a monotonously
increasing function, that is, Opt(σ̄) ≤ Opt(σ) (i. e., Π is monotone).

ii. For each disjoint partition σ(1), . . . , σ(k) of the subsequence σ̄ the inequality
downcost(σ̄) ≤

∑k
i=1 downcost(σ(i)) holds (i. e., Π allows for synergy).

Then, algorithm Ptd is 2-competitive.

Proof. For a given sequence of requests σ consider the target dates d1 < d2 <
. . . < dk that Ptd chooses. Denote by σodd (and σeven) the subsequence of
requests that the algorithm assigns to target dates di with odd (respective even)
index i.

Observe that, if the input to Ptd were solely σodd or σeven, then each request
would still be assigned to the same target date as when operating on σ. Therefore,

Ptd(σ) = Ptd(σodd) + Ptd(σeven). (1)

Moreover, we know by definition of the algorithm that the difference between
any two used target dates is at least δ. Thus, the distance between any two dif-
ferent target dates designated for two requests of the subsequence σodd (or σeven,
respectively) is at least 2δ. This implies that no two requests of the same sub-
sequence σodd (or σeven, respectively) that have not been assigned to the same
target date share a single feasible target date. Therefore, no algorithm can assign
such two requests to the same target date. With property (ii) we conclude that

Ptd(σodd) = Opt(σodd) and Ptd(σeven) = Opt(σeven).

It follows with (1) and the monotonicity condition (i) that we have online cost

Ptd(σ) = Opt(σodd) + Opt(σeven) ≤ 2Opt(σ). ��

Note, that in the case that property (ii) only holds in a relaxed version with a

factor α, i. e., downcost(σ̄) ≤ α
∑k

i downcost(σ(i)), Ptd is 2α-competitive.
We will now demonstrate the power of Theorem 1 by applying it to various

instantiations of the OnlineTDAP.

The Online Target Date Assignment Problem 235

2.1 Downstream Bin-Packing

In bin-packing n items with sizes s1, . . . , sn need to be packed in unit sized bins.
The objective is to find a packing such that the total size of the items packed
in one bin does not exceed the bin’s capacity and the total number of bins
needed to pack the items is minimized. In OnlineTDAP w. r. t. bin-packing, a
request r = (t(r), s(r)) is given by its release date t(r) and its size 0 < s(r) ≤ 1.
We assume that the number of available bins per day is not bounded because
this would disable any deterministic online algorithm to guarantee a feasible
solution. The objective is to find an assignment of requests to feasible target
dates that minimizes the total sum of used bins of all target dates.

The following theorem gives a lower bound on the competitive ratio of any
deterministic online algorithm.

Theorem 2. No deterministic online algorithm for OnlineTDAP w. r. t. bin-
packing minimizing the min-total objective has a competitive ratio less than 3/2.

Proof. The adversarial sequence starts with a request r1 released at time 0 with
size s(r1) < 1/2. Consider an online algorithm, Alg, that does not assign this
request to its deadline δ. Then at time Alg[r1] a second request is released with
size s(r2) = 1 − s(r1). Alg cannot assign this request to the same date as the
first request and therefore it needs two bins, whereas the optimum needs only
one.

Now consider an online algorithm Alg that assigns the first request to its
deadline δ. Then at time t(r2) = 1 a second request with size s(r2) = s(r1) is
released. If the algorithm does not pack this item with the first request, then it
needs two bins and the optimum needs only one. Otherwise, at time t(r3) = δ−1
and t(r4) = δ two requests are released both with size s(r3) = s(r4) = 1− s(r1).
To pack these items, Alg needs two extra bins, thus in total three bins, whereas
the optimum would pack request r1 and r3 to date δ and item r2 and r4 to δ +1,
needing only two bins. ��

Since the properties of Theorem 1 are met, we immediately have the following
result.

Theorem 3. The competitive ratio of Ptd minimizing the total number of used
bins for OnlineTDAP w. r. t. bin-packing is 2.

That Ptd cannot achieve a better competitive ratio than 2, can be shown by
the following instance. For given k ∈ N, k ≥ 3, let ε < 1/(2k − 4) and σ =
σ(1) ∪ . . . ∪ σ(k). σ(1) consists of the following three requests:

r1 = (0, 1), r2 = (1, 1/2− ε), r3 = (δ, 1/2 + ε).

For i = 2, . . . , k, the subsequence σ(i) is defined by

σ(i) = ((iδ − 1, 1/2 + (i − 2)ε), (iδ, 1/2− (i − 2)ε)).

236 S. Heinz et al.

The cost of Ptd on this sequence is Ptd(σ) = 2k + 1. On the other hand, the
number of required bins of the optimal offline algorithm is Opt(σ) = k + 1. By
letting k → ∞, the lower bound follows.

We conjecture that the following online algorithm, PackFirstOrDelay, has
a better performance guarantee than Ptd although the analysis for the general
problem seems more difficult.

Algorithm PackFirstOrDelay (Pfd) If there is a used target date to which
the current request r can be assigned without increasing the number of
necessary bins, then the earliest of these dates is chosen. Otherwise, assign
the latest possible date, t(r) + δ.

This algorithm achieves a better solution on the lower bound instance for Ptd
from above. However, there exist instances for which Pfd performs worse than
Ptd, as for example: r1 = (0, 2/5), r2 = (0, 1/5), r3 = (0, 1/5), r4 = (δ −
1, 2/5), r5 = (δ − 1, 2/5), and r6 = (δ − 1, 2/5).

If all items have identical size the problem becomes much easier.

Theorem 4. Consider the OnlineTDAP w. r. t. bin-packing with the min-total
objective. Then, Pfd is optimal if all item sizes are equal.

Proof. Assume that the bin-packing instance at each date is solved in such a way
that at most one bin is partially filled. Given a sequence σ, let Pfd(σ) = f + p,
where f is the number of full bins and p is the number of partially filled bins.
Let d0 < d1 < . . . < dp be the dates on which Pfd has partially filled bins.
Let σ′ be the subsequence consisting of all requests that are packed in a full
bin and for each partially filled bin the request that opened this bin. Note that
Pfd(σ′) = Pfd(σ).

We partition σ′ into subsequences σ� consisting of all requests r ∈ σ′ with
d�−1 ≤ t(r) < d�. As the last request in σ� and the first request in σ�+1 are
both assigned using the delay tactic of Pfd, we know that there is no overlap in
the feasible target dates of requests of different subsequences. Hence, Opt(σ′) =∑

� Opt(σ�). Moreover, Pfd packs the items of a subsequence in all but one
fully filled bins and thus Pfd(σ�) = Opt(σ�). Combining these equalities, we
get

Pfd(σ) = Pfd(σ′) =
∑

�

Pfd(σ�) =
∑

�

Opt(σ�) = Opt(σ′) ≤ Opt(σ).

��

2.2 Downstream Parallel-Machine Scheduling

In this section, we consider the OnlineTDAP w. r. t. nonpreemptive machine
scheduling of jobs on identical parallel machines to minimize the makespan, i. e.,
the latest completion time of all jobs on all machines of one date. The overall
objective is now to minimize the sum of makespans over all target dates. For
convenience we will use standard scheduling terminology, i. e., a request r is a

The Online Target Date Assignment Problem 237

job that has a processing time denoted by p(r). We denote a request by an
ordered pair of release date and processing time, r = (t(r), p(r)). The number
of machines available per date is denoted by m. Note, that in case m = 1, the
problem is trivial since any target date assignment yields a total downstream
cost of

∑
r∈σ p(r), for any sequence σ. Therefore, we assume for the remainder

of this section that more than one machine are available each date.
Consider the general online algorithm Ptd. Also for this setting with the

scheduling downstream problem, Theorem 1 applies and Ptd is 2-competitive.
The analysis is tight as the following sequence shows:

r1 = (0, ε), r2 = (Ptd[r1] − 1, 1), r3 = (Ptd[r1], 1),

where ε < 1. The costs incurred by the algorithm are Ptd(σ) = 2, whereas
optimal offline costs are Opt(σ) = 1 + ε. Thus, we have shown:

Theorem 5. The deterministic online algorithm Ptd has a competitive ratio
of 2 for the OnlineTDAP for downstream scheduling on identical parallel ma-
chines (m > 1) subject to minimize the sum of makespans induced on all target
dates.

Moreover, we obtain the following general lower bound result for this problem
setting.

Theorem 6. No deterministic online algorithm can achieve a competitive ratio
less than

√
2 for the OnlineTDAP minimizing the total downstream cost caused

by nonpreemptive scheduling on more than one machine.

Proof. In order to obtain this bound consider for a given online algorithm Alg
the following sequence:

r1 = (0, 1), r2 = (Alg[r1] − 1, 1 +
√

2).

If Alg assigns a target date different from Alg[r1] to request r2, then no further
requests are given. Thus, Alg’s cost is Alg(r1, r2) = 2 +

√
2, whereas an offline

optimum yields a solution with cost Opt(r1, r2) = 1 +
√

2 , which gives a ratio
of

√
2.

Assume that Alg assigns request r2 to the same date as r1, and a third
request r3 = (Alg[r1], 1 +

√
2) is given. Then the cost of the online algorithm

is 2 + 2
√

2, whereas the optimal offline costs are 2 +
√

2. Again, the ratio of the
incurred costs of Alg and Opt is

√
2. ��

Note that the lower bound construction heavily depends on different process-
ing times of jobs. Let us briefly consider the restricted setting where we as-
sume that all requests have equal processing time. In this case, we can easily
transform the OnlineTDAP w. r. t. parallel machine scheduling into an On-
lineTDAP w. r. t. bin-packing: Each request (t(rj), p(rj)) is transformed into a
request (t(rj), s(rj) = 1/m), i. e., to each job corresponds an item of size 1/m,
where m is the number of machines in the scheduling problem and we assume

238 S. Heinz et al.

unit bin capacity in the bin-packing problem. Both problems are equivalent;
therefore the results from the previous section carry over, and thus, we have
with Pfd an optimal online algorithm.

Corollary 1. Pfd is an optimal algorithm for the OnlineTDAP with down-
stream problem scheduling of jobs with equal processing times for the min-total
objective.

2.3 Traveling Salesman Problem

In this section, we consider the OnlineTDAP with the downstream problem
of finding a minimal tour of a traveling salesman problem, i. e., for a given set
of points in a metric space (request set) a tour has to be found, from the origin
through all points ending in the origin. The overall objective is now to minimize
the sum of the optimal tour lengths on all target dates.

For this problem setting we provide the following general lower bound.

Theorem 7. No deterministic online algorithm has a competitive ratio less
than

√
2 for the OnlineTDAP w. r. t. a traveling salesman problem on R+

as the downstream problem minimizing the total downstream cost.

Proof. Consider the following simple instance: At time 0, request r1 with dis-
tance 1 from the origin is given. In order to be better than 2-competitive an
algorithm has to assign the request to target date δ, because otherwise an iden-
tical request would be given at the chosen target date. Now, a second request r2

appears at time 1 with distance 1 +
√

2 to the origin. If the algorithm assigns it
to some target date different from δ, then no more requests are released and the
ratio of costs of an online algorithm to those of the optimum is

√
2. Otherwise,

a third request at the same location of request r2 is released at time δ. In this
case the ratio of costs is

√
2. ��

As before, the conditions in Theorem 1 are also met for the traveling salesman
problem as the downstream problem.

Theorem 8. Ptd has a competitive ratio of 2 for the OnlineTDAP w. r. t.
minimizing the tour length in a traveling salesman problem as a downstream
problem for the min-total objective.

In order to show that this result is tight, consider two requests released at time 0
and 1, with distances ε and 1 from the origin, respectively. Let the distance
between r1 and r2 be equal to the sum of their distances to the origin, 1 + ε. If
a third request is released at time δ in exactly the same position as r2, then the
ratio of total sum of route length for Ptd to Opt tends to 2 for ε → 0.

3 Minimizing Maximum Downstream Cost

In this section, we consider OnlineTDAP subject to minimize the maximum
downstream cost over all target dates for the downstream problems bin-packing,
scheduling on parallel machines, and the traveling salesman problem.

The Online Target Date Assignment Problem 239

As in the previous section, we firstly present a general online algorithm that
is independent of the specific downstream problem.

Algorithm Balance (Bal) Assign a given request to the earliest feasible tar-
get date such that the increase in the objective value, i. e., the maximum
downstream cost over all dates, is minimal.

Notice that processing each request requires Bal to solve several instances of the
downstream problem optimally. However, computing optimal solutions may not
be feasible under real-time aspects because of the complexity of the downstream
problem. But in the analysis of our algorithm we only use such upper bounds on
the offline optimum that are also satisfied by simple approximation algorithms.
Therefore, all results presented in this section still hold true if the optimization
is done approximately and all algorithmic computations can be accomplished in
polynomial time.

3.1 Downstream Bin-Packing

We analyze the OnlineTDAP with bin-packing as downstream problem subject
to minimizing the maximum number of used bins over all target dates. The
notation and downstream problem definition is similar as in Section 2.1.

Our first result is a general lower bound on the competitive ratio of any online
algorithm.

Theorem 9. For the OnlineTDAP with min-max objective for downstream
bin-packing no deterministic online algorithm has a competitive ratio of less
than 2.

Proof. In order to obtain this bound we consider a sequence σ with the following
two first requests: r1 = (0, ε) and r2 = (0, ε) for some ε < 1/2.

If the considered online algorithm Alg assigns the same target date to both
requests, then sequence σ is completed by the requests:

r3 = (0, 1 − ε), r4 = (0, 1 − ε), rj = (0, 1) 5 ≤ j ≤ δ + 2.

Obviously, we have Alg(σ) ≥ 2 and Opt(σ) = 1.
Suppose now that the online algorithm assigns different target dates to the

requests r1 and r2, then the following additional requests are given:

r3 = (0, 1 − 2ε), rj = (0, 1) 4 ≤ j ≤ δ + 2.

Again, any deterministic online algorithm is forced to open at least two bins on
some date, i. e., Alg(σ) ≥ 2, whereas the optimum has only cost Opt(σ) = 1.

��
Next we analyze the algorithm Bal for the OnlineTDAP with downstream
bin-packing.

Theorem 10. The algorithm Bal is 4-competitive for the OnlineTDAP with
downstream bin-packing subject to minimizing the maximum number of used bins
over all target dates.

240 S. Heinz et al.

Proof. The crucial observation is the following: Given a request r, the total size
of all items assigned by Bal within the time frame t(r)+1, . . . , t(r)+δ is bounded
from below by half the number of bins required, whenever more than one bin is
used in this period of dates.

This claim can be shown by induction on the number of requests assigned
to any of the considered dates. Obviously, the claim holds when none of the
considered dates has yet been used. Assume that the claim is true after k requests
have been assigned to the dates t(r) + 1, . . . , t(r) + δ and let rk+1 be another
request. If s(rk+1) ≥ 1/2, the claim obviously also holds after assigning rk+1.
So assume that s(rk+1) < 1/2. If Bal can assign rk+1 to some date without
increasing the number of used bins at that date, we are also done. But if Bal
needs to use a new bin at the assigned date, we know that previously the load of
each bin at the dates t(r) + 1, . . . , t(r) + δ was at least 1− s(rk+1) > 1/2, which
proves the claim.

Now we can prove that Bal is 4-competitive. Let rk be the first request
in a given sequence σ such that the maximum downstream cost is attained,
i. e., Bal(r1, . . . , rk) = Bal(σ). Notice that the assigned target date for rk is
Bal[rk] = t(rk) + 1. Let σ̄ be the subsequence of all requests from σ up to rk

that have been assigned a target date d ≥ t(rk) + 1. On the one hand, we have:

Opt(σ) ≥ 1

2δ − 1

∑
r∈σ̄

s(r) >
1

2δ

∑
r∈σ̄

s(r). (2)

On the other hand, Bal uses in total δ(Bal(σ)− 1) + 1 bins in the time period
from t(rk) + 1 to t(rk) + δ. Since we may assume Bal(σ) > 1 (otherwise there
is nothing to show), the sum of all item sizes assigned to theses dates is at least
half the number of bins required by Bal. This implies,

1

2
(δ(Bal(σ) − 1) + 1) ≤

∑
r∈σ̄

s(r).

Together with (2), we can bound the cost of Bal by

Bal(σ) ≤ 2

δ

∑
r∈σ̄

s(r) + 1 − 1

δ
< 4Opt(σ) + 1 − 1

δ
.

Finally, the integrality of Bal(σ) and Opt(σ) gives Bal(σ) ≤ 4Opt(σ). ��

For small values δ the FirstFit Algorithm that assigns a given request r to
its earliest feasible target date t(r) + 1, improves the competitiveness result of
Theorem 10. It is easy to see that FirstFit has a competitive ratio of δ.

As in Section 2.1, the situation improves significantly for equal item sizes.

Theorem 11. The algorithm Bal is 2-competitive for the OnlineTDAP with
downstream bin-packing subject to minimizing the maximum number of used bins
over all target dates if all requests have equal sizes.

The Online Target Date Assignment Problem 241

Proof. Let rk be the first request in a given sequence σ such that the maximum
downstream cost is attained, i. e., Bal(r1, . . . , rk) = Bal(σ). Moreover consider
on date t(rk) + 1 an optimal packing which only uses one bin partially. With
respect to such an optimal packing all bins at the dates d > t(rk) except one on
the date t(rk) + 1 are filled with a maximum number of items, because of equal
item sizes. Since Opt requires the same number of bins distributed onto at most
2δ − 1 dates, we have

Opt(σ) ≥ 1

2δ − 1
δ(Bal(σ) − 1) >

1

2
(Bal(σ) − 1).

This implies Bal(σ) < 2Opt(σ)+1, which gives the theorem by the integrality
of Bal(σ) and Opt(σ). ��

Theorem 12. For the OnlineTDAP with min-max objective for downstream
bin-packing where all requests have equal sizes, no deterministic online algorithm
has a competitive ratio of less than 3/2.

Proof. Let s denote the size of all requests, and consider an arbitrary online
algorithm Alg and the following sequence σ of requests. δ�1/s� requests are
given at date 0. In order to achieve a competitive ratio better than 2, Alg must
not use more than one bin each date. Next, at date 1 additionally (δ + 2)�1/s�
requests are given, which gives Alg(σ) ≥ 3 and Opt(σ) = 2. ��

3.2 Downstream Parallel-Machine Scheduling

In this section we consider the OnlineTDAP w. r. t. nonpreemptive machine
scheduling on parallel machines subject to minimize the maximum makespan
over all target dates. Notations and the exact downstream problem definition is
used as in Section 2.2. Note, that if an infinite number of machines is available
at each date, i. e., m = ∞, then the problem becomes trivial since any feasible
solution yields a downstream cost of maxr∈σ p(r), for any sequence σ. In the
following we assume a bounded number of machines.

In this problem setting where the number of available machines per date is
bounded (m < ∞) the following instance shows a lower bound of 3/2 on the
competitive ratio of any deterministic online algorithm. Given mδ requests with
release date 0 and processing time 1, only an algorithm Alg that assigns m
jobs to each date can be better than 2-competitive. However, at date 1 are
given m(δ +2) more requests with processing time 1, then Alg has a makespan
of at least 3 whereas the optimum makespan over all dates equals 2. Note that
this request sequence contains only requests with equal processing time. Thus,
we have shown the following:

Theorem 13. No deterministic online algorithm can achieve a competitive ratio
less than 3/2 for the OnlineTDAP w. r. t. scheduling to minimize the maximum
makespan over all target dates, where the number of available machines per date
is bounded and the processing times for all requests are equal.

242 S. Heinz et al.

We next prove that the general algorithm Bal for the OnlineTDAP w. r. t.
scheduling on parallel machines is (3 − 1/δ)-competitive.

Theorem 14. Bal is (3 − 1/δ)-competitive for the OnlineTDAP with down-
stream scheduling to minimize the maximum makespan over all target dates for
a bounded number of available machines per date.

Proof. Consider a request sequence σ served by Bal and let r denote the first
request that causes the maximum makespan. Consider the schedule obtained by
Bal before r is released with respect to the offline optimum and let w denote
the load of a least loaded machine over all feasible target dates.

Then, the Bal’s makespan is at most w + p(r). Since all feasible target dates
for r have load of at least wm, the total load in that time period is at least wmδ+
p(r).

Any of the corresponding requests in that time period could not be issued
earlier than δ dates before the release date of request r. Hence, even an optimal
offline algorithm Opt obeying feasibility conditions has at least the following
cost on sequence σ:

Opt(σ) ≥ wmδ + p(r)

(2δ − 1)m
>

wδ

2δ − 1
.

Hence, we have:

w <

(
2 − 1

δ

)
Opt(σ).

Since Opt(σ) is bounded from below by p(r), we conclude

Bal(σ) ≤ w + p(r) <

(
2 − 1

δ

)
Opt(σ) + Opt(σ) =

(
3 − 1

δ

)
Opt(σ).

��
The following sequence σ shows for ε → 0 that Bal is not better than 2-
competitive:

ri =

⎧⎪⎨
⎪⎩

(0, 1/2 + ε) if i ∈ {1, . . . , m(δ − 1)},
(0, 1) if i ∈ {m(δ − 1) + 1, . . . , mδ},
(δ − 1, 1) if i ∈ {mδ + 1, . . . , m(2δ − 1) + 1}.

Note, that this lower bound construction is based on jobs with different process-
ing times. Now, let us briefly consider the restricted setting where we assume
that all requests have equal processing time. Then, the downstream problem
scheduling is equivalent to the bin-packing problem of uniform items as we de-
scribed in Section 2.2. Hence, the results from the previous section carry over.

Corollary 2. The algorithm Bal is 2-competitive for the OnlineTDAP with
min-max objective for downstream scheduling if all jobs have identical processing
times. Furthermore, no deterministic online algorithm can achieve a competitive
ratio of less than 3/2 in this setting.

The Online Target Date Assignment Problem 243

3.3 Traveling Salesman Problem

In this section we analyze the traveling salesman problem as downstream prob-
lem for the OnlineTDAP with objective to minimize the maximum downstream
cost. Similar to the downstream problems considered before, the algorithm Bal
is trivially (2δ − 1)-competitive since the requests assigned to the date at which
the maximum tour length is attained can at most be spread over 2δ − 1 dates.
On the other hand, we have the following lower bound on the competitive ratio
of any online algorithm.

Theorem 15. No deterministic online algorithm for the OnlineTDAP w. r. t.
the traveling salesman problem as downstream problem minimizing the maximum
tour length achieves a competitive ratio less than 2.

Proof. Consider a metric space induced by the unweighted star graph with at
least δ + 1 leaves. First, δ requests in δ different leaves are given at date 0. In
case an algorithm Alg assigns more than one request to one date, it cannot
be better than 2-competitive. Otherwise, let r be the request with Alg[r] = 1.
At date 1 another request associated with the point not yet used is released as
well as a request for the point of request r, yielding Alg(σ) ≥ 2. In contrast,
Opt(σ) = 1 since Opt is able to assign both requests for the same point to the
same target date. ��

References

1. Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maurizio
Talamo, Algorithms for the on-line travelling salesman., Algorithmica 29 (2001),
no. 4, 560–581.

2. Allan Borodin and Ran El-Yaniv, Online computation and competitive analysis,
Cambridge University Press, 1998.

3. Amos Fiat and Gerhard J. Woeginger (eds.), Online algorithms, the state of the art,
Lecture Notes in Computer Science, vol. 1442, Springer, 1998.

4. Michael R. Garey and David S. Johnson, Computers and intractability (a guide to
the theory of NP-completeness), W.H. Freeman and Company, New York, 1979.

5. Martin L. Putermann, Markov decision processes, Wiley Interscience, 2005.

Approximation and Complexity of
k–Splittable Flows

Ronald Koch1, Martin Skutella1, and Ines Spenke2

1 Universität Dortmund, Fachbereich Mathematik, D – 44221 Dortmund, Germany
{ronald.koch, martin.skutella}@math.uni--dortmund.de

http://www.mathematik.uni-dortmund.de/lsv/
2 Technische Universität Berlin, Institut für Mathematik, D – 10623 Berlin, Germany

spenke@math.tu--berlin.de

http://www.math.tu-berlin.de/∼spenke/

Abstract. Given a graph with a source and a sink node, the NP–hard
maximum k–splittable flow (MkSF) problem is to find a flow of max-
imum value with a flow decomposition using at most k paths [6]. The
multicommodity variant of this problem is a natural generalization of
disjoint paths and unsplittable flow problems.

Constructing a k–splittable flow requires two interdepending deci-
sions. One has to decide on k paths (routing) and on the flow values
on these paths (packing). We give efficient algorithms for computing ex-
act and approximate solutions by decoupling the two decisions into a
first packing step and a second routing step. Our main contributions are
as follows:

(i) We show that for constant k a polynomial number of packing alter-
natives containing at least one packing used by an optimal MkSF
solution can be constructed in polynomial time. If k is part of the
input, we obtain a slightly weaker result. In this case we can guar-
antee that, for any fixed ε > 0, the computed set of alternatives
contains a packing used by a (1− ε)–approximate solution. The lat-
ter result is based on the observation that (1− ε)–approximate flows
only require constantly many different flow values. We believe that
this observation is of interest in its own right.

(ii) Based on (i), we prove that, for constant k, the MkSF problem can
be solved in polynomial time on graphs of bounded treewidth. If k
is part of the input, this problem is still NP–hard and we present a
polynomial time approximation scheme for it.

(iii) Finally, we provide a comprehensive overview of the complexity and
approximability landscape of MkSF for different values of k.

1 Introduction

Many applications in transport, telecommunication, production or traffic are
modelled as flow problems. In classic flow theory, flow is sent through a network
from sources to sinks respecting edge capacities. It does not matter on how
many paths the flow is sent. It can split into small flow portions along a large

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 244–257, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximation and Complexity of k–Splittable Flows 245

number of paths. But many applications do not allow an arbitrarily large number
of paths. For example, in logistics commodities are usually transported with a
given number of vehicles. This bounds the number of paths that can be used
simultaneously. Another example is data transport in communication networks.
Communication systems often split data into packages. These packages traverse
the network along different paths. Every package has to carry full information
about source and target of the data, about the position of this package among
other packages, and so on. It is therefore not efficient to split data into too many
packages. As a consequence, various applications require that the flow does not
use too many paths. Classical flow algorithms do not take such restrictions into
account.

Problem description. Let G = (V, E) be a connected undirected or directed
graph with n nodes and m edges with capacities u : E → Q≥0. Moreover, there
is a source and a sink node s, t ∈ V . Baier, Köhler, and Skutella [6] introduce the
concept of k–splittable flows. For a given number k, a feasible s, t–flow is called
k–splittable if it can be decomposed into flows along at most k paths leading
from s to t. We do not require the paths to be disjoint, not even different. The
Maximum k–Splittable Flow problem (MkSF) is to find a k–splittable s, t–flow
of maximum value. Of course, k–splittability can also be considered in the more
general multi–commodity setting. Then the number of si, ti–paths is restricted
for each commodity i. In this paper, however, we concentrate on the single–
commodity case.

Results from the literature. Since the seminal work of Ford and Fulkerson [10],
there has been a vast amount of literature on classical s, t–flows with no restric-
tion on the number of paths used. It is well known that a maximum s, t–flow can
be computed in polynomial time, for example, by augmenting path algorithms.
Another classical result states that any s, t–flow can be decomposed into flow on
at most m paths and cycles. For further details we refer to the book by Ahuja,
Magnanti, and Orlin [1].

Kleinberg [12] introduces unsplittable flows. These multicommodity flows
route the total demand of each commodity along one single path. They gen-
eralize edge–disjoint paths. Kleinberg analyses complexity and approximation
algorithms for different unsplittable flow problems, e.g. for minimizing the con-
gestion on edges or equivalently maximizing the throughput, for the problem
of minimizing the number of rounds needed to satisfy all demands and for the
problem of maximizing the total demand which can be routed simultaneously.
In the multicommodity setting, k–splittable flows constitute a generalization of
unsplittable flows.

Baier, Köhler, and Skutella [6] (see also [5]) investigate k–splittable flows
in the single- and in the multi–commodity setting. They prove NP–hardness
of MkSF in directed graphs for all constant k ≥ 2. For the special case of
the uniform MkSF, where all k paths must carry the same amount of flow,
they give a maxflow–mincut type result as well as an O(km log n) algorithm
that computes an optimum solution. Based on these insights, they present 1

2–
approximation algorithms for the general MkSF problem. Bagchi, Chaudhary,

246 R. Koch, M. Skutella, and I. Spenke

Scheideler, and Kolman [4] consider fault tolerant routings in networks and define
notions similar to k–splittable flows. To ensure connection for each commodity
for up to k−1 edge failures in the network, they require edge disjoint flow–paths
per commodity. Martens and Skutella [14] consider a new variant of k–splittable
multi–commodity flows with upper bounds on the amount of flow sent along each
path. The objective is to minimize the congestion of arcs. They prove that any
ρ–approximation for the unsplittable flow problem gives a 2ρ–approximation for
two different variants of the considered problem.

Krysta, Sanders, and Vöcking [13] consider related problems in the area of
machine scheduling problems by imposing a bound on the number of preemptions
of each task. In their k–splittable scheduling problem, each task can be split
into at most k ≥ 2 pieces that are assigned to different machines. They describe
a polynomial time algorithm for finding an exact solution for the k–splittable
scheduling problem and a slightly more general problem. This algorithm has a
running time which is exponential in the number of machines but linear in the
number of tasks.

Many NP–hard problems on graphs become easy when restricted to special
graph classes. In this context, graphs of bounded treewidth have turned out to
be a particularly successful concept. Originally introduced by Robertson and
Seymour [15] in the context of graph minors, these graphs are also relevant in
several practical applications. Bodlaender [9] presents a general framework for
obtaining polynomial algorithms for problems in graphs of bounded treewidth
that are NP–hard in general graphs. Bodlaender [7] and Arnborg, Lagergren,
and Seese [3] give general characterizations of problems that can be solved in
polynomial time on graphs of bounded treewidth. The MkSF problem does not
fall into one of these classes of problems. For a more detailed account of concepts
and results in this area we refer to the survey paper by Bodlaender [9].

The only paper we are aware of that considers flows in graphs of bounded
treewidth is the one by Hagerup et al. [11]. Given a graph with a constant number
of terminals and with arc capacities, they show that all realizable demand/supply
patterns at the terminals can be found efficiently in graphs of bounded treewidth.

Our paper. Constructing k–splittable flows requires to decide which paths should
be used and what flow values should be sent. Of course, these two decisions
cannot be made independently of each other but are coupled by the require-
ment to obey arc capacities. A natural approach is to first choose a collection
of paths (P1, . . . , Pk). Arc capacities then bound possible tuples of flow values
(f1, . . . , fk) on these paths. In this paper we take the reverse approach. We first
fix flow values (f1, . . . , fk) that we wish to send (packing). Then, in the second
step (routing), we try to find a collection of paths (P1, . . . , Pk) on which these
flow values can be routed without violating arc capacities.

In Section 2 we consider the packing step, first for fixed k, then for k being
part of the input. The number of possibilities for flow values (f1, . . . , fk) in an
optimal solution of MkSF is a priori not bounded. For fixed k, we describe how
to determine a polynomial number of alternatives for (f1, . . . , fk) containing the
flow value pattern of at least one optimal solution to MkSF. These alternatives

Approximation and Complexity of k–Splittable Flows 247

are determined in polynomial time by solving certain linear equation systems.
We do not know whether all of these alternatives can be routed in G without
violating capacities. But we know that at least one alternative can be routed
yielding an optimal solution to MkSF.

Not surprisingly, the situation gets more difficult when k is no longer con-
stant but part of the input. We prove that, for any fixed ε > 0, there exists
a (1 − ε)–approximate solution to MkSF that only uses constantly many flow
values on paths. To be more precise, |{f1, . . . , fk}| ∈ O(log(1/ε)/ε2) for this solu-
tion. We believe that this result is also interesting for other flow problems (e.g.,
multicommodity flows etc.). As a result of this observation, we can “guess” the
flow values used by a (1− ε)–approximate solution to the MkSF problem while
only increasing the running time of the subsequent routing procedure by a poly-
nomial factor.

In Section 3 we consider the routing step on graphs of bounded treewidth.
For constant k, the problem can be solved to optimality in polynomial time.
Surprisingly, however, if k is part of the input, the MkSF problem is NP–hard on
graphs of bounded treewidth. Based on our results from Section 2 and standard
dynamic programming techniques, we obtain a polynomial–time approximation
scheme (PTAS) in this case.

Finally, in Section 4 we classify the complexity and approximability of the
MkSF problem for different values of k ≥ 2 on directed and undirected graphs.
In particular, we prove that the problem on undirected graphs is already NP–
hard for k = 2. So far, NP–hardness was only known for the case of directed
graphs. Moreover, we show that, for arbitrary constant k, the problem cannot
be approximated with performance ratio better than 5/6. The question whether
MkSF is also NP–hard for “large” values of k, like for example k = m/2, has so
far been open. We prove that the problem is NP–hard for all values of k within
the range from 2 to m − n + 1 (for n ≥ 3). For k ≥ m − n + 2 the problem can
be solved optimally in polynomial time.

Due to space limitations, we omit some proofs in this extended abstract.
More details are given in the full version of the paper which can be found on the
authors’ homepages.

2 The Packing Stage

As mentioned in the introduction, we want to solve MkSF as a two–stage prob-
lem with a packing and a routing stage. Here, we consider the packing stage.
Lemma 1 shows that, in order to solve the MkSF problem to optimality, it is not
necessary to take all rational valued k–tuples (f1, ..., fk) into account. It suffices
to consider only O(mk) candidates of such tuples.

Lemma 1. If k is constant, it is sufficient to consider O(mk) candidates to
obtain a packing (f1, ..., fk) of an optimal solution to MkSF. An appropriate set
of candidates can be determined in O(mk) time.

248 R. Koch, M. Skutella, and I. Spenke

Proof. If we knew paths P1, . . . , Pk used in an optimum solution to MkSF, then
corresponding optimal path flow values (f1, . . . , fk) could be obtained by solving
the following linear program:

max f1 + f2 + ... + fk

s.t.
∑

i∈{1,...,k}: e∈Pi

fi ≤ ue for all e ∈ E(G),

fi ≥ 0 for all i ∈ {1, ..., k}.

There exists an optimum solution to this linear program which corresponds to a
vertex of the underlying polytope defined by the m+k inequalities. Every vertex
of this polytope is defined by a subsystem consisting of k linearly independent
inequalities which must be tight for this vertex. The resulting system of k linear
equations is given by a regular {0, 1}–matrix of size k × k and a right hand
side vector consisting of edge capacity values and zeros. Since the number of
matrices in {0, 1}k×k is 2k2

and the number of possible right hand side vectors
is at most (m + 1)k, there are only O(mk) possible solutions to such equation
systems. This yields O(mk) candidates for flow values (f1, ..., fk) in an optimum
solution to MkSF. Notice that each candidate can be computed in constant time
by solving a system of linear equations of size k × k. ��
For constant k only a polynomial number of candidates has to be considered. If k
is not constant but part of the input, however, the latter insight is not useful in
obtaining efficient algorithms for MkSF since the number of candidate solutions
is exponential in k and thus in the input size.

We can overcome this problem if, instead of looking for flow values (f1, ..., fk)
in an optimum solution, we settle for a near–optimum solution.

Assume that an optimum solution to MkSF assigns flow values x1, . . . , xk to
paths P1, . . . , Pk. The following packing lemma shows that, for arbitrary ε > 0,
there exists a k–splittable flow of value at least 1 − ε times the value of an
optimum flow which uses only a constant number (depending on ε) of different
flow values on paths.

Lemma 2. Let ε > 0 be sufficiently small. Consider an arbitrary collection of k
bins with capacities x1, . . . , xk. Then, there exist k items with sizes y1, . . . , yk

such that

(i) the items can be packed into the given bins without violating capacities,
(ii) there are at most 3 log(1/ε)/ε2 different item sizes, and
(iii) the total item size is close to the total bin capacity, that is,

k∑
i=1

yi ≥ (1 − 4ε)
k∑

i=1

xi .

Interpret the item sizes y1, . . . , yk as flow values. Then, for each j = 1, . . . , k,
we can route flow of value yj along path Pi where i is the bin which item j has
been assigned to. The resulting k–splittable flow does not violate capacities due
to (i) and its flow value is almost optimal due to (iii).

Approximation and Complexity of k–Splittable Flows 249

Proof. Let X :=
∑k

i=1 xi denote the total bin capacity. We recursively define a
partition of the set of bins into subsets B1, B2, . . . , B� as follows. Consider the
bins in order of non–increasing capacities. Add the first bin to B1. Keep adding
bins to B1 as long as the total capacity of bins in B1 is at most εX . The first bin
which cannot be added to B1 due to this restriction goes to B2. The following
bins are added to B2 as long as the total capacity of bins in B2 is at most εX
and so on. Since, except for the last subset, the total capacity of bins in each
subset is at least εX/2, the number of subsets obtained in this way is � ≤ 2/ε.
Notice that the first few subsets may contain a single bin of size greater than εX .
All further subsets contain bins whose total capacity is at most εX .
For all but at most three subsets of size at most εX , we will fill all bins i contained
in these subsets with items of total volume at least (1 − ε)xi. We shortly argue
that such a packing fulfills property (iii): The total capacity of bins contained
in the three neglected subsets is at most 3εX . The remaining capacity of at
least (1 − 3ε)X is filled up to at least a (1 − ε)–fraction. Thus, the total size of
all items packed is at least (1 − ε)(1 − 3ε)X ≥ (1 − 4ε)X , for ε > 0.

Packing Phase I: For all subsets Bp whose largest bin capacity is within
a factor 1/ε of its smallest bin capacity, we pack one item into each bin in Bp

using at most 1 + log1+ε(1/ε) different item sizes: Take the smallest bin in Bp

and denote its capacity by z; pack an item of size z into all bins of capacity at
most (1 + ε)z in Bp. Remove all packed bins and continue recursively.

Packing Phase II: In order to simplify notation, the subsets that were not
treated in phase I are re–indexed and denoted by B′

1, . . . , B
′
�′ ; the smallest bin

in B′
j is at least as large as the largest bin in B′

j+1, for j = 1, . . . , �′−1. The largest
bin capacity in B′

j is denoted by zj . We ignore all bins in B′
�′−2 ∪ B′

�′−1 ∪ B′
�′ .

For j = 1, . . . , �′ − 3, greedily pack all bins in B′
j using at most |B′

j+2| items of
size zj+2.

It remains to prove that each packed bin is filled up to at least a fraction 1− ε
of its capacity. First notice that the capacity xi of each bin i ∈ B′

j is greater
than zj+2/ε. This is due to the fact that the ratio of the largest and smallest
capacity of bins in B′

j+1 is greater than 1/ε (otherwise, subset B′
j+1 would have

been treated in phase I). Thus, if enough items of size zj+2 are available, each
bin i ∈ B′

j can be filled leaving a slack smaller than zj+2 < εxi. In order to
prove that enough items are available, it suffices to show that the total volume
of |B′

j+2| + 1 items of size zj+2 exceeds the total capacity of all bins in B′
j :∑

i∈B′
j

xi ≤ εX <
∑

i∈B′
j+2

xi + zj+2 ≤ (|B′
j+2| + 1) · zj+2 .

The number of different item sizes used in phase I and II is bounded by �(1+
log1+ε(1/ε)) ≤ 3 log(1/ε)/ε2 for ε small enough. Moreover, at most k items are
used and the sizes of the remaining items can be set to zero. ��

Corollary 1. If the value of an optimum solution to MkSF is known, flow val-
ues together with multiplicities denoting the number of paths which carry these

250 R. Koch, M. Skutella, and I. Spenke

flow values used by a (1 − ε)–approximate solution can be obtained by testing
(k

ε)O(log(1/ε)/ε2) candidates.

Proof. We denote the value of an optimum solution by OPT . As discussed above,
it follows from Lemma 2 that there exists a (1 − ε)–approximate solution which
uses O(log(1/ε)/ε2) different flow values. If we round down all flow values to
multiples of εOPT/k, we lose another factor of at most 1 − ε in the flow value.
The resulting flow is therefore still (1−2ε)–approximate and uses O(log(1/ε)/ε2)
out of k/ε possible flow values. These flow values can therefore be guessed by

trying all (k
ε)O(log(1/ε)/ε2) possible alternatives. For each fixed alternative, we

have to assign a number to each flow value of this alternative which determines
the number of paths carrying this flow value. For each alternative, the number
of different assignments is bounded by kO(log(1/ε)/ε2). Thus, we have to test
(k

ε)O(log(1/ε)/ε2) candidates. ��

Notice that one can get rid of the assumption that the value of an optimum
solution is known. Using standard binary search, OPT can be determined within
a factor of 1 − ε while increasing the running time of the embedded algorithm
only by a polynomial factor.

3 The Routing Stage in Graphs of Bounded Treewidth

In this section we consider the MkSF problem on graphs of bounded treewidth, a
graphclass introduced by Robertson and Seymour [15]. For constant k, we present
a polynomial time algorithm for MkSF. For arbitrary k, the problem remains
NP–hard even if restricted to graphs of bounded treewidth (with only three
nodes and two sets of parallel arcs). We give a polynomial time approximation
scheme for the general MkSF problem on graphs of bounded treewidth.

Theorem 1. On graphs of bounded treewidth, the MkSF problem can be solved
in polynomial time if k is constant. For arbitrary k, the problem is NP–hard
and there exists a polynomial time approximation scheme.

3.1 Preliminaries on Graphs of Bounded Treewidth

Given a graph G = (V, E) (directed or undirected), a tree decomposition is a
pair (T, χ) where T is a tree and χ = {Xi|Xi ⊆ V, i ∈ V (T)} is a family of
subsets of V associated with the nodes of T such that the following conditions
hold: (i) Each node of G is contained in a subset Xi for some i ∈ V (T). (ii)
For each edge in G there exists a node i ∈ V (T) such that Xi contains both
endpoints of that edge. (iii) For each node u ∈ V (G), the vertices i ∈ V (T)
with u ∈ Xi span a subtree of T .

The width of a tree decomposition (T, χ) is maxi∈V (T) |Xi|−1. The treewidth
of a graph G is the minimum width over all tree decompositions of G. Given as
input a graph G and an integer ω, it is NP–complete to decide if G has treewidth

Approximation and Complexity of k–Splittable Flows 251

at most ω; see [2]. On the other hand, if the treewidth of G is bounded by a
fixed constant, a decomposition tree can be constructed in linear time [8].

We can restrict to tree decompositions featuring a special structure: A tree
decomposition (T, χ) of G is called nice if T is a rooted binary tree and if the
nodes partition into four types: A join node i ∈ V (T) has two children j, h ∈
V (T) fulfilling Xi = Xj = Xh. An introduce node i ∈ V (T) has only one child j
and that child fulfills Xj ⊂ Xi. A forget node i ∈ V (T) has only one child j ∈
V (T) and that child fulfills Xj = Xi ∪ {u} for some u ∈ V (G) \ Xi. Finally, for
a leaf node i ∈ V (T), the set Xi consists of some node u ∈ V (G) together with
a subset of its neighborhood. Furthermore, in a nice tree decomposition, there
is a leaf containing u and v, for each edge (u, v) ∈ E(G). For a given graph G,
a tree decomposition can be transformed into a nice tree decomposition of the
same width in linear time with tree size O(|V (G)|); see, e.g., [16].

3.2 The Algorithm

In the following description of the algorithm we restrict to the case of simple
(directed) graphs without parallel edges. Without going into further details,
we remark that Theorem 1 also holds for non–simple graphs. As a result of
Section 2, a polynomial time algorithm for the following problem on graphs of
bounded treewidth will prove Theorem 1.

Given: Directed or undirected graph G = (V, E) with edge capacities u : E →
Q>0, a source s ∈ V , and a sink t ∈ V ; a constant number of flow val-
ues f1, . . . , f� ∈ Q>0 together with multiplicities q1, . . . , q� ∈ IN which are
polynomially bounded in the size of G.

Task: For j = 1, . . . , �, find qj paths (not necessarily distinct) from s to t such
that sending fj flow units along each path (simultaneously for all j) does
not violate edge capacities; alternatively, decide that no such flow exists.

Theorem 2. On graphs of constantly bounded treewidth, the problem stated
above can be solved in polynomial time. Moreover, if the multiplicities qj, j =
1, . . . , �, are all constant, it can be solved in linear time.

For the sake of simplicity, we reduce the flow problem to a circulation problem
by introducing a new edge from t to s with sufficiently large capacity (notice
that adding an edge to a graph increases its treewidth by at most one). Now
the problem can be reformulated as follows: Find a feasible circulation in the
extended graph which fulfills the additional requirement that, for j = 1, . . . , �,
exactly qj cycles (not necessarily distinct) each carrying flow value fj have to
traverse the special edge from t to s.

Algorithms exploiting bounded treewidth of the input graph are usually based
on a dynamic programming approach that proceeds bottom–up in the decompo-
sition tree. Our algorithm follows along the same line. For a general description
of this approach we refer to [9].

252 R. Koch, M. Skutella, and I. Spenke

The rough idea of the algorithm is as follows. Each edge of graph G is as-
sociated with exactly one leaf of T containing its two endpoints. For a tree
node i ∈ V (T) we denote by Gi = (Vi, Ei) the subgraph of G given by

Vi := {v ∈ V (G) | v ∈ Xh with h = i or h is descendant of i in T} and

Ei := {e ∈ E(G) | e is associated with i or a descendant of i in T} .

For every tree node i ∈ V (T), we determine all possible ways of sending flow
in graph Gi on Xi–paths. (A path is called an Xi–path if its ends are distinct
vertices in Xi and no internal vertex belongs to Xi.) To be more precise, each
possible state of node i is specified by the following information: For every or-
dered pair of distinct vertices (u, v) ∈ Xi × Xi and for every j ∈ {1, . . . , �}, we
give the number π(u, v, j) ≤ qj of (not necessarily different) Xi–paths between u
and v carrying fj units of flow.

Notice that the number of possible states at node i is at most
∏�

j=1(1+qj)
|Xi|2

and thus polynomially bounded. Of course, we are only interested in states/flows
that can be realized without violating edge capacities. Moreover, if the special
edge from t to s is contained in Gi, we only consider flows where the number
of Xi–paths of flow value fj using that edge is exactly qj , for j = 1, . . . , �. These
two requirements are taken care of when computing the set of feasible states at
the leaf nodes of T . In the following we give an overview of how the required
information can be computed at the nodes i of T . Since we basically follow a
standard approach, further details are omitted.

If i is a leaf node, Gi contains only a constant number of edges. For each such
edge (u, v) ∈ Ei, we generate all possible configurations π(u, v, j), j = 1, . . . , �,
that do not violate the capacity of that edge. Of course, if the edge happens to
be the special one from t to s, only the unique feasible configuration is generated.
By taking all possible combinations of configurations at the edges, we get the
set of all states of node i.

If i is an introduce node, the set of all states of i is identical to the set of all
states of its only child i′. Notice that no flow can be sent from or received by
terminals in Xi \Xi′ since no edge in Gi is incident with one of these terminals.

If i is a forget node, the set of all states of i can be obtained from the set of all
states of its only child i′ as follows: Delete all states of i′ that do not fulfill flow
conservation at the unique node u ∈ Xi′ \Xi separately for every j = 1, . . . , �. For
the remaining states, generate all possible matchings of incoming and outgoing
flow paths of the same flow value at node u. This yields all possible flow patterns
between terminals Xi = Xi′ \ {u}.

Finally, if i is a join node, every feasible state of i can be generated by adding
two states, one from each child node. Of course, we only consider sums for which
π(u, v, j) ≤ qj , for all u, v ∈ Xi and j = 1, . . . , �.

As it is always the case with this approach, the answer to the problem which
we like to solve can be found at the root node r of tree T : There exists a feasible
solution if and only if r has a state where flow conservation is fulfilled at all
nodes in Xr, separately for every j = 1, . . . , �. A solution (circulation) can be

Approximation and Complexity of k–Splittable Flows 253

obtained by traversing the tree forwards to the leafs beginning with a feasible
state at r. We omit all further details.

We conclude this section with a generalization of the obtained result. Notice
that the described approach can also be applied if, instead of only one source s
and one sink t, there is a constant number of source–sink pairs (commodities).

Corollary 2. For a constant number of commodities and constant k, the k–
splittable multicommodity problem can be solved in polynomial time on graphs
of bounded treewidth. If we drop the requirement on k, we still obtain a polyno-
mial time approximation scheme for the maximum k–splittable multicommodity
problem with a fixed number of commodities.

4 Complexity and Approximability for General Graphs

In this Section we return to general graphs. We analyze the hardness of MkSF
problems and their approximability. In the first part, we consider constant values
of k ≥ 2. MkSF is shown to be strongly NP–hard. We show that there is no
approximation algorithm with performance ratio better than 5

6 . This is the first
constant bound given for this problem. In the second part, k is a function of
the number of vertices n and edges m. We classify NP–hard and polynomially
solvable cases. For the sake of simplicity we restrict ourselves to undirected
graphs, but any result in this section can be applied to the directed case by
minor modifications in the proofs.

4.1 Constant k

In [6] the NP–hardness of MkSF is proven for constant k ≥ 2 in directed graphs.
The construction given there does not apply to undirected graphs. Theorem 3
shows that the NP–hardness also holds for the undirected case. Furthermore, a
new construction in the proof enables us to derive two bounds on the approx-
imability. To simplify notation, we denote the problem MkSF with k = 2 by
M2SF, as well for other values of k.

Theorem 3. For all constant k ≥ 2, MkSF is strongly NP–hard and cannot
be approximated with performance guarantee better than k

k+1 , unless P = NP .

Proof. First we give a reduction from 3SAT to M2SF and show that a satisfiable
instance of 3SAT yields an optimum solution of value 3 whereas a nonsatisfiable
instance yields an optimum solution of value 2 for the corresponding M2SF–
instance. Later we extend the reduction to any constant k ≥ 2.

Consider a 3SAT–instance with variables x1, ..., xr and clauses C1, ..., Cq.
In the following we construct the corresponding M2SF–instance in two steps
illustrated in Figures 1 and 2.

Step 1, Figure 1 (top): The graph constructed in this step represents the clauses
of the 3SAT–instance. Introduce two nodes s and t and two nodes aj, bj for every
clause Cj . For every litaral of Cj we construct an aj , bj–path, which we initialize

254 R. Koch, M. Skutella, and I. Spenke

with one edge {aj, bj}. These paths will be expanded in Step 2. Connect the
clause representations by the q + 1 edges {s, a1}, {b1, a2}, {b2, a3}, ..., {bq, t}. All
edges created in this step get capacity 1. The construction so far allows s, t–paths
traversing each clause along one path representing one literal of the clause. To
control that such s, t–paths do not use paths that belong to contrary literals we
introduce a blocking construction in Step 2.

Step 2, Figure 1 (bottom): Assume that there are h pairs of contrary literals
xi and x̄i, which belong to different clauses. Consider the l-th pair and as-
sume that xi appears in a clause C and x̄i in a clause C′. Insert one edge
{yl, zl} into an edge {u, v} of unit capacity of the path representing xi. The
new edges {u, yl} and {zl, v} get a capacity of 1 and the edge {yl, zl} gets a
capacity of 2. Analogously, insert an edge {y′

l, z
′
l} into an edge {u′, v′} of unit

capacity of the path representing x̄i. Introduce two nodes cl and dl and edges
{cl, yl}, {dl, zl}, {cl, y

′
l), {dl, z

′
l} with capacities 2 to get a blocking construction

for the l-th pair of contrary literals. To complete the construction we add edges
{s, c1}, {d1, c2}, {d2, c3}, ..., {dh−1, ch}, {dh, t}, also with capacities 2.

Figure 2 shows the entire construction for an example instance. Notice, that
this reduction is of polynomial size because the number of nodes is at most
quadratic in the number q of clauses and the maximum degree of a node is 4.
Furthermore, any s, t–flow has a value less than or equal to 3, because the edges
incident to s have together a capacity of 3. Next we show that any 2–splittable
flow with a value greater than 2 implies the satisfiability of the 3SAT–instance.

Let us consider two s, t–paths which together carry a flow of value greater
than 2. So there is a path P1 with flow value greater than 1, which therefore can
only use edges of capacity 2. Such edges only occure in the blocking construction
of contrary literals and because of the structure of the graph P1 must traverse
all these constructions. The second path P2 must be disjoint from P1 because all
edge capacities are bounded by 2. So it has to traverse all clause representations
constructed in Step 1. While traversing the clauses, P1 never sends flow along
paths representing contrary literals simultaneously because P2 blocks at least
one of them. Refering to the 3SAT instance, set xi := 1 if P2 traverses an aj , bj–
path representing xi in one arbritrary clause Cj and otherwise set xi := 0. Then,
every variable is set to 0 or 1 and every clause contains one true literal. So we
have described a satisfying assignment for the 3SAT–instance.

On the other hand, every satisfiable 3SAT instance implies a 2–splittable flow
of value 3. Choose one satisfied literal for each clause in a satisfying assignment.
Route one unit of flow along a path P2 traversing the representations of the
clauses always along the path of the chosen literal. Afterwards, we send two
units of flow along the blocking constructions using one s, t–path P1. This is
possible because P2 never traverses paths of contrary literals simultaneously. We
get a 2–splittable s, t–flow of value 3.

Thus, 3SAT can be reduced to M2SF and a 3SAT–instance is satisfiable if
and only if a maximum 2–splittable flow has value 3 and is not satisfiable if and
only if the maximum value is 2.

Approximation and Complexity of k–Splittable Flows 255

x2

x̄3

x̄1

x3

x4

x̄2

x1

x2

x̄3

t
a1 b1 a2 b2 a3 b3

s

...

Cl

z2
hz1

hx̄i

al bl

ch dh

Cj

xi

...
y1

h y2
h

bj...aj

Fig. 1. Step 1 (top) and step 2 (bottom) for the 3SAT instance x1 ∨ x2 ∨ x̄3, x̄1 ∨
x2 ∨ x3, x̄2 ∨ x̄3 ∨ x4

x2s t

x1

x2

x̄1

x̄3 x3 x̄3

x4

x̄2

2

1

Fig. 2. Entire construction for the 3SAT instance x1∨x2∨x̄3, x̄1∨x2∨x3, x̄2∨x̄3∨x4

To extend the reduction to all constant k ≥ 2 we add k − 2 s, t–edges with
capacity 1. Then a 3SAT instance is satisfiable if and only if a k–splittable flow
has a maximum value of k + 1 and is not satisfiable if and only if the maximum
value is k. So MkSF is strongly NP–hard (because of the NP–hardness of
3SAT an the constantly bounded capacities in the reduction) and cannot be
approximated with guarantee better than k

k+1 , unless P = NP . ��

Corollary 3. MkSF, k ≥ 2, cannot be approximated with performance guaran-
tee better than 5

6 , unless P = NP . (Proof omitted.)

4.2 k as a Function of m and n

Here, we consider k as a function of the number of edges m and of the number
of nodes n of a graph G. Note, that k is not seen as a part of the input, but
a property of the problem MkSF. Thus, for different functions k we consider
different problems. Some functions result in polynomially solvable problems.

256 R. Koch, M. Skutella, and I. Spenke

Lemma 3. For a graph G, MkSF with m − n + 2 ≤ k is polynomial solvable.

Proof. We show, that any maximum s, t–flow f in G can be decomposed into at
most m − n + 2 path and cycles in polynomial time. Consider an orientation of
the edges of G such that f is still a feasible flow and add an edge (t, s) of infinite
capacity to obtain a directed graph G′. Setting the flow on the edge (t, s) to
value(f) results in a circulation f ′ in G′. Each decomposition of f ′ in cycles
easily yields a decomposition of f in paths and cycles with the same number of
elements.

We compute a decomposition of f ′ with the standard decomposition algorithm
of Fulkerson. That means, start with any flow carrying edge and go through G′

only using edges with a positive amount of flow until a cycle is closed. Assign the
maximal possible flow value to this cycle with respect to f ′ and reduce f ′ by this
cycle flow. Repeat this procedure until f ′ = 0. Since in any iteration the flow
value of at least one edge is decreased to 0 the incidence vectors of these cycles
are linearly independent. Furthermore, the cycle space of G′ has a dimension of
m + 1−n + 1 = m−n + 2 such that the computed decomposition of f ′ contains
no more than m − n + 2 cycles. ��

In the following, we show that MkSF is NP–hard for all k with 2 ≤ k ≤ m−n+1.
This is done in two steps. We prove the NP–hardness for 2 ≤ k ≤ m − mε by
a reduction from 3SAT and then for mε ≤ k ≤ m − n + 1 by a reduction from
SubsetSum. In both cases ε ∈ (0, 1).

Theorem 4. For all constant ε ∈ (0, 1) MkSF with 2 ≤ k ≤ m−mε is strongly
NP–hard and cannot be approximated with a guarantee better than k

k+1 , unless
P = NP .

Proof. Given ε ∈ (0, 1) we reduce 3SAT to MkSF with a k arbitrary in the
range 2 ≤ k ≤ m − mε.

According to Theorem 3 it suffice to show that the graph G consisting of the
graph G′ shown in Figure 2 together with k − 2 additional s, t–edges from is of
polynomial size in relation to the size of the considered 3SAT instance. Let m′

be the number of edges of G′. Then we have m = k − 2 + m′ and it follows:

m ≤ m − mε − 2 + m′ ⇒ mε ≤ m′ − 2 ⇒ m ≤ (m′ − 2)
1
ε .

Thus, m is polynomial in m′ and because m′ is polynomially bounded it holds
also for G. ��

Theorem 5. MkSF with k = m − n + 1 is NP–hard for every given n > 2.
(Proof omitted.)

Corollary 4. Given ε ∈ (0, 1) MkSF with mε ≤ k ≤ m−n +1 is NP–hard for
every given n > 2. (Proof omitted.)

Corollary 5. MkSF with 2 ≤ k ≤ m − n + 1 is NP–hard for all graphs with
n > 2.

Approximation and Complexity of k–Splittable Flows 257

Proof. Choose ε := 1
3 . Theorem 4 proves the NP–hardness of MkSF for 2 ≤

k ≤ m − m1/3. Corollary 4 shows the NP–hardness for m1/3 ≤ k ≤ m − n + 1.
Since m1/3 ≤ m−m1/3 for m ≥ 3 the bounds overlap what proves the corollary.
(m ≤ 2 does not allow any k here) ��

References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

2. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM Journal on Algebraic and Discrete Methods, 8:277–284, 1987.

3. S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12:308–340, 1991.

4. A. Bagchi, A. Chaudhary, P. Kolman, and C. Scheideler. Algorithms for faulttoler-
ant routing in circuit-switched networks. In Proceedings of the 14th Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 265–274. ACM Press,
2002.

5. G. Baier. Flows with Path Restrictions. PhD thesis, TU Berlin, 2003.
6. G. Baier, E. Köhler, and M. Skutella. On the k-splittable flow problem. Algorith-

mica, 42:231–248, 2005.
7. H. L. Bodlaender. Dynamic programming on graphs of bounded treewidth. In

Proceedings 15th International Colloquium on Automata, Languages and Program-
ming, volume 317 of Lecture Notes in Computer Science, pages 105–118. Springer,
Berlin, 1988.

8. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.

9. H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In I. Privara
and P. Ruzicka, editors, Proceedings 22nd International Symposium on Mathemat-
ical Foundations of Computer Science, volume 1295 of Lecture Notes in Computer
Science, pages 19–36. Springer, Berlin, 1997.

10. L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
1962.

11. Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar Ragde.
Characterizations of k-terminal flow networks and computing network flows in
partial k-trees. In Proceedings 6th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 641–649, 1995.

12. J. M. Kleinberg. Approximation algorithms for disjoint paths problems. PhD thesis,
M.I.T., 1996.

13. P. Krysta, P. Sanders, and B. Vöcking. Scheduling and traffic allocation for tasks
with bounded splittability. In Proceedings of the 28th International Symposium
on Mathematical Foundations of Computer Science, volume 2747, pages 500–510.
Springer, Berlin, 2003.

14. M. Martens and M. Skutella. Flows on few paths: Algorithms and lower bounds. In
S. Albers and T. Radzik, editors, Algorithms — ESA ’04, volume 3221 of Lecture
Notes in Computer Science, pages 520–531. Springer, Berlin, 2004.

15. N. Robertson and P. D. Seymour. Graph minors. ii: algorithmic aspects of
treewidth. Journal of Algorithms, 7:309–322, 1986.

16. P. Scheffler. A practical linear time algorithm for disjoint paths in graphs with
bounded tree–width. Technical Report 396, FU Berlin, Fachbereich 3 Mathematik,
1994.

On Minimizing the Maximum Flow Time in the
Online Dial-a-Ride Problem

Sven O. Krumke1, Willem E. de Paepe2, Diana Poensgen3,
Maarten Lipmann2, Alberto Marchetti-Spaccamela4, and Leen Stougie2

1 University of Kaiserslautern, Department of Mathematics, P.O. Box 3049,
Paul-Ehrlich-Str. 14, 67653 Kaiserslautern, Germany

krumke@mathematik.uni-kl.de
2 Combinatorial Optimization Group, Technical University of Eindhoven,

P.O. Box 513, 5600MB Eindhoven, The Netherlands
{leen, w.e.d.paepe}@win.tue.nl

3 Konrad-Zuse-Zentrum für Informationstechnik Berlin, Department Optimization,
Takustr. 7, 14195 Berlin, Germany

poensgen@zib.de
4 Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”,

Via Salaria 113, 00198 Rome, Italy
alberto@dis.uniroma1.it

Abstract. In the online dial-a-ride problem (OlDarp), objects must be
transported by a server between points in a metric space. Transportation
requests (“rides”) arrive online, specifying the objects to be transported
and the corresponding source and destination.

We investigate the OlDarp for the objective of minimizing the max-
imum flow time. It has been well known that there can be no strictly
competitive online algorithm for this objective and no competitive algo-
rithm at all on unbounded metric spaces. However, the question whether
on metric spaces with bounded diameter there are competitive algorithms
if one allows an additive constant in the definition competitive ratio, had
been open for quite a while. We provide a negative answer to this ques-
tion already on the uniform metric space with three points. Our negative
result is complemented by a strictly 2-competitive algorithm for the On-
line Traveling Salesman Problem on the uniform metric space, a special
case of the problem.

1 Introduction

In the Dial-a-Ride Problem (Darp), a server of unit capacity has to transport
objects through a given metric space. The server starts at a designated point of
the metric space, its origin. Once the server has picked up an object, it can only
drop it at its destination. A special case of the Darp is the Traveling Salesman
Problem (Tsp) in which the server merely has to visit points in that metric
space.

In the online version of the problem, online Dial-a-Ride problem requests (also
called rides) arise while the server is already moving. Each request rj specifies a

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 258–269, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Minimizing the Maximum Flow Time in the Online Dial-a-Ride Problem 259

release time tj ≥ 0, a source uj, and a destination vj . An online algorithm only
learns about rj at its release time. The objective we consider is to minimize the
maximum flow time. If request rj is served at time t, its flow time is t − tj . We
abbreviate the resulting problem by Fmax-OlDarp. The maximum flow time can
be identified with the maximal dissatisfaction of customers who are waiting to
be transported or to receive a desired good. Natural applications include elevator
control, delivery services, and craftsmen on duty.

Given a sequence σ = r1, . . . , rm of requests, we denote by alg(σ) the max-
imum flow time in the solution provided by algorithm alg. We evaluate the
quality of online algorithms by competitive analysis [4]: an online algorithm alg
is c-competitive, if there exists b ≥ 0 such that

alg(σ) ≤ c · opt(σ) + b (1)

holds for all request sequences σ, where opt denotes an optimal offline algorithm,
which has complete knowledge about the input at time 0. If (1) holds with b = 0,
then alg is termed strictly c-competitive. Competitive analysis can be imagined
as a game between an online player and a malicious adversary who tries select a
worst-case request sequence which maximizes the ratio between the online and
the offline cost.

Online Dial-a-Ride problems have been previously investigated with various
objective functions and for different metric spaces [2, 1, 6, 12, 5, 9, 11, 3, 10]. It
is well known that for the Fmax-OlDarp in general metric spaces no strictly
competitive algorithms can exist, see e.g. [12, 7, 8]. For the special case of the
Fmax-OlTsp, where source and destination for each ride coincide (uj = vj for
all j), a restriction on the adversary allows for a strictly competitive algorithm
on the real line [12].

In this paper we study we study the Fmax-OlDarp and Fmax-OlTsp on the
uniform metric space with n points, where any two distinct points have distance
one. This can be envisioned as a complete graph Kn with unit length edges.
Only the n points can occur as source or destination. We allow servers to move
continuously at unit speed along the edges.

Observe that with b = n in (1), a simple online algorithm that visits the
n nodes of the uniform metric space in a round-robin manner is 1-competitive
for the Fmax-OlTsp. For the Fmax-OlDarp, however, it had been an open
question whether allowing an additive constant b > 0 allows to prove (positive)
competitiveness results. We resolve this question.

1.1 Contribution and Paper Outline

In this paper we show that on the uniform metric space with n = 3 points neither
an arbitrary additive constant b nor restricting the adversary to be fair in the
sense of [12, 3] allows for competitive algorithms. On the uniform metric space
an adversary is fair, if at any moment t > 0, her server is located between two
points, each of which is the origin or has occurred as source or destination of a
request with release time at most t (this definition extends the notion of fairness
given in [3] for the real line).

260 S.O. Krumke et al.

We also investigate the Fmax-OlTsp on the uniform metric space against the
fair adversary and prove that a simple first-come-first-serve strategy is strictly
2-competitive, which we prove to be best possible for online algorithms.

2 A Negative Result for the Fmax-OlDarp

In this section we shall prove the following theorem:

Theorem 1. For the Fmax-OlDarp on the uniform metric space, no determin-
istic online algorithm can be competitive even against a fair adversary.

Proof. Assume for the sake of a contradiction that alg is a c-competitive deter-
ministic algorithm with additive constant b as in (1). W. l. o. g., we may assume
that c is integral. In the sequel we will also assume that at integral points in
time, alg’s server is located in one of the nodes. Note that any online algorithm
can be tranformed into another online algorithm with this property at the cost
of an additive constant of one. So, this assumption is without loss of generality
for the proof.

We show that for any k ∈ N we can construct a finite sequence σ = σ(k) such
that opt(σ) ≤ 3, whereas alg(σ) ≥ k. This contradicts the fact that alg is
c-competitive and also rules out any additive constant (one just has to choose k
appropriately depending on c and b).

Our construction just uses the subgraph of Kn induced by the origin and two
additional points. The resulting three points and edges are denoted by x, y, z and
X , Y , Z, see Figure 1. Our sequence has the following properties: (i) Requests
are only given at integer times, (ii) at any time unit, at most one request is
given, and, (iii) in any two consecutive time units, at least one request is given.

A crucial ingredient for our construction is that of an empty move, in which
a server moves from a node u to some other node v without serving a re-
quest (t, u, v). The main idea is to enforce an empty move for the online al-
gorithm which can be avoided by the adversary. This way, work piles up for
alg, while the number of unserved requests for the adversary remains bounded
by a constant (namely, three).

e2e1

2

3 = o

1e3

Fig. 1. Metric space and notation for the lower bound construction

On Minimizing the Maximum Flow Time in the Online Dial-a-Ride Problem 261

In the sequel we describe a request by the corresponding edge and a direc-
tion, which depends on the direction of the previous request for that edge. Two
requests for the same edge with different directions are called opposed. We use
σ≤t to denote the requests in σ with release time at most t.

The sequence is constructed in phases. In each phase, the number of unserved
requests for the online algorithm increases by one. More precisely, the kth phase
starts at time Tk when the following property Pk is satisfied:

Property Pk: There exists i ∈ {1, 2, 3} such that:

(i) alg has k unserved requests for ei, none for all the other edges, and is located
in one of ei’s end points, �k/2� requests directed away from alg’s position,
and �k/2� requests directed the other way.

(ii) adv(σ≤Tk
) ≤ 3, and adv’s server is located in one of ei’s end points with

exactly two opposed requests for ei pending, one of which has been released
at Tk, the other one at time Tk − 1.

Figure 2 displays the scenario described by Property Pk.

k k

}}
or

alg adv

Fig. 2. Property Pk

Claim 1. Assume that Pk holds at time Tk. Then, the adversary can release
further requests such that, at some time Tk+1 ≥ Tk Property Pk+1 holds.

Proof. Proof of Claim 1 Assume that Property Pk holds at time Tk with i = 2
and that the adversary is positioned at node 1 (the other cases are symmetric).
We have to distinguish two cases depending on the parity of k.

Case 1: If alg served all pending e2-requests in a row, it would finish in node 3
(left part of Figure 2 if k is even; right part of the figure if k is odd).

The sequence continues with a request for e3 (direction arbitrary) at time
Tk + 1. The adversary then releases one request for e3 at each integer time
(directions alternating), until at some time T alg has served the last pending
e2-request and is located in one of e3’s end points, either node 1 or node 2.
Observe that such a time must exist since otherwise alg can not be competitive
at all). Let T ′ ≤ T be the earliest time when alg has served all pending e2-
requests. At time T ′, alg is either in node 1 or in node 3. In the former case, alg

262 S.O. Krumke et al.

must have made an empty move: it must have either moved along e2 without
serving a request or it has moved around the triangle and made an empty move
along e1 (this uses the assumption of Case 1). We proceed to show that Property
Pk+1 holds at time Tk+1 := T .

Starting at time Tk, adv serves the two pending requests for e2 and then
serves one request for e3 in each time unit. Clearly, at time T , she is located
either in 1 or 2 and has two pending requests for e3, one released at time T − 1
and the other one at T . This ensures part (ii) of Property Pk+1.

To prove (i), we compute how many unserved e3-requests have piled up for
alg by time T . alg has at least k requests for e2 pending at time Tk. Since it
can serve at most one request per time unit and must serve k pending requests
on e2, at time T ′ at least k requests for e3 have piled up (no matter whether
some of the e3-requests have been served before time T ′).

If palg(T ′) = 1, then T = T ′ and as we have seen above, alg must have made
an empty move which results in an extra unserved request for e3. If palg(T ′) = 3,
alg needs at least one empty move in order to reach node 1 or 2 at time T ≥
T ′ + 1. In any case, at time T alg has at least k + 1 pending requests for e3.
Hence, part (i) of Property Pk follows.

Case 2: If alg served all pending e2-requests in a row, it would finish in node 1.

In this case the sequence is continued until the prerequisites of Case 1 are
met and we can continue as described above (with a suitable cyclic exchange of
indices)

At time Tk +1, no request is given. Starting at time Tk +2, the adversary gives
one request for edge e1 in each time unit (directions alternating) until time τ ,
the earliest time at which alg has finished serving the last among the pending
e2-requests and is located in one of e1’s end nodes, either 2 or 3. Let τ ′ ≤ τ be the
earliest time at which alg has finished serving the pending e2-requests. Again,
the existence of τ ∈ N is ensured by the assumption that alg is competitive.

alg can serve at most one of the k pending e2-requests in each time unit.
Since one new request for e1 is given in each time unit except for Tk + 1, alg
has at least k − 1 unserved e1-requests at time τ . Moreover, by same reasoning
as before, the assumption in Case 2 yields that alg must have made an empty
move if it ends up in node 3 at time τ ′, resulting in one extra request for e1 at
time τ ′ and in τ = τ ′. Otherwise, palg(τ ′) = 1 and alg must make an empty
move to reach one of e1’s end points at time τ > τ ′. In either case, alg has at
least k unserved requests for e1 at time τ .

The adversary serves her pending requests as follows: first, she handles the
two pending e2-requests, ending up in node 1 at time Tk+2. Now, and this is
the main difference to Case 1, she must also make an empty move before she
can start to serve the e1-requests at time Tk+3. This empty move can be either
to node 2 or node 3 and determines whether padv(τ) = 2 or padv(τ) = 4. No
matter how the empty move is done, at time τ there will be exactly two pending
requests for the adversary at e1. The choice is made according to the following
rule: Let v denote the position of alg’s server if starting at time τ it would serve
all pending e1-requests in a row; then the adversary makes the empty move such

On Minimizing the Maximum Flow Time in the Online Dial-a-Ride Problem 263

that padv(τ) 	= v. Thus, at time τ we are in the situation of Case 1 (with a
proper shift in indices). ��

In order to prove Theorem 1 by applying Claim 1, we construct the beginning
of the sequence in such a way that Property Pk is satisfied for some k ≥ 1.

To this end starting at time 0, the adversary issues one request for edge e3 in
each time unit (directions alternating), until the online server is located either
in node 1 or 2 for the first time. Let this time be t ∈ N. At time 0, the fair
adversary can move her server to the source of the first request issued, either 1
or 2, arriving there at time 1 with two pending requests for edge e3. Then, she
continues to serve one request for e3 in every time unit until time t.

When alg reaches 1 or 2 at time t, it must hold that t ≥ 1, and t + 1
unserved requests for e3 have piled up in the meantime. Thus, Property Pt+1

holds at time t for some t ≥ 1.
This completes the proof of the theorem. ��

The construction used in the proof of Theorem 1 also works for even stronger
restrictions on the adversary. It can be seen that the adversary used above is
even non-abusive in the sense of [12]: besides serving requests she only moves to
sources of unserved requests. Finally, Theorem 1 also holds for servers of larger,
but finite capacity K > 1: we simply multiply each request in the sequence by K,
that is, we give each request K times.

3 The Fmax-OlTsp Against the Fair Adversary: An Easy
2-Competitive Algorithm

We now consider the special case of the Fmax-OlDarp where source and destina-
tion of each ride coincide: the Fmax-OlTsp. The main difference to the previous
section is that a server can serve an unlimited number of requests simultaneously
if these requests specify all the same node to be visited. It is easy to see that even
on the uniform metric space with at least two points the standard unrestricted
adversary can construct sequences where it achieves a zero maximum flow time
whereas any deterministic online algorithm has a positive flow time for some
request, see also [12, 7, 8]. Consequently, there can not be any strictly compet-
itive algorithm. As already mentioned in the introduction allowing an additive
constant b = n, that is, equal to the number of nodes in the space, allows for a
trivial 1-competitive algorithm.

We therefore consider the Fmax-OlTsp against the fair adversary.

Theorem 2. The algorithm first-come first-serve (fcfs) which always serves
an oldest unserved request next is strictly 2-competitive against the fair adversary
for the Fmax-OlTsp on the uniform metric space.

Before we can prove Theorem 2, we need to establish an elementary lemma.

Lemma 1. Given a sequence σ = r1, . . . , rm, let σi denote the subsequence of
σ that contains the first i requests, i.e., σi = r1, . . . , ri. Then opt(σi) ≤ opt(σ)
for any i ∈ {1, . . . , m}, where opt refers to a fair adversary.

264 S.O. Krumke et al.

Proof. Note that, for the standard adversary, the claim is trivial and holds for
any subsequence of σ in place of σi. For the fair adversary, however, we must
be more careful. Removing some request from a sequence can in fact lead to an
increased maximum flow time of the fair adversary, as that request might enlarge
the space where the adversary is allowed to move to. To see this, assume that the
request r that is removed from σ is the first request for node v. When serving
the whole sequence σ, the adversary can benefit from r, if another request q
for node v is given later on: he can already be waiting in the “allowed” node v
when q request is released, thus incurring a smaller flow time for q and thereby
possibly also for other requests to follow.

The described construction, however, is the only way how the fair adversary’s
maximum flow time can increase by removing a request, and it shows that the
removal of a request can only affect the flow times of requests given later. Hence,
removing the tail from a sequence cannot increase the fair adversary’s flow time
on the preceding requests. ��

3.1 Competitiveness of fcfs

This subsection is dedicated to the proof of Theorem 2 on the competitiveness
of fcfs. We first give an intuitive description of the proof. It is based on the
following two ideas. First, in order to increase fcfs’ flow time while keeping
opt’s maximum flow time stable, the adversary must issue a second request for
some node v shortly after the online server has left that node. The offline server
in turn must be able to serve some other requests in the meantime and only
arrive in v when it is requested the second time. Then, the second request for
v requires the online server to move to v once more while the offline server can
serve both requests for v simultaneously. The second useful idea is the following:
If F ∗ denotes opt’s maximum flow time on a given sequence, the optimal offline
algorithm must serve request ri within the time window [ti, ti + F ∗]. Conse-
quently, once fcfs lags behind by F ∗ time units, meaning that there exists an
unserved request for some node w that is older than F ∗ time units, the optimal
offline server must serve that request before the online server, and can therefore
not use another request for w to further increase fcfs’ flow time while keeping
opt’s stable.

For the formal proof, we need some further notation. We say that fcfs serves
a request ri for node v for free, if it serves an older request rj for v together with
ri. By F fcfs(ri), we denote the flow time of request ri in fcfs’ schedule. Note
that F ∗ must be greater than 0 for any meaningful request sequence, since the
adversary is fair.

Assume the claim is false and fcfs is not 2-competitive. Then there exists
a request sequence on which fcfs’ maximum flow time is more than twice as
large as the maximum flow time of opt on that sequence. Among all request
sequences with this property, let σ = r1, . . . , rm be a shortest one with respect
to the number of requests. We call this sequence σ a shortest counterexample.

On Minimizing the Maximum Flow Time in the Online Dial-a-Ride Problem 265

Lemma 2. fcfs does not serve any request in a shortest counterexample σ for
free.

Proof. If there is a request r ∈ σ that fcfs serves for free, then σ̃ := σ \ {r} is
a shorter sequence on which fcfs incurs the same flow time as on σ. Since r is
served for free by fcfs, there must be an older request for the same node. Thus,
r does not open up new space for the adversary and cannot be used to incur a
smaller flow time on a later request (cf. the proof of Lemma 1). Therefore, the
maximum flow time of the fair adversary cannot become larger by removing r
from σ.

This contradicts our definition of σ as a shortest sequence on which fcfs has
a maximum flow time that is more than twice as large as that of opt. ��

Our choice of σ = r1, . . . , rm as a shortest sequence on which fcfs incurs a
maximum flow time more than twice as large as opt’s maximum flow time gives
rise to another observation.

Lemma 3. Let F ∗ denote the maximum flow time of opt on the shortest coun-
terexample σ. Only the last request rm is served by fcfs with a flow time of more
than 2F ∗.

Proof. If fcfs served a request rl for some l < m with a flow time of more
than 2F ∗, it would achieve a maximum flow time of more than 2F ∗ also on the
cut sequence σl = r1, . . . , rl. By Lemma 1, the maximum flow time of opt on σl

is at most F ∗. Again, this contradicts the definition of σ. ��

Consider the schedule of fcfs on σ. If fcfs serves some request ri at time t
with flow time F fcfs(ri), then it incurs a flow time of at most F fcfs(ri) + 1 on
the request it serves at time t + 1, since this request cannot be older than ri.
Moreover, since fcfs serves the last request in the sequence with a flow time of
more than 2F ∗, there must be a time after which fcfs serves all requests with
flow time at least F ∗.

Define T to be the earliest time such that all requests served by fcfs at or
after that time are served with a flow time of at least F ∗. By the reasoning
above, fcfs must be serving some request at each time t ≥ T , until it serves rm,
since its flow time can increase by at most one from one request to the next one
it serves.

Claim 2. Let ri be the request in the shortest counterexample σ that fcfs serves
at time T . Then, F fcfs(ri) = F ∗, and no request served by fcfs after time T is
released before time T − F ∗.

Proof. By definition of T , we have that F fcfs(ri) ≥ F ∗. Assume that F fcfs(ri) ≥
F ∗ + 1. Then, the release time of ri satisfies ti ≤ T − (F ∗ + 1). Let rj be the
request served by fcfs at time T − 1. Since fcfs does not serve any request in
σ for free, and as fcfs serves rj before ri, it must hold that tj ≤ ti, and we
deduce that

F fcfs(rj) = T − 1 − tj ≥ T − 1 − ti ≥ T − 1 − (T − (F ∗ + 1)) = F ∗,

266 S.O. Krumke et al.

which contradicts our choice of T . Consequently, F fcfs(ri) = F ∗. This in turn
implies that ti = T − F ∗. If rk is a request that fcfs serves after time T , that
is, after it has served request ri, then rk cannot have been released earlier than
ri by construction of fcfs. Hence, tk ≥ T − F ∗, as claimed. ��

Let L be the time at which opt finishes serving the shortest counterexample σ.
For the final proof of Theorem 2, we represent the requests in σ by an L × L-
matrix M as follows:

Mij :=

{
1, if some request released at time i is served at time j by opt,
0, otherwise.

Figure 3 displays the structure of the matrix M . Since fcfs serves no request
in σ for free, the same node cannot have been requested twice at the same time.
Hence, each request is represented by exactly one non-zero entry of the matrix,
and the non-zero entries of column (·, j) of M stand for requests specifying
the same node (otherwise, opt could not serve them simultaneously at time
j). Moreover, since opt’s maximum flow time on σ equals F ∗, we know that
Mij = 1 only if i ≤ j ≤ i + F ∗. We use M to prove the following claim, which
is the key ingredient for the proof of Theorem 2.

*

* * *

*
* *

** * *
** * * *

** * * *
** * * *

*
** * * *

* * * *
** * * *

* * * *
** * * *

** * * *
** * * *

** * *
** * * *

* * * *
* * * *

*

* j

j − F ∗

j

*
L

F ∗

L

Fig. 3. The structure of the matrix M : entries ∗ ∈ {0, 1}, all other entries are zero

Claim 3. fcfs finishes serving the shortest counterexample σ no later than at
time L + F ∗.

On Minimizing the Maximum Flow Time in the Online Dial-a-Ride Problem 267

Proof. Let R denote the set of requests served by fcfs at or after time T . By
Claim 2, the requests in R are all released at or after time T − F ∗ and thus
served by opt not earlier than time T − F ∗. Therefore, by construction of the
matrix M , the non-zero entries representing the requests in R are all contained
in columns (·, T − F ∗), . . . , (·, L). As mentioned above, all requests belonging to
the same column specify the same node. Hence, if we are able to show that fcfs
serves all requests in R that are contained in the same column simultaneously,
then the claim follows: there are L − (T − F ∗) + 1 columns, and fcfs starts
serving the requests in R at time T . Hence, it will be finished at time L + F ∗ if
it serves one column at a time.

To see that fcfs serves all requests in R represented in the same column
simultaneously, recall that all requests corresponding to a non-zero entry of
column (·, j) must have been released between time j − F ∗ and j.

By definition of T , the requests in R are served with a flow time of at least
F ∗. In particular, that request from R in column (·, j) which is served first by
fcfs can be served earliest at time j − F ∗ + F ∗ = j, since its release time is
at least j − F ∗. But at time j, all requests in column (·, j) have already been
released, and can therefore be served simultaneously by fcfs. Thus, fcfs indeed
serves all requests in R belonging to the same column simultaneously. ��

We are now ready to derive the necessary contradiction that proves Theorem 2.
Our assumption was that fcfs has a maximum flow time of at least 2F ∗ + 1
on σ. By Claim 3, we know that fcfs incurs its maximum flow time on the
last request in the sequence, rm. Since opt finishes serving at time L, the last
request rm cannot have been released before time L−F ∗. Otherwise, opt would
incur a flow time of more than F ∗ on the request it serves at time L, since that
request is at least as old as rm. Thus, by Claim 3, the flow time that fcfs incurs
on rm is at most L+F ∗− (L−F ∗) = 2F ∗, contradicting our initial assumption.
Consequently, fcfs is 2-competitive. This proves Theorem 2. ��

Remark 1. Observe that in the above proof of Theorem 2 we actually use the
fairness of the adversary only to show that the optimal flowtime F ∗ is at least 1
on any non-trivial problem instance. This in turn is only used in the proof of
Claim 2 where the existence of the request rj is only guaranteed, if F ∗ is greater
than 0.

The above results show that the fairness condition restricts the adversary’s power
sufficiently if the server only needs to visit points. Moreover, note that fairness
is not required anymore if we do not ask for strict competitiveness, i.e., if we
allow an additive constant b ≥ 1 in the definition of competitiveness. In fact, the
proof remains valid in this case, as can be easily checked.

3.2 A General Lower Bound

Theorem 3. For the Fmax-OlTsp on a uniform metric space with at least five
nodes, no deterministic online algorithm can be strictly c-competitive against the
fair adversary with c < 2.

268 S.O. Krumke et al.

Proof. Let alg be an arbitrary deterministic online algorithm. The origin is as-
sumed to be in node v0. Consider the following instance. First, the adversary
gives a request for v1 at time 0, and a request for v2 at time 1. Clearly, at
time 3, alg has distance at least 1 to at least one of the nodes in {v0, v1, v2}.
Let y ∈ {v0, v1, v2} be that node. Similarly, there exists a node z ∈ {v3, v4, v5}
such that d(palg(3), z) ≥ 1. Then, at time 3, the adversary issues two more
requests: one for y and one for z. Thus, we have that σ = r1, r2, r3, r4 :=
(0, v1), (1, v2), (3, y), (3, z). Figure 4 shows the requests of σ as points of a time-
space diagram for y = v1 and z = v3.

v0 v1 v2 v3 vn

(any two have distance 1)

nodes in Kn

· · ·
r1

r2

r3 r4
3

2

1

0

(z)(y)

time

Fig. 4. The lower bound construction for the Fmax-OlTsp against a fair adversary

By construction, alg has distance at least 1 to both nodes y and z at time 3.
Therefore, it can have finished serving the last of those two requests earliest
at time 5. Since both y and z have been released at time 3, alg’s maximum
flow time is at least 2. On the other hand, the adversary can serve request r1

at time 1, request r2 at time 2, and then move immediately to y, serving r3 at
time 3 and r4 at time 4. This gives opt(σ) = 1, which means that alg is not
better than 2-competitive. Note that the adversary is indeed fair: at time 2, the
“allowed” subgraph is induced by v0 (the origin), v1 and v2. Hence, opt may
move to y immediately after having served r2. ��

References

1. N. Ascheuer, S. O. Krumke, and J. Rambau. Online dial-a-ride problems: Minimiz-
ing the completion time. In Proceedings of the 17th International Symposium on
Theoretical Aspects of Computer Science, volume 1770 of Lecture Notes in Com-
puter Science, pages 639–650. Springer, 2000.

2. G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Algorithms
for the on-line traveling salesman. Algorithmica, 29(4):560–581, 2001.

On Minimizing the Maximum Flow Time in the Online Dial-a-Ride Problem 269

3. M. Blom, S. O. Krumke, W. E. de Paepe, and L. Stougie. The online-TSP against
fair adversaries. Informs Journal on Computing, 13(2):138–148, 2001. A prelimi-
nary version appeared in the Proceedings of the 4th Italian Conference on Algo-
rithms and Complexity, 2000, vol. 1767 of Lecture Notes in Computer Science.

4. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

5. W. E. de Paepe, J. K. Lenstra, J. Sgall, R. A. Sitters, and L. Stougie. Computer-
aided complexity classification of dial-a-ride problems. Informs Journal on Com-
puting, 2003. To appear.

6. E. Feuerstein and L. Stougie. On-line single server dial-a-ride problems. Theoretical
Computer Science, 268(1):91–105, 2001.

7. M. Grötschel, S. O. Krumke, and J. Rambau, editors. Online Optimization of Large
Scale Systems. Springer, Berlin Heidelberg New York, 2001.

8. D. Hauptmeier, S. O. Krumke, and J. Rambau. The online dial-a-ride problem
under reasonable load. In Proceedings of the 4th Italian Conference on Algorithms
and Complexity, volume 1767 of Lecture Notes in Computer Science, pages 125–
136. Springer, 2000.

9. S. Irani, X. Lu, and A. Regan. On-line algorithms for the dynamic traveling repair
problem. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 517–524, 2002.

10. S. O. Krumke. Online Optimization: Competitive Analysis and Beyond. Habilita-
tionsschrift, Technische Universität Berlin, 2002.

11. S. O. Krumke, W. E. de Paepe, D. Poensgen, and L. Stougie. News from the on-
line traveling repairman. Theoretical Computer Science, 295(1–3):279–294, 2003. A
preliminary version appeared in the Proceedings of the 26th International Sympo-
sium on Mathematical Foundations of Computer Science, 2001, vol. 2136 of Lecture
Notes in Computer Science.

12. S. O. Krumke, L. Laura, M. Lipmann, A. Marchetti-Spaccamela, W. E. de Paepe,
D. Poensgen, and L. Stougie. Non-abusiveness helps: An O(1)-competitive al-
gorithm for minimizing the maximum flow time in the online traveling salesman
problem. In Proceedings of the 5th International Workshop on Approximation Algo-
rithms for Combinatorial Optimization, volume 2462 of Lecture Notes in Computer
Science, pages 200–214. Springer, 2002.

Tighter Approximations for Maximum Induced
Matchings in Regular Graphs

Zvi Gotthilf and Moshe Lewenstein

Bar-Ilan University

Abstract. An induced matching is a matching in which each two edges
of the matching are not connected by a joint edge. Induced matchings
are well-studied combinatorial objects and a lot of consideration has
been given to finding maximum induced matchings, which is an NP-
complete problem. Specifically, finding maximum induced matchings in
regular graphs is well-known to be NP-complete. A couple of papers
lately showed a couple of simple greedy algorithm that approximate a
maximum induced matching with a factor of d − 1

2
and d − 1 (different

papers - different factors), where d is the degree of regularity. We show
here a simple algorithm with an 0.75d + 0.15 approximation factor. The
algorithm is simple - the analysis is not.

1 Introduction

Let G = (V, E) be a graph. A set of edges M ⊆ E is an induced matching
if it is a matching such that no two edges in the matching have a third edge
connecting them. Equivalently, the subgraph of G induced by M consists of
exactly M itself. Stockmeyer and Vazirani [13] introduced maximum induced
matching as a variant of the maximum matching problem, and motivated it as
the ”risk free” marriage problem: find the maximum number of pairs such that
each married person is compatible with no married person other than the one
he or she is married to. Methods to find strong edge-colorings in a graph are
based on finding large induced matchings (see - Erdös [4], Faudree, Gyarfas,
Schelp and Tuza [5], Steger and Yu [12]). There is also an immediate connection
between the size of an induced matching and the irredundancy number of a
graph[8] (in [8] they were called strong matchings). On the practical side, induced
matchings have the following applications for secure communication channels.
Consider a bipartite graph G = (X, Y, E) where edges represent communication
capabilities between broadcaster nodes in X and receiver nodes in Y . We want
to select k edges ei(i = 1, ..., k) such that messages on channel i will be passed
from broadcaster X(ei) to receiver Y (ei) so that it is impossible for a message
broadcast on channel i to be leaked or intercepted. Similar applications exist for
VLSI and network flow problems.

Maximum induced matching is NP-complete even for bipartite graphs
bounded by degree 4 [13]. Furthermore, Zito [14] shows that maximum induced
matching is NP-complete for 4k-regular graphs for each k ≥ 1. Ko and Shep-
herd [11] found a close relationship between a maximum induced matching and

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 270–281, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Tighter Approximations for Maximum Induced Matchings in Regular Graphs 271

minimum dominating set. For certain special classes maximum induced match-
ings can be found in polynomial time. For chordal graphs Cameron[1] found a
polynomial time algorithm. Golumbic and Laskar[8] give a polynomial-time al-
gorithm for maximum induced matching in circular-arc graphs. Golumbic and
Lewenstein [9] give polynomial-time algorithms in interval dimension graphs,
trapezoid graphs and cocomparability graphs by transferring the problem into a
maximum independent set problem. In addition, they present a linear-time algo-
rithm in interval graphs. Also Cameron [2] shows polynomial-time algorithms for
polygon-circle graphs and asteroidal triple-free graphs. For trees there are sev-
eral algorithms running in linear-time presented by Fricke and Lasker[6], Zito [14]
and Golumbic and Lewenstein [9].

1.1 Approximation Results

Regarding the approximability of maximum induced matching, which is our main
interest, Zito [14] has shown that for every k ≥ 1 there is a constant c ≥ 1 such
that approximating maximum induced matching within a factor c on 4k-regular
graphs is NP-hard, so maximum induced matching is APX-complete for 4k-
regular graphs. We will focus on the case of d-regular graph. Zito [14] show that
for d-regular graphs maximum induced matching is approximable within a factor
of d - 1/2. Moreover Duckworth, Manlove and Zito [3] improved this bound by
presenting an approximation algorithm for maximum induced matching in d-
regular graphs, which has an asymptotic performance ratio of d − 1 for each
d ≥ 3. Both use a simple greedy method. We present another simple variant of
greedy which achieves an 0.75d+0.15 approximation factor for the problem. The
analysis is quite intricate and has several subtle points.

2 Definitions

We give a couple of definitions that are necessary to understand the algorithm.
Obviously, not all edges can be together in an induced matching. The following
definitions categorize what kind of conflicts there are between edges relative to
an induced matching.

Definition 1. Let G = (V, E) be a graph and e = {u, v} ∈ E an edge. An edge
f = {x, y} is a conflict edge of e if either x or y is within distance 1 of u or v.
A conflict edge is of first-degree if x or y = u or v and is of second-degree if
{x, y} ∩ {u, v} = Ø.

An edge is defined to be a conflict edge of itself (but is neither first-degree nor
second-degree).

Definition 2. Let G = (V, E) be a graph and M an induced matching on G.
We denote with C(e) the set of conflict edges of e and define the conflict degree
of e to be the number of conflict edges of e, i.e. the conflict degree of e is equal
to |C(e)|.

272 Z. Gotthilf and M. Lewenstein

e

e

Fig. 1. First and Second Degree Edges

3 The Algorithm

The algorithm is a 2 stage greedy algorithm which works as follows. In the first
stage we choose an arbitrary edge e whose conflict degree is ≤ 1.5d2 − 0.5d (this
number is instrumental in achieving the desired approximation factor). We move
e into our matching M and remove e and all edges that conflict with e from the
graph. We then search for another edge whose conflict degree is ≤ 1.5d2 − 0.5d
(in the graph with the removed edges). We repeat this process as long as we can
find such edges. (See Appendix A for a detailed algorithm.)

It follows from the method that M is induced and we are left with a graph
in which every edge has conflict degree > 1.5d2 − 0.5d. This brings us to the
second stage which is based on the following two simple rules.

Rule 1(e, M) Comment: e /∈ M

True, if M ∪ {e} is an induced matching.
False, otherwise.

Rule 2(e, e′, e′′, M) Comment: e ∈ M , e′, e′′ /∈ M

True, if M ∪ {e′, e′′} − {e} is an induced matching.
False, otherwise.

In stage 2 we iteratively apply Rule 1 until there are no more edges fulfilling
Rule 1. In each application of Rule 1 we add the edge to our second stage
matching M ′. When there are no edges satisfying Rule 1 we seek a triplet of
edges e ∈ M ′, e′, e′′ /∈ M ′ that satisfy Rule 2. If we find one we update M ′

accordingly and return to Rule 1. We do this procedure until Rule 1 and Rule
2 cannot be applied anymore. See Appendix B for the detailed algorithm of
Stage 2.

The final induced matching is M ∪ M ′.
Time and Correctness Analysis: First of all, it is easy to see that M ∪ M ′

is an induced matching. This follows since, in the first stage we remove all the
conflicting edges in each round and in the second stage we follow the rules
that make sure that an induced matching is maintained. The time is clearly
polynomial as each the size of the induced matching increases in each round.

Note that stage 2 of the algorithm returns M ′. The following observation
refers to properties of M ′ that immediately follow from the applications of the
rules.

Tighter Approximations for Maximum Induced Matchings in Regular Graphs 273

Definition 3. Let G = (V, E) be a graph and M an induced matching on G. The
M -conflict degree of an edge e is the number of conflict edges of e that belong to
M . The M -conflict degree of e is equal to |C(e) ∩ M |.

Observation 1. The matching M ′ returned by stage 2 of the algorithm satisfies:
1. There are no edges with M ′-conflict degree equal to 0.
2. There is no pair of edges e′, e′′ ∈ E′ fulfilling the following criteria:
- e′ and e′′ do not conflict.
- Both e′, e′′ have M ′-conflict degree equal to 1 and are in conflict with the
same e ∈ M ′.

4 Algorithm Analysis

To get a better understanding of the analysis before delving into the details note
the following obvious observation.

Observation 2. Let G = (V, E) be a d-bounded graph (i.e. the degree of each
vertex is ≤ d). The conflict degree of any edge is at most: 2d2 − 2d + 1.

This observation led Zito [14] to his analysis of a d − 1
2 approximation. Simply

reiterate on Rule 1 only. Since the graph is d-regular there are nd/2 edges. By
Observation 2 the induced matching Zito finds is ≥ nd

2(2d2−2d+1) . Moreover, the

size of the optimal induced matching is no more than nd
2(2d−1) . The ratio between

the two is d − 1
2 yielding the desired result.

Of course, if one could produce a tighter upper bound on the conflict degree
of the matched edges on average then this would immediately yield a better
bound on the approximation ratio. This is where the first stage comes into play
trying to maximize profit from lightweight conflict degree edges. In general one
can deduce the following regarding the first stage.

Lemma 1. Let M be the resulting induced matching of the first stage. The size
of M will be at least |E1|/(1.5d2−0.5d), where E1 is the group of edges extracted
from G in the first stage.

Proof: On each cycle of the first stage we remove at most 1.5d2−0.5d edges which
is the maximum number of conflict edges an edge can have if it was removed on
this stage. On every cycle we enlarge M by one. The number of iterations will be
at least |E1|/(1.5d2−0.5d). Therefore M will be at least |E1|/(1.5d2−0.5d). ��
Hence, the main part of the analysis will be the analysis of the second stage. Our
analysis works as follows. Every edge potentially has a conflict with 2d2−2d+1
edges but, since it is stage 2, it must have a conflict with at least 1.5d2 − 0.5d
edges. We show that this constrains the form of the graph allowing to achieve a
better approximation. To be formal we define for each edge e a potential conflict
degree, i.e. the number of conflicting edges, and show that the more lax we are
with the form in the immediate neighborhood of e the lower the potential.

274 Z. Gotthilf and M. Lewenstein

Definition 4. Let e be an edge in E. The potential conflict degree of an edge e
is an upper bound on the number of conflicting edges that e may have.

As mentioned, every edge has a potential conflict degree of 2d2 − 2d + 1 which
can be lowered for certain graph structures that we detail below.

To gain from this we consider edges with M -conflict degree greater than one.
When considering the ratio described above used to achieve an approximation
factor, these edges are counted only by one of the edges of M ′ when evaluating
the size of the induced matching. From arguments on the potential conflict degree
it turns out that the number of edges with M ′-conflict degree 1 chosen in stage
2 is not that large. This in turn forces the number of edges with M ′-conflict
degree ≥ 2 to be large. This yields the better approximation factor.

4.1 One-Neighborhoods

Before we begin analyzing the performance of the above-suggested algorithm, we
need some terminology on conflict edges that relate specifically to the matching.

Following the discussion from the previous section, we will focus on edges that
have M -conflict degree of one and in the final analysis we will cash in on those
that have higher M -conflict degree.

Definition 5. Let G = (V, E) be a graph, e = {u, v} ∈ E an edge. Define the
1-neighbourhood(e) to be the group of edges which have a conflict with e and
have M -conflict degree 1.

Our goal is to find out what is the maximum size of the 1 − neighbourhood(e)
for each e ∈ M ′. The following lemma, which we use later on, gives us our first
structural limitation on the graph based on the M-conflict degrees of the edges.

Lemma 2. Let M be a maximal (perhaps not maximum) induced matching.
Let e ∈ M and e′, e′′ ∈ 1 − neighbourhood(e). Then there is no edge e′′′ /∈
1 − neighbourhood(e) that connects between e′ and e′′.

Proof: First we will prove that e′′′ cannot have an M -conflict degree > 1.
Assume, by contradiction, that e′′′ = {u, v} has an M -conflict degree ≥ 2, say
with e1 and e2 from M . Since e′′′ connects between e′ and e′′, u and v also
belong to e′ and e′′. Hence, e1 must conflict with either e′ or e′′ and, likewise,
e2 must conflict with either e′ or e′′. So, at least one of e′ and e′′ conflicts with
an edge from M other than e, a contradiction.

Similarly, if e′′′ has M -conflict degree 1, where e1 	= e is the edge from M
conflicting e′′′, then either e′ or e′′ must conflict with e1 which is impossible. ��
Conversely to the previous Lemma, we can show a relationship between edges
of any given one-neighborhood of the second stage solution M ′.

Lemma 3. Let M ′ be the resulting induced matching from the second stage of
the algorithm and let e ∈ M ′. Every pair of edges e′, e′′ ∈ 1− neighbourhood(e)
must conflict.

Tighter Approximations for Maximum Induced Matchings in Regular Graphs 275

Proof: Let us assume that there is such a pair of edges e′, e′′ ∈ 1−neighbourhood
(e) such that e′ and e′′ do not conflict. We show a contradiction. Both e′ and
e′′ have an M ′-conflict degree equal to 1 and are in conflict with e ∈ M ′. If e′

and e′′ do not have a conflict this contradicts the second part of Observation 1.
Therefore e′, e′′ must conflict. ��

4.2 Choosing Sides

We are interested in bounding the size of the one-neighborhood of every edge
of the matching which will give a tighter analysis than the one mentioned im-
mediately after Observation 2. To this end we will have it easier to deal with
the first-degree conflicting edges and the second-degree conflicting edges sepa-
rately. In fact, the first-degree edges is no more than 2(d − 1) whereas the set
of second-degree edges can be as large as 2(d− 1)2. Hence, we will mainly focus
on bounding the second degree edges. In this subsection we partition them into
three categories. The first of the three is trivial to handle and the other two
comprise the next two subsections.

Notation 1. Let G = (V, E) be a graph, e ∈ E an edge and ei a conflict edge of
e of first-degree. Denote seci(e) to be the group of edges which are second-degree
conflict edges of e and share a vertex with ei.

Definition 6 (Shared Edges). Let G = (V, E) be a graph and e ∈ E an edge.
An edge e′ is said to be a shared-edge (relative to e) if (1) e′ is a second-degree
conflict edge of e and (2) there are two distinct edges ei, ej that are first-degree
conflict edges of e such that e′ shares a vertex with both. (see Figure 2).

When it is clear from context we drop the mention of “relative to e” and simply
call an edge a shared-edge.

Definition 7 (Diagonal Edges). Let G = (V, E) be a graph, e = {u, v} ∈ E
an edge, e′ ∈ seci(e), e′′ ∈ secj(e) (where i 	= j). Let e′ and e′′ be diagonal-
edges(e) if they share a common vertex and e′, e′′ are not shared edges (relative
to e).

Let e = {u, v} ∈ M ′, we will divide the conflict edges of e of second-degree
into two group according to the generate vertex of e - the first group will be
sideU = {∪seci(e)} such that ei (a conflict edge of e of first-degree) contains

e e’

Fig. 2. Shared Edge

276 Z. Gotthilf and M. Lewenstein

u as a vertex. The second group will be sideV = {∪secj(e)} such that ej (a
conflict edge of e of first-degree) contains v as a vertex. Note that there may be
some edges that belong to both groups.

Recall that we desire to upper bound the size of the one-neighborhoods. We
will bound the one-neighborhoods of sideU and then conclude from symmetric
reasoning that sideV has the same bound. In the last section of the paper, we
merge all bounds together.

Let e ∈ M ′ and e′, e′′ ∈ {1− neighbourhood(e) ∩ {sideU − {shared edges}}}
then e′, e′′ can have a conflict in only one of the following scenarios - depicted
in Figure 3:

– Both e′ ∈ seci(e) and e′′ ∈ seci(e) - in this case e′, e′′ have a conflict of first
degree.

– e′ ∈ seci(e) and e′′ ∈ secj(e) while i 	= j and there is no shared edge between
seci(e) and secj(e) - in this case e′, e′′ can have a conflict only if e′ have a
first-degree conflict (diagonal-edges) with at least one of the edges in secj(e)
or e′′ have a first-degree conflict with at least one of the edges in seci(e).

– e′ ∈ seci(e) and e′′ ∈ secj(e) while i 	= j and there is an edge e′′′ such that
e′′′ ∈ {seci(e) ∩ secj(e)} - e′′′ is a shared edge - in this case all the edges
from {seci(e) ∪ secj(e)} have a conflict.

e’’

e

e’

e’

e
e’’

e’’

e’

e e’’’

Fig. 3. The Three Cases

We point out that the second case is slightly more inclusive than is depicted in
the figure. Also, there is one more case that we disregarded, namely when e′ and
e′′ share an edge e′′′ = (u, v) where u is the endpoint of e′ farther away from e
and v is the endpoint of e′′ farther away from e. This case cannot happen, see
Lemma 2.

4.3 Shared Edges

We now consider the case of shared edges.

Lemma 4. A shared edge that connect between seci(e) and secj(e) such that
both groups belongs to sideU will decrease the potential conflict degree of ei and
ej by at least d.

Tighter Approximations for Maximum Induced Matchings in Regular Graphs 277

Proof: First we will prove a simple property of d-bounded graphs. Let e ∈ E
be an edge which is part of a triangle then we claim that the potential conflict
degree of e will decrease by at least d. The existence of a triangle does not affect
the number of first degree conflict edges of e. However instead of having up to
2(d − 1) second degree conflict edges of e (each of the edges ei and ej have at
most d− 1 second-degree neighbors) only d− 2 second degree conflict edges of e
can be produced by those two edges. Therefore the potential conflict degree of
e will decrease by at least d.

Now let e′ = {k, l} be a shared edge that connect between seci(e) and secj(e)
such that both groups belongs to sideU then ei = {u, k}, ej = {u, l} and e′ =
{k, l} create a triangle and therefore, the potential conflict degree of ei and ej

will decrease by at least d. ��

Lemma 5. A shared edge that connects between seci(e) and secj(e) such that
both groups belongs to sideU will increase the number of edges (from seci(e) or
secj(e)) counted to the 1-neighborhood(e) by at most d-2.

Proof: Let e′ = {k, l} be a shared edge that connect between seci(e) and secj(e)
such that both groups belongs to sideU then all edges of seci(e) are connected
to all edges from secj(e). Both |seci(e)| ≤ d-1 and |secj(e)| ≤ d-1. Moreover e′

is a shared edge. Therefore every edge from seci(e) is now connected to at most
d-2 edges from secj(e) that do not belong to seci(e) and vice versa. ��

4.4 Diagonal Edges

Now let us analyze the case of diagonal-edges.

Lemma 6. Let e′ ∈ seci(e), e′′ ∈ secj(e) be diagonal-edges such that both
seci(e) and secj(e) belongs to sideU then the potential conflict degree of ei and
ej will decrease by at least 1.

Proof: Let e ∈ E be an edge which is part of a square. We claim that the
potential conflict degree of e will be decreased by at least 1. The existence of
a square does not affect the number of first-degree conflict edges of e. However
instead of having up to 2(d − 1) second-degree conflict edges of e (produced by
its two square neighbors) only 2d − 3 second-degree conflict edges of e can be
produced by those two neighbor edges. Therefore the potential conflict degree
of e will decrease by at least 1.

It is obvious, e′, e′′, ei and ej creates a square and therefore, the potential
conflict degree of all four edges will decrease by at least 1. ��

Lemma 7. Let e′ ∈ seci(e), e′′ ∈ secj(e) be diagonal-edges such that both
seci(e) and secj(e) belong to sideU then the size of the 1-neighborhood(e) will
increase the number of edges (from seci(e) or secj(e)) counted to the 1-neighbor-
hood(e) by at most 1.

Proof: Let e1 = {k, l} ∈ seci(e), e2 = {l, m} ∈ secj(e) be diagonal-edges that
connect between seci(e) and secj(e) such that both groups belongs to sideU

278 Z. Gotthilf and M. Lewenstein

then e1, e2, ei and ej are four edges that create a ”square”. Every edge from
seci(e) is now connected to e2 and every edge from secj(e) is now connected to
e1 but this pair of edges doesn’t connect between other edges from both groups.
Therefore every edge from seci(e) is now connected to only 1 edge (through
this pair of diagonal edges) from secj(e) that doesn’t belong to seci(e) and vice
versa. ��

4.5 Bounding the One-Neighborhood on One Side

Lemma 8. Let seci(e) be the group, among all the groups secj(e) on sideU ,
with the maximum number of edges that have M -conflict degree 1 (not including
shared edges).

Then the number of edges with M -conflict degree 1 belonging to {sideU −
{{ shared edges} ∪ seci(e)}} is at most 0.5d2 − 1.5d + 1.

Proof: There are two possible ways to “create” a conflict between all edges from
seci(e) to other edges from {sideU − {{ shared edges} ∪ seci(e)}}:
– shared edges - in this case, by Lemma 5, each shared edge adds at most d-2

edges to the solution but, by Lemma 4, the potential conflict degree of ei

decreases by d.
– diagonal-edges - by Lemma 7, each pair of diagonal-edges(one of the edges

must be from seci(e)) add exactly 1 edge to the solution but, by Lemma 7,
the conflict degree of ei decreases by 1.

Therefore in order to increase by 1 the group of edges with M -conflict degree 1
belonging to {sideU − {{shared edges} ∪ seci(e)}} we will decrease the conflict
degree of ei by at least 1. If the number of edges with M -conflict degree 1 belongs
to {sideU−{{shared edges}∪seci(e)}} > 0.5d2−1.5d+1 then the conflict degree
of ei ≤ 2d2−2d+1− (0.5d2−1.5d+1) = 1.5d2−0.5d but this is a contradiction,
because after stage 1 there are no edges with conflict degree ≤ 1.5d2 − 0.5d . ��
Note that symmetrically the bound holds for sideV.

4.6 Bounding the Shared Edges

Lemma 9. Each shared edge that connects between seci(e) and secj(e) will de-
crease the potential conflict degree of e by at least 1.

Proof: Let e′ = {k, l} be a shared edge we will divide the proof into two cases:

– seci(e) ∈ sideU and secj(e) ∈ sideV or vice versa: ei = {u, k}, ej = {v, l},
e′ = {k, l} and e = {u, v} create a “square” then according to the proof of
Lemma 6 the potential conflict degree of e will decrease by 1.

– seci(e), secj(e) ∈ sideU or seci(e), secj(e) ∈ sideV . Let us assume w.l.o.g
seci(e), secj(e) ∈ sideU : Let ei = {u, k}, ej = {u, l} and e′ = {k, l} creates
a “triangle”. The existence of a triangle does not affect the number of first-
degree conflict edges of e. However instead of create up to 2(d − 1) second-
degree conflict edges of e (both ei and ej can produce at most d − 1 edges)

Tighter Approximations for Maximum Induced Matchings in Regular Graphs 279

only 2d−3 second-degree conflict edges of e can be produced by those edges
because e′ is “counted twice” as a second-degree conflict edge.

Therefore the potential conflict degree of e will decrease by at least 1. ��

4.7 Putting the Approximation Bound Together

By Lemma 9, if the number of shared edges > 0.5d2 − 1.5d + 1 then the conflict
degree of e ≤ 2d2 − 2d + 1 − (0.5d2 − 1.5d + 1) = 1.5d2 − 0.5d but this is a
contradiction to the algorithm - after stage 1 there are no edges with conflict
degree ≤ 1.5d2 − 0.5d. Therefore the number of shared edges can be at most
0.5d2 − 1.5d + 1. Thus, the number of edges with M -conflict degree 1 that are
shared edges is at most 0.5d2 − 1.5d + 1.

The number of edges in seci(e) can be at most d− 1 and the number of edges
that are first-degree to e together with e itself can be at most 2d − 1.

The average number of shared edges over all 1-neighbourhood(e) such that e ∈
M ′ is denoted with shared. By Lemma 8, the average size of the
1-neighbourhood(e) can be at most: 2(0.5d2−1.5d+1)+2(d−1)+2d−1+shared =
d2 + d − 1 + shared. Hence, the sum of M -conflict degrees, over all edges, is at
least: 2|E′| − (d2 + d − 1 + shared)|M ′|. We call the sum of M -conflict degrees,
over all edges, the M -conflict degree sum.

Lemma 10. Let G′ = (V ′, E′) be a d-bounded graph and M ′ a maximum in-
duced matching such the M ′-conflict degree sum (of E′) ≥ 2|E′| − (d2 + d− 1 +
shared)|M ′| then the size of M ′ is at least: 2|E′|/(3d2 − d).

Proof: The sum M -conflict degree of all edges is at least 2|E′| − (d2 + d − 1 +
shared)|M ′|. Now, choose an edge (e, from the solution) and for each conflict
edge e′ of e decrease the M -conflict degree of e′ by one. If the M -conflict degree
of an edge became 0, remove the edge from G′. At the beginning, the sum of
the M ′-conflict degree is at least 2|E′| − (d2 + d − 1 + shared)|M ′|. Adding
an edge to M ′ will, on average, decrease the sum of the M ′-conflict degree
by at most 2d2 − 2d + 1 − shared. Therefore, the size of M ′ will be at least:
[2|E′| − (d2 + d− 1 + shared)|M ′|] / [(2d2 − 2d + 1− shared)] ⇒ |M ′|(2d2 − 2d +
1− shared) ≥ 2|E′| − (d2 + d− 1 + shared)|M ′| ⇒ |M ′|(3d2 − d) ≥ 2|E′| ⇒ |M ′|
≥ 2|E′|/(3d2 − d). ��

Theorem 1. The approximation ratio of our algorithm is 0.75d + 0.15.

Proof: According to 1 the size M is at least: |E1|/(1.5d2−0.5d) and according to
Lemma 10 the size of M ′ is at least: 2|E′|/(3d2−d). Therefore size of M∪M ′ is at
least 2|E′|/(3d2−d)+ |E1|/(1.5d2−0.5d). Moreover we know {E′∪E1} = E ⇒
|E′∪E1| = |E| = nd/2. |M ′|+ |M | ≥ [2|E′|]/[(3d2−d)]+ [nd/2−|E′|]/[(1.5d2−
0.5d)] = nd/[(3d2 − d)].

Therefore the approximation ratio will be: [nd/2(2d − 1)]/[nd/(3d2 − d)] =
0.75d + 0.15. (This is true for d ≥ 3. If d < 3 then it is simple to solve exactly.)

��

280 Z. Gotthilf and M. Lewenstein

References

1. K. Cameron. Induced matchings. Discrete Applied Mathematics, 24:97-102, 1989.
2. K. Cameron. Induced matchings in intersection graphs. Proceedings of the Sixth

International Conference on Graph Theory, Marseille, France, August, 2000.
3. W. Duckworth, D. Manlove and M. Zito. On the approximability of the maximum

induced matching problem. Journal of Discrete Algorithms, 3(1):79-91, 2005.
4. P. Erdos. Problems and results in combinatorial analysis and graph theory. Discrete

Mathematics, 72:81-92, 1988.
5. R.J. Faudree, A. Gyarfas, R.H. Schelp and Z. Tuza. Induced matchings in bipartite

graphs. Discrete Mathematics, 78:83-87, 1989.
6. G. Fricke and R. Lasker. Strong matchings in trees. Congressus Numerantium,

89:239-244, 1992.
7. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,

New York, 1980.
8. M.C. Golumbic and R.C. Laskar. Irredundancy in circular arc graphs. Discrete

Applied Mathematics, 44:79-89, 1993.
9. M.C. Golumbic and and M. Lewenstein. New results on induced matchings. Dis-

crete Applied Mathematics, 101:157-165, 2000.
10. P. Horak, H.Qing and W.T. Trotter. Induced matchings in cubic graphs. Journal

of Graph Theory, 17(2):151-160, 1993.
11. C.W. Ko and F.B. Shepherd. Adding an identity to a totally unimodular matrix.

Working paper LSEOR.94.14, London School of Economics, Operational Research
Group, 1994.

12. A. Steger and M. Yu. On induced matchings. Discrete Mathematics, 120:291-295,
1993.

13. L.J. Stockmeyer and V.V. Vazirani. NP-completeness of some generalization of the
maximum matching problem. Information Processing Letters, 15(1):14-19, 1982.

14. M. Zito. Induced matchings in regular graphs and trees. Proc. of WG 1999, LNCS
1665, 89-100, 1999.

A Algorithm - Stage 1

(1.) M ← Ø
(2.) Stay ← True
(3.) While(Stay) {

(3.a) for every e ∈ E compute the conflict degree of e.
(3.b) choose an edge e with the minimum conflict degree.
(3.c) if the conflict degree of e ≤ 1.5d2 − 0.5d

(3.c.1) M ← M ∪ {e}.
(3.c.2) E ← E − C(e).

(3.c’) else
(3.c’.1) Stay ← False.

}

Tighter Approximations for Maximum Induced Matchings in Regular Graphs 281

B Algorithm - Stage 2

M ← Ø.
Perform Init on G(V,E) and M to receive G′(V ′, E′).
M ′

← Ø.
Perform Rule1 on G′(V ′, E′) and M ′.
Perform Rule2 on G′(V ′, E′) and M ′ until switch was made or no such switch exist.
If a switch was made during Rule2 return to Rule1.
Else, stop and return {M ∪ M ′

} as the induced matching.

On Approximating Restricted Cycle Covers�

Bodo Manthey��

Universität zu Lübeck, Institut für Theoretische Informatik,
Ratzeburger Allee 160, 23538 Lübeck, Germany

manthey@tcs.uni-luebeck.de

Abstract. A cycle cover of a graph is a set of cycles such that every
vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in
which the length of every cycle is in the set L. A special case of L-cycle
covers are k-cycle covers for k ∈ N, where the length of each cycle must
be at least k. The weight of a cycle cover of an edge-weighted graph is
the sum of the weights of its edges.

We come close to settling the complexity and approximability of com-
puting L-cycle covers. On the one hand, we show that for almost all L,
computing L-cycle covers of maximum weight in directed and undirected
graphs is APX-hard and NP-hard. Most of our hardness results hold even
if the edge weights are restricted to zero and one. On the other hand, we
show that the problem of computing L-cycle covers of maximum weight
can be approximated with factor 2.5 for undirected graphs and with fac-
tor 3 in the case of directed graphs. Finally, we show that 4-cycle covers
of maximum weight in graphs with edge weights zero and one can be
computed in polynomial time.

As a by-product, we show that the problem of computing minimum
vertex covers in λ-regular graphs is APX-complete for every λ ≥ 3.

1 Introduction

The travelling salesman problem (TSP) is perhaps the best-known combinatorial
optimisation problem. An instance of the TSP is a complete graph with edge
weights, and the aim is to find a minimum or maximum weight cycle that visits
every vertex exactly once. Such a cycle is called a Hamiltonian cycle. Since the
TSP is NP-hard [10, ND22+23], we cannot hope to always find an optimal cycle
efficiently. For practical purposes, however, it is often sufficient to obtain a cycle
that is close to optimal. In such cases, we require approximation algorithms, i.e.
polynomial-time algorithms that compute such near-optimal cycles.

The problem of computing cycle covers is a relaxation of the TSP: A cycle
cover of a graph is a spanning subgraph such that every vertex is part of exactly
one simple cycle. Thus, a solution to the TSP is a cycle cover consisting of a single
cycle. In analogy to the TSP, the weight of a cycle cover in an edge-weighted
graph is the sum of the weights of its edges.

� A full version of this work is available at http://arxiv.org/abs/cs/0504038.
�� Supported by DFG research grant RE 672/3.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 282–295, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Approximating Restricted Cycle Covers 283

In contrast to the TSP, cycle covers of maximum weight can be computed
efficiently. This fact is exploited in approximation algorithms for the TSP; the
computation of cycle covers forms the basis for the currently best known ap-
proximation algorithms for many variations of the TSP. These algorithms usu-
ally start by computing an initial cycle cover and then join cycles to obtain a
Hamiltonian cycle.

Short cycles in a cycle cover limit the approximation ratios achieved by such
algorithms. In general, the longer the cycles in the initial cover are, the bet-
ter the approximation ratio. Thus, we are interested in computing cycle covers
without short cycles. Moreover, there are approximation algorithms that behave
particularly well if the cycle covers that are computed do not contain cycles of
odd length [6]. Finally, some so-called vehicle routing problems (cf. e.g. Hassin
and Rubinstein [12]) require covering vertices with cycles of bounded length.

Therefore, we consider restricted cycle covers, where cycles of certain lengths
are ruled out a priori: Let L ⊆ N, then an L-cycle cover is a cycle cover in which
the length of each cycle is in L. To fathom the possibility of designing approxi-
mation algorithms based on computing cycle covers, we aim to characterise the
sets L for which L-cycle covers of maximum weight can be computed efficiently.

1.1 Preliminaries

A cycle cover of a graph G = (V, E) is a subgraph of G that consists solely of
cycles such that all vertices in V are part of exactly one cycle. The length of a
cycle is the number of edges it consists of. We are concerned with simple graphs,
i.e. the graphs do not contain multiple edges or loops. Thus, the shortest cycles
of undirected and directed graphs have length three and two, respectively.

An L-cycle cover is a cycle cover in which the length of every cycle is in the
set L ⊆ N. For undirected graphs, we have L ⊆ U = {3, 4, 5, . . .}, while L ⊆ D =
{2, 3, 4, . . .} in case of directed graphs. A k-cycle cover is a {k, k +1, . . .}-cycle
cover. Let L = U \L in the case of undirected graphs and L = D \L in the case
of directed graphs (this will be clear from the context).

Given an edge weight function w : E → N, the weight w(C) of a subset
C ⊆ E of the edges of G is w(C) =

∑
e∈C w(e). This particularly defines the

weight of a cycle cover since we view cycle covers as sets of edges. Let U ⊆ V
be any subset of the vertices of G. The internal edges of U are all edges of G
that have both vertices in U . We denote by wU(C) the sum of the weights of
all internal edges of U in C. The external edges at U are all edges of G with
exactly one vertex in U .

For L ⊆ U , the set L-UCC contains all undirected graphs that have an
L-cycle cover as spanning subgraph.

Max-L-UCC is the following optimisation problem: Given a complete undi-
rected graph with edge weights zero and one, find an L-cycle cover of maximum
weight. We can also consider the graph as being not complete and without edge
weights. Then we try to find an L-cycle cover with a minimum number of “non-
edges” (“non-edges” correspond to weight zero edges, edges to weight one edges).
Thus, Max-L-UCC can be viewed as a generalisation of L-UCC.

284 B. Manthey

Max-W-L-UCC is the problem of finding maximum-weight L-cycle covers
in graphs with arbitrary non-negative edge weights.

For k ≥ 3, k-UCC, Max-k-UCC, and Max-W-k-UCC are defined like
L-UCC, Max-L-UCC and Max-W-L-UCC except that k-cycle covers instead of
L-cycle covers are sought.

L-DCC, Max-L-DCC, Max-W-L-DCC, k-DCC, Max-k-DCC, and
Max-W-k-DCC are defined for directed graphs like L-UCC, Max-L-UCC,
Max-W-L-UCC, k-UCC, Max-k-UCC, and Max-W-k-UCC for undirected graphs
except that L ⊆ D and k ≥ 2.

An instance of Min-Vertex-Cover is an undirected graph H = (X, F). A
vertex cover of H is a subset X̃ ⊆ X such that at least one vertex of every
edge in F is in X̃. The aim is to find a vertex cover of minimum cardinality.
Min-Vertex-Cover(λ) is Min-Vertex-Cover restricted to λ-regular graphs, i.e.
to simple graphs in which every vertex is incident to exactly λ edges. Already
Min-Vertex-Cover(3) is APX-complete [2].

We refer to Ausiello et al. [3] for a survey on NP optimisation problems.

1.2 Existing Results

Undirected Graphs. U-UCC, Max-U-UCC, and Max-W-U-UCC can be solved
in polynomial time via reduction to the classical perfect matching problem,
which can be solved in polynomial time [1, Chap. 12]. Hartvigsen presented
a polynomial-time algorithm for computing a maximum-cardinality triangle-free
two-matching [11] (see also Sect. 5). His algorithm can be used to decide 4-UCC
in polynomial time. Furthermore, it can be used to approximate Max-4-UCC
within an additive error of one according to Bläser [4].

Max-W-k-UCC admits a simple factor 3/2 approximation for all k: Compute
a maximum weight cycle cover, break the lightest edge of each cycle, and join
the cycles to obtain a Hamiltonian cycle, which is sufficiently long if the graph
contains at least k vertices. Unfortunately, this algorithm cannot be generalised
to work for Max-W-L-UCC with arbitrary L. For the problem of computing k-
cycle covers of minimum weight in graphs with edge weights one and two, there
exists a factor 7/6 approximation algorithm for all k [8].

Cornuéjols and Pulleyblank presented a proof due to Papadimitriou that 6-
UCC is NP-complete [9]. Vornberger showed that Max-W-5-UCC is NP-hard [14].
For k ≥ 7, Max-k-UCC and Max-W-k-UCC are APX-complete [5]. Hell et al. [13]
proved that L-UCC is NP-hard for L �⊆ {3, 4}.

For most L, L-UCC, Max-L-UCC, and Max-W-L-UCC are not even recursive
since there are uncountably many L. Thus for most L, L-UCC is not in NP and
Max-L-UCC and Max-W-L-UCC are not in NPO. This does not matter for hard-
ness results but may cause problems when one wants to design approximation
algorithms that base on computing L-cycle covers. However, our approximation
algorithms work for arbitrary L, independently of the complexity of L.

Directed Graphs. D-DCC, Max-D-DCC, and Max-W-D-DCC can be solved in
polynomial time by reduction to the maximum weight perfect matching problem

On Approximating Restricted Cycle Covers 285

Table 1. The complexity of computing L-cycle covers

(a) Undirected cycle covers.

L-UCC Max-L-UCC Max-W-L-UCC

L = ∅ in P in PO in PO

L = {3} in P in PO

L = {4} ∨ L = {3, 4} APX-complete
else NP-hard APX-hard APX-hard

(b) Directed cycle covers.

L-DCC Max-L-DCC Max-W-L-DCC

L = {2} ∨ L = D in P in PO in PO

else NP-hard APX-hard APX-hard

in bipartite graphs [1, Chap. 12]. But already 3-DCC is NP-complete [10, GT13].
Max-k-DCC and Max-W-k-DCC are APX-complete for all k ≥ 3 [5].

Similar to the factor 3/2 approximation algorithm for undirected cycle covers,
Max-W-k-DCC has a simple factor 2 approximation algorithm for all k: Com-
pute a maximum weight cycle cover, break the lightest edge of every cycle, and
join the cycles to obtain a Hamiltonian cycle. Again, this algorithm cannot be
generalised to work for Max-W-L-DCC with arbitrary L. There are a factor 4/3
approximation algorithm for Max-W-3-DCC [7] and a factor 3/2 approximation
algorithm for Max-k-DCC for k ≥ 3 [5].

As in the case of cycle covers in undirected graphs, for most L, L-DCC, Max-
L-DCC, and Max-W-L-DCC are not recursive.

1.3 New Results

We come close to settling the complexity and approximability of restricted cycle
covers. Only the complexity of the five problems 5-UCC, {4}-UCC Max-5-UCC,
Max-{4}-UCC, and Max-W-4-UCC remains open. Table 1 shows an overview on
the complexity of computing restricted cycle covers.

Hardness Results. We prove that Max-L-UCC is APX-hard for all L with L �⊆
{3, 4} (Sect. 3). We also prove that Max-W-L-UCC is APX-hard if L �⊆ {3} (this
follows from the results of Sect. 3 and the APX-completeness of Max-W-5-UCC
and Max-W-{4}-UCC shown in Sect. 2). The hardness results for Max-W-L-
UCC hold even if we allow only the edge weights zero, one, and two.

We show a dichotomy for cycle covers of directed graphs: For all L with
L �= {2} and L �= D, L-DCC is NP-hard (Theorem 6) and Max-L-DCC and
Max-W-L-DCC are APX-hard (Theorem 5), while it is known that all three
problems are solvable in polynomial time if L = {2} or L = D.

To show the hardness of directed cycle covers, we show that certain kinds
of graphs, called L-clamps, exist for non-empty L ⊆ D if and only if L �= D
(Theorem 4). This graph-theoretical result might be of independent interest.

286 B. Manthey

As a by-product, we prove that Min-Vertex-Cover(λ) is APX-complete for all
λ ≥ 3 (Sect. 6). We need this result for the APX-hardness proofs in Sect. 3.

Algorithms. We present a polynomial-time factor 2.5 approximation algorithm
Max-W-L-UCC and a factor 3 approximation algorithm for Max-W-L-DCC
(Sect. 4). Both algorithms work for arbitrary L.

Finally, we prove that Max-4-UCC is solvable in polynomial time (Sect. 5).

2 A Generic Reduction for L-Cycle Covers

In this section, we present a generic reduction from Min-Vertex-Cover(3) to Max-
L-UCC or Max-W-L-UCC. To instantiate the reduction for a certain L, we use a
small graph, which we call gadget, the specific structure of which depends on L.
Such a gadget together with the generic reduction is an L-reduction from Min-
Vertex-Cover(3) to Max-L-UCC or Max-W-L-UCC. The mere aim is to prove
the APX-hardness of Max-W-{4}-UCC and Max-W-5-UCC.

2.1 The Generic Reduction

Let H = (X, F) be a cubic graph with vertex set X and edge set F as an instance
of Min-Vertex-Cover(3). Let n = |X | and m = |F | = 3n/2. We construct an
undirected complete graph G with edge weight function w as a generic instance
of Max-L-UCC or Max-W-L-UCC.

For each edge a = {x, y} ∈ F , we construct a subgraph Fa of G called the
gadget of a. We define Fa as set of vertices, thus wFa(C) for a subset C of the
edges of G is well defined. This gadget contains four distinguished vertices xin

a ,
xout

a , yin
a , and yout

a . These four vertices are used to connect Fa to the rest of the
graph. What such a gadget looks like depends on L. If all edges in such a gadget
have weight zero or one, we obtain an instance of Max-L-UCC since all edges
between different gadgets will have weight zero or one. Otherwise, we have an
instance of Max-W-L-UCC. Figure 2 shows an example of such a gadget.

Let a, b, c ∈ F be the three edges incident to vertex x ∈ X (the order is
arbitrary). Then we assign weight one to the edges connecting xout

a to xin
b and

xout
b to xin

c and weight zero to the edge connecting xout
c to xin

a . We call the
three edges {xout

a , xin
b }, {xout

b , xin
c }, and {xout

c , xin
a } the junctions of x. We say

that {xout
a , xin

b } and {xout
c , xin

a } are the junctions of x at Fa. Figure 1 shows an
example.

We call an edge illegal if it connects two different gadgets but is not a junc-
tion. Thus, an illegal edge is an external edge at two different gadgets. All illegal
edges have weight zero, i.e. there are no edges of weight one that connect two
different gadgets except for the junctions. The weights of the internal edges of
the gadgets depend on the gadget, which in turn depends on L.

The following terms are defined for arbitrary subsets C of the edges of G, and
so in particular for L-cycle covers. We say that C legally connects Fa if

On Approximating Restricted Cycle Covers 287

c

yy
y

b

x
a

(a) Vertex x and its
edges.

Fa

y
out
cy

in
cyin

b yout
byout

ayin
a

xout
axin

a xin
b xout

b xin
c xout

c

FcFb

(b) The gadgets Fa, Fb, and Fc and their connections via
the three junctions of x. The dashed edge has weight zero.
Other weight zero edges and the junctions of y, y, and y
are not shown.

Fig. 1. The construction for a vertex x ∈ X incident to a, b, c ∈ F

– C contains no illegal edges incident to Fa,
– C contains exactly two or four junctions at Fa, and
– if C contains exactly two junctions at Fa, then these belong to the same

vertex x ∈ a.

We call C legal if C legally connects all gadgets. If C is legal, then for all x ∈ X ,
either all junctions of x are in C or no junction of x is in C. Furthermore, from
a legal set C we obtain a vertex cover X̃ = {x | the junctions of x are in C}.

Let us now define the requirements the gadgets must fulfil. In the following,
let C be an arbitrary L-cycle cover of G and a = {x, y} ∈ F be an arbitrary
edge of H .

R0: There exists a fixed number s ∈ N, which we call the gadget parameter,
that depends only on the gadget. The role of the gadget parameter will
become clear in the subsequent requirements.

R1: wFa(C) ≤ s − 1.
R2: If C contains 2α external edges at Fa, then wFa(C) ≤ s − α.
R3: If C contains exactly one junction of x at Fa and exactly one junction of y

at Fa, then wFa(C) ≤ s − 2. (In this case, C does not legally connect Fa.)
R4: Let C′ be an arbitrary subset of the edges of G that legally connects Fa.

Assume that there are 2α junctions (α ∈ {1, 2}) at Fa in C′.
Then there exists a C′′ with the following properties:
– C′′ differs from C′ only in Fa’s internal edges and
– wFa(C′′) = s − α.

Thus, given C′, C′′ can be obtained by locally modifying C′ within Fa. We
call the process of obtaining C′′ from C′ rearranging C′ in Fa.

R5: Let C′ be a legal subset of the edges of G. Then there exists a subset C̃ of
edges obtained by rearranging all gadgets as described in R4 such that C̃ is
an L-cycle cover.

The requirements assert that connecting the gadgets legally is never worse
than connecting them illegally. This yields the main result of this section.

Lemma 1. Assume that a gadget as described exists for L ⊆ U . Then the reduc-
tion presented is an L-reduction from Min-Vertex-Cover(3) to Max-W-L-UCC.
If the gadget contains only edges of weight zero or one, then the reduction is an
L-reduction from Min-Vertex-Cover(3) to Max-L-UCC.

288 B. Manthey

yout
a

xin
a yin

a

xout
a

Fig. 2. The edge gadget Fa for an edge a = {x, y} that is used to prove the APX-
completeness of Max-W-5-UCC. Bold edges are internal edges of weight two, solid
edges are internal edges of weight one, internal edges of weight zero are not shown.
The dashed and dotted edges are the junctions of x and y, respectively, at Fa.

(a) x ∈ X̃ . (b) y ∈ X̃. (c) x, y ∈ X̃.

Fig. 3. Traversals of the gadget for Max-W-5-UCC that achieve maximum weight

2.2 Max-W-5-UCC and Max-W-{4}-UCC

The gadget for Max-W-5-UCC is shown in Fig. 2. Let G be the graph constructed
via the reduction presented in Sect. 2.1 with the gadget of this section. Let C
be an arbitrary L-cycle cover of G and a = {x, y} ∈ F . By proving that it fulfils
all requirements, we obtain the following result.

Theorem 1. Max-W-5-UCC is APX-hard, even if the edge weights are restricted
to be zero, one, or two.

Although the status of Max-5-UCC is still open, allowing only one additional
edge weight of two already yields an APX-complete problem.

The generic reduction together with the gadget used for Max-W-5-UCC works
also for Max-W-{4}-UCC. The gadget only requires that cycles of length four are
forbidden since otherwise R1 is not satisfied. Thus, all requirements are fulfilled
for Max-W-{4}-UCC in exactly the same way as for Max-W-5-UCC.

Theorem 2. Max-W-{4}-UCC is APX-hard, even if the edge weights are re-
stricted to be zero, one, or two.

3 A Uniform Reduction for L-Cycle Covers

3.1 Clamps

We now define so-called clamps, which were introduced by Hell et al. [13]. Clamps
are crucial for the hardness proof presented in this section.

Let K = (V, E) be an undirected graph, let u, v ∈ V be two vertices of K, and
let L ⊆ U . We denote by K−u and K−v the graphs obtained from K by deleting
u and v, respectively, and their incident edges. Moreover, K−u−v denotes the

On Approximating Restricted Cycle Covers 289

︸ ︷︷ ︸
Λ−3 vertices

v

u

Fig. 4. An L-clamp for finite L with max(L) = Λ

graph obtained from K by deleting both u and v. Finally, for k ∈ N, Kk is
the following graph: Let y1, . . . , yk be vertices with yi /∈ V , add edges {u, y1},
{yi, yi+1} for 1 ≤ i ≤ k − 1, and {yk, v}. For k = 0, we directly connect u to v.

The graph K is called an L-clamp if the following properties hold:

– Both K−u and K−v contain an L-cycle cover.
– Neither K nor K−u−v nor Kk for any k ∈ N contains an L-cycle cover.

We call u and v the connectors of the L-clamp K.

Lemma 2 (Hell et al. [13]). Let L ⊆ U be non-empty. Then there exists an
L-clamp if and only if L �⊆ {3, 4}.

Figure 4 shows an example of an L-clamp for finite L.
If there exists an L-clamp for some L, then we can assume that the connectors

u and v both have degree two since we can remove all edges that are not used
in the L-cycle covers of K−v and K−u.

For our purpose, consider any non-empty set L ⊆ {3, 4, 5, . . .} with L �⊆ {3, 4}.
We fix one L-clamp K with connectors u, v ∈ V arbitrarily and refer to it in the
following as the L-clamp, although there exists more than one L-clamp. Let σ
be the number of vertices of K.

We are concerned with edge-weighted graphs. Therefore, we transfer the no-
tion of clamps to graphs with edge weights zero and one in the obvious way: Let
G be an undirected complete graph with vertex set V and edge weights zero and
one and let K be an L-clamp. Let U ⊆ V . We say that U is an L-clamp with
connectors u, v ∈ U if the subgraph of G induced by U restricted to the edges
of weight one is isomorphic to K with u and v mapped to connectors of K.

3.2 The Reduction

Let L ⊆ U be non-empty with L �⊆ {3, 4}. Thus, L-clamps exist and we fix
one as in the previous section. Let σ be the number of vertices in the L-clamp.
Let λ = min(L). (This choice is arbitrary. We could choose any number in L.)
We will reduce Min-Vertex-Cover(λ) to Max-L-UCC. Min-Vertex-Cover(λ) is
APX-complete since λ ≥ 3 (see Sect. 6).

Let H = (X, F) be an instance of Min-Vertex-Cover(λ) with n = |X | vertices
and m = |F | = λn/2 edges. Our instance G for Max-L-UCC consists of λ
subgraphs G1, . . . , Gλ, each containing 2σm vertices. We start by describing G1.

290 B. Manthey

y1
a

q1
a

x1
a

z1
a

p1
a

X1
a Y 1

a

t1a

Fig. 5. The edge gadget for a = {x, y} consisting of two L-clamps. The vertex z1
a is

the only vertex that belongs to both clamps X1
a and Y 1

a .

Then we state the differences between G1 and G2, . . . , Gλ and say to which edges
between these graphs we assign weight one.

Let a = {x, y} ∈ F be any edge of H . We construct an edge gadget Fa for a
that consists of two L-clamps X1

a and Y 1
a and one additional vertex t1a as shown

in Fig. 5. The connectors of X1
a are x1

a and z1
a while the connectors of Y 1

a are
y1

a and z1
a, i.e. X1

a and Y 1
a share the connector z1

a. Let p1
a and q1

a be the two
unique vertices in Y 1

a that share a weight one edge with z1
a. (The choice of Y 1

a is
arbitrary, we could choose the corresponding vertices in X1

a as well.) We assign
weight one to both {p1

a, t
1
a} and {q1

a, t1a}. Thus, the vertex t1a can also serve as a
connector for Y 1

a .

Now let x ∈ X be any vertex of H and let a1, . . . , aλ ∈ F be the λ edges
that are incident to x. We connect the vertices x1

a1
, . . . , x1

aλ
to form a path by

assigning weight one to the edges {x1
aη

, x1
aη+1

} for η ∈ {1, . . . , λ − 1}. Together

with edge {x1
aλ

, x1
a1
}, these edges form a cycle of length λ ∈ L, but note that

w({x1
aλ

, x1
a1
}) = 0. These λ edges are called the junctions of x. The junctions

at Fa for some a = {x, y} ∈ F are the junctions of x and y that are incident
to Fa. Overall, the graph G1 consists of 2σm vertices since every edge gadget
consists of 2σ vertices.

The graphs G2, . . . , Gλ are almost exact copies of G1. The graph Gξ, ξ ∈
{2, . . . , λ} has clamps Xξ

a and Y ξ
a and vertices xξ

a, yξ
a, zξ

a, tξa, pξ
a, qξ

a for each edge
a = {x, y} ∈ F , just as above. The edge weights are also identical with the
single exception that the edge {xξ

aλ
, xξ

a1
} also has weight one. Note that we only

use the term “gadget” for the subgraphs of G1 defined above although almost
the same subgraphs occur in G2, . . . , Gλ as well. Similarly, the term “junction”
refers only to an edge in G1 as defined above.

Finally, we describe how to connect G1, . . . , Gλ with each other. For every
edge a ∈ F , there are λ vertices t1a, . . . , tλa . These are connected to form a cy-
cle consisting solely of weight one edges, i.e. we assign weight one to all edges
{tξa, tξ+1

a } for ξ ∈ {1, . . . , λ − 1} and to {tλa , t1a}. Figure 6 shows an example of
the whole construction from the viewpoint of a single vertex.

As in the previous section, we call edges that are not junctions but connect
two different gadgets illegal. Edges with both vertices in the same gadget are
again called internal edges. In addition to junctions, illegal edges, and internal
edges, we have a fourth kind of edges: The t-edges of Fa for a ∈ F are the two
edges {t1a, t2a} and {t1a, tλa}. The t-edges are not illegal. All other edges connecting
G1 to Gξ for ξ �= 1 are illegal.

On Approximating Restricted Cycle Covers 291

Fa

t2a

t3a

t1ax1
a

x2
a

x3
a

y1
a

y3
a

y2
a

Fb

x2
b

Fc

t2b

t3b

t1b

t2c

t3cy3
b

y1
b

y2
b

y
1
c

y
2
c

y
3
c

x1
b t1cx1

c

x2
c

x3
cx3

b

Fig. 6. The construction for a vertex x ∈ X incident to edges a, b, c ∈ F for λ = 3
(Fig. 1(a) on page 287 shows the corresponding graph). The dark grey areas are the edge
gadgets Fa, Fb, and Fc. Their copies in G2 and G3 are light grey. The cycles connecting
the t-vertices are dotted. The cycles connecting the x-vertices are solid, except for the
edge {x1

c, x
1
a}, which has weight zero and is dashed. The vertices z1

a, . . . , z3
c are not

shown for legibility.

Let C be any subset of the edges of the graph G thus constructed, and let
a = {x, y} ∈ F be an arbitrary edge of H . We say that C legally connects Fa

if the following properties are fulfilled:

– C contains no illegal edges incident to Fa and exactly two or four junctions
at Fa.

– If C contains exactly two junctions at Fa, then these belong to the same
vertex and there are two t-edges at Fa in C.

– If C contains four junctions at Fa, then these are the only external edges in
C incident to Fa. In particular, C does not contain t-edges at Fa.

We call C legal if C legally connects all gadgets.
We can prove that the construction described above is an L-reduction from

Min-Vertex-Cover(λ) to Max-L-UCC for all L with L �⊆ {3, 4}.
Theorem 3. For all L ⊆ U with L �⊆ {3, 4}, Max-L-UCC is APX-hard.

3.3 Clamps in Directed Graphs

The aim of this section is to introduce directed L-clamps. Let K = (V, E)
be a directed graph and u, v ∈ V . Again, K−u, K−v, and K−u−v denote the
graphs obtained by deleting u, v, and both u and v, respectively. For k ∈ N,
Kk

u denotes the following graph: Let y1, . . . , yk /∈ V be new vertices and add
edges (u, y1), (y1, y2), . . . , (yk, v). For k = 0, we add the edge (u, v). The graph
Kk

v is similarly defined, except that we now start at v, i.e. we add the edges
(v, y1), (y1, y2), . . . , (yk, u). K0

v is K with the additional edge (v, u).
Now we can define clamps for directed graphs: Let L ⊆ D. A directed graph

K = (V, E) with u, v ∈ V is a directed L-clamp with connectors u and v if
the following properties hold:

292 B. Manthey

– Both K−u and K−v contain an L-cycle cover.
– Neither K nor K−u−v nor Kk

u nor Kk
v for any k ∈ N contains an L-cycle

cover.

Theorem 4. Let L ⊆ D be non-empty. Then there exists a directed L-clamp if
and only if L �= D.

3.4 L-Cycle Covers in Directed Graphs

From the hardness results in the previous sections and the work by Hell et
al. [13], we obtain the NP-hardness and APX-hardness of L-DCC and Max-
L-DCC, respectively, for all L with 2 /∈ L and L �⊆ {2, 3, 4}: We use the same
reduction as for undirected cycle covers and replace every undirected edge {u, v}
by a pair of directed edges (u, v) and (v, u). However, this does not work if 2 ∈ L
and also leaves open the cases when L � {2, 3, 4}. We will show that L = {2}
and L = D are the only cases in which directed L-cycle covers can be computed
efficiently by proving the NP-hardness of L-DCC and the APX-hardness of Max-
L-DCC for all other L. Thus, we settle the complexity for directed graphs.

The APX-hardness of the directed cycle cover problem is obtained by a proof
similar to the proof for undirected cycle covers. All we need is a λ ∈ L with
λ ≥ 3 and the existence of an L-clamp.

Theorem 5. Let L ⊆ D be a non-empty set. If L �= {2} and L �= D, then
Max-L-DCC and Max-W-L-DCC are APX-hard.

We can also prove that for all L /∈ {{2},D}, L-DCC is NP-hard.

Theorem 6. Let L ⊆ D be a non-empty set. If L �= {2} and L �= D, then
L-DCC is NP-hard.

Let L /∈ {{2},D}. L-DCC is in NP and therefore NP-complete if and only if the
language {1λ | λ ∈ L} is in NP.

4 Approximation Algorithms

The goal of this section is to devise approximation algorithms for Max-W-L-
UCC and Max-W-L-DCC that work for arbitrary L. The catch is that for most
L it is impossible to decide whether some cycle length is in L or not. One
possibility would be to restrict ourselves to sets L such that {1λ | λ ∈ L} is in P.
For such L, Max-W-L-UCC and Max-W-L-DCC are NP optimisation problems.
Another possibility for circumventing the problem is to include the permitted
cycle lengths in the input. However, it turns out that such restrictions are not
necessary since we can restrict ourselves to finite sets L.

A necessary and sufficient condition for a complete graph with n vertices
to have an L-cycle cover is that there exist (not necessarily distinct) lengths

λ1, . . . , λk ∈ L for some k ∈ N with
∑k

i=1 λi = n. We call such an n L-
admissible and define 〈L〉 = {n | n is L-admissible}.

On Approximating Restricted Cycle Covers 293

Input: an undirected graph G = (V, U(V)) with |V | = n;
an edge weight function w : U(V) → N

Output: an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise

1. If n /∈ 〈L〉, then return ⊥.
2. Compute a cycle cover Cinit of maximum weight.
3. Compute a subset P ⊆ Cinit of maximum weight such that (V, P) consists

of �n/5� paths of length two and n − 3 · �n/5� isolated vertices.
4. Join the paths to obtain an L-cycle cover Capx, return Capx.

Fig. 7. A factor 2.5 approximation algorithm for Max-W-L-UCC

Lemma 3. For all L ⊆ N, there exists a finite set L′ ⊆ L with 〈L′〉 = 〈L〉.

Instead of computing L′-cycle covers in the following, we assume without loss of
generality that L is already a finite set.

The main idea of the two approximation algorithms is as follows: We start
by computing a cycle cover Cinit of maximum weight. Then we take a subset
S of the edges of C init that weighs as much as possible under the restriction
that there exists an L-cycle cover that includes all edges of S. We add edges
to obtain an L-cycle cover Capx ⊇ S. Let C� be an L-cycle cover of maximum
weight, and assume that we can guarantee ρ · w(S) ≥ w(C init) for some ρ ≥ 1.
Then w(C�) ≤ w(C init) ≤ ρ · w(S) ≤ ρ · w(Capx). Thus, we have computed a
factor ρ approximation to an L-cycle cover of maximum weight.

4.1 Approximating Undirected Cycle Covers

The input of our algorithm for undirected graphs is an undirected complete
graph G = (V, U(V)) with |V | = n and an edge weight function w : U(V) → N.

The main idea of the approximation algorithm is as follows: Every cycle cover
can be decomposed into �n/5� vertex-disjoint paths of length two and n−3·�n/5�
isolated vertices. Conversely, every collection P of �n/5� paths of length two
together with n− 3 · �n/5� isolated vertices can be extended to form an L-cycle
cover, provided that n is L-admissible.

Theorem 7. For every fixed L, the algorithm shown in Fig. 7 is a factor 2.5
approximation algorithm for Max-W-L-UCC with running time O(n3).

4.2 Approximating Directed Cycle Covers

Now we present an approximation algorithm for Max-W-L-DCC that achieves
an approximation ratio of 3. The input consists of a directed complete graph
G = (V, D(V)) with |V | = n and an edge weight function w : D(V) → N.

Given a cycle cover C, we can obtain a matching M ⊆ C consisting of �n/3�
edges such that w(M) ≥ w(C)/3. Conversely, if n is L-admissible, then every
matching of cardinality �n/3� can be extended to form an L-cycle cover. In-
stead of computing an initial cycle cover, the algorithm shown in Fig. 8 directly
computes a matching of cardinality �n/3�.

294 B. Manthey

Input: a directed graph G = (V, D(V)) with |V | = n;
an edge weight function w : D(V) → N

Output: an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise

1. If n /∈ 〈L〉, then return ⊥.
2. Compute a maximum weight matching M init of G of cardinality �n/3�.
3. Join the edges in M init to obtain an L-cycle cover Capx, return Capx.

Fig. 8. A factor 3 approximation algorithm for Max-W-L-DCC

Theorem 8. For every fixed L, the algorithm shown in Fig. 8 is a factor 3
approximation algorithm for Max-W-L-UCC with running time O(n3).

5 Solving Max-4-UCC in Polynomial Time

The aim of this section is to show that Max-4-UCC can be solved determin-
istically in polynomial time. To do this, we exploit Hartvigsen’s algorithm for
computing a maximum-cardinality triangle-free two-matching.

A two-matching of an undirected graph G is a spanning subgraph in which
every vertex of G has degree at most two. Thus, two-matchings consist of disjoint
simple cycles and paths. A two-matching is a relaxation of a cycle cover (or
two-factor): In a cycle cover, every vertex has degree exactly two. A triangle-
free two-matching is a two-matching in which each cycle has a length of at
least four. The paths can have arbitrary lengths. A triangle-free two-matching
of maximum weight in graphs with edge weights zero and one can be computed
deterministically in time O(n3), where n is the number of vertices [11, Chap. 3].

We want to solve Max-4-UCC, i.e. all cycles must have a length of at least four
and no paths are allowed. Therefore, let M be a maximum weight triangle-free
two-matching of a graph G of n vertices. If M does not contain any paths, then
M is already a 4-cycle cover of maximum weight.

Let � be the number of vertices of G that lie on paths in M . If � ≥ 4, then we
connect these paths to get a cycle of length �. No weight is lost in this way, and
the result is a maximum weight 4-cycle cover.

We run into trouble if � ∈ {1, 2, 3}. Let Y = {y1, . . . , y�} be the set of vertices
that lie on paths in M . Let �′ be the number of edges of weight one in M that
connect two vertices of Y . Then 0 ≤ �′ ≤ � − 1 and w(M) = n − � + �′ ≤ n − 1.

An obvious way to obtain a cycle cover from M is to break one edge of one
cycle and connect the vertices of Y to this cycle. Unfortunately, breaking an edge
might cause a loss of weight one. This yields the aforementioned approximation
within an additive error of one. We can prove the following with a more careful
analysis: Either we can avoid the loss of weight one, or indeed a maximum weight
4-cycle cover has only weight w(M) − 1. This yields the following result.

Theorem 9. Max-4-UCC can be solved deterministically in time O(n3).

On Approximating Restricted Cycle Covers 295

6 Vertex Cover in Regular Graphs

We can prove that Min-Vertex-Cover(λ) is APX-complete for every λ ≥ 3. Pre-
viously, this was only known for cubic, i.e. three-regular, graphs [2]. We need the
APX-hardness of Min-Vertex-Cover(λ) for all λ ≥ 3 in Sect. 3.

Theorem 10. For every λ ∈ N, λ ≥ 3, Min-Vertex-Cover(λ) is APX-complete.

References

1. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, 1993.

2. Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic graphs.
Theoret. Comput. Sci., 237(1–2):123–134, 2000.

3. Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Mar-
chetti-Spaccamela, and Marco Protasi. Complexity and Approximation: Combi-
natorial Optimization Problems and Their Approximability Properties. Springer,
1999.

4. Markus Bläser. Approximationsalgorithmen für Graphüberdeckungsprobleme. Ha-
bilitationsschrift, Institut für Theoretische Informatik, Universität zu Lübeck,
Lübeck, Germany, 2002.

5. Markus Bläser and Bodo Manthey. Approximating maximum weight cycle covers
in directed graphs with weights zero and one. Algorithmica, 42(2):121–139, 2005.

6. Markus Bläser, Bodo Manthey, and Jǐŕı Sgall. An improved approximation algo-
rithm for the asymmetric TSP with strengthened triangle inequality. J. Discrete
Algorithms, to appear.

7. Markus Bläser, L. Shankar Ram, and Maxim I. Sviridenko. Improved approxima-
tion algorithms for metric maximum ATSP and maximum 3-cycle cover problems.
In Proc. of the 9th Workshop on Algorithms and Data Structures (WADS), vol.
3608 of Lecture Notes in Comput. Sci., pp. 350–359. Springer, 2005.

8. Markus Bläser and Bodo Siebert. Computing cycle covers without short cycles. In
Proc. of the 9th Ann. European Symp. on Algorithms (ESA), vol. 2161 of Lecture
Notes in Comput. Sci., pp. 368–379. Springer, 2001. Bodo Siebert is the birth
name of Bodo Manthey.

9. Gérard P. Cornuéjols and William R. Pulleyblank. A matching problem with side
conditions. Discrete Math., 29(2):135–159, 1980.

10. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

11. David Hartvigsen. An Extension of Matching Theory. PhD thesis, Department of
Mathematics, Carnegie Mellon University, 1984.

12. Refael Hassin and Shlomi Rubinstein. On the complexity of the k-customer vehicle
routing problem. Oper. Res. Lett., 33:1, 71-76 2005.

13. Pavol Hell, David G. Kirkpatrick, Jan Kratochv́ıl, and Igor Kŕız. On restricted
two-factors. SIAM J. Discrete Math., 1(4):472–484, 1988.

14. Oliver Vornberger. Easy and hard cycle covers. Technical report, Universität/
Gesamthochschule Paderborn, 1980.

A PTAS for the Minimum Dominating Set
Problem in Unit Disk Graphs

Tim Nieberg� and Johann Hurink��

University of Twente, Faculty of Electrical Engineering,
Mathematics & Computer Science,
Postbus 217, NL-7500 AE Enschede

{T.Nieberg, J.L.Hurink}@utwente.nl

Abstract. We present a polynomial-time approximation scheme (PTAS)
for the minimum dominating set problem in unit disk graphs. In contrast
to previously known approximation schemes for the minimum dominating
set problem on unit disk graphs, our approach does not assume a geomet-
ric representation of the vertices (specifying the positions of the disks in
the plane) to be given as part of the input. The runtime of the PTAS is
nO(1/ε log 1/ε). The algorithm accepts any undirected graph as input, and
returns a (1 + ε)-approximate minimum dominating set, or a certificate
showing that the input graph is no unit disk graph, making the algorithm
robust. The PTAS can easily be adapted to other classes of geometric in-
tersection graphs.

1 Introduction

In this paper, we consider the minimum dominating set (MDS) problem of find-
ing a dominating set of minimum cardinality in a unit disk graph for the case
that no geometric representation of the graph is available. A graph is a unit
disk graph (UDG) if its vertices can be drawn as circular disks of equal radius
in the plane in such a way that there is an edge between two vertices if and
only if the two disks have a non-empty intersection. Such a drawing, i.e. a list
of center points of the vertices/disks, is referred to as geometric representation
of the graph. A subset of vertices in an undirected graph is called dominating
set if every vertex in the graph either is contained in the subset, or adjacent to
a vertex in the set.

We present a polynomial-time approximation scheme (PTAS) for the MDS
problem on UDGs, that is, given any ε > 0, the algorithm gives in polynomial-
time an approximation with a performance guarantee of (1 + ε).

Unit disk graphs are widely used to model the communication in wireless
ad-hoc networks. In such a network, structures like dominating sets play an
important role, e.g. in global flooding to alleviate the so-called broadcast storm

� Supported partially by the European research project EYES (IST-2001-34734).
�� Supported partially by the Dutch research project Smart Surroundings (BSIK-

03060).

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 296–306, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs 297

problem. A message broadcast only in the dominating set is an efficient way to
ensure that it is received by all transmitters in the network, both in terms of
energy and interference.

The MDS problem is NP -hard, even on unit disk graphs where a geometric
representation is given [4]. Most of the work concerning approximation schemes
in UDGs assume a given representation, which allows for separation of the graph
along a grid ([1],[5]). Approximation schemes for the MDS, and other related
problems in UDGs are given in [6]. In [3], a PTAS for the minimum connected
dominating set is presented, also using grid-based separation.

However, the case when no geometric representation is present is significantly
different: Computing a possible geometric representation for a given unit disk
graph is NP -hard. Indeed, any polynomial-time algorithm computing a geomet-
ric representation for UDGs can be used in a straightforward way to determine
whether a given graph is a UDG, a problem known to be NP -hard [2].

The lack of coordinates, and the intractability to compute these, call for
another approach. For the case that a representation is not given, several ap-
proximation algorithms are presented in [8], including a 5-approximation for the
MDS problem. In [10], local neighborhoods of limited graph-theoretic diameter
are used to obtain a PTAS for the maximum independent set problem in the
same setting. This method uses the fact that in such neighborhoods, a maximum
independent set is of bounded cardinality. In this paper, the same fact is used to
bound the size of a minimum dominating set. While in [10], the separation and
overall algorithm follows by simple arguments, for the minimum dominating set
problem some attention has to be paid to the manner the local neighborhoods
are created and put together. The main reasons for this are the differences in the
objective function and the fact that, in contrast to independent sets, a subset of
a dominating set no longer needs to be a dominating set. The resulting PTAS
for the MDS problem on UDGs without geometric representation has a running
time of nO(1/ε log 1/ε).

Independence of geometric coordinates makes it easier to extend the approach
to other graphs used to model wireless ad-hoc networks closer to reality, e.g.
Quasi Unit Disk Graphs [7], or Coverage Area Graphs [9]. These models also
include a certain amount of uncertainty with respect to wireless transmissions.

Besides the independence from a geometric representation, an additional ad-
vantage of the presented PTAS lies in the fact that we can extend the algorithm
towards a robust approximation [11]. The algorithm may then be applied to an
arbitrary undirected graph, and the output is either a (1 + ε)-approximation
for the MDS problem in this graph, or a certificate which allows us to prove
in polynomial-time that the input graph is no unit disk graph. In other words,
we have a polynomial-time algorithm which either approximates the MDS prob-
lem, or solves the recognition problem. In case the input graph is a UDG, the
algorithm always returns a dominating set of desired quality.

The remainder of the paper is organized as follows. In the following section, we
present some basic definitions. Section 3 introduces the concept of a 2-separated
collection of subsets, a structure that is used to efficiently separate a graph

298 T. Nieberg and J. Hurink

into smaller subgraphs for which the problem of computing a dominating set is
easier to tackle. The PTAS itself is then presented in Section 4. In Section 5, we
discuss the robustness of the algorithm, and present some extensions to other
intersection graphs of geometric objects.

2 Definitions and Preliminaries

A graph G = (V, E) is a unit disk graph (UDG) if it results from the intersection
graph of disks of unit radius in the Euclidean plane. In other words, G is a UDG
if there exists a map f : V → R2 satisfying

(u, v) ∈ E ⇐⇒ ‖f(u)− f(v)‖ ≤ 2,

where ‖.‖ denotes the Euclidean norm. In this context, f is called a geometric
representation of G and is not unique for a given graph. For the remainder of
this paper, we assume f not to be given or known.

A subset D ⊂ V is a dominating set (for V) if for every vertex v ∈ V , either
v ∈ D holds or there exists an edge (u, v) ∈ E such that u ∈ D. The mini-
mum dominating set problem (MDS) seeks to find a dominating set of minimum
cardinality for a given graph.

In this paper, the goal is to give a polynomial-time approximation scheme
(PTAS) for the minimum dominating set problem on unit disk graphs. That
is, we seek for an algorithm which, given a UDG G = (V, E) and a parameter
ε > 0, computes a dominating set of cardinality no more than (1 + ε) the size of
a minimum dominating set in G. The running time of the algorithm is allowed
to depend on the parameter ε, but should be polynomial with respect to the
input instance, i.e. polynomial in n = |V | for fixed ε > 0.

We now present some further definitions needed for the description and dis-
cussion of the algorithm and the underlying concepts. Without loss of generality,
we may assume the graph G to be connected. If this is not the case, we may
consider each connected component separately.

Let W ⊂ V denote a set of vertices in G = (V, E). In the following, we
simultaneously use W to also denote the resulting induced subgraph G[W] :=
(W, E∩(W ×W)). Obviously, the graph G[W] is a unit disk graph if the original
graph is one.

Furthermore, we denote by N(v) the closed neighborhood of a vertex v ∈ V ,
i.e. N(v) := {u ∈ V | (u, v) ∈ E} ∪ {v}. Analogously, for W ⊂ V , let N(W) :=⋃

w∈W N(w) define the neighborhood of W . In this context, we set N(∅) := ∅.
For r ∈ N, we denote by N r(v) := N(N r−1(v)) the recursively defined r-th
neighborhood of v ∈ V , where N1(v) := N(v).

For two vertices u, v ∈ V , let d(u, v) denote the distance between u and v,
that is the number of edges on a shortest path between these two vertices. Thus,
alternatively, the r-th neighborhood of v ∈ V is characterized by N r(v) = {u ∈
V | d(u, v) ≤ r}.

Denote by P(V) the set of all subsets of V . We then define D : P(V) → P(V)
to be an operation returning a dominating set of minimum cardinality for the

A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs 299

v

v

N4(v)

N3(v)

Fig. 1. Example of a UDG with and without geometric representation

subset of vertices given as argument to it. For a subset W ⊂ V , the set D(W)
dominates W , i.e. for every w ∈ W , either w ∈ D(W) holds, or there is an edge
(u, w) ∈ E such that u ∈ D(W). It is easy to see that W ⊂ N(D(W)) and
that D(W) ⊂ N(W) hold. In the following, we are interested in an efficient, i.e.
polynomial-time, approximation of D(V) within a factor of (1+ ε) for any given
ε > 0.

Figure 1 illustrates some of the given notations. In the left part, a graph
and its geometric representation are given, whereas in the right part only the
graph and some neighborhoods of a node v are presented. Furthermore, the
circled vertices in the right part give a minimum dominating set for N3(v), i.e.
D(N3(v)). As can be seen from the example, D(W) ⊂ W need not hold for
a subset W � V : Using the circled vertex in N4(v), we obtain a dominating
set consisting of three vertices, whereas restricting the dominating set only to
vertices from N3(v) yields dominating sets of cardinality 4 or higher.

3 Local Dominating Sets

In this section, we introduce the concept of a 2-separated collection of subsets.
The subgraphs induced by the subsets of such a collection divide the original
graph into smaller parts for which it becomes easier to tackle the MDS problem.
For a collection of local dominating sets resulting from a separation of the graph
into smaller subgraphs, we show several properties that allow for bounds on
the cardinalities with respect to an optimal, global solution. Throughout this
section, we do not assume the graph to be a UDG, the following concepts are
valid for all undirected graphs.

For a graph G = (V, E), let S := {S1, . . . , Sk} be a collection of subsets of
vertices Si ⊂ V , i = 1, . . . , k, with the following property:

(P) for any two vertices s ∈ Si and s̄ ∈ Sj with i �= j, it is d(s, s̄) > 2.

300 T. Nieberg and J. Hurink

S5

S6

S4S2

S3

S1

Fig. 2. Example for a 2-separated collection S = {S1, . . . , S6}

We refer to S as a 2-separated collection of subsets. An example of such a 2-
separated collection is presented in Figure 2. The grey areas mark the different
subsets that make up the collection, vertices which are not part of the collection,
and thus separate the subsets are white.

The following lemma shows that the sum of the cardinalities of minimum
dominating sets D(Si) for the subsets Si ∈ S of a 2-separated collection forms
a lower bound on the cardinality |D(V)| of a minimum dominating set in G.

Lemma 1. For a 2-separated collection S = {S1, . . . , Sk} in a graph G = (V, E),
we have

|D(V)| ≥
k∑

i=1

|D(Si)|.

Proof. For each subset Si ∈ S, consider the neighborhood N(Si). As a direct
result of property (P), these neighborhoods are pairwise disjoint. Furthermore,
any vertex outside N(Si) has distance more than one to all vertices in Si. Thus,
D(V)∩N(Si) has to dominate all vertices in Si, since D(V) dominates the entire
vertex set V .

On the other hand, also D(Si) ⊂ N(Si) dominates Si using a minimum
number of vertices in G. Therefore, we get

|D(V) ∩ N(Si)| ≥ |D(Si)|.

Combining this for all subsets of the 2-separated collection, we get

|D(V)| ≥
k∑

i=1

|D(V) ∩ N(Si)| ≥
k∑

i=1

|D(Si)|,

as claimed. �

A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs 301

Lemma 1 states that a 2-separated collection S leads to a lower bound on the
cardinality of a MDS. Additionally, such a collection may help in getting an
approximation of this cardinality. If we are able to enlarge the subsets Si to
subsets Ti in such a way that the dominating sets of the expansions are locally
bounded and the unions of theses forms a dominating set for V , we get a global
approximation for the MDS in G.

Corollary 1. Let S = {S1, . . . , Sk} be a 2-separated collection in G = (V, E),
and let T1, . . . , Tk be subsets of V with Si ⊂ Ti for all i = 1, . . . , k.
If there exists a bound ρ ≥ 1 such that

|D(Ti)| ≤ ρ · |D(Si)|

holds for all i = 1, . . . , k, and if
⋃k

i=1 D(Ti) forms a dominating set in G, the
set

⋃k
i=1 D(Ti) is a ρ-approximation of an MDS in G.

Proof. |
⋃k

i=1 D(Ti)| ≤
∑k

i=1 |D(Ti)| ≤ ρ ·
∑k

i=1 |D(Si)| ≤ ρ · |D(V)|. �

In the following section, we focus on the efficient construction of suitable subsets
Ti ⊂ V , which contain a 2-separated collection Si ⊂ Ti, in a way that a local
(1+ε)-approximation can be guaranteed. Furthermore, we create these subsets in
such a way that the union of the respective local dominating sets also dominates
the entire set of vertices, resulting in a global (1+ε)-approximation for the MDS.

4 Efficient Construction of Suitable Subsets

From the previous discussion, recall that if we have a 2-separated collection S :=
{S1, . . . , Sk}, corresponding sets Ti ⊃ Si together with a bound of (1 + ε) for the
local dominating sets D(Si) and D(Ti), then the union of the D(Ti) satisfies the
approximation bound required for a PTAS for the MDS problem. In this section,
we show how to construct suitable subsets, for which the union of the local dom-
inating sets also forms a dominating set for V . Furthermore, we prove that this
can be achieved in polynomial running-time with respect to the size of the input
instance for fixed ε > 0 if the input graph is a UDG. For ease of notation, let
ρ := (1 + ε) denote the desired approximation guarantee of the algorithm.

The basic idea of the construction is simple: we compute a local dominating
set for a neighborhood of a vertex, and expand this neighborhood until we have
formed sets S and T ⊃ S which satisfy a desired bound. Then, we eliminate the
current neighborhood and continue the same steps for the remaining graph.

In more detail, the algorithm works as follows. We start with an arbitrary
vertex v ∈ V and consider for r = 0, 1, 2, . . . , the r-th neighborhoods N r(v).
Starting with N0(v) = v, we compute dominating sets of minimum cardinality
for these neighborhoods as long as

|D(N r+2(v))| > ρ · |D(N r(v))| (1)

holds.

302 T. Nieberg and J. Hurink

Denote by r̂1 the smallest r for which (1) is violated. We go on iteratively
with this procedure for the graph induced by Vi+1 := Vi \ N r̂i+2(vi)), where
V1 := V . The vertex vi ∈ Vi is chosen as an arbitrary central vertex of the
neighborhoods. In further iterations, we thus consider for r = 0, 1, 2, . . . the
neighborhoods N r(vi) with respect to Vi, i.e. we have N r(vi) ⊂ Vi. Note that
the dominating sets D(.) are always computed with respect to the entire input
graph G.

This process is then repeated until Vi+1 contains no more vertices. Let k ∈ N

be the total number of iterations. Obviously we have k < n. In the following, let
Ni, i = 1, . . . , k, denote the respective neighborhoods when the stopping criterion
(1) is violated, i.e. Ni := N r̂i+2(vi).

Looking at the dominating sets for these neighborhoods, D(Ni), we have the
following lemma which shows that a dominating set for the entire graph is given
by the union of the sets D(Ni).

Lemma 2. For the collection of neighborhoods {N1, . . . , Nk} created by the
above algorithm, the union D :=

⋃k
i=1 D(Ni) forms a dominating set for the

input graph G.

Proof. It is Vi+1 = Vi \ Ni and Ni ⊂ Vi, thus we have Vi = Vi+1 ∪ Ni. We stop

the algorithm at Vk+1 = ∅, which implies Vk = Nk. Therefore
⋃k

i=1 Ni = V by
induction, and the claim follows. �

Next, we show that the solution set D :=
⋃k

i=1 D(Ni) returned by the algorithm
satisfies the (1 + ε)-bound on the approximation. In particular, we show that
N := {N r̂1(v1), . . . , N

r̂k(vk)} is a 2-separated collection in G, and then apply
Corollary 1 to the respective local dominating sets D(Ni).

Lemma 3. The subsets N r̂i(vi), i = 1, . . . , k, created by the algorithm form a
2-separated collection N := {N r̂1(v1), . . . , N

r̂k(vk)} in G.

Proof. For ease of notation, let N i denote the neighborhood N r̂i(vi) for iteration
i ∈ {1, . . . , k} of the algorithm. Recall that a 2-separated collection is character-
ized by property (P), i.e. vertices of two different subsets of the collection have
distance more than 2 from one another.

Clearly, {N1, V2} is a 2-separated collection in G, since V2 = V \ N(N(N1)).
For induction, suppose that {N1, . . . , N i−1, Vi} is a 2-separated collection in G.
Any vertex in Vi has distance more than 2 from any other vertex in N1, . . . , N i−1.
Considering Vi+1 = Vi \ N(N(N i)), we see that both Vi+1 and N i satisfy (P).
Therefore, {N1, . . . , N i, Vi+1} is a 2-separated collection. �

Additionally, the criterion (1) for stopping to expand the neighborhood guaran-
tees that each pair of local dominating sets satisfies

|D(Ni)| ≤ ρ · |D(N r̂i(vi))| (i = 1, . . . , k). (2)

Using Corollary 1 and Lemma 2, we now obtain the following result for the
approximation.

A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs 303

Corollary 2. The above algorithm returns a dominating set
⋃k

i=1 D(Ni) of car-
dinality no more than (1 + ε) the size of a minimum dominating set in G =
(V, E). �

At this point, it is noteworthy to remind that this Corollary 2 is valid for any
undirected graph G, even if it is not a unit disk graph.

It remains to show that the (1 + ε)-approximation algorithm has polynomial
running-time. In contrast to Corollary 2, the polynomial running-time relies on
the fact that the input graph G is a unit disk graph. So, for the further discussion
in this section, we assume G to be a unit disk graph.

The number k of iterations is bounded by n = |V |. We may thus limit the
further discussion to one iteration only. Since any Vi during the execution of
the algorithm again induces a unit disk graph, we focus w.l.o.g. on the graph
G = (V, E) in the first iteration. We show two things:

(1) we can compute the minimum dominating set D(N r(v)) in polynomial time
if the value of r is a constant or polynomially bounded; and

(2) there exists a constant bound for r̂1, i.e. the diameter of the largest neigh-
borhood we need to consider until the stopping criterion (1) is violated.

Before showing that D(N r(v)) can be computed efficiently, we need to introduce
the notion of an independent set, and briefly state a key result for independent
sets in UDGs.

Let W ⊂ V . A set I ⊂ W is called an independent set if for every two
vertices u, v ∈ I, there does not exist an edge (u, v) ∈ E. An independent set is
called maximal in W if we cannot add any other vertex from W to I without
violating the independence property (of no two vertices being adjacent). Clearly,
any maximal independent set in W also dominates W .

For a UDG, the following result of [10] bounds the size of an independent set
in the neighborhood N r(v). We give the short proof, since we rely on it in the
next section.

Lemma 4. Let G = (V, E) be a UDG. Any independent set Ir ⊂ N r(v), v ∈ V,
satisfies

|Ir| ≤ (2r + 1)2 = O(r2).

Proof. Let f : V → R2 be a geometric representation of G. From the definition
of a UDG, we conclude that any w ∈ N r(v) satisfies ‖f(v) − f(w)‖ ≤ 2r.

Thus, Ir consists of pairwise disjoint disks of unit radius inside a disk of radius
2r + 1 around f(v), and therefore |Ir| ≤ π(2r + 1)2/π. �

As a consequence of Lemma 4, any independent set in N r(v) is polynomially
bounded in r, including maximal independent sets. The cardinality of a minimum
dominating set in N r(v) is bounded from above by the cardinality of a maximal
independent set in N r(v), and, therefore, we get

304 T. Nieberg and J. Hurink

Corollary 3. |D(N r(v))| ≤ (2r + 1)2 = O(r2). �

Assuming r to be fixed or polynomially bounded, a minimum dominating set
D(N r(v)) can then be computed in polynomial time, e.g. by complete enumer-
ation in time O(nϑ), with ϑ = O(r2).

Next, we show that, for a UDG, there exists such a bound on r̂1, the first
value of r which violates (1). This bound only depends on the approximation
ratio ρ, and not on the size of the unit disk graph G = (V, E) given as input.

Lemma 5. There exists a constant c = c(ρ) such that r̂1 ≤ c, that is, the largest
neighborhood to be considered during the iteration of the algorithm is bounded by
a constant.

Proof. It is |D(N0(v))| = |D(N1(v))| = 1, as the central vertex v dominates
itself and all its neighbors.
Consider an arbitrary value of r < r̂1. First, if r is an even number, due to the
stopping criterion (1) we have

(2r + 1)2 ≥ |D(N r(v))| > ρ|D(N r−2(v)| > · · · > ρ
r
2 |D(N0(v)| = (

√
ρ)r.

Second, if r is an odd number, we get

(2r + 1)2 ≥ |D(N r(v))| > ρ|D(N r−2(v)| > · · · > ρ
r−1
2 |D(N1(v)| = (

√
ρ)r−1.

Since ρ > 1, and thus
√

ρ > 1, in both cases the above inequalities have to be
violated eventually. The bound on r̂1 when these inequalities are violated the
first time only depends on ρ and not on the size of the overall graph G. The
claim follows directly. �

Using log(1 + ε) > 1/2 · ε for small values of ε, simple calculations show that
c = O(1

ε log 1
ε).

Summarizing, if the input graph is a UDG, each iteration has polynomial run-
ning time, and therefore the presented algorithm is a polynomial-time approxi-
mation scheme for the MDS problem. Note that the computation of D(N r(v))
for the largest neighborhood, dominates the running-time of the algorithm.
Therefore, the overall time complexity of the approximation is O(nc) with c =
O(1

ε log 1
ε).

5 Discussion

Unit disk graphs are a special subclass of undirected graphs. As we have shown
in the previous part, the presented algorithm accepts an arbitrary undirected
graph as input, and returns a dominating set of desired quality for this graph.
However, the polynomial running-time relies on the UDG characterization.
This raises the question of robustness for algorithms designed for a restricted
domain [11]:

An algorithm A, defined on a set G of instances, is robust on a restricted class
U ⊂ G if it solves the problem for all instances in U , and for instances not in U ,

A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs 305

the algorithm either solves the problem, or provides a certificate that the input
does not belong to U . Of course, the notion of a robust algorithm is especially
interesting when A has polynomial running-time with respect to the size of the
input instance, and the decision whether an instance belongs to the subclass
U ⊂ G is not as easy to decide. In our situation, G is the set of undirected
graphs, A computes a (1 + ε)-approximation of the cardinality of an MDS, and
U is the subclass of UDGs.

In case the input graph is a unit disk graph, the algorithm always returns a
(1 + ε)-approximate dominating set in polynomial running-time. Also, when the
input is any undirected graph, such an approximation is returned. However, the
polynomial running-time in this case cannot be guaranteed. In the following, we
consider the case that the input is no UDG.

The time complexity of the algorithm is a direct result of the possibility
to bound the cardinality of a minimum dominating set in a neighborhood of
bounded diameter. This bound results from the fact that a maximal independent
set Ir in such a neighborhood is bounded, i.e. for the r-th neighborhood of a
vertex v ∈ V , we have |D(N r(v))| ≤ |Ir| ≤ (2r + 1)2.

If we now find a neighborhood N r(v) for which a minimum dominating set of
size less than or equal to (2r +1)2 cannot be found, we terminate the algorithm,
and output the neighborhood N r(v) as a certificate to show that the input is
no UDG. For this neighborhood, we can then construct a maximal independent
set which has to violate Lemma 4. This immediately shows that the input graph
cannot be a unit disk graph.

Note that for robustness, we do not need to explicitely consider the bound
r ≤ c (Lemma 5) on the diameter of the neighborhoods N r(v), as this bound
follows from the polynomial bound on the cardinality of the dominating sets in
the neighborhoods.

The PTAS presented in this paper can be extended in a straightforward way
to intersection graphs of other, related geometric objects, e.g. the unit disk graph
may be defined using other geometric norms. From the discussion on the com-
plexity in the previous section, it can be seen that a sufficient condition for the
existence of a PTAS for the MDS problem in a geometric intersection graph is
given when there is a polynomial bound on the ratio of maximum geometric di-
ameter divided by minimum volume of the objects that make up the intersection
graph (see Lemma 4). Thus, the objects in consideration do not necessarily need
to be of equal size or shape, e.g., the unit disks may be replaced by disks with
fixed lower and upper bounds on the radius. This condition includes Quasi Unit
Disk Graphs which are used to give a more realistic model of a wireless, ad-hoc
network [7,9]. An extension to a (fixed) dimension d > 2 is also immediately
possible.

6 Conclusion

In this paper, we present a new polynomial-time approximation scheme for the
minimum dominating set problem in unit disk graphs. The algorithm does not

306 T. Nieberg and J. Hurink

need a geometric representation of the graph to compute a (1 + ε)-approximate
dominating set. In fact, it accepts any undirected graph as input and returns
either a dominating set which satisfies the desired bound, or a certificate to
show that the input graph is no UDG. Of course, if the input graph satisfies the
characterization of a UDG, a dominating set is always returned.

The approximation algorithm that results in the PTAS works by exploiting
the fact that the graph can be divided into local neighborhoods, which have
to be created keeping the global structure in mind. Inside these neighborhoods
of guaranteed bounded diameter, locally optimal solutions are available. The
overall time complexity of the (robust) approximation algorithm is nO(1

ε log 1
ε).

References

1. B.S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
Journal of the ACM, 41(1):153–180, 1994.

2. H. Breu and D.G. Kirkpatrick. Unit disk graph recognition is NP-hard. Compu-
tational Geometry. Theory and Applications, 9(1-2):3–24, 1998.

3. X. Cheng, X. Huang, D. Li, W. Wu, and D.-Z. Du. A polynomial-time approxima-
tion scheme for the minimum-connected dominating set in ad hoc wireless networks.
Networks, 42:202–208, 2003.

4. B. N. Clark, C. J. Colburn, and D. S. Johnson. Unit disks graphs. Discrete
Mathematics, 86:165–177, 1990.

5. D.S. Hochbaum and W. Maass. Approximation schemes for covering and packing
problems. Journal of the ACM, 32(1):130–136, 1985.

6. H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, S. S. Ravi, D.J. Rosenkrantz, and
R.E. Stearns. NC-approximation schemes for NP- and PSPACE-hard problems for
geometric graphs. J. Algorithms, 26(2):238–274, 1998.

7. F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad-hoc networks beyond unit disk
graphs. In Proceedings of the 1st ACM DIALM-POMC Joint Workshop on Foun-
dations of Mobile Computing, 2003.

8. M.V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D.J. Rosenkrantz. Simple
heuristics for unit disk graphs. Networks, 25:59–68, 1995.

9. T. Nieberg and J. Hurink. Wireless communication graphs. In Proc. ISSNIP
Intelligent Sensors, Sensor Networks and Information Processing Conference, 2004.

10. T. Nieberg, J. Hurink, and W. Kern. A robust PTAS for maximum independent
sets in unit disk graphs. In Proceedings of the 30th workshop on graph theoretic
concepts in computer science, pages 214–221. LNCS 3353, 2004.

11. V. Raghavan and J. Spinrad. Robust algorithms for restricted domains. In Pro-
ceedings of the 12th annual ACM-SIAM symposium on discrete algorithms, pages
460–467. Society for Industrial and Applied Mathematics, 2001.

Speed Scaling of Tasks with Precedence
Constraints

Kirk Pruhs1,�, Rob van Stee2, and Patchrawat Uthaisombut1

1 Computer Science Department, University of Pittsburgh,
Pittsburgh PA 15260 USA
{kirk, utp}@cs.pitt.edu

2 Fakultät für Informatik, Universität Karlsruhe, D-76128 Karlsruhe, Germany
vanstee@ira.uka.de

Abstract. We consider the problem of speed scaling to conserve en-
ergy in a multiprocessor setting where there are precedence constraints
between tasks, and where the performance measure is the makespan.
That is, we consider an energy bounded version of the classic problem
Pm | prec | Cmax. We show that, without loss of generality, one need
only consider constant power schedules. We then show how to reduce
this problem to the problem Qm | prec | Cmax to obtain a poly-log(m)-
approximation algorithm.

1 Introduction

1.1 Motivation

Power is now widely recognized as a first-class design constraint for modern com-
puting devices. This is particularly critical for mobile devices, such as laptops,
that rely on batteries for energy. While the power-consumption of devices has
been growing exponentially, battery capacities have been growing at a (modest)
linear rate. One common technique for managing power is speed/voltage/power
scaling. For example, current microprocessors from AMD, Intel and Transmeta
allow the speed of the microprocessor to be set dynamically. The motivation
for speed scaling as an energy saving technique is that, as the speed to power
function P (s) in all devices is strictly convex, less aggregate energy is used if a
task is run at a slower speed. The application of speed scaling requires a pol-
icy/algorithm to determine the speed of the processor at each point in time. The
processor speed should be adjusted so that the energy/power used is in some
sense justifiable by the improvement in performance attained by running at this
speed.

In this paper, we consider the problem of speed scaling to conserve energy in
a multiprocessor setting where there are precedence constraints between tasks,
and where the performance measure is the makespan, the time when the last

� Supported in part by NSF grants CCR-0098752, ANI-0123705, CNS-0325353, CCF-
0448196, and CCF-0514058.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 307–319, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

308 K. Pruhs, R. van Stee, and P. Uthaisombut

task finishes. We will denote this problem by Sm | prec | Cmax. Without speed
scaling, this problem is denoted by Pm | prec | Cmax in the standard three field
scheduling notation [9]. Here m is the number of processors. This is a classic
scheduling problem considered by Graham in his seminal paper [8] where he
showed that list scheduling produces a (2 − 1

m)-approximate solution. In our
speed scaling version, we make a standard assumption that there is a continuous
function P (s), such that if a processor is run at speed s, then its power, the
amount of energy consumed per unit time, is P (s) = sα, for some α > 1. For
example, the well known cube-root rule for CMOS-based devices states that the
speed s is roughly proportional to the cube-root of the power P , or equivalently,
P (s) = s3 (the power is proportional to the speed cubed) [16,4]. Our second ob-
jective is to minimize the total energy consumed. Energy is power integrated over
time. Thus we consider a bicriteria problem, in that we want to optimize both
makespan and total energy consumption. Bicriteria problems can be formalized
in multiple ways depending on how one values one objective in relationship to
the other. We say that a schedule S is a O(a)-energy O(b)-approximate if the
makespan for S is at most bM and the energy used is at most aE where M is the
makespan of an optimal schedule which uses E units of energy. The most obvious
approach is to bound one of the objective functions and optimize the other. In
our setting, where the energy of the battery may reasonably be assumed to be
fixed and known, it seems perhaps most natural to bound the energy used, and
to optimize makespan.

Power management for tasks with precedence constraints has received some
attention in computer systems literature, see for example [10,14,20,15] and the
references therein. These papers describe experimental results for various
heuristics.

In the last few years, interest in power management has seeped over from the
computer systems communities to the algorithmic community. For a survey of
recent literature in the algorithmic community related to power management,
see [11]. Research on algorithmic issues in power management is still at an early
stage of development. Researchers are developing and analyzing algorithms to
problems that appear particularly natural and/or that arise in some particu-
lar application. The eventual goal, after developing algorithms and analyses for
many problems, is to develop a toolkit of widely applicable algorithmic methods
for power management problems. While the algorithms and analyses that we
present here are not extremely deep, we believe that our insights and techniques
are quite natural, and have significant potential for future application in related
problems.

1.2 Summary of Our Results

For simplicity, we state our results when we have a single objective of minimizing
makespan, subject to a fixed energy constraint, although our results are a bit
more general.

We begin by noting that several special cases of Sm | prec | Cmax are rel-
atively easy. If there is only one processor (S1 | prec | Cmax), then it is clear

Speed Scaling of Tasks with Precedence Constraints 309

from the convexity of P (s) that the optimal speed scaling policy is to run the
processor at a constant speed; if there were times where the speeds were differ-
ent, then by averaging the speeds one would not disturb the makespan, but the
energy would be reduced. If there are no precedence constraints (Sm || Cmax),
then the problem reduces to finding a partition of the jobs that minimizes the
�α norm of the load. A PTAS for this problem is known [1]. One can also get an
O(1)-approximate constant-speed schedule using Graham’s list scheduling algo-
rithm. So for these problems, speed scaling doesn’t buy you more than an O(1)
factor in terms of energy savings.

We now turn to Sm | prec | Cmax. We start by showing that there are in-
stances where every schedule in which all machines have the same fixed speed
has a makespan that is a factor of ω(1) more than the optimal makespan. The
intuition is that if there are several jobs, on different processors, that are waiting
for a particular job j, then j should be run with higher speed than if it were
the case that no jobs were waiting on j. In contrast, we show that what should
remain constant is the aggregate powers of the processors. That is, we show that
in any locally optimal schedule, the sum of the powers at which the machines run
is constant over time. Or equivalently, if the cube-root rule holds (power equals
speed cubed), the sum of cubes of the machines speeds should be constant over
time. Schedules with this property are called constant power schedules. We then
show how to reduce our energy minimization problem to the problem of schedul-
ing on machines of different speeds (without energy considerations). In the three
field scheduling notation, this problem is denoted by Q | prec | Cmax. Using the
O(log m)-approximate algorithms from [5,7], we can then obtain a O(log2 m)-
energy O(log m)-approximate algorithm for makespan. We then show a trade-off
between energy and makespan. That is, an O(a)-energy O(b)-approximate sched-
ule for makespan can be converted into O(b · a1/α)-approximate schedule. Thus

we can then get an O(log1+2/α m)-approximate algorithm for makespan.
We believe that the most interesting insight from these investigations is the

observation that one can restrict one’s attention to constant power schedules.
This fact will also hold for several related problems.

1.3 Related Results

We will be brief here, and refer the reader to the recent survey [11] for more
details. Theoretical investigations of speed scaling algorithms were initiated by
Yao, Demers, and Shankar [18]. They considered the problem of minimizing en-
ergy usage when each task has to be finished on one machine by a predetermined
deadline. Most of the results in the literature to date focus on deadline feasibility
as the measure for the quality of the schedule. Yao, Demers, and Shankar [18]
give an optimal offline greedy algorithm. The running time of this algorithm
can be improved if the jobs form a tree structure [13]. Bansal, Kimbrel, and
Pruhs [2] and Bansal and Pruhs [3] extend the results in [18] on online algo-
rithms and introduce the problem of speed scaling to manage temperature. For
jobs with a fixed priority, Yun and Kim [19] show that it is NP-hard to compute
a minimum energy schedule. They also give an FPTAS for the problem. Kwon

310 K. Pruhs, R. van Stee, and P. Uthaisombut

and Kim [12] give a polynomial-time algorithm for the case of a processor with
discrete speeds. Chen, Kuo and Lu [6] give a PTAS for some special cases of this
problem. Pruhs, Uthaisombut, and Woeginger [17] give some results on the flow
time objective function.

2 Formal Problem Description

The setting for our problems consists of m variable-speed machines. If a machine
is run at speed s, its power is P (s) = sα, α > 1. The energy used by each machine
is power integrated over time.

An instance consists of n jobs and an energy bound E. All jobs arrive at time
0. Each job i has an associated weight (or size) wi. If this job is run consistently
at speed s, it finishes in wi/s units of time. There are precedence constraints
among the jobs. If i ≺ j, then job j cannot start before job i completes.

Each job must be run non-preemptively on some machine. The machines can
change speed continuously over time. Although it is easy to see by the convexity
of P (s) that it is best to run each job at a constant speed.

A schedule specifies, for each time and each machine, which job to run and
at what speed. A schedule is feasible at energy level E if it completes all jobs
and the total amount of energy used is at most E. Suppose S is a schedule for
an input instance I. We define a number of concepts which depend on S. The
completion time of job i is denoted CS

i . The makespan of S, denoted CS
max, is

the maximum completion time of any job. A schedule is optimal for energy level
E if it has the smallest makespan among all feasible schedules at energy level E.
The goal of the problem is to find an optimal schedule for energy level E. We
denote the problem as Sm | prec | Cmax.

We use sS
i to denote the speed of job i. The execution time of i is denoted

by xS
i . Note that xS

i = wi/sS
i . The power of job i is denoted by pS

i . Note that
pS

i = (sS
i)α. We use ES

i to denote the energy used by job i. Note that ES
i = pS

i xS
i .

The total energy used in schedule S is denoted ES . Note that ES =
∑n

i=1 ES
i .

We drop the superscript S if the schedule is clear from the context.

3 No Precedence Constraints

As a warm-up, we consider the scheduling of tasks without precedence con-
straints. In this case we know that each machine will run at a fixed speed, since
otherwise the energy use could be decreased without affecting the makespan by
averaging the speed. We also know that each machine will finish at the same
time, since otherwise some energy from a machine which finishes early could be
transferred to machines which finish late, decreasing the makespan. Furthermore
there will be no gaps in the schedule.

For any schedule, denote the makespan by M , and denote the load on ma-
chine j, which is the sum of the weights of the jobs on machine j, by Lj . Since
each machine runs at a fixed speed, in this section we denote by sj the speed of

Speed Scaling of Tasks with Precedence Constraints 311

machine j, by pj its power, and by Ej its energy used. By our observations so
far we have sj = Lj/M .

The energy used by machine j is

Ej = pjM = sα
j M =

Lα
j

Mα−1
.

We can sum this over all the machines and rewrite it as

Mα−1 =
1

E

∑
j

Lα
j . (1)

It turns out that minimizing the makespan is equivalent to minimizing the �α

norm of the loads. For this we can use the PTAS for identical machines given by
Azar et al. [1]. Denote the optimal loads by opt1, . . . ,optm. Similarly to (1),
we have

optα−1 =
1

E

∑
j

optα
j , (2)

where opt is the optimal makespan. For any ε > 0, we can find loads L1, . . . , Lm

in polynomial time such that
∑

j Lα
j ≤ (1 + ε)

∑
j optα

j . For the corresponding
makespan M it now follows from (1) and (2) that

Mα−1 =
1

E

∑
j

Lα
j ≤ (1 + ε) · 1

E

∑
j

optα
j = (1 + ε)optα−1

or
M ≤ (1 + ε)1/(α−1)opt.

Thus this gives us a PTAS for the problem Sm || Cmax. For α > 2, it even gives a
better approximation for any fixed running time compared to the original PTAS.

4 Main Results

4.1 One Speed for All Machines

Suppose all machines run at a fixed speed s. We show that under this constraint,
it is not possible to get a good approximation of the optimal makespan. For
simplicity, we only consider the special case α = 3.

Consider the following input: one job of size m1/3 and m jobs of size 1, which
can only start after the first job has finished. Suppose the total energy available
is E = 2m. It is possible to run the large job at a speed of s1 = m1/3 and all
others at a speed of 1. The makespan of this schedule is 2, and the total amount
of energy required is s3

1 + m = 2m.
Now consider an approximation algorithm with a fixed speed s. The total

time for which this speed is required is the total size of all the jobs divided by
s. Thus s must satisfy s3(m1/3 + m)/s ≤ E = 2m, or s2 ≤ 2m/(m1/3 + m).
This clearly implies s ≤ 2, but then the makespan is at least m1/3/2. Thus the
approximation ratio is Ω(m1/3).

In contrast, we will use machines that have different speeds, but where the
total power used by the machines is constant over time.

312 K. Pruhs, R. van Stee, and P. Uthaisombut

4.2 The Power Equality

Given a schedule S of an input instance I, we define the schedule-based constraint
≺S among jobs in I as follows. For any jobs i and j, i ≺S j if and only if i ≺ j
in I, or i runs before j on the same machine in S. Suppose S is a schedule where
each job is run at a constant speed. The power relation graph of a schedule S of
an instance I is a vertex-weighted directed graph created as follows:

– For each job i, create vertices ui and vi, each with weight pi where pi is the
power at which job i is run.

– In S, if i ≺S j and job j starts as soon as job i finishes (maybe on different
machines), then create a directed edge (vi, uj).

Basically, the power relation graph G tells us which pairs of jobs on the same
machine run back to back, and which pairs of jobs with precedence constraint
≺ between them run back to back. For an example, see Figure 1.

1 2 3

8

7

4

6
5

3

4

7

8

1 2

5 6

Fig. 1. An example of a schedule and the corresponding power relation graph. Note
that the precedence constraint between jobs 1 and 6 is not represented in the graph,
but on the other hand there is an edge between, e.g., jobs 2 and 5 since they run back to
back on the same machine. In this example, the graph has four connected components.

In this paper, a connected component of a directed graph G refers to a sub-
graph of G that corresponds to a connected component of the underlying undi-
rected graph of G. Suppose C is a connected component of a power relation
graph G. Define H(C) = {u | (v, u) ∈ C} and T (C) = {v | (v, u) ∈ C}. Note
that H(C) and T (C) is the set of vertices at the heads and tails, respectively, of
directed edges in C. If C contains only one vertex, then H(C) = T (C) = ∅. The
completion of jobs in T (C) and the start of jobs in H(C) all occur at the same
time. If time t is when this occurs, we say that C occurs at time t. We say that
a connected component C satisfies the power equality if∑

i:ui∈H(C)

pi =
∑

i:vi∈T (C)

pi

Speed Scaling of Tasks with Precedence Constraints 313

Note that pi is the power at which job i is run, and is also the weight of vertices
ui and vi. We say that a power relation graph G satisfies the power equality if
all connected components of G satisfy the power equality.

Lemma 1. If a schedule S is optimal, then each job is run at a constant speed.

Proof (Proof sketch). Suppose S is an optimal schedule such that some job i
does not run at a constant speed. By averaging the speeds in the interval that i
runs, the execution time of i would not change, but the energy would be reduced,
since the power is a convex function of the speed. A contradiction. �

Lemma 2. If S is an optimal schedule for some energy level E, then the power
relation graph G of S satisfies the power equality.

Proof. The idea of the proof is to consider an arbitrary component C of the
power relation graph G of an optimal schedule S. Then create a new schedule
S′ from S by slightly stretching and compressing jobs in C. Since S is optimal,
S′ cannot use a smaller amount of energy. By creating an equality to represent
this relationship and solving it, we have that C must satisfy the power equality
relation.

Now we give the detail. Consider any connected component C of G. If C
contains only one vertex, then it immediately follows that C satisfies the power
equality because T (C) = H(C) = ∅. Therefore, suppose C contains two or more
vertices. Let ε �= 0 be a small number such that xi + ε > 0 for any job i in T (C),
and xi − ε > 0 for any job i in H(C). Note that we allow ε to be either positive
or negative. For simplicity on the first reading, it is easy to think of ε as a small
positive number. We create a new schedule S′ from schedule S by increasing the
execution time of every job in T (C) by ε, and decreasing the execution time of
every job in H(C) by ε. Note the following:

(1) The execution time of job i in T (C) in S′ is positive because xi + ε > 0.
(2) The execution time of job i in H(C) in S′ is positive because xi − ε > 0.
(3) For |ε| small enough, S′ has the same power relation graph as S.

Therefore, S′ is a feasible schedule having the same power relation graph as S.
Observe that the makespan of S′ remains the same as that of S. The change in
the energy used, ΔE(ε), is

ΔE(ε) = ES′ − ES

=
∑

i:vi∈T (C)

(
ES′

i − ES
i

)
+

∑
i:ui∈H(C)

(
ES′

i − ES
i

)

=
∑

i:vi∈T (C)

(
wα

i

(xi + ε)α−1
− wα

i

xα−1
i

)
+

∑
i:ui∈H(C)

(
wα

i

(xi − ε)α−1
− wα

i

xα−1
i

)
.

Since S is optimal, ΔE(ε) must be non-negative. Otherwise, we could reinvest
the energy saved by this change to obtain a schedule with a better makespan.

314 K. Pruhs, R. van Stee, and P. Uthaisombut

Since the derivative ΔE′(ε) is continuous for |ε| small enough, we must have
ΔE′(0) = 0. We have

ΔE′(ε) =
∑

i:vi∈T (C)

(1 − α)wα
i

(xi + ε)α
+

∑
i:ui∈H(C)

(α − 1)wα
i

(xi − ε)α

Substitute ε = 0 and solve for ΔE′(0) = 0.

ΔE′(0) = 0∑
i:vi∈T (C)

(1 − α)wα
i

xα
i

−
∑

i:ui∈H(C)

(1 − α)wα
i

xα
i

= 0

∑
i:vi∈T (C)

(1 − α)wα
i

xα
i

=
∑

i:ui∈H(C)

(1 − α)wα
i

xα
i∑

i:vi∈T (C)

sα
i =

∑
i:ui∈H(C)

sα
i

∑
i:vi∈T (C)

pi =
∑

i:ui∈H(C)

pi

Thus, this connected component C satisfies the power equality. Since C is an
arbitrarily chosen connected component in G, then G satisfies the power equality,
and the result follows. �

Let p(k, t) be the power at which machine k runs at time t. By convention, if
machine k is idle at time t, then p(k, t) = 0. Also, by convention if job i starts at
time t1 and completes at time t2, we say that it runs in the open-close interval
(t1, t2]. Therefore, p(k, t) is well-defined at a time t when a job has just finished
and another has just started; the value of p(k, t) is equal to the power of the
finishing job.

Lemma 3. If S is an optimal schedule for some energy level E, there exists a
constant p such that at any time t,

∑m
k=1 p(k, t) = p, i.e. the sum of the powers

of all machines at time t is p.

Proof. Suppose S is an optimal schedule. Consider any time t where 0 < t ≤
CS

max. Let t′ be any time after t such that no jobs start or complete in the
interval (t, t′]. Note that this does not exclude the possibility that some jobs
start or complete at time t. We will show that

∑m
k=1 p(k, t) =

∑m
k=1 p(k, t′). If

this is the case, then the result follows.
On the one hand, if no jobs start or complete at time t, then the same set of

jobs are running at time t and t′. From Lemma 1, each job runs at a constant
speed at all time. This also means that each job runs at a constant power at all
time. Since the same set of jobs are running at time t and t′, then

∑m
k=1 p(k, t) =∑m

k=1 p(k, t′).
On the other hand, if some jobs start or complete at time t, then consider

the power relation graph G of S. The jobs which start or complete at time t

Speed Scaling of Tasks with Precedence Constraints 315

correspond to vertices in components occurring at time t. Note that if some
component contains only one vertex, then S is not optimal, because the corre-
sponding job could be run at a slower speed and start earlier (if it starts at time
t) or finish later without violating any precedence constraints. This would reduce
the total amount of energy used, which could be reinvested elsewhere to get a
better schedule. Thus all components contain at least one edge. From Lemma 2,
the sum of powers of jobs that complete at time t is equal to the sum of powers
of jobs that start at time t. And since no jobs start or complete in the interval
(t, t′], then again

∑m
k=1 p(k, t) =

∑m
k=1 p(k, t′). �

4.3 Algorithm

Lemma 3 implies that the total power at which all the machines run is constant
over time (only the distribution of the power over the machines may vary). We
will describe a scheme to use this lemma to relate Sm | prec | Cmax to the
problem Q | prec | Cmax. Then, we can use an approximation algorithm for the
latter problem by Chekuri and Bender [5] to obtain an approximate schedule.
The schedule is then scaled so that the total amount of energy used is within
the energy bound E.

Let p̄ be the sum of powers at which the machines run in the optimal schedule
opt(I, E). Since energy is power times makespan, we have p̄ = E/opt(I, E).
However, an approximation algorithm does not know the value of opt(I, E), so
it cannot immediately compute p̄. Nevertheless, we will assume that we know the
value of p̄. The value of p̄ can be approximated using binary search, and this will
be discussed later. Given p̄, define the set M(p̄) to consist of the following fixed
speed machines: 1 machine running at power p̄, 2 machines running at power
p̄/2, and in general 2i−1 machines running at power p̄/i for i = 1, 2, ..., �logm�.
Denoting the total number of machines so far by m′, there are an additional
m−m′ machines running at power p̄/(1 + �log m�). Thus there are m machines
in the set M(p̄), but the total power is at most p̄(1 + log m). We show in the
following lemma that if the optimal algorithm is given the choice between m
variable speed machines with total energy E and the set M(p̄) of machines just
described, it will always take the latter, since the makespan will be smaller.

Lemma 4. We have
optM(p̄)(I) ≤ opt(I, E),

where optM(p̄)(I) is the makespan of the optimal schedule using fixed speed ma-
chines in the set M(p̄), and opt(I, E) is the makespan of the optimal schedule
using m variable-speed machines with energy bound E.

Proof. Consider the schedule of opt with variable speed machines and energy
bound E at some time t. Denote this opt by opt1 and the opt which uses
the prescribed set of machines by opt2. Denote the power of machine i of opt1

at this time by pi (note that this is a different notation from the one we use

316 K. Pruhs, R. van Stee, and P. Uthaisombut

elsewhere in the paper) and sort the machines by decreasing pi. Now we simply
assign the job on machine 1 to the machine of power p̄ of opt2, and for i ≥ 1
we assign the jobs on machines 2i, . . . , 2i+1 − 1 to the machines of power p̄/2i of
opt2.

Clearly, p1 ≤ p̄, since no machine can use more than p̄ power at any time. In
general, we have that pj ≤ p̄/j for j = 1, . . . , m. If we can show that the first
machine in any power group has at least as much power as the corresponding
machine of opt1, this holds for all the machines. But since machine 2i of opt2

has power exactly p̄/2i, this follows immediately.
It follows that opt2 allocates each individual job at least as much power as

opt1 at time t. We can apply this transformation for any time t, where we only
need to take into account that opt2 might finish some jobs earlier than opt1. So
the schedule for opt2 might contain unnecessary gaps, but it is a valid schedule,
which proves the lemma. �
To construct an approximate schedule, we assume the value of p̄ is known, and
the set of fixed speed machines in M(p̄) will be used. The schedule is created
using the algorithm by Chekuri and Bender [5]. The schedule created may use
too much energy. To fix this, the speeds of all jobs are decreased so that the
total energy used is within E at the expense of having a longer makespan. The
steps are given in subroutine FindSchedule in Figure 2.

FindSchedule(I, p)

1. Find a schedule for instance I and machines in the set M(p) using Chekuri and
Bender’s algorithm [5].

2. Reduce the speed of all machines by a factor of log2/α m
3. Return the resulting schedule.

alg(I, E)

1. Set p∗ = E
mW

α
α−1 where W is the total weight of all jobs divided by m.

2. Using binary search on [0, p∗] with p as the search variable, find the largest value
for p such that this 2-step process returns true. Binary search terminates when
the binary search interval is shorter than 1.
(a) Call FindSchedule(I, p).
(b) If for the schedule obtained we have n

i=1 sα−1
i wi ≤ E, return true

Fig. 2. Our speed scaling algorithm. The input consists a set of jobs I and an energy
bound E.

4.4 Analysis

Lemma 5. Suppose p = E/OPT (I, E). Subroutine FindSchedule(I, p) creates
a schedule which has makespan O(log1+2/α m)opt(I, E) and uses energy O(1)E.

Speed Scaling of Tasks with Precedence Constraints 317

Proof. Let S1 and S2 denote the schedules obtained in steps 1 and 2 of the
subroutine FindSchedule(I, p), respectively. In an abuse of notation, we will
also use S1 and S2 to refer to the makespans of these schedules. Schedule S2

is the one returned by FindSchedule. First we analyze the makespan. From
Chekuri and Bender [5], S1 = O(log m)optM(p)(I). In step 2, the speed of every

job decreases by a factor of log2/α m. Thus, the makespan increases by a factor
of log2/α m. From Lemma 4, optM(p)(I) ≤ opt(I, e). Therefore, taken together,
we have

S2 = (log2/α m)S1 = (log2/α m)O(log m)optM(p)(I)

= O(log1+2/α m)opt(I, E).

Next we analyze the energy. The machines in the schedule opt(I, E) run for
opt(I, E) time units at the total power of p = E/opt(I, E) consuming a total
energy of E. Recall that if all machines in M(p) are busy, the total power is at
most p(1 + log m).

Schedule S1 runs the machines for O(log m)optM(p)(I) time units at the total
power at most p(1 + log m). Thus, it uses energy at most

p(1 + log m)O(log m)optM(p)(I) ≤ O(log2 m) popt(I, A) = O(log2 m)A (3)

where the inequality follows from Lemma 4. The speeds at which the machines
in S2 run are log2/α m slower than those in M(p), which S1 uses. Thus, the total
power at which the machines in S2 run is log2 m times smaller than that of S1.
By (3), this is O(1)A. �

Note that when we decrease the speed in S2 by some constant factor, the
makespan increases by that factor and the energy decreases by a larger con-
stant factor. To find the value of p̄, we use binary search in the interval [0, p∗]
where p∗ is an initial upper bound to be computed shortly. We continue until
the length of the interval is at most 1. We then use the left endpoint of this
interval as our power. Now we compute the initial upper bound p∗. For a given
schedule, the total energy used is

n∑
i=1

pixi =

n∑
i=1

sα
i wi/si =

n∑
i=1

sα−1
i wi.

The best scenario that could happen for the optimal algorithm is when the
work is evenly distributed on all the machines and all the machines run at the
same speed at all time. Let W be the total weight of all the jobs divided by m.
Completing W units of work at a speed of s requires sα−1W units of energy. If
each of the m machines processes W units of work, then it takes a total mWsα−1

units of energy. This must be less than E. For the speed we find sα−1 ≤ E/mW

and thus p
α−1

α ≤ E/mW . This gives us an initial upper bound for p for the
binary search:

p ≤ p∗ =

(
E

mW

) α
α−1

.

318 K. Pruhs, R. van Stee, and P. Uthaisombut

opt does not use a higher power than this, because then it would run out of
energy before all jobs complete.

From Lemma 5 and our analysis above, the following theorem holds.

Theorem 1. alg is an O(log1+2/α m)-approximation algorithm for the problem
Sm | prec | Cmax where the power is equal to the speed raised to the power of α
and α > 1.

5 Conclusions

Speed scaling to manage power is an important area of application that is worthy
of further academic investigation. For a survey, including proposed avenues for
further investigations, we recommend the survey paper [11].

References

1. Noga Alon, Yossi Azar, Gerhard Woeginger, and Tal Yadid. Approximation
schemes for scheduling. In ACM-SIAM Symposium on Discrete Algorithms, pages
493–500, 1997.

2. Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Dynamic speed scaling to manage
energy and temperature. In IEEE Syposium on Foundations of Computer Science,
pages 520 – 529, 2004.

3. Nikhil Bansal and Kirk Pruhs. Speed scaling to manage temperature. In Sympo-
sium on Theoretical Aspects of Computer Science, pages 460–471, 2005.

4. David M. Brooks, Pradip Bose, Stanley E. Schuster, Hans Jacobson, Prabhakar N.
Kudva, Alper Buyuktosunoglu, John-David Wellman, Victor Zyuban, Manish
Gupta, and Peter W. Cook. Power-aware microarchitecture: Design and modeling
challenges for next-generation microprocessors. IEEE Micro, 20(6):26–44, 2000.

5. Chandra Chekuri and Michael A. Bender. An efficient approximation algorithm
for minimizing makespan on uniformly related machines. Journal of Algorithms,
41:212–224, 2001.

6. Jian-Jia Chen, Tei-Wei Kuo, and Hsueh-I Lu. Power-saving scheduling for weakly
dynamic voltage scaling devices. In Workshop on Algorithms and Data Structures,
2005. To appear.

7. Fabián A. Chudak and David B. Shmoys. Approximation algorithms for prece-
dence-constrained scheduling problems on parallel machines that run at different
speeds. In ACM-SIAM Symposium on Discrete Algorithms, pages 581–590, 1997.

8. Ronald L. Graham. Bounds for certain multiprocessor anomalies. Bell System
Techical Journal, 45:1563–1581, 1966.

9. Ronald L. Graham, Eugene Lawler, Jan Karel Lenstra, and Alexander H. G. Rin-
nooy Kan. Optimization and approximation in deterministic scheduling: A survey.
Annals of Discrete Mathematics, 5:287–326, 1979.

10. Flavius Gruian and Krzysztof Kuchcinski. Lenes: Task-scheduling for low-energy
systems using variable voltage processors. In Asia South Pacific - Design Automa-
tion Conference, pages 449–455, 2001.

11. Sandy Irani and Kirk Pruhs. Algorithmic problems in power management.
SIGACT News, 2005.

Speed Scaling of Tasks with Precedence Constraints 319

12. Woo-Cheol Kwon and Taewhan Kim. Optimal voltage allocation techniques for dy-
namically variable voltage processors. ACM Transactions on Embedded Computing
Systems (TECS), 4(1):211–230, 2005.

13. Minming Li, Becky Jie Liu, and Frances F. Yao. Min-energy voltage allocation
for tree-structured tasks. In 11th International Computing and Combinatorics
Conference (COCOON 2005), 2005. To appear.

14. Jiong Luo and Niraj K. Jha. Power-conscious joint scheduling of periodic task
graphs and aperiodic task graphs in distributed real-time embedded systems. In
International Conference on Computer Aided Design, pages 357–364, 2000.

15. Ramesh Mishra, Namrata Rastogi, Dakai Zhu, Daniel Moss, and Rami G. Melhem.
Energy aware scheduling for distributed real-time systems. In International Parallel
and Distributed Processing Symposium, page 21, 2003.

16. Trevor Mudge. Power: A first-class architectural design constraint. Computer,
34(4):52–58, 2001.

17. Kirk Pruhs, Patchrawat Uthaisombut, and Gerhard Woeginger. Getting the best
response for your erg. In Scandanavian Workshop on Algorithms and Theory, pages
14–25, 2004.

18. F. Frances Yao, Alan J. Demers, and Scott Shenker. A scheduling model for reduced
cpu energy. In IEEE Syposium on Foundations of Computer Science (FOCS 1995),
pages 374–382, 1995.

19. Han-Saem Yun and Jihong Kim. On energy-optimal voltage scheduling for fixed
priority hard real-time systems. ACM Transactions on Embedded Computing Sys-
tems, 2(3):393–430, 2003.

20. Yumin Zhang, Xiaobo Hu, and Danny Z. Chen. Task scheduling and voltage
selection for energy minimization. In Design Automation Conference, pages 183–
188, 2002.

Partial Multicuts in Trees�

Asaf Levin1 and Danny Segev2

1 Department of Statistics, The Hebrew University,
Jerusalem 91905, Israel

levinas@mscc.huji.ac.il
2 School of Mathematical Sciences, Tel-Aviv University,

Tel-Aviv 69978, Israel
segevd@post.tau.ac.il

Abstract. Let T = (V, E) be an undirected tree, in which each edge
is associated with a non-negative cost, and let {s1, t1}, . . . , {sk, tk} be a
collection of k distinct pairs of vertices. Given a requirement parameter
t ≤ k, the partial multicut on a tree problem asks to find a minimum
cost set of edges whose removal from T disconnects at least t out of
these k pairs. This problem generalizes the well-known multicut on a
tree problem, in which we are required to disconnect all given pairs.

The main contribution of this paper is an (8
3

+ ε)-approximation
algorithm for partial multicut on a tree, whose run time is strongly
polynomial for any fixed ε > 0. This result is achieved by introducing
problem-specific insight to the general framework of using the Lagrangian
relaxation technique in approximation algorithms. Our algorithm utilizes
a heuristic for the closely related prize-collecting variant, in which we are
not required to disconnect all pairs, but rather incur penalties for fail-
ing to do so. We provide a Lagrangian multiplier preserving algorithm
for the latter problem, with an approximation factor of 2. Finally, we
present a new 2-approximation algorithm for multicut on a tree, based
on LP-rounding.

1 Introduction

In this paper we address the partial multicut on a tree problem. The input for
this problem consists of an undirected tree T = (V, E), in which each edge e ∈ E
is associated with a non-negative cost ce, and a collection of k distinct pairs
of vertices, {s1, t1}, . . . , {sk, tk}. For 1 ≤ i ≤ k, the pair {si, ti} is said to be
separated by the edge set D ⊆ E if it is not contained in a single connected
component of T − D. In other words, the removal of D disconnects si and ti.
Given a requirement parameter t ≤ k, the objective is to find a minimum cost
set of edges that separates at least t out of the k pairs. In spite of these seemingly
simple settings, we are not aware of any previous study of this problem.

� Due to space limitations, several proofs are omitted from this extended abstract. We
refer the reader to the full version of this paper [13], in which all missing proofs are
provided.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 320–333, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Partial Multicuts in Trees 321

Partial multicut on a tree contains as a special case the well-known multicut
on a tree problem, in which we are required to separate all given pairs. Garg,
Vazirani and Yannakakis [8] demonstrated that this problem is at least as hard
to approximate as vertex cover, even in unweighted trees of height 1. In addition,
they presented a primal-dual algorithm that constructs a feasible solution whose
cost is at most twice the optimum. We refer to this algorithm as the GVY
algorithm, and provide additional details on its analysis in the sequel, since it
serves as one of the building blocks of our algorithm.

When the underlying graph is not restricted to be a tree, the multicut prob-
lem becomes much harder. Dahlhaus, Johnson, Papadimitriou, Seymour and
Yannakakis [4] proved that the multicut problem is NP-hard for all fixed k ≥ 3,
even when the cost of each edge is 1. Very recently, an arbitrarily large con-
stant factor hardness was given by Chawla, Krauthgamer, Kumar, Rabani and
Sivakumar [3], assuming the Unique Games Conjecture of Khot [12]. A stronger
version of this conjecture leads to a hardness result of Ω(log log n). On the pos-
itive side however, Garg et al. [7] used the region growing scheme to obtain an
O(log k)-approximation algorithm for the multicut problem.

The partial multicut on a tree problem can also be considered in a different
context. Given a ground set of elements U = {e1, . . . , en}, a collection S1, . . . , Sm

of subsets of U with non-negative costs c(Si) and a parameter t ≤ n, partial cover
is the problem of finding a minimum cost subcollection of sets that covers at least
t elements. Note that a pair {si, ti} is separated by D ⊆ E if this set of edges
contains at least one edge from the unique path connecting si and ti in T , which
we denote by [si, ti]. This observation allows us to interpret partial multicut on
a tree as a special case of partial cover. The elements to cover are the paths
[si, ti], 1 ≤ i ≤ k, and the sets correspond to the edges of T . An edge e ∈ E
covers those paths to which it belongs, with cost ce.

The partial cover problem received a great deal of attention in recent years.
When t = n, partial cover reduces to the standard set cover problem, in which
we wish to cover the entire universe of elements. Therefore, partial cover cannot
be approximated within a ratio of (1 − ε) lnn for any ε > 0, unless NP ⊂
TIME(nO(log log n)) [5]. Slav́ık [15] generalized the analysis of the greedy set cover
algorithm and proved that it guarantees an H(t)-approximation for partial cover.
For the special case where each element appears in at most f sets, Bar-Yehuda [1]
gave an f -approximation using the local-ratio method. This case was also studied
by Gandhi, Khuller and Srinivasan [6], who achieved a similar approximation
ratio using a primal-dual algorithm. Unfortunately, simple examples show that
none of these algorithms provides a constant factor approximation for partial
multicut on a tree.

A closely related generalization of multicut is the prize-collecting multicut
problem. In this variant we are not required to separate all pairs. However, if
the set of edges we pick does not separate a pair {si, ti}, we incur a penalty pi.
The objective is to find a set of edges D ⊆ E that minimizes the cost of D plus
the penalties of unseparated pairs.

322 A. Levin and D. Segev

For the remainder of this paper, the term “on a tree” is omitted whenever we
discuss any of the problems or algorithms considered here. We remark that none
of our results holds when the underlying graph is not a tree.

1.1 Results and Techniques

In Section 2 we present an interpretation of the prize-collecting multicut problem
as an equivalent multicut problem, which is created by adding new leaf vertices
to the original tree T and modifying the collection of pairs to be separated.
A 2-approximation for this problem immediately follows by applying the GVY
algorithm to the resulting multicut instance. However, the partial multicut algo-
rithm we suggest uses a prize-collecting heuristic as a subroutine, and requires
a bound stronger than the one obtained by this straightforward approach.

Specifically, the prize-collecting algorithm should possess the Lagrangian Mul-
tiplier Preserving (LMP) property1: If we denote by C the total edge costs and
by P the total penalties of unseparated pairs, then for some constant r ≥ 1 we
have C + rP ≤ rOPT, where OPT is the cost of an optimal solution. To achieve
this property, we prove that our reduction produces multicut instances whose
unique configuration forces the GVY algorithm to eliminate edges that are not
part of the original tree, as long as feasibility is maintained. This corresponds
to discarding redundant penalties from the prize-collecting solution. By exploit-
ing the special structural properties of the resulting solution, we strengthen the
analysis of Garg et al. and prove that the LMP property is satisfied with factor
r = 2.

In Section 3 we present the main result of this paper, an (8
3 +ε)-approximation

algorithm for the partial multicut problem, whose run time is strongly polyno-
mial for any fixed ε > 0. It is important to note that this algorithm relies heavily
on a preprocessing step in which we “guess” certain attributes of a fixed arbi-
trary optimal solution. This step is implemented using an exhaustive search that
involves O(n1/ε) calls to the procedure described below.

Although our algorithm is based on problem-specific methods, it is guided by
the general framework of using the Lagrangian relaxation technique in approxi-
mation algorithms, originally suggested by Jain and Vazirani [11]. With respect
to a natural integer programming formulation of partial multicut, we relax the
complicating constraint that at most k − t pairs are not separated, and move it
to the objective function together with a Lagrangian multiplier λ. For any fixed
value of λ, this operation results in an instance of the prize-collecting multicut
problem, with an additional constant term in the objective function.

Next, we use the prize-collecting algorithm to conduct a binary search, at the
end of which we find λ1 ≥ λ2 such that: For λ1, the algorithm separates t1 ≥ t
pairs by picking the edge set D1; for λ2, it separates t2 ≤ t pairs by picking D2. We
observe that D1 and D2 by themselves are not good solutions, since the cost of D1

can be arbitrarily large with respect to that of the optimal solution, and since D2

is generally not feasible. To resolve this problem, we devise an auxiliary procedure
that constructs a new feasible solution D3 by greedily transferring edges from D1

1 This term was coined by Jain, Mahdian and Saberi [10].

Partial Multicuts in Trees 323

to D2. Our analysis shows that when λ1 and λ2 are sufficiently close, the cost of
the cheaper solution from D1 and D3 is within factor 8

3 + ε of optimum.
Although the GVY algorithm constructively proves an upper bound of 2 on the

integrality gap of the multicut LP-relaxation, no rounding algorithm is known for
this problem. In Section 4 we provide such an algorithm, which is very easy to
analyze and implement, although it requires solving two linear programs. Using
the optimal fractional solution d∗, our algorithm identifies a new collection of pairs
to separate, and constructs a new linear program with the objective of separating
these pairs. We prove that the polyhedron of feasible solutions to this program has
integral extreme points. Moreover, we show that the integral solution we obtain
is feasible for the original problem, and its cost is at most twice the optimum.

2 The Prize-Collecting Multicut Problem

The main result of this section is a Lagrangian multiplier preserving algorithm
for the prize-collecting multicut problem, with an approximation factor of 2.
We begin with a brief description of the GVY algorithm2 and the structural
properties of the solution it constructs. Next, we show how to reduce the prize-
collecting multicut problem to an equivalent multicut problem by modifying the
original tree and collection of pairs. Finally, we observe that our reduction forces
the GVY algorithm to discard redundant penalties from the prize-collecting
solution. Our analysis exploits this property to establish the main result of this
section.

2.1 The GVY Algorithm

The multicut problem can be formulated as an integer program by:

minimize
∑
e∈E

cede (MC)

subject to
∑

e∈[si,ti]

de ≥ 1 ∀ i = 1, . . . , k (2.1)

de ∈ {0, 1} ∀ e ∈ E (2.2)

In this formulation, the variable de indicates whether the edge e is picked for the
multicut. Constraint (2.1) ensures that we pick at least one edge from each path
[si, ti]. The LP-relaxation of this program, (MCf), is obtained by replacing the
integrality constraint (2.2) with de ≥ 0. The dual of this linear program is:

maximize

k∑
i=1

fi

subject to
∑

i:e∈[si,ti]

fi ≤ ce ∀ e ∈ E (2.3)

fi ≥ 0 ∀ i = 1, . . . , k (2.4)

2 Actually, we describe its simplified version, that appears in [16, Chap. 18].

324 A. Levin and D. Segev

The dual program can be viewed as the maximum multicommodity flow problem.
Given k pairs of vertices, where each pair {si, ti} is associated with a distinct
commodity, the objective is to maximize the sum of routed commodities. In this
context, the variable fi specifies the amount of commodity we route between si

and ti. The primal costs now serve as capacities, and constraint (2.3) states that
the sum of flows routed through each edge e does not exceed its capacity ce.

Algorithm 1: The GVY Algorithm

Root T at an arbitrary vertex and initialize D = ∅, f = 0.

Phase 1: Constructing D and f
while there is an unprocessed vertex do

Pick the deepest such vertex, v.
Without exceeding capacities, route maximal flow between pairs {si, ti}
whose lowest common ancestor is v.
Add all edges that became saturated to D.

Phase 2: Eliminating redundant edges
foreach e ∈ D, in reverse order of addition to D, do

If D \ {e} is a multicut, delete e from D.
return D, f .

The GVY algorithm is shown in Algorithm 1. It follows the primal-dual
schema for approximation algorithms, and constructs feasible primal and dual
solutions whose costs are within factor 2 from each other. Let D be the edge
set produced by the algorithm, and let f be the corresponding dual flow. Two
structural properties of these solutions were proved in [8] and will be essential
to our subsequent analysis.

Property 1. Only saturated edges are picked. That is, for every edge e, if e ∈ D
then

∑
i:e∈[si,ti]

fi = ce.

Property 2. If there is a positive flow between si and ti, at most two edges
from the path [si, ti] are picked. That is, for every 1 ≤ i ≤ k, if fi > 0 then
|D ∩ [si, ti]| ≤ 2.

2.2 The Prize-Collecting Algorithm

Reducing Prize-Collecting Multicut to Multicut. Given an instance of the
prize-collecting multicut problem, with pairs {si, ti} and associated penalties pi,
we can translate it to an instance of the multicut problem as follows. For every
1 ≤ i ≤ k, we add a new leaf vertex t′i to T , and connect it to ti. The cost of
the additional edge (ti, t

′
i) is pi. The new multicut problem asks to separate the

pairs {s1, t
′
1}, . . . , {sk, t′k} in the resulting tree, T ′.

We now illustrate the equivalence between these two problems. Let D ⊆ E be
any solution to the prize-collecting multicut problem in T , and let N ⊆ {1, . . . , k}

Partial Multicuts in Trees 325

be the index set of pairs that are not separated by D. The cost of this solution
is
∑

e∈D ce +
∑

i∈N pi. Since the edge (ti, t
′
i) separates the pair {si, t

′
i} in T ′,

we can easily construct a corresponding multicut in T ′ by picking the edge set
D ∪ {(ti, t′i) : i ∈ N}. Clearly, the resulting solution has an identical cost, since
the cost of (ti, t

′
i) is pi. Similarly, any minimal solution D ⊆ E(T ′) to the multicut

problem in T ′ can be used to obtain a prize-collecting solution in T with the
same cost. This is done by picking the edge set D ∩ E and paying the penalties∑

i∈N pi, where N = {1 ≤ i ≤ k : (ti, t
′
i) ∈ D}.

An Additional Structural Property. While properties 1 and 2 can be
used to prove that by utilizing the reduction described above we obtain a 2-
approximation, they are not sufficient to guarantee the LMP property. We deal
with this difficulty through a closer inspection of phase 2 in the GVY algorithm,
as a result of which we discover a third structural property.

For each 1 ≤ i ≤ k such that (ti, t
′
i) appears in the final solution D, consider

the exact point in phase 2 at which the algorithm checks whether (ti, t
′
i) can be

deleted or not. Since (ti, t
′
i) does not separate any pair other than {si, t

′
i}, the

algorithm is allowed to discard it if at least one edge on the path [si, ti] appears
in D at this point of time. It follows that we currently have D ∩ [si, ti] = ∅, or
otherwise (ti, t

′
i) would have been deleted. By observing that no edge is added

after phase 1, we conclude the following property.

Property 3. If the edge (ti, t
′
i) survived phase 2, no other edge on the path

[si, t
′
i] was picked. That is, for every 1 ≤ i ≤ k, if (ti, t

′
i) ∈ D then D∩ [si, ti] = ∅.

Analysis. Let DT ⊆ D be the set of edges that survived phase 2 and also belong
to the original tree T . Property 3 implies that the index set of pairs that are
not separated by DT is exactly N = {1 ≤ i ≤ k : (ti, t

′
i) ∈ D}. Therefore, DT

is a solution to the original prize-collecting problem with edge costs
∑

e∈DT
ce

and penalties
∑

i∈N pi. In Lemmas 1 and 2 we separately bound the edge costs
and penalties in terms of the dual solution f to the multicut problem in T ′. In
Theorem 3 we combine these bounds to prove the main result of this section.

Lemma 1.
∑

e∈DT
ce ≤ 2

∑
i/∈N fi.

Proof. Property 3 implies that no edge in DT belongs to a path [si, ti] for i ∈ N ,
since otherwise the edge (ti, t

′
i) would not have survived phase 2. Therefore,∑

e∈DT

ce =
∑

e∈DT

∑
i:e∈[si,t′i]

fi (2.5)

=
∑

e∈DT

∑
i/∈N :e∈[si,t′i]

fi (2.6)

=
∑
i/∈N

fi · |DT ∩ [si, t
′
i]| (2.7)

≤ 2
∑
i/∈N

fi . (2.8)

326 A. Levin and D. Segev

Equation (2.5) holds since ce =
∑

i:e∈[si,t′i]
fi, by property 1. Equation (2.6)

follows from the observation that e /∈ [si, t
′
i] for all i ∈ N , since e ∈ DT . Equation

(2.7) results from changing the order of summation. Inequality (2.8) is due to
|DT ∩ [si, t

′
i]| ≤ 2, which is implied by DT ⊆ D and property 2. ��

Lemma 2.
∑

i∈N pi =
∑

i∈N fi.

Proof. Since the unique path to which (ti, t
′
i) belongs is [si, t

′
i], for every 1 ≤ i ≤ k

we have the dual constraint fi ≤ c(ti,t′i) = pi. When i ∈ N , the edge (ti, t
′
i) was

picked by the algorithm, and fi = pi by property 1. ��

Theorem 3. Let OPT be the cost of an optimal solution to the prize-collecting
multicut problem. Then,

∑
e∈DT

ce + 2
∑

i∈N pi ≤ 2 · OPT.

Proof. We observed earlier that any solution to the prize-collecting multicut
problem in T has a matching multicut solution in T ′ with an identical cost.
Therefore, it is sufficient to prove the claim when OPT is replaced with the cost
of an optimal solution to the latter problem, OPT′. By combining Lemmas 1
and 2, we have

∑
e∈DT

ce + 2
∑
i∈N

pi ≤ 2
∑
i/∈N

fi + 2
∑
i∈N

fi = 2

k∑
i=1

fi ≤ 2 · OPT′ .

The last inequality holds since f is a feasible dual solution, and its cost is a lower
bound on the cost of any solution to the multicut problem. ��

3 The Partial Multicut Problem

In what follows we describe the main result of this paper, an algorithm for the
partial multicut problem whose approximation ratio is 8

3 + ε. It runs in strongly
polynomial time for any fixed ε > 0. We first present a natural integer program-
ming formulation of partial multicut and derive its Lagrangian relaxation, the
prize-collecting multicut problem. We then use the prize-collecting algorithm as
a subroutine to find two preliminary sets of edges, D1 and D2. Although these
sets are not good solutions by themselves, we show how to greedily combine
them into a new edge set D3, and prove that the cost of the cheaper solution
from D1 and D3 is within factor 8

3 + ε of optimum.

3.1 Initial Assumptions

An essential part of our algorithm is a preprocessing step in which we guess
certain attributes of a fixed arbitrary optimal solution, D∗ ⊆ E, whose cost
we denote by OPT. Based on these attributes, the given tree and collection of
pairs are modified as we explain below. Given an accuracy parameter ε > 0, we
can make the following assumptions by conducting an exhaustive search that
involves O(n1/ε) calls to the main algorithm and returning the best solution we
find.

Partial Multicuts in Trees 327

Assumption 1. All edge costs are strictly positive.

Assumption 2. We know cmax, the maximum cost of an edge in D∗.

Assumption 3. The cost of each edge is at most ε · OPT.

Assumption 1 is obvious, since we can pick all zero cost edges in advance and
contract them. We also eliminate the subset of pairs that are separated by these
edges and update the requirement parameter t. Assumption 2 is justified, since
we can test all O(n) edge costs as cmax, and for each such value contract all edges
whose cost is greater than cmax. Finally, it is possible to enforce assumption 3 by
observing that there are at most � 1

ε � edges in D∗ with ce ≥ ε · OPT. Therefore,

we can guess the expensive edges in D∗ by testing all O(n1/ε) subsets H ⊆ E of
cardinality at most � 1

ε �. For each such subset, we include H in the solution and
contract all edges whose cost is greater than mine∈H ce.

For the remainder of this section, we continue to denote by k the overall
number of pairs, and by t the required number of pairs to be separated.

3.2 The Lagrangian Relaxation

The partial multicut problem can be formulated as an integer program by:

minimize
∑
e∈E

cede

subject to
∑

e∈[si,ti]

de + zi ≥ 1 ∀ i = 1, . . . , k (3.1)

k∑
i=1

zi ≤ k − t (3.2)

de, zi ∈ {0, 1} ∀ e ∈ E, i = 1, . . . , k (3.3)

The variable de indicates whether we pick the edge e, and the variable zi in-
dicates whether the pair {si, ti} is not separated. Constraint (3.1) ensures that
we either pick at least one edge of [si, ti] or do not separate the corresponding
pair. Constraint (3.2) ensures that at most k − t pairs are not separated, which
is equivalent to requiring that at least t pairs are separated.

We relax the complicating constraint (3.2) and move it to the objective func-
tion multiplied by λ ≥ 0, to obtain the following Lagrangian relaxation problem:

L(λ) = F (λ) − λ(k − t)

F (λ)= minimize
∑
e∈E

cede + λ
k∑

i=1

zi

subject to
∑

e∈[si,ti]

de + zi ≥ 1 ∀ i = 1, . . . , k (3.4)

de, zi ∈ {0, 1} ∀ e ∈ E, i = 1, . . . , k (3.5)

328 A. Levin and D. Segev

For any fixed value of λ, L(λ) is an integer programming formulation of the prize-
collecting multicut problem F (λ), with an additional constant term −λ(k − t).
Note that the problem F (λ) places a uniform penalty of λ for not separating
any of the given pairs. The next lemma follows from plain duality.

Lemma 4. maxλ≥0 L(λ) ≤ OPT.

3.3 Finding Useful Integral Solutions

Given λ ≥ 0, we can use the prize-collecting algorithm from Section 2 to obtain
an integral solution (dλ, zλ) for F (λ) that satisfies

∑
e∈E ced

λ
e + 2λ

∑k
i=1 zλ

i ≤
2F (λ). In particular, if we can find a value of λ for which (dλ, zλ) separates
exactly t pairs, Lemma 4 shows that this solution is a 2-approximation for the
partial multicut problem, since∑

e∈E

ced
λ
e ≤ 2(F (λ) − λ(k − t)) = 2L(λ) ≤ 2 · OPT .

However, we do not know how to find such a value of λ. In fact, there are instances
in which the prize-collecting algorithm does not separate exactly t pairs for any
value of λ.

Nevertheless, when λ = 0 the prize-collecting algorithm does not separate any
pair. This follows from observing that by assumption 1 all edge costs are strictly
positive, and since F (0) = 0 no edge is picked by the algorithm. In addition,
F (λ) ≤ kcmax for any λ, since we can separate all pairs by picking at most k
edges (with maximum cost cmax). It follows that the algorithm separates all pairs
when λ > kcmax. Therefore, using the prize-collecting algorithm we conduct a
binary search over the interval [0, kcmax + 1], in which we find λ1 ≥ λ2, with
approximate solutions (d1, z1) and (d2, z2) for F (λ1) and F (λ2), respectively,
such that

1. λ1−λ2 ≤ ε·cmin
k , where cmin is the minimum cost of an edge in T (recall that

cmin > 0 by assumption 1).
2. The solution (d1, z1) separates t1 ≥ t pairs.
3. The solution (d2, z2) separates t2 ≤ t pairs.

Without loss of generality, none of these solutions separates exactly t pairs, or
otherwise we immediately obtain a 2-approximation. We conclude the following
lemma.

Lemma 5. Let α = t−t2
t1−t2

∈ (0, 1). Then,

α
∑
e∈E

ced
1
e + (1 − α)

∑
e∈E

ced
2
e ≤ 2(1 + ε)OPT .

Proof. We first observe that for j = 1, 2 we have

∑
e∈E

ced
j
e + 2λj

k∑
i=1

zj
i ≤ 2F (λj) = 2(L(λj) + λj(k − t)) ≤ 2(OPT + λj(k − t)) ,

Partial Multicuts in Trees 329

where the first inequality follows from Theorem 3, and the second from Lemma
4. Therefore,

α
∑
e∈E

ced
1
e + (1 − α)

∑
e∈E

ced
2
e

≤ 2 · OPT + 2αλ1((k − t) − (k − t1)) + 2(1 − α)λ2((k − t) − (k − t2))

≤ 2(1 + ε)OPT ,

where the last inequality follows from observing that

αλ1((k − t) − (k − t1)) + (1 − α)λ2((k − t) − (k − t2))

≤ α
(
λ2 +

ε · cmin

k

)
((k − t) − (k − t1)) + (1 − α)λ2((k − t) − (k − t2))

= λ2((k − t) − (α(k − t1) + (1 − α)(k − t2))) + ε · α · cmin
t1 − t

k
≤ ε · cmin ≤ ε · OPT .

The first inequality holds since λ1 − λ2 ≤ ε·cmin
k and k − t1 ≤ k − t. The second

inequality holds since k− t = α(k− t1)+(1−α)(k− t2), α ≤ 1 and t1− t ≤ k. ��

We remark that O
(
log k2cmax

ε·cmin

)
calls to the prize-collecting algorithm are required

in order to complete the binary search described above. In the full version of this
paper [13] we show that this step can be replaced with an approximate version of
Megiddo’s parametric search method [14], whose run time is strongly polynomial.

3.4 A Greedy Partial Cover Algorithm

We temporarily deviate from the problem-specific theme of this section, to de-
sign a greedy partial cover algorithm. Its analysis will considerably simplify
the presentation of the final step in our algorithm. We state the next result
in terms of set systems, since it does not rely on the special structure of the
partial multicut problem. Let U = {e1, . . . , en} be a ground set of elements,
and let S = {S1, . . . , Sm} be a collection of subsets of U , where each sub-
set Si has a non-negative cost ci. We show how to find in polynomial time a
subcollection S′ ⊆ S covering at least q elements, such that c(S′) ≤ q

nc(S) +
maxSi∈S ci.

Without loss of generality, we assume that S is a minimal cover of U . In other
words, U cannot be covered by S \ {Si}, for all Si ∈ S. We assign each element
e ∈ U to an arbitrary subset Si in which it appears. Let φ : U → S be the
resulting assignment, and for each Si ∈ S let φ−1(Si) be the subset of U that is
assigned to Si. Note that {φ−1(Si) : Si ∈ S} is a partition of U , and φ−1(Si) �= ∅
for every Si ∈ S, since S is minimal. For a subset Si ∈ S, let ri = ci

|φ−1(Si)| be

its ratio. We assume that the subsets in S are indexed in non-decreasing order
of their ratio, that is, r1 ≤ · · · ≤ rm.

330 A. Levin and D. Segev

Theorem 6. Let p be the minimal index for which
∑p

i=1 |φ−1(Si)| ≥ q, and let
S′ = {S1, . . . , Sp}. Then, c(S′) ≤ q

nc(S) + maxSi∈S ci.

3.5 A Greedy Combination

Let D1 be the set of edges picked by the solution (d1, z1). Although D1 is a
feasible solution to the partial multicut problem, its cost can be arbitrarily large
with respect to OPT. In contrast, Theorem 3 and Lemma 4 imply that the cost
of the edge set D2, picked by the solution (d2, z2), is at most 2 ·OPT. Since D2 is
not a feasible solution, our final objective is to construct a new feasible solution
D3 by greedily transferring edges from D1 to D2.

Since D2 separates t2 pairs, we can complete it to a feasible solution by finding
a set of edges that separates at least t − t2 additional pairs. Note that D1 \ D2

separates at least t1 − t2 pairs that are not separated by D2. Therefore, we can
use the greedy partial cover algorithm from Subsection 3.4 to find a set of edges
S ⊆ D1 \ D2 that separates at least t − t2 pairs from those separated by D1

but not by D2. It follows that D3 = D2 ∪ S is a feasible solution to the partial
multicut problem. In addition, by Theorem 6 and the assumption that the cost
of each edge is at most ε · OPT,∑

e∈S

ce ≤ t − t2
t1 − t2

∑
e∈E

ced
1
e + ε · OPT = α

∑
e∈E

ced
1
e + ε · OPT . (3.6)

We are now ready to prove that the cost of the cheaper solution from D1 and
D3 is within factor 8

3 + ε of optimum. In Lemmas 7 and 8 we bound the cost of
D1 and D3 in terms of OPT, α and β, where

α =
t − t2
t1 − t2

∈ (0, 1) , β =

∑
e∈E ced

2
e

OPT
∈ [0, 2] .

Lemma 7.
∑

e∈D1
ce ≤ 2(1+ε)−(1−α)β

α OPT.

Proof. Since α �= 0, we have

∑
e∈D1

ce =
1

α
· α

∑
e∈E

ced
1
e

≤ 1

α

(
2(1 + ε)OPT− (1 − α)

∑
e∈E

ced
2
e

)

=
2(1 + ε) − (1 − α)β

α
OPT .

The first inequality follows from Lemma 5, and the last equation holds since∑
e∈E ced

2
e = β · OPT. ��

Partial Multicuts in Trees 331

Lemma 8.
∑

e∈D3
ce ≤ (2 + αβ + 3ε)OPT.

Proof. Since D3 = D2 ∪ S, we have∑
e∈D3

ce =
∑

e∈D2

ce +
∑
e∈S

ce

≤
∑
e∈E

ced
2
e + α

∑
e∈E

ced
1
e + ε · OPT (3.7)

= (1 − α)
∑
e∈E

ced
2
e + α

∑
e∈E

ced
1
e + α

∑
e∈E

ced
2
e + ε · OPT

≤ 2(1 + ε)OPT + α
∑
e∈E

ced
2
e + ε · OPT (3.8)

= (2 + αβ + 3ε)OPT . (3.9)

Inequality (3.7) follows from inequality (3.6), and inequality (3.8) from Lemma
5. Equation (3.9) is obtained by substituting

∑
e∈E ced

2
e = β · OPT. ��

Theorem 9. min{
∑

e∈D1
ce,

∑
e∈D3

ce} ≤ (8
3 + ε)OPT.

Proof. Disregarding ε, Lemmas 7 and 8 show that

min

{∑
e∈D1

ce,
∑

e∈D3

ce

}
≤ min

{
2 − (1 − α)β

α
, 2 + αβ

}
OPT .

Although we cannot control α ∈ (0, 1) and β ∈ [0, 2], the approximation guar-
antee of the algorithm can be bounded by considering the worst possible choice
for these parameters. Using elementary calculus, it can be verified that

max
α∈(0,1)
β∈[0,2]

min

{
2 − (1 − α)β

α
, 2 + αβ

}
=

8

3
,

which is attained at α = 1
2 and β = 4

3 . ��

4 An LP-Rounding Multicut Algorithm

In this section we provide an LP-rounding algorithm for the multicut problem,
whose approximation factor is 2. Although our algorithm is easy to analyze and
implement, it is not as efficient as the GVY algorithm, since we are required to
solve two linear programs.

4.1 The Algorithm

For 1 ≤ i ≤ k, let li be the lowest common ancestor of si and ti, with respect
to an arbitrary root of T we fix in advance. Recall that the multicut problem

332 A. Levin and D. Segev

can be formulated as the integer program (MC), given in Subsection 2.1, whose
LP-relaxation was denoted by (MCf). We first solve the linear program (MCf)
to obtain an optimal fractional solution d∗, and use it to identify a new collection
of pairs to separate. Specifically, we define vi = si if

∑
e∈[si,li]

d∗e ≥
∑

e∈[ti,li]
d∗e

and vi = ti otherwise. Since [vi, li] is a subpath of [si, ti], any set of edges that
separates {v1, l1}, . . . , {vk, lk} also separates the original collection of pairs. We
now construct a new linear program

minimize
∑
e∈E

cede (MC′
f)

subject to
∑

e∈[vi,li]

de ≥ 1 ∀ i = 1, . . . , k (4.1)

de ≥ 0 ∀ e ∈ E (4.2)

and solve it to obtain an optimal solution d̂.

4.2 Analysis

In Lemma 10 we show that d̂ is an extreme point of an integral polyhedron, and
therefore it is indeed a feasible solution to (MC). In Theorem 11 we prove that

the cost of d̂ is at most twice the cost of d∗, which is a lower bound on the cost
of any solution to the multicut problem.

Lemma 10. Any basic feasible solution to (MC′
f) is integral.

Proof. For each path [vi, li], li is an ancestor of vi. Therefore, we can orient
the edges of T from the root down to the leaves, and obtain a directed tree. It
follows that the constraint matrix in (MC′

f) is the transpose of a chain matrix,
which is a matrix whose columns are edge vectors of directed paths in a graph.
Camion [2] showed that the chain matrix induced by a directed tree is totally
unimodular. ��

Theorem 11. The cost of d̂ is at most 2 · OPT(MCf).

Proof. To bound the cost of d̂, we claim that 2d∗ is a feasible solution to (MC′
f).

Since d∗ satisfies constraint (2.1),
∑

e∈[si,li]
d∗e +

∑
e∈[ti,li]

d∗e =
∑

e∈[si,ti]
d∗e ≥ 1.

If we assume without loss of generality that
∑

e∈[si,li]
d∗e ≥

∑
e∈[ti,li]

d∗e, we have

vi = si and
∑

e∈[vi,li]
(2d∗e) = 2

∑
e∈[si,li]

d∗e ≥ 1. Since d̂ is an optimal solution

to (MC′
f), we conclude that

∑
e∈E ced̂e ≤

∑
e∈E ce(2d∗e) = 2 · OPT(MCf). ��

Remark. We have recently learned that some of our results were independently
obtained by Golovin, Nagarajan and Singh [9]. We thank Viswanath Nagarajan
for providing us with a preliminary version of their paper.

Partial Multicuts in Trees 333

References

1. R. Bar-Yehuda. Using homogeneous weights for approximating the partial cover
problem. Journal of Algorithms, 39(2):137–144, 2001.

2. P. Camion. Matrices totalement unimodulaires et problèmes combinatoires. Thèse
et Rapport Euratom, Université de Bruxelles, 1963.

3. S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar. On the
hardness of approximating multicut and sparsest-cut. In Proceedings of the 20th
Annual IEEE Conference on Computational Complexity, pages 144–153, 2005.

4. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-
nakakis. The complexity of multiterminal cuts. SIAM Journal on Computing,
23(4):864–894, 1994.

5. U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM,
45(4):634–652, 1998.

6. R. Gandhi, S. Khuller, and A. Srinivasan. Approximation algorithms for partial
covering problems. Journal of Algorithms, 53:55–84, 2004.

7. N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. SIAM Journal on Computing,
25(2):235–251, 1996.

8. N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dual approximation algo-
rithms for integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997.

9. D. Golovin, V. Nagarajan, and M. Singh. Approximating the k-multicut problem.
In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms,
2006. To appear.

10. K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility loca-
tion problems. In Proceedings of the 34th Annual ACM Symposium on Theory of
Computing, pages 731–740, 2002.

11. K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation.
Journal of the ACM, 48(2):274–296, 2001.

12. S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
34th Annual ACM Symposium on Theory of Computing, pages 767–775, 2002.

13. A. Levin and D. Segev. Partial multicuts in trees, 2005. Available at
http://www.math.tau.ac.il/∼segevd/Papers/PMC-Jour.pdf.

14. N. Megiddo. Combinatorial optimization with rational objective functions. Math-
ematics of Operations Research, 4(4):414–424, 1979.

15. P. Slav́ık. Improved performance of the greedy algorithm for partial cover. Infor-
mation Processing Letters, 64(5):251–254, 1997.

16. V. V. Vazirani. Approximation Algorithms. Springer, 2001.

Approximation Schemes for Packing with Item
Fragmentation

Hadas Shachnai1, Tami Tamir2, and Omer Yehezkely1

1 Computer Science Department, The Technion, Haifa, Israel
{hadas, omery}@cs.technion.ac.il

2 School of Computer Science, The Interdisciplinary Center, Herzliya, Israel
tami@idc.ac.il

Abstract. We consider two variants of the classical bin packing problem
in which items may be fragmented. This can potentially reduce the total
number of bins needed for packing the instance. However, since frag-
mentation incurs overhead, we attempt to avoid it as much as possible.
In bin packing with size increasing fragmentation (BP-SIF), fragment-
ing an item increases the input size (due to a header/footer of fixed
size that is added to each fragment). In bin packing with size preserving
fragmentation (BP-SPF), there is a bound on the total number of frag-
mented items. These two variants of bin packing capture many practical
scenarios, including message transmission in community TV networks,
VLSI circuit design and preemptive scheduling on parallel machines with
setup times/setup costs.

While both BP-SPF and BP-SIF do not belong to the class of prob-
lems that admit a polynomial time approximation scheme (PTAS), we
show in this paper that both problems admit a dual PTAS and an asymp-
totic PTAS. We also develop for each of the problems a dual asymptotic
fully polynomial time approximation scheme (AFPTAS). The AFPTASs
are based on a non-trivial application of a fast combinatorial FPTAS
for packing linear programs with negative entries, proposed recently by
Garg and Khandekar [5].

1 Introduction

In the classical bin packing (BP) problem, n items (a1, . . . , an) of sizes s(a1), . . . ,
s(an) ∈ (0, 1] need to be packed in a minimal number of unit-sized bins. This
problem is well known to be NP-hard. We consider a variant of BP known as
bin packing with item fragmentation (BPF), in which items can be fragmented
(into two or more pieces). Therefore, it may be possible to pack the items using
fewer bins than in classical BP. However, since fragmentation incurs overhead,
we attempt to avoid it as much as possible. We study two variants of BPF. In
both variants, the goal is to pack all items in a minimum number of bins.

Size increasing fragmentation (BP-SIF): A header (or a footer) of a fixed
size, Δ > 0, is attached to each (whole or fragmented) item. That is, the volume

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 334–347, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximation Schemes for Packing with Item Fragmentation 335

required for packing an item of size s(ai) is s(ai)+Δ. Upon fragmenting an item,
each fragment gets a header; that is, if ai is replaced by two items such that
s(ai) = s(ai1)+ s(ai2), then packing aij requires volume s(aij)+Δ. Assume, for
example, that Δ = 0.1, and an instance consists of 3 items of sizes {0.4, 0.5, 0.7}.
Without fragmentation, each item must be packed in a separate bin (occupying
the volumes 0.5, 0.6 and 0.8, respectively), while if, e.g., the item of size 0.4 is
fragmented to 0.1 and 0.3, the resulting instance can be packed into two bins,
the contents of which are (0.1 + 0.1, 0.7 + 0.1), and (0.3 + 0.1, 0.5 + 0.1).

Size preserving fragmentation (BP-SPF): An item ai can split into two
fragments: ai1 , ai2 , such that s (ai) = s (ai1) + s (ai2). The resulting fragments
can also split in the same way. Each split has a unit cost and the total cost
cannot exceed a given budget C > 0. Note that in the special case where C = 0
we get an instance of classic bin packing. (Most of our results can be applied to
another variant of BP-SPF in which the goal is to minimize the packing cost,
and the number of available bins, b ≥ �

∑
i s(ai)� is given as part of the input.)

For any Δ > 0 (in BP-SIF) and C < �
∑

i s(ai)� − 1 (in BP-SPF), the BPF
problem is NP-hard (see Sections 2 and 1.1 for hardness and hardness of approx-
imation results). Therefore, we present approximation algorithms. The following
applications motivate our study.

Community Antenna Television (CATV) Networks: In many commu-
nication protocols, messages of arbitrary sizes are placed in fixed sized frames
before they are transmitted. Consider, for example, the Data-Over-Cable Ser-
vice Interface Specification (DOCSIS), defined by the Multimedia Cable Network
System standard committee [14]. When using CATV network for communica-
tion, the upstream (data transmission from the subscribers’ cable modem to the
headend) is divided into numbered mini-slots. The DOCSIS specification allows
two types of messages: fixed location and free location. Fixed location messages
are placed in fixed mini-slots, while free location messages can be placed arbitrar-
ily in the remaining mini-slots (each message may need one or more mini-slots).
The specification also allows to fragment the free location messages. Since each
of the original messages, as well as each of its pieces allotted to a mini-slot, has
a header (or footer) attached to it, the problem of scheduling the free location
messages yields an instance of the BP-SIF problem (see [12] for more details).

VLSI Circuit Design: In high level synthesis of digital systems, when a logic
unit is initialized, values of external variables are copied into the unit’s internal
variables. Each external variable may be copied into multiple internal variables.
The logical unit has a fixed number, U , of memory ports that it can access in
each work cycle. In order to copy an external variable into n variables, all n + 1
variables need to be accessed. For example, if U = 5 and two external variables
x, y need to be copied into 6 internal variables each, a possible initialization
process is to copy x in the first cycle into 4 variables, then copy x into the 2
remaining variable and y into two variables, and in a third cycle, copy y into
the 4 remaining variables. Note that all 5 ports are used in each of these cycles.
The goal is to complete the initialization process within the fewest possible work

336 H. Shachnai, T. Tamir, and O. Yehezkely

cycles. This yields an instance of BP-SIF, where U is the bin size, Δ = 1, and
the j-th item size is the number of internal variables that need to be assigned
the value of the j-th external variable. (For more details see in [10].)

Preemptive Scheduling with Setup Times/Costs: Consider the prob-
lem of preemptively scheduling a set of jobs on a minimal number of parallel
machines; the i-th job has the length �i, and all jobs should be completed by
time D which is the deadline for all jobs. When starting/resuming a job incurs
setup time, each preemption (split) causes additional setup time to a new job-
segment, therefore the resulting problem is BP-SIF. When preempting/resuming
a job incurs a setup cost, the resulting problem is BP-SPF, where each preemp-
tion (split) causes an additional cost, and the goal is to find a schedule whose
total cost (given by the total number of preemptions) does not exceed a given
bound C. The following is another natural variant of BP-SPF: the number, m,
of machines is given and known to be at least (

∑
i �i)/D. The goal is to schedule

the jobs using the minimum possible number of splits. It is assumed that no job
is longer than the deadline, thus, it is always possible to process segments of one
job in non-overlapping time intervals (this is a property of primitive packings,
as explained in Section 2).

Flexible Packaging: In some packaging problems, the cost of the packages is
substantive. This includes (i) storage management, where files need to be stored
in a minimal number of disks, and each file or file-segment has a header of fixed
size; (ii) transportation problems, where material is to be delivered using minimal
number of vehicles. For example, trucks need to ship construction materials, such
as sand, and the sand is given in several sizes of bags. The number of trucks used
for the shipment may be reduced, by splitting the content of some bags.

1.1 Related Work

It is well known (see, e.g., [13]) that BP does not belong to the class of NP-
hard problems that admit a PTAS. In fact, BP cannot be approximated within
factor 3

2 −ε, for any ε > 0, unless P=NP [4]. However, there exists an asymptotic
PTAS (APTAS) which uses, for any instance I, (1 + ε)OPT (I)+k bins for some
fixed k. Vega and Lueker [2] presented an APTAS with k = 1, and Karmarkar
and Karp [8] presented an asymptotic fully PTAS (AFPTAS) with k = 1/ε2.
Alternatively, a dual PTAS, which uses OPT (I) bins of size (1 + ε) was given
by Hochbaum and Shmoys [7]. Such a dual PTAS can also be derived from the
work of Epstein and Sgall [3] on multiprocessor scheduling, since BP is dual to
the minimum makespan problem. (Comprehensive surveys on the bin packing
problem appear, e.g., in [1,18].)

Mandal et al. introduced in [10] the BP-SIF problem and showed that it is
NP-hard. Menakerman and Rom [12] and Naaman and Rom [15] were the first
to develop algorithms for bin packing with item fragmentation, however, the
problems studies in [12] and [15] are different from our problems. For a version
of BP-SPF in which the number of bins is given, and the objective is to minimize
the total cost incurred by fragmentation, the paper [12] studies the performance

Approximation Schemes for Packing with Item Fragmentation 337

of simple algorithms such as First-Fit, Next-Fit, and First-Fit-Decreasing, and
shows that each of these algorithms might end-up with OPT (I)−1 nonessential
splits.

There has been some related work in the area of preemptive scheduling on
parallel machines. The paper [16] presents a tight bound on the number of pre-
emptions required for a schedule of minimum makespan, and a PTAS for mini-
mizing the makespan of a schedule with job-wise or total bound on the number
of preemptions. However, the techniques used in this paper rely strongly on the
assumption that the job-wise/total bounds on the number of preemptions are
some fixed constants, while in solving the BPF variants the number of splits may
depend on the input size.

1.2 Our Results

In this paper we develop approximation schemes for the two variants of bin
packing with item fragmentation. We first show (in Section 2) that, for each of
the problems, achieving an absolute error bounded by a constant is NP-hard. We
then analyze the performance of a class of natural algorithms for our problems.
In Section 3 we develop a dual PTAS and APTAS for SP-SPF. Our dual PTAS
packs all the items in OPT (I) bins of size (1 + ε), and the APTAS uses at
most (1 + ε)OPT (I) + 1 bins. In Section 5 we show that these schemes can be
modified to apply for BP-SIF. We also show that each of the problems admits a
dual AFPTAS.

Technical Contributions: The paper contains two technical contributions.
Our APTAS for BP-SPF is based on a novel oblivious version of the shifting
technique (see, e.g., [18]). Given an instance of n items whose sizes are unknown,
we define a set of items whose (shifted) sizes are given as variables; the values
of these variables are then revealed by solving a linear programming relaxation
of the packing problem. We expect that this non-standard use of the shifting
technique will find more applications. Our second contribution is a non-trivial
application of the fast approximation scheme of [5] for packing linear programs,
which enables to obtain dual AFPTASs for the two variants of BPF.

Due to space constraints, some of the proofs are omitted. These proofs appear
in the full version of this paper [17].

2 Preliminaries

In this section we present some basic lemmas and properties of packing with
item fragmentation. We also present a class of natural algorithms and analyze
their performance. We first show that, for both variants of BPF, there exists an
optimal packing of certain structure. This allows us to reduce the search for a
good packing to this subset of packings.

Define the bin packing graph of a given packing as an undirected graph, where
each bin i is represented by a vertex vi; there is an edge (vi, vj) if bin i and bin
j share fragments of the same item. Note that a fragment-free packing induces a

338 H. Shachnai, T. Tamir, and O. Yehezkely

graph with no edges. A primitive packing is a feasible packing in which (i) each
bin has at most two fragments of items, and (ii) each item can be fragmented
only once. Note that the respective bin packing graph is a collection of paths.

Lemma 1. Any instance of BP-SPF has an optimal primitive packing.

Proof. We show that any feasible BP-SPF packing, in particular an optimal one,
can be transformed into a primitive packing with the same number of splits or
fewer. Given a packing with f splits, consider its BP graph. Let V (Ci), I(Ci)
denote, respectively, the set of vertices and the set of packed items in a connected
component Ci. The connected component Ci has at least |V (Ci)|−1 edges. Note
that for i �= j, I(Ci) ∩ I(Cj) = ∅. Thus, for each connected component Ci, the
items in I(Ci) can be repacked into the respective bins of V (Ci), by filling the
bins one at a time, using an arbitrary order of I(Ci), and splitting (if necessary)
the last item packed into the active bin. This results in a primitive packing with
at most f splits, since every connected component Ci is replaced by a subgraph
with at most |V (Ci)| − 1 edges.

The proof of the next lemma is similar to the proof of Lemma 1.

Lemma 2. For any instance of BP-SIF, there exists an optimal primitive
packing.

2.1 Hardness of BPF

Clearly, by a simple reduction from Partition, it is NP-hard to decide whether
an instance of BPF can be packed in 2 bins with no splits. This implies that
BP-SIF is NP-hard for any Δ > 0. For BP-SPF, by McNaughton’s rule ([11]),
if the bound on the number of splits is C ≥ �

∑
i s(ai)� − 1, a packing that

uses �
∑

i s(ai)� bins exists and can be found in linear time. We prove that it
is NP-hard to avoid a single split, for any number of bins, even if the existence
of a packing that uses no splits is known a-priori. This implies that BP-SPF is
NP-hard even if we are allowed to exceed the budget by �

∑
i s(ai)� − 2, i.e, to

use C + �
∑

i s(ai)� − 2 splits.

Theorem 1. Let c be the minimal number of splits required for packing an in-
stance I into b bins. Then, for any values of b and c, it is NP-hard to find a
packing with less than b − 1 splits.

Proof. We first prove hardness for bins with different sizes and then extend
the proof to identical bins. The reduction is from the Partition problem. Given
a1, ..., an, an instance for Partition with total size of items equals 2S, construct
an instance BP-SF with 2k bin and k sets of items, I0, . . . , Ik−1. Let M > (2S+1)
be an integer. The set I0 consists of items of sizes a1, a2, ..., an; I1 consists of
items of sizes a1M, a2M, ..., anM , and in general, Ij consists of items of sizes
a1M

j , a2M
j, ..., anM j . The bin sizes are S, SM, SM2, ..., SMk − two bins of

each size. If there exists a partition of the items into two sets of size S, then
a packing with no splits exists, by packing Ij into the two bins of size SM j .
Consider a packing of the items into the bins.

Approximation Schemes for Packing with Item Fragmentation 339

Claim. Any full bin with no splits induces a partition.

Proof. Assume that for some z, a bin of size SMz is full. No item from a set
Ij , j > z is packed in the bin, since each of the items from Ij , j > z is larger than
SMz (because aiM

z+1 > SMz). Also, no item from a set Ij , j < z is packed. This
is true since the total size of items from earlier sets is 2S(1+M+M2+....Mz−1) =
2S(Mk − 1)/(M − 1) which is less than Mz for all M > 2S + 1, therefore, no
combination of items from the sets Ij , j < z, can be used.

It follows that the full SMz bin contains only items from one set, and by
scaling by Mz, its content induces a partition of the original instance.

In order to extend the proof to instances with identical bins, we add to the
set Ij two filler items of size S(Mk − M j), and all the 2k bins have size SMk.
Note that the two smallest filler items have total size 2S(Mk −Mk−1), which is
larger than SMk for any M > 2. Therefore, there is at most one filler item in
any bin. Also, the total size of non-filler items is too small to fill a bin, therefore
a full bin must contain exactly one filler item. Assume that some bin is full with
items and no fragments. Let S(Mk − Mz) be the size of the filler item in the
bin, the rest of the bin is filled by items of total size SMz and the proof for the
different size bins can be applied here.

Corollary 1. If P �= NP then there is no approximation scheme for BP-SIF
with a constant additive error.

2.2 Discrete Instances

An instance of BPF is discrete if for some fixed positive integer U all item sizes
are taken from the sequence {δ, 2δ, ..., Uδ}, where δ = 1/U . Note that since U is
integral, there exists an optimal (primitive) solution is which each fragmented-
item splits into two fragments having sizes in {δ, 2δ, ..., (U − 1)δ}, thus, no new
sizes are introduced by the fragmentation process. For an instance of BP-SIF to
be discrete, it is also required that Δ is of the form iδ, for some integer i.

Given a discrete instance I, for BP-SIF or BP-SPF, define a bin configuration
to be a vector of length U , in which the j-th entry is the number of items of size
jδ packed in the bin; the configuration is valid if the total size of items (together
with their headers, in BP-SIF) is at most 1. The configuration matrix, AI , is the
matrix which gives all possible bin configurations. The fragmentation matrix,
BI , is the matrix which gives all possible fragmentations of items in I. Each row
in BI corresponds to a single possible split, and represents the change in the
total number of items in the instance if this split is performed. Each row is a
fragmentation vector, in which all entries are 0 except for a single (−1) entry,
and a single (+2) or two (+1) entries, such that the sum of values of the positive
entries is equal to the value of the negative entry. For example, if U = 6 then the
row [0, 1, 1, 0,−1, 0] corresponds to a single split of an item of size 5/6 into two
items of sizes 2/6 and 3/6, and the row [0, 2, 0,−1, 0, 0] corresponds to a single
split of an item of size 4/6 into two items of size 2/6.

340 H. Shachnai, T. Tamir, and O. Yehezkely

2.3 Bounds for Simple Offline and Online Algorithms

Consider the following class of algorithms (defined in [12]). An Algorithm is said
to avoid unnecessary fragmentation if it follows the two rules.

1. No unnecessary fragmentation: An item is fragmented only if packed in a
bin that does not have enough space for it. Upon fragmentation of an item,
the first fragment must fill one of the bins. The second fragment is packed
according to the packing rule of the algorithm.

2. No unnecessary bins: A new bin is opened only if the currently packed item
cannot fit into any open bin.

In particular, an algorithm that fills the bins to full capacity one after the
other (in BP-SIF, the algorithm moves to the next bin when the currently open
bin is filled to capacity at least (1 − Δ)) avoids unnecessary fragmentation.
Note that this greedy algorithm does not assume any order of the items and is
therefore an online algorithm.

The following theorems give upper bounds on the performance of any algo-
rithm that avoids unnecessary fragmentation.

Theorem 2. Any algorithm for BP-SIF that avoids unnecessary fragmentation
uses at most Nopt(1 + Δ

Δ+1) + 1 bins.

Theorem 3. Any algorithm for BP-SPF that avoids unnecessary fragmentation
uses Nopt bins for any budget C ≥ �

∑
i s(ai)� − 1, and at most Nopt + Z for

budget C = �
∑

i s(ai)� − Z and Z > 1.

3 Bin Packing with Size-Preserving Fragmentation

Recall that in BP-SPF we are given a list of n items I = (a1, a2, ..., an), each
with the size s(ai) ∈ (0, 1]. The number of splits is bounded by C. The goal is
to pack all items using minimal number of bins and at most C splits. In this
section we develop a dual PTAS and an APTAS for BP-SPF.

3.1 A Dual PTAS

Our dual PTAS for BP-SPF uses an optimal number of bins of size at most
(1 + ε), for some ε > 0. The scheme proceeds in the following steps. Given an
input I and some ε > 0, (i) Partition the items into two groups according to
their sizes: the large items have size at least ε; all other items are small. (ii)
Round up the size, s+(ai), of each large item to the nearest integral multiple of
ε2. (iii) Guess OPT (I), the number of bins used by an optimal packing of I. (iv)
Pack optimally the large items with fragmentation, using at most C splits, into
OPT (I) bins of size (1 + ε + ε2). (v) Pack the small items in an arbitrary order,
one at a time. Each item is packed into the bin having maximum free space.

The next lemmas show that our scheme uses at most OPT (I) bins of size
(1 + ε + ε2) for packing the (rounded) large items, and that no new bins are
opened when the small items are added greedily in step (v).

Approximation Schemes for Packing with Item Fragmentation 341

Lemma 3. It is possible to pack the rounded large items into OPT (I) bins of
size (1 + ε + ε2).

Lemma 4. The small items can be added to the OPT (I) bins of size (1+ε+ε2)
without causing additional overflow.

We summarize in the next Theorem.

Theorem 4. BP-SPF admits a dual PTAS.

Proof. Using Lemmas 3 and 4, and taking ε′ = ε/2, we get that the scheme
packs all the items in at most OPT (I) bins, each of size at most 1 + ε. We turn
to analyze the time complexity of the scheme. Steps (i) and (ii) are linear and
are done once. For Step (iii), note that �s(I)� ≤ OPT (I) ≤ n, therefore OPT (I)
can be guessed in O(log n) iterations. Each such iteration involves packing the
rounded large items and adding the small items. When packing the large items
in step (iv), since there are at most 1/ε large items in a bin, and the number of
distinct sizes is at most M = 1/ε2, the number of possible packings to consider

is O(nM1/ε

) = O(n(1/ε2)1/ε

). Finally, the small items are added in time O(n).

3.2 An APTAS for BP-SPF

We describe below an asymptotic PTAS for BP-SPF. Given an ε > 0, our scheme
packs any instance I into at most OPT (I)(1 + ε) + 1 bins. Our scheme applies
shifting to the item sizes, and oblivious shifting to the (unknown) fragment sizes
in some optimal solution. The latter is crucial for finding efficiently a primitive
packing that is close to the optimal.

The following is an overview of the scheme. (i) Guess OPT (I) and c ≤ C,
the number of fragmented items. (ii) Partition the instance into large and small
items; any item with size at least ε is large. (iii) Transform the instance to
an instance where the number of distinct item sizes is fixed. (iv) Guess the
configuration of the i-th bin in some optimal packing (defined below). (v) Let
R ≥ 1 be the number of distinct fragment sizes in a shifted optimal solution,
where R ≤ 1/ε2 is some constant. Guess the number of fragmented items of
the j-th group, having fragments of types 1 ≤ r1, r2 ≤ R. (vi) Solve a linear
program which yields the fragment sizes for each fragmented item. (vii) Pack
the non-fragmented items and the fragments output by the LP using the bin
configurations. (viii) Pack the small items in an arbitrary order, one at a time,
into the bin having maximum free space.

Transformation of the Input and Guessing Bin Configurations: First,
guess the values OPT (I) and c, the number of fragmented items. Since there
exists an optimal primitive packing, 1 ≤ c ≤ min(C, OPT (I) − 1). Next, trans-
form the instance I to an instance I ′ in which there are at most 1/ε2 item sizes.
This can be done by using the shifting technique (see, e.g., in [18]). Generally,
the items are sorted in non-decreasing order by sizes, then, the ordered list is
partitioned into at most 1/ε2 subsets, each including H = �nε2� items. The size

342 H. Shachnai, T. Tamir, and O. Yehezkely

of each item is rounded down to the size of the largest item in its subset. This
yields an instance in which the number of distinct item sizes is m = n/H ≤ 1/ε2.

Define an extended bin configuration to be a vector which gives the number
of items of each size group packed in the bins, as well as at most two fragments
which may be added (since we find a primitive packing). Each extended bin
configuration consists of three parts: (i) a vector (h1, . . . , hm) where hj, 1 ≤ j ≤
m, is the number of non-fragmented items of size group j packed in the bin,
(ii) A binary indicator vector of length m, with at most two ‘1’ entries – in the
indices of at most two size groups 1 ≤ j1, j2 ≤ m that contribute a fragment
to the bin, and (iii) a binary indicator vector of length R (to be defined), with
at most two ‘1’ entries – in the indices corresponding to at most two types of
fragments 1 ≤ r1, r2 ≤ R, which are packed in the bin.

Now, since both the number of size groups and the number of fragment types
are fixed constants, the number of bins of each configuration can be guessed in
polynomial time .

Guessing the Fragment Types: The heart of the scheme is in finding how
each of the c guessed items is fragmented. This is done by using the following
oblivious shifting procedure. Suppose that in some optimal packing the (un-
known) fragment sizes are y1 ≤ y2 · ·· ≤ y2c, then apply shifting to this sorted
list, by partitioning the entries into subsets of sizes at most Q = �2cε2�, and
round up the size of each fragment to the largest entry in its subset. Now, there
are R ≤ 1/ε2 distinct fragment sizes. These sizes are determined later, by solving
a linear program for packing the instance with fragmentation.

Next, find the type of fragments generated for each of the c guessed items.
Note that the number of pairs of fragment sizes is R2. Thus, guess for each size
group j the number of items in this group having a certain pair of fragment
types. This can be done in polynomial time.

Solving the LP and Packing the Items: Having guessed the fragment types
for each fragmented item, use a linear program to obtain the fragment sizes that
yield a feasible packing. Let xr denote the size of the r-th fragment in a shifted
optimal sorted list. For any item in group j, that is fragmented to the pair of
type (r, s), we verify that the sum of fragment sizes is at least sj , the size of an
item in group j. Denote by �r

ij the indicator for packing a fragment of type r
contributed by size group j in bin i, 1 ≤ r ≤ R, 1 ≤ j ≤ m, 1 ≤ i ≤ OPT (I).
The goal is to find R fragment sizes, x1 ≤ · · · ≤ xR, which enable to pack
all the items. That is, once a correct guess of the fragment types is made, the
total volume packed by the LP is the volume of the c fragmented items. Let
N = OPT (I). Denote the set of fragment pairs assigned to the items of size
group j Fj , 1 ≤ j ≤ m. Finally, Γi is the space left in bin i after packing the
non-fragmented items. The following linear program is solved.

(LP) maximize
N∑

i=1

m∑
j=1

R∑
r=1

xr�
r
ij

subject to : xr1 + xr2 ≥ sj ∀j, (r1, r2) ∈ Fj

Approximation Schemes for Packing with Item Fragmentation 343

m∑
j=1

R−1∑
r=1

xr�
r
ij ≤ Γi for i = 1, . . . , N (1)

xr ≥ 0 for r = 1, . . . , R

Inequality (1) ensures that the fragment types 1, . . . , R − 1 can be packed in
the OPT (I) bins, given the correct guess.

Now, given the solution for the LP, the fragment sizes for each of the c frag-
mented items are known. Pack the non-fragmented items as given in the bin
configuration and add the fragments of sizes 1, . . . , R− 1 in these OPT (I) bins.
Next, add H + Q ≤ 2/ε2 new bins. In each of the H new bins pack separately a
non-fragmented item in the largest size group generated during shifting. In the
Q new bins, pack the fragments of type R (i.e., the largest fragments) greed-
ily. Finally, add greedily the small items. It can be shown1 that this requires
adding at most one new bin. Therefore, by taking ε′ = ε/2, overall, at most
OPT (I)(1 + ε) + 1 bins are used. Thus,

Theorem 5. There is an asymptotic PTAS for BP-SPF.

4 A Dual AFPTAS for BP-SPF

We now describe an asymptotic dual FPTAS for BP-SPF that packs the items
of a given BP-SPF instance into (1 + ε)OPT (I) + k bins, of size (1 + ε), where
k ≤ 1/ε2 is some constant. Our scheme applies some of the steps used in the
dual PTAS given in Section 3.1. However, since ‘guessing’ the fragmented items
results in number of iterations that is exponential in 1/ε, we use instead a linear
programming formulation of the packing problem, whose solution yields a fea-
sible packing of the instance. In order to obtain a scheme whose running time
is polynomial in both n and 1/ε, we solve the linear program approximately, by
repeatedly applying the fast combinatorial approximation scheme of [5].

Our scheme proceeds in the following steps. (i) Guess c ≤ C, the number of
fragmented items. (ii) Partition the items into large and small: an item i whose
size is at least ε is large. (iii) Round up the size of each large item to the nearest
integral multiple of ε2. (iv) Define for the large items the configuration matrix,
A, and the fragmentation matrix, B, each having 1/ε2 columns. (v) Solve within
factor (1 + ε) to the optimal a linear program for packing the large items in
minimum number of bins. (vi) Round the solution of the linear program and
pack accordingly the large items in at most (1 + ε)OPT (I) + m bins, where
m ≤ 1/ε2. (vii) Add greedily in arbitrary order the small items, to the bin of
maximum free space.

In the following we describe how our scheme finds a good packing of the large
items.

1 The argument is similar to the argument when packing the small items in classic BP
(see, e.g., in [18]).

344 H. Shachnai, T. Tamir, and O. Yehezkely

Constructing the Configuration and Fragmentation Matrices: Recall,
that for the rounded large items, a bin configuration is a vector of size m = 1/ε2,
in which the j-th entry gives hj, the number of items of size group j packed
in the bin. The configuration matrix, A, consists of the set of all possible bin
configurations, where each configuration is a row in A; therefore, the number of
rows in A is q ≤ (1/ε)1/ε2

. The fragmentation matrix, B, consists of all possible
fragmentation vectors for the given set of large items. The k-th vector is the k-th
row in B.

Solving the Linear Program: We now formulate the problem of packing the
rounded large items in minimum number of bins as a linear program. Let nj

denote the number of items in the j-th size group. Denote by xi the number of
bins having the i-th configuration, 1 ≤ i ≤ q. Let zk denote the number of items
that are split according to the k-th fragmentation vector (i.e., the k-th row in
the matrix B).

(P) minimize

q∑
i=1

xi

subject to :

q∑
i=1

Aijxi −
p∑

k=1

zkBkj ≥ nj for j = 1, . . . , m

p∑
k=1

zk ≤ c

xi ≥ 0 for i = 1, . . . , q

In the dual of the above linear program there is a variable yj for each con-
straint.

(D) maximize

m∑
j=1

njyj − cym+1

subject to :

m∑
j=1

Aijyj ≤ 1 for i = 1, . . . , q (2)

m∑
j=1

Bkjyj + ym+1 ≥ 0 for k = 1, . . . , p (3)

yj ≥ 0 for j = 1, . . . , m + 1

The above dual program is a fractional packing linear program, in which some
coefficients may be negative. For such a program, we can apply the fast scheme
of Garg and Khandekar [5] to obtain a (1 + ε)-approximate solution. Combining
this scheme with a technique of Karmarkar and Karp [8] for constraint elimi-
nation, we can get a basic (1 + ε)-approximate solution for the primal program
(P).

Approximation Schemes for Packing with Item Fragmentation 345

Packing the Items: For packing the large items, round down the xi values
in the fractional solution for (P). As a result, some of the items cannot be
packed. Add new bins, in which these remaining items are packed greedily with
no fragmentation (i.e., in the worst case, an item in each bin). Finally, the small
items are added in an arbitrary order with no fragmentation; each of the small
items is added to the bin with the currently maximal available space.

4.1 Analysis of the Scheme

We show that the above scheme packs all the items in at most (1+ε)OPT (I)+k
bins of size (1 + ε), where k ≤ 1/ε2 is some constant, and that its running time
is polynomial in n and 1/ε2.

Note that the fast scheme proposed by [5] for approximately solving a packing
linear program with negative entries can be applied for obtaining a (1 + ε)-
approximate solution for (D). Hence,

Lemma 5. For any ε > 0, there exists an FPTAS which solves (D) within factor
(1 + ε) from the optimal in O(mε−2 log m) calls to the oracle.

The next lemma guarantees that by rounding the fractional solution for (P), the
overall number of bins is increased by some constant.

Lemma 6. Our scheme finds in O(ε−dn log n) steps a basic approximate solu-
tion for (P) in which at most m variables are strictly positive, where d > 0 is
some constant.

Proof sketch: We find a (1+ε)-approximate basic solution for (P), by combin-
ing the fast scheme of [5] with a technique of [8]. Initially, we apply the modified
GLS algorithm proposed in [8] to obtain a linear program (D′) in which the over-
all number of constraints is at most Q ≤ M + 2m, where M = O(m2 ln(mn)).
The program (D′) has the nice property of having an optimal solution that is
close to an optimal solution for (D). Now, since the primal program has a ba-
sic solution in which at most m variables are strictly positive, we proceed to
eliminate gradually constraints in the dual program, until we get a subset of m
constraints. This is done by applying an elimination procedure: in each stage
we partition the remaining constraints into subsets of sizes m + 1, and try to
omit each subset, and then we test whether the solution of the resulting pro-
gram is close enough to the (approximate) solution obtained initially for (D).
In each elimination/testing step we now apply the fast combinatorial FPTAS of
[5]. We use its oracle for testing the validity of the natural packing constrains;
the remaining (small number of) constraints can be tested separately. Finally,
we have a dual program of m constraints. Using again the fast scheme, we now
solve the corresponding primal program to obtain a primal basic solution that
is (1 + ε)-approximation to the optimal.

Lemma 7. The scheme packs all the items in at most (1 + ε)OPT (I) + m bins
of size at most 1 + ε + ε2.

346 H. Shachnai, T. Tamir, and O. Yehezkely

Proof sketch: Since we obtain a basic solution for (P), rounding down the
fractional xi values may require adding at most m new bins, in which we pack
the remaining items. Adding the small items may increase the number of bins by
εOPT (I). For showing the resulting extension in bin sizes, we can use arguments
similar to the arguments in the proof of Theorem 4.

Theorem 6. There is a dual AFPTAS for BP-SPF which packs the items in at
most (1 + ε)OPT (I) + m bins of sizes 1 + ε + ε2.

5 Bin Packing with Size-Increasing Fragmentation

Recall that in BP-SIF we are given a list of n items, I = (a1, a2, ..., an), each has
the size s(ai) ∈ (0, 1]. The number of splits is unbounded, but since there is a
header of size Δ attached to each item or fragment, each fragmentation increases
the input size by Δ, the size of an extra header. The goal is to pack all items using
minimal number of bins. The approximation schemes developed for BP-SPF can
be slightly modified to yield approximation schemes for BP-SIF. We give the
details in the full version of the paper. Note that bin configuration, configuration
matrix, fragmentation matrix are all well-defined for BP-SIF. Therefore, when
moving from BP-SPF to BP-SIF, the same techniques can be used. Thus, we
obtain for BP-SIF a dual PTAS, an asymptotic PTAS, and a dual AFPTAS.

By Theorem 2, any algorithm that avoids unnecessary fragmentation uses at
most Nopt/(1 −Δ) + 1 bins. Let ε > 0 be the parameter of the scheme. For any
Δ ≤ ε/(1 + ε) it holds that 1/(1 − Δ) ≤ (1 + ε). Therefore,

Corollary 2. If Δ ≤ ε/(1+ε) then there is a linear time AFPTAS for BP-SIF.

We note that when Δ > ε/(1 + ε) the number of items or fragments packed in
each bin does not exceed 1/Δ < (1+ε)/ε, which is a constant. This fact seems to
simplify the problem; however, since small items are treated easily anyway, we
are left with the challenge of packing the large items. The schemes for BP-SIF
can be slightly simplified by taking ε′ = ε/(1 + ε), which implies that there are
no small items, and the steps involving the small items can be skipped.

Acknowledgment

We thank Yuval Rabani for helpful comments and suggestions.

References

1. E.G. Coffman Jr., M.R. Garey, and D.S. Johnson. Approximation algorithms for
bin packing: a survey. In D.S. Hochbaum, editor, Approximation Algorithms for
NP-Hard Problems, 46-93. PWS Publishing, Boston, MA, 1997.

2. W.F. de la Vega and G.S. Lueker. Bin packing can be solved within 1 + ε in linear
time. Combinatorica, 1:349-355, 1981.

Approximation Schemes for Packing with Item Fragmentation 347

3. L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly re-
lated and identical parallel machines. In Proc. of the 7th European Symposium on
Algorithms, pp. 151–162, 1999.

4. M.R. Garey and D.S. Johnson, Computers and Intractability: A guide to the theory
of NP-completeness, W. H. Freeman and Company, San Francisco, 1979.

5. N. Garg and R. Khandekar, Fractional Covering with Upper Bounds on the Vari-
ables: Solving LPs with Negative Entries. In Proc. of ESA, 2004.

6. M. Grötschel, L. Lovász and A. Schrijver, The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, I, 169–197, 1981.

7. D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for
scheduling problems: Practical and theoretical results. Journal of the ACM,
34(1):144-162, 1987.

8. N. Karmarkar and R.M. Karp. An efficient approximation scheme for the one
dimensional bin packing problem. Proc. 23rd IEEE Annual Symposium on Foun-
dations of Computer Science, 312-320, 1982.

9. R. Khandekar. Lagrangian relaxation based algorithms for convex programming
problems. PhD thesis, Indian Institute of Technology Delhi, 2004. In http://
www.cse.iitd.ernet.in/∼rohitk.

10. C.A. Mandal, P.P Chakrabarti, and S. Ghose. Complexity of fragmentable object
bin packing and an application. Computers and Mathematics with Applications,
vol.35, no.11, 91–97, 1998.

11. R. McNaughton. Scheduling with deadlines and loss functions. Manage. Sci.,
6:1–12, 1959.

12. N. Menakerman and R. Rom. Bin Packing Problems with Item Fragmentations.
Proc. of WADS, 2001.

13. R. Motwani. Lecture notes on approximation algorithms. Technical report, Dept.
of Computer Science, Stanford Univ., CA, 1992.

14. Multimedia Cable Network System Ltd., Data-Over-Cable Service Interface Spec-
ification, http://www.cablelabs.com, 2000.

15. N. Naaman R. Rom. Packet Scheduling with Fragmentation. Proc. of INFO-
COM’02, 824-831, 2002.

16. H. Shachnai, T. Tamir, and G.J Woeginger. Minimizing Makespan and Preemption
Costs on a System of Uniform Machines. Algorithmica, 42: 309–334, 2005.

17. H. Shachnai, T. Tamir, and O. Yehezkely. Approximation Schemes for Pack-
ing with Item Fragmentation. full version. http://www.cs.technion.ac.il/∼hadas/
PUB/frag.pdf.

18. V.V. Vazirani. Bin Packing. In Approximation Algorithms, 74-78, Springer, 2001.

Author Index

Abraham, David J. 1
Ahuja, Nitin 15
Avidor, Adi 27
Azar, Yossi 41

Baltz, Andreas 15
Bar-Yehuda, Reuven 55, 69
Berkovitch, Ido 27
Biró, Péter 1
Bläser, M. 82

de Paepe, Willem E. 258
Doerr, Benjamin 15, 96

Ebenlendr, Tomáš 110
Epstein, Amir 41
Epstein, Leah 119, 133

Feldman, Ido 55
Ferrante, A. 147
Fotakis, Dimitris 161
Friedrich, Tobias 96
Fujito, Toshihiro 176

Gassner, Elisabeth 190
Gotthilf, Zvi 270
Grigoriev, Alexander 203

Han, Xin 216
Heinz, S. 230
Hurink, Johann 296

Iwama, Kazuo 216

Klein, Christian 96
Koch, Ronald 244
Kontogiannis, Spyros 161
Krumke, Sven O. 190, 230, 258
Kurahashi, Hidekazu 176

Laserson, Jonathan 69
Levin, Asaf 119, 133, 320
Lewenstein, Moshe 270
Lipmann, Maarten 258

Manlove, David F. 1
Manthey, Bodo 282
Marchetti-Spaccamela, Alberto 258
Megow, N. 230

Nieberg, Tim 296
Noga, John 110

Osbild, Ralf 96

Parlato, G. 147
Poensgen, Diana 258
Př́ıvětivý, Aleš 15
Pruhs, Kirk 307

Ram, L. Shankar 82
Rambau, J. 230
Rawitz, Dror 55

Segev, Danny 320
Sgall, Jǐŕı 110
Shachnai, Hadas 334
Skutella, Martin 244
Sorrentino, F. 147
Spenke, Ines 244
Spirakis, Paul 161
Srivastav, Anand 15
Stougie, Leen 258

Tamir, Tami 334
Tuchscherer, A. 230

Uetz, Marc 203
Uthaisombut, Patchrawat 307

van Stee, Rob 307
Ventre, C. 147
Vredeveld, T. 230

Woeginger, Gerhard 110

Yehezkely, Omer 334

Zhang, Guochuan 216
Zwick, Uri 27

	Frontmatter
	``Almost Stable'' Matchings in the Roommates Problem
	On the Minimum Load Coloring Problem
	Improved Approximation Algorithms for MAX~NAE-SAT and MAX~SAT
	The Hardness of Network Design for Unsplittable Flow with Selfish Users
	Improved Approximation Algorithm for Convex Recoloring of Trees
	Exploiting Locality: Approximating Sorting Buffers
	Approximate Fair Cost Allocation in Metric Traveling Salesman Games
	Rounding of Sequences and Matrices, with Applications
	A Note on Semi-online Machine Covering
	SONET ADMs Minimization with Divisible Paths
	The Conference Call Search Problem in Wireless Networks
	Improvements for Truthful Mechanisms with Verifiable One-Parameter Selfish Agents
	Symmetry in Network Congestion Games: Pure Equilibria and Anarchy Cost
	A Better-Than-Greedy Algorithm for {\itshape k}-Set Multicover
	Deterministic Online Optical Call Admission Revisited
	Scheduling Parallel Jobs with Linear Speedup
	Online Removable Square Packing
	The Online Target Date Assignment Problem
	Approximation and Complexity of {\itshape k}--Splittable Flows
	On Minimizing the Maximum Flow Time in the Online Dial-a-Ride Problem
	Tighter Approximations for Maximum Induced Matchings in Regular Graphs
	On Approximating Restricted Cycle Covers
	A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs
	Speed Scaling of Tasks with Precedence Constraints
	Partial Multicuts in Trees
	Approximation Schemes for Packing with Item Fragmentation
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

