

Lecture Notes in Artificial Intelligence 3874
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Rokia Missaoui Jürg Schmid (Eds.)

Formal
Concept Analysis

4th International Conference, ICFCA 2006
Dresden, Germany, February 13-17, 2006
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Rokia Missaoui
Université du Québec en Outaouais
Département d’informatique et d’ingénierie
C.P. 1250, succursale B, Gatineau, Canada, J8X 3X7
E-mail: Rokia.Missaoui@uqo.ca

Jürg Schmid
Universität Bern
Mathematisches Institut
Sidlerstr. 5, 3012 Bern, Switzerland
E-mail: juerg.schmid@math-stat.unibe.ch

Library of Congress Control Number: 2006920554

CR Subject Classification (1998): I.2, G.2.1-2, F.4.1-2, D.2.4, H.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-32203-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32203-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11671404 06/3142 5 4 3 2 1 0

Preface

This volume contains selected papers of ICFCA 2006, the 4th International Con-
ference on Formal Concept Analysis. The ICFCA conference series aims to be
the prime forum for the publication of advances in applied lattice and order
theory and in particular scientific advances related to formal concept analysis.

Formal concept analysis is a field of applied mathematics with its mathemati-
cal root in order theory, in particular the theory of complete lattices. Researchers
had long been aware of the fact that these fields have many potential applica-
tions. Formal concept analysis emerged in the 1980s from efforts to restructure
lattice theory to promote better communication between lattice theorists and
potential users of lattice theory. The key theme was the mathematical formal-
ization of concept and conceptual hierarchy. Since then, the field has developed
into a growing research area in its own right with a thriving theoretical commu-
nity and an increasing number of applications in data and knowledge processing
including data visualization, information retrieval, machine learning, data anal-
ysis and knowledge management.

ICFCA 2006 reflected both practical benefits and progress in the foundational
theory of formal concept analysis. This volume contains four lecture notes from
invited speakers and 17 regular papers, among them one position paper. All
regular papers appearing in these proceedings were refereed by at least two, in
most cases three independent reviewers. The final decision to accept the papers
was arbitrated by the Program Chairs based on the referee reports.

We wish to thank the Program Committee and the Editorial Board as well as
the additional referees for their involvement, which ensured the scientific quality
of these proceedings. Our special thanks go to Léonard Kwuida, who on the
behalf of the Program Chairs meticulously managed information flow and data
organization of the submission and editing process. We also express our grat-
itude to Ganaël Jatteau for his valuable assistance in managing the electronic
submission system.

The ICFCA 2006 conference was hosted by Technische Universität Dres-
den, Germany. The Conference Chair was Bernhard Ganter. The conference
was funded by the German Research Foundation (Deutsche Forschungsgemein-
schaft).

February 2006 Rokia Missaoui
Jürg Schmid

Organization

The International Conference on Formal Concept Analysis (ICFCA) is the an-
nual conference and principal research forum in the theory and practice of formal
concept analysis. The inaugural International Conference on Formal Concept
Analysis was held at the Technische Universität Darmstadt, Germany, in 2003.
Succeeding ICFCA conferences were held at the University of New South Wales
in Sydney, Australia, 2004, at the Université d’Artois, Lens, France, 2005 and
at the Institut für Algebra, Technische Universität Dresden, Germany, 2006.

Conference Chair

Bernhard Ganter Technische Universität Dresden, Germany

Program Chairs

Rokia Missaoui Université du Québec en Outaouais, Canada
Jürg Schmid Math. Institut, Universität Bern, Switzerland

Editorial Board

Peter Eklund University of Wollongong, Australia
Bernhard Ganter Technische Universität Dresden, Germany
Robert Godin Université du Québec à Montréal, Canada
Sergei Kuznetsov VINITI and RSUH Moscow, Russia
Uta Priss Napier University, Edinburgh, UK
Gregor Snelting Universität Passau, Germany
Gerd Stumme Universität Kassel, Germany
Rudolf Wille Technische Universität Darmstadt, Germany
Karl Erich Wolff Fachhochschule Darmstadt, Germany

Program Committee

Radim Bělohlávek Palacky University of Olomouc, Czech Republic
Claudio Carpineto Fondazione Ugo Bordini, Rome, Italy
Richard J. Cole University of Queensland, Brisbane, Australia
Paul Compton University of New South Wales, Sydney,

Australia

VIII Organization

Frithjof Dau Technische Universität Dresden, Germany
Brian Davey La Trobe University, Melbourne, Australia
Vincent Duquenne Université Pierre et Marie Curie, Paris, France
Wolfgang Hesse Universität Marburg, Germany
Marzena Kryszkiewicz Warsaw University of Technology, Poland
Léonard Kwuida Math. Institut, Universität Bern, Switzerland
Wilfried Lex Universität Clausthal, Germany
Christian Lindig Saarland University, Saarbrücken, Germany
Engelbert Mephu Nguifo IUT de Lens - Université d’Artois, France
Rokia Missaoui Université du Québec en Outaouais, Canada
Lhouari Nourine LIMOS, Université Blaise Pascal,

Clermont-Ferrand, France
Alex Pogel New Mexico State University, Las Cruces, USA
Sergei Obiedkov University of Pretoria, South Africa
Sandor Radeleczki University of Miskolc, Hungary
Jürg Schmid Math. Institut, Universität Bern, Switzerland
Stefan Schmidt Technische Universität Dresden, Germany
Bernd Schröder Louisiana Tech University, Ruston, USA
Selma Strahringer Fachhochschule Köln, Germany
Petko Valtchev Université de Montréal, Canada
Mohammed J. Zaki Rensselaer Polytechnic Institute, NewYork,

USA

Additional Referees

Joachim Hereth Correia Technische Universität Dresden, Germany
Pascal Hitzler AIFB - Universität Karlsruhe, Germany
Ian Horrocks University of Manchester, UK
Andreas Hotho Universität Kassel, Germany
Wiebke Petersen Institut für Sprache und Information, Heinrich-

Heine-Universität Düsseldorf, Germany
Reinhard Pöschel Technische Universität Dresden, Germany
Thomas Studer Institute of Computer Science, University of

Bern, Switzerland
Friedrich Wehrung Laboratoire LMNO, Université de Caen, France

Table of Contents

Invited Lectures

Methods of Conceptual Knowledge Processing
Rudolf Wille . 1

An Enumeration Problem in Ordered Sets Leads to Possible
Benchmarks for Run-Time Prediction Algorithms

Tushar S. Kulkarni, Bernd S.W. Schröder . 30

Attribute Implications in a Fuzzy Setting
Radim Bělohlávek, Vilém Vychodil . 45

The Assessment of Knowledge, in Theory and in Practice
Jean-Claude Falmagne, Eric Cosyn, Jean-Paul Doignon,
Nicolas Thiéry . 61

Regular Papers

The Basic Theorem on Preconcept Lattices
Christian Burgmann, Rudolf Wille . 80

The Tensor Product as a Lattice of Regular Galois Connections
Markus Krötzsch, Grit Malik . 89

Two Instances of Peirce’s Reduction Thesis
Frithjof Dau, Joachim Hereth Correia . 105

Very Fast Instances for Concept Generation
Anne Berry, Ross M. McConnell, Alain Sigayret,
Jeremy P. Spinrad . 119

Negation, Opposition, and Possibility in Logical Concept Analysis
Sébastien Ferré . 130

A Note on Negation: A PCS-Completion of Semilattices
Léonard Kwuida . 146

Towards a Generalisation of Formal Concept Analysis for Data Mining
Purposes

Francisco J. Valverde-Albacete, Carmen Peláez-Moreno 161

X Table of Contents

Interactive Association Rules Discovery
Raoul Medina, Lhouari Nourine, Olivier Raynaud 177

About the Family of Closure Systems Preserving Non-unit Implications
in the Guigues-Duquenne Base

Alain Gély, Lhouari Nourine . 191

Spatial Indexing for Scalability in FCA
Ben Martin, Peter Eklund . 205

Homograph Disambiguation Using Formal Concept Analysis
L. John Old . 221

Using Concept Lattices to Uncover Causal Dependencies in Software
John L. Pfaltz . 233

An FCA Interpretation of Relation Algebra
Uta Priss . 248

Spring-Based Lattice Drawing Highlighting Conceptual Similarity
Tim Hannan, Alex Pogel . 264

Characterizing Planar Lattices Using Left-Relations
Christian Zschalig . 280

Automated Layout of Small Lattices Using Layer Diagrams
Richard Cole, Jon Ducrou, Peter Eklund . 291

Counting Pseudo-intents and #P-completeness
Sergei O. Kuznetsov, Sergei Obiedkov . 306

Author Index . 309

Methods of Conceptual Knowledge Processing

Rudolf Wille

Technische Universität Darmstadt,
Fachbereich Mathematik,

Schloßgartenstr. 7, D–64289 Darmstadt
wille@mathematik.tu-darmstadt.de

Abstract. The offered methods of Conceptual Knowledge Processing are
procedures which are well-planed to mean and purpose and therewith
lead to skills for solving practical tasks. The used means and skills have
been mainly created as translations of mathematical means and skills
of Formal Concept Analysis. Those transdisciplinary translations may
be understood as transformations from mathematical thinking, dealing
with potential realities, to logical thinking, dealing with actual realities.
Each of the 38 presented methods is discussed in a general language of
logical nature, while citations give links to the underlying mathematical
background. Applications of the methods are demonstrated by concrete
examples mostly taken from the literature to which explicit references
are given.

Contents
1. Conceptual Knowledge Processing
2. Methods
- 2.1 Conceptual Knowledge Representation
- 2.2 Determination of Concepts and Contexts
- 2.3 Conceptual Scaling
- 2.4 Conceptual Classification
- 2.5 Analysis of Concept Hierarchies
- 2.6 Aggregation of Concept Hierarchies
- 2.7 Conceptual Identification
- 2.8 Conceptual Knowledge Inferences
- 2.9 Conceptual Knowledge Acquisition
- 2.10 Conceptual Knowledge Retrieval
- 2.11 Conceptual Theory Building
- 2.12 Contextual Logic
3. Supporting Human Thought, Judgment, and Action

1 Conceptual Knowledge Processing

Conceptual Knowledge Processing is considered to be an applied discipline deal-
ing with ambitious knowledge which is constituted by conscious reflexion, dis-

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 1–29, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 R. Wille

cursive argumentation and human communication on the basis of cultural back-
ground, social conventions and personal experiences. Its main aim is to develop
and maintain methods and instruments for processing information and knowl-
edge which support rational thought, judgment and action of human beings and
therewith promote the critical discourse (cf. [Wi94], [Wi97b], [Wi00b]).

The adjective “Conceptual ” in the name “Conceptual Knowledge Processing”
underlines the constitutive role of the thinking, arguing and communicating
human being for knowledge and its processing. The term “Processing” refers to
the process in which something is gained which may be knowledge or something
approximating knowledge such as a forecast, an opinion, a casual reason etc.
To process knowledge, formal elements of language and procedures must be
activated. This pre-supposes formal representations of knowledge and, in turn,
knowledge must be constituted from such representations by humans.

To understand this process, the basic relation between form and content must
be clarified for Conceptual Knowledge Processing. A branch of philosophy which
makes basic statements on this is pragmatic philosophy which was initiated by
Ch. S. Peirce [Pe35] and is presently continued among others in the discourse phi-
losophy of K.-O. Apel [Ap76] and J. Habermas [Ha81]. According to pragmatic
philosophy, knowledge is formed in an unbounded process of human thinking, ar-
guing and communicating; in this connection, reflection on the effects of thought
is significant and real experiences stimulate re-thinking time and again. In this
process, form and content are related so closely that they may not be separated
without loss.

Theoretically, Conceptual Knowledge Processing is mainly founded upon a
mathematization of traditional philosophical logic with its doctrines of concept,
judgment, and conclusion. The core of the mathematical basis of Conceptual
Knowledge Processing is Formal Concept Analysis [GW99a] which has been de-
veloped as a mathematical theory of concepts and concept hierarchies during the
last 25 years. Although Conceptual Knowledge Processing deals with actual re-
alities, it obtains its basic forms of thinking from mathematics that, according to
Peirce ([Pe92]; p.121), has the aim to uncover a “great Cosmos of Forms, a world
of potential being”. Above all, Formal Concept Analysis as applied mathematics
provides Conceptual Knowledge Processing with a rich amount of mathematical
forms of thinking; this has been proven useful in a large number of applications.
For such a success it is essential that conceptual representations of knowledge
can be materialized so that they appropriately merge form and content of the
processed knowledge.

As mathematical theory, Formal Concept Analysis with its notions and state-
ments is strictly based on the common set-theoretical semantics which is grounded
on abstract sets and their abstract elements. For the explanation of the mathe-
matical notions, statements, and procedures in this paper, the reader is referred to
the monograph “Formal Concept Analysis: Mathematical Foundations” [GW99a].
The notions and statements discussed in the framework of Conceptual Knowledge
Processing shall be understood with respect to the semantics of their specific field
of application. If they refer to different fields of application, their semantics has

Methods of Conceptual Knowledge Processing 3

to be more abstract (eventually up to the philosophical semantics). To make the
connections between Formal Concept Analysis and Conceptual Knowledge Pro-
cessing clear, notions and statements of Formal Concept Analysis have to be trans-
formed to suitable notions and statements of Conceptual Knowledge Processing
and vice versa. For basic notions such transformation is given by the following list
of correspondences (cf. [Wi05b], p.28f.)

Formal Concept Analysis ↔ Conceptual Knowledge Processing
formal context ↔ (logical) context
(formal) many-valued context ↔ many-valued context
(formal) object ↔ object
(formal) attribute ↔ attribute
many-valued attribute ↔ many-valued attribute
(formal) attribute value ↔ attribute value
formal concept ↔ concept
extent ↔ extension
object extent ↔ object extension
intent ↔ intension
attribute intent ↔ attribute intension
(formal) object concept ↔ object concept
(formal) attribute concept ↔ attribute concept
(formal) subconcept ↔ subconcept
(formal) superconcept ↔ superconcept
infimum of formal concepts ↔ largest common subconcept of concepts
supremum of formal concepts ↔ smallest common superconcept of concepts
concept lattice ↔ concept hierarchy

Based on such correspondences, this paper aims to show how Formal Con-
cept Analysis gives rise to a spectrum of methods of Conceptual Knowledge
Processing applicable for gaining knowledge for a broad variety of reasons and
purposes.

2 Methods

In [Lo84], scientific methods are characterized in general as follows:

A method is a procedure which is well-planned according to mean and
purpose and therewith leads to skills for solving theoretical and practical
tasks.

In the case of Conceptual Knowledge Processing, basic means and skills for its
methods are mainly translations of mathematically defined means and skills of
Formal Concept Analysis. Those translations interprete the mathematical means
and skills with respect to actual realities so that they become understandable
for common users in their specific semantics. In the sense of Peirce [Pe92], the
transdisciplinary translations may be understood as transformations from math-
ematical thinking, dealing with potential realities, to logical thinking, dealing
with actual realities (cf. [Wi01], [Wi05b]).

4 R. Wille

2.1 Conceptual Knowledge Representation

The mathematization of conceptual knowledge by Formal Concept Analysis is
based on the understanding of concepts constituted by their extension and inten-
sion, respectively. For a concept, its extension contains all objects falling under
the concept and its intension comprises all attributes (properties, meanings) com-
mon to all those objects. Thus, the representation of conceptual knowledge can be
grounded on a context consisting of a collection of objects, a collection of attributes,
and a relation indicating which object has which attribute. A context corresponds
to a formal contextwhich, in Formal Concept Analysis, is usually materialized by a
cross table. Therefore, Formal Concept Analysis suggests the following elementary
representation method of Conceptual Knowledge Processing:

M1.1 Representing a Context by a Cross Table: A context can be rep-
resented by a cross table, i.e., a rectangular table the rows of which are headed
by the object names and the columns headed by the attribute names; a cross in
row g and column m means that the object g has the attribute m. An example
is given in [GW99a], p.18.

Conceptual knowledge is often represented by 0-1-tables. Then it is necessary
to make explicit in which way the zeros and ones shall give rise to concepts.
In the case that they lead exactly to the same concepts as the cross table in
which the crosses are at the same places as the ones, such table is called a one-
valued context (cf. M4.2) and considered as equivalent to the corresponding cross
table.

M1.2 Clarifying a Context: Object Clarification of a context means to remove
all objects except one in each class of objects having the same attributes. Dually,
Attribute Clarification of a context means to remove all attributes except one
in each class of attributes applying to the same objects. Clarifying a Context
means to apply to a context both: Object Clarifying and Attribute Clarifying
(cf. [GW99a], p.24).

A cross table of a context resulting from a clarification may be completed
by inserting the name of each removed object g in front of the name of that
object having the same attributes as g and inserting the name of each removed
attribute m above the name of that attribute applying to the same objects as m.
The completed cross table is often a considerably smaller and better readable
representation of the original not clarified context than the cross table described
in M1.1.

M1.3 Reducing a Context: Object Reduction of a finite logical context means
first to apply Object Clarification to the context and then to remove each re-
maining object the object concept of which is the smallest common superconcept
of proper subconcepts of that object concept. Dually, Attribute Reducing of a fi-
nite context means first to apply Attribute Clarification to the context and then
to remove each remaining attribute the attribute concept of which is the largest
common subconcept of proper superconcepts of that attribute concept. Reduc-
ing a Context means to apply to a context both: Object Reducing and Attribute
Reducing (cf. [GW99a], p.24).

Methods of Conceptual Knowledge Processing 5

A finite context resulting from the reduction of a context is (up to isomor-
phism) the smallest context the concept hierarchy of which has the same hierar-
chical structure as the concept hierarchy of the original context. Thus, the finite
reduced contexts are structurally the smallest (implicit) representations of finite
concept hierarchies.

M1.4 Representation of a Concept Hierarchy by a Line Diagram: The
concept hierarchy of a finite context can be visualized by a line diagram as
follows: The concepts of the hierarchy are represented by small circles in such
a way that upward leading line segments between those circles can indicate
the subconcept-superconcept relation. Every circle representing a concept gen-
erated by an object/attribute has attached from below/above the name of that
object/attribute (cf. M2.1). Those attachments of object and attribute names
allow to read off the extension and intension of each concept from the repre-
senting line diagram: the extension/intension of a concept consists of all those
objects/attributes the names of which are attached to a circle belonging to a
downward/upward path of line segments starting from the circle of that concept
(cf. [GW99a], p.23).

Unfortunately, up to now, no universal method is known for drawing well-
readable line diagrams representing concept hierarchies. For smaller concept hi-
erarchies, the method of Drawing an Additive Line Diagram (see [GW99a], p.75)
often leads to well-structured line diagrams. This is the reason that quite a num-
ber of computer programs for drawing concept hierarchies use that method (e.g.
Anaconda, Cernato, Concept Explorer, Elba).

M1.5 Checking a Line Diagram of a Concept Hierarchy: A line diagram
represents the concept hierarchy of a given finite context correctly if and only
if the line diagram satisfies the following conditions: (1) each circle being the
start of exactly one downward line segment must have attached an object name;
(2) each circle being the start of exactly one upward line segment must have
attached an attribute name; (3) an object g has an attribute m in the given
context if and only if the names of g and m are attached to the same circle
or there is an upward path of line segments from the circle with the name of
g to the circle with the name of m; (4) the line diagram represents a concept
hierarchy (cf. [GW99a], p.20, The Basic Theorem on Concept Lattices).

For line diagrams representing less than 50 concepts, it is quite easy to check
the conditions (1), (2), and (3). Checking condition (4) by inspection is usually
more costly because (4) mathematically means that the line diagram must rep-
resent a lattice. Nevertheless, experiences with many realistic data contexts have
shown that a failure of condition (4) is usually accompanied by a failure of at
least one of the conditions (1), (2), (3).

M1.6 Dualizing a Concept Hierarchy: Dualizing a Context means to inter-
change the roles of objects and attributes, i.e., objects become attributes and
attributes become objects, while the context relation turns to its inverse. If one
considers objects as instances of Firstness and attributes as instances of Sec-
ondness in the sense of Peirce’s universal categories, dualizing a context can be

6 R. Wille

understood as interchanging the roles of Firstness and Secondness. Dualizing a
Concept Hierarchy means to interchange extension and intension in each con-
cept, i.e., each concept becomes a concept of the dualized context, while each
subconcept-superconcept-relationship turns to its inverse (cf. [GW99a], p.22).
Therewith a line diagram of the dualized concept hierarchy can be obtained by
turning a line diagram of the given concept hierarchy upside down.

There are contexts for which its dual context is meaningful, i.e., it is also
interesting to view the attributes as objects and the objects as attributes. An
example for that is the context in [Wi05a] on p.11 having the tones of the diatonic
scale as objects and the major and minor triads as attributes; moreover, a tone
as object has a triad as attribute if the tone belongs to the triad. This context
might be understood as an answer to the questions: Which triads contain a given
tone x in the diatonic scale? The dual context, in which the triads are the objects
and the tones are the attributes, might be viewed as an answer to the questions:
Which tones characterize a given triad y in the diatonic scale?

2.2 Determination of Concepts and Contexts

The basic mean for generating concepts of a given context are the two derivations
assigning to each collection of objects the collection of all attributes which apply
to those objects and assigning to each collection of attributes the collection of
all objects which have those attributes. For determining concepts, sometimes
even a context with its objects and attributes has to be determined from more
general ideas.

M2.1 Generating Concepts: In a context, each collection of objects generates
a concept the intension of which is the derivation of the given object collection
and the extension of which is the derivation of that intension; dually, each col-
lection of attributes generates a concept the extension of which is the derivation
of the given attribute collection and the intension of which is the derivation of
that extension (cf. [GW99a], p.18f.). An object concept is a concept generated
by one object and an attribute concept is a concept generated by one attribute.

The extension of the concept generated by a given object collection is the
smallest concept extension containing the generating object collection in the
underlying context; this has as consequence that the intersection of concept
extensions is an extension again. Dually, the intension of the concept generated
by a given attribute collection is the smallest concept intension containing the
generating attribute collection in the underlying context; this has as consequence
that the intersection of concept intensions is an intension again.

M2.2 Generating All Concepts Within a Line Diagram: For smaller
contexts the following procedure has been proven a success: First, represent the
concept having the full object set of the given context as extension by a small
circle and attach (from above) to that circle the names of all attributes which
apply to all objects of the context. Secondly, choose from the left attributes all
those the extension of which are maximal, draw for each of them a circle below
the first circle, link them to the first circle by a line segment, and attach (from

Methods of Conceptual Knowledge Processing 7

above) to them the corresponding attribute names. Then determine all inter-
sections of the extensions of the already represented concepts and represent the
concepts generated by those intersections by small circles with their respective
line segments representing the subconcept-superconcept-relationships. Perform
analogously the next steps until all attributes are treated. Finally, attach each
object name (from below) to that circle from which upward paths of line seg-
ments lead exactly to those circles with attached names of attributes applying
to the respective object (cf. [GW99a], p.64ff.).

After finishing the procedure, the user is recommended to check the repre-
sentation by method M1.5. Quite often one has not represented all concepts;
but usually it is not difficult to insert the missing circles and respective line
segments. Finally, one should try to improve the drawn line diagram to obtain
a better readable diagram.

M2.3 Determining All Concepts of a Context: A fast procedure for de-
termining all concepts of a finite context is given by the so-called Ganter Al-
gorithm. This algorithm is based on a lexicographic order on all collections of
objects of the present context. For establishing this order, we assume a linear
order g1, g2, . . . , gn on all objects. Then an object collection A is defined to be
lectically smaller than an object collection B if B contains the object which
has the smallest index under all objects distinguishing A and B. The algorithm
starts with the smallest concept extension, i.e., the derivation of the collection
of all attributes, and continues by determining always the lectically next con-
cept extension A+ after the just determined extension A. The extension A+ is
generated by gi and the object collection A consisting of all g1, . . . , gi−1 con-
tained also in A where i is the largest index for which gi is not in A and the
extension generated by A and gi contains the same objects out of g1, . . . , gi−1 as
the extension A. The algorithm stops when it reaches the extension consisting of
all objects (cf. [GW99a], p.66ff.). Finally, the constructed extensions are turned
into concepts by M2.1. The subconcept-superconcept-relation can now be easily
determined because it agrees with the containment relation between the concept
extensions.

There are several implementations of the Ganter Algorithm (e.g. ConImp
[Bu00], Anaconda [Na96], ConExp [Ye00]) which allow to compute even large
concept hierarchies and yield the input for drawing programs too. For drawing
well-readable line diagrams of concept hierarchies by hand, a concept list is useful
which indicates for each concept its upper neighbours in the concept hierarchy; in
particular, it can be used to apply the so-called geometric method (see [GW99a],
69ff.).

M2.4 Determining a Context from an Ordered Collection of Ideas:
There are situations in which it is desirable to elaborate concepts from more
general ideas. This has caused a method for constructing a context from a collec-
tion of ideas ordered with respect to their generality. For such an idea collection
a downward/upward refinement is defined to be a subcollection of ideas which
contains with each idea all more general/special ideas of that idea and with ev-

8 R. Wille

ery two ideas an idea more special/general than those two ideas. A downward
refinement is called irreducible if, with respect to a suitable upward refinement,
it is maximal under all downward refinements having no idea in common with
that upward refinement. Dually, an upward refinement is called irreducible if,
with respect to a suitable downward refinement, it is maximal under all upward
refinements having no idea in common with that downward refinement. Now, for
the desired context, we take the irreducible downward refinements as objects,
the irreducible upward refinements as attributes, and the pairs of a downward
and an upward refinement having some ideas in common as the object-attribute-
relationships (cf. [SW86]).

An interesting application of the method M2.4 is the conceptual analysis of
Aristotle’s conception of the time continuum (cf. [Wi04b], p.460ff.). There the
basic ideas are the time durations, which do not consist of time points. Time
points can be derived as concepts generated by irreducible downward refinements
of durations in the respective context constructed as above. More elementary
constructions of contexts are discussed in the next subsection.

2.3 Conceptual Scaling

Scaling is the development of formal patterns and their use for analyzing empir-
ical data. In Conceptual Scaling these formal patterns consists of contexts and
their concept hierarchies which have a clear structure and reflect some meaning.
Such a context is said to be a conceptual scale and its objects and attributes are
called scale values and scale attributes, respectively (cf. [GW89], p.142ff.).

M3.1 Conceptual Scaling of a Context: A context may be connected with
a conceptual scale by a scale measure which assigns to each object of the context
a scale value in such a way that the collection of all objects assigned to values in
any fixed extension of the conceptual scale is an extension too, which is called
the preimage of the fixed scale extension under the considered scale measure. A
system of scale measures on a logical context with values in respective conceptual
scales is said to be a full conceptual scaling if every extension of the context is
the intersection of the preimages of some scale extensions under the respective
scale measures (cf. [GW89]).

The context of a repertory grid test of an anorectic patient discussed in
[Wi00b] on p.365 permits a full conceptual scaling into three one-dimensional
ordinal scales having the values 0, 1, 2 (cf. M3.4). The three scale measures as-
sign to the object MYSELF the scale values 0,0,2, to IDEAL 0,1,1, to FATHER
1,0,0, to MOTHER 2,0,0, to SISTER 1,0,1, and to BROTHER-IN-LAW 0,2,0.
The described full conceptual scaling leads to a well-readable diagram of the
corresponding concept hierarchy in a 3-dimensional grid.

M3.2 Conceptual Scaling of a Many-valued Context: In a (complete)
many-valued context every many-valued attribute assigns to an object a unique
attribute value. Therefore, for turning a many-valued context into a context to
obtain a related concept hierarchy, it is natural to interpret the many-valued
attributes as scale measures and the attribute values as scale values of suitable

Methods of Conceptual Knowledge Processing 9

conceptual scales (cf. M3.1). This motivates conceptual scaling of a many-valued
context by which a (meaningful) conceptual scale is assigned to each many-
valued attribute so that the corresponding attribute values are objects of that
scale. The derived context of such conceptual scaling has the same objects as
the many-valued context and has as its attributes the attributes of all assigned
conceptual scales. An object of the derived context has an attribute of a specific
scale if, in that scale, the attribute applies to the scale value which the respective
many-valued attribute assigns to the object in the many-valued context (cf.
[GW99a], p.36ff.).

The specific scaling methods which are mostly used are listed below. Further
scaling methods are described in Section 1.3 and 1.4 of [GW99a].

M3.3 Nominal Scaling of a Many-valued Context: A context is called
a nominal scale if each of its objects has exactly one attribute and each of its
attributes applies to exactly one object. A conceptual scaling of a many-valued
context is said to be nominal if all conceptual scales of the scaling are nominal
(cf. [GW99a], p.42).

A nominally scaled many-valued context, having the former presidents of the
Federal Republic of Germany as objects, is discussed in [Wi00b]. Its many-valued
attributes are the age of entrance with the values < 60 and > 60, the terms of
office with the values 1 and 2, and the party with the values CDU, SPD, and
FDP. Therefore, the derived context has the seven attributes age of entrance:
< 60, age of entrance: > 60, terms of office: 1, terms of office: 2, party: CDU,
party: SPD, and party: FDP. Each president has three attributes, namely the
value of his age of entrance, of his terms of office, and of his party, respectively.

M3.4 Ordinal Scaling of a Many-valued Context: A context is called an
ordinal scale if its objects and its attributes carry hierarchical order relations
which are in one-to-one correspondence and if an object has an attribute exactly
in case the object is in the order relation with the object corresponding to
the attribute (or, equivalently, in case the attribute is in the opposite order
relation with the attribute corresponding to the object). An ordinal scale is one-
dimensional if the objects and attributes with their hierarchical order relations
form corresponding increasing chains. A conceptual scaling of a many-valued
context is said to be (one-dimensional) ordinal if all conceptual scales of the
scaling are (one-dimensional) ordinal (cf. [GW99a], p.48 and p.42).

An ordinally scaled many-valued context, having 26 places along the Cana-
dian Coast of Lake Ontario as objects, is discussed in [SW92]. Its many-valued
attributes are five tests concerning water pollution, the attribute values of which
are six segments of potential measurement values, respectively. Therefore, the
derived context has 30 attributes: each of the 5 tests combined with one of its
6 segments. A place has a segment of a test as its attribute if the measurement
value of the test at this place lies in the segment or is larger than all values of
that segment. Clearly, each test represents a one-dimensional ordinal scale.

M3.5 Interordinal Scaling of a Many-valued Context: A context is called
a (one-dimensional) interordinal scale if it is the juxtaposition of a (one-dimensional)

10 R. Wille

ordinal scale and its opposite scale, i.e., an object has an attribute exactly in
case the object is in the opposite order relation with the object corresponding
to the attribute. A conceptual scaling of a many-valued context is said to be
(one-dimensional) interordinal if all conceptual scales of the scaling are (one-
dimensional) interordinal (cf. [GW99a], p.57 and p.42).

In the retrieval system developed for the library of the center of interdisci-
plinary technology research at Darmstadt University of Technology (see M6.3),
a one-dimensional interordinal scale is used to represent time periods in which
the books of the library have been published. The chosen objects of that scale
are the time periods before 1945, 1945-1959, 1960-1969, 1970-1979, 1980-1984,
1985-1989, 1990-1993, from 1994 and the scale attributes are the time periods
before 1945, before 1960, before 1970, before 1980, before 1985, before 1990, before
1994, and from 1945, from 1960, from 1970, from 1980, from 1985, from 1990,
from 1994. Naturally, a time period object is considered to have a time period
attribute if the object period is contained in the attribute period. The concept
hierarchy of the defined interordinal scale has a well-readable line diagram which
is shown in [RW00] on p.250.

M3.6 Contraordinal Scaling of a Many-valued Context: A logical context
is called a contraordinal scale if its objects and its attributes carry hierarchical
order relations which are in one-to-one correspondence so that an object has an
attribute exactly in case the object is not in the opposite order relation with
the object corresponding to the attribute (or, equivalently, in case the attribute
is not in the order relation with the attribute corresponding to the object).
A conceptual scaling of a many-valued context is said to be contraordinal if all
conceptual scales of the scaling are contraordinal (cf. [GW99a], p.49). The special
case that the order relations are just the equality relations yields the so-called
contranominal scales in which all subcollections of objects are extensions and all
subcollections of attributes are intensions (cf. [GW99a], p.48).

The ordinally scaled many-valued context and its corresponding concept hi-
erarchy presented in [GW99a] on p.44/45 reports ratings of sights on the Forum
Romanum in Rome taken from the travel guides Baedecker (B), Les Guides Bleus
(GB), Michelin (M), and Polyglott (P). The four-dimensional structure caused
by the four guides could be made more transparent by a contraordinal scaling
of the many-valued context as shown in [Wi87] on p.196. This scaling yields a
derived context with the seven attributes [no star in B], [no star in GB], [no or
one star in GB], [no star in M], [no or one star in M], [no or one or two stars in
M], and [no star in P].

M3.7 Convex-Ordinal Scaling of a Many-valued Context: A logical con-
text is called a convex-ordinal scale if it is the juxtaposition of a contraordinal
scale and its opposite scale, i.e., a scale in which an object has an attribute ex-
actly in case the object is in the opposite negated order relation with the object
corresponding to the attribute. A conceptual scaling of a many-valued context is
said to be convex-ordinal if all conceptual scales of the scaling are convex-ordinal
(cf. [GW99a], p.52).

Methods of Conceptual Knowledge Processing 11

Convex-ordinal scales are often derived from hierarchically ordered structures.
Such a structure is, for instance, presented in [SW93] in Figure 1 by a diagram
representing 35 dyslexics ordered by their numerical scores obtained from three
tests. The ordering locates a person below another one if her scores do not exceed
the corresponding scores of the other person, but at least one score is even less
the corresponding score of the other person. For dissecting the 35 dyslexics into
widely uniform training groups it is desirable that each person located by the
ordering between two persons of a group should also belong to that group. This
rule has as consequence that the groups are extensions of the convex-ordinal
scale canonically derivable from the described ordering (cf. [GW99a], p.52).

2.4 Conceptual Classification

Classifying objects is an important activity of human thinking which is basic
for interpreting realities. There is a wide spectrum of methods to perform clas-
sifications and the interest is even to develop further methods. Especially, there
is a strong demand for mathematical methods of classification which can be im-
plemented on computers. This has stimulated a rich development of numerical
classification methods which are of extensive use today. But those methods are
also criticized because of a major limitation, in that the resulting classes may
not be well characterized in some human-comprehensible language (cf. [SW93]).
Conceptual Classification, which uses concept hierarchies of contexts, overcomes
this limitation by incorporating a conceptual language based on attributes and
attribute values.

M4.1 Concept Classification of Objects: The first step of conceptually clas-
sifying objects is to choose appropriate attributes according to the purpose of
the approached classification. Then the logical context for the considered objects
and attributes has to be established and after that its concept hierarchy. This
hierarchy yields the desired classification, the object classes of which are just the
non-empty extensions of the concepts forming the hierarchy.

An example of a concept classification is the logical support of the educational
film “Living Being and Water” mentioned in [GW99a] on p.18 and p.24. This film
was produced by the Institute of Educational Technology in Veszprém/Hungary.
For developing the film, the first decision was to emphasize on the general objects
leech, bream, frog, dog, spike-weed, reed, bean, and maize as well as on nine
attributes from “needs water to live” to “suckle its offsprings”. After determining
the respective context, its concept hierarchy with its object classification was
derived which supported not only the design and production of the film, but
also the evaluation of its perception.

It has to be mentioned that, in our example, the object extensions do not
form a tree as is often required for classifications (see e.g. [RS84]). In the German
Standard DIN 2331 from 1976 about concept systems, classifications being tree-
like are called monohierarchical systems, otherwise polyhierarchical systems; in
this way the standard respects that classifications in practice are quite often not
trees.

12 R. Wille

M4.2 Many-valued Classification of Objects: Conceptually classifying
objects of many-valued contexts presupposes a conceptual scaling, the specific
method of which is appropriately chosen according to the purpose of the
approached classification, respectively. The derived context of such conceptual
scaling has already been described in method M3.2. The special quality of a
many-valued classification is that each many-valued attribute can function as
a semantic criterion for which the attributes of the respective scale represent
meanings specifying the criterion.

An example of a many-valued classification is the logical support of an inves-
tigation in developmental psychology (cf. [SW93]). The data of that investigation
have been concentrated in a many-valued context, the objects of which are 62
children from the age of 5 to 13 and the attributes of which are 9 general criteria
of concept development and the attribute age. The investigation was performed
with the aim to reconstruct the developmental sequences of the concept work.
The analysis of those sequences was based on the criteria quality of motives,
generalization, and structural differentiations which give the most differentiated
view of changes and advances in development. The many-valued context was
convex-ordinally scaled by method M3.7 to a logical context so that the children
could be classified in seven meaningful extensions representing levels of concept
development. The most interesting result was that some children reached earlier
a higher level of generalization than others who reached earlier a higher level
of quality of motives. Such a kind of branching in concept development has not
been proven before.

2.5 Analysis of Concept Hierarchies

The term “Analysis” means an investigation by dissecting a whole into suitable
parts to obtain a better understanding of the whole. Thus, analyzing a con-
cept hierarchy consists in partitioning its concepts into meaningful parts which
together form a subdivided conceptual structure leading to an improved under-
standing of the concept hierarchy.

M5.1 Partitioning the Attributes of a Context (Nested Line Diagram):
For studying larger concept hierarchies of contexts it has been proven useful
to partition the attributes of the given context in classes and to identify the
subcontexts formed by one of those classes and the objects of the whole context,
respectively. Then, each concept of the whole context is represented by a sequence
of subcontext concepts, just one from each identified subcontext; the intension of
such a subcontext concept consists of all attributes of the represented concept
which are also attributes of the subcontext concept. The resulting subdivided
structure of the whole concept hierarchy can be visualized by a nested line dia-
gram constructed as follows (cf. [GW99a], p.75ff.): First, line diagrams of the
concept lattices of the subcontexts are prepared and ordered in a sequence of
the same kind as the corresponding subcontexts. Then, the line diagram being
second in the sequence is copied into each circle of the line diagram being first
in the sequence; next, the line diagram being third in the sequence is copied into
each circle of each copy of the line diagram being second in the sequence; and so

Methods of Conceptual Knowledge Processing 13

on, until the line diagram being last in the sequence is copied into each circle of
each copy of the line diagram being last but one in the sequence. Finally, each
concept of the whole context and its sequence of subcontext concepts is indicated
by a corresponding sequence of circles each of which contains the next one and
represents the corresponding subcontext concept; such sequence of circles can
be marked by only distinguishing the last circle of the sequence. This method is
used, in particular, for applying the TOSCANA-aggregation (s. M6.3).

A well-readable nested line diagram of a concept hierarchy with 139 concepts
concerning old Chinese urns is presented in [Wi84] on p.42. The underlying
context has eight pairs of dichotomic attributes from which five pairs form a
one-dimensional interordinal scale (cf. M3.5). For the attribute partition, those
ten attributes were taken as the first attribute class, two further pairs as the
second attribute class, and the last pair as the third attribute class. The concept
hierarchies of the corresponding subcontexts consist of 22, 10, and 4 concepts,
respectively. The subdivided structure diagram underlying the nested diagram
has 880 very small circles, 220 small circles containing 4 very small circles, and
22 larger circles containing 10 small circles, respectively. Since the smallest con-
cepts of the three hierarchies have an empty extension, one can erase all circles
representing a concept with an empty extension (except the lowest very small
circle) so that structure diagram consist of only 661 very small circles.

M5.2 Atlas-Decomposition of a Concept Hierarchy: Analyzing larger con-
cept hierarchies may be stimulated by the atlas metaphor. Such approach can
be based on the notion of a block relation which relates objects and attributes, in
particular, if the object has the attribute in the underlying context; furthermore,
the block relation derivation of each object/attribute is an extension/intension
of the original context (cf. [GW99a], p.121ff.). This guarantees that each concept
of the block relation context gives rise to an interval in the concept hierarchy of
the original context consisting of all concepts the extension/intension of which
is contained in the extension/intension of the block relation concept. Metaphor-
ically, those intervals are the maps of the respective atlas. As in an atlas, for
many applications it is desirable that neighbouring maps overlap.

A meaningful atlas-decomposition of a concept hierarchy concerning the har-
monic forms of the diatonic scale is discussed in [Wi84] on p.45ff. For that
hierarchy the used block relation yields the largest decomposition with overlap-
ping neighbouring maps. Each map clarifies the relationships between harmonic
forms differing just by one tone.

M5.3 Concept Patterns in a Concept Hierarchy: Concept hierarchies may
be understood as source of well-interpretable concept patterns, for instance, as
concept chains, ladders, trees, grids etc. Such patterns are considered as concep-
tual measurement structures as discussed in [GW99a] in section 7.3 and 7.4. A
specific method of identifying concept patterns is based on the search of respec-
tive subcontexts constituted by suitable objects and attributes of the underlying
context (cf. [GW99a], section 3.1). Such search is quite often successful if one
tries to find long sequences of attributes, the extensions of which form a chain

14 R. Wille

with respect to containment, and completes those attributes to a subcontext
having enough objects to represent those chains.

A meaningful example about the support of designing working places for
handicapped people is discussed in [Wi87], p.188ff. The established logical con-
text indicates which part of the human body is affected by which demand of work.
A well-drawn line diagram of the respective concept lattice shows a dominant
two-dimensional grid pattern which is generated by two sequences of attributes
concerned with body movements, one from climbing over waking and squating
to foot moving and the other from climbing over reaching and holding to seizing.
Another instructive example is the concept hierarchy in [Wi92] about the colour
perception of a gold fish. This hierarchy which consists of 141 concepts could
only be well-drawn and well-interpreted because of the discovery of two long
attribute chains representing parts of the colour circle.

2.6 Aggregation of Contexts and Concept Hierarchies

Knowledge is often represented not in one, but in several contexts. Clearly, it is
desirable to aggregate those contexts to a common context, so that the single
contexts are derivable as direct as possibly from the common context. Further-
more, the construction of the concept hierarchy of the common context by the
concept hierarchies of the single contexts should be known, as well as the pro-
jections from the common concept hierarchy onto the single concept hierarchies,
respectively.

M6.1 Juxtaposition of Contexts with Common Object Collection: For-
ming the juxtaposition of given contexts with common object collection means to
establish the context having as objects those of the common object collection and
as attributes those which are attributes of one of the given contexts (attributes
from different contexts are considered to be different too); in the juxtaposition,
an object has an attribute if it has the attribute in the context containing that
attribute (cf. [GW99a], p.40). The concepts of the juxtaposition are generated by
the intersections of the extensions of concepts of the single contexts (cf. M2.1).
Conversely, each concept of a single context is the projection of all concepts of
the juxtaposition having the same extension as that concept.

An extensive project of Conceptual Knowledge Processing highly dependent
on the juxtaposition aggregation was the development of an information system
about laws and regulations concerning building constructions requested by the
Department for Building and Housing of the State Nordrhein-Westfalen. The
necessary knowledge for that project was represented in contexts and their con-
cept hierarchies concerned with specific themes such as “fundamental construc-
tion of a family house” [EKSW00], “functional rooms in a hospital” [Wi05b],
“operation and fire security” [KSVW94] etc. The concept hierarchy of the juxta-
position of the mentioned hospital and security context represented by a nested
diagram can also be found in [KSVW94] (the common object collection was
formed by all relevant information units about laws and regulations concerning
building constructions).

Methods of Conceptual Knowledge Processing 15

M6.2 Aggregation Based on Object Families: A general framework for
this method is the so-called “semiproduct of contexts” (cf. [GW99a], p.46). The
semiproduct of a collection of contexts is a context the objects of which are all
object families having exactly one object from each context of the collection and
the attributes of which are just the attributes of the given contexts (attributes
from different contexts are viewed to be different); in the semiproduct, an object
family has an attribute if that attribute applies in its respective context to the
unique object belonging to the respective context and to the considered object
family. An Aggregation Based on Object Families is a subcontext of a semiproduct
of contexts having meaningful object families as its objects, while its attributes
are just all attributes of the semiproduct.

The method “Aggregation Based on Object Families” plays an important role
in [BS97] (cf. also [GW99b]); in particular, applications of this method to switch-
ing network are suggested. Such applications and their theoretical background
have been elaborated in [Kr99], where the method “Aggregation Based on Ob-
ject Families” is, for instance, used to analyse a lighting circuit with emergency
light. The analysis yields four contexts: one for the main switch with three states,
another one for a switch with two states linking either to the main-light or to
the emergency light, and two further contexts with two states indicating whether
the main light or the emergency light is on or out, respectively. The semiproduct
of the four contexts has as objects the 24(= 3 · 2 · 2 · 2) quadruples of states and
as attributes the 7(= 3 + 2 + 1 + 1) attributes of the four contexts. Only 6 of
the 24 quadruples are meaningful (i.e. they satisfy the so-called network rule);
hence a 6× 7-subcontext of the semiproduct represents the logic of the analysed
lighting circuit with emergency light.

M6.3 TOSCANA-Aggregation of Concept Hierarchies: The idea of a
TOSCANA-aggregation is to view a related system of concept hierarchies meta-
phorically as a conceptual landscape of knowledge [Wi97b] which can be ex-
plored by a purpose-oriented combination and inspection of suitable selections
of the given concept hierarchies. This is logically supported by line diagrams
representing concept hierarchies of juxtapositions of contexts in the sense of
M6.1 and suitable restrictions of those hierarchies (cf. [KSVW94], [EKSW00]).
For performing the TOSCANA-aggregation method, software has been devel-
oped since 1990; the most advanced software is available by the programs of
the ToscanaJ Suite [BH05] which are developed as Open Source project on
Sourceforge (http://sourceforge/projects/toscanaj).

The development of the TOSCANA-aggregation method was stimulated by
a research project with political scientists in the late 1980th. The task was to
analyse a data context with 18 objects, namely norm- and rule-guided interna-
tional cooperations, so-called regimes, and 24 many-valued attributes represent-
ing factors of influence, typological properties, and regime impacts (cf. [KV00]).
This many-valued context was conceptually scaled by the method M3.2, where
the used scales arose as result of an interdisziplinary co-operation between the
coworking mathematicians and political scientists. Then more then fifty subcon-
texts of the scaled many-valued context together with the corresponding concept

16 R. Wille

hierarchies were produced by hand for answering special research questions. This
made clear that a mathematically founded construction method and its imple-
mentation would be desirable which allows the aggregation of arbitrarily chosen
conceptual scales. The TOSCANA method and software met this desire and
gave rise to the development of many TOSCANA-systems in a wide spectrum
of disciplines. In particular, the research on international regimes has benefited
from this development which is witnessed by a new TOSCANA-system about
90 regime components the data of which were elaborated by a great number of
international political scientists over more than four years (cf. [Ks05]).

2.7 Conceptual Identification

A method is considered to be a conceptual identification if it determines con-
cepts which classifies given instances. A well-known example of a conceptual
identification is to determine the position of an individual plant in a taxonomy
of plants.

M7.1 Identifying a Concept: The elementary type of conceptual identifica-
tion is the classification of an instance by a given system of concepts. Method-
ollogically, such identification can be well performed on the basis of a context,
the objects of which are the classes of the given classification system; the at-
tributes of the context are used for the identification process that increasingly
determines those attributes which apply to the considered instances. It is ad-
vantageous to visualize this process in a line diagram of the concept hierarchy
of the context by indicating the decreasing path from concept to concept gen-
erated by the determined attributes until no further attribute which apply to
the considered instance leads to a new subconcept. Then the concept generated
by all determined attributes is the identified concept for the considered instance
(cf. [KW86]).

The described identification process can be effectively represented and sup-
ported by a computer. That has, for instance, been done for identifying the
symmetry types of two-dimensional patterns. In this case, the computer screen
shows the user a line diagram representing the concept hierarchy having as ob-
jects the considered symmetry classes. For a given two-dimensional symmetry
pattern, the user tries to find enough attributes which apply to the given pat-
tern. After each input of such an attribute, the screen highlights the concept
which is generated by the already fed attributes. This process may, for instance,
identify the symmetry type the concept of which is generated by the attributes
“admitting two reflections with non-parallel axes”, “admitting a rotation of 90◦”,
and “admitting a rotation of 90◦ the center of which is not on a reflection axis”
(see [Wi00b], p.362f.). A well-designed computer implementation for identifying
the symmetry types of two-dimensional patterns has been successfully offered to
the visitors of the large Symmetry Exhibition at the Institute Mathildenhöhe in
Darmstadt 1986 (cf. [Wi87], p.183ff.).

M7.2 Identifying Concept Patterns: There are many families of contexts
the concept hierarchies of which offer a specific type of regular concept patterns

Methods of Conceptual Knowledge Processing 17

for interpreting conceptual structures; in particular, the so-called standard scales
(discussed in [GW99a], Section 1.4) are such concept patterns. In a context, a
concept pattern is identified by a collection of objects of the context if each
concept of the pattern is generated by a subcollection of those objects; it is
strongly identified if, in addition, each subcollection of the objects generates a
concept of the pattern.

How the identification of concept patterns may support the interpretation of
empirical data shall be briefly demonstrated by an example from linguistics. In
the late 1980th, the dialectician H. Goebl from the University Salzburg became
interested in the application of Formal Concept Analysis to his empirical data;
in particular, he offered the Darmstadt research group data about phonemes of
French in Swizerland. Those data were transformed in a context having 63 mea-
surements points as objects and 40 phonetic characteristics as attributes. Since it
is of special interest to study modifications of the phonemes along measurement
points, one-dimensional interordinal scales (cf. M3.5) yield well-interpretable
concept patterns. Indeed, the multifarious modifications of phonemes could be
shown by the concept hierarchies of such scales strongly identified by 3, 4, and
5 consecutive measurement points, respectively (see [FW89]).

2.8 Conceptual Knowledge Inferences

Conceptual Knowledge Processing does not only rely on the representation of
conceptual structures, but also on conceptual inferences which are inherent in
knowledge structures. The importance of inferences for human thinking has been,
in particular, underlined by R. Brandom in his influential book “Making it ex-
plicit. Reasoning, representing, and discursive commitment” [Br94]. According
to Brandom, knowledge is founded on an inferential semantics which rests on
material inferences based on a normative pragmatics. In Formal Concept Anal-
ysis, up to now, the research on inferences has been dominantly concentrated on
implications and dependences (cf. [GW99a], Section 2.3 and 2.4).

M8.1 Determining the Attribute Implications of a Context: In a given
context, the attributes m1, . . . , mk imply the attributes n1, . . . , nl if each ob-
ject having the attributes m1, . . . , mk also has the attributes n1, . . . , nl. Such
implication can be determined within a line diagram of the concept hierarchy
of the given context as follows: First one identifies the circle representing the
largest common subconcept c of the attribute concepts generated by the at-
tributes m1, . . . , mk, respectively; then the attributes implied by m1, . . . , mk are
recognizable as those attributes n which generate a superconcept of c, i.e. there
is an ascending path from the circle representing c to the circle representing the
attribute concept generated by n.

There is a number of implemented algorithms for determining bases of at-
tribute implications, the mostly used algorithm of which has been developed by
B. Ganter [Ga87] (see also [GW99a], Section 2.3). The Ganter algorithm de-
termines the stem basis for all attribute implications of a given context (also
called the Duquenne-Guigues-Basis [GD86]); all other bases can be easily de-
rived from the stem basis. Applying the stem basis shall be briefly demonstrated

18 R. Wille

by the analysis of properties of drive concepts for motorcars presented in [Wi87],
p.174ff.: The context for this analysis has as objects the drive concepts “Con-
ventional”, “Front-wheel”, “Rear-wheel”, “Mid-engine”, and “All-wheel” and as
attributes 25 properties such as “good road holding”, “under-steering”, “high
cost of construction” etc. The Ganter algorithm yields 31 attribute implications
as, for instance, “good economy of space” implies “good road holding”, “bad
economy of space” implies “low cost of construction”, “good drive efficiency un-
loaded” and “good maintainability” imply “low cost of construction”. The few
cited implications may already show how valuable the stem basis can be for the
interpretation of the given data context.

M8.2 Determining Many-valued Attribute Dependencies: Dependencies
between many-valued attributes are of great interest in many fields of empirical
research. A basic type of such dependencies are the functional dependencies: In a
(complete) many-valued context, many-valued attributes n1, . . . , nl are function-
ally dependent on many-valued attributes m1, . . . , mk if, for every two objects g
and h of the many-valued context, the corresponding attribute values mi(g) and
mi(h) (i = 1, . . . , k) are equal then the corresponding attribute values ni(g) and
ni(h) (i = 1, . . . , l) are equal too. For determining functional dependencies, a
method has been proven useful which is based on the following context derived
from the given many-valued context: the derived context has as objects all pairs
of two (different) objects of the many-valued context and as attributes all its
many-valued attributes where a pair of objects g and h is related to a many-
valued attribute m if the corresponding attribute values m(g) and m(h) are
equal. Then it can be proved that many-valued attributes n1, . . . , nl are func-
tionally dependent on many-valued attributes m1, . . . , mk in the many-valued
context exactly if m1, . . . , mk implies n1, . . . , nl in the derived logical context.
This equivalence allows us now to use method M8.1 to determine all functional
dependences of the given many-valued context. If one replaces equality by the
inequality ≤, respectively, one gets the analogous result for ordinal dependency
(cf.[GW99a], p.91f.).

A prominent field for applying functional dependencies is Database Theory.
Ordinal dependencies have been successfully applied in Measurement Theory.
For instance, in [WW96], it is shown that enough ordinal dependencies in an
ordinal many-valued context guarantees a linear representation of the context
in a vector space over the field of real power series. This is demonstrated by a
two-dimensional representation of a data context about the colour perception of
a goldfish (cf. also [WW04]).

2.9 Conceptual Knowledge Acquisition

The central idea of knowledge acquisition in the frame of Formal Concept Analy-
sis lies in the assumption that, in the field of exploration, the conceptual knowl-
edge can be thought to be represented by a context with finitely many attributes
and by its concept hierarchy; such a context is called a universe. The exploration
of knowledge starts with some partial information about the considered universe
and acquires more information by phrasing questions which are answered by

Methods of Conceptual Knowledge Processing 19

experts. For this procedure it is a main concern not to ask questions which can
already be answered by the acquired knowledge (cf. [Wi89b]).

M9.1 Attribute Exploration: For an attribute exploration, first a universe is
specified as a context the attribute of which are explicitly given, but the objects
of which are only known to belong to a certain type of objects. It is often helpful
to choose at the beginning of the exploration some objects and to determine the
subcontext of the universe based on those objects together with the attributes
of the universe. Then an implementation of the algorithm described in [GW99a],
p.85, should be used which leads to questions whether certain attribute implica-
tions are valid in the universe or not. If yes, then the actual attribute implication
is added to the list of already recognized valid attribute implications of the uni-
verse. If not, then an object of the universe has to be made explicit which has
all attributes of the premise of the actual implication, but has not at least one
attribute of its conclusion; such a new object is used to extend the actual ex-
plicit subcontext to a new subcontext of the universe. Since the universe has
only finitely many attributes, the exploration ends after finitely many steps.
Then the resulting subcontext has the same concept intensions as the assumed
universe.

In [GW99a], p.86ff., the attribute exploration is demonstrated by the uni-
verse which has as objects all binary relations between natural numbers and as
attributes the properties “reflexive”, “irreflexive”, “symmetric”, “asymmetric”,
“antisymmetric”, “transitive”, “negatively transitive”, “connex”, and “strictly
connex”. The concept hierarchy of the resulting subcontext consists of 50 con-
cepts the structure of which clarifies completely the implication logic of the given
nine properties of binary relations (cf. M8.1).

M9.2 Concept Exploration: For a concept exploration, first a universe is
specified as a context the objects and attributes of which are only known to
belong to a type of objects and a type of attributes, respectively; in addition,
a finite number of concepts of the universe are specified by their names. Then
the aim of the concept exploration is to identify all concepts of the universe
which can be deduced from the specified concepts by iteratively forming the
largest common subconcept and the smallest common superconcepts of already
constructed concepts in the universe. This procedure is accompanied by the
questions whether for two concepts one is a subconcept of the other or not. If yes,
then this order relationship is added to the table of already recognized pairs of
subconcept-superconcept of the universe. If not, then an object belonging to one
concept and an attribute belonging to the other concept and not applying to the
object have to be made explicit. The acquired knowledge, as it is accumulating,
is represented in a context which has as objects the explicitly made objects
together with the constructed concepts and as attributes the explicitly made
attributes with the constructed concepts too; the context relation indicates which
explicit object has which explicit attribute, which explicit object belongs to
which constructed concept, which explicit attribute belongs to which constructed

20 R. Wille

concept, and which constructed concept is the subconcept of another constructed
concept (cf. [Wi89b], p.375ff.).

The concept exploration is demonstrated in [Wi89b] within the universe hav-
ing as objects all countable relational structures with one binary relation R and
as attributes all universal sentences of first order logic with the relational symbol
’R’ and equality; a relational structure as object has a sentence as attribute if the
structure satisfies the sentence. In particular, the attribute exploration is explic-
itly performed with the three specified concepts “orthogonality”, “dominance”,
and “covering”. The acquired knowledge is represented in a 14 × 14-context
based on 4 objects, 4 attributes and 10 concepts. More examples and theoretical
developments can be found in [St97].

M9.3 Discovering Association Rules: In a context, an association rule is an
ordered pair (X → Y) of attribute collections X and Y for which the following
relative frequencies are computed: the support of (X → Y) is the number of
attributes which are in X or Y divided by the number of objects in the context,
and the confidence of (X → Y) is the number of attributes which are in X
or Y divided by the number of attributes in X . The task is to determine all
ordered pairs (X → Y) for which the support of (X → Y) is above a given
support threshold chosen from the interval [0, 1] and the confidence of (X → Y)
is above a chosen confidence threshold chosen from the interval [0, 1]. In solving
the task, the crucial part is the determination of all key-attribute-collections,
which are attribute collections being minimal in generating a concept (cf. M2.1).
The method of doing that is based on the observation that each subcollection
of a key-attribute-collection is also a key-attribute-collection. Thus, an effective
procedure can be designed which tests first the one-element attribute collections
of being key-attribute-collections, then the two-element attribute collections not
properly containing a key-attribute-collection and so on (for more details see
[LS05]).

Association rules are, for instance, used in warehouse basket analysis, which
is carried out to learn which products are frequently bought together. A general
overview about discovering and applying association rules can be found in [LS05],
Section 6.

2.10 Conceptual Knowledge Retrieval

Since Information and Knowledge Retrieval deals with organizing, searching,
and mining information and knowledge, methods of Conceptual Knowledge Pro-
cessing may support retrieval activities. They can do this by effectively com-
plementing the existing search systems, in particular, by visualizing retrieval
results, improving individual search strategies, and hosting multiple integrated
search strategies (cf. [CR04], [CR05]).

M10.1 Retrieval with Contexts and Concept Hierarchies: The retrieval
of documents can be seen to take place in a context the objects of which are
the available documents and the attributes of which are the constituents of
queries. Then the intension of a concept of such context contains all queries

Methods of Conceptual Knowledge Processing 21

having as retrieval result exactly all documents in the extension of the considered
concept. The concept hierarchy of the context shows especially which queries
yield neighbour concepts causing only minimal changes between the retrieved
extensions (cf. [GSJ86]). In general, a concept hierarchy of a context based on
a number of retrieval results may give a useful overview which faster leads to
fulfill the purpose of the search (cf. [CR05]).

In [Ko05], the method M10.1 is applied and elaborated to develop an improved
front end to the standard Google search. The basic idea of this development is to
use Google’s three-row result itemset consisting of title, short description, and
the uniform resource locators (URL) to build a context and its concept hierarchy.
The context has as objects the first n URLs and as attributes the meaningful
feature terms extracted from Google’s first n three-row results (the number n is
eligible). The context is presented best by a cross table in which the names of
the attributes, applying to the same objects, are heading the same column (cf.
M1.2). It turns out that already this presentation of the retrieved results is often
very useful because a larger manifold of information units can be viewed at once
and selectively compared. This effect can even be increased if the corresponding
concept hierarchy is visualized.

M10.2 Retrieval with a TOSCANA-System: Conceptual knowledge re-
trieval is often a process in which humans search for something which they only
vaguely imagine. Therefore humans organize such processes not only by a se-
quence of queries in advance, they also learn step by step how to specify further
what they are actually searching for. Such interactive retrieval and learning pro-
cess can be successfully supported by a suitable TOSCANA-system established
by the TOSCANA-aggregation method (M6.3). The TOSCANA-system is struc-
tured by a multitude of conceptual scales (cf. Section 2.3) which are applied as
search structures to the objects under considerations. The line diagrams of the
activated scales are shown to the user who learns by inspecting them how to act
further (cf. [BH05]).

Retrieval with a TOSCANA-system has been, for instance, established by
developing a retrieval system for the library of the “Center of Interdisciplinary
Technology Research” (ZIT) at the TU Darmstadt using the method M6.3 (cf.
[RW00]). For supporting the search of literature, a related system of 137 concept
hierarchies was developed. The underlying contexts of those hierarchies have as
objects all books of the library and as attributes well-chosen catch words which
represent a specific theme, respectively. In [Wi05b], p.17, there is a report on
a literature search in the ZIT-library concerning the theme “expert systems
dealing with traffic”. This search starts with the concept hierarchy “Informatics
and Knowledge Processing” which has “Expert Systems” as one of its attributes;
the corresponding line diagram shows that there are 60 books in the library
having “Expert Systems” as assigned catchword. This suggests to the user to
consider the concept hierarchy “Town and Traffic” restricted to those 60 books;
then the resulting line diagram shows that 9 of the 60 books have also “Traffic”
as an assigned catchword and, additionally, 4 resp. 1 of those 9 books “Means
of Transportation” resp. “Town” as assigned catchword.

22 R. Wille

2.11 Conceptual Theory Building

Empirical theory building, in particular in the human and social sciences, may
be logically supported by methods of Conceptual Knowledge Processing. The
basic models used by those methods are contexts and their concept hierarchies
which allow the representation of scientific theories in a way that the theories
become structurally transparent and communicable (cf. [SWW01]).

M11.1 Theory Building with Concept Hierarchies: Conceptual theory
building starts from data and information which are mostly represented in data
tables, texts, images, and inferential connections. The goal is to generate a rich,
tightly woven, explanatory theory that closely approximates the reality it rep-
resents. Methodologically, this aims at a suitable representation of the consid-
ered data and information by a unifying concept hierarchy. That often leads to
question the data and information and to work further with their improvements.
Thus, conceptual theory building is an inductive process which stepwise improves
theories which are always represented by concept hierarchies (cf. [SC90]).

Interesting examples of conceptual theory building are the development of
everyday theories of logical relationships. There is a kind of surprising evidence
that a great deal of those theories are determined by attribute implications with
one-element premise and by incompatibilities between attributes (cf. [Wi04a]).
For instance, the theory about the core of the lexical field of waters can be char-
acterized by the dichotomic pairs of attributes “natural - artifical”, “running
- stagnant”, “constant - temporary”, and “inland - maritime”. Applying those
attributes to words describing the types of waters like “plash”, “channel”, “sea”
etc. teaches that the types of waters satisfy the following attribute implications
with one-element premise:

“temporary” ⇒ “natural”, “stagnant”, “inland”;
“running” ⇒ “constant”, “inland”;
“artificial” ⇒ “constant”, “inland”;
“maritime” ⇒ “natural”, “stagnant”, “constant”.

These implications together with the incompatibilities described by the four
dichotomic attribute pairs completely determine the theory of implicational re-
lationships in the considered core of the lexical field of waters (this has been
shown in [Wi04a] by using the empirical results of [Kc79]). The concept hierar-
chy representing that theory is presented on the cover of [GW99a].

M11.2 Theory Building with TOSCANA: Conceptual theory building
can be based on the method “TOSCANA-Aggregation of Concept Hierarchies”
(M6.3) applied to an empirically derived collection of objects. For building-up the
aimed theory, this object collection is structured by justified conceptual scales.
Then interesting aggregations of those scales and their concept hierarchies are
tested with regard to their meaningfulness concerning the approached theory.
This testing might suggest improvements of the scales and their corresponding
concept hierarchies which are then tested again. The goal is to reach a well-
founded TOSCANA-system which adequately represents the aimed theory.

Methods of Conceptual Knowledge Processing 23

Theory building with TOSCANA has been substantially applied to support
a dissertation about “Simplicity. Reconstruction of a Conceptual Landscape in
the Esthetics of Music of the 18th Century” [Ma00]. The methodological foun-
dation for this application was elaborated in [MW99]. The empirical collection
of objects was given by 270 historical documents which were made accessible
by a normed vocabulary of more then 400 text attributes. Those text attributes
were used to form more general attributes for the conceptual scales of the ap-
proached TOSCANA-system. By repeatedly examining and improving aggrega-
tions of scales and their concept hierarchies, a well-founded TOSCANA-system
was established which successfully supported the musicological research.

2.12 Contextual Logic

Contextual Logic has been introduced with the aim to support knowledge
representation and knowledge processing. It is grounded on the traditional
philosophical understanding of logic as the doctrine of the forms of human
thinking. Therefore, Contextual Logic is developed by mathematizing the philo-
sophical doctrines of concepts, judgments, and conclusions (cf. [Ka88], p.6). The
mathematization of concepts follows the approach of Formal Concept Analysis
[GW99a], and the mathematization of judgments uses, in addition, the Theory
of Conceptual Graphs [So84]. The understanding of logic as the doctrine of the
forms of human thinking has as consequence that main efforts are undertaken to
investigate the mathematical and logical structures formed by (formal) concepts
and concept(ual) graphs (cf. [Wi00a]).

M12.1 Conceptual Graphs Derived from Natural Language: A concep-
tual graph is a labelled graph that represents the literal meaning of a sentence
or even a longer text. It shows the concepts, represented by boxes, and the re-
lations between them, represented by ovals. The boxes contain always a name
of a concept and, optionally, a name of an object belonging to that concept;
no object name in the box means that there exist an object belonging to the
concept named in the box. The ovals contain always a name of a relation which
relates all the objects the names of which are contained in the boxes linked to
the oval of that relation. In stead of repeating an object name in several boxes,
it is allowed to write the name in only one box and to link this box to all those
other boxes by broken lines (for more information see [So92]).

The representation by conceptual graphs has been practiced in many appli-
cation projects concerning conceptual knowledge processing and has stimulated
further useful theories (cf. contributions to the International Conferences on
Conceptual Structures documented in the Springer Lecture Notes in Computer
Science since 1993). One of such theories is the Contextual Judgment Logic the
start of which was stimulated by a conceptual graph representation of a text
about Seattle’s central business district [Wi97a]. A quite special project was
performed in a classroom of grade 6 with 32 boys and girls to clarify the ques-
tion: Can already young pupils be trained in the ability of formal abstraction
by transforming natural language into conceptual graphs? It turned out that
most of the pupils learned very fast to turn simple sentences into a graphically

24 R. Wille

presented conceptual graph. Already in the third lesson they were able to glue
rectangular and oval pieces of paper on a cardboard in a way that they could
inscribe and link those pieces to represent a little story by a conceptual graph
(some of them built even little bridges of paper for the broken lines between
equal object names to avoid misinterpretations) (cf. [SW99]).

M12.2 Derivation of Judgments from Power Context Families: It is
worthwhile to understand the relations in a conceptual graph also as concepts
of suitably chosen contexts. This understanding is basic for the derivation of
judgments, represented by conceptual graphs, from so-called power context fam-
ilies which are composed by contexts K0, K1, K2, K3, . . . where K0 yields the
concepts in the boxes and K1, K2, K3, . . . yield the concepts of relations of arity
k = 1, 2, 3, . . . in the ovals, respectively (cf. M12.1); clearly, the objects of the
relational context Kk (k ≥ 1) are sequences of k objects belonging to the basic
context K0, while the attributes of Kk have the function to give meaning to
those object sequences (cf. [PW99]).

The sketched method can be effectively applied to develop information sys-
tems based on power context families representing the relevant knowledge. Such
systems have been designed for flight information in Austria and Australia, re-
spectively. The central idea of those information systems is to present to the user,
who has inputed his constraints, a conceptual graph representing all flights which
might be still relevant. In [PW99], Fig.6, a well-readable output graph is shown
to a person who lives in Innsbruck and works in Vienna where he wants to arrive
between 7 and 9 a.m. and to depart between 5 and 7 p.m. For more complex
requests, the standard diagrams of conceptual graphs might become extremely
complicated as shown in [EGSW00], Fig.7, for a customer who lives in Vienna
and wants to visit partners in Salzburg, Innsbruck, and Graz at the weekend.
But, using background knowledge which can be assumed for the customer, a
much better readable diagram of the requested conceptual graph can be offered
as shown in [EGSW00], Fig.8. Thus, conceptual graphs should be understood
as logical structures which may have many different graphical representations
useful for quite different purposes.

3 Supporting Human Thought, Judgment, and Action

As pointed out at the beginning of this paper, the main aim of Conceptual
Knowledge Processing and its methods is to support rational thought, judgment
and action of human beings and to promote the critical discourse. Since Concep-
tual Knowledge Processing treats knowledge based on actual realities, it relies
on the philosophical logic as the science of thought in general, its general laws
and kinds (cf. [Pe92], p.116). This understanding of philosophical logic has been
developed since the 16th century, founded on the doctrines of concept, judgment,
and conclusion. The assistance which Conceptual Knowledge Processing obtains
from the philosophical logic becomes substantially intensified by the mathemat-
ical methods of Contextual Logic, which is based on a mathematization of the
philosophical doctrines of concept, judgment, and conclusion (cf. [Wi00a]).

Methods of Conceptual Knowledge Processing 25

Thus, for applying and elaborating the discussed methods of Conceptual
Knowledge Processing, it is worth-while not only to work on the level of actual
realities in the frame of philosophical logic, but also on the level of potential
realities activating mathematical methods. This is, in particular, necessary for
the development of new software and theoretical extensions. Nevertheless, the
logical level should have the primacy over the mathematical level because ap-
plying methods of Conceptual Knowledge Processing should primarily support
human thought, judgment, and action.

Methods of knowledge processing always presuppose, consciously or uncon-
sciously, some understanding of what knowledge is. Different from ambitious
knowledge, specified for Conceptual Knowledge Processing in Section 1, a quite
dominant understanding views knowledge as a collection of facts, rules, and pro-
cedures justifiable by objectively founded reasoning. K.-O. Apel criticizes this
cognitive-instrumental understanding and advocates for a pragmatic understand-
ing of knowledge:

“In view of this problematic situation [of rational argumentation] it is
more obvious not to give up reasoning entirely, but rather to break with
the concept of reasoning which is orientated by the pattern of logic-
mathematical proofs. In accordance with a new foundation of critical
rationalism, Kant’s question of transcendental reasoning has to be taken
up again as the question about the normative conditions of the possibility
of discursive communication and understanding (and therewith discur-
sive criticism too). Reasoning then appears primarily not as deduction
of propositions out of propositions within an objectivizable system of
propositions in which one has already abstracted from the actual prag-
matic dimension of argumentation, but as answering of why-questions of
all sorts within the scope of argumentative discourse.” (cf. [Ap89], p.19)

In [Wi96], a restructuring of mathematical logic is proposed which locates reason-
ing within the intersubjective community of communication and argumentation.
Only the process of discourse and understanding in the intersubjective commu-
nity leads to comprehensive states of rationality. Such process does not exclude
logic-mathematical proofs, but they can be only part of a broader argumentative
discourse (cf. [Wi97b]).

Methods of Conceptual Knowledge Processing can only be successfully ap-
plied if discourses can be made possible which allow the users and the persons
concerned to understand and even to criticize the methods, their performances,
and their effects. This does not mean an understanding of all technical details,
but the gained competence to judge about the effects which the involved persons
and institutions have to expect. A method of conceptual knowledge processing
should be transparent in such a manner that persons affected could even success-
fully fight against the use of that method. An important precondition for critical
discourses is that the methods can be communicated in a language which can
be understood by the persons concerned; but establishing such languages needs
transdisciplinary efforts (cf. [Wi02]).

26 R. Wille

References

[Ap76] K.-O. Apel: Das Apriori der Kommunikationsgemeinschaft und die Grund-
lagen der Ethik. In: Transformation der Philosophie. Band 2: Das Apriori
der Kommunikationsgemeinschaft. Suhrkamp Taschenbuch Wissenschaft
165, Frankfurt 1976.

[Ap89] K.-O. Apel: Begründung. In: H. Seiffert, G. Radninzky (Hrsg.): Handlexi-
kon der Wissenschaftstheorie. Ehrenwirth, München 1989, 14–19.

[BS97] J. Barwise, J. Seligman: Information flow: the logic of distributive systems.
Cambridge University Press, Cambridge 1997.

[BH05] P. Becker, J. Hereth Correia: The ToscanaJ Suite for implementing con-
ceptual information systems. In: [GSW05], 324–348.

[Br94] R. B. Brandom: Making it explicit. Reasoning, representing, and discursive
commitment. Havard University Press, Cambridge 1994.

[Bu00] P. Burmeister: ConImp - Ein Programm zur Formalen Begriffsanalyse. In:
[SW00], 25–56.

[CR04] C. Carpineto, G. Romano: Concept data analysis: theory and applications.
Wiley, London 2004.

[CR05] C. Carpineto, G. Romano: Using concept lattices for text retrieval and
mining. In: [GSW05], 161–179.

[EGSW00] P. W. Eklund, B. Groh, G. Stumme, R. Wille: A contextual-logic extension
of TOSCANA. In: B. Ganter, G. Mineau (eds.): Conceptual structures: log-
ical, linguistic and computational issues. LNAI 1867. Springer, Heidelberg
2000, 453-467.

[EKSW00] D. Eschenfelder, W. Kollewe, M. Skorsky, R. Wille: Ein Erkundungssystem
zum Baurecht: Methoden der Entwicklung eines TOSCANA-Systems. In:
[SW00], 254–272.

[FW89] S. Felix, R. Wille: Phonemes of French in Switzerland: an application of
Formal Concept Analysis. Unpublished material. TH Darmstadt 1989.

[Ga87] B. Ganter: Algorithmen zur Formalen Begriffsanalyse. In: B. Ganter,
R. Wille, K. E. Wolff (Hrsg.): Beiträge zur Begriffsanalyse. B.I.-Wissen-
schaftsverlag, Mannheim 1986, 241–254.

[GSW05] B. Ganter, G. Stumme, R. Wille (eds.): Formal Concept Analysis: foun-
dations and applications. State-of-the-Art Survey. LNAI 3626. Springer,
Heidelberg 2005.

[GW89] B. Ganter, R. Wille: Conceptual scaling. In: F. Roberts (ed.): Applications
of combinatorics and graph theory in the biological and social sciences.
Springer-Verlag, New York 1989, 139–167.

[GW99a] B. Ganter, R. Wille: Formal Concept Analysis: mathematical foundations.
Springer, Heidelberg 1999.

[GW99b] B. Ganter, R. Wille: Contextual Attribute Logic. In: W. Tepfenhart,
W. Cyre (eds.): Conceptual structures: standards and practices. LNAI
1640. Springer, Heidelberg 1999 , 377–388.

[GSJ86] R. Godin, E. Saunders, J. Jecsei: Lattice model of browsable data spaces.
Journal of Information Sciences 40 (1986), 89–116.

[GD86] J.-L. Guigues, V. Duquenne: Familles minimales d’implications informa-
tive resultant d’un tableau de données binaires. Math. Sci. Humaines 95
(1986), 5–18.

[Ha81] J. Habermas: Theorie des kommunikativen Handelns. 2 Bände. Suhrkamp,
Frankfurt 1981.

Methods of Conceptual Knowledge Processing 27

[Ks05] T. Kaiser: A TOSCANA-System for the International Regimes Database
(IRD). In: H. Breitmeier, O. R. Young, M. Zürn (eds.): Analyzing inter-
national environmental regimes: from case study to database (to appear)

[Ka88] I. Kant: Logic. Dover, New York 1988.
[Kc79] G. L. Karcher: Konstrastive Untersuchungen von Wortfeldern im Deut-

schen und Englischen. Peter Lang, Frankfurt 1979.
[Kr99] M. Karl: Eine Logik verteilter Systeme und deren Anwendung auf Schalt-

netzwerke. Diplomarbeit. FB Mathematik, TU Darmstadt 1999.
[KW86] U. Kipke, R. Wille: Begriffsverbände als Ablaufschemata zur Gegenstands-

bestimmung. In: P. O. Degens, H.-J. Hermes, O. Opitz (Hrsg.): Die Klas-
sifikation und ihr Umfeld. Indeks Verlag, Frankfurt 1986, 164–170.

[KW87] U. Kipke, R. Wille: Formale Begriffsanalyse erläutert an einem Wortfeld.
LDV-Forum 5 (1987), 31–36.

[Ko05] B. Koester: FooCA: Enhacing Google information research by means of
Formal Concept Analysis. Preprint. TU Darmstadt 2005.

[KV00] B. Kohler-Koch, F. Vogt: Normen- und regelgeleitete internationale Koop-
erationen - Formale Begriffsanalyse in der Politikwissenschaft. In: [SW00],
325–340.

[KSVW94] W. Kollewe, M. Skorsky, F. Vogt, R. Wille: TOSCANA - ein Werkzeug zur
begrifflichen Analyse und Erkundung von Daten. In: R. Wille, M. Zick-
wolff (Hrsg.): Begriffliche Wissensverarbeitung - Grundfragen und Auf-
gaben. B.I.-Wissenschaftsverlag, Mannheim 1994, 267–288.

[LS05] L. Lakhal, G. Stumme: Efficient mining of association rules based on For-
mal Concept Analysis. In: [GSW05], 180–195.

[Lo84] K. Lorenz: Methode. In: J. Mittelstraß (Hrsg.): Enzyklopädie Philoso-
phie und Wissenschaftstheorie. Bd.2. B.I.-Wissenschaftsverlag, Mannheim
1984, 876–879.

[Ma00] K. Mackensen: Simplizität - Genese und Wandel einer musikästhetischen
Kategorie des 18. Jahrhunderts. Bärenreiter, Kassel 2000.

[MW99] K. Mackensen, U. Wille: Qualitative text analysis supported by conceptual
data systems. Quality & Quantity 33 (1999), 135–156.

[Na96] NaviCon GmbH: Anaconda für Windows. Frankfurt 1996.
[Pe35] Ch. S. Peirce: Collected papers. Harvard Univ. Press, Cambridge 1931–35.
[Pe92] Ch. S. Peirce: Reasoning and the logic of things. Edited by K. L. Ketner;

with an introduction by K. L. Ketner and H. Putnam. Havard University
Press, Cambridge 1992.

[PW99] S. Prediger, R. Wille: The lattice of concept graphs of a relationally scaled
context. In: W. Tepfenhart, W. Cyre (eds.): Conceptual structures: stan-
dards and practices. LNAI 1640. Springer, Heidelberg 1999, 401-414.

[RW00] T. Rock, R. Wille: Ein TOSCANA-Erkundungssystem zur Literatursuche.
In: [SW00], 239–253.

[RS84] S. Rückl, G. Schmoll (Hrsg.): Lexikon der Information und Dokumenta-
tion. VEB Bibliographisches Institut, Leipzig 1984.

[SW99] F. Siebel, R. Wille: Unpublished material. TU Darmstadt 1999.
[So84] J. F. Sowa: Conceptual structures: information processing in mind and

machine. Adison-Wesley, Reading 1984.
[So92] J. F. Sowa: Conceptual Graphs summary. In: T. E. Nagle, J. A. Nagle,

L. L. Gerholz, P. W. Eklund (eds.): Conceptual structures: current research
and practice. Ellis Horwood, 1992, 3–51.

28 R. Wille

[SW86] J. Stahl, R. Wille: Preconcepts and set representations of contexts. In:
W. Gaul, M. Schader (eds.): Classification as a tool of research. North-
Holland, Amsterdam 1986, 431–438.

[SW92] S. Strahringer, R. Wille: Towards a structure theory of ordinal data. In:
M. Schader (ed.): Analyzing and modeling data and knowledge. Spinger,
Heidelberg 1992, 129–139.

[SW93] S. Strahringer, R. Wille: Conceptual clustering via convex-ordinal struc-
tures. In: O. Opitz, B. Lausen, R. KLar (eds.): Information and classi-
fication. Concepts, methods and applications. Springer, Heidelberg 1993,
85–98.

[SWW01] S. Strahringer, R. Wille, U. Wille: Mathematical support for empirical the-
ory building. In: H. S. Delugach, G. Stumme (eds.): Conceptual structures:
broadening the base. LNAI 2120. Springer, Heidelberg 2001, 169–186.

[SC90] A. Strauss. J. Corbin: Basics of qualitative research: grounded theory pro-
cedures and techniques. Sage Publ., Newbury Park 1990.

[St97] G. Stumme: Concept exploration: knowledge acquisition in conceptual
knowledge systems. Dissertation, TU Darmstadt. Shaker Verlag, Aachen
1997.

[SW00] G. Stumme, R. Wille (Hrsg.): Begriffliche Wissensverarbeitung: Methoden
und Anwendungen. Springer, Heidelberg 2000.

[VW95] F. Vogt, R. Wille: TOSCANA – A graphical tool for analyzing and explor-
ing data. In: R. Tamassia, I. G. Tollis (eds.): Graph drawing ’94. LNCS
894. Springer, Heidelberg 1995, 226–233.

[Wi84] R. Wille: Liniendiagramme hierarchischer Begriffssysteme. In: H. H. Bock
(Hrsg.): Anwendungen der Klassifikation: Datenanalyse und numerische
Klassifikation. Indeks-Verlag, Frankfurt 1984, 32–51; English translation:
Line diagrams of hierachical concept systems. International Classiffication
11 (1984), 77–86.

[Wi87] R. Wille: Bedeutungen von Begriffsverbänden. In: B. Ganter, R. Wille,
K. E. Wolff (Hrsg.): Beiträge zur Begriffsanalyse. B.I.-Wissenschafts-
verlag, Mannheim 1986, 161–211.

[Wi89a] R. Wille: Lattices in data analysis: how to draw them with a computer.
In: I. Rival (Ed.): Algorithms and order. Kluwer, Dordrecht 1989, 33–58.

[Wi89b] R. Wille: Knowledge acquisition by methods of Formal Concept Analy-
sis. In: E. Diday (ed.): Data analysis and learning symbolic and numeric
knowledge. Nova Science Publisher, New York–Budapest 1989, 365–380.

[Wi92] R. Wille: Concept lattices and conceptual knowledge systems. Computers
& mathematics with applications 23 (1992), 493–515.

[Wi94] R. Wille: Plädoyer für eine philosophische Grundlegung der Begrifflichen
Wissensverarbeitung. In: R. Wille, M. Zickwolff (Hrsg.): Begriffliche Wis-
sensverarbeitung — Grundfragen und Aufgaben. B.I.-Wissenschaftsverlag,
Mannheim 1994, 11–25.

[Wi96] R. Wille: Restructuring mathematical logic: an approach based on Peirce’s
pragmatism. In: A. Ursini, P. Agliano (eds.): Logic and algebra. Marcel
Dekker, New York 1996, 267–281.

[Wi97a] R. Wille: Conceptual graphs and formal concept analysis. In: D. Lukose,
H. Delugach, M. Keeler, L. Searle, J. F. Sowa (eds.): Conceptual struc-
tures: fulfilling Peirce’s dream. LNAI 1257. Springer, Heidelberg 1997,
290–303.

Methods of Conceptual Knowledge Processing 29

[Wi97b] R. Wille: Conceptual landscapes of knowledge: a pragmatic paradigm for
knowledge processing. In: G. Mineau, A. Fall (eds.): Proceedings of the
International Symposium on Knowledge Representation, Use, and Stor-
age Efficiency. Simon Fraser University, Vancouver 1997, 2–13; also in:
W. Gaul, H. Locarek-Junge (Eds.): Classification in the Information Age.
Springer, Berlin-Heidelberg 1999, 344–356.

[Wi00a] R. Wille: Contextual Logic summary. In: G. Stumme (ed.): Working with
conceptual structures. Contributions to ICCS 2000. Shaker-Verlag, Aachen
2000, 265–276.

[Wi00b] R. Wille: Begriffliche Wissensverarbeitung: Theorie und Praxis. Infor-
matik Spektrum 23 (2000), 357–369; revised version in: B. Schmitz (Hrsg.):
Thema Forschung: Information, Wissen, Kompetenz. Heft 2/2000, TU
Darmstadt, 128–140.

[Wi01] R. Wille: Mensch und Mathematik: Logisches und mathematisches
Denken. In: K. Lengnink, S. Prediger, F. Siebel (Hrsg.): Mathematik
und Mensch: Sichtweisen der Allgemeinen Mathematik. Verlag Allgemeine
Wissenschaft, Mühltal 2001, 141–160.

[Wi02] R. Wille: Transdisziplinarität und Allgemeine Wissenschaft. In: H. Krebs,
U. Gehrlein, J. Pfeifer, J. C. Schmidt (Hrsg.): Perspektiven Interdiszi-
plinärer Technikforschung: Konzepte, Analysen, Erfahrungen. Agenda-
Verlag, Münster 2002, 73–84.

[Wi04a] R. Wille: Truncated distributive lattices: conceptual structures of simple-
implicational theories. Order 20 (2004), 229–238.

[Wi04b] R. Wille: Dyadic mathematics - abstractions of logical thought. In: K. De-
necke, M. Erné, S. L. Wismath (eds.): Galois connections and applications.
Kluwer, Dordrecht 2004, 453–498.

[Wi05a] R. Wille: Mathematik präsentieren, reflektieren, beurteilen. In: K. Leng-
nink, F. Siebel (Hrsg.): Mathematik präsentieren, reflektieren, beurteilen.
Verlag Allgemeine Wissenschaft, Mühltal 2005, 3–19.

[Wi05b] R. Wille: Formal Concept Analysis as mathematical theory of concepts
and concept hierarchies. In: [GSW05], 1–33.

[WW96] R. Wille, U. Wille: Coordinatization of ordinal structures. Order 13,
(1996), 281–294.

[WW04] R. Wille, U. Wille: Restructuring General Geometry: measurement and
visualization of spatial structures. Contributions to General Algebra 14.
Johannes Heyn Verlag, Klagenfurt 2004, 189–203.

[Ye00] S. Yevtushenko: System of data analysis “Concept Explorer”. In: Proceed-
ings of the sevens national conference on Artificial Intelligence KII–2000,
Russia 2000, 127–134. (in Russian)

An Enumeration Problem in Ordered Sets
Leads to Possible Benchmarks

for Run-Time Prediction Algorithms�

Tushar S. Kulkarni1 and Bernd S.W. Schröder2

1 Program of Computer Science, Louisiana Tech University,
Ruston, LA 71272

tushar kul@hotmail.com
2 Program of Mathematics & Statistics, Louisiana Tech University,

Ruston, LA 71272
schroder@coes.LaTech.edu

Abstract. Motivated by the desire to estimate the number of order-
preserving self maps of an ordered set, we compare three algorithms
(Simple Sampling [4], Partial Backtracking [10] and Heuristic Sampling
[1]) which predict how many nodes of a search tree are visited. The com-
parison is for the original algorithms that apply to backtracking and for
modifications that apply to forward checking. We identify generic tree
types and concrete, natural problems on which the algorithms predict
incorrectly. We show that incorrect predictions not only occur because
of large statistical variations but also because of (perceived) systemic bi-
ases of the prediction. Moreover, the quality of the prediction depends on
the order of the variables. Our observations give new benchmarks for es-
timation and seem to make heuristic sampling the estimation algorithm
of choice.

Keywords: constraint satisfaction, search, enumeration.

1 Authors’ Motivation: The Automorphism Problem

An ordered set is a set P equipped with a reflexive, antisymmetric and transi-
tive binary relation ≤, the order relation. Order-preserving maps are the natural
morphisms for these structures.

Definition 1.1. Let P and Q be finite ordered sets. A map f : P → Q is called
a homomorphism (or an order-preserving map) iff f preserves order, that
is, x ≤ y implies f(x) ≤ f(y). An endomorphism is a homomorphism from P
to P . An automorphism is a bijective endomorphism whose inverse also is an
endomorphism.

The set of endomorphisms of P will be denoted End(P) and the set of auto-
morphisms will be denoted Aut(P). The set of homomorphisms from P to Q will
be denoted Hom(P, Q).
� This work was sponsored by Louisiana Board of Regents RCS grant LEQSF

(1999-02)-RD-A-27. Part of this work is part of Tushar Kulkarni’s Master’s
Thesis.

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 30–44, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Enumeration Problem in Ordered Sets 31

This work is originally motivated by the following question first asked in [11].

Open Question 1.2. The Automorphism Problem. What is

lim
|P |→∞

|Aut(P)|
|End(P)| := lim

n→∞
max
|P |=n

|Aut(P)|
|End(P)|?

The common conjecture is that the limit is zero.

Conjecture 1.3. The Automorphism Conjecture [11].

lim
|P |→∞

|Aut(P)|
|End(P)| = 0.

The automorphism conjecture was proved for the class of finite lattices in [7].
There are also various exercises in [12], p.288, 289 that prove the automorphism
conjecture for some easy classes of ordered sets, such as interval ordered sets and
sets of width ≤ 3.

To get some experimental insight into the problem, it is natural to use an
enumeration algorithm to compute the numbers of endomorphisms and auto-
morphisms for specific ordered sets and investigate these quotients. One of the
authors (Schröder) had such algorithms coded from earlier work on the fixed
point property inspired by [16]. The enumeration of endomorphisms and auto-
morphisms for small sets led to useful experimental data and brought about the
results in [13].

For larger ordered sets, the enumeration takes too long, but it is equally natu-
ral to try to obtain reliable estimates. This idea led to the investigation presented
here. The authors implemented the three well-established tree-size estimation
techniques and tested them on ordered sets. Similar to [9], it was observed that
for tall, narrow ordered sets the estimates were not necessarily reliable. To date,
estimation has not been used in connection with the automorphism problem.
Instead, we started an investigation into possible weaknesses of the estimation
algorithms and as we will see, the estimation of the tree searched to enumerate
all endomorphisms of a chain already is challenging.

It should be noted that the typical tree search is a search for the first solu-
tion, not an enumeration of all solutions. This paper exclusively considers the
enumeration of all solutions. The weaknesses observed should however also ex-
ist in searches for the first solution. Trivial examples would be to add another
level to the searches presented here and hiding a small number of solutions at
that level. More reasonably, we can say that estimates for problems with deep
hierarchies that contain many “partial solutions” (consistent instantiations, see
below) should be susceptible to the effects presented here.

2 Tree Search

Tree searching is a well-established solution technique for decision and opti-
mization problems. Because the search time for a particular problem can be

32 T.S. Kulkarni and B.S.W. Schröder

unacceptably long, various algorithms (cf. [1, 4, 10]) to estimate the size of the
search tree have been proposed. Such estimates could be used to determine
which (if any) algorithm is more feasible or if some variable order is prefer-
able over another. For a more exhaustive list of possible applications cf. [14].
These algorithms have been successful in all test cases reported in [1, 4, 10],
with the main concern for accuracy being the variance of the reported results.
In [9], section 7.4, Simple Sampling was used in a variable ordering heuristic. In
their setting Simple Sampling gave unreliable estimates and in some cases gross
underestimates consistently. On the other hand, in [14] the use of a sampling
technique based on Partial Backtracking in a variable ordering scheme produced
satisfactory results. Indeed, variable ordering heuristics are considered one of the
prime applications of estimation algorithms. To shed some light on the contra-
dictory observations above, we investigate three estimation algorithms (Simple
Sampling, Partial Backtracking and Heuristic Sampling) in the framework of
binary constraint satisfaction problems. After giving the necessary background
on binary constraint satisfaction problems and the estimation algorithms, we
provide a class of natural examples for which the estimation algorithms fail. The
examples show similar behavior for forward checking as well as for backtracking,
thus covering two major search paradigms. Our examples could thus become
benchmarks on which to measure the quality of future prediction algorithms.

2.1 (Binary) Constraint Networks

A binary constraint network or binary constraint satisfaction problem
(CSP) consists of the following.

A. A set of variables, which we denote 1, . . . , n,
B. A set of domains D1, . . . , Dn, one for each variable; we will assume each

domain is the set {1, . . . , m},
C. A set C of binary constraints. Each binary constraint consists of a set of two

variables {i, j} and a binary relation Cij ⊆ Di×Dj. For each set of variables
we have at most one constraint.

For a given CSP, let Y ⊆ {1, . . . , n}. Any element x = {(j, xj) : j ∈ Y } ∈
Πj∈Y Dj is an instantiation of the variables in Y . (If the set Y is equal to
{1, . . . , k} we will also denote our tuples as (x1, . . . , xk).) An instantiation is
called consistent if and only if for all i, j ∈ Y we have that (xi, xj) ∈ Cij .
A solution to a CSP is a consistent instantiation of all variables. The typical
questions about CSPs are if there is a solution and how many solutions there
are. For a good introduction to CSPs consider [2, 8, 15]. We will use the terms
CSP and constraint network interchangeably. All CSPs in this paper are binary,
so that we will also often drop this specification.

2.2 Backtracking

Backtracking (BT) is a search algorithm to find a solution of a CSP. The back-
tracking algorithm maintains a consistent instantiation of the first k variables

An Enumeration Problem in Ordered Sets 33

at all times. (At the start this is the empty set.) Given a consistent instanti-
ation CI of the first k variables, backtracking instantiates k + 1 to the first
value xk+1,1 of Dk+1. If CI ∪ {(k + 1, xk+1,1)} is consistent, then CI is replaced
with CI ∪ {(k + 1, xk+1,1)} and backtracking tries to instantiate k + 2. If not,
the next value in Dk+1 is tried. If backtracking does not find any instantiation
of k + 1 that extends the current instantiation, then k is uninstantiated, that
is, CI is replaced with CI \ {(k, xk,current)}. The search then resumes as above
by instantiating k to the next element of the kth domain, xk,current+1. Every
instantiation that is checked by BT will be called a node in the BT search
tree.

2.3 Forward Checking

Forward Checking (FC) can be viewed as refinement of BT. Call a consis-
tent instantiation (x1, . . . , xk) forward consistent if and only if for all vari-
ables j ∈ {k + 1, . . . , n} there is an instantiation xj of j so that the instan-
tiation (x1, . . . , xk) with {(j, xj)} added is consistent. As FC reaches a for-
ward consistent instantiation (x1, . . . , xk), it has stored for all variables j ∈
{k + 1, . . . , n} the values xj in Dj for which the instantiation (x1, . . . , xk) with
{(j, xj)} added is consistent. FC instantiates k + 1 to the first xk+1 ∈ Dk+1 so
that (x1, . . . , xk, xk+1) is consistent. It is then checked if (x1, . . . , xk, xk+1) is
forward consistent also. The result of this checking procedure is stored as the
list of values that lead to consistent extensions of (x1, . . . , xk, xk+1). If there
is a j ∈ {k + 2, . . . , n} for which there is no xj so that (x1, . . . , xk, xk+1) with
{(j, xj)} added is consistent, one speaks of a domain annihilation. In this
case FC instantiates k + 1 to the next element of Dk+1 that consistently ex-
tends (x1, . . . , xk). If (x1, . . . , xk, xk+1) is forward consistent, FC instantiates
k + 2. If there are no further values to be tried, FC uninstantiates k and k + 1
and instantiates k to the next consistent extension of the (forward consistent)
(x1, . . . , xk−1). Any instantiation of all variables that is visited by FC automat-
ically is a solution, since FC only visits consistent instantiations. If FC finds
a solution the search either stops (if only one solution was to be found) or it
continues (if all solutions were to be found).

For an excellent description of various search algorithms and their relative
comparisons, cf. [6].

3 Prediction Algorithms

The focus of this paper is the comparison of prediction algorithms for the number
of nodes that FC or BT visits in a search for all solutions. These algorithms search
a subtree and compute an estimate based on the data gathered in the subtree.
In the following, the ordering of the variables will be considered fixed unless a
reordering is explicitly indicated.

For each algorithm we will first describe the original version (for BT) and
then how to adapt it to estimate FC.

34 T.S. Kulkarni and B.S.W. Schröder

3.1 Simple Sampling

In [4] “Simple Sampling” (SS) (terminology from [1]) is introduced to predict
how many nodes BT visits. Instantiate the first variable with a random element
of D1 and set e0 := 1, e1 := |D1|, and e2 := · · · := en := 0. After variables
1, . . . , k have been instantiated to x1, . . . , xk, compute the number cx1,...,xk

of
instantiations xk+1 for k + 1 so that (x1, . . . , xk, xk+1) is consistent. There are
two possibilities.

A. cx1,...,xk

= 0. In this case instantiate variable k + 1 to a randomly chosen

value xk+1 so that (x1, . . . , xk, xk+1) is consistent. Set ek+1 := ek · cx1,...,xk

and continue.
B. cx1,...,xk

= 0. In this case we stop.

At the end of this algorithm the number ek is an estimate for the number of
consistent nodes at depth k in the search space. Since (cf. [6], Theorems 8 and
9) BT visits all nodes whose parent is consistent, the number

v :=
n−1∑
k=0

ek|Dk+1|

is an estimate for the number of nodes that BT visits.
If, for FC, the word “consistent” above is replaced with “forward consistent”,

then the algorithm gives an estimate of the number of forward consistent nodes.
Unfortunately, there is no simple formula to compute the number of nodes FC
visits from the number of forward consistent nodes. Thus for SS (and the fol-
lowing algorithms) the adaptation to FC is slightly more subtle. The initial step
for SS remains the same, except that we set e1 := 0. Let fx1,...,xk

be the number
of forward consistent children of (x1, . . . , xk). Run the algorithm until k0 with
fx1,...,xk0

= 0 is reached. For k = 1, . . . , k0 set ek := fx1 · · · fx1,...,xk−1cx1,...,xk
.

The sum of the ek is an estimate how many nodes FC visits. (This notation is
motivated by the fact that FC visits a subset of the set of consistent nodes.)

3.2 Partial Backtracking

Partial Backtracking (PBb), cf. [10], for b > 1 is a refinement of SS. Instead
of randomly selecting one consistent child of every visited node, for a fixed b ≥ 1,
one randomly selects b consistent children (all if there are fewer than b) of every
consistent node that is visited. In the tree that PBb visits, every node (x1, . . . , xk)
is consistent and has exactly min{b, cx1,...,xk

} children.
To implement PBb, one modifies BT as follows. At each depth k, maintain a set

Sk of possible instantiations for the kth variable. Whenever one goes deeper into
the tree, say from depth k to k + 1, one computes first the set of all consistent
extensions of the current instantiation (x1, . . . , xk). Then one picks b random
elements out of this set (or takes all if the set has ≤ b elements). These elements
form the set Sk+1. Whenever k is reinstantiated, one instantiates k to the next
unused element of Sk (instead of the next domain element).

An Enumeration Problem in Ordered Sets 35

All ek are initially set to zero. For every visited node (x1, . . . , xk) we add to
ek the product Πk−2

l=1 max
(cx1,...,xl

b , 1
)
. Again ek is an estimate of the number of

consistent nodes at depth k. The estimate for the total number of nodes visited
by BT is computed as for SS. Note that PBb is actually a collection of algorithms,
since for every value of b we have a different algorithm. The smaller the b, the
faster the estimate (for b = 1 PB1 is SS). The larger the b, the more accurate
the estimate. (Indeed, if b ≥ |Dk| for all k, then PBb performs regular BT.)

To have some consistency in language we shall call the FC modification of this
algorithm Partial Forward Checking (PFb). The modification is that we use
only forward consistent nodes when the sets Sk are formed. For every visited
node (consistent nodes that are not forward consistent are visited, too; they are
just not used to form the sets Sk) we add the product Πk−2

l=1 max
(

fx1,...,xl

b , 1
)

to
ek. Then the sum of the ek is an estimate of the number of nodes visited by FC.

3.3 Heuristic Sampling

Heuristic Sampling (HS), cf. [1], is another generalization of SS. Sampled
nodes are still chosen randomly, but some information about the nodes is used
in the choices. When a set of nodes contains only nodes that are considered
similar, then only the children of one representative of this set of nodes will be
investigated.

The mechanism that identifies similar nodes is a function called the stratifier.
Any function that is defined on all nodes and strictly decreases along each edge
of the search tree can be used as a stratifier. Nodes for which the stratifier
gives the same value are considered similar. This idea makes HS adaptable to
particular situations, since a problem specific stratifier can be used. Yet we are
interested in an algorithm that is applicable to arbitrary CSPs. The needed
domain-independent stratifiers are not too hard to generate. Yet they seem to
not have played a great role in the literature so far. The stratifiers that we will
be particularly interested in are

A. Depth. Nodes at the same depth are considered similar. HS reduces to SS.
B. (Depth, number of consistent children). Nodes at the same depth and

with the same number of consistent children are considered similar. This
stratifier is mentioned in [1], p. 297 as something to “perhaps [our emph.]
give us better stratification”.

C. (Depth, number of consistent children, number of consistent grand-
children). Generalization of B. Nodes at the same depth, with the same num-
ber of consistent children and with the same number of consistent grandchil-
dren are similar.

In the algorithm, the stratifier function needs to be numerical. This can al-
ways be achieved by hashing multiple values into one number. For example, one
can hash the stratifier in B as sB := −(m〈depth〉 + 〈nr. consistent children〉)
and the stratifier in C as sC := −(m3〈depth〉 + m2〈nr. consistent children〉 +
〈nr. consistent grandchildren〉).

36 T.S. Kulkarni and B.S.W. Schröder

The algorithm itself maintains a queue of triples (n, s, w) consisting of a node
n, its stratifier value s and its weight w. HS starts with a queue that contains only
the triple consisting of the root node, the stratifier value zero and the weight
1. HS then executes until the queue is empty. In every iteration the element
(np, sp, wp) with the largest stratifier value is removed from the queue and all its
consistent children are examined. For each consistent child c the stratifier value
s(c) is computed. If there is no element in the queue with stratifier value s(c),
add (c, s(c), wp) to the queue. If there is an element (n, s(c), w) in the queue,
replace w with w + wp and then with probability wp

w replace n with c. For each
consistent child at depth k, add wp to ek. Again ek will be an estimate of the
number of consistent nodes at depth k.

Just like PBb, HS is a set of algorithms, one for each stratifier. We will refer
to the algorithms with stratifiers as above as HSc (depth, consistent children)
and HSg (depth, consistent children, consistent grandchildren).

HS was conceived as an algorithm for general trees, so it is not surprising that
it adapts most easily to FC. For every element in the queue first check if it is
forward consistent. If it is not, discard the element. If it is, process it as above.
The sum of the ek will be an estimate of the number of nodes visited by FC.

3.4 Failure Modes

All sampling algorithms described above will ideally visit only a small fraction
of the nodes in the search tree in each iteration (individual sample). While
the individual samples for each algorithm are potentially very inaccurate there
is theoretical as well as experimental evidence (cf. [1, 4, 10]) that the average
of a sufficient number of estimates is close to the actual value. Indeed (cf. [1],
Theorem 4; [4], Theorem 1) for all algorithms the individual samples are unbiased
estimators for the number of nodes visited. That is, the expected value of the
individual sample estimates is the number of nodes visited. Normally several
individual samples are averaged to arrive at an estimate of the number of nodes
(sample average). In practice, under the assumption that the sampled nodes
are representative, the sample averages are expected to be close to the actual
number of nodes. Lack of uniformity in the properties of the nodes can lead to
two possible modes of failure.

Large statistical fluctuations. The sample averages spread symmetrically
about the actual value. However the number of samples needed to obtain a
sample average that is with high probability close to the actual value is so large
that it may be faster to search the whole tree. Essentially the distribution of the
individual samples has an unacceptably large standard deviation.

(Perceived) systemic bias. In this mode, even sample averages of many sam-
ples are consistently bounded away from the actual number of nodes. The dis-
tribution of the sample values appears to have an expected value that differs
from the actual number of nodes. This failure mode is more dangerous than
the large fluctuations. The algorithm appears to give a statistically valid, stable

An Enumeration Problem in Ordered Sets 37

estimate that should be close to the actual tree size, while it actually delivers
an underestimate.

The possibility of (perceived) systemic bias is mentioned in [4], section 4,
using lottery type distributions. (If an algorithm returns a large value with small
probability and small values with high probability, then even averages of larger
samples can be consistently lower than the actual mean.) An example involving
trees on p. 481 in [10] shows the main idea for causing (perceived) systemic
bias. If the children of most nodes have vastly different numbers of consistent
descendants, then SS is likely to exhibit (perceived) systemic bias. In the example
noted in [10] each node has two children with differing numbers of descendants.
Essentially one “wrong” turn will cause SS to miss most of the nodes of the tree.
This type of example inspired the development of PBb, which showed better
performance than SS in “tall, skinny trees”.

It is noted in [4] that no natural example of (perceived) systemic bias was ever
found. Indeed it is mentioned ([4], section 6) that the right order of magnitude
in all tests was found in 10-1,000 trials. Neither [10] nor [1] give any indication
of natural examples in which (perceived) systemic bias was observed for any
algorithm. The only concrete recorded statement of a (perceived) systemic bias
is in section 7.4 of [9] and details are not given.

3.5 Order-Preserving Maps (again)

(Perceived) systemic bias can occur, when for most nodes the next instantiation
partitions the descendants of the node into subsets of vastly different sizes. This
type of behavior is typical for hierarchical structures. Ordered sets are the natural
tool to describe hierachies.

A chain is a partially ordered set for which any two elements are comparable.
We shall denote a generic chain with n elements by Cn and assume it is of the
form 1 < 2 < 3 < · · · < n. That is, it consists of the first n natural numbers
with their usual order.

The search tree for all order-preserving self maps of a chain is a natural
occurrance of an imbalanced search tree. Instantiate the variables in their natural
order. For this problem and variable order an instantiation of the first k variables
is consistent exactly when it is forward consistent. (Any missing elements can
always be mapped to the top element n.) This, in turn, is the case exactly when
the instantiation corresponds to an order-preserving map from {1, . . . , k} = Ck

to {1, . . . , n} = Cn.
Let C(k, n) be the number of order-preserving maps from Ck to Cn. Note that

an order-preserving map from Ck to Cn can map the smallest element of Ck to
the smallest element of Cn or strictly above that element. This provides a natural
partition of the order-preserving maps from Ck to Cn into two subsets. For the
first subset there is only one image for the smallest element, so it has C(k−1, n)
elements. For the second subset there are at most n−1 images for each element, so
it has C(k, n− 1) elements. This means C(k, n) = C(k − 1, n) + C(k, n− 1) and
the C(k, n) are computable. This was helpful for larger experiments in which
the search algorithm would run too long. Equally important, the above idea

38 T.S. Kulkarni and B.S.W. Schröder

can be used to show that the instantiation of the last variable determines the
number of (forward) consistent descendants of the node. If the first k variables
have been instantiated and k is instantiated to f(k), then the node will have
exactly C(n−k, n− f(k)+1) consistent descendants. While n−k is determined
by the depth, the number n − f(k) + 1 can typically span a wider range of
possibilities. Focusing our attention back on children, we see that the numbers
C(n − (k + 1), n − a + 1) with a ≥ f(k) span a wide range of sizes. Thus all
consistent nodes with at least two children have children with vastly different
numbers of consistent descendants.

The above appears to be the first recorded example of a structured family of
problems (rather than isolated examples as in [9]) in which (perceived) systemic
bias can be observed. This structure allows for a more organized investigation
of the phenomenon. While chains have a very special structure, they abound
in ordered sets. Thus any ordered set that contains long chains appears to be
a set on which sampling algorithms could produce erroneous estimates. Our
experimental observations will confirm that sampling search is problematic in
this setting.

4 Experimental Results

Results for estimation of FC and BT were similar, so we will only report results
for FC. For each experiment we ran each estimation algorithm 100 times. To
allow fair performance comparison, for each algorithm we bounded the number
of nodes that are checked for (forward) consistency by 10, 000nm. Once more
than the maximum number of nodes is checked for consistency, the current indi-
vidual sample is finished and then the average is computed. In this fashion, each
algorithm gathers roughly the same amount of information. With the specific
bound, SS will collect at least 10,000 individual samples. Run times increase for
the same number of nodes checked depending on the overhead per node, with
SS being fastest, then PF2, PF3, HSc and HSg.

In recorded results we present a histogram of the quotients

r =
estimated nodes

actual nodes
.

This appears preferable to presenting the relative error. Consider that a -50%
error means the estimate is off by a factor 2, while a +50% error means the
estimate is off by a factor 1.5, giving a skewed picture of the quality of the
estimate.

4.1 (Perceived) Systemic Bias

We first detected a (perceived) systemic bias in SS for the BT search for all
order-preserving self-maps for the 14-chain. In Table 1 we show the data for the
FC search on the 15-chain.

We see SS tends to underestimate. This bias is worse when only 1, 000nm
nodes are checked. The systemic bias remains even when allowing 100, 000nm

An Enumeration Problem in Ordered Sets 39

Table 1. Estimating the FC search tree for order-preserving maps of the 15-chain

estimated nodes
actual nodes SS PF2 PF3 HSc HSg

< 1
4 16 0 0 0 0[1

4 , 1
3

)
17 0 0 0 0[1

3 , 1
2

)
21 2 10 0 0[1

2 , 2
3

)
15 23 16 0 0[2

3 , 4
5

)
10 18 14 0 3[4

5 , 1
)

7 25 23 100 97[
1, 5

4

)
3 15 14 0 0[5

4 , 3
2

)
6 6 13 0 0[3

2 , 2
)

2 4 4 0 0
[2, 3) 1 5 5 0 0
[3, 4) 1 1 1 0 0
≥ 4 1 1 0 0 0

nodes to be checked for SS. The effect is not yet visible for PF2 and PF3 (though
it was visible in the measurement for BT and PB2 and PB3). Also note that PF2

is performing better than PF3, which can be explained by the smaller number of
repetitions PF3 can afford with the allowed number of checks. The HS algorithms
gave underestimates that were less than 5% off for HSg and less than 1% off for
HSc, so they were extremely accurate.

How does the (perceived) systemic bias manifest itself as the size of the chain
increases? Consider Table 2 below, which shows the results for SS with 10, 000nm
nodes allowed to be checked for consistency and increasing chain size. As the size
of the chain increases we observe a transition in the results of the estimation
algorithms. First the sample variance increases and then more and more sample
averages become underestimates. This is despite the fact that the increase in
number of nodes allowed to be checked actually allows slightly more repetitions
of the algorithm for the larger chains.

Did we simply not perform enough repetitions? The central limit theorem
guarantees that for sufficiently large sample sizes, sample averages are approx-
imately normally distributed around the actual mean. Hence, the bias in SS
must eventually go away as the sample size increases. This is not practical for
these problems. We established experimentally that for the 20-chain one must
use sample sizes that force the experimenter to sample more nodes than there
are in the full search tree (!) before the systemic bias in SS (for FC and BT)
is overcome. Again, the (perceived) systemic bias worsens as the length of the
chain increases, so eventually arbitrarily bad underestimates are obtained with
arbitrarily large sample sizes.

The same type of transition indicated above for SS is also observable for PBb

and PFb. In Table 3 we list the size n of the chain Cn for which we first observe
a systemic bias when estimating the size of the FC tree for finding all order-
preserving self maps of Cn. Since the bias is increasing with the size of the chain
we had to establish a starting point. We considered the experiment to show

40 T.S. Kulkarni and B.S.W. Schröder

Table 2. Using SS to estimate the FC search tree for order-preserving maps of the
n-chain, allowed 10, 000nm nodes to be checked

estimated nodes
actual nodes C11 C12 C13 C14 C15 C16

< 1
4 0 0 0 2 16 41[1

4 , 1
3

)
0 0 1 4 17 19[1

3 , 1
2

)
0 1 18 31 21 10[1

2 , 2
3

)
3 15 22 13 15 5[2

3 , 4
5

)
11 15 18 18 10 5[4

5 , 1
)

26 25 11 6 7 6[
1, 5

4

)
36 18 9 10 3 2[5

4 , 3
2

)
12 9 7 2 6 3[3

2 , 2
)

11 7 3 4 2 3
[2, 3) 1 8 7 7 1 0
[3, 4) 0 1 1 2 1 0
≥ 4 0 1 3 1 1 6

Table 3. Estimation of the FC and BT search trees for order-preserving maps of the
n-chain shows systemic bias for n > 〈cutoff〉

algorithm SS PF/B2 PF/B3 HSc HSg

FC 〈cutoff〉 16 19 20 > 30 > 30
BT 〈cutoff〉 15 17 18 > 30 > 30

(perceived) systemic bias when at least 60% of the estimates were less than half
the actual number.

HSc and HSg consistently gave estimates (for the total number of nodes as well
as for the number of solutions!) that were less than 1% off for all chains up to the
30-chain! However we also found examples of more complex ordered sets (a “stack
of five six-crowns” as in Figure 1 to be precise) for which HSc showed systemic
bias worse than PF2 and PF3. (Thus PF2 and PF3 can outperform HSc.) We
suspect that HSg also is susceptible to this phenomenon, but the experiments
became too large. For the stack of five six-crowns, the ratio of estimated to actual
nodes in 100 runs of HSg was 11 times in [0.8, 1), 85 times in [1, 1.25), and 4
times in [1.25, 1.5).

Generally, as long as the hierarchy did not get too wide, (perceived) systemic
bias could be observed for sufficiently large ordered sets.

These examples show that the specific structure of a long chain embedded
within a problem can result in (perceived) systemic biases for this problem.
Systemic bias can turn into a practical problem if estimation is used to choose
between FC and BT. An estimate that predicts BT to visit fewer nodes than
FC can still be identified as nonsensical. Yet the possible use of estimation al-
gorithms to predict the number of consistency checks performed (which is often
proportional to run time and which can be lower for BT than for FC) could lead
to a situation where an underestimate for BT causes BT to be chosen over the
actually more efficient FC.

An Enumeration Problem in Ordered Sets 41

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 1. When estimating the search tree for enumerating the order-preserving self maps
of a stack of five six-crowns, HSc is outperformed by PF2 and PF3

4.2 The Effect of Reordering the Variables

To demonstrate how the quality of the estimation also depends on the variable
order, we reordered the domain variables in the search for the order-preserving
maps of the 15-chain as follows. From left to right we go from the bottom up,
numbers indicate the number in the variable ordering. The original order in 4.1
was the natural order 1, 2, 3, . . . , 15. The reorder for which we report results
in Table 4 was 1,9,2,10,3,11,4,12,5,13,6,14,7,15,8. Both the original FC tree as
well as the FC tree on the reordered chain have the same number of nodes
(155,117,519). This is a specific property of this type of problem, which does not
occur widely.

All algorithms performed better in the reordered problem than in the original.
SS, HSc and HSg gave near equivalent and satisfactory results. PF2 and PF3

exhibit larger variance than the other algorithms. This is interesting, as we are
not aware of any recorded examples in which SS outperforms PFb/PBb. Results
for BT were similar, indeed, more pronounced.

Table 4. Estimating the FC search tree for order-preserving maps of the renumbered
15-chain

estimated nodes
actual nodes SS PF2 PF3 HSc HSg

< 1
2 0 0 0 0 0[1

2 , 2
3

)
0 0 10 0 0[2

3 , 4
5

)
0 6 13 0 0[4

5 , 1
)

19 47 22 0 0[
1, 5

4

)
81 42 36 100 100[5

4 , 3
2

)
0 5 13 0 0[3

2 , 2
)

0 0 6 0 0
≥ 2 0 4 0 0 0

42 T.S. Kulkarni and B.S.W. Schröder

The data is indicative of another potentially serious problem for applications.
If the quality of the estimate depends on the variable ordering, then a bad
quality underestimate of the search time for one variable ordering could cause
this variable ordering to be chosen over another, which may have been more
efficient, but was estimated more accurately. The equal sizes of the search trees
above show that there is no proportionality, say, in such a way that smaller trees
have worse underestimates than larger trees. Observations of this nature led to
the discarding of SS as a variable order heuristic in [9].

4.3 Variances of the Different Algorithms

Fortunately, many problems do not exhibit the (perceived) systemic bias re-
ported above. Tables 1 and 4 already give an indication how variances behave
(ignore the SS column in Table 1). Another set of measurements that indicates
how the variances of the different sample averages behave when there is no per-
ceived bias is given in Table 5 for a search for Hamiltonian cycles. The estimates
are for the number of nodes FC visits when enumerating the number of knight’s
tours on a 6 × 6 chessboard. Since predictions were very good for this problem
we only allowed 100nm nodes to be checked.

It is interesting to note here that SS outperforms all other algorithms. The
PF algorithms are marked with a ∗ because both needed more than the allowed
number of nodes even for one repetition. For PF2 this was not too critical (it
used about 4 times the allowed number of nodes). For PF3 it was (it used more
than 350 times the allowed number of nodes).

Data sets in which SS was outperformed by PF, which in turn was outper-
formed by HS were found for various searches for relation preserving maps in
structures in which chains are not too long, randomly seeded CSPs, and the
n-queens problem (n ≤ 17). Supplementary measurements with fewer or more
nodes allowed to be checked show (as reported in the literature) that the vari-

Table 5. Estimating the FC search tree for knight’s tours on a 6 × 6 chessboard

estimated nodes
actual nodes SS ∗PF2 ∗PF3 HSc HSg

< 1
4 0 0 0 0 0[1

4 , 1
3

)
0 0 0 0 0[1

3 , 1
2

)
0 5 0 0 0[1

2 , 2
3

)
0 11 1 1 0[2

3 , 4
5

)
0 12 13 13 10[4

5 , 1
)

51 24 30 45 44[
1, 5

4

)
49 30 47 24 36[5

4 , 3
2

)
0 17 9 14 7[3

2 , 2
)

0 1 0 2 3
[2, 3) 0 0 0 1 0
[3, 4) 0 0 0 0 0
≥ 4 0 0 0 0 0

An Enumeration Problem in Ordered Sets 43

ance decreases as the number of nodes checked increases. For a report on all
experiments, consider [5].

5 Conclusion and Outlook

We considered basic versions of SS, PB and HS for BT and FC. This appears to
be the first recorded application of these algorithms to FC.

The most important experiments were the enumeration of order-preserving
self maps of chains and other “narrow” ordered sets. In these experiments SS,
PBb, PFb and HSc exhibit (perceived) systemic bias for sufficiently large sets.
This effect occurs for BT as well as for FC, though it occurs a little later for
FC. This suggests that estimations of the BT/FC tree size for any problem that
contains deep hierarchical structures could be susceptible to (perceived) systemic
bias. Order-preserving self maps of narrow ordered sets can be considered a
future benchmark for CSP estimation algorithms.

In regards to ranking the algorithms, we can say that a clear ranking may not
be possible. It was surprising to find examples in which SS outperforms PB/PF,
examples in which SS outperforms HSc and HSg and examples in which PF2 and
PF3 outperform HSc. Overall, HSg consistently gave estimates that were near
the best among the algorithms, though not always the best. Thus, among the
algorithms presented, HSg would be our algorithm of choice.

Variable ordering affects the performance of estimation algorithms in a fashion
that is not proportional to the effect on the run time. Thus the choice of a variable
ordering based on an estimation algorithm (cf. [14], p. 39) has to be treated with
care.

Future experiments should be paralleled by theoretical investigations into
what general types of problems will be hard to estimate. The examples given
here show some natural structures that cause failure. Problems similar to the
examples and problems that contain our examples as substructures should be
equally affected. Is there a general description of “deep hierarchies”, which
would allow the detection of possible problems with estimation before an es-
timation algorithm is run? Is there is a graphical description of a CSP simi-
lar to how formal concept analysis describes relations that could warn of the
problems described here or suggest a good variable ordering? One of the au-
thors’ (B. Schröder) original starting point was [16], which is about formal
concept analysis. Insights in this direction could clarify the scope of estima-
tion algorithms for tasks such as algorithm selection or variable reordering. Any
translation of constraint satisfaction problems into the formal concept domain
would likely lead to very large concept lattices, which could only be “drawn”
by solving the problem in question. Yet maybe some of a specific problem’s
properties translate to properties of the concept lattice that can guide search
algorithms.

Finally, with a refined approach to search, called maintaining arc consistency,
showing great potential, it may be interesting to translate the estimation ideas
to this setting and then re-consider the experiments reported here.

44 T.S. Kulkarni and B.S.W. Schröder

References

1. P. C. Chen. Heuristic Sampling: A method for predicting the performance of tree
searching programs. SIAM J. Comput., 21:295-315, 1992.

2. R. Dechter. Constraint networks. In Encyclopedia of Artificial Intelligence, pages
276-284, Wiley, New York, 1992.

3. D. Duffus, V. Rödl, B. Sands, R. Woodrow. Enumeration of order-preserving maps.
Order, 9:15-29, 1992.

4. D. E. Knuth. Estimating the efficiency of backtrack programs. Math. Comp.,
29:121-136, 1975.

5. T. Kulkarni. Experimental evaluation of selected algorithms for estimating the cost
of solving a constraint satisfaction problem. MS. Thesis, Louisiana Tech University,
2001.

6. G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking
algorithms. Artificial Intelligence, 89:365-387, 1997.

7. W.-P. Liu and H. Wan. Automorphisms and Isotone Self-Maps of Ordered Sets
with Top and Bottom. Order, 10:105-110, 1993.

8. A.K. Mackworth. Constraint Satisfaction. In Encyclopedia of Artificial Intelligence,
pages 284-293 Wiley, New York, 1992.

9. H. A. Priestley and M. P. Ward. A multipurpose backtracking algorithm. Journal
of Symbolic Computation, 18:1-40, 1994.

10. P. W. Purdom. Tree size by partial backtracking. SIAM J. Comput., 7:481-491,
1978.

11. I. Rival and A. Rutkowski (1991). Does almost every isotone self-map have a fixed
point? In: Bolyai Math. Soc.. Extremal Problems for Finite Sets. Bolyai Soc. Math.
Studies 3, Viségrad, Hungary. p. 413-422

12. B. Schröder (2003). Ordered Sets – An Introduction. Birkhäuser Verlag. Boston,
Basel, Berlin

13. B.Schröder (2005). The Automorphism Conjecture for Small Sets and Series Par-
allel Sets. To appear in ORDER.

14. J. Sillito. Arc consistency for general constraint satisfaction problems and estimat-
ing the cost of solving constraint satisfaction problems. M. Sc. thesis, University
of Alberta, 2000.

15. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, New York, New
York, 1993.

16. W. Xia. Fixed point property and formal concept analysis. Order, 9:255–264, 1992.

Attribute Implications in a Fuzzy Setting�

Radim Bělohlávek and Vilém Vychodil

Department of Computer Science, Palacky University, Olomouc,
Tomkova 40, CZ-779 00 Olomouc, Czech Republic
{radim.belohlavek, vilem.vychodil}@upol.cz

Abstract. The paper is an overview of recent developments concerning
attribute implications in a fuzzy setting. Attribute implications are for-
mulas of the form A ⇒ B, where A and B are collections of attributes,
which describe dependencies between attributes. Attribute implications
are studied in several areas of computer science and mathematics. We
focus on two of them, namely, formal concept analysis and databases.

Keywords: attribute implication, fuzzy logic, functional dependency,
concept lattice.

1 Introduction

Formulas of the form A ⇒ B where A and B are collections of attributes have
been studied for a long time in computer science and mathematics. In formal
concept analysis (FCA), formulas A ⇒ B are called attribute implications. At-
tribute implications are interpreted in formal contexts, i.e. in data tables with
binary attributes, and have the following meaning: Each object having all at-
tributes from A has also all attributes from B, see e.g. [22, 25]. In databases,
formulas A ⇒ B are called functional dependencies. Functional dependencies are
interpreted in relations on relation schemes, i.e. in data tables with arbitrarily-
valued attributes and have the following meaning: Any two objects which have
the same values of attributes from A have also the same values of attributes
from B, see e.g. [2, 29].

In what follows, we present an overview of some recent results on attribute
implications and functional dependencies developed from the point of view of
fuzzy logic. Section 2 provides an overview to some notions of fuzzy logic which
will be needed. Section 3 deals with attribute implications in a fuzzy setting. Sec-
tion 4 deals with functional dependencies in a fuzzy setting. Section 5 discusses
Armstrong-like rules. Section 6 contains concluding remarks.

2 Preliminaries in Fuzzy Logic and Fuzzy Sets

Contrary to classical logic, fuzzy logic uses a scale L of truth degrees, the most
favorite choice being L = [0, 1] (real unit interval) or some subchain of [0, 1].
� Supported by grant No. 1ET101370417 of GA AV ČR, by grant No. 201/05/0079

of the Czech Science Foundation, and by institutional support, research plan MSM
6198959214.

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 45–60, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

46 R. Bělohlávek and V. Vychodil

This enables to consider intermediate truth degrees of propositions, e.g. “object
x has attribute y” has a truth degree 0.8 indicating that the proposition is
almost true. In addition to L, one has to pick an appropriate collection of logical
connectives (implication, conjunction, . . .). A general choice of a set of truth
degrees plus logical connectives is represented by so-called complete residuated
lattices (equipped possibly with additional operations). The rest of this section
presents an introduction to fuzzy logic notions we will need. Details can be found
e.g. in [4, 24, 26], a good introduction to fuzzy logic and fuzzy sets is presented
in [28].

A complete residuated lattice is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such that
〈L,∧,∨, 0, 1〉 is a complete lattice with 0 and 1 being the least and greatest
element of L, respectively; 〈L,⊗, 1〉 is a commutative monoid (i.e. ⊗ is commu-
tative, associative, and a ⊗ 1 = 1 ⊗ a = a for each a ∈ L); ⊗ and → satisfy
so-called adjointness property:

a ⊗ b ≤ c iff a ≤ b → c

for each a, b, c ∈ L. Elements a of L are called truth degrees. Fuzzy logic is
truth-functional and ⊗ and → are truth functions of (“fuzzy”) conjunction and
(“fuzzy”) implication. That is, if ||ϕ|| and ||ψ|| are truth degrees of formulas
ϕ and ψ then ||ϕ|| ⊗ ||ψ|| is a truth degree of formula ϕ&ψ (& is a symbol of
conjunction connective); analogously for implication.

A useful connective is that of a truth-stressing hedge (shortly, a hedge) [26, 27].
A hedge is a unary function ∗ : L → L satisfying 1∗ = 1, a∗ ≤ a, (a → b)∗ ≤ a∗ →
b∗, a∗∗ = a∗, for each a, b ∈ L. Hedge ∗ is a truth function of logical connective
“very true”, see [26, 27]. The properties of hedges have natural interpretations,
see [27].

A common choice of L is a structure with L = [0, 1] (unit interval) or L being
a finite chain. We refer to [4, 26] for details.

Two boundary cases of (truth-stressing) hedges are (i) identity, i.e. a∗ = a
(a ∈ L); (ii) globalization [34]:

a∗ =
{

1 if a = 1,
0 otherwise.

A special case of a complete residuated lattice with hedge is the two-element
Boolean algebra 〈{0, 1},∧,∨,⊗,→, ∗, 0, 1〉, denoted by 2, which is the structure
of truth degrees of the classical logic. That is, the operations ∧,∨,⊗,→ of 2 are
the truth functions (interpretations) of the corresponding logical connectives of
the classical logic and 0∗ = 0, 1∗ = 1. Note that if we prove an assertion for
general L, then, as a particular example, we get a “crisp version” of this assertion
for L being 2.

Having L, we define usual notions: an L-set (fuzzy set) A in universe U is a
mapping A : U → L, A(u) being interpreted as “the degree to which u belongs
to A”. We say “fuzzy set” instead of “L-set” if L is obvious. If U = {u1, . . . , un}
then A can be denoted by A = {a1/u1, . . . ,

an/un} meaning that A(ui) equals
ai for each i = 1, . . . , n. For brevity, we introduce the following convention:

Attribute Implications in a Fuzzy Setting 47

we write {. . . , u, . . .} instead of {. . . , 1/u, . . .}, and we also omit elements of
U whose membership degree is zero. For example, we write {u, 0.5/v} instead
of {1/u, 0.5/v, 0/w}, etc. Let LU denote the collection of all L-sets in U . The
operations with L-sets are defined componentwise. For instance, the intersection
of L-sets A, B ∈ LU is an L-set A∩B in U such that (A∩B)(u) = A(u)∧B(u)
for each u ∈ U , etc. Binary L-relations (binary fuzzy relations) between X and
Y can be thought of as L-sets in the universe X×Y . That is, a binary L-relation
I ∈ LX×Y between a set X and a set Y is a mapping assigning to each x ∈ X
and each y ∈ Y a truth degree I(x, y) ∈ L (a degree to which x and y are related
by I). An L-set A ∈ LX is called crisp if A(x) ∈ {0, 1} for each x ∈ X . Crisp
L-sets can be identified with ordinary sets. For a crisp A, we also write x ∈ A
for A(x) = 1 and x
∈ A for A(x) = 0. An L-set A ∈ LX is called empty (denoted
by ∅) if A(x) = 0 for each x ∈ X . For a ∈ L and A ∈ LX , a⊗A ∈ LX is defined
by (a ⊗A)(x) = a⊗A(x).

Given A, B ∈ LU , we define a subsethood degree

S(A, B) =
∧

u∈U

(
A(u) → B(u)

)
, (1)

which generalizes the classical subsethood relation ⊆. S(A, B) represents a de-
gree to which A is a subset of B. In particular, we write A ⊆ B iff S(A, B) = 1
(A is fully contained in B). As a consequence, A ⊆ B iff A(u) ≤ B(u) for each
u ∈ U .

A binary L-relation≈ in U (i.e., between U and U) is called reflexive if for each
u ∈ U we have u ≈ u = 1; symmetric if for each u, v ∈ U we have u ≈ v = v ≈ u;
transitive if for each u, v, w ∈ U we have (u ≈ v) ⊗ (v ≈ w) ≤ (u ≈ w); L-
equivalence if it is reflexive, symmetric, and transitive; L-equality if it is an
L-equivalence for which u ≈ v = 1 iff u = v.

In the following we use well-known properties of residuated lattices and fuzzy
structures which can be found in monographs [4, 26]. Throughout the rest of the
paper, L denotes an arbitrary complete residuated lattice and ∗ (possibly with
indices) denotes a hedge.

3 Attribute Implications

3.1 Attribute Implications, Validity, Theories and Models

We first introduce attribute implications. Suppose Y is a finite set (of attributes).

Definition 1. A (fuzzy) attribute implication (over Y) is an expression A ⇒ B,
where A, B ∈ LY (A and B are fuzzy sets of attributes).

Fuzzy attribute implications are our basic formulas. The intended meaning of
A ⇒ B is: “if it is true that an object has all attributes from A, then it has also
all attributes from B”.

Remark 1. For an fuzzy attribute implication A ⇒ B, both A and B are fuzzy
sets of attributes. Particularly, A and B can both be ordinary sets (i.e. A(y) ∈
{0, 1} and B(y) ∈ {0, 1} for each y ∈ Y), i.e. ordinary attribute implications are
a special case of fuzzy attribute implications.

48 R. Bělohlávek and V. Vychodil

A fuzzy attribute implication does not have any kind of “validity” on its own—it
is a syntactic notion. In order to consider validity, we introduce an interpretation
of fuzzy attribute implications. Fuzzy attribute implications are meant to be
interpreted in data tables with fuzzy attributes. A data table with fuzzy attributes
(called also a formal fuzzy context) can be seen as a triplet 〈X, Y, I〉 where X is
a set of objects, Y is a finite set of attributes (the same as above in the definition
of a fuzzy attribute implication), and I ∈ LX×Y is a binary L-relation between
X and Y assigning to each object x ∈ X and each attribute y ∈ Y a degree
I(x, y) to which x has y. 〈X, Y, I〉 can be thought of as a table with rows and
columns corresponding to objects x ∈ X and attributes y ∈ Y , respectively, and
table entries containing degrees I(x, y). A row of a table 〈X, Y, I〉 corresponding
to an object x ∈ X can be seen as a fuzzy set Ix of attributes to which an
attribute y ∈ Y belongs to a degree Ix(y) = I(x, y).

The basic step in the definition of a validity of a fuzzy attribute implication
A ⇒ B is its validity in a fuzzy set M of attributes.

Definition 2. For a fuzzy attribute implication A ⇒ B over Y and a fuzzy set
M ∈ LY of attributes, we define a degree ||A ⇒ B||M ∈ L to which A ⇒ B is
valid in M by

||A ⇒ B||M = S(A, M)∗ → S(B, M). (2)

Remark 2. (1) S(A, M) and S(B, M) are the degrees to which A and B are
contained in M , as defined by (1); ∗ is a truth-stressing hedge; → is a truth
function of implication. Therefore, it is easily seen that if M is a fuzzy set of
attributes of some object x then ||A ⇒ B||M is a truth degree of a proposition
“if it is (very) true that x has all attributes from A then x has all attributes
from B”.

(2) A hedge ∗ plays a role of a parameter controlling the semantics. Consider
the particular forms of (2) for the boundary choices of ∗. First, if ∗ is identity,
(2) becomes

||A ⇒ B||M = S(A, M) → S(B, M).

In this case, ||A ⇒ B||M is a truth degree of “if A is contained in M then B is
contained in M”. Second, if ∗ is globalization, (2) becomes

||A ⇒ B||M =
{

S(B, M) if A ⊆ M,
1 otherwise.

In this case, ||A ⇒ B||M is a truth degree of “B is contained in M” provided A
is fully contained in M (i.e. A(y) ≤ M(y) for each y ∈ Y), and ||A ⇒ B||M is
1 otherwise. Therefore, compared to the former case (∗ being identity), partial
truth degrees of “A is contained in M” are disregarded for ∗ being globalization.

(3) Consider now the case L = 2 (i.e., the structure of truth degrees is a
two-element Boolean algebra of classical logic). In this case, ||A ⇒ B||M = 1 iff
we have that if A ⊆ M then B ⊆ M . Hence, for L = 2, Definition 2 yields the
well-known definition of validity of an attribute implication in a set of attributes,
cf. [22].

Attribute Implications in a Fuzzy Setting 49

We now extend the definition of a validity of attribute implications to validity
in systems of fuzzy sets of attributes and to validity in data tables with fuzzy
attributes.

Definition 3. For a system M of L-sets in Y , define a degree ||A ⇒ B||M to
which A ⇒ B is true in (each M from) M by

||A ⇒ B||M =
∧

M∈M
||A ⇒ B||M . (3)

Given a data table 〈X, Y, I〉 with fuzzy attributes, define a degree ||A ⇒ B||〈X,Y,I〉
to which A ⇒ B is true in 〈X, Y, I〉 by

||A ⇒ B||〈X,Y,I〉 = ||A ⇒ B||{Ix |x∈X}. (4)

Remark 3. Since Ix represents a row of table 〈X, Y, I〉 corresponding to x (recall
that Ix(y) = I(x, y) for each y ∈ Y), ||A ⇒ B||〈X,Y,I〉 is, in fact, a degree to
which A ⇒ B is true in a system M = {Ix |x ∈ X} of all rows of table 〈X, Y, I〉.

Remark 4. For a fuzzy attribute implication A ⇒ B, degrees A(y) ∈ L and
B(y) ∈ L can be seen as thresholds. This is best seen when ∗ is globalization,
i.e. 1∗ = 1 and a∗ = 0 for a < 1. Since for a, b ∈ L we have a ≤ b iff a → b = 1,
we have

(a → b)∗ =
{

1 iff a ≤ b,
0 iff a
≤ b.

Therefore, ||A ⇒ B||〈X,Y,I〉 = 1 means that a proposition “for each object x ∈ X :
if for each attribute y ∈ Y , x has y in degree greater than or equal to (a threshold)
A(y), then for each y ∈ Y , x has y in degree at least B(y)” is true. In general,
||A ⇒ B||〈X,Y,I〉 is a truth degree of the latter proposition. As a particular
example, if A(y) = a for y ∈ YA ⊆ Y (and A(y) = 0 for y
∈ YA) B(y) = b
for y ∈ YB ⊆ Y (and B(y) = 0 for y
∈ YB), the proposition says “for each
object x ∈ X : if x has all attributes from YA in degree at least a, then x has all
attributes from YB in degree at least b”, etc. That is, having A and B fuzzy sets
allows for a rich expressibility of relationships between attributes which is why
we want A and B to be fuzzy sets in general.

Example 1. For illustration, consider Tab. 1, where table entries are taken from
L defined on the real unit interval L = [0, 1] with ∗ being globalization. Consider
now the following fuzzy attribute implications.

(1) {0.3/y3,
0.7/y4}⇒{y1,

0.3/y2,
0.8/y4,

0.4/y6} is true in degree 1 in data table
from Tab. 1. On the other hand, implication {y1,

0.3/y3}⇒{0.1/y2,
0.7/y5,

0.4/y6}
is not true in degree 1 in Tab. 1—object x2 can be taken as a counterexample:
x2 does not have attribute y5 in degree greater than or equal to 0.7.

(2) {y1, y2}⇒{y4, y5} is a crisp attribute implication which is true in degree
1 in the table. On the contrary, {y5}⇒ {y4} is also crisp but it is not true in
degree 1 (object x3 is a counterexample).

50 R. Bělohlávek and V. Vychodil

Table 1. Data table with fuzzy attributes

I y1 y2 y3 y4 y5 y6

x1 1.0 1.0 0.0 1.0 1.0 0.2
x2 1.0 0.4 0.3 0.8 0.5 1.0
x3 0.2 0.9 0.7 0.5 1.0 0.6
x4 1.0 1.0 0.8 1.0 1.0 0.5

X = {x1, . . . , x4}
Y = {y1, . . . , y6}

(3) Implication {0.5/y5,
0.5/y6}⇒{0.3/y2,

0.3/y3} is in the above-mentioned form
for YA = {y5, y6}, YB = {y2, y3}, a = 0.5, and b = 0.3. The implication is true
in data table in degree 1. {0.5/y5,

0.5/y6}⇒{0.3/y1,
0.3/y2} is also in this form (for

YB = {y1, y2}) but it is not true in the data table in degree 1 (again, take x3 as
a counterexample).

We now come to the notions of a theory and a model. In logic, a theory is
considered as a collection of formulas. The formulas are considered as valid
formulas we can use when making inferences. In fuzzy logic, a theory T can be
considered as a fuzzy set of formulas, see [30] and also [23, 26]. Then, for a formula
ϕ, a degree T (ϕ) to which ϕ belongs to T can be seen as a degree to which we
assume ϕ valid (think of ϕ as expressing “Mary likes John”, “temperature is
high”, etc.). This will be also our approach. In general, we will deal with fuzzy
sets T of attribute implications. Sometimes, we use only sets T of attribute
implications (particularly when interested only in fully true implications). The
following definition introduces the notion of a model.

Definition 4. For a fuzzy set T of fuzzy attribute implications, the set Mod(T)
of all models of T is defined by

Mod(T) = {M ∈ LY | for each A, B ∈ LY : T (A ⇒ B) ≤ ||A ⇒ B||M}.

That is, M ∈ Mod(T) means that for each attribute implication A ⇒ B, a degree
to which A ⇒ B holds in M is higher than or at least equal to a degree T (A ⇒ B)
prescribed by T . Particularly, for a crisp T , Mod(T) = {M ∈ LY | for each A ⇒
B ∈ T : ||A ⇒ B||M = 1}.

3.2 Relationship to Fuzzy Concept Lattices

Analogously as in the ordinary case, there is a close relationship between at-
tribute implications and concept lattices. A useful structure derived from
〈X, Y, I〉 which is related to attribute implications is a so-called fuzzy concept
lattice with hedges [10]. Let ∗X and ∗Y be hedges (their meaning will become
apparent later). For L-sets A ∈ LX (L-set of objects), B ∈ LY (L-set of at-
tributes) we define L-sets A↑ ∈ LY (L-set of attributes), B↓ ∈ LX (L-set of
objects) by

A↑(y) =
∧

x∈X

(
A(x)∗X → I(x, y)

)
and B↓(x) =

∧
y∈Y

(
B(y)∗Y → I(x, y)

)
.

We put B(X∗X , Y ∗Y , I) = {〈A, B〉 ∈ LX× LY |A↑ = B, B↓ = A}. For 〈A1, B1〉,
〈A2, B2〉 ∈ B(X∗X , Y ∗Y , I), put 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (or, iff B2 ⊆

Attribute Implications in a Fuzzy Setting 51

B1; both ways are equivalent). Operators ↓, ↑ form a Galois connection with
hedges [10]. 〈B(X∗X , Y ∗Y , I),≤〉 is called a fuzzy concept lattice (with hedges)
induced by 〈X, Y, I〉; 〈A, B〉 ∈ B(X∗X , Y ∗Y , I) are called formal concepts. For
∗Y = idL (identity), we write only B(X∗X , Y, I).

Remark 5. (1) Fuzzy concept lattices with hedges generalize some of the ap-
proaches to concept lattices from the point of view of a fuzzy approach, see [14]
for details.

(2) Hedges can be seen as parameters which control the size of a fuzzy concept
lattice (the stronger the hedges, the smaller B(X∗X , Y ∗Y , I)). See [10] for details.

(3) For L = 2, a fuzzy concept lattice with hedges coincides with the ordinary
concept lattice.

For each 〈X, Y, I〉 we consider a set Int(X∗X , Y ∗Y , I) ⊆ LY of all intents of
concepts of B(X∗X , Y ∗Y , I), i.e.

Int(X∗X , Y ∗Y , I) = {B ∈ LY | 〈A, B〉 ∈ B(X∗X , Y ∗Y , I) for some A ∈ LX}.

For ∗X = ∗ (the hedge used in (2)) and ∗Y = idL (identity on L), B(X∗, Y, I)
and Int(X∗, Y, I) play analogous roles for fuzzy attribute implications to the
roles of ordinary concept lattices and systems of intents for ordinary attribute
implications.

We close this section by a theorem showing some formulas expressing a degree
||A ⇒ B||M in terms of fuzzy concept lattices with hedges and the operators ↑

and ↓. For hedges •, ∗ : L → L put • ≤ ∗ iff a• ≤ a∗ for each a ∈ L.

Theorem 1 ([13]). For a data table 〈X, Y, I〉 with fuzzy attributes, hedges •
and ∗ with • ≤ ∗, and an attribute implication A ⇒ B, the following values are
equal:
||A ⇒ B||〈X,Y,I〉, ||A ⇒ B||Int(X∗,Y,I), S(B, A↓↑),∧

x∈X,a∈L S(a∗ ⊗A, { 1/x}↑)• → S(a∗ ⊗B, { 1/x}↑),∧
x∈X,a∈L S(A, { a

/
x}↑)• → S(B, { a

/
x}↑),∧

a∈L ||a∗ ⊗A ⇒ a∗ ⊗B||〈X,Y,I〉,∧
M∈Int(X∗,Y,I) S(A, M)• → S(B, M).

3.3 Complete Sets and Guigues-Duquenne Bases

We now turn our attention to the notions of semantic entailment, completeness
in data tables, non-redundant basis, etc.

Definition 5. A degree ||A ⇒ B||T ∈ L to which A ⇒ B semantically follows
from a fuzzy set T of attribute implications is defined by

||A ⇒ B||T = ||A ⇒ B||Mod(T). (5)

That is, ||A ⇒ B||T can be seen as a degree to which A ⇒ B is true in each
model of T . From now on in this section, we will assume that T is an ordinary
set of fuzzy attribute implications.

52 R. Bělohlávek and V. Vychodil

Definition 6. A set T of attribute implications is called complete (in 〈X, Y, I〉)
if ||A ⇒ B||T = ||A ⇒ B||〈X,Y,I〉 for each A ⇒ B. If T is complete and no proper
subset of T is complete, then T is called a non-redundant basis (of 〈X, Y, I〉).

Note that both the notions of a complete set and a non-redundant basis refer to
a given data table with fuzzy attributes.

Since we are primarily interested in implications which are fully true in
〈X, Y, I〉, the following notion seems to be of interest. Call T 1-complete in
〈X, Y, I〉 if we have that ||A ⇒ B||T = 1 iff ||A ⇒ B||〈X,Y,I〉 = 1 for each
A ⇒ B. Clearly, if T is complete then it is also 1-complete. Surprisingly, we
have also

Theorem 2 ([12]). T is 1-complete in 〈X, Y, I〉 iff T is complete in 〈X, Y, I〉.

The following assertion shows that the models of a complete set of fuzzy attribute
implications are exactly the intents of the corresponding fuzzy concept lattice.

Theorem 3 ([7]). T is complete iff Mod(T) = Int(X∗, Y, I).

In the following, we focus on so-called Guigues-Duquenne basis, i.e. a non-
redundant basis based on the notion of a pseudointent, see [21, 22, 25]. As we
will see, the situation is somewhat different from what we know from the ordi-
nary case. We start by the notion of a system of pseudointents.

Definition 7. Given 〈X, Y, I〉, P ⊆ LY (a system of fuzzy sets of attributes) is
called a system of pseudo-intents of 〈X, Y, I〉 if for each P ∈ LY we have:

P ∈ P iff P
= P ↓↑ and ||Q ⇒ Q↓↑||P = 1 for each Q ∈ P with Q
= P .

It is easily seen that if L is a complete residuated lattice with globalization then
P is a system of pseudo-intents of 〈X, Y, I〉 if for each P ∈ LY we have:

P ∈ P iff P
= P ↓↑ and Q↓↑ ⊆ P for each Q ∈ P with Q ⊂ P .

In addition to that, in case of finite L, for each data table with finite set of
attributes there is exactly one system of pseudo-intents which can be described
recursively the same way as in the classical case [22, 25]:

Theorem 4 ([11]). Let L be a finite residuated lattice with globalization. Then
for each 〈X, Y, I〉 with finite Y there is a unique system of pseudo-intents P of
〈X, Y, I〉 and

P = {P ∈ LY | P
= P ↓↑ and Q↓↑ ⊆ P holds for each Q ∈ P such that Q ⊂ P}.

Remark 6. (1) Neither the uniqueness of P nor the existence of P is assured in
general, see [11].

(2) For L = 2, the system of pseudointents described by Theorem 4 coincides
with the ordinary one.

The following theorem shows that each system of pseudointents induces a non-
redundant basis.

Attribute Implications in a Fuzzy Setting 53

Theorem 5 ([11]). Let P be a system of pseudointents of 〈X, Y, I〉. Then T =
{P ⇒ P ↓↑|P ∈ P} is a non-redundant basis of 〈X, Y, I〉 (so-called Guigues-
Duquenne basis).

Non-redundancy of T does not ensure that T is minimal in terms of its size.
The following theorem shows a generalization of a well-known result saying that
Guigues-Duquenne basis is minimal in terms of its size.

Theorem 6 ([11]). Let L be a finite residuated lattice with ∗ being the global-
ization, Y be finite. Let T be a Guigues-Duquenne basis of 〈X, Y, I〉, i.e. T =
{P ⇒ P ↓↑ |P ∈ P} where P is the system of pseudointents of 〈X, Y, I〉. If T ′ is
complete in 〈X, Y, I〉 then |T | ≤ |T ′|.

Remark 7. For hedges other than globalization we can have several systems of
pseudointents. The systems of pseudointents may have different numbers of ele-
ments, see [11].

3.4 Algorithms for Generating Systems of Pseudointents

CASE 1: Finite L and ∗ being globalization. If L is finite and ∗ is globalization,
there is a unique system P of pseudointents for 〈X, Y, I〉, see Theorem 4. In what
follows we describe an algorithm for computing this P . The algorithm is based
on the ideas of Ganter’s algorithm for computing ordinary pseudointents, see
[21, 22]. Details can be found in [7].

For simplicity, let us assume that L is, moreover, linearly ordered. For Z ∈ LY

put

ZT ∗
= Z ∪

⋃
{B ⊗ S(A, Z)∗ |A ⇒ B ∈ T and A
= Z},

ZT ∗
0 = Z,

ZT ∗
n = (ZT ∗

n−1)T ∗
, for n ≥ 1,

and define an operator clT ∗ on L-sets in Y by

clT ∗(Z) =
⋃∞

n=0 ZT ∗
n .

Theorem 7 ([7]). clT ∗ is a fuzzy closure operator, and

{clT ∗(Z) |Z ∈ LY } = P ∪ Int(X∗, Y, I).

Using Theorem 7, we can get all intents and all pseudo-intents (of a given data
table with fuzzy attributes) by computing the fixed points of clT ∗ . This can be
done with polynomial time delay using a “fuzzy extension” of Ganter’s algorithm
for computing all fixed points of a closure operator, see [6]. We refer to [7] for
details.

CASE 2: Finite L and arbitrary ∗. If L is finite and ∗ is an arbitrary hedge
(not necessarily globalization), the systems of pseudointents for 〈X, Y, I〉 can be
computed using algorithms for generating maximal independent sets in graphs.

54 R. Bělohlávek and V. Vychodil

Namely, as we show in the following, systems of pseudointents in this case can
be identified with particular maximal independent sets. (details can be found in
[15]): For 〈X, Y, I〉 define a set V of fuzzy sets of attributes by

V = {P ∈ LY |P
= P ↓↑}. (6)

If V
= ∅, define a binary relation E on V by

E = {〈P, Q〉∈ V |P
= Q and ||Q ⇒ Q↓↑||P
= 1}. (7)

In this case, G = 〈V, E ∪ E−1〉 is a graph. For any Q ∈ V and P ⊆ V define
the following subsets of V : Pred(Q) = {P ∈ V | 〈P, Q〉 ∈ E}, and Pred(P) =⋃

Q∈P Pred(Q).

Theorem 8 ([15]). Let L be finite, ∗ be any hedge, 〈X, Y, I〉 be a data table
with fuzzy attributes, P ⊆ LY , V and E be defined by (6) and (7), respectively.
Then the following statements are equivalent.

(i) P is a system of pseudo-intents;
(ii) V − P = Pred(P);
(iii) P is a maximal independent set in G such that V − P = Pred(P).

The Theorem gives a way to compute systems of pseudo-intents. It suffices to find
all maximal independent sets in G and check which of them satisfy additional
condition V − P = Pred(P).

4 Functional Dependencies over Domains with Similarity
Relations

As we mentioned in Section 1, ordinary attribute implications have been used
in databases under the name functional dependencies. Functional dependencies
are interpreted in data tables with arbitrarily-valued attributes. A table entry
corresponding to an object (row) x and an attribute (column) y contains an
arbitrary value from a so-called domain Dy (set of all possible values for y). Then,
A ⇒ B is considered true in such a table if any two objects (rows) which agree
in their values of attributes from A agree also in their values of attributes from
B. In this section we consider functional dependencies from the point of view of
a fuzzy approach. We show several relationships to fuzzy attribute implications.
Most importantly, we argue that in a fuzzy setting, the concept of a functional
dependence is an interesting one for the theory of databases.

Definition 8. A (fuzzy) functional dependence (over attributes Y) is an ex-
pression A ⇒ B, where A, B ∈ LY (A and B are fuzzy sets of attributes).

Therefore, the notion of a fuzzy functional dependence coincides with the notion
of a fuzzy attribute implication. We prefer using both of the terms, depending
on the context of usage. Fuzzy functional dependencies will be interpreted in
data tables over domains with similarities.

Attribute Implications in a Fuzzy Setting 55

Definition 9. A data table over domains with similarity relations is a tuple
D = 〈X, Y, {〈Dy,≈y〉 | y ∈ Y }, T 〉 where

– X is a non-empty set (of objects, table items),
– Y is a non-empty finite set (of attributes),
– for each y ∈ Y , Dy is a non-empty set (of values of attribute y) and ≈y is

a binary fuzzy relation which is reflexive and symmetric,
– T is a mapping assigning to each x ∈ X and y ∈ Y a value T (x, y) ∈ Dy

(value of attribute y on object x).

D will always denote some data table over domains with similarity relations with
its components denoted as above.

Remark 8. (1) Consider L = {0, 1} (case of classical logic). If each ≈y is an
equality (i.e. a ≈y b = 1 iff a = b), then D can be identified with what is called
a relation on relation scheme Y with domains Dy (y ∈ Y) [29].

(2) For x ∈ X and Z ⊆ Y , x[Z] denotes a tuple of values T (x, y) for y ∈ Z.
We may assume that attribute from Y are numbered, i.e. Y = {y1, . . . , yn},
and thus linearly ordered by this numbering, and assume that attributes in x[Z]
are ordered in this way. Particularly, x[y] is x[{y}] which can be identified with
T (x, y).

(3) D can be seen as a table with rows and columns corresponding to x ∈ X
and y ∈ Y , respectively, and with table entries containing values T (x, y) ∈ Dy.
Moreover, each domain Dy is equipped with an additional information about
similarity of elements from Dy.

Given a data table D = 〈X, Y, {〈Dy,≈y〉 | y ∈ Y }, T 〉, we want to introduce a
condition for a functional dependence A ⇒ B to be true in D which says basically
the following: “for any two objects x1, x2 ∈ X : if x1 and x2 have similar values
on attributes from A then x1 and x2 have similar values on attributes from
A”. Define first for a given D, objects x1, x2 ∈ X , and a fuzzy set C ∈ LY of
attributes a degree x1(C) ≈ x2(C) to which x1 and x2 have similar values on
attributes from C (agree on attributes from C) by

x1(C) ≈ x2(C) =
∧

y∈Y

(
C(y) → (x1[y] ≈y x2[y])

)
. (8)

That is, x1(C) ≈ x2(C) is truth degree of proposition “for each attribute y ∈ Y :
if y belongs to C then the value x1[y] of x1 on y is similar to the value x2[y] of x2
on y”, which can be seen as a degree to which x1 and x2 have similar values on
attributes from C. Then, the above idea of validity of a functional dependence
is then captured by the following definition.

Definition 10. A degree ||A ⇒ B||D to which A ⇒ B is true in D is defined by

||A ⇒ B||D =
∧

x1,x2∈X

(
(x1(A) ≈ x2(A))∗ → (x1(B) ≈ x2(B))

)
. (9)

56 R. Bělohlávek and V. Vychodil

Remark 9. (1) If A and B are crisp sets then A and B may be considered as
ordinary sets and A ⇒ B may be seen as an ordinary functional dependence.
Then, if ≈y is an ordinary equality for each y ∈ Y , we have that ||A ⇒ B||D = 1
iff A ⇒ B is true in D in the usual sense of validity of ordinary functional
dependencies.

(2) For a functional dependence A ⇒ B, degrees A(y) ∈ L and B(y) ∈ L can
be seen as thresholds. Namely, if ∗ is globalization, ||A ⇒ B||D = 1 means that
a proposition “for any objects x1, x2 ∈ X : if for each attribute y ∈ Y , A(y) ≤
(x1[y] ≈y x2[y]), then for each attribute y′ ∈ Y , B(y′) ≤ (x1[y′] ≈y x2[y′])”
is true. That is, having A and B fuzzy sets allows for a rich expressibility, cf.
Remark 4.

We now have two ways to interpret a fuzzy attribute implication (fuzzy func-
tional dependence) A ⇒ B. First, given a data table T = 〈X, Y, I〉 with fuzzy
attributes, we can consider a degree ||A ⇒ B||T to which A ⇒ B is true in
T , see (4). Second, given a data table D over domains with similarities, we can
consider a degree ||A ⇒ B||D to which A ⇒ B is true in D, see (9). In the rest of
this section, we focus on presenting the following relationship between the two
kinds of semantics for our formulas A ⇒ B: The notion of semantic entailment
based on data tables with fuzzy attributes coincides with the notion of semantic
entailment based on data tables over domains with similarity relations.

As in case of fuzzy attribute implications, we introduce the notions of a model
and semantic entailment for functional dependencies. For a fuzzy set T of fuzzy
functional dependencies, the set ModFD(T) of all models of T is defined by

ModFD(T) = {D | for each A, B ∈ LY : T (A ⇒ B) ≤ ||A ⇒ B||D},

where D stands for an arbitrary data table over domains with similarities. A
degree ||A ⇒ B||FD

T ∈ L to which A ⇒ B semantically follows from a fuzzy set
T of functional dependencies is defined by

||A ⇒ B||FD
T =

∧
D∈ModFD(T) ||A ⇒ B||D.

Denoting now ||A ⇒ B||T , see (5), by ||A ⇒ B||AI
T , one can prove the following

theorem.

Theorem 9 ([17]). For any fuzzy set T of fuzzy attribute implications and any
fuzzy attribute implication A ⇒ B we have

||A ⇒ B||FD
T = ||A ⇒ B||AI

T . (10)

5 Armstrong Rules and Provability

In this section we present a system of Armstrong-like rules for reasoning with
fuzzy attribute implications. Throughout this section we assume that L is finite.
We show that the system is complete w.r.t. the semantics of fuzzy attribute
implications based on data tables with fuzzy attributes. Due to Theorem 9, this

Attribute Implications in a Fuzzy Setting 57

is equivalent to completeness w.r.t. the semantics based on data tables over
domains with similarities. In fact, we show two kinds of completeness. The first
one is a usual one and concerns provability and entailment of A ⇒ B from
a set T of attribute implications. Provability and entailment remain bivalent:
A ⇒ B is provable from T iff A ⇒ B semantically follows from T in degree 1.
The second one (called also graded completeness or Pavelka-style completeness)
concerns provability and entailment of A ⇒ B from a fuzzy set T of attribute
implications. Provability and entailment themselves become graded: A degree to
which A ⇒ B is provable from T equals a degree to which A ⇒ B semantically
follows from T . Details can be found in [12, 16].

Our axiomatic system consists of the following deduction rules.

(Ax) infer A ∪ B ⇒ A,
(Cut) from A ⇒ B and B ∪ C ⇒ D infer A ∪ C ⇒ D,
(Mul) from A ⇒ B infer c∗ ⊗A ⇒ c∗ ⊗B

for each A, B, C, D ∈ LY , and c ∈ L. Rules (Ax)–(Mul) are to be understood
as follows: having functional dependencies which are of the form of functional
dependencies in the input part (the part preceding “infer”) of a rule, a rule
allows us to infer (in one step) the corresponding functional dependence in the
output part (the part following “infer”) of a rule.

Completeness. A fuzzy attribute implication A ⇒ B is called provable from a
set T of fuzzy attribute implications using (Ax)–(Mul), written T � A ⇒ B,
if there is a sequence ϕ1, . . . , ϕn of fuzzy attribute implications such that ϕn is
A ⇒ B and for each ϕi we either have ϕi ∈ T or ϕi is inferred (in one step)
from some of the preceding formulas (i.e., ϕ1, . . . , ϕi−1) using some of deduction
rules (Ax)–(Mul). To comply to the notation T � A ⇒ B, we write T |= A ⇒ B
to denote that ||A ⇒ B||T = 1 (A ⇒ B semantically follows from T in degree
1). Then we have the first kind of completeness:

Theorem 10 ([16]). For any set T of fuzzy attribute implications and any fuzzy
attribute implication A ⇒ B we have

T � A ⇒ B iff T |= A ⇒ B.

Graded completeness. Now, we are going to define a notion of a degree |A ⇒ B|T
of provability of a functional dependence of a fuzzy set T of functional dependen-
cies. Then, we show that |A ⇒ B|T = ||A ⇒ B||FD

T which can be understood as a
graded completeness (completeness in degrees). Note that graded completeness
was introduced by Pavelka [30], see also [23, 26] for further information.

For a fuzzy set T of fuzzy attribute implications and for A ⇒ B we define a
degree |A ⇒ B|T ∈ L to which A ⇒ B is provable from T by

|A ⇒ B|T =
∨
{c ∈ L | c(T) � A ⇒ c ⊗B}, (11)

where c(T) is an ordinary set of fuzzy attribute implications defined by

c(T) = {A ⇒ T (A ⇒ B) ⊗B |A, B ∈ LY and T (A ⇒ B) ⊗B
= ∅}. (12)

58 R. Bělohlávek and V. Vychodil

Then we have the second kind of completeness:

Theorem 11 ([16]). For any fuzzy set T of fuzzy attribute implications and
any fuzzy attribute implication A ⇒ B we have

|A ⇒ B|T = ||A ⇒ B||T .

6 Concluding Remarks

6.1 Bibliographic Remarks

The first study on fuzzy attribute implications is S. Pollandt’s [31]. Pollandt
uses the same notion of a fuzzy attribute implication, i.e. A ⇒ B where A, B
are fuzzy sets, and obtains several results. Pollandt’s notion of validity is a
special case of ours, namely the one for ∗ being identity on L. On the other
hand, her notion of a pseudointent corresponds to ∗ being globalization. That is
why Pollandt did not get a proper generalization of results leading to Guigues-
Duquenne basis. Pollandt’s [31] contains some other results (proper premises,
implications in fuzzy-valued contexts) which we did not discuss here. We will
comment more on Pollandt’s results elsewhere.

[19, 33, 35] are papers dealing with fuzzy functional dependencies. Our ap-
proach presented in this paper is more general. Namely, [33, 35] consider formu-
las A ⇒ B with A and B being ordinary sets, i.e. A and B are not suitable for
expressing thresholds. In [19], thresholds in A and B are present but are the
same in A and the same in B. Furthermore, the degrees are restricted to values
from [0, 1] in [19, 33, 35].

Our paper is based on [4]–[17].

6.2 Further Issues

Due to a limited scope of this paper, we did not cover several interesting topics,
some of which are still under investigation. For instance, it is shown in [9, 13] that
a data table T with fuzzy attributes can be transformed to a data table T ′ with
binary attributes in such a way that fuzzy attribute implications true in degree
1 in T correspond in a certain way to ordinary attribute implications which
are true in T ′. The transformation of data tables and attribute implications
makes it possible to obtain an ordinary non-redundant basis T ′ for T ′ and to
obtain a corresponding set T of fuzzy attribute implications from T ′. However,
while T is always complete for T , it may be redundant. Note that some results
on transformations of data tables with fuzzy attributes to tables with binary
attributes which are related to attribute implications are also present in [31].

Interesting open problems include: further study of relationships between at-
tribute implications in a fuzzy setting and ordinary attribute implications (from
both ordinary formal contexts and many-valued contexts); study of further prob-
lems of attribute implications in a fuzzy setting; further study of functional
dependencies and other kinds of dependencies in databases in a fuzzy setting;
development of agenda for databases where domains are equipped with similarity
relations.

Attribute Implications in a Fuzzy Setting 59

References

1. Abiteboui S. et al.: The Lowell database research self-assessment. Communications
of ACM 48(5)(2005), 111–118.

2. Armstrong W. W.: Dependency structures in data base relationships. IFIP
Congress, Geneva, Switzerland, 1974, pp. 580–583.

3. Bělohlávek R.: Similarity relations in concept lattices. J. Logic Comput. 10(6):823–
845, 2000.

4. Bělohlávek R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer,
Academic/Plenum Publishers, New York, 2002.

5. Bělohlávek R.: Concept lattices and order in fuzzy logic. Ann. Pure Appl. Logic
128(2004), 277–298.

6. Bělohlávek R.: Algorithms for fuzzy concept lattices. Proc. Fourth Int. Conf. on
Recent Advances in Soft Computing. Nottingham, United Kingdom, 12–13 Decem-
ber, 2002, pp. 200–205.

7. Bělohlávek R., Chlupová M., Vychodil V.: Implications from data with fuzzy at-
tributes. AISTA 2004 in Cooperation with the IEEE Computer Society Proceed-
ings, 2004, 5 pages, ISBN 2–9599776–8–8.

8. Bělohlávek R., Funioková T., Vychodil V.: Fuzzy closure operators with truth
stressers. Logic Journal of IGPL (to appear).

9. Bělohlávek R., Vychodil V.: Implications from data with fuzzy attributes vs. scaled
binary attributes. In: FUZZ-IEEE 2005, The IEEE International Conference on
Fuzzy Systems, May 22–25, 2005, Reno (Nevada, USA), pp. 1050–1055 (proceed-
ings on CD), abstract in printed proceedings, p. 53, ISBN 0–7803–9158–6.

10. Bělohlávek R., Vychodil V.: Reducing the size of fuzzy concept lattices by hedges.
In: FUZZ-IEEE 2005, The IEEE International Conference on Fuzzy Systems, May
22–25, 2005, Reno (Nevada, USA), pp. 663–668 (proceedings on CD), abstract in
printed proceedings, p. 44, ISBN 0–7803–9158–6.

11. Bělohlávek R., Vychodil V.: Fuzzy attribute logic: attribute implications, their
validity, entailment, and non-redundant basis. In: Liu Y., Chen G., Ying M. (Eds.):
Fuzzy Logic, Soft Computing & Computational Intelligence: Eleventh International
Fuzzy Systems Association World Congress (Vol. I), 2005, pp. 622–627. Tsinghua
University Press and Springer, ISBN 7–302–11377–7.

12. Bělohlávek R., Vychodil V.: Fuzzy attribute logic: syntactic entailment and com-
pleteness. In: JCIS 2005, 8th Joint Conference on Information Sciences, July 21–26,
Salt Lake City, Utah, USA, pp. 78–81.

13. Bělohlávek R., Vychodil V.: Reducing attribute implications from data tables with
fuzzy attributes to tables with binary attributes. In: JCIS 2005, 8th Joint Confer-
ence on Information Sciences, July 21–26, Salt Lake City, Utah, USA, pp. 82–85.

14. Bělohlávek R., Vychodil V.: What is a fuzzy concept lattice? Proc. CLA 2005,
September 7–9, 2005, Olomouc, Czech Republic, pp. 34–45.

15. Bělohlávek R., Vychodil V.: Fuzzy attribute implications: computing non-
redundant bases using maximal independent sets. In: S. Zhang and R. Jarvis (Eds.):
AI 2005, LNAI 3809, pp. 1126–1129, Springer-Verlag, Berlin/Heidelberg, 2005

16. Bělohlávek R., Vychodil V.: Axiomatizations of fuzzy attribute logic. IICAI 2005,
Pune, India (to appear).

17. Bělohlávek R., Vychodil V.: Functional dependencies of data tables over domains
with similarity relations. IICAI 2005, Pune, India (to appear).

18. Buckles B. P., Petry F. E.: Fuzzy databases in the new era. Proceedings of the
1995 ACM symposium on Applied computing, pp. 497–502, Nashville, Tennessee,
ISBN 0-89791-658-1, 1995.

60 R. Bělohlávek and V. Vychodil

19. Cubero J. C., Vila M. A.: A new definition of fuzzy functional dependency in fuzzy
relational datatabses. Int. J. Intelligent Systems 9(5)(1994), 441–448.

20. Ganter B.: Begriffe und Implikationen, manuscript, 1998.
21. Ganter B.: Algorithmen zur formalen Begriffsanalyse. In: Ganter B., Wille R., Wolff

K. E. (Hrsg.): Beiträge zur Begriffsanalyse. B. I. Wissenschaftsverlag, Mannheim,
1987, 241–254.

22. Ganter B., Wille R.: Formal Concept Analysis. Mathematical Foundations.
Springer, Berlin, 1999.

23. Gerla G.: Fuzzy Logic. Mathematical Tools for Approximate Reasoning. Kluwer,
Dordrecht, 2001.

24. Goguen J. A.: The logic of inexact concepts. Synthese 18(1968-9), 325–373.
25. Guigues J.-L., Duquenne V.: Familles minimales d’implications informatives resul-

tant d’un tableau de données binaires. Math. Sci. Humaines 95(1986), 5–18.
26. Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
27. Hájek P.: On very true. Fuzzy Sets and Systems 124(2001), 329–333.
28. Klir G. J., Yuan B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice

Hall, 1995.
29. Maier D.: The Theory of Relational Databases. Computer Science Press, Rockville,

1983.
30. Pavelka J.: On fuzzy logic I, II, III. Z. Math. Logik Grundlagen Math. 25(1979),

45–52, 119–134, 447–464.
31. Pollandt S.: Fuzzy Begriffe. Springer-Verlag, Berlin/Heidelberg, 1997.
32. Prade H., Testemale C.: Generalizing database relational algebra for the treatment

of incomplete or uncertain information and vague queries. Information Sciences
34(1984), 115–143.

33. Raju K. V. S. V. N., Majumdar A. K.: Fuzzy functional dependencies and lossless
join decomposition of fuzzy relational database systems. ACM Trans. Database
Systems Vol. 13, No. 2, 1988, pp. 129–166.

34. Takeuti G., Titani S.: Globalization of intuitionistic set theory. Annals of Pure and
Applied Logic 33(1987), 195–211.

35. Tyagi B. K., Sharfuddin A., Dutta R. N., Tayal D. K.: A complete axiomatization
of fuzzy functional dependencies using fuzzy function. Fuzzy Sets and Systems
151(2)(2005), 363–379.

The Assessment of Knowledge,
in Theory and in Practice�

Jean-Claude Falmagne1,��, Eric Cosyn2,
Jean-Paul Doignon3, and Nicolas Thiéry2

1 Dept. of Cognitive Sciences, University of California, Irvine, CA 92697
jcf@aris.ss.uci.edu
2 ALEKS Corporation

{ecosyn, nthiery}@aleks.com
3 Free University of Brussels

doignon@ulb.ac.be

Abstract. This paper is adapted from a book and many scholarly arti-
cles. It reviews the main ideas of a theory for the assessment of a student’s
knowledge in a topic and gives details on a practical implementation in the
form of a software. The basic concept of the theory is the ‘knowledge state,’
which is the complete set of problems that an individual is capable of solv-
ing in a particular topic, such as Arithmetic or Elementary Algebra. The
task of the assessor—which is always a computer—consists in uncovering
the particular state of the student being assessed, among all the feasible
states. Even though the number of knowledge states for a topic may ex-
ceed several hundred thousand, these large numbers are well within the
capacity of current home or school computers. The result of an assessment
consists in two short lists of problems which may be labelled: ‘What the
student can do’ and ‘What the student is ready to learn.’ In the
most important applications of the theory, these two lists specify the exact
knowledge state of the individual being assessed. Moreover, the family of
feasible states is specified by two combinatorial axioms which are pedagog-
ically sound from the standpoint of learning. The resulting mathematical
structure is related to closure spaces and thus also to concept lattices. This
work is presented against the contrasting background of common methods
of assessing human competence through standardized tests providing nu-
merical scores. The philosophy of these methods, and their scientific origin
in nineteenth century physics, are briefly examined.

The assessment of human competence, as it is still performed today by many
specialists in the schools and in the workplace, is almost systematically based
on the numerical evaluation of some ‘aptitude.’ Its philosophy owes much to
nineteenth century physics, whose methods were regarded as exemplary. The
success of classical physics was certainly grounded in its use of a number of
fundamental numerical scales, such as mass, time, or length, to describe basic
� We wish to thank Chris Doble, Dina Falmagne, and Lin Nutile for their reactions to

earlier drafts of this article.
�� Corresponding author. Phone: (949) 824 4880; Fax: (949) 824 1670; e-mail:

jcf@uci.edu.

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 61–79, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

62 J.-C. Falmagne et al.

aspects of objects or phenomena. In time, ‘measurement’ came to represent the
sine qua non for precision and the essence of the scientific method, and physics
the model for other sciences to imitate. In other words, for an academic endeavor
to be called a ‘science,’ it had to resemble physics in critical ways. In particular,
its basic observations had to be quantified in terms of measurement scales in the
exact sense of classical physics.

Prominent advocates of this view were Francis Galton, Karl Pearson and
William Thomson Kelvin. Because that position is still influential today, with a
detrimental effect on fields such as ‘psychological measurement,’ which is relevant
to our subject, it is worth quoting some opinions in detail. In Pearson’s biography
of Galton ([Pearson, 1924, Vol. II, p. 345]), we find the following definition:

“Anthropometry, or the art of measuring the physical and mental
faculties of human beings, enables a shorthand description of any indi-
vidual by measuring a small sample of his dimensions and qualities. This
will sufficiently define his bodily proportions, his massiveness, strength,
agility, keenness of senses, energy, health, intellectual capacity and men-
tal character, and will constitute concise and exact numerical1 values
for verbose and disputable estimates2.”

For scientists of that era, it was hard to imagine a non-numerical approach to
precise study of an empirical phenomenon. Karl Pearson himself, for instance—
commenting on a piece critical of Galton’s methods by the editor of the Specta-
tor3—, wrote

“There might be difficulty in ranking Gladstone and Disraeli for ‘can-
dour,’ but few would question John Morley’s position relative to both of
them in this quality. It would require an intellect their equal to rank truly
in scholarship Henry Bradshaw, Robertson Smith and Lord Acton, but
most judges would place all three above Sir John Seeley, as they would
place Seeley above Oscar Browning. After all, there are such things as
brackets, which only makes the statistical theory of ranking slightly less
simple in the handling.” ([Pearson, 1924, Vol. II, p. 345].)

In other words, measuring a psychical attribute such as ‘candor’ only requires
fudging a little around the edges of the order relation of the real numbers4.
1 Our emphasis.
2 This excerpt is from an address “Anthropometry at Schools” given in 1905 by Galton

at the London Congress of the Royal Institute for Preventive Medicine. The text was
published in the Journal for Preventive Medicine, Vol. XIV, p. 93-98, London, 1906.

3 The Spectator, May 23, 1874. The editor was taking Galton to task for his method
of ranking applied to psychical character. He used ‘candour’ and ‘power of repartee’
as examples.

4 Making such a relation a ‘weak order’ or perhaps a ‘semiorder’ (in the current termi-
nology of combinatorics). A binary relation � on a finite or countable set S is a weak
order if there is a real valued function f defined on S such that x � y ⇔ f(x) ≤ f(y)
for all objects x and y in the set S. The relation � is a semiorder if the representation
has the form: x � y ⇔ f(x) + 1 ≤ f(y). For these concepts, see e.g. Roberts [1979]
or Trotter [1992].

The Assessment of Knowledge, in Theory and in Practice 63

The point here is that real numbers are still used to represent ‘quantity of
attribute.’

As for Kelvin, his position on the subject is well known, and often repre-
sented in the form: “If you cannot measure it, then it is not science.” The full
quotation is:

“When you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot measure
it, when you cannot express it in numbers, your knowledge is of a mea-
ger and unsatisfactory kind: it may be the beginning of knowledge, but
you are scarcely, in your thoughts, advanced to the stage of science,
whatever the matter may be.” (Kelvin [1889].)

Such a position, which equates precision with the use of numbers, was not on
the whole beneficial to the development of mature sciences outside of physics. It
certainly had a costly impact on the assessment of mental traits. For instance,
for the sake of scientific precision, the assessment of mathematical knowledge
was superseded in the U.S. by the measurement of mathematical aptitude using
instruments directly inspired from Galton via Alfred Binet in France. They are
still used today in such forms as the S.A.T.5, the G.R.E. (Graduate Record
Examination), and other similar tests. The ubiquitous I.Q. test is of course
part of the list. In the minds of those nineteenth century scientists and their
followers, the numerical measurement of mental traits was to be a prelude to the
establishment of sound, predictive scientific theories in the spirit of those used
so successfully in classical physics. The planned constructions, however, never
went much beyond the measurement stage6.

The limitations of a purely numerical description of some phenomena can
be illustrated by an analogy with sports. It is true that the success of an ath-
lete in a particular sport is often described by a set of impressive numbers.
So, imagine that some committee of experts has carefully designed an ‘Athletic
Quotient’ or ‘A.Q.’ test, intended to measure athletic prowess. Suppose that
three exceptional athletes have taken the test, say Michael Jordan, Tiger Woods
and Pete Sampras. Conceivably, all three of them would get outstanding A.Q.’s.
But these high scores equating them would completely misrepresent how essen-
tially different from each other they are. One may be tempted to salvage the
numerical representation and argue that the asssessment, in this case, should be
multidimensional. However, adding a few numerical dimensions capable of differ-
entiating Jordan, Woods and Sampras would only be the first step in a sequence.
Including Greg Louganis or Pele to the evaluated lot would require more dimen-
sions, and there is no satisfactory end in sight. Besides, assuming that one would
5 Note that the meaning of the acronym S.A.T. has recently been changed by Educa-

tion Testing Service from ‘Scholastic Aptitude Test’ to ‘Scholastic Assessment Test,’
suggesting that a different philosophy on the part of the test makers may be under
development.

6 Sophisticated theories can certainly be found in some areas of the behavioral sciences,
for example, but they do not usually rely on measurement scales intrinsic to these
sciences. One prominent exception in economics is the money scale.

64 J.-C. Falmagne et al.

settle for a representation in n dimensions, for some small n equal 3, 4 or 5 say,
the numerical vectors representing these athletes would be poor, misleading ex-
pressions of the exquisite combination of skills making each of them a champion
in his own specialty. Evidently, the same shortcomings of a numerical description
also apply in mathematics education. Numerical test results may be appropriate
to decide who is winning a race. As an evaluative prelude to college, intended
to assess the students’ readiness for further learning, they are very imprecise
indeed. The conclusion should be that a different descriptive language is needed.

More generally, in many scientific areas, from chemistry to biology and espe-
cially the behavioral sciences, theories must often be built on a very different
footing than that of classical physics. Evidently, the standard physical scales
such as length, time, mass or energy, must be used in measuring aspects of phe-
nomena. But the substrate proper to these other sciences may very well be, in
most cases, of a fundamentally different nature.

Of course, we are enjoying the benefits of hindsight. In all fairness, there
were important mitigating circumstances affecting those who upheld the cause
of numerical measurement as a prerequisite to science. For one thing, the appro-
priate mathematical tools were not yet available to support different conceptions.
Combinatorics, for example, was yet to be born as a mathematical topic. More
importantly, the ‘Analytical Engine’ of Charles Babbage was still a dream, and
close to another century had to pass before the appearance of computing ma-
chines capable of handling the symbolic manipulations that would be required
for another approach.

The theory reviewed here7 represents a sharp departure from other approaches
to the assessment of knowledge. Its mathematics is in the spirit of current re-
search in combinatorics. No attempt is made to obtain a numerical representa-
tion. We start from the concept of a possibly large but essentially discrete set of
‘units of knowledge.’ In the case of Elementary Algebra, for instance, one such
unit might be a particular type of algebra problem. The full domain for High
School Algebra may contain a few hundred such problems. Our two key concepts
are the ‘knowledge state,’ a particular set of problems that some individual is ca-
pable of solving correctly, and the ‘knowledge structure,’ which is a distinguished
collection of knowledge states. For High School Algebra, we shall see that a useful
knowledge structure may contain several hundred thousand feasible knowledge
states. Thus, precision is achieved by the intricacy of the representing structure.

Knowledge Structures: Main Concepts

The precedence relation. A natural starting point for an assessment theory
stems from the observation that some pieces of knowledge normally precede, in
time, other pieces of knowledge. In our context, some algebra problem may be
solvable by a student only if some other problems have already been mastered by
that student. This may be because some prerequisites are required to master a
7 To lighten the presentation, we gather the references in the last paragraph of this

paper.

The Assessment of Knowledge, in Theory and in Practice 65

problem, but may also be due to historical or other circumstances. For example,
in a given environment, some concepts are always taught in a particular order,
even though there may be no logical or pedagogical reason to do so. Whatever
its genesis may be, this precedence relation may be used to design an efficient
assessment mechanism.

Fig. 1. Precedence diagram for the six types of algebra problems illustrated in Table 1

A simple example of a precedence relation between problems is illustrated
by Figure1, which displays a plausible precedence diagram pertaining to the
six types of algebra problems illustrated in Table 1. Note in passing that we
distinguish between a type of problem and an instance of that type. Thus,
a type of problem is an abstract formulation subsuming a possibly large class
of instances. For the rest of this article, ‘problem’ is almost always intended to
mean ‘problem type.’ The exceptions will be apparent from the context.

The precedence relation between problems is symbolized by the downward
arrows. For example, Problem (e) is preceded by Problems (b), (c) and (a). In
other words, the mastery of Problem (e) implies that of (b), (c) and (a). In
the case of these six problems, the precedence relation proposed by the diagram
of Figure 1 is a credible one. For example, observing a correct response to an
instance of Problem (f), makes it highly plausible that the student has also
mastered the other five problems. This precedence relation is part of a much
bigger one, representing a substantial coverage of Beginning Algebra, starting
with the solution of simple linear equations and ending with problem types such
as (f) in Table 1. An example of such a larger precedence relation is represented
by the diagram of Figure 2, which displays 88 vertices, for the 88 problems used,
in principle, for the assessment. (For the sake of clarity of our diagrams, we
are limiting the size of our examples. The full Beginning Algebra curriculum
is larger, containing around 150 problems.) This larger precedence diagram is
itself part of a still larger one, displayed in Figure 3, and comprising Arithmetic,
Beginning Algebra, Intermediate Algebra, and Pre-Calculus.

For concreteness, we consider a particular situation in which the assessment is
computer driven and the problems are presented on a monitor, via the Internet.
All the virtual tools needed for providing the answers to the test—pencil, ruler,

66 J.-C. Falmagne et al.

Table 1. Six types of problems in Elementary Algebra

Name of problem type Example of instance
(a) Word problem on proportions A car travels on the freeway at an average

(Type 1) speed of 52 miles per hour. How many miles
does it travel in 5 hours and 30 minutes?

(b) Plotting a point in the Using the pencil, mark the point at the
coordinate plane coordinates (1, 3).

(c) Multiplication of monomials Perform the following multiplication:
4x4y4 · 2x · 5y2

and simplify your answer as much as possible.
(d) Greatest common factor of Find the greatest common factor of the

two monomials expressions 14t6y and 4tu5y8.
Simplify your answer as much as possible.

(e) Graphing the line through a Graph the line with slope −7 passing through
given point with a given slope the point (−3, −2).

(f) Writing the equation of the Write an equation for the line that passes
line through a given point and through the point (−5, 3) and is perpendicular
perpendicular to a given line to the line 8x + 5y = 11.

graphical displays, calculators of various kinds when deemed necessary—, are
part of the interface. In the course of a tutorial, the testees have been familiarized
with these tools. In Problems (b) and (e), a coordinate plane is displayed on the
computer monitor as part of the question, and the pencil and, for Problem (e),
also the ruler, are provided. In this problem, the student must graph the line
using the virtual pencil and ruler. We also suppose that all the problems have
open responses (i.e. no multiple choice), and that ‘lucky guesses’ are unlikely.
(Careless errors are always possible, of course, and a clever assessment procedure
has to guard against them.)

We postpone for the moment the discussion of how to construct a valid prece-
dence diagram for a realistically large problem set. (For example, how were the
precedence diagrams of Figs. 2 or 3 obtained?)This question and other critical ones
are considered later on in this article. For the time being, we focus on the miniature
example of Table 1 which we use to introduce and illustrate the basic ideas.

The knowledge states. The precedence diagram of Figure 1 completely spec-
ifies the feasible knowledge states. The respondent can certainly have mastered
just Problem a: having mastered a does not imply knowing anything else. But if
he or she knows e, for example, then a, b and c must also have been mastered,
forming a knowledge state which we represent as the set of problems {a,b, c, e}
or more compactly abce. Analyzing carefully the precedence diagram of Fig-
ure 1, we see that there are exactly 10 knowledge states consistent with it,
forming the set

K = {∅, a,b, ab,ac,abc, abcd,abce, abcde, abcdef},

The Assessment of Knowledge, in Theory and in Practice 67

where ∅ symbolizes the empty state: the respondent is unable to solve any of the
6 problems. The set K is our basic concept, and is called the knowledge struc-
ture. Note that a useful knowledge structure is not necessarily representable by
a precedence diagram such as those of Figs. 1, 2 or 3 and may simply be specified
by the collection of knowledge states.

Fig. 2. Diagram of the precedence relation for Beginning Algebra. The vertices marked
a-f refer to Problems (a)-(f) of Figure 1, whose diagram may be inferred from the one
above.

68 J.-C. Falmagne et al.

Fig. 3. Combined precedence diagram for Arithmetic, Beginning Algebra, Intermediate
Algebra, and Pre-Calculus. Each of the 397 points represents a problem type. We recall
that these 397 problem-types capture only a representative part of the standard curricu-
lum. The full curriculum in these topics would contain around 650 problem-types.

The Assessment of Knowledge, in Theory and in Practice 69

The learning paths. This knowledge structure allows several learning paths.
Starting from the naive state ∅, the full mastery of state abcdef can be achieved
by mastering first a, and then successively the other problems in the order b �→
c �→ d �→ e �→ f . But there are other possible ways to learn. All in all, there are
6 possible learning paths consistent with the knowledge structure K, which are
displayed in Figure 4.

Fig. 4. The 6 possible learning paths consistent with the precedence diagram of Figure 1

In realistic knowledge structures such as those for Arithmetic or Elemen-
tary Algebra, the numbers of feasible knowledge states and of learning paths
become very large. In the case of that part of Beginning Algebra whose prece-
dence diagram was given in Figure 2, there are around 60, 000 knowledge states
and literally billions of feasible learning paths. These numbers may be puzzling.
Where is the diversity coming from? After all, these mathematical subjects are
highly structured and typically taught in roughly the same sequence. However,
even though the school curriculum may be more or less standard in a particular
region of the world, learning the material, and also forgetting it, follow their own
haphazard course. Besides, 60, 000 states form but a minute fraction of the 288

possible subsets of the set of 88 problems. In any event, even in a highly struc-
tured mathematical topic, an accurate assessment of knowledge involves sorting
out a considerable array of possibilities.

The outer and inner fringes of a knowlegde state. As suggested by the
precedence diagrams and by the learning paths of Figure 4, the knowledge struc-
tures considered here have the property that learning can take place step by step,
one problem type at a time. More precisely, each knowledge state (except the
top one) has at least one immediate successor state, that is, a state containing
all the same problems, plus exactly one. The knowledge state abc of K, for in-
stance, has the two states abcd and abce as immediate successors. Problems d
and e form the ‘outer fringe’ of state abc. In general, the outer fringe of some
knowledge state K is the set of all problems p such that adding p to K forms
another knowledge state. The concept of outer fringe is critical because this is
where progress is taking place: learning proceeds by mastering a new problem
in the outer fringe, creating a new state, with its own outer fringe.

Conversely, each knowledge state (except the empty state) has at least one
predecessor state, that is a state containing exactly the same problems, except

70 J.-C. Falmagne et al.

one. The knowledge state abc that we just considered has two predecessor states,
namely ab and ac. Problems b and c together form the inner fringe of state abc:
removing either b or c from state abc creates other states in the structure, that
is ab and ac. If for some reason a student experiences difficulties in mastering the
problems in the outer fringe, reviewing previous material should normally take
place in the inner fringe of a student’s state. Figure 5 illustrates these concepts of
fringes and others introduced so far. A state K is pictured with three problems
in its outer fringe. Another state K ′ has two problems in its inner fringe.

Fig. 5. The outer fringe of a state K and the inner fringe of another state K′

Thus, we can use the two fringes as the main building blocks of the ‘navigation
tool’ of the system, with the outer fringes directing the progress, and the inner
fringes monitoring temporary retreats, and making them profitable.

Interestingly, the fringes also play a less obvious, but equally important role
in summarizing the results of an assessment. A knowledge state is essentially
a list of all the problems mastered by a student at the time of an assessment.
Such a list will often be unwieldy and contain several dozen problem names,
not a very convenient description. It can be shown mathematically, however,
that for the ‘learning spaces’ (a type of knowledge structures specified in our
next section), the two fringes suffice to specify the knowledge state completely8.
In other words, the result of an assessment can be given in the form of two
short lists, one for the inner fringe (what the student can do, which is
understood here as the most advanced problems in the student’s state), and one
for the outer fringe (what the student is ready to learn). Experience with
realistic knowledge structures in school mathematics has shown that these two
lists together will contain on average 10-15 problems, enabling a very compact
and faithful presentation of the result of an assessment.

Table 2 contains a typical example of the two fringes of a knowledge state,
which is that of an actual student currently using the system in a middle school.
8 The exact statement of this result is contained in [Doignon and Falmagne, 1999,

Theorem 2.8, p. 48].

The Assessment of Knowledge, in Theory and in Practice 71

Table 2. A knowledge state in Arithmetic specified by its two fringes

Inner fringe: What the student can
do
Double negation:

−(−12) − 7 =
Arithmetic with absolute value:∣∣∣ |9 − 12| − |5|

∣∣∣
Word problem with clocks:

A clock runs too fast and gains 6
minutes every 5 days. How many
minutes and seconds will it have
gained at the end of 9 days?

Word problem on percentage (Problem
type 1):

A pair of sneakers usually sells
for $45. Find the sale price after
a 20% discount.

Mixed number multiplication:
3 3

4 × 2 4
9 =

(Write your answer as a mixed
number in lowest terms.)

Outer fringe: What the student is
ready to learn
Decimal division:

5.2)7.54
Word problem on percentage (Problem
type 2):

A sofa is on sale for $630 after
a 28% discount. What was the price
before discount?

Word problem with inverse proportion:
If 4 machines are needed to complete
a task in 21 days, how long will it
take 7 machines to complete the same
task?

Average of two numbers:
What is the average value of 114
and 69?

Taken together, the two fringes amount to 9 problems, which suffice to specify
the 80 problems of that student’s state which is represented in the top region of
Figure 3. The economy is startling.

The information provided by such a table is a more meaningful result of an
assessment than a couple of numerical scores from a standardized test. It is also
considerably more precise. An assessment involving all of high school mathe-
matics, based on the knowledge states consistent with the precedence diagram
of Figure 3, would classify the students in hundreds of thousands of categories,
each with its own unique table of inner and outer fringes. By contrast, a quanti-
tative S.A.T. classifies the test taker into one of roughly 40 categories (from 400
to 800, in steps of 10).

Axioms for Learning Spaces

The precedence diagram illustrated by Figures 1, 2 and 3 offers an economical
way of summarizing knowledge structures that may sometimes contain millions
of states. However, such a summary represents a structure exactly only if that
structure satisfies tight conditions, one of which is highly questionable, namely,
that the collection of states of the structure is closed under intersection, to wit:
if K and K ′ are states, then K ∩K ′ must also be a state. (This point is closely
related to a classical result of Birkhoff [1937].)

72 J.-C. Falmagne et al.

In fact, all the concepts and techniques discussed in this paper are consistent
with the weaker conditions captured by the axioms [FC] and [LS] stated below,
both of which appear to be eminently reasonable from a pedagogical standpoint.
These two axioms may be regarded as forming the core of the theory. This section
is slightly more formal than the rest of the paper.

We recall that knowledge structure on a set Q is a collection K of subsets of
Q which are called the states of the structure K. It is assumed that both the full
set Q and the empty set ∅ are states.

Axioms

[FC] A knowledge structure K is outer fringe coherent if for any two states
K ⊂ L, any problem type in the outer fringe of K is either in L or in the
outer fringe of L.
Intuitively: If a problem type p is learnable from some state K which is a
subset of some state L, then either p is also in L or is learnable from L.

[LS] A knowledge structure is learning smooth if whenever L ⊂ K for two states
L and K, then there is a sequence of states

K0 = K ⊂ K1 ⊂ . . . ⊂ Kn = L

such that for some problem types p1, . . . ,pn, we have

K0 ∪ {p1} = K1, K1 ∪ {p2} = K2, . . . , Kn−1 ∪ {pn} = Kn = L.

In words: If some state K is a subset of some state L, then there is a way
of learning successively the problem types in L which are missing from K.9

Definition. A knowledge structure which is outer fringe coherent and learning
smooth is called a learning space.

Thus, the assessment techniques discussed here are fully applicable to learning
spaces. Some important consequences of Axioms [FC] and [LS] have been derived
by Cosyn and Uzun [2005] (see also Doignon and Falmagne [1999]). Note that it
is possible to represent a learning space by a precedence diagram. However, the
cost of such a representation is that it involves fictitious states, namely, all those
states that must be added to the learning space to ensure that the knowledge
structure is closed under intersection (see above). The addition of such fictitious
states may of course lengthen the assessment and may have other drawbacks.

Building a Knowledge Structure

We now turn to what is certainly the most demanding task in a realistic appli-
cation of these ideas. It certainly makes sense to enroll experts, such as seasoned
teachers or textbook writers, to find the knowledge states. This must be done for

9 Knowledge structures which are learning smooth are called 1-learnable by
Doignon and Falmagne [1999].

The Assessment of Knowledge, in Theory and in Practice 73

the first draft of a knowledge structure, which can then be refined by a painstak-
ing analysis of student data. However, we cannot simply sit an expert in front
of a computer terminal with the instruction: “provide a complete list of all the
knowledge states in a given topic.” Fortunately, an indirect approach is possible.
An expert can reliably respond to questions such as these:

Q1. Suppose that a student is not capable of solving problem p.
Could this student nevertheless solve problem p′?

It can be proven that a knowledge structure represented by a precedence
diagram such as the one of Figure 2 can be inferred exactly from the responses
to a complete collection of questions of the type Q1. (For a very large precedence
diagram, such as the one of Figure 3, several diagrams are first constructed by
querying experts on each of the fields of knowledge, like Arithmetic, Beginning
Algebra, etc. Those diagrams are then ‘glued’ together, relying again on experts’
judgment.)

In the case of the precedence diagram of Figure 1, the mastery of problem e,
for instance, implies that of a single minimum set of precedent problems, namely
a, b and c. In other words, all learning paths in Figure 4 progress through
these three problems before reaching e. There are important cases, however, in
which the mastery of a problem may be achieved via anyone of several distinct
minimum sets of precedent problems. Such structures, which generalize those
that can be represented by precedence diagrams, are called knowledge spaces.
They are derived from the responses to the collection of more difficult questions
of the following type:

Q1. Suppose that a student has not mastered problems p1, p2, . . . ,pn.
Could this student nevertheless solve problem p′?

In practice, not all questions of type Q1 or Q2 must be asked because, in
many cases, responses to some questions can be inferred from responses to other
questions. For typical knowledge structures encountered in education, an ex-
pert may be required to respond to a few thousand questions to get a complete
description of all the knowledge states. Note that the knowledge structures re-
sulting from responses to the more elaborate questions of type Q2 are consistent
with Axioms [FC] and [LS].

By interviewing several experts and combining their answers, one can build
a knowledge structure which reflects their consensual view of the field. This
alone does not guarantee the validity of the knowledge structure, that is, the
agreement between the states in the structure and the actual states in the student
population. Actual student data are essential to complete the picture. With an
Internet based, largely distributed assessment system such as the one discussed
here, data from tens of thousands users can be collected in the span of a year,
providing a bounty of information. Such data can be used to refine a knowledge
structure obtained from experts’ judgments via the questions of type Q1 or Q2.
To begin with, states occurring rarely or not at all in the empirical applications

74 J.-C. Falmagne et al.

can be deleted from the knowledge structure. More importantly, the accuracy of
the structure can be evaluated by the following probe, and corrected if necessary.
In most assessments, an extra problem p∗ is added to the questioning, which is
not used in the choice of the final knowledge state K representing the student.
Using K, one can predict the student answer to p∗ which should be correct if p∗ is
in K—except for careless errors—and false otherwise. In the knowledge structure
for Beginning Algebra for example, as it is used by students today, the correlation
between predicted and observed answers hovers between .7 and .85, depending on
the sample of students. These high values actually underestimate the accuracy
of the structure: a student having mastered some problem p∗ contained in his
or her knowledge state may nevertheless make a careless error in solving it.
This correlation index is a powerful statistical tool continuously monitoring the
validity of the knowledge structure, pointing to weaknesses, and evaluating the
corrections prompted by some earlier analysis.

Uncovering a Knowledge State in a Knowledge Structure

Suppose that a satisfactory knowledge structure has been obtained. The task
of the assessment is to uncover, by efficient questioning, the knowledge state
of a particular student under examination. The situation is similar to that of
adaptive testing—i.e. the computerized forms of the S.A.T. and the like—with
the critical difference that the outcome of the assessment here is a knowledge
state, rather than a numerical estimate of a student’s competence in the topic.

The assessment procedures available all pertain to the scheme outlined in
Figure 6.

In this article, we focus on one particular assessment procedure in which the
plausibility of a state at any time in the course of an assessment is its current
likelihood, based on all the information accumulated so far. At the outset of the
assessment (trial 1 of the procedure), each of the knowledge states is assigned a
certain a priori likelihood, which may depend upon the school year of the student
if it is known, or some other information. The sum of these a priori likelihoods
is equal to 1. They play no role in the final result of the assessment but may be
helpful in shortening it. If no useful information is available, then all the states

Subject's
response

Questioning
 Rule

Updating
 Rule

Plausibility
of the states
on trial n

Plausibility
of the states
on trial n+1

Selected
problem

Fig. 6. Diagram of the transitions in an assessment procedure

The Assessment of Knowledge, in Theory and in Practice 75

are assigned the same likelihood. The first problem p1 is chosen so as to be
‘maximally informative.’ This is interpreted to mean that, on the basis of the
current likelihoods of the states, the student has about a 50% chance of knowing
how to solve p1. In other words, the sum of the likelihoods of all the states
containing p1 is as close to .5 as possible10. If several problem types are equally
informative (as may happen at the beginning of an assessment) one of them is
chosen at random. The student is then asked to solve an instance of that problem,
also picked randomly. The student’s answer is then checked by the system, and
the likelihood of all the states are modified according to the following updating
rule. If the student gave a correct answer to p1, the likelihoods of all the states
containing p1 are increased and, correspondingly, the likelihoods of all the states
not containing p1 are decreased (so that the overall likelihood, summed over all
the states, remains equal to 1). A false response given by the student has the
opposite effect: the likelihoods of all the states not containing p1 are increased,
and that of the remaining states decreased11 If the student does not know how
to solve a problem, he or she can choose to answer “I don’t know” instead of
guessing. This results in a substantial increase in the likelihood of the states
not containing p1, thereby decreasing the total number of questions required to
uncover the student’s state. Problem p2 is then chosen by a mechanism identical
to that used for selecting p1, and the likelihood values are increased or decreased
according to the student’s answer via the same updating rule. Further problems
are dealt with similarly. In the course of the assessment, the likelihood of some
states gradually increases. The assessment procedure stops when two criteria
are fulfilled: (1) the entropy of the likelihood distribution, which measures the
uncertainty of the assessment system regarding the student’s state, reaches a
critical low level, and (2) there is no longer any useful question to be asked (all
the problems have either a very high or a very low probability of being responded
to correctly). At that moment, a few likely states remain and the system selects
the most likely one among them. Note that, because of the stochastic nature
of the assessment procedure, the final state may very well contain a problem
to which the student gave a false response. Such a response is thus regarded as
due to a careless error. On the other hand, because all the problems have open-
ended responses (no multiple choice), with a large number of possible solutions,
the probability of lucky guesses is negligible.

To illustrate the evolution of an assessment, we use a graphic representation in
the guise of the likelihood map of a knowledge structure. In principle, each point
in the oval shape of Figure 7 represents one of the 57,147 states of the knowledge
structure for the part of Arithmetic used for the graphs in this paper. (Because
of graphics limitations, some grouping of similar states into a single point was
necessary. To simplify the exposition, we suppose in the sequel that each point

10 A different interpretation of ‘maximally informative’ was also investigated, based on
the minimization of the expected entropy of the likelihood distribution. This method
did not result in an improvement, and was computationally more demanding.

11 The operator used to modify the likelihoods is Bayesian. This was shown by Mathieu
Koppen (personal communication).

76 J.-C. Falmagne et al.

Fig. 7. Likelihood map of the Arithmetic knowledge structure whose precedence dia-
gram was given at the top of Figure 3 (the bue points)

of the map represents one state.) The precedence diagram of this structure was
given at the top of Figure 3 (appearing as blue points in the online version).

Knowledge states are sorted according to the number of problem types they
contain, from 0 problems on the far left to 108 problems on the far right. The left-
most point stands for the empty knowledge state, which is that of a student know-
ing nothing at all in Arithmetic. The rightmost point represents the full knowledge
state and corresponds to a student having mastered all the problems in Arith-
metic. The points located on any vertical line within the oval represent knowledge
states containing exactly the number of problems indicated on the abscissa.

The oval shape is chosen for esthetic reasons and reflects the fact that, by and
large, there are many more states around the middle of the scale than around the
edges. For instance, there are 1,668 states containing exactly 75 problems, but
less than 100 states, in Arithmetic, containing more than 100 problems or less
than 10 problems. The arrangement of the points on any vertical line is largely
arbitrary.

The shading (or color when seen on line) of a point represents the likelihood
of the corresponding state. A shading-coded logarithmic scale, pictured on the
right of Figure 7, is used to represent the likelihood values with the lightest
shades corresponding to the most likely states.

Figure 8 displays a sequence of likelihood maps describing the evolution of
an assessment in Arithmetic from the very beginning, before the first problem,
to the end, after the response to the last problem is recorded by the system
and acted upon to compute the last map. The full assessment took 24 questions
which is close to the average for Arithmetic. The initial map results from prelim-
inary information obtained from that student. The vertical strip12 of that map
represents the a priori relatively high likelihood of the knowledge states contain-
ing between 58 and 75 problems: as a six grader, this student can be assumed
to have mastered about two thirds of the Arithmetic curriculum.

12 The strip is barely visible on the printed version and appears in bright red in the
online version.

The Assessment of Knowledge, in Theory and in Practice 77

Fig. 8. Sequence of likelihood maps representing an assessment converging toward the
student’s knowledge state

Next to each map in Figure 8, we indicate the entropy of the correspond-
ing likelihood distribution, and the student’s response to the question (correct,
false, or not known). Note that the initial entropy is 10.20, which is close to the
theoretical maximum of 10.96 obtained for a uniform distribution on a set of
57,147 knowledge states. As more information is gathered by the system via the
student’s responses to the questions, the entropy decreases gradually. Eventu-
ally, after 24 questions have been answered a single very bright point remains
among mostly dark (blue) points and a few bright points. This very bright point
indicates the most likely knowledge state for that student, based on the answers
to the problems. The assessment stops at that time because the entropy has
reached a critical low level and the next ‘best’ problem to ask has only a 19%
chance of being solved by the student, and so would not be very informative.
In this particular case only 24 problems have sufficed to pinpoint the student’s
knowledge state among 57,147 possible ones. This striking efficiency is achieved
by the numerous inferences implemented by the system in the course of the
assessment.

78 J.-C. Falmagne et al.

The assessment procedure described in this article is the core engine of an
Internet based, automated mathematics tutor which is used in several hundred
colleges and school districts in the U.S.

In the U.S., the extensive research leading to this system has been supported
since 1983 by various grants, mostly from the National Science Foundation. The
first paper on this research topic, which is named ‘Knowledge Spaces,’ was pub-
lished by Doignon and Falmagne [1985], two of the authors of this article. Im-
portant results have also been obtained by researchers from other countries, such
as D. Albert, J. Heller and C. Hockemeyer (Austria), C. Dowling and R. Suck
(Germany), and M. Koppen (The Netherlands). Most of the basic results are pre-
sented in a monograph entitled ‘Knowledge Spaces,’ by Doignon and Falmagne
[1999], but much work has been done afterward. A data base on this topic is
maintained by C. Hockemeyer at the University of Graz.

Related research results, classified under the title ‘Formal Concepts Analysis’
have been obtained by B. Ganter, R. Wille and their team. The states in the
sense of our paper correspond to the concepts as used in most of the papers of
this volume. Most of the mathematical tools are similar. One critical difference
between the two lines of research, however, is that axioms such as those specifying
a learning space as not especially compelling in concept analysis. Another one
lies in the role played by probability theory and stochastic processes as described
in the latter part of this paper. For a study of the relationships between the two
fields, see for instance Rusch and Wille [1996].

An exemplary sample of publications relevant to knowledge space theory is
included in the references.

References

D. Albert, editor. Knowledge Structures. Springer Verlag, New York, 1994.
D. Albert and J. Lukas, editors. Knowledge Spaces: Theories, Empirical Research,

Applications. Lawrence Erlbaum Associates, Mahwah, NJ, 1999.
G. Birkhoff. Rings of sets. Duke Mathematical Journal, 3:443–454, 1937.
E. Cosyn and H.B. Uzun. Axioms for Learning Spaces. Journal of Mathematical

Psychology, 2005. To be submitted.
J.-P. Doignon and J.-Cl. Falmagne. Spaces for the assessment of knowledge. Interna-

tional Journal of Man-Machine Studies, 23:175–196, 1985.
J.-P. Doignon and J.-Cl. Falmagne. Knowledge Spaces. Springer, Berlin, 1999.
C. E. Dowling. Applying the basis of a knowledge space for controlling the questioning

of an expert. Journal of Mathematical Psychology, 37:21–48, 1993a.
C. E. Dowling and C. Hockemeyer. Computing the intersection of knowledge spaces

using only their basis. In Cornelia E. Dowling, Fred S. Roberts, and Peter The-
uns, editors, Recent Progress in Mathematical Psychology, pages 133–141. Lawrence
Erlbaum Associates Ltd., Mahwah, NJ, 1998.

C.E. Dowling. On the irredundant construction of knowledge spaces. Journal of Math-
ematical Psychology, 37:49–62, 1993b.

J.-Cl. Falmagne and J-P. Doignon. A class of stochastic procedures for the assessment
of knowledge. British Journal of Mathematical and Statistical Psychology, 41:1–23,
1988a.

The Assessment of Knowledge, in Theory and in Practice 79

J.-Cl. Falmagne and J-P. Doignon. A Markovian procedure for assessing the state of a
system. Journal of Mathematical Psychology, 32:232–258, 1988b.

B. Ganter and R. Wille. Formal Concept Analysis. Springer-Verlag, Berlin, 1999.
Mathematical foundations, Translated from the 1996 German original by C. Franzke.

J. Heller. A formal framework for characterizing querying algorithms. Journal of
Mathematical Psychology, 48:1–8, 2004.

W.T. Kelvin. Popular Lectures and Addresses. Volume 1-3. MacMillan, London, 1889.
Volume 1: Constitution of Matter (Chapter: Electrical Units of Measurement).

M. Koppen. Extracting human expertise for constructing knowledge spaces: An algo-
rithm. Journal of Mathematical Psychology, 37:1–20, 1993.

M. Koppen. The construction of knowledge spaces by querying experts. In Gerhard H.
Fischer and Donald Laming, editors, Contributions to Mathematical Psychology, Psy-
chometrics, and Methodology, pages 137–147. Springer–Verlag, New York, 1994.

K. Pearson. The Life, Letters and Labours of Francis Galton. Cambridge University
Press, London, 1924. Volume 2: Researches of Middle Life.

F.S. Roberts. Measurement Theory, with Applications to Decisionmaking, Utility, and
the Social Sciences. Addison-Wesley, Reading, MA, 1979.

A. Rusch and R. Wille. Knowledge spaces and formal concept analysis. In H.-H. Bock
and W. Polasek, editors, Data analysis and information systems, pages 427–436,
Heidelberg, 1996. Springer–Verlag.

R. Suck. The basis of a knowledge space and a generalized interval order. Elec-
tronic Notes in Discrete Mathematics, 2, 1999a. Abstract of a Talk presented at the
OSDA98, Amherst, MA, September 1998.

R. Suck. A dimension–related metric on the lattice of knowledge spaces. Journal of
Mathematical Psychology, 43:394–409, 1999b.

W.T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory. The
Johns Hopkins University Press, Baltimore and London, 1992.

The Basic Theorem on Preconcept Lattices

Christian Burgmann and Rudolf Wille

Technische Universität Darmstadt, Fachbereich Mathematik,
Schloßgartenstr., 7, D–64289 Darmstadt
wille@mathematik.tu-darmstadt.de

Abstract. Preconcept Lattices are identified to be (up to isomorphism)
the completely distributive complete lattices in which the supremum of
all atoms is equal or greater than the infimum of all coatoms. This is
a consequence of the Basic Theorem on Preconcept Lattices, which also
offers means for checking line diagrams of preconcept lattices.

Contents
1. Preconcept Lattices
2.
∨

-Irreducible and
∧

-Irreducible Elements
3. The Basic Theorem

1 Preconcept Lattices

The notion of a “formal preconcept” has been introduced into Formal Concept
Analysis in [SW86] to mathematize the notion of a “preconcept” which is used
in Piaget’s cognitive psychology to explain the developmental stage between the
stage of senso-motoric intelligence and the stage of operational intelligence (see
[Pi73]). In Formal Concept Analysis [GW99], a (formal) preconcept of a formal
context (G, M, I) is defined as a pair (A, B) with A ⊆ G, B ⊆ M , and A ⊆ B′

(⇔ A′ ⊇ B), which obviously generalizes the definition of a formal concept. The
set of all preconcepts of a formal context (G, M, I) is denoted by V(G, M, I).
Preconcepts are naturally ordered by

(A1, B1) ≤ (A2, B2) ⇐⇒ A1 ⊆ A2 and B1 ⊇ B2.

By Proposition 1 in [Wi04], the ordered set V(G, M, I) := (V(G, M, I),≤) is
even a completely distributive complete lattice with the following infima and
suprema:∧

t∈T

(At, Bt) = (
⋂
t∈T

At,
⋃
t∈T

Bt) and
∨
t∈T

(At, Bt) = (
⋃
t∈T

At,
⋂
t∈T

Bt)

for all (At, Bt) ∈ V(K) (t ∈ T). The lattice V(G, M, I) is called the preconcept
lattice of the formal context (G, M, I).

A preconcept lattice V(G, M, I) can be understood as the concept lattice
of the derived context (G∪̇M, G∪̇M, I ∪(
= \G × M)) because, by the proof of
Proposition 1 in [Wi04], the assignment

(A, B) ι�→ (A ∪ (M \ B), (G \ A) ∪ B)

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 80–88, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Basic Theorem on Preconcept Lattices 81

is an isomorphism ι from the preconcept lattice V(G, M, I) onto the concept
lattice B(G∪̇M, G∪̇M, I ∪(
=\G×M)). This connection shall be demonstrated
by an example: We choose the formal context in Fig. 1, the concept lattice of
which is represented in Fig. 2. The derived context of the context in Fig. 1 is
shown in Fig. 3 and its concept lattice in Fig. 4.

The line diagram in Fig. 4 may also be considered as a representation of the
preconcept lattice of the context in Fig. 1. The preconcepts can be identified in
the line diagram by the following rule: an object (resp. attribute) belongs to a
preconcept if and only if its name is attached to a circle representing a subpre-
concept (resp. superpreconcept) of that preconcept. As atoms (resp. coatoms)
of the preconcept lattice, we obtain the four (resp. three) preconcepts

(∅, {large, not−small, not−large}), | ({sun, earth}, ∅),
(∅, {large, not−small, small}), | ({sun, moon}, ∅),
(∅, {large, not−large, small}), | ({earth, moon}, ∅).

(∅, {not−small, not−large, small}). |

In general, the atoms of a preconcept lattice V(G, M, I) are just the precon-
cepts (∅, M \ {m}) with m ∈ M and the preconcepts ({g}, M) with g ∈ G and
{g}′ = M ; the coatoms are just the preconcepts (G \ {g}, ∅) with g ∈ G and the
preconcepts (G, {m}) with m ∈ M and {m}′ = G. The

∨
-irreducible precon-

cepts which are not atoms are the preconcepts ({g}, {g}′) with g ∈ G satisfying

Fig. 1. A formal context of celestial bodies

Fig. 2. Line diagram of the concept lattice of the formal context in Fig. 1

82 C. Burgmann and R. Wille

Fig. 3. The derived context of the formal context in Fig. 1

Fig. 4. Line diagram of the preconcept lattice of the formal context in Fig. 1 and of
the concept lattice of the formal context in Fig. 3

{g}′
= M , and the
∧

-irreducible preconcepts which are not coatoms are the
preconcepts ({m}′, {m}) with m ∈ M satisfying {m}′
= G. Specific preconcepts
are the smallest preconcept (∅, M), the largest preconcept (G, ∅), and the central

The Basic Theorem on Preconcept Lattices 83

preconcept (∅, ∅) which is a subpreconcept of the supremum of all atoms and a
superconcept of the infimum of all coatoms.

2
∨

-Irreducible and
∧

-Irreducible Elements

Let us recall that an element x of a complete latice L is called
∨

-irreducible (resp.∧
-irreducible) if x is not the supremum (resp. infimum) of properly smaller

(resp. larger) elements in L. The set of all
∨

-irreducible (resp.
∧

-irreducible)
elements in L is denoted by J (L) (resp. M(L)). Atoms, the upper covers of the
smallest element 0, are special

∨
-irreducible elements; the set of all atoms of

L is denoted by A(L). Coatoms, the lower covers of the greatest element 1, are
special

∧
-irreducible elements; the set of all coatoms of L is denoted by C(L).

Proposition 1. Let L be a completely distributive complete lattice. Then there is
an isomorphism α from ([0,

∨
A(L)],≤) onto the ordered power set (P(A(L)),⊆)

defined by α(x) := {a ∈ A(L) | a ≤ x} and an isomorphism α from ([
∧
C(L), 1],

≥) onto the ordered power set (P(C(L)),⊇} defined by α(x) := {c ∈ C(L) |
c ≥ x}; in particular, x =

∨
{a ∈ A(L) | a ≤ x} for all x ∈ [0,

∨
A(L)] and

x =
∧
{c ∈ C(L) | c ≥ x} for all x ∈ [

∧
C(L), 1].

Proof: Although the assertions of the proposition follow directly from wellknown
results about completely distributive complete lattices, a short proof shall be
given to support a better understanding of the assertions. This clarifies how the
equality x =

∨
{a ∈ A(L) | a ≤ x} is a consequence of the following:

x = x ∧
∨

A(L)

= x ∧ (
∨
{a ∈ A(L) | a ≤ x} ∨

∨
{a ∈ A(L) | a
≤ x})

=
∨
{x ∧ a ∈ A(L) | a ≤ x} ∨

∨
{x ∧ a ∈ A(L) | a
≤ x}

=
∨
{a ∈ A(L) | a ≤ x}

Mapping every subset B of A(L) to
∨

B yields the inverse map α−1 because
a ≤
∨

B implies a = a ∧
∨

B =
∨
{a ∧ b | b ∈ B}, hence a ∈ B and there-

fore B = α(
∨

B). Since α and α−1 are obviously order-preserving, α is an iso-
morphism from ([0,

∨
A(L)],≤) onto the Boolean lattice (P(A(L)),⊆). Dually,

we get that α is an isomorphism from ([
∧
C(L), 1],≥) onto the Boolean lattice

(P(C(L)),⊇).

Since preconcept lattices are completely distributive complete lattices having
enough

∨
-irreducible and

∧
-irreducible elements, it is worthwhile to learn more

about those lattices in general (see [BD74], Section XII.4). “Enough
∨

-irreducible
and
∧

-irreducible elements” in a complete lattice L usually means that every ele-
ment of L is the supremum of

∨
-irreducible elements and the infimum of∧

-irreducible elements. A well-known theoremstates that the completely distribu-
tive complete lattices with enough

∨
-irreducible and

∧
-irreducible elements are up

84 C. Burgmann and R. Wille

to isomorhism the complete sublattices of power set lattices (see [Ra52], [Ba54]).
Most interesting for our investigation are completely distributive complete lattices
L in which the supremum of all atoms is equal or greater than the infimum of all
coatoms. Fortunately, those lattices have enough

∨
-irreducible and

∧
-irreducible

elements what results from the following proposition:

Proposition 2. Let L be a completely distributive complete lattice in which the
supremum of all atoms is equal or greater than the infimum of all coatoms, and
let p ∈ [

∧
C(L),

∨
A(L)]. Then, the

∨
-irreducible elements which are not atoms

of the interval [0, p] are the infima

⇓ d :=
∧

{x ∈ [0, d] | x
≤ p} where d is an atom of the interval [p, 1],

and the
∧

-irreducible elements which are not coatoms of the interval [p, 1] are
the suprema

⇑ b :=
∨

{y ∈ [b, 1] | y
≥ p} where b is a coatom of the interval [0, p].

Let ↖⇓ d :=
∨
{x ∈ L | x
≥ ⇓ d} and let ↙⇑ b :=

∧
{y ∈ L | y
≤ ⇑ b}.

Then {↖⇓ d | d ∈ A([p, 1])} = C([p, 1]) and {↙⇑ b | b ∈ C([0, p])} = A([0, p]);
furthermore, for all z ∈ L,

z =
∨

{⇓ d | d ∈ A([p, 1]),⇓ d ≤ z} ∨
∨
{↙⇑ b | b ∈ C([0, p]),⇑ b
≥ z}

=
∧

{⇑ b | b ∈ C([0, p]),⇑ b ≥ z} ∧
∧

{↖⇓ d | d ∈ A([p, 1]),⇓ d
≤ z}.

This clarifies that each element of L is the supremum of
∨

-irreducible elements
and the infimum of

∧
-irreducible elements of L.

Proof: First, we notice that [0, p] is a Boolean interval in [0,
∨
A(L)] and [p, 1]

is a Boolean interval in [
∧
C(L), 1]. Thus, we can confirm the existence of atoms

in [p, 1] and coatoms in [0, p] as follows: For each coatom c of [p, 1], the infimum
of C([p, 1]) \ {c} is an atom of [p, 1] by Proposition 1. Dually, we get for each
atom a of [0, p] that the supremum of (A([0, p]) \ {a} is a coatom of [0, p].
Clearly, all atoms of [p, 1] and coatoms of [0, p] can be obtained by the considered
constructions.

Next, we identify the
∨

-irreducible and
∧

-irreducible elements which are not
atoms of [0, p] and coatoms of [p, 1], respectively. For each atom d of [p, 1], ⇓ d is
obviously an upper cover of ⇓ d∧p which is the supremum of all properly smaller
elements of ⇓ d; hence ⇓ d is

∨
-irreducible. Dually, for each coatom b of [0, p],

⇑ b is obviously the lower cover of ⇑ b ∨ p which is the infimum of all properly
larger elements of ⇑ b; hence ⇑ d is

∧
-irreducible. For z ∈ L \ ([0, p]∪ [p, 1]), the

interval [z ∧ p, z ∨ p] is isomorphic to the direct products [z ∧ p, z] × [z ∧ p, p]
and [z, z ∨ p]× [p, z ∨ p] by the distributive laws (the isomorphisms are given by
x �→ (x ∧ z, x ∧ p) and x �→ (x ∨ z, x ∨ p)). Thus, z can only be

∨
-irreducible if

z is an upper cover of z ∧ p; hence z =⇓d for some d ∈ A([p, 1]). Dually, we get
that z is only

∧
-irreducible if z =⇑b for some b ∈ C([0, p]).

The Basic Theorem on Preconcept Lattices 85

Now, we prove {↖⇓ d | d ∈ A([p, 1])} = C([p, 1]). For d ∈ A([p, 1]), we
obtain ⇓ d ∧

∨
{x ∈ L | x
≥ ⇓ d} =

∨
{⇓ d ∧ x | x ∈ L with x
≥ ⇓ d} <⇓ d

because ⇓ d is
∨

-irreducible. Therefore
∨
{x ∈ L | x
≥ ⇓ d}
≥ ⇓ d and hence

↖⇓ d =
∨
{x ∈ L | x
≥ ⇓ d} =

∨
A([p, 1]) \ {d} ∈ C([p, 1]) which proves the

desired equality. Dually, it follows {↙⇑b | b ∈ C([0, p])} = A([0, p]).
Finally, because of [0, z] ∩ (J (L) \ A([0, p])) = {⇓ d | d ∈ A([p, 1]),⇓ d ≤ z]}

and [0, z] ∩A([0, p]) = {↙⇑ b | b ∈ C([0, p]),⇑ b
≥ z}, we obtain

z ≥ z :=
∨
{⇓ d | d ∈ A([p, 1]),⇓ d ≤ z]} ∨

∨
{↙⇑ b | b ∈ C([0, p]),⇑ b
≥ z},

and dually

z ≤ z :=
∧
{⇑ b | b ∈ C([0, p]),⇑ b ≥ z} ∧

∧
{↖⇓ d | d ∈ A([p, 1]),⇓ d
≤ z}.

Since z ∨ p is the infimum of the coatoms above it and z ∧ p is the supremum of
the atoms below it, it follows that z ∨ p =

∧
{↖⇓ d | d ∈ A([p, 1]),⇓ d
≤ z} and

z∧p =
∨
{↙⇑ b | b ∈ C([0, p]),⇑ b
≥ z}, which forces z = z = z by distributivity.

Thus, the above inequalities are even equalities as claimed in the proposition.

3 The Basic Theorem

Now we are prepared to state and prove the basic theorem in which we use the
following conventions: For subsets A ⊆ J (L) and B ⊆ M(L), where L is a
completely distributive complete lattice, we define

↖ A := {↖ a | a ∈ A} (↖ a :=
∨
{x ∈ L | x
≥ a}),

↙ B := {↙ b | b ∈ B} (↙ b :=
∧
{x ∈ L | x
≤ b}).

The Basic Theorem on Preconcept Lattices. For a formal context
(G, M, I), the preconcept lattice V(G, M, I) is a completely distributive com-
plete lattice in which the supremum of all atoms is equal or greater than the
infimum of all coatoms; in particular, the preconcept (∅, ∅) is a subpreconcept of
the supremum of all atomic preconcepts and a superpreconcept of the infimum of
all coatomic preconcepts. Arbitrary infima and suprema in V(G, M, I) are given
by ∧

t∈T

(At, Bt) = (
⋂
t∈T

At,
⋃
t∈T

Bt) and
∨
t∈T

(At, Bt) = (
⋃
t∈T

At,
⋂
t∈T

Bt).

In general, a completely distributive complete lattice L, which has a singular
element p below or equal the supremum of all atoms and above or equal the infi-
mum of all coatoms, admits an isomorphism ψ from L to the preconcept lattice
V(G, M, I) with ψ(p) = (∅, ∅) if and only if there are bijections
γ̃ : G −→ J (L) \ A([0, p]) and μ̃ : M −→M(L) \ C([p, 1]) such that

(1) γ̃G ⊆ L \ [0, p] and γ̃G∪↙ μ̃M is
∨

-dense in L
(i.e. L = {

∨
X | X ⊆ γ̃G∪↙ μ̃M}),

(2) μ̃M ⊆ L \ [p, 1] and μ̃M∪↖ γ̃G is
∧

-dense in L
(i.e. L = {

∧
X | X ⊆ μ̃M∪↖ γ̃G}),

(3) gIm ⇐⇒ γ̃g ≤ μ̃m for g ∈ G and m ∈ M ;
in particular, L ∼= V(J (L) \ A([0, p]),M(L) \ C([p, 1]),≤).

86 C. Burgmann and R. Wille

Proof: The results in Section 1 establish the properties of preconcept lattices
listed in the first part of the Basic Theorem up to the equalities for the infima
and suprema.

Now, let us assume that L is a completely distributive complete lattice with
a singular element p satisfying

∨
A(L) ≥ p ≥

∧
C(L). As in [GW99], p.21, we

prove, first for the special case L := V(G, M, I) and p := (∅, ∅), the existence of
mappings γ̃ and μ̃ with the required properties. We define γ̃(g) := ({g}, {g}′) for
all g ∈ G and μ̃(m) := ({m}′, {m}) for all m ∈ M . Obviously, γ̃G ⊆ L\ [0, p] and
μ̃M ⊆ L \ [p, 1]. As claimed, we have γ̃(g) ≤ μ̃(m) ⇐⇒ {g} ⊆ {m}′ and {g}′ ⊇
{m}⇐⇒ g ∈ {m}′ and {g}′ � m⇐⇒ gIm.

Furthermore, for each preconcept (A, B) of (G, M, I), the characterization of
infima and suprema in V(G, M, I) yields

(A, B) = (
⋃
g∈A

{g},
⋂

m∈M\B

M \ {m})

= (
⋃
g∈A

{g} ∪ ∅,
⋂
g∈A

{g}′ ∩
⋂

m∈M\B

M \ {m})

=
∨
g∈A

({g}, {g}′) ∨
∨

m∈M\B

(∅, M \ {m})

=
∨
g∈A

γ̃g ∨
∨

m∈M\B

↙ μ̃m

=
∨

γ̃A ∪ ↙ μ̃(M \ B),

(A, B) = (
⋂

g∈G\A

G \ {g},
⋃

m∈M

{m})

= (
⋂

g∈G\A

G \ {g} ∩
⋂

m∈B

{m}′, ∅ ∪
⋃

m∈B

{m})

=
∧

g∈G\A

(G \ {g}, ∅)∧
∧

m∈M

({m}′, {m})

=
∧

g∈G\A

↖ γ̃g ∧
∧

m∈B

μ̃m

=
∧

↖ γ̃(G \ A) ∪ μ̃(B).

Thus, γ̃G ∪↙ μ̃M is
∨

-dense and μ̃M ∪↖ γ̃G is
∧

-dense in V(G, M, I).
More generally, if there exists an isomorphism ψ : L −→ V(G, M, I) then it

is natural to define the desired mappings by γ̃g := ψ−1({g}, {g}′) for g ∈ G and
μ̃m := ψ−1({m}′, {m}) for m ∈ M which obviously have the claimed properties.

Conversely, let L be a completely distributive complete lattice with a singular
element p satisfying

∨
A(L) ≥ p ≥

∧
C(L), and let γ̃ : G → L and μ̃ : M → L

with the properties (1), (2), (3). Then a suitable mapping ϕ : V(G, M, I) → L
can be defined by

ϕ(A, B) :=
∨

γ̃A ∪ ↙ μ̃(M \ B).

The Basic Theorem on Preconcept Lattices 87

Clearly, ϕ is order-preserving. In order to prove that ϕ is an isomorphism, it has
to be shown that ϕ−1 exists and is also order-preserving. Let ψ : L → V(G, M, I)
be the mapping defined by

ψx := ({g ∈ G | γ̃g ≤ x}, {m ∈ M | x ≤ μ̃m}).

We have to prove that ψx is a preconcept of (G, M, I). Clearly,

h ∈ {g ∈ G | γ̃g ≤ x} ⇔ γ̃h ≤ x
⇒ γ̃h ≤ μ̃n for all n ∈ {m ∈ M | x ≤ μ̃m}
⇔ hIn for all n ∈ {m ∈ M | x ≤ μ̃m}
⇔ h ∈ {m ∈ M | x ≤ μ̃m}′

and hence {g ∈ G | γ̃g ≤ x} ⊆ {m ∈ M | x ≤ μ̃m}′; therefore ψx is a preconcept
of (G, M, I). This yields that ψ : L → V(G, M, I) is indeed a mapping which is
obviously order-preserving too; in particular, ψp = (∅, ∅).

Now we prove that ϕ−1 = ψ. By the assumed
∨

-density in (1), we get

ϕψx =
∨

γ̃{g ∈ G | γ̃g ≤ x} ∪ ↙ μ̃(M \ {m ∈ M | x ≤ μ̃m}) = x.

Furthermore, by the assumed
∧

-density in (2), we get

ϕ(A, B) =
∧

↖ γ̃(G \ A) ∪ μ̃(B).

Consequently, we obtain

ψϕ(A, B) = ψ(
∧

↖ γ̃(G \ A) ∪ μ̃(B))

= ({g ∈ G | γ̃g ≤
∧

↖ γ̃(G \A) ∪ μ̃(B)},

{m ∈ M | μ̃m ≥
∨

γ̃A ∪ ↙ μ̃(M \ B)})
= ({g ∈ G | γ̃g ≤ μ̃m for all μ̃m ∈↖ γ̃(G \A) ∪ μ̃(B)},
{m ∈ M | μ̃m ≥ γ̃g for all γ̃g ∈ γ̃A∪ ↙ μ̃(M \ B)})

= ({g ∈ G | gIm for all m ∈ M with μ̃m ∈↖ γ̃(G \ A) ∪ μ̃(B)},
{m ∈ M | gIm for all g ∈ G with γ̃g ∈ γ̃A∪ ↙ μ̃(M \ B)})

= (A, B) by Proposition 2.

Finally, for a completely distributive complete lattice L with a singular el-
ement p satisfying

∨
A(L) ≥ p ≥

∧
C(L), we consider the formal context

(J (L) \ A([0, p]),M(L) \ C([p, 1]),≤). For this context we define γ̃ : J (L) \
A([0, p]) → L and μ̃ : M(L) \ C([p, 1]) → L as the respective identity map-
pings. Then, by Section 2, γ̃(J (L) \ A([0, p]))∪ ↙ μ̃(M(L) \ C([p, 1])) is

∨
-

dense in L and μ̃(M(L) \ C([p, 1]))∪ ↖ γ̃(J (L) \ A([0, p])) is
∧

-dense in L,
i.e. conditions (1) and (2) are satisfied; condition (3) is obviously true. Thus,
L ∼= V(J (L) \ A([0, p]),M(L) \ C([p, 1]),≤).

Corollary 1. The preconcept lattices are (up to isomorphism) the completely
distributive complete lattices in which the supremum of all atoms is equal or
greater than the infimum of all coatoms.

88 C. Burgmann and R. Wille

The Basic Theorem on Preconcept Lattices offers a useful method for checking
line diagrams of preconcept lattices. This shall be demonstrated by the line
diagram in Fig. 4 representing the preconcept lattice L of the formal context in
Fig. 1 where L has the special property

∨
A(L) =

∧
C(L). The object names are

attached excactly to the circles representing an element of J (L) \A(L) and the
attribute names are attached exactly to the circles representing an element of
M(L) \ C(L); furthermore, the labels to the atom circles indicate the ↙-images
of the attribute preconcepts and the labels to the coatom circles indicate the
↖-images of the object preconcepts. Therefore, the circles of the

∨
-irreducible

elements and the
∧

-irreducible elements are properly labelled which confirms
the conditions (1) and (2); checking condition (3) is also straightforward. Thus,
the line diagram in Fig. 4 represents indeed the preconcept lattice of the formal
context in Fig. 1.

References

[Ba54] V. K. Balachandran: A characterization of ΣΔ-rings of subsets. Fundamenta
Mathematica 41 (1954), 38–41.

[BD74] R. Balbes, Ph. Dwinger: Distributive lattices. University of Missouri Press,
Columbia, Missouri 1974.

[GW99] B. Ganter, R. Wille: Formal Concept Analysis: mathematical foundations.
Springer, Heidelberg 1999; German version: Springer, Heidelberg 1996.

[Pi73] J. Piaget: Einführung in die genetische Erkenntnistheorie. suhrkamp taschen-
buch wissenschaft 6. Suhrkamp, Frankfurt 1973.

[Ra52] G. N. Raney: Completely distributive lattices. Proc. Amer. Matm. Soc. 3
(1952), 677-680.

[SW86] J. Stahl, R. Wille: Preconcepts and set representations of contexts. In:
W. Gaul, M. Schader (eds.): Classification as a tool of research. North-
Holland, Amsterdam 1986, 431–438.

[Wi04] R. Wille: Preconcept algebras and generalized double Boolean algebras. In:
P. Eklund (ed.): Concept lattices. LNAI 2961. Springer, Heidelberg 2004,
1–13.

The Tensor Product as a Lattice of
Regular Galois Connections

Markus Krötzsch1 and Grit Malik2

1 AIFB, Universität Karlsruhe, Germany
2 Institut für Algebra, Technische Universität Dresden, Germany

Abstract. Galois connections between concept lattices can be represented as bi-
nary relations on the context level, known as dual bonds. The latter also appear as
the elements of the tensor product of concept lattices, but it is known that not all
dual bonds between two lattices can be represented in this way. In this work, we
define regular Galois connections as those that are represented by a dual bond in
a tensor product, and characterize them in terms of lattice theory. Regular Galois
connections turn out to be much more common than irregular ones, and we iden-
tify many cases in which no irregular ones can be found at all. To this end, we
demonstrate that irregularity of Galois connections on sublattices can be lifted to
superlattices, and observe close relationships to various notions of distributivity.
This is achieved by combining methods from algebraic order theory and FCA
with recent results on dual bonds. Disjunctions in formal contexts play a promi-
nent role in the proofs and add a logical flavor to our considerations. Hence it
is not surprising that our studies allow us to derive corollaries on the contextual
representation of deductive systems.

1 Introduction

From a mathematical perspective, Formal Concept Analysis (FCA) [1] is usually con-
sidered as a formalism for syntactically representing complete lattices by means of
formal contexts. A closer look reveals that this representation hinges upon the fact that
the well-known (context) derivation operations of FCA constitute Galois connections1

between certain power set lattices. Thus formal contexts can equally well be described
as convenient representations of such Galois connections.

With this in mind, it should not come as a surprise that Galois connections between
concept lattices have also been studied extensively. On the level of formal contexts, such
Galois connections can be described through suitable types of binary relations, called
dual bonds in the literature, which turn out to be a very versatile tool for further studies.
Dual bonds arguably constitute a fundamental notion for the study of interrelations and
mappings between concept lattices. Indeed, many well-known morphisms of FCA, such
as infomorphisms and scale measures, have recently been recognized as special types
of dual bonds [2]. We review some of the relevant results on dual bonds in Sect. 3.

Now dual bonds themselves allow for a nice representation in terms of FCA: each
extent of the direct product of two contexts is a dual bond between them. The concept

1 In this work, we study Galois connections only in their classical antitone formulation, as is
done in [1].

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 89–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

90 M. Krötzsch and G. Malik

lattice of the direct product is known as the tensor product of FCA. However, this
representation of dual bonds is usually not complete: the majority of dual bonds, herein
called regular dual bonds, appears in the direct product, but there can also be irregular
ones for which this is not the case.

Interestingly, this situation is also reflected by the corresponding Galois connections
and we can distinguish regular and irregular Galois connections on purely lattice theo-
retical grounds. This allows us to give a lattice theoretical characterization of the tensor
product in Sect. 4. Due to this relation to the tensor product, there are always plenty
of regular Galois connections while irregular ones can be very rare. A major goal of
this work is to further explore this situation, thus shedding new light on the structure
of Galois connections between concept lattices and on the lattice theoretical relevance of
the tensor product. In particular, we identify various cases for which only regular Galois
connections exist, such that the tensor product yields a complete representation of the
according function space.

In Sect. 5, we observe close relationships to the notion of complete distributivity,
which will be a recurrent theme in this work. Disjunctions in formal contexts play a
prominent role in Sect. 6 and add a logical flavor to our considerations. Hence it is
not surprising that our studies allow us to derive corollaries on the contextual repre-
sentation of deductive systems. Moreover, in Sect. 7, we demonstrate that irregular-
ity of Galois connections on sublattices can be lifted to superlattices, which allows
us to establish further relationships with distributivity. Finally, Sect. 8 summarizes
our results and points to various open questions that need to be addressed in future
research.

2 Preliminaries and Notation

Our notation basically follows [1], with a few exceptions to enhance readability for our
purposes. Especially, we avoid the use of the symbol to denote the operations that are
induced by a context. We shortly review the main terminology using our notation, but
we assume that the reader is familiar with the notation and terminology from [1]. Our
treatment also requires some familiarity with general notions from order theory [3].

A (formal) context is a triple (G M I) where G is a set of objects, M is a set of
attributes, and I G M is an incidence relation. Given O G and A M, we define:

OI m M g I m for all g O I(O) m M g I m for some g O

AI g G g I m for all m A I 1(A) g G g I m for some m A

By Ext() and Int() we denote the lattices of extents and intents of , respectively,
ordered by subset inclusion.

The complement of a context is defined as c (G M I) with I (G M) I. We
remark that Ext(c) in general has no simple relationship to Ext(): even if two contexts
represent isomorphic concept lattices, this is not necessarily true for their complements.

Finally, an antitone Galois connection () between complete lattices K and L
is a pair of functions : K L and : L K such that k (l) iff l (k), for all
k K, l L. Each component of a Galois connection uniquely determines the other, so
we will often work with only one of the two functions. For further details, see [1].

The Tensor Product as a Lattice of Regular Galois Connections 91

3 Dual Bonds and the Tensor Product

To represent Galois connections between concept lattices on the level of the respective
contexts, one uses certain relations called dual bonds. In this section, we recount some
results that are essential to our subsequent investigations. Details and further references
can be found in [2].

Definition 1. A dual bond between formal contexts (G M I) and (H N J)
is a relation R G H for which the following hold:

– for every element g G, gR (which is equal to R(g)) is an extent of and
– for every element h H, hR (which is equal to R 1(h)) is an extent of .

This definition is motivated by the following result.

Theorem 1 ([1–Theorem 53]). Consider a dual bond R between contexts and as
above. The mappings

R : Ext() Ext() : X XR and R : Ext() Ext() : Y YR

form an antitone Galois connection between the concept lattices of and .
Given such a Galois connection (), the relation

R() (g h) h (gII) (g h) g (hJJ)

is a dual bond, and these constructions constitute a bijection between the dual bonds
between and , and the Galois connections between Ext() and Ext().

The previous result allows us to switch between different context representations of
dual bonds in a canonical way. Indeed, consider contexts , , , and such that
Ext() Ext() and Ext() Ext(). Then any dual bond R between and
bijectively corresponds to a dual bond R between and that represents the same
Galois connection. We describe this situation by saying that R and R are equal up to
isomorphism (of concept lattices) or just equivalent.

Since extents are closed under intersections, the same is true for the set of all dual
bonds between two contexts. Thus the dual bonds (and hence the respective Galois
connections) form a closure system, and one might ask for a way to cast this into a
formal context which has dual bonds as concepts. An immediate candidate for this
purpose is the direct product. Given contexts (G M I) and (H N J), the
direct product of and is the context (G H M N) where is defined
by setting (g h) (m n) iff g I m or h J n.

The tensor product of two complete lattices is defined as the concept lattice of the
direct product of their canonical contexts. As shown in [1–Theorem 26], the tensor
product does not depend on using canonical contexts: taking the direct product of any
other contexts that represent the factor lattices yields an isomorphic result.

Proposition 1 ([4]). The extents of a direct product are dual bonds between the
contexts and .

However, it is known that the converse of this result is false, i.e. there are dual bonds
which are not extents of the direct product. This motivates the following definition.

92 M. Krötzsch and G. Malik

3 m1 m2 m3

g1

g2

g3

m1 m2 m3

g1 g2 g3

5 m1 m2 m3

g1

g2

g3

m1

m2

m3

g1

g2

g3

Fig. 1. The lattices M3 and N5 with their standard contexts

Definition 2. A dual bond R between and is regular if it is an extent of .

Example 1. For some prototypical examples of irregular dual bonds, consider the for-
mal contexts in Fig. 1. Observe that for any complete lattice L, the identity function is
a Galois connection between L and its dual order Lop. For M3, this identity is repre-
sented by the dual bond (g1 m1) (g2 m2) (g3 m3) (between the standard context and
its dual). For N5 it is given as (g1 m2) (g1 m1) (g2 m2) (g3 m3) . Some easy compu-
tations show that both of these dual bonds are irregular.

The next section is concerned with showing that regularity of dual bonds is equivalent
to suitable properties of the induced Galois connection. For regularity of dual bonds,
the following characterization will be very helpful.

Theorem 2 ([2–Theorem 3]). Consider contexts (G M I) and (H N J), and a dual
bond R G H. Then R is regular iff R(g) m gI R(mI)JJ for all g G.

4 Regularity of Galois Connections

The previous section suggests to extend the notion of regularity from dual bonds to their
respective Galois connections.

Definition 3. A Galois connection () between lattices K and L is regular if its
associated dual bond R between the canonical contexts of K and L is regular.

We know that the lattice structure of the regular Galois connections coincides with the
tensor product of the respective lattices, and that the latter does not depend on using
canonical contexts in the definition. Whatever contexts are chosen for representing the
given complete lattices, the structure of their regular dual bonds is always the same.
This, however, does not say that they always represent the same set of Galois connec-
tions. In order to obtain this, one needs to show that the isomorphisms used in [1–
Theorem 26] for showing the context independence of the tensor product preserve the
represented Galois connections. However, using our prior insights on the connections
between dual bonds, Galois connections, and the direct product, we can produce an
alternative proof which is more suggestive in the current setting.

Lemma 1. Consider a dual bond R between and , and a subset A of the set of
attributes of . We find that AR

g AI R(g)J

The Tensor Product as a Lattice of Regular Galois Connections 93

Proof. We have AR
m A R (m) and, by [2–Lemma 3], this is equal to m A R(mI)J.

Since J transforms unions into intersections, the latter equals m A g mI R(g)J. In
other words, the expression is the intersection of the intents R(g)J for all g such that
g I m for some m A. But this is just g AI R(g)J as required.

The application of to a binary relation always yields a dual bond between the dual
contexts, and thus a Galois connection between the dual concept lattices. Let us state
the respective construction as a lattice theoretical operation on Galois connections.

Definition 4. Consider a Galois connection () between complete lattices K
and L. A pair of mappings () is defined as follows:

: Kop Lop : k (K k) and : Lop Kop : l (L l)

where op denotes order duals, and and refer to K and L, not to Kop and Lop.

Lemma 2. Consider a dual bond R between and , and let () : Ext()
Ext() be the according Galois connection as in Theorem 1.

Then () is a Galois connection from Ext()op to Ext()op. Up to the
isomorphism between the dual lattices of extents and the lattices of intents, it is the
Galois connection associated with R .

Proof. Let () denote the Galois connection associated with R . Given any
intent A of , we compute

(A) AR

g AI

R(g)J

gII AI

(gII)J

gII AI

(gII)
J

where we used Lemma 1 for the second equality, and where refers to the supremum
of extents in Ext(). Now it is easy to see that (gII) gII AI (O) O
OII O AI . Indeed, whenever O OII O AI we find some g O with g AI . But
then (O) (gII) which allows for the desired conclusion. With this we conclude that

(A) (O) O OII O AI
J

(Ext() AI)
J
.

Now it is easy to see that is just the composition of with the two lattice isomor-
phisms I : Int() Ext()op and J : Ext()op Int(). Since the property of being a
Galois connection is invariant under isomorphism this establishes the claim.

The previous result was stated for Galois connections between concept lattices only,
which simplified the notation that was needed in the proof. Yet it is easy to see that the
result extends to arbitrary Galois connections, since the claimed properties are invariant
under isomorphism.

Also observe that the proof of Lemma 2 does not require the fact that is a Galois
connection. This should not come as a surprise, since the operator on binary relations
always produces an intent of the direct product, even if the input is not a dual bond.

Now we can easily derive the independence of regularity of Galois connections from
the choice of canonical contexts for the representation via dual bonds.

Proposition 2. Consider a dual bond R and a Galois connection that is, up to iso-
morphism of complete lattices, equal to the Galois connection induced by R. Then R is
regular iff is regular. Moreover, for any Galois connection , is regular.

94 M. Krötzsch and G. Malik

Proof. R is regular iff R R . By Lemma 2, is thus equivalent to the Galois
connection induced by R and thus to . By similar reasoning, given that S is the canon-
ical dual bond for , the Galois connection induced by S is equivalent to . But this
implies that S S such that is regular. The other direction is shown similarly.

This shows that regularity of Galois connections can be established by considering
any (possibly non-canonical) representation by dual bonds. Hence, let R be any dual
bond for . Then, by Lemma 2, is represented (up to isomorphism) by R (as a dual
bond between the dual contexts). Regularity of follows from regularity of R .

The above theorem asserts that regularity of dual bonds reflects a property not only of
a particular dual bond, but of a whole class of dual bonds that represent the same Ga-
lois connection. This invariance under change of syntactic representation allows us to
choose arbitrary contexts for studying regularity of Galois connections. As a corollary,
we obtain that the structure of (binary) tensor products is independent of context rep-
resentations as well. We find that the study of regularity of Galois connections or dual
bonds is synonymous with the study of the structure of the tensor product.

In the remainder of this section, we provide some basic characterizations of regular
Galois connections. Since the dual adjoints of a Galois connection uniquely determine
each other, we state the following result only for one part of a Galois connection.

Theorem 3. Given a mapping : K L between complete lattices K and L, the
following are equivalent:

(i) is part of a regular Galois connection between K and L,

(ii) ,

(iii) For all k K, (k) m k m g (g).

Proof. We first show that (i) is equivalent to (ii). By Proposition 2, every mapping of the
form is a part of a regular Galois connection. For the other direction, by Lemma 2,
we find that is equivalent to a part of the Galois connection associated with R
where R is any dual bond for . The claim follows since R R for regular Galois
connections .

Equivalence of (ii) and (iii) is immediate by noting that (k) m k m g (g),
where the second application of refers to the dual order, so that the order-related
expressions have to be dualized.

Note that this result establishes a purely lattice theoretical description of the tensor
product of FCA, based on the closure operator (in the general order-theoretic sense)
on Galois connections. An alternative characterization has been derived in [5], where a
lattice-theoretical description of the original closure operator on subsets of L K was
given. The latter formulation is substantially more complex and hinges upon certain
sets of filters, called T-carpets. The advantage of this approach is that it generalizes to
n-ary direct products, while our description is specific to the binary case.

5 Regularity for Completely Distributive Lattices

Though the above characterization of regularity is precise, its rather technical condi-
tions are not fully satisfactory for understanding the notion. Especially, it does not sig-

The Tensor Product as a Lattice of Regular Galois Connections 95

nificantly enhance our understanding of the sets of regular and irregular Galois connec-
tions as a whole. Next, we are going to explore several situations for which all Galois
connections must be regular. In these cases, the representation of Galois connections
through the direct product is exhaustive, and the tensor product is fully described as the
function space of all Galois connections between two lattices.

Considering condition (iii) of Theorem 3, it should not come as a surprise that dis-
tributivity has an effect on regularity. The following characterization will be useful for
formalizing this intuition.

Proposition 3. A complete lattice K is completely distributive iff, for each pair of ele-
ments g, m K, if m g, then there are elements m , g K such that:

– m g and m g ,
– K g m .

Proof. For the proof, we use a result on completely distributive concept lattices. Clearly,
K is completely distributive iff the concept lattice of its canonical context (K K)
is completely distributive. Now, according to [1–Theorem 40], the concept lattice of is
completely distributive iff for every pair m g there are elements m , g such that m
g, m g , and g k for all k K m . In the canonical context, the last condition
is equivalent to saying that g k for all k m . Thus K g m , as required.

Note that the above also implies that m m and g g . Now we can apply this result
to establish the following sufficient condition for regularity of all Galois connections.

Theorem 4. Consider complete lattices K and L. If either K or L is completely dis-
tributive, then all Galois connections from K to L are regular. Especially, this is the
case if K or L are distributive and finite.

Proof. Consider a Galois connection () : K L. Assume that L is completely
distributive. For a contradiction, assume that is not regular. By Theorem 3, there is an
element k K such that (k) m k m g (g). For notational convenience, we define

n (k) and h m k m g (g). It is easy to see that n h, so we conclude that
n h and thus n h. This inequality satisfies the conditions of Proposition 3 and we
obtain elements h , n L such that n h, n h , and L h n .

Now suppose that (h) k. By anti-monotonicity of , this implies ((h))
(k) n. Since h ((h)) (see, e.g., [1]), this entails h n, which contradicts the

above assumptions on h . Thus (h) k, and we conclude that h (h) g (g).

Now for any g K, if (g) h then ((g)) (h) and thus g (h). Thus,
whenever (h) g, we find that (g) h . By our assumptions on h and n , this shows
that (g) n , and consequently (h) g (g) n .

The conclusions of the previous two paragraphs imply that h n , which yields the
desired contradiction. The claim for the case where K is completely distributive follows
by symmetry. The rest of the statements is immediate since a finite lattice is distributive
iff it is completely distributive.

The above proof might seem surprisingly indirect, given that our first motivation for
investigating distributivity possibly stems from the interleaved infimum and supremum

96 M. Krötzsch and G. Malik

operations of Theorem 3 (iii). Could a more direct proof just apply distributivity to
exchange the position of these operations, thus enabling us to exploit the interplay of
Galois connections and infima for further conclusions? The answer is a resounding
“no”: indeed, the infima and suprema from Theorem 3 distribute over each other in any
finite lattice2 but many finite lattices admit irregular dual bonds. Hence, just applying
distributivity directly cannot suffice for a proof.

In the finite case, Theorem 4 shows that distributivity of lattices is ensures that only
regular Galois connections exist. In Sect. 7 we will see that distributivity is necessary
as well.

6 Disjunctions in Contexts

Further sufficient characterizations for regularity of dual bonds have been investigated
in [2]. In this section, we combine these ideas with logical considerations along the
lines of [7]. The results we obtain are specifically relevant for representations of logical
and topological systems within FCA. The following properties of dual bonds constitute
our starting point.

Definition 5. Consider contexts (G M I) and (H N J). A relation R
G H is (extensionally) closed if it preserves extents of , i.e. if for every extent O
of the image R(O) is an extent of . R is (extensionally) continuous if its inverse is
extensionally closed.

In [2] continuity was used to establish relations to continuous functions between con-
texts, known as scale measures. Here, we are mostly interested in the following result,
that is a corollary from [2–Theorem 4].

Proposition 4. A dual bond R between and is regular, whenever it is closed as a
relation from c to . By symmetry, the same conclusion follows if R is continuous as a
relation from to c.

Now continuity and closedness, while yielding sufficient conditions for a dual bond to
be regular, are not particularly convenient as characterizations either. This is partially
due to the fact that these properties, in contrast to regularity, are not independent from
the contexts used in the presentation of a dual bond. Though this problem will generally
persist throughout our subsequent considerations, the next lemma shows the way to a
more convenient characterization.

Lemma 3. Consider a dual bond R between contexts (G M I) and (H N J),
and an extent O Ext(c). The following are equivalent:

(i) R(O) is an extent of .

(ii) For every h R(O)JJ, there is a set X O such that h R(X)JJ and there is g O
with X gI I .

Proof. Clearly, if R(O) is an extent, then for every h R(O)JJ, there is an element g O
such that h R(g). Since g gI I , this shows that (i) implies (ii).

2 This is so because it holds for any continuous lattice since the sets g m g are directed.
See [6].

The Tensor Product as a Lattice of Regular Galois Connections 97

For the converse, let g be as in (ii). As observed in [2–Lemma 1], we find g xII

for all x X. Given x X, R 1(y) is an extent of for all y R(x), such that we find
g R 1(y) for all y R(x), i.e. R(x) R(g). This yields R(X) R(g) which implies
h R(g) since the latter is an intent of .

Intuitively, the previous lemma states that the closure of the image of a set O can be
reduced to the closures of the images of single elements g, which are asserted by the
definition of dual bonds. As shown in the proof, if the closure is given, then the existence
of a sufficient amount of such elements g is certain and the subsets X of (ii) can be
chosen as singleton sets. On the other hand, a sufficient condition for showing closure
is obtained by requiring the existence of suitable g for arbitrary sets X. The disjunctions
of X turn out to be just what is needed.

Definition 6. Consider a context (G M I) and a set X G. An object g G is
the disjunction of X, if, for any m M, we have that

g I m iff there is some x X such that x I m.

Disjunctions in contexts introduce a logical flavor and have previously been studied in
relation with the representation of deductive systems in FCA, e.g. in [8] or [7].

It is easy to see that X has a disjunction iff XI I is an object extent gI I . A little re-
flection shows that the existence of disjunctions still strongly depends on the particular
context used to represent some complete lattice. Intuitively, this is due to the fact that
the concept lattice of c is not fully determined by the concept lattice of , but depends
on the particular representation of .

Our strategy for deducing regularity of Galois connections from the above observa-
tions is as follows: given a Galois connection between complete lattices K and L, we try
to find a corresponding dual bond R between contexts, such that the context for K has
a “sufficient” amount of disjunctions to show closedness of R. Lemma 3 implies that
the existence of arbitrary disjunctions certainly is sufficient in this sense; but weaker
assumptions turn out to be sufficient in some cases. The existence of such a closed dual
bond R then implies regularity of the Galois connection, even though both closedness
and disjunctions may not be given for other representations of the same Galois connec-
tion. We discover that typical situations where many disjunctions exist again are closely
related to distributivity.

Hence, our task is to seek context representations with a maximal amount of dis-
junctions. Unfortunately, the canonical context turns out to be mostly useless for this
purpose. Indeed, given a complete lattice K, it is easy to see that X K has a disjunc-
tion in the canonical context iff X has a least element in K. In order to find contexts
with more disjunctions, we state the following lemma.

Lemma 4. Consider a complete lattice K and subsets J, M K such that M is -
dense and J is -dense in K. Then K is isomorphic to the concept lattice of (J M).
Furthermore, a subset X J has a disjunction in (J M) iff

(i) X J and

(ii) X M x X x M.

The disjunction then is given by the element X.

98 M. Krötzsch and G. Malik

Proof. The claimed isomorphism of K and the concept lattice is a basic result of FCA,
see [1]. According to the definition, g is a disjunction for X precisely when we find
that for all m M, g m iff x m for some x X. This in turn is equivalent
to g M x X x M. Obviously this also implies that g X. If g X
then, by -density of M, there is some m M with m g but m X. But then
g M x X x M and g cannot be the disjunction. This shows that g X is the

only possible disjunction for X, and that this is the case iff (i) and (ii) are satisfied.

This result guides our search for contexts with many disjunctions. Indeed, it is easy to
see that for (i), it is desirable to have as many objects as possible, while (ii) is more
likely to hold for a small set of attributes.

Note that Lemma 4 entails some notational inconveniences, since disjunctions are
usually marked by the symbol . Yet we obtain since we work on disjunctions of
objects. If one would prefer to do all calculations on attributes (which are often taken
to represent formulae when modelling logical notions in FCA), one would obtain as
expected.

In the finite case, finding a possibly small set of attributes for a given lattice is easy:
the set of -irreducible elements is known to be the least -dense set. While this is
also true for some infinite complete lattices, it is not required in this case.

Proposition 5. Consider a complete lattice K such that the set of -irreducible ele-
ments M(K) is -dense in K. For every set X K, the following are equivalent:

(i) X has a disjunction in the context (K M(K)),

(ii) k X x X(k x), for any k K.

In particular, the distributivity law k X x X(k x) holds in K iff (K M(K))
has all disjunctions.

Proof. For the forward implication, assume that (i) holds for some set X K. For a
contradiction, suppose that there is some k K such that (ii) does not hold for k and X.
Since k X x X(k x) holds in any complete lattice, this says that k X

x X(k x). By -density of M(K), there is some m M(K) such that k X m but

x X(k x) m. The former shows that k m and X m. Now by (i) and Lemma 4,
x m for some x X, such that (x k) m. But then x X(k x) m, which yields a
contradiction.

For other direction, assume that (ii) holds for some set X K. For a contradiction,
suppose that (i) is not true for X. By Lemma 4, we find some attribute m M(K) such
that X m but x m for all x X. We conclude that m m X. By (ii), this
implies m x X(m x). Since m is -irreducible, there must be some x X with
(m x) m and hence x m; but this contradicts our assumptions.

Note that most parts of the above proof do not make use of the -irreducibility of the
chosen attribute-set. In particular, the implication from (i) to (ii) holds for arbitrary -
dense sets of attributes. In the rest of the proof, irreducibility is used only in connection
with the set X. Thus we obtain the following corollary.

Corollary 1. Consider a complete lattice K such that the set of -irreducible ele-
ments MFin(K) is -dense in K. Then K is distributive iff (K MFin(K)) has all finite
disjunctions.

The Tensor Product as a Lattice of Regular Galois Connections 99

The previous result is useful for the subsequent consideration of logical deductive sys-
tems. Concerning regularity of dual bonds between finite lattices, we will establish a
stronger characterization in Theorem 7 later on. We are now ready to combine the above
results to derive further sufficient conditions for regularity of Galois connections.

Theorem 5. Consider a complete lattice K where M(K) is -dense and such that the
distributivity law k X x X(k x) holds for arbitrary k K, X K. Then all
Galois connections from K to any other complete lattice are regular.

Proof. By Lemma 4, the concept lattice of (K M(K)) is isomorphic to K and,
by Proposition 5, has all disjunctions. Now any Galois connection from K to some
complete lattice L corresponds to a dual bond R from to the canonical context
(L L) of L. Now consider any extent O of c. Obviously, the conditions of Lemma 3
(ii) are satisfied, where X O and g is the disjunction of O. Thus R(O) is an extent of

. Since O was arbitrarily chosen, this shows that R is closed from which we conclude
that R is regular, as required.

Complete lattices for which finite infima distribute over arbitrary suprema are also
known as locales, and are the subject of study in point-free topology [9]. The reason
is that the lattice of open sets of any topological space forms a locale. Thus the pre-
vious theorem can be considered as a statement about certain lattices of closed sets of
topological spaces. On the other hand, the condition that -irreducibles be -dense
is rather severe in this setting. Especialy, it would be possible that the conjunction
of these assumptions already implies complete distributivity – see Sect. 8 for some
discussions.

A statement similar to Theorem 5 can be made when restricting to finite disjunctions.

Theorem 6. Consider a distributive complete lattice K where MFin(K) is -dense.
Then all Galois connections from K to any other complete algebraic lattice are reg-
ular. Especially, this applies to Galois connections from K to finite lattices.

Proof. The proof proceeds as in Theorem 5. However, to apply Lemma 3, we note that
for any l R(O) , there is a finite set Y R(O) such that l Y . This follows directly
from algebraicity of L, see e.g. [1]. Thus there is a finite set X O with Y R(X) and
its disjunction g allows us to invoke Lemma 3 as desired.

Again this theorem can be related to topology, but in a way that is quite different from
Theorem 5 and which finally relates disjunctions in contexts to logical disjunctions. The
key observation is that -density of -irreducibles is the characteristic property for the
open set lattices of certain topological spaces, called sober spaces in the literature [9].
Being locales as all topologies, these spaces are finitely distributive as well. Thus the
conditions on K given in Theorem 6 are satisfied by the open set lattice of any sober
space. These structures are commonly known as spacial locales, and have been studied
extensively in research on point-free topology. We obtain the following corollary.

Corollary 2. Every Galois connection between a spacial locale and an algebraic lat-
tice is regular. In particular, every Galois connection between algebraic spacial locales
is regular.

100 M. Krötzsch and G. Malik

To see how these observations are connected to logic, we have a brief look at the presen-
tation of deductive systems in formal concept analysis. In general, deductive systems
are characterized by a semantic consequence relation between models and formulae
of some logic. For an example, consider the consequence relation between models of
propositional logic and propositional formulae.

Now such binary relations are naturally represented as formal contexts. This idea
has, with more or less explicit reference to FCA, been investigated within Institution
Theory [10] and the theory of Information Flow [8]. At this point, it is not apparent
how this relates to topology, locales, and algebraicity. This relation can be established
on quite general grounds, but here we just sketch the situation for propositional logic as
an exemplary case.

Thus consider a language of propositional logic as a set of objects. For attributes,
consider any set of models of some propositional logic theory.3 With semantic con-
sequence as incidence relation, this yields a “logical” context that represents a given
theory. It is easy to see that disjunctions of the logic correspond to object-disjunctions
within this context. On the other hand, disjunctions in the complemented context corre-
spond to conjunctions of the logic. The according concept lattice is the lattice of logical
theories over this background knowledge. In particular, object extents represent knowl-
edge that is given by single formulae, while their order in the concept lattice describes
entailment. As is well-known, the sublattice of object extents is a Boolean algebra in the
propositional case. Furthermore, the lattice of propositional theories is known to be al-
gebraic: every logical consequence can be derived from only a finite set of assumptions
(in other words, propositional statements cannot describe infinite information).

Moreover, the complement of a logical context represents another interesting concept
lattice: it is isomorphic to the open set lattice of a topological space, the so-called Stone
space of the aforementioned Boolean algebra.4 Basically, this is just an FCA version
of Stone’s famous representation theorem for Boolean algebras (see [3] for an intro-
duction). It is well-known that open set lattices of Stone spaces are algebraic spacial
locales, so that we can immediately conclude from Corollary 2 that every dual bond be-
tween complements of logical contexts in the above sense is regular. However, another
consequence of our observations is more interesting from a logical perspective.

Corollary 3. Consider contexts and that represent theories of propositional logic
as described above. Then any dual bond from c to is regular. More specifically, it is
closed from to and continuous from c to c.

Proof. Regularity follows immediately from Corollary 2 and the above remarks. For
closedness, we can apply Lemma 3, using algebraicity of Ext() (the lattice of theories)
and the availability of finite conjunctions in the propositional logic of . Likewise,
for continuity, we combine algebraicity of Ext(c) (the open set lattice) with finite
propositional disjunctions of .

3 This differs from the more common approach where formulae or “properties” are usually taken
as attributes. This deviation ensures compatibility to our object-centered treatment. Also note
that we do in general not consider the set of all propositional models, since the context would
not contain much information in this case.

4 Note that it is not the open set lattice, since the latter is not a closure system. However, the
order-dual lattice of intents is exactly the according lattice of closed sets.

The Tensor Product as a Lattice of Regular Galois Connections 101

The above formulation exhibits a seemingly strange twist in the dual bond, since we
consider the complement of the context . However, this formulation fits well into our
logical framework, since such dual bonds can be interpreted as proof theoretical conse-
quence relations between two logical theories. To see this, note that a a logical implica-
tion p q can be translated into p q. Based on this intuition, it makes perfect sense
to interpret the dual bond of Corollary 3 as a set of logical implications. The defining
conditions on dual bonds now state that the consequences of any single statement from

are deductively closed in , and that the sets of premises of a statement from are
deductively closed in c. Observe how this justifies regularity of all such consequence
relations: given any binary relation between the logical languages, we can always derive
an adequate consequence relation by computing missing deductive inferences. In logic,
this process is usually described by application of certain deductive rules, while in FCA
it corresponds to the concept closure within the direct product.

The reason for emphasizing closedness and continuity in Corollary 3 is that these
properties enable us to compose consequence relations in a very intuitive way. Indeed,
if p implies q, and q implies r, then one is usually tempted to derive that p implies r.
Using dual bonds to represent implication, such reasoning is described by taking the
relational product. Continuity and closedness ensure that this construction does again
yield a dual bond as in Corollary 3. Hence we obtain a category of logical theories and
consequence relations, the sets of morphisms of which can be described by the tensor
product of FCA. However, to the author’s knowledge, the resulting categories have not
yet been investigated with respect to their general properties or their relationship to
other categories from algebra or order theory.

More details on deductive systems, consequence relations, and their contextual rep-
resentation are given in [7]. In [11], consequence relations between separate logical
theories (and languages) have been introduced proof-theoretically for positive logic (the
logic of conjunctions and disjunctions), and the emerging categories were shown to be
of topological and domain theoretical relevance. Much more general cases of Stone
duality and their relation to FCA have been considered in [12].

7 Regularity for Sublattices

In this section, we show that the irregularity of a Galois connection between sublat-
tices can be lifted to a Galois connection between their respective superlattices, which
enables us to improve our characterization of the interplay between distributivity and
regularity.

Proposition 6. Consider complete lattices K, L, U, and V such that U K and V L
and

(i) for any non-empty set X U, we have U X K X and U X K X,

(ii) for any non-empty set Y V, we have V Y L Y and V Y L V.

Then any irregular Galois connection between U and V induces an irregular Galois
connection between K and L.

102 M. Krötzsch and G. Malik

Proof. We use K K and K K to denote the least and greatest elements of
K, respectively. Similar notations are used for U and L. Let () : U V be an
irregular Galois connection. Define a mapping : K L by setting

(k)
L if k K

(u U k u) if K k U

L if k U

Note that we do not have to distinguish between infima in K and in U for the second
case, since the considered set is always non-empty. We claim that is one part of an
irregular Galois connection from K to L.

Consider some set X K. To see that is a Galois connection, it suffices to show
that (X) ((X)) (see [1–Proposition 7]). It X K then X is either empty
or contains only K . Both cases are easily seen to satisfy the claim. If X U , then
there is some x X such that x U , i.e. (x) L. Again the claim is obvious.

It remains to consider the case where K X U . To this end, first note that
u U x u for all x X x X u U x u (). Indeed, the left hand

side (lhs) is greater-or-equal than the right hand side (rhs). Assuming that it is strictly
greater, the rhs is not among the u on the left, i.e. there is x X with x rhs. Since
x rhs lhs, this yields a contradiction.

Furthermore, we can assume without loss of generality that K X, since there is
certainly some greater element in X as well, making K redundant in all considered
operations. We compute:

(X) (u U X u) (x X u U x u)

x X (u U x u) x X (x)

This finishes our proof that is part of a Galois connection. To see that it is irregular,
we use condition (iii) of Theorem 3. By the assumption that is irregular, there is
some u U such that (u) m U m u g U m g (g). Since the left hand side is
always smaller-or-equal to the right hand side, this inequality is in fact strict. We have
to show that (u) m u m g (g). Since (u) (u), this follows by showing that

m U m u g U m g (g) m u m g (g). To obtain the latter, we observe that, for
any m u, there is some n U with n u and g U n g (g) m g (g). Indeed,
consider m u and set n u U u m . We claim that, for any v U with n v,

(v) m g (g). But this is obvious since (v) (v) and n v implies m v. By
what was said before, this finishes the proof of irregularity of .

As a corollary to this result, we find that distributivity is necessary to assert that only
regular Galois connections exist for some complete lattice.

Corollary 4. If a complete lattice K has only regular Galois connections to any other
lattice, then it is distributive.

Proof. For a contradiction, assume that L is not distributive. Then L has either M3 or N5

as a sublattice. We have seen in Example 1 that both of these have an irregular Galois
connection to some other lattice, so Proposition 6 yields the required contradiction.

The Tensor Product as a Lattice of Regular Galois Connections 103

Summarizing our results, we obtain a satisfactory characterization of regularity for
doubly-founded complete lattices.5

Theorem 7. Given a doubly-founded complete lattice L, the following are equivalent:

(i) L is distributive,

(ii) L has all disjunctions,

(iii) L has only regular Galois connections to any other complete lattice.

Proof. Recall that since L is doubly-founded, M(L) is -dense in L, and that distribu-
tivity is equivalent to complete distributivity in this case [1–Theorem 41]. Thus (i) is
equivalent to (ii) by Proposition 5. The implication from (i) to (iii) was stated in Theo-
rem 4. The other direction follows from Corollary 4.

8 Summary and Outlook

In this work, we identified a novel property of Galois connections, dubbed regularity,
which describes whether a Galois connection between two complete lattices is repre-
sented in their FCA tensor product. We characterized this property and identified several
cases for which only regular Galois connections exist. These cases are of particular in-
terest, since they enable us to represent the function space of all Galois connections
by means of the tensor product, thus providing a lattice theoretical motivation for this
construction.

Though we applied rather diverse proof strategies based on ideas from FCA, order
algebra, and logic, many results expose relationships to notions of distributivity. It is
known from Theorem 4 that complete distributivity of a lattice disallows irregular Ga-
lois connections to any other lattice, but a full characterization of this situation was only
established for complete lattices that are doubly-founded (Theorem 7). We conjecture
that a similar result holds for the general case, i.e. that a complete lattice admits only
regular Galois connections to any other lattice iff it is completely distributive. Theo-
rem 5 described other, seemingly weaker, conditions for enforcing regularity, but it is
conceivable that these assumptions entail complete distributivity as well. Confirming or
refuting these conjectures remains the subject of future work.

Apart form this immediate question, the present work shows many other directions
for future research. First and foremost, we have concentrated on characterizations that
refer to only one lattice at a time. This allowed us to identify specific situations where
regularity is ubiquitious, but it also neglects the fact that in general both lattices con-
tribute to regularity. Future investigations should take this into account, for example by
studying appropriate sublattices. Proposition 6 provides a theoretical foundation for this
approach.

Considering mainly situations where no irregular Galois connections exist at all, we
evaded the question for the role of irregular elements within the complete lattice of all
Galois connections. Can the irregular elements be described lattice theoretically within
this setting? We think that our results constitute the first steps towards such studies.

5 Recall that every finite lattice is doubly-founded [1].

104 M. Krötzsch and G. Malik

Last but not least, a completely different field of further questions was highlighted
in Sect. 6, where we sketched fresh categories of deductive systems that use dual bonds
as their morphisms. The study of these categories and their relevance in the field of
logic/topology/domain theory remains open.

References

1. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer (1999)
2. Krötzsch, M., Hitzler, P., Zhang, G.Q.: Morphisms in context. In: Conceptual Structures:

Common Semantics for Sharing Knowledge. Proceedings of the 13th International Confer-
ence on Conceptual Structures, ICCS ’05, Kassel, Germany. (2005) Extended version avail-
able at www.aifb.uni-karlsruhe.de/WBS/phi/pub/KHZ05tr.pdf.

3. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. second edn. Cambridge
University Press (2002)

4. Ganter, B.: Relational Galois connections. Unpublished manuscript (2004)
5. Wille, R.: Tensor products of complete lattices as closure systems. Contributions to General

Algebra 7 (1991) 381–386
6. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous

Lattices and Domains. Volume 93 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press (2003)

7. Krötzsch, M.: Morphisms in logic, topology, and formal concept analysis. Master’s thesis,
Technische Universität Dresden (2005)

8. Barwise, J., Seligman, J.: Information flow: the logic of distributed systems. Volume 44 of
Cambridge tracts in theoretical computer science. Cambridge University Press (1997)

9. Johnstone, P.T.: Stone spaces. Cambridge University Press (1982)
10. Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and program-

ming. Journal of the ACM 39 (1992)
11. Jung, A., Kegelmann, M., Moshier, M.A.: Multi lingual sequent calculus and coherent

spaces. Fundamenta Informaticae XX (1999) 1–42
12. Erné, M.: General Stone duality. Topology and its Applications 137 (2004) 125–158

Two Instances of Peirce’s Reduction Thesis

Frithjof Dau and Joachim Hereth Correia

Technische Universität Dresden, Institut für Algebra,
D-01062 Dresden

{dau, heco}@math.tu-dresden.de

Abstract. A main goal of Formal Concept Analysis (FCA) from its very
beginning has been the support of rational communication by formaliz-
ing and visualizing concepts. In the last years, this approach has been
extended to traditional logic based on the doctrines of concepts, judge-
ments and conclusions, leading to a framework called Contextual Logic.
Much of the work on Contextual Logic has been inspired by the Existen-
tial Graphs invented by Charles S. Peirce at the end of the 19th century.
While his graphical logic system is generally believed to be equivalent
to first order logic, a proof in the strict mathematical sense cannot be
given, as Peirce’s description of Existential Graphs is vague and does not
suit the requirements of contemporary mathematics.

In his book ’A Peircean Reduction Thesis: The Foundations of topo-
logical Logic’, Robert Burch presents the results of his project to recon-
struct in an algebraic precise manner Peirce’s logic system. The resulting
system is called Peircean Algebraic Logic (PAL). He also provides a proof
of the Peircean Reduction Thesis which states that all relations can be
constructed from ternary relations in PAL, but not from unary and bi-
nary relations alone.

Burch’s proof relies on a major restriction on the allowed construction
of graphs. Removing this restriction renders the proof much more com-
plicated. In this paper, a new approach to represent an arbitrary graph
by a relational normal form is introduced. This representation is then
used to prove the thesis for infinite and two-element domains.

1 Introduction

From its very beginning, FCA was not only understood as an approach to re-
structure lattice theory (see [Wil82]) but also as a method to support rational
communication among humans and as a concept-oriented knowledge represen-
tation. While FCA supports communication and argumentation on a concept
level, an extended approach was needed to also support the representation of
judgments and conclusions. This led to the development of contextual logic
(see [DK03, Wil00]).

Work on contextual logic has been influenced by the Conceptual Graphs in-
vented by John Sowa (see [Sow84, Sow92]). These graphs are in turn inspired
by the Existential Graphs from Charles S. Peirce. In Peirce’s opinion the main
purpose of logic as a mathematical discipline is to analyze and display reasoning

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 105–118, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

106 F. Dau and J. Hereth Correia

in an easily understandable fashion. While he also contributed substantially to
the development of the linear notation of formal logic, he considered the later
developed Existential Graphs as superior notation (see [PS00, Pei35a]).

Intuitively, the system of Existential Graphs seems equivalent to first order
logic. However, a proof in the strict mathematical sense cannot be given based
on Peirce’s work. His description of Existential Graphs is too vague to suit the
requirements of contemporary mathematics.

To solve this problem, Robert Burch studied the large range of Peirce’s philo-
sophical work and presented in [Bur91] his results on attempting an algebraiza-
tion of Peirce’s logic system. This algebraic logic is called Peirce’s Algebraic
Logic. He uses this logic system to prove Peirce’s reduction thesis, namely, that
ternary relations suffice to construct arbitrary relations, but that not all relations
can be constructed from unary and binary relations alone. While this thesis is
not stated explicitly in Peirce’s work [Pei35b], this idea appears repeatedly.

Burch’s proof depends on a restriction on the constructions allowed in PAL:
the juxtaposition of disjoint graphs is only allowed as last or second-last opera-
tion. While Burch proves that the expressivity is still the same, this restriction
is a major difference to the original system of Existential Graphs. Removing
this restriction make the PAL-system more similar to both the system of Exis-
tential Graphs and to the system of relational algebra. The equivalence of this
restriction-free PAL and relational algebra has been shown in [HCP04]. The
proof of Peirce’s Reduction Thesis however is more complicated if we cannot
rely on this restriction.

In this paper we provide the first steps toward the proof, concentrating on the
special cases of a domain with only two elements and of domains with infinitely
many elements. To achieve this, we define representations of the constructed
relations similar to the disjunctive normal form (DNF) known from first-order
propositional logic. Taking advantage of some properties the relations in the
DNF have, we can then prove the reduction thesis for the two special cases.

Organization of This Paper

In the following section we provide the basic definitions used in this paper. To
simplify notation in the later parts, we in particular introduce a slight general-
ization of relation in Def. 1. Together with the definition of the PAL-graph we
then introduce the disjunctive normal form in Section 3. In the following sec-
tions, we prove Peirce’s Reduction Thesis for infinite and two-element domains.
We conclude the paper with an outlook on further research in this area.

2 Basic Definitions

Relations in the classical sense are sets of tuples, that is relations are subsets
of An where A is an arbitrary set (in the following called domain) and n is a
natural number, which is the arity of the relation. However, this definition leads
to unnecessary complications when discussing the interpretation of the alge-
braically defined PAL-graphs. While the elements of a tuple are clearly ordered,

Two Instances of Peirce’s Reduction Thesis 107

the same cannot be said about the arcs and nodes of a graph. Consequently, it
is difficult and leads to cumbersome notations if we force such an order onto the
interpretation of the graphs.

For this reason we introduce the following generalization, we consider relations
where the places of the relations are indicated by natural numbers.

Definition 1 (Relations). Let I ⊆ N be finite. A I-ary relation over A is
a set � ⊆ AI , i. e. a set of mappings from I to A.

While looking slightly more complicated at first, this definition is compatible
with the usual one. Any n-tuple can be interpreted as a mapping from the set
{1, . . . , n} to A. Instead of downsets of the natural numbers as domain of the
mapping, we now allow arbitrary but finite subsets of N.

If R is an I-ary relation over A and if J ⊇ I, then R can be canonically
extended to a J-ary relation R′ by R′ := {f : J → A | f |I ∈ R}. In this
work, we use the implicit convention that all relations are extended if needed.
To provide an example, let R be an I-ary relation and S be a J-ary relation.
With R∩ S we denote the I ∪ J-ary relation R′ ∩ S′, where R′ is R extended to
I ∪ J and S′ is S extended to I ∪ J .

We will use the following notations to denote the arity of a relation: usually
we will append the arity as lower index to the relation name. Thus RI denotes
an I-ary relation. In Sec. 5, it is convenient to append the elements of I as
lower indices to R. For example, both Ri,j and Rj,i are names for an {i, j}-ary
relation. The elements of a relation will be noted in the usual tuple-notion with
round brackets, where we use the order of the lower indices. For example, both
Ri,j := {(a, b), (b, b)} and Rj,i := {(b, a), (b, b)} denote the same relation, namely
the relation {f1, f2} with f1(i) = a, f1(j) = b and f2(i) = b, f2(j) = b.

Note that ∅-ary relations are allowed. There are exactly two ∅-ary relation,
namely ∅ and {∅}.

From given relations, we can construct new relations. In mathematics, this
usually refers to relational algebra. In this paper, we use the PAL-operations as
introduced by Burch in [Bur91]. While the operations from relational algebra
provide the same expressive power (see [HCP04]), the PAL operations concen-
trate on a different aspect. The teridentity is the three-place equality, that is (in
the notation of standard mathematical relations as used in [HCP04]) the relation
.=3 := {(a, a, a) | a ∈ A}. It plays a crucial role for Peirce and also in Burch’s
book. The core of the Peircean Reduction Thesis is that with the teridentity any
relation can be constructed from the unary and binary (or the ternary) relations,
but from unary and binary relations alone one cannot construct the teridentity.
This means that the teridentity would be somehow hidden in the operations from
relational algebra. As the operations have the same expressivity, we can define
each operation of one system by operations from the other. The operations of
relational algebra can easily be expressed in PAL using the teridentity, but this
is at least difficult for the identification of the first two coordinates ([HCP04],
Def. 2,R3), that is Δ(�) := {(a1, . . . , am−1) | (a1, a1, . . . , am−1) ∈ �}, and for the
union of relations without teridentity. Proving the Peircean Reduction Thesis
will show that this is not only difficult but impossible.

108 F. Dau and J. Hereth Correia

In relational algebra, we can construct the teridentity in relational algebra
using product, cyclic shift ζ (the tuples are rotated: see [HCP04], Def. 2,R2a)
and identification of the first two coordinates from the binary identity: .=3 =
Δ(ζ(= × =)). As product and cyclic shift are also in PAL, we could deduce
after a final proof, that teridentity is indeed involved in the identification of the
first two coordinates.

The PAL-operations found by Burch also have an easy graphical interpreta-
tion as shown in [HCP04]. We will use this notatition (see Def. 3).

1. Negation: If R is an I-ary relation, then

¬R := AI\R

2. Product: If R is an I-ary relation, S is an J-ary relation, and we have
I ∩ J = ∅, then

R × S := {f : I ∪ J → A | (f |I ∈ R) ∧ (f |J ∈ S)}

3. Join: If R is an I-ary relation with i, j ∈ I, i
= j, then

δi,j(R) := {f : I\{i, j} → A | ∃F ∈R : (F |I\{i,j} = f) ∧ (F (i) = F (j))}

We need two further technical operations which do not belong to PAL (but they
can be constructed within PAL), but which are needed in the ongoing proofs:

1. Projection: Let I := {i, j} and R be an I-ary relation. Then

πi(R) = {(f(i)) | f ∈ R} and πj(R) = {(f(j)) | f ∈ R}

2. Renaming: If R is an I-ary relation with i ∈ I and j /∈ I, we set

σi→j(R) := {f |I\{i} ∪ {(j, f(i))} | f ∈ R}

Finally, for a given domain A, we need names for some special relations. With .=I

we denote the I-ary identity relation, i.e. {f : I → A | ∃a ∈ A∀i ∈ I : f(i) = a}.
For three-element sets I, this identity is called the I-ary teridentity. We will
write .=I to emphasize this. With
 .=I we denote the complement of the teridentity.
With AI or An

I (we assume |I| = n) we denote the I-ary universal relation AI .
After the neccessary definitions for relations, we can now define PAL-graphs

over I. They are basically mathematical graphs (multi-hypergraphs), enriched
with an additional structure describing the cuts. The vertices are either labelled
with an element of I (then such a vertex is a free place of the graph), or with an
additional sign ‘∗’ (in this case, the vertex denotes an unqualified, existentially
quantifed object).

Definition 2 (PAL-Graphs). For I⊆N, a structure (V, E, ν,", Cut, area, κ, �)
is called an I-ary PAL-graph over A iff

1. V , E and Cut are pairwise disjoint, finite sets whose elements are called
vertices, edges and cuts, respectively,

Two Instances of Peirce’s Reduction Thesis 109

2. ν : E → ⋃ k∈N
V k is a mapping,1

3. " is a single element with " /∈ V ∪E∪Cut, called the sheet of assertion,
4. area : Cut ∪ {"} → P(V ∪ E ∪ Cut) is a mapping such that

a) c1
= c2 ⇒ area(c1) ∩ area(c2) = ∅ ,
b) V ∪ E ∪ Cut =

⋃
d∈Cut∪{�} area(d),

c) c /∈ arean(c) for each c ∈ Cut ∪ {"} and n ∈ N (with area0(c) := {c}
and arean+1(c) :=

⋃
{area(d) | d ∈ arean(c)}).

5. κ : E →
⋃

n∈N
P(An) is a mapping with κ(e) ⊆ An for |e| = n (see below

for the notion of |e|),
6. � : V → I ∪ {∗} is a mapping such that for each i ∈ I, there is exactly one

vertex vi with �(vi) = i, this vertex is incident with exactly one edge and we
have vi ∈ area("), and

7. G has dominating nodes, i.e., for each edge e = (v1, . . . , vk) and each
incident vertex vi ∈ {v1, , . . . , vk}, there is e ∈ arean(cut(vi)) for an n ≥ 1
(see below for the notions of e = (v1, . . . , vk) and cut(vi)).

For an edge e ∈ E with ν(e) = (v1, . . . , vk) we set |e| := k and ν(e)
∣∣
i

:= vi.
Sometimes, we also write e

∣∣
i

instead of ν(e)
∣∣
i
, and e = (v1, . . . , vk) instead of

ν(e) = (v1, . . . , vk). We set E(k) := {e ∈ E | |e| = k}.
As for every x ∈ V ∪E ∪Cut there is exactly one context c ∈ Cut∪{"} with

x ∈ area(c), we can write c = area−1(x) for every x ∈ area(c), or even more
simple and suggestive: c = cut(x).

We set V ∗ := {v ∈ V | �(v) = ∗} and V ? := {v ∈ V | �(v) ∈ N}, and we set
FP(G) := I (’FP’ stands for ’free places’).

In the following, PAL-graphs will be abbreviated by PG.

An example for this definition is the following PG:

G := ({v1, v2, v3, v4}, {e1, e2, e3}, {(e1, (v1, v2)), (e2, (v2, v3)), (e3, (v3, v4))},
", {c1, c2}, {(", {v1, v2, e1, c1}), (c1, {v3, v4, e3, c2}), (c2, {e2})},
{(e1, emp), (e2, work), (e3, proj)}, {(v1, 1), (v2, 2), (v3, ∗), (v4, ∗)})

Below, the left diagram is a possible representation of G. In the right diagram, we
have sketched furthermore assignments of the elements (the vertices, edges, and
cuts) of the G to the graphical elements of the diagram. The precise conventions
on how the graphs are diagrammatically represented will be given in Def. 3.

1 2work proj 21emp1 2 21

v3 v4e3

1 2work

e2v1 v1e1

emp1 2 21

c21c

proj 21

(This is a standard example for querying relational databases. If emp relates
names of employees and their ids, proj relates description of projects and their
ids, and work is a relation between employee ids and project describing which
1 We set N := {1, 2, 3, . . .} and N0 := N ∪ {0}.

110 F. Dau and J. Hereth Correia

employee works in which project, then this graph retrieves all employees who
work in all projects.)

A PG G with FP(G) = I describes the I-ary relation of all tuples (a1, . . . , an)
such that when the free places of FP(G) are replaced by a1, . . . , an, we obtain a
graph which evaluates to true. Following the approach of [Dau03] and [Dau04],
PGs have been defined in one step, and the evaluation of graphs could be defined
analogously to the evaluation of concept/query graphs with cuts, which is done
over the tree of contexts Cut∪{"}. In this paper, we follow a different approach.

PGs can be defined inductively as well, such that the inductive construction of
PGs corresponds to the operations on relations. In the following, this inductive
construction of PGs is introduced, and we define the semantics of the graphs
along their inductive construction. Moreover, a graphical representation of PGs
is provided as well.

Definition 3 (Inductive Definition of PGs, Semantics, Graphical Rep-
resentation).

1. Atomar graphs: Let R be an I-ary relation with I = {i1, . . . , in}
= ∅.
Let R′ := {(f(i1), . . . , f(in)) | f ∈ R} be the corresponding ’ordinary’ n-ary
relation over the domain A. The graph

({v1, . . . , vn}, {e}, {(e, (v1, . . . , vn))},", ∅, ∅, {(e, R′)}, {(v1, i1), . . . , (vn, in)})
is the atomic PG corresponding to R. If this graph is named G, we see that
G is an I-ary PG. We set R(G) := R.

Graphically, a vertex v of G with �(v) = ∗ is depicted as bold spot •, and a
vertex v with �(v) = i is labelled with i. The edge e = (v1, . . . , vn) is depicted
by its label R := κ(e), which is linked for each vertex vi, i = 1, . . . , n to
its representing sign. This line is labelled with i. For example, the following
diagrams depict the same {1, 3, 5, 8}-ary relation R:

R
1

1

3
2

4 3

5

8 and R3 5

1 8
1 4

2 3 .

2. Cut Enclosure: Let G := (V, E, ν,", Cut, area, κ, �) be an I-ary PAL-
graph. Let c be a fresh cut (i.e., c /∈ E∪V ∪Cut∪{"}). Then let ¬G be the PG
defined by (V, E, ν,", Cut′, area′, κ, �) with Cut′ := Cut ∪ {c}, area′(d) :=
area(d) for d
= c and d
= ", area′(") := V ? and area′(c) := area(")\V ?.
This graph is an I-ary PG. We set R(¬G) := (R)c := AI\R(G).

In the graphical notation, all elements of the graph, except the vertices
labelled with a free place, are enclosed by a finely drawn, closed line, the
cut-line of c. For example,

from
x1

SR
A R

3
x

T x4

x7
x9

we obtain 3
x
x1

x7
x9

x4

SR
A RT

.

Two Instances of Peirce’s Reduction Thesis 111

3. Juxtaposition: Let G1 := (V1, E1, ν1,"1, Cut1, area1, κ1, �1) be an I-ary
PG and let G2 := (V2, E2, ν2,"2, Cut2, area2, κ2, �2) be a J-ary PG such
that G1 and G2 are disjoint, and I and J are disjoint. The juxtaposition
of G1 and G2 is defined to be the PG G := (V, E, ν,", Cut, area, κ, �):

G1 G2 := (V1 ∪ V2, E1 ∪ E2, ν1 ∪ ν2,", Cut1 ∪ Cut2, area, κ1 ∪ κ2, �1 ∪ �2)

where " is a fresh sheet of assertion (part. "
="1,"2), and we set area(c) :=
areai(c) for c ∈ Cuti, i = 1, 2, and area(") := area1("1)∪area2("2). This
graph is an I ∪ J-ary PG. We set R(G1 G2) := R(G1) ×R(G2).
In the graphical notation, the juxtaposition of G1 and G2 is simply noted by
writing the graphs next to each other, i.e. we write: G1 G2.

4. Join: Let G := (V, E, ν,", Cut, area, κ, �) be an I-ary PG, and let i, j ∈ I
with i
= j. Let vi, vj be the vertices with �(vi) = i and �(vj) = j. Let v be a
fresh vertex. Then the Join of i and j from G is

δi,j(G) := (V ′, E, ν′,", Cut, area′, κ, �′)

with V ′ := V \{vi, vi} ∪ {v}, ν′ satisfies ν′(e)|k := ν(e)|k for ν(e)|k
= vi, vj

and ν′(e)|k := v otherwise, area′(c) := area(c) for c ∈ Cut and area′(") :=
area(")\{vi, vi} ∪ {v}, and �′(w) := �(w) for w
= v and �′(v) := ∗. This
graph is an I\{i, j}-ary PG. We set R(δi,j(G)) := δi,j(R(G)).

In the graphical notation, the vertices vi, vj are both replaced by the same,
heavily drawn dot, which stands for an existential quantified object. For ex-
ample, with joining the vertices with 2 and 8,

from

x1

SR
A R

3
x

T x4

x7
x9

x 8x2

we obtain

x1

SR
A R

3
x

T x4

x7
x9

.

We have seen in the definition that all inductively constructed graphs are PGs.
On the other hand, for a given PG G := (V, E, ν,", Cut, area, κ, �), it can eas-
ily be shown by induction over the tree of contexts Cut ∪ {"} that G can be
constructed with the above PAL-operations, and that different inductive con-
structions of G yield the same semantics and the same graphical representation.
Thus for each PG G, we have a well-defined meaning R(G) and a well-defined
graphical representation of G.

Graphs similar to PGs have already been studied by one of the authors in
[Dau03] and [Dau04]. In [Dau03], concept graphs with cuts, which are based on
Peirce’s Existential Graphs and which, roughly speaking, correspond to closed
formulas of first order logic, have been investigated. In [Dau04], concept graphs
with cuts are syntactically extended to query graphs with cuts by adding la-
belled query markers to their alphabet, so query graphs with cuts are evaluated
to relations in models. Both [Dau03] and [Dau04] focus on providing sound and
complete calculi for the systems. This is done as common in mathematical logic,
that is, graphs are defined as purely syntactical structures, built over an alpha-
bet of names, which gain their meaning when their alphabet are interpreted in
models.

112 F. Dau and J. Hereth Correia

Both query graphs with cuts and PGs are graphs which describe relations. The
main difference between these types of graphs is as follows: PGs are semantical
structures, that is, we directly assign relations to the edges of PGs, instead of
assigning relation names, which then would have to be interpreted in models.
Moreover, in query graphs with cuts, object names may appear, objects are
classified by types, and we have orders on the set of types and relation names.
From this point of view, PGs can be considered to be restrictions of query graphs
with cuts, but this restriction is only a minor one.

3 Disjunctive Normal Form for PGs

Let G := (V, E, ν,", Cut, area, κ, �) be a PG. Let ∼ be the smallest equivalence
relation on V such that for all e = (v1, . . . , vn), there is v1 ∼ v2 ∼ . . . ∼ vn,
and for v ∼ v′, we say that v and v′ are connected. As for each free place
i ∈ FP(G) there exists a uniquely given vertex wi ∈ V with �(wi) = i, this
equivalence relation is transferred to FP(G) by setting i ∼ j :⇔ wi ∼ wj .
Finally we set

P (G) := {[i]∼ | i ∈ FP(G)} ∪ {∅} .

P (G) is simply the set of all equivalence classes, together with the empty set ∅.
Next we show that for a PG G, the relation R(G) can be described as a union
of intersections of I-ary relations with I ∈ P (G). In the proof, we may obtain
∅-ary relations , that is why we have to add ∅ to P (G).

Theorem 1 (Disjunctive Normal Form (DNF) for Relations described
by PGs). Let G be a PG. Then there is a n ∈ N, and for each m ∈ {1, . . . , n}
and for each class p ∈ P (G) there is a p-ary relation Rm

p , such that we have

R(G) =
⋃

m∈{1,...,n}

⋂
p∈P (G)

Rm
p

The relations Rm
p shall be called ground relations of G.

Proof: The proof is done by induction over the construction of PGs.

1. Atomar graphs: If R is an relation and GR be the corresponding atomar
graph, it is easy to see that the theorem holds for GR by setting n := 1 and
R1

p := R.
2. Juxtaposition: Let G1, G2 be two PGs with N(G1) ∩ N(G2) = ∅. If we use

the letter R to denote the relations of G1 and the letter S to denote the
relations of G2, we have

R(G1) =
⋃

m∈{1,...,n1}

⋂
p∈P (G1)

Rm
p and R(G2) =

⋃
m∈{1,...,n2}

⋂
p∈P (G2)

Sm
p

Thus we have with the canonical extension of the ground relations

R(G) =

⎛⎝ ⋃
m∈{1,...,n1}

⋂
p∈P (G1)

Rm
p

⎞⎠ ∩

⎛⎝ ⋃
m∈{1,...,n2}

⋂
p∈P (G2)

Sm
p

⎞⎠

Two Instances of Peirce’s Reduction Thesis 113

Now an application of the distributive law, using P (G) = P (G1) ∪ P (G2)
and n := n1 + n2, yields the theorem for G.

3. Cut enclosure: We consider ¬G. Due to the induction hypothesis, we have

R(G) =
⋃

m∈{1,...,n}

⋂
p∈P (G)

Rm
p

Thus, using De Morgan’s law, we have

R(¬G) = (
⋃

m∈{1,...,n}

⋂
p∈P (G)

Rm
p)c =

⋂
m∈{1,...,n}

⋃
p∈P (G)

(Rm
p)c

Similar to the last case, we apply the distributive law to obtain a union of
intersections of relations. Due to the distributive law, given a class p ∈ P (G),
the p-ary ground relations of ¬G are intersections of 0 up to d relations
(Rm

p)c, and these intersections are relations over p, too. Thus the theorem
holds for ¬G as well.

4. Join: We consider G and two distinct free places i, j ∈ N(G). With q :=
([i]∼ ∪ [j]∼)\{i, j}, we have P (δi,j(G)) = P (G)\{[i]∼, [j]∼} ∪ {q}. Now we
conclude

δj,k(R(G)) = δj,k

⎛⎝ ⋃
m∈{1,...,n}

⋂
p∈P (G)

Rm
p

⎞⎠
=

⋃
m∈{1,...,n}

δj,k

⎛⎝ ⋂
p∈P (G)

Rm
p

⎞⎠
=

⋃
m∈{1,...,n}

⋂
p∈P (G), j,k/∈p

(
Rm

p ∩ δj,k
(
Re

[i]∼ ∩Re
[j]∼

))
As δj,k(Re

[i]∼ ∩Re
[j]∼) is a q-ary relation, we are done. �

4 Proof of the Peircean Reduction Thesis for Infinite
Domains

Using the theorem from the last section, the first instance of the Peircean Re-
duction Thesis can easily be shown as a corollary. Before that, some observations
about the theorem and its proof are provided.

For a given PG G := (V, E, ν,", Cut, area, κ, �), the relations Rm
p in Thm. 1

depend on the relations which appear in G, i.e., they depend on κ, but the proof
of Thm. 1 yields that the number n of disjuncts

⋂
p∈P (G) Rm

p does not depend
on κ. That is, if we denote n by n(G), two PGs G1, G2 which differ only in
κ, i.e., G1 = (V, E, ν,", Cut, area, κ1, �) and G2 = (V, E, ν,", Cut, area, κ2, �)),
satisfy n(G1) = n(G2).

Now we are prepared to prove the reduction thesis for infinite domains with
a simple counting argument.

114 F. Dau and J. Hereth Correia

Corollary 1 (Reduction Thesis for infinite Domains). Let G be an I-ary
PG over a domain A with |I| = 3, and let each relation in G have an arity ≤ 2.
If we have |A| > n(G), then R(G)
= .=I . Particularly, for an infinite set A,
there exists no PG which evaluates to the teridentity on A.

Proof: W.l.o.g. let FP(G) = {1, 2, 3}. As each relation of G has an arity ≤ 2, we
cannot have 1 ∼ 2 ∼ 3. For the proof, we assume that we have two equivalent
free places (the case P (G) = {{1}, {2}, {3}, ∅} can be proven analogously), and
w.l.o.g. let 2 ∼ 3. Now Thm. 1 yields

R(G) =
⋃

m∈{1,...,n}
Rm

∅ ∩ Rm
1 ∩ Rm

2,3

Now let A be a domain with |A| > n(G). Assume R(G) = .=1,2,3. Then there
exists an m ≤ n and distinct a, b ∈ A with (a, a, a), (b, b, b) ∈ Rm

∅ ∩ Rm
1 ∩ Rm

2,3.
We obtain Rm

∅ = {∅}, (a), (b) ∈ Rm
1 and (a, a), (b, b) ∈ Rm

2,3, thus we have
(a, b, b), (b, a, a) ∈ Rm

∅ ∩ Rm
1 ∩Rm

2,3, too, which is a contradiction. �

5 Peirce’s Reduction Thesis for Two-Element Domains

In the last section, we have proven Peirce’s reduction thesis with a counting
argument. But this argument does not apply to finite domains. For example, if
A = {a1, . . . , an} is an n-element domain, one might think that we can construct
a PG such that its DNF has n disjuncts, each of them evaluating to exactly
one triple {(ai, ai, ai)}. In this section, we show that for two-element domains
A = {a, b}, there is no PG G with R(G) = .=3. This is done by classifying the
relations over A into classes such that no class is suited to describe (a, a, a) in
one disjunct and (b, b, b) in another disjunct, and by proving that the operations
on relations ’respect’ the classes.

For a relation Ri,j , we set γi
x(Ri,j) := {y | (x, y) ∈ Ri,j}. Now we define the

following classes:2

Ci,j
a := {Ri,j | γi

a(Ri,j) ⊇ γi
b(Ri,j)} and Ci

a := {∅, {a}, {a, b}}
Ci,j

b := {Ri,j | γi
b(Ri,j) ⊇ γi

a(Ri,j)} and Ci
b := {∅, {b}, {a, b}}

Ci,j
.= := {∅2

i,j,
.=i,j , A

2
i,j} , Ci,j

� .= := {∅2
i,j,

.=i,j , A
2
i,j} and Ci

a,b := {{a, b}}

For our purpose, the intuition behind this definition is as follows: Ri,j ∈ Ci,j
a

means that b cannot be separated (in position i) resp. Ri,j ∈ Ci,j
b means that a

cannot be separated (in position i).
PGs are built up inductively with the construction steps juxtaposition, cut

enclosure, and join. The next three lemmata show how the classes are respected
by the correponding operations for relations.
2 Recall the notion Ri,j for an {i, j}-ary relation, and recall that both Ri,j and Rj,i

denote the same relation. But for the definition of γ and the classes Ci,j
a , Ci,j

b , the
order of the indices is important. For example, given a relation Ri,j (= Rj,i), it
might happen that Ri,j ∈ Ci,j

a and Rj,i ∈ Cj,i
b .

Two Instances of Peirce’s Reduction Thesis 115

To ease the notation, we abbreviate the composition of product and join. So
let G be an PG and let i, j ∈ FP(G) with i
∼ j. Then we write

R[i]∼ ◦j,k R[j]∼ := δj,k
(
R[i]∼ ∩ R[j]∼

)
(= δj,k

(
R[i]∼ ×R[j]∼

)
)

Next we investigate how these classes are respected by the operations on rela-
tions. We start with the classes Ci,j

a and Ci,j
b .

Lemma 1 (Class-Inheritance for Ci,j
a and Ci,j

b). Let Ri,j ∈ Ci,j
a . Then:

1. If Sk,l is arbitrary, then Ri,j ◦j,k Sk,l ∈ Ci,l
a

2. If Sk is arbitrary, then Ri,j ◦j,k Sk ∈ Ci
a

3. ¬(Ri,j) ∈ Ci,j
b

4. Ci,j
a is closed under (possibly empty) finite intersections (with

⋂
∅ = A2

i,j).

The analogous propositions hold for Ri,j ∈ Ci,j
b as well.

Proof:

1. Let (b, y) ∈ Ri,j ◦j,k Sk,l ∈ Ci,l
a . Then there exists x with (b, x) ∈ Ri,j

and (x, y) ∈ Sk,l. From Ri,j ∈ Ci,j
a we obtain (a, x) ∈ Ri,j , thus we have

(a, y) ∈ Ri,j ◦j,k Sk,l as well. So we conclude Ri,j ◦j,k Sk,l ∈ Ci,l
a .

2. Done analogously to the last case.
3. We have γx(¬Ri,j) = (γx(Ri,j))c for x ∈ {a, b}. So we get Ri,j ∈ Ci,j

a ⇔
γa(Ri,j) ⊇ γb(Ri,j) ⇔ (γa(Ri,j))c ⊆ (γb(Ri,j))c ⇔ γa(¬Ri,j) ⊆ γb(¬Ri,j) ⇔
¬Ri,j ∈ Ci,j

b
4. If Rn

i,j , n ∈ N are arbitrary relations, we have γx(
⋂

n∈N Rn
i,j)=

⋂
n∈N γx(Rn

i,j),
which immediately yields this proposition. �

The next lemma corresponds to Lem. 1, now for the class Ci,j
.= .

Lemma 2 (Class-Inheritance for Ci,j
.
=). Let Ri,j ∈ Ci,j

.= . Then:

1. If Sk,l ∈ Ck,l
.= , then Ri,j ◦j,k Sk,l ∈ Ci,l

.= .
If Sk,l ∈ Ck,l

� .= , then Ri,j ◦j,k Sk,l ∈ Ci,l
� .= .

If Sk,l ∈ Ck,l
a , then Ri,j ◦j,k Sk,l ∈ Ci,l

a .
If Sk,l ∈ Ck,l

b , then Ri,j ◦j,k Sk,l ∈ Ci,l
b .

2. If Sk ∈ Ck
a,b, then Ri,j ◦j,k Sk ∈ Ci

a,b.
If Sk ∈ Ck

a , then Ri,j ◦j,k Sk ∈ Ci
a.

If Sk ∈ Ck
b , then Ri,j ◦j,k Sk ∈ Ci

b.
3. ¬(Ri,j) ∈ Ci,l

� .= .
4. Ci,j

.= is closed under (possibly empty) finite intersections.

Proof:

1. For each relation Rk,l we have .=i,j ◦j,k Rk,l = σk→i(Rk,l).
For each relation Rk,l we have A2

i,j◦j,kRk,l = Ai×πl(Rk,l). Particulary, for
each relation Ri,j , we have both A2

i,j ◦j,k Rk,l ∈ Ci,l
a and A2

i,j ◦j,k Ri,j ∈ Ci,l
b .

Moreover, for Rk,l ∈ Ck,l
.= or Rk,l ∈ Ck,l

� .= , we have A2
i,j ◦j,k Rk,l = A2

i,l.
From these obervations we conclude this proposition.

116 F. Dau and J. Hereth Correia

2. For each relation Rk we have .=i,j ◦j,k Rk = σk→i(Rk).
For each relation Rk
= ∅ we have A2

i,j ◦j,k Rk = Ai, for Rk = ∅ we have
A2

i,j ◦j,k Rk = ∅.
From these obervations we conclude this proposition.

3. Trivial.
4. Trivial. �

Of course, we have an analogous lemma for the class Ci,j
� .= . The proof is analogous

to the last proof and henceforth omitted.

Lemma 3 (Class-Inheritance for Ci,j

� .=).

Let Ri,j ∈ Ci,j
� .= . Then we have:

1. If Sk,l ∈ Ck,l
.= , then Ri,j ◦j,k Sk,l ∈ Ci,l

.= .
If Sk,l ∈ Ck,l

� .= , then Ri,j ◦j,k Sk,l ∈ Ci,l
� .= .

If Sk,l ∈ Ck,l
a , then Ri,j ◦j,k Sk,l ∈ Ci,l

a .
If Sk,l ∈ Ck,l

b , then Ri,j ◦j,k Sk,l ∈ Ci,l
b .

2. If Sk ∈ Ck
a,b, then Ri,j ◦j,k Sk ∈ Ci

a,b.
If Sk ∈ Ck

a , then Ri,j ◦j,k Sk ∈ Ci
b.

If Sk ∈ Ck
b , then Ri,j ◦j,k Sk ∈ Ci

a.
3. ¬(Ri,j) ∈ Ci,l

.= .
4. Ci,j

� .= is closed under (possibly empty) finite intersections.

Theorem 2 (Properties of the relations in the DNF for PGs). Let G a
PG. Let i ∈ FP(G) with {i}∈P (G).

Then one of the following properties holds:

1. Rm
i ∈ Ci

a for all m ∈ {1, . . . , n}
2. Rm

i ∈ Ci
b for all m ∈ {1, . . . , n}

3. Rm
i ∈ Ci

a,b for all m ∈ {1, . . . , n}

Let i, j ∈ FP(G) with i ∼ j. Then one of the following properties holds:

1. Rm
i,j ∈ Ci,j

.= for all m ∈ {1, . . . , n}
2. Rm

i,j ∈ Ci,j
� .= for all m ∈ {1, . . . , n}

3. Rm
i,j ∈ Ci,j

a for all m ∈ {1, . . . , n}
4. Rm

i,j ∈ Ci,j
b for all m ∈ {1, . . . , n}

Proof: The proof is done by induction over the construction of PAL-graphs.

Atomar graphs: For each relation Ri,j we have Ri,j ∈ Ci,j
a ∪ Ci,j

b ∪ { .=,
 .=}.
Thus it is easy to see that the theorem holds for atomar graphs.

Juxtaposition: If we consider the juxtaposition of two graphs G1, G2, then
the ground relations of the juxtaposition are the ground relations of G1 and the
ground relations of G2.

Cut enclosure: As said in the proof of Thm.1, given a class p ∈ P (G), the
p-ary ground relations of ¬G are intersections of 0 up to d relations (Rm

p)c,

Two Instances of Peirce’s Reduction Thesis 117

where the relations Rm
p are the p-ary ground relations of G. First of all, due

to Lem. 1.3., 2.3., 3.3., the set of all complements of the ground relations fulfill
the property of this theorem. Moreover, due to Lem. 1.4., 2.4., 3.4., all classes
Ci,j

.= , Ci,j
� .= , Ci,j

a , Ci,j
b are closed under (possibly empty) intersections. Thus the

theorem holds for ¬G as well.

Join: We consider δj,k(G). We have N(δj,k(G)) = FP(G)\{j, k}. Due to the
proof of Thm. 1, we have to show that the proposition holds for the new ground
relations Rm

[j]∼ ◦j,k Rm
[k]∼ = δj,k(Rm

[j]∼ ∩ Rm
[k]∼).

First we consider the case that {j}, {k} ∈ P (G). We have P (δj,k(G)) =
P (G)\{{j}, {k}}. For p
= {j}, {k}, the ground relations of G and of δj,k(G)
which are not over j or k (or over ∅) are the same, thus we are done. The case
j ∼ k, i.e. {j, k} ∈ P (G), can be handled analogously.

Next we consider the case that there is an i with i ∼ j, but there is no l
with k ∼ l. We have P (δj,k(G)) = P (G)\{{i, j}, {k}} ∪ {{i}}. The new ground
relations are of the form Rm

i,j ◦j,k Rm
k . We have to do a case distinction, both for

Rm
i,j and Rm

k .
Assume for exampleRm

k,l∈Ci,j
.= for allm≤n andRm

k ∈Ci,j
a,b, thenRi,j ◦j,kRk∈Ci,j

a,b

due to Lem. 2.2. All other cases are proven analogously with Lem. 1.2., 2.2., 3.2..
The case when there is an l with k ∼ l, but there is no i with i ∼ j can be

done analogously to the last case (now looking which properties Rm
l,k has. Note

that we have to consider Rm
l,k instead of Rm

k,l).
Now we finally consider the case that there are i, k with i ∼ j and k ∼ l.

Then P (δj,k(G)) = P (G)\{{i, j}, {k, l}}∪ {{i, l}}. The new ground relations we
obtain are Rm

i,j ◦j,k Rm
k,l with m ≤ n. Again, we have to do a case distinction,

both for the classes {i, j} and {k, l}. This case dinstinction is done analogously
to the last case one, now using Lem. 1.2., 2.2. and 3.2. �

Corollary 2 (Reduction Thesis for two-element Domains). Let A be a
domain with |A| = 2, and let G be a ternary PG over A where each relation has
an arity ≤ 2. Then R(G)
= .=3.

Like in the proof of Cor. 1, let FP(G) = {1, 2, 3}, and let

R(G) =
⋃

m∈{1,...,n}
Rm

∅ ∩ Rm
1 ∩ Rm

2,3

be a DNF for R(G).
Assume R(G) = .=1,2,3. Due to Rm

1 ∩ Rm
2,3 = Rm

1 × Rm
2,3, each relation Rm

1
contains at most one element (a) or (b). On the other hand, there must then be
an m with Rm

1 = (a) and an f with Rf
1 = (b). However, one of the three classes

Ci
a, Ci

b, Ci
a,b contains the relations Rm

1 and Rf
1 , but none of the three classes

contains both {(a)} and {(b)}. Contradiction. �

6 Further Research

The methods and ideas presented in this paper will be continued to a complete
proof of Peirce’s Reduction Thesis. The main structure will be similar to the

118 F. Dau and J. Hereth Correia

second proof presented here, but the necessary generalizations still pose problems
in some details.

Acknowledgments

We want to thank Reinhard Pöschel from Technische Universität Dresden for
his valuable input and conttributions in many discussions. Moreover, we want
to thank the anonymous referees for proofreading this paper very carefully and
their valuable hints to make it more readable.

References

[Bur91] Robert W. Burch. A Peircean Reduction Thesis: The Foundation of Topo-
logical Logic. Texas Tech. University Press, 1991.

[Dau03] Frithjof Dau. The Logic System of Concept Graphs with Negations and its
Relationship to Predicate Logic, volume 2892 of LNAI. Springer, Berlin –
Heidelberg – New York, November 2003.

[Dau04] Frithjof Dau. Query graphs with cuts: Mathematical foundations. In Alan
Blackwell, Kim Marriott, and Atsushi Shimojima, editors, Diagrams, volume
2980 of LNAI, pages 32–50. Springer, Berlin – Heidelberg – New York, 2004.

[DK03] Frithjof Dau and J. Klinger. From formal concept analysis to contextual
logic. In Bernhard Ganter, Gerd Stumme, and Rudolf Wille, editors, Formal
Concept Analysis: The State of the Art. Springer, Berlin – Heidelberg – New
York, 2003.

[HCP04] Joachim Hereth Correia and Reinhard Pöschel. The Power of Peircean Al-
gebraic Logic (PAL). In Peter W. Eklund, editor, ICFCA, volume 2961 of
Lecture Notes in Computer Science, pages 337–351. Springer, 2004.

[Pap83] H. Pape. Charles S. Peirce: Phänomen und Logik der Zeichen. Suhrkamp
Verlag Wissenschaft, 1983. German translation of Peirce’s Syllabus of Certain
Topics of Logic.

[Pei35a] C. S. Peirce. MS 478: Existential Graphs. Harvard University Press,
1931–1935. Partly published in of [Pei35b] (4.394-417). Complete german
translation in [Pap83].

[Pei35b] Charles Sanders Peirce. Collected Papers. Harvard University Press,
1931–1935.

[PS00] Charles Sanders Peirce and John F. Sowa. Existential Graphs: MS 514 by
Charles Sanders Peirce with commentary by John Sowa, 1908, 2000. Avail-
able at: http://www.jfsowa.com/peirce/ms514.htm.

[Sow84] John F. Sowa. Conceptual structures: information processing in mind and
machine. Addison-Wesley, 1984.

[Sow92] John F. Sowa. Conceptual graphs summary. In T. E. Nagle, J. A. Nagle,
L. L. Gerholz, and P. W. Eklund, editors, Conceptual Structures: current
research and practice, pages 3–51. Ellis Horwood, 1992.

[Wil82] Rudolf Wille. Restructuring lattice theory: an approach based on hierarchies
of concepts. In Ivan Rival, editor, Ordered sets, pages 445–470, Dordrecht–
Boston, 1982. Reidel.

[Wil00] Rudolf Wille. Contextual logic summary. In Gerd Stumme, editor, Work-
ing with Conceptual Structures. Contributions to ICCS 2000, pages 265–276.
Shaker Verlag, Aachen, 2000.

Very Fast Instances for Concept Generation

Anne Berry1, Ross M. McConnell2, Alain Sigayret1, and Jeremy P. Spinrad3

1 LIMOS (CNRS UMR 6158), Université Clermont-Ferrand II,
Ensemble scientifique des Cézeaux, 63177 Aubière Cedex, France

berry@isima.fr, sigayret@isima.fr
2 Computer Science Department, Colorado State University,

Fort Collins, CO 80523-1873, USA
rmm@cs.colostate.edu

3 EECS Department, Vanderbilt University,
Nashville, TN 37235, USA
spin@vuse.vanderbilt.edu

Abstract. Computing the maximal bicliques of a bipartite graph is
equivalent to generating the concepts of the binary relation defined by
the matrix of this graph. We study this problem for special classes of
input relations for which concepts can be generated much more efficiently
than in the general case; in some special cases, we can even say that the
number of concepts is polynomially bounded, and all concepts can be
generated particularly quickly.

1 Introduction

One of the important current directions of research related to Formal Concept
Analysis deals with the generation of item sets, whether these are defined as
‘frequent item sets’ or using other more complex criteria. These problems are
closely related to concept generation, which has given rise to recent publications
(see e.g. [1]).

The problem of concept generation has been shown to be equivalent to various
graph problems: computing the maximal transversals of a hypergraph or finding
the maximal bicliques of a bipartite graph ([17]). More recently, [4] showed that
concept generation is equivalent to generating the minimal separators of a co-
bipartite graph. On all three of these problems there exist publications which
may well yield algorithmic improvements for concept generation.

In this paper, we aim to use graph results which are related to the form of the
matrix representing the relation defined by a context. In some cases we require
the matrix to be input in a certain form, in other cases there are good graph
algorithms which re-order the rows and columns of the matrix so that the result
is in the desired form when the input relation permits it.

We address the issue of generating concepts more quickly than in the general
case on special binary matrices defined by a context (O,P ,R), with the require-
ment that only polynomial space is used to encounter all the concepts, whether
or not their number is polynomial. The best current complexity for the general

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 119–129, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

120 A. Berry et al.

case of generating all concepts using only polynomial space is of O(|R|·|P|) per
concept using Ganter’s algorithm [9], or O(|P|α) per concept using the version
of Bordat’s algorithm introduced by Berry, Bordat and Sigayret which uses only
polynomial space [3], where nα is the time required to perform matrix multipli-
cation, currently α = 2.376 ([7]).

We start with the case in which the relation has the consecutive ones property:
the columns of the matrix representation can be permuted so that in every row,
the ones form a consecutive block (such a permutation is called a consecutive
ones arrangement). We show that in this case, the number of concepts is O(|R|),
and all these concepts can be found in global O(|R|) time. We generalize from
this starting point in several ways.

One form of generalization is to use the decomposition of a general matrix into
a PQR-tree ([13]), which efficiently finds submatrices which have the consecutive
ones property.

Other forms of generalization come from using natural extensions of the con-
secutive ones property. Perhaps the most natural is the circular ones property.
Although the number of concepts can become exponential in this case, we show
that the concepts can be generated in O(|P|) time per concept, which is optimal,
since it takes Θ(|P|) space to represent a concept in this case. There also are fast
algorithms for permuting rows and columns to obtain a circular ones ordering,
if such an ordering exists.

Finally, we generalize to orderings in which the number of blocks of ones is at
most constant for every row. If we are given an ordering of this type, we can still
generate the set of concepts in O(|P|) time per concept, although no polynomial
algorithm is known for finding such an ordering when it is not given as part of
the input.

In these time analyses, as in all the rest of the discussions in this paper, P
and O can be freely interchanged by duality of rows and columns.

2 Background and Previous Results

In this paper, we consider contexts (O,P ,R), where O is the set of objects,
P is the set of properties, and both O and P are finite. We will work on the
0-1 matrix of R; we will refer to the elements of the relation as ones, and to
the non-elements as zeroes. We will use the following classical set notations: +
denotes the union of two disjoint sets, − denotes set difference.

A concept or closed set, also called a maximal rectangle of R, is a sub-product
A × B ⊆ R such that ∀x ∈ O − A, ∃y ∈ B | (x, y)
∈ R, and ∀y ∈ P − B,∃x ∈
A | (x, y)
∈ R. Given a subset P1 of P and a subset O1 of O, we will say that
the set R∩ (O1 × P1) is a sub-relation of R which we will denote R(O1,P1).

We will also use finite undirected graphs. Such graphs are classically denoted
G = (V, E), where V is the vertex set and E is the edge set. A bipartite graph
is a graph G = (V1 + V2, E) where V1 and V2 induce edgeless subgraphs (i.e. V1
and V2 are independent sets). A maximal biclique (or maximal complete bipartite
subgraph) is a subgraph H = (W1 + W2, F), with W1 ⊆ V1, W2 ⊆ V2, such that

Very Fast Instances for Concept Generation 121

all edges are present between any vertex of W1 and any vertex of W2, and which
is maximal for this property. A graph G = (V, E) is said to be an interval graph
if there exists a one-to-one mapping I from V to a family of intervals of the
real line such that xy ∈ E iff the corresponding intervals I(x) and I(y) are
intersecting.

Example 1. O = {1, 2, 3, 4, 5, 6}, P = {a, b, c, d, e, f}. Relation R is presented
below.

R a b c d e f
1 × × × ×
2 × × ×
3 × × ×
4 × ×
5 × ×
6 ×

The maximal rectangles/maximal bicliques/concepts are:
O×∅, {2, 3, 6}×{a}, {1, 2, 3}×{b}, {1, 2, 5}×{c}, {1, 4, 5}×{d}, {2, 3}×{a, b},
{1, 2} × {b, c}, {1, 5} × {c, d}, {1, 4} × {d, e}, {3} × {a, b, f}, {2} × {a, b, c},
{1} × {b, c, d, e}, ∅ × P .

For example, {1, 2}× {b, c} is a maximal rectangle of the matrix given above,
or, equivalently, a maximal biclique of the graph of Figure 1.

1 3 4 5 62

a fedb c

Fig. 1. {1, 2} × {b, c} is a maximal biclique of graph G associated with relation R of
Example 1

3 Consecutive Ones Matrices

The starting point for this research is the consecutive ones property. A matrix is
said to have the consecutive ones property if its columns can be permuted so that
in each row all the ones are consecutive. This property has been studied heavily
in the context of graph theory: Fulkerson and Gross ([8]) showed that a graph
is an interval graph iff the vertex-clique incidence matrix can be permuted to
have the consecutive ones property (the vertex-clique incidence matrix shows the
maximal cliques of the graph which each vertex belongs to). Booth and Lueker
([6]) gave a linear-time algorithm for finding a consecutive ones arrangement
of a given matrix if such an arrangement exists, as part of their interval graph
recognition algorithm.

122 A. Berry et al.

Let us assume that we have a context (O,P ,R) whose 0-1 matrix has the
consecutive ones property. It takes O(|P|+ |O|+ |R|) time to find a consecutive
ones ordering of the columns ([14]). We claim that every concept of this relation
will have a column set that is consecutive in this ordering. Therefore, we can
associate with each concept a unique starting column, namely, the leftmost of
the concept’s columns in the ordering.

In this section we will use the common notations for 0-1 matrices; thus R will
denote a set of rows in a matrix, C will denote a set of columns. m will denote
the number of ones in the matrix.

Example 2. O = {1, 2, 3, 4, 5, 6, 7}, P = {a, b, c, d, e, f}. Matrix M, presented
below, has the consecutive ones property.

a b c d e f
1 × × ×
2 × × × ×
3 × × × × × ×
4 ×
5 × × ×
6 × × × ×
7 × ×

The corresponding concept lattice is presented in Figure 2.

3 abcdef

23 abcd

123 abc

36 bcde

123456 b

12356 bc

2356 bcd

23567 d

367 de

1234567 0

Fig. 2. Concept lattice associated with the consecutive ones matrix of Example 2. The
set notations have been simplified for more clarity.

We may delete rows and columns that are all zeros or all ones, compute the
lattice for the remaining submatrix, and then correct the elements of this lattice

Very Fast Instances for Concept Generation 123

in a trivial way. Henceforth, we will assume that the matrix has no rows that
are all zeros or all ones. This implies that the minimal element of the lattice is
O × ∅ and the maximal element is ∅ × P . We give a recursive algorithm that
finds the remaining concepts.

Let (c1, c2, ..., cp) be the order of the columns in a consecutive ones arrange-
ment. The input to each call is a submatrix of the initial matrix given by
{ci, ci+1, ..., cp}, the rows that have at least one 1 in any of these columns. In
addition, there is a mark on each row that has a 1 preceding column ci in the
original matrix. The purpose of the marks on the rows is to allow the recursive
call to avoid returning concepts of the submatrix that are not maximal in the
original matrix.

The algorithm finds all concepts of the original matrix that have i as their
starting column, and makes a recursive call on columns ci+1 through cp to find
the concepts that have their starting column anywhere in {ci+1, ci+2, ..., cp}.

1 x x x
2 x x x x
3 x x x x x x
4 x
5 x x x
6 x x x x

4 x
1 x x
2 x x x
5 x x x
6 x x x x
3 x x x x x

1 x
2 x x
5 x x
6 x x x
3 x x x x
7 x x

7 x x 7 x x

2 x
5 x
6 x x
7 x x
3 x x x

a b c d e f b c d e f c d e f d e f

Fig. 3. Finding the concepts in the consecutive ones matrix of Example 3. The corre-
sponding lattice is presented in Figure 2.

Example 3. In Figure 3, the lefthand table corresponds to matrix M of Exam-
ple 2 passed to the initial call of the algorithm, with starting column a. The
initial matrix does not have any marked row. The next table shows the subma-
trix, M minus the first column, passed to the second call (starting column b). In
this second call, rows 1, 2 and 3 are marked as their starting column is a. The
third table corresponds to a submatrix with starting column c, all rows but 7
are marked. The fourth table corresponds to a submatrix with starting column
d; row 1 has disappeared as it has no one in columns d,e,f . There will be no
more recursive call.

Let the ending column of a row be the rightmost column where the row has a 1.
In the recursive call on columns {ci, ..., cp}, let Ri be the set of rows that have a
1 in column i. We permute the rows so that the rows in Ri appear in ascending
order of ending column. When the rows of a set Ri are tied for ending column,
we place the marked ones before the unmarked ones.

Example 4. In Figure 3, R1 = {1, 2, 3}, as these objects have the same start-
ing column a, and these rows appear in ascending order of ending column (re-
spectively c, d, f). In the second call, on columns {b, c, d, e, f}, we will have

124 A. Berry et al.

R2 = {4, 1, 2, 5, 6, 3}. The members of R2 appear in ascending order of ending
column, and the tie between rows 2 and 5 (ending column c) has been broken in
favor of 2, since row 2 is marked and row 5 is not.

Let (r1, r2, ..., rq) be the resulting ordering of Ri. The ones in row rj of the
submatrix extend from ci to ck for some k ≥ i. Because of the way Ri has been
ordered, every row after rj in the ordering also has ones in every column in
{ci, ..., ck}. Therefore, {rj , ..., rq}×{ci, ..., ck} is a rectangle. It is easy to see that
this rectangle is maximal in the submatrix, hence is a concept of the submatrix,
if and only if j = 1 or rj extends farther to the right than its predecessor, rj−1.

A concept of the submatrix can fail to be a concept of the original matrix
if and only if it can be extended to a larger rectangle in the whole matrix by
adding column ci−1. This is easy to detect: a concept of the submatrix fails to
be a concept in the original matrix if and only if all of its rows are marked.

Example 5. In Figure 3, the initial call on rows (1, 2, 3, 4, 5, 6, 7) and starting
column a gives rise successively to concepts:

{1, 2, 3}×{a, b, c} (as 1 has ending column c, this concept can not be extented
to the right), {2, 3} × {a, b, c, d} (as 2 has ending column d and 1 has not, this
concept can not be upper extended), and {3} × {a, b, c, d, e, f}.

The second call on rows (4, 1, 2, 5, 6, 3) and starting column b generates:
{1, 2, 3, 4, 5, 6}× {b}, {1, 2, 3, 5, 6}× {b, c}, {2, 3, 5, 6}× {b, c, d}, and {3, 6}×

{b, c, d, e}. As 3 is marked, row set {3} generates no new concept: {3} ×
{b, c, d, e, f} is a sub-rectangle of concept {3} × {a, b, c, d, e, f} obtained in the
initial step.

The third call, on starting column c, generates no concept, as all the rows are
marked.

The fourth call, on starting column d, generates {2, 3, 5, 6, 7} × {d}, and
{3, 6, 7} × {d, e}, as at least one object (7) is unmarked in row set {2, 3, 5, 6, 7}
and in row set {3, 6, 7}. {3} fails to contain an unmarked row and gives rise to
no new concept.

The corresponding lattice is presented in Figure 2. Concepts are generated in
this figure from left to right and from bottom to top.

Note that, in handling Ri, the algorithm never generates two concepts with the
same upper-left hand corner. This gives a one-to-one mapping from the concepts
the algorithm generates to the ones in the matrix, so that there can be at most
m of these concepts. The algorithm can only fail to generate directly the top
and bottom elements of the lattice, so we get the following bound:

Theorem 1. If a matrix with m ones has the consecutive ones property, then
the corresponding relation has at most m + 2 concepts.

That the bound is tight is illustrated by the identity matrix, where each 1 is
itself a concept, and O×∅ and ∅×P are also concepts. The number of concepts
can be Ω(m) in dense matrices, as it can be seen by running the algorithm on
an (n/2)× n matrix where row i has ones in columns i through i + n/2: half of
the ones are the upper-left corner of a concept.

Very Fast Instances for Concept Generation 125

The proof of correctness is elementary, given the foregoing observations. In
order to obtain an O(m) time bound, it suffices to spend time proportional to
(
∑p

i=1 Ri) ∈ O(m). This is also easy to accomplish by elementary techniques.
In particular, each concept can be represented by giving its column set as an
interval of (c1, ..., cp), and giving its row set as an interval on the ordering of Ri

computed in the recursive call on columns (ci, ..., cp).

4 Matrices with Bounded PQR Diameter

In this section, we will show that the number of concepts may be bounded by
the size of the corresponding relation, provided some property on the PQR-
decomposition of its matrix.

The PQ-tree of a consecutive ones matrix is a way of representing all consecu-
tive-ones orderings of the columns ([6]). It is a tree whose leaves are the columns
of the matrix. The tree has two kinds of internal nodes: Q-nodes, whose children
are ordered left-to-right, and P nodes, whose children are not ordered. Assigning
a left-to-right ordering to children of each P node and reversing the left-to-right
ordering of children of any subset of the Q nodes imposes a leaf order on the
leaves, hence an order on columns of the matrix. Such an ordering is always
a consecutive ones ordering. Conversely, all consecutive ones orderings can be
obtained in this way.

[13] provides a generalization of PQ-trees to arbitrarymatrices, called thePQR-
tree, as illustrated in Figure 4. The third types of nodes, R nodes, appear if and
only if the matrix does not have the consecutive ones property, otherwise the PQR-
tree is a PQ-tree. The PQR-tree can be constructed in time proportional to the
number of ones of the matrix. One of the interesting aspects of PQR-trees is that
is gives a compact representation of all possible PQR arrangements of a matrix.

The PQR-tree has a set-theoretic definition. Let us consider the leaves to be a
set V of ‘properties’, and let us consider each internal node to represent a subset
of V , namely the set of leaf descendants of the node. Such a subset corresponds
to a row (an ‘object’) of the matrix, more precisely to the property set associated
with this object. We say that two subsets X and Y of V overlap if they intersect,
but neither contains the other. Let F be the family of nonempty subsets of V that
do not overlap with any row, and let F0 be the set of members of F that do not
overlap with any other member of F : then F0 is the set of nodes of the PQ-tree.

As a direct consequence of this definition, every row of a matrix is a union
of one or more children of the node of the PQR-tree, as a row that is not such
a union must overlap some member of F0, hence of F , a contradiction. To each
internal node of the PQR-tree, we may assign a quotient matrix, as follows.
Let ch(X) denote the children of X in the tree, let Row(X) denote the set
of rows that are given by the union of more than one member of ch(X), and
let Col(X) denote a set of columns with one representative column from each
member of ch(X). The quotient at X is the submatrix induced by rows Row(X)
and columns Col(X).

The exact choice of representatives from ch(X) to obtain Col(X) is irrelevant,
since all choices yield isomorphic submatrices. It is possible that Row(X) is

126 A. Berry et al.

empty, but the family of sets given by {Row(X)
= ∅ |X is an internal node} is
a partition of the rows.

Example 6. Figure 4 shows a PQR-decomposition of a matrix. Traditionally, the
Q nodes are drawn as horizontal bars, the P nodes are drawn as points, and R
nodes are drawn as filled ovals.

In this decomposition, the children of V = {a, b, c, d, e, f, g, h, i, j, k, l} are
W = {a, b, c, d, e}, {f} and Y = {g, h, i, j, k, l} (Q decomposition), rows 1 and
2 are the rows that are unions of more than one of these children, and these
rows, together with a selection of one column in each of W , {f} and Y , yield
the two-row quotient whose rows are (1, 1, 0) and (0, 1, 1).

8 1 1 1

W f Y

1

2

1 1

10

0

1

b

1 0 109

1 1 1 1 1

1 1 1 1 1

1 1

1 1

1

1 1 1 1

1 1 1 1

1

1

2
3

7

5

4

a b c d e f g h i j k l

1 1

1

1

1 1 1 1

6

9

W

X

Y

Z

V

a b c

d e

h i

g

f

j

k l

Quotients:

X d e
3 1 1 0

1104

a c

5 0 1 1 1

6 1

7 0 1

011

0 1

Zg k l h i

8 1 1

j

1

V (Q) W (P) X (Q)

Y (R) Z (P)

Fig. 4. The matrix of Example 6 and the corresponding PQR-tree and quotients

Lemma 1. In a PQR-tree, a node is a P node if and only if its quotient matrix
is a rectangle of ones.

The matrix can be uniquely reconstructed from the quotients by inverting this
process. We now illustrate a similar operation by which the concepts of the
original matrix can be obtained from the concepts that occur in the quotients.
In Example 6, rows {5, 6} and columns {Z, k} are a concept in the quotient at
Y . Substituting {h, i, j} for Z in the column set, and adding rows labeled Y in
Y ’s parent V yields the concept with rows {2, 5, 6} and columns {h, i, j, k}.

Very Fast Instances for Concept Generation 127

In general, each concept A1 × B1 in the original matrix is obtained from a
concept A0 × B0 in a quotient at a node X , by expanding the sets that appear
as column labels in B0 and adding rows to A0 that have a 1 in a column labeled
with an ancestor of X in a quotient at an ancestor of X .

As in the case of consecutive ones matrices, we may use a compact represen-
tation of each concept found. From results shown in [13] we can derive that, on
the path from the quotient of A0 ×B0 to the root, at least every other quotient
has at least one 1 in every column. Each of these contributes at least one row to
A1. The length of the path to the root is O(|A1|), and the time to list out the
elements of A1 and B1, given A0 ×B0, is O(|A1|+ |B1|). Therefore, we may let
A0 ×B0 serve to represent A1 ×B1.

Definition 1. The decomposition diameter of a binary matrix M is the maxi-
mum number of children of an R node, or 1 if there are no R nodes.

The following is a consequence of the foregoing observations:

Theorem 2. If a matrix has a bounded decomposition diameter, the correspond-
ing relation R has O(|R|) concepts, and they can be found in O(|R|) time.

5 Circular Ones Property

Perhaps the more natural generalization of the consecutive ones property is the
circular ones property. When we first considered this generalization, we were
discouraged to find that the number of concepts becomes exponential, for exam-
ple, a matrix with only a diagonal of zeroes, which clearly has the circular ones
property, has a lattice isomorphic to that of the power set of P or O.

To generate concepts efficiently in this case, we will use the concept generation
process described in [3]: the algorithm starts with the minimum element of the
lattice, and recursively processes the direct successors of each concept. Since in
a concept lattice, all the concepts containing a given property form a sub-lattice,
we can store in the recursive stack information necessary to avoid re-processing
a concept. Another useful feature is that each concept A × B, (A ⊆ O, B ⊆ P)
is the minimal element of a sub-lattice described by sub-relation R(A,P − B).
Finally, the direct successors of concept A × B are described by the properties
X which in R(A,P − B) are not properly contained in another; the elements
of X which have identical columns are then grouped together to be added to
A to form one of the successors of A × B. The bottleneck of this algorithm is
computing the containments; this requires O(|P|2 · |O|) in general.

However, we will show that the time for generating all concepts can be sig-
nificantly reduced if the matrix has a circular ones ordering.

First, we note that although PQ-trees are generally viewed as a tool for finding
a consecutive ones ordering, they can also be used to find a circular ordering in
O(|P|+|O|+|R|) time. Thus we may assume that we have a circular arrangement
of objects, and for each property, we are given the circular ordering of its objects
in concise form. For example, if there are 100 objects, the objects of a property p1
may be given as o19−o54, while those of p2 may be given as o1−o23 and o93−o100.

128 A. Berry et al.

Given this form of storage, for each property pi, it is easy to determine whether
pi contains property pj in constant time. This simple observation, together with
the fact that an arrangement remains circular as objects are deleted, is the
key to reducing the time for concept generation using polynomial space, from
O(|P|2 · |O|) time per generated concept to O(|P|) per generated concept.

6 Constant Number of Blocks

Our last extension of the consecutive ones property is to relations given as a
matrix in which the number of blocks of ones entries in every row is bounded by
a constant.

For each property, we maintain a concise representation of the ones in the
property; that is, for a property pi with ki blocks, the starting column number
and the ending column number of each block: j1 − j2, j3 − j4, ..., j2ki−1 − j2ki .

As long as the number of blocks is constant, it is still possible to test con-
tainment between properties in constant time. It is also clear that properties
continue to have at most a fixed number of blocks of ones as objects are deleted
from the current universe of discourse. These observations allow us to gener-
ate the concepts in O(|P|) time per concept, using the same strategy as in the
circular ones case.

In one sense, going to a constant number k of consecutive blocks seems to be
a huge generalization of the previous algorithms: the consecutive ones property
corresponds to k = 1, while circular ones are a special case of k = 2. One
key advantage of the earlier cases discussed in this paper is the existence of
polynomial time algorithms to permute rows and columns of a matrix to obtain a
matrix with the consecutive/circular ones property, if such a permutation exists.
No such algorithm is known for k blocks of consecutive ones. An obvious open
question is to investigate whether this problem is polynomial or NP-complete.
However, in applications such as social science yes/no questionnaires ([2]), this
kind of arrangement may often arise naturally, for example when some questions
are logically related to others.

7 Conclusion

This paper shows that for a number of special classes of matrices, the matrix
properties can be used to design efficient algorithms for concept generation. In-
deed, even in the general case, if we use a recursive concept-generation algorithm
such as the one described in Section 5, we can afford to check on each sub-relation
encountered whether the matrix has the consecutive ones property, or the circu-
lar ones property, and in this case speed up the rest of the remaining recursive
call from O(|P|2 · |O|) time to O(|P| · |O|), O(|P| + |O|) or even constant time
per generated concept.

These results show that for special classes of input, the number of concepts
may be much less than exponential, notwithstanding the matrix density.

One of the questions which arises is how to embed a relation within one of our
special classes, while adding or removing a small or inclusion-minimal set of ones.

Very Fast Instances for Concept Generation 129

There are many other classes of matrices and bipartite graphs to consider for
this problem. One example which springs to the mind is that of ‘Gamma-free
matrices’ which are obtainable if, and only if, the corresponding bipartite graph
is weakly chordal and bipartite (also called ‘chordal bipartite’). In this case, [11]
showed that all the maximal bicliques can be identified in min(|R| · log(|O| +
|P|), (|O| + |P|)2) time. Other results may later appear using this relationship
between graphs and lattices.

References

1. Alexe G., Alexe S., Crama Y., Foldes S., Hammer P.L., Simeone B.: Consensus al-
gorithm for the generation of all maximal bicliques. Discrete Applied Mathematics,
145 (2004), 11–21.

2. Barbut M., Monjardet B.: Ordre et classification. Classiques Hachette, (1970).
3. Berry A., Bordat J-P., Sigayret A.: Concepts can’t afford to stammer. INRIA Proc.

International Conference ”Journées de l’Informatique Messine” (JIM’03), Metz
(France), (Sept. 2003). Submitted as ’A local approach to concept generation.’

4. Berry A., Sigayret A.: Representing a concept lattice by a graph. Discrete Applied
Mathematics, 144(1-2) (2004) 27–42.

5. Bordat J-P.: Calcul pratique du treillis de Galois d’une correspondance.
Mathématiques, Informatique et Sciences Humaines, 96 (1986) 31–47.

6. Booth S., Lueker S.: Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13 (1976)
335–379.

7. Coppersmith D., Winograd S.: On the Asymptotic Complexity of Matrix Multi-
plication. SIAM J. Comput., 11:3 (1982) 472–492.

8. Fulkerson D.R., Gross O.A.: Incidence matrices and interval graphs. Pacific J.
Math. 15 (1965) 835–855.

9. Ganter B.: Two basic algorithms in concept analysis. Preprint 831, Technische
Hochschule Darmstadt, (1984).

10. Ganter B., Wille R.: Formal Concept Analysis. Springer, (1999).
11. Kloks T., Kratsch D.: Computing a perfect edge without vertex elimination order-

ing of a chordal bipartite graph. Information Processing Letter 55 (1995) 11–16.
12. Kuznetsov S. O., Obiedkov S. A.: Comparing performance of algorithms for gen-

erating concept lattices. Journal for Experimental and Theoretical Artificial Intel-
ligence (JETAI), 14:2-3 (2002) 189–216.

13. McConnell R. M.: A certifying algorithm for the consecutive ones property.
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA04), 15, (2004) 761–770.

14. Paige R., Tarjan R. E.: Three Partition Refinement Algorithms. SIAM Journal on
Computing, 16 (1987) 973–989.

15. Spinrad J. P.: Efficient Graph Representation. Fields Institue Monographs; 19.
American Mathematical Society, Providence (RI, USA), (2003).

16. Spinrad J. P.: Doubly Lexical Orderings of Dense 0-1 Matrices. Information Pro-
cessing Letters, 45 (1993) 229–235.

17. Zaki M. J., Parthasarathy S., Ogihara M., Li W.: New Algorithms for Fast Dis-
covery of Association Rules. Proceedings of 3rd Int. Conf. on Database Systems for
Advanced Applications, (April 1997).

Negation, Opposition, and Possibility
in Logical Concept Analysis

Sébastien Ferré

Irisa/Université de Rennes 1, Campus de Beaulieu,
35042 Rennes cedex, France

ferre@irisa.fr

Abstract. We introduce the epistemic extension, a logic transforma-
tion based on the modal logic AIK (All I Know) for use in the frame-
work of Logical Concept Analysis (LCA). The aim is to allow for the
distinction between negation, opposition, and possibility in a unique for-
malism. The difference between negation and opposition is examplified
by the difference between “young/not young” and “young/old”. The dif-
ference between negation and possibility is examplified by the difference
between “(certainly) not young” and “possibly not young”. Furthermore
this epistemic extension entails no loss of genericity in LCA.

1 Introduction

Many have felt the need to extend Formal Concept Analysis in various
ways: valued attributes, partially ordered attributes, graph patterns, 3-valued
contexts, distinction between negation and opposition, etc. Often a new and
specific solution was proposed: conceptual and logical scales [Pre97], 3-valued
contexts [Obi02], two different negation operators [Wil00, Kan05], etc.

We have introduced Logical Concept Analysis [FR00] in order to have a frame-
work that could cover as many extensions as possible by simply changing the logic
used to describe objects. Other authors have proposed similar frameworks where
they talk about partial orderings of patterns instead of logics [CM00, GK01]. In-
deed our logics can be seen as partial orderings, but we emphasize the use of
the term logic as this brings useful notions like the distinction between syntax
and semantics, reasoning through entailment or subsumption, and important
properties like consistency and completeness. Moreover this makes available the
numerous existing logics, and the theory and practice that comes with them.

We have already applied LCA to various logics for querying and navigating
in logical information systems [FR04] (e.g., combinations of string patterns, in-
tervals over numbers and dates, custom taxonomies, functional programming
types). We further support its capabilities by showing how an existing modal
logic, AIK, can be used to represent at the same time complete and incom-
plete knowledge (Closed World Assumption and distinction beteeen certain and
possible facts), and the distinction between negation and opposition. The re-
sult is something more expressive than existing extensions of FCA, because for
each object one can express certain and possible facts, these facts being ex-
pressed in an almost arbitrary logic whose negation plays the role of opposition;

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 130–145, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Negation, Opposition, and Possibility in Logical Concept Analysis 131

and three levels of negation allow for distinguishing certainly/possibly true/false
normal/opposite properties of objects. For example it becomes possible to distin-
guish between “possibly not young” (possibility), “certainly not young” (usual
negation), and “old”, i.e., “opposite of young” (opposition). All these distinctions
are quite important when querying a context.

Section 2 presents useful preliminaries about Logical Concept Analysis (LCA),
and the modal logic All I Know (AIK). Section 3 explains the ambiguity that
lies in the interpretation of negation. Section 4 then gives a solution based on
the logic AIK for distinguishing (usual) negation and opposition. Section 5 goes
further in the use of the logic AIK in order to distinguish certainty and possibility.
In Section 6 the logic AIK is replaced by a logic transformation in order to retain
the genericity of LCA, and to simplify the use of AIK. Finally we compare our
solution to related works in Section 7, before concluding.

2 Preliminaries

This paper is based on Logical Concept Analysis (LCA) where the logic is a
modal logic called AIK (All I Know). As preliminaries, we first recall some
definitions of LCA, and differences to FCA. Then we introduce the logic AIK
with an emphasis on its semantics as it is crucial in the rest of the paper.

2.1 Logical Concept Analysis

Logical Concept Analysis (LCA) [FR00] has been introduced in order to allow for
richer object descriptions, and to bring in automated reasoning when deciding
whether an object belongs to a concept or not. The principle is to replace sets
of attributes (object descriptions and intents) by the formulas of an “almost
arbitrary logic”. The kind of logics we consider is defined as follows.

Definition 1 (logic). A logic (in LCA) is made of

– a syntax or language, i.e., a set L of formulas,
– a set of operations like conjunction ($, binary), disjunction (%, binary),

negation (¬, unary), tautology (", nullary), and contradiction (⊥, nullary),
– a semantics, i.e., a set of interpretations I, and a binary relation |= (“is a

model of”) between interpretations and formulas,
– a subsumption relation ', which decides whether a formula is subsumed (“is

more specific/less general”) than another formula. Its intended meaning is
that f ' g iff every model of f is also a model of g.

We also define M(f) as a shorthand for {i ∈ I | i |= f}, i.e., the set of models
of the formula f .

This definition is quite large, and covers most existing languages and semantics
in logic. There are two differences with the usual presentation of logics. Firstly,
logical operations (e.g., conjunction, negation) are not necessarily connectors
in the language, which makes them more general. For example, if formulas are

132 S. Ferré

intervals, then the conjunction is the intersection on intervals. Secondly, the
left argument of the entailment relation (subsumption) is restricted to a single
formula instead of a set of formulas. This makes subsumption a generalization
ordering, hence its name, which is crucial for use in concept analysis.

In LCA it is possible to look at logics only as partial orderings, and to forget
about semantics. However semantics plays an important role when defining and
reasoning about logics, like in this paper. This is why we introduce it above,
and in the following we define the relation we usually expect between logical
operations, subsumption, and semantics, i.e. consistency and completeness.

Definition 2 (consistency and completeness). An operation of some
logic L is consistent and complete if its expected meaning agrees with seman-
tics, i.e., for all formulas f, g ∈ L:
1. M(f $ g) = M(f) ∩ M(g)
2. M(f % g) = M(f) ∪ M(g)
3. M(¬f) = I \ M(f)
4. M(") = I
5. M(⊥) = ∅
6. f ' g ⇐⇒ M(f) ⊆ M(g)

From these definitions a logical context can now be defined, where a logic re-
places a set of attributes. However remind that logical formulas replace sets of
attributes, and not single attributes, as is demonstrated by the mapping from
objects to formulas that replaces the binary relation.

Definition 3 (logical context). A logical context is a triple K = (O,L, d),
where:

– O is a finite set of objects,
– L is a logic equiped with at least disjunction %, contradiction ⊥, and sub-

sumption ' as consistent and complete operations. Because these 3 opera-
tions are consistent and complete, this logic can equivalently be seen as a
0-sup-semilattice, whose ordering is ', bottom is ⊥, and join operation is %.

– d ∈ O → L maps each object o ∈ O to a single formula d(o) ∈ L, its logical
description.

This definition is a slight weakening of the original definition [FR00] (conjunc-
tion and tautology operations are no more required as they have no consequence
on the concept lattice); and it is similar to the definition of a pattern struc-
ture [GK01] (except disjunction is denoted by $ instead of %, and no logical
interpretation is given1). The disjunction % plays the role of set intersection ∩
in FCA, which is normal as a consistent and complete disjunction returns the
most specific common subsumer of two formulas. So, in the case formulas are
sets of attributes, disjunction is defined as ∩; and in the case formulas are Prolog
terms, disjunction is defined as anti-unification [Plo70].

1 In logic, disjunction is usually denoted by ∨ or �.

Negation, Opposition, and Possibility in Logical Concept Analysis 133

Galois connections can then be defined on logical contexts, enabling us to
go from formulas to sets of objects (their extent), and from sets of objects to
formulas (their intent).

Lemma 1. Let K = (O,L, d) be a logical context. The pair (ext , int), defined by

ext(f) = {o ∈ O | d(o) ' f} for every f ∈ L
int(O) =

⊔
{d(o) | o ∈ O} for every O ⊆ O

is a Galois connection between P(O) and L: O ⊆ ext(f) ⇐⇒ int(O) ' f .

From there, concepts, the concept lattice, and its labelling are defined as usual,
only replacing sets of attributes by formulas where necessary. However, we do
not detail them in this paper as we here focus on expressing and distinguishing
negation, opposition, and possibility in formulas and in the subsumption relation,
which determines extents, which determine in turn the concept lattice.

2.2 The Logic All I Know

In computer science, epistemic aspects in logic have often been discussed under
the term Closed World Assumption (CWA). CWA says that every fact that
cannot be deduced from a knowledge base can be considered as false, contrary to
the open world assumption, which says that such a fact is neither true, nor false.
This often leads to the notion of non-monotonous reasoning, i.e., the addition of
knowledge can make false a fact that was previously true by CWA.

There exists several formalisms for handling CWA, but all of them ex-
cept the logic All I Know (AIK) are non-monotonous [Lif91, DNR97, Moo85,
McC86, Lev90]. However logics to be used in the framework of Logical Con-
cept Analysis (LCA) must form at least a partial ordering, and so, must
have a monotonous subsumption relation. In fact, CWA should be applied
locally on the formulas used to describe objects rather than globally on
the knowledge base. The logic AIK precisely defines such an operation, a
modal operator O. Moreover it has been established that this logic covers
all non-monotonous formalisms cited above (see [Che94] for correspondences
between these formalisms), and a proof method exists for its propositional
version [Ros00].

The logic AIK [Lev90] is essentially a modal logic [Bow79], to which the two
modal operators N and O have been added2. The formula language of AIK is
defined as the propositional language Prop, whose atomic propositions belong
to an infinite set Atom, and connectors are 1 (tautology), 0 (contradiction), ∧
(conjunction), ∨ (disjunction), and ¬ (negation). It is extended by the modal
operators K, N and O. The five logical operations ($, %, ¬, ", ⊥) are simply
realized by the connectors of the language (resp. ∧, ∨, ¬, 1, 0).

A Kripke semantics is given to AIK. Given a set of worlds W , interpretations
are couples (w, R), where w ∈ W is a world, and R ⊆ W ×W is an accessibility
2 The basic modal operator is K. Sometimes modal logics are presented as having

the two modal operators � and ♦, which are in fact equivalent to respectively K
and ¬K¬.

134 S. Ferré

relation between worlds. More precisely, each world defines a valuation of atoms
in Atom by boolean values {TRUE, FALSE}. The “is a model of” relation
between interpretations and formulas is then defined as follows.

Definition 4 (semantics). Let w be a world, and let R be an accessibility rela-
tion that is both transitive3 and euclidean4. A Kripke structure (w, R) is a model
of a formula φ ∈ AIK , which is denoted by (w, R) |= φ, iff the following condi-
tions are satisfied (R(w) denotes the set of successor worlds of w through R):

1. (w, R) |= a iff w(a) = TRUE, where a ∈ Atom ;
2. (w, R) |= 1 iff true, i.e., for every (w, R) ;
3. (w, R) |= 0 iff false, i.e., for no (w, R) ;
4. (w, R) |= ¬φ1 iff (w, R)
|= φ1 ;
5. (w, R) |= φ1 ∧ φ2 iff (w, R) |= φ1 and (w, R) |= φ2 ;
6. (w, R) |= φ1 ∨ φ2 iff (w, R) |= φ1 or (w, R) |= φ2 ;
7. (w, R) |= Kφ1 iff for every w′ ∈ R(w), (w′, R) |= φ1 ;
8. (w, R) |= Nφ1 iff for every w′ /∈ R(w), (w′, R) |= φ1 ;
9. (w, R) |= Oφ1 iff for every w′, w′ ∈ R(w) iff (w′, R) |= φ1.

The logic AIK can be equiped with a subsumption relation, which enables
us to compare object descriptions and queries, for instance in the defini-
tion of extents. An axiomatization of AIK [Lev90] provides a consistent
and complete algorithm for computing the subsumption relation 'AIK . The
logic LAIK = (AIK ,∧,∨,¬, 1, 0,'AIK) can then be defined according to Defini-
tion 1. Given its semantics defined above, this logic also forms a complete lattice,
whose ordering is 'AIK , meet and join operations are respectively ∧ and ∨, and
top and bottom are respectively 1 and 0. This makes it applicable to LCA. In
order to ease the understanding of modal operators, we provide the following
lemma (a proof is available in [Fer02], p. 86).

Lemma 2. If φ ∈ AIK and WR(φ) = {w|(w, R) |= φ} is the set of worlds
where φ is true, then for every structure (w, R):
1. (w, R) |= Kφ iff R(w) ⊆ WR(φ);
2. (w, R) |= N¬φ iff R(w) ⊇ WR(φ);
3. (w, R) |= Oφ iff R(w) = WR(φ).

This lemma shows that what counts in a model (w, R) of a modal formula is
neither the initial world w, nor the accessibility relation itself, but the set of
successor worlds R(w). So modal formulas Mφ (M ∈ {K, N¬, O}) can be inter-
preted as sets of models of φ, rather than individual models of φ. For instance,
the modal formula Kφ represents some subsets of WR(φ), in which at least φ,
but not only φ is always true: Kφ can be read ”at least φ”. Dually, the modal
formula N¬φ can be read ”at most φ”, and the modal formula Oφ, which is
semantically equivalent to Kφ∧N¬φ from definition 4, can be read ”exactly φ”
or ”all I know is φ” (hence the name AIK [Lev90]).

3 A relation R is transitive iff ∀w, w′, w′′ : wRw′ and w′Rw′′ implies wRw′′.
4 A relation R is euclidean iff ∀w, w′, w′′ : wRw′ and wRw′′ implies w′Rw′′.

Negation, Opposition, and Possibility in Logical Concept Analysis 135

3 Ambiguity in the Interpretation of Negation

In this section we exhibit an ambiguity that lies in the interpretation of negation,
when it is available in the logic. Practically, in information retrieval, the problem
is that we get unsatisfactory answers (i.e., extents) to queries with negation. In
order to show the problem more concretely, let us consider a logical context K =
(O,LProp, d), where LProp is the propositional logic (the same as AIK but with
no modal operators). Let say objects are persons, and atoms are properties of
these persons (e.g., young, rich). Describing objects then consists in expressing
the knowledge one has about person properties. Let say one person of the context,
Alice, is young, unhappy, and rich or smart. This can be represented by giving
to object Alice the description young ∧¬happy ∧ (rich ∨ smart). Such a context
can exhibit two “anomalies” w.r.t. our intuition, for every queries q, q′ ∈ Prop:

1. ext(q)∪ ext(¬q) � O: an object can satisfy neither a query, nor its negation.
Example: Alice is not an answer of any of the queries tall and ¬tall : so one
cannot retrieve persons who are not known as tall.

2. ext(q ∨ q′) � ext(q) ∪ ext(q′): an object can satisfy q ∨ q′ while satisfying
neither q, nor q′.
Example: Alice is an answer to the query rich ∨ smart , but neither to the
query rich, nor smart : so one cannot retrieve persons who are either known
as rich or known as smart.

These anomalies come from the fact that formulas, rather than interpreta-
tions, are used to describe objects. In relational databases and object-oriented
databases, these anomalies do not exist because objects are described by sets of
valued attributes letting no ambiguity in their interpretation. On the contrary,
formulas generally do not have a unique interpretation but a set of models. When
an object description has several models, there are always at least 2 of them that
disagree w.r.t. a query q: one satisfies q while the other satisfies ¬q, which causes
the anomaly 1. Similarly, even if all models satisfy q ∨ q′, some may satisfy ¬q,
and others ¬q′, which causes the anomaly 2. But interpretations cannot be used
in practice because they are in general infinite, and we do not want to use them
because they are not flexible enough. For example, in databases, they tend to
force users to give a value to every attribute. With formulas, a finite set of
relevant descriptors can be chosen among a large or infinite set (open language).

In fact, the expected interpretation of boolean operators in queries is generally
extensional, i.e., logical operations on formulas (conjunction, disjunction, and
negation) are expected to match set operations on extents (intersection, union,
and complement); while they are fundamentally intensional in descriptions. In
the intensional interpretation, negation can be understood as opposition, like the
opposition that exists between “male” and “female”: some things are neither
male nor female. Now disjunction should be understood as undetermination,
like knowing that something has a sex; one can know that something has a sex
without knowing whether it is male or female.

Both kinds of negation are present in natural languages. In English, the gram-
matical word “not” is the extensional negation. Indeed everything is either happy

136 S. Ferré

or not happy, hot or not hot. The intensional negation is not so obvious in En-
glish as it can be realized either by various prefixes (as in happy/unhappy, le-
gal/illegal), or by a totally different word (hot/cold, tall/small). However there
are languages, like Esperanto [JH93], where a unique prefix (in Esperanto, mal-)
is used to build all opposites, and thus becomes a grammatical element similar to
a logical connector (e.g., varma/malvarma, alta/malalta). In the following, when
translating formulas in English, we use this prefix “mal-” to build the opposites
instead of the normal english word in order to make opposition more visible (as
it is in the logical language with negation): e.g., tall/mal-tall.

Our objective is not to choose between extensional and intensional interpre-
tations, but to combine both in a same formalism. This requires distinguishing
occurences of negation as extensional or intensional. Considering a single prop-
erty “young” and only negation, we obtain 4 different queries: “young”, “not
young”, “mal-young” (i.e., “old”), and “not mal-young” (i.e., “not old”). The
logic should also recognize the two subsumption relations that exist between
these formulas: “young” entails “not mal-young”, and “mal-young” entails “not
young” (non-contradiction law). Finally, only opposition is relevant in descrip-
tions because it should be enough not to say a person is young so as to retrieve
this person from the query “not young”. This is known as the Closed World
Assumption (CWA).

4 Distinguishing Negation and Opposition

As said in the introduction, the logic AIK (Section 2.2) enables us to apply the
Closed World Assumption (CWA) on individual object descriptions through the
modality O (“exactly”). The principle is to apply this modality on each object
description of a context K = (O,LProp, d), so as to obtain the context

K1 =def (O,LAIK , d1), such that d1(o) =def O(d(o)), for all o ∈ O.

For example the description of Alice in previous section becomes O(young ∧
¬happy ∧ (rich ∨ smart)).

In queries we propose to use the modality K (“at least”), and we claim that
negation has a different interpretation whether it is inside or outside the scope
of this modality: ¬K(young) means “is not young”, while K(¬young) means
“is mal-young”. So boolean operations are extensional outside modalities, and
intensional inside modalities. We do not consider the use of the modality O in
queries as it is unlikely that a user would ask for an object being “exactly q”.

We now show that the anomalies exhibited in Section 3 are solved, i.e., exten-
sional operations match set operations on extents (see proof in [Fer02], p. 88).

Theorem 1. Let q, q′ ∈ Prop be propositional formulas.

1. extK1(¬K(q)) = O \ extK1(K(q));
2. extK1(K(q) ∨ K(q′)) = extK1(K(q)) ∪ extK1(K(q′));
3. extK1(K(q) ∧ K(q′)) = extK1(K(q)) ∩ extK1(K(q′));

Negation, Opposition, and Possibility in Logical Concept Analysis 137

These equalities are not verified when negation and disjunction appear inside
modalities. For example Alice is neither in the extent of K(tall), nor in the extent
of K(¬tall), but she is in the extent of both ¬K(tall) and ¬K(¬tall) (“Alice is
neither tall nor small”). Furthermore, Alice is in the extent of K(rich ∨ smart)
but neither in the extent of K(rich) nor in the extent of K(smart) (“Alice is
rich or smart but we do not know which”). This confirms that operations inside
modalities are intensional, whereas operations outside are extensional. Finally it
can be proved in AIK that for every propositional formula q:

– K(q) 'AIK ¬K(¬q) (“is q” entails “is not mal-q”),
– K(¬q) 'AIK ¬K(q) (“is mal-q” entails “is not q”).

This shows there is a hierarchy between both negations; opposition is more
specific than extensional negation.

5 Distinguishing Certainty and Possibility

In previous section we applied the Closed World Assumption (CWA) on object
descriptions so that everything not true in a description is considered as false.
For example, Alice is now considered as “not tall” (d1(Alice) 'AIK ¬K(tall))
because her description is not subsumed by “tall” (d(Alice)
' tall). This assumes
we have a complete knowledge about objects. However we sometimes have only
incomplete knowledge about objects. In this case, some property that is not true
in a description may still be possible. In the example, as the description of Alice is
subsumed neither by “tall” nor by “small” (“mal-tall”), Alice may be everything
among “tall”, “mal-tall”, and “neither tall nor mal-tall”.

Between these two extreme positions, a range of 5 intermediate positions can
be imagined, from the most incomplete to the most complete:

1. Alice is young and unhappy, and may have any other property;
2. Bob is young and unhappy, and may be rich and smart;
3. Charlie is young and unhappy, and may be either rich or smart but not both;
4. David is young and unhappy, and may be rich;
5. Edward is young and unhappy (and has no other property).

Edward corresponds to previous section, where a property is either true or false.
In other cases, we want to distinguish certain properties and possible proper-
ties. For example David is certainly young, possibly rich, and certainly not tall;
whereas Edward is certainly not rich. In the rest of this section, we adapt the
logic AIK and its use in order to distinguish and represent “(certainly) true”,
“possibly true”, “possibly false”, and “(certainly) false”.

5.1 First Solution with AIK

In a combination of certain and possible facts certain facts represent some kind of
minimum of what is true, while possible facts represent a kind of maximum. Now
Lemma 2 shows that the modalities K and N¬ in AIK can be read respectively
“at least” and “at most”.

138 S. Ferré

So we propose the following representation of above descriptions in AIK,
before showing they are not fully satisfying:

1. d(Alice) = K(young ∧ ¬happy) ∧ N¬(0): at least young and unhappy, and
at most everything;

2. d(Bob) = K(young ∧¬happy)∧N¬(young ∧¬happy ∧ rich ∧ smart): at least
young and unhappy, and at most young, unhappy, rich, and smart;

3. d(Charlie) = K(young∧¬happy)∧(N¬(young∧¬happy∧rich)∨N¬(young∧
¬happy ∧smart)): at least young and unhappy, and at most young, unhappy,
and rich, or young, unhappy, and smart;

4. d(David) = K(young∧¬happy)∧N¬(young ∧¬happy ∧rich): at least young
and unhappy, and at most young, unhappy, and rich;

5. d(Edward) = K(young ∧ ¬happy) ∧ N¬(young ∧ ¬happy): at least and at
most young and unhappy, i.e., exactly young and unhappy (what can be
represented equivalently by O(young ∧ ¬happy)).

In order to verify whether these descriptions correspond to what we want, we
draw the following table where the lines are the 5 descriptions, the columns are
different queries q, and a cell is marked + if the description is subsumed by Kq,
by − if it is subsumed by ¬Kq, and empty otherwise.

'AIK young ¬young ¬happy rich smart rich ∧ smart tall
d(Alice) + +
d(Bob) + − + −

d(Charlie) + − + − −
d(David) + − + − − −

d(Edward) + − + − − − −

If we read a query K(X) as “X is (certainly) true”, and a query ¬K(X) as “X
is (certainly) false”, then the above table matches our expectations. The cells
where neither K(X), nor ¬K(X) are satisfied can be read as “X is possibly
true/false, but is not certainly true/false”.

However descriptions d(Alice) to d(David) exhibit two problems. Firstly, ob-
jects Alice to David satisfy neither K(rich), nor ¬K(rich), what triggers the
anomaly 1 (see Section 3) in spite of the presence of the modality K. This implies
that possible facts cannot be represented, and so we cannot retrieve persons who
“may be rich”. Secondly, the query ¬young is possible for Alice whereas young
is true: i.e., “Alice is young, but may be old”. This is obviously a contradiction.
We handle these two problems by a generalization of the logic AIK [Fer01].

5.2 Generalization of AIK

As the first problem is similar to the problem in Section 3, it is tempting to apply
the solution in Section 4, i.e., to encapsulate descriptions in the modality O, and
queries in the modalities K and ¬K. Descriptions are then in the form

O(K(d0) ∧ (N¬(d1) ∨ . . . ∨ N¬(dn))), with n ∈ N, ∀i ∈ 0..n : di ∈ Prop.

Negation, Opposition, and Possibility in Logical Concept Analysis 139

Unfortunately all formulas in this form have no model, and so are contradictions
(see Example 2 of Section 2 in [Ros00]). So, AIK is not a direct answer to our
problem, and we propose in the following two successive adaptations of AIK in
order to solve it.

Similarly to the formula O(young ∧ rich) that enables us to reason about the
set of models of young ∧ rich as if it would be a single model, we would like that
the formula O(K(young) ∧ N¬(young ∧ rich)) enables us to reason on the set
of models of K(young) ∧ N¬(young ∧ rich), i.e., on the set of structures (w, R)
such that WR(young ∧ rich) ⊆ R(w) ⊆ WR(young) (see Lemma 2). To this
end, it is necessary that the set R(w) depends on the world w, so as to keep
the multiplicity of interpretations of incomplete descriptions. This is why we
propose to adapt the logic AIK by removing any condition on the accessiblity
relation in Definition 4. The logic AIK can then be seen as an ordinary modal
logic, where the modality K is defined on accessible worlds R(w), while the
modality N is defined on unaccessible worlds W \ R(w), and the modality O is
simply a combination of both (Oφ =def Kφ∧N¬φ). Now a family of logics can
be derived by applying various conditions on the accessibility relation, as this
is already done for modal logics [Bow79]. For example, the usual logic AIK has
a transitive and euclidean accessibility relation, and so could be renamed K45-
AIK; while our adaptation has an arbitrary relation, and so could be nammed
K-AIK.

Definition 5 (logic K-AIK). The semantics of the logic K-AIK is defined as
in Definitions 4, except there is no condition on the accessibility relation.

In the logic K-AIK, knowledge is stratified because the accessibil-
ity relation is neither transitive nor euclidean. The object descrip-
tion O(d(David)) = O(K(young ∧ ¬happy) ∧ N¬(young ∧ ¬happy ∧ rich)) is no
more contradictory, and it can be read at three levels of knowledge: a model of

1. young ∧ ¬happy is a world w′′ satisfying the proposition young ∧ ¬happy ;
2. K(young∧¬happy)∧N¬(young∧¬happy∧rich) is a world w′ such that R(w′)

is included in the set of models of young ∧ ¬happy , and contains all models
of young ∧ ¬happy ∧ rich ;

3. O(K(young ∧ ¬happy) ∧ N¬(young ∧ ¬happy ∧ rich)) is a world w such
that R(w) is the set of all models of K(young ∧ ¬happy) ∧ N¬(young ∧
¬happy ∧ rich).

So this description expresses the complete knowledge about the incomplete
knowledge about the object David : “all I know about this person is that he
is young and unhappy, and he may be rich as well”. The logic K-AIK allows for
the following subsumption relation.

Example. O(d(David)) 'K−AIK

K(K(young)) ∧ K(¬K(¬young)) ∧ ¬K(K(rich)) ∧ ¬K(¬K(rich)). �

If the outermost K is read “I know”, then we can translate the above entailment
as “I know that David is young, and that he is not mal-young, but I do not

140 S. Ferré

know whether he is rich or not”. So K(K(q)) represents (certainly) true facts,
and K(¬K(q)) represent (certainly) false facts. Formulas ¬K(¬K(q)), which
can be read as “I do not know that not q”, represents possibly true facts, and
similarly formulas ¬K(K(q)) represent possibly false facts. This solves the first
problem about the representation of possible facts.

The first problem is now solved, but the second is not because ¬young (“mal-
young”) is judged as a possible fact for the object Alice whereas young is judged
as true. This means there is a contradiction somewhere. In order to remove this
contradiction, we try to exclude models (w′, R) at the 2nd level of knowledge such
that R(w′) = ∅. This implies that in the description d(Alice), the part N¬(0)
does not mean “at most everything”, but rather “at most everything provided it
is not contradictory”. Technically this is obtained by requiring the accessibility
relation to be serial5, which enforces every world to have at least one successor
world: the result is the logic KD-AIK.

Definition 6 (logic KD-AIK). The semantics of the logic KD-AIK is defined
like in Definition 4, except the accessibility relation must be serial.

This time we obtain the expected subsumption for Alice, with ¬young being
judged as (certainly) false, whereas rich remains possibly true/false.

Example. O(d(Alice)) 'KD−AIK

K(K(young)) ∧ K(¬K(¬young)) ∧ ¬K(K(rich)) ∧ ¬K(¬K(rich)). �

In summary we use a version of the logic AIK (KD-AIK) with two levels of
modalities in descriptions and queries. In descriptions the modality O is used at
the outermost level, while a combination of modalities K and N is used in order
to express certain and possible facts about object. In queries the modality K
is used at both levels, which implies that negations can occur at three levels.
From innermost to outermost levels the logical negation represents respectively
opposition, falsity, and possibility. It is noticeable that in order to distinguish
these three kinds of negations, there is need to introduce neither new connectors,
nor special semantics. A small variation of the logic AIK, which is itself a small
variation of well known modal logics, and appropriate combinations of modal
operators are sufficient. In the following section we generalize the application
of modal operators to other logics than propositional logic, and we introduce a
compact and more intuitive syntax in place of combinations of modal operators
and negations.

6 The Epistemic Extension of an Arbitrary Logic

Though the logic KD-AIK is suitable to the expression of opposition, negation,
and possibility, it has the drawback of being applicable only to contexts whose
facts are expressed in the propositional logic. So, we now define the epistemic

5 A relation R is serial iff ∀w : ∃w′ : wRw′.

Negation, Opposition, and Possibility in Logical Concept Analysis 141

extension L2 (2 levels of modalities) of an arbitrary logic L = (L,$,%,¬,",⊥,')
(among those applicable in LCA) so as to enable us to distinguish between
opposition, falsity, and possibility.

The language L2 is defined by the following grammar, where L is the language
of formulas of L:

L2 −→ [L, L � . . . � L]
| !L
| ?L
| L and L | L or L | not L | true | false.

The correspondance of the first 3 derivations with AIK modalities is as follows:

– [d0, d1 � . . . � dn] −→ O(K(d0) ∧ (N¬(d0 $ d1) ∨ . . . ∨ N¬(d0 $ dn))): d0
represents all certain facts, while each d0 $ di represents a maximum set of
possible facts;

– !q −→ K(K(q)): q is certainly true;

– ?q −→ ¬K(¬K(q)): q is possibly true.

A complete knowledge where every possible fact is also certain has the
form [d0,"], which can be shortened as [d0]. At the opposite, an incomplete
knowledge where every non-certain fact is possible has the form [d0,⊥]. Boolean
operations have an extensional meaning, and enables us to express a certainly
false fact q as a not possibly true fact, i.e., by the formula not ?q, and a strictly
possibly true fact q (i.e., possible but not certain) by the formula ?q and not !q.
So not !q must be read “not certainly q”, i.e., “possibly not q”. Similarly, the
formula not ?q must be read “not possibly q”, and is equivalent to “certainly
not q” (i.e., “q is false”). These two equivalences are kinds of Morgan laws like
those that exist between conjunction and disjunction, between universal and ex-
istential quantifiers, and between modal operators � and ♦. Finally, opposition
does not appear in the above grammar as it is played by the negation of L (when
defined).

We now give the semantics of the language L2 as a function of the semantics
of L by using the Lemma 2. Moreover, as we use exactly 2 levels of modalities in
object descriptions and queries, only the set {R(w′) | w′ ∈ R(w)} semantically
matters in a structure (w, R). So interpretations in L2 are simply sets of sets of
interpretations of L.

Definition 7 (semantics). Let SL = (I, |=) be the semantics of a logic
L = (L,$,%,¬,",⊥,'). The semantics SL2 = (I2, |=2) of the language L2 is
defined by (given that for all f ∈ L, ML(f) = {i ∈ I | i |= f}):

– I2 = 22I

;

– and for all i2 ∈ I2,

142 S. Ferré

i2 |=2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[d0, d1 | . . . | dn] iff i2 = {M ⊆ I | M ⊆ ML(d0),
∃k ∈ 1..n : M ⊇ ML(d0 $ dk)}

!q iff ∀M ∈ i2 : M ⊆ ML(q)
?q iff ∃M ∈ i2 : M ⊆ ML(q)
Q and Q′ iff i2 |=2 Q and i2 |=2 Q′

Q or Q′ iff i2 |=2 Q or i2 |=2 Q′

not Q iff i2
|=2 Q
true iff true, i.e., for all i2

false iff false, i.e., for no i2

We now have to verify that the anomalies in Section 3 are still solved, and that
the semantics of possible facts is like expected. This is demonstrated by the
following theorem.

Theorem 2. Let K = (O,L2, d) be a context, and di, d
′
i, q ∈ L and Q, Q′ ∈ L2

be formulas. If the subsumption ' of L is consistent and complete, the following
equations are verified:
1. ext(!q) = {o ∈ O | d(o) = [d0, d1 | . . . | dn], d0 ' q}
2. ext(?q) = {o ∈ O | d(o) = [d0, d1 | . . . | dn], ∃k ∈ 1..n : (d0 $ dk) ' q}
3. ext(Q and Q′) = ext(Q) ∩ ext(Q′)
4. ext(Q or Q′) = ext(Q) ∪ ext(Q′)
5. ext(not Q) = O \ ext(Q)
6. ext(all) = O
7. ext(none) = ∅

Proof: The following proofs use Definition 7 of the semantics of L2, and use a
lot the result that formulas in the form d = [d0, d1 | . . . | dn] have a single model

m(d) =def {M ⊆ I | M ⊆ ML(d0), ∃k ∈ 1..n : ML(d0 $ dk) ⊆ M}. (1)

For conciseness, we omit to note the context K as indices of ext .
1. o ∈ ext(q) ⇐⇒ d(o) '2 q

⇐⇒ {m(d(o))} ⊆ {i2 ∈ I2 | ∀M ∈ i2 : M ⊆ ML(q)}
⇐⇒ ∀M ⊆ I : M ⊆ ML(d0)
and (∃k ∈ 1..n : ML(d0 $ dk) ⊆ M) implies M ⊆ ML(q) (1)
⇐⇒ d0 ' q: by contradiction, it is enough to consider the case where M =
ML(d0) knowing that d0 $ dk ' d0 for all k since L forms a lattice, and its
subsumption is consistent and complete

2. o ∈ ext(?q) ⇐⇒ d(o) '2?q
⇐⇒ {m(d(o))} ⊆ {i2 ∈ I2 | ∃M ∈ i2 : M ⊆ ML(q)}
⇐⇒ ∃M ⊆ I : M ⊆ ML(d0)
and (∃k ∈ 1..n : ML(d0 $ dk) ⊆ M) et M ⊆ ML(q) (1)
⇐⇒ ∃k ∈ 1..n : ML(d0 $ dk) ⊆ ML(d0)
⇐⇒ ∃k ∈ 1..n : d0 $ dk ' d0. (' is consistent and complete)

3. immediate from the Galois connection.
4. o ∈ ext(Q or Q′) ⇐⇒ d(o) '2 Q or Q′

⇐⇒ {m(d(o))} ⊆ ML2(Q or Q′) ⇐⇒ {m(d(o))} ⊆ ML2(Q) ∪ML2(Q′)
⇐⇒ {m(d(o))} ⊆ ML2(Q) or {m(d(o))} ⊆ ML2(Q′)
⇐⇒ d(o) '2 Q or d(o) '2 Q′ ⇐⇒ o ∈ ext(Q) ∪ ext(Q′).

Negation, Opposition, and Possibility in Logical Concept Analysis 143

5. o ∈ ext(not Q) ⇐⇒ d(o) '2 not Q
⇐⇒ {m(d(o))} ⊆ ML2(not Q) ⇐⇒ {m(d(o))}
⊆ ML2(Q)
⇐⇒ d(o)
'2 Q ⇐⇒ o /∈ ext(Q).

6. immediate from the Galois connection.
7. o ∈ ext(none) =⇒ d(o) '2 none

⇐⇒ {m(d(o))} ⊆ ∅: contradiction, hence ext(none) = ∅. �

It can be verified that Theorem 2.(4) solves the anomaly 2, and that Theo-
rem 2.(5) solves the anomaly 1. In fact operations in L2 (and, or, not, true,
false) have a fully extensional interpretation as they match exactly set opera-
tions on context extents (intersection, union, complement, the set of all objects,
the empty set). This theorem also generalizes Theorem 1 in two ways. Firstly,
the logic used for describing objects and elementary queries is arbitrary (among
those applicable to LCA), and not necessarily the propositional logic LProp.
Secondly, results apply to arbitrary queries in L2: variables Q and Q′ are not
restricted to the language L.

Finally, this theorem gives us a way to compute the answers of queries in L2,
provided we have a decision procedure for the subsumption ' in L. We have thus
integrated epistemic knowledge in the querying process, and allowed distinction
between opposition, negation, and possibility.

7 Related Work

The issue of representing incomplete knowledge, and distinguishing between cer-
tain and possible facts has already been studied in the scope of Formal Concept
Analysis [Obi02, BH05]. They use 3-valued contexts which are similar to our dis-
tinction between true, possible, and false facts in object descriptions. They also
use compound attributes, which are in fact formulas in the propositional logic.
A first difference is that instead of having simple attributes we have formulas
of an almost arbitrary logic in descriptions and queries, e.g., propositions over
valued attributes. On the contrary they have only extensional operations, and
no intensional operations like opposition. Another difference is that they have
several derivation operators corresponding to the two modalities “certainly” and
“possibly”, which they respectively denote by � and ♦, and which we denote
in the epistemic extension (Section 6) by ! and ?. Instead we have only one
derivation operator ext that applies to any combination of modalities, and both
extensional and intensional operations. A more general difference is that they
use contexts as the semantics of Contextual Logic whereas we use logics and
their semantics right inside logical contexts.

The certainly and possibly valid implications defined by S. Obiedkov can be
represented as follows in our framework:

– an implication φ → ψ is certainly valid in a context K if every object that
possibly satisfies φ certainly satisfies ψ, i.e., extK(?φ) ⊆ extK(!ψ),

– an implication φ → ψ is possibly valid in a context K if every object that
certainly satisfies φ possibly satisfies ψ, i.e., extK(!φ) ⊆ extK(?ψ).

144 S. Ferré

Opposition has already been introduced as an alternative negation that respects
the law of contradiction (q ∧ ¬q), but not the law of excluded middle (q ∨ ¬q).
Indeed, nobody can be young and old at the same time, but somebody can
be neither young, nor old. In the scope of FCA, opposition appears first in
the double Boolean algebra [Wil00]. It is also introduced in Description Logics
through a new connector ∼, and an extended semantics [Kan05]. In both cases
a new connector is introduced, whereas we simply use the classical connector in
combination with modalities so as to obtain the logical properties of opposition.

8 Conclusion

To the best of our knowledge, our solution is the first that enables us to repre-
sent incomplete knowledge, and distinguish negation and opposition in a unique
formalism. The logic used to describe objects is let free, and its negation (if
defined) plays the role of opposition. Object descriptions contain certainly true
facts (opposites or not), and a disjunction of possibly true facts. If a fact does not
appear in a description it is considered as certainly false by CWA, which allows
for concise descriptions (remind that the language of facts is often infinite). This
is more expressive than 3-valued contexts as properties like “possibly either rich
or smart” can be represented. Moreover the subsumption of the logic AIK rec-
ognizes the hierarchy that exists between opposition, negation, and possibility
(from the most specific to the most general).

Surprisingly this result is achieved with no extension of the theory of LCA,
and a small variation of the logic AIK that is common place in modal logics. The
result comes from the right combination and interpretation of modal operators.
The danger of losing the genericity of LCA is escaped by the epistemic extension
of a logic that enables us to retain, and even extend its genericity. Indeed a
detailed study about the combination of logics [FR02] shows that, w.r.t. their
application in LCA, less properties are required on logics when this epistemic
extension is applied on them. In other words, the epistemic extension ensures
that a weak logic (having only consistent and partially complete subsumption)
gains all desired properties for LCA.

The epistemic extension is implemented as part of a toolbox of logic com-
ponents, Logfun (see www.irisa.fr/lande/ferre/logfun). It is systemati-
cally used in applications of Camelis, an implementation of logical information
systems [FR04], which can handle efficiently up to several 10,000 objects (see
www.irisa.fr/lande/ferre/camelis).

References

[BH05] P. Burmeister and R. Holzer. Treating incomplete knowledge in formal
concept analysis. In B. Ganter, G. Stumme, and R. Wille, editors, Formal
Concept Analysis, LNCS 3626, pages 114–126. Springer, 2005.

[Bow79] K. A. Bowen. Model Theory for Modal Logic. D. Reidel, London, 1979.
[Che94] J. Chen. The logic of only knowing as a unified framework for non-monotonic

reasoning. Fundamenta Informatica, 21, 1994.

Negation, Opposition, and Possibility in Logical Concept Analysis 145

[CM00] L. Chaudron and N. Maille. Generalized formal concept analysis. In
G. Mineau and B. Ganter, editors, Int. Conf. Conceptual Structures, LNCS
1867. Springer, 2000.

[DNR97] F. M. Donini, D. Nardi, and R. Rosati. Autoepistemic description logics. In
IJCAI, 1997.

[Fer01] S. Ferré. Complete and incomplete knowledge in logical information sys-
tems. In S. Benferhat and P. Besnard, editors, Symbolic and Quantita-
tive Approaches to Reasoning with Uncertainty, LNCS 2143, pages 782–791.
Springer, 2001.

[Fer02] S. Ferré. Systèmes d’information logiques : un paradigme logico-contextuel
pour interroger, naviguer et apprendre. Thèse d’université, Université de
Rennes 1, October 2002. Accessible en ligne à l’adresse http://www.irisa.fr/
bibli/publi/theses/theses02.html.

[FR00] S. Ferré and O. Ridoux. A logical generalization of formal concept analysis.
In G. Mineau and B. Ganter, editors, Int. Conf. Conceptual Structures,
LNCS 1867, pages 371–384. Springer, 2000.

[FR02] S. Ferré and O. Ridoux. A framework for developing embeddable customized
logics. In A. Pettorossi, editor, Int. Work. Logic-based Program Synthesis
and Transformation, LNCS 2372, pages 191–215. Springer, 2002.

[FR04] S. Ferré and O. Ridoux. An introduction to logical information systems.
Information Processing & Management, 40(3):383–419, 2004.

[GK01] B. Ganter and S. Kuznetsov. Pattern structures and their projections. In
H. S. Delugach and G. Stumme, editors, Int. Conf. Conceptual Structures,
LNCS 2120, pages 129–142. Springer, 2001.

[JH93] P. Janton and H.Tonkin. Esperanto: Language, Literature, and Community.
State University of New York Press, 1993.

[Kan05] K. Kaneiwa. Negations in description logic - contraries, contradictories,
and subcontraries. In F. Dau, M.-L. Mugnier, and G. Stumme, editors,
Contributions to ICCS 2005, pages 66–79. Kassel University Press GmbH,
2005.

[Lev90] H. Levesque. All I know: a study in autoepistemic logic. Artificial Intelli-
gence, 42(2), March 1990.

[Lif91] V. Lifschitz. Nonmonotonic databases and epistemic queries. In 12th Inter-
national Joint Conference on Artificial Intelligence, pages 381–386, 1991.

[McC86] J. McCarthy. Applications of circumscription to formalizing common sense
knowledge. Artificial Intelligence, 28(1), 1986.

[Moo85] R. C. Moore. Semantical considerations on nonmonotonic logic. Artificial
Intelligence, 25(1):75–94, 1985.

[Obi02] S. A. Obiedkov. Modal logic for evaluating formulas in incomplete contexts.
In ICCS, LNCS 2393, pages 314–325. Springer, 2002.

[Plo70] G. D. Plotkin. A note on inductive generalization. Machine Intelligence,
Edinburgh Univ. Press, 5:153–163, 1970.

[Pre97] S. Prediger. Logical scaling in formal concept analysis. LNCS 1257, pages
332–341, 1997.

[Ros00] R. Rosati. Tableau calculus for only knowing and knowing at most. In Roy
Dickhoff, editor, TABLEAUX, LNCS 1847. Springer, 2000.

[Wil00] R. Wille. Boolean concept logic. In G. Mineau and B. Ganter, editors, Int.
Conf. Conceptual Structures, LNCS 1867, pages 317–331. Springer, 2000.

A Note on Negation: A PCS-Completion
of Semilattices

Léonard Kwuida

Mathematisches Institut, Universität Bern, CH-3012 Bern
kwuida@math-stat.unibe.ch

Abstract. In the paper “Which concept lattices are pseudocomple-
mented?” ([GK05]) we gave a contextual characterization of pseudo-
complemented concept lattices by means of the arrow relations. In this
contribution we use this description to embed finite semilattices into
pseudocomplemented semilattices. This process can be used to define a
negation on concepts.

Keywords: negation, semilattices, pseudocomplement, FCA.

AMS Subject Classification: 06D15, 68T30.

1 Introduction

Boolean algebras arose from the investigations of the laws of thought by George
Boole [Bo54]. They are algebras (L,∧,∨,′ , 0, 1) of type (2, 2, 1, 0, 0) such that
(L,∧,∨, 0, 1) is a bounded distributive lattice and the unary operation is a com-
plementation. The operations ∧, ∨ and ′ were used to model respectively the
conjunction, the disjunction and the negation. Since Boole many classes have
been introduced to generalize these structures. A frequent approach consists in
relaxing some properties or some operations of Boolean algebras. In [KPR04] the
authors presented an overview of the classes that mainly focus on generalizations
of the unary operation. Among these is the class of pseudocomplemented lattices
or pcl for short.

The pseudocomplement of a lattice element x, if it exists, is the largest element
whose meet with x is the zero element of the lattice. In other words x∗ is the
pseudocomplement of x iff

x ∧ y = 0 ⇐⇒ y ≤ x∗.

A lattice L with 0 is pseudocomplemented iff each x ∈ L a pseudocomplement;
the mapping x �→ x∗ then defines a unary operation on L, called pseudocom-
plementation. The algebra (L,∧,∨,∗ , 0, 1) is called a p-algebra. In the case of a
concept lattice, the pseudocomplement of a concept (A, B) is the most general
concept that contradicts (A, B). Such a pseudocomplement may be interpreted
as a negation1 of the concept, and we shall do so in this article.
1 See [Ho89–Ch. 1] or [Wi00].

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 146–160, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Note on Negation: A PCS-Completion of Semilattices 147

The pseudocomplementation is antitone and square extensive, i.e., it satisfies

x ≤ y =⇒ y∗ ≤ x∗ and x ≤ x∗∗

for all x, y ∈ L. These two properties together imply the infinite join de Morgan
law

(
∨

k∈K

xk)∗ =
∧

k∈K

x∗
k.

The infinite join de Morgan law is to be understood as follows: if
∨

k∈K xk exists
and all x∗

k exist then the equality above holds.
Moreover the set of elements satisfying the law of double negation (x∗∗ = x)

with the inherited order, called skeleton, is a Boolean algebra. O.Frink pointed
out in [Fr62] that most of the results obtained for p-algebras can be proved even
if the operation ∨ is omitted, i.e., by considering only the algebra (L,∧,∗ , 0, 1).
This is called a pseudocomplemented semilattice or pcs for short. Recall that a
semilattice is an algebra (L, ◦) such that ◦ is a binary operation that is commu-
tative, associative and idempotent. In this contribution we will prove that each
finite2 semilattice can be extended in a natural way to a pcs. This completion
process is used to define a negation on concepts.

The rest of the paper is divided as follows: in Section 2 we consider the
relationship between lattices and semilattices. Section 3 presents the main result,
namely that each closure system can be extended to a pseudocomplemented
closure system. Section 4 is devoted to an application: constructing a negation on
concepts. The reader is referred to [GW99] for terminologies and further notions
on concept lattices. Some results of [GK05] will be mentioned without proofs. For
some applications we refer to [So98], [Du97] and [DG00]. An introduction to p-
algebras can be found in [Ka80], [CG00] or in [Gr71] and [BD74] for distributive
pseudocomplemented lattices.

2 Lattices and Semilattices

From the order theoretical point of view, each lattice is also a (meet-)semilattice.
Therefore each pcl is a pcs. Note that each pcs necessary has a top element, the
pseudocomplement of 0. Now let (L,∧) be a (meet-)semilattice. If a and b are
elements of L and have u and v as upper bound, then u∧v is also an upper bound
of a and b. Therefore if L is a finite semilattice that is not a lattice, this should
be because of the lack of upper bounds and not because of too many upper
bounds without a least one. Thus there is no difference between the underlying
order on nearlattices3 or chopped lattices and semilattices, provided they are
finite. Unfortunately this is no more valid if the poset is infinite. For example if
we replace the top element of a 4-element Boolean algebra with an infinite chain
without a least element, we obtain a semilattice which is not a nearlattice.
2 The results also apply to complete semilattices.
3 A nearlattice (see [Ci04]) or chopped lattice (see [GS04]) is a meet semilattice in

which any two elements having common upper bounds have a supremum.

148 L. Kwuida

However we can obtain a lattice S ⊕ 1 from a finite semilattice S by adding a
new top element. Of course removing the top element of a finite lattice produces
a semilattice. Thus there is a one-to-one correspondence between finite lattices
and finite (meet)-semilattices. Since each pcs has a top element we can assume
w.l.o.g. that our semilattices have a 1. Anyway the process we present later ends
up with the same pcs no matter the initial semilattice has a top element or not.

It is well known that complete lattices and closure systems are 1-1 correspon-
dent. What about semilattices? Closure systems are closed under (arbitrary)
intersections. They are also called

⋂
-closed families. For semilattices closure

systems can be replaced by ∩-closed families. By a ∩-closed family on a set G
we mean a family E of subsets of G such that

⋃
E = G and A ∩ B ∈ E for all

A, B ∈ E . Such families are closed under nonempty finite intersections. Closure
systems are ∩-closed families. The converse holds in the finite case. For a concept
lattice, being pseudocomplemented is naturally expressed in terms of the closure
system of extents. A closure system or a ∩-closed family is called pseudocom-
plemented if each closed set has a pseudocomplement. In the next section we
will show how closure systems can be extended to pseudocomplemented closure
systems.

3 Embedding Closure Systems into Pseudocomplemented
Closure Systems

Let E be a closure system on a set G, and let A �→ A′′ be the corresponding
closure operator. We use the notation a′′ := {a}′′ for a ∈ G. For simplicity we
assume Ø′′ = Ø and g′′ = h′′ =⇒ g = h.

A subset T of G is called transversal to E if each nonempty closed set E of
E contains some elements of T . E is atomic iff each element of E \ {Ø} contains
an upper cover of Ø. The closure system E is atomic iff

Gmin := {g ∈ G | g′′ = {g}}

is a transversal. A subfamily U of E is called co-initial if for every E ∈ E \ {Ø}
there is U ∈ U \ {Ø} such that U ⊆ E. The closure system E is atomic iff the
subfamily {g′′ | g ∈ Gmin} is co-initial. The following proposition shows the
relationship between “transversal” and “co-initial”, as well as their importance
in checking pseudocomplementation.

Proposition 1. Let E be a closure system on G.

(i) A subset T of G is transversal to E iff {t′′ | t ∈ T } is co-initial.
(ii) A subfamily U of E is co-initial iff

⋃
U is transversal to E.

(iii) E is pseudocomplemented iff E has a co-initial subfamily U whose elements
have pseudocomplements.

Proof. (i) and (ii) are straightforward. One direction of the equivalence in (iii)
is obvious since U is a subfamily of E . The converse is Proposition 4 of [GK05].

A Note on Negation: A PCS-Completion of Semilattices 149

Therefore, an atomic closure system E will be pseudocomplemented iff all g′′,
g ∈ Gmin have pseudocomplements. To express the pseudocomplementation we
need some operations introduced in [GK05], namely a projection and its inverse
image. We consider E a closure system on a set G with a transversal Gmin. (See
Lemma 1 for the general case.)

The projection on Gmin is the map s defined on P(G) sending any subset A
of G to

s(A) :=
⋃
g∈A

g′′ ∩Gmin.

Note that s(g) := s({g}) = g′′ ∩Gmin and s(A) = A ∩ Gmin for any A ∈ E . The
inverse image of s denoted by [·] is defined on P(G) by

[A] := {g ∈ G | s(g) ⊆ s(A)}.

The following proposition gives a characterization of the pseudocomplementa-
tion.

Proposition 2. [GK05–Propn. 6, Propn. 7 & Thm. 1]

(a) The operator [·] defines a closure operator on G.
(b) An element A of a closure system E has a pseudocomplement iff [Gmin \ A]

is in E.
(c) E is a pseudocomplemented closure system iff all sets [Gmin \ {a}] with a ∈

Gmin are in E.

Thus if E is not pseudocomplemented, then there is an A in E such that [A] /∈ E .
The idea is to collect all such [A]s and generate a new closure system. It is
enough by (c) to generate the new closure system from E and those [Gmin \ {a}]
that are not in E .

Theorem 1. Let E be a closure system on G with a transversal Gmin. We denote
by

Ẽ := 〈E ∪ {[Gmin \ {a}] | a ∈ Gmin}〉

the closure system generated by E and {[Gmin \ {a}] | a ∈ Gmin}. The following
assertions hold:

(i) Ẽ is a pseudocomplemented closure system.
(ii) The map

i : E → Ẽ
A �→ A

is a ∧-embedding, preserving existing pseudocomplements.
(iii) The closure system Ẽ is the coarsest pseudocomplemented refinement of the

system containing E.
(iv) If ϕ : E → F is a

∧
-embedding of E into a pseudocomplemented closure

system F that preserves existing pseudocomplements, then there is an order
embedding ψ : Ẽ → F that preserves pseudocomplements and ψ ◦ i = ϕ.

150 L. Kwuida

Proof. All [Gmin \ {a}] are subsets of G. So Ẽ is a closure system on G. We
denote by

′′Ẽ
the corresponding closure operator. Set

G̃min := {g ∈ G | g′′Ẽ
= {g}}.

Obviously Gmin is a subset of G̃min. We claim that both sets are equal. Otherwise
there would be an element b ∈ G such that {b} ∈ Ẽ , which is not in E . Therefore
there would be an element E ∈ E and a subset {ak | k ∈ K} ⊆ Gmin such that

{b} = E ∩
⋂
{[Gmin \ {ak}] | k ∈ K}.

Note that b ∈ [Gmin \ {ak}] implies ak /∈ b′′ for all k ∈ K. If b belongs to
[Gmin \{a}] for all a ∈ Gmin, we will have s(b) ⊆ Gmin \{a} for all a ∈ Gmin, and
by then a /∈ b′′ for all a ∈ Gmin. This can not happen since Gmin is transversal.
Thus there is at least one a ∈ Gmin (let’s say ai0) such that b /∈ [Gmin \ {ai0}].
The closure b′′ contains ai0 with ai0
= b. Moreover b ∈ E implies b′′ ⊆ E; thus
ai0 is another element of E (different from b). From the equality

{b} = E ∩
⋂
{[Gmin \ {ak}] | k ∈ K}

there should be an element i1 ∈ K such that ai0 /∈ [Gmin \ {ai1}]. Now ai0 /∈
[Gmin \{ai1}] implies s(ai0) � Gmin \{ai1}. Therefore ai1 ∈ s(ai0) = {ai0}, since
ai0 ∈ Gmin. Thus ai0 = ai1 , which is in contradiction with ai0 ∈ b′′ together with
ai1 /∈ b′′. This concludes the proof of our claim, and means that there is no new
atoms.

We denote by s̃ the projection of Ẽ on G̃min and by [̃·] the corresponding
inverse image. We will have

s̃(A) =
⋃
g∈A

g
′′Ẽ

∩ G̃min =
⋃
g∈A

g
′′Ẽ

∩Gmin =
⋃
g∈A

g′′ ∩ Gmin = s(A).

Then both projections coincide. It follows that

[̃A] = {h ∈ G | s̃(h) ⊆ s̃(A)} = {h ∈ G | s(h) ⊆ s(A)} = [A].

Thus for all a ∈ G̃min the set ˜[G̃min \ {a}] belongs to Ẽ . By (c) of Proposition 2 we
can conclude that Ẽ is a pseudocomplemented closure system and (i) is proved.

For (ii) it is evident that the map i preserves the meet operation since the
meet in closure systems is the intersection. Let a ∈ Gmin such that {a} has a
pseudocomplement. Then [Gmin \ {a}] ∈ E is its pseudocomplement. In fact if
E ∈ E and {a} ∩ E = Ø then s(h) ⊆ Gmin \ {a} for all h ∈ E. Thus E is a
subset of [Gmin\{a}]. Of course [Gmin\{a}]∩{a} = Ø. Since the two projections
coincide it follows that i({a}∗) = (i({a}))∗ = {a}∗ because

(†) i({a}∗) = i([Gmin \ {a}]) = [Gmin \ {a}] and

(‡) (i({a}))∗ = ˜[Gmin \ i({a})] = [Gmin \ {a}] = {a}∗,

A Note on Negation: A PCS-Completion of Semilattices 151

where ∗ in (†) is the pseudocomplementation in E and in (‡) the pseudocomple-
mentation in the newly generated closure system Ẽ . Note that if A ∈ E has a
pseudocomplement then

A∗ =
⋂

a∈s(A)

[Gmin \ {a}] =
⋂

a∈s̃(A)

˜[Gmin \ {a}] = A∗̃,

where ∗ denotes the (partial operation of) pseudocomplementation on E and ∗̃

the (total operation of) pseudocomplementation on Ẽ . From here on, we will no
make this distinction again, since they coincide wherever they exist.

For (iii) observe that Ẽ , as closure system generated by E and {[Gmin \ {a}] |
a ∈ Gmin}, is the smallest closure system containing these two sets. Its elements
are intersections of elements of E and subsets of the form [Gmin \ {a}] with
a ∈ Gmin. The later are exactly pseudocomplements of atoms of E in Ẽ . Then
if a closure system is peudocomplemented and contains E then it contains also
pseudocomplements of all elements of E and by then contains Ẽ .

For (iv) note that for each element X ∈ Ẽ there is E ∈ E and A ⊆ Gmin such
that

X = E ∩
⋂
{[Gmin \ {a}] | a ∈ A}.

We set the following notations:

X̂ :=
⋂
{E ∈ E | X ⊆ E}

and
X̌ := {a ∈ Gmin | X ⊆ [Gmin \ {a}]}.

We define ψ as follows: If X ∈ E then we set ψ(X) := ϕ(X). If X = [Gmin\{a}] /∈
E then we set ψ(X) := (ϕ({a}))∗. Elsewhere we set

ψ(X) := ϕ(X̂) ∩
⋂{

(ϕ({a}))∗ | a ∈ X̌
}

.

ψ defines an order embedding of Ẽ into F that preserves existing pseudocomple-
ments and ψ ◦ i = ϕ. $%
Remark 1. Not all closure systems have a transversal of the form Gmin. An
example is the closure system of a complete atom-free Boolean algebra. The
existence of a transversal of the form Gmin does not only keep the size smaller,
but also make the proof easier. However, Theorem 1 can be reformulated for any
transversal T of E . By [GK05–Theorem 1] the closure system

Ẽ := 〈E ∪ {[Gmin \ {a}] | a ∈ Gmin}〉
will be replaced by

Ẽ := 〈E ∪ {[T \ t′′] | t ∈ T }〉.
In the proof of Theorem 1 the crucial step was to prove that Ẽ generates no new
atoms. Now we should prove that all t

′′Ẽ | t ∈ T , are in E . This is the result of
the following lemma. The projection s is now on T . i.e., for A ⊆ G and g ∈ G,

s(A) :=
⋃
g∈A

g′′ ∩ T and s(g) := s({g}) = g′′ ∩ T.

152 L. Kwuida

Lemma 1. Let E be a closure system on G with a transversal T . Let

Ẽ := 〈E ∪ {[T \ t′′] | t ∈ T }〉.

be the closure system generated by E and {[T \ t′′] | t ∈ T }. Then for all t ∈ T ,
t

′′Ẽ = t
′′E .

Proof. For each t ∈ T we have t
′′Ẽ ⊆ t

′′E . Now, if t
′′Ẽ 	 t

′′E then there is an
index set K and an element E ∈ E such that

t
′′Ẽ = E ∩

⋂
k∈K

[T \ t
′′E
k]

and t
′′E \ t

′′Ẽ contains an element a. On one hand we have

t ∈ t
′′Ẽ =⇒ t ∈ E and t ∈ [T \ t

′′E
k] for all k ∈ K

=⇒ t
′′E ⊆ E and s(t) ⊆ [T \ t

′′E
k] for all k ∈ K

=⇒ t
′′E ⊆ E and t

′′E ∩ T ⊆ T \ t
′′E
k for all k ∈ K

=⇒ t
′′E ⊆ E and t

′′E ∩ T ∩ t
′′E
k = Ø for all k ∈ K

=⇒ t
′′E ⊆ E and s(tk) ⊆ [T \ t

′′E] for all k ∈ K,

and on the other hand

a ∈ t
′′E \ t

′′Ẽ =⇒ a
′′E ⊆ t

′′E and ∃k0 ∈ K such that a /∈ [T \ t
′′E
k0

]

=⇒ s(a) ⊆ s(t) and s(a)
⊆ T \ t
′′E
k0

for some k0 ∈ K

=⇒ s(a) ⊆ s(t) and ∃k1 ∈ K such that tk1 ∈ s(a) \ (T \ t
′′E
k0

)

=⇒ s(a) ⊆ s(t) and tk1 ∈ a
′′E ∩ t

′′E
k0

=⇒ s(a) ⊆ s(t) and s(tk1) ⊆ s(a) ∩ s(tk0)
=⇒ s(tk1) ⊆ s(a) ⊆ s(t).

As k1 belongs to K, it follows that s(tk1) ⊆ [T \t′′E]. This leads to a contradiction
since

s(tk1) ⊆ [T \ t
′′E] and s(tk1) ⊆ s(t) =⇒ tk1 ∈ Ø = [T \ t

′′E] ∩ t
′′E ,

and completes the proof of the lemma. $%

Since each closure system has a transversal we obtain the general version of
Theorem 1.

Theorem 2. Each closure system has a coarsest pseudocomplemented refine-
ment.

Proof. By Lemma 1, the projections are equal. The rest of the proof is similar
to that of Theorem 1 [(i)-(iii)], replacing Gmin by T and {a} by a′′. $%

A Note on Negation: A PCS-Completion of Semilattices 153

From the one-to-one correspondence between closure systems and concept lat-
tices we can rewrite Theorem 2 together with (iv) of Theorem 1 as follows:

Theorem 3. Each concept lattice L can be
∧

-embedded into a smallest pseudo-
complemented concept lattice L̃.

In Theorem 3, L̃ is smallest in the sense that each
∧

-embedding of L into a pseu-
docomplemented concept lattice L1 that preserves existing pseudocomplements
can be extended to an order embedding of L̃ into L1 that preserves pseudocom-
plements. An immediate consequence is the following corollary for finite semi-
lattices with 1 (see Section 2). We say that a pcs S1 contains a semilattice S
if S is a subsemilattice of S1 and the elements of S having pseudocomplements
in S keep their pseudocomplements in S1. We will call a map between pcs that
preserves pseudocomplements a ∗-map.

Corollary 1. For each finite semilattice S with 1, there is a pcs S̃ containing
S such that S̃ ∗-order-embeds into every pcs containing S.

The pcs S̃ from Corollary 1 is, up to pcs-isomorphism, unique. In term of car-
dinality, it is also the smallest pcs containing S. We call it the pcs-completion
of S.

Definition 1. By pcs-completion of a semilattice S, we mean a pcs S̃ containing
S that ∗-order-embeds into any pcs containing S.

From Section 2 we can always replace a finite semilattice S without 1 by S ⊕ 1.
Whether each semilattice has a pcs-completion is still open. Theorem 2 says that
each finite or complete semilattice has a pcs-completion. (See also Remark 3.)

4 An Extensional Negation on Concept Lattices

4.1 Construction

We now apply the results to construct an extensional negation on concept lat-
tices. This applies to atomic concept lattices (i.e., when the closure system of
extents is atomic). In order to have the arrow-relations4 at hand we shall also
assume that the concept lattice is doubly founded. These conditions include all
finite lattices. Moreover we suppose w.l.o.g. that the formal context (G, M, I) is
clarified with M ′ = Ø.

Let B(G, M, I) be a concept lattice and E the closure system of extents. We
proved in [GK05–Prop. 10] that if [Gmin \ {a}] is an extent and a ∈ Gmin, then
there is an attribute ma ∈ M such that m′

a = [Gmin \ {a}]. Therefore generating
4 In a context (G, M, I), for g, h ∈ G and m,n ∈ M the arrow-relations are defined

by:
g ↙ m : ⇐⇒ m /∈ g′ and g′ 	 h′ implies m ∈ h′,
g ↗ m : ⇐⇒ g /∈ m′ and m′ 	 n′ implies g ∈ n′,
g ↗↙ m : ⇐⇒ g ↙ m and g ↗ m.

154 L. Kwuida

a new closure system with [Gmin \ {a}], a ∈ Gmin is equivalent to adding new
attributes ma in the context whenever [Gmin \ {a}] is not an extent. These at-
tributes have exactly [Gmin\{a}] as extent. Theorem 2 says that the so obtained
lattice is pseudocomplemented and has (B(G, M, I),∧) as subsemilattice. The
following result is the arrow characterization of the pseudocomplementation.

Theorem 4 ([GK05]). Let B(G, M, I) be atomic and doubly founded. Then
B(G, M, I) is pseudocomplemented if and only if the following condition holds
for all g ∈ G:

If g ↙ n for all n /∈ g′ and g ↗ m then

– if h ↙ m then g′ = h′, and
– if g ↗ n then n′ = m′.

The arrow configuration described in Theorem 4 is displayed in Figure 1. The
subcontext (Gmin, {ma | a ∈ Gmin}) is a contranominal context, with exactly
one double arrow in each row and column and crosses elsewhere. The rows of
the atoms Gmin contain no empty cells (arrowless non-incidences) and no upward
arrows except for the double arrows mentioned. The columns corresponding to
the attributes {ma | a ∈ Gmin} have no other downward arrows. What Theo-
rem 4 expresses is that the configuration displayed in Figure 1 is characteristic
for atomic doubly founded p-algebras.

↙

�= ↙ ↗Gmin

{ma | a ∈ Gmin}

Fig. 1. Arrow configuration in the context of an atomic pseudocomplemented concept
lattice

In practice what one has to do is to first enter the arrow relations and check
if one can obtain the configuration of Figure 1. If this is not the case one should
add new attributes ma for the atoms a whose inverse images are not extents and
compute the new concept lattice.

4.2 Some Examples

Example 1. This example demonstrates this construction in details for the con-
text of Figure 2. This context does not have the configuration presented in

A Note on Negation: A PCS-Completion of Semilattices 155

fe
m

al
e

ju
ve

ni
le

ad
ul

t
m

al
e

girl × × ↗↙↗↙
woman × ↗↙ × ↗↙
boy ↗↙ × ↗↙×
man ↗↙↗↙ × ×

female

juvenile

male
adult

girl
woman

man

boy

Fig. 2. A context and its concept lattice

Figure 1. Since each concept (apart from top and bottom) of this context has
exactly one label we will use its label to name it. The atoms are the concepts
girl, woman, boy and man. None of them has a pseudocomplement. Therefore
we should add 4 attributes mgirl, mwoman, mboy and mman. Their extents are

m′
girl = {woman, boy, man},

m′
woman = {girl, boy, man},
m′

boy = {girl, woman, man}, and
m′

man = {girl, woman, boy}.

The newly generated context and its concept lattice is presented in Figure 3.
It has the configuration presented in Figure 1. Its concept lattice is pseudo-
complemented. The attribute ma can be interpreted as not − a for
a ∈ {girl, woman, boy, man}.

fe
m

al
e

ju
ve

ni
le

ad
ul

t
m

al
e

m
g
ir

l

m
w

o
m

a
n

m
b
o
y

m
m

a
n

girl × × ↙↙↗↙× × ×
woman × ↙× ↙× ↗↙× ×
boy ↙× ↙× × × ↗↙×
man ↙↙× × × × × ↗↙

mman

female

mboy

juvenile

mgirl

male

mwoman

adult

girl
woman

man

boy

Fig. 3. The context generated from Figure 2 and its concept lattice

In addition to the attribute concepts generated as pseudocomplements of
atoms we get two other concepts. The structure obtained is a Boolean algebra.
The embedding i in this case is only ∧-preserving. The lattice M4 generates the
same algebra.

Example 2. The second example presents the pcs-completion of the reduced con-
text of the interordinal scale I4.

156 L. Kwuida

I4-reduced ≤3 ≥2 ≤1 ≤2 ≥3 ≥4
4 ↗↙ × ↙ ↙ × ×
1 × ↗↙ × × ↙ ↙
2 × × ↗↙ × ↗↙ ↙
3 × × ↙ ↗↙ × ↗↙

I4-pcs ≤3 ≥2 m2 m3 ≤1 ≤2 ≥3 ≥4
4 ↗↙ × × × ↙ ↙ × ×
1 × ↗↙ × × × × ↙ ↙
2 × × ↗↙ × ↙ × ↙ ↙
3 × × × ↗↙ ↙ ↙ × ↙

Fig. 4. The reduced context of the interordinal scale I4 and its pcs-completion context

The atoms are the extents {1}, {4}, {2} and {3}. The first two have pseudo-
complements. Then we need two new attributes for the remaining ones: m2 and
m3. Their extents are

m′
2 = {1, 3, 4} and m′

3 = {1, 2, 4}.

The context and the concept lattice we obtained are in Figure 5.

≤1

≤2

≤3

≥4

≥3

≥2

1 2 3 4

≤ 3

≤ 2

≤ 1 ≥ 4

≥ 2

≥ 3

m2m3

1

2

4

3

Fig. 5. The concept lattice of the reduced context of I4 and its pcs-completion

4.3 Lessons Learnt

Imagine you are working within a context K. This context can be understood as
the universe of discourse. You want the negation of a concept X to be the most
general concept contradicting X. Some concepts might have a negation within
this context, and other concepts might not. If you want all of them to have
a negation, you will generate a context K̃ associated to the closure system Ẽ .
Informally you decide to ”make your world beautiful” by enlarging5 the universe
of discourse, as you realize that it was not large enough to discuss negation inside.
Something important to be pointed out here, is that this generation is a step by
step process. In the case only few concepts are of interest, then you can generate
a subcontext of K̃ instead of K̃. For example if you want a pseudocomplement
of a special concept X (which does not have a pseudocomplement in the initial
context), all you have to do is to generate a new closure system from the closure
system of extents with the subsets [Gmin \ {a}], a ∈ Gmin and a ∈ ext(X).
5 The idea of enlarging the context was also discussed in [GW99a], [KTS04] and

[Kw04].

A Note on Negation: A PCS-Completion of Semilattices 157

Remark 2. The process described in this paper can be applied to get dual pcs
from finite ∨-semilattices. Then if you want the negation of a concept X to be
the least general concept satisfying together with X the principle of excluded
middle you can perform the same construction on the closure system of intents.
In this case you enlarge the set of objects. We can iterate to construct pcs, then
dual pcs, and pcs again, and so on. Does this process converge? If it does, then
you can encode a negation with a double pseudocomplementation, a pair (∗,+)
such that ∗ is a pseudocomplementation and + a dual pseudocomplementation.
The conjecture is that

this iteration process converges to a double p-algebra.

Note that if the atoms are exactly the join irreducible elements, we need perform
only the first step since it generates a Boolean algebra. This was the case for
examples 1 and 2 above. In general the price to pay would be the destruction of
the join and the meet operations. However you would get an order embedding
preserving existing pseudo- and dual pseudocomplements. For this purpose, it
would be nice to get an arrow-like characterization of a double pseudocomple-
mentation.

K 2 7 8 9 10 16 17 18 19
2 × × ↗↙× × × × × ×
3 ↙× × ↙ × × × ↗↙ ↗↙
4 ↗↙× ↗× × × × × ×
5 ↙↙× × ↗↙ × × × ×
6 × ↗↙ ↗ × × × ×
10 ↗↙↗ × × × ↗ ↗
13 × ↗↙ × ↗↙
14 ↗↙ × ↗↙ ×
15 ↗↙ ↗↙ × ×

1

2

3 4 5

6

7 8 9

10 11

12 13 14 15

16 17 18 19

20

Fig. 6. A lattice and its reduced context

As an illustration consider the lattice in Figure 6. The atoms 2 and 5 have
pseudocomplements, but 3 not. Therefore we need add one attribute m3 with
extent

m′
3 := [Gmin \ {3}] = {4, 6, 13, 14, 15}.

The context K-pcs in Figure 7 is obtained as the pcs-completion of K (Figure 6).
Its concept lattice is obtained by adding one coatom (called m3) as the join of
the concepts 18 and 19. It is not dual pseudocomplemented. The other coatoms
(the concepts 16 and 17) have no dual pseudocomplements. Now working on the
closure system of extents we need add two objects g16 and g17 with

g′16 := {m3, 17, 18, 19} and g′17 := {m3, 16, 18, 19}.

158 L. Kwuida

K-pcs 8 10 m3 2 7 9 16 17 18 19
2 ↗↙ × × × × × × × × ×
5 × ↗↙ × ↙↙× × × × ×
3 × × ↗↙ ↙× ↙ × × ↙ ↙
4 ↗ × × ↗↙× × × × × ×
6 × ↗ × ↗↙ × × × ×
10 ↗ × ↗ ↗↙ × ×
13 × × ↗↙ × ↗↙
14 × ↗↙ × ↗↙ ×
15 × ↗↙ ↗↙ × ×

K-pcs-dpcs 8 10 m3 2 7 9 16 17 18 19
2 ↗↙ × × × × × × × × ×
5 × ↗↙ × ↙↙× × × × ×
3 × × ↗↙ ↙× ↙ × × ↙ ↙
4 ↗ × × ↗↙× × × × × ×
6 × ↗ × ↗↙ × × × ×
10 ↗ × ↗ ↗↙ × ×
13 × × ↗ × ↗↙
14 × ↗ × ↗↙ ×
15 × ↗ ↗ × ×
g16 × ↗↙ × × ×
g17 × × ↗↙ × ×

Fig. 7. Context of the pcs-completion of the context in Figure 6 (left), and its dual
pcs-completion (right)

1

2

3 4 5

6

7 8 9

10 11

12 13 14 15

16 17 18 19

20

21

1

2

3

4

5

6

7

8

9

10
11

12

13 1415

16 1718 19

20

21

2223

Fig. 8. The pcs-completion (left) of the lattice in Figure 6 and its dual pcs-completion
(right)

The context K-pcs-dpcs (Figure 7) is obtained from K-pcs as dual pcs-completion.
Its concept lattice (Figure 8) is pseudocomplemented and dual pseudocomple-
mented.

Remark 3. The main result describes the pcs-completion of concept (semi-)
lattices. To get the arrow characterization in [GK05] we needed the atomic-
ity and the double foundedness. Theorem 2 holds for all concept lattices. If we
omit the finiteness/completeness condition in Corollary 1, there is no guaranty
that the so constructed pcs is the smallest pcs containing the initial semilattice.
Is it possible to carry such constructions from semilattices to pcs without re-
quiring the completeness? Consider as illustration the semilattice L := S ⊕ Q,
where S is the 4 element ∧-semilattice with 3 atoms and Q the poset of rational

A Note on Negation: A PCS-Completion of Semilattices 159

numbers. Note that L is neither a pcs nor a nearlattice. The pcs-completion of S
is the Boolean algebra B3 (with 3 atoms). Denote by B̄3 the semilattice obtained
from B3 by removing the top element. The semilattice L̃ := B̄3 ⊕ Q ⊕ 1 is the
pcs-completion of L. It is not a complete lattice and not even doubly founded.

5 Conclusion

As mentioned in [GK05] the arrow configuration of Figure 1 is a useful visual
tool for checking whether an atomic doubly founded concept lattice is pseu-
docomplemented. This could be used not only to construct more examples of
pseudocomplemented lattices, but to give a natural construction extending a
finite semilattice to a pseudocomplemented one.

References

[BD74] R.Balbes & P.Dwinger. Distributive lattices. University of Missouri Press.
(1974).

[Bo54] G.Boole. An investigation of the laws of thought on which are founded the
mathematical theories of logic and probabilities. Macmillan 1854. Reprinted
by Dover Publ. New York (1958).

[Ci04] J. C̄ırulis. Knowledge representation systems and skew nearlattices. Contri-
butions to General Algebra 14, 43-52 (2004).

[CG00] I.Chajda & K.Glazek. A basic course on general algebra. Zielona Góra:
Technical University Press. (2000).

[CM93] C.Chameni Nembua & B. Monjardet. Finite pseudocomplemented lattices
and “permutoedre”. Discrete Math. 111, No.1-3, 105-112 (1993).

[Du97] I.Düntsch. A logic for rough sets.Theor. Comput. Sci. 179, No.1-2, 427-436
(1997).

[DG00] I.Düntsch & G.Gediga. Rough set data analysis. In Encyclopedia of Com-
puter Science and Technology vol. 43, Marcel Dekker, 281-301 (2000).

[Fr62] O.Frink. Pseudo-complements in semi-lattices. Duke Math. J. 29, 505-514
(1962).

[GK05] B.Ganter & L.Kwuida. Which concept lattices are pseudocomplemented?
LNAI 3403, 408-416 (2005).

[GW99] B.Ganter & R.Wille. Formal Concept Analysis – Mathematical Foundations.
Springer (1999).

[GW99a] B. Ganter & R.Wille. Contextual Attribute Logic. Springer LNAI 1640,
377-388 (1999).

[Gr71] G.Grätzer. Lattice Theory. First concepts and distributive lattices.
W.H.Freeman and Company (1971).

[GS04] G.Grätzer & E. T. Schmidt. Finite lattices and congruences. A survey. Al-
gebra Universalis 52, 241-278 (2004).

[Ho89] L.R.Horn. A natural history of negation. University of Chicago Press.
(1989).

[Ka80] T.Katrinak. P-algebras. Contributions to lattice theory, Szeged/Hung. 1980,
Colloq. Math. Soc. Janos Bolyai 33, 549-573 (1983).

[Kw04] L.Kwuida. Dicomplemented lattices. A contextual generalization of Boolean
algebras. Dissertation, TU Dresden. Shaker Verlag. (2004).

160 L. Kwuida

[KTS04] L.Kwuida & A.Tepavčević & B. Šešelja. Negation in Contextual Logic.
Springer LNAI 3127, 227-241 (2004).

[KPR04] L.Kwuida & C.Pech & H.Reppe. Generalizations of Boolean algebras. An
attribute exploration. Preprint MATH-AL-02-2004, TU Dresden (2004).

[So98] V. Sofronie-Stokkermans. Representation theorems and automated theorem
proving in certain classes of non-classical logics. Proceedings of the ECAI-98
workshop on many-valued logic for AI applications.

[Wi00] R.Wille. Boolean Concept Logic. Springer LNAI 1867, 317-331 (2000).

Towards a Generalisation of Formal Concept
Analysis for Data Mining Purposes

Francisco J. Valverde-Albacete and Carmen Peláez-Moreno�

Dpto. de Teoŕıa de la Señal y de las Comunicaciones,
Universidad Carlos III de Madrid,

Avda. de la Universidad, 30. Leganés 28911, Spain
{fva, carmen}@tsc.uc3m.es

Abstract. In this paper we justify the need for a generalisation of For-
mal Concept Analysis for the purpose of data mining and begin the
synthesis of such theory. For that purpose, we first review semirings and
semimodules over semirings as the appropriate objects to use in abstract-
ing the Boolean algebra and the notion of extents and intents, respec-
tively. We later bring to bear powerful theorems developed in the field
of linear algebra over idempotent semimodules to try to build a Funda-
mental Theorem for K-Formal Concept Analysis, where K is a type of
idempotent semiring. Finally, we try to put Formal Concept Analysis in
new perspective by considering it as a concrete instance of the theory
developed.

1 Introduction and Motivation

When using Formal Concept Analysis for data mining purposes on non-binary
data one is always forced to perform scaling procedures [9, 16] which carry a
heuristic component sometimes difficult to justify in terms of the original data
and requiring, in any case, a good deal of experience from the knowledge engi-
neer.

From the point of view of the data it would be interesting to have alternative
domains over which formal contexts could be defined and their lattices later
built. There exist at least one such domains, the fuzzy domain tackled in [4, 2].
Unfortunately, this domain presents operative problems when trying to build the
concept lattices associated to them, mainly the fact that it is unclear whether
the intuitions and tools developed in the standard case [9] can be translated to
such undertaking. In particular, lattice building algorithms become much more
demanding computationally speaking.

It would be much more interesting to develop an abstract theory of concept
lattices sharing as many mathematical and algorithmic results and intuitions as

� This work has been partially supported by two grants for “Estancias de Tecnólogos
Españoles en el International Computer Science Institute” of the Spanish Ministry
of Industry and a Spanish Government-Comisión Interministerial de Ciencia y Tec-
noloǵıa project TEC2005-04264/TCM.

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 161–176, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

162 F.J. Valverde-Albacete and C. Peláez-Moreno

possible with the concrete instance of Formal Concept Analysis, but somehow
parameterized in the basic domain over which incidences could be defined.

For a proper generalisation, such an abstract theory should cater for the
needs of Galois connection-induced concept lattices as well as the less understood
adjunction-induced neighbourhood lattices [12]. Of course, such a theory should
also encompass Boolean-defined incidences and their induced lattices, as we know
them, as special cases, perhaps with outstanding or representative properties.

On the one hand, for the general enterprise of data mining any advance in
this direction would be enlightening for a number of problems nowadays tackled
with tools from conventional algebra. On the other hand, for the enterprise
of coordinatising logical thought on the basis of an “algebra of concepts” as
sketched in ([16], cfr. 4) this would broaden the range of tools at our disposal.

In a flight of fancy, let us suppose that we could have a “linear algebra” over
extents and intents, that is, a conceptual “geometry”. Then we could translate
a wealth of methods and intuitions from “vector spaces” into Formal Concept
Analysis with the appropriate caveats. For instance, if the polars could actually
be represented by linear operators as matrices I, It it would be feasible to solve
problems like the following:

– Problem 1. find all the sets of objects closing to a particular intent, B ∈
2p×1”, that is, solve It · x = B for x ∈ 2n×1.
Note that standard Formal Concept Analysis asserts that I · B is one such
set, specifically its extent, but we might also be interested in describing the
variety without resorting to the enumeration of all candidates, for example
to apply the alternative recipe to reduce contexts of [9](§1.5.1.2).

– Problem 2. given a set of objects A1 ∈ 2n×1 find all other sets A2 ∈ 2n×1

that map to its intent, that is, those such that It · A1 = It · A2.
Note that this problem amounts to finding the quotient class of A1 under It.
In data mining terms this amounts to finding those input patterns that map
to the same output pattern, i.e. classes of output-undistinguishable input
patterns.

– Problem 3. find the quotient space of input patterns, 2n×1/It

This amounts to solving exhaustively problem 2 without finding first “rep-
resentatives” like A1 to guide it.

We could also think of dual problems involving the space of output patterns,
produced by the transpose of the initial incidence.

The idea suggests itself that in this case the “geometric” properties may
depend only secondarily on the Boolean domain and primarily on the “vector
space” character of such sets. In which case, changing the domain in which sets
and incidences take value would produce a flavour of “geometry”, each different
from the vanilla, standard Boolean flavour. Hence we put forward the following:

Hypothesis 1. Standard Formal Concept Analysis is a particular instance of
K-valued Formal Concept Analysis in which incidences and sets of objects and
attributes take values in a suitable algebraic structure, K.

Towards a Generalisation of Formal Concept Analysis 163

Consequently, in the rest of the paper we first introduce the mathematical
notions leading to a suitable algebraic structure K and “modules over K” that
can replace “modules over fields” (also “vector spaces”) paying special attention
to adjunctions and Galois connections between ordered sets. Later in section 3 we
demonstrate a basic theorem for K-valued Formal Concept Analysis and consider
standard Formal Concept Analysis in as an instance of such construction. We
conclude with a summary of contributions.

2 Mathematical Preliminaries

2.1 Residuation Theory, Adjunctions and Galois Connections

Lower semicontinuous functions are (isotone) maps commuting with joins in
partial orders, and upper semicontinuous functions are (isotone) maps commut-
ing with meets in partial orders [1]. Given two partial orders 〈P,≤〉 and 〈Q,≤〉,
we have:

– A map f : P → Q is residuated if inverse images of principal (order) ideals
of Q under f are again principal ideals. Its residual map or simply residual,
f# : Q → P is:

f#(q) = max{ p ∈ P | f(p) ≤ q }

– A map g : Q → P is dually residuated if the inverse images of principal dual
(order) ideals under g are again dual ideals. Its dual residual map or simply
dual residual, g� : P → Q is:

g�(p) = min{ q ∈ Q | p ≤ g(q) }

Residuated maps are lower semicontinuous, while dually residuated maps are
upper semicontinuous ([1], Th. 4. 50).

This abundance of concepts is fortunately simplified by a well-known theorem
stating that residual maps are dually residuated, while dual residual maps are
residuated, hence we may maintain only the two notions of residuated maps and
their residuals. In fact, the two notions are so intertwined that we give a name to
them: An adjoint pair of maps (λ, ρ) is a pair (λ : P → Q, ρ : Q → P) between
two quasi ordered sets so that ∀p ∈ P, q ∈ Q,

p ≤ ρ(q) ⇐⇒ λ(p) ≤ q equivalently p ≤ ρ(λ(p)) & λ(ρ(q)) ≤ q

If the order relation is partial the lower or left adjoint, λ is uniquely determined
by its right or upper adjoint, ρ, and conversely ([8], §1.1). The characterization
theorem for adjoint maps ([8], p. 7) states that (λ, ρ) are adjoint if and only if,
λ is residuated with residual ρ, or equivalently, ρ is dually residuated with λ its
dual residual. Hence adjunctions admit the following forms, using the following
notation (λ, ρ) : P � Q to make the sets evident:

(λ, ρ) : P � Q ⇐⇒ (λ, λ#) : P � Q ⇐⇒ (ρ�, ρ) : P � Q

164 F.J. Valverde-Albacete and C. Peláez-Moreno

For Formal Concept Analysis, the more interesting notion of Galois connection,
a contravariant pair of maps between the orders P and Q, reads:

p ≤ ρ(q) ⇐⇒ q ≤ λ(p) equivalently p ≤ ρ(λ(p)) & q ≤ λ(ρ(q))

A Galois connection can be equivalently described as an adjunction with the
second order dualised:

(λ, ρ) : P�Q
Δ= (λ, ρ) : P�Qd

We introduce the diagram to the left of figure 1 as the pattern that carries the
structures described in ([8], §1.2):

– A closure system, Qρ, the closure range of the right adjoint (see below).
– An interior system, Pλ, the kernel range of the left adjoint (see below).
– A closure function (also “closure operator”, [12, 6]) γ = ρ ◦ λ, from P to the

closure range Qρ, with adjoint inclusion map ↪→.
– A kernel function (also “interior operator”, [12]) κ = λ ◦ ρ, from Q to the

kernel range Pλ, with adjoint inclusion map ↪→.

However, due to the dualisation of the second set in Galois connections ranges
are closures systems and both compositions closure operators (we write κ∗ for
the new closure operator), resulting in the well-known dual isomorphism between
closure ranges, illustrated to the right of figure 1. Recall that a perfect adjunction
is an adjunction where the diagram collapses to an order isomorphism between
P and Q, or equivalently, to an isomorphism between P and Q. Dually, for
a perfect Galois connection, the diagram collapses to a single dual (antitone)
order isomorphism between P and Q. Prerequisites for this to happen are that
the closure maps be identities, γ(p) = p, κ∗(q) = q ([8], p. 12).

P
λ

��

γ

��

λ

��������������������� Q
ρ��

↪→

��

ρ

���������������������

Qρ = P
λ̃

��

↪→

��

Pλ = Q
ρ̃��

κ

�� P
λ

��

γ

��

λ

����������������������� Qd
ρ��

↪→

��

ρ

		���������������������

Qdρ = P
λ̃

��

↪→

��

Pλ = Q = Qdρ̃��

κ∗

��

Fig. 1. Diagrams visually depicting the maps and structures involved in the adjunction
(λ, ρ) : P�Q (left) and Galois connection (λ, ρ)P�Q (right) between two partially
ordered sets (adapted from [8])

2.2 Idempotent Semirings

This section aims at presenting the algebra that abstracts the features of the
Boolean algebra which are adequate in our belief to generalise Formal Concept
Analysis.

Towards a Generalisation of Formal Concept Analysis 165

A semiring K = 〈K,⊕,⊗, ε, e〉 is a structure where the additive structure,
〈K,⊕, ε〉, is a commutative monoid and the multiplicative one, 〈K\{ε},⊗, e〉, a
monoid whose multiplication distributes over addition from right and left:

λ ⊗ (μ⊕ ν) = λ ⊗ μ⊕ λ ⊗ ν (μ ⊕ ν) ⊗ λ = (μ ⊗ λ) ⊕ (ν ⊗ λ)

and whose neutral element is absorbing for ⊗, ε ⊗ x = ε, ∀x ∈ K. On any
semiring K left and right multiplications can be defined:

La : K → K Ra : K → K (1)
b �→ La(b) = ab b �→ Ra(b) = ba

Hence a commutative semiring is a semiring whose multiplicative structure is
commutative, and a semifield one whose multiplicative structure is a group.
Thus, compared to a ring, a semiring crucially lacks additive inverses.

An idempotent semiring K is a semiring whose addition is idempotent:

∀a ∈ K, a⊕ a = a

All idempotent commutative monoids (K,⊕, ε) are endowed with a natural order
∀a, b ∈ K, a ≤ b ⇐⇒ a ⊕ b = b , which turns them into join-semilattices with
least upper bound defined as a ∨ b = a⊕ b. Moreover, for the additive structure
of semiring K the neutral element is the infimum for this natural order, εK = ⊥.

An idempotent semiring K is complete, if it is complete as a naturally ordered
set and left (La) and right (Ra) multiplications are lower semicontinuous, that
is, residuated.

Therefore, complete idempotent semirings, as sup-semilattices with infimum
are automatically complete lattices [6] with join (∨, max or sup) and meet (∧,
min or inf) ruled by the equations:

∀a, b ∈ K, a ≤ b ⇐⇒ a ∨ b = b ⇐⇒ a ∧ b = a (2)

Example 2. 1. The Boolean semiring B = 〈B,∨,∧, 0, 1 〉, with B = {0, 1} , is
complete, idempotent and commutative.

2. The completed Maxplus semiring Rmax,+ = 〈R ∪ {±∞}, max, +,−∞, 0 〉 ,
is a complete, idempotent semifield when defining −∞ + ∞ = −∞, that
εK ⊗"K = εK for K ≡ Rmax,+

3. The completed Minplus semiring Rmin,+ = 〈R ∪ {±∞}, min, +,∞, 0 〉 is a
complete, idempotent semifield with a similar completion to that of ex. 2 with
∞+ (−∞) = ∞, that is εK ⊗"K = εK for K ≡ Rmin,+.

The “values” populating a semiring are essentially positive or zero, hence we
cannot expect to find “additive inverses” for them. The situation is less radical
with multiplications in case the semiring exhibits the adequate order proper-
ties, as in idempotent semirings, because we may resort to residuation theory
[3, 1] to try and invert such operations. But in that case we have the additional
complexity of tracking the side of the multiplication, which applies particularly
in case we want to “invert” the left and right multiplications of eqs. 1, in which
case the residuals are:

166 F.J. Valverde-Albacete and C. Peláez-Moreno

L#
a : K → K R#

b : K → K (3)

L#
a (c) = ∨{λ ∈ K | ab ≤ c } = a\c R#

b (c) = ∨{λ ∈ K | ab ≤ c } = c/b

where the notation a\b reads “a under b” and b/a reads “b over a”, with:

ab ≤ c ⇐⇒ a ≤ c/b ⇐⇒ b ≤ a\c

Finally, note that if K is commutative, then a\b = b/a.

Example 3. 1. For the boolean semiring, a\b = b/a = a → b, where → is the
logical conditional, a �→ 0/a is the negation and b �→ b/1 the identity.

2. For generic semiring K = 〈K,⊕,⊗, ε, e〉, the expression of a vector x =
[xj] ∈ Kp×1 multiplying a matrix R = [rij] ∈ Kn×p is, (R·x)i = ⊕j(rij⊗xj).
Similarly, let A, D ∈ Km×n, B ∈ Km×p and C ∈ Kn×p, then the residuals
for vectors and matrices over an idempotent semimodule may be obtained as
([1], p. 199):

C = A\B D = B/C (4)

cij =
m∧

k=1

aki\bkj dij =
p∧

k=1

bik/cjk

2.3 Semimodules over Idempotent Semirings

A semimodule over a semiring is defined in a similar way to a module over a
ring, but allowances have to be made as to the sides of the multiplication1.

A left K-semimodule[14, 13], X = 〈X,⊕, εX〉, is an additive commutative mon-
oid endowed with a map (λ, x) �→ λ · x such that for all λ, μ ∈ K, x, z ∈ X ,
and following the convention of dropping the symbol for the scalar action and
multiplication for the semiring:

(λμ)x = λ(μx) εKx = εX (5)
λ(x ⊕ z) = λx ⊕ λz eKx = x

The definition of a right K-semimodule, Y, follows the same pattern with the
help of a right action, (λ, y) �→ y · λ and similar axioms to those of 5. A
(K,S)-semimodule is a set M endowed with left K-semimodule and a right S-
semimodule structures, and a (K,S)-bisemimodule a (K,S)-semimodule such
that the left and right multiplications commute. For a left K-semimodule, X ,
the left and right multiplications are defined as:

LK
λ : X → X RX

v : K → X (6)

x �→ LK
λ (x) = λx λ �→ RX

x (λ) = λx

And similarly, for a right K-semimodule. If X , Z are left semimodules a mor-
phism of left semimodules or left linear map F : X → Z is a map that preserves
finite sums and commutes with the action: F (λv ⊕ μw) = λF (v) ⊕ μF (w), and
similarly, mutatis mutandis for right morphisms of right semimodules.
1 We are following essentially the notation of [5].

Towards a Generalisation of Formal Concept Analysis 167

Idempotency and natural order in Semimodules. A K-semimodule M
over an idempotent semiring K inherits the idempotent law, v ⊕ v = v, ∀v ∈ M ,
which induces a natural order on the semimodule by v ≤ w ⇐⇒ v ⊕ w =
w, ∀v, w ∈ M whereby it becomes a sup-semilattice, with εM the minimum.

When K is a complete idempotent semiring, a left K-semimodule, M is com-
plete if it is complete as a naturally ordered set and its left and right multipli-
cations are (lower semi)continuous. Therefore, if M is complete for the natural
order, it is also a complete lattice, with join and meet operations given by:

v ≤ w ⇐⇒ v ∨ w = w ⇐⇒ v ∧ w = v

All these definitions can be extended naturally to bisemimodules.

Example 4. 1. Each semiring, K, is a left (right) semimodule over itself,
with left (right) action the semiring product. Therefore, it is a (K, K)-
bisemimodule over itself, because both actions commute by associativity. Such
is the case for the Boolean (B,B)-bisemimodule, the Maxplus and the Minplus
bisemimodules. These are all complete and idempotent.

2. The set of matrices Kn×p for finite n and p is a (Kn×n, Kp×p)-bisemimodule
with matrix multiplication-like left and right actions and componentwise ad-
dition. The set of column vectors Kp×1 for finite p is a (Kp×p, K)-bisemim-
odule and the set of row vectors K1×n for finite n a (K, Kn×n)-bisemimodule
with similarly defined operations. If K is idempotent (resp. complete), then all
are idempotent (resp. complete) with the componentwise partial order their
natural order.

Like in the semiring case, because of the natural order structure, the actions of
idempotent semimodules also admit residuation: given a complete, idempotent
left K-semimodule, X , we define for all x, z ∈ X , λ ∈ K:(

LK
λ

)#
: X → X

(
LK

λ

)#
(z) =

∨
{ x ∈ X | λx ≤ z } = λ\z (7)(

RX
x

)#
: X → K

(
RX

x

)#
(z) =

∨
{λ ∈ K | λx ≤ z } = z/x

and likewise for a right semimodule, Y.
There is a remarkable operation that changes the character of a semimod-

ule while at the same time reversing its order by means of residuation: let Y
be a complete, idempotent right K-semimodule, its opposite semimodule is the

complete left K-semimodule Yop = 〈Y,
op
⊕,

op→〉 with the same underlying set Y ,

addition defined by (x, y) �→ x
op
⊕ y = x∧ y where the infimum is for the natural

order of Y, and left action:

K × Y → Y (λ, y) �→ λ
op→ y = y/λ

Consequently, the order of the opposite is the dual of the original order. For the
opposite semimodule the residual definitions are:

168 F.J. Valverde-Albacete and C. Peláez-Moreno

λ
op

\ x =
(
LYop

λ

)#
(x) =

∧
{ y ∈ X | x ≤ y/λ } = x · λ (8)

x
op

/ y =
(
RYop

y

)#
(x) =

∨
{λ ∈ K | x ≤ y/λ } = x\y

Note that we can define mutatis mutandis the opposite semimodule of a left
K-semimodule, X , with right action x

op← λ = λ\x. Also, noticing that the first
residual in eq. 8 is in fact an involution we may conclude that the operation of
finding the opposite of a complete (left, right) K-semimodule is an involution:
(Mop)op = M.

Example 5 (Opposite Boolean semimodule). All semirings, K, taken as
(K,K)-bisemimodules accept an opposite semiring, Kop. In particular, the oppo-

site of the boolean bisemimodule of ex. 1 Bop = 〈B,
op
⊕,

op
-,1,0 〉 is also a com-

plete bisemimodule where addition is the min operation, notated by the meet

v
op
⊕w = v ∧ w. Consequently, its natural order is the inverse of the usual order

for the lattice 2, the additively neutral element is εBop = 1, which is the bottom
for the opposite natural order, the unit is eBop = 0 and the action is the resid-
ual of the original action, λ

op· x = λ\x = x/λ. In fact, the truth table for this
connective is that of the logical conditional λ

op→x = x
op←λ = λ → x.

Semimodules as vector spaces 2. The elements of a semimodule are vectors.
Given a semiring K and a left K-semimodule X , for each finite, nonvoid set W ⊆
X , there exists an homomorphism α : KW → X, f �→

⊕
w∈W f(w)w. Moreover,

α induces a congruence of semimodules ≡α on KW , by f ≡α g ⇐⇒ α(f) =
α(g). Then W is a set of generators or a generating family precisely when α is
surjective, in which case any element x ∈ X can be written as x =

⊕
w∈W λww,

and we will write X = 〈W 〉, that is, X is the span of W . A semimodule is
finitely generated if it has a finite set of generators. For individual vectors, we
say that x ∈ W is dependent (in W) if x =

⊕
w∈W\{ x } λww otherwise, we say

that it is free (in W). The set W is linearly independent if and only if ≡α is
the trivial congruence, that is, when

⊕
w∈W f(w)w =

⊕
w∈W h(w)w ⇐⇒ f =

h, otherwise, W is linearly dependent. Let kerα = { f ∈ KW | α(f) = 0 },
W is weakly linearly independent if and only if kerα = {0}, otherwise it is
weakly linearly dependent. A basis for X (over K) is a linearly-independent set
of generators, and a semimodule generated by a basis is free. By definition, in a
free semimodule X with with basis { xi }i∈I each element x ∈ X can be uniquely
written as x =

⊕
i∈I αixi, with [ai]i∈I the coordinates of x with respect to the

basis. A weakly linearly-independent set of generators for X is a weak basis for X
(over K). The cardinality of a (weak) basis is the (weak) rank of the semimodule.

In such framework, notions in usual vector spaces have to be imported with
care. For instance, the image of a linear map F : X → Z is simply the semimod-
ule ImF = {F (x) | x ∈ X }, but it is in general not free. Similarly, the following
variant definition makes more sense: the (bi)kernel of the linear map F : X → Z,
is the congruence of semimodules KerF = { (x, x′) ∈ X2 | F (x) = F (x′) }.
2 Most of the material in this section is from [14], §17, and [10, 11, 15].

Towards a Generalisation of Formal Concept Analysis 169

Given a free semimodule X with basis { xi }i∈I , for each family { yi }i∈I of ele-
ments of an arbitrary semimodule Y there is a unique morphism of semimodules
F : X → Y such that F (xi) = yi, ∀i ∈ I, namely F

(⊕
i∈I λixi

)
=
⊕

i∈I λiyi

and all the linear maps Lin(X ,Y) are obtained in this way([10], prop. §73; [14],
prop. §17.12). That is, linear maps from free semimodules are characterized by
the images of the elements of a basis.

On the other hand, a semiringK has the linear extension property if for all free,
finitely generated K-semimodules X ,Y, for all finitely generated subsemimodules
Z ⊂ X and for all F ∈ Lin(Z,Y), there exists H ∈ Lin(X ,Y) such that
∀x ∈ X, H(x) = F (x). The importance of this property derives from the fact
that when the linear extension property holds, each linear map between finitely
generated subsemimodules of free semimodules is represented by a matrix. In
particular, when it holds for free, finitely generated (left) semimodules, X and
Y with bases { xi }i∈I and { yj }j∈J , each linear map is characterized by the
n×p-matrix I = (F (xi)j), which sends vector x with coordinates x . (αi)1≤i≤n

to the vector F (x) . ((xI)1, . . . , (xI)p).

Idempotent vector spaces. Idempotent semimodules have additional prop-
erties which make them easier to work with as spaces. Therefore, when K is an
idempotent semiring if a K-semimodule has a (weak) basis, it is unique up to a
rescaling map yi = λxi([15], th. §3.1); and every finitely generatedK-semimodule
has a weak basis ([15], cor. §3.6).

Importantly, the linear property holds in every idempotent semiring which is a
distributive lattice for the natural order ([10], th. §83). This is the case for K = B,
the boolean semiring and K = Rmax. Therefore, in such semimodules, modulo
a choice of bases for X and Y, we may identify X ∼= K1×n and Y ∼= K1×p,
and linear maps to matrix transformations Lin(X ,Y) ∼= Kn×p, I : K1×n →
K1×p, x �→ xI. When passing from left to right semimodules this should read
Kp×1 → Kn×1, y �→ Iy.

Constructing Galois connections in semimodules. Given a complete idem-
potent semiring K, we call predual pair a complete left K-semimodule X together
with a complete right K-semimodule Y equipped with a bracket 〈· | ·〉 : X×Y →
Z to a complete K-bisemimodule Z, such that, for all x ∈ X, y ∈ Y the maps:

Rx : Y → Z Ly : X → Z (9)
y �→ 〈x | y〉 x �→ 〈x | y〉

are respectively left and right linear, and continuous. The most usual choice of
bisemimodule K gives the bilinear forms, but one may also choose Kop.

The following construction is due to Cohen et al. [5]: for a bracket 〈· | ·〉 :
X × Y → Z and an arbitrary element ϕ ∈ Z, which we call the pivot, define the
maps:

il : X → Y il(x) = L#
x (ϕ) =

∨
{ y ∈ Y | 〈x | y〉 ≤ ϕ } (10)

ir : Y → X ir(y) = R#
y (ϕ) =

∨
{ x ∈ X | 〈x | y〉 ≤ ϕ }

170 F.J. Valverde-Albacete and C. Peláez-Moreno

which may be shortened to: il(x) = x− and ir(y) = −y. We have 〈x | y〉 ≤
ϕ ⇐⇒ y ≤ x− ⇐⇒ x ≤ −y, whence il : (X,≤) → (Y,≤d) is residuated with
residual i#l = ir ([5], proof of prop. 24) hence, (il, ir) is an adjunction between X
and Yop or equivalently, a Galois connection between X and Y. Figure 2 depicts
the morphisms and structures induced by such Galois connection. Note that the
closure lattices X = Yir and Y = X il do not agree with their ambient vector
spaces 3 in their joins, but only in their meets!

X
il

��

γ

��

il

�
��

��
��

��
��

��
��

� Y
ir��

↪→

��

ir

����
��

��
��

��
��

��
��

X
ĩl

��

↪→

��

Y
ĩr��

κ∗

��

Fig. 2. The Galois connection (il, ir) : X�Y of the maps induced by (〈· | ·〉, ϕ)

This construction is affected crucially by the choice of a suitable pivot ϕ: in
the operations of residuation only those pairs (x, y) ∈ X × Y are considered
whose degree amounts to at most ϕ. Therefore we can think of the pivot as a
maximum degree of existence allowed for the pairs.

Example 6. 1. (Involutions). The above construction can be used to obtain a
family of different Galois connections between Xm . Km×1 and Ym . K1×m:
define 〈x | y〉 =

⊕
i x(i) ⊗ y(i), which is a predual pair for Z = K ([5], ex.

§21), then ψm
def
= (il, ir)m : Xm � Ym, as above, is a Galois Connection for

each finite m.
2. (Galois connection between free row and column semimodules, [5]

§4.5, adapted) Given a matrix4 R ∈ Kn×p, the free complete semimodules
X = K1×n and Y = Kp×1 form a predual pair for the bracket 〈x | y〉R = xRy.
For such construction, define for a specific ϕ ∈ K:

x−
ϕ =
∨
{ y | xRy ≤ ϕ } = (xR)\ϕ (11)

−
ϕ y =

∨
{ x | xRy ≤ ϕ } = ϕ/(Ry)

hence we have: Y = { (xR)\ϕ | x ∈ Kn×1 } and X = {ϕ/(Ry) | y ∈ K1×p }
whence ψR

def
= (·−ϕ ,−ϕ ·) : K1×n � Kp×1 is a Galois connection.

Furthermore, the notion of a left (resp. right) reflexive, (K, ϕ), semiring is intro-
duced in [5] as a complete idempotent semiring such that (〈· | ·〉 : K×K → K, ϕ)
3 Recall X and Y are both complete lattices as well as free vector spaces.
4 Note that we are avoiding here giving using a generic I for a relation because that

name traditionally denotes unitary matrices.

Towards a Generalisation of Formal Concept Analysis 171

with 〈λ | μ〉 = λμ induces a perfect Galois connection under the above-mentioned
construction, that is for all λ ∈ K, −(λ−) = λ (resp. (−λ)− = λ). For the Boolean
semiring we must choose ϕ = 0B, the bottom in the order. For other semirings
any invertible element may be chosen, e.g. ϕ = eK.

Note that ϕ need not be unique: if (K, ϕ) is right (or left) reflexive, for any
λ ∈ K invertible, (K, ϕλ) is left reflexive (and (K, λϕ) is right reflexive.) Finally,
Cohen et al. [5] prove that idempotent semifields are left and right reflexive.

3 K-Formal Concept Analysis

We model (K-valued) sets of objects, x ∈ X ∼= K1×n, with row vectors in a
left K-semimodule and sets of attributes, y ∈ Y ∼= Kp×1, with column vectors
in a right K-semimodule, as generalisations of characteristic functions in the
powersets 2G,2M , respectively5.

Definition 7 (K-valued formal context). Given two finite set of objects G
and attributes M , where |G| = n and |M | = p, an idempotent semiring, K, and
a K-valued incidence between them, R ∈ Kn×p, where R(g, m) = λ reads as
“object g has attribute m in degree λ” and dually “attribute m is manifested in
object g to degree λ”, the triple (G, M, R)K is called a K-valued formal context.

Clearly the context can be represented as a K-valued table with the value
R(g, m) = λ in the crossing of row g with column m. Also, we are forced to
admit that objects are isomorphic to elements of the space K1×p, that is rows of
R or object descriptions, vectors of as many values as attributes and attributes
are isomorphic to elements of the space Kn×1, columns of R or attribute descrip-
tions.

Proposition 1. Let (K, ϕ) be a reflexive, idempotent semiring. For a K-valued
formal context (G, M, R)K, with finite |G| = n and |M | = p, there is at least one
Galois connection between the power-sets of K-valued sets of objects K1×n and
attributes Kp×1.

Proof. Recall that X = K1×n is a left semimodule and Y = Kp×1 a right semim-
odule, whence X op and Yop are right and left semimodules, respectively, whose
multiplications are R

op← x = xt\R and y
op→ R = R/yt. We build a new bracket

over the opposite semiring Kop as given by 〈y | x〉R = y
op→ R

op← x = yt\R/xt

which is formally identical to the bracket over a relation in example 2. Therefore,
by the construction of section 2.36 the maps:

y−
ϕ =

op∨
{ x ∈ X | 〈y | x〉R

op

≤ ϕ } −
ϕ x =

op∨
{ y ∈ Y | 〈y | x〉R

op

≤ ϕ }

form a Galois connection (·−ϕ ,−ϕ ·) : Yop � X op. As requested in that section 2.3,
for B we must choose ϕ = εB = 0, but we are operating now in the opposite
5 This section follows in the tracks of §1.1 of [9].
6 And the demonstration of proposition §24 of [5].

172 F.J. Valverde-Albacete and C. Peláez-Moreno

semiring Bop, hence we choose the bottom thereof, ϕ = εBop = 1. For any other
semiring we may choose ϕ = eK. $%

Note that in an idempotent semifield we are guaranteed enough ϕ to build as
many connections: choose any invertible λ ∈ K, so that ϕ = λ ⊗ eK.

Definition 8 (ϕ-polars). Given a reflexive, idempotent semiring (K, ϕ) and a
K-valued formal context (G, M, R)K satisfying the conditions of proposition 1,
we call ϕ-polars the dually adjoint maps of the corresponding Galois connection

y−
ϕ =

op∨
{ x ∈ X | 〈y | x〉R

op

≤ ϕ } =
∧
{ x ∈ X | 〈y | x〉R≥ϕ } =

(
y

op→ R
) op

\ ϕ

(12)

−
ϕ x =

op∨
{ y ∈ Y | 〈y | x〉R

op

≤ ϕ } =
∧
{ y ∈ Y | 〈y | x〉R≥ϕ } = ϕ

op

/
(
R

op← x
)

However, in this dualised construction the pivot describes a minimum degree of
existence required for pairs (x, y) ∈ X × Y to be considered for operation.

Definition 9 (Formal ϕ-Concepts and ϕ-concept lattices). Given a re-
flexive, idempotent semiring (K, ϕ), a K-valued formal context (G, M, R)K with
finite |G| = n and |M | = p and K-valued vector spaces of rows X ∼= K1×n and
columns Y ∼= Kp×1

1. A (formal) ϕ-concept of the formal context (G, M, R)K is a pair (a, b) ∈
X × Y such that −

ϕ a = b and b−ϕ = a. We call a the extent and b the intent
of the concept (a, b), and ϕ its (minimum) degree of existence.

2. If (a1, b1) (a2, b2) are ϕ-concepts of a context, they are ordered by the relation

(a1, b1) ≤ (a2, b2) ⇐⇒ a1 ≤ a2 ⇐⇒ b1
op

≤ b2, called the hierarchical order.
The set of all concepts ordered in this way is called the ϕ-concept lattice,
Bϕ(G, M, R)K, of the K-valued context (G, M, R)K

Of course, the structure for the latter definition is proved next.

Theorem 2 (Fundamental theorem of K-valued Formal Concept Anal-
ysis, finite version, 1st half). Given a reflexive, idempotent semiring (K, ϕ),
the ϕ-concept lattice Bϕ(G, M, R)K of a K-valued formal context (G, M, R)K
with finite |G| = n and |M | = p is a (finite, complete) lattice in which infimum
and supremum are given by:

∧
t∈T

(at, bt) =

⎛⎝ op⊕
t∈T

at,

−

ϕ

op⊕
t∈T

at

⎞⎠ ∨
t∈T

(at, bt) =

⎛⎝[op⊕
t∈T

bt

]−
ϕ

,

op⊕
t∈T

bt

⎞⎠ (13)

Proof. Recall that at ∈ X and bt ∈ Y with X ∼= K1×n and Y ∼= Kp×1. The two
dually isomorphic lattices Y and X are join semilattices of their ambient spaces,
Y ⊆ X op and X ⊆ Yop.

Y =
{

ϕ
op

/
(
R

op← x
)
| x ∈ X

}
X =

{(
y

op→ R
) op

\ ϕ | y ∈ Y

}
(14)

Towards a Generalisation of Formal Concept Analysis 173

Therefore by the inversion of the orders in opposite semimodules they are meet
semilattices of X and Y respectively, hence the meets for at ∈ X and bt ∈ Y,
and their ϕ-polars obtain the missing part of the concept. $%

Standard Formal Concept Analysis: an Example. At the end of section 1
we proposed a hypothesis about the origin of standard Formal Concept Analysis,
for which we now provide the following corollary and informal proof. Of course,
the wealth of results of Standard Formal Concept Analysis will not be available,
specially those involving the second half of the Main Theorem, here missing.

Corollary 3. Standard Formal Concept Analysis is the concrete case of K-
valued FCA where K is the Boolean semiring.

Proof (Informal). Recall that for the construction of proposition 1 the recom-
mendation was to choose in the dualised semiring ϕ = εBop = 1 as pivot. In such
case, we obtain B(G, M, I) = B1(G, M, R)B and most of the basic results in
Formal Concept Analysis follow from definitions 7–9 and theorem 2. $%

We now turn to an example about calculating extents, intents and concepts of
a B1(G, M, I)B lattice. For this purpose, we will use the context of [9], fig. 1.5
and associated concept lattice reproduced in figure 3.

a b c d

1 × × × ×
2 × ×
3 × × ×
4 ×
5 × ×

�
�

�
�

�
�

�
�

�
�

�
�

�
�

1

a

2
d

3

c

5

b

4

�

�

�

�

�

Fig. 3. The context and its concept lattice in [9] figs. §1.5 and 1.6

We represent the context in figure 4 as a matrix having 1 in the places oc-
cupied by crosses and 0 in the rest. In the same figure, we list the object and
attribute concepts of the context adapted to our notation. Note that we intro-
duce the singletons generating the concepts as row and column vectors, that is
for objects, γ̃(5) = γ̃([00001]), and for attributes μ̃(c) = μ̃([0010]t).

I =

⎡⎢⎢⎢⎢⎣
1 1 1 1
1 1 0 0
0 1 1 1
0 1 0 0
0 1 1 0

⎤⎥⎥⎥⎥⎦
γ̃([10000]) = = ([10000], [1111]t)
γ̃([01000]) = μ̃([1000]t) = ([11000], [1100]t)
γ̃([00100]) = μ̃([0001]t) = ([10100], [0111]t)
γ̃([00010]) = μ̃([0100]t) = ([11111], [0100]t)
γ̃([00001]) = μ̃([0010]t) = ([10101], [0110]t)

Fig. 4. The context as a Boolean matrix and its object and attribute concepts

174 F.J. Valverde-Albacete and C. Peláez-Moreno

To illustrate the calculations involved in the concept of object #5 in the
right hand side of the lattice with sets of objects and sets of attributes, we refer
to table 1. In the first three columns of the table, we show, respectively, the
extent of each concept, its left product by the matrix, the result of the whole
bracket with the intent y5 and whether this product complies with the restriction
〈y5 | xi〉 ≥ 1 , for the actual intent y5. In the next four columns, the same
operations are done based in the intents for the extent x5.

Table 1. Table showing the calculations described in the text

xi R
op· xi 〈y5|xi〉 〈y5|xi〉

op

≤ ϕ? yi yi
op· I 〈yi|x5〉 〈yi|x5〉

op

≤ ϕ?

[10000] [1111] 1 Yes [1111]t [10000]t 0 No
[11000] [1100] 0 No [1100]t [11000]t 0 No
[10100] [0111] 1 Yes [0111]t [10100]t 0 No
[11111] [0100] 0 No [0100]t [11111]t 1 Yes
[10101] [0110] 1 Yes [0110]t [10101]t 1 Yes

Considering the lattice of extents, we see that the extents of the concepts that
comply with the restriction 〈y5|xi〉 ≥ 1 are ext(γ̃)(1) = [10000] , ext(γ̃(3)) =
[10100] and ext(γ̃(5)) = [10101]. Of these, ext(γ̃(5)) is the minimum (in the
opposite order.) Likewise, for intents complying with the restriction 〈yi|x5〉 ≥ 1,
that is int(γ̃(4)) = [0100] and int(γ̃(5)) = [0110], the latter is the minimum (in
the opposite order).

4 Discussion and Conclusions

At the beginning of this paper, we started with a number of constraints and
requirements for our endeavour. Where do they stand now?

Linear algebra and K-Formal Concept Analysis. In section 1 we in-
troduced a number of problems of interest in data mining. Specifically, recall
problem 2 (adapted): for a set of objects a, find all other sets a′ such that
R

op← a = R
op← a′. After the results in section 3, this amounts to finding the quo-

tient class of the set of objects a by the polar, a (mod −
ϕ ·); and similarly for the

set of attributes b finding the class, b (mod ·−ϕ). Note that problem 3 is essentially
finding the quotient spaces without finding representatives for the classes.

As to the importance of such procedures for standard Formal Concept Anal-
ysis, a related procedure involving the closure maps is invoked in [9], §1.5 as an
alternative to the standard reduction procedure based in arrow relations: find
the kernels of the polars and form the quotient sets on objects and attributes
modulo these kernels; the reduced incidence is actually the incidence between
the corresponding classes in the quotient sets. We are confident that our results
will help develop this alternative to context reduction.

Towards a Generalisation of Formal Concept Analysis 175

Conclusions. We have tried to introduce in this paper a linear-algebraic per-
spective into Formal Concept Analysis whereby contexts may actually be rep-
resented as matrices, and the basic operations as multiplications in adequate
algebras. And this with the twofold intention of bringing some light into the re-
lation of logical operators and Formal Concept Analysis, and making the latter
better adapted to deal with a broader class of quantitative problems.

These algebras happen to be a special kind of semirings, reflexive idempo-
tent ones, and we have provided a construction for K-Formal Concept Analysis
generalising the standard analysis to allow for semiring-valued incidences. These
results are not really surprising, since semirings seem to be closely related to
Baer semigroups [3]. We still wonder whether idempotent semirings, will not
actually be a sufficiently rich algebra to allow the kind of processing we put
forward here.

One instance of the above structure is the Boolean semiring and its opposite
semimodule. We provide and example how standard Formal Concept Analysis
seems to be the particularisation of our technique for these semirings. Of course,
the demonstration of the technique for actual data mining is still missing and
will be the object of future papers.

References

1. F. Baccelli, G. Cohen, G. Olsder, and J. Quadrat. Synchronization and Linearity.
Wiley, 1992.

2. R. Belohlávek. Lattices generated by binary fuzzy relations. In Int. Conf. on Fuzzy
Set Theory and Applications, Slovakia, 1998.

3. T. Blyth and M. Janowitz. Residuation Theory. Pergamon press, 1972.
4. A. Burusco and R. Fuentes-González. The study of the l-fuzzy concept lattice.

Mathware and Soft Computing, 1(3):209–218, 1994.
5. G. Cohen, S. Gaubert, and J.-P. Quadrat. Duality and separation theorems in

idempotent semimodules. Linear Algebra and Its Applications, 379:395–422, 2004.
6. B. Davey and H. Priestley. Introduction to lattices and order. Cambridge University

Press, Cambridge, UK, 2nd edition, 2002.
7. K. Denecke, M. Erné, and S. Wismath, editors. Galois Connections and Appli-

cations. Number 565 in Mathematics and Its Applications. Kluwer Academic,
Dordrecht, Boston and London, 2004.

8. M. Erné. Adjunctions and Galois connections: Origins, History and Development,
pages 1–138. In Denecke et al. [7], 2004.

9. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin, Heidelberg, 1999.

10. S. Gaubert. Two lectures on max-plus algebra. Support de cours
de la 26–iéme École de Printemps d’Informatique Théorique, May 1998.
http://amadeus.inria.fr/gaubert/papers.html.

11. S. Gaubert and the Maxplus Group. Methods and applications of (max,+) linear
algebra. Technical Report 3088, INRIA –, 1997.

12. G. Gediga and I. Dütsch. Approximation operators in qualitative data analysis.
Technical Report CS-03-01, Department of Computer Science, Brock University,
St. Catharines, Ontario, Canada, May 2003.

176 F.J. Valverde-Albacete and C. Peláez-Moreno

13. J. S. Golan. Power Algebras over Semirings. With Applications in Mathematics
and Computer Science, volume 488 of Mathematics and its applications. Kluwer
Academic, Dordrecht, Boston, London, 1999.

14. J. S. Golan. Semirings and Their Applications. Kluwer Academic, 1999.
15. E. Wagneur. Modulöıds and pseudomodules 1. dimension theory. Discrete Mathe-

matics, 98:57–73, 1991.
16. R. Wille. Dyadic Mathematics – Abstractions from Logical Thought, pages 453–498.

In Denecke et al. [7], 2004.

Interactive Association Rules Discovery

Raoul Medina, Lhouari Nourine, and Olivier Raynaud

L.I.M.O.S. Université Blaise Pascal,
Campus des Cézeaux, Clermont-Ferrand, France

{Medina, Nourine, Raynaud}@isima.fr

Abstract. An interactive discovery method for finding association rules
is presented. It consists in a user-guided search using reduction operators
on a rule. Rules are generated on-demand according to the navigation
made by the user. Main interest of this approach is that, at each step,
the user has only a linear number of new rules to analyze and that all
computations are done in polynomial time. Several reduction operators
are presented. We also show that the search space can be reduced when
clone items are present.

1 Introduction

Originally introduced in [1], association rules mining has been a major topic in
data mining research during the last decade. An association rule is an expres-
sion X → Y , where X and Y are sets of items. Meaning is quite intuitive: if a
transaction contains X then it probably contains Y also. Some quality measures
are attached to association rules. The support of a rule expresses the fraction
of transactions in the database containing both antecedents and consequent of
a rule. The confidence of a rule expresses the conditional probability p(X | Y).
Some other quality measures have been defined [3, 10]. All those measures are
(more or less) relevant for analysis purposes, but they are mainly used to nar-
row the number of generated rules [2, 9, 12, 16]. Indeed, the main problem when
mining association rules is that their number exponentially grows with the num-
ber of items. A solution to reduce the number of generated rules is to generate
only a subset of rules from which all other rules can be derived [8, 17]. Such a
set is called an implication base [5, 13]. Minimum bases are implication bases
with minimal number of rules. Unfortunately, such bases might still contain an
exponential number of rules [14] and their computation is still an open problem.

Current methods for association rules mining are highly iterative and require
interaction with the end-user. Basic steps of the methods are:

– Generate a (potentially exponential) set of rules,
– Browse rules to find interesting association rules.
– Use discovered knowledge to refine the analysis and restart the process.

Those methods are downstream navigation processes: navigation is done after
the rules have been generated. Refinement of the analysis is done by applying
some user-defined constraints. For instance, the search space can be pruned

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 177–190, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

178 R. Medina, L. Nourine, and O. Raynaud

using a minimal threshold for quality measures on the rules [2, 9, 12].We focus
on rules belonging to implication bases, and especially left-reduced rules (i.e. with
minimal antecedents). Another constraint can be the generation of rules where
an item (or set of items) appears either in the antecedent or the consequent.

Defining which constraint(s) to apply is the only interaction between the end-
user and the knowledge discovery process. It is also the most crucial phase in
the analysis process. Knowledge discovery process is highly human-centered and
thus relies on the user (the “expert”) skills and intuitions. Response times of
the computational phases should not curb the user creativity. Performance of
the process is either improved during the generation or the navigation [11] step
depending on when the constraints are applied. Unfortunately, despite highly
optimized association mining algorithms, response times hardly allow real time
interactivity during the whole process. A constant “association rule” verified by
every current method seems to be “whenever an association rule mining process
is launched, the coffee machine of the company works full-time”. The objective
of our paper is a first attempt in keeping the end-user behind his desk during
the whole process.

Our method is an upstream navigation process: rules are generated depending
on the navigation process. We first propose a set of general rules and at each
step the end-user can refine the rules by applying a reduction operator on the
antecedent. At each step the number of new rules to analyze is linear in the
number of items, and their computation is done in polynomial time with a single
scan of the database.

As a first attempt, the following restrictions apply to our method.

– We consider rules whose confidence is equal to 1. In other words, we focus
only on exact rules, or implications.

– We focus on rules of the form I → x (with x
∈ I);
– Quality measures are not taken into account. They can however be computed

for each rule.

2 Notations and Definitions

Throughout this paper, the following notations are used: Let F be a closure
system over X . Elements of X are then called items. The closure operator of
F is denoted by . We say that I is a closed set if and only if I = I. Meet-
irreducible (resp. join-irreducible) elements are elements of F which are not
intersections (resp. unions) of other elements of F . We denote the set of meet-
irreducible elements of F by M and the set of join-irreducible elements are
denoted by J .

Usually a sub-collection R of F is given rather than the whole closure system
F and its closure operator . An equivalent closure operator is easily deduced
from R since meet-irreducible elements of F are present in F . Note that the sub-
collection R is often given as a context. A context is a binary relation between
a set of objects and a set of attributes. In this case, the closure operator is ′′ as
defined in [6].

Interactive Association Rules Discovery 179

We denote by I the lattice of ideals of the poset (J ,⊆). The principal ideal of
x is denoted by ↓ x and the principal filter of x is denoted by ↑ x. An implication
rule I → x means that x ∈ I. In this paper we focus on rules such that x belongs
to I \ I. We denote by Σ an implication base of F .

The Guigues-Duquenne base of F is a minimum implication base of F such
that the antecedents are pseudo-closed sets.

Definition 1. Quasi-closed and Pseudo-closed set
Let F be a closure system and the closure operator associated to F . Let P ∈ 2X

and P
∈ F .

– P is a Quasi-closed set iff for all Q ⊂ P , Q ⊂ P or Q = P .
– A quasi-closed set P is a pseudo-closed set if there is no quasi-closed set

Q ⊂ P with Q = P .

Finally small caps (a, b, ...) represent items, capitals (A, B, ...) represent sets and
calligraphic capitals (A,B, ...) represent collections of sets.

3 Interactive Navigation Principle

We assume that the end user is interested in rules where an item x is implied.
There might exist many rules implying x. Rather than generating all possible
rules implying x, we give to the user some of those rules, let him pick one rule
and then check if the antecedent can be reduced. New rules will be generated
according to the user’s choice.

Here we are only interested in association rules of the form I → x such that
x ∈ I \ I. The set of all possible antecedents implying an item x is defined by Ex.

Definition 2. Let x ∈ X, we define the set Ex = {I | x ∈ I \ I}.
The set Ex is the set of all antecedents that imply item x (see Figure 2). The
user can navigate in this family and search for interesting rules for him. Our
navigation principle needs a well-defined starting point : the rule implying x
with the largest antecedent. Next proposition shows that whenever there exists
at least one rule implying x, this largest rule always exists.

Proposition 1. Let x be in X, if Ex
= ∅ then X \ x = Max(Ex).

Proof. Let us first show that any element of Ex is a subset of X \x. Let I be in Ex

then I does not contain x by definition of Ex and so we have I ⊆ X\x. Let us show
now that X \ x belongs to Ex, in other words that x belongs to (X \ x) \ (X \ x)
by definition of Ex. This is equivalent to show that X \ x
= X \ x. Let I be in
Ex and suppose the set X \x is a closed set. Then we know that I ⊆ (X \ x), by
monotony we obtain I ⊆ X \ x. By hypothesis we have I ⊆ X \ x and so x does
not belong to I, which contradicts the fact that I is in Ex. And so X \ x is not
a closed set. $%

A corollary to the previous proposition is that there exists at least one rule
implying x if and only if X \ x is not a closed set.

180 R. Medina, L. Nourine, and O. Raynaud

Corollary 1. Let x be in X, the following assertions are equivalent :

– There exists I → x with x ∈ I \ I;
– Ex
= ∅;
– X \ x
= X \ x;

Proof. Follows directly from the previous proposition. $%

Two different paths
from X \ x to I

 I

 I

 x

 X \ x

 X \ x

Fig. 1. From X \x to I many different paths exist. And all along this path, non closed
sets imply item x.

Now we show that all other rules implying x are reachable from this maximal
rule using a path in Ex. In this path, a rule can be generated from its predecessor
by the removal of an item in the antecedent.

Proposition 2. Let x in X, ∀I ∈ Ex and ∀A ⊆ ((X \x)\I) we have I∪A ∈ Ex.

Proof. Let us show that ∀A ⊆ (X \ x) \ I we have I ∪A ∈ Ex. By hypothesis we
have I ⊆ I ∪A ⊆ X \x and by monotony we obtain I ⊆ I ∪A ⊆ X \ x. Suppose
that I ∪A does not belongs to Ex, in other words that x is not in I ∪A. Then x
could not be in I. This is a contradiction with hypothesis of the proposition. $%

The previous property states that each element of the set Ex is reachable by
successive deletions of single elements from the set X \ x. Moreover, each inter-
mediary obtained set belongs to Ex and thus implies x. Thus there exist different
navigation paths from the top (X \ x) to each element of Ex, depending on the
order of deletion (see figure 1). Principle of our navigation scheme is to let the
user choose the wanted direction at each step.

Initially all the valid rules of the form X \x → x are proposed to the user. He
picks one rule among them corresponding to the element x he is interested in.
From this rule, we then compute all the valid rules of the form I → x such that I
is obtained by removing a single element from the left part of the chosen rule. At

Interactive Association Rules Discovery 181

this step, the user chooses the rule having the most interesting left part for him.
Next step will be to reduce this left part by iteratively applying the selection
and rules generation process. When no new valid rules can be obtained, the set
of rules is empty and thus the navigation is done for this path. Of course, at any
stage, the user can go backwards and choose another direction if he desires.

Note that when the rule I → x is chosen, the new set of rules which is
generated is exactly equal to {I \ y → x | I \ y ∈ Ex}. Thus the number of rules
at each step is linear in the size of X .

The navigation process can be summarized by the following algorithm.

Algorithm 1. Navigation process
Data : A closure system F defined over X

Result : A set of rules
begin

Rules = {X \ x → x | X \ x �∈ F};
repeat

Let the user choose I → x ∈ Rules;
NewRules = Reduction(I);
if NewRules = ∅ then

Display ”I → x cannot be reduced”;

Rules = Rules ∪ NewRules;

until End of work ;
end

In order to gain display clarity the whole set of rules might be stored in a
tree where each node is a rule. The end-user can then browse the tree, store it
on disk for future work, etc. We call this tree the navigation tree. Note that a
rule might appear in different nodes of the tree since there are different paths
leading from the maximal rule to this rule.

Given a rule I → x, the reduction(I) function simply returns the set {I \y | I \
y ∈ Ex}. But one could imagine some others reduction operators, for instance
by adding conditions on I \ y. For example the user may want to display only
rules which have element a in the left-part. In the next section we propose some
other reduction operators.

4 Reduction Operators

In this section we discuss in detail different reduction operators. First, we show
how to implement the reduction operator presented in the previous section.
Then we present two other reduction operators. The first one speeds up the
navigation process by removing more than one element (when possible). The
second one allows the user to navigate only on ideals and thus reduce the number
of displayed rules.

182 R. Medina, L. Nourine, and O. Raynaud

4.1 Testing I ∈ Ex

The reduction operator presented in the previous section is as follows:
Reduction(I) = {I \ y → x | I ∈ Ex}

To test if I belongs to Ex, one has to test if x
∈ I and x ∈ I. The first test
is not necessary in our navigation scheme since we start it from X \ x and then
navigate by removing one of its element. Thus x cannot belong to I. Testing
x ∈ I usually requires to compute the closure of I. Another way could be to test
that x
∈ I is false. Indeed, from the monotony property of closure operators we
know that x
∈ I if there exists a closed set M ⊆ X \ x such that I ⊆ M . Thus
it is sufficient to test if I is a subset of at least one of the maximal closed sets
which does not contain x (see Figure 2).

 x

 X \ x

Ex

Fig. 2. White nodes represent element of Mx. Any subset below one of these nodes
cannot imply x.

Definition 3. We note by Mx the set of maximal closed sets which do not
contain x, i.e. Mx = Max({M ⊆ X | M = M, M ⊆ X \ x}).

Note that sets in Mx are meet-irreducible elements of the lattice of closed sets.
And thus they must be present in the context and can be trivially found. The
reduction operator can then be rewritten as follows :

Reduction(I) = {I \ y → x |
 ∃M ∈ Mx such that I \ y ⊆ M}
When comparing the two approaches (computing the closure or testing the

inclusion in a maximal closed set) one has to notice that the theoretical com-
plexity remains unchanged. However, since |Mx| ≤ |M| and since only inclusion
tests are done, the practical efficiency should be improved when using the second
approach.

4.2 The Jump Reduction Operator

Usually, the end user wants to obtain the rules with the most reduced left-
part. Those rules are exactly the rules whose antecedents are in Min(Ex) (see

Interactive Association Rules Discovery 183

a jump

Empty set

I’

I min

X \ x

Ex

Fig. 3. Black nodes represent elements of Mx. The minimal elements of Ex (dashed
nodes) are reachable from immediate successors of elements of Mx (the white nodes).

Figure 3). Reaching those rules might require several steps for the user. The idea
of the jump reduction operator is to reduce this number of steps. It relies on the
following proposition.

Proposition 3. Let x be in X, for any I in Min(Ex) there exists M in Mx

and y
∈ M such that I ⊆ M ∪ {y}.

Proof. Let I in Min(Ex) then ∀y ∈ I, I \ y
∈ Ex. Thus x does not belong to
I \ y and thus there exists a closed set M in Mx such that I \ y ⊆ M . As a
consequence, I ⊆ M ∪ {y}. $%

Note that if Ex
= ∅ then, for any M in Mx and y
∈ M , we have M ∪ {y} in
Ex. Thus, according to Propositions 2 and 3, any I in Min(Ex) can be reached
from those sets M ∪ {y} (see Figure 3). The idea is thus to propose those rules
as the starting points for the user. The jump reduction operator can be written
as follows :

Jump− reduction(I) = {M ∪ {y} → x | M ∈Mx}
Those rules can be efficiently computed since Mx can be computed in poly-

nomial time by a single scan of the context. Moreover, the number of rules is
bounded by |X | × |Mx|, which is still a reasonable size for the end user to
search in.

One could be tempted to reiterate such jump reduction from any rule I → x
chosen by the user. It suffices to consider maximal closed subsets of I rather than
Mx. Unfortunately, those maximal closed sets are not necessary meet-irreducible
elements of the lattice of closed sets and thus might not be present in the context.
Computing such maximal closed sets would then require to compute all the closed
sets included in I, which is prohibitive in our goal to achieve interactivity.

184 R. Medina, L. Nourine, and O. Raynaud

4.3 Ideal Refinement Operator

In this section, we show, using an example, how to navigate while maintaining a
specific property for the set I. In this example we choose to maintain the property
“I is an ideal of (J ,⊆)”. The consequence is that the reduction operator now
has to preserve this property. It thus has to be rewritten:

Ideal − reduction(I) = {I \ y → x| y ∈ Max(I) and I \ y ∈ Ex}
If I is an ideal, choosing y in Max(I) guarantees that I \ y is also an ideal.
The modification of the operator does not change the overall complexity of

the process. Moreover, by doing this, we navigate in the ideal lattice rather than
the power set. The search space is thus reduced. The number of new rules is
bounded by the width of the poset (J ,⊆). Another remark that can be done
is that the starting point of the process can be refined. Indeed, X \ x is not
necessarily an ideal. We thus have to start from the biggest ideal that does not
contain x, i.e. the set X\ ↑ x (cf. figure 4).

1 2

x

 F

 x

 J \ x

 F

 E

Fig. 4. The set Ex with elements F and F2 of Mx

There is a link between quasi-closed sets (and thus pseudo-closed sets) and ide-
als. This relation is interesting since pseudo-closed sets are elements defining a
minimal basis (in the number of rules) of a context: the Guigues-Duquenne base.

Proposition 4. Let Q be a quasi-closed set of F . If |Q| > 1 then Q is an ideal
of (J ,⊆).

We can thus decompose the sets of pseudo-closed sets of the context in two
categories : the simple pseudo-closed sets (those containing exactly one element)
and pseudo-closed sets which are ideals. Note that simple pseudo-closed sets can
be trivially computed from (J ,⊆). Indeed, the rule a → a is in the Guigues-
Duquenne basis if and only if there exists an element b such that b < a in
(J ,⊆) (see section 6.1 for an example). The Guigues-Duquenne basis Σ can be
rewritten as follows : Σ = ΣJ ∪Σ↓, where ΣJ are the rules which left-part is a
simple pseudo-closed set, and Σ↓ are the rules which antecedent is an ideal.

Interactive Association Rules Discovery 185

Authors in [4] have shown that closed-sets can be characterized by intervals
pruning of the power set 2X :

Proposition 5. [4] Let Σ be a base of F a closure system on X:

F = 2X \
⋃

A→B∈Σ

⋃
x∈B

[A, X \ x] (1)

Note that our basic navigation schema navigates in those intervals. But now we
want to navigate over ideals which are non closed. Sets in intervals which bottom
set is a simple pseudo-closed set are not ideals. We will not navigate in those
intervals. We navigate only in intervals containing ideals. Thus, their bottom
element is an ideal as well as their top element (which is of the form X\ ↑ x).
This allows us to rephrase the previous characterization :

F = I \
⋃

A→B∈Σ↓

⋃
x∈B

[A, X\ ↑ x] (2)

The only rules that holds in I are the rules of ΣJ , i.e. the simple rules. Thus
it is interesting to note that a refinement of [4] is to prune the closure system
defined by ΣJ with the intervals defined by Σ↓!

From all the above, navigating in the lattice of ideals seems to make sense.
But unfortunately, for the moment there is no known polynomial algorithm to
test if an ideal is a pseudo-closed set.

5 Reducing the Navigation Space Using Clone Items

In [7], authors had shown that symmetries between items could be hidden in
large sets of rules. If for all rules containing a in the antecedent there exists the
same rule where a is replaced by b, they say that items a and b are clone items.
Those symmetries could be seen as redundant information. Thus, we could ignore
all rules containing b but no a without loss of information.

In this section we propose to detect those kinds of symmetries in order to
reduce the search space. The user chooses to keep one major item a by clone
classes. Rules that contain other clone items but not the major item a are re-
dundant information and thus are simply forgotten. Of course, those rules can
be computed and displayed on user’s demand.

To define clone items, authors in [7] use the following swapping function :
Let x be a set of items {x1, ..., x|X|} and C be a collection of sets on X . We

denote by ϕa,b : 2X → 2X the mapping which associates to any subset of X its
image by swapping items a and b. More formally :

ϕa,b(M) =

⎧⎨⎩
(M \ {a}) ∪ {b} if b
∈ M and a ∈ M
(M \ {b}) ∪ {a} if a
∈ M and b ∈ M
M otherwise

The definition of clone items is then :

Definition 4. Let C be a collection of sets defined on X. We say that items a and
b are clone items in C if and only if for any M in C, ϕa,b(M) also belongs to C.

186 R. Medina, L. Nourine, and O. Raynaud

In our case, desired symmetries concern the collection of the left-parts of the
rules of the form I → x with x ∈ I \ I. The collection is then constituted with
non closed sets. One can remark that if two items a and b are clone items on non
closed sets, they remain clone items in the corresponding closure system. Lastly
in [7] authors showed that clone items of a closure system correspond to clone
items of the corresponding meet-irreducible elements.

To summarize we have the following equivalent assertions :

– a and b are clone items with respect to the collection of non closed sets;
– a and b are clone items in the closure system;
– a and b are clone items in the collection M of meet-irreducible elements.

In [7] authors propose clone classes detection algorithm as well as a clone re-
duction algorithm which removes the clone classes in a context. They also show
how to rebuild the removed rules from a rule of the reduced context. In [15] an
improvement of the detection algorithm is proposed. All these algorithms run
in polynomial time. Thus, clone items might be interesting to reduce the search
space used by our navigation principle.

This reasoning can be refined when the user picks a rule X \ x → x. Now
that x has been fixed, we are interested in clone items present in Ex. Indeed,
some items might be clone in Ex and not clone in the closed-sets lattice. We will
say that they are locally clone with respect to x. Detecting clone items in Ex is
equivalent to the detection of clone items on the closure system defined by :

Fx = {X \ x} ∪ {F | ∃M ∈ Mx such that F ⊆ M}
In other words, we consider that all subsets of maximal closed sets included in

X \x are closed sets. In order to detect the clone items of the lattice Fx, we need
to compute all its meet-irreducible elements. To stay the more general possible,
we consider that the navigation is done using the ideals reduction operator.
Indeed, the ideal lattice is a distributive lattice and the power set is just a
particular case of distributive lattice.

Thus, we navigate in the ideal lattice. As a consequence, the meet-irreducible
elements of the ideal lattice which are closed set are also meet-irreducible elements
of Fx. The sets in Mx are also trivially meet-irreducible elements of Fx. And, fi-
nally, some immediate predecessors of sets inMx can be meet-irreducible elements
too. Indeed, given M ∈ Mx, its immediate predecessors are co-atoms (and thus
meet-irreducible elements) of the sub-lattice [∅, M]. And if there are not prede-
cessors of another M ′ ∈ Mx, they will be meet-irreducible elements of Fx.

More formally, the meet-irreducible elements of Fx are :

MFx =
Mx

∪ {(X \ x)\ ↑ y | y ∈ (X \ x) and ∃M ∈ Mx with(X \ x)\ ↑ y ⊆ M}
∪ {M \ y | M ∈ Mx, y ∈ Max(M) and � ∃M ′ ∈ Mx with M \ y ⊂ M ′}

To summarize we have the following equivalent assertions :

– a and b are clone items in Ex;
– a and b are clone items in MFx .

Interactive Association Rules Discovery 187

The collection MFx can be computed in polynomial time. Recall that the clone
detection as well as the clone reduction have to be done on MFx . Thus, reducing
the search space by removing clone items has initially an extra cost. However,
this extra cost is balanced by less rules to compute and display in the remaining
of the navigation. The user gains in readability.

6 Application to Databases

6.1 Context

In this section we present the extraction context of association rules in databases.
Let X be a set of items, and T be a set of transaction identifiers or tids. An
input database is a binary relation R = X × T .

Example 1. Example of extraction context.

R1 a b c d e
i1 1 0 0 0 0
i2 1 1 0 0 0
i3 0 0 1 0 0
i4 0 0 1 1 0
i5 0 0 1 1 1
i6 1 1 1 0 0
i7 1 1 1 1 1

The simple rules in ΣJ (and as a consequence, the poset (J,⊆)) are obtained by
computing the inclusion order of items in the binary relation (i.e. the inclusion of
columns). The binary relation might be previously reduced by merging identical
items (i.e. with same columns) and by removing items which are intersections of
other items. In other words, we only keep the join-irreducible elements.

a c

c,d

c,d,e

a,b

Fig. 5. The poset (J , ⊆) for the binary relation R1

6.2 Navigation Tree

First step of our process consists in the computation of the simple rules and of
the maximal rules (i.e. of the form X \↑x → x). All those rules can be computed
in polynomial time using a single scan of the database. Rules obtained at this
step will be the first nodes of our tree (Cf. figure 6 a)). Each rule might be
reducible or not. In this later case, the rule is a leaf of the tree. Note that simple
rules are not reducible.

188 R. Medina, L. Nourine, and O. Raynaud

(a) (b) (c)

Fig. 6. The navigation tree : (a) The first nodes of the tree; (b) First branch is de-
veloped; (c) Second branch developed. For each rule, only one item is displayed in the
consequent: the item defining the top of the interval.

Second step of our process is to let the end-user choose a single rule he is
interested in, among the set of reducible rules in the tree. The chosen rule is
then reduced and the obtained rules become new nodes of the tree (their father
being the chosen rule). Again, among those rules, some might be reducible. The
end-user can repeat the second step of our process as many times as he wishes,
or until he has developed all branches of the tree. It is important to notice that,
at each step, computation is done in polynomial time and a single scan of the
database is required.

The end-user can define constraints to guide the navigation process. For in-
stance, if the user is searching for left-reduced rules, nodes which correspond to
minimal generators could be highlighted and the corresponding left-reduced rule
be printed afterward. Another constraint could be the freezing of an item (or a
set of items) in the antecedent. In this way, a rule will be considered reducible
as long as one of its reductions still contains the frozen item(s).

7 Conclusion

Current methods for mining association rules suffer from several practical diffi-
culties:

– The number of generated rules is potentially exponential in the size of the
context;

– The computation of the rules is often prohibitive in time.

The consequence of those practical difficulties is that often few items are consid-
ered in order to reduce the combinatorial explosion and only a subset of the rules
is generated (according to some quality measures). Thus, usually the user is not
really in the center of the mining process. He interacts only to define the con-
straints to apply on the rules and waits for the next set of rules to be generated.

Interactive Association Rules Discovery 189

The aim of our paper is to recenter the mining process on the user. This is still
a theoretical study which has to be refined and validated by experimentations.
A prototype is under development.

Our first objective was to achieve interactivity : the user should stay behind
his desk during the whole process. To achieve this we propose a downstream
approach: few rules are proposed to the user at each step and the user picks
the direction he wants to go. Only user required rules are generated. To ease his
work, only a reasonable number of rules is proposed at each step. Searching the
rules should thus gain in clarity and readability.

The navigation is done using reduction operators on the antecedent of a chosen
rule. We proposed several reduction operators which all run in polynomial time
and do not require a scan of the context (only a subset of the context has to be
considered).

Using this approach, it seems that more items could be considered by the user
in its mining process. This has however to be validated through experimentation.
But when considering lot of items, we then have a representation problem for
displaying the rules. Clone items could be used to reduce the antecedents of the
rules.

But our theoretical approach suffers from some drawbacks too. The quality
measures are not taken into account and navigation is done from the rule with
lowest support to the rules with highest support. On the other hand, with this
approach, the user can search in rules that usually would have not been consid-
ered by other methods. Concerning the quality measures, they can be computed
on demand at the cost of a scan of the context.

The next step in our study is to achieve the prototype and do some experi-
mentations on real cases. Those experimentations will then confirm or not if this
approach has practical interests.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. In ACM SIGMOD’93. Washington, USA, 1993.

2. R. Agrawal and R. Srikant. Fast algorithm for mining association rules. In 20th In-
ternational Conference of Very Large DataBasis (VLDB), pages 487–499. Santiago,
Chile, September, 1994.

3. S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset counting and
implication rules for market basket data. In SIGMOD’97, 1997.

4. J. Demetrovics, L. Libkin, and I.B. Muchnik. Functional dependencies in relational
databases: A lattice point of view. Discrete Applied Mathematics, 40(2):155–185,
1992.

5. V. Duquenne and J-L. Guigues. Famille minimale d’implications informatives
résultant d’un tableau de données binaires. Mathématiques Sciences Humaines,
24, 1986.

6. B. Ganter and R. Wille. Formal concept analysis. In Mathematical foundation.
Berlin-Heidelberg-NewYork:Springer, 1999.

7. A. Gely, R. Medina, L. Nourine, and Y. Renaud. Uncovering and reducing hidden
combinatorics in guigues-duquenne covers. In ICFCA’05, 2005.

190 R. Medina, L. Nourine, and O. Raynaud

8. R. Godin and R. Missaoui. An incremental concept formation approach for learning
from databases. Theoritical Computer Science: Special issue on formal methods in
databases and softwear e ngineering, 133(2):387–419, October, 1994.

9. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate genera-
tion. In in Proceedings of the 2000 ACM-SIGMOD International Conference on
Management of Data. Dallas, Texas, USA, 2000.

10. R. J. Hilderman and H.J. Hamilton. Knowledge discovery and interestingness
measures : a survey. Technical report CS99-04, Departement of computer science,
University of Regina, 1999.

11. J. Hipp and U. Guentzer. Is pushing constraints deeply into the mining algorithms
really what we want?. SIGKDD Explorations, pages 4(1)50–55, 2002.

12. J. Hipp, U. Guentzer, and G. Nakhaeizadeh. Algorithms for association rules
mining - a general survey and comparison. SIGKDD Exploration, 2(1):58–64, 2000.

13. D. Maier. The theory of relational data bases. Computer Science Press Rockville,
1983.

14. H. Manilla and K.J. Räihä. On the complexity of inferring functionnal dependen-
cies. Discret Applied Mathematics, 40(2):237–243, 1992.

15. R. Medina, C. Noyer, and O. Raynaud. Efficient algorithms for clone items detec-
tion. In CLA’05, pages 70–81, 2005.

16. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association
rules using closed itemset lattices. Information Systems, 24, 1:P. 25–46, 1999.

17. N. Pasquier, Y. Bastides, R. Taouil, and L. Lakhal. Closed set based discovery
of small covers for association rules. In Proceeding in BDA conf., pages 361–381,
October 1999.

About the Family of Closure Systems
Preserving Non-unit Implications in the

Guigues-Duquenne Base

Alain Gély and Lhouari Nourine

Université Clermont II Blaise Pascal,
LIMOS - Campus des Cézeaux,
63170 Aubière Cedex - France
{gely, nourine}@isima.fr

Abstract. Consider a Guigues-Duquenne base ΣF = ΣF
J ∪ ΣF

↓ of a

closure system F , where ΣJ the set of implications P → P ΣF
with |P | =

1, and ΣF
↓ the set of implications P → P ΣF

with |P | > 1. Implications in
ΣF

J can be computed efficiently from the set of meet-irreducible M(F);
but the problem is open for ΣF

↓ . Many existing algorithms build F as
an intermediate step.

In this paper, we characterize the cover relation in the family C↓(F)
with the same Σ↓, when ordered under set-inclusion. We also show that
M(F⊥) the set of meet-irreducible elements of a minimal closure sys-
tem in C↓(F) can be computed from M(F) in polynomial time for any
F in C↓(F). Moreover, the size of M(F⊥) is less or equal to the size
of M(F).

Keywords: Closure system, Guigues-Duquenne base, Equivalence
relation.

1 Introduction

Computing a minimum implication base from a context is a challenging problem
for which many researches are ongoing. This problem deals with information
retrieval in Formal Concept Analysis, and have a lot of applications in other fields
of computer science, as database, graph theory, Artificial intelligence, lattice
algorithmic and so on (see [1–4]).

This problem remains open, even for particular cases as finding all keys of
a multi-valued context, enumerating minimal transversal of an hypergraph or
for the problem of dualization of monotone boolean functions. The best known
result for these particular cases is the one of Fredman and Kachiyan [5], and it
is a quasi-polynomial algorithm.

Let F be a closure system on a finite set J , and ΣF a minimum implicational
base for F . ΣF is supposed to be in the Guigues-Duquenne form, i.e. premises
of implications are pseudo-closed sets and conclusions are their closure [6]. This
base may be partitioned in three parts: ΣF = ΣF

J ∪ ΣF
↓ ∪ ΣF

∅ , where

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 191–204, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

192 A. Gély and L. Nourine

– ΣF
J is the set of implications X → Y such that |X | = 1 (unit implications).

– ΣF
↓ is the set of implications X → Y such that |X | > 1 (non unit implica-

tions).
– ΣF

∅ is the set of implications X → Y such that X = {∅}.

In this paper, without loss of generality, we partition ΣF into the two implica-
tional families ΣF

J and ΣF
↓ . i.e. we consider there is no implication with ∅ as

premise.
The set of closure systems having the same set of unit implications has been

studied in [7, 8]. Here, we study the set of all closure systems C↓(F) that have
the same set of non unit implications in their Guigues-Duquenne base as F . To
keep ΣF

↓ unchanged, we must add or delete only unit implications. First, we
give necessary and sufficient conditions to add a unit implication, and then we
characterize the cover relation in C↓(F). Secondly, we give a polynomial time
algorithm to compute the meet-irreducible elements of a minimal closure system
in C↓(F) from M(F). This leads us to say that computing the minimal cover
is better on a minimal closure system (or context), which may improve the
efficiency of existing algorithms as Ganter’s one[9], since they need to compute
the set of closed sets.

The rest of this paper is organized as follows:
Section 2 recall some notations and definitions on closure systems. Section 3

characterizes the cover relation in C↓(F). Section 4 gives the main theorem.
Section 5 illustrates the main theorem. Finally, section 6 gives a polynomial
time algorithm to compute the meet-irreducible elements of the smallest closure
system preserving non unit implications.

2 Definitions

We briefly recall some definitions and notations:

1. Let J be a finite set. Small letters (a, b, . . .) denote elements of J . capital
letters (A, B, . . .) sets, and cursive letters (A,B, . . .) family of sets. Where
no ambiguity is possible, we abusively denote the set X = {x, y, z} by xyz.

2. F ⊆ 2J is a closure system iff J ∈ F and F1 ∈ F , F2 ∈ F implie F1∩F2 ∈ F .
Sets in F are called closed sets.

3. A pair (X, Y) denoted by X → Y is an implication on J with X as premise
and Y as conclusion. A family of implications is denoted by Σ.

4. The set A is said Σ -closed if X ⊆ A implies Y ⊆ A for each implication X →
Y ∈ Σ. There exists a linear time algorithm to compute XΣ , the smallest Σ-
closed set which contains X [10]. The family F(Σ) = {S ∈ 2J | is Σ-closed}
is a closure system on J .

5. A family of implications Σ is an implicational base for the closure system
F , denoted by ΣF , iff F = F(Σ).

6. X → Y is derived from Σ, noted by Σ � X → Y , if Y ⊆ XΣ .
7. Let F be a closure system and P
∈ F . Then P is

About the Family of Closure Systems Preserving Non-unit Implications 193

– a quasi-closed set iff for all Q ⊂ P , QΣF ⊂ P or QΣF
= PΣF

.
– a pseudo-closed set if P is a quasi-closed set and there does not exist a

quasi closed set Q ⊂ P with QΣF
= PΣF

.
A pseudo-closed set P is closed under ΣF \ {P → PΣF}.

In this paper, we use Guigues-Duquenne base (or GD-base for short), since it is
uniquely defined and there is a bijection between GD-bases and closure systems
on J .

Theorem 1. Duquenne-Guigues base [6]
Let F be a closure system. ΣF = {P → PΣF | P is a pseudo-closed set } is an
implicational base of F and has a minimum number of implications.

Notice that if we remove an implication from the GD-base of a closure system F ,
we obtain a new GD-base corresponding to a closure system F ′, where F ⊂ F ′.
Now, which implications can be added in a GD-base such that ΣF

↓ is preserved?
Based on the partition of GD-base, we will give an equivalence relation on the
set of closure systems on J . Let F and F ′ be two closure systems on a finite set
J . We say that F is Σ↓-equivalent to F ′ if ΣF

↓ = ΣF ′
↓ .

This equivalence relation induces a partition of the set C(J) of all closure
systems on J into equivalence classes. We denote by C↓(F) = {F ′ | ΣF

↓ = ΣF ′
↓ }

the equivalence class containing F .
For example, the following three closure systems are ΣF

↓ -equivalent:

F = {∅, a, b, c, ac, bc, bd, bcd, abcd}
F ′ = {∅, a, b, bd, ac, abcd}
F ′′ = {∅, a, b, abcd}
with
ΣF

↓ = {ab → abcd, d → bd}
ΣF ′

↓ = {ab → abcd, d → bd, c → ac}
ΣF ′′

↓ = {ab → abcd, c → abcd, d → abcd}

The GD-base ΣF ′
↓ is obtained from the GD-base ΣF

↓ by adding the implication
c → a, and ΣF ′′

↓ from ΣF ′
↓ by adding c → d and d → c.

3 Properties of the Family C↓(F)

Consider a closure system F and C↓(F) the family of all closure systems that
have the same set of non unit implications in their GD-base as F . Since a GD-
base remains a GD-base if we remove an implication P → PΣF

, then there
is a maximal closure system F� Σ↓-equivalent to F , with ΣF�

= ΣF
↓ . F�

corresponds to the top element of C↓(F) which is atomistic. The set C↓(F) is not
a closure system. We denote by F⊥ a minimal closure system having the same
non unit implications as F .

194 A. Gély and L. Nourine

Note that two closure systems which are Σ↓-equivalent differ by implications
in ΣJ . The family of closure systems which differ by implications in Σ↓ and
which are ΣJ -equivalent is a closure system [7, 8]. This is not the case for C↓(F).

Before giving the first proposition of this paper, we recall a result in [11] which
is first appeared (in variant form) in [6] and [12]. This result is useful to compute
a minimum base from any base.

Theorem 2. [11]

– Let Σ be a non redundant base of a closure system F . If all implications of
Σ are of the form X → XΣF

then Σ is minimum.
– ΣF = {P → PΣF | P is pseudoclosed} is a canonical minimum base of F

(Duquenne-Guigues base). Each minimum base Σ of F consists of implica-
tions X → Y where P → PΣF ∈ ΣF and X ⊆ P , XΣF

= PΣF
.

The following corollary follows from theorem 2 and the definition of pseudo-
closed sets.

Corollary 1. If a non redundant implicational base of a closure system F is
such that

1. all the conclusions of implications are closed sets
2. all the premises of implications are quasi-closed sets,

then it is the GD-base of F .

The following proposition gives necessary and sufficient conditions to add a unit
implication without changing non unit implications in the GD-base.

Proposition 1. Let ΣF = ΣF
↓ ∪ ΣF

J be a GD-base of a closure system F ,
and a, b ∈ J such that ΣF

J
� a → b. Then ΣF
↓ = ΣF ′

↓ with ΣF ′
the GD-base

corresponding to ΣF ∪ {a → b} iff for all P → PΣF ∈ ΣF
↓

(i) a ∈ P ⇒ b ∈ P

(ii) a ∈ PΣF ⇒ b ∈ PΣF

(iii) j ∈ P , a ∈ P ∩ jΣF ⇒ (jb)ΣF

= PΣF

Proof. Let ΣF = ΣF
↓ ∪ ΣF

J be a GD-base of a closure system F , a, b ∈ J such
that ΣF

J
� a → b and ΣF
↓ = ΣF ′

↓ with ΣF ′
the GD-base corresponding to

ΣF ∪ {a → b}. Suppose there is a condition not satisfied. We have 3 cases:

(i) a ∈ P and b
∈ P , then P is not a pseudo-closed set in F ′ since P is not
closed under a → b, and then ΣF

↓
= ΣF ′
↓ .

(ii) a ∈ PΣF
and b
∈ PΣF

. Then PΣF
= PΣF′
, which implies ΣF

↓
= ΣF ′
↓ .

(iii) a ∈ P ∩ jΣF
and (jb)ΣF

= PΣF
. This implies that P is not a minimal

quasi-closed set in F ′. Indeed, if a ∈ jΣF
, we have jΣF′

= (jb)ΣF
= PΣF

.
Thus, ΣF

↓
= ΣF ′
↓ .

About the Family of Closure Systems Preserving Non-unit Implications 195

Conversely, suppose that conditions (i), (ii) and (iii) are satisfied. Let ΣF be the
GD-base of F and ΣF ′

the GD-base of the closure system F ′, which corresponds
to the implicational base ΣF ∪ {a → b}. We have to show that ΣF

↓ = ΣF ′
↓ . To

do so, we compute ΣF ′
J the GD-base for ΣF

J ∪ {a → b}, and then show that
ΣF

↓ ∪ ΣF ′
J satisfies conditions of corollary 1.

– By definition, (ΣF
↓ ∪ ΣF

J ∪ {a → b}) is an implicational base of F ′. Let

ΣF ′
J = {j → jΣF | j → jΣF ∈ ΣF

J , a
∈ jΣF}
∪ {j → (jb)ΣF

| j → jΣF
, a ∈ jΣF}

∪ {a → (ab)ΣF
| ∀ j → jΣF ∈ ΣF

J , j
= a}.

Then ΣF ′
J is the GD-base of ΣF

J ∪{a → b}. In effect, for j → jΣF
, if a
∈ jΣF

then jΣF
= jΣF′

. If a ∈ jΣF
, then jΣF′

is the smallest closed set in F which
contain j and b (since ΣF ′ � a → b), so jΣF′

= (jb)ΣF
. If a = aΣF

, we must
add the implication a → (ab)ΣF

.
– Now, let us show that ΣF

↓ ∪ ΣF ′
J satisfies conditions of corollary 1.

• Let P → PΣF
in ΣF

↓ . We show that PΣF
= PΣF′

.
By hypothesis, if a∈ PΣF

then b ∈ PΣF
(condition (ii)). So PΣF

is
closed under ΣF ∪{a → b} and then belongs to F ′. We conclude that
PΣF

= PΣF′
.

• We show that ΣF
↓ ∪ ΣF ′

J is non redundant.
It is clear that each implication in ΣF ′

J is non redundant, since by

construction, for two implications j1 → j1
ΣF′

and j2 → j2
ΣF′

in ΣF ′
J

we have j1
= j2.
Let show that P → PΣF ∈ ΣF

↓ is non redundant in ΣF
↓ ∪ΣF ′

J . To do

that, we will show that for all implications Q → QΣF′
in ΣF

↓ ∪ΣF ′
J \{P →

PΣF}, we have Q ⊂ P implies QΣF′
⊂ P .

Since for any implication Q → QΣF ∈ΣF
↓ , Q is pseudo-closed set in F

and QΣF
=QΣF′

, we have: for all Q→QΣF ∈ ΣF
↓ \{P →PΣF}, QΣF′

⊂P .

We must show that, for all j → jΣF′
∈ ΣF ′

J , we have jΣF′
⊂ P . We

distinguish two cases:
∗ if a
∈ jΣF

or b ∈ jΣF
, then jΣF

= jΣF′
. Since P is a pseudo-closed

set in F , we deduce jΣF′
⊂ P .

∗ if a ∈ jΣF
and b
∈ jΣ{

, then jΣF′
= (jb)ΣF

= jΣF
. Notice that

since j ∈ P , we have jΣF ⊂ P (P is a pseudo-closed set in F) and
therefore a ∈ P . Condition (i) implies that b ∈ P . Thus, since jb ⊂ P

we have (jb)ΣF
⊂ P or (jb)ΣF

= PΣF
. By condition (iii), we have

(jb)ΣF

= PΣF

. We conclude that jΣF′
⊂ P .

Note thatP is a quasi-closed set, since its is closed under ΣF ′\{P →PΣF}.

196 A. Gély and L. Nourine

We conclude from corollary 1 that ΣF
↓ ∪ ΣF ′

J is a GD-base. Indeed, ΣF
↓ ∪ ΣF ′

J

is a non redundant implicational base such that conclusions of implications are
closed sets and premises are quasi-closed sets. $%

The family C↓(F) of closure systems preserving non unit implications has a top
element F� corresponding to the closure system with ΣF�

= ΣF
↓ . The following

example shows that the family C↓(F) is not a closure system.

Example 1. Let J = {a, b, c, d}. Consider the closure system with F with ΣF =
{c → ac, b → ab, d → abd, abc → abcd}. The closure system F ′ with ΣF ′

=
{c → bc, a → ab, d → abd, abc → abcd} belongs to C↓(F). But the closure system
F ′′ = F ∩ F ′ does not belong to C↓(F), since ΣF ′′

= {c → abcd, a → ab, b →
ab, d → abd}.

The following theorem characterizes the cover relation in C↓(F) when ordered
under set-inclusion.

Theorem 3. Let F and F ′ be two closure systems in C↓(F) such that ΣF
�
a → b, ΣF ′ � a → b. Then F ′ ≺ F iff,

(ii′) for all P → PΣF
∈ ΣF , PΣF

= aΣF
a ∈ PΣF

⇒ b ∈ PΣF

Proof. Let F and F ′ be two closure systems in C↓(F) such that ΣF
� a → b

and ΣF ′ � a → b. Suppose F ′ ≺ F and there exists P → PΣF ∈ ΣF with
PΣF
= aΣF

such that a ∈ PΣF
and b
∈ PΣF

. According to proposition 1, we
have P → PΣF ∈ ΣF

J , otherwise condition (ii) is not satisfied. Thus it remains
to prove it for ΣF

J .
Let j → jΣF ∈ ΣF

J . Then ΣF
J � j → a and ΣF

J
� j → b. Consider F ′′ be the
closure system corresponding to ΣF ′′

= ΣF∪{j → b}. We show that ΣF ′′
↓ = ΣF

↓
and F ′ ⊂ F ′′ ⊂ F , which contradicts F ′ ≺ F .

Since conditions of proposition 1 are satisfied for F ′ and a, b ∈ J , then the
same conditions are satisfied for F ′′ and j, b ∈ J . Thus, ΣF ′′

↓ = ΣF
↓ .

Now let us show that F ′ ⊂ F ′′ ⊂ F . Clearly, we have F ′′ ⊂ F since ΣF ′′
J �

j → b and ΣF
J
� j → b. Moreover F ′ ⊆ F ′′. Indeed, ΣF ′ � j → b, since

ΣF ′ � j → a and ΣF ′ � a → b. Suppose that F ′′ = F ′. Then ΣF ′ � a → j,
which is impossible since jΣF
= aΣF

.
Conversely, suppose F ′
≺ F . Then there exists F ′′ such that F ′ ⊂ F ′′ ⊂ F

with ΣF ′ � ΣF ′′ � ΣF . Thus there exist j, y ∈ J such that ΣF ′′ � j → y
and ΣF
� j → y. This implies that y = b, since ΣF ∪ {a → b} � j → y
but ΣF
� j → y, i.e. any new implication must contains b in its conclusion.
Since ΣF
� j → b and ΣF ∪ {a → b} � j → b then ΣF � j → a, otherwise
ΣF ∪{a → b}
� j → b, which implies that F ′
⊂ F ′′. Moreover, jΣF
= aΣF

since
F ′′
= F ′. This implies that (ii′) is false, since a ∈ jΣF

and b
∈ jΣF
. $%

Notice that condition (ii′) is stronger than condition (ii) of proposition 1. Indeed,
condition (ii′) must be satisfied for all P → PΣF

in ΣF such that (a)ΣF

= PΣF

,
but in proposition 1, it must be satisfied only for implications in ΣF

↓ .

About the Family of Closure Systems Preserving Non-unit Implications 197

Property 1. Let F be a closure system, ΣF its GD-base and ΣF
� a → b. If F
satisfies conditions (i) and (ii′) then the following conditions are equivalents :

– (iii) For all P → PΣF ∈ ΣF
↓ , j ∈ P and a ∈ P∩jΣF

implies (jb)ΣF

= PΣF

– (iii′) For all P → PΣF ∈ ΣF
↓ , a ∈ P implies (ab)ΣF

= PΣF

Proof. Let F be a closure system satisfying conditions (i) and (ii′). Suppose
condition (iii) is satisfied. Then it is satisfied when j = a, and thus (iii′) is
satisfied.

Now suppose (iii′) is satisfied. Let P → PΣF ∈ ΣF
↓ such that a ∈ P ∩ jΣF

with j ∈ P . We have two cases :

– If jΣF
= aΣF

, then (ab)ΣF
= (jb)ΣF

= PΣF
.

– If jΣF
= aΣF
, then according to condition (ii′) we have a ∈ jΣF

implies
b ∈ jΣF

. Thus (jb)ΣF
= jΣF
= PΣF

.
$%

Thus, given ΣF , we can compute in polynomial time ΣF⊥ where F⊥ is a minimal
closure system with ΣF⊥

↓ = ΣF
↓ . Since the input is usually a context, proposi-

tion 1 cannot be applied. The next section translates the three properties of
proposition 1 on closure systems and section 6 on contexts.

4 Characterization of Σ↓-Equivalence Relation Using
Closure Systems

To avoid dispatching the notations all along this section, we define here all the
notations we use:

Let F be a closure system, and a, b ∈ J such that b
∈ aΣF
, i.e. ΣF
� a → b.

– A = aΣF
, is the smallest closed set of F containing a.

– B = bΣF
, is the smallest closed set of F containing b.

– Q(a) = {j ∈ J | jΣF
= aΣF }, is the set of elements of J which appear

together in any set of F . Without loss of generality, we suppose Q(a) is
reduce to the singleton {a}

– A∗ = A \ Q(a).
– A = {F ∈ F | a ∈ F, b
∈ F}, is the set of closed sets of F containing a but

not b.
– A∗ = {F ∈ F | A∗ ⊆ F, a
∈ F, b
∈ F}, is the set of closed sets of F

containing A∗ but not a nor b.

Lemma 1 shows that testing conditions (i) and (ii′) is equivalent to testing a
bijection between A∗ and A.

Lemma 1. Consider the mapping ϕ : A∗ → A, with ϕ(F) = F ∪ {a}. Then ϕ
is a bijection iff the following conditions are satisfied.

(i) for all P → PΣF ∈ ΣF
↓ , a ∈ P ⇒ b ∈ P

(ii′) for all P → PΣF ∈ ΣF , PΣF
= aΣF
a ∈ PΣF ⇒ b ∈ PΣF

198 A. Gély and L. Nourine

Proof. – Suppose ϕ : A∗ → A, with ϕ(F) = F ∪ {a} is a bijection, and one of
the two conditions is not satisfied.

First suppose condition (i) is not satisfied. There exists P → PΣF ∈ ΣF
↓

such that a ∈ P and b
∈ P . By the bijection ϕ, we have P \ {a}
∈ F
since P
∈ F . Clearly (P \ {a})Σ

F
= PΣF

since (P \ {a})Σ
F

⊂ P . Let us

show that P is not a pseudo-closed set. To do so, we show that P \ {a} is a
quasi-closed set with (P \ {a})Σ

F
= PΣF

. Let Y ⊂ P \ {a} then Y ΣF ⊂ P

or Y ΣF
= (P \ {a})Σ

F
= PΣF

. Suppose Y ΣF ⊂ P . Then Y ΣF ⊂ P \ {a}
by the bijection ϕ. We conclude that P \ {a} is a quasi-closed set and then
P → PΣF
∈ ΣF

↓ .

Second, suppose condition (ii′) is not satisfied. We have two cases :
• If a ∈ P , then using condition (i), we have b ∈ P and so a, b ∈ PΣF

.
• If a
∈ P , then there exists P → PΣF

such that a
∈ P , a ∈ PΣF

and b
∈ PΣF
. But a
∈ P and b
∈ PΣF

implie a
∈ PΣF
(since ϕ is a

bijection). This leads to a contradiction.
We conclude that if ϕ : A∗ → A : ϕ(F) = F ∪ a is a bijection then (i) and
(ii) are satisfied.

– Let (i) and (ii′) are satisfied.
Suppose F ∈ A. If (F \a)
∈ F then there exists P → PΣF ∈ΣF such that

P ⊆ (F \ a), with a∈PΣF
and b
∈PΣF

. This contradicts condition (ii′).
Suppose F ∈ A∗. If F ∪ a
∈ F then there exists P → PΣF ∈ ΣF such

that P ⊆ (F ∪ a). Since PΣF
⊆ F , we have a ∈ P . Thus a ∈ P and b
∈ P ,
which contradicts condition (i). $%

Lemma 2 shows that condition (iii′) is equivalent to testing if A∪(A∗ ∪ B)ΣF
∈F .

Lemma 2. Let F a closure system such that conditions (i) and (ii′) of lemma
1 are satisfied. Then condition (iii′) of property 1 is satisfied if and only if
A ∪ (A∗ ∪B)ΣF

∈ F .

Proof. Suppose A ∪ (A∗ ∪ B)ΣF
∈ F and there exists P → (ab)ΣF

with a ∈ P .
By condition (i), we have {a, b} ⊆ P . Moreover A ∪ (A∗ ∪ B) ⊆ P , since P is
closed by ΣF

J . We distinguish two cases :

– If a
∈ (A∗ ∪ B)ΣF
, then (A∗ ∪B)ΣF

⊂ P (by definition of pseudo-closed
set). We deduce that A ∪ (A∗ ∪ B)ΣF

⊆ P ⊂ A ∪ (A∗ ∪ B)ΣF
, which is

impossible.
– If a ∈ (A∗ ∪ B)ΣF

, then A ∪ (A∗ ∪ B) ⊆ P . Let Q = P \ a. We have
(A∗ ∪ B) ⊆ Q, and (A∗ ∪ B)ΣF

⊆ QΣF
. Thus, QΣF

= (ab)ΣF
.

Moreover, for all X ∈ Q, if a ∈ XΣF
then XΣF

= (ab)ΣF
(by condi-

tion ii). If a
∈ XΣF
, then XΣF ⊂ P \ a. We conclude Q is a quasi-closed

set such that QΣF
= PΣF

, but then, P is not a pseudo-closed set. This is
in contradiction with the hypothesis.

About the Family of Closure Systems Preserving Non-unit Implications 199

Conversely, suppose that condition (iii′) is satisfied, and A ∪ (A∗ ∪ B)ΣF

∈ F .

Then there exists P ′⊂A∪(A∗ ∪ B)ΣF
such that P ′ΣF

⊂(A ∪ (A∗ ∪ B)ΣF
)
ΣF

=
(ab)ΣF

.
Clearly a ∈ P ′, otherwise P ′ΣF

⊆ (A∗ ∪ B)ΣF
. Thus b ∈ P ′ (by condition

(i)) and ab ⊂ P ′. This implies (ab)ΣF
⊆ P ′ΣF

.
From above, we deduce that P ′ΣF

= (ab)ΣF
, which is in contradiction with

hypothesis. $%

Now we are able to give the main theorem of this paper.

Theorem 4. Let F and F ′ be two closure systems in C↓(F), then F ′ ≺ F iff
the three conditions are satisfied:

(1) There exist a, b ∈ J such that b
∈ aΣF
, b ∈ aΣF′

.
(2) The mapping ϕ : A∗ → A with ϕ(F) = F ∪ a is a bijection.
(3) A ∪ (A∗ ∪B)ΣF

∈ F .

Proof. The proof follow directly from lemmas 1 and 2, which are transcription
of conditions in proposition 1, and theorem 3 guarantees the cover relation. $%

Theorem 4 gives necessary and sufficient conditions to have F ′ ≺ F in C↓(F).
Next section will illustrate this theorem on an example.

5 Illustration of Theorem 4

Consider the closure system F = {∅, a, b, c, ac, bc, abcd} on the set J =
{a, b, c, d}. The GD-base of F , is ΣF = {ab → abcd, d → abcd}, with ΣF

↓ =
{ab → abcd} and ΣF

J = {d → abcd}.
To apply theorem 4, we first search for a pair (x, y) ∈ J2 such that ΣF
�

x → y (see condition (1)). In this case we have the following implications:
(a, c), (a, b), (a, d), (b, a), (b, c), (b, d), (c, a), (c, b) and (c, d). Indeed, the pairs
(d, a), (d, b) and (d, c) cannot be chosen since condition (1) is not satisfied.

– Suppose, we choose the implication a → c. First we compute the following
sets : A = {a}, A∗ = ∅, C = {c}, A = {{a}} and A∗ = {∅, {b}}.

Clearly condition (2) is not satisfied and thus Theorem 4 cannot be ap-
plied. Indeed, the addition of the implication a → c, changes ΣF

↓ , i.e. the
pseudo-closed set ab becomes abc.

Notice that the implication a → c cannot be reconsidered another time.
– For the implication a → b, we have A = {a}, A∗ = ∅, B = {b}, A = {a, ac}

and A∗ = {∅, {c}}.
Condition (2) is satisfied. Now we check condition (3). We have A∪ (A∗ ∪

B)ΣF
= ab, which is not closed set of F . Thus condition (3) is not satisfied.

Here, the addition of the implication a → b, changes the pseudo-closed
set ab by a. That is ab remains a quasi-closed set, but not minimal.

200 A. Gély and L. Nourine

– Now, consider the implication c → a. We have C = {c}, C∗ = ∅, A = {a},
C = {{c}, {bc}} and C∗ = {∅, {b}}.

Conditions (2) and (3) are satisfied, since C ∪ (C∗ ∪ A)ΣF
= ac is closed

set of F . Thus the closure system F ′ = {∅, a, b, ac, abcd} is ΣF
↓ -equivalent

and covered by F , with ΣF ′
J = {d → abcd, c → ac}.

Now given F ′ we try to apply theorem 4.
– Consider the implication c → b. We have C = {ac}, C∗ = {a}, B = {b},
C = {{ac}} and C∗ = {{a}}.

Conditions (2) and (3) are satisfied. Thus the closure system
F ′′ = {∅, a, b, abcd} is ΣF

↓ -equivalent and covered by F ′, with ΣF ′′
J = {d →

abcd, c → abcd}.
For all remaining pairs, theorem 4 cannot be applied. Thus we conclude

that F ′′ = F⊥.

Thus given a closure system F , theorem 4 shows how to compute a Σ↓-equivalent
closure system F ′ such that F covers F ′ in C↓(F). To obtain a minimal closure
system Σ↓-equivalent to F , we repeat the application of theorem 4 following a
path in C↓(F) until we reach the bottom.

In the following section we show how to check conditions of theorem 4 using
the meet-irreducible elements M(F), and how compute the meet-irreducible
elements of F ′ from the meet-irreducible elements of F .

6 Detecting Σ↓-Equivalence Using Meet-Irreducible
Elements

Notice that for any X ⊆ J , XΣF
=
⋂
{M ∈ M(F) | X ⊆ M}. So computing the

closure of any set is polynomial in the size of M(F). Thus checking condition
(1) and (3) of theorem 4 can be done in polynomial time.

Thus, the major difficulty is to test condition (2). Our idea is based on the
fact that A∗ ∪ J and A ∪ J are closure systems. So checking if ϕ is a bijection
can be done in polynomial time if we can compute polynomial representation of
A∗ ∪ J and A∪ J from M(F).

Consider the set M(F) and a, b ∈ J . Our strategy is:

1. Compute a representation of the set A∗ ∪ A
2. Compute a representation of the sets A∗ and A from the representation of

A∗ ∪ A
3. Check if there is a bijection between A∗ and A using their representation.

Consider the following sets:

– MA∗\B(F) = {M ∈ M(F) | A∗ ⊆ M, b
∈ M}, i.e. the set of meet-
irreducible elements of F which belongs to A∗ ∪ A.

– R(A∗ ∪ A) = MA∗\B(F) ∪ {M ∩ M ′ | M ∈ MA∗\B(F), M ′ ∈ M(F), b ∈
M ′}, i.e. MA∗\B(F) union closed sets which may become meet-irreducible
when removing closed sets containing b. (R stands for representation)

About the Family of Closure Systems Preserving Non-unit Implications 201

Proposition 2 shows that R(A∗ ∪A) is a polynomial representation of A∗ ∪A.

Proposition 2. The closure of R(A∗ ∪ A) under set intersection is A∗ ∪ A.
Thus, R(A∗ ∪ A) is a polynomial representation of A∗ ∪ A.

Proof. Let X ∈ A∗ ∪ A, we distinguish two cases:

– X ∈ MA∗\B(F) then X ∈ R(A∗ ∪ A) and it is done.
– X
∈ MA∗\B(F). Clearly, X is not a maximal element of A∗ ∪ A since such

elements belong to MA∗\B(F). Thus X has at least one cover in A∗ ∪ A.
We distinguish two cases:
1. X has more than one cover in A∗ ∪ A. Suppose Y and Z two covers of

X . Inductively, Y and Z are intersections of sets in R(A∗ ∪A). Then X
is the intersection of elements in R(A∗ ∪ A).

2. X has exactly one cover in A∗ ∪ A. Let Y be this cover. Then there
exist M ∈ MA∗\B(F) and M ′ ∈ F such that A∗ ⊆ M ′ and b ∈ M ′, with
X ⊆ M∩M ′ and Y
⊆ M ′, otherwise X ∈MA∗\B(F). Since b
∈ M∩M ′,
we have M∩M ′ ∈ A∗∪A. Furthermore X ⊆ M∩M ′ and Y is the unique
cover of X then X ⊆ M ∩M ′ ⊂ Y and then X = M ∩ M ′.

Conversely, let X be an intersection of some sets in R(A∗ ∪ A). Since the sets
of R(A∗ ∪ A) are sets of F containing A∗, we conclude that X ∈ A∗ ∪ A. $%

From proposition 2, we immediately conclude the following corollary:

Corollary 2. R(A) = {M ∈ R(A∗ ∪ A) | a ∈ M} is a representation of A.

Now it remains to compute a representation of A∗. Consider the following sets:

– M\A(A∗ ∪ A) = {M ∈ R(A∗ ∪ A) | a
∈ M}
– R(A∗) = {M ∩M ′ | M ∈ M\A(A∗ ∪ A), M ′ ∈ R(A∗ ∪A), a ∈ M ′}

Using the same proof as in proposition 2, we obtain the following corollary:

Corollary 3. R(A∗) = {M ∩M ′ | M ∈ M\A(A∗ ∪ A), M ′ ∈ R(A∗ ∪A), a ∈
M ′} is a representation of A∗.

Theorem 5. The mapping ϕ : A∗ → A with ϕ(F) = F ∪ {a} is a bijection iff
the two following mapping are injective :

– ψ∗ : R(A∗) → A with ψ∗(F) = F ∪ {a}
– ψ : R(A) → A∗ with ψ(F) = F \ {a}

Proof. Suppose that ϕ is a bijection. Then ψ∗ and ψ are injective, since R(A∗)
and R(A∗ ∪ A) are elements respectively of A∗ and A.

Conversely, suppose ψ∗ and ψ are injective. First we show that ϕ is injective:
Let X, Y ∈ A∗ with X
= Y . Clearly ϕ(X)
= ϕ(Y) since a
∈ X and a
∈ Y .

It remains to show that ϕ(X), ϕ(Y) ∈ A. Using corollary 3, the sets X and
Y can be obtained as intersection of elements in R(A∗), i.e. X =

⋂
i=1,k Xi

and Y =
⋂

i=1,k′ Yi with Xi, Yi ∈ R(A∗). Then ϕ(X) = {a} ∪
⋂

i=1,k Xi =⋂
i=1,k ψ∗(Xi). since A∗ is closed under intersection and ψ∗(Xi) ∈ A, we conclude

that ϕ(X) ∈ A. In a similar way, we show that ϕ(Y) ∈ A.

202 A. Gély and L. Nourine

Now, we show that ϕ is surjective. Let X ∈ A. We distinguish two cases:

– X ∈ R(A). Then ψ(X) ∈ A∗ and therefore ϕ is surjective since ψ(X) =
ϕ−1(X).

– X
∈ R(A). From corollary 2 we have X =
⋂

i=1,k Xi such that Xi ∈ R(A),
for i = 1, . . . , k. Moreover ψ(X) = (

⋂
i=1,k Xi) \ {a} =

⋂
i=1,k(Xi \ {a}) =⋂

i=1,k ψ(Xi). Thus ψ(X)=ϕ−1(X)∈A∗ sinceA∗ is closed under intersection.

This conclude the proof. $%

We deduce from theorem 5, a polynomial time algorithm for checking condition
(2), from the meet-irreducible elements of F .

Now it remains to us to show how to compute the meet-irreducible elements of
F ′ = F \ A. It is straightforward to see that the meet-irreducible elements not in
A remain meet-irreducible in F ′ and meet-irreducible elements in A disappear.
But, new meet-irreducible elements might appear when removing A from F . A
closed set becomes a meet-irreducible, if all closed sets that cover it are removed
but one. Thus, new meet-irreducible element belong to A∗.

Lemma 3 characterizes closed sets which are new meet-irreducible elements
in the new closure system F ′.

Lemma 3. Let M ∈ A∗ be a new meet-irreducible element in F ′. Then M ∪{a}
is a meet-irreducible element in A.

Proof. Suppose M ∪ {a} is not a meet-irreducible element in F . By bijection,
we have M ∪ {a} ∈ A. We distinguish two cases:

– M ∪ {a} has two covers in A. Then M has two covers in A∗. So M is not a
meet-irreducible element in F ′.

– M ∪ {a} has one cover in A and another cover F containing b. Thus when
removing A, M has one cover in A∗ and F becomes a cover of M .

Theorem 6. The closure system F ′ has less or equal meet-irreducible elements
than F .

Proof. From lemma 3, we deduce that M(F ′) is a subset of {M ∈M(F) | a
∈ M
or b ∈ M} union {M \ {a} | a ∈ M, b
∈ M}. Thus M(F ′) has at most the same
number of meet-irreducible elements as M(F).

Corollary 4. There exists a polynomial time algorithm in M(F) to compute
the meet-irreducible elements of a minimal closure system F⊥.

The approach is to find an implication a → b wich satisfied the conditions
of theorem 4. Conditions of this theorem can be checked in quadratic time in
|M(F)|. Then, for an implication wich satisfied these conditions, we compute
the set of meet-irreducible elements of the new closure system F ′. Again, this
can be done in quadratic time.

Once the meet-irreducible elements of F ′ are computed, we can apply again
the process on M(F ′) while implications may be added.

About the Family of Closure Systems Preserving Non-unit Implications 203

So, this method may be used in goal to speed-up the computation of a Guigue-
Duquenne base. In effect, to compute the Guigue-Duquenne base of a closure
system F , given the list of its meet-irreducible elements, classical approachs
need to compute all the elements in F . The computation time used to do this is
proportional to the number of elements of F .

By a preprocessing step which consist in the transformation of the list of
M(F) in M(F⊥), less closed sets will be computed, and so the practical time
may be affected. The following framework may be applied:

1. Compute M(F⊥) from M(F), store the unit implications added in the pro-
cess.

2. Compute the Guigues-Duquenne base of F⊥ from M(F⊥). This step may
require the computation of F⊥, and require a time proportional to F⊥.

3. Remove from ΣF⊥ unit implications added in step one to obtain the Guigues-
Duquenne base of F .

Note that even if the computation of M(F⊥) may be ”unefficient”, i.e with a
polynomial complexity with a degree greater than 2, this complexity may be
small in comparison with the time used to compute all elements in F .

7 Conclusion

Consider a closure system F given by its meet-irreducible elements M(F). We
have proposed a polynomial time algorithm to compute M(F⊥), where F⊥ is a
minimal closure system preserving ΣF

↓ . Clearly, this step can be used to improve
the efficiency of algorithms which compute a minimum base from a context.

Another practical application of our result is for closed sets enumeration algo-
rithms. Indeed, instead of generating closed sets ofF fromM(F), we first generate
closed sets of F⊥ from M(F⊥), and use copies to obtain closed sets of F .

Nation and Pogel[8] have shown that the family of closure systems sharing the
same ΣJ is a closure system and has nice properties. Obviously, on can ask, if
these properties are satisfied in C↓(F)? Moreover, it gives us a new approach to
study the lattice of all closure systems on a set J , using only their representants,
i.e. minimal closure systems.

Acknowledgment. The authors are very grateful to the referees for very helpful
comments and their remarks on the gaps in the proof (of the previous version)
of proposition 1.

References

1. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM Journal on Computing 24(6) (1995) 1278–1304

2. Eiter, T., Gottlob, G.: Hypergraph transversal computation and related prob-
lems in logic and ai. In: European Conference on Logics in Artificial Intelligence
(JELIA’02). (2002) 549–564

204 A. Gély and L. Nourine

3. Ibaraki, T., Kogan, A., Makino, K.: Inferring minimal functional dependencies in
horn and q-horn theories. Technical report, Rutcor Research Report, RRR 35-2000
(2000)

4. Maier, D.: The theory of relational data bases. Computer Science Press, Rockville
(1983)

5. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone
disjunctive normal forms. Journal of Algorithms (1996) 618–628

6. Guigues, J., Duquenne, V.: Familles minimales d’implications informatives
résultant d’un tableau de données binaires. Math. Sci. hum 95 (1986) 5–18

7. Bordalo, G., Monjardet, B.: The lattice of strict completions of a finite poset.
Algebra Universalis 47 (2002) 183–200

8. Nation, J.B., Pogel, A.: The lattice of completions of an ordered set. Order 14
(1997) 1–7

9. Ganter, B.: Two basic algorithms in concept analysis. Technical report, No 831,
Technische Hochschule Darmstadt (1984)

10. Beeri, C., Berstein, P.: Computational problems related to the design of normal
form relational schemas. ACM Trans. on database systems 1 (1979) 30–59

11. Wild, M.: Implicational bases for finite closure systems. Technical report, No 1210,
Technische Hochschule Darmstadt (1989)

12. Shock, R.C.: Computing the minimum cover of functional dependencies. Informa-
tion Processing Letters 3 (1986) 157–159

Spatial Indexing for Scalability in FCA

Ben Martin1 and Peter Eklund2

1 Information Technology and Electrical Engineering
The University of Queensland
St. Lucia QLD 4072, Australia

monkeyiq@users.sourceforge.net
2 School of Economics and Information Systems

The University of Wollongong
Northfields Avenue, Wollongong, NSW 2522, Australia

peklund@uow.edu.au

Abstract. The paper provides evidence that spatial indexing struc-
tures offer faster resolution of Formal Concept Analysis queries than
B-Tree/Hash methods. We show that many Formal Concept Analysis
operations, computing the contingent and extent sizes as well as listing
the matching objects, enjoy improved performance with the use of spa-
tial indexing structures such as the RD-Tree. Speed improvements can
vary up to eighty times faster depending on the data and query. The
motivation for our study is the application of Formal Concept Analysis
to Semantic File Systems. In such applications millions of formal objects
must be dealt with. It has been found that spatial indexing also provides
an effective indexing technique for more general purpose applications re-
quiring scalability in Formal Concept Analysis systems. The coverage
and benchmarking are presented with general applications in mind.

1 Introduction

A common approach to document retrieval using Formal Concept Analysis is
to convert associations between many-valued attributes and objects into bi-
nary associations between the same objects and new attributes. For example,
a many-valued attribute showing a person’s income may be converted into three
attributes: low, middle and upper which are then associated with the same set of
people. The method of associating binary attributes is called either conceptual
scaling [10] or logical scaling [20] depending on the perspective chosen.

This is the approach adopted in the ZIT-library application developed by
Rock and Wille [22] as well as the Conceptual Email Manager [8, 6]. The ap-
proach is mostly applied to static document collections (such as newsclassifieds)
as in the program Rfca [7] but also to dynamic collections (such as email) as
in Mail-Sleuth [2] and files in the Logical File System (LISFS) [19]. In all but
the latter two the document collection and full-text keyword index are static.
Thus, the FCA interface consists of a mechanism for dynamically deriving bi-
nary attributes from a static full-text index. Many-valued contexts are used to
materialize formal contexts in which objects are document identifiers.

,
,

,
,

B. Ganter and L. Kwuida (Eds.): ICFCA 2006, LNAI 3874, pp. 205–220, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

This paper presents some of the solutions to the problems that arise when
integrating Formal Concept Analysis (FCA) [10] into a Semantic File System
(SFS) [11, 19, 16] and demonstrates performance improvements that result from
the implementation of a spatial indexing structure.

2 Existing Indexing Strategies for Formal Concept
Analysis

Two designs dominate current Formal Concept Analysis implementations for the
indexing of data: either a single large table in a relational database where objects
are rows and their attributes form columns (Toscana) [22] or using inverted files
(LISFS) [19]. The libferris design is based on the former with extensions to deal
with normalization and the association of emblems [15]. An emblem is a pictorial
annotation, usually a small icon, that is associated with an file or directory. An
emblem often denotes a category.

Shown in Fig. 1 is an example inverted file index. With an inverted file index
values of interest each have a list of the address of the tuples from the origin of
the base table. For example, an inverted file index on a name column would have
a list for the value “peter” with pointers to all the tuples where the name column
was “peter”. Inverted files work well when there are a limited number of values
of interest. Given an inverted file defined such that the values of interest are
formal attributes and a concept with intent {10000, 01000} one must combine
the lists for 10000 and 01000 to list the extent of that concept.

We now focus on systems using relational databases for data storage and
indexing.

Assuming, without loss of generality, that the many-valued context is avail-
able – denormalized in a single relation which we refer to as the base table.
This base table having columns {c1, c2, ...cy}. As a concrete example, consider a
base table with 4 numeric columns c1 = size and c2 = modified, c3 = accessed
and c4 =file-owner. Although the modified and accessed columns are numeric
they are presented here in a human readable form. As an example consider three
ordinal scales on the columns c1, c2 and c3 and a nominal scale on c4 (see Fig. 3).

More generally for the base relation we consider a formal attribute {aj} to
be defined through possible values for one or more columns {ci, ...cu}. It can be
convenient to consider the definition of an attribute {aj} as an SQL condition
fj on the values of one or more columns {ci, ...cu}. Thus for all i ∈ {1...j} the
formal attribute ai is defined by the SQL expression fi on the base table. The

206 B. Martin and P. Eklund

The motivation for the application of spatial structures in this research was
for the use of Formal Concept Analysis in a virtual filesystem [11, 19, 16]. In par-
ticular the libferris [1] Semantic File System. Spatial indexing has been found to
bring similar performance improvements to more general formal concept analysis
applications: sometimes referred to as Toscana-systems. We show that the spatial
method proposed in this paper has performance which depends on the number
of attributes in each query as well as the density and distribution of the formal
context.

Base Table10000

01000

00100

00010

Fig. 1. An inverted file index. For each value of interest there is a list containing all
the addresses of tuples which match that value.

c1 c2 c3 c4

object-ID size modified accessed file-owner
1 4096 today today ben
2 800 yesterday today peter
3 400k 1 year ago last week ben
.

Fig. 2. Example base relation containing modification and size data for objects

convenience of using SQL expressions fj to define the formal attributes aj is due
to the SQL expression returning a binary result. Note that there is a one-to-one
correspondence between A and F , every formal attribute is defined by an SQL
expression. The number of attributes |A| can vary from the number of columns
|C| in the database. The ax, fx and cy are shown in Fig. 3. For example, from in
Fig. 3 an attribute ax might be defined on the columns {c2, c3} using the SQL ex-
pression fx = modified < last week AND accessed > yesterday . Such an
attribute would have an attribute extent containing all files which have been
accessed today but not modified this week.

Due to the generality of the terms attribute and value some communities
use them to refer to specific concepts which are related to the above uses. For
example the term attribute in some communities would more naturally refer
to the ci. The above terminology was selected to more closely model Formal
Concept Analysis where the formal attributes are binary. Thus the (formal)
attributes are modeled as the ai.

Consider finding the extent of a concept which has attributes {a1, a3, a7}.
The SQL query is formed with an SQL WHERE clause as “. . . where f1 and f3
and f7 . . . ”. For our concrete example, the SQL predicate will be “. . . where size
<= 4096 and modified <= this week and accessed <= yesterday . . . ”.

ate values represented as human readable strings in this example

Spatial Indexing for Scalability in FCA 207

1

1

.D

Attribute Columns involved SQL predicate (fx)
a1 c1 size <= 4096
a2 c1 size <= 1Mb

a3 c2 modified <= this week
a4 c2 modified <= yesterday
a5 c2 modified <= today

a6 c3 accessed <= last week
a7 c3 accessed <= yesterday
a8 c3 accessed <= today

a9 c4 file-owner = ben
a10 c4 file-owner = peter
a11 c4 file-owner = foo
.

Fig. 3. Ordinal scales on the size, modification and access times of the objects in the
base table. Nominal scale on the file-owner.

Current best practice in the Formal Concept Analysis community attempts
to assist such queries with B-Tree indexes over subsets of {c1, c2, ..., cy}. We now
discuss how relational databases use B-Tree indexes during query execution.

A common implementation of relational database queries is to check to see if
the use of an index is estimated at returning a percent of the base table which is
below a given internal threshold [24]. For example, if the use of an index results
in 30% of the tuples in the base table being fetched then the database elects not
to use that index. If there are no other indexes available for the query then it
will sequentially scan the base table to resolve the query. When fetching a large
proportion of the base table a sequential scan is usually faster than using the
index because the table can be read in order [9]. The estimated ratio of matching
tuples is called the selectivity. The key to efficient query execution is therefore
for the query to be able to use an index which will sufficiently narrow the number
of tuples fetched to make index usage attractive.

The selectivity of an index is estimated for the values given in the SQL
predicate using statistics of how many tuples will match the given value or
value range. For example, if 60% of column c3 has values below 20 and the SQL
predicate is c3 < 20 then an index on column c3 would be considered unattractive
in the resolution of the query because it is not selective enough on average
to outperform a sequential scan. The selectivity can be more formally defined
as 100×estimated tuple count/size of base table. Thus lower numeric selectivity
values are considered “better” in retrieval terms. A relational database’s query
planner will prohibit the use of all indexes which have an estimated selectivity
beyond a predetermined sequential scan cutoff value.

When there are two predicates in the where clause commonly the predicate
which has an available index with the best selectivity is chosen first. After this
initial index selection the other predicate is used as a filter on the tuples as they
are read from the base table [24]. This query design strategy works ineffectively

208 B. Martin and P. Eklund

12 weeks

4 weeks

Base Table

17 days 5 days

2 weeks

Base Table

Sequential read of table filtering non matching tuples

Fig. 4. On the left: B-Tree index on a date column for the base table. Dates in nodes
are shown as how long before the current time they represent. The upper nodes are
index nodes with the nodes below “12 weeks” omitted. The 17 and 5 days nodes are leaf
nodes of the index which point at records in the base table. The B-Tree has a restricted
branching factor of two children for illustration purposes. On the right: Resolving the
query by a sequential scan filtering out non matching tuples.

12 weeks

4 weeks

Base Table

2 weeks
84Mb

5Mb

5Kb | 2Mb

Index on Modified Index on Size

Fig. 5. Two B-Tree indexes on the base table. The left index is on modified while the
right index is on size. Leaf nodes in both indexes point to tuples physically located
throughout the base table.

on typical Formal Concept Analysis SQL queries because there is usually more
than one predicate joined with a logical AND. In the normal case, the selectivity
of either predicate will be beyond the query planner’s sequential scan cutoff.

When both predicates are considered together a single index over multiple
columns may be used in an attempt to achieve better selectivity. For an index
created over multiple columns only the leading columns specified in a predicate
are considered when computing the number of matching tuples using the index.

Consider an example first. When we seek the size of the concept with intent
{a1, a5, a11} we will have 3 predicates size <= 4096, modified <= today and file-
owner = foo respectively. These SQL predicates are operating on the columns
{c1, c2, c4}. Assume that an index is created over {c1, c2, c3, c4} to assist this
query. Most relational databases do not consider any terms from the predicate
which are not contiguous leading terms in the index when calculating the selec-

Spatial Indexing for Scalability in FCA 209

tivity of an index [24]. Nothing in the query makes reference to c3 so only the
predicates size <= 4096, modified <= today will be used to compute selectivity.
For this example the index cannot take advantage of the file-owner predicate
which may in this case offer a significant improvement to selectivity. Given that
the use of the column c2 will not significantly improve selectivity the use of the
whole index deteriorates to the selectivity of c1 alone.

This situation deteriorates further the more columns are available in the
relation due to the probability that leading index terms are not present in the
query predicate. For example, for a concept with a handful of attributes in its
intent, say {{o1, o2}, {a1, a2, a3, a4}}, the chance of having at least one attribute
ax, which happens to have a fx referring to a column in the index’s leading
terms, is low. Even with a reference to a leading index term it is unlikely that
the reference will be very selective by itself. It is a particular strong point of
spatial access methods that they gracefully handle such unreferenced columns
on a many column index.

When resolving an SQL query against a base table most relational databases
will only consider using a single index [24]. If one considers the possibility of
creating a custom index to assist queries for each concept, there are potentially
|C| = 2|A| concept intents for a formal context. Given that many fx will reference
the same column, the number of unique combinations of columns from the base
table will be less than this number. However, as discussed, the ordering of the
columns in the index may have to be taken into account to improve performance.
This ordering of columns in indexes will raise the number of indexes needed back
towards |C|, however, the number of attribute combinations makes it is infeasible
to create custom B-Tree indexes for each concept intent or column order.

3 Spatial Indexing for Formal Concept Analysis

We now turn to the application of spatial methods to improve index utilization
in query resolution. First we consider using indexes on SQL expressions and
then show how spatial methods can be applied to expression indexes to improve
performance.

Many relational databases allow the creation of indexes on expressions [3].
For example, given a column name an expression index can be created on
lower(name) to help case insensitive searches. Turning to Formal Concept Anal-
ysis one can define an expression index ex for each respective SQL predicate fx.
Consider again our example from Fig. 3. The expression index e1 on attribute a1
is shown in Fig. 6. In an expression index tuples which do not satisfy the index
expression are not added to the index.

Turning to the application of expression indexes to Formal Concept Anal-
ysis. The indexes {e1, e2, ..., en} having been defined by scales {f1, f2, ..., fn}
are an implementation artifact which is equivalent to the formal attributes
{a1, a2, ..., an} of the formal context. Thus queries on an attribute ax become
queries against the respective index ex. This allows the materialization of binary
attributes from the base table using indexes alone. Creating expression indexes

210 B. Martin and P. Eklund

on the fi expressions does not change the problem of the query planner ignoring
such indexes ∪n

1 en due to selectivity constraints, highlighted in Section 2. One
can however consider indexing structures over the collected {e1, ..., en} indexes.

The use of spatial indexing structures over {e1, ..., en} can provide substantial
increases in FCA query performance. If expression indexes are created for each
attribute then above queries such as Q = {e1, e5, e11} can be classified as a
subset query [14] on the expression indexes. In a subset query over {e1, ..., en}
the objective is to seek all objects with a given subset S ⊆ {e1, ..., en} of specified
values. For example, the query seeking “. . . size <= 4096 and modified <= this
week and accessed <= yesterday . . . ” specifies objects matching S = {e1, e3, e7}.

An indexing structure motivated by the spatial indexing structure, the R-Tree
[12, 18], caters for subset queries: the RD-Tree [13, 25]. A particular strong point
of these structures is that they index multiple columns in arbitrary order and
gracefully handle lookups given a subset of the indexed columns. We first describe
the R-Tree followed by the RD-Tree.

The internal nodes in an R-Tree structure contain entries of the form;
(bounding n-dimensional box, page pointer), where pages in the subtree
reached by page pointers are within the given bounding n-dimensional box (see
Fig. 7). This transitive containment relation is the heart of the R-Tree. R-Trees
are not limited to 2 or 3 dimensional data but typically use page sizes allowing
branching factors much closer to B-Trees than shown in the example.

Searching for a spatial object in the R-Tree starts at the root node and
considers all children whose bounding box contains the query object. Searching
for the query object in Fig. 7 begins at the root node (R) – the left node (C1) has
a bounding box not containing the query object so only the right child (C2) is
followed. In turn, the new left node (C2.1) contains the query object and will be
followed whereas (C2.2) is not. At the lowest level (the children of C2.1) many
nodes may contain the query object and these are followed to retrieve tuples in
the base table.

The RD-Tree operates similarly by treating input as an n-dimensional binary
spatial area. The R-Tree notion of containment is replaced by set inclusion and

size <= 4096

Base Table

Fig. 6. Expression index on attribute a1 using f1, the SQL predicate size <= 4096

Spatial Indexing for Scalability in FCA 211

R

Base Table

Query Object

C1 C2

C2.2

C2.1

Fig. 7. An example R-Tree with a query object on the left. Each node has a bounding
box which fully contains all objects in its child nodes. An implementation stores the
bounding box for each child in the parent node. Note the example is limited to 2
dimensional space with a low branching factor for presentation purposes.

the bounding n-dimensional box replaced by a bounding set. The union of a
collection of sets forms the bounding set. The bounding set of a child is thus
defined as the union of all the elements in the child. The bounding set defined
in this way preserves the “containment” notion of the R-Tree during search as a
subset relation. When seeking an element which might be in a child it is sufficient
to test if the sought element is a subset of the bounding set for the child to know
if that subtree should be considered.

An example RD-Tree is shown in Fig. 8. Searching for the query object
01100 starts at the root node discarding (C1) because it does not contain the
query object and only following the (C2) child. At (C2) the node (C2.2) is not
followed because it does not contain the query object and only (C2.1) is followed.
The child (C2.1.2) has a bounding set 00110 which does not contain the query
object and is not considered. Only (C2.1.1) matches this query and its contents
are tested against the query object to retrieve the results from the base table.

The two main Formal Concept Analysis queries that an RD-Tree can improve
are subset and overlap queries [14, 13]. As described above a subset query seeks
all objects for which the query object is a subset. For example the query object
might be Q = {e1, e3, e7} and a matching object oi ∈ O = {a1, a3, a6, a7}′. For
a given set of attributes A = {a1, a2, ..., an} defined by their respective index
expressions E = {e1, e2, ..., en} a bitset can be derived {b1, b2, ..., bn} such that
bx is set to true when ex ∈ E is true. Thus for the example in Fig. 8 we are
seeking the query object 01100 which means we want all objects where e2 and
e3 are true, which is the same as having the formal attributes {a2, a3}.

To resolve a subset query the RD-Tree is walked from the root eliminating
any branches with a bounding set which is a subset of the query set. It is apparent

212 B. Martin and P. Eklund

R
11111

C2.1.1 01110
01100
00100
00110

C2.1.2 00110
00100
00110

Base Table

Query Object
01100

C1
11100

C2
01111

C2.2
00011

C2.1
01110

Fig. 8. An example RD-Tree with a query object on the left. Each node has a bounding
set associated which fully contains all objects in its child nodes. An implementation
would store the bounding set for each child in the parent node. Note that the example is
limited to only a small set size with a low branching factor in the tree for presentation.

that the more items from {e1, ..., en} specified in the query the less of the index
structure will be searched. The trend for RD-Trees is the inverse of that of
inverted files. To resolve the above with inverted files the lists for each ex would
have to be fetched and merged. For our same query object 01100 we would have
to fetch the lists for 01000 and 00100 to form the set intersection and finally
fetch the records from the base table (see Fig. 1).

An overlap query seeks objects which have more than a given number of
attributes in common with the query [25]. To efficiently find the contingent
size the RD-Tree index must also contain the hamming weight of the binary
expression indexes ∪n

1 en (ie. formal attributes) which are indexed. The hamming
weight for a bitset is the number of bits which are not zero. This is so objects
that are in the extent (but not the contingent) can be quickly filtered from the
result using the index alone.

The specialized overlap query Q contains the attributes Q ⊆ {e1, e2, ...en}
which define the exact attributes sought in the result set. The above subset query
would not return object oi ∈ O = {a1, a3, a6, a7}′ for Q = {e1, e3, e7} because
attribute a6 was not specified in the query. It can be seen that oi would be in
the extent of a concept with intent Q = {e1, e3, e7} but not in the contingent.
An example query translation is shown in Fig. 9.

4 Performance Analysis

The benchmark system is an AMD XP-Mobile running at 2.4GHz with 200Mhz
FSB, 1Gb of RAM at 400Mhz dual channel cas222. The software versions which

Spatial Indexing for Scalability in FCA 213

Normal query a < 10 and a < 20 and not (a < 30) and not (a < 40)
Simple translation rd-tree contains 10,20 and not rd-tree contains 30 ...
Custom translation rd-tree contains 10,20 and hamming-weight(rd-tree) = 2

Fig. 9. Translating queries involving negation to take advantage of the RD-Tree. This
assumes that the attributes 10, 20 and 30 stand for the predicates a < 10 and a < 20
and a < 30 respectively. The weight function returns the number of RD-Tree predicates
a tuple contains. So in the above, the third query doesn’t need to negate the 30 and
40 predicates because the weight test will already ensure that 30 and 40 are not set.

may effect performance include Linux kernel 2.6.11rc3, gcc 4.0.0 20050308,
PostgreSQL 8.0.1, libferris 1.1.50, ToscanaJ 1.5.1 and Java 1.5.0 01.

Testing was completed on 3 different input data sets: various synthetic formal
contexts generated with the IBM synthetic data generator [21], the mushroom
and covtype databases from the UCI dataset [4] and a formal context derived
from the metadata of 67,000 document files [1].

Also, all columns in the databases had single column B-Tree indexes cre-
ated on them for every column that might be relevant to query resolution. The
mushroom database has 16,832 tuples and the covtype table has 581,012 tuples.

A test consists of lodging a collection of SQL queries against the database
as a single batch job. Unless otherwise stated these batch tests were completed
after the database was shutdown, the filesystem with the database information
was unmounted (and remounted) and finally the database started again. This
process flushes internal database buffers and the kernel’s disk cache. Where tests
were not performed under these cases, the terms “cold cache” refer to a setup
where all buffers were flushed and the database restarted as above while “hot
cache” mean that the queries were performed with no such flushing or database
restart.

For various tests the SQL explain was used on each query in the batch to
see how many sequential table scans were planned for the batch execution. For
small datasets a sequential table scan might prove the fastest method to resolve
a query (although performance is bound to be linear and thus will not scale well
to larger data sets). Other statistics are shown as well such as the selectivity,
mean and standard deviation of a column or table. In order to demonstrate
how the spatial indexing performs on various densities of formal context for
the synthetic datasets the distribution statistics of the attributes in the formal
context is shown.

4.1 Performance on the UCI Mushroom

The attributes used from the mushroom table are shown in Fig. 10. The two
columns bruises and capshape were used in an attribute list in ToscanaJ. As
there are eight binary attributes when each distinct value for these two columns
is considered there are a total of 256 SQL queries generated.

214 B. Martin and P. Eklund

Dataset

Column Value Selectivity Selectivity
(count) (% of table)

bruises NO 10080 59.9
bruises BRUISES 6752 40.1
capshape KNOBBED 1680 10.0
capshape CONVEX 7592 45.1
capshape FLAT 6584 39.1
capshape BELL 904 5.4
capshape SUNKEN 64 0.4
capshape CONICAL 8 0.05

Fig. 10. Selected attributes for the mushroom table and the number of tuples which
have the given attribute-value combination

Test type Cold cache Hot cache Sequential scans
B-Tree only 30 18 4
RD-Tree index simple query translation 10 4 1
RD-Tree optimized query translation 1.6 0.4 0

Fig. 11. Times with hot and cold caches to complete queries for 8 attribute list context.
Times are in seconds.

As the relation is relatively small this test was also conducted with explicitly
hot caches. This should give an indication of performance differences on small
data sets modeling the use case of someone interactively creating and modifying
scales. The benchmark was obtained by executing a test multiple times in a row
and only taking the last batch time. The results are shown in Fig. 11.

There are 2 versions using an RD-Tree to speed execution: a simple trans-
lation and a customized query. The simple translation just substitutes SQL op-
erations to consult the RD-Tree and leaves all other query structure identical.
This translation is fairly mechanical and does not fully take advantage of the
RD-Tree for query resolution. The custom translation version takes advantage
of adding to the RD-Tree the additional information of the hamming weight of
the index expressions ∪n

1 en as described in Section 3.

4.2

The UCI covtype database consists of 581,012 tuples with 54 columns of data.
For this paper two ordinal columns were used: the slope and elevation. Tests
were performed by nesting an ordinal scale on elevation inside an ordinal scale
on slope using ToscanaJ 1.5.1. This nesting produced a total of 378 queries
against the database. Given that the primary table is 987Mb tests against a hot
cache were not performed. The results are shown in Fig. 12. The RD-Tree index
takes 2m:17s to create. As there were no explicit negations there was no gain

Spatial Indexing for Scalability in FCA 215

Performance on UCI Covtype Dataset

in producing an RD-Tree optimized SQL query as was done for the mushroom
database.

Test type Cold cache (mm:sec) Sequential scans
B-Tree only 56:16 90
RD-Tree index simple query translation 0:42 0

Fig. 12. Times to complete nested scale queries against the covtype database. The
nesting is obtained by generating a nested line diagram in ToscanaJ placing an ordinal
scale on elevation inside an ordinal scale on slope.

4.3 Performance on Semantic File System Data

An index for part of the libferris filesystem was created for 66,936 files. A formal
context based on file name components contains 886 formal attributes for these
objects. Formal attributes were packed into a single SQL bit varying field making
the total size of the formal context only 10Mb. For this formal context there are
488 concepts. Benchmarks for querying the size of the extent of each context
is shown for both hot and cold caches in Fig. 13. Without the use of a special
purpose index structure the database degenerated to a sequential table scan for
almost every query.

Test type Cold cache Hot cache Sequential scans
B-Tree only 80 80 487
RD-Tree index 5 1 0

Fig. 13. Times in seconds with hot and cold caches to complete queries

Query Thousands Time Time Time Time
Type of trans (128) (64) (32) (16)
B-Tree 1 0.8 0.8 0.7 0.7
RD-Tree 1 0.7 0.6 0.6 0.5
B-Tree 10 3.3 3.3 3.1 3.1
RD-Tree 10 2.4 1.4 0.9 0.7
B-Tree 100 27.6 26.8 26.4 26.2
RD-Tree 100 19.2 10.4 6.7 4.5
B-Tree 1000 6:28 6:14 5:50 5:35
RD-Tree 1000 5:56 2:32 1:30 1:18

Fig. 14. Times for query sets against synthetic databases. SQL Explain shows the B-
Tree method always electing to disregard all indexes and perform a sequential scan.
The RD-Tree query plan always includes zero sequential scans. The number in brackets
below the Time column header is the tlen.

216 B. Martin and P. Eklund

4.4

The following use synthetic data generated with the IBM synthetic data genera-
tor [21]. Parameters include the number of transactions (ntrans), the transaction
length (tlen), length of each pattern (patlen), number of patterns (npat) and
number of items (nitems). The number of items was fixed at its minimal value
of 1000. The tlen, patlen and npats can be varied to change the density of the
resulting formal context while the ntrans is useful for testing the scalability of
the query resolution.

0.5

1

1.5

2

2.5

3

3.5

1286416

Time
(sec)

Itemset size (tlen)

Query time for 10,000
transaction db

RD-Tree
B-Tree

50

100

150

200

250

300

350

400

1286416

Time
(sec)

Itemset size (tlen)

Query time for 1000,000
transaction db

RD-Tree
B-Tree

Fig. 15. Execution times for queries using either B-Tree or RD-Tree indexing against
databases of varying density

Only the first 32 items were imported into the database. Five values of tlen
were tested, 256, 128, 64, 32 and 16 at various database sizes ranging from 1,000
to a million transactions.

The query sets were constructed by mining the Closed Frequent Itemsets for
the 1,000 transaction database with a minimum support value of 0.01%. The
Closed Frequent Itemsets provide the concept intents for an iceberg lattice [23,
17]. This generated 556 concept intents. A query was generated to find the size

Spatial Indexing for Scalability in FCA 217

Performance on Synthetic Data

To find the contingent sizes without using an RD-Tree using an SQL query
per concept is slower overall than using a single table scan and handling the logic
in the client. Using a single table scan from a relational database client takes
70 seconds to find every concept’s contingent size. Using an RD-Tree index the
same operation takes 2.2 seconds. The use of RD-Trees implies a cost of creating
the index, for the above example this is 27 seconds. Index creation can happen
faster than a client table scan because it is being done inside the database server
process and avoids formatting and copying overhead. So the index can be created
and used faster than any other method for finding contingent counts.

Although the use of spatial indexing was first adopted and implemented to
allow Formal Concept Analysis to be applied specifically to the special circum-
stances encountered by Semantic File Systems, the data structures have also
been found to be an advantageous structure for general purpose FCA applica-
tions: such as those supported by ToscanaJ.

of the extent of each concept. This produced a distribution of 28 single attribute,
224 two attribute, 284 three attribute and 20 four attribute SQL queries. Bench-
marks against these datasets are presented in Fig. 14 and graphically in Fig. 15.
Size statistics for the DBMS tables and indexes are shown in Fig. 16.

The efficiency of using RD-Trees degenerates as the density of the formal
context increases. To measure this effect the number of items per itemset was
varied with all other parameters static. Results are shown in Fig. 16. The results
with 128 items per itemset are the same as those in Fig. 14.

5 Conclusion

Special indexing structures are essential to FCA systems with large data sets
like those encountered in semantic file systems. An index structure derived from
spatial indexing for accelerating subset queries has been found to be productive.
When the user wishes to list the files matching a concept an RD-Tree permits
this within an acceptable time frame for interactive use. The link to spatial
indexing structures have not been reported in current best practices elsewhere
in the FCA literature [5].

0

50

100

150

200

250

300

350

200010000

Size
(MB)

Thousands of transactions

Basetable
RD-Tree

B-Tree

Query Items/ Max Mean Std Time
Type pattern (%) (%) Dev (sec)
B-Tree 256 64 26 19 29.3
RD-Tree 38.9
B-Tree 128 36 13 10 27.6
RD-Tree 19.2
B-Tree 64 19 6 5 26.4
RD-Tree 10.2
B-Tree 32 10 3 3 25.7
RD-Tree 6.7
B-Tree 16 5 1.6 1.4 25.9
RD-Tree 4.8

Fig. 16. (Left) Statistics for the base table and indexes of the synthetic databases. Note
that the B-Tree index size is only for a single column whereas the RD-Tree covers all 32
columns. (Right) Effect of formal context density on RD-Tree performance for 100,000
transaction database. The number of items per pattern was reduced in increments from
128 to 16 giving a max, average and standard deviation of set bits in the formal context
as shown.

The performance of spatial indexing for Formal Concept Analysis in various
settings has been examined and shown to provide substantial improvements in

218 B. Martin and P. Eklund

5. Claudio Carpineto and Giovanni Romano. Concept Data Analysis. Wiley, England,
2004.

6. Richard Cole and Peter Eklund. Analyzing an email collection using formal concept
analysis. In European Conf. on Knowledge and Data Discovery, PKDD’99, number
1704 in LNAI, pages 309–315. Springer Verlag, 1999.

7. Richard Cole and Peter Eklund. Browsing semi-structured web texts using for-
mal concept analysis. In Proceedings 9th International Conference on Conceptual
Structures, number 2120 in LNAI, pages 319–332. Springer Verlag, 2001.

8. Richard Cole and Gerd Stumme. Cem: A conceptual email manager. In 7th
International Conference on Conceptual Structures, ICCS’2000. Springer Verlag,
2000.

9. Michael J. Folk and Bill Zoelick. File Structures. Addison-Wesley, Reading, Mas-
sachusetts 01867, 1992.

10. Bernhard Ganter and Rudolf Wille. Formal Concept Analysis — Mathematical
Foundations. Springer–Verlag, Berlin Heidelberg, 1999.

11. David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. Jr O’Toole. Se-
mantic file systems. In Proceedings of 13th ACM Symposium on Operating Systems
Principles, ACM SIGOPS, pages 16–25, 1991.

12. Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In
Proc. ACM-SIGMOD International Conference on Management of Data, Boston
Mass, 1984.

13. Joseph M. Hellerstein and Avi Pfeifer. The RD-Tree: An Index Structure for Sets,
Technical Report 1252. University of Wisconsin at Madison, October 1994.

14. S. Helmer. Index structures for databases containing data items with setvalued
attributes, 1997.

15. Ben Martin. File system wide file classification with agents. In Australian Docu-
ment Computing Symposium (ADCS03). University of Queensland, 2003.

16. Ben Martin. Formal concept analysis and semantic file systems. In Peter W. Ek-
lund, editor, Concept Lattices, Second International Conference on Formal Con-

many cases. Performance gains from RD-Trees are very effective for sparse formal
contexts where queries can be resolved five times faster on large data sets as
shown in Section 4.4. The largest benchmark results were found when applied to
a large dataset from the UCI collection where the formal context was generated
by nesting one conceptual scale inside another. In such an environment queries
can be executed over 80 times faster using an RD-Tree than without.

References

1. libferris, http://witme.sourceforge.net/libferris.web/. Visited Nov 2005.
2. Mail-sleuth homepage, http://www.mail-sleuth.com/. Visited Jan 2005.
3. Postgresql, http://www.postgresql.org/. Visited June 2004.
4. Blake, C., Merz, C. UCI Repository of Machine Learning Databases. [http://www.

ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California,
Department of Information and Computer Science, 1998.

cept Analysis, ICFCA 2004, Sydney, Australia, Proceedings, volume 2961 of Lecture
Notes in Computer Science, pages 88–95. Springer, 2004.

Spatial Indexing for Scalability in FCA 219

17. Mohammed J. Zaki, Nagender Parimi, Nilanjana De, Feng Gao, Benjarath
Phoophakdee, Joe Urban, Vineet Chaoji, Mohammad Al Hasan and Saeed Salem.
Towards generic pattern mining. In Bernhard Ganter and Robert Godin, editors,
Concept Lattices, Third International Conference on Formal Concept Analysis,
ICFCA 2005, Proceedings, Lecture Notes in Computer Science, pages 1–20, Lens,
France, 2005. Springer.

18. Hans-Peter Kriegelm Ralf Schneider Norbert Beckmann and Bernhard Seeger. The
r*-tree: An efficient and robust access method for points and rectangles. In Proc.
ACM-SIGMOD International Conference on Management of Data, Atlantic city,
N.J., 1990.

19. Yoann Padioleau and Olivier Ridoux. A logic file system. In USENIX 2003 Annual
Technical Conference, pages 99–112, 2003.

20. Susanne Prediger. Logical scaling in formal concept analysis. In International
Conference on Conceptual Structures, pages 332–341. Springer, 1997.

21. R. Agrawal, H. Mannila, R Srikant, H. Toivonen and A. Inkeri Verkamo. Fast
discovery of association rules. In U. Fayyad et al., editor, Advances in Knowledge
Discovery and Data Mining, pages 307–328, Menlo Park CA, 1996. AAAI Press.

22. T. Rock and R. Wille. Ein TOSCANA-erkundungssytem zur literatursuche. In
G. Stumme and R. Wille, editors, Begriffliche WissensveraRbeitung: Methoden und
Anwendungen, pages 239–253, Berlin-Heidelberg, 2000. Springer-Verlag.

23. Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, and Lotfi Lakhal.
Computing iceberg concept lattices with titanic. In J. on Knowledge and Data
Engineering (KDE), volume 42, pages 189–222, 2002.

24. Dan Tow. SQL Tuning. O’Reilly & Associates, Sebastopol, California, 2004.
25. Woo Suk Yang, Yon Dohn Chung, and Myoung Ho Kim. The rd-tree: a structure

for processing partial-max/min queries in olap. Inf. Sci. Appl., 146(1-4):137–149,
2002.

220 B. Martin and P. Eklund

Homograph Disambiguation Using Formal
Concept Analysis

L. John Old

School of Computing, Napier University, Edinburgh, UK
j.old@napier.ac.uk

Abstract. Homographs are words with identical spellings but different origins
and meanings. Natural language processing must deal with the disambiguation
of homographs and the attribution of senses to them. Advances have been made
using context to discriminate homographs, but the problem is still open. Dis-
ambiguating homographs is possible using formal concept analysis. This paper
discusses the issues, illustrated by examples, using data from Roget’s Thesaurus.

Keywords: Type-10 chains, partitions, components, Roget’s Thesaurus, plus op-
erator, word fields, neighbourhood lattices.

1 Introduction

We use formal concept lattices [12] to extract and visualize ambiguous words (homo-
graphs) and senses from a lexicon, then use the results to identify whether the ambiguity
of the words was resolved by partitions in the lattices. We then compare the results with
previous attempts to disambiguate such words using Type-10 components [2], and anal-
yse and discuss identified exceptions.

2 Homographs

Homographs1 are words with identical spellings but different origins and meanings.
These differences are made explicit in lexicons using headword numbers. The senses of
a word are then identified under each headword.

1 bat
n. 1. bat [a club]; 2. bat [sports equipment]
vb. bat [to hit using a bat]
2 bat
n. bat [a flying mammal]
...

Also used are etymology (word history) and part-of-speech such as noun (n.) and
verb (vb.), as in the example above. It is the lexicographer’s judgment as to how many

1 In linguistics the hypernym of homograph is homonym (meaning same name) and includes
homophones, words of different meaning but which sound the same when spoken. An example
is bore and boar.

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 221–232, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

222 L. John Old

divisions are made of a headword. The goal is to disambiguate words that look the same
but are semantically distinct.

Headwords in lexicons may frequently be found differentiated numerically though
they have a common etymological ancestry. In such systems bat vb. in the example
above would be given a listing as a separate headword. This paper uses a strict defini-
tion of a homograph: that two or more words, though spelled the same, have different
etymologies. For example, contract (with an emphasis on the first syllable, and meaning
an agreement or to make an agreement) and contract (with an emphasis on the second
syllable, and meaning to reduce in size), both derive from L. contractus, pp. contrahere,
to draw together. Though these words have quite different meanings, they are not ho-
mographs under a strict definition, but cognates (related by descent from the same roots
in some ancestral language). Bat1 (club) and bat2 (mammal) in the given example are
indeed homographs under the strict definition. Bat1 is derived from L. battuere to beat
(and, incidentally, cognate with battle and combat), while bat2 comes to English most
likely from Old Swedish nattbakka (via early Viking settlers [13]).

All words used as examples in this paper were disambiguated etymologically by us-
ing their semantic roots. Apart from rare loan words borrowed from non-Indo-European
language, the semantic roots used are all Indo-European (IE) roots. Note that all IE
roots are hypothetical. They are sometimes referred to as proto-Indo-European roots
and prefixed by a *, and are all derived by comparing words and their senses from Indo-
European languages such as Latin, Greek and Sanskrit; and modern Icelandic, Hindi,
Russian and Iranian (among others).

Note also that more than seventy homographs have more than two expressions. As
an example, pa has three:

Homograph Meaning
Pa 1 Protactinium
pa 2 father
pa 3 Maori stronghold

Pa 1 is an abbreviation of a chemical element; pa 2 is an English dialect word syn-
onymous with father; and pa 3 is a foreign loan word. Though homographs with more
expressions could be assumed to cause greater difficulties for disambiguation, usually
they are rare words with low polysemy and generally easier to differentiate. It is the
highly polysemous words (those with many sense variations) that provide the greatest
difficulty for disambiguation.

3 Research

Natural language processing (NLP) must deal with the disambiguation of homographs
and the attribution of senses to them. Advances have been made by employing con-
text and systems such as N-gram taggers, Bayesian classifiers, vector space models
with neural networks, and decision trees ([15],[16]) to discriminate homographs, but
the problem is still open. Work has also been done using statistical models of Roget’s
Thesaurus categories to disambiguate word senses [14]. Treating words as objects and
their senses as attributes, identifying words with disjoint sets of senses is possible using

Homograph Disambiguation Using Formal Concept Analysis 223

formal concept analysis (FCA) [17]. The assumption made and tested in this paper is
that this is also applicable to differentiating homographs.

This research manually identified approximately 600 homographs using the strict
definition. These were used as a benchmark to compare two partitioning methods, Type-
10 chains ([2], [5], [9], [10]) and FCA lattices [12]. The test data was derived from
Roget’s Thesaurus [1], a semantic dictionary organized by concepts rather than words.

552 homographs were identified in RIT. Of those homographs, 179 either occur in
senses by themselves or are the sole representatives of a homograph (the ambiguous
partner does not occur in Roget’s Thesaurus). For example Nice, a homograph of nice
(likeable) appears only in an RIT list called Principle Cities of the World.2 Not sharing
any senses with other words, such homographs are already partitioned and cannot par-
ticipate in Type-10 chains. Nice could also be easily differentiated using capitalization.
The remaining 373 homographs are potentially ambiguous, and eligible for use as test
words. These test words were used to compare the results of Type-10 components with
neighbourhood lattices regarding effectiveness of discrimination of homographs.

Note that the goal here is to efficiently separate instances of homographs for disam-
biguation (lead1 from lead2), not to automatically identify and classify all instances of a
particular homographic word together (all instances of lead1 together). The latter would
indeed be desirable, but at this point entails further problems not yet solved. In other
words, it is not yet possible, while partitioning homographs, to automatically group to-
gether all instances or senses of a particular word that is a homograph of another word,
into a single partition.

4 Definitions

String a sequence of characters representing a word or homograph; an entry in RIT.

Word a disambiguated string, or entry, in RIT. Lead (lead1, guide, not follow) is one
word; lead (lead2, the metal) is another, different, word.

Homograph a string for which there are two or more words with the same spelling, but
with different etymological origins or roots. Lead1 derives from an Indo-European root,
LEIT-2, meaning to guide; lead2 derives from an Indo-European root, EL-1, meaning
red (from the colour of the oxide of lead, also known as red lead and sometimes used in
primer paint).

Sense a set of words that share a particular meaning or concept; also known as a Synset;
(the strings in this set are known as synonyms).

Entry a particular sense of a word; a particular word in a Synset.

Polysemy the number of senses a word has; number of entries representing a particular
word in RIT. Over, for example, has a polysemy of 22; it can be found listed in 22
senses in RIT.
Paragraph a set of synsets of semantically-related concepts (and part-of-speech) ,
grouped together in RIT.

Category a set of paragraphs of semantically-related notions, grouped together in RIT.

2 A list in Roget’s Thesaurus is a special case where a set of senses each consist of a single word.
Each entry in the list is viewed as a separate, but related, concept contributing to the list topic.

224 L. John Old

Figure 1 shows a sample of the structure of RIT using the word over. This represents
one sense of over, and this instance of over is one entry in RIT. The entry occurs in
Synset 40:10:1, read as RIT Category number 40; Category name, Addition; Paragraph
10; Synset 1. Each of the adjacent synonyms in Synset 40:10:1 is also an entry; a string
representing one sense of that word.

Fig. 1. An example of an entry in Roget’s Thesaurus. The word over occurs as an entry in Cat-
egory 40, Paragraph 10, Synset 1. (Bold-type synonyms are considered the most representative
words of the sense).

5 Formal Concept Analysis

Several researchers have used so-called neighbourhood lattices to visualize parts of
Roget’s thesaurus. A semantic neighbourhood is similar to a word field (a set of se-
mantically related words), but also includes the set of the shared senses of the words.
A formal context built from a semantic neighbourhood takes the words of a neighbour-
hood as formal objects and their corresponding senses as formal attributes. The origi-
nal formalization of neighbourhood lattices was suggested by Wille in an unpublished
manuscript. Priss [7] defines neighbourhood lattices as follows:

Instead of using the prime operator (′), the plus operator (+) retrieves for a set of
objects all attributes that belong to at least one of the objects. Formally, for a set G1
of objects in a context (G, M, I), ι+(G1) := {m ∈ M | ∃g∈G1 : gIm}. Similarly
ε+(M1) := {g ∈ G | ∃m∈M1 : gIm} for a set M1 of attributes. If two plus mappings
are applied to a set G1 it results in a set ε+ι+(G1) (with ε+ι+(G1) ⊇ G1) which
is called the neighbourhood of G1 under I . A neighbourhood of attributes is defined

Homograph Disambiguation Using Formal Concept Analysis 225

analogously. A neighbourhood context is a context whose sets of objects and attributes
are neighbourhoods, such as (ε+ι+(G1), ι+ε+ι+(G1), I). The resulting lattice is called
a neighbourhood lattice.

Such lattices are used here to collect and display the senses and synonyms of a topic
word. Though there is no limit to the number of times the plus operator can be applied,
three times is sufficient to create the neighbourhood of senses with synonyms. The first
iteration is to collect the senses of the topic word; the second is to collect the synonyms
shared within those senses; and the third to collect the special senses of the synonyms
(not shared by the topic word).

6 Type-10 Components

Type-10 chains and Type-10 components derive from the mathematical model of ab-
stract thesauri (of which Roget’s Thesaurus is one instantiation), developed by Bryan
[2]. The elements in this model are strings and senses (sense definitions, or Synsets),
and a relation between them. Bryan defined a series of chains linking entries by word
associations, sense associations, or both. If a word appears in two different senses, an
association between the senses is implied. If two different words share a sense, an as-
sociation between the words is implied. The most restrictive, the Type-10 chain, is a
double chain. This requires that for any two words sharing a sense, there exists a sec-
ond sense that that also shares those two words, in order to participate in the chain. The
two words plus two senses has been dubbed a quartet.

The Type-10 chain restriction is intended to ensure that links are not arbitrary, as
happens when two senses are linked by homographs. The assumption is, for example,
that there is no second word that accompanies both lead (the metal) and lead (not fol-
low) for any pair of their senses. Figure 2 illustrates a simple example of RIT entries
(the X’s) forming quartets.

Type-10 chains are used to form partitions (equivalence relations), called here com-
ponents, on sets of entries. Talburt and Mooney [10] derived all possible Type-10 chain
components from the 200,000 entries in RIT in an attempt to automatically separate

Fig. 2. Quartets formed by some of the synonyms and senses of mere. 397:1:1 / 398:1:1 / loch /
mere forms one quartet.

226 L. John Old

all homographs. The largest Component contained more than 22,000 entries, and more
than 10,000 components were derived. The effectiveness of this method has never been
tested against a complete set of homographs.

Jacuzzi [5] reproduced Talburt and Mooney’s work but applied a further constraint:
that a quartet can not participate in a component if it shares only one RIT entry with that
component. This was because he observed that it was possible for a quartet to satisfy the
Type-10 constraint, yet connect to other quartets by only one entry (a string identical to
one or more other strings in the component, plus a sense shared by one or more other
strings in the component).

Strictly speaking, Jacuzzi’s derived components are not partitions because in split-
ting quartets the offending entry must be included in all derived child components.
The components are no longer equivalence relations on the set of all entries in RIT.
None-the-less Jaccuzzi’s results were chosen for this study as they are more restrictive
and the components are smaller and therefore less likely to combine homographs. The
maximum sized Jacuzzi component is 1,490 RIT entries.

7 Neighbourhood Lattices

Mere is a homograph. Its main meanings are simple, pure (mere1), and sea, ocean, loch
(mere2). Webster’s New Collegiate Dictionary [13] defines mere2 as a sheet of standing
water: POOL. Figure 3 shows the neighbourhood lattice of the undifferentiated word.
The left hand side (the group to the left of the object mere) represents mere1. Apart from
the concept labelled with mere, this forms a partition separating mere1 from senses of
mere2. For simplicity, the attribute labels are not shown in this diagram. Two of mere1’s
attributes, for example, are 35:9:1 Smallness and 45:5:1 Simplicity, Noncomplexity.

Most of the synonyms of mere in Figure 3 are differentiated by senses that are pecu-
liar to them. This causes a more complex structure than is needed to observe partitions
between instances of the topic word (the homograph we are interested in).

Fig. 3. Formal concept lattice of the semantic neighbourhood of mere (all synonyms and all senses
(unlabelled) of the synonyms of mere)

Homograph Disambiguation Using Formal Concept Analysis 227

Fig. 4. Formal concept lattice of the semantic neighbourhood of mere (synonyms and senses of
mere only)

Figure 4 shows a neighbourhood lattice of mere where the plus operator has been
applied only twice. Here, the senses of mere alone are used as attributes. Mere1 is
identifiable by the two senses 35:9:1 and 45:5:1.

If the top- and bottom-concepts of the lattice are removed from the lattice in
Figure 4 we obtain three disjoint graph components; one dealing with mere1 and two
dealing with mere2. This shows that there is no overlap of senses or synonyms of
mere1 and mere2. The result is called the horizontal decomposition of the lattice and
has been used amongst others, by Dekel and Gil [3] to identify component classes in
the structure of legacy computer software. The collective lattice of partitions is called
the horizontal sum [4]. Thus, Figure 4 is the horizontal sum of the meaningful compo-
nents.

Figures 3 and 4 illustrate the separation of homographs of a word using the senses
as formal attributes (and as differentiae). Of the approximately two-and-a-half-thousand
entries in Roget’s Thesaurus that represent homographs, all but 22 were found to be dif-
ferentiable by this method. Those 22 ambiguous entries consisted of 10 homographs.
The same entries were differentiable by the Type-10 partitioning (i.e. the 22 were also
not differentiable by Type-10 components). The 22 undifferentiated entries (10 homo-
graphs) were found among just eight of the Jacuzzi components.

8 The Exceptions

The 10 problem homographs fell into three cases. Each case involved a word shared by
each of the homographs (a synonym in common). This shared word provided a bridge
between the homographs and prevented the formation of a partition. The 10 homographs

228 L. John Old

Table 1. Ambiguous homographs, their Indo-European roots and root meanings

Entry IE Root Root Meaning
brash 1 BHEL-2 swell, blow
brash 1 KAU-2 strike, hew
brash 1 RE-1 Backward
brash 2 BHREG- break, breach
fell 1 P(H)OL- Fall
fell 2 GHEL-2 shine, bright
light 1 LEGWH- light, not heavy
lightsome 1 LEGWH- light, not heavy
light 2 LEUK- light, brightness
lightsome 2 LEUK- light, brightness
post 1 STA- stand
poster 1 STA- stand
post 2 (A)PO- away, off
poster 2 (A)PO- away, off
press 1 PER-5 strike
press 2 GHESOR- hand
rash 1 KAU-2 strike, hew
rash 1 RE-1 backward
rash 2 RED- scrape, scratch, gnaw
set 1 SED-1 sit
set 2 SEKW-1 follow
set 3 N/A Egyptian god
slug 1 SLAK- strike
slug 2 SLEU- sluggish, slow

were brash, fell, light, lightsome, post, poster, press, rash, set and slug. These are listed
in Table 1, along with their Indo-European Roots and each roots’ meanings3.

The first case involved homographs that each shared a supposedly unambiguous
(non-homographic) word as a synonym. As it happens these shared words had many,
very diverse senses (25 in the first instance). One of those senses of the shared word
overlapped with the meaning of one homograph, while a second sense of the word
overlapped with the meaning of the second homograph. Such cases will be referred to
as the ambiguous synonyms category.

As an example, press1 generally relates to printing or pressure, and is derived from
an IE root, PER-5 (meaning, to strike); while press2 relates to drafting into military
service or being at hand, and derives from GHESOR- (meaning, hand). Both press1
and press2 share call as a synonym. The sense of the word call shared with press1 has
to do with calling on someone, as in: to pressure someone for money or a sale. The
second sense of call, shared with press2, has to do with calling up someone (call up
has one meaning of ordering someone to report for military duty). It is clear that these

3 Brash1 comes from bold + rash1; rash1 is a variant of rush1 (hurry); rush1 and rash1 come
from RE-1 (backward) + KAU-2 (strike, hew); and bold comes from BHEL-2 (swell, blow).
Brash1, therefore, derives from the three IE roots BHEL-2 + RE-1 + KAU-2. Hence the three
entries in the table for brash1, and the two entries for rash1.

Homograph Disambiguation Using Formal Concept Analysis 229

Table 2. Category one of undifferentiated homographs involves ambiguous synonyms

Hom1 Meaning1 Hom2 Meaning2 Comp#
Press1 call on Press2 call up [VJ2 2478]
Set1 head for Set2 head of (collection) [VJ2 184]
Set1 suit, attune (to match) Set2 suit (matching attr.s) [VJ2 9323]

senses of two, otherwise distinct and unambiguous, homographs live close to each other
in the semantic universe.

The other homograph in this category, set, has two instances of this problem. Con-
sidering that the word set has 53 senses, 51 of which were disambiguated, this is not
a dismal result. The ambiguous entries in Roget’s Thesaurus for the first category are
listed in Table 2. The last column shows the component numbers from Jaccuzzi’s Type-
10 chain components.

Figure 5 illustrates the restricted neighbourhood lattice of the homographs of press.
To reduce complexity the formal context was restricted to those synonyms that occur in
more than one sense of press. The majority of senses belong to press1. Press2 has the
three senses located to the extreme right. Call is a shared synonym of both press1 and
press2, and prevents the formation of a partition between the two homographs.

The second category of undifferentiated homographs is identifiable by shared syn-
onyms that are themselves ambiguous homographs. These are, again, highly polyse-
mous words. They have a wide range of senses that allow them to overlap semantically,
as synonyms, with many other strings-including the strings that constitute the instances
of these topic homographs. Table 3 shows the second category.

Down2 is an expanse of rolling, grassy, treeless upland used for grazing (a moor) in
the context of the undifferentiated RIT fell entry. It is often used in the plural, in this
sense, as part of a place-name, as in: Watership Downs. A fell (fell2) is a type of flat

Fig. 5. Formal concept lattice of the restricted semantic neighbourhood of press (all synonyms
sharing more than one sense, plus senses of press only). Press2 has the three senses located to the
extreme right. Call is a shared synonym of both press1 and press2.

230 L. John Old

Table 3. Category two of undifferentiated homographs involves ambiguous homographs

Hom1 Meaning1 Hom2 Meaning2 Comp#
Fell1 fall, Down2 Fell2 moor, a Down2 [VJ2 4573]
Slug1 slowpoke, Poke1 Slug2 slog, Poke1 [VJ2 1501]

land, synonymous with moor. Down2 is also the adverb, down (as in: up, down, forward
and backwards). It is an extension of this second persona of down2 which is found as
a synonym of fell1 (to down something; to chop down or drop, as in: to fell a tree).
Down1, incidentally, is the down derived from goose feathers.

Poke1 is an abbreviation of an Americanism, slowpoke [US], from cowpoke [US], a
cowpuncher [US] or cowboy. Punching cows involved prodding (or poking) them with
poles to make them enter railroad cars. Slug1 is the slimy invertebrate and slowpoke
means one who moves slowly. Slug2 means hit; strike. (Poke2, not listed, is a pocket,
as in: a pig in a poke).

Category three involves three cases where synonyms that are differentiable homo-
graphs co-occur with related homographs that are themselves differentiable homographs,
but that match with homographs accompanying their homographic nemeses. The con-
sequence is that there is a catch-22; each homograph relies on the other to differentiate
it. Because they have identical spellings, and their cohort homographs have identical
spellings, they match in a rare undifferentiated quartet. Referring to Table 4, light1 (not
heavy) and light2 (bright), both have lightsome as a synonym. Lightsome1 means weight-
less (also cheerfulness and caprice) while lightsome2 means full of light. Lightsome
(1 & 2) is an infrequent and archaic word in English.

Likewise, brash and rash can both mean impulsive or indicate a collection of red
spots that are symptoms of a disease. And post or poster can both mean put up an
announcement and also be the names for the role of a mailman. Brash2, poster1, and
poster2 are all rare words in English.

Note that in category three, lightsome, poster and rash are equally ambiguous to
light, brash, and post. So this represents six, not just three, instances of undifferentiated
homographs. Table 4 was restricted to emphasizing light, brash, and post, for brevity.

Table 4. Category three of undifferentiated homographs involves other undifferentiated homo-
graphs

Hom1 Meaning1 Hom2 Meaning2 Comp#
Light1 weightless, Lightsome1 Light2 bright, Lightsome2 [VJ2 7393]
Brash1 impulsive, Rash1 Brash2 disease, Rash2 [VJ2 2183]
Post1 (put up a) Poster1 Post2 mailer, (a) Poster2 [VJ2 8564]

9 Discussion

It is well known by linguists that words with otherwise distinct etymologies can in-
fluence each other to trade meaning and blend, and eventually come to have the same

Homograph Disambiguation Using Formal Concept Analysis 231

connotations. This may well have happened with press1, press2, light1 and light2, and
possibly some of the other homographs unsuccessfully disambiguated here by either the
FCA lattices or the Type-10 components methods. Also, many of these ambiguous syn-
onyms and homographs are highly polysemous, giving ample opportunity for instances
of semantic overlap.

Finally, in some of these cases one of the senses or one of the words is rare. It should
not be surprising that these are difficult to disambiguate. Languages tend to discard
or modify ambiguous words, but rare instances have less opportunity for scrutiny. In
fact many of the successfully disambiguated homographs suggested a pattern. That if
a homograph came from a specialty area, such as a branch of science, it was more
likely to have a matching common word as a homograph. An example is abbrevi-
ations for chemical elements. Be: Beryllium; He: Helium; As: Arsenic; In: Indium;
At: Astatine.

It may appear to be a contradiction that both highly polysemous and rare-sense words
should both contribute to ambiguity, but there appears to be a balance required for
disambiguation in language-sufficient context to differentiate but not so much as to
cause confusion.

10 Conclusion

We have compared more than two-and-a-half-thousand semantically ambiguous entries
in Roget’s Thesaurus using two methods, FCA neighbourhood lattices and Type-10
chain components. The ambiguity amongst entries was caused by homographs-words
of identical spelling but with different origins and meaning. We conclude that, given a
lexicon and set of homographs in common, FCA neighbourhood lattices can discrim-
inate homographs as well as Type-10 chain components. Furthermore, while Type-10
components may contain up to 1,500 thesaurus entries, semantic neighbourhoods are
constrained to the senses and synonyms of the topic word. Consequently, the parti-
tions formed around homographs using FCA make the data more tractable and human-
accessible.

Ten of the 373 homographs used in this study had senses that were undifferentiable
by either of the two methods. These cases involved senses where homographs of com-
pletely different origins (by definition) overlapped semantically via words in common.
These words-in-common were other homographs in all but three instances. The failed
instances involve very rare or very common (highly polysemous) words, and may rep-
resent the boundaries for discrimination of homographs. They may also indicate the
range and combination of frequency and rarity necessary to disambiguate polysemous
words in human conceptual processing.

Future work should examine the effectiveness of combining previously documented
methods of homograph disambiguation with FCA neighbourhood lattices to disam-
biguate homographs with a view to improving effectiveness. Furthermore, while neigh-
bourhood lattices are effective at partitioning senses of homographs, at the same time
they may partition senses within the set of senses. For completeness, a method should
be developed which classifies together all of the senses of any homograph to which the
partitioning method is applied.

232 L. John Old

Acknowledgements

The lattices used in this paper were developed using Conexp [17] and Anaconda [11].
The electronic version of Roget’s International Thesaurus was used with kind permis-
sion from Dr W. A. Sedelow Jr. and Dr S. Yeates Sedelow.

References

1. Berrey, L. (Ed.). (1962). Roget’s international thesaurus (3rd ed.). New York: Crowell.
2. Bryan, R. M. (1973). Abstract thesauri and graph theory applications to thesaurus research.

In S. Y. Sedelow (Ed.), Automated language analysis, report on research 1972-73 (pp. 45-
89). Lawrence, KS: University of Kansas.

3. Dekel, U., and Yossi, G. (2003). Revealing class structure with concept lattices. The Tenth
Working Conference on Reverse Engineering, IEEE Computer Society Press, pp. 353-365.

4. Ganter, B., and Wille, R. (1999). Formal concept analysis: Mathematical foundations.
Berlin-Heidelberg-New York: Springer. ISBN 3-3540-62771-5.

5. Jacuzzi, V. (1991, May). Modeling semantic association using the hierarchical structure of
Roget’s international thesaurus. Paper presented at the Dictionary Society of North America
Conference, Columbus, Missouri.

6. Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K., and Tengi, R. (1993). Five
papers on WordNet. Technical Report. Princeton, N.J: Princeton University.

7. Priss, U. (1996). Relational concept analysis: Semantic structures in dictionaries and lex-
ical databases. (Doctoral Dissertation, Technical University of Darmstadt, 1998). Aachen,
Germany: Shaker Verlag.

8. Priss, U., and Old, L. J. (2004). Modelling lexical databases with formal concept analysis.
Journal of Universal Computer Science, 10(8), 967-984.

9. Sedelow, S.Y. (1991). Exploring the terra incognita of whole-language thesauri. In R. Gamble
and W. Ball (Eds.), Proceedings of the Third Midwest AI and Cognitive Science Conference
(pp. 108-111). Carbondale, IL: Southern Illinois University.

10. Talburt, J. R., and Mooney, D. M. (1990). An evaluation of Type-10 homograph discrimina-
tion at the semi-colon level in Roget’s international thesaurus. Proceedings of the 1990 ACM
SIGSMALL/PC Symposium, 156-159.

11. Vogt, F. (1996). Formale Begriffsanalyse mit C++: Datenstrukturen und Algorithmen.
Springer-Verlag, Berlin-Heidelberg, 1996, ISBN: 3-540-61071-5.

12. Wille, R. (1982). Restructuring lattice theory: an approach based on hierarchies of concepts.
In I. Rival, (Ed.), Ordered sets (pp. 445-470). Dordrecht: Reidel.

13. Woolf, B. H. (Ed.). (1976). Webster’s new collegiate dictionary, G. & C. Merriam Company,
Springfield, Massachusetts.

14. Yarowsky, D. (1992). Word-sense disambiguation using statistical models of Roget’s cate-
gories trained on large corpora. Proceedings of 14th International Conference on Computa-
tional Linguistics, COLING-92. Nantes, pp. 454-460.

15. Yarowsky, D. (1996). Homograph disambiguation in text-to-speech synthesis. In J. van San-
ten, R. Sproat, J. Olive, and J. Hirschberg, (Eds.), Progress in Speech Synthesis: Springer,
New York, 1996.

16. Yarowsky, D. (2000). Word sense disambiguation. In R. Dale, H. Moisl and H. Somers (Eds.)
The Handbook of Natural Language Processing. New York: Marcel Dekker, pp. 629-654.

17. Yevtushenko, S. (2005). Conexp (Concept Explorer) 4-Beta. SourceForge.net. Available via
http://sourceforge.net/projects/conexp

Using Concept Lattices to Uncover Causal
Dependencies in Software

John L. Pfaltz

Dept. of Computer Science, Univ. of Virginia,
Charlottesville, VA 22904-4740

jlp@virginia.edu

Abstract. Suppose that whenever event x occurs, a second event y
must subsequently occur. We say that x “causes” y, or y is causally
dependent on x. Deterministic causality abounds in software where ex-
ecution of one routine can necessarily force execution of a subsequent
sub-routine. Discovery of such causal dependencies can be an important
step to understanding the structure of undocumented, legacy code.

In this paper we describe a methodology based on formal concept
analysis that uncovers possible causal dependencies in execution trace
streams. We first walk through the process using a small synthetic, but
easily comprehensible, example. Then we illustrate its potential using 57
threads involving 18,969 executed operations that were monitored in an
open source middleware system.

1 Introduction

Since its first application as “concept analysis” [22], Galois closure [13] has
proven to be a valuable tool for the analysis of various phenomena. Many exam-
ples can be found in Formal Concept Analysis [5] and the reader is assumed to
be familiar with this fundamental work.

To our knowledge the first effort to apply closure concepts to software en-
gineering was by Gregor Snelting who used formal concept analysis to analyze
legacy code [12, 18]. Siff and Reps [17] published shortly after. Snelting’s goal
was to reconstruct the overall system structure by determining which variables
(columns) were accessed by which modules (rows). It was hoped that the con-
cept structure would become visually apparent as it does in all of Ganter and
Wille’s examples [5]. Unfortunately, the resulting concept lattice shown on page
356 of [12] is little more than a black blob. Visual interpretation of closure con-
cepts does not seem to scale well. In [1], Ball specifically proposes using concept
analysis to establish the relationship between individual test runs and procedure
executions in a red-black tree system as shown in Figure 1. He, then goes on to
visually identify which procedures dominate others — that is, force their exe-
cution. Given the small size of R and L, dominance is visually derivable. But,
in a larger system this might be unwieldy. Unfortunately, Ball does not seem to
have done any further work on this concept based approach to dynamic software
analysis. In this paper we will push this kind of analysis a bit further.

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 233–247, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

234 J.L. Pfaltz

a1rMS a1rD

arDa1r

ar

a1rMSD

t1
t2
t3
t4
t5

X
X
X
X
X

X
X
X

X
X

X
X

X

X

X
X
X

X
X

X

XX
X

Test

Procedures

(1)Rotate (r)em (D)elFix(S)ucc(M)in(a)dd

X

Fig. 1. Execution of sub-procedures in a red-black tree program under various test
configurations

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

. . .

. . .

. . .

.
a u q sc1

2

3

4

5

6

7

8

u e b r t

b d ra s q

c a t u s q

a c s q t

d e c t s u

p b u e t r

a u q e

p

p

b

a

e

r

t

t

s

p

Fig. 2. 8 event sequences extracted from simulated trace data

Let a, b, c, d, e, p, q, s, t, u denote specific software events, and let the 8 se-
quences of Figure 2 depict relevant portions of trace data from 8 executions of
a single software system. Our goal will be to analyze necessary dependencies
between these events, if any. This will constitute a running example through
Section 3. It provides a clearer introduction. In Section 4, we will turn to the
analysis of real trace data consisting of 57 separate threads comprised of 18,969
invocations of 77 different operators.

2 Discrete Deterministic Data Mining

The first step in our analysis of software execution employs the discrete deter-
ministic data mining (DDDM) system we have developed at the Univ. of Vir-
ginia. As described in [15, 16] this system extracts all the logical dependencies
between attributes, or properties, of observed objects as recorded in a binary
relation R(O, A). We let LR denote the concept lattice generated by R(O, A).
Each closed concept, together with its generator(s) determine a logical depen-
dency. More specifically, if a subset at is a generator of the closed set acqst of
attributes then, as shown in [15], at logically implies acqst. The dependency, or
implication, can be expressed in first-order notation as

(∀o ∈ O)[(a(o) ∧ t(o)) ∨ (q(o) ∧ t(o)) → a(o) ∧ c(o) ∧ q(o) ∧ s(o) ∧ t(o)] (1)

which by letting concatenation denote conjunction and suppressing the universal
quantifier, we abbreviate as simply

at ∨ qt → acqst (2)

Using Concept Lattices to Uncover Causal Dependencies in Software 235

These expressions implicitly indicate that the closed set acqst has two genera-
tors. The data mining performed by the DDDM system is deterministic because
these implications must occur. We sometimes call this closed set data mining to
distinguish it from more customary apriori, or frequent set, data mining which
yields statistical associations between the attributes, properties, or items.

The value of identifying closed sets in order to minimize redundant associa-
tions in traditional apriori type data mining has been rather thoroughly explored
in [10, 26, 27]. To get a feel for the power of focusing on closed sets, we observe
that our DDDM system yielded 2,641 closed concepts, and thus logical implica-
tions, when applied to a relation, R(O, A), consisting of 8,124 objects, or rows,
and 39 attributes, or columns, that enumerated the horticultural properties of
mushrooms. Admittedly, most of these 2,641 implications were either trivial or
useless. Nevertheless, 2,641 closed set concepts is an order of magnitude less
than the 25,210 frequent set associations generated by an open source apriori
algorithm on the same 8, 124 × 39 data set, using reasonable support and con-
fidence parameters. Emphasizing Galois closed sets in data mining can have a
huge performance payoff. And, a rather simple filter was able to reduce this
mass of implications to only 37 relatively simple rules for determining whether
a mushroom is edible or poisonous. We might consider these to be the most
important attributes of any mushroom. Obtaining deterministic identification
rules is very desirable here!

We say that the DDDM approach is discrete because the universal quantifi-
cation can only be over the finite domain O comprising the relation R(O, A).

The DDDM system constructs the concept lattice LR incrementally in a man-
ner that was first described by Godin and Missaoui in [7, 8, 9] and refined a bit
more in [20, 21]. Incremental construction of the concept lattice facilitates incor-
poration of new data into an existing set of formal concepts without rereading
the earlier data. The actual implementation of our system is more fully described
in [16].

Given the sequence data of Figure 2 we first create the boolean relation
R(O, A) shown as Figure 3(a). Here (n, x) is true if event trace sequence n
contains an occurrence of event x. Observe that x may, and often does, ap-
pear repeatedly in a single trace. Setting (n, x) to true only indicates that x
has appeared at least once in trace n. Our DDDM system then incrementally
generates the lattice of 26 concepts shown as Figure 3(b). To determine, and
possibly modify, generators incrementally we use the technique proven in [11]
which determines generating sets by examining covering relationships between
closed concepts in LR. Let Z be a closed concept that covers the concepts Yi in
LR. If X ⊆ Z is a minimal subset such that X ∩ (Z−Yi) �= Ø for all i, then X
is a generator of Z.

Figure 4 more accurately illustrates the output generated by the DDDM pro-
cess. The program does not actually draw the concept lattice LR; it is too hard
to do well. Instead we list the attributes comprising the closed concepts, the gen-
erator(s) of these concepts, and the support of each concept (objects involved in
the Galois closure), together with a concept identifier and list of covering lattice

236 J.L. Pfaltz

acqstu
aepqu

abcdepqsrtu

beprtu

cstaqu

csaq

u

cdestu abdgsr

cstu

eu br

ds

Ø

st

tu

csuepuaqs

acqsu acqst

acqs

etu

a b c d e p q r s t u

(a)

(b)

A

1

8

4

3

2

5

6

7

O

R

Fig. 3. The resulting concept lattice

edges (which we have not shown). To conserve space, we have only listed those
20 concepts of Figure 3(b) which are supported by at least two observations.
Observe that it is concept #10, acqst with generators {at, qt} that is the source
of the logical implications presented earlier as (1) and (2). The reader should also
verify that these logical implications are, in fact, true for the discrete domain O.
For example, any object, or row, in which both a and t appear will also contain
c, q and s, as indicated by concept #10.

3 Causal Dependency

Logical implication is not equivalent to causal dependency. The accepted concept
of “causality” involves time, whereas logic does not. If at is the precedent, as in
concept #10, or expression (2), then we expect that the conjunction of these two
events must precede the occurrence of the events c, q and s of the consequent
if we are to say that at “causes” qst as a consequence. Causal dependence is
assumed to be strictly anti-symmetric with respect to time. Since concept #10
is supported by traces 4 and 5, we examine each more closely. Event t is the last
event in trace 5. In no way could it be considered to have any causal effect on
the preceding events c, q or s. So similarly, the conjunction of events ct cannot
possibly be a causal agent.

Now consider concept #1 which can be logically expressed as
acu ∨ asu ∨ cqu ∨ qsu → acqsu.

Its support is traces 1 and 4. Examination shows that, in both traces, the con-
junction of events acu always precedes both q and s. So, acu ⇒ qs is a reasonable

Using Concept Lattices to Uncover Causal Dependencies in Software 237

acqsu

beprtu

u

aqs

br

tu

acqst

acqs

t

etu

ds

s

cstu

csu

cst

cs

epu

eu

aq

1,4,8

1,3,4,5,8

2,6,7,8

2,7,8

4,5,6

1,4,5,6

4,6

1,4,6

1,3,4,5,6

3,6

2,6,7

2,4,5,6,7

1,4,5

4,5

2,4,6,7

2,3,7

1,3,4,5

1,2,4,6,7,8

2,7

1,4 acu, asu, cqu, qsu

bu, ru, bt, rt, be, er, bp, pr, pt

u

as, qs

b, r

tu

at, qt

ac, cq

t

et

d

s

ctu, stu

cu, su

c

ct, st

p

e

a, q

au, quaqu

1

2

3

5

9

10

11

12

14

15

16

17

18

19

20

22

23

24

25

7

concept
closed

support generatorsid#

Fig. 4. Selected concepts generated by the relation R(O, A) of Figure 3(a)

causal hypothesis, while none of the other logical disjuncts can be. We use → to
denote logical implication and ⇒ to denote causal dependence.

We deliberately use the word “hypothesis” in the preceding sentence. We
cannot establish that the conjunction of events a, c and u actually cause events
q or s to occur. We can only establish that they satisfy the necessary conditions
for “causality”. We will discuss this further in Section 6.

Because we record the support for each closed concept along with its genera-
tors, it is not hard to re-examine the appropriate trace data sequences to verify,
or exclude, specific generators as possible causal precedents. Applying this pro-
cedure to the 20 concepts of Figure 4 we get the following list of 6 possible causal
dependencies shown in Figure 5.

The 6 dependencies of Figure 5 represent a rather significant reduction in the
sheer number of concepts that are typically created.

#1 acu

b#7

#11 ac

#15 d

#19 c

#24 a

acqsu

r

qs

s

s

q

Fig. 5. 6 possible causal dependencies

238 J.L. Pfaltz

It is easy to show in a first-order logic, if a → x and b → y then ab →
xy. Such rules of inference are common place. But, they need not be valid in
causal dependence. For example, we have #19 c ⇒ s and the trivial dependency
#3 u ⇒ u. Yet, cu �⇒ csu because in trace 6, s < u. Consequently, given the
dependencies #24 a ⇒ q and #19 c ⇒ s we cannot logically infer that ac ⇒ qs,
even though in this case #11 is, in fact, true.

Similarly, in first-order logic it is customary to declare x and y to be equiv-
alent, x ≡ y if x → y and y → x. However, a concept of causal equivalence
in which x causes y and y causes x does not appear to make semantic sense.
Nevertheless, such apparent patterns are common in our trace data where we
have repeated sections of code, or loops, as in

· · · a · · · b · · ·a · · · b · · ·a · · · b · · · .
Such repeating patterns can be exposed by techniques developed in [24, 23], but
even here, some form a priori knowledge of what kind of pattern is being sought
must be applied.

4 A Real Example

To test these ideas, the author used trace data down loaded from JBoss, an open
source, professional middleware company which is accessible through
www.jboss.com. All of the method entrance events of the transaction manage-
ment module in JBoss 1.4.2 were instrumented by my colleagues, Jinlin Yang
and David Evans. They then ran the entire JBoss regression test suite to collect
the traces [25]. A small sample of this trace data from a single thread is shown
below in Figure 6.

3 TxManager.getTransaction()Ljavax/transaction/Transaction;
2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;
4 TxUtils.isActive(Ljavax/transaction/Transaction;)Z
1 TxManager.getStatus()I
2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;
1 TxManager.getStatus()I
2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;
3 TxManager.getTransaction()Ljavax/transaction/Transaction;
2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;
4 TxUtils.isActive(Ljavax/transaction/Transaction;)Z
5 TxManager.suspend()Ljavax/transaction/Transaction;
2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;
1 TxManager.getStatus()I
2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;
1 TxManager.getStatus()I
2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;
3 TxManager.getTransaction()Ljavax/transaction/Transaction;

Fig. 6. A representative fragment of an operator sequence

Using Concept Lattices to Uncover Causal Dependencies in Software 239

Preprocessing consisted of taking 57 such threads; scanning each operation;
and, if new, assigning it an identifying integer. The integers to the left in
Figure 6 are examples. This preprocessing had several benefits. First, it in-
sures that the closed sets are extracted without using any embedded semantic
information. Second, it permits us to display a set of operations as a set of
integers, which we will see has definite display benefits. Third, because iden-
tifying integers are assigned in sequence as operators are scanned we have an
interesting artifact in which related operators often appear as a number se-
quence. Our programs make no use of this artifact, but human inspection can
reveal interesting structures that are not uncovered by the Galois closure
itself.

The trace fragment of Figure 6 would be perceived by our DDDM software as

... 3 2 4 1 2 1 2 3 2 4 5 2 1 2 1 2 3 ...

From now on we consider only discrete integer representations. We observe that
many operations are repeated in definite patterns, but our analysis is set based.
All we can assert is that operations { 1,2,3,4,5 } all occur somewhere in this
trace.

We analyzed 57 distinct traces consisting of 77 distinct operations. The short-
est trace consisted of no more than 6 operations; the longest trace involved 1,393
operations.

The set of operations comprising each trace were input incrementally to our
DDDM system. Its output is illustrated in Figures 7 and 8.

We were more than a little surprised. Only twenty seven non-trivial closed
sets of operations emerged.

As we indicated in Section 2, the lattice shown in Figure 7 is hand drawn. For
each concept in the lattice our software really outputs a sequence of concepts
consisting of the items in the closed set of the concept, the set of generating
sets, the set of supporting rows and the set of concepts covered by the con-
cept. The latter facilitates drawing the lattice and maneuvering through the
lattice. This table of closed concepts, in Figure 8, and their generators requires
a bit of interpretation; particularly since we use the hyphen (-) in two different
ways.

The first column denotes the concept number. They correspond to the concept
numbers in Figure 7. The reader can verify that the closed sets of concepts in the
lattice below any specific concept, say concept #2, are contained in the closed
set of #2. The closed set of concept #2 consists of operations 1 through 5 and
operations 12 through 64. Here, rather than enumerating every operation id,
separated by commas, we use the hyphen as an “extended and”.

Concept #2 has many generators. Operations 33 and 34 are each singleton
generators. If either operation occurs in a trace then every operation of the closed
set must also occur. The combination { 4, 12-32 } is also listed as a generator.
This means that { 4, 12 }, { 4, 13 } ... { 4, 32 } are each generating sets. Here we
are using the hyphen as an “extended or”, that is, operation 4 in combination
with operation 12 or operation 13 or ... is a generator.

240 J.L. Pfaltz

0

1 28 23

4

242

21 9

825 26

11
27

22

14

15

16

18

19

20

12

13

5

6

10

3

7

17

Fig. 7. Lattice, Lops, of closed operator sets

Concepts #17 and #18 are of interest because all of their generators are
singleton; but there are many of them. For example, from concept #17, if any
of the operations 46 through 49 appear in the trace then all of the operations in
the closed set will occur in the trace.

The final column displays the number of traces in which this concept can be
found, that is its size of “support”. We felt that enumerating this support, as in
Figure 4 would be overkill.

It is interesting to note that the infimum set { 3, 2 } of operations (concept
#20) is generated by the empty set. These two operations occur in every trace.

5 Establishing Dominance

Execution of a procedure, or operator, often depends on a conjunction of condi-
tions. Figure 8 lists many such conjunctive generators. However, analysis of such
generators is beyond the capabilities of our current software. Consequently, we
will restrict ourselves to analyzing only those concepts with singleton generators.
Our DDDM software makes identification of these concepts quite easy.

If a singleton set, such as { 1 }, generates the Galois closed set { 1, 2, 3, 5 }
as in concept #6 of Figure 8 then we can logically assert that

1 → 1235 (3)

Using Concept Lattices to Uncover Causal Dependencies in Software 241

Concept Size of
number Closed set Generators support

1 {1-11} {6-11} 1
2 {1-5, 12-64} {33-34},{4,12-32},{4,35-64},{1,25-32},{1,45} 6
3 {1-5} {4} 7
4 {1-5,12-65} {4,65},{33-34,65},{1,25-32,65},{1,35-38,65},

{1,45,65} 4
5 {1-3,5,13-14} {1,13-14} 27
6 {1-3,5} {1} 28
7 {1-3,5,12-24,39-44,46-65} {1,65} 10
8 {1-3,5,12-24,39-44,46-64} {1,12},{1,15-24},{1,39-44},{1,45-64} 12
9 {2-3,5,12-24,39-44,46-72} {46-49,66-72},{51-52,66-72},{60,66-72},

{62,66-72} 7
10 {2-3,5} {5} 56
11 {2-3,5,12-24,39-44,46-65} {46-49,65},{51-52,65},{60,65},{62,65} 23
12 {2-3,5,12-24,39-44,46-64} {5,46-49},{12,46-49},{5,51-52},{12,51-52},

{5,60},{12,60},{5,62},{12,62} 25
13 {2-3,5,13-14} {5,13-14} 55
14 {2-3,5,12-24,39-44,50, {66}

53-59,61,63-72} 10
15 {2-3,5,12-24,39-44,50, {65}

53-59,61,63-65} 27
16 {2-3,5,12-24,39-44,50, {12},{5,16-24},{5,39-44},{5,50},{5,53-59}

53-59,61,63-64} {5,61},{5,63-64} 29
17 {2-3,13-24,39-44,46-64} {46-49},{51-52},{60},{62} 26
18 {2-3,13-24,39-44,50, {15-24},{39-44},{50},{53-59},{61},{63-64}

53-59,61,63-64} 30
19 {2-3,13-14} {13-14} 56
20 {2-3} {} 57
21 {2-3,5,12-24,39-44,46-65, {73-75}

73-75} 2
22 {2-3,5,12-24,39-44,46-72} {67-72} 11
23 {2-3,5,12-24,39-44,46-75} {66-72,73-75} 1
24 {2-3,5,12-32,35-65} {25-32,65},{35-38,65} 5
25 {2-3,5,12-32,35-64} {25-32},{35-38} 7
26 {2-3,5,12-32,39-65} {45,65} 6
27 {2-3,5,12-32,39-64} {45} 8
28 {1-5,12-65,76-77} {76-77} 1

Fig. 8. Output from DDDM system

or equivalently, “if 1 appears in a trace then 2, 3, and 5 must also appear”.
But, this does not necessarily imply that the execution of operation 1 “causes”
the execution of the other operators. There need be no causal dependency. Such
logical implication is only one necessary condition.

A second necessary condition for causal dependency is that the generator must
precede the consequent(s) in all traces. In the 28 traces supporting concept #6
this is not always true, so (3) cannot be rewritten as a causal dependency.

For each singleton generator, {gen op}, of a concept, we re-examine each of the
trace sequences supporting the concept. If an operator op in the closed set of the

242 J.L. Pfaltz

concept precedes the first occurrence of gen op in any trace, then gen op �⇒ op.
If op always follows at least one occurrence of gen op then we say that gen op
dominates op and gen op ⇒ op becomes plausible.

This reasoning is particularly applicable when there are several singleton gen-
erators. They cannot all be causally equivalent. In the following analysis pro-
cedure we first resolve domination among multiple singleton generators, if any,
and then analyze domination among the other operators of the closed concept
set.

operator domination (LATTICE L, TABLE Dominates)

// Analyze the concepts in ‘L’ to create the

// table of operator domination

{
ELEMENT dg, fg, // generators -- dominating, first

o;

SET SG, OP;

CONCEPT c;

OP SEQUENCE seq;

for all c in L.concepts do

{
SG <- singletons (c.generators);

if empty(SG)

continue;

// concept ‘c’ has singleton generators

dg <- null; // as yet no dominating generator

for all seq in c.support do

{ // examine every sequence supporting this concept

// get the first singleton generator in this sequence

fg <- first element (SG, seq);

if dg = null

dg <- fg; // now, check that ‘fg’ is always first

else

dg <- null;

break;

}
if dg = null // no generator in SG is dominating

continue;

else

add [dg -> SG] to ‘Dominates’;

// now, check if ‘dg’ dominates other operators in ‘c’

OP <- c.closed set not c.SG;

for all o in OP do

{ // verify that this ‘o’ follows ‘dg’ in all

// supporting sequences

for all seq in c.support do

Using Concept Lattices to Uncover Causal Dependencies in Software 243

{
if o precedes dg in seq

{
OP <- OP not {o};
break;

}
}

if not empty(OP)

add [dg -> OP] to ‘Dominates’;

}
}

Application of this operator domination procedure to the output of our
DDDM software, as illustrated in Figure 8, is shown in Figure 9. We observe
that concepts #3, #6, #10, #27 make no contribution to this list of possible
causal dependencies, even though all have singleton generators. They fail the
operator dominance test.

#1 6 7 8 9 10 11

#2 33 34 { 4, 35 ... 38 }

#14 66 { 24, 50, 53 ... 59, 61, 63, 64, 67 ... 72 }

#15 65 { 24, 50, 53 ... 59, 61, 63, 64 }

#16 12 { 13 ... 15 }

#17 46 47 48 49 { 51, 52, 64 }

#18 16 17 { 24, 50, 53 ... 59, 61, 63, 64 }

18 ,.. 23 { 24, 39 ... 44, 50, 53 ... 59, 61, 63, 64 }

24 { 50, 53 ... 55, 58, 59, 61, 63, 64 }

39 ,.. 44 { 50, 53 ... 59, 61, 63, 64 }

50 {53 ... 55, 58, 59, 61, 63, 64 }

53 54 55 {61, 63, 64 }

56 57 {61, 63, 64 }

61 { 63, 64 }

#19 13 14

#21 73 74 75 { 24, 46 ... 73 }

#25 25 ,.. 32 { 35 ... 64 }

#28 76 77

Fig. 9. Possible causal dependencies

There are numerous instances of multiple generator sequences such as
46 ⇒ 47 ⇒ 48 ⇒ 49

in concept #17. We surmise that these traces come from software employing a
stack architecture and that these represent iterated invocations down through
the stack. Concept #18 gives rise to many apparent dependencies. Readily we
could simplify the enumeration considerably. Applying causal transitivity we
could simply write, for instance,

16 ⇒ 17 ⇒ {24, 56}
18 ⇒ 19 ⇒ {24, 39}

244 J.L. Pfaltz

Events 24, 39 and 56 in turn generate more of the closed set comprising con-
cept #18. Such condensation makes certain differences more evident, but our
preliminary, proof of concept software is not, as yet, capable of doing it.

6 Considerations

The technique described in the preceding sections has four distinct steps. It:
(1) identifies software events of interest; (2) extracts them from trace data to
form a relation R(T, E)1; (3) creates a concept lattice LR embodying a num-
ber of logical implications of the form < generator >→< closed concept >;
and (4) retains only those implications for which the < generator > pre-
cedes the remainder of the consequent < concept > in all supporting trace
sequences in T . This approach works. But, there are still a number of issues to be
considered.

First, the prior identification of software events of interest can be awkward. If
the events denote entrance, and exit, from modules, procedures or other bodies
of code as in Ball [1] and this paper, then this step is fairly straight forward. But,
there are other kinds of “events” that are of interest in software analysis. Prime
examples are “conditions” such as “x + y > 100 ∗ z”. Typically such conditions
form the basis of triggers, or guards. Uncovering the various relationships be-
tween conditions and the events they may trigger is a key to finding the “likely
invariants” that describe a body of software [1, 3, 14].

Michael Ernst, in particular, has been a leader in identifying likely invariants
from dynamic trace data [3, 14]. Causal dependencies are a form of software
invariant. So, this paper can be considered to be an extension of his work. But,
neither Ernst nor we know how to discover what conditional relationships might
participate in a likely software invariant without first identifying them a priori.
It is a significant outstanding problem that we are currently investigating.

Second, given a set of causal dependencies such as Figure 5 we would like to
be able to reason about them. Some rules, such as the transitive law, if x ⇒ y
and y ⇒ z then x ⇒ z remain true in a causal logic. But, as we saw in Section 3,
others do not.

There is a considerable body of literature concerning “temporal logic” which
has been studied since the early 70’s as an analytic tool associated with finite
state controllers, reactive devices and parallel systems [2, 4, 6, 19]. Most varieties
of linear time logic (LTL) introduce 4 additional temporal operators, X, U, F, G
where, given boolean expressions α, β, we have

Xα denotes “next α”
Fα denotes “eventually α”
Gα denotes “generally (or always) α”.

αUβ denotes “α until β”

1 It seems appropriate in this application to relabel the relation R(O, A) as R(T, E),
where T denotes the set of traces and E denotes the set of events.

Using Concept Lattices to Uncover Causal Dependencies in Software 245

Causal dependencies can be expressed in terms of the X and F operators. Un-
fortunately valid derivations within a temporal logic are rare. Temporal logics en-
counter the same kinds of issues we have illustrated with our causal dependencies.

The third issue we must consider is the last step, operator domination, in
which we winnow out those logical implications which cannot represent causal
dependencies. As was pointed out in Section 3, we can use the support for each
concept to limit the number of trace sequence that must be examined to verify
the temporal precedence properties. But, this would seem to negate much of the
advantage obtained by incrementally creating the concept lattice in the manner
of Godin and Missaoui. We will have to keep the entire set of trace data on
hand and possibly re-examine hundreds of trace sequences as each new concept
is entered into the lattice.

Fortunately, this is only an apparent problem caused by our rough and ready,
proof of concept software. One can incrementally create a “precedes” relation,
<, as shown in Figure 10. Here, x < y if x precedes y in any trace t. Readily, <
is only a pre-order, since it is transitive but not antisymmetric. If x < y then y
cannot causally determine x. By creating a precedence relation in parallel with
the concept lattice, one can incrementally uncover likely causal dependencies on
the fly with no need to re-examine earlier trace data, or even to retain it. Of
course, if we do not keep the original trace data we will then lose the opportunity
to look more carefully at any particular trace to see why this is, or is not, a case
of causal dependency.

a b c d e p q r s t u
a
b
c
d

q
r
s
t
u

e
p

<

Fig. 10. The precedes relation from Figure 2

But possibly a precedence relation such as Figure 10 can do more. Why not
use this relation to directly indicate causal dependencies? For example, we see in
Figure 10 that b < a while a �< b. Thus we know that b precedes a in at least one
trace, and that a never precedes b. This strict anti-symmetry is one property that
we have postulated for causal dependence. It is a necessary condition. But, it is
not sufficient. Our understanding of causal dependence b ⇒ a is that whenever
b occurs then a must also always follow. This is not true in the sequences 2 and
7 of Figure 2. This second necessary condition whose logical expression is

(∀t ∈ T)[b(t) → [b(t) < a(t)]] (4)

seems to be a fundamental property of causal dependence that cannot be derived
from simple precedence relations.

246 J.L. Pfaltz

This author believes that the key to discovering causal dependencies from
observed software behavior must involve the use of Galois closure, which is the
basis of formal concept analysis. Only by adopting a formal concept methodology
can we derive an expression such as (4). It seems to have been a key piece that
has been missing in the search for “likely software invariants”.

Finally, we observe that our procedure still only reveals “likely” causal de-
pendencies. Because we find that a ⇒ q in the set T of trace data, we cannot
literally say that the event a “causes” the event q as a consequence. One can only
base such a claim on examination of the code itself. But, without having likely
dependencies to specifically look for, such examination is extremely difficult; and
in the case of legacy systems without source code it is essentially impossible.

The principles of formal concept analysis have an important application in
software analysis and software engineering.

References

1. Thomas Ball. The Concept of Dynamic Analysis. Proc. Seventh European Software
Engineering Conf., pages 216–234, Sept. 1999.

2. E. Allen Emerson. Temporal and Modal Logic . In Handbood of Theoretical
Computer Science, pages 997–1071. Elsevier Science, 1990.

3. Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dy-
namically Discovering Likely Program Invariants to Support Program Evolution.
IEEE Trans. Software Eng., 27(2):1–25, Feb. 2001.

4. Michael Fisher. A Model Checker for Linear Time Temporal Logic. Formal Aspects
of Computing, 4(3):299–319, 1992.

5. Bernhard Ganter and Rudolf Wille. Formal Concept Analysis - Mathematical Foun-
dations. Springer Verlag, Heidelberg, 1999.

6. Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly
Automatic Verification of Linear Temporal Logic. In Piotr Dembinski and Marek
Sredniawa, editors, Protocol Specification, Testing and Verification XV, Proc. of
15th IFIP Workshop, pages 3–18, Warsaw, Juue 1996.

7. R. Godin and Hafedh Mili. Building and Maintaining Analysis-Level Class Hi-
erarchies Using Galois Lattices. In ACM Conf. on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA’93), pages 394–410, Washington,
DC, 1993.

8. Robert Godin and Rokia Missaoui. An Incremental Concept Formation Approach
for Learning from Databases. In Theoretical Comp. Sci., volume 133, pages 387–
419, 1994.

9. Robert Godin, Rokia Missaoui, and Hassan Alaoui. Incremental Concept Forma-
tion Algorithms Based on Galois (Concept) Lattices. Computational Intelligence,
11(2):246–267, 1995.

10. Karam Gouda and Mohammed J. Zaki. Efficiently Mining Maximal Frequent Item
Sets. In 1st IEEE Intern’l Conf. on Data Mining, San Jose, CA, Nov. 2001.

11. Robert E. Jamison and John L. Pfaltz. Closure Spaces that are not Uniquely Gen-
erated. Discrete Appl Math., 147:69–79, Feb. 2005. also in Ordinal and Symbolic
Data Analysis, OSDA 2000, Brussels, Belgium July 2000.

12. Christian Lindig and Gregor Snelting. Assessing Modular Structure of Legacy
Code Based on Mathematical Concept Analysis. In Proc of 1997 International
Conf. on Software Engineering, pages 349–359, Boston, MA, May 1997.

Using Concept Lattices to Uncover Causal Dependencies in Software 247

13. Oystein Ore. Galois Connexions. Trans. of AMS, 55:493–513, 1944.
14. Jeff H. Perkins and Michael D. Ernst. Efficient Incremental Algorithms for Dy-

namic Detection of Likely Invariants. Proc. SIGSOFT’04/FSE-2, pages 23–32,
Nov. 2004.

15. John L. Pfaltz and Christopher M. Taylor. Closed Set Mining of Biological Data.
In BIOKDD 2002, 2nd Workshop on Data Mining in Bioinformatics, pages 43–48,
Edmonton, Alberta, July 2002.

16. John L. Pfaltz and Christopher M. Taylor. Concept Lattices as a Scientific Knowl-
edge Discovery Technique. In Workshop on Discrete Mathematics and Data Min-
ing, 2nd SIAM International Conference on Data Mining, pages 65–74, Arlington,
VA, Apr. 2002.

17. Michael Siff and Thomas Reps. Identifying Modules via Concept Analysis. In Intn’l
Conf. on Software Maintenance, pages 170–179, Bari, Italy, Oct. 1997.

18. Gregor Snelting and Frank Tip. Reengineering Class Hierarchies Using Concept
Analysis. In Proc. ACM SIGSOFT 6th International Symposium on Foundations
of Software Engineering, FSE-6, pages 99–110, Lake Buena Vista, FL, 1998.

19. Paulo Tabuada and George J. Pappas. Linear Time Logic Control of Discrete-time
Linear Systems. IEEE Trans. on Automatic Control, page (in revision), 2005.

20. Petko Valtchev, Rokia Missaoui, and Robert Godin. A Framework for Incremental
Generation of Frequent Closed Itemsets. In Peter Hammer, editor, Workshop on
Discrete Mathematics & Data Mining, 2nd SIAM Conf. on Data Mining, pages
75–86, Arlington, VA, April 2002.

21. Petko Valtchev, Rokia Missaoui, Rouane Hacene, and Robert Godin. Incremental
Maintenance of Association Rule Bases. In Proc. Workshop on Discrete Mathe-
matic and Data Mining, San Francisco, CA, 2003.

22. Rudolf Wille. Restructuring Lattice Theory: An approach based on hierarchies of
concepts. In Ivan Rival, editor, Ordered Sets, pages 445–470. Reidel, 1982.

23. Jinlin Yang and David Evans. Automatically Inferring Temporal Properties for
Program Evolution. In 15th IEEE Symposium on Software Reliability Engineering
(ISSRE 2004), Saint-Malo, France, Nov. 2004.

24. Jinlin Yang and David Evans. Dynamically Inferring Temporal Properties. In Proc.
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE 2004, Washington, DC, June 2004.

25. Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das.
Terracotta: Mining Temporal API Rules from Imperfect Traces. In 28th Internl.
Conf. on Software Engineering (ICSE 2006), page (submitted), Shanghai, China,
May 2006.

26. Mohammed J. Zaki. Generating Non-Redundant Association Rules. In 6th ACM
SIGKDD Intern’l Conf. on Knowledge Discovery and Data Mining, pages 34–43,
Boston, MA, Aug. 2000.

27. Mohammed J. Zaki and Ching-Jui Hsiao. CHARM: An Efficient Algorithm for
Closed Association Rule Mining. In Robert Grossman, editor, 2nd SIAM Interna-
tional Conf. on Data Mining, pages 457–473, Arlington, VA, April 2002.

An FCA Interpretation of Relation Algebra

Uta Priss

School of Computing, Napier University, Edinburgh, UK
u.priss@napier.ac.uk
www.upriss.org.uk

Abstract. This paper discusses an interpretation of relation algebra and fork al-
gebra with respect to FCA contexts. In this case, “relation algebra” refers to the
DeMorgan-Peirce-Schroeder-Tarski algebra and not to the “relational algebra”
as described by Codd. The goal of this interpretation is to provide an algebraic
formalisation of object-relational databases that is based on binary relations and
thus closer to FCA and formal contexts than the traditional formalisation based
on Codd. The formalisation provides insights into certain symmetries (among
quantifiers) and the use of ternary relations and part-whole relations for building
relational databases.

1 Introduction

Algebras of relations, such as Codd’s (1970) relational algebra (RLA) or Peirce-Tarski’s
relation algebra (RA)1, have been studied by logicians since the mid 19th century. But
apart from the use of RLA in relational databases, relational methods have not been
in the mainstream for more than a hundred years, even though they have promising
applications. Only during the past 15 years, there has been an increased interest in “Re-
lational Methods in Computer Science” as evidenced by the creation of a new journal
in this area2.

Relational methods can be considered a “paradigm” that is different from some set-
based logical formulas because a relational representation abstracts from elements and
certain quantifiers. Programming languages that are based on relational methods tend
to be more of a non-functional, list processing character. Users sometimes find such
languages or formalisms difficult to read - as has been documented with respect to the
relational database language SQL (eg. Hansen & Hansen (1988)). This may explain why
relational methods are only slowly gaining more popularity. Nevertheless, relational
methods have interesting applications and because of the recent interest in relational
methods in computer science and because RA and FCA share common structures, we
believe that a detailed discussion of FCA and RA is of interest to the FCA community
and provides links to this newly emerging research area.

A combination of RA and FCA can be used to analyse formal aspects that under-
pin relational and object-relational databases. Current RLA-based implementations of
databases are highly optimised with respect to functionality and efficiency. But RA can

1 In this paper “RLA” is used as an abbreviation for Codd’s relational algebra and “RA” for a
Tarski-style relation algebra.

2 http://www.jormics.org

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 248–263, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An FCA Interpretation of Relation Algebra 249

provide new insights into the structural properties of relational databases, such as into
certain symmetries (among quantifiers) and the use of ternary relations and part-whole
relations for relational databases. Currently, there does not exist a widely accepted ex-
tension of RLA to object-relational databases (cf. Atkinson et al. (1989)). A broader
approach using a variety of algebras (including RA and RLA) may lead to such a for-
malisation of object-relational databases and formal ontologies. With respect to FCA,
this paper shows that RA is sufficiently expressive to represent basic FCA notions and
a fork extension of RA is sufficient to represent many-valued contexts and power con-
texts.

This paper presents a continuation and elaboration of some ideas which were pre-
sented in a preliminary form by Priss (2005). But in contrast to Priss (2005), this paper
adds a more detailed mathematical presentation, a use of fork algebras, a distinction
between a “named” and an “unnamed” perspective and a more detailed elaboration of
relational schemata.

2 Algebras of Relations: Codd Versus Tarski

The most influential algebra that is currently used in computer science is probably RLA
because it serves as the foundation of relational databases. It is not a trivial task to math-
ematically formalise RLA in detail with respect to relational databases - as indicated by
the fact that at least four different types of suggestions for such formalisations of RLA
exist (Abiteboul et al., 1995). Because of this and because RLA uses n-ary relations, it
is also not trivial to combine relational databases directly with Formal Concept Analy-
sis (FCA). Wille’s (2002) notion of power context families incorporates n-ary relations
into FCA, but it does not cover all the detail of relational databases and RLA. Hereth
(2002) has made some progress with respect to RLA and FCA.

Although Codd (1970) is usually quoted as the inventor of RLA (and he certainly
advocated the practical use of it), a more detailed and comprehensive description of
algebras of relations was provided by Tarski in the 1940s (cf. Van den Bussche (2001)
for an overview). Tarski described two types of algebras: RA and Cylindric Set Algebra,
which according to Imielinski & Lipski (1984) is closely connected to RLA. The idea
of RA can be traced back from Tarski (1941) to Peirce and de Morgan and Schröder (cf.
Pratt (1992) for an overview). In contrast to RLA which has expressive power equivalent
to first order logic, the expressive power of RA is only equivalent to first order logic
with at most 3 distinct variables (cf. Van den Bussche (2001)). Thus RA is much less
powerful than RLA. But there is an extension of RA called “fork algebra”, which is
equivalent to first order logic. Because of a close relationship between RA and binary
relations, it is of interest to consider RA and fork algebra together with FCA.

3 Relation Algebra: Definition and Overview

The following definition follows Tarski and is adapted from Brink et al. (1992):

Definition 1. A relation algebra is an algebra (R, +, ·,′ , 0, 1, ; ,� , e) satisfying the
following axioms for each r, s, t,∈ R:

250 U. Priss

R1 (R, +, ·,′ , 0, 1) is a Boolean algebra R5 (r + s); t = r; t + s; t
R2 r; (s; t) = (r; s); t R6 (r + s)� = r� + s�

R3 r; e = r = e; r R7 (r; s)� = s�; r�

R4 r�� = r R8 r�; (r; s)′ ≤ s′.

If R in Definition 1 is a set of binary relations, then the following can be defined:

Definition 2. A proper relation algebra (RA) is an algebra (R,∪,− , one, ◦,d , dia)
where for a set A and an equivalence relation one ⊆ A × A, R is a set of binary
relations equal to the powerset of one and dia := {(x, x) ∈ one} and for I, J ∈ R:
I ∪ J := {(x, y) | (x, y) ∈ I or (x, y) ∈ J}; I := {(x, y) | (x, y) ∈ one, (x, y) �∈ I};
I ◦ J := {(x, y) | ∃z∈A : (x, z) ∈ I and (z, y) ∈ J}; Id := {(x, y) | (y, x) ∈ I}.

Different authors use different symbols for RA operations. It is common to list the
Boolean operators before the non-Boolean ones in the signature of the algebra. It is
also common to use Tarski’s notation (+, ·, ; , 0, 1) for relation algebras and ∪,∩,− and
other symbols for proper relation algebras. The left column of table 1 shows the nota-
tions used in this paper. For the purposes of this paper, a mapping from an equational
class (as in definition 1) to an algebra which has elements with set-theoretically defined
structure (as in definition 2) is called an “interpretation”. Apart from interpreting rela-
tion algebras with respect to binary relations, they can also be interpreted with respect
to FCA contexts, as shown in later sections of this paper. Pratt (1993) observes that only
the non-Boolean operations (◦,d) make use of the inner structure of the elements of the
relations (such as inverting the pairs using d). For the Boolean operations (∪,∩,−), re-
lations are just sets. It has been shown by Lyndon (1950) that there are interpretations
of relation algebras which are not isomorphic to proper relation algebras. In this pa-
per, only proper relation algebras are considered and their notational symbols are used.
“RA” stands for proper relation algebra in the remainder of this paper. Based on defi-
nition 2, a representable relation algebra (RRA) is usually defined as a subalgebra of a
proper relation algebra. The class RRA forms a variety (Tarski, 1955).

Table 1. Overview of basic RA operations and some extensions

RA Tarski’s name basis definitions
∪ + union yes
− ′ negation (complement) yes

∩ · intersection I ∩ J := I ∪ J

◦ ; composition yes
d � inverse (dual) yes

• j+ de Morgan compl. of ◦ I • J := I ◦ J

nul 0 nul := one
one 1 universal relation yes
dia e diagonal yes

⊆ I ⊆ J :⇔ I ∩ J = I
= equality I = J :⇔ I ⊆ J and J ⊆ I
⊂ containment I ⊂ J :⇔ I ⊆ J and not I = J
trs transitive closure (yes) Itrs := I ∪ I ◦ I ∪ I ◦ I ◦ I ∪ . . .
� refl. trans. closure I� := dia ∪ Itrs

An FCA Interpretation of Relation Algebra 251

The top half of table 1 shows how other common operations and elements of RA
can be derived from the basis operations and elements. Numerous mathematical (or
logical) properties can be proven for RA (cf. Maddux (1996), Pratt (1992), Pratt (1993),
Van den Bussche (2001), Kim (1982)). There are numerous applications for RA, which
obviously include and extend applications of Boolean algebras. Apart from applications
in logic, RA has been used for the semantics of programming languages (Maddux,
1996). Pratt (1993) explains that RA is very similar to Chu spaces.

The bottom half of table 1 shows some extensions of RA: equality and transitive clo-
sure. For this paper, equality and containment is assumed to be defined for RA. Transi-
tive closure is not a first order logic property and cannot be derived from the other RA
operations. It can be useful in some applications to have transitive closure available. For
example, if I represents the incidence matrix of a graph, then Itrs shows all transitive
paths between the graph nodes. We believe that a major reason for the recent popular-
ity of XML for ontologies and other tree-like structures is because the calculation of
paths in a tree is natural for XML but difficult in SQL. In fact, only the more recent
SQL standard (SQL3) contains a suggestion for a recursion operator that can be used
for calculating paths in a tree. Unfortunately, the implementation of this operator is in-
consistent among different database vendors (Wagner, 2003). The reasons for this may
be that transitive closure is missing from RLA and that it can be computationally ex-
pensive to calculate transitivity. Nevertheless, we believe, that if transitive closure had
been added to SQL at an earlier stage, the history of XML as a format for representing
ontologies might have been different. This brief excursus on XML and databases should
indicate the significance of the presence or absence of a transitive closure operation. In
this paper, we assume that transitive closure is available as needed.

4 RA Interpretations as FCA Contexts

4.1 Active Domains

In analogy to relational database theory, an “active domain” (ACT) is introduced for the
purposes of this paper. In relational database theory, an active domain is the finite set of
actually occurring values and value combinations, which is a subset of the infinite “uni-
verse” (U) of possible values. For example, the complement of a relation in relational
databases is usually calculated with respect to the active domain to avoid the use of in-
finite sets. Relational databases contain finite sets of data at any point in time, but a fork
operation as introduced in section 5.2 requires an infinite set of elements at all times.
To cope with the infinity of the fork operation, the following two sets are defined in this
paper: a set of identifiers containing a finite set of even-numbered identifiers (EVN) and
an infinite set of odd-numbered identifiers (ODD). Even-numbered identifiers are used
for actual, persistent or “important” data and odd-numbered ones are used for poten-
tial, transient or “un-important” data. This distinction follows the practise of object-
relational databases which automatically generate “object identifiers” for instances of
tables. It also follows the distinction between “persistent” data (for data that may need
to be reused in other applications and should be stored) and “transient” data (which can
be forgotten, such as the values of a counter) by Atkinson et al. (1989). It should be
noted that even though the set of even identifiers is finite and fixed at any point in time,

252 U. Priss

it can change over time if new data is added to an application (eg. if database tables
are updated). In addition to the sets of identifiers, there is also a finite set N of named
elements of a relational database (i.e., names of tables, columns, values, etc).

Definition 3. A universe of possible elements is a set U := N ∪ EVN ∪ ODD where N
is a finite set of names, EVN is a finite set of even-numbered identifiers and ODD is an
infinite set of odd-numbered identifiers and N, EVN, and ODD are pairwise disjoint. An
active domain is a finite subset of U defined as ACT := N ∪ EVN. For practical purposes,
ACT is assumed to have a fixed linear order.

4.2 The Unnamed Perspective

There are potentially numerous ways for using RA with respect to FCA. Because formal
contexts are usually represented as cross tables, for the rest of this paper binary relations
are viewed as Boolean matrices (or binary matrices or cross-tables) in the sense of
Kim (1982). In analogy to a distinction made in relational database theory (Abiteboul,
1995), we distinguish between an “unnamed perspective” and a “named perspective”.
In the unnamed perspective, all data of an application, i.e., all formal contexts of an
application, are represented as (possibly large) matrices of the same dimension3:

Definition 4. In the unnamed perspective, with |A| := |ACT| × |ACT|, an active domain
A is the set of all binary |A|-dimensional matrices I so that semantically for all elements
in ACT, the nth element in ACT corresponds to the nth row and column in I . It is then
said that I is based on A denoted by IA.

The subscript A in IA can be omitted if it clear from context. Obviously, it would be im-
practical for most applications to actually construct such large matrices. The unnamed
perspective is mainly used to define some operations in a somewhat more context- inde-
pendent manner, which can be useful for certain context compositions in the named per-
spective. Otherwise, the unnamed perspective is mostly of theoretical value. Each object
or attribute of any formal context relating to a single application is uniquely identified by
its position in A. Row and column permutations change the values of rows and columns
but not their semantic correspondence to elements in A (thus may not be meaningful
operations). Even though, the names of the elements in ACT are not strictly required, it
is usually more convenient to use them instead of using row and column numbers.

The next definition assumes the usual operations for Boolean matrices (cf. Kim
(1982)), i.e., with (i, j)I denoting the element in row i, column j in matrix I and ∨, ∧
and ¬ denoting Boolean OR, AND and NOT: (i, j)I∪J := (i, j)I ∨ (i, j)J ; (i, j)I :=
¬(i, j)I ; (i, j)I◦J := 1 iff ∃k : (i, k)I ∧ (k, j)J ; (i, j)Id := (j, i)I . A matrix is
symmetric if I = Id, reflexive if dia ⊆ I , transitive if I2 ⊆ I . Because matrix opera-
tions and operations on binary relations are so similar, we use a set-theoretic notation for
both. The distinction between sets and matrices is made using typeface (see footnote 3).

Definition 5. A matrix-RA based on A is an algebra (R,∪,− , one, ◦,d , dia()) where
one ∈ R is a reflexive, symmetric and transitive matrix; R is a set of Boolean matrices

3 In the rest of this paper, typewriter font (A, B, etc) is used for subsets and elements of ACT and
uppercase italics (I , J etc) for matrices and binary relations. If elements of ACT are used in
names of matrices, then they are written in italics but underlined (but not if used as subscript).

An FCA Interpretation of Relation Algebra 253

based on A with I ∈ R ⇔ I ⊆ one; and ∪,− , ◦,d are the usual Boolean matrix
operations; and for any set S ⊆ ACT and a(n) denoting the nth element in ACT, dia(S)
is defined by (i, j)dia(S) = 1 iff i = j and a(i) ∈ S (but only if dia(S) ⊆ one).

Table 2 summarises the definition and introduces some further operations (with
G, M, S ⊆ ACT). The operation ∩ is still the de Morgan complement of ∪. nul can be
derived from dia or via nul = one. Because binary relations can be equivalently rep-
resented as sets of pairs or as binary matrices it follows that:

Table 2. The unnamed perspective: A matrix-RA based on A

notation definition basis
∪ component-wise ∨ yes
− component-wise − yes
◦ binary matrix multiplication yes
d matrix transposition (mirrored along diagonal) yes

nul := dia ∪ dia
dia := dia(ACT)
dia(S) has 1’s according to S yes
dia(I↑) := dia ∩ (one ◦ I) = Id ◦ I ∩ dia
dia(I→) := dia ∩ (I ◦ one) = I ◦ Id ∩ dia
sqr(G,M) := dia(G) ◦ one ◦ dia(M)

Lemma 1. Definitions 2 and 5 are equivalent: every RA is a matrix-RA and vice versa.

It is not necessary to use sets (S, ACT) in definition 5. Instead of defining dia(S), one
could define dia and then derive dia(I→), dia(I↑) and state that every matrix J ⊆ dia
corresponds to a set. Thus the algebra in definition 5 is not truly two sorted. But the
use of dia(S) is convenient with respect to the named perspective. The other definitions
from table 2 can be explained as follows: the matrices dia(I↑) and dia(I→) represent
column-wise and row-wise projections of a matrix I onto the diagonal. For dia(I↑) this
means that for each column in I that contains at least one 1, dia(I↑) contains a 1 in
that position on the diagonal. A matrix sqr(G, M) contains a 1 for each cell whose row
name is in G and whose column name is in M. sqr(G, M) is an encoding of an empty
cross table of a formal context based on A. A formal context can now be represented as
(sqr(G, M), I) where G, M ⊆ ACT and I is a matrix based on A with I ⊆ sqr(G, M).

Definition 6. A context-RA based on A for a set of formal contexts is the smallest
matrix-RA based on A that contains these contexts.

This means that for a context (sqr(G, M), I) the context-RA contains all contexts that
have any subsets of G∪M as sets of objects and attributes. It should be noted that a smaller
RRA could be constructed that contains a set of contexts, if R in definition 5 was not
required to contain all matrices I ⊆ one. But since the prime operator (′) in FCA is
normally applicable to all subsets of objects or attributes, definition 5 (which allows the
formation of matrices corresponding to subsets) seems reasonable. Subsets of G and M
can be represented as diagonal matrices or as matrices which contain identical rows (eg.
sqr(ACT, S)) or identical columns (eg. sqr(S, ACT)). These three ways are equivalent

254 U. Priss

because the matrices can be converted: dia(S) = sqr(ACT, S)∩dia = sqr(S, ACT)∩dia
and sqr(ACT, S) = one ◦ dia(S).

Lemma 2. In the unnamed perspective the basic FCA operations can be represented as
summarised in table 3.

Table 3. Basic FCA operations in the unnamed perspective

standard FCA RA: unnamed perspective
gIm sqr({g}, {m}) ⊆ I

g′ := {m ∈ M | gIm} dia(g′) = dia(g+) := dia ∩ sqr(ACT, {g}) ◦ I

H′ := {m ∈ M | ∀g∈G : g ∈ H =⇒ gIm} dia(H ′) = dia ∩ sqr(ACT, H) ◦ I
H+ := {m ∈ M | ∃g∈G : g ∈ H and gIm} dia(H+) = dia ∩ sqr(ACT, H) ◦ I

The equivalence of the expressions in the left and right columns in table 3 follows di-
rectly from the definitions. But a further explanation of the table is required: a context
(sqr(G, M), I) is assumed with H ⊆ G; N ⊆ M; g ∈ G; m ∈ M. The plus (+) oper-
ator, which is somewhat dual to the prime (′) operator originates from use in lexical
databases (cf. Priss(1998) and Priss & Old (2004)). The operations for sets of attributes
are analogous to the ones for sets of objects in table 3.

4.3 The Named Perspective

In contrast to the unnamed perspective where all matrices of an application are of di-
mension |A|, in the named perspective matrices can have different dimensions and may
not even be square.

Definition 7. In the named perspective, the active domain ACT is linearly ordered. A
formal context (G, M, I) based on ACT consists of two sets G, M ⊆ ACT, which are lin-
early ordered using the by ACT-induced ordering, and of a binary matrix I of dimension
|G| × |M| where the ith row corresponds to the ith element in G and the jth column
corresponds to the jth element in M. This can be denoted as IG,M.

Semantically, this implies a unique name assumption because if the same name is used
in different formal contexts or in a single context both as an object and as an attribute,
then these elements are semantically indistinguishable because they refer to the same
element in ACT. The unique name assumption ensures that the operations ∪ and ◦ can
be meaningfully generalised to contexts of different dimensions as follows:

Definition 8. For formal contexts K1 := (G1, M1, I) and K2 := (G2, M2, J) the follow-
ing context operations are defined:

K1 � K2 := (G1 ∪ G2, M1 ∪ M2, I � J) with gI � Jm :⇐⇒ gIm or gJm
K1 � K2 := (G1 ∪ G2, M1 ∪ M2, I � J) with gI � Jm :⇐⇒ gIm and gJm
K1 � K2 := (G1, M2, I � J) with gI � Jm :⇐⇒ ∃n∈(M1∩G2) : gIn and nJm

K1 := (G1, M1, I); Kd
1 := (M1, G1, I

d).

Table 4 shows some further operations that can be defined for formal contexts in the
named perspective. Most of the operations are essentially the same as in the unnamed

An FCA Interpretation of Relation Algebra 255

Table 4. Further context operations

K1 ∪ K2 := K1 � K2 if G1 = G2, M1 = M2

K1 ◦ K2 := K1 � K2 if M1 = G2
K1
K2

:= K1 � K2 if G1 ∩ G2 = ∅ and M1 = M2

K1|K2 := K1 � K2 if G1 = G2 and M1 ∩ M2 = ∅
diaG(S→) see definition 9
diaM(S↑), diaG(I→), diaM(I↑) analogous to diaG(S→)
setG(I), setM(I) see definition 9, setG(I) = setG(diaG(I→))
nulG,M := IG,M ∪ IG,M
redG,M(J) := diaG � JG1,M1 � diaM

colG(S) := diaG(S→) ◦ oneG,{x}
rowM(S) := one{x},M ◦ diaM(S↑)

perspective. Because dia is square, one set as subscript is sufficient (diaG := diaG,G).
In addition to operations which convert a set into a matrix (diaM(S→)), there are also
operations which convert a matrix into a set: setG(I). Union potentially enlarges the
dimension of the original matrices. A reduction operation redG,M(J) eliminates all rows
and columns from a matrix J which do not correspond to elements in G and M, re-
spectively. The following holds for context composition: K1 � K2 = (G1, M1 ∪ G2, I �
nulG1,G2) ◦ (M1 ∪ G2, M2, J � nulM1,M2)

Definition 9. A context algebraic structure (CAS) based on ACT is a three sorted algebra
(R1, R2, R3,�,− , �,d , dia(), set(), (, ,)) where R2 is a set of subsets of ACT, R3 is a
set of Boolean matrices, R1 is a set of formal contexts based on ACT and constructed
using the partial function (, ,) : R2

2 × R3 → R1; �,− , �,d are according to definition
8; setG(I) := {g ∈ G | ∃m∈M : gIm}; setM(I) := {m ∈ M | ∃g∈G : gIm}; and diaG(S→)
is defined by (i, j)diaG(S→) = 1 iff i = j and for the ith element in G: g(i) ∈ S.

The algebra in definition 9 is not a RA because formal contexts have different nul ele-
ments and composition from the left and the right may require a different dia element.
But presumably a homomorphism can be constructed that maps each context (G, M, I)
onto a pair (sqr(G, M), I), that maps all diagonal matrices onto dia and all null matri-
ces onto nul, and that maps the other operations accordingly resulting in a context-RA.
(The details of this are left to future research.)

Lemma 3. In the named perspective the basic FCA operations can be represented as
summarised in table 5.

Table 5. Basic FCA operations in the named perspective

standard FCA CAS
gIm gd ◦ I ◦ md = (1)

g′ := {m ∈ M | gIm} g′ = g+ := gd ◦ I

H′ := {m ∈ M | ∀g∈G : g ∈ H =⇒ gIm} H ′ := Hd ◦ I

H+ := {m ∈ M | ∃g∈G : g ∈ H and gIm} H+ := Hd ◦ I

256 U. Priss

The following conventions are used in table 5: for a context (G, M, I); H ⊆ G; N ⊆
M; g ∈ G; m ∈ M; H := colG(H); g := colG({g}). As declared in footnote 3, the matrix
names derived from elements of ACT are underlined (such as g). In the first row, (1) is a
1× 1 matrix with element 1. In the named perspective, sets are best represented as row
or column matrices. Because G and M need not be disjoint, it can be ambiguous whether
g is a row or column. In that case, the notations g

c
:= colG({g}) and g

r
:= rowM({g})

can be used. In table 5, H ′ is a row matrix but H and H ′′ are column matrices. H ′′

is calculated dually to H ′ by composition with I from the left: H ′′ = I ◦ Hd ◦ I
d

=

I ◦ I
d ◦ H . The notations from the unnamed and named perspective are compatible

with each other and can be used together.

4.4 Eight Quantifiers

The use of negation and composition in the calculation of H ′ and H+ raises the ques-
tion as to whether other combinations of negation and composition are of interest.
Table 6 summarises all 8 possible combinations of negation and composition for a con-
text (G, M, I) and a set N ⊆ G. The third column in that table provides a rough linguis-
tic description, which should be taken with caution because words such as “only” are
fairly ambiguous in natural languages. In many applications, these 8 quantifiers result
in 8 different sets, which together describe the relationship of N and G in some detail. In
the next section, an example of a lattice construction is provided that summarises all 8
quantifiers in one diagram. It should be noted that with respect to relational databases,
it can be quite challenging to formulate these 8 quantifiers in SQL because the “ALL”
quantifier (corresponding to the so-called relational division in RLA) is not a primi-
tive operation in SQL. In fact to represent this “ALL” quantifier in SQL, two sub-select
statements are required (cf. Priss (2005) for an example).

4.5 Compositional Schemata

To represent more complex data than just a single relation using RA some kind of
canonic means for translating complex data into binary relations is needed.

Definition 10. A compositional schema consists of a set of 4 or 9 formal contexts,
which are arranged in a tabular manner, (cf. figure 1) so that some of the contexts can
be derived from adjacent contexts using composition.

Table 6. Eight Quantifiers

N+ I ◦ N at least one, some
G \ N+ I ◦ N none

N′ I ◦ N relates to all
G \ N′ I ◦ N does not relate to all
(M \ N)+ I ◦ N relates to those that are not only

G \ ((M \ N)+) I ◦ N relates to those that are only

(M \ N)′ I ◦ N relates to all outwith
G \ ((M \ N)′) I ◦ N does not relate to all outwith

An FCA Interpretation of Relation Algebra 257

A B
A 1 2
C 3 4

A B C
B 1 2 3
A 4 5 6
D 7 8 9

A B C
B L

A J J ◦ L

D I I ◦ J I ◦ J ◦ L

Fig. 1. A compositional schema

The idea of compositional schemata is not new. There have been many papers on FCA
which use such schemata explicitly or implicitly (eg. Ganter & Wille (1999), Priss
(1998), Faid et al. (1997)). By identifying certain types of compositional schemata,
their properties can be described in a general manner.

The numbering of the four or nine cells as presented in the left hand side of figure 1 is
used in the remainder of this paper. In the case of nine cells, the compositional schema
is built from the formal contexts KJ := (A, B, J); KI := (D, A, I) and KL := (B, C, L).
Because KI and KJ share the set A, a context KI◦J := (D, B, I ◦ J) can be formed.
Similarly, a context KJ◦L can be formed. Instead of the existence quantifier used in the
construction of the matrices in cells 6, 8 and 9, any of the other seven quantifiers from
table 6 can be used. A further context KI◦J◦L can be formed in cell 9 to complete the
schema. It should be noted that while KJ◦L and KI◦J are formed by composing the
context to the left with the one above, KI◦J◦L is formed by composing the context to
the left with the context two steps above (or the context two steps to the left with the one
above). An exception is if J is a reflexive, transitive relation, in which case J ◦ J = J
and I ◦ J ◦ L = I ◦ J ◦ J ◦ L. Depending on the application, cells 1, 2, 4 can be filled
with nul or dia or something else. In many cases, it may not be necessary to calculate
a lattice for the context consisting of all 9 cells, but instead only for cells 5, 6, 8, 9 or
just for individual cells. For identifying where objects and attributes are located in the
schema, row and column matrices representing the sets A, B, and so on can be used. For
example, an element g is an object in KJ if g

c
⊆ Ac.

Figure 2 provides two examples of compositional schemata. The first example can be
constructed for any concept lattice. This example shows a formal context ({a, b, c, d},
{1, 2, 3, 4}, I) where I is the matrix in cell 4 of the schema. After computing the set
of concepts of this lattice, ({A, B, C, D, E} without the top and bottom concept), cell 1
is filled with the conceptual hierarchy Isub; cell 2 is filled with the intension relation
between attributes and concepts (here called Iattr); cell 3 is filled with the extension re-
lation between objects and concepts (called Iinst). Because Isub is reflexive and transi-
tive: I = Iinst◦Isub◦Iattr = Iinst◦Isub◦Isub◦Iattr. In this case also Iinst = Iinst◦Isub

because ∃c1 : gIinstc1, c1Isubc2 ⇐⇒ gIinstc2 and the same for Iattr.
The bottom half of figure 2 shows a lattice that visualises all 8 quantifiers from

table 6. The compositional schema is constructed by inserting dia into cell 1, I into cell
3, the ∈ relation into cell 2, and I ◦N into cell 4. The lattice diagram shows that I ◦N

and I ◦ N are the intensions of the join and meet of the elements in N . I ◦N and I ◦ N
are the intensions of the join and meet of M\N which is N . The other 4 quantifiers need
not correspond to single concepts in the lattice but are the set-complements of the first 4
quantifiers. This lattice has the original lattice (G, M, I) as a sublattice. If this lattice was
produced as an answer to a query about elements in N, it would answer many questions
simultaneously: whether elements are at least in N, not in N, just in N, and so on.

258 U. Priss

o

A

B

C

D

E

A B C D E

a

b

c

d

1 2 3 4

x

x

xx

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x x

x x

x

x

1

2

4

a

b

c

d

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

1 2 3 4

3

1 2 4

3

ab

cd
A B C

D E

1 2

ab

d

3

M\N N

4

c

M\NN

I No I No

I No

I No
I No

I No

I N

Fig. 2. Two examples of compositional schemata

5 Relational Schemata and Fork Algebra

5.1 Relational Schemata

This section covers schemata that represent the table structure of a relational database
but without the actual values that are stored in the database and without showing which
tables correspond to what is called “entities” and what is called “relations” in relational
databases. More complex schemata with values and relations are covered in the next
section. Relational schemata are relevant not just for relational databases but also for
object-relational databases. There are some differences between the implementations
(and thus the underlying formalisations) of object-relational databases among different
vendors. For this paper, object-relational databases are considered to have a subtype
relation among tables, i.e., one table can be defined to be a subtype of another table.
This subtype relation is declared to be reflexive, acyclic and transitive. A subtype ta-
ble inherits all columns (attributes) from its supertypes and the instances (rows) of a
subtype are also assigned to its supertypes after deleting non-applicable columns. With
this definition, a relational database is an object-relational database where the subtype
relation is the identity (each table is only subtype of itself).

Definition 11. A relational schema (of an object-relational database) based on ACT
is a CAS using a compositional schema according to figure 3 where Tbls is a set of
table names, Inst a set of instances and Attr a set of column names with Inst ⊆
ACT; Tbls, Attr ⊆ N, and the sets are pairwise disjoint and linearly ordered according
to ACT. The subschema consisting of the cells 5, 6, 8, 9 is denoted by DB.

An FCA Interpretation of Relation Algebra 259

Tbls Tbls Attr
Tbls Iattr

Tbls Isub Isub ◦ Iattr

Inst Iinst Iinst ◦ Isub Iisba := Iinst ◦ Isub ◦ Iattr

Fig. 3. The basic relational schema for an object-relational database

It is normally assumed that Iattr has no empty columns and that Iinst has no empty
rows because having instances or attributes which are not in relationship to anything
else is strange. The relational schema DB is basically the same as the first example of
figure 2 because Isub is reflexive and transitive and thus, for example, Iinst ◦ Isub =
Iinst ◦Isub ◦Isub. In the line diagram of the lattice of DB the name of a table is attached
to a node both as an object and as an attribute or in other words:

Theorem 1. For each table t ∈ Tbls there exists a formal concept c(t) in the concept
lattice of DB which has t in its contingent extent and in its contingent intent. If t1 �= t2
then c(t1) �= c(t2).

Proof: As before tr denote a table among the attributes and tc the same table among the
objects. t′r = {sc∈ Tbls | scIsubtr} ∪ {i ∈ Inst | i(Iinst ◦ Isub)tr} and
t′′c = {sr∈ Tbls | ∀y∈t′

c
: sr(Isub|Isub ◦ Iattr)y} ∪ {i ∈ Inst | ∀y∈t′

c
: i(Iinst ◦

Isub|Iisba)y}. Because of sIsubtr ⇐⇒ ∀y∈t′
c

: s(Isub|Isub ◦ Iattr)y and i(Iinst ◦
Isub)tr ⇐⇒ ∀y∈t′

c
: s(Iinst ◦ Isub|Iisba)y it follows that t′r = t′′c . Same for t′c = t′′r .

This implies that (t′′c , t′c) and (t′r, t′′r) describe the same concept which has t in its
contingent. Because the subtype relation Isub is assumed to be acyclic (i.e., a table can-
not be subtype of a second table which is itself a subtype of the first table), there is a
different formal concept in DB for each different table.

The concept c(t) has all attributes of t in its intension and all instances of t in its
extension. Thus the concept lattice of DB summarises important information about the
tables of an object-relational database. Another feature of DB is that different types of
inheritance can be defined and analysed (cf. Priss (2005)). The formal context Ct for a
table t can be derived as Ct = (setInst(tc′), setAttr(tr ′), redGt,Mt(Iinst ◦ diaTbls(t) ◦
Iattr)).

5.2 Fork Algebraic Definitions

Tarski showed that RA is equivalent to first order logic with three variables (cf. Van den
Bussche (2001)). An indication for why three variables are sufficient is given by Van den
Bussche’s example: {(x, y) | ∃z (∃y (∃z(R(x, z) ∧ R(z, y)) ∧ R(y, z)) ∧ R(z, y))}.
Tarski further showed that what is missing from RA is a form of “pairing”, i.e., a means
for combining two elements into a pair which then itself behaves like a primitive ele-
ment. This pairing is required to build ternary relations. Different methods for adding a
“pairing axiom” to RA have been suggested (eg. Jain, Mendhekar & Van Gucht (1995)).
The approach which seems to be most widely used and which indeed has expressive
power equivalent to first order logic is called “fork algebra” (Frias et al., 2004). It was
developed in the area of programming language semantics for the purpose of deal-
ing with non-deterministic algorithms. To our knowledge, applications in the area of
databases as we are suggesting in this paper have not been discussed before.

260 U. Priss

The following two definitions are adapted from (Frias et al., 2004). For the purposes
of this paper the usual operation (∇), is replaced by its relational dual denoted by �.

Definition 12. A fork algebra is an algebra (R, +, ·,′ , 0, 1, ; ,� , e,�) so that
(R, +, ·,′ , 0, 1, ; ,� , e) is a relation algebra and for all r, s, t, u ∈ R:

F1 r� s = ((e� 1); r) · ((1� e); s) F3 (e� 1)d � (1� e)d ≤ e
F2 (rd � sd)d; (t�u) = (r; t) · (s; u)

Definition 13. A pre-proper fork algebra (FRA) is a two sorted algebra (R, U,∪,∩,−,
nul, one, ◦,d , dia,�, frk()) where (R,∪,∩,− , nul, one, ◦,d , dia) is a RA on a set U;
a binary function frk : U × U → U is injective on the restriction of its domain to one;
the operation � is defined as I � J := {(frk(x, y), z) | (x, z) ∈ I; (y, z) ∈ J} and R
is closed under �.

Proper fork algebras are defined somewhat more abstractly than pre-proper ones, but
they are not required for this paper. Unless one = dia, the frk operation in definition
13 requires an infinite set of elements because of the injectivity. It should be noted that
frk is not associative, thus usually frk(frk(x, y), z)�= frk(x, frk(y, z)). With respect
to active domains, the frk operation in this paper has the purpose of assigning unique
identifiers.

Definition 14. A context-FRA based on A is a context-RA based on A with a FRA on
ACT which fulfills the following: with frk : U1 × U2 → U3: if U1 = U2 = ACT ⇒
U3 = ODD ∪ EVN and if U1 = ODD or U2 = ODD ⇒ U3 = ODD. For x, y ∈ EVN:
frk(x, y) �= x and frk(x, y) �= y. The following restrictions to ACT are defined:
I �|EVN J := {(frk(x, y), z) | (x, z) ∈ I; (y, z) ∈ J ; frk(x, y) ∈ EVN} and lft :=
diaA �|EVN oneA and rgt := oneA �|EVN diaA and prt := rgt � lft � (rgt � lft) �
(lft � rgt) � (rgt � rgt) � (lft � lft)... and end := dia(prt↑) ∩ dia(prt→).

It can be shown that F1 and F3 (but not F2) from definition 12 still hold for �|EVN. lft
and rgt are projections because lft = {(frk(x, y), x)| frk(x, y) ∈ EVN}. According
to F1, all of the information about �|EVN is contained in lft and rgt. The matrices lft
and rgt are fixed at any point in time according to EVN. Calculations with �|EVN are
thus reduced to look-ups in lft and rgt together with ordinary RA operations. It should
be noted that to calculate the parts, prt requires some sort of transitive closure (thus is
not strictly an RA operation). Frias et al. (2004) do not discuss the need for transitive
closure, but it is not known to us whether they do not require it or whether they have
overlooked the problem.

5.3 Relational Schemata Using Fork Algebra

Using the fork algebraic extensions from the previous section, it is now possible to
define a complete relational schema for an object-relational database that contains both
simple and composite tables with all their values. Simple tables are traditionally called
“entity tables”. They collect instances, such as “employee” or “project”. Instances (or
rows) in such tables are usually identified by a single key, which is a column of the
table and contains unique values, such as “employee number” or “project number”.
Composite tables are traditionally called “relations”, which are built using the keys from
simple tables as “foreign keys”. For example, a relation “work” can be built from tables

An FCA Interpretation of Relation Algebra 261

“employee” and “project” using the keys “employee number” and “project number”.
Such a table represents a database relation between employees and projects.

Definition 15. A complete relational schema based on ACT is a relational schema
based on ACT with a context-FRA based on A and with sets: Keys ⊆ Attr; Nkey :=
Attr \ Keys; Simp ⊆ Inst with Simp := {s ∈ Inst|¬∃y : s prt y} ∪ {s ∈ ACT | ∃x :
x end s} and Comp := Inst \ Simp; so that simple instances have at most one key:
for s ∈ Simp, k1, k2 ∈ Keys: sIisbak1, sIisbak2 ⇒ k1 = k2 and the keys of com-
posite instances correspond exactly to their fork algebraic end parts: for c ∈ Comp:
∃s : c end s ⇐⇒ ∃k∈Keys : c end�Iisba k; for c ∈ Comp, k ∈ Keys: c end�Iisba k ⇐⇒
cIisbak and |set((c � end)↑))| = |setKeys((c � Iisba)↑)|.
Definition 15 does not allow for the same attribute to be used more than once as a
foreign key. This is only a problem if these attributes are in a many-to-many relation
because otherwise the relation does not require a separate table. But even then it is pos-
sible to generate a generic key attribute using identifiers and treating the other attributes
as non-key attributes.

Remark 1. Definition 15 translates the database notion that instances are uniquely iden-
tified by keys into a fork algebraic part-whole relationship! This is significant because
in RLA, keys form just another set and instance pairs are not structurally different from
value pairs. But in the fork algebraic formalisation, the special nature of keys is struc-
turally represented.

The conditions in definition 15 can also be expressed relationally: simple instances do
not have parts: dia(Simp)�prt = nul. End parts are simple: dia(Simp)⊇ dia(end↑) or
end = prt � dia(Simp). Simple instances have exactly one key: redSimp,Keys(Iisba) is a
permutation matrix4. Keys of composite instances correspond to the fork algebraic end
parts of the instances: for each c ∈ Comp: diaset((c � end)↑)�Iisba�diaKeys((c�Iisba)↑)
is a permutation matrix.

So far, instances can be constructed and attributes can be assigned to instances –
but only in a binary manner showing which instance has which attribute but not which
value belongs to an instance with respect to an attribute. In the following definition,
Vals stands for instance-value pairs. Attribute values are often drawn from potentially
infinite domains (such as the set of real numbers). This is why attribute values do not
usually correspond to keys. According to Definition 15 simple instances do not need
to have a key. Simple instances without keys are attribute values. But not all attribute
values need to be listed as instances in a complete relational schema.

Definition 16. A value assignment context for a complete relational schema based on
ACT is a formal context (Vals, Nkey, Ivals) where Vals ⊆ ACT with dia(Vals) ⊆
dia(lft→) so that ((dia(Vals) � lft)↑) ⊆ dia(Inst) and Ivals is a binary matrix so
that for each attribute a: the matrix dia((Ivals � a)→) � lft = dia(set(a′)) � lft has
at most 1 cross per column.

The conditions in definition 16 ensure that elements of Vals are pairs where the left
element is an instance. The instance-value relation for each attribute can be retrieved via

4 A binary relation I represents an exact correspondence, if it contains exactly one 1 in each row
and column (i.e., I ◦ Id = dia). Such a matrix is called a permutation matrix.

262 U. Priss

lftd � dia(set(a′)) � rgt. The last condition in definition 16 ensures that each instance
has exactly one value for each attribute. In relational database terms this means that
the tables are in first normalform. Definition 16 does not only require this for each
single table, but instead across the whole database. If an instance has a value for an
attribute, then it has the same value in all tables in which this instance and this attribute
occur. This means that a multiple inheritance anomaly (Priss, 2005) is avoided. From an
implementation viewpoint, this can always be achieved by renaming attributes if these
attributes have table-specific values.

The construction in definition 16 is in principle similar to the treatment of “many-
valued contexts” in traditional FCA (Ganter & Wille, 1999) and to Wille’s (2002) power
context families. The difference is, however, that in definition 16 a single formal con-
text is used for all attributes of all database tables of an application. The information
about which instances and values belong to which database tables is coded into the fork
algebraic part-whole structure of the elements in Vals. The fork algebraic construction
also uses a more restrictive set of operations. Instead of the use of a Cartesian Product,
pairs of instances or of instances and values are added to lft and rgt on an as-needed
basis. Another restriction (but not limitation) is that n-ary relations are built stepwise
from binary relations.

6 Conclusion

This paper describes a formalisation of object-relational databases using RA and fork
algebra. An advantage for this approach is that in contrast to traditional RLA, the math-
ematisation is mainly based on binary relations and thus closer to FCA, which provides
easy access to visualisations in form of FCA line diagrams. Compared to RLA, the ba-
sis of the algebraic operations that are required is quite similar. Both RA and RLA use
union and complement. The RLA operations of projection and selection are achieved in
RA by using composition, dual and a selection via composition with dia(). The RLA
operation of cross (or Cartesian) product corresponds to fork algebraic constructions
together with RA operations that allow to convert between sets and matrices. The sim-
ilarities and differences between the two approaches provide insights into the structure
of relational databases. It is hoped that in the future an implementation can be developed
that explores practical applications of the RA/fork algebraic structures.

References

1. Abiteboul, Serge; Hull, Richard; Vianu, Victor (1995). Foundations of databases. Addison
Wesley.

2. Atkinson, M.; Bancilhon, F.; DeWitt, D.; Dittrich, K.; Maier, D.; Zdonik, S. (1989). The
Object-Oriented Database System Manifesto. In: Proceedings of the First International Con-
ference on Deductive and Object-Oriented Databases, Kyoto, Japan. p, 223-240.

3. Brink, C.; Britz, K.; Schmidt, R. (1992). Peirce Algebras. Max-Planck-Institut für Informatik.
MPI-I-92-229.

4. Codd, E. (1970). A relational model for large shared data banks. Communications of the
ACM, 13:6.

An FCA Interpretation of Relation Algebra 263

5. Faid, M.; Missaoui, R.; Godin, R. (1997). Mining Complex Structures Using Context Con-
catenation in Formal Concept Analysis. In: Mineau, Guy; Fall, Andrew (eds.), Proceedings
of the Second International KRUSE Symposium. p. 45-59.

6. Frias, Marcelo; Veloso, Paulo; Baum, Gabriel (2004). Fork Algebras: Past, Present and Fu-
ture. Journal on Relational Methods in Computer Science, 1, p. 181-216.

7. Ganter, B.; Wille, R. (1999). Formal Concept Analysis. Mathematical Foundations. Berlin-
Heidelberg-New York: Springer, Berlin-Heidelberg.

8. Hansen, Gary; Hansen, James (1988). Human Performance in Relational Algebra, Tu-
ple Calculus, and Domain Calculus., International Journal of Man-Machine Studies, 29,
503-516.

9. Hereth, J. (2002). Relational Scaling and Databases. In: Priss; Corbett; Angelova (Eds.)
Conceptual Structures: Integration and Interfaces. LNCS 2393, Springer Verlag. p. 62-76.

10. Imielinski, T.; Lipski, W. (1984). The relational model of data and cylindric algebras. Journal
of Computer and Systems Sciences, 28, p. 80-102.

11. Jain, M.; Mendhekar, A.; Van Gucht, D. (1995). A Uniform Data Model for Relational Data
and Meta-Data Query Processing. International Conference on Management of Data.

12. Kim, K. H. (1982). Boolean Matrix Theory and Applications. Marcel Dekker Inc.
13. Lyndon, R. (1950). The representation of relational algebras. Ann. of Math., 2, 51,

p. 707-729.
14. Maddux R. (1996). Relation-algebraic semantics. Theoretical Computer Science, 160,

p. 1-85.
15. Pratt, V.R. (1992). Origins of the Calculus of Binary Relations. Proc. IEEE Symp. on Logic

in Computer Science, p. 248-254.
16. Pratt, V.R. (1993). The Second Calculus of Binary Relations. Proc. 18th International Sympo-

sium on Mathematical Foundations of Computer Science, Gdansk, Poland, Springer-Verlag,
p. 142-155.

17. Priss, U. (1998). Relational Concept Analysis: Semantic Structures in Dictionaries and Lex-
ical Databases. (PhD Thesis) Verlag Shaker, Aachen 1998.

18. Priss, U.; Old, L. J. (2004). Modelling Lexical Databases with Formal Concept Analysis.
Journal of Universal Computer Science, Vol 10, 8, 2004, p. 967-984.

19. Priss, U. (2005). Establishing connections between Formal Concept Analysis and Relational
Databases. In: Dau; Mugnier; Stumme (eds.), Common Semantics for Sharing Knowledge:
Contributions to ICCS 2005, p. 132-145.

20. Tarski, A. (1941). On the calculus of relations. Journal of Symbolic Logic, 6, p. 73-89.
21. Tarski, A. (1955). Contributions to the theory of models. Indag. Math, 17, p. 56-64.
22. Van den Bussche, Jan (2001). Applications of Alfred Tarski’s Ideas in Database Theory.

Proceedings of the 15th International Workshop on Computer Science Logic. LNCS 2142,
p. 20-37.

23. Wagner, Stefan (2003). Transitive closure in relational database systems. On-line available
at http://www.stefan-wagner.info/cs/trans clos.php.

24. Wille, Rudolf (2002). Existential Concept Graphs of Power Context Families. In: Priss;
Corbett; Angelova (Eds.) Conceptual Structures: Integration and Interfaces. LNCS 2393,
Springer Verlag, p. 382-395.

Spring-Based Lattice Drawing Highlighting
Conceptual Similarity

Tim Hannan and Alex Pogel

Physical Science Laboratory, New Mexico State University,
Las Cruces, NM 88003, USA

{Tim.Hannan, Alex.Pogel}@psl.nmsu.edu

Abstract. This paper presents a spring-based lattice drawing method
that uses natural spring lengths determined by assigning a dissimilarity
value, the size of symmetric difference, to every pair of concept extents.
This extends previous work on incorporating support structure in a con-
cept lattice diagram, in which the support weight function was applied
to modify any layout. That work was a partial advance toward the goal
of viewing high confidence association rules via the lattice diagram in
a way that naturally extends the traditional viewing of implications in
a diagram, but also caused the appearance of nearly horizontal edges.
The spring-based method solves this problem by placing concepts in the
ambient space such that the distance between concepts is proportional to
the size of the symmetric difference of the extents of the respective con-
cepts. Besides meeting the proportionality criteria, the algorithm yields
highly symmetric diagrams in cases where it is expected.

1 Introduction

In most applications of Formal Concept Analysis, the analysis activity is driven
by human interaction with a diagram of the formal concept lattice, a labeled
lattice derived from binary-valued tabular data. Consequently, the lattice layout
problem is of singular importance. As stated in [StW], “A serious problem is how
to represent graphically concept lattices such that the semantical relationships
within the data become mostly transparent.” The goal of this lattice drawing
activity is to extend what is the most basic use of a lattice diagram, the recogni-
tion of implications, to the recognition of near implications, i.e. high confidence
association rules, and to do so naturally, so that the fundamental rule “impli-
cation reads upwards” is extended to “near implication nearly reads upwards”.
We are not concerned with reading exact confidence values in a diagram, since
the inclusion of such values for every pair of concepts would overload the lat-
tice diagram with information, and because these values are always available via
simple user requests. This goal is intended to enhance knowledge discovery ap-
plications of Formal Concept Analysis in which association rules are important,
including epidemiology [OPH] and analysis of multi-agent computer simulations
with prominent stochastic components: in both these domains implications are
rare, but near implications are numerous.

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 264–279, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Spring-Based Lattice Drawing Highlighting Conceptual Similarity 265

This effort extends the results in [PHM] that focused on expressing the sup-
port structure of a concept lattice via the support weight function. There, con-
cepts were presented at heights that were relative to their support, and this
created diagrams in which pairs of concepts that were order related and had
nearly the same support values - the hallmark of a high confidence association
rule - were sometimes presented near one another, clearly extending the usual
paradigm for reading a line diagram, while other times were presented far from
each other, such that nearly horizontal lines appeared in the diagram. To address
the latter problem, this paper is motivated by a more specific goal: we want to
create a lattice drawing method that makes conceptual similarity transparent.
Intuitively, we think two concepts are conceptually similar if their extents are
nearly equal, that is, if there are only a few objects distinguishing the two. We
are purposefully leaving “only a few objects”, and thus the ultimate meaning
of conceptual similarity, to the interpretation of the analyst, but the important
point is that we can capture the intuitive notion quantitatively by computing
the symmetric difference of the extents of the respective concepts. The core idea
of this paper is that the goal of expressing conceptual similarity is accomplished
by drawing concept lattices such that a proportionality criteria is met: for each
pair of concepts, the distance between concepts is proportional to the size of the
symmetric difference of the extents of the respective concepts.

Given the proportionality criteria, in a particular drawing of a lattice there
may be pairs of concepts that will be too far apart given how small the symmetric
difference of their extents is, and there may be pairs of concepts that will be too
close given how large the symmetric difference of their extents is. In either case,
a spring whose natural length is the size of the symmetric difference would act to
correct the displacement from the natural length. Thus, a spring-based algorithm
is appropriate to achieve the proportionality criteria, and this paper presents a
spring-based lattice drawing method that iteratively improves a diagram through
reference to a natural spring length between concepts that is determined by the
size of the symmetric difference of the respective extents.

Now we describe the structure of the paper. First we present details of the al-
gorithm. Next we consider practical applications of the results of the algorithm,
via lattice diagrams created from the Zoological data and Mushroom data avail-
able at the UCI KDD repository [UCI]. Then we discuss the algorithm’s perfor-
mance on the well-known Knives concept lattice, also demonstrating that the
algorithm can be considered a layout method in its own right, not merely a
modification method. Finally we display quantitative evidence we have gathered
to show that the proportionality criteria is more satisfied by this method than
other vector-based methods, even when the vector-based methods are combined
with the support weight function.

2 The Spring-Based Algorithm

We use the standard nomenclature of Formal Concept Analysis, as found in
[FCA]. Various concept lattice layout techniques are available at this time,

266 T. Hannan and A. Pogel

including the geometrical method, the additive line diagram method, and the
nested line diagram method, as discussed in [FCA], along with the upper covers
method [PHM], the order-based improvement algorithm in LatDrawWin [LDW],
and the tension-repulsion algorithm in GaLicia [GaL]. In this paper, we will use
two vector-based drawing methods, which may be modified via a height scal-
ing that uses the support weight function. The first method, V1 (vector-based
method 1), is a three-dimensional vector-based method inspired by the tradi-
tional additive line diagram method, while V2 is the Upper Covers vector-based
method. Whenever method V1 or V2 is modified by the support weight function,
we denote the resulting drawing method by VS1 or VS2 (Vector+Support1 and
Vector+Support2).

Our general view of lattice drawing is that some mapping graph : L → R3

provides a strictly order-preserving map from L into R3, where order in the
codomain is determined by the z−coordinate. We use R3 in place of R2 because
this allows a user to rotate the lattice about a central axis (as in [LDW]) to
determine a “best” projection into R2 (onto the computer screen). Experience
with [LDW] shows this is an effective, and computationally cheap, solution.
Thus our focus is on producing a desirable mapping of a lattice into 3D space
(meeting the proportionality criteria), with the manipulation controls (rotating,
translating, and zooming) being used to explore the lattice.

Now we explain how a model of spring lengths is used to create an improve-
ment algorithm. Our use of springs is consistent with their traditional application
in graph drawing algorithms [Dea], but is now motivated by concept-based ap-
plications. We assume we are given a concept lattice with each concept placed
at some (x, y, z) coordinate. For each concept in the lattice, we compute a force
vector that is based on forces computed when all of the concepts are treated
as point masses of equal mass with a spring connecting each pair of concepts.
As we model Hooke’s Law, every single concept applies a force on every other
concept that is proportional to the displacement from the natural length of
the spring and the force acts in the direction that restores the spring to its
natural length. Each spring is given a natural length equal to some (static) mea-
sure of the dissimilarity of its two concepts. We used the dissimilarity measure
D(Ci, Cj) = |extent(Ci)�extent(Cj)| . There are clearly other possibilities for
dissimilarity measures, and some are discussed in the last section, but our choice
of this particular dissimilarity measure is made to meet our goal of expressing
conceptual similarity in a diagram. From D(Ci, Cj) and d(Ci, Cj), the distance
between the current positions (xi, yi, zi) and (xj , yj, zj) of concepts Ci and Cj

respectively, we compute a force on concept Ci that is due to concept Cj , and
then we sum all those forces:

F (Ci) =
∑

{j:j∈{1,2,...,n}, j
=i,d(ci,cj)
=0}
v ∗ [d(ci, cj) − D(ci, cj)]

In the summand expression, the vector v on the left is the unit vector

(xj − xi, yj − yi, zj − zi)
d(ci, cj)

Spring-Based Lattice Drawing Highlighting Conceptual Similarity 267

pointing from concept Ci to concept Cj . The quantity in the brackets is the
spring’s displacement from its natural length, and the sign of this value deter-
mines whether the force is attractive or repulsive. Thus, for every concept Ci in
the lattice, we compute the force it feels from every other concept, and we add
up all of these force contributions to get the total force felt by Ci.

Notice that the force F (Ci) can be very large if the concept lattice cardinality
is large. This has potential to induce instability in the improvement process.1

Therefore, once the total force vectors are computed for every concept, we simply
use some fraction f of the force acting on each concept to determine a new
position for the concept. We employ the fraction f = 1

4∗|B(K)| , and believe other
expressions of the form f = 1

k∗|B(K)| will work as well with k > 1. Larger
k values slow the improvement. In principle, the algorithm is that simple. In
practice, implementing the algorithm has required minor variations of the core
idea, but none drastic enough to explain further.

3 Practical Results of the Improvement Algorithm

Here we examine the utility of the improvement algorithm in viewing high con-
fidence association rules and in expressing conceptual similarity. We begin with
a brief review of the support and confidence functions often used to evaluate
association rules.

Given a set M of attributes, an association rule is a pair (X, Y), often written
X → Y , with X , Y subsets of M , interpreted to say “in (some) cases where X
holds, Y also holds” (near implication), or “in the event of X , event Y also oc-
curs” (conditional event). Two functions used to formulate evaluation criteria for
association rules of a formal context K = (G, M, I), are confK(−) (confidence)
and suppK(−) (support), given by

confK((X, Y)) =
|X ′ ∩ Y ′|

|X ′| and suppK((X, Y)) =
|X ′ ∩ Y ′|

|G|

We define a function CsuppK : B(K) → [0, 1], called the concept support func-
tion, by assigning to each concept D = (P, B) of K = (G, M, I) the value
CsuppK(D) = |P |

|G| . Then the support of an association rule (X, Y) is the concept
support of the concept generated by X ∪ Y , that is

suppK((X, Y)) = CsuppK((X ′, X ′′) ∧ (Y ′, Y ′′)) = CsuppK((X ′ ∩ Y ′, (X ′ ∩ Y ′)′)) .

Also note that the support of a valid implication X → Y (i.e. an association rule
(X, Y) with 100% confidence) is the concept support of the concept (X ′, X ′′)
generated by the premise X .

For a first example, consider the zoological dataset available at [UCI]. The
dataset contains 101 animals and 17 attributes. Of the 17 attributes, 15 are

1 We have seen a similar instability when larger lattices are visualized (roughly 75
concepts and larger) in LatDrawWin [LDW].

268 T. Hannan and A. Pogel

binary and 2 are numerical. From this dataset we create two subdatasets. The
first dataset has all 101 animals and 4 of the binary attributes for which we have
especially strong pre-existing interpretations, chosen as an illustrative example,
while the second includes all 15 of the binary attributes. In the first dataset, the
attributes “hair” and “milk” are chosen because to most people they would seem
very similar conceptually. Most animals with hair nurse their young and most
animals which give milk also have hair. The attribute “eggs” was chosen because
it is nearly complementary to the attributes “hair” and “milk”. Finally, a fourth
attribute, “predator”, was chosen because most people would consider that to
be independent of the other three attributes. This subdataset with these four
attributes gives a clear illustration of the purpose of the improvement algorithm.

The smaller dataset has 11 concepts. The first figure shows the initial drawing
of the lattice of this small dataset drawn, at left, using the VS1 method. Notice
the nearly horizontal lines from “milk” and “hair” to their meet. As discussed in
[PHM], these nearly horizontal lines show near implications between the concepts
“milk” and “hair”.

Fig. 1. At left, an unimproved lattice drawn using the VS1 method. At right, the
improved version, with the “hair” and “milk” attribute concepts drawn so close together
(at far right edge) that they are nearly indistinguishable.

The lattice diagram at right in Figure 1 shows the improved version of this
lattice, and we see that the concepts “milk” and “hair” are drawn very near each
other (so much so that the attribute names are laid over one another), while
the concept “eggs” is repulsed from the pair, now appearing at the opposite
(left end) of the right diagram. Also, the concept “predator” has no preference
between “eggs” and the cluster with “milk” and “hair”, so it ends up somewhere
in the middle. Evaluating the rules “milk”→“hair” and “hair”→“milk”, we find
they have respective confidence values of 95.1% and 90.6%. Perhaps the most
important result produced by the algorithm is its visual clustering of concepts,
thus providing an indication that, according to the data, multiple concepts are
minor variations on a single concept.

Spring-Based Lattice Drawing Highlighting Conceptual Similarity 269

Now we turn to the concept lattice of the larger dataset, consisting of 101
animals and all 15 of the binary attributes in the zoological dataset. This lattice
has 238 concepts, and the improvement algorithm converged on a stable diagram
within 10 seconds of its initial layout via the VS2 method. We have seen similar
speed on many other lattices in the same size range (roughly 150 to 300) , and
our experience is that the improvement algorithm can easily handle large lattices.
Note in the Figure that the sublattice generated by “hair”, “milk”, “eggs”, and
“predator” is drawn almost exactly as it was when isolated in its own diagram
(right side of Figure 1).

Fig. 2. Full lattice of the context containing all 15 binary attributes. Notice the high-
lighted small sublattice has the same shape as the improved diagram at right in Fig-
ure 1, shown again at upper left. A much higher resolution image is available [PSL].

Next we turn our attention to the well-known Mushroom Database from the
UCI KDD Repository [UCI]. Consider the iceberg lattice [St1] created using a
0.55 support cutoff. In the next Figure, we see that the spring-based improvement
algorithm clusters together the concepts that are nearly identical in terms of
extent, while pushing apart those with less overlap.

270 T. Hannan and A. Pogel

Fig. 3. Mushroom iceberg lattice with 55% cutoff, drawn with the improvement al-
gorithm, after an initial (poor) layout via VS2. A higher resolution image is avail-
able [PSL].

Spring-Based Lattice Drawing Highlighting Conceptual Similarity 271

We have two key points to make regarding the iceberg lattice of the Mushroom
database. First, note that the improvement algorithm result in Figure 3 has
apparently depicted 23 concepts in place of the 30 that are actually present, by
clustering those concepts that have nearly equal extents (in fact, the additional
7 concepts can be easily seen by shrinking the size of the nodes in the diagram
and zooming in to the relevant sections). In this case, there is a 25% reduction of
the number of concepts, so the algorithm has automatically produced a leaner
diagram that is comparably expressive to the human-supervised vector-based
diagram for the same iceberg lattice that is shown in [St1].

Fig. 4. Zoom in to top of mushroom iceberg lattice with 55 percent cutoff

We see in Figure 4 that two attribute concepts at the top of the lattice are
laid over one another – “Veil color: white” and “Gill attachment: free” – in-
dicating that there is (nearly) a single concept, namely the meet of these two,
that is representative of both. We would expect a mycologist (mushroom expert)
to know this concept immediately, perhaps already aware of a single category
characterized by these two features, in which case the lattice diagram reflects
the expert knowledge.

4 Further Qualities of the Resulting Diagrams

Here we display the concept lattice of the challenging Knives context (a clarified
version of pocket knives and the tools they contain, as in [Lea]), created by the
improvement algorithm. Starting with any of the four distinct layout methods in
the left column of Figure 5 (VS1 method [resulting in a slightly twisted diagram];
VS2 method [with slight horizontal distension]; a random placement of concepts
in the space between the top and the bottom elements of the lattice, which is
not a Hasse diagram; and a layout in which all non-extremal concepts are placed

272 T. Hannan and A. Pogel

Fig. 5. Four initial layouts for the Knives lattice are shown in the left column, and
the four improved lattices appear in the right column. Each of these four diagrams is
available [PSL] in much higher resolution.

at the midpoint between the top and bottom element, which is also not a Hasse
diagram), the algorithm yields the single layout shown in Figure 6.

We mention again that the latter two layout methods of the four in Figure 5
should almost never produce Hasse diagrams. Nonetheless, the improvement

Spring-Based Lattice Drawing Highlighting Conceptual Similarity 273

Fig. 6. The Knives lattice drawn using the improvement algorithm. Applying the im-
provement algorithm iteratively to each of the four diagrams mentioned above leads to
this same layout.

algorithm manages to return indistinguishable (to the human eye) diagrams from
each of the four layout methods. It appears there is similar stability for nearly
all small lattice diagrams, since for any lattice with roughly 100 elements or less
(that we have considered), the algorithm produces indistinguishable diagrams
from any initial layout2. The evidence we have gathered regarding small lattices
indicates that the algorithm can be viewed as an initial layout method itself.
Various images supporting this argument are available [PSL].

Next we consider a nine-dimensional Boolean algebra, drawn in Figure 7 by
the improvement algorithm with the support weight function applied. The actual

2 Remark: In lattices with symmetries in the horizontal component, the uniqueness is
up to symmetry, e.g. the Boolean algebra with three atoms can be drawn with two
orientations determined by the three atoms, but the diagrams will look the same.

274 T. Hannan and A. Pogel

Fig. 7. The Boolean algebra with nine coatoms, drawn via the improvement algorithm
with an application of the support weight function

context that generated this particular lattice is available [PSL]. It differs from
the standard contranominal scale in the support value of each attribute con-
cept (it is neither clarified nor reduced). Note that the diagram indicates that
this Boolean algebra should be understood as a product of a 3-coatom Boolean
algebra and a 6-coatom Boolean algebra, and further that the inner 6-coatom
Boolean algebra is best understood as a product of two 3-coatom Boolean alge-
bras. There is minor twisting evident in the long lines connecting the 6-coatom
Boolean algebras. Nonetheless, regardless of the initial configuration, the same
local clusters are produced, since the forces generated from the spring lengths
enforce this outcome. Various before-and-after images showing the results gen-
erated from various initial layouts, including point-line configurations that are
not Hasse diagrams and variations on the input data, are available [PSL].

5 Quantitative Evaluation of Proportionality Criteria

In this section, we present evidence that the algorithm presented here does create
lattices that satisfy the proportionality criteria better than in the initial layout
that was input to the algorithm. To show that this is the case, for each pair of
concepts we plot the Euclidean distance between the pair versus the size of the

Spring-Based Lattice Drawing Highlighting Conceptual Similarity 275

Fig. 8. A plot of Euclidean distance vs. size of symmetric difference of extents for each
pair of concepts in the Zoological dataset prior to and after improvement. Notice the
nearly linear relationship in the bottom image.

symmetric difference of the extents of the concepts. Ideally, these values would
be equal, but because we often change the spatial scale used in presenting a
concept lattice, whereas the symmetric differences do not change, the best we
could hope for is a linear relationship.

Consider the Zoological dataset from the UCI KDD repository whose lattice
was viewed in Section 3. The following figures show the plot of Euclidean distance

276 T. Hannan and A. Pogel

Fig. 9. A plot of Euclidean distance vs. size of symmetric difference of extents for each
covering relation in the Zoological dataset prior to and after improvement. Again, the
nearly linear relationship appears. Notice the change at the left edge.

vs. symmetric difference of extents for each pair of concepts in the lattice diagram
before the improvement and after the improvement.

We also created the same plots for the set of pairs of concepts that are in the
covering relation of the concept lattice, so in simpler terms, each point in the
plot corresponds to an edge in the diagram.

Spring-Based Lattice Drawing Highlighting Conceptual Similarity 277

We have created these plots for many other lattices and have seen no variation
from the principle exhibited here: the proportionality criteria is better fulfilled
in an improved diagram. Further quantitative evidence is available [PSL].

6 Future Work

The second largest lattice diagram (Figure 2 with 238 concepts) we considered
in this paper shows that the improvement algorithm has a drawback from the
usability point of view, i.e. it puts very many of the lower support concepts
close to one another, as shown in Figure 10, which displays a zoom into the
bottom section of the lattice (all the concepts with support 25% or less). This
clustering at the bottom is not surprising, as it is clearly due to the fact that the
symmetric difference of small support concepts will be small, thus making their
spring lengths very small – and this fact makes it very difficult to see structure
near the bottom of the lattice, particularly in the big picture, i.e. when the
whole lattice is viewed at once. We suspect that removing any edges that lead
to concepts not pictured in the current frame (we call them unspecified edges)
will drastically improve the readability of the portion of the lattice showing in
this frame. This issue does not arise very often in small lattice diagrams, e.g. in
this paper none of the small examples had many concepts clustered around the
bottom of the lattice.

Fig. 10. A zoom into the bottom quarter (concepts with 25% support or less) of the
Zoological lattice. A higher resolution image is available at [PSL].

In Figure 10 we have changed the scale in which the lower section of the Zo-
ological lattice is viewed. Imagining a cleaned up version of Figure 10 with no
unspecified edges (especially in the higher resolution version available from the
authors), it appears that the improvement algorithm is having the same effect
at the bottom of the lattice that it had at the higher support values already

278 T. Hannan and A. Pogel

considered in this paper: some concepts appear very near one another (clusters
are clear even in this messy picture), and further zooming can reveal details if
desired, while others that are nearly complementary (“fins and “domestic”) are
drawn as far apart as they can be given the constraints arising from the higher
support concepts. Thus, one of our key steps for future versions of the environ-
ment in which the spring-based drawing method is used will be the removal of
all unspecified edges from the frame in which a portion of the lattice is viewed.

In our original work toward a useful algorithm, we generated a variety of
natural spring length values from the symmetric difference dissimilarity measure.
First, we tried a dissimilarity measure which is the original dissimilarity measure
multiplied by the ratio of the average degree of the two concepts and the average
degree of all concepts in the lattice. This was an attempt to spread out the areas
with the most edges to make the concepts easier to see. Another attempt involved
using the dissimilarity measure

|extent(C1)�extent(C2)| ∗ [(
|extent(C1)| + |extent(C2)|

|G| − 1)2 ∗ k + 1] ,

expecting it would leave the middle of the lattice alone and stretch out the
bottom and the top horizontally by a factor of no more than k + 1. (It will only
slightly change the top in most cases since there are often very few concepts with
support > 0.5.) So far, in each of these attempts to spread out the bottom of
the lattice diagram, the improvement algorithm became unstable, and it would
not settle toward an ideal picture, so neither of these alternative dissimilarity
measure have given desirable results.

We plan to continue testing alternative dissimilarity measures, particularly a
measure that involves the size of the intersection of the two concepts’ extents (the
size of the extent of their meet) as part of the determination of natural spring
length size, in some combination with symmetric difference. We also expect to
consider modifying the existing diagrams via contraction (expansion) to (from)
the line segment, from the top to the bottom of the lattice, depending on support
value (expansion when support is low, contraction when support is high), and
other variants on this idea. The strategy here is to maintain the nearness of
concepts whose extents are nearly equal while disallowing the dense clutter at
the bottom. Finally, we note that while optimization has not been used, we
believe that large lattices can lead to multiple equilibria, so this certainly opens
the door for us to consider which of the various equilibria (as defined by some
stopping condition) are best, i.e. which equilibria optimize some criteria.

Another question that arose during our work on this algorithm was whether
there existed pathological initial configurations of a lattice in which the algo-
rithm cannot improve the configuration, specifically so that the proportionality
criteria is not met. Such pathological examples were never witnessed in normal
usage of the improvement algorithm on real datasets, but we were able to use
our understanding of the algorithm to construct a lattice and artificial initial
configuration such that the proportionality criteria fails. This example involves
a {0, 1}-gluing of four lattices (three copies of 1 ⊕ 24 ⊕ 1 and one copy of 23,

Spring-Based Lattice Drawing Highlighting Conceptual Similarity 279

where 2 is the two-element chain), but is too complex to present here, especially
since the corresponding context is an important part of the argument, and we
feel there are more surrounding issues to present. We will report on this topic in
a future paper.

Acknowledgement. The authors thank Physical Science Laboratory program-
mers Wesley Varela, Lance Miller, Arturo Mayorga, and Jon W. Newton for their
creation of supporting software.

References

[Dea] Di Battista, G., Eades, P., Tamassia, R., and Tollis, I.G., Graph Drawing:
Algorithms for the Visualization of Graphs, Prentice Hall, NJ, 1999.

[Co1] Cole, R.J.: Automatic Layout of Concept Lattices using Layer Diagrams and
Additive Diagrams, In M. Oudshoorn (Ed.): Proceedings of the 24th Aus-
tralasian Conference on Computer science, Gold Coast, Queensland, Aus-
tralian Computer Science Communications 23, IEEE Computer Society (2001)
47-53.

[LDW] Freese, R.: LatDrawWin, a lattice drawing applet, available at
http://www.math.hawaii.edu/~ralph/LatDraw.

[Fre] R. Freese: Automated Lattice Drawing, Second International Conference on
Formal Concept Analysis, ICFCA 2004, Sydney, Australia, Lecture Notes on
Artificial Intelligence (LNAI) 2961, Springer-Verlag, P. Eklund (ed) (2004).

[GaL] University of Montreal, Galicia - Galois Lattice Interactive Constructor.
http://www.iro.umontreal.ca/~galicia/visualization.html.

[FCA] Ganter, B. and Wille, R.: Formal Concept Analysis: Mathematical Founda-
tions, Springer, NY (1999) 68-79.

[UCI] Hettich, S. and Bay, S. D., The UCI KDD Archive http://kdd.ics.uci.edu.
Irvine, CA: University of California, Department of Information and Computer
Science, 1999.

[PHM] Pogel, A., Hannan, T., and Miller, L.: Visualization of Concept Lattices Using
Weight Functions, Supplementary Proceedings of ICCS04, Shaker, 2004.

[Lea] Langsdorf, R., Skorsky, M., Wille, R. and Wolf, A.: An Approach to Auto-
mated Drawing of Concept Lattices. Technical Report 1874, Technical Uni-
versity of Darmstadt, Schlossgatenstasse, Darmstadt, Germany (1996).

[OPH] Ozonoff, D., Pogel, A., and Hannan, T.: Generalized Contingency Tables and
Concept Lattices, to appear in AMS-DIMACS Special Volume: Discrete Meth-
ods in Epidemiology, Eds. J. Abello and G. Cormode, AMS, 2006.

[PSL] For higher resolution images of various Figures in this paper and
additional images of the results of the drawing algorithm, go to
http://www.psl.nmsu.edu/~apogel/SpringBasedLatticeDrawing.

[St1] Stumme, G., Taouil, R., Bastide, Y., Pasquier, N. and Lakhal, L.: Comput-
ing iceberg concept lattices with Titanic, Data and Knowledge Engineering
(Elsevier) 42 (2002) 189-222.

[StW] Stumme, G. and Wille, R.: A Geometrical Heuristic for Drawing Concept
Lattices, Graph Drawing (Springer-Verlag) (1995) 452-460.

[Yev] Yevtushenko, S., et al: Concept Explorer, Open source java software available
at http://sourceforge.net/projects/conexp, Release 1.2 (2003).

Characterizing Planar Lattices Using
Left-Relations

Christian Zschalig

Institut für Algebra, TU Dresden, Germany
zschalig@math.tu-dresden.de

Abstract. With the help of the left-relation on lattices [11] we give two
characterizations for planar lattices. They can be used to decide already
in a context, whether the associated concept lattice is planar. With the
help of these results we hope to find a quick algorithm to recognize planar
lattices and draw them in the plane in the near future.

1 Introduction

We assume that all sets in this paper are finite.

1.1 Motivation

In order to draw “nice” diagrams of lattices, it is helpful to minimize the num-
ber of edge crossings. In particular we want every planar lattice to be displayed
plane. Most lattice drawing algorithms ignore this issue or find plane diagrams
heuristically. There exist characterizations of planar lattices ([5], [7], [1]). How-
ever, efficient algorithms for embedding planar lattices into the plane are not
developed yet.

The aim of our work is to provide tools to create such an algorithm.

1.2 Diagrams of Lattices

A lattice V = (V,≤) is often represented by a diagram which we denote by1

pos(V). We draw a small circle for each lattice element and a line for each pair
v, w of lattice elements in covering relation. Lattice diagrams are drawn upward.
For a formal definition, see [7], [11]. Line diagrams are very common, here the
diagram edges are straight line segments.

When looking at a diagram, one may intuitively think of nodes being left
or right of others. Obviously this relation should affect only nodes representing
incomparable elements since the comparable ones can be understood to be situ-
ated below or above each other. We define for two nodes v and w that v is left
of w and denote this with vλw if there exists an upward polyline from bottom
to top element in the lattice containing w and if v is left of this line.

1 In the same manner we write pos(X) for the diagram representation of an arbitrary
part X of the lattice V.

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 280–290, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Characterizing Planar Lattices Using Left-Relations 281

Definition 1. [7], [11] Let V = (V,≤) be a finite lattice and pos(V) a diagram
of it. A maximal chain C is a sequence2 0V = z0 ≺ z1 ≺ . . . ≺ zn = 1V of lattice
elements zi. In a diagram pos(V) let xC(y) denote the unique3 x-coordinate of
the polyline pos(C) at height y (where y is in between the y-coordinates y(0V)
and y(1V) of the points corresponding to the bottom and the top element of V).
For a maximal chain C,

Fl(C) := {(x, y) ∈ R2 | y ∈ [y(0V), y(1V)], x < xC(y)}

is the area left of pos(C) and dually Fr(p) the area right of pos(C). We define
the left- and the right-relation λ and � induced by pos(V) by

v λw : ⇐⇒ (∃C � w : pos(v) ∈ Fl(C)) ∧ (v ‖ w)
v � w : ⇐⇒ (∃C � w : pos(v) ∈ Fr(C)) ∧ (v ‖ w)

for all elements v, w ∈ V.

1.3 Conjugate Orders

A conjugate order is a (strict) order on the incomparable elements of an ordered
set.

Definition 2. [5] A conjugate order Lc on an ordered set P = (P,≤) is a
relation meeting the following conditions (where ‖ denotes the incomparability
relation in P).

1. Lc ∪ L−1
c =‖.

2. Lc is a strict order

If only the first condition holds, we call Lc a conjugate relation.

The existence of a conjugate order on a lattice characterizes its plane diagrams.
In Figure 1 we provide two examples for left-relations of diagrams, the second
being a conjugate order.

Theorem 1. [11] Let V be a finite lattice. The following statements are equiv-
alent.

1. There exists a plane diagram pos(V) with the induced left-relation λ.
2. λ is a conjugate order on V.

How can we find conjugate orders on a lattice V? One can try to test all conjugate
relations on V for being a strict order. Of course this is by far too tedious, since
we have at most 2|V|2−|V| of those relations.

Our approach uses an observation when considering lattice diagrams drawn
with the convention of attribute additivity.
2 The symbol ≺ denotes the covering relation.
3 Since pos(V) is drawn upward.

282 C. Zschalig

a b e

c d

a b c d e

a λ λ λ

b λ

c λ λ

d λ

e

b a e

c d

c d b a e

c λ < λ λ

d < < <

b λ λ

a λ

e

Fig. 1. Two diagrams of the same lattice with their respective left-relations. The left
one is not plane and its left-relation is not antisymmetric. The right one is plane and
its left-relation is a strict order.

Definition 3. [8, 11] Let B(G, M, I) be a concept lattice. A line diagram of
B(G, M, I) is attribute additive if there is a map vec : M �→ R2, such that the
equation

pos(A, B) =
∑
m∈B

vec(m)

holds for all concepts (A, B) ∈ B(G, M, I).

The layout of the resulting diagrams is defined by the vectors assigned to at-
tribute concepts or

∧
-irreducibles for concept lattices or arbitrary lattices re-

spectively. Therefore, we assert that the relationship of these vectors in the plane
determines already, whether the respective diagram is plane. This assertion turns
out to be true, we even can restrict our attention to

∧
-irreducibles with common

upper neighbour. We call this relationship sorting relation. On this base we will
introduce left-relations on lattices.

2 Left-Relations on Lattices

2.1 Definition

In this section we will introduce a possibility to characterize conjugate orders
on a lattice. As already mentioned we consider in a first step sorting relations
on the set of

∧
-irreducibles. With m∗ we denote the unique upper cover of an∧

-irreducible m.

Definition 4. [11] Let V be a finite lattice and M = M(V) be the set of its∧
-irreducible elements. A strict order La ⊆ M × M is called a sorting relation

if the following condition holds for all elements m, n ∈ M :

m∗ = n∗ ⇐⇒ m La n or n La m.

The sorting relation just gives a relationship of
∧

-irreducibles with common
upper neighbour. We extend it to the set of all pairs of incomparable elements.

Characterizing Planar Lattices Using Left-Relations 283

Definition 5. [11] Let V be a finite lattice with a given sorting relation La. For
arbitrary lattice elements v and w, we define

M(v, w) = {(v′, w′) ⊆ M × M | v ≤ v′, w ≤ w′, v ‖ w′, w ‖ v′}.

We define the relation L ⊆ V × V according to:

v L w : ⇐⇒
{

v La w, v, w ∈ M, v∗ = w∗

∃(m, n) ∈ M(v, w) : m L n, else

L is called left-relation and R := L−1 is called right-relation on the lattice V.

Consider the picture on the right for an exam-
ple of calculating the left-relation on the de-
picted lattice for a given sorting relation. No-
tice that we are interested just in the underly-
ing lattice, not in the particular diagram used.
We assume m1 La m2, i.e. m1 L m2. Consider
now the pair (m3, v1). We observe (m3, m2) ∈
M(m3, v1) and (m1, m2) ∈ M(m3, m2) and
conclude m3 L v1.

m3 v1

m2m1

2.2 Left-Relations and Conjugate Orders

The left-relation gives indeed a possibility to find all conjugate orders, as we will
show here.

Lemma 1. [11] For every left-relation from Definition 5, the identity L∪R = ‖
holds.

Lemma 2. [11] A conjugate order Lc on a finite lattice V is a left-relation
on V.

We notice that for a left-relation L, which is a strict order, exactly one of the
five statements

v1 < v2, v1 > v2, v1 = v2, v1 L v2 or v1 R v2

holds for all pairs v1, v2 of lattice elements.

Proposition 1. [11] Let L be a relation on a finite lattice V. Then the below-
mentioned statements are equivalent:

1. L is a conjugate order.
2. L is a left-relation and a strict order.

Proposition 1 provides a possibility to calculate all conjugate orders:
Compute the left-relations from all possible sorting relations (at most |M |!) and
check whether they are strict orders. This strategy is already much quicker than
the already described, most näıve way, but obviously still too time consuming.

284 C. Zschalig

2.3 Properties of Asymmetric Left-Relations

In this section we prove two lemmas that will help to prove the Propositions
2 and 3. The first lemma is used in later proofs to decide, whether two lattice
elements are in left-relation.

Lemma 3. Let V = (V,≤) be a finite lattice. If L is an asymmetric left-relation
on V then the equivalence

v1 L v3 ⇐⇒ v2 L v3

holds for all elements v1, v2, v3 ∈ V fulfilling the conditions v1 ≤ v2 and v1 ‖
v3 ‖ v2.

Proof.
Since v2 and v3 are incomparable we can find a

∧
-

irreducible m2 satisfying m2 ≥ v2 and m2 �≥ v3.
Similarly we find an

∧
-irreducible m3 such that

m3 ≥ v3 and m3 �≥ v1 hold. We observe (m2, m3) ∈
M(v1, v3) ∩ M(v2, v3). Since L is asymmetric, we
conclude

v1 L v3 ⇐⇒ m2 L m3 ⇐⇒ v2 L v3.

v1

v3

v2

�
Corollary 1. Let V = (V,≤) be a finite lattice. Let L be an asymmetric left-
relation on V. Let v1, v2, v3 be lattice elements such that v1 L v2 L v3 holds.
Then v1 and v3 are incomparable.

Proof.
If v1 and v3 are comparable then we find by applying Lemma 3 v1 L v2 =⇒
v3 L v2. This contradicts the fact that L is asymmetric. �
The next lemma shows that asymmetric left-relations are already transitive. It
is useful when proving that a left-relation is a strict order.
Lemma 4. Let V = (V,≤) be a finite lattice. Let L be an asymmetric left-
relation on V. Then L is transitive.

Proof.
• We assume L to be not transitive. Then we have lattice elements v1, v2 and

v3 such that v1 L v2 L v3 holds, but not v1 L v3. With Corollary 1 we find
v3 L v1.

• We show first that the suprema of two of
these elements are all equal and equal to the
supremum of all three elements. Let w.l.o.g.

v12 := v1 ∨ v2 < v1 ∨ v2 ∨ v3 =: v123.

It follows v12 ‖ v3. Since v2 L v3 holds, we
conclude with Lemma 3 v12 L v3 and v1 L
v3. This contradicts our assumption that L
is asymmetric.

v1 v2

v12

v3

Characterizing Planar Lattices Using Left-Relations 285

• 1. We assume that there exists an element
v4 ∈ V meeting the conditions v4 ‖ v123
and v4 > v1. Then we notice v2 ‖ v4 ‖
v3 since v12 = v123 = v13 holds. With
Lemma 3 we conclude

v1 L v2 =⇒ v4 L v2 =⇒ v4 L v123 and
v3 L v1 =⇒ v3 L v4 =⇒ v123 L v4

contradicting the asymmetry of L.

v1 v2 v3

v123
v4

2. If there exists an element v4 with v4 ‖ v123 and either v4 > v2 or v4 > v3
respectively, our argumentation is analogous, Use that v1 L v2 L v3 L v1.

3. Since v4 as described in the previous cases does not exist, we can find
∧

-
irreducibles m1, m2, m3 ≺ v123 satisfying m1 ≥ v1, m2 ≥ v2 and m3 ≥ v3.
With lemma 3 we conclude m1 La m2 La m3 La m1. This is a contradic-
tion, since a sorting relation La is a strict order by definition. �

3 Two Conditions to Characterize Planarity

In this section we want to give two conditions for a left-relation L which are
necessary and sufficient for the planarity of the underlying lattice V. The first
planarity condition acts on

∧
-irreducibles only. It can be understood as a way

to calculate, which
∧

-irreducibles are allowed to be “in between” others (see
Figure 2 for an intuitive explanation).

Definition 6. A conjugate relation R on a lattice V fulfills the first planarity
condition (FPC) if

mi R mk R mj =⇒ mk > (mi ∧ mj)

holds for all
∧

-irreducibles mi, mk, mj ∈ M .

0V

mi ∧ mj

mi

mj

mk

0V

mi ∧ mj

mj

mi

mk

Fig. 2. When considering a diagram of a lattice, the necessity of the FPC is obvious
for its planarity: If mi L mk L mj or mj L mk L mi holds then also mk > (mi ∧ mj).
Otherwise every chain of diagram edges from mk to the bottom element of the lattice
intersects with a chain of edges from either mi or mj to mi ∧ mj .

286 C. Zschalig

Proposition 2. Let L be a left-relation on a lattice V, then the following equiv-
alence holds:

L satisfies the FPC ⇐⇒ L is a conjugate order.

Proof.
⇒: We show that L is asymmetric. With Lemma 4 we can then conclude that
L is a strict order, i.e. a conjugate order.

We assume L not to be asymmetric. Then we find two lattice elements v1
and v2 with v1 L v2 L v1. Applying Definition 5 we know that there exist∧

-irreducibles

(m11, m21) ∈ M(v1, v2) : m11 L m21

(m12, m22) ∈ M(v1, v2) : m22 L m12.

Obviously m11 and m22 are incomparable. The first case m11 L m22 implies
m11 L m22 L m12 and further with the FPC m22 ≥ (m11 ∧ m12) ≥ v1. This is a
contradiction, since m22 and v1 are incomparable. The second case m22 L m11
leads to a similar contradiction, namely m11 ≥ (m22 ∧ m21) ≥ v2.
⇐: We assume L not to meet the FPC. Then we find

∧
-irreducibles mi, mk, mj

with
mi L mk L mj ; mk �≥ mi ∧ mj =: v.

In this case mk and v are incomparable. W.l.o.g. let mk L v. We observe then
mi L mk L v. Since L is transitive, we conclude mi L v. This is a contradiction,
since we know mi ≥ v. �

The FPC provides a possibility to introduce a ternary relation T by

(mi, mk, mj) ∈ T : ⇐⇒ mk > (mi ∧ mj).

This relation can be understood as ”in-betweenness”, i.e. mk can be drawn in
between (in terms of the left relation of the diagram) mi and mj in a plane
diagram of V.

The second planarity condition clusters the
∧

-irreducibles above some speci-
fied lattice elements. See Figure 3 for an intuitive understanding.

v1

v2

v1∨v2
m1

m2

m3

m4
m5

m6

M(v1) \ M(v2)︷ ︸︸ ︷
M(v2)︷ ︸︸ ︷

v1

v2

v1∨v2
m1

m2

m3

m4
m5

m6

M(v1) \ M(v2)︷ ︸︸ ︷
M(v2)︷ ︸︸ ︷

Fig. 3. The SPC holds, if for each two incomparable lattice elements v1 and v2, the∧
-irreducibles above v2 are either right or greater or left or greater than the ones which

are above v1 but not above v2

Characterizing Planar Lattices Using Left-Relations 287

We introduce the notation M(v) := {m ∈ M | m ≥ v} for the set of all
∧

-
irreducibles above one lattice element v. Furthermore, for an arbitrary relation
R we define M1 R M2 : ⇐⇒ M1 × M2 ⊆ R, i.e. a set M1 is in relation R to
another set M2, if every element of M1 is in relation to any of M2. Finally, if R
is a relation on a lattice V, we write R< and R> for the union of a R with the
strict lattice order < and its inverse > respectively.

Definition 7. A conjugate relation R on a lattice V fulfills the second planarity
condition (SPC) if the requirements stated below are satisfied:

1. R is a strict order on M × M .
2. For all lattice elements v1 ‖ v2 ∈ V holds

(M(v1) \ M(v2)) R< M(v2) or M(v2) R> (M(v1) \ M(v2)).

Lemma 5. Let L be a left-relation on a lattice V, then the following equivalence
holds:

L satisfies the SPC ⇐⇒ L is a conjugate order.

Proof.
⇐: Since V is planar, L is a strict order, in particular on M × M .

Let v1 and v2 be arbitrary incomparable lattice elements. With m1 we de-
note an element of M(v1) \ M(v2), with m2 one of M(v2). If m1 and m2 are
comparable then we notice m1 < m2. Otherwise we would have m1 ≥ m2 ≥ v2
in contradiction to m1 �≥ v2.

Let w.l.o.g. m̃1 L m̃2 for two
∧

-irreducibles .
We must show that all m1 ‖ m2 satisfy m1 L m2.
With Lemma 3 we conclude

m̃1 L m̃2 =⇒ m̃1 L v2 =⇒ v1 L v2

=⇒ m1 L v2 =⇒ m1 L m2. v1
v2

m2
m̃2

m̃1
m1

⇒: We show that the SPC implies the FPC. Let mi, mj, mk ∈ M be arbitrary∧
-irreducibles such that mi L mk L mj holds. Let v := mi ∧ mj .

• v > mk implies mi > mk contradicting the fact that L is a conjugate relation.
• From v ‖ mk, w.l.o.g. mk L (mi ∧ mj) we conclude

mk ∈ (M(mk) \ M(v)) L M(v) � mi, mj ,

in particular mk L mi. This contradicts our precondition that L is asym-
metric on M × M .

• The remaining case mk > v is our assertion. �

In the following we will give a more efficient version of the SPC. Instead of clus-
tering attributes of arbitrary lattice elements, we only consider

∨
-irreducibles.

It turns out that this is already sufficient to characterize planarity.

288 C. Zschalig

Definition 8. A conjugate relation R on a lattice V fulfills the reduced second
planarity condition (rSPC) if the succeeding requirements are satisfied:

1. R is a strict order on M × M .
2. For all

∨
-irreducibles g1 ‖ g2 ∈ V holds

(M(g1) \ M(g2)) R< M(g2) or M(g2) R> (M(g1) \ M(g2)).

Proposition 3. Let L be a left-relation on a lattice V, then the following equiv-
alence holds:

L satisfies the rSPC ⇐⇒ L is a conjugate order.

Proof.
⇐: Since the rSPC is implied by the SPC, this proof follows immediately from
Lemma 5.
⇒: We prove that the rSPC implies the FPC. Let mi, mj , mk ∈ M be arbitrary∧

-irreducibles satisfying mi L mk L mj . Let v := mi ∧ mj . We assume v ‖ mk,
w.l.o.g. let v L mk. We search for

∨
-irreducibles g1 and g2 not meeting the

requirements of the rSPC. This will contradict our assumption and prove the
claim mk > v.

• We will use formal concept analysis notation for the proof. We consider the
reduced context K = (G, M, I). Thereby G is the set of

∨
-irreducibles, M is

the set of
∧

-irreducibles and gIm : ⇐⇒ γg ≤ μm. We know B(K) ∼= V.
• Since v is incomparable to mk, we notice that v is not the bottom element

of the lattice, i.e. m′
i ∩ m′

j �= ∅. If gImk holds for all g ∈ m′
i ∩ m′

j then it
follows μmk ≥ v contradicting our assumption. Hence there exists a g2 ∈ G
with

g2Imi, g2Imj und g2 �I� mk.

In analogy we find a g1 ∈ m′
k not possessing both mi and mj . In particular,

gi and gj are incomparable.
• We conclude mk ∈ (g′1 \ g′2) L g′2 � mi, mj contradicting the asymmetry of

L on M × M . �

4 Planar Contexts

In this section we want to apply the previous results to contexts in order to
characterize, whether the appropriate lattice is planar.

Theorem 2. Let K = (G, M, I) be a column reduced context and B(K) its cor-
responding concept lattice. The following statements are equivalent:

1. B(K) is planar.
2. There exists an enumeration of the attributes, s.t. the condition

gImi, g �I� mj , gImk =⇒ μmj < μmk

holds for all objects g ∈ G and all attributes mi, mj , mk ∈ M with
1 ≤ i < j < k ≤ |M |.

Characterizing Planar Lattices Using Left-Relations 289

Proof.
⇒: Since B(K) is planar, we can find a conjugate order L on B(K). The relation
L<:=L ∪ < is a strict linear order since it is connex and both L and < are
strict orders. If we enumerate the attributes according to L<, we have for all
g ∈ G, mi, mj, mk ∈ M with 1 ≤ i < j < k ≤ |M |:

gImi, g �I� mj , gImk =⇒ μmj �≥ μmi ∧ μmk

FPC=⇒ μmi �L μmj or μmj �L μmk

L<=L∪<
=⇒ μmi < μmj or μmj < μmk

μmi
≤μmj=⇒ μmj < μmk.

⇐: Define μmi R μmj : ⇐⇒ μmi ‖ μmj and i < j. Obviously R is asymmetric
and irreflexive.

1. Let mi, mj , mk be arbitrary attributes satisfying μmi R μmj R μmk. We
conclude i < j < k and with the precondition we find that the implication
gImi, gImk =⇒ gImj holds for all objects g ∈ G. We observe that neither
μmi < μmk nor μmi > μmk hold since this would imply μmi < μmj or
μmj > μmk respectively. Therefore we have μmi ‖ μmk, i.e. μmi R μmk.
Hence R is transitive.

2. Therefore we gain a sorting relation La if we restrict R to pairs of attributes
whose attribute concepts have a common upper cover.

3. Let μmi R μmj hold for mi, mj ∈ M and let (μmk, μml) ∈ M(μmi, μmj).
The case μml R μmk leads to either

i < l =⇒ μmi R μml R μmk =⇒ μmi R μmk or
l < i =⇒ μml R μmk R μmj =⇒ μml R μmj ,

contradicting μmi < μmk and μml < μmj respectively Therefore we con-
clude μmk R μml. That means that R is a subset of the left-relation L
induced by La, in particular we have La⊆R⊆L and R=L ∩(M × M).

4. Let mi, mj and mk be attributes satisfying μmi R μmj R μmk. From the
precondition we derive gImi, gImk =⇒ gImj , i.e. μmj > (μmi ∧ μmk).
Since we found R=L ∩(M×M) we conclude that L satisfies the FPC. Hence
B(K) is planar. �

5 Results and Further Work

Left-relations are a useful tool to characterize planar lattices. The FPC and
the SPC give a new view on the topic. There necessity is intuitively clear, the
sufficiency could be proven. With the help of the FPC we could give a condition
to decide already in a context, whether the associated concept lattice is planar.

Unfortunately we could not yet reach our aim to find a quick algorithm to rec-
ognize a planar lattice and draw it plane. The problem, how to create conjugate
orders on a lattice remains unsolved.

290 C. Zschalig

A quick algorithm for drawing planar lattices without edge crossings in the
plane will help us to reach our main goal: we want to design an algorithm for
lattice drawing. Based on the left-relation and the tools supplied so far, we
hope to find strategies to minimize the number of edge crossings for non-planar
lattices. Of course, considering just this esthetic criterion would not be sufficient.
Additionally, we will improve the diagram’s quality by maximizing the conflict
distance ([9], [10]). This can be done for instance by an optimization process
called force directed placement ([4], [6]). Finally, diagrams shall be drawn with
the attribute-additive convention or with similar drawing rules, e.g.[3].

References

1. K. A. Baker, P. Fishburn, F. S. Roberts: Partial Orders of Dimension 2. Networks,
2, 11-28, 1971.

2. G. Birkhoff: Lattice Theory. Amer. Math. Soc., Third Edition, 1967.
3. R. Cole, Automated Layout of Concept Lattice Using Layer Diagrams and Additive

Diagrams. Austr. Comp. Sc. Conf., 2000.
4. G. DiBattista, P. Eades, R. Tamassia, I. G. Tollis, Graph Drawing. Prentice Hall,

1999.
5. B. Dushnik, E.W. Miller: Partially Ordered Sets. Amer. J. Math. 63, 1941, pp.

600-610.
6. P. Eades: A Heuristic for Graph Drawing. Congressus Numerantium 42, pp. 149-

160, 1984.
7. D. Kelly, I. Rival: Planar Lattices. Can. J. Math. Vol. 27, No. 3, pp. 636-665, 1975.
8. B. Ganter, R. Wille: Formal Concept Analysis. Springer, 1999.
9. B. Ganter: Conflict Avoidance in Order Diagrams. preprint, TU Dresden, 2003.

10. B. Schmidt, Ein Optimierungsalgorithmus für additive Liniendiagramme. Diploma
Thesis, TU Dresden, 2002.

11. C. Zschalig: Planarity of Lattices - An approach based on attribute additivity. Proc.
of ICFCA 05, LNAI 3403, pp. 391-402, 2005.

Automated Layout of Small Lattices Using
Layer Diagrams

Richard Cole1, Jon Ducrou2, and Peter Eklund2

1 School of Information Technology and Electrical Engineering,
University of Queensland, St. Lucia, Australia

richard.j.cole@gmail.com
2 School of Economics and Information Systems, University of Wollongong,

Woolongong, Australia
{jrd990, peklund}@uow.edu.au

Abstract. Good quality concept lattice drawings are required to effec-
tively communicate logical structure in Formal Concept Analysis. Data
analysis frameworks such as the Toscana System use manually arranged
concept lattices to avoid the problem of automatically producing high
quality lattices. This limits Toscana systems to a finite number of concept
lattices that have been prepared a priori. To extend the use of formal
concept analysis, automated techniques are required that can produce
high quality concept lattice drawings on demand. This paper proposes
and evaluates an adaption of layer diagrams to improve automated lat-
tice drawing.

1 Introduction

The automatic production of high quality concept lattice diagrams in applica-
tions of formal concept analysis remains a challenge even for comparatively small
lattices [1, 2, 3, 4, 5]. The Toscana data analysis framework relies on the use of
concept lattices that have been drawn by human experts prior to the data anal-
ysis phase. This is possible within the Toscana system because the diagrams
produced by the system are composed of one or more conceptual scales. The
conceptual scales are often one of a standard set of scales which have known
diagrams. For the remainder, scale diagrams are designed and drawn offline us-
ing a program called Anaconda (or in the case of ToscanaJ, a program called
Sienna). However, in a growing number of applications of FCA concept lattice
diagrams need to be produced on demand. Examples include: CEM [6], CASS
[7], SurfMachine [8] and D–Sift [9].

Concept lattices express a logical structure and to make this logical structure
more easily identified by human readers, diagrams of concept lattices are usu-
ally drawn as additive diagrams. This paper details and evaluates a method to
derive good quality concept lattice diagrams for small lattices by adapting layer
diagrams [10]. The method involves the incremental construction of diagrams
for a concept lattice by finding satisfactory diagrams for successively larger sub-
lattices. A number of diagram metrics are then calculated for these satisfactory
diagrams and used to rank them (according to a fairly simple rule explained in

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 291–305, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

292 R. Cole, J. Ducrou, and P. Eklund

Section 4.4). The satisfactory lattice diagrams were also independently assessed
by the authors and divided into “good” and “bad” diagrams. The automated
layout algorithm is then assessed in terms of the rank of the highest ranked good
diagram for each of a set of test lattices.

The work reported in this paper builds on earlier work conducted by one
of the authors and reported in [11, 12, 13]. The approach in this paper extends
earlier work by introducing a large number of diagram metrics, a formula for
combining them to achieve a diagram ranking, and a systematic evaluation of
the results.

The structure of the paper is as follows: Sections 2, 3 and 4 set the scene for
the construction of concept lattice diagrams, and Section 5 explains details of
our algorithm which is then evaluated in Sections 6 and 7.

2 Additive Diagrams

This section introduces definitions for lattice diagrams that help to delineate the
space of diagrams that we are concerned with. We seek to be consistent with the
notation established by Ganter and Wille in [14] wherein additive diagrams and
the mathematical theory of formal concept analysis are defined. In this paper
we are primarily concerned with small finite lattices (generally with fewer than
50 concepts) and so the theory in this paper only considers the finite case.

A diagram of a lattice, L, is defined by a mapping pos : L → Rn called the
position assignment function of the diagram. When n = 2 the diagram is called
a 2D-diagram and when n = 3 the diagram is called a 3D-diagram. In this paper
we will focus on 2D-diagrams.

The Hasse diagram constraint requires that if an element a is less than an
element b then a occurs further down the page than b. For a 2D-diagram pos :
L → R2, the constraint says that for all a, b ∈ L with a < b, pos(a) = (xa, ya)
and pos(b) = (xb, yb) it is the case that ya < yb. When drawing concept lattices
we follow the convention that the x-dimension extends from the left of the page
to the right, and that the y-dimension extends from the bottom of the page
towards the top.

An additive diagram is a diagram defined by a position assignment function,
pos : L → Rn, calculated from a representation set X , a representation function
rep : L → P(X), and a vector assignment function vec : X → Rn according to
the following equation:

pos(a) =
∑

x∈rep(a)

vec(x) (1)

The upset of A ⊆ L with respect to an ordered set L, is defined as:

↑L(A) := { x ∈ L | x ≥ a for some a ∈ A } (2)

As a shorthand we write ↑L(a) instead of the more verbose ↑L({a}).
Every diagram of a concept lattice that obeys the Hasse diagram constraint is

equal to an additive diagram. For a diagram with position assignment function
pos : L → Rn we construct an additive diagram from rep(a) =↑L(a), and

Automated Layout of Small Lattices Using Layer Diagrams 293

vec(a) = pos(a) −
∑

x∈ X |x > a

vec(x) (3)

An attribute-additive diagram of a lattice L is an additive diagram whose rep-
resentation set is composed of the meet irreducibles of M(L). The representation
function is given by: rep(a) =↑L(a) ∩M(L) and the vector assignment function
is some function M(L) → Rn. The reason such a diagram is called attribute-
additive is that M(L) are the attributes of the formal concept (J (L),M(L),≤)
which is a reduced formal context whose concept lattice is isomorphic to L. Two
finite concept lattices are isomorphic if and only if their two reduced formal con-
texts are isomorphic. Not all additive diagrams are equal to an attribute additive
diagram.

An x-dimensional additive diagram is an additive diagram in which only the
x-component of the concept positions is given by Equation 1. The y-component
is allowed to vary so long as it preserves the Hasse diagram constraint. An x-
dimensional attribute-additive diagram is defined similarly.

3 Layout Objectives

In conceptual data analysis the purpose of a concept lattice diagram is to convey
information to the human reader of the diagram. A diagram of a concept lattice
can convey the following:

1. Intents: Which attributes are possessed by an object or group of objects.
2. Extents: Which objects possess an attribute or a group of attributes.
3. Attribute implications: Which groups of attributes imply other groups of

attributes.
4. Object implications: Which groups of objects imply other groups of objects.
5. Partial implications: what proportion of objects with attributes X addition-

ally have attributes Y .

The layout of concept lattices therefore is concerned primarily with optimizing
the rate at which this information can be conveyed. A layout that optimizes these
tasks is called a functional layout. A secondary task is also important: the speed
at which a concept lattice can be memorized.

Principles guiding the automated layout of concept lattices are often derived
from aesthetic criteria because there is a correlation between aesthetic layout
and functional layout. It is often the case that an unaesthetic layout is also a
non-functional layout.

3.1 Overlaps

Within a diagram, concepts (represented as circles) and the lines between them
have a thickness, and thus can overlap. Overlapping concepts and lines can be
misleading to the reader of the concept lattice. We therefore seek diagrams in
which (i) the concepts (modelled as circles with radius r) do not overlap and

294 R. Cole, J. Ducrou, and P. Eklund

(ii) the concepts do not overlap with lines they are not connected to. Lines
which overlap to a large extent with other lines may be detected by concept-line
overlaps. If two lines are parallel and overlap they will also have a concept-line
overlap. For these reasons, in discarding diagrams we only look for concept-
concept and concept-line overlaps.

3.2 Symmetry

Symmetry in the form of reflection about a horizontal axis seems to be important
in making a layout functional. Readers seem to be able to compare the left and
right hand side of a diagram and recognize symmetries and departures from
symmetry. This seems to aid in the memorizing of diagrams — an indicator of
the functionality of a diagram. A number of our proposed metrics seek to select
symmetrical structures.

3.3 Background Theory

In some cases the layout of a concept lattice is performed in the presence of some
background theory. A classic case is in the program CEM where attributes of
the concept lattice come from a background theory in which they are organized
within a partial order. In CEM a concept lattice constructed from the data
was embedded in a lattice constructed from the background theory as a way to
help the reader recognized places where the data deviated from the background
theory. In this paper, however, we are concerned with the layout of concept
lattices in the absence of a background theory providing clues to good layout.

3.4 Distributive Embedding

Implications can be emphasized by drawing the concept lattice embedded within
a distributive lattice. Distributive lattices have the advantage that they have
regular layouts since in an attribute-additive diagram of a distributive lattice
every edge has a direction and length equal to one of the attribute vectors. It
is also the case that the logic of a distributive lattice is relatively simple: all
reduced implications have only a single element in their premise. For a more
expansive discussion see [15].

Let L be a concept lattice, then the distributive completion of L, denoted
DC(L) is the concept lattice B(M(L),M(L), �≤). There is a meet-preserving
order embedding from L to the intents of DC(L) given by a �→↑L(a) ∩M(L).

Unless L is a distributive lattice this order embedding is not surjective. We
distinguish two types of concepts in DC(L), realized and unrealized concepts,
corresponding to concepts that are mapped to, and concepts that are not, re-
spectively.

An unrealized concept is evidence of an implication. When a concept is not
realized its intent implies the intent of the concept below it. Since L is a lattice
there is always a maximal realized concept below any unrealized concept.

We have observed in conceptual data analysis applications that the existence
of implications are often discussed by humans readers with reference to missing

Automated Layout of Small Lattices Using Layer Diagrams 295

Formal Context

Reduced

N Subcontexts

Incremental
Algorithm

(1)

(2)

Solution Diagrams

Ranked Diagrams

Formal Context

Filter Inferior

Diagrams (3)
Ranking

(4)

Inspection

Diagram Inspector
(5)

Good Diagram

Highest Ranked

Fig. 1. Flow chart for generating and ranking diagrams

concepts. By embedding L visually in DC(L) the human reader can physically
point to unrealized concepts that visually reinforce the presence of an implication.

In many cases the lattice DC(L) is very much larger than L. In such cases
two solutions present themselves: the first is to cut out unrealized concepts that
have no realized concept below them other than the bottom concept. The second
is to automatically decide not to draw DC(L) but instead just draw L.

3.5 Artificial Emphasis

Many layouts emphasize some properties of a concept lattice at the expense of
others [16]. For example a concept lattice may contain two attribute implications,
one of which is easier to identify, and another which is harder. Other properties
such as mutual exclusion of attributes and objects, or the doubling of a particular
sublattice may also be emphasized in a diagram.

Artificial emphasis can be potentially misleading to human readers in the
task of data analysis, and thus requires caution, as an aesthetic diagram can
be potentially non-functional if it over-emphasizes some aspect of the logical
structure to the detriment of another aspect.

4 Layout Algorithm

Fig. 1 presents an overview of our algorithm for automated layout of concept
lattices. The steps are explained in detail in the following sections. Briefly stated
however the process is as follows. A formal context is reduced and then split into
n subcontexts. The n subcontexts are then used by the incremental algorithm to

296 R. Cole, J. Ducrou, and P. Eklund

search for x-dimensional attribute-additive diagrams with no node-node or edge-
node overlaps. The first N such diagrams found by the incremental algorithm are
collected and termed solution diagrams. For each of these diagrams a collection
of metrics are calculated. The solution diagrams are then filtered to remove
inferior diagrams. A diagram is termed inferior if there exists another diagram
which gets a better score for one of the metrics, and is better or equal for all
other metrics. The remaining diagrams are then ranked and the top n ranked
diagrams are presented to the user who chooses between them, or selects the top
ranked good diagram.

4.1 x-Dimensional Additive Layer Diagrams

The advantage of an attribute-additive diagram is that the position of a concept
is determined by its intent, so that an identified concept can quickly have its in-
tent determined by a reader of the concept lattices, and vice-versa a concept with
a specific intent can be quickly located within the diagram. Attribute-additive
diagrams however generally produce rather bad diagrams for non-distributive
lattices because in a non-distributive lattice the intents of concepts in a covering
relation (i.e. concepts having an edge between them) may differ from each other
by more than a single reduced attribute. This has two consequences: (i) the num-
ber of distinct vectors formed by considering edges as vectors is large, and (ii)
the variance in vertical displacement between concepts in the covering relation
can be large, leading to too much white space in the interior of the diagram.

The idea behind an x-dimensional attribute-additive layout is to keep a cor-
respondence between the concept position and its intent while reducing the vari-
ance in the vertical displacement between concepts in a covering relation.

The uprank of an element p of a lattice L is the length of the longest path
from the element to the top of the lattice. So the top concept has uprank 0, its
children have uprank 1 and so on.

uprank(") = 0
uprank(p) = 1 + max

q∈L | q≺p
uprank(q)

In an x-dimensional additive diagram the x-position of a concept is deter-
mined by an attribute-additive diagram while the y-position is given by the
uprank. For distributive lattices rank assignment produces diagrams that are
attribute-additive in the y-dimension. An alternative that we do not discuss,
apart from this mention in passing, is to make the y-position equal to either the
downrank, or the average of the downrank and uprank.

4.2 Incremental Vector Assignment

Let us consider that we have a sequence of vectors, V = v1, . . . , vn, with vi ∈ R2

and we want to incrementally derive an attribute-additive diagram for L using
those vectors. The attribute-additive representation function for a lattice L is
rep(x) =↑L(x) ∩ M(L). Now set M(L) := {m1, . . . , mN} such that mi �= mj

Automated Layout of Small Lattices Using Layer Diagrams 297

for i �= j and if mi ≤ mj then i > j. Next, define Mk = {m1, . . . , mk} for
k = 1 . . .N , mk ∈ M(L), and veck : Mk → V . Now, we introduce the formal con-
texts Kk := (J (L), Mk,≤) and the associated lattices Lk := B(Kk). Then repk :
B(Kk) → P(Mk) with repk(x) = IntentL(x)∩Mk is equivalent to the attribute-
additive representation for Lk because (J (Lk), Mk,≤) is a reduced context.

Now let posk : Lk → Rn be the position of points derived from veck and repk.
A position function posk is unsatisfactory if there exists x, y ∈ Lk with x �= y
and pos(x) = pos(y).

It can be shown (for details see [11]), by considering the natural embedding
of Lk into Lk+1 that if posk is unsatisfactory then it is also the case that posk+1
will be unsatisfactory as a collision in Lk will be duplicated in Lk+1. This gives
us a way to incrementally search for satisfactory diagrams.

The incremental algorithm is outlined in Fig. 2. Each diagram is represented
by an integer array. The i’th element of the array selects an attribute vector for
the i’th attribute. The algorithm starts with an integer array of length 0 (first
argument to the function next in Fig. 2). The function next then recursively
assigns vectors to attributes each time checking that the result is a satisfac-
tory diagram. If the result is an unsatisfactory diagram then the next function
returns, because according to the previous paragraph once an unsatisfactory
diagram is produced it cannot be elaborated into a satisfactory diagram. The
terminating condition for the recursion is either that a satisfactory diagram for
LN has been produced (line 2). Solution diagrams are only stored if they have
no vertex-line overlaps. It is already the case, due to the test on line 10, that
they have no vertex line overlaps. Line 11 causes the algorithm to terminate if
it has produced a number of solutions equal to max solutions.

The essential characteristic of the algorithm in Fig. 2 is that it prunes the
search space of diagrams by not pursuing a vector assignment vk that has pro-
duced a diagram for Lk that is unsatisfactory.

The solutions function makes available candidate attribute vectors in blocks.
If n1=5 and n2=3 then the first call by the solutions function will look for
diagrams using just the first 5 canidate attribute-vectors. In the subsequent call
10 candidate vectors will be available and in the final call all 15 candidate vectors
will be available. Since the y-coordinate is assigned by layer assignment only the
x-component of the candidate vectors are relevent and these are given by the
expression (−1)i#i/2$ for i = 1 . . . n1n2.

The store solution function (not shown, but called on line 4) only stores a
solution in the case that the solution is not dominated, or equal in its metrics, to
an already recorded solution. Also, if the new solution dominates any recorded
solution, that recorded solution is discarded. One solution dominates another if
it improves on at least one of the metrics, and improves upon (or does as well as)
w.r.t. each of the other metrics. In addition a planar diagram always dominates
a non-planar diagram. This process of discarding dominated diagrams and dia-
grams that are equal in their metric values to an already recorded solution has
the effect of eliminating diagrams that are symmetries of one another. Consider
a diagram of the b3 lattice (see Section 5) with attributes m1, m2, m3, then a

298 R. Cole, J. Ducrou, and P. Eklund

1. def next(v: Int Array, num attr: Int, base: Int, max solutions: Int)
2. if v.length == num attr then
3. if not has line node overlaps(v) then
4. store solution(v)
5. self.solution count += 1
6. end
7. else
8. for i in 1..base do
9. v.push(i)
10. if sat(v) then next(v, num attr, base) end
11. if self.solution count >= max solutions then break; end
12. v.pop
13. end
14. end
15. end
16.
17. def solutions(num attr: Int, n1: Int, n2: Int, max solutions: Int)
18. self.output count = 0
19. for i in 1..n2 do
20. next([], num attr, i*n1, max solutions)
21. end
22. end

Fig. 2. Algorithm to iterate though all satisfactory diagrams. The algorithm is incre-
mental in the sense that is seeks a satisfactory solution for [v1, . . . , vk] before extending
it to obtain a solution for [v1, . . . , vk+1].

diagram resulting from the vector assignments, (1,2,3), (1,3,2), (2, 1, 3), (2, 3,
1), etc. all look the same. Since they all score the same values on the metrics,
only the first solution will be stored.

The output of the incremental algorithm is dependent on the ordering of
the meet irreducibles m1, . . . , mn which, while constrained to respect the lattice
ordering, is by no means fixed. For example when the irreducibles are unordered
there are n! potential orderings. A good ordering will mean that good diagrams
are found quickly while a bad ordering will mean that good diagrams occur later
in the sequence of diagrams output by the algorithm. To make our experiments
more deterministic we ordered the attributes by their extent size in the reduced
context so that attributes with the largest extents come first. If two attributes
have the same extent size then we ordered based on the order of the attributes
in the input context.

4.3 Diagram Metrics

To automatically distinguish good diagrams from bad ones automatically, we
calculated the following metrics1

1 See http://cvs.sourceforge.net/viewcvs.py/griff/cass browser/metrics.rb?
rev=1.7&view=markup for exact details.

Automated Layout of Small Lattices Using Layer Diagrams 299

– Number of edge crossings.
– Number of edge vectors.
– Number of edge vectors applied to meet irreducibles.
– Number of edge gradients.
– Number of absolute edge gradients.
– Average path width. For each path from the top of the lattice to the bottom

calculate the maximum x-displacement minus the minimum x-displacement
of concepts on the path. Average these values.

– Total Edge Length.
– Horizontal Shift. Difference between the top-most and bottom-most concepts

x dimension.
– Child Balance. Counts the number of unbalanced children around the par-

ent’s x dimension.
– Number of symmetric siblings. Counts the number of sibling pairs whose

x-position relative to their parent is the negative of each other.
– Number of symmetric siblings (Non Zero). As above, but excludes all child

concepts without siblings.
– Sum of logs of number of elements at average points∑

a,b∈L

logth(count ave points(a, b))

where
logth(x) =

{
log(x) if x ≥ 1
0 otherwise

and count ave points(a, b) is the number of concepts whose x-position is the
average of the x-positions of a and b.

– Count of two chains. A two chain is a child, parent, and grandparent in which
the displacement from the child to the parent is the same as the displacement
from the parent to the grandparent.

– Count of three chains. A three chain is like a two chain but involves a great
grandparent.

– Sum of well–placed children. Well–placed children are defined for a parent
with 1 to 3 children, where the children have parent-relative positions con-
sidered well–placed (See Fig. 3(a)).

(a) (b)

Fig. 3. (a) The three possible child arrangements accepted by the well–placed children
metric. (b) The solid children show the required positions for acceptance by the ok–
placed children metric; the dashed children show that other children can be placed in
any other configuration.

300 R. Cole, J. Ducrou, and P. Eklund

– Sum of ok–placed children. Ok–placed children are defined by a parent with 2
or more children where 2 of the children are placed at an x-position relative
to the parent by −1 and +1 (See in Fig. 3(b)).

These metrics were chosen by a process of iterative refinement by looking at
diagrams and trying to determine metrics that would be selective of them. Some
experimentation was conducted as part of this design process. Diagrams were
produced and ranked and some metrics discarded and new ones produced.

Many of the metrics re-enforce one another. The choice of metrics is linked
to the system for ranking diagrams is outlined in the following section.

4.4 Ranking Diagrams

The best value achieved by any generated diagram for each metric is stored. An
overall score is then assigned to each diagram equal to the number of metrics
for which the diagram has a value equal to the best value for that metric. For
example, if a diagram got the best value for 8 out of the 17 metrics then it would
get an overall score of 8.

This overall score was used to rank diagrams. In the case that two diagrams
have the same overall score then the diagram that was produced earlier is given
a higher rank.

For measurement purposes explained in the following section, the top n dia-
grams by rank are chosen. When n is greater than 1 we presume that the user
can be offered n diagrams and choose the one they like the best.

5 Experiments

5.1 Data

We generated diagrams and metrics for a collection of 28 lattices, 10 of which
are distributive. The lattices were taken from a number of sources including: (i)
applications of FCA, e.g. 2mutex, call-graph1, second and surfmachine, (ii)
papers on automated lattice drawing, e.g. fig8, fig16, freese, freese2 and
rjthesis, and (iii) standard FCA examples, e.g. b3 and b4, chain-4, mesh and
n5. Formal contexts for each of the lattices used in our experiments are available
on line at: http://griff.sf.net/test lattices.html.

Some of the lattices are the distributive completion DC(L) of another lattice
in the collection. Specifically any lattice named contra L is the distributive
completion of L. This was done with a view to applications that draw diagrams
of L embedded within DC(L) (see Section 3.4).

The lattices in our collection are all small, including less than 50 concepts, and
are all known to have good x-dimensional attribute-additive diagrams employing
uprank layer assignment. There are some small lattices for which no good layouts
have been found either automatically or manually and we purposely did not
include any of these in our test set.

Automated Layout of Small Lattices Using Layer Diagrams 301

5.2 Evaluation

Our algorithm generates n diagrams that are presented to the user to choose
between. In order to evaluate the performance of our algorithm we measured
the rank of the first good diagram. A diagram was termed good if there was no

2mutex 2n3s
b4 n5ext

b5
call-graph1

chain-4

words
bastiansthesis

chain-5

contra_call-graph1
contra_freese

contra_knives

ordinal_six

Fig. 4. The top rankeddiagram for the test contexts (Part 1).Eachdiagramwas judged to
be a good diagram, meaning there was no attribute-additive diagram using uprank vector
assignment produced either manually or automatically that was significantly better.

302 R. Cole, J. Ducrou, and P. Eklund

other x-dimensional attribute additive diagram using uprank layer assignment
that was considered by the authors to be significantly better with respect to
the layout objectives outlined in Section 3. The judgement of whether or not a
diagram is a good diagram is somewhat subjective.

The top ranked diagrams for the test lattices are shown in Figs. 4 and 5.
The diagrams were generated with n1=5, n2=3 and max solutions=5000 (refer
to Fig. 2). The diagrams except for n5, summersurf and second are all good
diagrams.

The diagram ranked 2 for n5 was considered good, while the diagram ranked
3 was considered good for summersurf. The diagrams for these two contexts are
shown in Fig. 7.

n5 contra_n5 fig16
surfmachineposter interordinal3

freese

freese2

knives
mesh

fig8

rjthesis

second summersurf

Fig. 5. Top ranked diagrams for the test contexts (Part 2). The top ranked diagram
for the test contexts. The top ranked diagrams for n5 and summersurf and second were
judged (by us) to be poor diagrams.

Automated Layout of Small Lattices Using Layer Diagrams 303

second-1 second-28

Fig. 6. A good diagram for second was not produced until max solutions was increased
to 62,000. The good diagram was then ranked 28.

n5-1

n5-2

summersurf-1 summersurf-2 summersurf-3
knives-3

Fig. 7. The top ranked diagrams up to the first good diagram for the contexts whose
top ranked diagram was judged to be poor (by us). For n5 the second to top diagram
was judged to be good. For summersurf the third to top ranked diagram was judged
to be good. The third ranked knives diagram could be considered better than the top
ranked knives diagram.

With the parameter max solutions set to 5,000 a good diagram for second
was not produced. In order to obtain a good diagram for second it was necessary
to increase the number of solutions to 62,000. When this was done the highest
ranked good diagram was ranked 28 (see Fig. 6).

6 Conclusions

This paper has presented and evaluated an adaptation of layer diagrams for
the layout of concept lattices. A mechanism to incrementally search for dia-
grams that avoid vertex collisions is presented and used to generate a collection
of 5,000 diagrams for each lattice. Diagram metrics are then used to prune
these diagram collections before a simple classifier ranks the small set of pruned
diagrams.

We choose a simple classifier because with such a small number of training
points, just 28 lattices, there is a significant danger of over fitting.

304 R. Cole, J. Ducrou, and P. Eklund

In 25 out of the 28 test lattices the first ranked diagram was a good diagram.
For two of the remaining cases a good diagram was found in the top 3. In the
final remaining case a good diagram was poorly ranked.

We tried to be representative in the selection of test lattices, however this
was under the condition that the lattices are small (less than 50 concepts) and
also be known to have a good x-dimensional attribute additive diagrams. The
algorithm presented does not handle large lattices well (for example the layout
of a b6 lattice).

The algorithm presented is restricted to x-dimensional attribute additive di-
agrams using uprank layer assignment. There are some small lattices for which
there is no known good diagram that uses uprank layer assignment. Our algo-
rithm could be adapted to include other rank assignment strategies, but we leave
that for future work.

Another area of further work is to consider the same approach for attribute
additive diagrams (i.e. additive in both the x and y dimensions) for distributive
lattices. This would require a selection of a good set of candidate attribute
vectors and thus would be another aspect of the algorithm to tune.

A principled comparison of the functionality of the various lattice diagrams by
timing the rate at which subjects can extract information as detailed in Section 3
would make the distinction between good and bad diagrams less subjective. We
leave this too as an area of further work.

Lastly, the current trend in microprocessors seems to be towards multiproces-
sor architectures. Another area of further would be to investigate the extent to
which the incremental layout algorithm and the calculation of diagram metrics
can be parallelized.

References

1. Wille, R.: Lattices in Data Analysis: How to draw them with a computer. Technical
Report 1067, University of Darmstadt (1987)

2. Vogt, F., Wille, R.: TOSCANA - a graphical tool for analyzing and exploring
data. In Tamassia, R., Tollis, I., eds.: Proceedings of the DIMACS International
Workshop on Graph Drawing (GD’94). Lecture Notes in Computer Science 894,
Berlin-Heidelberg, Springer-Verlag (1995) 226–233

3. Becker, P., Hereth, J., Stumme, G.: ToscanaJ - an open source tool for qualitative
data analysis. In: Advances in Formal Concept Analysis for Knowledge Discovery
in Databases, FCAKDD 2002. (2002) 1–2

4. Freese, R.: Automated lattice drawing. In: Proc. of the 2nd Int. Conference on
Formal Concept Analysis. LNAI 2961, Springer (2004) 112–127

5. Ganter, B.: Conflict Avoidance in Additive Order Diagrams. Journal of Universal
Computer Science 10(8) (2004) 955–966

6. Cole, R., Eklund, P., Stumme, G.: CEM — a program for visualization and dis-
covery in email. In D. A. Zighed, J. Komorowski, J.Z., ed.: Proc. of the European
Conf. on Knowledge and Data Discovery, PKDD’00. LNAI 1910, Springer-Verlag
(2000) 367–374

7. Cole, R., Becker, P.: Navigation spaces for the analysis of software structure.
In: Proceedings of the 3rd International Conference on Formal Concept Analysis.
LNCS 3403. Springer (2005) 113–128

Automated Layout of Small Lattices Using Layer Diagrams 305

8. Ducrou, J., Eklund, P.W.: Combining spatial and lattice-based information land-
scapes. In Ganter, B., Godin, R., eds.: Proc. of the 3rd Int. Conference on Formal
Concept Analysis. LNAI 3403, Springer-Verlag (2005) 64–78

9. Ducrou, J., Wormuth, B., Eklund, P.: D-SIFT: A dynamic simple intuitive FCA
tool. In: Conceptual Structures: Common Semantics for Sharing Knowledge: Pro-
ceedings of the 13th International Conference on Conceptual Structures. LNAI
2595, Springer-Verlag (2005) 295–306

10. Battista, G., Eades, P., Tamassia, R., Tollis, I.: Graph Drawing. Algorithms for
the Visualisation of Graphs. Prentice Hall, New Jersey (1999)

11. Cole, R.: The Management and Visualisation of Document Collections Using For-
mal Concept Analysis. PhD thesis, Griffith University, School of Information Tech-
nology, Parklands Drive, Southport, QLD (2000)

12. Cole, R.J.: Automatic layout of concept lattices using force directed placement
and genetic algorithms. In Edwards, J., ed.: 23th Australiasian Computer Science
Conference. Volume 22 of Australian Computer Science Communications., IEEE
Computer Society (2000) 47–53

13. Cole, R.J.: Automatic layout of concept lattices using layer diagrams and additive
diagrams. In Oudshoorn, M., ed.: 24th Australiasian Computer Science Conference.
Volume 23 of Australian Computer Science Communications., IEEE Computer
Society (2001) 47–53

14. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, Berlin (1999)

15. Wille, R.: Truncated distributive lattices: Conceptual structures of simple-
implicational theories. Order 20(3) (2003) 229 – 238

16. Becker, P.: Using intermediate representation systems to interact with concept
lattices. In: Proc. of the 3rd Int. Conference on Formal Concept Analysis. Volume
3403 of LNAI., Springer (2005) 265 – 268

Counting Pseudo-intents and #P-completeness

Sergei O. Kuznetsov1 and Sergei Obiedkov2

1 VINITI Institute, ul. Usievicha 20, Moscow, 125190 Russia
serge@viniti.ru

2 University of Pretoria, Pretoria 0002, South Africa
sergei.obj@gmail.com

Abstract. Implications of a formal context (G, M, I) have a minimal
implication basis, called Duquenne-Guigues basis or stem base. It is
shown that the problem of deciding whether a set of attributes is a
premise of the stem base is in coNP and determining the size of the stem
base is polynomially Turing equivalent to a #P-complete problem.

1 Introduction

Since the introduction of the Duquenne-Guigues basis of implications [4, 5] (called
also the stem base in [2]), a long standing problem was that concerning the upper
bound of its size: whether the size of the basis can be exponential in the size of
the input. In [6] we proposed a general form of a context where the number of
implications in the basis is exponential in the size of the context. Moreover, in [6]
it was shown that the problem of counting pseudo-intents, which serve premises
for the implications in the basis, is a #P-hard problem.

A closely related question is that posed by Bernhard Ganter at ICFCA 2005:
what is the complexity class of the problem of determining if an attribute set
is a pseudo-intent? There was also a conjecture that this problem is PSPACE-
complete. This paper provides a proof that this problem is just in coNP. Then,
the polynomial Turing equivalence to a #P-complete counting problem is a direct
consequence of this fact and the previous #P-hardness result from [6].

2 Definitions and Main Results

We assume that the reader is familiar with basic definitions and notation of
formal concept analysis [2]. Recall that, given a context (G, M, I) with derivation
operator (·)′ and B, D ⊆ M , an implication D → B holds if D′ ⊆ B′.

A minimal (in the number of implications) subset of implications from which
all other implications of a context follow semantically [2] was characterized in
[4, 5]. This subset is called Duquenne-Guigues basis or stem base in the literature.
The premises of implications of the stem base can be given by pseudo-intents
[1, 2]: a set P ⊆ M is a pseudo-intent if P �= P ′′ and Q′′ 	 P for every pseudo-
intent Q 	 P .

The notions of quasi-closed and pseudo-closed sets used below have first been
formulated in [4] under the name of saturated gaps (noeuds de non-redondance

R. Missaoui and J. Schmid (Eds.): ICFCA 2006, LNAI 3874, pp. 306–308, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Counting Pseudo-intents and #P-completeness 307

in [5]) and minimal saturated gaps (noeuds minimaux in [5]), respectively. The
terms quasi-closed and pseudo-closed have been introduced in [1]. The corre-
sponding definitions in [5] and [1] are different but equivalent (except that sat-
urated gaps are not closed by definition). We use notation from [1].

A set Q ⊆ M is quasi-closed if for any R ⊆ Q one has R′′ ⊆ Q or R′′ = Q′′.
For example, closed sets are quasi-closed.

Below we will use the following properties of quasi-closed sets:

Proposition 1. [1] A set Q ⊆ M is quasi-closed iff Q ∩ C is closed for every
closed set C with Q �⊆ C. Intersection of quasi-closed sets is quasi-closed.

A set P is called pseudo-closed if it is quasi-closed, not closed, and for any quasi-
closed set Q 	 P one has Q′′ 	 P . It can be shown that a set P is pseudo-closed
if and only if P �= P ′′ and Q′′ 	 P for every pseudo-closed Q 	 P . Hence, a
pseudo-closed subset of M is a pseudo-intent and vice versa, and we use these
terms interchangeably. By the above, a pseudo-intent is a minimal quasi-closed
set in its closure class, i.e., among quasi-closed sets with the same closure. In
some closure classes there can be several minimal quasi-closed elements.

Proposition 2. A set S is quasi-closed iff for any object g ∈ G either S ∩ {g}′
is closed or S ∩ {g}′ = S.

Proof. By Proposition 1, to test quasi-closedness of S ⊆ M , one should verify
that for all R ⊆ M the set S ∩ R′′ is closed or coincides with S. Any closed set
of attributes R′′ can be represented as the intersection of some object intents:

R′′ =
⋂

g∈R′
{g}′ and S ∩ R′′ =

⋂
g∈R′

(S ∩ {g}′).

If S ∩ {g}′ = S for all g ∈ R′, then S ∩ R′′ = S. Thus, if intersection of S with
each object intent is either closed or coincides with S, then this also holds for
the intersection of S with any R′′. If S ∩ {g}′ is not closed and S ∩ {g}′ �= S for
some g, then this suffices to say that S is not quasi-closed. ��

Corollary 1. Testing whether S ⊆ M is quasi-closed in the context (G, M, I)
may be performed in O(|G|2 · |M |) time.

Proof. By Proposition 2, to test whether S is quasi-closed, it suffices to compute
intersection of S with intents of all objects from G and check whether these
intersections are closed or equal to S. Testing closedness of intersection of S
with an object intent takes O(|G| · |M |) time, testing this for all |G| objects
takes O(|G|2 · |M |) time. ��

Proposition 3. The following problem is in NP:

INSTANCE: A context (G, M, I) and a set S ⊆ M
QUESTION: Is S not a pseudo-intent of (G, M, I)?

308 S.O. Kuznetsov and S. Obiedkov

Proof. First, we test if S is closed. If it is, then it is not pseudo-closed and the
answer to our problem is positive. Otherwise, note that a nonclosed set S is
pseudo-closed if and only if there is no pseudo-closed set P 	 S with P ′′ = S′′.
However, such P exists if and only if there is a quasi-closed set Q 	 S with
the same property. Therefore, we nondeterministically obtain for S such a set Q
and verify if Q is indeed a quasi-closed subset of S such that Q′′ = S′′. By the
corollary of Proposition 2, this test can be done in polynomial time. ��
Corollary 2. The following problem is in coNP:

INSTANCE: A context (G, M, I) and a set S ⊆ M
QUESTION: Is S a pseudo-intent of (G, M, I)?

Consider the problem of counting the number of all pseudo-intents. #P [7] is
the class of problems of the form “compute f(x)”, where f is the number of
accepting paths of an NP machine [3]. A problem is #P-hard if any problem
in #P can be reduced by Turing to it in polynomial time. A problem is #P-
complete if it is in #P and is #P-hard. #P-completeness of a problem in #P,
can be proved by reducing a #P-complete problem to it in polynomial time.

Since the problem of checking whether a set is nonpseudo-closed is in NP, the
problem of counting such sets is in #P. Since the number of pseudo-intents is
2|M|−k if the number of sets that are not pseudo-intents is k, the #P-hardness of
the problem of counting pseudo-intents [6] implies #P-hardness of the problem
of counitng the sets that are not pseudo-intents. Hence, we proved

Proposition 4. The following problem is #P-complete:

INSTANCE: A context (G, M, I)
QUESTION: What is the number of sets that are not pseudo-intents?

Hence, the problem of counting pseudo-intents is polynomially Turing equivalent
to a #P-complete problem. It remains still open if deciding that a set is a pseudo-
intent can be done in polynomial time.

References

1. B. Ganter: Two Basic Algorithms in Concept Analysis, Preprint Nr. 831, Technische
Hochschule Darmstadt (1984).

2. B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations; Springer,
Berlin (1999).

3. M. Garey, D. Johnson: Computers and Intractability: A Guide to the Theory of
NP-Completeness; Freeman, San Francisco (1979).

4. J.-L. Guigues, V. Duquenne: Informative implications derived from a table of binary
data. Preprint, Groupe Mathématiques et Psychologie, Université René Descartes,
Paris (1984).

5. J.-L. Guigues, V. Duquenne: Familles minimales d’implications informatives
résultant d’un tableau de données binaires; Math. Sci. Hum. 24, 95 (1986), 5-18.

6. S.O. Kuznetsov: On the Intractability of Computing the Duquenne-Guigues Base,
Journal of Universal Computer Science, 10, no. 8 (2004), 927-933.

7. L. G. Valiant: The Complexity of Enumeration and Reliability Problems; SIAM J.
Comput. 8, 3 (1979), 410–421.

Author Index

Bělohlávek, Radim 45
Berry, Anne 119
Burgmann, Christian 80

Cole, Richard 291
Cosyn, Eric 61

Dau, Frithjof 105
Doignon, Jean-Paul 61
Ducrou, Jon 291

Eklund, Peter 205, 291

Falmagne, Jean-Claude 61
Ferré, Sébastien 130

Gély, Alain 191

Hannan, Tim 264
Hereth Correia, Joachim 105

Krötzsch, Markus 89
Kulkarni, Tushar S. 30
Kuznetsov, Sergei O. 306
Kwuida, Léonard 146

Malik, Grit 89
Martin, Ben 205

McConnell, Ross M. 119
Medina, Raoul 177

Nourine, Lhouari 177, 191

Obiedkov, Sergei 306
Old, L. John 221

Peláez-Moreno, Carmen 161
Pfaltz, John L. 233
Pogel, Alex 264
Priss, Uta 248

Raynaud, Olivier 177

Schröder, Bernd S.W. 30
Sigayret, Alain 119
Spinrad, Jeremy P. 119

Thiéry, Nicolas 61

Valverde-Albacete, Francisco J. 161
Vychodil, Vilém 45

Wille, Rudolf 1, 80

Zschalig, Christian 280

	Frontmatter
	Invited Lectures
	Methods of Conceptual Knowledge Processing
	An Enumeration Problem in Ordered Sets Leads to Possible Benchmarks for Run-Time Prediction Algorithms
	Attribute Implications in a Fuzzy Setting
	The Assessment of Knowledge, in Theory and in Practice

	Regular Papers
	The Basic Theorem on Preconcept Lattices
	The Tensor Product as a Lattice of Regular~Galois~Connections
	Two Instances of Peirce's Reduction Thesis
	Very Fast Instances for Concept Generation
	Negation, Opposition, and Possibility in Logical Concept Analysis
	A Note on Negation: A PCS-Completion of Semilattices
	Towards a Generalisation of Formal Concept Analysis for Data Mining Purposes
	Interactive Association Rules Discovery
	About the Family of Closure Systems Preserving Non-unit Implications in the Guigues-Duquenne Base
	Spatial Indexing for Scalability in FCA
	Homograph Disambiguation Using Formal Concept Analysis
	Using Concept Lattices to Uncover Causal Dependencies in Software
	An FCA Interpretation of Relation Algebra
	Spring-Based Lattice Drawing Highlighting Conceptual Similarity
	Characterizing Planar Lattices Using Left-Relations
	Automated Layout of Small Lattices Using Layer Diagrams
	Counting Pseudo-intents and \#P-completeness

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

