
A. Gelbukh (Ed.): CICLing 2006, LNCS 3878, pp. 514 – 523, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A New Algorithm for Fast Discovery of Maximal
Sequential Patterns in a Document Collection

René Arnulfo García-Hernández, José Francisco Martínez-Trinidad,
and Jesús Ariel Carrasco-Ochoa

National Institute of Astrophysics, Optics and Electronics (INAOE),
Puebla, México

{renearnulfo, fmartine, ariel}@inaoep.mx

Abstract. Sequential pattern mining is an important tool for solving many data
mining tasks and it has broad applications. However, only few efforts have been
made to extract this kind of patterns in a textual database. Due to its broad ap-
plications in text mining problems, finding these textual patterns is important
because they can be extracted from text independently of the language. Also,
they are human readable patterns or descriptors of the text, which do not lose
the sequential order of the words in the document. But the problem of
discovering sequential patterns in a database of documents presents special
characteristics which make it intractable for most of the apriori-like candidate-
generation-and-test approaches. Recent studies indicate that the pattern-growth
methodology could speed up the sequential pattern mining. In this paper we
propose a pattern-growth based algorithm (DIMASP) to discover all the maxi-
mal sequential patterns in a document database. Furthermore, DIMASP is in-
cremental and independent of the support threshold. Finally, we compare the
performance of DIMASP against GSP, DELISP, GenPrefixSpan and cSPADE
algorithms.

1 Introduction

The Knowledge Discovery in Databases (KDD) is defined by Fayyad [1] as “the non-
trivial process of identifying valid, novel, potentially useful and ultimately under-
standable patterns in data”. The key step in the knowledge discovery process is the
data mining step, which following Fayyad: “consisting of applying data analysis and
discovery algorithms that, under acceptable computational efficiency limitations,
produce a particular enumeration of patterns over the data”. This definition has been
extended to Text Mining like: “consisting of applying text analysis and discovery al-
gorithms that, under acceptable computational efficiency limitations, produce a par-
ticular enumeration of patterns over the text”. So, text mining is the process that deals
with the extraction of patterns from textual data. This definition is used by Feldman
[2] to define Knowledge Discovery in Texts (KDT). In both KDD and KDT tasks,
special attention is required in the performance of the algorithms because they are ap-
plied on a large amount of information. In particular the KDT process needs to define
simple structures that can be extracted from text documents automatically and in a
reasonable time. These structures must be rich enough to allow interesting KD opera-
tions [2] having in mind that in some cases the document database is updated.

 A New Algorithm for Fast Discovery of Maximal Sequential Patterns 515

Sequential pattern mining has the goal of finding all the subsequences that are con-
tained at least β times in a collection of sequences, where β is a user-specified support
threshold. This discovered set of frequent sequences contains the maximal frequent
sequences (MFSs), which are not a subsequence of any other frequent sequence. That
is, the MFSs are a compact representation of the whole set of frequent sequences. So,
the sequential pattern mining approaches play an important role in data mining tasks
because these approaches allow us to identify valid, novel, potentially useful and ul-
timately understandable patterns in databases. In this case, we are interested in the ex-
traction of this kind of patterns from textual databases. Due to its broad applications
in text mining problems, finding textual patterns is important because they can be ex-
tracted from documents independently of the language without losing their sequential
nature.

Most of the sequential pattern mining approaches have been developed for vertical
databases, this is, databases with short sequences but with a large amount of se-
quences. A document database can be considered as horizontal because it could have
long sequences. Therefore, sequential pattern mining approaches are not efficient for
mining a document database. In order to guarantee human-legible and meaningful
patterns we are interested in finding contiguous MFSs. Also, these special patterns
could be of interest in the analysis of DNA sequences [10], data compression and web
usage logs [9].

Furthermore, most of the sequential pattern mining approaches assume a short al-
phabet; that is, the set of different items in the database. So, the characteristics of tex-
tual patterns make the problem intractable for most of the apriori-like candidate-
generation-and-test approaches. For example, if the longest MFS has a length of 100

items then GSP[3] will generate () 30100100
1 10≈∑ = ii candidate sequences where each

one must be tested over the DB in order to verify its frequency. This is the cost of
candidate generation, no matter what implementation technique would be applied. For
the candidate generation step, GSP generates candidate sequences of size k+1 by join-
ing two frequent sequences of size k when the prefix k-1 of one sequence is equal to
the suffix k-1 of other one. Then a candidate sequence is pruned if the sequence is
non-frequent. Even though, GSP reduces the number of candidate sequences, it still
being inefficient for mining long sequences.

Recent studies indicate that the pattern-growth methods could speed up the
sequential pattern mining [4,5,6,10,11] when there are long sequences. According to
empirical performance evaluations the pattern-growth methods like PrefixSpan[4],
GenPrefixSpan[5] and DELISP[6] outperform GSP specially when the database con-
tains long sequences. The basic idea is to avoid the cost of candidate generation step
and to focus the search on sub-databases generating projected databases. An
α-projected database is the set of subsequences in the database that are suffixes of the
sequences with prefix α. In each step, the algorithm looks for frequent sequences with
prefix α in the corresponding projected database. In this sense, pattern-growth meth-
ods try to find the sequential patterns more directly, growing frequent sequences,
beginning with sequences of size one. Even though, these methods are faster than ap-
riori-like methods, some of them were designed to find all the frequent sequences and
not to get only the MFSs. Furthermore, none of them is incremental.

Other work related to searching of repeated substrings in a set of strings is the
longest common substring (LCS) problem. From this point of view, the documents

516 R.A. García-Hernández, J.F. Martínez-Trinidad, and J.A. Carrasco-Ochoa

can be taken as strings of words. The objective of LCS is to find the longest substring
that is repeated in all the set of strings. The LCS problem can be solved using suffix
trees, but the LCS problem looks for only one substring (the longest) which appears in
all the documents. However, we need to find all the maximal substrings that appear at
least in β documents.

In this paper we propose a pattern-growth based algorithm (DIMASP) to Discover
all the Maximal Sequential Patterns in a document database. First, DIMASP builds a
novel data structure from the document database which is relatively easy to extract.
Once DIMASP has built the data structure, it can discover all the MFSs according to
the threshold specified by the user. If a new threshold is specified, DIMASP avoids
rebuilding the data structure for mining with this new threshold. In addition, when the
document database is increased, DIMASP updates the last discovered MFSs by proc-
essing only the new documents. DIMASP assumes that the data structure can fit in the
main memory.

In section 2, the problem definition is given. Section 3 describes our algorithm. In
Section 4, the experiments are presented. Finally in section 5 the conclusions and fu-
ture work are given.

2 Problem Definition

A sequence S, denoted by <s1,s2,...,sk>, is an ordered list of k elements called items.
The number of elements in a sequence S is called the length of the sequence denoted
by |S|. A k-sequence denotes a sequence of length k. Let P=<p1p2…pn> and
S=<s1s2…sm> be sequences, P is a subsequence of S, denoted P⊆S, if there exists an
integer i≥1, such that p1=si, p2=si+1, p3=si+2,…,pn=si+(n-1). We can consider a document
W as a sequence of words, denoted as <w1,w2,…,wn>.

The frequency of a sequence S, denoted by Sf or <s1,s2,...,sn>f , is the number of
documents where S is a subsequence. A sequence S is β-frequent if Sf ≥ β, a β-
frequent sequence is also called a sequential pattern. A sequential pattern S is maxi-
mal if S is not a subsequence of any other sequential pattern.

In this paper, we are interested in the problem of discovering all the maximal se-
quential patterns in a document database.

3 DIMASP: A New Algorithm for Fast Discovery of All Maximal
Sequential Patterns

The basic idea of DIMASP consists in finding all the sequential patterns in a data
structure, built from the document database (DDB), which stores all the distinct pairs
of contiguous words that appear in the documents, without losing their sequential
order. Given a threshold β specified by the user, DIMASP reviews if a pair is
β-frequent. In this case, DIMASP grows the sequence in order to determine all the
possible maximal sequential patterns containing such pair as prefix. A possible
maximal sequential pattern (PMSP) will be a maximal sequential pattern (MSP) if it is
not a subsequence of any previous MSP. This implies that all MSPs which are

 A New Algorithm for Fast Discovery of Maximal Sequential Patterns 517

subsequence of the new PMSP are deleted. The proposed algorithm is composed of
three steps described as follows:

In the first step, DIMASP assigns an integer number, as an identifier, for each dif-
ferent word (item) in the DDB. Also, the frequency for each identifier is stored i.e. the
number of documents where it appears. These identifiers are used in the algorithm in-
stead of the words in the DDB like in the example of the table 1.

Table 1. An example of a document database and its identifier representation

DJ Document database Integer identifiers
1
2
3

From George Washington to George W. Bush are 43 Presidents
Washington is the capital of the United States
George Washington was the first President of the United States

<1,2,3,4,2,5,6,7,8,9>
<3,10,11,12,13,11,14,15>
<2,3,16,11,17,18,13,11,14,15>

4 the President of the United States is George W. Bush <11,18,13,11,14,15,10,2,5,6>

Step 2: Algorithm to construct the data structure from the DDB
Input: A document database (DDB) Output: The Array
For all the documents DDBD J ∈ do

 Array Add a document (
JD) to the array

end-for
Step 2.1: Algorithm to add a document
Input: A document

JD Output: The Array

 For all the pairs
Jii Dww ∈+ 1, do

 iδ Create a new Pair δ

 Id.iδ J //Assign the document identifier to the node δ

 index Array[
1, +ii ww] //Get the index of the cell where is <wi,wi+1>

 index.iδ index //Assign the index to the node δ

 α Get the first node of the list ∆

 If Id.iδ ≠ Id.α then the document identifier is new to the list ∆
 Increment Cf //increment the frequency
 NextDoc.iδ α //link the node α at the beginning of list ∆

 List ∆ Add iδ as the first node //link it at the beginning of list ∆

 NextNode.1−iδ iδ //link the pair to do not lose the sequential order
 end-for

Fig. 1. Algorithms for steps 2 and 2.1 where is built the data structure for documents

In the second step, DIMASP builds a data structure from the DDB storing all the
pairs of contiguous words <wi,wi+1> that appear in a document and some additional
information to preserve the sequential order. The data structure is a special array
which contains in each cell a pair of words C=<wi,wi+1>, the frequency of the pair
(Cf), a Boolean mark and a list ∆ of nodes δ where a node δ (see Fig. 2) stores a
document identifier (δ.Id), an index (δ.Index) of the cell where the pair appears in the
array, a link (δ.NextDoc) to maintain the list ∆ and a link (δ.NextNode) to preserve the se-
quential order of the pairs with respect to the document. Therefore, the number of

518 R.A. García-Hernández, J.F. Martínez-Trinidad, and J.A. Carrasco-Ochoa

different documents presented in the list ∆ is Cf. This step works as follows: for each
pair of words <wi,wi+1> in the document DJ, if <wi,wi+1> is not in the array add it,
and get its index. In the position index of the array, add a node δ at the beginning of
the list ∆. The added node δ has J as δ.Id, index as δ.index, δ.NextDoc is linked to the
first node of the list ∆ and δ.NextNode is linked to the next node δ corresponding to
<wi+1,wi+2> of the document DJ. If the document identifier (δ.Id) is new in the list ∆,
then the frequency of the cell (Cf) is increased. In Fig. 2 the data structure built with
the step 2 algorithm the document database of table 1 is shown.

index <wi,wi+1> Cf List ∆
 1 1 → 1 <From,George> 1

 3 2 1 2 → 2 <George,Washington> 2

 1 3 → 3 <Washington,to> 1

 1 4 → 4 <to,George> 1

 2 5 → 5 <Washington,is> 1

 2 6 6 <is,the> 1

 2 7 7 <the,capital> 1

 2 8 8 <capital,of> 1

 3 9 → 9 <Washington,was> 1

 3 10 → 10 <was,the> 1

 3 11 → 11 <the,first> 1

 3 12 12 <first,President> 1

 4 13 → 13 <the,President> 1

 4 14 → 3 14 14 <President,of> 2

 4 15 → 3 15 → 2 15 15 <of,the> 2

 4 16 → 3 16 → 2 16 16 <the,United> 2

4 17 → 3 17 → 2 17 17 <United,States> 2

 4 18 → 18 <States,is> 1

 4 19 → 19 <is,George> 1

 4 20 1 20 → 20 <George,W.> 1

 4 21 1 21 → 21 <W.,Bush> 1

 1 22 → 22 <Bush,are> 1

 1 23 → 23 <are,43> 1

 1 24 → 24 <43,Presidents> 1

Fig. 2. Data structure built for the document database of the table 1. Note, the dotted nodes δ
corresponding to D4 will be added when D4 would be included, of course, it will be necessary
to update the frequencies Cf of the array.

 A New Algorithm for Fast Discovery of Maximal Sequential Patterns 519

Step 3: Algorithm to find all MSPs
Input: Structure from step 2 and β threshold Output: MSP set
For all the documents

)1(−β"JD ∈ DDB do

 MSP set Find all MSPs w.r.t. the document (
JD)

Step 3.1: Algorithm to find all MSPs with respect to the document DJ
Input: A DJ from the data structure and a β threshold Output: The MSP set w.r.t. to DJ
For all the nodes

Jni D∈= "1δ i.e.
Jii Dww ∈+1, do

 If Array [index.iδ].frequency ≥ β then //if the pair has a frequency≥ β

 PMSP Array [index.iδ].
1, +ii ww //the initial PMSP is the pair <wi,wi+1>

 ∆ ′ Copy the rest of the list of ∆ beginning from NextDoc.iδ

 f∆′ Number of different documents in ∆′

 iδ ′ iδ

 While β≥∆ ′f do the growth the PMSP

 ∆ ′′ Array [index.1+′iδ].list ∆ //Denotes to Array [index.1+′iδ].list ∆ as ∆ ′′

 ∆ ′ ∆ ′ 1 ∆ ′′ i.e. () (){ }αδδαα =′∧+′=∆ ′∈ NextNode.index.| ii 1
 f∆′ Number of different documents in ∆′
 If β≥∆ ′f then to grow the PMSP

 Array [index.1+′iδ].mark “used”

 PMSP PMSP + Array [index.1+′iδ]. 〉〈 + 1iw

 iδ ′ 1+′iδ i.e. NextNode.iδ ′
 end-while
 If |PMSP| ≥ 3 then add the PMSP to the MSP set
 MSP set add a k-PMSP to the MSP set //step 3.1.1
 end-for
For all the cells C ∈ Array do the addition of the 2-MSPs
 If Cf ≥ β and C.mark = “not used” then add it as 2-MSP
 2-MSP set add 〉〈 + 1,. ii wwC

Fig. 3. Algorithm to find all the MSPs using the data structure of step 2 and a threshold β

To prove that our algorithm finds all the MSPs we introduce the following
proposition.

Proposition 1: DIMASP discovers all the maximal sequential patterns of a DDB.

Proof. To proof that DIMASP finds all the MSPs, suppose there is a k-MSP in the
document database. Therefore, if there is a k-MSP then it is contained in at least β
documents in the database. For k≥ 2 the k-MSP is <w1,w2,w3,…,wk> which can be
separated in its frequent pairs <w1,w2> + <w2,w3> + ··· +<wk-1,wk>. From step 2, we
know that the pair <wi,wi+1> and the list ∆ in a cell of the array are stored, denoted by
∆(<wi,wi+1>), containing the registers of all documents that have this pair, without los-
ing their sequential order. Therefore, as it was made in steps 3 and 3.1, we can index
and get ∆(<w1,w2>), ∆(<w2,w3>), …, ∆(<wk-1,wk>). Also, from the array, it is clear

520 R.A. García-Hernández, J.F. Martínez-Trinidad, and J.A. Carrasco-Ochoa

that the frequencies of such subsequences are ≥β. Now we have to proof that they
form the k-MSP. Since the pairs do not lose their sequential order, we can establish
that ∆(<w1,w2>) ∩ ∆(<w2,w3>) = ∆(<w1,w2,w3>) and ||∆(<w1,w2,w3>)|| ≥ β. Therefore,

∩k
i 1= ∆(<wi,wi+1>) = ∆(<w1,w2,w3,…,wk>) which is actually ∆(k-MSP). And it can

not grow because ||∆(<w1,w2,w3,… ,wk>) ∩ (<wk,wk+1>)|| < β since k-MSP is maximal.
If k=1 then DIMASP includes this 1-MSP because in step 1 DIMASP includes all the
frequent items which are not included in any other longer MSP. ▐

In order to be efficient it is needed to reduce the number of comparisons when a
PMSP is added to the MSP set. For such reason, a k-MSP is stored according to its
length k, it means, there is a k-MSP set for each k. Also, for speed up the comparison
of PMSPs, binary searches using the sum of the identifiers in a PMSP are performed.
In this way, before adding a k-PMSP as a k-MSP, the k-PMSP must not be in the k-
MSP set and must not be subsequence of any longer k-MSP. Two sequences might be
equal only if they have the same sum. A sequence A could be a subsequence of an-
other sequence B only if the sum of A is lesser than the sum of B. When a PMSP is
added, all their subsequences are eliminated.

Step 3.1.1: Algorithm to add a PMSP to the MSP set
Input: A k-PMSP, MSP set Output: MSP set
If (k-PMSP ∈ k-MSP set) or
If (k-PMSP is subsequence of some longer k-MSP) then do not add anything
 return MSP set
Else
 k-MSP set add k-PMSP //add as a MSP
 {del S ∈ MSP set | S ⊆ k-PMSP }

Fig. 4. Algorithm to add a PMSP to the MSP set

Since the array has only the distinct pair of words <wi,wi+1> the performance for
comparing two sequences can be improved if instead of adding the identifiers wi and
wi+1 to PMSP only the index of the array where the pair appears is added. In this way,
a sequence A is a subsequence of B only if the last and the odds items of A are con-
tained in B. For example, if the array structure of Fig. 2 is used with the sequence A=<

the, President, of, United, States> and B=<the, President, of, United, States, is> then the sequences
A=<13,14,15,16,17> and B=<13,14,15,16,17,18>. Therefore it is enough, checking that the
last and odds items of A=<13,�,15,‚,17> are contained in B=<13,�,15,‚,17, >, to guar-
antee that A⊆B because only the items 14 and 16 can fit in � and ‚, respectively.

With the objective of do not repeat all the work to discover all the MSPs when one
or a set of new documents are added to the database, DIMASP only preprocesses the
part corresponding to these new documents. After the identifiers of these new docu-
ments were defined in step 1, DIMASP would only use the step 2.1 to add them to the
array. Then, the step 3.1 is applied on the new documents and on the old MSP set, to
discover the new MSP set. This strategy works only for the same β, however with a
different β only the discovery step (step 3) must be applied, without rebuilding the
data structure. For example, Fig. 2 shows with dotted line the new part of the data
structure when D4 of table 1 is added as a new document. Then, using β=2 for the al-

 A New Algorithm for Fast Discovery of Maximal Sequential Patterns 521

gorithm of the step 3, the PMSPs <President,of,the,United,States> and <George,W.,Bush>
are discovered. The first PMSP eliminates the previous discovered maximal sequen-
tial pattern <of,the,United,States > because it is not maximal.

4 Experiments

The next experiments were accomplished using the well-known reuters-21578 docu-
ment collection [7]. After a prune of 400 stop-words, this collection has 21578 docu-
ments with around 38,565 different words from 1.36 million words used in the whole
collection. The average length of the documents is 63 words. In all the experiments the
first 5000, 10000, 15000 and 20000 documents were used. Excepting for GSP, the
original programs provided by the authors were used. In Fig. 5a the performance com-
parison of DIMASP, cSPADE[8], GenPrefixSpan, DELISP and GSP algorithms with
β=15 is shown. Fig. 5b shows the same comparison of Fig. 5a but the worst algorithm
(GSP) is eliminated, here it is possible to see that DELISP is not as good as it seems to
be in Fig. 5a. In this case GenPrefixSpan had memory problems, so it was only possi-
ble to test with the first 5000 and 10000 documents. Fig. 5c compares DIMASP against
the fastest algorithm cSPADE, the time of the steps 2 and 3 of DIMASP are also com-
pared. Fig. 5d draws a linear scalability of DIMASP whit respect to β. An additional
experiment with the lowest β=2 was performed, in this experiment DIMASP found a
MSP of length 398, Fig. 5e shows the results. To evaluate the incremental scalability of
DIMASP, 4000, 9000 14000 and 19000 documents were processed, and 1000 docu-
ments were added in each experiment. Fig. 5f shows the results and compares them
against cSPADE which needs to recompute all the MSPs. Fig. 5g shows the distribu-
tion of the MSPs according to their length. Finally, Fig. 5h shows the number of MSPs
when β = 1% of the documents in the collection was used.

5 Conclusions

In this paper, DIMASP a pattern-growth memory-based algorithm to discover all the
maximal sequential patterns MSPs in a document database was proposed. To do that,
DIMASP builds a data structure for the document database which speeds up the min-
ing of MSPs. Our algorithm allows working with different support thresholds without
rebuilding the data structure. Moreover, DIMASP is incremental with respect to
document addition. According to the empirical evaluations, DIMASP outperforms
GSP, DELISP GenPrefixSpan and cSPADE algorithms in discovering all MSPs in a
document database and has a good scalability regarding to β. One of the reasons for
which DIMASP is more efficient is because the algorithm begins to discover MSPs
longer than 2 and the 1-MSPs and 2-MSPs, which are the majority of the MSPs, are
discovered in one-pass. For example, Fig. 5g shows that ∑ −= MSP2

1 ii
 >

∑ −= MSPii
14

3 . For our experiments with the whole reuters-21578 collection

DIMASP used around 30 Mbytes of main memory for the data structure built in step 2
which is able to be handled by most of the computers. This shows that, even though
DIMASP needs the whole data structure to fit in main memory, it might process big-
ger document collections.

522 R.A. García-Hernández, J.F. Martínez-Trinidad, and J.A. Carrasco-Ochoa

a) Performance comparison with
β=15

0

2000

4000

6000

8000

10000

12000

0 5000 10000 15000 20000
documents in DDB

T
im

e
(s

ec
.)

GSP
cSPADE
GenPrefixSpan
DELISP
DIMASP

b) Performance comparison
with β=15

0

500

1000

1500

2000

2500

0 5000 10000 15000 20000

documents in DDB

T
im

e
(s

ec
.)

cSPADE
GenPrefixSpan
DELISP
DIMASP

c) Linear Scalability of DIMASP

with β=15

0

10

20

30

40

50

60

70

80

90

100

0 5000 10000 15000 20000

documents in DDB

T
im

e
(s

ec
.)

cSPADE
DIMASP- Step 2
DIMASP- Step 2 + Step 3

d) Linear Scalability of DIMASP
varing β

0

5

10

15

20

25

30

0 5000 10000 15000 20000

documents in DDB

T
im

e
(s

ec
.)

Step 2 + 3 with B=5
Step 2 + 3 with B=15

Step 2 + 3 with B=30

e) DIMASP with β=2

0

50

100

150

200

250

0 5000 10000 15000 20000
documents in DDB

T
im

e
(s

ec
.)

Step 2 + 3 with B=2

f) Incremental Scalability of
DIMASP and cSPADE with β=15

0

20

40

60

80

100

0 5000 10000 15000 20000
documents in DDB

T
im

e
(s

ec
.)

cSPADE
DIMASP - Step 2 + Step 3

g) Distribution of the k -MSPs for 2000

document with β=15

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14
MSPs by length

Q
ua

nt
it

y
of

 M
SP

s

h) Number of MSPs with β= 1% w.r.t.
documents in DDB

7000

7200

7400

7600

7800

8000

8200

8400

8600

5000 10000 15000 20000
MSPs by length

Q
ua

nt
ity

 o
f M

SP
s

Fig. 5. Results of the performance experiments using the collection Reuters-21578

 A New Algorithm for Fast Discovery of Maximal Sequential Patterns 523

As future work we will extend the idea of DIMASP to be able of manage a gap
constraint which allows a controlled separation between the items that form a sequen-
tial pattern. Also we are going to apply DIMASP on other kind of data like web logs
or DNA sequences.

References

[1] Fayyad, U., Piatetsky-Shapiro G. “Advances in Knowledge Discovery and Data mining”.
AAAI Press, 1996.

[2] Feldman, R and Dagan, I. “Knowledge Discovery in Textual Databases (KDT)”, In Pro-
ceedings of the 1st International Conference on Knowledge Discovery (KDD-95) 1995.

[3] Srikant, R., and Agrawal, R. Mining sequential patterns: Generalizations and perform-
ance improvements. In 5th Intl. Conf. Extending Database Discovery and Data Mining,
1996.

[4] Pei, J, Han, et all: “PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected
Pattern Growth” in Proc International Conference on Data Engineering (ICDE 01), 2001.

[5] Antunes, C., Oliveira A. Generalization of Pattern-growth Methods for Sequential Pat-
tern Mining with Gap Constraints. Third IAPR Workshop on Machine Learning and Data
Mining MLDM´2003, 2003.

[6] Ming-Yen Lin, Suh-Yin Lee, and Sheng-Shun Wang, "DELISP: Efficient Discovery of
Generalized Sequential Patterns by Delimited Pattern-Growth Technology," Proceedings
of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD02),
Taipei, Taiwan, pp. 189-209, 2002.

[7] http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
[8] Mohammed J. Zaki, Sequence Mining in Categorical Domains: Incorporating Con-

straints, in 9th International Conference on Information and Knowledge Management, pp
422-429, Washington, DC, November 2000.

[9] Amir H. Youssefi, David J. Duke, Mohammed J. Zaki, “Visual Web Mining”. 13th In-
ternational World Wide Web Conference , New York, NY, 2004.

[10] Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques,
Morgan Kaufmann Publishers, August 2000. c.9 &10.

[11] Jian Pei, Jiawei Han, et. al. “Mining Sequential Patterns by Pattern-Growth: The Prefix-
Span Approach”, IEEE Transactions on Knowledge and Data Engineering, Vol. 16, No.
10, October 2004.

	Introduction
	Problem Definition
	DIMASP: A New Algorithm for Fast Discovery of All Maximal Sequential Patterns
	Experiments
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

