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Abstract. Sequential pattern mining is an important tool for solving many data 
mining tasks and it has broad applications. However, only few efforts have been 
made to extract this kind of patterns in a textual database. Due to its broad ap-
plications in text mining problems, finding these textual patterns is important 
because they can be extracted from text independently of the language. Also, 
they are human readable patterns or descriptors of the text, which do not lose 
the sequential order of the words in the document. But the problem of  
discovering sequential patterns in a database of documents presents special 
characteristics which make it intractable for most of the apriori-like candidate-
generation-and-test approaches. Recent studies indicate that the pattern-growth 
methodology could speed up the sequential pattern mining. In this paper we 
propose a pattern-growth based algorithm (DIMASP) to discover all the maxi-
mal sequential patterns in a document database. Furthermore, DIMASP is in-
cremental and independent of the support threshold. Finally, we compare the 
performance of DIMASP against GSP, DELISP, GenPrefixSpan and cSPADE 
algorithms. 

1   Introduction 

The Knowledge Discovery in Databases (KDD) is defined by Fayyad [1] as “the non-
trivial process of identifying valid, novel, potentially useful and ultimately under-
standable patterns in data”. The key step in the knowledge discovery process is the 
data mining step, which following Fayyad: “consisting of applying data analysis and 
discovery algorithms that, under acceptable computational efficiency limitations,  
produce a particular enumeration of patterns over the data”. This definition has been 
extended to Text Mining like: “consisting of applying text analysis and discovery al-
gorithms that, under acceptable computational efficiency limitations, produce a par-
ticular enumeration of patterns over the text”. So, text mining is the process that deals 
with the extraction of patterns from textual data. This definition is used by Feldman 
[2] to define Knowledge Discovery in Texts (KDT). In both KDD and KDT tasks, 
special attention is required in the performance of the algorithms because they are ap-
plied on a large amount of information. In particular the KDT process needs to define 
simple structures that can be extracted from text documents automatically and in a 
reasonable time. These structures must be rich enough to allow interesting KD opera-
tions [2] having in mind that in some cases the document database is updated. 
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Sequential pattern mining has the goal of finding all the subsequences that are con-
tained at least β times in a collection of sequences, where β is a user-specified support 
threshold. This discovered set of frequent sequences contains the maximal frequent 
sequences (MFSs), which are not a subsequence of any other frequent sequence. That 
is, the MFSs are a compact representation of the whole set of frequent sequences. So, 
the sequential pattern mining approaches play an important role in data mining tasks 
because these approaches allow us to identify valid, novel, potentially useful and ul-
timately understandable patterns in databases. In this case, we are interested in the ex-
traction of this kind of patterns from textual databases. Due to its broad applications 
in text mining problems, finding textual patterns is important because they can be ex-
tracted from documents independently of the language without losing their sequential 
nature.  

Most of the sequential pattern mining approaches have been developed for vertical 
databases, this is, databases with short sequences but with a large amount of se-
quences. A document database can be considered as horizontal because it could have 
long sequences. Therefore, sequential pattern mining approaches are not efficient for 
mining a document database. In order to guarantee human-legible and meaningful 
patterns we are interested in finding contiguous MFSs. Also, these special patterns 
could be of interest in the analysis of DNA sequences [10], data compression and web 
usage logs [9]. 

Furthermore, most of the sequential pattern mining approaches assume a short al-
phabet; that is, the set of different items in the database. So, the characteristics of tex-
tual patterns make the problem intractable for most of the apriori-like candidate-
generation-and-test approaches. For example, if the longest MFS has a length of 100 

items then GSP[3] will generate ( ) 30100100
1 10≈∑ = ii    candidate sequences where each 

one must be tested over the DB in order to verify its frequency. This is the cost of 
candidate generation, no matter what implementation technique would be applied. For 
the candidate generation step, GSP generates candidate sequences of size k+1 by join-
ing two frequent sequences of size k when the prefix k-1 of one sequence is equal to 
the suffix k-1 of other one. Then a candidate sequence is pruned if the sequence is 
non-frequent. Even though, GSP reduces the number of candidate sequences, it still 
being inefficient for mining long sequences. 

Recent studies indicate that the pattern-growth methods could speed up the  
sequential pattern mining [4,5,6,10,11] when there are long sequences. According to 
empirical performance evaluations the pattern-growth methods like PrefixSpan[4], 
GenPrefixSpan[5] and DELISP[6] outperform GSP specially when the database con-
tains long sequences. The basic idea is to avoid the cost of candidate generation step 
and to focus the search on sub-databases generating projected databases. An  
α-projected database is the set of subsequences in the database that are suffixes of the 
sequences with prefix α. In each step, the algorithm looks for frequent sequences with 
prefix α in the corresponding projected database. In this sense, pattern-growth meth-
ods try to find the sequential patterns more directly, growing frequent sequences,  
beginning with sequences of size one. Even though, these methods are faster than ap-
riori-like methods, some of them were designed to find all the frequent sequences and 
not to get only the MFSs. Furthermore, none of them is incremental. 

Other work related to searching of repeated substrings in a set of strings is the 
longest common substring (LCS) problem. From this point of view, the documents 
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can be taken as strings of words. The objective of LCS is to find the longest substring 
that is repeated in all the set of strings. The LCS problem can be solved using suffix 
trees, but the LCS problem looks for only one substring (the longest) which appears in 
all the documents. However, we need to find all the maximal substrings that appear at 
least in β documents.  

In this paper we propose a pattern-growth based algorithm (DIMASP) to Discover 
all the Maximal Sequential Patterns in a document database. First, DIMASP builds a 
novel data structure from the document database which is relatively easy to extract. 
Once DIMASP has built the data structure, it can discover all the MFSs according to 
the threshold specified by the user. If a new threshold is specified, DIMASP avoids 
rebuilding the data structure for mining with this new threshold. In addition, when the 
document database is increased, DIMASP updates the last discovered MFSs by proc-
essing only the new documents. DIMASP assumes that the data structure can fit in the 
main memory. 

In section 2, the problem definition is given. Section 3 describes our algorithm. In 
Section 4, the experiments are presented. Finally in section 5 the conclusions and fu-
ture work are given. 

2   Problem Definition 

A sequence S, denoted by <s1,s2,...,sk>, is an ordered list of k elements called items. 
The number of elements in a sequence S is called the length of the sequence denoted 
by |S|. A k-sequence denotes a sequence of length k. Let P=<p1p2…pn> and 
S=<s1s2…sm> be sequences, P is a subsequence of S, denoted P⊆S, if there exists an 
integer i≥1, such that p1=si, p2=si+1, p3=si+2,…,pn=si+(n-1). We can consider a document 
W as a sequence of words, denoted as <w1,w2,…,wn>. 

The frequency of a sequence S, denoted by Sf or <s1,s2,...,sn>f , is the number of 
documents where S is a subsequence. A sequence S is β-frequent if Sf ≥ β, a β-
frequent sequence is also called a sequential pattern. A sequential pattern S is maxi-
mal if S is not a subsequence of any other sequential pattern. 

In this paper, we are interested in the problem of discovering all the maximal se-
quential patterns in a document database. 

3   DIMASP: A New Algorithm for Fast Discovery of All Maximal 
Sequential Patterns 

The basic idea of DIMASP consists in finding all the sequential patterns in a data 
structure, built from the document database (DDB), which stores all the distinct pairs 
of contiguous words that appear in the documents, without losing their sequential  
order. Given a threshold β specified by the user, DIMASP reviews if a pair is  
β-frequent. In this case, DIMASP grows the sequence in order to determine all the 
possible maximal sequential patterns containing such pair as prefix. A possible 
maximal sequential pattern (PMSP) will be a maximal sequential pattern (MSP) if it is 
not a subsequence of any previous MSP. This implies that all MSPs which are  
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subsequence of the new PMSP are deleted. The proposed algorithm is composed of 
three steps described as follows: 

In the first step, DIMASP assigns an integer number, as an identifier, for each dif-
ferent word (item) in the DDB. Also, the frequency for each identifier is stored i.e. the 
number of documents where it appears. These identifiers are used in the algorithm in-
stead of the words in the DDB like in the example of the table 1. 

Table 1. An example of a document database and its identifier representation 

DJ Document database Integer identifiers 
1 
2 
3 

From George Washington to George W. Bush are 43 Presidents 
Washington is the capital of the United States 
George Washington was the first President of the United States 

<1,2,3,4,2,5,6,7,8,9> 
<3,10,11,12,13,11,14,15> 
<2,3,16,11,17,18,13,11,14,15> 

4 the President of the United States is George W. Bush <11,18,13,11,14,15,10,2,5,6> 

 
Step 2: Algorithm to construct the data structure from the DDB 
Input: A document database (DDB)     Output: The Array 
For all the documents DDBD J ∈ do 

        Array  Add a document (
JD ) to the array  

end-for 
Step 2.1: Algorithm to add a document 
Input: A document 

JD  Output: The Array 

        For all the pairs 
Jii Dww ∈+ 1,  do 

  iδ Create a new Pair δ 

  Id.iδ   J      //Assign the document identifier to the node δ 

  index  Array[
1, +ii ww ] //Get the index of the cell where is  <wi,wi+1>  

  index.iδ  index    //Assign the index to the node δ 

  α  Get the first node of the list ∆ 

  If Id.iδ ≠ Id.α  then the document identifier is new to the list ∆ 
   Increment Cf       //increment the frequency 
  NextDoc.iδ  α       //link the node α at the beginning of list ∆ 

  List ∆  Add iδ  as the first node  //link it at the beginning of list ∆ 

  NextNode.1−iδ  iδ    //link the pair to do not lose the sequential order    
         end-for 

Fig. 1.  Algorithms for steps 2 and 2.1 where is built the data structure for documents 

In the second step, DIMASP builds a data structure from the DDB storing all the 
pairs of contiguous words <wi,wi+1> that appear in a document and some additional 
information to preserve the sequential order. The data structure is a special array 
which contains in each cell a pair of words C=<wi,wi+1>, the frequency of the pair 
(Cf), a Boolean mark and a list ∆ of nodes δ where a node δ (see Fig. 2) stores a 
document identifier (δ.Id), an index (δ.Index) of the cell where the pair appears in the 
array, a link (δ.NextDoc) to maintain the list ∆ and a link (δ.NextNode) to preserve the se-
quential order of the pairs with respect to the document. Therefore, the number of  
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different documents presented in the list ∆ is Cf. This step works as follows: for each 
pair of words <wi,wi+1> in the document DJ, if <wi,wi+1> is not in the array add it, 
and get its index. In the position index of the array, add a node δ at the beginning of 
the list ∆. The added node δ has J as δ.Id, index as δ.index, δ.NextDoc is linked to the 
first node of the list ∆ and δ.NextNode is linked to the next node δ corresponding to 
<wi+1,wi+2> of the document DJ. If the document identifier (δ.Id) is new in the list ∆, 
then the frequency of the cell (Cf) is increased. In Fig. 2 the data structure built with 
the step 2 algorithm the document database of table 1 is shown. 

 
 

index <wi,wi+1> Cf List ∆            
         1 1 → 1 <From,George> 1  

         

    3 2     1 2 → 2 <George,Washington> 2  
          

          1 3 → 3 <Washington,to> 1  
         

          1 4 → 4 <to,George> 1  
         

       2 5 →    5 <Washington,is> 1  
         

       2 6     6 <is,the> 1  
          

       2 7     7 <the,capital> 1  
          

       2 8     8 <capital,of> 1  
           

    3 9 →       9 <Washington,was> 1  
          

    3 10 →       10 <was,the> 1  
         

    3 11 →       11 <the,first> 1  
         

    3 12        12 <first,President> 1  
          

 4 13 →          13 <the,President> 1  
           

 4 14 → 3 14        14 <President,of> 2  
           

 4 15 → 3 15 → 2 15     15 <of,the> 2  
          

 4 16 → 3 16 → 2 16     16 <the,United> 2  
          

4 17 → 3 17 → 2 17     17 <United,States> 2  
          

 4 18 →          18 <States,is> 1  
           

 4 19 →          19 <is,George> 1  
            

 4 20        1 20 → 20 <George,W.> 1  
         

 4 21        1 21 → 21 <W.,Bush> 1  
          

          1 22 → 22 <Bush,are> 1  
           

          1 23 → 23 <are,43> 1  
           

          1 24 → 24 <43,Presidents> 1  
           

Fig. 2. Data structure built for the document database of the table 1. Note, the dotted nodes δ 
corresponding to D4 will be added when D4 would be included, of course, it will be necessary 
to update the frequencies Cf of the array. 
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Step 3: Algorithm to find all MSPs 
Input: Structure from step 2 and β threshold   Output: MSP set 
For all the documents 

)1( −β"JD ∈ DDB do  

      MSP set  Find all MSPs w.r.t. the document (
JD ) 

Step 3.1: Algorithm to find all MSPs with respect to the document DJ 
Input: A DJ from the data structure and a β threshold  Output: The MSP set w.r.t. to DJ 
For all the nodes 

Jni D∈= "1δ  i.e. 
Jii Dww ∈+1, do 

 If Array [ index.iδ ].frequency ≥ β then //if the pair has a frequency≥ β 

  PMSP  Array [ index.iδ ].
1, +ii ww  //the initial PMSP is the pair <wi,wi+1> 

  ∆ ′ Copy the rest of the list of ∆ beginning from NextDoc.iδ  

  f∆′  Number of different documents in ∆′ 

  iδ ′ iδ  

  While β≥∆ ′f  do the growth the PMSP 

   ∆ ′′  Array [ index.1+′iδ ].list ∆     //Denotes to Array [ index.1+′iδ ].list ∆ as ∆ ′′  

   ∆ ′  ∆ ′ 1 ∆ ′′  i.e. ( ) ( ){ }αδδαα =′∧+′=∆ ′∈ NextNode.index.| ii 1  
   f∆′ Number of different documents in ∆′ 
   If β≥∆ ′f  then to grow the PMSP 

    Array [ index.1+′iδ ].mark  “used” 

    PMSP  PMSP + Array [ index.1+′iδ ]. 〉〈 + 1iw  

    iδ ′ 1+′iδ  i.e. NextNode.iδ ′  
  end-while 
  If |PMSP| ≥ 3 then add the PMSP to the MSP set 
   MSP set  add a k-PMSP to the MSP set //step 3.1.1 
 end-for 
For all the cells C ∈ Array do the addition of the 2-MSPs 
 If Cf ≥ β and C.mark = “not used” then add it as 2-MSP 
  2-MSP set  add 〉〈 + 1,. ii wwC  

Fig. 3. Algorithm to find all the MSPs using the data structure of step 2 and a threshold β 

To prove that our algorithm finds all the MSPs we introduce the following  
proposition. 

Proposition 1: DIMASP discovers all the maximal sequential patterns of a DDB. 

Proof. To proof that DIMASP finds all the MSPs, suppose there is a k-MSP in the 
document database. Therefore, if there is a k-MSP then it is contained in at least β 
documents in the database. For k≥ 2 the k-MSP is <w1,w2,w3,…,wk> which can be 
separated in its frequent pairs <w1,w2> + <w2,w3> + ··· +<wk-1,wk>. From step 2, we 
know that the pair <wi,wi+1> and the list ∆ in a cell of the array are stored, denoted by 
∆(<wi,wi+1>), containing the registers of all documents that have this pair, without los-
ing their sequential order. Therefore, as it was made in steps 3 and 3.1, we can index 
and get ∆(<w1,w2>), ∆(<w2,w3>), …, ∆(<wk-1,wk>). Also, from the array, it is clear 
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that the frequencies of such subsequences are ≥β. Now we have to proof that they 
form the k-MSP. Since the pairs do not lose their sequential order, we can establish 
that ∆(<w1,w2>) ∩ ∆(<w2,w3>) = ∆(<w1,w2,w3>) and ||∆(<w1,w2,w3>)|| ≥ β. Therefore, 

∩k
i 1= ∆(<wi,wi+1>) = ∆(<w1,w2,w3,…,wk>) which is actually ∆(k-MSP). And it can 

not grow because ||∆(<w1,w2,w3,… ,wk>) ∩ (<wk,wk+1>)|| < β since k-MSP is maximal. 
If k=1 then DIMASP includes this 1-MSP because in step 1 DIMASP includes all the 
frequent items which are not included in any other longer MSP.                                 ▐ 

In order to be efficient it is needed to reduce the number of comparisons when a 
PMSP is added to the MSP set. For such reason, a k-MSP is stored according to its 
length k, it means, there is a k-MSP set for each k. Also, for speed up the comparison 
of PMSPs, binary searches using the sum of the identifiers in a PMSP are performed. 
In this way, before adding a k-PMSP as a k-MSP, the k-PMSP must not be in the k-
MSP set and must not be subsequence of any longer k-MSP. Two sequences might be 
equal only if they have the same sum. A sequence A could be a subsequence of an-
other sequence B only if the sum of A is lesser than the sum of B. When a PMSP is 
added, all their subsequences are eliminated. 

Step 3.1.1: Algorithm to add a PMSP to the MSP set 
Input: A k-PMSP, MSP set   Output: MSP set 
If (k-PMSP ∈  k-MSP set) or  
If (k-PMSP is subsequence of some longer k-MSP) then do not add anything 
 return MSP set 
Else  
 k-MSP set  add k-PMSP //add as a MSP 
 {del S ∈ MSP set | S ⊆ k-PMSP } 

Fig. 4. Algorithm to add a PMSP to the MSP set 

Since the array has only the distinct pair of words <wi,wi+1> the performance for 
comparing two sequences can be improved if instead of adding the identifiers wi and 
wi+1 to PMSP only the index of the array where the pair appears is added. In this way, 
a sequence A is a subsequence of B only if the last and the odds items of A are con-
tained in B. For example, if the array structure of Fig. 2 is used with the sequence A=< 

the, President, of, United, States> and B=<the, President, of, United, States, is> then the sequences 
A=<13,14,15,16,17> and B=<13,14,15,16,17,18>. Therefore it is enough, checking that the 
last and odds items of A=<13,�,15,‚,17> are contained in B=<13,�,15,‚,17, >, to guar-
antee that A⊆B because only the items 14 and 16 can fit in � and ‚, respectively. 

With the objective of do not repeat all the work to discover all the MSPs when one  
or a set of new documents are added to the database, DIMASP only preprocesses the 
part corresponding to these new documents. After the identifiers of these new docu-
ments were defined in step 1, DIMASP would only use the step 2.1 to add them to the 
array. Then, the step 3.1 is applied on the new documents and on the old MSP set, to 
discover the new MSP set. This strategy works only for the same β, however with a 
different β only the discovery step (step 3) must be applied, without rebuilding the 
data structure. For example, Fig. 2 shows with dotted line the new part of the data 
structure when D4 of table 1 is added as a new document. Then, using β=2 for the al-



 A New Algorithm for Fast Discovery of Maximal Sequential Patterns 521 

gorithm of the step 3, the PMSPs <President,of,the,United,States> and <George,W.,Bush> 
are discovered. The first PMSP eliminates the previous discovered maximal sequen-
tial pattern <of,the,United,States > because it is not maximal. 

4   Experiments 

The next experiments were accomplished using the well-known reuters-21578 docu-
ment collection [7]. After a prune of 400 stop-words, this collection has 21578 docu-
ments with around 38,565 different words from 1.36 million words used in the whole 
collection. The average length of the documents is 63 words. In all the experiments the 
first 5000, 10000, 15000 and 20000 documents were used. Excepting for GSP, the 
original programs provided by the authors were used. In Fig. 5a the performance com-
parison of DIMASP, cSPADE[8], GenPrefixSpan, DELISP and GSP algorithms with 
β=15 is shown. Fig. 5b shows the same comparison of Fig. 5a but the worst algorithm 
(GSP) is eliminated, here it is possible to see that DELISP is not as good as it seems to 
be in Fig. 5a. In this case GenPrefixSpan had memory problems, so it was only possi-
ble to test with the first 5000 and 10000 documents. Fig. 5c compares DIMASP against 
the fastest algorithm cSPADE, the time of the steps 2 and 3 of DIMASP are also com-
pared. Fig. 5d draws a linear scalability of DIMASP whit respect to β. An additional 
experiment with the lowest β=2 was performed, in this experiment DIMASP found a 
MSP of length 398, Fig. 5e shows the results. To evaluate the incremental scalability of 
DIMASP, 4000, 9000 14000 and 19000 documents were processed, and 1000 docu-
ments were added in each experiment. Fig. 5f shows the results and compares them 
against cSPADE which needs to recompute all the MSPs. Fig. 5g shows the distribu-
tion of the MSPs according to their length. Finally, Fig. 5h shows the number of MSPs 
when β = 1% of the documents in the collection was used. 

5   Conclusions 

In this paper, DIMASP a pattern-growth memory-based algorithm to discover all the 
maximal sequential patterns MSPs in a document database was proposed. To do that, 
DIMASP builds a data structure for the document database which speeds up the min-
ing of MSPs. Our algorithm allows working with different support thresholds without 
rebuilding the data structure. Moreover, DIMASP is incremental with respect to 
document addition. According to the empirical evaluations, DIMASP outperforms 
GSP, DELISP GenPrefixSpan and cSPADE algorithms in discovering all MSPs in a 
document database and has a good scalability regarding to β. One of the reasons for 
which DIMASP is more efficient is because the algorithm begins to discover MSPs 
longer than 2 and the 1-MSPs and 2-MSPs, which are the majority of the MSPs, are 
discovered in one-pass. For example, Fig. 5g shows that ∑ −= MSP2

1 ii
 > 

∑ −= MSPii
14

3 . For our experiments with the whole reuters-21578 collection 

DIMASP used around 30 Mbytes of main memory for the data structure built in step 2 
which is able to be handled by most of the computers. This shows that, even though 
DIMASP needs the whole data structure to fit in main memory, it might process big-
ger document collections. 
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c) Linear Scalability of DIMASP 
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e) DIMASP with β=2 
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Fig. 5. Results of the performance experiments using the collection Reuters-21578 
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As future work we will extend the idea of DIMASP to be able of manage a gap 
constraint which allows a controlled separation between the items that form a sequen-
tial pattern. Also we are going to apply DIMASP on other kind of data like web logs 
or DNA sequences. 
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