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Abstract. Since the early ages of artificial intelligence, associative or semantic
networks have been proposed as representations that enable the storage of lan-
guage units and the relationships that interconnect them, allowing for a variety
of inference and reasoning processes, and simulating some of the functionalities
of the human mind. The symbolic structures that emerge from these representa-
tions correspond naturally to graphs – relational structures capable of encoding
the meaning and structure of a cohesive text, following closely the associative
or semantic memory representations. The activation or ranking of nodes in such
graph structures mimics to some extent the functioning of human memory, and
can be turned into a rich source of knowledge useful for several language pro-
cessing applications. In this paper, we suggest a framework for the application of
graph-based ranking algorithms to natural language processing, and illustrate the
application of this framework to two traditionally difficult text processing tasks:
word sense disambiguation and text summarization.

1 Introduction

Many language processing applications can be modeled by means of a graph. These
data structures have the ability to encode in a natural way the meaning and structure of
a cohesive text, and follow closely the associative or semantic memory representations.
For instance, Figure 1 shows examples of graph representations of textual units1 and
the relationships that interconnect them: 1(a) (adapted from [6]) shows a network of
concepts related by semantic relations – simulating a fragment of human memory, on
which reasoning and inferences about various concepts represented in the network can
be performed; 1(b) shows a network with similar structure, this time automatically de-
rived via definitional links in a dictionary; finally, 1(c) is a graph representation of the
cohesive structure of a text, by encoding similarity relationships between textual units.

Provided a graph representation of the text, algorithms for the activation or ranking
of nodes in such structures can be used to simulate the functioning of human memory,
consequently resulting in solutions for a variety of natural language processing tasks
that can be modeled by means of a graph. In this paper, we suggest a framework for the
application of graph-based ranking algorithms to text-based graph structures, and show
how two text processing applications: word sense disambiguation and text summariza-
tion, can find successful solutions within this framework.
1 We use the term textual unit to refer to the textual representation of a cognitive unit as defined

by Anderson [1]. It can be a word, a concept, a sentence, or any other unit that can find a
representation in language.
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S1: Apples are mentioned throughout most of the recorded human history.

S2: The generic name Malus was derived from the word malus, or bad, referring to Eve picking an apple.

S3: However, some scholars think the fig, and not the apple, was the forbidden fruit.

S4: The fig is also the first tree mentioned in the story of Adam and Eve.

S5: There are some scholars who think the apricot is a more likely candidate, because it was an abundant fruit.

(c)

Fig. 1. Graph representations of textual units and relationships that interconnect them

2 Background

Although initiated from different theoretical backgrounds, there is nonetheless a close
relation between the current graph-based ranking algorithms (first introduced in graph-
theory), and the earlier models of spreading activation (due to cognitive psychology),
which stands primarily in their common underlying graph representations and their
fundamental idea of exploiting flow over a network.

The idea of associative networks as mental representations for cognitive units and
the relationships between them goes back to early work in psychology [9] and psy-
cholinguistics [27], [29]. Theories of semantic or associative memory [26] have initially
emerged in cognitive psychology as models for human language representation and rea-
soning, and since then have been applied to a variety of computer-based applications.

Spreading activation can be regarded as an earlier version of current graph-based
ranking algorithms. It refers to network2-based models where activation started from
one or more source nodes is propagated over the network, activating more and more
nodes, until a certain termination condition is met (usually the distance from the source
nodes). In these models, it is the activation itself that matters, and thus the information
recorded at node level is whether the node is active or passive.

In the more recently introduced graph-based ranking models (or node-ranking mod-
els), the propagation of flow over the network starts from all the nodes simultaneously,
and runs repeatedly throughout the network until a stable state is achieved (conver-
gence). In these models, the information recorded at node level is the rank of the node
relative to all other nodes in the network.

Despite their potential appealing connection to models of human memory, the large
scale application of spreading activation and graph-based ranking models to text pro-
cessing tasks has been limited for various reasons: Early work in spreading activation
methods was hindered by the complexity of underlying structures (e.g. entire semantic

2 The terms network and graph are used interchangeably, a graph being the computer-based
representation of a network.
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networks), and as a result only few applications with small scale evaluations have been
attempted. On the other hand, recent research in graph-based ranking algorithms has fo-
cused on social networks and Web-link analysis, and their application to text processing
has not been explored.

3 Related Work in Natural Language Processing

Starting with the seminal work of Quillian on theories of semantic memory [26], as-
sociative or semantic networks and spreading activation processes have been used as
the underlying model for several applications in language processing, including word
sense disambiguation, automated reasoning, text generation, information retrieval, text
summarization, and others.

A major impediment faced by early work in this area was the complexity of the
resulting structures, which sometimes was not supported by the underlying computer
hardware (although attempts were made to overcome these hardware limitations with
parallel architectures for semantic processing such as SNAP [24]). This fact has con-
sequently resulted in limitations on the size of applications attempted with these ap-
proaches. For similar reasons, the evaluation of such algorithms was most of the times
performed on toy-size problems (e.g. Quillian has evaluated his proposed word sense
disambiguation algorithm on nineteen ambiguous words [26]), and the scalability of the
models was rarely, if ever, evaluated.

Spreading activation was previously used as a method for solving lexical ambigu-
ity of words [11] through simultaneous identification of word senses and frame case
slots. Another related line of work is the algorithm proposed in [31], where a large neu-
ral network is built by relating words through their dictionary definitions. Spreading
activation was also suggested as a means for dictionary access [33], using a method
that simulates processes of human mind, thus improving over other traditional ways for
dictionary look-up. The application of spreading activation algorithms was also tested
in information retrieval, in a monolingual domain specific environment [5], or more
general multilingual environments for cross language information retrieval [2].

More recently, graph-based ranking algorithms (e.g. HITS [13] or PageRank [3])
have been successfully used in citation analysis, social networks [7], and the analysis
of the link-structure of the World Wide Web [3]. A node ranking algorithm relying
on PageRank [3] and the ArcRank extension [12] was used as a method for thesaurus
construction starting with electronic dictionaries [12].

In recent work, we have shown how graph-based ranking algorithms designed for
content-independent Web link analysis can be turned into a useful source of information
for language processing tasks when applied to graphs extracted from natural language
texts – with encouraging results on the problem of word sense disambiguation [21],
sentence ranking and extraction for text summarization [17], and selection of important
terms in a text [19]. The PageRank algorithm was also evaluated in a comparative study
of coherence algorithms [32], where it was found to exceed the performance of other
paragraph and word oriented algorithms for sentence ranking. Finally, the same ranking
algorithm was integrated in an event-centric approach to summarization [30], where it
was used to identify important elements (events or entities) in a text.
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4 General Framework

We suggest a framework targeted to the application of graph-based ranking models to
text processing tasks. Several new methods and representations are described, specifi-
cally tailored for the application of this framework to natural language processing. In
Section 6, we describe two applications that can be successfully addressed within this
framework.

4.1 A New Graph-Based Representation of Text

To enable the application of graph-based ranking algorithms to natural language texts,
we have to build a graph that represents the text, and interconnects words or other
text entities with meaningful relations. The graphs constructed in this way are centered
around the target text, but can be extended with external graphs, such as off-the-shelf
semantic or associative networks (e.g. WordNet [22]), or other similar structures auto-
matically derived from large corpora.

Representation
Graph Nodes: Depending on the application at hand, text units of various sizes and
characteristics can be added as vertices in the graph, e.g. words, collocations, word-
senses, entire sentences, entire documents, or others. Note that the graph-nodes do not
have to belong to the same category.

Graph Edges: Similarly, it is the application that dictates the type of relations that are
used to draw connections between any two such vertices, e.g. lexical or semantic re-
lations, measures of text cohesiveness, contextual overlap, membership of a word in a
sentence, and others.

Algorithm
Regardless of the type and characteristics of the elements added to the graph, the ap-
plication of the ranking algorithms to natural language texts consists of the following
main steps:

1. Identify text units that best define the task at hand, and add them as vertices in the
graph.

2. Identify relations that connect such text units, and use these relations to draw edges
between vertices in the graph. Edges can be directed or undirected, weighted or
unweighted.

3. Apply a graph-based ranking algorithm to find a ranking over the nodes in the
graph. Iterate the graph-based ranking algorithm until convergence. Sort vertices
based on their final score. Use the values attached to each vertex for ranking/select-
ion decisions.

5 Graph-Based Ranking Algorithms

Graph-based ranking algorithms are essentially a way of deciding the importance (or
“power”) of a vertex within a graph, based on information drawn from the graph struc-
ture. The basic idea implemented by a graph-based ranking model is that of “voting”
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or “recommendation”. When one vertex links to another one, it is basically casting a
vote for that other vertex. The higher the number of votes that are cast for a vertex, the
higher the importance of the vertex. Graph-based ranking algorithms have been success-
fully used in citation analysis, social networks [7], and content-independent Web-link
analysis [3].

These graph ranking algorithms are based on a random walk model, where a walker
takes random steps on the graph G, with the walk being modeled as a Markov process
– that is, the decision on what edge to follow is solely based on the vertex where the
walker is currently located. Under certain conditions, this model converges to a station-
ary distribution of probabilities, associated with vertices in the graph, representing the
probability of finding the walker at a certain vertex in the graph. Based on the Ergodic
theorem for Markov chains [10], the algorithms are guaranteed to converge if the graph
is both aperiodic and irreducible. The first condition is achieved for any graph that is a
non-bipartite graph, while the second condition holds for any strongly connected graph.
Both these properties are typically achieved for the text-based graphs constructed for
the language processing applications considered in this work.

Let G = (V, E) be a directed graph with the set of vertices V and set of edges E,
where E is a subset of V ×V . For a given vertex Vi, let In(Vi) be the set of vertices that
point to it (predecessors), and let Out(Vi) be the set of vertices that vertex Vi points to
(successors). We describe below two graph-based ranking algorithms:

HITS (Hyperlinked Induced Topic Search) [13] is an iterative algorithm that was de-
signed for ranking Web pages according to their degree of “authority”. The HITS algo-
rithm makes a distinction between “authorities” (pages with a large number of incoming
links) and “hubs” (pages with a large number of outgoing links). For each vertex, HITS
produces two sets of scores – an “authority” score, and a “hub” score:

HITSA(Vi) =
�

Vj∈In(Vi)

HITSH(Vj) (1)

HITSH(Vi) =
�

Vj∈Out(Vi)

HITSA(Vj) (2)

PageRank [3] is perhaps one of the most popular ranking algorithms, and was de-
signed as a method for Web link analysis. Unlike other ranking algorithms, PageRank
integrates the impact of both incoming and outgoing links into one single model, and
therefore it produces only one set of scores:

PR(Vi) = (1 − d) + d ∗
�

Vj∈In(Vi)

PR(Vj)
|Out(Vj)|

(3)

where d is a parameter that can be set between 0 and 1 3 In matrix notation, the
PageRank vector of stationary probabilities is the principal eigenvector for the ma-
trix Arow, which is obtained from the adjacency matrix A representing the graph, with
all rows normalized to sum to 1: (P = AT

rowP ).

3 The damping factor d has the role of integrating into the model the probability of jumping from
a given vertex to another random vertex in the graph. The factor d is usually set at 0.85 [3].
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A ranking process starts by assigning arbitrary values to each node in the graph,
followed by several iterations until convergence below a given threshold is achieved.
Convergence is achieved when the error rate for any vertex in the graph falls below a
given threshold, where the error rate of a vertex Vi is approximated with the difference
between the scores computed at two successive iterations: Sk+1(Vi) − Sk(Vi) (usually
after 25-35 iteration steps). After running the algorithm, a score is associated with each
vertex, which represents the “importance” (rank) of the vertex within the graph. Note
that for such iterative algorithms, the final value obtained for each vertex is not affected
by the choice of the initial value, only the number of iterations to convergence may be
different.

The basic graph-based ranking framework can be improved with representations
specifically tailored to language processing tasks. We describe below two such improve-
ments, consisting of the application of graph-based ranking to undirected and weighted
graphs.

Undirected Graphs. Although traditionally applied on directed graphs, algorithms for
node activation or ranking can be also applied to undirected graphs. In such graphs,
convergence is usually achieved after a larger number of iterations, and the final ranking
can differ significantly compared to the ranking obtained on directed graphs.

Weighted Graphs. When the graphs are built from natural language texts, they may in-
clude multiple or partial links between the units (vertices) that are extracted from text.
It may be therefore useful to indicate and incorporate into the model the “strength” of
the connection between two vertices Vi and Vj as a weight wij added to the correspond-
ing edge that connects the two vertices. Consequently, we introduce new formulae for
graph-based ranking that take into account edge weights when computing the score
associated with a vertex in the graph, e.g.

PRW (Vi) = (1 − d) + d ∗
�

Vj∈In(Vi)

wji
PRW (Vj)�

Vk∈Out(Vj)
wjk

(4)

Similar weighted versions can be defined for all other ranking algorithms, as also
shown in our previous work [17]. The final vertex scores (and therefore rankings)
for weighted graphs can differ significantly as compared to their unweighted
alternatives.

6 Graph-Based Ranking Algorithms for Text Processing

Many natural language processing applications can be modeled by means of a graph,
and thus the framework suggested in this paper can provide solutions for many impor-
tant text processing problems. In this paper, we specifically address the application of
graph-based ranking algorithms to text processing at two different levels of granularity:
sentence level and document level. We show how the graph-based ranking algorithms
can be applied to: (1) text processing at sentence level, where we specifically address
the problem of word sense disambiguation; and (2) text processing at document level,
with a focus on the problem of extractive summarization.
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6.1 Text Processing at Sentence Level: Unsupervised Word Sense
Disambiguation

The task of word sense disambiguation consists of assigning the most appropriate mean-
ing to a polysemous word within a given context. To enable the application of algo-
rithms for graph-based ranking to the disambiguation of all words in unrestricted text,
we have to build a graph that represents the text and interconnects the words with mean-
ingful relations.

We start by first formulating the word sense disambiguation problem as a sequence
data labeling problem. Note that this formulation applies not only to word sense dis-
ambiguation, but also to other labeling problems, e.g. part-of-speech tagging, named
entity resolution, etc. Given a sequence of words W = {w1, w2, ..., wn}, each word

wi with corresponding admissible labels Lwi = {l1wi
, l2wi

, ..., l
Nwi
wi }, we define a label

graph G = (V,E) such that there is a vertex v ∈ V for every possible label ljwi
, i = 1..n,

j = 1..Nwi . Dependencies between pairs of labels are represented as directed or indi-
rected edges e ∈ E, defined over the set of vertex pairs V ×V . Such label dependencies
can be learned from annotated data, or derived by other means, e.g. by measuring sim-
ilarity between instances (see Figure 2 for an example). Note that the graph does not
have to be fully connected, as not all label pairs can be related by a dependency.

Given such a label graph associated with a sequence of words, the likelihood of
each label can be determined using an iterative graph-based ranking algorithm, which
runs over the graph of labels and identifies the importance of each label (vertex) in the
graph. We use the weighted version of the ranking algorithms, as they prove particu-
larly useful for sequence data labeling, since the dependencies between pairs of sense
labels are more naturally modeled through weights indicating their strength, rather than
using binary 0/1 values. Intuitively, the stationary probability associated with a vertex
in the graph represents the probability of finding the walker at that vertex during the
random walk, and thus it represents the importance of the vertex within the graph. In
the context of sequence data labeling, the random walk is performed on the label graph
associated with a sequence of words, and thus the resulting stationary distribution of
probabilities can be used to decide on the most probable set of senses for the given se-
quence. Through the label graphs it builds for a given sequence of words, the algorithm
exploits relations between word labels, and implements a concept of recommendation.
A label recommends other related labels, and the strength of the recommendation is re-
cursively computed based on the importance of the labels making the recommendation.
In this way, the algorithm simultaneously annotates all the words in an input sequence,
by identifying the most probable (most recommended) set of labels.

Given a sequence of words with their corresponding admissible labels, the algorithm
for sequence data labeling seeks to identify a graph of label dependencies on which a
random walk can be performed, resulting into a set of scores that can be used for la-
bel assignment. The algorithm consists of three main steps: (1) construction of label
dependencies graph; (2) label scoring using graph-based ranking algorithms; (3) label
assignment. First, a weighted graph of label dependencies is built, by adding a vertex
for each admissible label, and an edge for each pair of labels for which a dependency
is identified. A maximum allowable distance can be set (MaxDist), indicating a con-
straint over the distance between words for which a label dependency is sought. For
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instance, if MaxDist is set to 3, no edges will be drawn between labels correspond-
ing to words that are more than three words apart. Label dependencies are determined
through a Dependency function, whose definition depends on the application and type
of resources available (e.g. dictionary definitions, annotated corpora, etc.). Next, scores
are assigned to vertices using a graph-based ranking algorithm. Finally, the most proba-
ble set of labels is determined by identifying for each word the label that has the highest
score. Note that all admissible labels corresponding to the words in the input sequence
are assigned with a score, and thus the selection of two or more most probable labels
for a word is also possible.

For the particular application of word sense disambiguation, we need information
on labels (word senses) and dependencies (word sense dependencies). Word senses can
be easily obtained from any sense inventory, e.g. WordNet or LDOCE, or any other
machine readable dictionary.

Sense dependencies can be derived in various ways, depending on the type of re-
sources available for the language and/or domain at hand. If only a dictionary is avail-
able, a sense dependency can be defined as a measure of similarity between word senses.
There are several metrics that can be used for this purpose, see for instance [4] for an
overview. If sense annotated corpora are available, the similarity between two word
senses can be measured as a similarity between their corresponding feature vectors,
where a feature vector could include features traditionally used for this task, e.g. sur-
rounding words and their parts of speech, syntactic dependencies, keywords in context,
etc. Word sense similarities can be also derived starting with raw corpora, by boot-
strapping starting with a small set of labeled examples, or in a completely unsupervised
fashion, through latent semantic analysis [14].

An Example. Consider the task of assigning senses to the words in the text The church
bells no longer rung on Sundays4. For the purpose of illustration, we assume at most
three senses for each word, which are shown in Figure 2. Word senses and definitions
are obtained from the WordNet sense inventory [22]. All word senses are added as ver-
tices in the label graph, and weighted edges are drawn as dependencies among word
senses, derived using a definition-based similarity measure inspired from the Lesk al-
gorithm [15]. The resulting label graph is an undirected weighted graph, as shown in
Figure 2. After running the ranking algorithm, scores are identified for each word-sense
in the graph, indicated between brackets next to each node. Selecting for each word the
sense with the largest score results into the following sense assignment: The church#2
bells#1 no longer rung#3 on Sundays#1, which is correct according to annotations per-
formed by professional lexicographers.

To evaluate the application of the graph ranking algorithms to word sense disam-
biguation, we implemented a sense relatedness measure based on definition overlap,
used as an indicator of the dependency between sense labels. Given two word senses
and their corresponding definitions, the sense similarity is determined as a function of
definition overlap, measured as the number of common tokens between the two defini-
tions, after running them through a simple filter that eliminates all stop-words. To avoid

4 Example drawn from the data set provided during the SENSEVAL-2 English all-words task
[25]. Manual sense annotations were also made available for this data.
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Sunday
   1: first day of the week; observed as a day of rest and worship by 
       most Christians

church
   1: one of the groups of Christians who have their own beliefs and
       form of worship
   2: a place for public (especially Christian) worship
   3: a service conducted in a church

bell
   1: a hollow device made of metal that makes a ringing sound when
       struck
   2: a push button at an outer door that gives a ringing or buzzing 
       signal when pushed
   3: the sound of a bell
ring
   1: make a ringing sound
   2: ring or echo with sound
   3: make (bells) ring, often for the purposes of musical edification

Fig. 2. Label graph for assigning senses to words in the sentence The church bells no longer rung
on Sundays

promoting long definitions, we also use a normalization factor, and divide the content
overlap of the two definitions with the length of each definition. This sense similarity
measure is inspired by the definition of the Lesk algorithm [15].

The algorithm was primarily evaluated on the SENSEVAL-2 English all-words data
set (and therefore sense distinctions are performed with respect to WordNet [22]), but
evaluations were also run on other data sets. The performance of the algorithm is com-
pared with the disambiguation accuracy obtained with a variation of the Lesk algorithm
[15], which selects the meaning of an open-class word by finding the word sense that
leads to the highest overlap between the corresponding dictionary definition and the
current context. We thus compare the performance of sequence data labeling, which
takes into account label dependencies and the flow of “importance” over them as im-
plemented by the graph-based ranking algorithms, with individual data labeling, where
a label is selected independent of the other labels in the text. Note that both algorithms
rely on the same knowledge source, i.e. dictionary definitions, and thus they are directly
comparable. Moreover, none of the algorithms take into account the dictionary sense or-
der (e.g. the most frequent sense information provided in WordNet), and therefore they
are both fully unsupervised.

Table 1 shows disambiguation results using: (a) sequence data labeling with iter-
ative graph-based algorithms; (b) individual data labeling with a version of Lesk al-

Table 1. Disambiguation accuracy for graph-based sequence data labeling (SENSEGRAPH) and
individual data labeling (LESK) on the SENSEVAL-2 data set

GRAPH RANKING SENSEGRAPH

Part-of-speech Precision Recall Precision Recall

Noun 61.53% 28.86% 54.75% 25.68%
Verb 38.97% 8.75% 32.90% 7.39%
Adjective 61.05% 11.51% 53.39% 10.07%
Adverb 66.66% 7.84% 63.50% 7.47%

ALL 56.97% 56.97% 50.61% 50.61%
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gorithm; and (c) random baseline. A baseline for this fully unsupervised setting con-
sists of a random selection of senses, which results into a precision and recall of
37.9%.

The accuracy of the graph-based sequence data labeling algorithm exceeds by a large
margin the individual data labeling algorithm, resulting into 12.87% error rate reduc-
tion, which is statistically significant (p < 0.0001, paired t-test). Performance improve-
ments are equally distributed across all parts-of-speech, with comparable improvements
obtained for nouns, verbs, and adjectives. Additional details on the algorithm, as well
as evaluations on other data sets are reported in [18].

6.2 Text Processing at Document Level: Extractive Summarization

Another text processing application that finds an elegant solution within the graph-
based ranking framework is the selection of sentences that are informative for the over-
all understanding of a given text. Iterative graph-based algorithms have the ability to
identify important sentences based on the cohesive structure of a text, by taking into
account the connections between sentences in a text.

For this task, the goal is to rank entire sentences, and therefore a vertex is added
to the graph for each sentence in the text. To draw edges between vertices, we are
defining a similarity relation, where “similarity” can be defined in various ways. In
the experiments described in this paper, we use a simple cosine similarity based on
a measure of text overlap. Such a relation between two sentences can be seen as a
process of recommendation: a sentence that addresses certain concepts in a text, gives
the reader a recommendation to refer to other sentences in the text that address the
same or similar concepts. The resulting graph is highly connected, with a weight as-
sociated with each edge, and thus we use again the weighted version of the graph al-
gorithms. The graph can be represented as: (a) simple undirected graph; (b) directed
weighted graph with the orientation of edges set from a sentence to sentences that
follow in the text (directed forward); or (c) directed weighted graph with the orien-
tation of edges set from a sentence to previous sentences in the text (directed
backward).

An Example. Figure 3 shows a text sample, and the associated weighted graph con-
structed for this text. The figure also shows sample weights attached to the edges con-
nected to vertex 9, and the final score computed for each vertex, using the PageRank
algorithm, applied on an undirected graph. The sentences with the highest rank are se-
lected for inclusion in the abstract. For this sample article, sentences with id-s 9, 15,
16, 18 are extracted, resulting in a summary of about 100 words, which according to
automatic evaluation measures, is ranked the second among summaries produced by 15
other systems.

We evaluate the sentence extraction algorithm in the context of a single-document
summarization task [17], using 567 news articles provided during the Document Un-
derstanding Evaluations 2002 [8]. For each article, we generate a 100-words summary,
by taking the sentences with the highest rank according to the graph-based ranking al-
gorithm. For evaluation, we use the ROUGE toolkit, which is a method based on Ngram
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10: The storm was approaching from the southeast with sustained winds of 75 mph gusting
      to 92 mph.
11: "There is no need for alarm," Civil Defense Director Eugenio Cabral said in a television 
      alert shortly after midnight Saturday.
12: Cabral said residents of the province of Barahona should closely follow Gilbert’s movement.
13: An estimated 100,000 people live in the province, including 70,000 in the city of Barahona,
      about 125 miles west of Santo Domingo.
14. Tropical storm Gilbert formed in the eastern Carribean and strenghtened into a hurricaine
      Saturday night.
15: The National Hurricaine Center in Miami reported its position at 2 a.m. Sunday at latitude
      16.1 north, longitude 67.5 west, about 140 miles south of Ponce, Puerto Rico, and 200 miles
      southeast of Santo Domingo.
16: The National Weather Service in San Juan, Puerto Rico, said Gilbert was moving westard
      at 15 mph with a "broad area of cloudiness and heavy weather" rotating around the center 
      of the storm.
17. The weather service issued a flash flood watch for Puerto Rico and the Virgin Islands until
       at least 6 p.m. Sunday.
18: Strong winds associated with the Gilbert brought coastal flooding, strong southeast winds,
      and up to 12 feet to Puerto Rico’s south coast.
19: There were no reports on casualties.
20: San Juan, on the north coast, had heavy rains and gusts Saturday, but they subsided during 
      the night.
21: On Saturday, Hurricane Florence was downgraded to a tropical storm, and its remnants 
      pushed inland from the U.S. Gulf Coast. 
22: Residents returned home, happy to find little damage from 90 mph winds and sheets of rain.
23: Florence, the sixth named storm of the 1988 Atlantic storm season, was the second hurricane.
24: The first, Debby, reached minimal hurricane strength briefly before hitting the Mexican coast
      last month.

8: Santo Domingo, Dominican Republic (AP)
9: Hurricaine Gilbert Swept towrd the Dominican Republic Sunday, and the Civil Defense

    alerted its heavily populated south coast to prepare for high winds, heavy rains, and high seas.

4: BC−Hurricaine Gilbert, 0348
3: BC−HurricaineGilbert, 09−11 339

5: Hurricaine Gilbert heads toward Dominican Coast
6: By Ruddy Gonzalez
7: Associated Press Writer
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Fig. 3. Sample graph build for extractive summarization from a newspaper article

Table 2. Summarization results using a graph-based ranking approach to sentence extraction

Graph
Algorithm Undirected Dir.Forward Dir.Backward

HITSW
A 0.4912 0.4584 0.5023

HITSW
H 0.4912 0.5023 0.4584

PageRank 0.4904 0.4202 0.5008

Top five DUC 2002 systems [8]
S27 S31 S28 S21 S29 Baseline

0.5011 0.4914 0.4890 0.4869 0.4681 0.4799

statistics, found to be highly correlated with human evaluations [16]. Two manually
produced reference summaries are provided, and used in the evaluation process5.

The summaries are evaluated using two graph-based ranking algorithms: HITS and
PageRank, and Table 2 shows the results obtained with each algorithm, when using
graphs that are: (a) undirected, (b) directed forward (with the orientation of edges set
from a given sentence to sentences that follow in the text), or (c) directed backward
(reversed orientation). For a comparative evaluation, the table also shows the results
obtained on this data set by the top five (out of 15) performing systems participating
in the single document summarization task at DUC 2002 [8]. It also lists the baseline
performance, computed for 100-word summaries generated by taking the first sentences
in each article.

The graph-based algorithms succeed in identifying the most important sentences in
a text based on information exclusively drawn from the text itself. Unlike other su-

5 The evaluation is done using the Ngram(1,1) setting of ROUGE, which was found to have the
highest correlation with human judgments, at a confidence level of 95%. Only the first 100
words in each summary are considered.
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pervised systems, which attempt to learn what makes a good summary by training on
collections of summaries built for other articles, these algorithms are fully unsuper-
vised, and rely only on the given text to derive an extractive summary, which represents
a summarization model closer to what humans are doing when producing an abstract
for a given document.

Another interesting aspect is that these algorithms provide a ranking over all sen-
tences in a text – which means they can be easily adapted to extracting very short sum-
maries (headlines consisting of one sentence), or longer more explicative summaries,
consisting of more than 100 words. Finally, since the algorithms do not require any
training corpora, they can be adapted to other languages and domains. In fact, we have
recently shown they can be successfully applied to the summarization of texts in Por-
tuguese, without any changes in the algorithm [20].

7 Conclusions

In this paper, we suggested a framework for the application of graph-based ranking al-
gorithms to natural language processing problems. Inspired by early work on spreading
activation, random walk algorithms have been traditionally and successfully applied to
structured data, such as graphs of Web links or social networks, and much less to graphs
derived from unstructured texts.

We described two text processing applications that were shown to find successful so-
lutions within the suggested framework: (1) a sentence level text processing application
targeting the resolution of the semantic ambiguity of all words in unrestricted text (word
sense disambiguation), and (2) a document level text processing application, targeting
the ranking of sentences in a text based on their importance for the overall understand-
ing of the text (extractive summarization). Through evaluations performed on standard
benchmarks, the accuracy achieved on both applications using the graph-based ranking
algorithms was shown to be competitive with that of previously proposed state-of-the-
art methods. An important aspect of these algorithms is that they do not require deep
linguistic knowledge, nor domain or language specific annotated corpora, which makes
them highly portable to other domains, genres, or languages.
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