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Abstract. In this paper, we address the problem of Part-Of-Speech tagging of 
Arabic texts with vowel marks. After the description of the specificities of 
Arabic language and the induced difficulties on the task of POS-tagging, we 
propose an approach combining several methods. One of these methods, based 
on sentences patterns, is original and very attractive. We present, afterward, the 
multi-agent architecture that we adopted for the conception and the realization 
of our POS-tagging system. The multi-agent architecture is justified by the need 
for collaboration, parallelism and competition between the different agents. 
Finally, we expose the implementation and the evaluation of the system 
implemented. 

1   Introduction 

The process of Part-Of-Speech tagging was widely automated for English and French 
and for many others European languages giving a rate of accuracy ranging from 95 % 
to 98 %. We find on the Web, many tagged corpora as well as programs of POS-
tagging for these languages. The methods used by these POS-taggers are various, 
namely stochastic approaches such as the Hidden Markov Model [1], the decision 
trees [2], the maximum entropy model [3], rules-based approaches inspired in their 
majority of the transformation rules-based POS-tagging [4], hybrid approaches [5] 
(statistics and rules-based), or combined ones [6] and [7]. 

Unfortunately, the situation is different for Arabic as there are neither POS-taggers 
nor tagged corpora available.  Nevertheless, some Arabic POS-taggers [8], [9] and 
[10] started to appear with an accuracy going from 85% to 90% on average for texts 
with vowel marks and by about 65% for texts without vowel marks. 

This gap noted for Arabic language is especially due to, its particular 
characteristics, which, involve firstly, a rate of grammatical ambiguity relatively more 
significant than for other languages, and secondly, make impossible the application of 
existing POS-taggers without any change. Thus, obtaining improving accuracy 
remains a challenge to reach for Arabic language. 

Accordingly, we propose a POS-tagging system for Arabic texts.  Due to the 
complexity of the problem, and in order to decrease grammatical ambiguity, we have 
restricted the scope of our investigation: we only treat texts with vowels marks.  



122 C. Ben Othmane Zribi, A. Torjmen, and M. Ben Ahmed 

The remainder of this paper is organized as follows: First, we present the Arabic 
language characteristics making the task of POS-tagging more difficult.  We then 
present the general principle of our combined approach.  Next, we show the general 
architecture of our multi-agent system and present a detailed description of the work 
of each agent. Finally, we present the method we used to evaluate the efficiency of 
our system and the results obtained. 

2   Difficulties of Arabic Languages 

In Arabic, the problem of POS-tagging is much more complicated than in other 
languages. Indeed, Arabic has numerous writing constraints such as vowels, 
agglutination and grammatical ambiguity, which can lead to ambiguities. 

2.1   Vowel Marks 

The vowel marks in words are vocalic signs that facilitate the reading and the 
comprehension of texts written in Arabic. Without vowels, the reader has to see the 
context to find the good vowels of the textual form, because Arabic words are 
vocalically ambiguous. This vocalic confusion involves naturally much more 
grammatical ambiguity. 

Table 1. Example of vocalic ambiguity 

 آـتـب
 Kattib Make write آَـتِّـبْ
بَآُـتِّـ  Kuttiba Has been made write 

 Kutiba Has been written آُـتِـبَ
 آَـتَـبَ
… 

Kataba 
… 

Wrote 
… 

2.2   Agglutination  

Arabic is an agglutinative language. Textual forms are made of the agglutination of 
prefixes (articles, prepositions, conjunctions) and suffixes (linked pronouns) to the 
stems (inflected forms). In general, to obtain the different decompositions of a textual 
form, a morphological analyzer is needed. The ambiguities of decomposing textual 
forms induce a significant ambiguity of tagging. When the text is without vowel 
marks, the decomposing ambiguity increases. 

Table 2.  Example of decomposing ambiguity 

 أآبر
+ أآبر +   Akabara Did it grow? 

+آبر   Akbar Higher أ + 
+بر   AkaBir Like benevolence أك + 

2.3   Grammatical Ambiguity 

Arabic words are grammatically ambiguous. The statistics carried out in definition by 
[11] confirm this ambiguity. The author noted the importance of the rate of 
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grammatical ambiguity for the lexical forms with vowel marks, which is equal to 2.8 
on average. This rate increases by the absence of the vowels to reach 5.6 possible tags 
per lexical form. Because of the agglutination of affixes to lexical forms, the rate of 
grammatical ambiguity is more significant for textual forms. According to the 
counting carried out by [8] on texts with vowel marks this rate is equal to 5.6 on 
average, and could reach an average of 8.7 for texts without vowel marks. 

3   Suggested Approach 

To achieve our POS-tagging system, we opted for combining methods (probabilistic 
and rules–based) in a multi-agent architecture.  

3.1   Combined Method 

We combine different methods trying to benefit from advantages for each method 
used and to improve our system’s accuracy. This implies the construction of a number 
of POS-taggers where each operates according to the principle of the method that it 
represents. Each POS-tagger proposes one tag for the treated word and by voting the 
best one is assigned as the final tag to the target word.  

3.2   A Multi-agent Architecture 

The following arguments can justify the choice of this architecture, in addition to its 
originality: 

• Combination of several methods: we combine several methods to realize our POS-
tagging system. 

• Competition and parallel work of agents: the POS-taggers agents treat the same 
sentence, which is extracted from the text to be tagged concurrently. 

• Communication and cooperation between agents: The agents’ system can 
communicate and cooperate for example to solve unknown words.   

4   Part-of-Speech Tagger 

We considered the following hypotheses to accomplish our POS-tagging system: 

• We chose a supervised training mode to construct linguistic and probabilistic 
training data, from a pre-treated corpus (morphologically analyzed and manually 
tagged). 

• We considered a sentence as a sequence of words limited by punctuations.   
• The input of our system is the set of part of speech tag proposed by the 

morphological analyzer for each textual. 

4.1   Tag Sets 

In this work, we manipulate two main tag sets. The first one involves simple tags, also 
called micro tags. These tags are assigned to lexical units. We count 223 tags for the 
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inflected forms and 65 for the affixes. The second tag set is devoted to textual forms 
and is constructed by the licit combination of the simple tags {prefix’s tag + simple 
form’s tag + suffix’s tag}. 

We consider two other tag sets as well. Firstly, we use 22 macro tags, which are 
less detailed than micro tags. Secondly, we use a tag set representing the three 
principle part-of-speech tags: Substantive, Verb and Particle (SVP). We use these tag 
sets to a simple matching between their tags and the micro tags. This is, in order, to 
make a comparison between the results given by taggers and to adapt the results of 
our system to various applications requirements.   

4.2   System Agents 

Some agents participate to accomplish the global objective of our POS-system that 
consists in assigning appropriate tags to each textual form of a given text. We cite: 

• Sentences’ extracting agent; 
• Tagger agents, 
• Unknown words solver agent; 
• Voting agent.  

 
The following figure illustrates the general architecture of this system.  

 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 1.  General architecture of the POS-tagging system 

Sentences’ Extracting Agent. This agent is responsible of the extraction of the 
sentences from the text to tag. Each word in a sentence has a set of tags proposed by 
the morphological analyzer1 developed by [11]. When it loads a sentence, the 

                                                           
1
 The morphological analyzer gives for each word all possible partitions in prefix, stem and 
suffix and for each partition, a set of all potential tags.  
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sentences’ extracting agent activates all tagger agents to start the tagging of this 
sentence.  

Tagger Agents. Given a sentence, five POS-taggers agents will work in parallel, each 
applying its own method, aiming to find for each word of the sentence the suitable tag 
among the tags proposed by the morphological analyzer. 

Unigram Tagger Agent. For each word of a sentence received, the unigram tagger: 

1. recuperates tags proposed by the morphological analyzer;  
2. accedes to a lexicon which is containing the different words of the training corpus 

and their tags with their occurrence’s frequencies;     
3. seeks the target word in this lexicon;   
4. chooses the most frequent tag for this word.     

Bigram Tagger Agent. This tagger uses the binary succession probabilities recovered 
from the training corpus and saved in a binary succession matrix. We calculate the 
binary succession probability as follows: 

 tof soccurrence ofnumber 

)t,(t succession  theof occurences ofnumber 
 =  )t \p(t

1-i

i1-i
1-ii

 . (1) 

The bigram tagger follows these steps to tag a word, it:     

1. recovers the tags proposed by the morphological analyzer;     
2. recovers the tag of the word preceding the target word;     
3. accedes to the matrix of binary succession probabilities;     
4. chooses the tag belonging to the set of tags proposed by the morphological 

analyzer having the higher  binary transition probability considering the tag of the 
previous word;     

5. assigns the tag that it found to the word to tag.      

Trigram Tagger Agent. This trigram tagger agent works similarly to the precedent 
one, but it takes into account ternary succession probabilities recovered from the 
training corpus and saved in a ternary succession matrix. We determine the ternary 
succession probability as follows: 

)t,(t succession  theof soccurrence ofnumber 

)t,t,(t succession  theof occurences ofnumber 
 =  ) t,t \p(t

1-i2-i

i1-i2-i
1-i2-ii  . (2) 

Here, the principle of tagging each word in a given sentence consists in:   

1. recovering the tags proposed by the morphological analyzer;   
2. recovering the two previous tags in relation with the target word;   
3. acceding to the matrix of ternary transition probabilities;   
4. choosing the grammatical tag, which belongs to the tags proposed by the 

morphological analyzer and has the higher ternary transition probability 
considering the two tags of the two previous words;   

5. assigning the tag found to this word. 
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Hidden Markov Model Tagger Agent. This tagger agent operates according to Hidden 
Markov Model's principle. 

Given a sequence of n words W = w1 … wn, this tagger tries to find the tag 
sequence T = t1… tn, that maximizes the conditional probability p(T\W).  

We note:   

Max T= arg MaxT p(T\W) 

By some assumptions2 : 

Max T = arg MaxT   ∏ )t\p(t ×)t\p(w
n

1=i
1-iiii  . (3) 

Where:  

p(wi\ti) is the emission probability that is calculated with the following formula : 

i

ii
ii  tof soccurrence ofnumber 

 with t tagged wof occurences ofnumber 
 =  )t \p(w  . (4) 

and p(ti\ti-1) is the transition probability that is determined as follows: 

1-i

i1-i
1-ii  tof soccurrence ofnumber 

)t,(t succession of occurences ofnumber 
 =  )t \p(t  . (5) 

Where:  

p(t1\t0) = p(t1)  called initial probability.   

When it receives a sentence, including for each word all the tags proposed by the 
morphological analyzer, this tagger agent applies the VITERBI algorithm [12]. The 
latter takes all the needed frequencies from the training corpus and tries to find the tag 
sequence that has the maximum likelihood. 

Agent based on Sentences Patterns. The sentences patterns–based method presented 
here is new and has not been approached before. We define a sentence pattern as a 
model of sentence made of a succession of tags. 
 
Example:  
The sentence: “The child eats a cake” can matches with the following pattern:  
“Definite-Article + Noun + Verb + Indefinite-Article + Noun”. 

In the practice, the possession of all sentences patterns for a language is difficult. 
That is why this tagger manipulates the longest successions of tags of adjustable size. 
The sentence pattern considers the positional character of tags in the sentence (1st tag, 
2nd tag…). 

 
                                                           
2 Independency assumption and Markov assumption  k=1 (using binary successions).  
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The principle of this tagger consists in:  

1. considering the first word of the sentence and extracting the tags that have been 
assigned by the morphological analyzer;     

2. acceding to the set of sentences patterns and seeking the patterns that start with one 
of the tags proposed by the morphological analyzer;  

3. treating the second word. Among models found in patterns, the second tag 
correlates to one of tags proposed by the morphological analyzer for this word.   

4. this process is repeated until the words of the sentence are tagged completely 
considering the position of words while the matching between the tags proposed by 
the morphological analyzer for the treated word and the tags of patterns are 
proposed. Thus, the number of the candidates patterns decreases when the tagger 
goes forward in the treatment of the sentence. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Example of the progress of sentences patterns exploration 

If for a given word no pattern is founded, this tagger agent examines all the 
training patterns to extract the longest succession tags matching to the tags proposed 
by the morphological analyzer. When the extraction is made, the tagger joins the 
segments patterns to the segments previously retained, to form new patterns that are 
going to serve to the research of the tags of the following words. When all words of 
the sentence have been treated, and if several candidate patterns were kept as result of 
the tagging, the tagger chooses the pattern having the highest weight that is calculated 
from the sum of the initial probabilities of its words’ tags. If several patterns have the 
same weight then it keeps the one that is most frequent in the training corpus.    

Voting Agent. After achieving their works, the tagger agents activate the voting agent 
to decide which tag to assign for a word. We have three cases:     

1. If all taggers elect the same tag then this tag is affected to the target word; 
2. If the majority and not the totality of taggers agree about a given tag, this tag is 

assigned to the treated word;     
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3. If all taggers are in a total disagreement, the voting agent uses heuristics to decide 
and to choose one and only one tag to assign to this word.   

These heuristics are: 

• The reliance degree in progress: Voting agent considers the tag of the tagger 
having the higher reliance degree. For each tagger an indicator is provided 
and is incremented each time the voting process considers its tag in the 
vote. 

• The reliance degree in historic: In case two or several taggers have the same 
highest reliance degree, the voting agent sees the historic of every tagger in 
competition and chooses the one which previously achieved the best tagging 
accuracy.  

Unknown Words Resolution Agent. We have two cases of unknown word: 

• If the morphological parser does not propose tags for the treated word:     
− The tagger agent asks the assistance help of the other tagger agents. If one of 

them solves this problem, it sends to him the found tag. 
− If no tagger could help it, the tagger agent calls the unknown word resolution 

agent. 
• If the morphological parser proposes a set of tags for the target word and the tagger 

does not find the suitable tag, because of lack of training data : 
− If one of the tagger agents solves this problem before the tagger agent asking 

help, it sends to him the found tag.   
− Otherwise, the unknown word resolution agent is required:    

 If the unknown word resolution agent proposes a tag that exists among the 
set of tags proposed by the morphological analyzer, this tag will be 
considered as the final tag to assign to the word to tag; 

 If the unknown word resolution agent proposes a tag which is not among the 
set of tags proposed by the morphological analyzer, then the tagger accedes 
to the training data and recovers the most frequent tag among the set of tags 
proposed by the morphological parser to assign it to this word. 

To guess a tag, the unknown words resolution agent works according to this 
principle:     

1. uses the schemes of verbs and personal names as well as the lexical rules to 
determine the nature of the treated word (noun, personal name, verb…);     

2. takes the corresponding tag from a training list containing schemes and their 
relative tags, if the word to tag has a scheme of a verb or personal name;  

 Examples:  
Verb: If a word has the scheme اِفْـعَـلُـوا it can be tagged فعل أمر. 
Personal name: If a word has the scheme ُفَـعْـلاَن it can be tagged  مرفوعاسم علم . 

3. applies lexical rules if the word is assumed to be a noun.  
 Example: noun starting with ْال and ending with ضمّة  ُis likelier to have the tag اسم

 .معرّف مرفوع
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5   Experimentations and Results 

Our experiment was carried out in two stages: one stage of training during which, a 
textual corpus containing about 6000 textual forms was manually annotated and 
probabilities were collected. The second stage is the testing, which consists in using 
these probabilities to tag a testing text. We tested two different environments. In the 
first one, we toke the testing text from training corpus. In the second, we chose the 
testing text out of the training corpus.  

For the system evaluation, we used the accuracy rate that is calculated as follows: 

5.1   Ad Hoc Environment  

As shown in the table 3, the probabilistic taggers are not very efficient (maximum 
accuracy of 93.73% for simple tags and 95.78% for composed tags) since they 
require a big training data. In general, the accuracy for all taggers increases (except 
for the Trigram tagger), when we manipulate the composed tags. The accuracy of the 
global system increases as well, and it is due to the diversity of mistakes that taggers 
provoke. We observe also that the use of macro tags increases significantly the 
accuracy of the taggers. This is due to the nature of mistakes caused by taggers that 
confuses tags belonging to the same class of tags. 

Table 3. Tagging accuracy in the ad hoc environment 

Taggers 
Simple 

tags 
(%) 

Macro
tags 
(%) 

Substantives
(%) 

 

Verbs
(%) 

 

Particles
(%) 

 

Composed 
tags 
(%) 

Unigram 92.17 94.68 97.33 90.43 99.45 94.42 
Bigram 90.47 95.88 93.44 76.33 98.26 92.35 
Trigram 93.73 96.84 94.37 87.5 98.85 90.99 
HMM 91.52 94.23 96.01 89.88 100 95.78 
Sentences 
Patterns 95.33 97.24 97.76 90.53 98.88 95.91 

Global system 97.54 98.64 97.77 94.79 100 98.35 

We can also notice that the sentences patterns tagger achieved best results: 95.33% 
for simple tags and 95.91% for composed tags. This reflects the efficiency of this 
new method.  

5.2   Out of the Training Data Environment 

In the table below, we can observe that the tagging accuracy of the sentences patterns 
tagger becomes the weakest (except for composed tags), whereas in the ad hoc 
environment it was the best. This is because we are in an environment out of training 

 words taggedofnumber  total

 wordstaggedcorrectly  ofnumber 
 accuracy  Tagging = . (6) 
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data, and our training data are insufficient for such a method. Therefore, the accuracy 
rate achieved by this tagger is comprehensible.   

However, the accomplished tagging accuracy of the global system, using the 
simple and composed tags is satisfactory compared to results achieved by the other 
Arabic tagging systems in a similar environment of experimentation. 

Table 4. Tagging accuracy in the out of training data environment 

Taggers 
Simple 

tags 
(%) 

Macro
tags 
(%) 

Substantives 
(%) 

 

Verbs
(%) 

 

Particles
(%) 

 

Composed 
tags 
(%) 

Unigram 90.92 96.14 97.14 80.87 96.77 90.11 
Bigram 90.29 95.02 95.79 78.74 96.61 92.05 
Trigram 92.26 95.41 93.10 87.61 96.15 89.62 
HMM 91.42 95.4 93.85 86.43 96.66 90.59 
Sentences 
patterns 

90.09 94.86 97.36 76.11 92.06 92.38 

Global system 92.35 96.68 98.26 85.0 96.77 94.81 

6   Conclusion 

Our POS-tagging system is based on a combined approach. The efficiency of this 
approach was proved by the accuracy generated by the global system. In fact, this 
accuracy is generally higher than the tagging accuracy of each tagger. The new method 
of tagging based on sentences patterns gives also satisfactory results and proves to be 
promising. In spite of the lack of our training data and the ambiguous specificities of 
the Arabic language, the choices that we adopted enabled us to reach our initially 
drawn up goals. However, the results can be still ameliorated by improving largely the 
training data. Considering that the majority of the texts available are without vowel 
marks, we plan to treat this type of texts in a further work. 
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