
A. Gelbukh (Ed.): CICLing 2006, LNCS 3878, pp. 121 – 131, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Efficient Multi-agent System
Combining POS-Taggers for Arabic Texts

Chiraz Ben Othmane Zribi, Aroua Torjmen, and Mohamed Ben Ahmed

RIADI laboratory, National School of Computer Sciences, 2010,
University of La Manouba, Tunisia

{Chiraz.benothmane, Aroua.torjmen,
Mohamed.benahmed}@riadi.rnu.tn

Abstract. In this paper, we address the problem of Part-Of-Speech tagging of
Arabic texts with vowel marks. After the description of the specificities of
Arabic language and the induced difficulties on the task of POS-tagging, we
propose an approach combining several methods. One of these methods, based
on sentences patterns, is original and very attractive. We present, afterward, the
multi-agent architecture that we adopted for the conception and the realization
of our POS-tagging system. The multi-agent architecture is justified by the need
for collaboration, parallelism and competition between the different agents.
Finally, we expose the implementation and the evaluation of the system
implemented.

1 Introduction

The process of Part-Of-Speech tagging was widely automated for English and French
and for many others European languages giving a rate of accuracy ranging from 95 %
to 98 %. We find on the Web, many tagged corpora as well as programs of POS-
tagging for these languages. The methods used by these POS-taggers are various,
namely stochastic approaches such as the Hidden Markov Model [1], the decision
trees [2], the maximum entropy model [3], rules-based approaches inspired in their
majority of the transformation rules-based POS-tagging [4], hybrid approaches [5]
(statistics and rules-based), or combined ones [6] and [7].

Unfortunately, the situation is different for Arabic as there are neither POS-taggers
nor tagged corpora available. Nevertheless, some Arabic POS-taggers [8], [9] and
[10] started to appear with an accuracy going from 85% to 90% on average for texts
with vowel marks and by about 65% for texts without vowel marks.

This gap noted for Arabic language is especially due to, its particular
characteristics, which, involve firstly, a rate of grammatical ambiguity relatively more
significant than for other languages, and secondly, make impossible the application of
existing POS-taggers without any change. Thus, obtaining improving accuracy
remains a challenge to reach for Arabic language.

Accordingly, we propose a POS-tagging system for Arabic texts. Due to the
complexity of the problem, and in order to decrease grammatical ambiguity, we have
restricted the scope of our investigation: we only treat texts with vowels marks.

122 C. Ben Othmane Zribi, A. Torjmen, and M. Ben Ahmed

The remainder of this paper is organized as follows: First, we present the Arabic
language characteristics making the task of POS-tagging more difficult. We then
present the general principle of our combined approach. Next, we show the general
architecture of our multi-agent system and present a detailed description of the work
of each agent. Finally, we present the method we used to evaluate the efficiency of
our system and the results obtained.

2 Difficulties of Arabic Languages

In Arabic, the problem of POS-tagging is much more complicated than in other
languages. Indeed, Arabic has numerous writing constraints such as vowels,
agglutination and grammatical ambiguity, which can lead to ambiguities.

2.1 Vowel Marks

The vowel marks in words are vocalic signs that facilitate the reading and the
comprehension of texts written in Arabic. Without vowels, the reader has to see the
context to find the good vowels of the textual form, because Arabic words are
vocalically ambiguous. This vocalic confusion involves naturally much more
grammatical ambiguity.

Table 1. Example of vocalic ambiguity

 آـتـب
 Kattib Make write آَـتِّـبْ
بَآُـتِّـ Kuttiba Has been made write

 Kutiba Has been written آُـتِـبَ
 آَـتَـبَ
…

Kataba
…

Wrote
…

2.2 Agglutination

Arabic is an agglutinative language. Textual forms are made of the agglutination of
prefixes (articles, prepositions, conjunctions) and suffixes (linked pronouns) to the
stems (inflected forms). In general, to obtain the different decompositions of a textual
form, a morphological analyzer is needed. The ambiguities of decomposing textual
forms induce a significant ambiguity of tagging. When the text is without vowel
marks, the decomposing ambiguity increases.

Table 2. Example of decomposing ambiguity

 أآبر
+ أآبر + Akabara Did it grow?

+آبر Akbar Higher أ +
+بر AkaBir Like benevolence أك +

2.3 Grammatical Ambiguity

Arabic words are grammatically ambiguous. The statistics carried out in definition by
[11] confirm this ambiguity. The author noted the importance of the rate of

 An Efficient Multi-agent System Combining POS-Taggers for Arabic Texts 123

grammatical ambiguity for the lexical forms with vowel marks, which is equal to 2.8
on average. This rate increases by the absence of the vowels to reach 5.6 possible tags
per lexical form. Because of the agglutination of affixes to lexical forms, the rate of
grammatical ambiguity is more significant for textual forms. According to the
counting carried out by [8] on texts with vowel marks this rate is equal to 5.6 on
average, and could reach an average of 8.7 for texts without vowel marks.

3 Suggested Approach

To achieve our POS-tagging system, we opted for combining methods (probabilistic
and rules–based) in a multi-agent architecture.

3.1 Combined Method

We combine different methods trying to benefit from advantages for each method
used and to improve our system’s accuracy. This implies the construction of a number
of POS-taggers where each operates according to the principle of the method that it
represents. Each POS-tagger proposes one tag for the treated word and by voting the
best one is assigned as the final tag to the target word.

3.2 A Multi-agent Architecture

The following arguments can justify the choice of this architecture, in addition to its
originality:

• Combination of several methods: we combine several methods to realize our POS-
tagging system.

• Competition and parallel work of agents: the POS-taggers agents treat the same
sentence, which is extracted from the text to be tagged concurrently.

• Communication and cooperation between agents: The agents’ system can
communicate and cooperate for example to solve unknown words.

4 Part-of-Speech Tagger

We considered the following hypotheses to accomplish our POS-tagging system:

• We chose a supervised training mode to construct linguistic and probabilistic
training data, from a pre-treated corpus (morphologically analyzed and manually
tagged).

• We considered a sentence as a sequence of words limited by punctuations.
• The input of our system is the set of part of speech tag proposed by the

morphological analyzer for each textual.

4.1 Tag Sets

In this work, we manipulate two main tag sets. The first one involves simple tags, also
called micro tags. These tags are assigned to lexical units. We count 223 tags for the

124 C. Ben Othmane Zribi, A. Torjmen, and M. Ben Ahmed

inflected forms and 65 for the affixes. The second tag set is devoted to textual forms
and is constructed by the licit combination of the simple tags {prefix’s tag + simple
form’s tag + suffix’s tag}.

We consider two other tag sets as well. Firstly, we use 22 macro tags, which are
less detailed than micro tags. Secondly, we use a tag set representing the three
principle part-of-speech tags: Substantive, Verb and Particle (SVP). We use these tag
sets to a simple matching between their tags and the micro tags. This is, in order, to
make a comparison between the results given by taggers and to adapt the results of
our system to various applications requirements.

4.2 System Agents

Some agents participate to accomplish the global objective of our POS-system that
consists in assigning appropriate tags to each textual form of a given text. We cite:

• Sentences’ extracting agent;
• Tagger agents,
• Unknown words solver agent;
• Voting agent.

The following figure illustrates the general architecture of this system.

Fig. 1. General architecture of the POS-tagging system

Sentences’ Extracting Agent. This agent is responsible of the extraction of the
sentences from the text to tag. Each word in a sentence has a set of tags proposed by
the morphological analyzer1 developed by [11]. When it loads a sentence, the

1
 The morphological analyzer gives for each word all possible partitions in prefix, stem and
suffix and for each partition, a set of all potential tags.

Tagged
sentence

New sentence
required

(4)

Sentence's
consignment

(2)
Unknown

words
solver agent

Voting agent

Tagged text

Sentences’
extracting agent

Analyzed
text

Tagger agents

(1)

 (5)

(6) (7)

Unknown
word (3)

 An Efficient Multi-agent System Combining POS-Taggers for Arabic Texts 125

sentences’ extracting agent activates all tagger agents to start the tagging of this
sentence.

Tagger Agents. Given a sentence, five POS-taggers agents will work in parallel, each
applying its own method, aiming to find for each word of the sentence the suitable tag
among the tags proposed by the morphological analyzer.

Unigram Tagger Agent. For each word of a sentence received, the unigram tagger:

1. recuperates tags proposed by the morphological analyzer;
2. accedes to a lexicon which is containing the different words of the training corpus

and their tags with their occurrence’s frequencies;
3. seeks the target word in this lexicon;
4. chooses the most frequent tag for this word.

Bigram Tagger Agent. This tagger uses the binary succession probabilities recovered
from the training corpus and saved in a binary succession matrix. We calculate the
binary succession probability as follows:

 tof soccurrence ofnumber

)t,(t succession theof occurences ofnumber
 =)t \p(t

1-i

i1-i
1-ii

 . (1)

The bigram tagger follows these steps to tag a word, it:

1. recovers the tags proposed by the morphological analyzer;
2. recovers the tag of the word preceding the target word;
3. accedes to the matrix of binary succession probabilities;
4. chooses the tag belonging to the set of tags proposed by the morphological

analyzer having the higher binary transition probability considering the tag of the
previous word;

5. assigns the tag that it found to the word to tag.

Trigram Tagger Agent. This trigram tagger agent works similarly to the precedent
one, but it takes into account ternary succession probabilities recovered from the
training corpus and saved in a ternary succession matrix. We determine the ternary
succession probability as follows:

)t,(t succession theof soccurrence ofnumber

)t,t,(t succession theof occurences ofnumber
 =) t,t \p(t

1-i2-i

i1-i2-i
1-i2-ii . (2)

Here, the principle of tagging each word in a given sentence consists in:

1. recovering the tags proposed by the morphological analyzer;
2. recovering the two previous tags in relation with the target word;
3. acceding to the matrix of ternary transition probabilities;
4. choosing the grammatical tag, which belongs to the tags proposed by the

morphological analyzer and has the higher ternary transition probability
considering the two tags of the two previous words;

5. assigning the tag found to this word.

126 C. Ben Othmane Zribi, A. Torjmen, and M. Ben Ahmed

Hidden Markov Model Tagger Agent. This tagger agent operates according to Hidden
Markov Model's principle.

Given a sequence of n words W = w1 … wn, this tagger tries to find the tag
sequence T = t1… tn, that maximizes the conditional probability p(T\W).

We note:

Max T= arg MaxT p(T\W)

By some assumptions2 :

Max T = arg MaxT ∏)t\p(t ×)t\p(w
n

1=i
1-iiii . (3)

Where:

p(wi\ti) is the emission probability that is calculated with the following formula :

i

ii
ii tof soccurrence ofnumber

 with t tagged wof occurences ofnumber
 =)t \p(w . (4)

and p(ti\ti-1) is the transition probability that is determined as follows:

1-i

i1-i
1-ii tof soccurrence ofnumber

)t,(t succession of occurences ofnumber
 =)t \p(t . (5)

Where:

p(t1\t0) = p(t1) called initial probability.

When it receives a sentence, including for each word all the tags proposed by the
morphological analyzer, this tagger agent applies the VITERBI algorithm [12]. The
latter takes all the needed frequencies from the training corpus and tries to find the tag
sequence that has the maximum likelihood.

Agent based on Sentences Patterns. The sentences patterns–based method presented
here is new and has not been approached before. We define a sentence pattern as a
model of sentence made of a succession of tags.

Example:
The sentence: “The child eats a cake” can matches with the following pattern:
“Definite-Article + Noun + Verb + Indefinite-Article + Noun”.

In the practice, the possession of all sentences patterns for a language is difficult.
That is why this tagger manipulates the longest successions of tags of adjustable size.
The sentence pattern considers the positional character of tags in the sentence (1st tag,
2nd tag…).

2 Independency assumption and Markov assumption k=1 (using binary successions).

 An Efficient Multi-agent System Combining POS-Taggers for Arabic Texts 127

The principle of this tagger consists in:

1. considering the first word of the sentence and extracting the tags that have been
assigned by the morphological analyzer;

2. acceding to the set of sentences patterns and seeking the patterns that start with one
of the tags proposed by the morphological analyzer;

3. treating the second word. Among models found in patterns, the second tag
correlates to one of tags proposed by the morphological analyzer for this word.

4. this process is repeated until the words of the sentence are tagged completely
considering the position of words while the matching between the tags proposed by
the morphological analyzer for the treated word and the tags of patterns are
proposed. Thus, the number of the candidates patterns decreases when the tagger
goes forward in the treatment of the sentence.

Fig. 2. Example of the progress of sentences patterns exploration

If for a given word no pattern is founded, this tagger agent examines all the
training patterns to extract the longest succession tags matching to the tags proposed
by the morphological analyzer. When the extraction is made, the tagger joins the
segments patterns to the segments previously retained, to form new patterns that are
going to serve to the research of the tags of the following words. When all words of
the sentence have been treated, and if several candidate patterns were kept as result of
the tagging, the tagger chooses the pattern having the highest weight that is calculated
from the sum of the initial probabilities of its words’ tags. If several patterns have the
same weight then it keeps the one that is most frequent in the training corpus.

Voting Agent. After achieving their works, the tagger agents activate the voting agent
to decide which tag to assign for a word. We have three cases:

1. If all taggers elect the same tag then this tag is affected to the target word;
2. If the majority and not the totality of taggers agree about a given tag, this tag is

assigned to the treated word;

t11

t12

t13
…

t1n

t21

t22

t13
…

t2n

t31

t32

t33

…

t3n

tn1

tn2

tn3
…

tnn

…

…

…
…

…

Word 1 …Word 2 Word 3 Word n

 The tags succession of patterns recovered

128 C. Ben Othmane Zribi, A. Torjmen, and M. Ben Ahmed

3. If all taggers are in a total disagreement, the voting agent uses heuristics to decide
and to choose one and only one tag to assign to this word.

These heuristics are:

• The reliance degree in progress: Voting agent considers the tag of the tagger
having the higher reliance degree. For each tagger an indicator is provided
and is incremented each time the voting process considers its tag in the
vote.

• The reliance degree in historic: In case two or several taggers have the same
highest reliance degree, the voting agent sees the historic of every tagger in
competition and chooses the one which previously achieved the best tagging
accuracy.

Unknown Words Resolution Agent. We have two cases of unknown word:

• If the morphological parser does not propose tags for the treated word:
− The tagger agent asks the assistance help of the other tagger agents. If one of

them solves this problem, it sends to him the found tag.
− If no tagger could help it, the tagger agent calls the unknown word resolution

agent.
• If the morphological parser proposes a set of tags for the target word and the tagger

does not find the suitable tag, because of lack of training data :
− If one of the tagger agents solves this problem before the tagger agent asking

help, it sends to him the found tag.
− Otherwise, the unknown word resolution agent is required:

 If the unknown word resolution agent proposes a tag that exists among the
set of tags proposed by the morphological analyzer, this tag will be
considered as the final tag to assign to the word to tag;

 If the unknown word resolution agent proposes a tag which is not among the
set of tags proposed by the morphological analyzer, then the tagger accedes
to the training data and recovers the most frequent tag among the set of tags
proposed by the morphological parser to assign it to this word.

To guess a tag, the unknown words resolution agent works according to this
principle:

1. uses the schemes of verbs and personal names as well as the lexical rules to
determine the nature of the treated word (noun, personal name, verb…);

2. takes the corresponding tag from a training list containing schemes and their
relative tags, if the word to tag has a scheme of a verb or personal name;

 Examples:
Verb: If a word has the scheme اِفْـعَـلُـوا it can be tagged فعل أمر.
Personal name: If a word has the scheme ُفَـعْـلاَن it can be tagged مرفوعاسم علم .

3. applies lexical rules if the word is assumed to be a noun.
 Example: noun starting with ْال and ending with ضمّة ُis likelier to have the tag اسم

 .معرّف مرفوع

 An Efficient Multi-agent System Combining POS-Taggers for Arabic Texts 129

5 Experimentations and Results

Our experiment was carried out in two stages: one stage of training during which, a
textual corpus containing about 6000 textual forms was manually annotated and
probabilities were collected. The second stage is the testing, which consists in using
these probabilities to tag a testing text. We tested two different environments. In the
first one, we toke the testing text from training corpus. In the second, we chose the
testing text out of the training corpus.

For the system evaluation, we used the accuracy rate that is calculated as follows:

5.1 Ad Hoc Environment

As shown in the table 3, the probabilistic taggers are not very efficient (maximum
accuracy of 93.73% for simple tags and 95.78% for composed tags) since they
require a big training data. In general, the accuracy for all taggers increases (except
for the Trigram tagger), when we manipulate the composed tags. The accuracy of the
global system increases as well, and it is due to the diversity of mistakes that taggers
provoke. We observe also that the use of macro tags increases significantly the
accuracy of the taggers. This is due to the nature of mistakes caused by taggers that
confuses tags belonging to the same class of tags.

Table 3. Tagging accuracy in the ad hoc environment

Taggers
Simple

tags
(%)

Macro
tags
(%)

Substantives
(%)

Verbs
(%)

Particles
(%)

Composed
tags
(%)

Unigram 92.17 94.68 97.33 90.43 99.45 94.42
Bigram 90.47 95.88 93.44 76.33 98.26 92.35
Trigram 93.73 96.84 94.37 87.5 98.85 90.99
HMM 91.52 94.23 96.01 89.88 100 95.78
Sentences
Patterns 95.33 97.24 97.76 90.53 98.88 95.91

Global system 97.54 98.64 97.77 94.79 100 98.35

We can also notice that the sentences patterns tagger achieved best results: 95.33%
for simple tags and 95.91% for composed tags. This reflects the efficiency of this
new method.

5.2 Out of the Training Data Environment

In the table below, we can observe that the tagging accuracy of the sentences patterns
tagger becomes the weakest (except for composed tags), whereas in the ad hoc
environment it was the best. This is because we are in an environment out of training

 words taggedofnumber total

 wordstaggedcorrectly ofnumber
 accuracy Tagging = . (6)

130 C. Ben Othmane Zribi, A. Torjmen, and M. Ben Ahmed

data, and our training data are insufficient for such a method. Therefore, the accuracy
rate achieved by this tagger is comprehensible.

However, the accomplished tagging accuracy of the global system, using the
simple and composed tags is satisfactory compared to results achieved by the other
Arabic tagging systems in a similar environment of experimentation.

Table 4. Tagging accuracy in the out of training data environment

Taggers
Simple

tags
(%)

Macro
tags
(%)

Substantives
(%)

Verbs
(%)

Particles
(%)

Composed
tags
(%)

Unigram 90.92 96.14 97.14 80.87 96.77 90.11
Bigram 90.29 95.02 95.79 78.74 96.61 92.05
Trigram 92.26 95.41 93.10 87.61 96.15 89.62
HMM 91.42 95.4 93.85 86.43 96.66 90.59
Sentences
patterns

90.09 94.86 97.36 76.11 92.06 92.38

Global system 92.35 96.68 98.26 85.0 96.77 94.81

6 Conclusion

Our POS-tagging system is based on a combined approach. The efficiency of this
approach was proved by the accuracy generated by the global system. In fact, this
accuracy is generally higher than the tagging accuracy of each tagger. The new method
of tagging based on sentences patterns gives also satisfactory results and proves to be
promising. In spite of the lack of our training data and the ambiguous specificities of
the Arabic language, the choices that we adopted enabled us to reach our initially
drawn up goals. However, the results can be still ameliorated by improving largely the
training data. Considering that the majority of the texts available are without vowel
marks, we plan to treat this type of texts in a further work.

References

1. Cutting D., Kupiec J., Pedersen J. And Sibun P.: A practical Part-Of-Speech Tagger. In:
proceedings of the Third Conference on Applied Natural Language Processing, (1992)
133–140

2. Schmid H. et Stein A. : Etiquetage morphologique de textes français avec un arbre de
décision. Le traitement automatique des langues: Traitements probabilistes et corpus,
Vol.36, No. 1-2, (1995) 23–35

3. Ratnaparkhi Adwait: A maximum Entropy Model for part of speech tagger. In:
proceedings of the first empirical methods in natural language processing conference,
Philadelphia, USA, (1996) 133–142

4. Brill E.: Some Advances in Transformation-based part of speech Tagging. In: proceedings
of the 12th national conference on artificial intelligence (1992), 722-727

5. Marshall I.: Choice of Grammatical Word-class without Global Syntactic Analysis:
Tagging Words in the LOB Corpus. Computers and the Humanities, No.17, (1983) 139–50

 An Efficient Multi-agent System Combining POS-Taggers for Arabic Texts 131

6. Brill E. and Wu J.: Classifier combination for improved lexical disambiguation. In:
proceedings of the thirty-sixth ACL and seventeenth COLING, Montréal, Canada, (1998)
191–195,

7. Sjöbergh Jonas: Combining POS-Taggers for improved accuracy on Swedish text.
NoDaLiDa, Reykjavik, (2003)

8. Debili F., Achour H., Souissi E. : La langue arabe et l’ordinateur : de l’étiquetage
grammatical à la voyellation automatique. Correspondances, No. 71, Institut de recherche
sur le Maghreb contemporain, CNRS, Tunis, (2002) 10–28

9. Khoja S.: APT: Arabic Part-of-speech Tagger. In: proceedings of the student workshop at
the second meeting of the north American chapter of the Association for computational
linguistics (NAACL’01), Carnegie Mellon University, Pennsylvania, (2001) 20–26

10. Zemirli Z. et Khabet S. : TAGGAR : un analyseur morphosyntaxique destiné à la synthèse
vocale des textes arabes voyellés. JEP-TALN 2004, Traitement Automatique de l’Arabe,
Fès, (2004)

11. Ben Othman C. : De la synthèse lexicographique à la détection et la correction des graphie
fautives arabes. Thèse de doctorat, Université de Paris XI, Orsay, (1998)

12. Rajman M. et Chappelier J.C. : Chaînes de Markov cachées. Cours TIDT, Département
informatique, Ecole Polytechnique de la Lausanne, (2003)

	Introduction
	Difficulties of Arabic Languages
	Vowel Marks
	Agglutination
	Grammatical Ambiguity

	Suggested Approach
	Combined Method
	A Multi-agent Architecture

	Part-of-Speech Tagger
	Tag Sets
	System Agents

	Experimentations and Results
	Ad Hoc Environment
	Out of the Training Data Environment

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

