

Lecture Notes in Computer Science 3868
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Kay Römer Holger Karl
Friedemann Mattern (Eds.)

Wireless
Sensor Networks

Third European Workshop, EWSN 2006
Zurich, Switzerland, February 13-15, 2006
Proceedings

13

Volume Editors

Kay Römer
Friedemann Mattern
ETH Zurich
Institute for Pervasive Computing
Haldeneggsteig 4, 8092 Zurich, Switzerland
E-mail: {roemer,mattern}@inf.ethz.ch

Holger Karl
Universität Paderborn
Fachgebiet Rechnernetze
Pohlweg 47-49, 33098 Paderborn, Germany
E-mail: holger.karl@upb.de

Library of Congress Control Number: 2005939186

CR Subject Classification (1998): C.2.4, C.2, F.2, D.1.3, D.2, E.1, H.4, C.3

LNCS Sublibrary: SL 5 – Computer Communication Networks andTelecommunications

ISSN 0302-9743
ISBN-10 3-540-32158-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32158-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11669463 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of EWSN 2006, the third in a series of Eu-
ropean workshops on wireless sensor networks. The workshop took place at ETH
Zurich from February 13 to 15, 2006. Its objective was to present, discuss, and
explore the latest technical developments in the field of wireless sensor networks,
as well as potential future directions.

Wireless sensor networks provide a bridge between traditional information
systems and the physical world, with collections of wirelessly networked sen-
sor nodes being deployed in our physical environment to cooperatively monitor
real-world phenomena, but also to control aspects of the physical world. In con-
trast to traditional computing systems which are mostly decoupled from the real
world, wireless sensor networks are inherently and closely integrated with the real
world, with data about the physical environment being captured and processed
automatically, online, and in real time. This paradigmatic change comes with a
number of conceptual and technical challenges involving a wide range of disci-
plines in computer science and electrical engineering, but also material sciences,
MEMS technology, and power engineering, thus making wireless sensor networks
a multidisciplinary area of research. This workshop series aims at providing a
high-level scientific forum to implement the cross-disciplinary exchange of ideas
and results that is essential for this type of research area. While based in Europe,
the workshop serves as a truly international forum with 40% of the submissions
originating from Europe, 38% from Asia and Australia, 20% from the Americas,
and 2% from Africa.

Wireless sensor networks has become an active and popular research area,
which is witnessed by the 133 submissions we received from authors all over the
world. The Program Committee chose 21 papers for inclusion in the workshop. It
was a difficult choice, based on several hundred reviews produced by the Program
Committee and many outside referees, where each paper was typically reviewed
by three reviewers.

In addition to the papers contained in these proceedings, the conference pro-
gram included a demo and poster track, and a special session on European
research initiatives focusing on wireless sensor networks. Karl Aberer (EPFL),
director of the Swiss National Competence Centre in Research for Mobile Infor-
mation and Communication Systems (NCCR-MICS), delivered a keynote talk
entitled “Unleashing the Power of Wireless Networks through Information Shar-
ing in the Sensor Internet.” Moreover, the workshop offered two half-day tuto-
rials:

– Data Management in Sensor Networks (Samuel Madden, MIT)
– Algorithms for Wireless Sensor Networks (Roger Wattenhofer, ETH Zurich)

In closing, we would like to express our sincere appreciation to all authors who
submitted papers. We deeply thank all members of the Program Committee and

VI Preface

the external reviewers for their time and effort as well as their valuable input.
Finally, we would like to thank Springer for their excellent cooperation, our
sponsoring institutions, and the Organizing Committee.

February 2006 Kay Römer and Holger Karl, Program Chairs
Friedemann Mattern, General Chair

Organization

EWSN 2006, the third in a series of European workshops on wireless sensor
networks, took place in Zurich, Switzerland from February 13 to 15, 2006. It was
organized by ETH Zurich, the Swiss Federal Institute of Technology.

Executive Committee

General Chair: Friedemann Mattern (ETH Zurich, Switzerland)
Program Co-chairs: Kay Römer (ETH Zurich, Switzerland) and

Holger Karl (University of Paderborn, Germany)
Publicity Co-chairs: Nirupama Bulusu (Portland State University, USA) and

Thiemo Voigt (SICS, Sweden)

Organizing Committee

Christian Frank (ETH Zurich, Switzerland)
Marc Langheinrich (ETH Zurich, Switzerland)
Matthias Ringwald (ETH Zurich, Switzerland)
Kay Römer (ETH Zurich, Switzerland)
Silvia Santini (ETH Zurich, Switzerland)

Program Committee

Ozgur Akan (Middle East Technical University, Turkey)
Michel Banâtre (INRIA, France)
Christian Bettstetter (University of Klagenfurt, Austria)
Nirupama Bulusu (Portland State University, USA)
Srdjan Capkun (Technical University of Denmark, Denmark)
Erdal Cayirci (Istanbul Technical University, Turkey)
George Coulouris (Cambridge University, UK)
Jean-Pierre Ebert (IHP Microelectronics, Germany)
Eylem Ekici (Ohio State University, USA)
Jeremy Elson (Microsoft Research, USA)
Paul J. M. Havinga (University of Twente, The Netherlands)
Wendi Heinzelman (University of Rochester, USA)
Holger Karl (University of Paderborn, Germany)
Bhaskar Krishnamachari (University of Southern California, USA)
Koen Langendoen (TU Delft, The Netherlands)
Pedro J. Marrón (University of Stuttgart, Germany)
Friedemann Mattern (ETH Zurich, Switzerland)
Amy L. Murphy (University of Lugano, Switzerland)

VIII Organization

Chiara Petrioli (University “La Sapienza” Rome, Italy)
Bart van Poucke (IMEC, Belgium)
Hartmut Ritter (FU Berlin, Germany)
Kay Römer (ETH Zurich, Switzerland)
Lothar Thiele (ETH Zurich, Switzerland)
Thiemo Voigt (SICS, Sweden)
Matt Welsh (Harvard University, USA)
Dirk Westhoff (NEC, Germany)
Andreas Willig (TU Berlin, Germany)
Adam Wolisz (TU Berlin, Germany)

Supporting Institutions

Embedded Wisents Project (EU FP6-IST Coordination Action)
ETH Zurich, Switzerland

Table of Contents

Tutorials

Data Management in Sensor Networks
Samuel Madden . 1

Algorithms for Wireless Sensor Networks
Roger Wattenhofer . 2

Invited Talk

Unleashing the Power of Wireless Networks Through Information
Sharing in the Sensor Internet

Karl Aberer . 3

Query Systems

Semantic Streams: A Framework for Composable Semantic
Interpretation of Sensor Data

Kamin Whitehouse, Feng Zhao, Jie Liu . 5

PAQ: Time Series Forecasting for Approximate Query Answering in
Sensor Networks

Daniela Tulone, Samuel Madden . 21

Proactive Context-Aware Sensor Networks
Sungjin Ahn, Daeyoung Kim . 38

Sensor Network Services

Constraint-Based Distance Estimation in Ad-Hoc Wireless Sensor
Networks

Urs Bischoff, Martin Strohbach, Mike Hazas, Gerd Kortuem 54

Sensor Density for Complete Information Coverage in Wireless Sensor
Networks

Bang Wang, Kee Chaing Chua, Vikram Srinivasan,
Wei Wang . 69

X Table of Contents

Hierarchical Grid-Based Pairwise Key Predistribution Scheme for
Wireless Sensor Networks

Abedelaziz Mohaisen, Dae-Hun Nyang . 83

Routing

Generic Routing Metric and Policies for WSNs
Olga Saukh, Pedro José Marrón, Andreas Lachenmann,
Matthias Gauger, Daniel Minder, Kurt Rothermel 99

On the Scalability of Routing Integrated Time Synchronization
János Sallai, Branislav Kusý, Ákos Lédeczi, Prabal Dutta 115

Distributed Dynamic Shared Tree for Minimum Energy Data
Aggregation of Multiple Mobile Sinks in Wireless Sensor Networks

Kwang-il Hwang, JeongSik In, Doo-seop Eom . 132

Localization

Constrained Tracking on a Road Network
Micha�l Piórkowski, Matthias Grossglauser . 148

Range-Based Localization in Mobile Sensor Networks
Bram Dil, Stefan Dulman, Paul Havinga . 164

Hierarchical Localization Algorithm Based on Inverse Delaunay
Tessellation

Masayuki Saeki, Junya Inoue, Kok-How Khor, Tomohiro Kousaka,
Hiroaki Honda, Kenji Oguni, Muneo Hori . 180

Platforms and Development

Power Management for Bluetooth Sensor Networks
Luca Negri, Lothar Thiele . 196

FlexCup: A Flexible and Efficient Code Update Mechanism for Sensor
Networks

Pedro José Marrón, Matthias Gauger, Andreas Lachenmann,
Daniel Minder, Olga Saukh, Kurt Rothermel . 212

Transforming Protocol Specifications for Wireless Sensor Networks into
Efficient Embedded System Implementations

Gerald Wagenknecht, Daniel Dietterle, Jean-Pierre Ebert,
Rolf Kraemer . 228

Table of Contents XI

Medium Access Control

Extending Network Lifetime Using an Automatically Tuned
Energy-Aware MAC Protocol

Rebecca Braynard, Adam Silberstein, Carla Ellis 244

Sift: A MAC Protocol for Event-Driven Wireless Sensor Networks
Kyle Jamieson, Hari Balakrishnan, Y.C. Tay . 260

f-MAC: A Deterministic Media Access Control Protocol Without Time
Synchronization

Utz Roedig, Andre Barroso, Cormac J. Sreenan . 276

Measurements

A Measurement-Based Analysis of the Interaction Between Network
Layers in TinyOS

Umberto Malesci, Samuel Madden . 292

Results of Bit Error Measurements with Sensor Nodes and Casuistic
Consequences for Design of Energy-Efficient Error Control Schemes

Andreas Willig, Robert Mitschke . 310

An Empirical Characterization of Radio Signal Strength Variability in
3-D IEEE 802.15.4 Networks Using Monopole Antennas

Dimitrios Lymberopoulos, Quentin Lindsey,
Andreas Savvides . 326

Author Index . 343

Data Management in Sensor Networks

Samuel Madden

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, USA

madden@csail.mit.edu

Abstract. This tutorial will cover recent topics in data management
for sensor networks, focusing in particular on high-level systems and lan-
guages for querying stored and streaming data in such networks. We will
begin with a survey of language proposals, including TinyDB, Cougar,
Regions, and other more recent work, and will then examine a range of
implementation issues that arise in such systems, including issues related
to power efficiency, time synchronization, data collection and dissemina-
tion, fault-tolerance, and state management. After attending the tutorial,
audience members should have a good understanding of the various sys-
tems in this space as well as an awareness of the technical issues that
make building such systems difficult.

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Algorithms for Wireless Sensor Networks

Roger Wattenhofer

Department of Information Technology and Electrical Engineering,
ETH Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

Abstract. In recent years, there has been a growing interest by theo-
reticians in wireless multi-hop sensor networks. In this tutorial we discuss
some of the latest pearls of algorithmic sensor networking research. In
particular, we investigate the link layer (e.g., MAC, topology control,
clustering), the network layer (e.g., data gathering, routing), and ser-
vices for sensor networks (e.g., positioning, time synchronization). We
put a special focus on distributed protocols with practical appeal and on
theoretical (im)possibility results “every sensor network engineer should
know.”

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Unleashing the Power of Wireless Networks
Through Information Sharing in the Sensor

Internet

Karl Aberer

National Competence Centre in Research for
Mobile Information and Communication Systems (NCCR-MICS),

School of Computer and Communication Sciences,
EPFL, Switzerland

karl.aberer@epfl.ch

Abstract. We provide in this presentation in a first part an overview
of the research activities of the Swiss National Competence Centre in
Research for Mobile Information and Communication Systems (NCCR-
MICS) in the area of self-organizing, wireless networks. In the second
part we present specific MICS research results from our research group on
managing information generated in such networks using self-organizing,
logical overlay networks.

Recent advances in wireless communication enable the embedding of
sensing and actuation technology into our physical environment at an
unprecedented large scale and fine granularity. We show exemplary re-
cent theoretical advances and systems developments on self-organizing,
wireless sensor networks and mobile ad-hoc networks achieved in MICS.
They provide evidence for the comprehensive scope and high degree of
interdisciplinarity required in this area of research. We illustrate the
deployment of the resulting technologies in real-world applications. An
application class we focus in MICS in particular concerns the monitoring
of various typical physical phenomena in the Swiss environment, such as
watershed, permafrost, and avalanches.

In the long term, the increasing deployment and application of wireless
networks beyond specialized, isolated applications will lead to the pro-
duction of massive amounts of sensor data requiring further processing
support and proper interpretation of data. We argue that self-organizing,
logical overlay networks for resource and information sharing will play an
important role for achieving this task. Structured overlay networks will
be used to support scalable processing of data streams. Semantic overlay
networks will be used to overcome heterogeneity in information represen-
tation. Finally, social overlay networks will be used to form agreements
on meaning and utility of data. We illustrate these developments from
our ongoing research: Global Sensor Network, a lightweight implemen-
tation of an overlay network for sensor data stream sharing, PicShark,
a peer-to-peer image sharing system with support for automated gen-
eration and sharing of image annotations, and Semantic Gossiping, a
social mechanism based on belief propagation to reconcile heterogeneous
annotation schemes.

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 3–4, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

4 K. Aberer

As a result of these developments, we envision the Internet to develop
into a Sensor Internet in which physical reality, information technology
and human activity become increasingly intertwined into one common
complex system for better understanding and more easily mastering the
environment we live in.

Semantic Streams: A Framework for Composable
Semantic Interpretation of Sensor Data

Kamin Whitehouse1, Feng Zhao2, and Jie Liu2

1 UC Berkeley, Berkeley, CA, USA
kamin@cs.berkeley.edu

2 Microsoft Research, Redmond, WA, USA
{zhao, liuj}@microsoft.com

Abstract. We present a framework called Semantic Streams that allows
users to pose declarative queries over semantic interpretations of sensor
data. For example, instead of querying raw magnetometer data, the user
queries whether vehicles are cars or trucks; the system decides which
sensor data and which operations to use to infer the type of vehicle.
The user can also place constraints on values such as the the amount of
energy consumed or the confidence with which the vehicles are classified.
We demonstrate how this system can be used on a network of video,
magnetometer, and infrared break beam sensors deployed in a parking
garage with three simultaneous and independent users.

1 Introduction

While most sensor network research today focuses on ad-hoc sensor deployments,
fixed sensor infrastructure may be much more common and in fact is ubiquitous
in our daily environments even today. Homes have security sensors, roads have
traffic sensors, office buildings have HVAC and card key sensors, etc. Most of
these sensors are powered and wired, or are one hop from a base station. Such
sensor infrastructure does not have many of the technical challenges seen with
its power-constrained, multi-hop counterpart: it is relatively trivial to collect
the data and even to allow a building’s occupants to query the building sensors
through a web interface. The largest remaining obstacle to more widespread
use is that the non-technical user must semantically interpret the otherwise
meaningless output of the sensors. For example, the user does not want raw
magnetometer or HVAC sensor data; a building manager wants to be alerted to
excess building activity over the weekends, or a safety engineer wants to know
the ratio of cars to trucks in a parking garage.

Our paper presents a framework called Semantic Streams that allows non-
technical users to pose queries over semantic interpretations of sensor data, such
as “I want the ratio of cars to trucks in the parking garage”, without actually
writing code to infer the existence of cars or trucks from the sensor data. The
key to our system is that previous users will have written applications in terms
of inference units, which are minimal units of sensor data interpretation. When
a new semantic query arrives, existing inference units can then be composed in

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 5–20, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

6 K. Whitehouse, F. Zhao, and J. Liu

new ways to generate new interpretations of sensor data. If the query cannot be
answered, the system may ask for new sensors to be placed or for new inference
units to be created. In this way, the sensor infrastructure and the semantic values
it can produce grow organically as it is used for different applications.

The system also allows the user to place constraints or objective functions
over quality of service parameters, such as, “I want the confidence of the vehicle
classifications to be greater than 90%,” or “I want to minimize the total energy
consumed.” Then, if the system has a choice between using a magnetometer or a
motion sensor to detect trucks for example, it may choose to use the motion sen-
sor if the user is optimizing for energy consumption, or the magnetometer if the
user is optimizing for confidence. Finally, our system allows multiple, indepen-
dent users to use the same network simultaneously through their web interface
and automatically shares resources and resolves resource conflicts, such as two
different requirements for the sampling frequency of a single sensor. Towards the
end of the paper, we demonstrate how this system is used on a network of video,
magnetometer, and infrared break beam sensors deployed in a parking garage.

2 The Semantic Streams Programming Model

The Semantic Streams programming model contains two fundamental elements:
event streams and inference units. Event streams represent a flow of
asynchronous events, each of which represents a world event such as an ob-
ject, person or car detection and has properties such as the time or location it
was detected, its speed, direction, and/or identity.

Inference units are processes that operate on event streams. They infer se-
mantic information about the world from incoming events and either generate
new event streams or add the information to existing events as new properties.
For example, the speed inference unit in Figure 1 creates a new stream of objects
and infers their speeds from the output of sensors A and B. The vehicle inference
unit uses the speeds in combination with raw data from sensor C to label each
object as a vehicle or not. As a stream flows from sensors and through different
inference units, its events acquire new semantic properties.

Fig. 1. Programming Model. Events streams feed inference units and accumulate
semantic information as they flow through them.

Semantic Streams: A Framework for Composable Semantic Interpretation 7

The goal of this programming model is to allow composable inference; event
streams can flow through new combinations of inference units and still produce
valid world interpretations. While composable inference will never infer com-
pletely unforeseeable facts, it can be used to answer queries which are slight
variations or combinations of previous applications, for example inferring the
size of a car using logic that was originally intended to infer the sizes of people.
For simplicity, we can assume that all inference units are running on a central
server where all sensor data is collected, although it would be straightforward
to execute some inference units directly on the sensor nodes.

3 A Logic-Based Markup and Query Language

In order to automatically compose sensors and inference units, we use a markup
language to encode a logical description of how they fit together. To ensure that
inference units are not composed in ways that produce invalid world interpre-
tations, each inference unit must be fully specified in terms of its input streams
and output streams and any required relationships between them. For example,
the vehicle inference unit in Figure 2 may create vehicle events and need speed
events and sensor C events that are co-temporal and co-spatial.

The Semantic Streams markup and query language is built using SICStus
Prolog and its constraint logic programming (real) (CLP(R)) extension. Prolog
is a logic programming language in which facts and logic rules can be declared
and used to prove queries. CLP(R) allows the user to declare numeric constraints
on variables. Each declared constraint is added to a constraint set and each
new constraint declaration evaluates to true iff it is consistent with the existing
constraint set. For a more complete description of Prolog and CLP(R), see [1].

3.1 Declaring Sensors and Simple Inference Units

Semantic Streams defines eight logical predicates that can be used to declare
sensor and inference units. The font of each predicate indicates whether it is a
top-level or an inner predicate.

– sensor(<sensor type>, <region>)

– inference(<inference type>, <needs>, <creates>)

– needs(<stream1>, <stream2>, ...)

– creates(<stream1>, <stream2>, ...)

– stream(<identifier>)

– isa(<identifier>, <event type>)

– property(<identifier>, <value>, <property name>)

The sensor() predicate defines the type and location of each sensor. For
example

sensor(magnetometer, [[60,0,0],[70,10,10]]).
sensor(camera, [[40,0,0],[55,15,15]]).
sensor(breakBeam, [[10,0,0],[12,10, 2]]).

8 K. Whitehouse, F. Zhao, and J. Liu

defines three sensors of type magnetometer, camera, and breakBeam. Each sensor
is declared to cover a 3D cube defined by a pair of [x, y, z] coordinates. For
simplicity, we approximate all regions as 3D cubes, although this restriction
does not apply to Semantic Streams in general.

The inference(), needs(), and creates() predicates describe an inference unit
in terms of the event streams that it needs and creates. The stream(), isa(), and
property() predicates describe an event stream and the type and properties of its
events. For example, a vehicle detector unit could be described as an inference
unit that uses a magnetometer sensor to detect vehicles and creates an event
stream with the time and location in which the vehicles are detected.

inference(magVehicleDetectionUnit,

needs(
sensor(magnetometer, R)),

creates(
stream(X),

isa(X,vehicle),

property(X,T,time),

property(X,R,region))).

3.2 Encoding and Reasoning About Space

Sensors have real-world spatial coordinates and, as such, our language and query
processor must be able to encode and reason about space. As a simple example,
our declaration of the magVehicleDetectionUnit above uses the same variable R

in both the needs() predicate and the creates() predicate. This encodes the fact
that the region in which vehicles are detected is the same region in which the
magnetometer is sensing.

A more complicated inference unit may require a number of break beam sensors
(which detect the breakage of an infrared beam) with close proximity to each
other and with non-intersecting detection regions. One way to declare this is to
require three sensors in specific, known locations:

inference(objectDetectionUnit,

needs(
sensor(breakBeam, [[10,0,0],[12,10, 2]]),

sensor(breakBeam, [[20,0,0],[22,10, 2]]),

sensor(breakBeam, [[30,0,0],[32,10, 2]])),

creates(
stream(X),

isa(X,object),

property(X,T,time),

property(X, [[10,0,0],[32,10, 2]])), region))).

This inference unit description, however, cannot be composed with break
beams other than those which have been hard coded. To solve this problem, we
could use two logical rules about spatial relations:

Semantic Streams: A Framework for Composable Semantic Interpretation 9

– subregion(<A>,)
– intersection(<A>, , <C>)

The first predicate is true if region A is a subregion of region B while the
second predicate is true if region A is the intersection of region B and region C.
An example of the first rule written in CLP(R) notation is:

subregion(

[[X1A, Y 1A, Z1A],[X2A, Y 2A, Z2A]],

[[X1B, Y 1B, Z1B],[X2B, Y 2B, Z2B]]):-

{min(X1A,X2A)>=min(X1B,X2B),

min(Y 1A,Y 2A)>=min(Y 1B,Y 2B),

min(Z1A,Z2A)>=min(Z1B,Z2B),

max(X1A,X2A)=<max(X1B,X2B),

max(Y 1A,Y 2A)=<max(Y 1B,Y 2B),

max(Y 1A,Z2A)=<max(Z1B,Z2B)}.
The objectDetectionUnit can now be defined to require any three break beams

that are within a region R and that do not intersect each other.

inference(objectDetectionUnit,

needs(
sensor(breakBeam, R1),

sensor(breakBeam, R2),

sensor(breakBeam, R3)),

subregion(R1,R),

subregion(R2,R),

subregion(R3,R),

\+ intersect(,R1,R2),

\+ intersect(,R1,R3),

\+ intersect(,R2,R3)),

creates(
stream(X),

isa(X,object),

property(X,T,time),

property(X,R,region))).

Where in Prolog \+ intersect(,R1,R2) is true if regions R1 and R2 do not
intersect. With this logical description, the inference unit will function over any
three non-intersecting break beam sensors in any region R.

3.3 Declaring Queries

A query is simply a first-order logic description of the event streams and prop-
erties desired by the user. For example, a simple query could be:

stream(X), isa(X,vehicle).

This query would be true iff a set of sensors and inference units could be
composed to generate events X that are known to be vehicles. In many cases,

10 K. Whitehouse, F. Zhao, and J. Liu

the query interpreter will be able to generate many such inference compositions.
To constrain the resulting composition set, we could simply add more predicates
to the query. For example, we could query only for car events in a certain region:

stream (X), isa (X, car),
property (X, [[10,0,0],[30,20,20]], region).

A more sophisticated query might require specific relationships between event
streams. For example, a histogram unit may update a histogram with incoming
events and generate new events each time it is updated. A query could then
request a stream of histogram events Y where the values being plotted are the
times of vehicle detection events in stream X. The last line of the query fur-
ther constrains the plot to only those vehicle events detected in a particular
region.

stream (Y), isa (Y , histogram),
property (Y , X, stream),
property (Y , time, property),
stream (X), isa (X, vehicle),
property (X, [[10,0,0],[32,12,02]], region).

4 Query Processing: A Variant of Backward-Chaining

Once the sensors and inference units of a particular sensor infrastructure are
defined, our system responds to queries by automatically composing the sensors
and inference units using a variant of the standard backward chaining algorithm.
In backward chaining, each unproven predicate of the query is matched with the
consequent of a rule or fact in the Knowledge Base (KB). If it is matched with a
rule, the antecedents of the rule must be proved by matching with another rule
or fact. Backward chaining terminates when all antecedents have been matched
with facts, and otherwise fails after an exhaustive search of all rules. Infer-
ence unit composition is very similar to backward chaining. The query processor
matches a predicate in the query with properties of the event streams created
by an inference unit. It must then provide everything that the unit needs using
either other inference units or physical sensors. This procedure recurses until the
requirements of all inference units are satisfied by physical sensors. The sensors
and inference units used to prove the query constitute the inference graph that
will provide the desired semantic values specified in the query.

The inference composition engine must ensure legal flow of event streams:

– all streams with the same variable name in a query or inference unit descrip-
tion are actually the same stream.

– all streams with the different variable names in a query or inference unit
description are actually different streams.

– all streams are acyclic and originate only once.

Many inference units require these global properties of all inference graphs in
order to guarantee valid interpretations of their input streams.

Semantic Streams: A Framework for Composable Semantic Interpretation 11

A pure backward-chaining approach does not guarantee legal flow, as shown
with the following example query:

stream(X), isa(X, object).

Pure backward-chaining would prove the first predicate in the query with
any inference unit that has an output event stream. It would initially try the
first unit listed in the KB, eg. the magnetometerUnit. The second predicate,
however, does not match any post-condition of magnetometerUnit so the infer-
ence engine matches it with any other inference unit in the KB that does, eg.
objectDetectorUnit, and completes the proof. The resulting proof is shown in
Figure 2(a), and clearly is not a valid solution to the query because the event
stream X originates in two different places, once in each subtree of the proof,
and the streams denoted by X in the query are not actually the same streams.
This problem is caused by the fact that backward chaining proves each predicate
in the query in isolation.

Our composition engine actually instantiates a virtual representation of each
inference unit in the KB the first time it is used in the proof, and each new
event stream originating at that unit is unified with a known constant value.
Subsequent predicates are proved by matching against all existing virtual in-
stantiations before matching with any new inference units. For example, in the
example query above the composition engine matches the first predicate to the
magnetometerUnit, as did standard backward chaining, but this time creates a
virtual instance of magnetometerUnit and assigns a unique ID to the event stream
X. Once its preconditions are satisfied (by a magnetometer sensor), the infer-
ence engine moves on to the second predicate in the query: isa(X, object). This
predicate does not match any properties produced by magnetometerUnit, and a
match to objectDetectionUnit fails because the two different inference unit in-
stantiations create different stream IDs and cannot both unify with the same
variable X in the query. Thus, the illegal proof in Figure 2(a) fails. The com-
position engine then backtracks and matches the first predicate to a different
inference unit: objectDetectionUnit. It then tries to match the second predicate

stream(X)

magnetometerUnit objectDetectionUnit

breakBeamUnit ...

Illegal flow!
stream(X)

initiated twice.

isa(X, Object)

breakBeamUnit

(a) Backward-Chaining

stream(X)

objectDetectionUnit

matches and
instantiates matches

...

matches

breakBeamUnit breakBeamUnit

isa(X, Object)

(b) Inference Composition

Fig. 2. Inference Unit Composition. The backward chaining algorithm must be
slightly modified in order to yield valid inference graphs; pure backward-chaining can-
not guaranteed legal flow.

12 K. Whitehouse, F. Zhao, and J. Liu

to the same virtual instance and this time succeeds because this inference graph
satisfies legal flow. The resulting legal proof is illustrated in Figure 2(b).

Besides correctness of flow, there are several other benefits to using this vari-
ation of backward chaining. First, it is efficient because results from previous
proofs are cached and reused; many predicates in a query are likely to be query-
ing the same subtree in a proof. Second, it allows mutual dependence, where two
inference units each declare the other as a pre-condition. Mutual dependence
cannot occur in a pure backward-chaining approach because it would lead to
infinite recursion. A third advantage is that, by causing the inference engine to
first check which inference units already exist, a query will automatically reuse
inference units that were instantiated in response to other queries. If two users
run queries that can both be answered with an object detection unit running
over three break beam sensors, the unit will only be instantiated in response to
the first query; the second query will simply reuse the existing inference units.
When the first query terminates, the execution engine removes only those infer-
ence units upon which no other units depend so as to not interrupt execution of
the second query. In this way, Semantic Streams allows the automatic sharing
of resources and the reuse of processing and bandwidth consumption between
independent users without requiring them to coordinate with each other.

5 Adding Constraints to Inference Units and Queries

5.1 Quality of Service Constraints

Pure logic queries may be answerable by multiple different inference graphs. In
general and especially in a network with many sensors, dozens of similar in-
ference graphs will provide the same semantic information. In such cases, the
query processor should be able to choose between comparable inference graphs
based on quality of service (QoS) information such as total latency, energy con-
sumption, or the confidence of data quality. In this section, we explain how to
use CLP(R) notation to define QoS parameters for each inference unit and to
define constraints or objective functions in the query that place an ordering on
otherwise equivalent inference graphs.

We can associate for example a confidence parameter C with each event stream
to denote the confidence of the data in the stream. For simplicity, we will assume
that C takes a value between 0 and 100, although more sophisticated represen-
tations may be used. Each inference unit can derive the value of that confidence
from the sensors and other inference units that it is using. For example, we could
define a recursive predicate breakGroup(R, [], Group) which is proven by unifying
Group with a set of break beam sensors. If objectDetectionUnit required such
a group, it may provide a more confident detection rate when it is using more
break beams for redundancy, as encoded in the following declaration:

inference(objectDetectionUnit,

needs(
breakGroup(R, [], Group),

Semantic Streams: A Framework for Composable Semantic Interpretation 13

length(Group,Length),

Length>=3,

{C=>Length*20, C=<100}),

creates(
stream(X),

isa(X,object),

property(X,T,time),

property(X,R,region),

property(X,C,confidence))).

A query can then require a specific confidence value on object detections, as
shown below. For this query, the query processor would continually try to prove
the query until the inference graph provided a confidence value greater than 80,
meaning it must include at least 5 break beam sensors (or an alternate object
detection unit). Thus, the user does not need to manually specify an inference
graph in order to achieve desired confidence; the programmer’s logical definition
of the QoS parameter allows the user to declaratively constrain the solution to
those inference graphs with sufficiently high confidence.

stream(X), isa(X,object), property(X, C, confidence), {C>80}.
Similar techniques can be used to constrain latency, power consumption,

bandwidth or other QoS parameters. For example, an inference unit that re-
quires 10ms to compute the speed of an object will define its own latency to be
the latency of the previous unit plus 10ms.

inference(speedDetectorUnit,

needs(
stream(X),

isa(X,object),

property(X,LS, latency),

{L=LS+10}),

creates(
stream(X),

property(X, S, speed),

property(X, L, latency))).

Queries can place constraints on multiple QoS parameters as well as declare
objective functions over them, as in the following example which minimizes la-
tency subject to constraints on confidence levels:

stream(X), isa(X,object), property(X, C,confidence), {C>80},
property(X, L,latency), {minimize(L)}.

To satisfy such a query, the algorithm finds all possible inference graphs that
satisfy the confidence constraints and selects the one with the minimum latency.
As with all inference in Prolog, the composition algorithm uses exhaustive search

14 K. Whitehouse, F. Zhao, and J. Liu

over all combinations of inference units, which can be quite expensive. However,
composition is only performed once per query and requires minutes or less.

5.2 Runtime Parameters and Conflicts

The previous section assumes that estimates of all parameters are known at
planning-time. However, when estimates are not known at planning-time, con-
straints on CLP(R) variables can also be used at run-time. For example, a sensor
that has a frequency parameter will not have a predefined frequency at which
it must run. Instead, it may be able to use any frequency less than 400Hz and,
for efficiency reasons, it would like to use the minimum frequency possible. This
unit may be defined as follows:

inference(magnetometerUnit,

needs(
sensor(magnetometer, R),

{F<400},
minimize{F}),

creates(
stream(X),

isa(X,mag),

property(X,T,time),

property(X,R,region),

property(X,F,frequency))).

Where minimize is a built in CLP(R) function that sets the variable to the
smallest value consistent with all existing constraints. Other constraints on its
frequency might come from inference units that use this sensor. For example,
the magVehicleDetectionUnit might require that the sensor be using a frequency
that is a multiple of 5Hz.

inference(magVehicleDetectionUnit,

needs(
stream(X),

isa(X,mag),

property(X,F,frequency)),

{F1 = 5 * N, N mod 1=0}),
creates(

stream(X),

isa(X,vehicle),

property(X,T,time),

property(X,R,region))).

When these two inference units are composed, the frequency of the sensor is
constrained to be the minimum value less than 400Hz that is a multiple of 5Hz.
The resulting constraint set is singular and the planner determines the sensor
frequency to be exactly 5Hz. This constraint set (while singular) is passed to the
instantiation of the inference unit at runtime through the execution engine.

Semantic Streams: A Framework for Composable Semantic Interpretation 15

Because inference unit parameters are represented as CLP(R) variables, para-
meter conflicts can often be resolved automatically. For example, if another unit
were to require that the magnetometer run at a multiple of 12Hz, the resulting
constraint set on the variable F would be

– F is an integer multiple of 5.
– F is an integer multiple of 12.
– F is less than 400.
– F is the minimum value satisfying all of the above.

The constraint set reduces to the singular value of 60 which is passed to the
magnetometer unit at runtime, and the sensor runs at 60Hz.

When the constraint set is not a singular value, it can be passed to each unit
at runtime for what is known as execution monitoring and replanning in the
artificial intelligence literature [2]. For example, the objectDetectionUnit from
above can be given the constraint set {80 < C < 100}. When a sensor fails
or the nominal confidence values percolating up from the sensors decrease, it
may determine that it can no longer meet the required constraints and it sig-
nals an error to the execution engine, which asks the query processor for a new
inference graph.

6 An Example of Semantic Streams

To provide an example of how the Semantic Streams framework is used, we de-
ployed a sensor network on the second floor of a parking deck on the Microsoft
corporate campus. The network consisted of three different types of sensors: a
web camera, a magnetometer, and infrared break beam sensors. Both the break
beam and magnetometer sensors were controlled by micaZ motes and communi-
cated wirelessly with our microserver, a headless Upont Cappuccino TX-3 Mini
PC. The camera and microserver were both connected to the corporate network
by Ethernet.

The focus of the network was a 4x5 meter area directly in front of an elevator.
All vehicles entering this floor of the parking deck passed through this area, as
did most pedestrians using the elevator. We placed 5 infrared break beam sensors
in a row across the area, 1m apart and about .5m from the ground, such that
the beams were broken in succession by any passing human or vehicle. The
camera was also focused on the area and a magnetometer was placed about 10m
downstream. The focus area and the arrangement of the six wireless sensors,
camera, and microserver is shown in Figure 3.

Although the number of sensors in our deployment is small, they can be
used for many different purposes. For example, they can infer the presence of
humans, motorcycles and cars as well as their speeds, directions, sizes, metal-
lic payloads and, in combination with data from neighboring locations, even
their paths through the parking garage. In this paper, we consider three hypo-
thetical users at Microsoft that want to use the sensor infrastructure described
above:

16 K. Whitehouse, F. Zhao, and J. Liu

Elevator Well

infrared
reflector

PARKING SPACES

PARKING SPACES

corpnet

Ethernet

mote with
magnetometer

mote with
infrared breakbeam

microserver

camera

Fig. 3. Sensor Infrastructure. The break beam sensors were laid out in a row on
the wall in the focus area. The digital camera was focused on the same area. The
magnetometer was placed several meters downstream near the microserver.

– Police Officer Pat wants a photograph of all vehicles moving faster than
15mph.

– Employee Alex wants to know what time to arrive at work in order to get a
parking space on the first floor of the parking deck.

– Safety Engineer Kim wants to know the speeds of cars near the elevator to
determine whether or not to place a speed bump for pedestrian safety.

All three applications must run continuously and simultaneously using the
same hardware. There are several places where conflicts can arise: which nodes
are on or off, which program image each node is running, what sampling rates
they are using etc. However, all three users are from different organizations
within the company and are not be able to easily coordinate. In this example we
demonstrate how the system can 1) automatically share and reuse resources be-
tween independent users and 2) compose inference units from two different appli-
cations to create a new semantic composition for a third application. For brevity,
our demonstration does not illustrate how the users optimize QoS parameters.

We assume Pat and Alex are the first users of this sensor infrastructure and
must create all of their own inference units. Pat creates units to infer object
speeds from break beam sensors, identify them as vehicles, and take pictures
of a region triggered by an event. Alex creates a unit to classify objects as
vehicles based on magnetometer output and a unit to plot arbitrary values in a
histogram. All of these inference units are added to the library associated with

Semantic Streams: A Framework for Composable Semantic Interpretation 17

Fig. 4. User Interface. Each user is presented with a 3D rendering of the sensors in
the testbed and, on the left, all predicates that are queryable.

the infrastructure and each user is presented with the graphical user interface
shown in Figure 4. The interface shows a 3D rendering of each sensor in our
garage testbed and the region that the sensor covers. Furthermore, the predicates
describing the event streams created by all inference units in the system are listed
on the left side of the screen. These stream descriptions are the only predicates
that can be used in a query, although variable names may be changed to create
new compositions and CLP(R) constraints may be added. Each user selects the
appropriate predicates to create their desired queries:

Pat stream(X),

property(X,P, photo),

property(X,Y , triggerStream),

property(X,speed, triggerProperty),

stream(Y),

isa(Y ,vehicle),
Alex stream(X),

property(X,H, histogram),

property(X,Y , plottedStream),

property(X,time, plottedProperty),

stream(Y),

isa(Y ,vehicle),
Kim stream(X),

property(X,H, histogram),

property(X,Y , plottedStream),

property(X,speed, plottedProperty),

stream(Y),

isa(Y ,vehicle),

18 K. Whitehouse, F. Zhao, and J. Liu

speedUnit

vehicleDetectionUnit

cameraCaptureUnit

objectDeectionUnit

Pat

...

photos

breakBeamUnit breakBeamUnit

(a) Step 1

speedUnit

vehicleDetectionUnit

cameraCaptureUnit

objectDeectionUnit

Pat

...

photos

histogramUnit
(Time)

Alex

vehicle
arrival time

breakBeamUnit breakBeamUnit

(b) Step 2

speedUnit

vehicleDetectionUnit

cameraCaptureUnit

objectDeectionUnit

Pat

...

photos

histogramUnit
(Time)

Alex

vehicle
arrival time

histogramUnit #2
(Speed)

Kim

vehicle
speed

breakBeamUnit breakBeamUnit

(c) Step 3

Fig. 5. Composite Inference Graphs. In step 1, Pat’s query produces the expected
inference graph. In step 2, Alex’s query reuses one of the inference units that is instan-
tiated in response to Pat’s query. In step 3, Kim’s query composes units from Alex’s
and Pat’s queries to create a new semantic composition.

In our example, Pat executes the query first and the system generates the
inference graph shown in Figure 5(a). When Alex’s query is executed, a new
histogramUnit is first instantiated. However, it does not use the magnetometer
based vehicle detection because another equivalent unit already exists. It uses
instead the vehicleDetectionUnit instantiated for Pat’s application, which is
based on break beams. The resulting composite inference graph is shown in Fig-
ure 5(b). Alex’s application illustrates Semantic Streams automatically sharing
resources between independent users.

Kim’s query reuses inference units from both Pat’s and Alex’s applications.
The histogramUnit from Alex’s application can be reused, although a new in-
stance must be created because the existing instance does not match Kim’s
query (it plots different values). The existing instance of the speedUnit from
Alex’s application, however, can be reused because it is inferring the speeds of
vehicle objects. Kim’s application illustrates how existing units from the other
two applications were composed to create a semantically new application. The
final inference graph with all three applications is illustrated in Figure 5(c) and
is also seen in the user interface in Figure 4. These inference units can then be
instantiated on the server and fed raw data from the sensors as it is received,
producing the semantic values requested by the users.

7 Related Work

Semantic Streams adapts ideas from Semantic Web Services (SWS), a movement
to semantically describe and automatically compose web services, to the problem
of macroprogramming, which is the process of writing a program that specifies
global sensor network behavior as opposed to the behavior of individual nodes.
Sensor networks have previously seen two main classes of macroprogramming:
database approaches like TinyDB [3, 4] and functional language approaches such
as Regiment [5]. Semantic Streams is similar to these approaches in that the user
issues a query specifying global behavior. One main difference is that, in both

Semantic Streams: A Framework for Composable Semantic Interpretation 19

systems above, the user is required to understand which operations to run over
the raw sensor data and how to interpret the meaning of the results. Semantic
Streams allows the user to issue queries over semantic values directly without
addressing which data or operations are to be used. The advantages of semantic
queries are analogous to those of macroprogramming in general: the user of
macroprogramming need not specify the best time and place to execute each
operation, while the user of semantic queries need not specify which operations
to run or which data to run them over. This allows the user to make fewer low-
level decisions and allows the system an extra degree of freedom for automatic
optimization during execution.

Our inference unit composition algorithm differs from the three main tech-
niques that have previously been used for the automatic composition of Web
Services: agent-based, planning-based, and inference-based approaches. Agent-
based approaches perform a heuristic search through the set of all Web Services,
either simulating or actually executing each of them to find a path to the desired
resultant state [6, 7]. This technique does not easily transfer to Semantic Streams
because it explicitly assumes a sequential execution model.

A concurrent execution model can be captured by Artificial Intelligence tech-
niques such as Partial Order Planning (POP) and Hierarchical Task Networks
(HTN). The problem with these techniques is that the planner performs a rather
mechanical matching of post-conditions provided at time ti with pre-conditions
needed at time ti+1; it cannot perform any reasoning, which is needed in our
system to deal with spatial relationships, quality of service properties, and pa-
rameter conflicts, among other things.

Reasoning can be performed by an inference engine as in SWORD [8], which
uses an inference engine to automatically compose Web services by converting
each one into a set of logic rules which states that its post-conditions will be true
given its pre-conditions. The problem with the pure inference-based approach is
that all proofs are tree-based while most inference graphs are general directed
graphs. Because SWORD does not use virtual representations of inference units
during composition, it cannot guarantee legal flow of event streams. Moreover,
it cannot represent an inference graph with mutual dependence.

8 Conclusions

The framework presented in this paper provides a declarative language for de-
scribing and composing inference over sensor data. There are several benefits
to this framework. First, declarative programming is easier to understand than
low-level, distributed programming and allows common people to query high-
level information from sensor networks. Second, the declarative language al-
lows the user to specify desired quality of service trade-offs and have the query
interpreter execute on them, rather than writing imperative code that must
provide the QoS. Finally, the framework allows multiple users to task and re-
task the network concurrently, optimizing for reuse of services between appli-
cations and automatically resolving resource conflicts. Together, the declarative

20 K. Whitehouse, F. Zhao, and J. Liu

programming model and the constraint-based planning engine in our framework
allow non-technical users to leverage previous applications to quickly extract
semantic information from raw sensor data, thus addressing one of the most
significant barriers to widespread use of sensor infrastructure today.

Acknowledgements

Special thanks to Prabal Dutta and Elaine Cheong for help with the parking
garage deployment, and to Nithya Ramanathan for help with the composition
algorithm.

References

1. SICS AB: SICStus Prolog 3.12.0 user’s manual (2004)
http://www.sics.se/isl/ sicstuswww/site/documentation.html.

2. Russell, S., Norvig, P.: Artificial Intelligence (Second Edition). Prentice Hall (2004)
3. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a Tiny AGgrega-

tion Service for Ad-Hoc Sensor Networks. In: OSDI. (2002)
4. Bonnet, P., Gehrke, J., Seshadri, P.: Towards sensor database systems. Lecture

Notes in Computer Science (2001)
5. Newton, R., Welsh, M.: Region streams: Functional macroprogramming for sensor

networks. In: DMSN. (2004)
6. McIlraith, S., Son, T.C.: Adapting golog for composition of semantic web services.

In: KRR. (2002)
7. Carman, M., Serafini, L., Traverso, P.: Web service composition as planning. In:

ICAPS. (2003)
8. Ponnekanti, S.R., Fox, A.: Sword: A developer toolkit for web service composition.

In: World Wide Web Conference. (2002)

PAQ: Time Series Forecasting for Approximate
Query Answering in Sensor Networks

Daniela Tulone1,2 and Samuel Madden1

1 MIT Computer Science and Artificial Intelligence Laboratory
2 Computer Science Department, University of Pisa

{tulone, madden}@csail.mit.edu

Abstract. In this paper, we present a method for approximating the
values of sensors in a wireless sensor network based on time series fore-
casting. More specifically, our approach relies on autoregressive models
built at each sensor to predict local readings. Nodes transmit these local
models to a sink node, which uses them to predict sensor values without
directly communicating with sensors. When needed, nodes send infor-
mation about outlier readings and model updates to the sink. We show
that this approach can dramatically reduce the amount of communication
required to monitor the readings of all sensors in a network, and demon-
strate that our approach provides provably-correct, user-controllable er-
ror bounds on the predicted values of each sensor.

1 Introduction

Wireless sensor networks offer the potential to collect large amounts of
high-fidelity information about remote locations. Recent deployments have
demonstrated their utility in environmental monitoring [16], agriculture [3], and
industrial monitoring [1]. Most of these deployments have a similar character
– data is collected at a regular rate to some centralized basestation (or sink),
where it is stored on disk and analyzed using conventional data processing tools
(e.g., databases, mathematical analysis packages, and GIS software.) One ma-
jor focus of sensor network research has been on building tools to facilitate this
collection of data. Researchers have proposed a variety of abstractions to enable
such applications to be rapidly built, ranging from database query languages (as
in TinyDB [15]) to parallel programming systems (e.g., Regions [22]), to power
conserving and failure-masking network layers (e.g., Directed Diffusion [11]).

In this paper we focus on improving the performance of these data collection
applications using a probabilistic approach. More precisely, we employ a class of
statistical techniques broadly known as time series forecasting. These techniques
apply to phenomena evolving over time, and use the recent history of readings
to predict the most likely future values. In this paper, we propose a general
framework to efficiently answer queries at the sink based on a simple type of
time-series model called an autoregressive models (AR). We chose this model
because it is computationally tractable on modern-generation sensor networks
(unlike the fully general ARMA models, for example [2]) and because, as we

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 21–37, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

22 D. Tulone and S. Madden

show, it can offer a substantial reduction in communication and improvement in
loss rates over existing data collection approaches.

We evaluate our AR model both analytically and through simulation results
that show it can properly model physical phenomena and accurately predict fu-
ture values. We also show that it has low computational cost and memory usage,
suggesting its suitability for a wide range of hardware. Our system, called PAQ
(for Probabilistic Adaptable Query system) uses a combination of AR models to
probabilistically answer queries. The model is used both globally, at the sink, to
predict the readings of individual sensors, and locally, at each sensor, to detect
when the sensor produces outlier readings or when the model ceases to properly
fit the data (allowing the sensor to re-learn the model and notify the sink of
the new model parameters.) Our approach has the following advantages over
previous deterministic query systems:

– It significantly reduces the amount of communication required to report the
value of every sensor at the sink.

– It allows the detection sensor readings that are “outliers”, in the sense that
they are not consistent with recent history or have malfunctioned.

– It is adaptive to dynamic changes in the distribution of data produced by
sensors, and tolerant of missing sensor data.

– It does not require a large amount of training data or a priori knowledge of
the distribution of sensor values and can work with any of the previously
mentioned abstractions (e.g., TinyDB) for data collection.

There has been some recent interest in applying statistical modeling tech-
niques to sensor network query systems [8, 4]. Our approach is similar to [8] in its
general probabilistic approach: the sink answers queries within a user–specified
error bound by computing a prediction for those values without communicating
with the sensors, thus avoiding message transmissions and sensing operations.
However, there are substantial differences between our approach and previous
probabilistic approaches to query answering. First, these existing approaches
typically build a model centrally at the sink, using an expensive learning phase
where each sensor transmits many readings to the sink. One reason for this is
that these previous approaches have used relatively complex probabilistic models
(e.g., multi-variate Gaussians [8] or generalized graphical models) which are too
complex to build or maintain on many current classes of sensor network hardware
(e.g., Berkeley/Crossbow Motes [7]). These approaches cannot adapt to changes
in the underlying distribution of sensor data without re–running this expensive
learning phase. In contrast, our framework relies mostly on local probabilistic
models computed and maintained at each sensor. In order to adapt the local
model to variations in the data distribution, each sensor continuously maintains
its local model, and notifies the sink only of significant changes. This allows both
the sensors and sink to adapt to changes in the underlying distribution without
the addition of a complex decision process that tries to decide when to invoke
an expensive re-training phase.

We further limit communication from the sink to each of the nodes by exploit-
ing data similarities between sensors that are geographically nearby. Our PAQ

PAQ: Time Series Forecasting for Approximate Query Answering 23

system relies on geographic clusters of sensors that are similar at a given point in
time and that are computed by sensors that are near each other. Therefore, the
sink maintains only the models (coefficients) of a few designated sensors, called
cluster leaders, and uses them for prediction.

2 Related Work

There has been some work on the use of probabilistic and time series models in
sensor networks. As in PAQ, [12, 5, 13] rely on a combination of local and global
probabilistic models which are kept in synch to reduce communication between
sensor nodes and the network sink. For instance, Jain et al. [12] propose a query
framework based on Kalman filters: both the sink and sensors activate a Kalman
filter with user-specified accuracy when a new query is received. However, this
strategy does not support multiple queries with variable precision or clustering,
and the local models do not adjust to non–linear phenomena. Recent work by
Chu et al. [5] is similar to ours in that it also exploits temporal/spatial corre-
lation. However, it has a heavyweight learning phase that does not work well
for non-stationary data. Neither work [12, 5] provides a provable bound on the
maximum error or on the error probability of answers provided at the sink. The
snapshot queries approach proposed by Kotidis [13] is also similar to ours in
that it exploits local models and correlations, but it provides weaker guaran-
tees. Cheng et al. [4] and Deshpande et al. [8] have shown that generative-model
based approaches can significantly reduce the communication burden in sensor
networks. However, these approaches require a relatively sophisticated user who
can describe the appropriate model for his or her domain and usually involve a
complex centralized learning phase that must be re-run if the data distribution
changes. In contrast, our approach is predicated on lightweight models that can
be learned by the individual nodes in the network and rapidly retrained when
confronted with non-stationary distributions.

Other work, such as the work by Olston et al. [18] shows how to approximate
answers to queries in distributed environments with a fixed bound on the error;
these approaches, though simple, have the potential to offer far less reduction in
communication than model-based approaches such as ours and those discussed
above. Han et al. [10] show how similar (non-probabilistic) techniques can be
adapted to the sensor network domain in an energy efficient way.

Our approach is similar to the one proposed by Tulone [21] for using autore-
gressive models built at each sensor node to reduce communications in the con-
text of time syncrhonization. That work did not focus on querying or clustering
issues, however. Lazaridis and Mehrotra [14] use a different time-series method
to create a piecewise linear approximation of signals generated by sensors, and
send those approximations out of the network. Their approach differs from ours
in that they capture a large time series and approximate it, rather than building
a model that can be used for prediction outside of the network. Autoregressive
time series models have been widely used outside the wireless sensor network
domain as a way to approximate and summarize time series with applications

24 D. Tulone and S. Madden

in finance, communication, weather prediction, and a variety of other domains.
Brockwell and Davis [2] provide an excellent introduction to time series and their
applications.

3 Preliminaries

In this section, we introduce the notation and terminology we will use throughout
the paper, and provide an overview of time series techniques.

3.1 System Model

Our network consists of a dynamic set S of sensor nodes and one or more sink
nodes. Each node is equipped with some sensing capability, performing read-
ings on m physical phenomena (metrics) F1, F2, . . . , Fm each of which evolves
over time. For example, we might say that F1 =temperature, and F2 =light.
We assume that each sensor performs a reading on each Fi every Γ time
units. We have designed PAQ to work with the lowest-end of today’s sen-
sor nodes, including Berkeley Motes [7], with just a few kilobytes of memory
and slow, 8-bit processors without floating point or dedicated signal process-
ing hardware.

3.2 Queries

Queries are submitted at the sink. In this paper, we focus on queries of the form:

SELECT sensorlist WHERE P(F1, . . . , Fm) ERROR x CONFIDENCE k%.

where P(F1, . . . , Fm) is a predicate over F1, . . . , Fm consisting of atoms Fi ∈
[a, b], Fi > a, and Fi < b where a, b are user-specified. For instance, a valid
predicate could be [(F2 ∈ [a, b]∨F3 ∈ [c, d])∧Fm > g]. Here ERROR x indicates
that the user is tolerant to a maximum absolute error in the query result, and the
CONFIDENCE clause indicates that at least k% of the readings should be within
x of their true value. For example, the user might issue the query “SELECT
nodeid, temp WHERE temp > 25◦C ERROR .1◦C CONFIDENCE 95%”, which
would report the temperature at each node to within .1◦C, a property which
would be satisfied by 95% of the readings.

3.3 Time Series Forecasting

In general, a time series is a set of observations xt, each of which is recorded at
time t. An important part of the analysis of time series is the description of a
suitable uncertainty model for the data. To allow for the possibly unpredictable
nature of future observations, it is natural to suppose that each observation xt

is a sample of a random variable Xt (often denoted as X(t)).

Definition 1. A time series model for the observed data {xt} is a specifica-
tion of the joint distributions of the random variables {Xt} of which {xt} is
a sample.

PAQ: Time Series Forecasting for Approximate Query Answering 25

Clearly, if we wish to make predictions, then we must assume that some part of
this model does not vary with time. Therefore, an important component of time
series modeling is to remove trend and seasonal components to get a (weakly)
stationary time series. Informally, a time series {Xt} is stationary if it has sta-
tistical properties similar to those of the time–shifted series {Xt+h} for each
integer h. More precisely, {Xt} is weakly stationary if its mean function μX(t)
and its covariance function γX(t + h, t) are independent of t for each h.

Linear time series models, which includes the class of autoregressive moving–
average (ARMA) models, provide a general framework for studying stationary
processes. The ARMA processes are defined by linear difference equations with
constant coefficients. One of the key properties is the existence and uniqueness
of stationary solutions of the defining equations [2].

Definition 2. {Xt} is an ARMA(p, q) process if {Xt} is stationary and ∀ t,

Xt − φ1Xt−1 − . . . − φpXt−p = Zt + θ1Zt−1 + . . . + θqZt−q

where {Zt} ∼ WN(0, σ2) and the polynomials (1 − φ1z − . . . − φpz
p) and (1 −

θ1z − . . . − θqz
q) have no common factors.

Here, {Zt} is a series of uncorrelated random variables, each with zero mean
and σ2 variance. Such a sequence is referred as white noise and denoted by
WN(0, σ2). An autoregressive model of degree p, denoted by AR(p), is a partic-
ular type of ARMA model with q = 0 (i.e., the right hand side of Definition 2
contains just a single term.) Such models are simply referred to as autoregres-
sive or AR models. We will adopt this model to predict the value of Fi read at
time t by a sensor. This choice is motivated by its simplicity, which leads to lower
computational cost and memory requirements, making such models practical on
many current-generation sensor networks. We show that AR models, while sim-
ple, still offer excellent accuracy in sensor networks for monitoring applications.

4 PAQ System Overview

As mentioned above, we employ a combination of statistical models with live
data acquisition. Each sensor in PAQ maintains a local AR model, and samples
its values once every Γ seconds. It uses recent readings to predict future local
readings. When a reading is not properly predicted by the model, the node may
mark the reading as an outlier or choose to re-learn the model, depending on the
extent to which the reading disagrees with the model and the number of recent
outliers that have been detected. This design is motivated by the need to (1)
monitor changes in the physical phenomena and detect outliers, and (2) reduce
communication between the local sensors and the sink. Except when a node is
a cluster leader (see below), it does not need to communicate while monitoring
the model or during its learning phase, but only when computing and adjusting
its cluster, as described in Section 7.2. We discuss local modeling more in detail
in Section 4.1 and the process of marking readings as outliers and deciding when
to re-learn in Section 5.

26 D. Tulone and S. Madden

Table 1. Notation used in this paper

Parameter Description
Parameters Used in Basic Model

α, β, γ Coefficients of AR(3) model
Γ Time elapsed between two

consecutive readings
ν Confidence parameter on predicted

sensor readings
ε Error bound on predicted sensor readings;

will have error > ε with probability 1/ν2

Parameters Used in Dynamic Model
δ Error threshold above which model

re-computation is triggered
a Fraction of readings that must be wrong

before model re-computation is triggered
Λ Number of readings during the monitor

window in monitor() algorithm
Δ Time that cluster leader waits in cluster

formation algorithm
θ Data similarity parameter

The sink maintains one AR model per geographic cluster. A cluster is a subset
of sensors within communication range of each other whose values differ from
each other by at most by a constant value θ. Intuitively, it should be possible
to cluster sensors in this way, since we expect that nearby sensors will often
produce similar readings. Clearly, clusters are dynamic sets that can vary in
number since the local models are dynamic.

One sensor in each cluster is designated the leader. It is responsible for com-
municating with the sink on behalf of its cluster. The leader’s AR model, called
the cluster model, is used to predict the values of all sensors in the cluster with
an error of at most θ over the member sensor’s local models, and with the same
confidence. The sink maintains the coefficients associated with each of the lead-
ers’ models and receives periodic readings from them. It also maintains a list of
the current clusters. The leaders’ models and the cluster sets stored at the sink
allow the sink to answer queries over all sensors using just the cluster models.
To reduce communications, clusters are computed locally by the cluster leaders
and members of each cluster. Each leader is responsible for notifying the sink
of changes in its model coefficients or in its cluster members, and for transmit-
ting periodic readings to the sink. Details of the cluster formation and query
algorithms are given in Section 7.

4.1 Local AR Model

The probabilistic model maintained by the sensor must be light-weight, in terms
of both the computational and storage requirements because of limitations of the
sensor. Our local models are designed with these energy restrictions in mind.

PAQ: Time Series Forecasting for Approximate Query Answering 27

Trends and Seasonal Components. Since physical phenomena are typically
not stationary, a time series is usually decomposed into a trend component that
grows very slowly over time, a seasonal component with some periodicity, and a
stationary component. However, maintaining the trend and seasonal components
substantially increases the complexity of both learning and adapting the model.
In order to simplify our model and ignore trend and seasonal components, we
consider an autoregressive model AR(p) with a narrow prediction window, such
as p = 3, similarly to [21]. As discussed in [2], if the time elapsed since the last
reading is relatively short, it is reasonable to neglect those components.

However, an AR(p) model is unlikely to be a good fit for non–linear physical
phenomena. In particular, we have observed that sensor network data is typically
locally linear, but there are periodic non-linearities that are not well-predicted
by AR(p) models. To solve this problem, we enhance our linear models with
dynamic updates that are detected and performed locally – the idea is to detect
when the model is no longer a good fit for the data being sensed, and dynamically
re-learn the model coefficients when this happens. The efficiency of this approach
comes from the fact that learning and updating the AR model is cheap compared
to the costs of learning and maintaining a non–linear model.

Multivariate vs. Univariate Models. In sensor networks, each sensor device
typically has multiple sensors. To handle multiple sensors, we can compute a
multivariate AR model with m components, one for each physical measurement
or we can create m univariate models. Clearly, for m > 2 the computational
cost of learning the multivariate model is higher than the cost associated with
m univariate models. For simplicity of presentation we consider only one mea-
surement, F , in the rest of this paper. However, in general, our techniques apply
to either multiple univariate models or a single multivariate model.

Sensing Model. We assume that each measurement reads F every Γ time
units, and denote the history of these values up to time t as v1, . . . , vi, . . . , vt.
Although our proposal is independent of the size of the parameter vector q, we
consider q = 3 because it allows us simplify the model and ignore seasonal and
trend components, and has low computational and storage costs. Therefore, each
sensor Sj models F as a dynamic AR(3) time series with Gaussian white noise
of zero mean and standard deviation b(ω). In case of a time series F (t) with
non–zero mean η, we study the time series X(t) = F (t) − η, as in [2]

X(t) = α X(t − 1) + β X(t − 2) + γ X(t − 3) + b(ω)N(0, 1) (1)

with α, β, γ ∈ R. Therefore, the predictor P (t) of F at time t is given by its
mean η plus a linear combination of the differences between η and the last three
readings. More precisely, the prediction at time t > ti−1 is given as

P (t) = η + α(vi−1 − η) + β(vi−2 − η) + γ(vi−3 − η)

Function b(ω) represents the standard deviation of the white noise. Here, we
assume that the distribution of the noise does not vary over time. The following
lemma computes the error bound associated with the prediction P (t) of F (t) at
time t.

28 D. Tulone and S. Madden

Lemma 1. Let P (t) be the prediction of F at time t associated with model (1),
and let ε = ν b(ω), where ν is a real-valued constant larger than 1. Then, the
actual value at time t is contained in [P (t) − ε, P (t) + ε] with error probability
at most 1

ν2 .

Proof. Since X(t) is driven by a Gaussian white noise with zero mean and stan-
dard deviation b(ω), at any time t the prediction error vt − P (t) is normally
distributed with zero mean and standard deviation b(ω). The proof follows by
applying the Chebychev inequality to obtain the prediction error:

P (|F (t) − P (t)| ≥ ε) ≤ b(ω)2

ε2 =
b(ω)2

ν2b(ω)2
=

1
ν2

We choose ν such that the error probability ν−2 can be considered negligible;
e.g., for a typical value of ν we use 6 or 7. As a result, readings with an error
larger than ε are classified as anomalies that are handled specially as described
in Section 5.2.

4.2 Learning Phase

In this section we illustrate the steps taken by each sensor to learn its local
model as defined by (1).

Data Structures. There are two parameters that principally affect the effi-
ciency and accuracy of the learning phase: the number of readings, N , collected
during the learning phase, and Γ , the time interval between two consecutive
readings. During our experiments, we study different values of these parameters.
Given these parameters, each sensor builds the following data structures during
the learning phase:

– a (initially empty) queue V , containing the most recent N readings.
– the coefficients α, β, γ, and the mean η;
– the standard deviation b(Γ) of the white noise during Γ time units.

The learning algorithm is illustrated
learn():

1) ν ← 0
2) for k = 1 to N
3) read value vk

4) enqueue vk into V
5) wait for Γ time units
6) 〈α, β, γ〉 ← solveSys(V)
7) b(Γ) ←compVar(V)

Fig. 1. Learning phase

in Figure 1. During the learning phase
the sensor performs a reading every Γ
time units, and inserts it into V (Figure 1
lines 3–5.) After performing N readings,
it invokes the function solveSys which
computes the mean η from the N read-
ings, and the coefficients α, β and γ. No-
tice that we do not recursively compute
α, β, γ as in the Durban-Levine
algorithm [2]), but only at the end for
efficiency reasons, as in [21]. The coef-

ficients are computed by calculating the minimum squared error between the
readings contained in V and the predicted values via least-squares regression.

PAQ: Time Series Forecasting for Approximate Query Answering 29

Least-squares regression works as follows: suppose that v1, . . . , vN are the
values read during the learning phase, and that v̄1, . . . , v̄N are such that v̄i =
vi − η for i = 1, . . . , N . Then, α, β, γ correspond to the coefficients of the best
linear predictor and are obtained by minimizing the function Q,

Q(α, β, γ) =
N

i=4

(v̄i − (α v̄i−1 + β v̄i−2 + γ v̄i−3))2

The coefficients α, β, γ can be computed by setting the partial derivatives of
the minimum squared error to zero and solving a linear system of three equations
(we omit the details of this computation and instead direct the reader towards
a standard linear algebra text, such as [9]).

solveSys computes the solution of these equations. After computing the
mean η and coefficients α, β, γ, the sensor computes the variance of the white
noise during Γ time units by invoking compVar, Fig 1 line 7. This is done by
computing the prediction error ei = Pi − v̄i for i = 1, . . . , N , and the mean
ē of e1, . . . , eN . Hence, the variance of the white noise during Γ time units
is b(Γ) = (N

i=1(ei − ē)2/N − 1)−1/2 . Thus, the parameters η, α, β, γ and b(Γ)
uniquely describe the AR model for a given set of learning data {v1, . . . , vN}.

Costs of the Learning Phase. The computational cost of the learning phase
is the cost of reading N values, plus the cost of computing matrices A and B
of the linear system A X = B in 3 unknowns, which involves 12(N − 3) sum
and product operations, plus the cost of solving the linear system. Therefore,
the total cost is equal to l + (s + 12)N − 36, with s cost per reading and l cost
for solving a linear system with 3 unknowns. In terms of memory, it requires a
(N + 5)–vector plus a 3 × 4 real–valued matrix.

5 A Dynamic Local AR Model

As discussed in Section 4.1 the local AR model must be dynamic. Hence, the
sensor periodically monitors its local model and updates it as needed. This design
offers several benefits with respect to having the sink or another specialized node
monitor the validity of the sensor’s model.

First, it allows the sensor to detect data anomalies with respect to previous
history, where a data anomaly is a sensor value that the model does not predict
to within the user-specified error bound. These anomalies can be classified into
outlier values, which are transient mispredictions that the model simply does
not account for, or distribution changes, which are persistent mispredictions that
suggest the model needs to be re-learned, either because of a faulty sensor or a
fundamental shift in the data being sensed.

Second, our approach requires no communication during learning and up-
dating (in contrast with the approach taken in BBQ [8], for example). This is
possible because of the simplicity of our local model, which requires relatively
small learning history and low computational cost and memory storage.

The efficiency of this approach is related to the efficiency of monitoring and
updating the AR model, which we discuss in the remainder of this Section. For

30 D. Tulone and S. Madden

the purpose of this discussion, we assume that each cluster consists of just one
sensor that is responsible for transmitting changes to its model and/or outlier
values to the sink. We discuss forming geographic clusters in Section 7.1; once
clusters have formed, only cluster leaders transmit their values to the sink.

5.1 Choosing to Re-learn the Model

In order to save energy, we believe the model should be updated only when its
readings diverge consistently from its model. We classify data anomalies based
on the model’s prediction error. We consider two thresholds: δ and the maximum
error ε = νb(Γ) (as defined in Lemma 1.) These thresholds are chosen such that
if the absolute value of the prediction error falls in [0, δ], then the model is a
good predictor of the data. If it falls in [δ, ε] the data is still within the user
specified error bound but the model might need to be updated. Finally, if the
error prediction exceeds ε, then the data is an outlier because of Lemma 1. Since
ν is chosen such that fewer than a fraction ν−2 of the values will be mispredicted
(if the stationarity assumption holds) a single outlier value can be neglected while
still satisfying the user specified confidence bound. However, though this might
be an isolated anomaly that requires no action, it might correspond to an abrupt
change in the data distribution (signifying that the data was not stationary), in
which case the node should update the model and send the updated model
parameters to the sink.

5.2 Monitoring Algorithm

We can now describe the algorithm that is used to monitor the quality of the
model, based on the considerations in the previous section. The monitoring al-
gorithm is illustrated in Figure 2. Each sensor starts monitoring its model right

monitor():

1) every Γ time units
2) read v and update V
3) if |v − P (t)| ≥ δ
4) mark-if-not()
5) if δ ≤ |v − P (t)| ≤ ν
6) up++
7) else if |v − P (t)| ≥ ν
8) out++
9) if notify(out)
10) send 〈v〉
11) if (up > a) || (up + out ≥ a + 1)
12) change ← true
13) send 〈change〉
14)if (end-of-monitor) ∧ (changes)
15) solveSys()
16) send 〈η, α, β, γ,outlierList〉

Fig. 2. Monitoring algorithm

after the learning phase. It takes
a reading every Γ time units and
updates its queue V , which con-
tains the most recent N values (see
Figure 2 lines 1-2.) If the predic-
tion error exceeds δ it begins mon-
itoring the next Λ readings, if it is
not already doing so. While moni-
toring, the sensor keeps track of the
number of times the prediction er-
ror is in the range [δ . . . ε] (denoted
in Figure 2 by the counter variable
upd), as well as the number of times
the error exceeds ε (denoted by the
variable out).

This is shown in Figure 2 lines
5-8. The sensor sends a notification
to the sink as soon as it detects a
variation in the data distribution

PAQ: Time Series Forecasting for Approximate Query Answering 31

(Figure 2 lines 11-13). This occurs if out+up exceeds a parameter a, expressed
as a fraction of the number of readings during the monitor window, denoted by
Λ, (e.g. 50% of the readings performed). The notify() operation alerts the sink
of the presence of an outlier, (Figure 2 line 9). After Λ readings, if the sensor has
detected variations in the data distribution, it recomputes η, α, β, γ based on the
values stored in V (Figure 2 lines 14-15.) Then, it sends the new coefficients to
the sink and optionally a list of the outlier values, (Figure 2 lines 16.)

5.3 Discussion

Clearly, the accuracy and efficiency of the dynamic update depends on the pa-
rameters N , Λ, δ, ε, and a. N represents the length of the history that is used
to compute the model. The computational cost of re–learning increases linearly
with N . However, our experiments suggest that the accuracy does not necessar-
ily improve as N grows. For instance, if the data distribution is irregular (e.g.,
not well fit by a linear model), then a larger value of N will not result in a better
fit. The choice of error bound ε presents a trade–off between accuracy and er-
ror probability (ability to meet a specified confidence bound) which is inversely
proportional to ν2. Moreover, the choice of ν also impacts on the number of
readings marked as outliers (see Section 6.)

Another trade–off between accuracy and efficiency is presented by the thresh-
old δ which defines, along with ε and a, when the model should be updated.
Clearly, it is desirable to keep the number of updates low, since updates incur
additional learning and communication costs. However, making the interval [δ, ε]
too small will not result in a energy improvement since the model will not prop-
erly fit the data and will thus flag more readings as outliers over time. Finally,
the duration of the monitor window, Λ, presents another tradeoff: we want to
keep the monitor window relatively short to update the model as fast as possible,
but making it too short can result in many frequent updates.

6 Simulation Results

To study the tradeoffs discussed in the previous section, we implemented the
PAQ dynamic model and evaluated it on real data. We used a trace of sensor data
from the Intel, Berkeley research lab (http://db.csail.mit.edu/labdata/
labdata.html), which consists of about a month’s worth of light, temperature,
humidity, and voltage readings collected approximately every thirty seconds from
54 sensors. In particular, we have focused on the temperature read by 5 sensors
with different characteristics: some of them with many high spikes, others with
irregularity, and some with a relatively smooth distribution (this corresponds
to sensors 6, 7, 22, 32, and 45 in the aforementioned sensor data.) We selected
these particular sensors to provide a sense of the performance of PAQ under
different conditions. The traces we used from these sensors include a number of
missing readings because the Berkeley Motes [7] used to capture the readings
were communicating over a lossy radio channel. Overall, about 25% of the 30
second intervals do not have readings associated with them.

32 D. Tulone and S. Madden

We ran experiments where each node used its model to predict its next value,
and measured the error, the frequency with which the model needed to be re-
learned, and the number of messages that a node would send to the sink during
execution. In Section 7.1 we discuss how the sink uses these local models; in that
Section we prove that the sink can maintain a centralized model that introduces
a user-specifiable constant error over the error bounds shown here.

We varied several parameters throughout our experiments, though we only
report on experiments with a small number of settings here due to space con-
straints. In general, we did not notice a large degree of sensitivity to the settings
of various parameters, except in a few cases which we discuss more below.

Figure 3 shows the total number of messages transmitted by the nodes versus
the user specified error threshold ν (here, we use communication overhead as
a proxy for total energy consumption, as communication tends to be the most
expensive aspect of operation in wireless sensor networks [20].) This includes
transmissions as a result of learning new model parameters as well as transmis-
sion of outliers. In these experiments, approximately 25% of transmissions are a
result of outliers being transmitted; transmitting the coefficients accounts for the
remaining communication overhead. In our implementation, we transmit all out-
lier readings; if users are not concerned with receiving every outlier report, our
approach could use somewhat fewer messages. The number of times the model
is re-learned varies from point to point; at the lowest error rates (.1), the model
is re-learned on about 20% of the monitoring windows. Notice that some sensors
have a higher cost; these correspond to sensors that have “noisier” signals.

We also compared our algorithm to an algorithm similar to that proposed
in [18] which transmits a value to the sink whenever the current sensor value is
more than the user-defined error threshold away from the value last transmitted
to the sink. To make the comparison fair, we use a version of this algorithm
that uses a monitoring window of the same size as in our algorithm, and that
transmits new values at most once per monitoring period. We call this method
“approximate caching” and show the number of transmissions it requires for two

 0

 20

 40

 60

 80

 100

 120

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

N
o.

 o
f T

ra
ns

m
is

si
on

User Defined Error

Number of Transmissions vs. User Specified Error
 (30s per sample)

Sensor 6
Sensor 7

Sensor 22
Sensor 32
Sensor 45

Approx. Caching Sensor 6
Approx. Caching Sensor 45

Fig. 3. Figure showing number of mes-
sages sent (either outlier or new model
messages) for varying error thresholds.
Parameters are as in Figure 4.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M
ed

ia
n

E
rr

or

User Defined Error

User-Specified Error vs. Median Actual Error
 (30s per sample)

Sensor 6
Sensor 7

Sensor 22
Sensor 32
Sensor 45

Fig. 4. Figure showing the actual error
rate for different user-input error thresh-
olds. Here, N = 60, Λ = 15, ν = 6, a = 8,
Γ = 30, δ = 1.8.

PAQ: Time Series Forecasting for Approximate Query Answering 33

of the sensors in Figure 3. Notice that our approach substantially outperforms
the approximate caching approach.

Figure 4 shows how the error varies with the user specified error threshold.
Here, the X axis is the value of ε; the confidence is set to 95%. The Y axis shows
the average prediction error, which increases slightly with increasing ε but not
dramatically since our error bounds are relatively conservative (notice that the
actual error is well below the user-specified allowable error line defined by y = x).
Because all errors are below the user specified threshold, it is not surprising
that there is little variation between sensors; for example, even though sensor
45 requires substantially more re-learning phases and outlier transmissions, its
average error is still low. We do not show errors for the “approximate caching”
method, as it always meets the error bound.

The parameters that most affected our results were Λ, the size of learning
window, and a and δ the thresholds that affect when readings are flagged as
outliers and when the model is rebuilt. We noticed that the accuracy does not
grow with the size of the learning sample N . In most cases it seems that the
best prediction error occurs for N = 60, or, for sensor 45 (which tends to be
“spikier” than the other data) with N = 120, while a learning phase consisting
of N = 20 values implies a high number of model updates. For these reasons we
chose to report results where N = 60.

Clearly, irregular readings (e.g., sensor 45 in Figure 4) affect the accuracy of
the prediction. However, the overall error is not affected noticeably by frequent
missing data as shown by our results which are based on real data with a high
number of irregular readings, though more irregular sensors do incur a higher
overall cost as more outliers must be transmitted out of the network.

With respect to predicting values at the sink, our analysis suggests the maxi-
mum prediction error is equal to ν−2; the graphs above suggest, at least for our
data set, that this bound does in fact hold. We will see in the next section that
this error grows by at most a user-defined constant θ when predicting the values
of sensors that are a member of a cluster from that cluster’s leader.

7 An Efficient Centralized Model

In the algorithms we have described thus far each sensor sends the sink the
coefficients of its local model after the learning phase. However, to use the AR
model, the sink requires periodic readings from the sensors, which would require
energy-consuming communication on the part of each sensor at every Γ time
units. As described above, we can reduce the extent of these communications by
exploiting geographic similarities between sensors that are within direct radio
communication with each other. This is based on the observation that sensors
located near each other are likely to have similar readings. Once sensors are
organized into clusters, only the leader sends its periodic readings to the sink.
Other sensors continue to run the monitor() algorithm to update their local
models, and detect group membership changes.

34 D. Tulone and S. Madden

7.1 Sensor Clusters

In this section we define data similarity among sensor readings, and show how we
can group similar sensors into cluster sets. Let us suppose that θ, the similarity
constant is a user-provided positive real value.

Definition 3. Two sensors are similar at time t if their readings differ by at
most the similarity constant, θ.

Using Definition 3, we group sensors that are within communication range of
each other and are similar into clusters. Clusters change over time as the AR
model is dynamic. Hence, we define a set of clusters C(t) at time t as follows:

Definition 4. A cluster set C(t) at time t is a set of subsets of S with the
following properties:

1. any cluster C ∈ C(t) contains sensors within radio broadcast range of each
other that are similar at time t;

2.
⋃

C∈C(t) C = S.

Each cluster C has a leader, a specified sensor in C which is elected locally by
choosing, for example, the sensor with the lowest ID (or via any other function
that can be locally evaluated at each node.) At any time the AR model of the
cluster is the same as the local AR model of the current leader. The following
Lemma computes the maximum error performed by predicting the value of a
sensor in a cluster using the cluster model.

Lemma 2. The maximum prediction error associated with the value of a sensor
in a cluster is at most ε + θ, with error probability at most ν−2.

Proof. Suppose we have a cluster C at time t such that C = {Si1 , . . . , Sik
}, and

node Si1 is its leader. Therefore, the model of C at time t is represented by
the model of Si1 . For any sensor Sij in C, then |vj

t − P i1(t)| ≤ |vj
t − vi1(t)| +

|vi1(t) − P i1(t)| and given Definitions 3 and 4, then |vt − P i1(t)| ≤ ε + θ. The
error probability is at most ν−2 because of Lemma 1.

In the next section, we sketch our approach for forming geographic clusters.
This protocol relies on the availability of reliable communication and symmetric
radio links. We also assume that the round–trip communication time between the
sink and any sensor is bounded. Though symmetry and reliability assumptions
are not entirely realistic, recent publications suggest that careful neighborhood
management and retransmissions can provide loss rates as low as 1-2 percent in
static sensor networks [19], which should be sufficient for our purposes.

7.2 Building and Maintaining Clusters

The clustering protocol involves two major steps: first, at the end of the learning
phase, sensors compute clusters; second, each sensor monitors and maintains its
cluster-membership dynamically. Figures 5(a) and 5(b) present the high-level de-
scription of the clustering protocol. Due to space limitations we omit some details.

PAQ: Time Series Forecasting for Approximate Query Answering 35

Building Clusters. At the end of the learning phase each sensor runs a protocol
to compute its cluster. The protocol is illustrated in Figure 5(a). Here, id denotes
the identification number of the sensor running the protocol, and v is its current
reading. The sensor node sets its cluster set CL to its identification number, and
its leader L to zero since each id is a positive number (Figure 5(a) lines 1-2.)
Each sensor node broadcasts its current value v and listens for Δ time units
for other sensor broadcasts in order to detect similarities among its neighbors
(Figure 5(a) lines 3-4.) During these Δ time units it listens for broadcasts, for
each, and checks if the received value v̄ diverges by θ or less from its value v.
In this case it inserts the sensor identification into CL. After Δ time units it
chooses the sensor with minimum identification number as the cluster leader
of CL (Figure 5(a) line 5.) If the sensor has been chosen as the cluster leader,
it sends a leader notification message that contains the cluster set CL and its
model coefficients to its neighbors and to the sink (Figure 5(a) line 6-7.) Figure
5(b) illustrates the steps taken by a sensor when receiving a leader notification.
If the sensor belongs to cluster cl and its cluster leader has not been set yet,
it sets its leader to l (Figure 5(b) lines 1-2.) Otherwise, it keeps track of the
other leaders within its radio broadcast by adding them into list OL (Figure
5(b) lines 3-4.) Notice that since CL is computed locally based on the messages
received from its neighbors, a sensor might belong to two different clusters and
might receive different leader notifications. The sensor follows the first leader
notification. Since data changes over time, the leader periodically transmits its
current value to its neighbors (Figure 5(b) lines 8-9.) The other sensors in the
cluster verify that their value is θ similar to the leader’s value.

Maintaining Clusters. Two factors can trigger changes in the cluster: (1) a
sensor in the cluster can become dissimilar from the leadre, and (2) a leader can

1) L ← 0
2) CL ← {id}
3) broadcast(v)
4) wait for Δ time units

upon event receive(〈v̄, i〉) do
if |v̄ − v| ≤ θ

CL ← CL ∪ {i}

5) L ← minCL
6) if L = id
7) send 〈leader, L, CL, η, α, β, γ〉

8) every Γ time units do
9) send 〈v, L〉

(a)

leader notification: receive(l, cl)
1) if (id ∈ cl) ∧ (L = 0)
2) L ← l
3) else
4) OL ← OL ∪ {l}

periodic validation: receive(〈v̄, l〉)
1) if (l = L) ∧ (|v̄ − v| > θ)
2) if (s =nextLeader(OL)> 0)
3) broadcast(〈join, s〉)
4) else
5) CL ← {id}
6) L ← id
7) send (〈leader, L, CL, η, α, β, γ〉)

(b)

Fig. 5. Clustering algortihm (a) and notification protocol (b)

36 D. Tulone and S. Madden

fail. Let us consider the first case. Upon receiving the leader value, each sensor
checks if its current value is within θ units from the leader value. If this condition
does not hold, the sensor checks if its value is at most θ units away from the
current values of the other leaders within its radio broadcast (Figure 5(b) lines
1-2.) If it detects a leader whose value diverges by at most θ units from its current
value, it broadcasts a join request, Figure 5(b) line 3. Otherwise, it creates a
new cluster and notifies its neighbors and the sink of this change (Figure 5(b)
lines 4-7). The leader that receives a join request updates its cluster set CL
and notifies the sink, while the previous leader removes that sensor node from
its cluster set.

Leader failures are detected by sensors listening for periodic sensor value
messages. When several broadcasts are missed, a sensor infers that the leader
may have failed and computes a new leader based on the remaining sensors in
the group. If a sensor detects that it should be the current leader (e.g., because it
has the lowest id), it broadcasts a leader-change message as in the initial phase.

7.3 Answering Queries

The sink locally stores the cluster models and the sensors belonging to each clus-
ter. It uses this information to answer queries without additional communication.
More precisely, it predicts the sensor values in a cluster using the model of the
cluster leader, and verifies if this prediction satisfies the error-bounds associated
with the query. Since the correctness of this query framework is strictly related
to the validity of the cluster models at the sink, our query algorithm has to take
into account the latency occurred in transmitting variations in the cluster to
the sink. This is done by delaying the reporting of answers from the sink for a
time equal to the maximum network latency. The system must also guarantee
the error bound in the case of abrupt changes in the local data distributions
at individual sensors. This is ensured by the outlier-transmission protocol de-
scribed in the previous section. Such notifications are also delayed by at most
the maximum latency of the network. Hence, the sink learns of new models and
outliers in bounded time and can answer queries with error at most ε + θ.

Although this approach conserves energy by reducing the amount of com-
munication between the sensors and sink it works well in relatively high density
networks since it detects data similarity for sensors which are one–hop away from
each other. Second, it can require a many transmissions when data distributions
change or nodes fail frequently. We are currently exploring other clustering tech-
niques that are able to overcome these limitations.

8 Conclusions

In this paper, we showed that AR models have the potential to dramatically re-
duce the amount of communication required to accurately monitor the values of
sensors in a wireless sensor network. Compared to existing approaches based on
centralized probabilistic models built at the sink, our approach is much lighter
weight, allowing sensors to build models locally and monitor their values for

PAQ: Time Series Forecasting for Approximate Query Answering 37

significant changes or deviations from the model while still providing substan-
tial communications reductions. This means that our approach is able to detect
outliers or fundamental changes in model parameters. We also presented a sim-
ple clustering algorithm that allows us to further reduce communication from
sensors to the sink while still providing a provable bound on the maximum pre-
dicted error at each sensor. Hence, we are optimistic that our approach will be
important in future sensor network monitoring systems, and we look forward to
extending our work with a complete implementation and evaluation.

References

[1] R. Adler et al. Design and deployment of industrial sensor networks: Experiences
from the north sea and a semiconductor plant. In SenSys, 2005.

[2] P. Brockwell and R. Davis. Introduction to Time Series and Forecasting. Springer,
1994.

[3] T. Brooke and J. Burrell. From ethnography to design in a vineyard. In Proceeed-
ings of the DUX Conference, June 2003. Case Study.

[4] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries
over imprecise data. In Proceedings of SIGMOD, 2003.

[5] D. Chu, A. Desphande, J. Hellerstein, and W. Hong. Approximate data collection
in sensor networks using probabilistic models. In ICDE, April 2006.

[6] R. Cowell, P. Dawid, S. Lauritzen, and D. Spiegelhalter. Probabilistic Networks
and Expert Systems. Spinger, New York, 1999.

[7] I. Crossbow. Wireless sensor networks (mica motes).
http://www.xbow.com/Products/Wireless Sensor Networks.htm.

[8] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model-driven
data acquisition in sensor networks. In VLDB, 2004.

[9] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins, 1989.
[10] Q. Han, S. Mehrotra, and N. Venkatasubramanian. Energy efficient data collection

in distributed sensor environments. In Proceedings of ICDCS, 2004.
[11] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable

and robust communication paradigm for sensor networks. In MobiCOM, 2000.
[12] A. Jain, E. Y. Chang, and Y. Wanf. Adaptive stream management using kalman

filters. In SIGMOD, 2004.
[13] Y. Kotidis. Snapshot queries: towards data-centric sensor networks. In Proc. of

the 21th Intl. Conf. on Data Engineering, April 2005.
[14] I. Lazaridis and S. Mehrotra. Capturing sensor-generated time series with quality

guarantees. In Proceedings of ICDE, 2003.
[15] S. Madden, W. Hong, J. M. Hellerstein, and M. Franklin. TinyDB web page.

http://telegraph.cs.berkeley.edu/tinydb .
[16] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless sensor networks

for habitat monitoring. In WSNA, 2002.
[17] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[18] C. Olston and J.Widom. Best effort cache sychronization with source cooperation.

In Proceedings of SIGMOD, 2002.
[19] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wireless

sensor networks. In Proceedings of SenSys, 2004.
[20] G. Pottie and W. Kaiser. Wireless integrated network sensors. Communications

of the ACM, 43(5):51 – 58, May 2000.
[21] D. Tulone. A resource–efficient time estimation for wireless sensor networks. In

Proc. of the 4th Workshop of Principles of Mobile Computing, pp. 52–59, 2004.
[22] M. Welsh and G. Mainland. Programming sensor networks using abstract regions.

In NSDI, March 2004.

Proactive Context-Aware Sensor Networks�

Sungjin Ahn and Daeyoung Kim

Real-time and Embedded Systems Laboratory,
Information and Communications University (ICU),

119 Munjiro, Yuseong-Gu, Daejeon, Korea, Postal Code: 305-714
Phone: +82-42-866-6811, Fax: +82-42-866-6810

{sungjin, kimd}@icu.ac.kr

Abstract. We propose a novel context detection mechanism in Wireless
Sensor Networks, called PROCON. In PROCON, context decisions are
made in a distributed way, by cooperation of nodes connected through
a context overlay on the network. As a result, the sensor network can
deliver context level information, not low level sensing data, directly
to proper actuators. Moreover, PROCON achieves highly efficient en-
ergy consumption compared to the existing centralized context detection
mechanism. The analysis and simulation results show that the proposed
mechanism outperforms the existing centralized mechanism in average
energy consumption, capability of mitigating congestion to a base sta-
tion, context service lifetime, and reliability.

1 Introduction

Due to its advantageous functional characteristic of monitoring phenomena of
the physical environment with relatively low cost for a broad area, Wireless Sen-
sor Networks (WSN) have been focused and studied as a key infra technology
for realizing context-aware systems. Since in the conventional WSNs [1][2][4][5]
sensor nodes play the role of passive information sources by providing low level
sensing data to a central point (e.g., a base station), it is natural for the cen-
tral point to make decisions for the desired contexts from the low level data.
However, when a context consists of several “component events”, each of which
has different characteristics such as event occurrence rates, locations, and logical
and timing relationships, the centralized approach shows several drawbacks.

First, it consumes too much energy to transmit low level sensing data which is
“useless” in the context decisions. For example, we may want to detect a context
which is satisfied when 1) at least one person is in a room and 2) temperature
of the room is lower than 10 ◦C to turn a heater on automatically. However,
the difference between event occurrence rates of these two events causes wasted
event notifications when they have to occur while satisfying a timing constraint
between themselves. This shortcoming in turn decreases the lifetime of sensor
nodes by letting them relay useless event notifications and consequently decreases
the lifetime of the context service as well.
� This research was supported by the Ministry of Information & Communication, Ko-

rea, under the Information Technology Research Center (ITRC) Support Program.

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 38–53, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Proactive Context-Aware Sensor Networks 39

Actuator

Event Header

Context Overlay

Base Station

DINA command

Event Region

Fig. 1. PROCON architecture

Another drawback is the well-known congestion problem (also known as a hot
spot) that appears near the BS due to the heavy load of the data relay task.
As studied in many of the researches [8], this problem finally results in isolation
of the central decision point from the network. In the centralized approach, since
the decisions for contexts are performed at a BS, the isolation means the end of
the context detection service even though remaining nodes are still sufficiently
able to perform the event detection tasks on duty. Moreover, this may come a
disastrous result if a critical application such as healthcare and fire detection is
served.

To end these drawbacks, we propose a proactive and distributed context de-
tection mechanism for WSN, called PROCON. In PROCON, context decisions
are made by cooperating nodes connected through an overlay on the network
called a context overlay. Along this overlay, “event headers” deliver Event No-
tification Messages (ENM) to the next event headers, not to a BS and at each
event headers partial context decisions are made. This incremental context deci-
sion mechanism, called context fusion, makes the context decisions from the early
stage such a way as to increase the decision level one by one only when a subset
of component events has timely occurred. As a result, PROCON significantly re-
duces the “useless” event notifications, and its “event-to-event” communication
model eliminates the congestion problem to the BS. Moreover, it makes direct
in-network actuation (DINA) possible by letting a normal sensor node send ac-
tuation commands to proper actuators. Fig. 1 shows the overall architecture of
PROCON.

We make three major contributions in this paper. First, we introduce our
context model considering logical and timing relations. Second, we analyze the
performance of the two compared context decision mechanisms. From the analyt-
ical results, we then obtain the conditions where the distributed context decision
mechanism can outperform the centralized one. Finally, we present the designs
of PROCON including context descriptors, context fusion, and context overlay
construction.

The rest of this paper is organized as follows. In the next section, we intro-
duce our models. In Section 3, we show the results of analytical analysis for
both context detection mechanisms compared. Section 4 details the designs of
PROCON, and then the performance evaluation results are shown in Section 5.
Related works are discussed in Section 6. Finally, Section 7 concludes our work.

40 S. Ahn and D. Kim

2 Models

2.1 Network Model

Our sensor network is, strictly speaking, a sensor and actuator network where
actuator nodes are, in addition to the sensors, also an element forming the net-
work. So, actuators can communicate with either sensors or other actuators in a
multi-hop way. We also assume that the nodes are location-aware and immobile.
The location information can be obtained through GPS in out-door cases [9], lo-
calization algorithms [10], or by manual setting in the case of static small-scaled
networks. As introduced in the previous section, PROCON requires routing be-
tween particular sensor nodes to deliver the event notifications. This routing
protocol is not restricted to a specific protocol. It can be any protocol as long
as it supports communication between events. Finally, we notice that the main
goal of the sensor networks we are considering in this paper is to detect con-
texts, called compound contexts, that we will introduce next. This means that
just collecting low level sensing data continuously to a sink, as is performed
in conventional sensor networks, is not of interest here as long as it does not
contribute to a condition of a context. For example, a query such as, “monitor
temperature changes of a region for a month”, is not of interest.

2.2 Context Model

Context and Event. We define context1 as a set of interrelated events (also,
called component event) with logical and timing relations among them. For ex-
ample, a context detecting fire occurrence can be detected by inspecting two
component events, the temperature and the content of carbon monoxide in the
air. An event is basically defined by its target area and trigger condition that
has to be satisfied for it to occur. Thus sensor nodes, located in the target area
and equipped with proper sensor chips, have the duty of detecting the given
event. In some cases, detecting an event may need cooperation among several
sensor nodes, as in the case of detecting the average temperature event. How-
ever, for simplicity we just consider an event as a sensor node, called an event
header which decides the event. Thus, the cooperation mechanism for detecting
an event is not considered in this work.

We classify events into two categories. Consider a sensor node which is peri-
odically awake at every sampling period p to detect an event. In discrete events,
events detected at continuous sampling periods are considered as separated event
instances. In other words, if an event occurs at time t and t + p, it is consid-
ered that there have been two separate event instances. However, in continuous
events, event detections at continuous sampling periods are considered as just
one event instance. Thus the above situation is, in continuous events, considered
as an event instance lasting at least for time p.

1 We also refer to our context as compound context to distinguish it from other defin-
itions of context.

Proactive Context-Aware Sensor Networks 41

Logical Relations. When an event satisfies its required condition regardless
of which category it is included, we say it is in a TRUE state, otherwise it
is in a FALSE state. Logical relation among component events can be defined
as a Boolean combination of events. Basically, we support two logic operators
between events, “AND (&)” and “OR (|)”. Thus, a context can occur only when
Boolean operation for the states of all component events results finally in TRUE.
For example, given a context C consisting of three component events E1, E2,
and E3, which has a logical relation C = E1&(E2|E3), E2 or E3 has to occur,
in addition to E1, to satisfy C in a given timing relation.

We say that a context is a unit context when its component events have
only AND logical relations. So, we can reorganize a context that contains OR
operator into fundamental products form of unit contexts as defined in Boolean
algebra. By rearranging the logical relation, above example context is formulated
as C = (E1&E2)|(E1&E3), and thus has two unit contexts, U1 = {E1, E2}
and U2 = {E1, E3}. This is an important characteristic since occurrence of any
unit context, say U1, of an original context C makes the original context occur
regardless of the states of other events, here E3, which are not elements of the
unit context. Thus, a problem of detecting occurrence of the original context is
now simplified as detecting occurrence of any unit context. Therefore, algorithms
explained from now on focus on detection of a unit context.

Timing Relations. A timing relation Ti→j from Ei to Ej , is defined by low
time bound (Li→j) and upper time bound (Ui→j). That is, with Ei as the base
event, timing relation Ti→j is defined as follows:

Ti→j = (Li→j , Ui→j).

Here, i) Li→j < Ui→j , ii) {Li→j , Ui→j} ⊂ IR, and iii) {Ei, Ej} ⊂ Uk.
Given that the base event Ei occurs at time ti, we say that a timing relation

Ti→j is “satisfied” if Ej occurs in a time interval (ti + Li→j , ti + Ui→j]. For
example, given an timing relation Ti→j = (−10,+5) and ti = 30, Ej has to
occur in an interval tj ∈ (20, 35] to satisfy its timing relation. From this timing
relation model, we obtain several characteristics as follows.

First, given a timing relation Ti→j , we can obtain its “reversed” timing rela-
tion Tj→i. That is, by the definition of a timing relation, if Ti→j = (Li→j , Ui→j),
then Tj→i = (−Ui→j ,−Li→j). Thus, Lj→i = −Ui→j and Uj→i = −Li→j . We
refer to this characteristic as the reversibility of the timing relation. A set of tim-
ing relations can be represented as a directed graph, called timing graph. Here,
an event corresponds to a vertex and a timing relation Ti→j makes an edge from
vertex i to vertex j. The reversibility makes reversing the direction of an edge
possible without loss of the implication of the timing relation.

We now define the feasibility of a set of timing relations. We say a set of timing
relations is feasible when the probability pi that an event time instance satisfies
the given timing relations altogether is not zero for all the component events.
In other words, if there exist one or more timing relations any of whose event
time instances is never able to satisfy the timing relations altogether, the set of
timing relations is said to be infeasible. For instance, a set of timing relations

42 S. Ahn and D. Kim

{T1→2 = (+5,+10)], T2→3 = (0,+5), T1→3 = (−5,+3)} is infeasible, since if
T1→2 and T2→3 are satisfied, T1→3 can never be done, and if so for T1→2 and
T1→3, T2→3 cannot.

With the definitions of the reversibility and feasibility, we now reach a condi-
tion of the feasibility: When an event can have more than one timing relations
with other events, but only one for an event, the timing graph of the infeasible
timing relation set has a loop. That is, if a timing graph does not have any loop,
the timing relation set is always feasible.

3 Analysis on Context Decision Mechanisms

In this section, we show analytical models for centralized and distributed con-
text decision mechanisms. In particular, we focus on the energy consumption
performance modeled by the number of transmissions for a unit time I, and on
conditions where the distributed approach outperforms the centralized one.

The notations and assumptions used in this section are as follows. First, for
simplicity of modeling, we use the abstracted timing relation model. Here, com-
ponent events satisfy the timing relation when all of them occur within a unit
time interval I. In addition, hi indicates the number of hops from the event
header of Ei to a BS, and Hi does the number of hops from the event header
of Ei to that of Ei+1. We suppose that all events are discrete events. Then,
we define the event occurrence rate λi of Ei as the average number of event
occurrence during I. Fig. 2 illustrates these models.

1

λ1 λ2 λ3

h1 h2 h3

λn

hn

...
H1 H2

2 3 4

BS

1

λ1 λ2 λ3 λn

...
2 3 4

BS

Fig. 2. Models for centralized and distributed context decision mechanism

pi denotes a probability that Ei occurs during I. Thus, with the assumption
that the event arrival process conforms to Poisson process, pi is:

pi = P{ti < I} = 1 − e−λi . (1)

3.1 Analysis of Centralized Decision

In the centralized case, a basic observation to obtain the expected number of
total transmission Tc during I is that, whenever an event occurs, it sends the
event notification to a BS. Thus, given n component events, Tc is:

Tc = λ1h2 + λ2h2 + · · · + λnhn =
n∑

i=1

λihi. (2)

Proactive Context-Aware Sensor Networks 43

To obtain, how much of the portion is actually useful for generating a context
among those

∑
λihi transmissions, we calculate the effective number of trans-

missions Ec during I. We say that an event notification is “effective” (or useful)
when it finally generates a context together with other component events which
have timely occurred. Thus, given n component events, the probability Pn that
a context occurs during I, and its occurrence rate rn are respectively,

Pn =
n∏

i=1

pi, (3)

rn = λminPn. (4)

Here, λmin = mini≤n(λi). Therefore, since there are
∑

hi transmissions at every
context occurrence with rate rn, Ec is:

Ec = rn

n∑
i=1

hi = λmin

n∏
i=1

pi

n∑
j=1

hj . (5)

From Eq. (2) and Eq. (5), we now define the effectiveness ratio Rc of the
centralized context decision as:

Rc =
Ec

Tc
=

λmin

n∏
i=1

pi

n∑
j=1

hj

n∑
i=1

λihi

. (6)

From Eq. (6), we first obtain that the effectiveness ratio Rc decreases as var(λ)
increases, since

∑
λminhi ≤ ∑

λihi and
∏

pi ≤ 1. Second, as I and λi decrease,
Rc decreases, since in that case pi decreases. In other words, the centralized
approach wastes much energy for transmitting useless event notifications as 1)
the differences of event occurrence rates among component events increase; and
2) the probability that an event instance satisfies its timing relations decreases.

3.2 Analysis of Distributed Decision

Before analyzing the distributed decision scheme, we first briefly introduce the
distributed context decision mechanism which will be explained later in more
detail. The following is the basic algorithm.

There is a chain of component events and Ei denotes i -th ordered event
(header) on the chain. Only the header of E1 can initiate a context decision
process by sending an event notification message (here, ENM1) to E2. Receiving
the ENM1, E2 sends ENM2 to E3 only when E2 satisfies the timing relation
with E1. Thus, in general Ei, i > 1, sends ENMi when the preceding events,
E1 to Ei−1, satisfy all timing relations among them. If not, the context decision
process ends there and then waits for another context decision process. If a
context decision process finally reaches to the final event En, the context occurs.

According to the above decision mechanism, a basic observation for calculat-
ing Td the expected number of total transmissions during I of the distributed

44 S. Ahn and D. Kim

decision, is that there are Hi transmissions whenever E1 occurs, and Hi transmis-
sions only when a set of events ℵi = {Ej |j ≤ i} satisfies timing relations among
them, for 1 < i < n. Thus, the rate r1 that E1 sends ENM1 to E2, is equal to
λ1. And the rate that Ei sends an event notification to Ei+1 is the same as ri

shown in Eq. (4) for all i > 1, since the probability that events in ℵi satisfy their
timing relations is

∏
j∈ℵi

pj , and the rate is governed by λmin
i = minj∈ℵi

(λj). As
a result,

Td =
n−1∑
i=1

riHi = r1H1 + r2H2 + · · · + rn−1Hn−1 (7)

= λ1H1 + p1p2λ
min
2 H2 + · · · + p1p2 · · · pn−1λ

min
n−1Hn−1 (8)

= λ1H1 +
n−1∑
i=2

⎛⎝ i∏
j=1

(1 − e−λj)λmin
i

⎞⎠ Hi. (9)

Now we derive the expected number of effective transmissions Ed and the
effectiveness ratio Rd for the distributed case, respectively:

Ed = λmin

n∏
i=1

pi

n−1∑
j=1

Hj (10)

Rd =
Ed

Td
=

λmin

n∏
i=1

pi

n−1∑
j=1

Hi

λ1H1 +
n−1∑
i=2

(
i∏

j=1
(1 − e−λj)λmin

i

)
Hi

. (11)

3.3 Bound Analysis

Now we derive a bound where the distributed decision outperforms centralized
one in terms of total transmissions. To do so, the following condition has to be
satisfied.

Td

Tc
≤ 1. (12)

By solving this, we obtain the following theorem. For the sake of simplicity,
we assume the events are connected in non-decreasing λi order.

Theorem 1. Given a context overlay which is connected in non-decreasing λi

order (i.e., λmin = λ1), Td is less than Tc when

H1 ≤ h1 +
λ2

λ1
h2, (13)

Hi ≤ λi+1

λmin

i∏
1

(1 − e−λj)
hi+1, i > 1. (14)

Proactive Context-Aware Sensor Networks 45

Proof. We prove this using mathematical induction. First, we show the case in
which the number of component events n is 2, by Eq. (12),

λ1H1 ≤ λ1h1 + λ2h2

H1 ≤ h1 + λ2
λ1

h2,

Then, let us assume that the following is satisfied for all 1 < n < k + 1,

Hn ≤ λn+1

λmin

n∏
1

pi

hn+1,

Now, using the above two results, we prove n = k + 1 case,

k∏
1

riHi ≤
k+1∑
1

λihi

λ1H1 + λ1p1p2H2 + · · · + λ1

k−1∏
1

piHk−1 + λ1

k∏
1

piHk ≤
k+1∑
1

λihi

by using using above assumption,

λ1H1 +
k∑
3

λihi + λ1

k∏
1

piHk ≤
k+1∑
1

λihi

by the result of n = 2 case,

k∑
1

λihi + λ1

k∏
1

piHk ≤
k+1∑
1

λihi

λ1

k∏
1

piHk ≤ λk+1hk+1

Hk ≤ λk+1

λ1

k

1
pi

hk+1.

From Eq. (14) of the above theorem, we obtain that as the number of hops
his from event headers to a BS and the variance of event occurrence rates var(λ)
increase, the bound for the number of hops between event headers Hi, within
which the distributed decision outperforms the centralized one, increases. In
other words, the distributed decision becomes more efficient than the centralized
decision as 1) his increase, 2) His decrease, and 3) var(λi) increases.

4 PROCON: Proactive Context-Aware Sensor Networks

In this section, we present the main algorithms and designs of PROCON
implementing the distributed context decision upon the analytical results shown
in the previous section. The topics covered in this section include the con-
text descriptor, the construction of context overlay, and the distributed context
decision.

46 S. Ahn and D. Kim

Context Descriptor {
cid : 1
ucid : 2
Event {

eid : 1
type: temperature
condition: ≤ 10 ◦C
area: [(-50,-30), (-10,10)]
timing : 2, (-5 sec, +5 sec)
next : 3, [(10,-10), (30,-40)]

}
Action {

id : 4
location: [(-50,20), (-40,10)]

}
}

Fig. 3. Context Descriptor

4.1 Context Descriptor

A user, who wants to automatically make an actuation when a certain context
occurs, generates context descriptors through an interface device such as a base
station, a PDA, or a laptop which is connected to the sensor network. With
information given from the user or sensor network profile being provided by the
interface device, context descriptors are generated automatically. An example
context descriptor is shown in Fig. 3.

This example context descriptor is for a component event which has id 1 (eid)
and is an element of unit context 2 (ucid) of context 1 (cid). The timing field
indicates that the event has a timing relation T1→2 = (−5,+5], and the next
field indicates the id and the area of next event (i.e., the area to which ENM
is delivered) in order of the context overlay chain. The Action field is used for
directly invoking an actuation when the context occurs. We call this direct in-
network actuation. The context descriptors generated for each component event
are then delivered to sensors placed at each target area using geocasting [13].

4.2 Context Overlay Construction

A context overlay is a chain of events along which event notification messages
(ENM) are delivered. So each event has its own order on the chain. Therefore,
constructing a context overlay means to assign an order to each event of a unit
context. Note that by the reversibility of the timing relation we can assign any
order to each event regardless of its timing relation. An interface device calculates
the optimal order with an ordering algorithm from those we present next, when a
user configures a context. Then, the order is put to the next field of each context
descriptor. By delivering the context descriptors to corresponding event headers,
event headers conduct context detection based on the initial context overlay.

The ordering algorithm is used to find an optimal order of events that min-
imizes a given objective function that is basically derived from Td shown in
Eq. (9). The optimal solution can be obtained using an optimization tool such

Proactive Context-Aware Sensor Networks 47

as Linear Programming. We employ two items of information to generate the ob-
jective function, event occurrence rates and the distance between event headers
indicating how many hops an ENM has to be transmitted in which frequency.
We now present three ordering algorithms derived from Td.

Rate-Based Ordering is a simple algorithm which orders events from low
event occurrence rate to high event occurrence rate. This is obtained by solving
the following object function assuming His are equal to a constant C:

T ′
d = (n − 1)C

∑n−1

i=1
ri. (15)

Note that T ′
d is minimized when

∑
ri is minimized. And by the definition of ri

given from Eq. (4), it is in turn minimized when r1 = rmin and the other events
are connected in non-decreasing λi order, since in that case Pn is minimized. This
algorithm is thus suitable for cases in which the differences of distances between
events are small, but the differences among event occurrence rates are large.
However, the event occurrence rate information is sometimes not obtainable at
the time the context descriptors are generated. Thus, this algorithms can be
applicable only when users can estimate or learn the event occurrence rate.

Distance-Based Ordering can be employed when we cannot obtain event oc-
currence rate information. The objective function of this algorithm is obtained
by assuming that the event occurrence rates are all equal to λ. Thus, as differ-
ences of event occurrence rates are small, it performs efficiently. Setting λ is up
to applications. However, since it is actually difficult to obtain the number of
hops information Hi as well, we replace it by geographical distance Di between
two events. Thus, the objective function of Distance-Based Ordering becomes:

T ′′
d (n) = λPD1 + λP 2D2 + · · · + λPn−1Dn−1. (16)

Here, λ denotes a constant indicating arbitrary occurrence rate and P = 1−e−λ.

Hybrid Optimal Ordering. When we are able to obtain both items of in-
formation, we use the Hybrid Optimal Ordering algorithm, which returns an
optimal order that reflects both the occurrence rate and the distance between
events. The objective function is Td itself shown in Eq. (9) excepting that Hi is
replaced by Di as is in the Distance-Based Ordering.

4.3 Distributed Context Decision of PROCON

Once the first order event E1 occurs, PROCON initiates its decision procedure,
called a decision round (DR), by sending an ENM1 to E2. Note that other events
except E1 cannot initiate any DR. Instead, they determine whether or not to
let the current DR progress. Only when a timing validity test (TVT) for its
preceding events succeeds does it progress the current DR by sending an ENM,
indicating that the preceding events have all timely occurred. Thus, the fact that
Ek receives an ENMk−1 from Ek−1 means that a set of event instances from E1
to Ek−1 all satisfy their timing relations for the current DR. We call this context

48 S. Ahn and D. Kim

1 2 3 4
DINA

Fail / TVT fail & Twait = 0

Wait / Twait > 0 Wait Wait

Pass / TVT success Pass

Fail Fail

DR start

A

Fig. 4. State Transition Diagram of a DR

fusion in the sense that it conceptually derives high level (context) information
by inspecting and aggregating several events and quantitatively reduces the size
of packets to be transferred. Finally, when the timing validity test succeeds at
En the last event header, a context instance for the current DR is considered as
occurred. Then, En in turn actuates an actuation corresponding to the detected
context by sending a DINA command packet to a proper actuator referred by
the Action field of the context descriptor.

An ENM contains the information required for event headers to examine
timing validity. The event information includes identities of context, unit context,
and events, event occurrence time, category of event, and so forth. In addition,
an ENM includes the DR sequence number. The event information of a current
event is appended to the receiving ENM before it is passed to the next. An event
header receiving an ENM from a continuous event considers that the previous
event is currently in TRUE state, until it receives another ENM notifying that
it is now in FALSE state.

Each event header manages a cache, called an event history cache. So once
detecting an event, it stores its occurrence time in the event history cache during
a time Tcache. Thus, upon receiving ENMi, Ei+1 checks its cache to look up an
event history which satisfies the timing relations of the preceding events from
E1 to Ei. If it exists, Ei+1 sends ENMi+1 to Ei+2. Otherwise, either the current
DR ends there, or Ei+1 stores ENMi in the cache during a time Twait since,
by the definition of the timing relation model discussed in Section 2, there may
be a remaining time during which the timing relation can be satisfied as Ei+1
occurs. However, if the desired event does not occur even during the additional
time Twait, the current DR ends there. Fig. 4 shows a state transition diagram
of a DR of a context consisting of 4 component events.

5 Simulations and Results

In this section, we demonstrate our analytical models and performances of PRO-
CON compared with the centralized decision scheme by conducting extensive
simulations using ns-2. The following performance metrics are considered in the
simulations.

1. Overhead in terms of energy dissipation is the average of remaining energies
of all nodes.

2. Congestion to BS is compared by showing the relative energy dissipation
pattern of all nodes, based on the nodes’ locations.

Proactive Context-Aware Sensor Networks 49

3. Context Service Lifetime is a time taken until a context cannot be detected
any more, starting from the initialization of the network.

5.1 Simulation Model

In our simulations, we use a 50m × 50m sensor field with 100 sensor nodes
including a base station. The base station is placed at a corner of the rectangular
sensor field and other nodes are randomly and uniformly deployed. We take
MICA2 as a sensor node model.

The configuration variables of a context includes:

– |C|: the context size, i.e., the number of component events.
– R: variance of λis. Given R = r, each component event randomly and uni-

formly chooses its λi in an interval (0, r].
– D: average distance of component events to a base station.
– P : geographical proximity of component events. Given L = 10, component

events are located in a square with an edge length 10. We define P = 1/L.

Additionally, we notice that the event occurrence process follows the Poisson
process with mean arrival rate λi. We use a timing condition I = 1 for all
simulations. As a routing protocol for the centralized decision scheme, we use
min-hop routing as MICA supports, and AODV [14] is used for PROCON to
deliver ENM to the next event. In the min-hop routing, nodes frequently consume
a little energy in updating their routing tables and in AODV nodes consume
energy for route discovery2. These overheads are included in the results. We use
the Hybrid Optimal Ordering algorithm for context overlay construction.

5.2 Average Remaining Node Energy

To obtain the overheads of both schemes, we measure the average remaining
energy of nodes as time goes by. During these experiments, we also validate the
effects of R, D, and P stated by Eq. (14) for a few context sizes.

Fig. 5 and Fig. 6 show the effect of varying R for the |C| = 2 and |C| = 8
cases. The component events are uniformly and randomly deployed to the entire
sensor field. We conduct experiments for R = 10, 50, and 200. As shown in
the figures, PROCON consumes significantly less energy in data transmission
than the centralized one. And we can see that PROCON’s energy consumption
is decreased as R increases and is not much affected by how many component
events a context has. The reason for this is that in PROCON the frequency of
which a decision round is initiated is usually governed by the λmin, and definitely
it is likely for λmin to became smaller as |C| increases. The fact that the overhead
of |C| = 8 for R = 50, 200 is smaller than that of |C| = 2 illustrates this well. In
contrast, centralized decision consumes more energy as the number of component
events increases and so does R. The convergence shown in plots of centralized
decision is because nodes, in charge of detecting component events and thus
generating packets, are dying.
2 In PROCON, route discovery overhead of AODV is considerably small since only

event nodes communicate with its next event node.

50 S. Ahn and D. Kim

0 2000 4000 6000 8000 10000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

Av
er

ag
e R

em
ain

in
g E

ne
rg

y

PRO(R=10)
PRO(R=50)
PRO(R=200)
CEN(R=10)
CEN(R=50)
CEN(R=200)

|C|=2

0 2000 4000 6000 8000 10000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

Av
er

ag
e R

em
ain

ing
 En

er
gy

PRO(R=10)
PRO(R=50)
PRO(R=200)
CEN(R=10)
CEN(R=50)
CEN(R=200)

|C|=8

Fig. 5. Average Remining Energy,
|C| = 2

Fig. 6. Average Remining Energy,
|C| = 8

0 2000 4000 6000 8000 10000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

Av
er

ag
e R

em
ain

ing
 En

er
gy

PRO(L=10)
PRO(L=30)
PRO(L=50)
CEN(L=10)
CEN(L=30)
CEN(L=50)

|C|=5, R=10

0 1000 2000 3000 4000 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

Av
er

ag
e R

em
ain

ing
 En

er
gy

PRO(D=10)
PRO(D=25)
PRO(D=40)
CEN(D=10)
CEN(D=25)
CEN(D=40)

|C|=5, R=50

Fig. 7. Geographical proximity Fig. 8. Distance to BS

The effect of geographical proximity P of component events is shown in Fig. 7
with a configuration R = 10, D = 30, and |C| = 5, we conduct simulations while
decreasing the proximity P by increasing the edge length of the square L from 10
to 50 by 20. As you notice, overheads of PROCON decrease as component events
are closely located since in that case the number of hops delivering ENM to the
next event header decreases. The plots of centralized decision show almost equal
overheads before converging begins. Since when a node is located near the base
station it relays more data, and it is likely for context nodes to be located near
the base station as proximity decreases, the plots show different convergence
rates for different proximities.

Fig. 8 illustrates the effect of average distance D between component events
and a base station. To do this, we conduct simulations with a context configu-
ration of |C| = 5 and R = 50 while changing D from 10 to 40 increasing by 15.
The result shows that, as event headers are located far away from a base station,
the overhead of centralized decision increases, while the effect of D to PROCON
is negligible.

5.3 Congestion to a Base Station

To show the congestion-free to a BS characteristic of PROCON, we compare
snapshots of remaining node energy at a particular time. Fig. 9 and Fig. 10
represent the remaining energy of the 100 nodes containing 8 component events
with R = 30. Here, the higher the cone, the larger the remaining energy. A base

Proactive Context-Aware Sensor Networks 51

10

20

30

40

50

10

20

30

40

50
0

0.2

0.4

0.6

0.8

XY

Re
m

ai
ni

ng
 e

ne
rg

y

10

20

30

40

50

10

20

30

40

50
0

0.2

0.4

0.6

0.8

XY

Re
m

ai
ni

ng
 e

ne
rg

y

Fig. 9. A pattern of node death location of
centralized decision at t=3000, |C| = 8

Fig. 10. A pattern of node death loca-
tion of PROCON at t=18000, |C| = 8

2 3 4 5 6 7 8
0

1

2

3

4

5

6
x 10

4

|C|

FD
T

PROCON
Centralized

Fig. 11. First node death time

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7
x 10

4

|C|

FC
DT

PROCON
Centralized

Fig. 12. First component event header
death time

station is placed at a coordinate (0, 0) and the 8 component events are uniformly
and randomly deployed to the entire sensor field. Fig. 9 shows the remaining en-
ergy of centralized decision after a 3000 unit time passes. As expected, nodes
placed near the base station almost always die first so that the network is sep-
arated from the base station. In contrast, as shown in Fig. 10, the remaining
energy of nodes of PROCON after an 18000 unit time passes, is almost uni-
form. In fact, it may consume more energy in the areas where component events
are included more than in other areas, but is still sufficiently resistant to the
congestion-to-BS problem since the absolute amount of energy consumption is
significantly smaller than that of centralized decision.

5.4 Context Service Lifetime

Context service lifetime is demonstrated by comparing 1) the first node death
time (FDT); and 2) the first component event header death time (FCDT). Note
that in PROCON a context cannot be detected anymore when either 1) one of
its component events cannot be detected, or 2) an event notification cannot be
delivered (i.e., as isolated from the network) to a proper decision place such as
a base station or next event. Fig. 11 shows the FDT while increasing the size of
a context from 2 to 8 by 2. As shown, there is a significant difference of FDT
between the two decision schemes compared. In PROCON, the first node death
occurs almost 10 times later than centralized decision. And the FDT increases

52 S. Ahn and D. Kim

as context size becomes larger since λmin decreases as the size increases. Note
here that in the centralized decision it is likely for BS-near-nodes to die first as
we have already seen above. Thus, the base station is likely to be isolated from
the network soon after the first node death occurs. However, in PROCON even
if the node death starts to occur, there is no serious congestion at a particular
point. Thus, the context service does not end after the first node death.

Fig. 12 shows the first component event header death time. Compared to
Fig. 11, in centralized decision the component event header dies soon after the
occurrence of the first node death, while in PROCON it occurs around 20% later
than that of the first node death. And it is almost independent to the number
of component events, but depends on R as shown in Fig. 5 and Fig. 6.

6 Related Works

Query dissemination and response architectures [1][2][4][5] are a mechanism
which used to be utilized to collect event data in the centralized context de-
cisions. In directed diffusion [5], a sink node advertises an “interest”, which is
a list attribute-value pairs, to a sensor network and constructs the “gradients”
towards the sink. Then, nodes detecting an event corresponding to the interest
sends data to the sink along the gradient. In this process, data sent by sev-
eral nodes are aggregated and filtered at a intermediate node. This is so-called
in-network processing.

TinyDB [1]’s Tag[2] and COUGAR [4] apply the in-network processing con-
cept to sensor database systems. However, while in-network processing for homo-
geneous type of data, such as obtaining average temperature, is well dealt with,
they show limitations in performing in-network processing for heterogeneous
types of data. And since the incremental computing of the partial aggregation is
performed along a routing tree to the sink, benefits obtained from the in-network
processing are significantly limited on where the operator nodes that performs
the aggregation are located. In [6], B. J. Bonfils et al. presented an adaptive and
decentralized algorithm that progressively refines the placement of the opera-
tor nodes, and B. Krishnamachari presented analysis on the performance of the
data-centric routing utilizing the in-network aggregation in [7]. In [3], S. Nath
et al. presented a family of techniques, called Synopsis Diffusion, that decouples
enabling aggregation algorithms and message routing to be optimized indepen-
dently. Chia-Hsing Hou et al. and F. Michehelles et al. studied cases of detecting
contexts consisting of several heterogeneous events in [11] and [12], respectively.

7 Conclusion

In this paper we present a new context detection mechanism PROCON for WSN.
PROCON detects contexts in a distributed way, by cooperation of sensor nodes,
not by cental decision of the base station. This way thus introduces a new WSN
architecture that can remove the base station as the data sink and the central de-
cision maker, using distributed detection of context fusion and direct in-network

Proactive Context-Aware Sensor Networks 53

actuation. In addition, from our analytical results and simulations, it turns out
that the distributed context decision of PROCON outperforms the centralized
one in terms of number of transmissions under the following conditions: 1) when
component events are located far away from a central decision point; 2) when
component events are closely located to each other; and 3) when the differences
of event occurrence rates among component events are large. Moreover, the new
BS-free architecture and significant efficiency in energy saving make the context
detection service last longer and reliable. In conclusion, this work is a contribu-
tion toward WSN which is evolving from simple data transportation networks
to functionally rich distributed systems employing actuator nodes as well.

References

1. S. Madden, et al. TinyDB: An acquisitional query processing system for sensor
networks. In Transactions on Database Systems (TODS), 2005.

2. S. Madden, et al. TAG: A Tiny AGgregation Service for Ad-Hoc Sensor Networks,
In Proceedings of the 5th Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2002.

3. S. Nath, et al. Synopsis Diffusion for Robust Aggregation in Sensor Networks, In
ACM Sensys, 2004.

4. P. Bonnet, et al. Towards Sensor Database Systems. In MDM, 2001.
5. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and

robust communication paradigm for sensor networks. In ACM MOBICOM, 2000.
6. B. J. Bonfils and P. Bonnet. Adaptive and Decentralized Operator Placement for

In-Network Query Processing. In IPSN, 2003.
7. B. Krishnamachari, D. Estrin, and S. Wicker. Modelling data-centric routing in

wireless sensor networks. In IEEE INFOCOM, 2002.
8. C. T. Ee and R. Bajcsy. Congestion Control and Fairness for Many-to-One Routing

in Sensor Networks. In ACM SenSys, 2004.
9. J. Hightower and G. Bordello. Location systems for ubiquitous computing. In IEEE

Comp., 2001.
10. K. Chintalapudi, et al. Ad-hoc localization using ranging and sectoring. In IEEE

INFOCOM, 2004.
11. J.S. Hou, H.C. Hsiao, C.T. King, and C.N. Lu, Context Discovery in Sensor Net-

works. In IEEE ITRE, 2005.
12. F. Michahelles, M. Samulowitz, and B. Schiele. Detecting Context in Distributed

Sensor Networks by Using Smart Context-Aware Packets. In ARCS, 2002.
13. Y. Yu, et al. Geographical and Energy Aware Routing: a recursive data dissemina-

tion protocol for wireless sensor networks. In UCLA CS Tech. Report, 2001.
14. C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance Vector

Routing. In IETF RFC 3561, 2003.

Constraint-Based Distance Estimation
in Ad-Hoc Wireless Sensor Networks

Urs Bischoff, Martin Strohbach, Mike Hazas, and Gerd Kortuem

Lancaster University, Lancaster LA1 4YW, UK

Abstract. We propose a lightweight localisation approach for support-
ing distance and range queries in ad hoc wireless sensor networks. In con-
trast to most previous localisation approaches we use a distance graph
as spatial representation where edges between nodes are labelled with
distance constraints. This approach has been carefully designed to sat-
isfy the requirements of a concrete application scenario with respect to
the spatial queries that need to be supported, the required accuracy of
location information, and the capabilities of the target hardware. We
show that this approach satisfies the accuracy requirements of the ex-
ample application using simulations. We describe the implementation of
the algorithms on wireless sensor nodes.

1 Introduction

Cooperative localisation algorithms play an important role for wireless sensor
networks. In cooperative localisation, nodes work in a peer-to-peer manner to
compute a map of the network using only the resources provided by the nodes
themselves [1]. This makes cooperative algorithms especially suited for sensor
network deployments that require true ad hoc localisation without external
infrastructure.

The design of cooperative localisation algorithms requires a careful tradeoff
between fidelity and complexity. Fidelity refers to quality of the computed result
and includes precision and accuracy, as well as timeliness. Because measurements
used as input to localisation algorithms are to some degree unreliable or inaccu-
rate, node locations cannot be determined with absolute certainty. Complexity
refers to the amount of resources consumed by an algorithm. In the wireless sensor
network literature, complexity is most often considered in the context of energy
efficiency and network use, although hardware, memory and time requirements
are also important. Complexity is important because typical sensor network com-
ponents possess very limited resources for processing and communication.

In this paper, we describe a novel approach to cooperative localisation that
focuses on supporting distance and range queries, and trades fidelity against
complexity. A distance query retrieves the distance between two given nodes,
and a range query retrieves the IDs of nodes that are within a given distance
from a given node. This approach has been carefully designed to satisfy the
requirements of a concrete application scenario with respect to the accuracy

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 54–68, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Constraint-Based Distance Estimation in Ad-Hoc Wireless Sensor Networks 55

of location information, the spatial queries that need to be supported and the
capabilities of the target hardware. Our approach can be characterized as in the
following ways.
1. In contrast to most previous approaches we use a distance graph as spatial

representation where edges between nodes are labelled with distance con-
straints. Node coordinates (absolute or relative) are not represented.

2. The distance constraint of each edge is represented as an interval [a,b] indi-
cating that the distance between two nodes is at least a and at most b. The
distance intervals are used for modelling uncertainty and localisation errors.

3. A constraint propagation algorithm is used to compute an overall consistent
distance graph.

The next section discusses the localisation requirements of our application
scenario. Following that is a description of the spatial model and the cooper-
ative algorithm. We then evaluate the accuracy of our approach for range and
distance queries using simulations, and we describe the resource requirements of
an implementation of the algorithm on a specific type of wireless sensor node. Fi-
nally, we contrast our approach to some well-known algorithm in wireless sensor
networks, and provide a comparative quantification of the computational and
memory requirements of our algorithm.

2 Motivating Application Example

The application scenario that motivates this research is taken from the chemical
industry work place in which safe handling and storage of chemical containers is
of key importance. The goal here is to assist trained staff in detecting hazards
of inappropriately stored chemicals. These hazards are defined by safety rules
that are defined in terms of the storage conditions of the chemicals. For example,
they prescribe that incompatible materials, such as reactive chemicals, must not
be stored in immediate proximity. The meaning of “proximity” depends on a
number of parameters including the type of involved chemicals.

We have developed a wireless sensor network for detecting possible safety
hazards [2, 3]. Chemical containers are moved around quite frequently and may
end up in a location without global networking capabilities, for example during
transport inside the hull of ships or trucks. Moreover, it is generally unrealistic
to rely on centralised services in environments that deal with chemical contain-
ers. Thus the key design goal was to enable the detection of safety hazards
without the involvement of external infrastructure. This required a cooperative
approach in which the containers themselves are able to sense their environment
and interpret their storage conditions with respect to predefined safety rules.
We achieved this goal by embedding perception, safety rules and higher-level
reasoning capabilities into sensor nodes attached to chemical containers.

2.1 Peer-to-Peer Position Sensing

The sensor nodes make use of a simplified version of Relate, which is an ultrasonic
peer-to-peer positioning system for determining the relative locations of a set of

56 U. Bischoff et al.

mobile computing devices [4]. The simplified version does not require a connec-
tion to a host PC and delivers accurate range information between nodes of a
wireless sensor network. Using the Relate technology we can directly measure the
distance between co-located nodes and do not have to rely on network measure-
ments such as received radio signal strength. The maximum distance that can
be measured by Relate is about two meters. Relate nodes cooperate by broad-
casting distance measurements over the network. Thus each node has access to
distance measurements between a wide range of nodes and using the algorithm
described in this paper can build a spatial model of its network neighbourhood.

2.2 Localisation Requirements

In our application scenario a container A tries to detect whether there are any
reactive chemicals in its proximity, whereby proximity is defined as a circular
area around A with a domain-specific radius. In this situation A needs to deter-
mine which containers are located within the proximity zone and which ones are
located outside of it. The cooperative reasoning process described in [2] involves
all nodes located within the proximity zone, regardless of their absolute loca-
tion. Consequently, the spatial model for this application example must be able
to support range queries, i.e. queries that return all nodes located in a specified
range around a given node.

The required precision of the distance and range information depends in large
measures on the physical dimensions of chemical containers. A chemical container
as used in our application scenario is barrel-shaped and has a diameter between
60 and 80 cm. We assume that a range measurement precision of about half the
diameter of a container is high enough. The Relate system provides measurements
with 10 cm granularity or better, but only within the relatively short detection
range of its ultrasound transducers (2 m). Thus a localisation algorithm must be
able to indirectly compute distances between nodes that are beyond this range.

2.3 Hardware Requirements

The hardware used for instrumenting a chemical container is comparable to that
used in other wireless sensor networks nodes such as the Berkeley Motes. The
hardware consists of two separate components. The Relate component imple-
ments peer-to-peer distance sensing, and the arteFACT component implements
the reasoning framework. Both are based on the Particle Smart-its, an embedded
wireless sensing platform [5]. Particle Smart-Its incorporate a PIC 18F6720 mi-
crocontroller with 128 KB of program flash memory and 4 KB of RAM. Particle
Smart-its communicate via a slotted RF protocol and can provide effective data
rates of up to 39 kbit/s. In the following we will describe the localisation system
we designed for this application scenario.

3 Spatial Model and Algorithm

Our approach is based on the idea of representing localisation information in the
form of a constraint network that expresses restrictions on the distance between

Constraint-Based Distance Estimation in Ad-Hoc Wireless Sensor Networks 57

network nodes. Node coordinates (absolute or relative) are not represented. To
represent constraints we use a graph where edges between nodes are labelled
with distance intervals. More formally, a distance graph is an undirected labelled
graph G = (N, E, C) where N is a set of network nodes, E is a set edges and C
is a constraint function which assigns to each edge a distance interval [u, v] with
u, v ∈ IR and u ≤ v. Distance intervals are used to represent knowledge about
the real-world distance between nodes. If the edge between nodes A and B is
labelled with the interval IAB = [u, v] and d(A, B) is the real-world distance
between A and B, then:

u � d(A, B) � v . (1)

Thus an interval [u, v] indicates that the distance between the two respective
network nodes is at least u and at most v. An interval [u, u] indicates that the
distance is exactly u. An interval [0, ∞] is the most generic (or empty) constraint
since it does not limit the distance between nodes in any meaningful way. An
edge labelled with an empty constraint can be omitted from the graph without
any loss of information. Figure 1 shows an example of a distance graph.

Fig. 1. Example distance graph

The algorithm for computing and updating the distance graph is a modi-
fied Floyd-Warshall algorithm for computing all-pairs shortest paths. Instead of
adding distances and selecting a minimum distance in each step, it infers and
adds distance intervals.

1. Initialize all edges with the empty constraint [0, ∞]
2. Receive distance measurements from Relate positioning system.
3. For all edges perform the modified Floyd-Warshall iteration:

(a) infer new distance interval, and
(b) combine interval with interval inferred in previous iteration.

4. Go to step 2

Step 2 of this algorithm takes a raw distance measurement d from the Relate
system and transforms it into a distance interval [d− ε, d+ ε] which accounts for
the inaccuracy of the measurement d. ε is a constant derived from an error model
of the Relate positioning technology. More details on this transformation can be
found in Sect. 4. The resulting distance interval [d−ε, d+ε] is added to the graph.

Step 3 of this algorithm traverses the whole graph to infer new or more specific
constraints. This is done using a number of transitive inference steps which derive
information about IAC from IAB and IBC . Figure 2 illustrates an inference

58 U. Bischoff et al.

Fig. 2. Two intervals are used to infer a third one

step assuming the position of A and B. For simplicity reasons we assume zero-
length (i.e. u = v) intervals. The distances d(A, B) and d(B, C) are already
known, either because they have been inferred in a previous step or because
they represent measurements. d(A, C) must be inferred in this step. We know
that C must lie on the circle with radius d(B, C) and centre B. Hence we can
represent all possible distances between A and C as [d(A, Cmin), d(A, Cmax)].
Equations (2)-(4) illustrate the inference steps for the general case.

IAB = [u1, u2], IBC = [v1, v2]
⇒ IAC = [v1 − u2, u2 + v2] if u2 � v1 . (2)

IAB = [u1, u2], IBC = [v1, v2]
⇒ IAC = [u1 − v2, u2 + v2] if v2 � u1 . (3)

IAB = [u1, u2], IBC = [v1, v2]
⇒ IAC = [0, u2 + v2] if IAB ∩ IBC �= ∅ . (4)

These inference steps for all interval cases are also illustrated in Fig. 3. If the dis-
tance intervals IAB between A and B and IBC between B and C do not overlap
all nodes have a different position. Hence, d(A, C) > 0 and the interval bound-
aries are calculated according to case (a) (cf. (2)) and (b) (cf. (3)) respectively.
Otherwise A and C could have the same position and the minimum distance
is chosen to be 0 in the inferred interval (c) (cf. (4)). There could exist several
paths between pairs of nodes. In the second iteration step the inferred interval
Iinf is therefore compared to the previously inferred interval Ipre to obtain the
smallest consistent interval Inew. Consistency means that there is a position
for each node in the graph so that all calculated distances would lie in their
respective intervals. Thus, if the graph is consistent before the Floyd-Warshall
iteration step, the intervals in step 3b will overlap and the smallest consistent

Fig. 3. Three possible inference steps for input intervals [u1, u2] and [v1, v2]

Constraint-Based Distance Estimation in Ad-Hoc Wireless Sensor Networks 59

interval is obtained by intersecting them (6). Otherwise, we create a consistent
graph by choosing the smallest interval that contains both input intervals (5).

Ipre = [u1, v1] and Iinf = [u2, v2]
IF ((v1 � u2) OR (v2 � u1)) ⇒ Inew = [min(u1, u2), max(v1, v2)] (5)

ELSE ⇒ Inew = [max(u1, u2), min(v1, v2)] . (6)

4 Evaluation

In this section we evaluate the feasibility and accuracy of our algorithm and
spatial model. Using a simulation environment, we characterise the algorithm
results in terms of range query success and in terms of distance accuracy. We
also show that our algorithm can be implemented on a resource-constrained
wireless sensing platform such as the Particle Smart-Its.

4.1 Accuracy

Accuracy was evaluated in a simulation environment. For the purposes of com-
parison, our simulation parameters were similar to that described by Shang and
Ruml [6].1 Our test networks consist of two hundred sensor nodes. The nodes are
randomly placed, using a uniform distribution, within a 10r × 10r square area.
Next, a measurement range is chosen; our standard range is 2r. Each node can
measure the distance to neighbouring nodes that are within the measurement
range. These distance measurements build the input to our inference algorithm.
A single experiment simulates one hundred random networks each consisting of
two hundred nodes.

In early experiments, we used an error model for modelling measurements
more realistically. The error model was based on experiments with Relate USB
dongles [4] that have similar characteristics as the Relate devices we used. In one
experiment it was shown that 90% of the true distances lie in the interval [d̃ −
2cm, d̃+4.5cm]; d̃ is the measured distance. However, tests showed that the error
model does not have a big influence on the final errors. It is the algorithm itself
that introduces the biggest errors; so the influence of the initial measurement
errors and interval lengths is negligible for the overall end result.

Thus, we decided not to use this error model. This allows us to produce results
that are more easily comparable to other algorithms because they are indepen-
dent of the underlying error model which is based on a specific technology. In
the following we present the evaluation results of these experiments.
1 Despite this, the results of our algorithm cannot be directly compared to that of

Shang and Ruml. Whereas we measure the errors between estimated node-to-node
distances and the ground truth distances, Shang and Ruml measure the Euclidean
error between estimated locations and ground truth locations. However, it can be
shown that for a given spatial configuration of nodes, the distance estimation error
(our quantity) roughly corresponds to the location estimation error (computed by
Shang and Ruml); this gives some basis for comparison.

60 U. Bischoff et al.

0.70 0.75 0.80 0.85 0.90 0.95 1.00
0

10

20

30

40

50

60

70

80

Interval (mapped onto [0,1])

P
er

ce
nt

ag
e

of
 r

ea
l d

is
ta

nc
es

1.2r (8.1)
1.5r (12.3)
2.0r (20.8)
2.5r (31.1)

Fig. 4. Distribution of distances within intervals. As shown, this distribution depends
on the measurement radius (connectivity).

We first analysed the characteristics of the intervals. As mentioned earlier the
algorithm computes intervals; hence, if we want to do range queries, a position
within each interval has to be chosen as the represented distance of the inter-
val. We observed that the ground truth distances are not uniformly distributed
within the intervals produced by our algorithm. We projected all intervals onto a
standard interval [0,1]. These intervals were subdivided into one hundred subin-
tervals. Then, we counted the number of times a real distance falls within the
limits of each of the hundred sub-intervals; Fig. 4 shows that most real distances
are close to the upper boundary of the interval results.

There are two main reasons for this. It can be shown that the lower boundary
decreases faster than the upper boundary increases with each inference step. So,
it is more probable that the real distance is not around the centre of the interval
but closer to the upper boundary. This effect is intensified if several steps are
necessary to infer the distance interval to another node. Because distant nodes
are in the majority, we can clearly see this tendency in the overall distribution.
There is also a geometric explanation. In Fig. 2, we showed that A sees C as
lying on a circle around B. If we assume that the position of C is uniformly
distributed on the periphery of the circle, we can see that the distance AC is
not uniformly distributed between ACmin and ACmax; the probability density
is higher toward the boundaries.

By choosing an interval position close to the upper boundary as a represen-
tative for the real distance, the total error rate can be minimised. We use values
between 0 and 1 to refer to interval positions as a fraction of the interval size.
The distance between two nodes A and B can be calculated according to (7).

Constraint-Based Distance Estimation in Ad-Hoc Wireless Sensor Networks 61

We have experimented with various interval positions and measurement ranges.
An optimal choice of p depends, among other reasons, on the connectivity of the
graph. Because we do not know the connectivity in advance, we have to find a
good trade-off. We chose the interval position p = 0.98 for our next experiments
that are based on different sets of simulated networks.

IAB = [u, v] ⇒ d(A, B) ≈ v − p(v − u) with p ∈ [0, 1] . (7)

Range Query Classification Error. In our range query scenario we are in-
terested in the number of miss classifications. Therefore we distinguish between
false positives and false negatives to characterize the accuracy of our algorithm.
If a range query classifies a node as being inside the range even though it is out-
side, it is a false positive. On the other hand, a false negative is a node reported
to be outside the query range even though it is inside in reality.

Figure 5 shows the error rate of false negatives, false positives and the total
error as percentage of the number of nodes classified as being inside the respective
circular query range. The measurement range is chosen to be 2r. The error rate
is displayed with respect to the range specified in the query. Figure 6 depicts
the same error but as percentages of the total number of nodes. The maximum
false positive error ratio is 1.5% with respect to the number of nodes classified
inside the query range. So for a query range of 4r, 1.5% of the nodes are wrongly
classified as being inside the query range. With respect to the total number of
nodes we have a maximum of 0.65% false positives, 0.45% of false negatives and
a maximum total error of 1.1%.

For small ranges we have direct ultrasound distance measurements. For larger
query ranges we depend on inferred distances. In both graphs we can therefore see
an increase of the error rate at the beginning. Then, we observe a sharp decrease
of the error rate. This is not because distance estimation is more accurate at

Fig. 5. Error rates in random uniform
networks with respect to the number of
nodes classified as being inside the range.
The measurement range is 2r.

Fig. 6. Error rates in random uniform
networks with respect to the total num-
ber of nodes. The measurement range
is 2r.

62 U. Bischoff et al.

longer distances, but because we display classification errors as relative ones.
For example, in Fig. 5 we show the error with respect to the total number
of nodes classified inside the respective query range. So if the query range is
increased and the absolute error remains the same, the relative error would
decrease because of a larger number of nodes inside the query range. Similarly,
in Fig. 6, for large query radii, most nodes clearly contain most of the other
nodes in their range. Thus the probability of a misclassification is smaller. The
maximum possible query radius of around 14r affects only a few nodes in the
corners of the 10r × 10r square area.

The previous test was based on a uniformly distributed random network. We
expect our algorithm to perform worse if the shortest path distance between two
nodes is long compared to the Euclidean distance. This is the case for nodes
in the two wings of a C-shaped network. These networks consist of 160 nodes
randomly positioned in C-shape; they are generated analogously to the random
C-shaped placement used in experiments by Shang and Ruml [6].

As expected we observe a higher error rate for the C-shaped network. Figures 7
and 8 show the classification error rates. The error rate is significantly higher.
We observe a lot of false negative errors; the discrepancy between the Euclidean
distance and the graph distance is the main reason for this. The error rate could
be reduced by changing the value of p in (7); the optimal p is topology-dependent.
But because we do normally not know the topology in advance, we used the same
p as in the experiments with uniform networks.

Distance Error. In order compare with other algorithms, we analysed the
distance errors. Again we chose p = 0.98 as the distance position inside the
intervals. Figure 9 shows a cumulative distribution of all the distance errors
in the random uniform networks. In total, almost two million distances were
represented in our simulations (100 networks consisting of 200 nodes each). All
of these distances were compared with the inferred distances. Figure 9 shows,

Fig. 7. Error rates in random C-shaped
networks with respect to the number
of nodes classified as being inside the
range. The measurement range is 2r.

Fig. 8. Error rates in random C-shaped
networks with respect to the total num-
ber of nodes. The measurement range
is 2r.

Constraint-Based Distance Estimation in Ad-Hoc Wireless Sensor Networks 63

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance error [r]

P
er

ce
nt

ag
e

of
 d

is
ta

nc
e

es
tim

at
es

 w
ith

 e
rr

or
 le

ss
 th

an
 a

bs
ci

ss
a

1.2r (8.1)
1.5r (12.3)
2.0r (20.8)
2.5r (31.1)

Fig. 9. Cumulative distribution of distance errors for p = 0.98 in random uniform
topology. The distribution is shown for different measurement ranges (connectivities).

for example, that around 90% of the distances are less than 1.5r away from the
real distance if we take 1.2r as our measurement radius. It is expected that the
accuracy is improved if the measurement range (and connectivity) is increased.
In the evaluation of the missclassification error, we chose a measurement radius
of 2r. For this radius we expect the distance error of 90% of the nodes to be less
then 0.15r.

Figure 10 shows the cumulative distribution of distance errors in the ran-
dom C-shaped networks. Although a large portion of the inferred distances are
accurate, there is also a significant number of inferred distances that are not.
Again the discrepancy between the graph distance and the Euclidean distance
explains this observation. However, we have this extreme discrepancy between
some pairs of nodes only. Shang and Ruml [6] only report the error medians,
rather than their entire error distributions. However, our distance error median
is comparable to their position error median.

4.2 Feasibility

The algorithm has been implemented on the Particle Smart-Its. The arteFACT
component listens to measurement broadcasts by Relate nodes and maintains its
own spatial model. The location model is updated by each node independently
whenever a Relate node broadcasts its measurement updates.

Before we update the model, inferred intervals that have not been replaced by
new measurements are reset to [0, ∞]. In a similar way we reset old measurement

64 U. Bischoff et al.

0 2.5 5 7.5 10 12.5 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance error [r]

P
er

ce
nt

ag
e

of
 d

is
ta

nc
e

es
tim

at
es

 w
ith

 e
rr

or
 le

ss
 th

an
 a

bs
ci

ss
a

1.2r (8.1)
1.5r (12.0)
2.0r (19.4)
2.5r (27.3)

Fig. 10. Cumulative distribution of distance errors for p = 0.98 in random C-shaped
topology. The distribution is shown for different measurement ranges (connectivities).

intervals to account for the case when devices have moved out of the ultrasound
measurement range. This is achieved by timestamping the measurements with
the local clock on arrival. In our prototypical implementation we chose a timeout
of about 8s. Further experiments will help to choose this parameter according to
update requirements. This will also help us to minimize the number of model up-
dates for a given required update rate. Currently we update the model whenever
we receive new measurements.

The current implementation supports a network of 10 nodes using 17% of
the program memory and 64% of the data memory in the worst case. These are
promising results, especially in the light that further optimizations are possible.
For example, we use a full n × n adjacency matrix to represent the graph.

5 Discussion

Our main objective was to find an efficient method for range queries. Thus, false
positive and false negative errors are our main concern; distance accuracy is of less
importance. Of course, distance accuracy and classification error rate (false neg-
ative and false positive errors) are correlated. Using intervals instead of just dis-
tances gives us several advantages. First, intervals give us a measure of uncertainty.
Second, we can influence the number of false positive errors with respect to the
number of false negative errors. Because we have intervals, we know exactly the
lower and upper limit of a distance. For example, if we choose p = 1.0 in (7), we
would not have any false positives but only false negatives; or if we choose p = 0.0,

Constraint-Based Distance Estimation in Ad-Hoc Wireless Sensor Networks 65

we do not have any false negatives, but only false positives (neglecting raw mea-
surement errors). There is an optimal p that minimises the overall error; the goal
is to find a good trade-off between false positives and false negatives. However, if
the application is very sensitive to only one kind of error, that kind of error could
be minimised. We achieved a relatively low error rate for our range queries by ex-
ploiting the non-uniform distribution of distances within the intervals.

Irrespective of the number of false positives and false negatives we also showed
that the distance errors are small for most of the node pairs. In Sect. 2.2 we stated
that the distance accuracy requirements of our application are around 30-40 cm.
We showed for a measurement range of 2r that the distance error of 90% of the
nodes is less than 0.15r. So ifwe choose rto be around1m(which corresponds to the
Relate measurement range of 2m (= 2r)), we expect to satisfy these requirements.

We first evaluated our algorithm on random uniform networks. We assume
that these random networks did not represent the worst or best case. The perfor-
mance of our algorithm is expected to be worse if the Euclidean distance between
two nodes is small but a large number of inference steps are necessary to infer
the distance interval, i.e. long graph distance between nodes. We modelled this
scenario in random C-shaped networks.

For our scenario we have not exploited all the information. We do not directly
make use of the fuzzy information that is given by the intervals. The length of
the intervals could be an indicator for accuracy; we expect less accurate results
if the intervals are longer.

The main advantage of our approach is its low complexity. We showed that it
can be implemented on resource constrained embedded sensor nodes. Based on
the requirements of our scenario, the algorithm only computes distances. This
is in contrast to other location algorithms for wireless sensor networks which
generally compute positions (cf. Sect. 6).

6 Related Work

We are not aware of any practical work on range queries in wireless sensor
networks. However, there are several research areas that provide theoretical
and practical foundations for our work. Hightower and Borriello provide a
good overview of positioning systems for ubiquitous computing [7], and there
have been a number of surveys describing and classifying positioning algo-
rithms [8–10].

Most important to our work is the Relate project from which we used the
sensing hardware. A USB dongle variant was used in [4] to provide relative
positioning support for mobile devices. In contrast to our work, Relate dongles
rely on host devices such as laptops or PDAs to compute the spatial model.

The Dolphin project developed a 3D peer-to-peer indoor positioning system
[11]. They use bidirectional ultrasonic ranging to measure distances between
neighbouring nodes. Several anchor nodes have to be manually configured with
their position. Then, a distributed iterative multilateration algorithm is used to
determine the position of other nodes with respect to the anchor nodes. Com-

66 U. Bischoff et al.

pared to other methods the feasibility of their approach was demonstrated by
implementing the algorithm on real sensor nodes. However, their technique can-
not be directly applied to Cooperative Artefact networks as it relies on anchor
nodes which have knowledge of their surveyed locations.

There exist a lot of localisation algorithms for wireless sensor networks. Most
algorithms depend on anchor nodes because they compute absolute node posi-
tions. Our application cannot depend on anchor nodes. Therefore, we mainly con-
sidered relative positioning algorithms: MDS-MAP [12] and the Self-Positioning
Algorithm (SPA) [13] are two typical examples, which calculate relative positions
using simple connectivity. MDS-MAP uses an all-pairs shortest path algorithm to
compute a distance matrix. Then, multi-dimensional scaling (MDS) is applied to
find an embedding in the two-dimensional space. In SPA each node forwards dis-
tance measurements to neighbouring nodes and calculates node positions using
trigonometry in the local neighbourhood. Then, these local coordinate systems
are merged into one coordinate system.

MDS-MAP(P) is an improved MDS-MAP algorithm [6]. It is a distributed lo-
calisation algorithm which yields median accuracies similar to our algorithm.
Table 1 shows the complexity of our algorithm, compared to that of MDS-
MAP(P). To compute the complexity of MDS-MAP(P), we used the Numer-
ical Recipes in C algorithms for eigenvector decomposition, and Levenberg-
Marquardt non-linear regression.2 The step which merges the local maps, as
well as some of the preprocessing steps in the eigenvector decomposition were
neglected. In the per node computations which deal only with local maps, it
was assumed that distance measurements were available for half the total pairs
of neighbours. It was also assumed that the regression takes five iterations to
complete.3

One of the advantages of the MDS-MAP(P) algorithm is that it is distributed.
However, this means that each node must first compute its own local map, and
then work together with the other nodes to arrive at the global map. Assum-
ing each node has the ten or more neighbours necessary to achieve reasonable
accuracy, our interval-based Floyd-Warshall algorithm has lower processing re-
quirements for networks with a total of one hundred nodes or less. It is also
important to note that our interval-based Floyd-Warshall algorithm uses only
16-bit integer operations, whereas the MDS-MAP(P) steps mostly rely on float-
ing point operations (such as computing matrix inverses).

2 Because of the nature of location models where distances are related to (x, y) coor-
dinates using the Euclidean relationship, the gradient matrix used by the regression
algorithm holds only four non-zero gradients. Using this knowledge, large computa-
tional savings (O(k3) instead of O(k4)) can be made in the Levenberg-Marquardt al-
gorithm. In our computations, we assumed that this optimisation had been made. To
compute the complexity of the matrix inverse operations required by the Levenberg-
Marquardt method, we used Numerical Recipes Gauss-Jordan elimination with full
pivoting.

3 For this type of problem, non-linear regression normally requires between three and
ten iterations [6].

Constraint-Based Distance Estimation in Ad-Hoc Wireless Sensor Networks 67

Table 1. Resource requirements of MDS-MAP(P) and interval-based Floyd-Warshall.
n is the total number of nodes in the network, and k is the number of neighbours to
each node.

Operations Storage
MDS-MAP(P) per node

Compute shortest paths 2k3 + 6k2 + 6k + 2 k2 + 2k + 4
(Floyd-Warshall)

Multidimensional scaling 36k3 + 110k2 + 114k + 39 2k2 + 7k + 3
Non-linear regression 276k3 − 460k2 + 756k − 287 8k2 + 35k + 52
Per node total 314k3 − 344k2 + 876k − 246 8k2 + 35k + 52

MDS-MAP(P) all nodes ≈ n(314k3 − 344k2) ≈ n(8k2 + 35k)
Interval-based Floyd-Warshall 14n3 2n2 + 5

Thus, the MDS-MAP(P) algorithm trades off higher computational complex-
ity and storage requirements in order to produce coordinate location results. By
contrast, our algorithm requires less processing and storage, and instead esti-
mates the node-to-node distances.

7 Conclusions

We have presented a lightweight localisation algorithm for ad hoc sensor net-
works. The algorithm has been designed to satisfy concrete application require-
ments in terms of the accuracy of location information, spatial queries and the
capabilities of the target hardware. In contrast to most previous localisation ap-
proaches our algorithm computes constraints on the distance between network
nodes in the form of distance intervals. These intervals can be used to represent
inaccuracy of distance measurements as well as imprecision as result of inference
steps. The length of intervals can be seen as a quality measure for spatial infor-
mation. In future work we will look at ways to improve the information quality
by reducing the interval length. In particular, we are considering combining our
approach with Freksa’s reasoning method for inferring spatial relations between
neighbouring point objects in 2D [14].

References

1. Patwari, N., Ash, J.N., Kyperountas, S., III, A.O.H., Moses, R.L., Correal, N.S.:
Locating the nodes: Cooperative localization in wireless sensor networks. IEEE
Signal Processing Magazine 22(4) (2005) 54–69

2. Strohbach, M., Gellersen, H.W., Kortuem, G., Kray, C.: Cooperative artefacts:
Assessing real world situations with embedded technology. In: Proceedings of the
Sixth International Conference on Ubiquitous Computing (UbiComp). (2004)

3. Strohbach, M., Kortuem, G., Gellersen, H.W., Kray, C.: Using cooperative arte-
facts as basis for activity recognition. In: Ambient Intelligence: Second European
Symposium (EUSAI 2004). (2004)

68 U. Bischoff et al.

4. Hazas, M., Kray, C., Gellersen, H., Agbota, H., Kortuem, G., Krohn, A.: A relative
positioning system for co-located mobile devices. In: Proceedings of the Third
International Conference on Mobile Systems, Applications, and Services (MobiSys).
(2005)

5. TecO: Particle webpage. http://particle.teco.edu/devices/index.html (2005)
6. Shang, Y., Ruml, W.: Improved MDS-based localization. In: Proceedings of the

23rd Conference of the IEEE Communications Society (Infocom 2004). (2004)
7. Hightower, J., Borriello, G.: A survey and taxonomy of location systems for ubiq-

uitous computing. Extended paper from Computer 34(8) p57-66 (2001)
8. Langendoen, K., Reijers, N.: Distributed localization in wireless sensor networks:

A quantitative comparison. Computer Networks 43(4) (2003) 499–518
9. Muthukrishnan, K., Lijding, M., Havinga, P.: Towards smart surroundings: En-

abling techniques and technologies for localization. In: Proceedings of the First
International Workshop on Location– and Context-Awareness (LoCA), Springer-
Verlag (2005)

10. Niculescu, D.: Positioning in ad hoc sensor networks. IEEE Network 18(4) (2004)
24–29

11. Minami, M., Fukuju, Y., Hirasawa, K., Yokoyama, S., Mizumachi, M., Morikawa,
H., Aoyama, T.: Dolphin: A practical approach for implementing a fully distributed
indoor ultrasonic positioning system. In: Proceedings of the Sixth International
Conference on Ubiquitous Computing (UbiComp). (2004)

12. Shang, Y., Ruml, W., Zhang, Y., Fromherz, M.P.J.: Localization from mere con-
nectivity. In: Proceedings of the Fourth ACM International Symposium on Mobile
Ad hoc Networking and Computing (MobiHoc), ACM Press (2003) 201–212

13. Capkun, S., Hamdi, M., Hubaux, J.: GPS-free positioning in mobile ad-hoc net-
works. In: Proceedings of the 34th Annual Hawaii International Conference on
System Sciences (HICSS), Washington, DC, USA, IEEE Computer Society (2001)

14. Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Pro-
ceedings of the International Conference GIS—From Space to Territory: Theories
and Methods of Spatio Temporal Reasoning in Geographic Space, London, UK,
Springer-Verlag (1992) 162–178

Sensor Density for Complete Information
Coverage in Wireless Sensor Networks

Bang Wang, Kee Chaing Chua, Vikram Srinivasan, and Wei Wang

Department of Electrical and Computer Engineering (ECE),
National University of Singapore (NUS), Singapore
{elewb, eleckc, elevs, g0402587}@nus.edu.sg

Abstract. Coverage is a very important issue in wireless sensor net-
works. Current literature defines a point to be covered if it is within the
sensing radius of at least one sensor. This is a conservative definition of
coverage and we have previously proposed a new notion of information
coverage. Compared with the conventional definition of coverage, a point
can still be information covered even if it is not within the sensing disk of
any sensor. The density requirements for complete information coverage
of a field are analyzed and simulated for a random sensor deployment.
Our results show that significant savings in terms of sensor density can
be achieved with information coverage.

1 Introduction

Recently, wireless sensor networks (WSNs), which consist of a large number
of sensors each capable of sensing, processing and transmitting environmental
information, have attracted a lot of research attention [1]. A fundamental issue
in WSNs is the coverage problem [2][3]. In general, coverage is used to determine
how well a target region is monitored or tracked by sensors and the coverage
concept can be considered as a measure of the quality of service that can be
provided by a single sensor or the whole sensor network.

In the literature, the commonest sensor model assumes that a sensor can cover
a disk centered at itself with radius equal to the sensing range. A point is said
to be covered if its Euclidean distance to a sensor is within the sensing radius
of the sensor. We refer to this notion of coverage as physical coverage and the
point is said to be physically covered in this paper. From the viewpoint of pa-
rameter estimation, physical coverage assumes that the estimation of a sensed
parameter within the sensing disk of a sensor can be performed with a constant
confidence level. Furthermore, it is assumed that each sensor makes such an esti-
mation only by itself and does not consider any possible cooperation with nearby
sensors. With advances in hardware technologies leading to increased computa-
tional capabilities and lower costs, cooperative and distributed processing among
a group of nearby sensors is now possible.

This has motivated us to reexamine the notion of coverage in WSNs and
to define information coverage based on estimation theory [4]. Specifically, if

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 69–82, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

70 B. Wang et al.

Fig. 1. Illustration of physical and information coverage. The point marked by the
star is not physically covered, however, it may be information covered if the estimation
error is small enough. To reduce estimation error, more than one sensor can be used
for parameter estimation.

any parameter on a point can be reliably estimated, then this point can be
claimed to be information covered. Moreover, due to cooperation among sensors
for estimation, it is possible that even if a point is not physically covered, it
can still be information covered. Fig. 1 illustrates the concepts of physical and
information coverage. The physically covered area by the six sensors is the union
of their sensing disks. The point marked by the star in the figure is not physically
covered. However, this point may be information covered. Let xk denote the
measurement of the parameter θ at the kth sensor. We assume that the measured
parameter decays with distance, as illustrated by the dashed co-center circles
around the point. We can estimate θ by using more than one measurement to
reduce estimation error. If the estimation error is small enough when using, e.g.,
all the six sensors for estimation, then the point is claimed to be information
covered. From this example, we can see that information coverage can extend
physical coverage in that a point not physically covered can still be information
covered without sacrificing estimation reliability.

Sensor density is defined as the number of sensors per unit area and the
minimal sensor density to completely cover an area is an important performance
metric for WSNs. For example, it can be used to determine, before actual sensor
deployment, how many sensors should be scattered to a field of interest such
that all points of the field can be covered. To provide complete physical coverage,
all points in a field should be within the sensing range of at least one sensor.
However, this normally requires that a large number of sensors be scattered in
the field. As will be discussed later, information coverage can be reduced to
physical coverage when only one sensor is used to estimate any parameter for
each point. Therefore, one application of information coverage is to reduce the
number of sensors to completely cover a field.

Sensor Density for Complete Information Coverage in WSNs 71

In this paper, we investigate the sensor density requirements for complete
information coverage for a random sensor deployment. We provide an upper
bound for the average vacancy, defined as the area not information covered in a
sensing field. Extensive simulations are used to illustrate that the sensor density
for complete information coverage can be greatly reduced compared to that
for complete physical coverage. The rest of the paper is organized as follows.
Section 2 briefly reviews the definition of information coverage and its property.
The sensor density requirements are analyzed in Section 3 and simulation results
are provided in Section 4. Finally, Section 5 concludes the paper.

2 Information Coverage Based on Parameter Estimation

Consider a set of K geographically distributed sensors, each making a measure-
ment on an unknown parameter θ at some location and time. We assume that
each sensor knows its own coordinates. An example can be the sensing of an
acoustic or seismic signal of amplitude θ. Let dk, k = 1, 2, ...,K denote the dis-
tance between a sensor k and a location with parameter θ. The parameter θ is
assumed to decay with distance, and at distance d it is θ/dα, where α > 0 is the
decay exponent. The measurement of the parameter, xk, at a sensor may also
be corrupted by an additive noise, nk. Thus

xk =
θ

dα
k

+ nk, k = 1, 2, ...,K. (1)

The objective of a parameter estimator is to estimate θ based on the corrupted
measurements. Let θ̂ and θ̃ = θ̂−θ denote the estimate and the estimation error,
respectively. A commonly used performance criterion is to minimize the mean
squared error (MSE) of an estimator, i.e., to minimize E[θ̃2]. When K measure-
ments are available, a well-known best linear unbiased estimator (BLUE) [5] can
be applied to estimate θ̂K and to achieve a minimum mean squared error.

In general, the estimate of a parameter at a point where an event happens (or
a target is present) is different from the estimate of the same point without the
occurrence of the event (or without the appearance of the target). This is because
the signal energy of an event/target (e.g., seismic vibrations caused by a moving
target) is larger than the background noise energy. Therefore, if an estimation
error is small, not only the event/target can be claimed to be detected but also
the event/target parameter can be obtained within a certain confidence level.
Note that the estimation error θ̃K is a random variable with zero mean (due to
the zero mean uncorrelated noises) and variance σ̃2

K . We can use the probability
that the absolute value of the estimation error is less than or equal to a constant
A, i.e., Pr{|θ̃K | ≤ A}, to measure how well a point is monitored. The larger this
quantity is, the more reliable the estimate. When it is larger than or equal to
a predefined threshold ε, i.e., Pr{|θ̃K | ≤ A} ≥ ε, we can define the information
coverage for K cooperative sensors as follows [4].

Definition 1 (K-sensor ε-error information coverage). A point is said to
be (K, ε)-covered if there exists K sensors to estimate any parameter at the point

72 B. Wang et al.

such that Pr{|θ̃K | ≤ A} ≥ ε, where 0 ≤ ε ≤ 1. A region is said to be completely
(K, ε)-covered if all the points of the region are (K, ε)-covered.

A sensor is called isotropic if its sensing ability is the same in all directions. For
such a sensor, its (1, ε) information coverage is a disk centered at the sensor.
This is similar to the physical coverage of a sensor. Accordingly, we can set the
disk radius as the maximum distance between a sensor and a point such that the
point can be (1, ε)-covered. We use Ds to denote such a distance and use it as
the sensing range for physical coverage. In this case, (1, ε) coverage is the same
as physical coverage. We have the following property of information coverage:
Property 1: If a point is (K, ε)-covered, then it is also (K + 1, ε)-covered.
Property 1 is intuitively easy to understand as using one more sensor can surely
reduce the estimation error. Based on Property 1, when examining (K, ε) infor-
mation coverage for a point, one can first check (1, ε) coverage for this point. If
it is (1, ε)-covered, then it is also (K, ε)-covered. If it is not (1, ε)-covered, one
more sensor is added to examine if it is (2, ε) covered and so on. In [4], the most
efficient sequence of sensors to estimate a parameter on a point is defined as the
one with the minimum variance among all possible sequences. When all sensors
have the same noise variance, the most efficient sequence of sensors to informa-
tion cover a point is to select the sensors closest to the point in the increasing
order of their distances to the point. We refer the reader to [4] for more details
of the most efficient sensor sequence.

Next we review how to compute the (K, ε) coverage in a special case. Consider
the case that all noises are Gaussian and independent. The sum of these noises
is still Gaussian with zero mean and variance σ̃2

K =
∑K

k=1 a2
kσ2

k, where ak =

BK/dα
k σ2

k and BK =
(

K∑
k=1

1/d2α
k σ2

k

)−1

. We further assume that all noises have

the same variance, i.e., σ2
k = σ2 for all k = 1, 2.... Hence we have

Pr{|θ̃K | ≤ A} = 1 − 2Q

(
A

σ
√

CK

)
, (2)

where CK = (
∑K

k=1 d−2α
k)−1 and Q(x) = 1√

2π

∫ ∞
x

exp(− t2

2)dt. Define the sensing
range of a single sensor, Ds , as the distance where the estimation error perfor-
mance equals ε. Therefore, Ds satisfies Q(A

Dα
s σ) = 1−ε

2 . For simplicity, A can be
set as βσ, β > 0. Here, we set A = σ and choose a certain ε, and compute Ds

as the sensing range used to relate physical coverage and information coverage
in a single sensor case, i.e., (1, ε) coverage is the same as the physical coverage
when the radius of any sensing disk is Ds. Another way is to set A = σ and set
Ds as the unit for distance, and compute ε accordingly. Here, we set Ds = 1,
and hence ε = 0.683.

3 Sensor Density for Complete Information Coverage

In [4], the sensor density requirement for complete information coverage of a
field with regular deterministic sensor deployment is studied by using regular

Sensor Density for Complete Information Coverage in WSNs 73

polygons to completely tile the whole field. Here, we consider the sensor density
requirement for random sensor deployments.

We assume that the process for deploying sensors in a region R is a stationary
Poisson point process with intensity λ. This indicates that (1) the number of
sensors in any subregion R′ ⊆ R is Poisson distributed with mean λ‖R′‖, where
‖R′‖ is the area of R′; and (2) the numbers of sensors within disjoint subregions
are mutually independent random variables (see [6] page 39-40 for more details).
This sensor deployment is referred to as random Poisson deployment. Let χK(z)
denote the indicator function of whether a point z is (K, ε)-covered, i.e.,

χK(z) =
{

1, if point z is not (K, ε) covered;
0, otherwise. (3)

The vacancy VK within R is defined to be the area that is not (K, ε) covered:

VK(R) = VK ≡
∫
R

χK(z)dz. (4)

Note that VK defined above is a random variable and 0 ≤ VK ≤ ‖R‖ for a
field with finite area ‖R‖. Furthermore, we note that V1 is the same as the
vacancy defined in [6], since (1, ε) coverage is equivalent to physical coverage and
the field is to be covered by identical sensing disks. According to Hall (see [6]
Theorem 3.3 and its remarks), the event {V1(R) = 0 ; R is not completely
covered } has probability 0 for an open and sufficiently regular closed field and
finite area (closed or open) shapes with finite mean area to cover the field. That
is, V1 = 0 implies that R is completely physically covered. For a finite K, the
area that can be (K, ε) covered by any K sensors is finite. Therefore, we argue
that VK(R) = 0 for a finite K also implies R being completely (K, ε) covered.
However, since sensors are deployed according to a Poisson point process, it
cannot be guaranteed that VK = 0 occurs with probability 1 for a finite density
λ, no matter how large λ is. Instead, asymptotic analysis can be used to provide
the relationship between λ and the scale factor of a field (e.g., the side length
of a square) for fixed sensing range [7] (or the relationship between λ and the
sensing range for a field with finite area [8]) for asymptotic complete coverage.
For example, for a square with side length L, asymptotic analysis provides the
relationship between λ and L to almost surely guarantee Pr{V1 = 0} → 1 as
L → +∞. In some cases, we are also interested in the problem of finding a sensor
density requirement for the average uncovered area within a region with finite
area being less than some threshold. For example, we want to know what λ is
to guarantee that the average vacancy is less than 0.01. Furthermore, E[VK] = 0
implies VK = 0 with probability 1. The asymptotic analysis for complete (K, ε)
coverage is difficult. Instead, we use average vacancy as a measure of sensor
density requirements. A field is defined as δ-(K, ε) covered if E[VK] = δ; and for
a given δ, we find the corresponding sensor density requirement. In what follows
we provide an upper bound for the average vacancy.

We first provide an upper bound for a single point that is not (1, ε) covered,
i.e., to upper bound Pr{χ1(z) = 1}. To avoid considering boundary effects, we

74 B. Wang et al.

Fig. 2. Illustration of a point z and the related rk rings and disks for (k, ε) coverage

assume torus convention for (1, ε) point coverage, i.e., each disk that protrudes
one side of the region R enters R again from the opposite side (see [6] page 23).
Let the kth-disk denote a disk centered at z with radius rk and let the (k+1)th-
ring denote the ring created by the (k+1)th-disk minus the kth-disk. We require
that the inner circle with radius rk is not included in the (k + 1)th-ring. Fig. 2
shows four disks, i.e., 1st-disk, 2nd-disk, kth-disk and (k + 1)th-disk, and two
rings, i.e., 2nd-ring (slashed shade) and the (k + 1)th-ring (grid shade). Let rk

denote the radius of the disks, given by

rk = 2α
√

k, k = 1, 2, · · · . (5)

Before providing an upper bound for (K, ε) coverage of point z, we first prove a
lemma.

Lemma 1. A point z is not (K, ε)-covered but (K + 1, ε)-covered if there is no
sensor in the Kth-disk but at least K + 1 sensors in the (K + 1)th-ring.

Proof. Without loss of generality, let d1 ≤ d2 ≤ ... ≤ dK+1 denote the distances
of the first K + 1 sensors closest to the point z. Recall that

Pr{|θ̃K | ≤ A} = 1 − 2Q

⎛⎝ A

σ
√

1/(d−2α
1 + · · · + d−2α

K)

⎞⎠
and we set A = σ and Ds = 1. If there is no sensor in the Kth-disk, then d1 > rk.
Hence 1

d2α
1

+· · ·+ 1
d2α

K
< 1 and Pr{|θ̃K | ≤ A} < 1−2Q(1) ≡ ε. On the other hand,

if there are at least K +1 sensors in the (K +1)th-ring, then dK+1 ≤ rK+1. And
we have 1

d2α
1

+ · · · + 1
d2α

K+1
≥ 1 and Pr{|θ̃K+1| ≤ A} ≥ ε.

We note that Lemma 1 only provides a necessary but not a sufficient condition
for a point being not (k, ε)-covered but (k + 1, ε)-covered. This will be further

Sensor Density for Complete Information Coverage in WSNs 75

discussed later. Let Event Disk(K) denote the event that there is no sensor in
the Kth-disk and Event Ring(K + 1) denote the event that there are at least
K + 1 sensors in the (K + 1)th-ring. According to the properties of the Poisson
point process used for sensor deployment, we have

Pr {Event Ring(K + 1) ∩ Event Disk(K)}
= Pr{Event Ring(K + 1)} × Pr{Event Disk(K)}.

We then present an upper bound of the probability that the point z is not
(K, ε) covered, Pr{χk(z) = 1} , in the following theorem.

Theorem 1. Assume that for each λ and K, λ‖R‖ ≥ K, we have

Pr{χ1(z) = 1} = e−λπr2
1 , K = 1, (6)

Pr{χK(z) = 1} ≤ e−λπr2
1 −

K∑
k=2

Ψ(k), K ≥ 2 (7)

where

Ψ(k) =
∞∑

i=k

[λπ(r2
k − r2

k−1)]
i

i!
e−λπr2

k . (8)

and rk is given by (5).

Proof. The proof proceeds by induction. We first consider the case K = 1. In
this case, the (1, ε) coverage is the same as the physical coverage of disks with
radius r1 = Ds ≡ 1. For any point, the probability that a point is not (1, ε)-
covered equals that there is no sensor within the disk with radius Ds centered
at the point, i.e., e−λπr2

1 .
Now consider K = 2. From the properties of (K, ε) information coverage, we

have

Pr{χ2(z) = 1} = Pr{χ1(z) = 1} − Pr{χ2(z) = 0 ∩ χ1(z) = 1}.

The quantity Φ2 ≡ Pr{χ2(z) = 0|χ1(z) = 1} is the probability that z is not
(1, ε) covered but (2, ε) covered. Note that z not (1, ε) covered implies that there
is no sensor in the 1st-disk. Furthermore, Φ2 consists of two parts: (1) there
are at least two sensors in the 2nd-ring and no sensor in the 1st-disk; (2) there
is exactly one sensor in the 2nd-ring and the distances of the first two sensors
closest to z satisfy 1

d2α
1

+ 1
d2α
2

< 1 and there is no sensor in the 1st-disk. We
compare Φ2 with the quantity

φ2 ≡ Pr{Event Ring(2) ∩ Event Disk(1)}
According to Lemma 1, φ2 implies that z is not (1, ε)-covered but (2, ε)-covered.
Since φ2 is only the first part of Φ2, we have Φ2 ≥ φ2. Due to the properties of
the Poisson point process, we have

φ2 =
∞∑

i=2

[λπ(r2
2 − r2

1)]
i

i!
e−λπ(r2

2−r2
1) × e−λπr2

1 = Ψ(2)

76 B. Wang et al.

and hence
Pr{χ2(z) = 1} ≤ Pr{χ1(z) = 1} − Ψ(2)

as the desired result for K = 2.
Now assume that the theorem holds for K. Again, from the properties of

information coverage, we have

Pr{χK+1(z) = 1} = Pr{χK(z) = 1} − Pr{χK+1(z) = 0 ∩ χK(z) = 1}

The quantity ΦK+1 ≡ Pr{χK+1(z) = 0|χK(z) = 1} is the probability that z is
not (K, ε)-covered but (K + 1, ε)-covered. A closed form of ΦK+1 might be very
hard, if not impossible, to obtain. However, we can divide it into three parts: (1)
there are at least K + 1 sensors in the (K + 1)th-ring but no sensor in the Kth-
disk; (2) there are fewer than K+1 sensors in the (K+1)th-ring and the distances
for the first K + 1 sensors closest to z satisfy 1

d2α
1

+ · · · + 1
d2α

K+1
< 1 and there is

no sensor in the Kth-disk; (3) others. We give an example of case (3). Suppose
that the distances from the first K +1 sensors to z are d1 = · · · = dK−1 = 2α

√
K

and dK = dK+1 = 2α
√

K + 1 for K ≥ 2. This means that there is no sensor
in the (K − 1)th-disk, exactly K − 1 sensors in the Kth-ring and exactly two
sensors in the (K + 1)th-ring. It can be shown that 1

d2α
1

+ · · · + 1
d2α

K
< 1 but

1
d2α
1

+ · · · + 1
d2α

K+1
≥ 1, and hence Pr{|θ̃K | ≤ A} < ε and Pr{|θ̃K+1| ≤ A} ≥ ε.

Similarly, we compare ΦK+1 with the quantity

φK+1 ≡ Pr{Event Ring(K + 1) ∩ Event Disk(K)},

which is only the first part of Φk+1. Similar to the case K = 2, we have

φK+1 =
∑∞

i=K+1
[λπ(r2

K+1−r2
K)]i

i! e−λπ(r2
K+1−r2

K) × e−λπr2
K

= Ψ(K + 1)

and hence
Pr{χK+1(z) = 1} ≤ Pr{χK(z) = 1} − Ψ(K + 1)

as the desired result for the case of K + 1.

Since we approximate the quantity Φ(k) by a smaller quantity φ(k), it is
expected that the bound becomes looser when K increases. Furthermore, it is
easy to show that Pr{χK(z) = 1} → 0 as λ → +∞. To find the expected vacancy
we use Fubini’s theorem and exchange the order of integral and expectation, i.e.,

E[VK] =
∫
R

E[χK(z)]dz

=
∫
R

Pr{χK(z) = 1}dz

= ‖R‖Pr{χK(z) = 1} (9)

Sensor Density for Complete Information Coverage in WSNs 77

where the last equality follows from the fact that Pr{χK(z) = 1} is a constant
for all z. We now define λK(δ) as the smallest λ that satisfies E[VK] = δ, i.e.,

λK(δ) ≡
{

inf{λK : e−λKπr2
1 ≤ δ/‖R‖}, K = 1

inf{λK : e−λKπr2
1 − ∑K

k=2 Ψ(k) ≤ δ/‖R‖}, K ≥ 2
(10)

where Ψ(k) is defined in (8).

4 Numerical Examples

In this section, we use simulations to compare the sensor density requirements
for physical coverage and information coverage and their implications for random
sensor deployment. To reduce any boundary effect, two co-centered square fields
with side length 10 and 14 are used. In each simulation run, we randomly scatter
a number of sensors according to a Poisson distribution with mean λ×142 within
the outer square. The density λ is varied from 0.2 to 4.5 in steps of 0.1. Note that
the number of sensors deployed in each random Poisson deployment need not be
exactly λ × 142. A grid with 1000 × 1000 vertices is created for the inner square
field. These 106 vertices are then examined one by one for their (K, ε) coverage
by selecting K closest sensors for each vertex. Suppose that in a simulation
run, there are m vertices that are not (K, ε) covered. Then the vacancy VK is
defined as the area of the inner square times the ratio between the uncovered
vertices and all vertices, i.e., 102 × m/106. This process is repeated 100 times
to obtain the average vacancy E[VK] for each value of λ. The probability of no
vacancy, i.e., Pr{VK = 0}, is defined as the ratio between the number of times all
vertices are (K, ε) covered and the number of simulation times (100). Obviously,
Pr{VK = 0} = 1 implies E[VK] = 0; and vice versa. Therefore, the inner square
is considered to be completely covered if Pr{VK = 0} = 1 or E[VK] = 0.

The theoretical average vacancy for physical coverage is ‖R‖e−λπr2
1 as given

by (6) and (9); and the theoretical upper bound for the average vacancy of (K ≥
2, ε) information coverage is given by (7) and (9). Fig. 3 plots the bounds and
the simulation results of average vacancy for K = 1, 2 with respect to different
decay exponents. We notice that the simulated average vacancy for physical
coverage (K = 1) is not always less than its theoretical value, but fluctuates
slightly about the theoretical value. This is a simulation artifact caused by the
limited number of simulation runs. However, the simulation results are very
close to the theoretical values. This indicates that the theoretical computation
of average vacancy can be used to approximate the sensor density requirements
for different physical coverage ratios in the finite domain (c.f., the asymptotic
analysis of sensor density requirement for complete coverage in [7][8]). It is also
observed from the simulation results that the theoretical bounds given by (7)
and (9) for information coverage can provide tight bounds of the average vacancy
for small values of K, e.g., K = 2. We expect that with larger values of K
the bound will become looser due to the simplifications in deriving the bound.
However, as will be discussed later, when the value of K is large enough, the

78 B. Wang et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Sensor density (λ)

A
ve

ra
ge

 v
ac

an
cy

 (
E

[V
K
]

bound E[V
1
]

simu E[V
1
]

bound E[V
2
], α=1

simu E[V
2
], α=1

bound E[V
2
],α=2

simu E[V
2
], α=2

bound E[V
2
], α=4

simu E[V
2
], α=4

Fig. 3. Comparison of the bounds and simulation results of average vacancy for physical
coverage ((1, ε) coverage) and information coverage ((2, ε) coverage)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Sensor density (λ)

A
ve

ra
ge

 v
ac

an
cy

 (
E

[V
K
])

(1, ε) coverage
(2, ε) coverage
(3, ε) coverage
(4, ε) coverage
(6, ε) coverage

Fig. 4. Average vacancy E[VK] vs the sensor density for random deployment (α = 1.0,
ε = 0.683)

sensor density requirement for complete coverage remains constant and no longer
decreases. Furthermore, larger values of K may not be used often if another
system constraint–complete connectivity–is considered.

Fig. 4 plots the average vacancy E[VK] against the sensor density for α = 1.0.
Not unexpectedly, the average vacancy decreases faster with the increase in the

Sensor Density for Complete Information Coverage in WSNs 79

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sensor density (λ)

P
ro

ba
bi

lit
y

of
 n

o
va

ca
nc

y
(P

r{
V

K
 =

 0
})

(1, ε) coverage
(2, ε) coverage
(3, ε) coverage
(4, ε) coverage
(6, ε) coverage

Fig. 5. Probability of no vacancy Pr{VK = 0} vs the sensor density for random de-
ployment (α = 1.0, ε = 0.683)

values of K. Fig. 5 plots the probability of zero vacancy (i.e., Pr{VK = 0} = 1) for
different sensor densities. It is observed that the sensor density requirements for
complete information coverage (i.e., K > 1) are significantly reduced compared
to that for physical coverage (i.e., K = 1). Let λl

K denote the largest density
such that for any density λK ≤ λl

K the probability of no vacancy is zero, i.e.,
Pr{VK = 0} = 0; and let λh

K denote the smallest density such that for any
λK ≥ λh

K the probability of no vacancy is one, i.e., Pr{VK = 0} = 1. The gap
between the density λh

K and the density λl
K is often referred to as the window

of phase transition which is frequently used as an indicator for the coverage
convergence rate. It is observed from Fig. 5 that the window of phase transition
for information coverage is smaller than that for physical coverage. Furthermore,
it is also observed from Fig. 5 that the higher the value of K, the smaller the
window and the smaller the sensor density required for complete coverage. When
more sensors are used for parameter estimation of a point, the estimation error
becomes smaller and hence the likelihood that a point is information covered
increases. However, when the value of K is large enough, the sensor density
for complete coverage no longer increases and remains constant. This is shown
in Fig. 6 which plots the sensor density for complete coverage λh

K against the
value of K. When more sensors are used for parameter estimation for a point,
the estimation error first improves and fewer sensors are required, resulting in
a decrease in the sensor density required for complete coverage. However, as
the sensor density decreases, sensors are deployed farther apart, which limits
their capability to effectively estimate parameter of a point. In this case, further
increasing the number of sensors used for parameter estimation, i.e., increasing
K, becomes less effective. These results also suggest that it is good enough

80 B. Wang et al.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of sensors for estimation (K)

M
in

im
um

 d
en

si
ty

 fo
r

co
m

pl
et

e
co

ve
ra

ge
 (λ

Kh
)

α = 1.0
α = 2.0
α = 4.0

Fig. 6. The density for complete coverage λh
K vs the value of K

for each point to use only a few of its nearby sensors, e.g., 6 sensors, for its
parameter estimation; while the sensor density gain can still be significant. This
further brings additional benefits from reduced communications overheads.

As shown above, using information coverage can greatly reduce the sensor den-
sity requirement for complete coverage. However, we need to note that another
metric–connectivity–is also very important to WSNs. Two sensors are directly
connected if they are within each other’s communication range; and two sensors
can also be connected via multi-hop communications. A complete connectivity
ensures that the sensed/processed data of any sensor can be transmitted to all
other sensors in the sensing field as well as to the fusion center possibly via multi-
hop transmissions. The communication unit is implemented by a transceiver and
is in general independent of the sensing unit in a sensor [1]. Therefore, when the
sensor density decreases, the communication range should increase to maintain
complete connectivity. Next, we use simulations to illustrate the relationship
between the communication range and the connectivity when complete cover-
age is achieved. In the simulations, the number of sensors deployed in the field
again follows a Poisson distribution with the mean achieving complete coverage.
In each simulation run, we calculate the ratio of the number of sensors in the
largest connected group to the total number of deployed sensors. The ratio is
averaged over 500 simulation runs for each value of communication range (from
0.8 to 3.5 in steps of 0.1). A ratio of one means that all sensors are connected, i.e.,
complete connectivity. Fig. 7 plots this ratio against the communication range.
Since the sensor density is reduced when the value of K increases for a given
α, the communication range needs to increase to achieve complete connectivity.
If complete connectivity is also a system constraint for WSNs, then the value
of K should not be too large as suggested by the simulation results. It is often

Sensor Density for Complete Information Coverage in WSNs 81

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Communicaiton range

F
ra

ct
io

n
of

 s
en

so
rs

 in
 th

e
la

rg
es

t c
on

ne
ct

ed
 g

ro
up

(1, ε) coverage
(2, ε) coverage
(3, ε) coverage
(4, ε) coverage
(6, ε) coverage

Fig. 7. Fraction of sensors in the largest connected group vs communication range for
densities of complete coverage (α = 1, ε = 0.683)

assumed that the communication range is equal to or larger than two times the
sensing range (for physical coverage) to achieve complete connectivity in a WSN,
i.e., Dc ≥ 2Ds (see [9][10]). Our simulation results suggest that Dc smaller than
the theoretical value of 2Ds, e.g., Dc = 1.4Ds, is enough to achieve complete
connectivity for the sensor density that achieves complete physical coverage. If
the connectivity constraint is set as Dc = 2.0, only small values of K can be used
to meet the connectivity constraint. However, it is expected that the density gain
is still significant even taking into consideration of the connectivity constraint.
For example, from Fig. 6 the sensor density can be reduced from 4.3 when using
K = 1 (physical coverage) to about 1.5 when using K = 3 (information cover-
age) to achieve complete coverage, i.e., the density gain can be as high as 2.87
(4.3/1.5); while from Fig. 7 the communication range for complete connectivity
given such sensor density of 1.5 can still be smaller than the theoretical value of
2 (2Ds, Ds = 1)to achieve complete connectivity.

5 Concluding Remarks

In this paper, we have used information coverage based on parameter estimation
to study the sensor density requirements for complete coverage of a randomly
deployed wireless sensor network. Substantial reductions in the density of sensor
deployment can be achieved if the notion of information coverage is used instead
of physical coverage. Since the use of information coverage increases spatial reuse
in WSNs, it is expected that many new applications can be derived based on the
concept and properties of the information coverage.

82 B. Wang et al.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y. and Cayirci, E.: Wireless Sensor
Networks: A Survey. Computer Networks, Elsevier Publishers (2002) vol. 39, no. 4,
393–422

2. Cardei, M., and Wu, J.: Coverage in Wireless Sensor Networks, Handbook of Sensor
Networks, (Ilyas, M. and Mahgoub, I. Eds) chapter 19, CRC Press (2004)

3. Huang, C.-F., and Tseng, Y.-C.: A Survey of Solutions to The Coverage Problems
in Wireless Sensor Networks, Journal of Internet Technology, (2005) vol. 6, no. 1

4. Wang, B., Wang, W., Srinivasan, V., and Chua, K. C.: Information Coverage for
Wireless Sensor Networks, IEEE Communications Letters, (2005) vol. 9, no. 11,
967–969

5. Mendel, J. M.: Lessons in Estimation Theory for Signal Processing, Communica-
tions and Control, Prentice Hall, Inc, (1995)

6. Hall, P.: Introduction to the Theory of Coverage Processes, John Wiley and Sons,
(1988)

7. Zhang, H., and Hou, J., On Deriving the Upper Bound of α-lifetime for Large
Sensor Networks, ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc), (2004)

8. Kumar, S., Lai, T. H., and Balogh, J.: On k-Coverage in A Mostly Sleeping Sensor
Network, ACM International Conference on Mobile Computing and Networking
(MobiCom), (2004) 114–158

9. Tian, D. and Georganas, N. D.: A Coverage-Preserving Node Scheduling Scheme
for Large Wireless Sensor Networks,” ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA), (2002) 32–41

10. Zhang, H., and Hou, J. C.: Maintaining Sensing Coverage and Connectivity in
Large Sensor Networks, Tech. Rep., Technical Report UIUC, UIUCDCS-R-2003-
2351, (2003)

Hierarchical Grid-Based Pairwise Key
Predistribution Scheme for Wireless Sensor

Networks

Abedelaziz Mohaisen and Dae-Hun Nyang�

Information Security Research Laboratory,
Graduate School of IT & Telecommunications - Inha University,

253 YongHyun-dong, Nam-ku, Incheon 402-751, Korea
asm@seclab.inha.ac.kr, nyang@inha.ac.kr

http://seclab.inha.ac.kr

Abstract. Wireless Sensor Network (WSN) consists of huge number of
sensor nodes which are small and inexpensive with very limited resources.
The public key cryptography is undesirable to be used in WSN because
of the limitations of the resources. A key management and predistribu-
tion techniques are required to apply the symmetric key cryptography in
such a big network. Many key predistribution techniques and approaches
have been proposed, but few of them considered the real WSN assump-
tions. In this paper, we propose a security framework that is based on
a hierarchical grid for WSN considering the proper assumptions of the
communication traffic and required connectivity. We apply simple key-
ing material distribution scheme to measure the value of our framework.
Finally, we provide security analysis for possible security threats in WSN.

1 Introduction

Sensors are inexpensive and low-power devices with limited resources[1]. They
are small in size and have limited wireless communication capabilities with short
coverage distance. The typical sensor node contains a power unit, a sensing unit,
a processing unit, a storage unit and a wireless transceiver (T/R). Wireless Sen-
sor Network (WSN) contains a huge number of sensor nodes which have limited
storage and mobility. The concept of micro-sensing and wireless connection of the
sensor nodes promise many new applications into military, environment, health
and many other commercial areas [1]. Due to the different constraints of WSN
resources, the public key cryptography algorithms such like Deffie-Hellman key
agreement [6] or the RSA Signature [17] are undesirable to be used in WSN.
Also using any of those will cost tens of seconds up to few minutes [5] which will
expose a vulnerability to Denial of Service (DoS) attacks [19]. However, many
efforts to modify the current public key cryptography to be used in WSN are
still in progress.
� This work was supported by the Korea Research Grant founded by Korean Govern-

ment (R03-2004-000-10023-0). D.-H. Nyang is corresponding author.

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 83–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

84 A. Mohaisen and D.-H. Nyang

For the same reason of constraints, the symmetric key cryptography that
uses the same key for encrypting and decrypting the messages is used in the
WSN. Due to the nature of the different WSN applications, the main issue in
the symmetric key cryptography is how to distribute the secret key or the keying
material among different sensor nodes in WSN [8]. Since the sensor nodes are
sometimes unreachable and undesirable to be updated after the deployment,
many key predistribution schemes - that assign and distribute keying material
or secure keys in offline phase - have been proposed. In the following section,
we will review some of those schemes attached with our main contribution and
with the related work.

1.1 Background Schemes and Related Works

Key Predistribution (KP) mechanisms have been the topic of active research,
and many researchers have made their own appearance in the past few years.
A detailed survey of such schemes is provided by Camtepe and Yener in [4].
The early scheme of the KP in WSN is Eschenauer-Gligor Scheme [8] (will be
referred as EG). In this scheme, each node is let to randomly pick up a set of
keys Sk (keys ring) out of a big pool of keys P . After the sensors are deployed,
the different Sk of the different nodes provides a probabilistic connectivity value
pc, in which two nodes share a secure key (SK). When a key establishment (KE)
is required for nodes i, j, the shared key k : k ∈ Ski

⋂
Skj can be used. For those

nodes that don’t have a shared SK, a path key establishment (PKE) through an
intermediate node is performed. To increase the resiliency of EG Scheme, Chan
et al[5] proposed their upgrade on EG Scheme, where the keys pool is redesigned
and the key rings Sk are drawn from the main pool with q-composite. When the
secure KE is required, only if there are q-shared keys k1, . . . , kq ∈ Ski

⋂
Skj

where Ski is the ring of the node i, then hash(k1||k2......||kq) is used as the
secure key. If n less than q keys are shared, the two nodes perform KPE phase
through an intermediate node or more.

Another scheme is Blom[2]. In this scheme, it’s allowed for any pair of nodes
(i, j) ∈ N to have their own shared SK using their own keying material. The
highest connectivity in a network of size N can be when using different secure
keys for each outgoing path from the node itself, and a possible representation
of the keys could be within a symmetric matrix of size N × N . In[2], the author
proposed a private D and a public G matrices to generate this matrix. A public
matrix G of size (λ +1)×N and a private symmetric matrix D of size (λ +1)×(λ
+1) is defined where D entries are randomly generated. The matrix A is defined
as (DG)T of size N ×(λ+1), and each node in the network has its corresponding
row in matrix A and column in G. If the secure key is required between two nodes
i, j, then the ith row in the matrix A and the jth column in G are selected and
multiplied to generate one key value used as a shared SK.

In Du et al. [7] which is mainly based on EG[8] and Blom[2], the data to
be stored in each node is the corresponding row and column (ARj and GCj re-
spectively). A multi-space scheme was proposed considering τ number of private
matrices D selected randomly out of ω pre-constructed matrices, and different

Hierarchical Grid-Based Pairwise Key Predistribution Scheme for WSNs 85

A’s are created using the different D. τ rows of the different A are selected and
loaded for each node. When an SK is required for two nodes(i, j), firstly a key
agreement phase is performed on the space to be used. If there is any common
space τi,j : τi,j ∈ τi, τj , then the rest of Blom scheme is continued, else, PKE
phase using an intermediate space is performed. An intermediate node or more
are used in this phase. The memory required and the computation to recover the
keying material and the communication required for publishing the spaces IDs
is much more than any other scheme. The connectivity provided by EG scheme
is relatively higher than in [7]. However the resiliency in [7] is better than EG
scheme.

Blundo et. al[3] proposed their scheme to find a method for distributing an
SK in a dynamic conference environment using polynomial keying material. A
Symmetric Bivariate Polynomial (SBP) of degree t is used and its shares are
distributed among the parties. The polynomial uses some unique seed for each
party (e.g. the communicating parties’ IDs) for its variables evaluation to gen-
erate the different secure keys required to perform a secure connection in the
network.

f(x, y) =
t∑

i,j=0

aijx
iyj , (aij = aji) (1)

gID(x) = f(x, ID) (2)

In a predeployment stage, each node gets the evaluated SBP gID(x) in (2), and
in the KE pahse, the second party node ID evaluates the second SBP variable to
create a shared SK. An efficient way to implement Blundo scheme with reduced
computation is in S. Schmidt et al [18].

In Liu-Ning Scheme [12], a two dimensional deployment environment con-
structing a grid was proposed where different nodes are deployed on different
intersection points of the grid. The early discussed Blundo Scheme [3] is applied
on each column and row in the grid with different SBP. Since any two nodes
belonging to the same row or column have the same SBP, Blundo scheme can
be directly performed on those nodes to establish a shared SK. In case there
are no direct keys (i.e. Ri �= Rj and Ci �= Cj), an intermediate node is used
in PKE phase. This scheme, even if it seems to be simple, provides a good con-
nectivity providing a high probability to establish a secure direct connection.
Even in the case of compromising some nodes, the network still has the ability
to survive by establishing an SK using alternative nodes. On the other hand, it
is possible to determine if the node can establish an SK with other nodes or not,
which reduces the communication overhead. However the computational power
required for this scheme is relatively high for computing t + 1 SBP evaluations.
Using an intermediate node for key path is not efficient of computation and
communication overhead.

In addition to [8][5][3][12][2][7] which we already discussed. [16], [3] proposed
two security architectures. In [16], security architecture was specifically designed
for the sensor networks by the name of SPINS. In SPINS, each sensor node in the
network shares a secure key with a Base Station. Any two nodes that would like

86 A. Mohaisen and D.-H. Nyang

to construct a direct path could do that only using the base station as Trusted
Third Party to set up a secret key. In [18], a security architecture is also proposed
based on [3].

In this paper we will show the resiliency of our proposal by analyzing attacks
against one node, basic zone and the whole network. The structure of this paper
is: related works and notations, our scheme details, analysis and conclusion and
future works.

1.2 Our Main Contribution

In this paper, we introduce a new scheme using the Hierarchical Grid as a de-
ployment framework and Blundo scheme as keying material generator. Through
this paper, our main contribution is to:

– Provide a scalable and robust novel framework for the key predistribution
giving a perfect connectivity value to establish a pairwise key.

– Optimize the use of the different WSN resources, mainly, communication
overhead, memory usage and computational power.

– Analyze and provide a theoretical and mathematical proof of our scheme
performance.

– Provide and discuss the alternative against any possible security attack
against our scheme.

In our scheme, we use different deployment zones which are more proper to WSN
and guarantee a perfect connectivity. In addition, a higher growth in the sensor net-
work requires much smaller keying material to be added to the original network.
Thenetwork zones are constructedusing ahierarchical grid that requires small frac-
tion of information to be represented and keep tracking of the node location. Our
scheme is built onBlundo[5]with somemodification for generating the keymaterial
using different polynomials for the different network zones. We use different poly-
nomials for different sections of the network to take the merit that compromising of
(t+1) nodes will only affect the related polynomial zone, and thus, using different
polynomials with different t degrees will lead to higher survivability against attacks
and to exact amount of computation according to the security level.

1.3 Notations and Definitions

The following definitions and notations will be used throughout the rest of this
paper

1. Definitions
– Network Order n. Network design parameter that declares the size of

the network and the number of SBP used in each sensor node.
– Basic Grid or Basic Zone. The set of sensor nodes in a geographical

area that use the same polynomial of degree t0.
– Polynomial Order O. An integer that decides the scope where the

polynomial is used to establish a secure pair-wise key, O ∈ {1, 2, . . . , n}.
Each node has some minimum order and maximum order of n.

Hierarchical Grid-Based Pairwise Key Predistribution Scheme for WSNs 87

– Polynomial Degree t0. A security parameter providing the strength of
the polynomial and expressing how many distinct nodes carrying shares
of this polynomial should be compromised to be able to recover the
polynomial itself. The subscription 0 to n expresses the order of the
polynomial.

2. Notations
– n: The network order
– N : Number of sensor nodes in the WSN
– m: Number of sensor nodes in the Basic Network Zone
– k: Sensor nodes distribution unit through the network
– Bz: Basic Zone (Basic Grid)
– Ox: Order of the xth network grid
– t0: Degree of the basic polynomial in the basic grid
– tn: Degree of the polynomial for grid of order n

– i, j: Sensor Nodes
– IDi: Identifier of the sensor node i

– Gn: Number of the Basic Zones in the network

2 Hierarchical Grid-Based Scheme for Pairwise Key
Predistribution

Our Scheme uses Blundo[3] as keying material generator to generate an SK for
two nodes. The distribution of the keying material is performed on a Hierarchical
Grid as in Fig. 1. Note that the hierarchical grid has been already used for a
robust routing technique in the ad-hoc networks[11]. Our Modification on the
grid relies on the growth factor of the network where we use the duplication as
the growth factor. In addition, using different SBPs in the same sensor node to
establish an SK increases the opportunity to establish a key and communicate
with other nodes even if big fraction of nodes is compromised. In the following
subsection, we will provide a description of our scheme.

2.1 HGB Scheme Overview

Consider a network consisting of N nodes. The different nodes are allocated
as in Fig. 1, and the network is divided into n hierarchical orders of grids.
Each order l consists of 2l−1 Bz, and the basic zone Bz is bounded by the
distribution dimensions [2k, 2k], where k is a uniform distribution unit of the
sensor nodes in the WSN. The number of the nodes m in Bz is (2k)2. The
highest order On contains Gn=2n−1 basic grids. The total number of nodes
is N = m × Gn = (2k)2 × 2n−1. As shown in Fig. 1, Bz is any grid with
the dimensions [G1X ,G1Y] which has O1. The dimensions [G2X ,G2Y] will
be considered for the order 2 grids, and [G3X ,G3Y] will be considered
for O3.

88 A. Mohaisen and D.-H. Nyang

G3X
G2X

G1X
k

k
G

1Y
G

2Y
G

3
Y

G
1

Y
G

2
Y

G
3Y

k

Order 1 Order 2 Order 3

Fig. 1. Sensor nodes deployment in a hierarchical grids network

2.2 Node Identifier

Our scheme uses a smart identification material ID which is unique for each
node through the network. The function of this ID is to represent the node
location in the grid based network as well as the keying material required to
establish an SK between two nodes just by comparing their IDs. The use of
the hierarchical grid (HG) with a duplicating growth factor makes it possible
to represent the different Bzs as in Fig. 2, where the leaves of the binary tree
are the m nodes of the different Bz and the height of the tree is the network
order. The allocated value in the end leaf is a sequence number (local ID in
a Bz), where 1 ≤ IDlocal ≤ m. The different polynomials are allocated to
the internal nodes of the tree. In the tree, left branches have a bit “0”, and
right branches have “1”. The final sensor node ID is the path tracing binary
string from the root node which represents the On polynomial down to be-
fore the leaf which represents the belonging Bz concatenated with the local ID.
This structure of ID is shown in Fig. 3, and its length in bit is also shown
in (3).

|ID| = n + log2m (3)

When the network size N is large enough, n can be considered a constant value
for a robust design accepting dynamic growth of the network.

How to use this ID to establish an SK using the proper polynomial with the
proper t-degree will be shown in the following subsection.

Hierarchical Grid-Based Pairwise Key Predistribution Scheme for WSNs 89

P31

P21

P12P11

P2(y -1)

P1 (x -2)P1(x -3)

P22

P14P13

P2y

P1xP1(x -1)

P3z

Pn

10

1010 0 1
0 1

10

L R

N1 N2 N3 Nm- 1 Nm N1 N2 N3 Nm-1 Nm N1 N2 N3 Nm-1 Nm N1 N2 N3 Nm-1 Nm N1 N2 N3 Nm- 1 Nm N1 N2 N3 Nm-1 Nm N1 N2 N3 Nm-1 Nm N1 N2 N3 Nm-1 Nm

On

O3

O2

O1

Nodes

x = 2n-1

y = 2n-2

z = 2n-3

Fig. 2. Node ID Generation Determining the Node Location in the WSN

⎡ ⎤
2

2)2(log k

n-bits of Binary
Path ID

Bits of Local Node ID

Fig. 3. Sensor Node ID Structure in the Hierarchical Grid Scheme

2.3 Key Material Generation

Using the HGB deployment structure in WSN as in Fig. 1 requires more than
one keying material for each order of the network. Basically, SBP of the degree
t0 which is assigned for Bz is used to establish an SK for the pairs of nodes
within the same Bz. Using this polynomial will provide a value of 1

2n−1 direct
key establishment opportunity out of the total possible in the network. The other
polynomials are used for the connectivity to reach the perfect one. Considering
that the highest amount of traffic for the communication is within Bz and other
traffic fractions has a much attenuated probabilistic value, we can use polynomial
of small degree for small grids, and polynomials of large degree for big order.
Algorithm 1 shows the process of generating the different order of polynomials,
polynomials evaluation and assignment for each sensor node.

Algorithm 1. Polynomials Generation

Input: Network Order n, Path ID for node i (d), Node ID
Output: 2^(n-1) Polynomials sorted in P[n][2^(n-1)],

n SBP for each node x in Px[n] evaluated in one variable
Loop 1: for i=1 to n

Loop2: for j=1 to 2^(i-1)
p[i][j]= SBP of degree t_0 and belonging to order i
\\ Generated with coefficients belong to GF(q)
Next j

90 A. Mohaisen and D.-H. Nyang

End Loop2
Loop 3: For x=1 to N

Set Px[i]=P[i][d*(1/(2^(i-1)](ID,y)
Next x

End Loop 3
Next i

End Loop1

2.4 Secure Key Establishment

Assume that two nodes i and j would like to establish a pairwise key to commu-
nicate with each other. Each node already has its ID in addition to the other
node’s ID which can be exchanged before the KE phase. Firstly, a polynomial
f∗(x, y) is selected out of the shared polynomials in the two nodes. The selected
polynomial must be common in both nodes with the minimum t-degree on the
scope of i, j. To establish the secure key, Algorithm 2 is applied. Note that,
this algorithm is applied in both i, j to generate the pairwise key. In addition,
the evaluated polynomial of Algorithm 2 is in Equation (2), where x-variable is
already evaluated in Algorithm 1.

Algorithm 2. Key Establishment

Input: IDi, IDj, Px[n]: array of node’s polynomials
Output: kij, kji.
procedure:

Begin
Set IDi1 = Path ID of IDi
Set IDj1 = Path ID of IDj
Loop 1: for d = n to 1

if (IDi1[d] == IDj1[d])
Set d = d-1
Next d

Break
Else

Break
End Loop 1
Use f*(x,y)=Px[d]
Set Kij=f*(IDi,IDj)

End

2.5 Scheme Variables Assignment

Variables in our scheme are the degree of the polynomial t0 and the relationship
between t0 and other polynomials degrees. The number of the nodes m in Bz is
also variable. The number of the Bz itself is decided by assigning some value for
the order n. In [18], the authors assigned t0 to be 20. However, this assumption

Hierarchical Grid-Based Pairwise Key Predistribution Scheme for WSNs 91

doesn’t provide correlated dymanic security strength with the change of WSN
size. Using the same value of memory as in [9], t0 can be assigned as 0.6×m and
the other (n-1)-polynomials’ degrees t1, t2, · · · , tn−1 to follow one of the following
approaches: (i) To assign the value of t0 and the growth of the network order will
lead to the same value of the polynomial growth. (ii) To consider the different
t degrees independently. In our scheme, we used independent values of t for the
different orders and in the analysis we calculated a dependency relations between
the different t for a general use.

3 Scheme Analysis

In this part, we will focus on the performance of our scheme on two sides: The
overhead analysis and the security analysis. To measure the value of the per-
formance in our scheme, we derived mathematical formulas using the different
scheme variables to express the usage of the WSN resources: memory, compu-
tation and communication. In the second hand, we follow the security analysis
of Blundo[3] in terms of the compromising effect on non-compromised nodes us-
ing probablistic attacking model. We study the effect of a selective attack on
our scheme compared by [8] and [12]. Node replication attack[15] and the Sybil
attack[14] are mentioned. Finally, we conclude the security study by the DoM
Attacks [13], DoS Attacks[19].

3.1 Overhead Analysis

Our scheme uses the different resources of the WSN in a reasonable meaning.
The reduction in using any resource could affect other correlated resources and
down the performance. In this section, we measure the cost of our scheme by
analytical and mathematical formulas in terms of the WSN resources. From the
details above, the total WSN capacity N is

N = 2(n−1) × (2k)2 (4)

Where n is the largest polynomial order in the network and k is the distribution
unit of nodes, the relationship between Bz dimension and distribution unit k
and the network order n for different network size is shown in Fig. 4.

Memory Overhead. The amount of memory to represent the ID in
equation (3) and the different n-polynomials is required for each node. For
any SBP f(x, y) of degree t0 whose coefficients in GF (q), (t0 + 1) × log(q)
bits are enough to represent this polynomial. For the memory use, we have
two approaches: (i) To make the degree of the polynomials independent from
each other and have the same t0 with some neglected increment in the calcu-
lations by assigning the first t0 = 0.6 × m. (ii) To make the growth of n be
the same as that of t. Then, the first order takes t0 degree and any ith order
could have 2i−1 × t0. The first case cost is represented in equation (5). The first
two terms are for the ID representation and the third term for n-polynomials

92 A. Mohaisen and D.-H. Nyang

0
2

4
6

8
10

0

5000

10000
0

20

40

60

80

Network Order (n)Network Size (N)

G
rid

 D
is

tr
ib

ut
io

n
U

ni
t

k

Fig. 4. The relationship between nodes distribution unit k representing the Bz size
and n: the network order for different network size (N)

representation. The second case is in (6) where the third term is the summa-
tion of the required memory to represent n polynomials of different degree. The
memory growth of the first case is shown in Fig. 5.(A) and the second case is
in Fig. 5.(B). Pweight represents the bits required to represent f(x, ID) of t0
degree:

Memory1 = n + �log2
N

2n−1 � + n(
0.6N

2n−1 + 1)log2(q) (5)

Memory2 = n + �log2
N

2n−1 � + Pweight

n∑
i=1

(2i−1)t0

= n + �log2
N

2n−1 � + (
0.6 × N

2n−1)(2n − 1)(
0.6N

2n−1 + 1)log2(q) (6)

Computation Overhead. In each time an SK is required, one evaluation an
SBP f(x, ID) of t-degree is performed. However, the t of f(x, ID) differs de-
pending on Ox. In case of using (5), the required compuatation is one evaluation
of f(x, ID). In case of using (6) by assigning different ts with growth, (7) ex-
presses the required computation in terms of the number of multiplications in
GF (q), where c is computation power required for two binary strings comparison
representing the polynomial path identefier part, pi is the probability that two
nodes reside in different (i − 1)th grids and CPti is the required power for the
ith order SBP evaluation. Fig. 6 shows this growth curve in terms of the number
of multiplications in GF (q).

CPavg =
n∑

i=1

(piCPti) + c (7)

Hierarchical Grid-Based Pairwise Key Predistribution Scheme for WSNs 93

0

1

2

3

4

5

6

7

8

9

10

0 1000 2000 3000 4000 5000 6000 7000 8000

Network Growth (Node)

M
em

o
ry

 G
ro

w
th

 (
K

b
yt

e)

n=3 n=4 n=5 n=6 n=7 n=8

(B)

4.653

4.6532

4.6534

4.6536

4.6538

4.654

4.6542

4.6544

4.6546

4.6548

0 1000 2000 3000 4000 5000 6000 7000 8000

Network Size Growth (Node)

N
o

d
e

M
em

o
ry

 G
ro

w
th

 (
K

b
yt

e)

Memory Growth Curve

(A)

Fig. 5. (a) Network growth versus memory growth when using n = 7 and k to be
variable. (b) Memory usage growth in the WSN when using different values of n and
the same number of nodes per Bz and following the formula 2 of memory usage.

8.8

9

9.2

9.4

9.6

9.8

10

10.2

0 2 4 6 8 10 12

Distance Between Two Nodes (Order)

C
o

m
p

u
ta

ti
o

n
 P

o
w

er
 C

o
st

 (
t 0

=
10

M

u
lt

ip
li

ca
ti

o
n

s)

Computation Vs Distance with Pr=1/2 n̂

Fig. 6. Computation Overheard growth considering the communication attenuation
traffic factor of 1/2n−1 versus the distance between the nodes in O

Communication Overhead. Our system does not require any extra meaning
of communication. Since the different polynomials are distributed for the WSN
nodes in predeployment phase, the communication overhead in the network could
be in the ID exchange to construct a pairwise key. The data space required to
represent the node ID is Equation (3) bits, so the required communication over-

94 A. Mohaisen and D.-H. Nyang

head to exchange it is bounded by the log2N which is the space for representing
N-sized network.

3.2 Security Analysis

Connectivity. Our scheme is divided hierarchically to provide a connectivity
using more than one SBP for different Bz. The total provided connectivity C
among the whole network is about 1. The polynomial for Bz provides connectiv-
ity of only m

m×2n−1 = 1
2n−1 . Also, the polynomial for the ith order grid provides

connectivity of m×2i−1

m×2n−1 = 1
2n−i . Thus, a node can establish a shared key with

any node always with connectivity 1.

Blocked Communication Traffic Fraction. Basically, this paper presents a
new framework for the key management in WSN. When we applied Blundo’s
scheme [3], we obtained that even though the ith order SBP where 1 < i ≤ n is
compromised, this will not affect the other network any more than the amount of
traffic (links) within the ith order grid. Assume the ith order SBP is compromised.
Then, the fraction of the blocked traffic will be m×2i−1

m×2n−1 × pi = 1
2n−i × pi where

pi is the fraction of traffic between nodes resides in different the (i − 1)th order
grids. Using the current pi = 1

2i−1 distribution will guarantee that the blocked
communication is always constant value regardless to i value.

Compromising effects and resiliency strength. The attacking scenarios
against the network can be one or more of the following:

– An attack against Nc Nodes: In case of compromising a set of nodes
whose size is Nc that is less than t0, the fraction of the affected nodes by
those compromised ones is 0, even if all of the nodes belong to the same Bz

even assuming a selective attack [9].
– An attack against Bz: Assume that a set of nodes s where t0 < |s| ≤ m

are compromised. If at least t0 + 1 nodes from s belongs to one Bz , then it
will lead to compromise the polynomial of the Bz. However, this seems to
be so hard since the network contains 2n−1 polynomials and the probability
pr for t0 nodes to be belonging to the same polynomial shares is:

pr = 1 −
t0−1∑
i=0

(
Nc

i

)(m

N

)i(N − m

N

)Nc−i

(8)

– An attack against the whole network: The attack against the whole
network can’t be in synchronized way. However, in the worst case, it’s pos-
sible to compromise the whole network by compromising all of f(x, y) of t0
one by one. To compromise Bz requires t0 nodes to be compromised. Since
the network consist of Gn different Bz, it requires to compromise Gn × t0
which is a big fraction (i. e more than 60% of the network size). Without
this value of compromised nodes, the fraction of affected nodes is still less
than 50% of the sensor nodes.

Hierarchical Grid-Based Pairwise Key Predistribution Scheme for WSNs 95

– Selective Versus Random Node Attack[9]: Even if the nodes are de-
ployed in a random environment, the knowledge of the nodes deployment
and the assigned polynomials for each group and the ability to distinguish
the different nodes based on their Bz will lead to a selective attack. Fig.
6(B) shows the effect of this attack on WSN. In the second hand, the ran-
odm node attack follows probabilistic model as in (8) and differs in that m
varies on intervals of t0, t1 . . . t(n−1) to be m1, m2 . . . N .

– Sybil and Node Replication Attacks[14][15]: There are two problems
belonging to the dynamic growth of WSN. Sybil attack is done illegally
by using more than one ID for the same node j. Node replication attack
is performed using the same ID more than one time in the network. Our
framework resists in front of those threats because it requires a structured
ID that has uniform and unique structure over the entire network. When an
attacker fabricates a structured ID, it should follow limited structure of our
own and to be depolyed in specific area to communicate with the same Bz .

– DoM and DoS attacks: Denial of Messages[13] is the ability of some nodes
(the attacker nodes) to deprive others of receiving some broadcast messages.
Our framework doesn’t require node of any broadcast capability. If any, it’ll
be mainly used in the same grid and thus, this attack will only affect a
small fraction of the whole network. An example of the Denial of Service[19]
is ”attempts to prevent a particular individual from accessing a service”
and this mainly happens owing to heavy communication or computation be-
cause of the keying material or any outside reason like attacker messages
flooding. However, for the first case it’s hard to apply DoS on our system
since all the computation and communication operations are small, and take
short time. In the second case, to perform a DoS, node replication attack is
required.

Recovery from Compromising. When t + 1 nodes are compromised, an al-
ternative secure SBP will be used. In the case that an SBP of the cth order
grid is compromised, the SBP for the (c + 1)th order grid is used till the system
recovery and assigning another polynomial to the affected grid. Even when the
highest order polynomial is compromised, the amount of traffic compromised
will be only 1

2p(i=n), where pi is the fraction of the traffic between nodes that
resides in different (n − 1)th order grids. If we assume that the fraction is de-
creased by half whenever the order of grid increases by 1, for pn will be 1

2n−1 .
However, the internal network connectivity will not be affected, and more than
that, the majority of the secure traffic in the network will not be broken since
the deployment framework guarantees that most of the traffic is in Bz .

4 Comparison with Other Schemes

We selected GBS[12], Multi-space[7], EG[8], Q-Composite and RPS [5] for the
comparison with our scheme. The compared features are communication, com-
putation and memory. The comparison for security is also shown, which is the

96 A. Mohaisen and D.-H. Nyang

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000

Number of Compromised Links

F
ra

ct
io

n
 o

f
A

ff
ec

te
d

 L
in

ks

EG Scheme GB Scheme HGB Scheme

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180

Compromised nodes

A
ff

ec
te

d
 F

ra
ct

io
n

 (
 o

f
th

e
w

h
o

le

n
et

w
o

rk
)

Worst Case Resistance Random Attack Best Case Resistance Random Attack

(B)

(A)

Fig. 7. (A) Worst Case Vs Best Case Selective Attack on the HGBS. (B) HGBS Se-
lective Attack comparison with EG [8] and GBS[12] - N = 1680 Nodes, t0 = 0.6m for
EG scheme d = 40.

fraction of affected non-compromised links between compromised node to the
number of the compromised nodes. Table 1 shows the first part of the compar-
ison. In our scheme, both computation and memory are shown in Equations 5,
6, and 7.

To evaluate the degree of security of our scheme and compare it with oth-
ers, we used a network of 1680 nodes and mainly compared the security with
GBS[12]. Parameters used in the analysis are: N = 1680 nodes, n = 8 orders,
m = 14 nodes, |ID| = 12 bits that provides 7% dynamic extension of the real
size (�log2m� = 4 �→ mu = 16, dynamic extension is (mu−m)×Gn

N × 100%),
Gn = 128Bz. For the fair comparison of GBS[12], we used the same network

Table 1. Comparison between our HGB Scheme and other Schemes: GBS of Liu Ning,
EG, RPS for Chan et al. q-composite of Chan et al. and Muli-space of Du et al.

CommunicationComputation memory
GBS[12] Constant SBP Evaluation ID+2 SBP
EG[8] ClogSk

(2C+p−pk)
2 logC Sk keys

RPS[5] Constant c Sk keys
Q-Composite[5] ClogSk ClogC Comparison Sk keys
Multi-space[7] Clog(n × τ) 2 Vectors Multiplication

of size λ
τ + 1 of size λ
Vectors

HGBS∗ Constant SBP Evaluation ID+n SBP

Hierarchical Grid-Based Pairwise Key Predistribution Scheme for WSNs 97

size and m = 41. We applied the test of the fraction of affect non-compromised
nodes between compromised nodes using a selective attack. Fig. 7 (A) shows this
comparison. Fig. 7 (B) shows two cases of attacking against our scheme: Selec-
tive attacking with the worst case consideration and Selective attacking with the
best case consideration. The whole compromising growth in our scheme and the
GBS is the same, but our scheme is right-shifted by n × t0.

Remark: The constant value of communication in GBS depends on whether it’s
possible to construct a direct key or not. In case of using an intermediate node,
the communication cost of the intermediate should be considered. The amount
of communication traffic in our scheme is always constant because of its nature.

5 Conclusion and Further Work

In this paper, we proposed a novel proper framework for the secure key man-
agement and predistribution in the WSN. We proposed hierarchical grid for the
sensor nodes deployment that bounds the heavily communicated nodes in one
basic grid that has strong secure keying material.

We also designed an ID structure which is unique for the node and expresses
the location as well as the keying material to be used. To measure the per-
formance of our framework, we used Blundo[3] as a keying material generator
block. Mathematical analysis of the computation, communication and memory
was provided. The different possible attacks were lightly touched. The perfor-
mance shown comparison expressed the value of our framework.

The next works will be an enhancement for the keying material assignment
on the framework, in addition to deeper security analysis and more rigorous
mathematical model derivation on security. We will provide a detailed key estab-
lishment algorithm that considers the framework connectivity, communication
traffic, security and design parameters.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Net-
works: A Survey, Computer Networks (Elsevier) Journal, Vol. 38, No. 4, pp. 393-
422, March 2002.

2. Blom, R.: An optimal class of symmetric key generation systems, Advances in
Cryptography, Proceedings EUROCRYPT 84 , LNCS , Springer-Verlag, 209, pp.
335-338, 1985.

3. Blundo, C., DE Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., and Yung, M.:
Perfectly secure key distribution for dynamic conferences, In Advances in Cryptol-
ogy - CRYPTO ’92, LNCS 740, pp. 471-486, 1993.

4. Camtepe, S. A. Yener, B.: Key Distribution Mechanisms for Wireless Sensor Net-
works: a Survey, Rensselaer Polytechnic Institute RPI, Technical Report TR-05-07,
(March 23, 2005).

5. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor
networks, IEEE Symposium on Security and Privacy, pp. 197-213, May 2003.

98 A. Mohaisen and D.-H. Nyang

6. Diffie, W., Hellman, M. E.: New directions in cryptography, IEEE Trans. Inform.
Theory, IT-22, pp. 644-654, November 1976.

7. Du, W., Deng, J., Han, Y. S., and Varshney, P.: A pairwise key pre-distribution
scheme for wireless sensor networks, In Proceedings of 10th ACM Conf. on Com-
puter and Communications Security (CCS’03), pp. 42-51, 2003.

8. Eschenauer, L., Gligor, V. D.: A key management scheme for distributed sensor
networks, In Proceeding of the 9th ACM Conf. on Computer and Communications
Security, pp. 41-47, 2002

9. Huang, D. , Mehta, M., Mehdi, D, Harm, L.: Location-aware Key Management
Scheme for Wireless Sensor Networks, Proc. of 2004 ACM Workshop on Security
of Ad Hoc and Sensor Networks (SASN’04), pp. 29-42, October 2004.

10. Hwang, J. M., Kim, Y. D.: Revisiting random key pre-distribution schemes for
wireless sensor networks, Workshop on Security of ad hoc and Sensor Networks
archive, Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor
networks, pp. 43 - 52, 2004.

11. Li, J., Janotti, J., DeCouto, D. S. J. , Karger, D. R., Morris, R.: A Scalable Location
Service for Geographic Ad Hoc Routing, The Sixth Annual International Conf. on
Mobile Computing and Networking, pp. 120-130, August 2000.

12. Liu, D., Ning, P.: Establishing Pairwise keys in distributed sensor networks, In Pro-
ceedings of 10th ACM Conf. on Computer and Communications Security (CCS’03),
pp. 52-61, 2003.

13. McCune, J., Shi, E., Perrig, A., Reiter, M.: Detection of Denial-of-Message Attacks
on Sensor Network Broadcasts, In Proceedings of the IEEE Symposium on Security
and Privacy, May 2005.

14. Newsome, J., Shi, E., Song D., Perrig A.: The Sybil Attack in Sensor Networks:
Analysis and Defense., In Proceedings of Information Processing in Sensor Net-
works (IPSN), April 2004.

15. Parno, B., Perrig, A., and Gligor V.: Distributed Detection of Node Replication
Attacks in Sensor Networks, Proceedings of the 2005 IEEE Symposium on Security
and Privacy, May 2005.

16. Perrig, A., Szewczyk, R., Wen, V., Culler, D. E., Tygar, J. D.: SPINS: security
protocols for sensor networks, MOBICOM, pp. 189-199, 2001.

17. Rivest, R. L., Shamir, A., Adleman, L. M.: A method for obtaining digital signatures
and public-key cryptosystems, Communications of the ACM, 21(2): pp. 120-126,
1978.

18. Schmidt, JS. , Krahn, H., Fischer, S., Watjen, D.: A Security Architecture for
Mobile Wireless Sensor Networks, Security in Ad-hoc and Sensor Networks, LNCS
3313, pp 166-177, Springer-Verlag Berlin Heidelberg 2005

19. Wood, A.,Stankovic, J. A.: Denial of Service in Sensor Networks, IEEE Computer,
35(10): pp. 54-62, October 2002.

Generic Routing Metric and Policies for WSNs

Olga Saukh, Pedro José Marrón, Andreas Lachenmann, Matthias Gauger,
Daniel Minder, and Kurt Rothermel

IPVS, Universität Stuttgart, Universitätsstr. 38,
D-70569 Stuttgart, Germany

{saukh, marron, lachenmann, gauger, minder,
rothermel}@informatik.uni-stuttgart.de

Abstract. Energy-aware algorithms have proven to be a crucial part
of sensor network applications, especially if they are required to oper-
ate for extended periods of time. Among these, efficient routing algo-
rithms are of utter importance since their effect can be experienced by
all other layers. Thus, the optimization and accurate prediction of the
lifetime of the system can only be performed in the presence of accu-
rate execution models that take energy consumption into account. In
this paper, we propose a generic routing metric and associated policies
that encompass most other existing metrics in the literature and use this
model for the optimal construction of a routing tree to the sink. We also
provide experimental results that show the benefits of using our novel
metric.

1 Introduction

Sensor networks are getting more and more popular, especially in the area of
intelligent monitoring, where the deployment of standard sensing equipment is
too expensive or even impossible. Application domains such as habitat monitor-
ing, environmental observation or intelligent building monitoring usually need
a cheap, easily deployable and self-organized system that is able to operate for
years on a single set of batteries. Such applications pose strict energy-awareness
requirements to the hardware and software used.

Many classic algorithms have been analysed and optimized to make them
energy-aware. A number of new algorithms have been proposed specifically for
sensor networks which try to minimize energy consumption while still providing
the desired QoS level. However, energy is usually not included in the model as
a parameter, and when included, it is mostly in the form of a constraint rather
than a real optimization parameter.

The basis of any working network, particularly a sensor network, is an efficient
routing protocol. Since wireless communication is the most energy-consuming
task, the routing module needs to be carefully tailored towards saving energy as
much as possible. Of great interest is not the routing protocol itself, which usually
gives a constant overhead for each transmitted packet, but rather the underlying
routing tree topology defined by a metric, which is directly responsible for the

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 99–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

100 O. Saukh et al.

quality, stability and energy-awareness of the routing tree. Existing solutions
usually concentrate on selecting best quality paths by means of end-to-end packet
reception rate. In many cases energy-awareness is defined in terms of the number
of retransmissions, which definitely influences energy consumption albeit only in
an indirect way.

The challenge is, therefore, to find an optimal routing tree structure, which
selects the best paths using QoS parameters, like reliability of a given path,
and/or its energy demands. Although the compromise between these two pa-
rameters might not fit the requirements of different applications to the routing
module, we expect such a generic solution to be parameterized and tunable.
There might be applications that require reliable packet delivery at any price, or
those that might tolerate losses but should be optimized to operate for several
years. Finally, we are interested in examining the characteristics of the resulting
routing tree topology defined by our metric.

The rest of the paper is organized as follows. Section 2 gives an overview
of related work. In section 3 we present an example that shows the limitations
of existing approaches and motivates our work. Section 4 lists our assumptions
and provides a detailed description of the generic metric as well as the policies
used in our model. Section 5 presents the results obtained through experimental
evaluation of our model on real hardware. Finally, section 6 concludes the paper
and describes future work.

2 Related Work

Relevant papers available in the literature that relate to our model can be
grouped in three topic areas: routing metric definition and analysis, transmission
power level tuning approaches and energy consumption modeling.

Routing Metric Definition and Analysis. Most papers in this area have been de-
veloped for traditional computer networks and for ad-hoc networks, and some-
times they also apply to sensor network research. Let us discuss three represen-
tative examples. The Shortest Path First metric (SPF) discussed in [3, 6] selects
the route based only on path length information. It has been shown to be not
suitable for sensor networks, since it selects the neighbor further away with the
lowest link quality to route packets. An optimized version of it, called SPF(t),
applies a blacklisting procedure to filter the links with quality less than t before
using the SPF algorithm on the resulting topology. Clearly, SPF(t) shows better
behavior than SPF, but it might lead to a disconnected routing tree, as shown
in [6]. The Success Rate (SR) metric tries to find the paths with the highest
end-to-end success rate as a product of link qualities pij along the path Path:∏

(i,j)∈Path pij [5]. However, it usually underestimates the path quality, since
it does not take into account the possibility of packet retransmission. It might
also lead to cycles in the routing graph. Finally, the ETX metric was originally
developed for ad-hoc networks, but is used in sensor networks as well. Its goal
is to minimize the sum of the expected number of transmissions over each link
(i, j) ∈ Path:

∑
(i,j)∈Path 1/pij . Compared to the other two, this metric has

Generic Routing Metric and Policies for WSNs 101

been shown to behave best, especially in the presence of low mobility [1]. Other
metrics based on latency, like the ones presented in [2], have shown poor behavior
when used in sensor network scenarios.

Transmission Power Level Tuning. In [4], the authors have investigated means
of influencing the packet reception rate of a link by tuning the transmission
power level in single-hop scenarios. In [7], the dependence between the received
signal strength and the packet reception rate is investigated on the physical and
MAC layers. Finally, the authors of [8] used the transmission power level to
regulate the number of available neighbors, and therefore, mitigate the number
of collisions in dense networks.

Energy Consumption Modeling. Energy has been modeled at different levels in a
number of papers. [9] presents an analytical model to predict energy consump-
tion in saturated IEEE 802.11 single-hop ad-hoc networks under ideal channel
conditions. In [10] the energy spent to send and receive a message is accurately
modeled and a power aware routing protocol is proposed that adapts routes to
the available power. For the approach proposed in this paper, we can use any of
the low level models available in the literature, since our goal is the optimization
of the routing paths themselves. [11] tries to find the optimal traffic scheduling
in energy contrained networks to optimize the lifetime of the network. In [12] the
authors have shown, that always using lowest energy paths may not be optimal
from the point of view of network lifetime and long-term connectivity. They pro-
pose a scheme that occasionally uses sub-optimal paths to provide sustainable
gains.

However, to the best of our knowledge, our work is the first to combine trans-
mission power control, number of transmissions, energy consumption and success
rate in one routing metric. In the next section we present an example which mo-
tivates the need for proper modeling and direct inclusion of energy consumption
into the routing metric.

3 Motivation

Fig. 1 shows an example of a network with four nodes, where node 3 tries to
send some data to the sink (node 0). There are two possible routes to reach the
sink, either via node 1 or via node 2. The links (3, 1), (2, 0) and (1, 0), (3, 2)
have link qualities 1.0 and 0.1 respectively. In this example, we assume that all

Fig. 1. Motivating example

102 O. Saukh et al.

nodes spend an equal amount of energy for each attempt to transmit a packet
over any available link and that no retransmission of lost packets is in place.

The three metrics mentioned in the related work consider both paths to be
equivalent. The SPF metric assigns a value of 2 to both paths because there
are two hops to the sink. The SR metric guesses the end-to-end success rate to
be the same (0.1 · 1.0 = 0.1). Finally, the ETX metric estimates the number of

transmissions to be
1

0.1
+

1
1.0

= 11 for both paths.
However, the expected energy spent by the sensor network if the first route

is selected is nearly twice as much as the energy spent in the case of the second
route. The reason for this is that node 2 forwards packets from 3 only in 10%
of the cases. If we assume that transmitting all packets generated by 3 costs 1
energy unit, then node 2 spends 0.1 energy units for forwarding. This way, the
energy costs of the routes via node 1 are 2 energy units and via node 2 are 1.1
energy units.

Moreover, if we assume that all nodes operate at different send power levels
and have different numbers of retransmission possibilities, the resulting energy
demands of using either path might change considerably. Therefore, in the next
section, we analyse the general case and build a model which takes these facts
into account: path quality and energy consumption of the path. Based on this
model, we propose a new routing metric and discuss its properties and ways to
tune it by means of application-specific policies.

4 Formal Model

The goal of our approach is to determine a routing tree structure that provides
the highest end-to-end packet success rate while taking the amount of consumed
energy into account. For the success rate, it suffices to independently determine
its value at any given point in time. All metrics in the related work section
work using this method. However, including the consumed energy in the model
requires the consideration of past history, since the amount of available energy
depends on the history of previous system performance.

For this reason, our model contains two optimization metrics: end-to-end
packet success rate, which depends mostly on the topology of the network and the
environmental characteristics; and energy consumption, which, as stated above,
depends on past system performance. Our approach involves the optimization
of the ratio of these two metrics taking into account the following two assump-
tions: First, we only consider two independent parameters, transmission count
and transmission power level that allow us to tune the direction of optimization.
Second, we only allow these two parameters to change their values over time,
and assume that they are managed by application-specific policies.

Using these values, at each point in time the metric selects the best possible
route based only on the current values and not taking into account previous
history. Changes to these parameters over time will be considered later when we
deal with application-specific policies.

Generic Routing Metric and Policies for WSNs 103

4.1 The Metric

Terminology. Let G = (N,E) be a fully connected undirected graph, where N
is a set of nodes numbered [0..n] and node 0 is called the sink. ∀i, j ∈ N each
link (i, j) ∈ E has a pair of characteristics: (p, e) ∈ (Pr,En).

For any two nodes i, j ∈ N , we define the link quality pij ∈ Pr to be the
product of the probabilities indicating that a packet sent by node i is received
correctly by node j and vice versa. If no blacklisting is used, Pr = [0, 1]. Two
nodes i, j ∈ N are defined to be neighbors, if pij �= 0. This implies that implicit
acknowledgements can be used in our model, since neighbors can always hear
each other.

The sequence of links (i, k1), (k1, k2) . . . (kf , 0) is a path Pathi from node i to
the sink 0, if each link (i, k1), (k1, k2) . . . (kf , 0) connects two neighbors. Without
loss of generality we assume that all paths end at the sink. The metric defines a
partial order over all paths. We consider only paths from the same node to the
sink to be comparable. If node j is chosen to be a parent of node i along the
path, then we define the notation pi = pij .

Additionally, ei(l) ∈ En is a discrete function which represents the depen-
dency between the transmission power level l and energy ei needed for one
transmission of a packet using this power level. En is the domain of such dis-
crete functions that might be different for each radio type.

Each node i ∈ N initially possesses the amount of energy Ξi. If possible, it
might manage the transmission power level li of the radio and change the number
of possible packet transmissions ri. The number of possible retransmissions in
the case of send failures is then (ri − 1). Both techniques have an effect on the
amount of energy spent to send the packet and may influence pij . We consider li
and ri to be the input parameters of our model and to be tunable by application-
specific policies.

Our model tries to describe and analyse the end-to-end packet reception rate
or path quality referred to as Gainpathi

and the total energy spent by all nodes
along this path denoted as Energypathi

. If we consider any possible path, the
notation Gain and Energy is used.

Mathematical Description. Transmitting a packet over a link can be modeled
as a Bernoulli trial. However, transmitting a packet over a path is not a Bernoulli
process, because if the packet is lost on one of the links, it is not forwarded any
further. This fact is the basis of our model which considers expected energy
consumption Exp(Energy) and expected path quality Exp(Gain) from the point
of view of the influence of transmission power control and the available number
of retransmissions.

Tuning the transmission power and applying a retransmission mechanism
might look like different techniques, but both leave their print on the energy
consumption of the link and its quality. By performing one retransmission, we
spend twice as much energy, even though the packet might still be lost. By in-
creasing the transmission power level we expect to increase the signal to noise
ratio and hope for better link quality. However, as explained in [7], this is not

104 O. Saukh et al.

Fig. 2. Path evaluation: general case

guaranteed. These facts make retransmissions and transmission power control
similar instruments in our model.

Let us now assume that a packet is originated at node n and should be
forwarded to the sink 0 using some Pathn (see Fig. 2). The link qualities along
the path are pn, pn−1, . . . p1 and the energy spent by each node to transmit a
packet via a link in the absence of retransmissions is en(ln), en−1(ln−1), . . . e1(l1).
The possibility to retransmit a packet directly influences both parameters and
moreover, separates the model into several cases dependent on the maximum
number of times r the packet is allowed to be transmitted. Commonly, there are
between 1 and 3 transmission attempts available.

First, we consider the case, where nodes do not have the possibility to per-
form retransmissions. Later, the model is extended by removing this limitation.
Finally, we discuss the case when the number of transmissions is unlimited on
each link.

Case 1: No retransmissions (ri = 1). This is the simplest case, when
the retransmission mechanism is not used and the packet is allowed to be sent
only once (ri = 1). We are interested in the evaluation of the path characteris-
tics (Energypath and Gainpath) given the qualities pi and power consumptions
ei(li) = ei of each link dependent on the current transmission power levels li.
The mathematical expectation of each characteristic is:

Exp(Gainpath)ri=1 = pn(pn−1(. . . p2(p1) . . .)) (1)

Exp(Energypath)ri=1 = en + pn(en−1 + pn−1(· · · + p2(e1) . . .)) (2)

As can be found from the expressions, there is no need for global knowledge
to calculate the values at each node. It is enough if each node propagates its
accumulated values through the routing tree.

Case 2: Limited number of transmissions (ri = xi � ∞). Let us assume,
that in this case all the nodes in the network may perform a maximum of xi

transmissions, that is, (xi − 1) retransmissions on the link (i, i − 1) if the packet
is lost. Then the probability that the packet sent by node i is received by node
(i − 1) is:

ai =
xi∑

k=1

pi(1 − pi)k−1

and node i is expected to perform

bi =
xi∑

k=1

kpi(1 − pi)k−1 + xi(1 − pi)xi

Generic Routing Metric and Policies for WSNs 105

attempts to send a packet given ri = xi possible transmissions. The aforemen-
tioned formula needs some explanation. After the first attempt to send a packet,
it is successfully received by the node (i − 1) with probability pi. However, with
probability (1 − pi) the packet needs to be retransmitted. In other words, with
probability (1 − pi) we need to perform at least two attempts to send a packet.
But during the second try, only (1−pi)pi packets are expected to be successfully
delivered. Therefore, with probability pi(1 − pi)k−1 a packet is transmitted via
link i after k transmission attempts. If we are limited to xi transmissions, with
probability (1 − pi)xi we are still not able to send a packet successfully and are
expected to give up. In this case we have made xi unsuccessful attempts.

If each send attempt costs ei energy units, node i spends biei energy units to
send a packet given ri = xi transmissions.

So, the expectation values of both metrics are:

Exp(Gainpath)ri=xi
=

n∏
i=1

ai (3)

Exp(Energypath)ri=xi
= bnen + an(bn−1en−1 + an−1(· · · + a2(e1) . . .)) (4)

Case 3: Infinite number of transmissions (ri = ∞). If we have an in-
finite number of transmissions and pi �= 0, sooner or later the packet will be
transmitted via any link (i, i − 1) with probability 1:

ai = limn→∞
n∑

k=1

pi(1 − pi)k−1 = 1

If pi = 0, the link does not connect any neighboring nodes, so it cannot be
selected to transmit packets. The expected number of attempts for delivery over
a link is then:

bi = limn→∞
n∑

k=1

kpi(1−pi)k−1+n(1−pi)n = limn→∞
pi

1 − pi
·
n+1∑
k=1

k(1−pi)k =
1
pi

Therefore, in the case of an infinite number of transmissions, we have:

Exp(Gainpath)ri=∞ = 1 (5)

and if each send attempt at node i costs ei energy units, we have:

Exp(Energypath)ri=∞ =
n∑

i=1

ei

pi
(6)

Discussion. Analyzing already existing metrics like ETX, SR and SPF from
the perspective of the model we just described, we can see, that they cover only
partial cases and none takes either the possibility to control the transmission
power level or to set the maximum number of transmissions into consideration.

106 O. Saukh et al.

The ETX metric corresponds to equation (6) when en = en−1 = · · · = e1 = 1
and accounts for an infinite number of transmissions, which simplifies the model
but does not fit reality. The SR metric coincides with equation (1). The SPF
accounts for neither energy consumption nor the path quality and in the general
case is expected to behave unpredictably over both characteristics.

Therefore, the SR and ETX metrics are just two special cases of our model.

GEM. Let us now use the model we have just defined to create a metric that
can be optimized to find better routes. A metric is a rule which builds the routing
tree and lays the foundation for its efficiency. Therefore, there are some features
we would like our metric to reflect. It should be based on the model used and
should be able to find a compromise between path quality (and, therefore, gain)
and energy consumption. We define our metric to be:

GEM =
Exp(Gain)

Exp(Energy)
(7)

GEM stands for Gain per Energy Metric and, as we will see in the experi-
mental section, behaves better in practice than other existing routing metrics.
From a more theoretical point of view, GEM has some nice features:

GEM finds the best throughput paths taking energy into account. Both ex-
pected end-to-end success rate (Exp(Gain)) and expected resource demands
(Exp(Energy)) are directly included into the target function and, therefore,
changes to any of these parameters influence the GEM path estimation value.
Moreover, GEM is tunable by changing the values of the number of transmis-
sions ri and transmission power levels ei = ei(li) at each node, which allows for
the definition of application-specific policies very easily.

The evaluation of a path as done by GEM is based on the realistic assumption
that the link layer always has a limited number of retransmissions available.
However, the application itself might decide to retransmit a packet as many
times as needed. In this case, 1/Exp(Gain) reflects the expected number of
transmissions needed over a path (not a link) to transmit a packet successfully
at the application layer.

In order to calculate the value of GEM, there is no need to have global knowl-
edge about the system. GEM makes the route selection based on the accumulated
values for the expected end-to-end success rate and energy consumption propa-
gated by each node starting from the sink. Additionally, it obviates the necessity
of blacklisting, and, therefore, accounts for a wide range of link loss ratios and
even the existence of asymmetric links.

Finally, GEM leads to the formation of a naturally structured routing tree in
the sense that it decreases the probability of a decomposition of the tree into
a forest. This feature comes from including energy demands directly into the
metric. The nodes that are far away from the sink have a tendency to select
the furthest nodes first for data forwarding. The rational behind it is that if
a packet gets lost, it is better to lose it as soon as possible, as shown in the
motivating example. On the other hand, the closer the node is to the sink, the
more reliable and better quality paths are selected by our metric. This natural

Generic Routing Metric and Policies for WSNs 107

tree structure contributes to routing tree stability and, as a result, makes GEM
a perfect candidate for defining hierarchical structures.

4.2 Energy-Aware Policies

Although GEM accounts for both energy consumption of a path and end-to-end
path quality, it is simply a ratio that needs to be optimized. In many applications
it is important to stress which of these two parameters is more important and
in which way. Simple parametrization is not much of a help, since it is usually
impossible for the application to define the exact relative importance between
energy and gain.

Therefore, we propose the use of policies, a more complex, but application spe-
cific type of parametrization. Each policy is aimed at optimizing either the energy
or the end-to-end success rate characteristic of a path and might be applicable
to a certain type of applications. Therefore, a policy is responsible for setting the
right values for the transmission power level and retransmission count over time,
that is, taking the history of the system into account. In general, a policy should
know how often the application has requested to send a packet, which signal
strength it used and what number of retransmissions was needed to forward the
packet to the next node along the path. This information together with data
about the environment obtained through the observation of link quality changes
over time and the goals of the application serve as input parameters for the policy.

Below we present some examples of policies that perform different optimiza-
tions and can be modeled using our approach. All of them are based on tuning
either the transmission power level or setting an appropriate maximum trans-
mission count for each node in the network.

Policy Examples. In [8] the authors examined the Neighborhood Based Policy
(NB), a policy that decreases the transmission power level if the number of
neighbors exceeds a predefined value and vice versa. This might be useful for
adaptation of routing algorithms to sparse and dense networks and is supported
by our model by setting ri to a fixed value.

In [10] the authors describe a model of the node lifetime based on the node
power function ξi, which describes the node energy demands at each point in
time. Ψi(t) = Ξi −

∫ t

t0
ξi(t)dt shows the energy left on the node at a certain point

in time t1. The policy called Lifetime Based Policy (LTB) is then able to keep
track of Ψi(t), predict the lifetime of the system, and modify its characteristics
by adjusting both transmission power level and transmission count.

Some policies might be based on tuning the maximum transmission count as
well as the transmission power level. For example, it is possible to differentiate
packet content and distinguish more or less important information, but still keep
track of the energy spent to send packets to a sink. More important packets might
be sent using a higher transmission power level or be allowed to be retransmitted
more times in case of send failures (Packet Type Based Policy (PTB)).

1 Recall that Ξi is the initial amount of energy on node i.

108 O. Saukh et al.

Both tuning parameters can also be set individually by each node to make
link qualities in the routing tree be equal. Then the goal is to select the lowest
energy paths without affecting the end-to-end packet success rate (Equal Gain
Based Policy (EGB)). In this case, GEM is expected to perform close to ETX
with the only difference that the maximum transmission count is always limited,
even if to a large value and, therefore, gains in energy consumption along the
path will be measured. This would be the case especially in sparse and poorly
structured networks.

The transmission power level as well as the number of transmissions might
be used to optimize the packet reception rate of the link with the current parent
(Link Quality Based Policy (LQB)). According to [7], increasing the transmission
power level does not guarantee a better link quality. However, if LQB is based on
this parameter, it should help making the links from the transitional region be
more stable and, therefore, in many cases, should still increase the link quality
as shown by the experiments in [4].

Obviously, these are just examples and a more exhaustive classification of
policies and an analysis of their characteristics must be performed and is left for
future work. However, in order to show their potential effects, we present some
results of GEM combined with LQB and compare it to only using GEM.

5 Experimental Results

For the experiments presented in this paper we used 10 Tmote Sky motes based
on the TI MSP430 microcontroller with a CC2420 radio module located in an
office environment. The nodes were distributed in a room of 4.8 × 2.4 meters
and the initial transmission power levels were set to one of the lowest possible
values in oder to organize them into a multihop network.

There are some routing module settings that need to be mentioned. We have
used a moving average to estimate the link quality with a window size of 10 (see
[3]). The acceptable number of missed packets is equal to 5, after which the entry
is deleted from the routing table. The routing table size was set to 10, so that
all the nodes had equal chances to be selected as parents for packet forwarding.
Initially, all nodes communicate at power level li = 2 (range is [1..31]).

We have tested the three metrics from related work and compared them in
the first set of experiments with GEM without using any policy (GEM-off).
In the second set of experiments we investigated the effect of the LQB policy
(GEM-lqb) and compared it to GEM-off.

5.1 GEM Without Policies

In this set of experiments we evaluated the ETX, GEM-off, SPF and SR metrics
for the case of 1, 2 and 3 maximum available transmissions and equally fixed
transmission power levels. In our setting, the experiment lasted 100 seconds and
was repeated a total number of five times. The graphs present the average of
these five experiments.

Generic Routing Metric and Policies for WSNs 109

As evaluation criteria we have included the end-to-end packet success rate,
which shows the percentage of successfully received packets from each node in
the network; energy consumption of the selected path from each node; hop dis-
tribution along the path from each node to the sink; route stability, that is, the
average number of parent changes during one experiment; and route mainte-
nance overhead, that is, how much information needs to be sent accross links to
maintain the routing tree.

End-to-End Success Rate. The three graphs on the left-hand side of Fig. 3
show the percentage of packets which were successufully delivered to the sink
node by each one of the nodes. The SPF metric has the worst behavior because
it selects the minimal-hop paths and, therefore, the longest low quality links

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9

S
u
c
c
e
s
s
 R

a
te

 (
%

)

Node IDs

End-to-End Success Rate (r=1)

ETX

GEM-off

SPF

SR
 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9

E
n
e
rg

y
 U

n
it
s

Node IDs

Energy Consumption (r=1)

ETX

GEM-off

SPF

SR

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9

S
u
c
c
e
s
s
 R

a
te

 (
%

)

Node IDs

End-to-End Success Rate (r=2)

ETX

GEM-off

SPF

SR
 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9

E
n
e
rg

y
 U

n
it
s

Node IDs

Energy Consumption (r=2)

ETX

GEM-off

SPF

SR

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9

S
u
c
c
e
s
s
 R

a
te

 (
%

)

Node IDs

End-to-End Success Rate (r=3)

ETX

GEM-off

SPF

SR
 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9

E
n
e
rg

y
 U

n
it
s

Node IDs

Energy Consumption (r=3)

ETX

GEM-off

SPF

SR

Fig. 3. End-to-End success rate and energy consumption distribution in case of 1 to 3
transmissions

110 O. Saukh et al.

to route packets to the sink. GEM is not influenced by any policy and reflects
energy consumption and gain as a simple ratio. However, it shows nearly the
same level of packet success rate as ETX. The reason for this is that the links
from the transitional region are unstable, and, therefore, usually not considered
for routing packets. This does not happen as a result of blacklisting but rather
because the packets are received accidentally via such links. The SR metric shows
a good packet success rate, since it is targeted at maximizing this parameter
characteristic.

Energy Consumption. The three graphs on the right-hand side of Fig. 3
display the energy demands of using the selected path from each node. In all
our examples we calculate the energy consumption of a path in energy units.
One energy unit is the amount of energy needed to send a packet at the lowest
possible transmission power level (l = 1). Using the Tmote Sky specification it is
easy to estimate how many energy units are spent if communication takes place
with higher power levels.

The energy consumption of paths obviously increases with each additional
retransmission. SPF has the lowest energy demands in the case of 1 transmission.
However, this is not true anymore if the retransmission mechanism is available.
This is because links with low qualities need additional send operations and,
therefore, increase energy consumption of paths.

The SR metric shows the highest energy consumption for the paths from
nearly every node. This makes sense since it is the only metric that does not
take energy consumption into account. ETX does this indirectly by estimating
the number of transmissions and SPF does it by minimizing the number of hops.

ETX and GEM both take energy consumption into account (ETX is just a
special case of GEM with the number of transmissions approaching infinity).
However, the distribution of energy consumption shows that considering an in-
finite number of transmissions still leads to energy losses (according to these
experiments up to 30%), because ETX considers all paths to be undirected (see
formula (6)), which is not the case considering the energy demands of the path
itself (see formula (4)).

Hop Distribution. The graph on the left-hand side of Fig. 4 reflects the depth
of the routing tree. It shows the average number of hops needed by the selected
path to route packets from each node. As expected the SPF metric selects the
minimal hops paths to route packets whereas the SR metric selects the longest
paths. ETX and GEM behave similarly.

Route Stability. The average number of parent changes during one experiment
is presented in the right graph of Fig. 4 and reflects the stability of the routing
tree. As can be seen, the results show a good correlation with the hop distribution
metrics. The paths selected by the SPF metric are the most stable, whereas SR
shows the least stability and might lead to cycles in the routing tree. ETX and
GEM behave similarly and have values between SR and SPF.

Generic Routing Metric and Policies for WSNs 111

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9

H
o
p
 C

o
u
n
t

Node IDs

Hop Distribution

ETX

GEM-off

SPF

SR

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

ETX GEM-off SPF SR GEM-lqb

P
a
re

n
t
c
h
a
n
g
e
s
 p

e
r

1
0
0
s

Metrics

Parent Changes (Stability)

Fig. 4. Hop distribution and routing tree stability

Route Maintenance Overhead. For all metrics, the amount of data required
for route maintenance is relatively low. SPF simply forwards a hop count to the
sink. Analogously, SR propagates the product of the link qualities to the sink,
whereas ETX sends the expected number of transmissions. GEM requires the
two values Exp(Gainpath) and Exp(Energypath) to make its decision.

In general, without any policy, GEM shows a slightly worse end-to-end suc-
cess rate than SR and ETX but considerable gains in energy that allow it to
influence the success rate if needed by the application using helper techniques
like retransmissions and transmission power level tuning. Theoretically, since
GEM-off tries to maximize the ratio of expected end-to-end packet success rate
and energy consumption, the losses in end-to-end success rate are expected to be
proportional to the gains in energy. However, in practice, link qualities are not
uniformly distributed. Links from the transitional region show high variations
in link quality and, therefore, the link quality estimator degrades their value
as candidates to be part of the selected route in stable scenarios. This makes
GEM select good quality paths even for the case where retransmissions are not
available, and show comparatively high energy savings.

5.2 GEM Combined with LQB

In this set of experiments we use GEM in combination with the LQB policy. The
initial power level was chosen to be the same as in previous experiments li = 2.
We have implemented the LQB policy to increment the transmission power level
li by one, if at some moment pi appears to be less than 50% and decrement li if
the link quality is over 95%, which are some intuitive values for our scenario. We
compare the GEM-lqb with GEM-off results and analyse the policy behavior in
case of no retransmissions. We have used the same evaluation criteria as for the
previous section, but have added convergence, which is a policy-specific criteria
that indicates whether or not changes to the power level eventually stabilize.

End-to-End Success Rate. GEM-lqb shows an about 15% better success rate
than GEM-off (Fig. 5, top left graph). The reason for this is the influence of the
policy, which has increased the transmission power levels where needed to make
individual nodes communicate with better quality.

112 O. Saukh et al.

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9

S
u
c
c
e
s
s
 R

a
te

 (
%

)

Node IDs

End-to-End Success Rate (r=1)

GEM-off

GEM-lqb

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9

E
n
e
rg

y
 U

n
it
s

Node IDs

Energy Consumption (r=1)

GEM-off

GEM-lqb

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9

H
o
p
 C

o
u
n
t

Node IDs

Hop Distribution

GEM-off

GEM-lqb

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300 350 400 450

P
o

w
e

r
L

e
v
e

l

Time

Power Level Convergence in GEM-lqb

Node 0

Node 1

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300 350 400 450

P
o

w
e

r
L

e
v
e

l

Time

Power Level Convergence in GEM-lqb

Node 2

Node 3

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300 350 400 450

P
o

w
e

r
L

e
v
e

l

Time

Power Level Convergence in GEM-lqb

Node 4

Node 5

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300 350 400 450

P
o

w
e

r
L

e
v
e

l

Time

Power Level Convergence in GEM-lqb

Node 6

Node 7

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300 350 400 450

P
o

w
e

r
L

e
v
e

l

Time

Power Level Convergence in GEM-lqb

Node 8

Node 9

Fig. 5. Evaluation of GEM-metric with LQB policy

Energy Consumption. In many cases the overall evergy consumption along
the path from each node to the sink is minimized even if communication now
needs more energy units for one send operation (Fig. 5, left center graph). In-
creasing the transmission power level by one makes a send operation only up
to 10% more expensive (the dependency is nonlinear on the Tmote hardware).
However, it might lead to the selection of a parent node which is closer to the
sink but still provides good gains. For nodes 7-9 the number of hops to the sink
was minimized by increasing the transmission power range and, therefore, the
energy demands were heavily reduced.

Hop Distribution. Small changes in transmission power levels have minimized
the depth of the routing tree to be two hops instead of three as in the previous
set of experiments (Fig. 5, bottom left graph), leading to a shorter tree.

Generic Routing Metric and Policies for WSNs 113

Route Stability. Since the overall number of hops decreased and the selected
routes were of a better quality, the average number of parent changes for GEM-
lbq is lower than that of GEM-off (1.5 instead of 2, as shown in Fig. 4).

Route Maintenance Overhead. The LQB policy does not generate any over-
head by means of additional packets or packet fields. Its decision is solely based
on local information.

Convergence. In the graphs on the right-hand side of Fig. 5, we show the trans-
mission power level of nodes 1 – 10 during the first 450 seconds of the experiment.
We can observe that GEM-lbq does not perform any further changes after about
160 s. However, in general convergence is not guaranteed. It might be interesting
to study the conditions under which convergence can be guaranteed, but for now,
we assume that it is the responsibility of the policy to ensure that this is the case.

A more detailed analysis of policy types and their specific characteristics like
convergence, applicability to certain scenarios, the extents of influence on end-to-
end packet success rate and energy consumption, etc. still need further research.

6 Conclusion and Future Work

In this paper we have shown that the choice of a metric for the construction of
routing structures needs to explicitely take energy into account. This is espe-
cially true for long-running monitoring applications. We have proposed a new
routing metric GEM and presented its mathematical foundation together with
some application-specific policy examples that make it able to adapt to applica-
tion needs and specifics of the environment. Our mathematical model covers most
routing metrics found in the literature and present them as special cases of it. The
evaluation results show that the application of GEM alone provides considerable
energy savings with equivalent end-to-end packet success rate when compared
to other metrics. Moreover, the resulting routing tree is naturally structured
and, therefore, has good stability. GEM is parameterizable and benefits from a
combination with additional application-specific policies. However, there is still
a number of interesting questions that we would like to address in the future,
such as a more systematic classification of policies, their convergence character-
istics, connectivity, general applicability, etc. All these topics together with more
thorough testing in simulation and real-life experiments are left for future work.

References

1. D. Couto, D. Aguayo, J. Bicket, R. Morris, A High-Throughput Path Metric for
Multi-Hop Wireless Routing, M.I.T. Computer Science and Artificial Intelligence
Laboratory, September 2003.

2. R. Draves, J. Padhye, B. Zill, Comparison of Routing Metrics for Static Multi-Hop
Wireless Networks, Microsoft Research, 2004.

114 O. Saukh et al.

3. A. Woo , T. Tong , D. Culler, Taming the underlying challenges of reliable multihop
routing in sensor networks, Proc. of the 1st intl. conf. on Embedded networked
sensor systems, November 05-07, 2003, Los Angeles, California, USA.

4. D. Son, B. Krishnamachari, J. Heidemann, Experimental study of the effects of
Transmission Power Control and Blacklisting in Wireless Sensor Networks, In Proc.
of SECON (2004), Santa Clara, California, USA, October 4-7, 2004.

5. O. Gnawali, M. Yarvis, J. Heidemann, R. Govindan, Interaction of Retransmission,
Blacklisting, and Routing Metrics for Reliability in Sensor Network Routing, In
Proc. of SECON (2004), October 2004.

6. D. D. Couto, D. Aguayo, B. Chambers, and R. Morris. Performance of multihop
wireless. First Workshop on Hot Topics in Networks (HotNets-I), October 2002.

7. J. Zhao, R. Govindan, Understanding Packet Delivery Performance in Dense Wire-
less Sensor Networks, In Proc. of SenSys’03, Los Angeles, California, USA, 2003.

8. M. Kubisch, H. Karl, A. Wolisz, L.C. Zhong, and J. Rabaey, Distributed Algorithms
for Transmission Power Control in Wireless Sensor Networks, Wireless Communi-
cations and Networking (WCNC’03), March 2003.

9. M. Carvalho, C. Margi, K. Obraczka, J. Gracia-Luna-Aceves, Modeling Energy
Consumption in Single-Hop IEEE 802.11 Ad Hoc Networks, University of Califor-
nia Santa Cruz, 2004.

10. A. Salhieh, J. Weinmann, M. Kochhal, and L. Schwiebert, Power Efficient Topolo-
gies for Wireless Sensor Networks, ICPP 2001, September 2001.

11. C. Shurgers and M.B. Srivastava, Energy Efficient Routing in Wireless Sensor
Networks, MILCOM’01, September 2001.

12. R.C. Shah and J.M. Rabaey, Energy Aware Routing for Low Energy Ad Hoc Sensor
Networks, WCNC2002, March 2002.

On the Scalability of Routing Integrated Time
Synchronization

János Sallai1, Branislav Kusý1, Ákos Lédeczi1, and Prabal Dutta2

1 Institute for Software Integrated Systems, Vanderbilt University,
2015 Terrace Place, Nashville, TN 37203, USA
{sallai, kusy, akos}@isis.vanderbilt.edu

2 Computer Science Division, University of California,
Berkeley, CA 94720, USA
prabal@cs.berkeley.edu

Abstract. Reactive time synchronization is becoming increasingly pop-
ular in the realm of wireless sensor networks. Unlike proactive protocols,
traditionally implemented as a standalone middleware service that pro-
vides a virtual global time to the application layer, reactive techniques
establish a common reference time base post facto, i.e. after an event of
interest has occurred. In this paper, we present the formal error analy-
sis of a representative reactive technique, the Routing Integrated Time
Synchronization protocol (RITS). We show that in the general case, the
presence of clock skews cause RITS to scale poorly with the size of the
network. Then we identify a special class of sensor network applications
that are resilient to this scalability limit. For applications outside this
class, we propose an in-network skew compensation strategy that makes
RITS scale well with both network size and node density. We provide
experimental results using a 45-node network of Berkeley MICA2 motes.

1 Introduction

In a large class of sensor network (sensornet) applications, such as environmental
monitoring [1], [2], target tracking [3], or countersniper systems [4], [5], sensor
nodes are deployed in the environment to detect certain physical phenomena,
or events. Typically, the sensed data is tagged with the location of the sensor
node and the time of event detection. The location and time of event allow the
sensornet to combine data from multiple sensors into high level information,
that is, to perform data fusion, independently from the time when the data is
received at a data fusion node. However, the data fusion can be only achieved if
the time tags of events have a common time base across multiple sensors, or in
other words, the sensors are time-synchronized.

The most common way to achieve time synchronization (timesync) is to
use one of the many proactive timesync protocols [6], [7]. The term proac-
tive is used because these protocols establish a virtual global time base in ad-
vance, namely, before the sensornet application starts registering events from

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 115–131, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

116 J. Sallai et al.

the environment. Commonly, proactive protocols use periodic message broad-
casting to compensate for different sources of error (e.g. clock drifts, clock fre-
quency noise, and clock glitches). The need for periodic message exchange, how-
ever, conflicts with the power constraints and lifetime requirements of sensornet
applications.

The observation that the global virtual time of an event is not used at the
node registering the event, but only at the data fusion node, together with the
fact that proactive protocols suffer from severe messaging overhead, lead to the
development of power-aware reactive timesync protocols [8], [7], [9]. The general
idea of reactive approaches is not to synchronize the local clocks, but instead to
timestamp the events using unsynchronized local clocks. Synchronization takes
place after the event had been detected; henceforth, this approach is often called
post-facto synchronization.

We concentrate on the analysis of the Routing Integrated Time Synchro-
nization protocol (RITS) [8] that integrates post-facto timesync into a routing
service. RITS, as well as reactive techniques in general, is superior to many proac-
tive timesync protocols with respect to communication overhead. However, by
decreasing the number of synchronization messages, we trade precision for power
saving. While with a proactive protocol a node can frequently update its knowl-
edge of the virtual global time, RITS is limited to using routing messages for
synchronization.

In this paper, we show that the timesync error of RITS can significantly grow
in the presence of clock skews and communication delays in message routing. We
provide a formal analysis to explain the effects of error in such cases. The analysis
of the components of RITS error shows that RITS is well-suited, without any
enhancements, for applications where the sensor fusion algorithm works on time
difference of arrival (TDOA) of events that are collocated in space and time. For
the general case, we propose an in-network skew compensation strategy that can
be adopted to improve the timesync error of RITS in particular, and reactive
timesync protocols in general.

Based on the observation that information on clock skews of neighboring
nodes is implicitly present in the timestamped messages they exchange, nodes
can maintain a neighbor table storing skew information without any communi-
cation overhead. RITS converts the event timestamps from the local time of the
sender node to the local time of the receiver node as the message is being passed
from hop to hop along the routing path. We propose that the conversion of the
timestamp includes compensation for the clock skew between the sender and the
receiver at every hop.

It is imperative that sensornet applications be scalable not only with network
size, but also with node density. In a dense network, however, it is not possible
to store skew information for all neighbors. Our skew compensation approach
addresses this requirement with a space efficient skew table maintenance strategy
that operates with predefined table size. We store skew information only for a
small selected subset of the neighbors. Unknown skews are estimated based on
the locally available skew information.

On the Scalability of Routing Integrated Time Synchronization 117

Our experimental results, acquired from a 10-hop network of 45 MICA2
motes with artificially introduced routing delays, show that employing skew
compensation reduces the timesync error of RITS from 29μs to 5.3μs on
average.

We organize the paper as follows: Section 2 provides a detailed description
of the leading reactive timesync protocols found in the literature. We formally
analyze the timesync errors of RITS and discuss the implications on the general
applicability of RITS in Section 4. To support sensornet applications in the
general case, Section 5 presents an in-network skew compensation technique
that improves the scalability of RITS with network size, communication delays,
and node density. Finally, we offer our conclusions in Section 6.

2 Reactive Time Synchronization Protocols

Traditional proactive timesync protocols require the clocks of sensor nodes to
be synchronized before an event happens. Because the clock rates of the nodes
drift and vary in random and unpredictable ways, depending on the required
timesync accuracy of sensornet applications, a non-trivial amount of system re-
sources needs to be spent to keep the clock rate information accurate and actual.
Post-facto (or reactive) timesync protocols propose to start the synchronization
process after the event is detected to avoid performing timesync when it is not
needed. This way nodes can be kept in a low-power sleep mode, conserving
energy during periods of inactivity.

Post-facto synchronization was first suggested in [10] and later extended
in [11]. The authors propose two forms of post-facto synchronization: single-
pulse synchronization which requires advance calibration to be accurate, but
reconstructs the global timescale quickly, and post-facto synchronization with
RBS which takes longer to converge but does not require any a priori knowl-
edge. The approach described in [9] transforms timestamps exchanged between
nodes to the local time of the receiver, rather than adjusting the clocks to the
global time base. The low message overhead of this method renders the protocol
suitable for sensornets. Finally, the approach advocated in [8] claims to provide
accurate and instantaneous timesync using no extra radio messages and requir-
ing no a priori information. We delve into the details of these synchronization
schemes in the remainder of this section.

Single-Pulse Synchronization. Single-pulse synchronization [11] requires a
third party node, a beacon, to broadcast a synchronization pulse right after an
event of interest was detected in the network. Nodes that receive the pulse use
it as an instantaneous time reference and normalize their timestamps of the
event detection to the synchronization pulse. This scheme works well for short
distances (i.e. within the broadcast range of a single node) provided the stimulus
timestamps are recorded close in time to the synchronization pulse. The three
main error sources of this scheme were characterized as the receiver clock skew,
variable delays in receivers, and propagation delay of the synchronization pulse.
The clock skew error is the most significant source of error, therefore single-pulse

118 J. Sallai et al.

scheme works the best, if a priori calibration of clock frequencies is performed
and clock skew estimates are used to correct the stimulus timestamps.

Post-facto Synchronization with Reference Broadcast. The second
scheme proposed in [7] resolves the drawbacks of single-pulse synchronization
scheme: it achieves timesync over large distances, and synchronizes nodes that
have no mutually shared information. After a stimulus event is detected in the
network, an algorithm estimating the clock skews between the nodes is exe-
cuted and the resulting clock skew estimates are used to correct the stimulus
event timestamps in the past. This scheme resolves the problems of the single-
pulse, but also brings in some disadvantages: the RBS estimator needs multiple
synchronization pulses to obtain clock skew estimates, so the timesync is not
achieved instantaneously. If a long time passes between the stimulus event and
skew estimator conversion, the clock skew estimates may significantly differ from
the clock skews at the event detection introducing additional errors.

Time Synchronization with Timestamp Conversion. This protocol [9]
proposes not to synchronize the local clocks of the devices, but instead to gener-
ate timestamps using unsynchronized local clocks. When the locally generated
timestamps are passed from a node to node in the network, they are converted
to the local time of the receiving device. Due to the limited precision of the
timestamp conversion used, the algorithm uses time intervals as a lower and
upper bound for the exact value. Comparison of timestamps relies on a special
interval arithmetic, hence there are cases when the temporal ordering of times-
tamps cannot be determined. One distinctive feature of this approach is that
the timestamp transformation has the following correctness property: the par-
tial ordering of event timestamps in the local time of a give node reported by
the algorithm is a subset of the total ordering of the times of the event in real
time. This approach explicitly targets communication of timestamps over long
distances, making it particularly suitable for multi-hop ad hoc networks.

3 The Routing Integrated Time Synchronization Protocol

RITS [8] is a reactive timesync protocol, which can be used to obtain times of
event detections at multiple observers in the local time of the sink node(s). We
provide a more detailed description of the protocol later when formally analyze
the timesync errors it introduces.

From the application’s point of view, RITS is an extension of the routing ser-
vice with a well-defined interface. The interface defines commands to send and
timestamp a data packet, a callback function to signal the reception of a packet,
and a command to query the timestamp of a received packet. On detecting an
event, the application on the sensor node generates a data packet containing the
event information, and timestamps it with the value of the local time of detec-
tion. It forwards the packet with the timestamp to the routing service, which
delivers it to the sink. RITS places no assumptions on the network topology
or routing algorithm beyond those that are required by the application. Rather

On the Scalability of Routing Integrated Time Synchronization 119

than performing explicit timesync after the event of interest is detected, RITS
performs inter-node time translation along the routing path from an observer
node to the sink: as the data packet travels from node to node in the network,
RITS converts the corresponding timestamp from the local time of the sender
to that of the recipient. When the packet arrives at the sink, the routing service
signals an event to the application layer that a packet has been received. The
application can then query the routing layer for the timestamp of the received
packet, which is returned in the local time of the sink.

The prototype implementation of RITS builds on the Directed Flood Routing
Framework (DFRF) [12]. DFRF is a generic routing framework that supports
rapid prototyping and implementation of large class of application specific rout-
ing protocols that are based on directed flooding. Integrating reactive timesync
with the routing service has several benefits over a standalone timesync service:

– Coupling of event data and event timestamps. There is a tight logi-
cal coupling between event information and the corresponding timestamps.
RITS retains this coupling: in a data packet, event data and timestamps are
physically collocated. RITS thus implements implicit timesync, that is, the
flow of time information is embedded in the flow of data. There are no pure
timesync messages, hence RITS has virtually no communication overhead.

– Network-transparent event timestamps. As data packets propagate in
the network, RITS converts the corresponding time stamp hop by hop to
the local time of the recipient node. As a result, all data packets received
by a given node contain event timestamps in the recipient node’s local time,
independently from where in the network the events originated.

– Packet aggregation. Packet aggregation helps decrease the number of mes-
sage transmissions. In fact, not only does the number of radio messages de-
crease, but also the overall payload size. This is because in an aggregated
radio message, n data packets (containing event information and event times-
tamp) share only one transmit timestamp.

– Packet filtering. Through packet filtering support, it is possible to discard
outdated messages at intermediate nodes enroute to the destination, thus
decreasing the message load.

– Orthogonality to the routing policy. DFRF allows for the customization
of routing behavior via routing policies. RITS is orthogonal to the policies,
that is, the same time conversion is used with different routing behaviors.

4 Analysis of the Error of RITS

The RITS protocol claims to achieve highly accurate instantaneous post-facto
timesync without using extra radio messages [8]. RITS provides these properties
only for a relatively small subset of sensornet applications, for which a particular
set of assumptions is fulfilled. We formally express the error of RITS and derive
the set of properties that RITS requires from sensornet applications.

As noted in both [11] and [8], reactive protocols are susceptible to multiple
sources of error. The two most egregious ones are the error caused by different

120 J. Sallai et al.

clock rates of the nodes on the routing path, and the error in timestamping the
radio message arrival.

We use the following notation: we have a set of N nodes that can be receivers
ri and/or senders si, i ∈ {1, . . . , N}. Each node has its own local clock that
measures the local time ti. We denote a fictious universal time with u. The
offset of the local time from the universal time can change over time because the
clock rate of a node can differ from the rate of universal time, we express the
relation of the local and universal time as

ti = αiu + βi. (1)

The clock skews αi are assumed to be constant in the time interval a packet
spends at node i. This assumption is justifiable for a reasonably fast routing
service, nevertheless the crystal clock rates, though slowly, do change in the
real hardware. Furthermore, we assume that the clock skews αi are independent
random variables from a symmetric distribution with mean one (that is, the
universal time rate). We impose no assumptions on the initial clock offsets βi.

We express the synchronization mechanism of RITS as follows: receiver rk

synchronizes with the sender sj by receiving a synchronization message mi. We
denote the sender timestamp of message transmission by ys

ij and the receiver
timestamp of message arrival by yr

ik. Both ys
ij and yr

ik are known to the receiver.
If es

ij and er
ik are timestamping errors of sender and receiver, respectively, and

ui is the universal time when the message was transmitted, then

ys
ij = αjui + βj + es

ij (2)
yr

ik = αkui + βk + er
ik. (3)

Similarly, if the i-th node records the local time of an event E, we denote this
timestamp as yEi.

According to [6] it is assumed that both er
ik, and es

ij are independent identi-
cally distributed random variables with zero mean. Since low-power transceivers
have limited communication range, we can further assume that the propagation
delay between the sender and receiver is negligible, therefore the universal time
of sending and receiving message mi are the same (i.e. ui).

If the receiver (rk) wishes to transform a time of stimulus event E from the
sender’s (sj) timeline to its own timeline, provided a radio message mi has been
sent, the receiver performs the following calculation:

yEk = yEj + yr
ik − ys

ij . (4)

It is important to note that the timestamp conversion of RITS does not consider
the clock skews. Henceforth, we expect that skew related errors will accumulate.

4.1 Error Along a Routing Path

Now let us apply the transformation iteratively as a message is being passed
along routing path to get the following general result. Timestamps converted to

On the Scalability of Routing Integrated Time Synchronization 121

the local times of the second, the third node and the n-th node (yr
01 = yE1) are:

yE2 = yE1 + yr
12 − ys

11

yE3 = yr
23 − (ys

22 − yr
12) − (ys

11 − yE1)

yEn = yE(n−1) + yr
(n−1)n − ys

(n−1)(n−1) = yr
(n−1)n −

n−1∑
i=1

(ys
ii − yr

(i−1)i).

We denote the timestamping error introduced by the i-th node with ei and
define it as e1 = es

11 and ei = es
ii − er

(i−1)i for i > 1 and use ei along with
Equations 2 and 3 to further rewrite yEn:

yEn = yr
(n−1)n −

n−1∑
i=1

αi(ui − ui−1) −
n−1∑
i=1

ei.

Furthermore, for the sake of simplicity, let us assume that for all i, ui − ui−1 is
constant, that is, the message spends equal amount of time at each node along
the routing path. Let us denote this constant with τ . This way we can separate
the first summation into skew-independent and skew-dependent components:

yEn = yr
(n−1)n − τ(n − 1) − τ

n−1∑
i=1

(αi − 1) −
n−1∑
i=1

ei, (5)

where the first term is the time when the message arrives at the last node,
the second term is the age of the packet, the third and fourth terms are errors
introduced by the clock skews and the message timestamping, respectively.

4.2 RITS and TDOA Measurements

In an important class of monitoring applications, sensor fusion works with time
differences of arrival (TDOA) of events. Let us assume that the event E was
detected at time uE by two nodes r1 and r′1, and the two time tags arrived to
the data fusion node along two different paths P and P ′, such that P = r1, . . . , rn

and P ′ = r′1, . . . , r
′
m. We further know that the final node of both P and P ′ is the

same (the data fusion node), so αn = α′
m = αdf . Without loss of generality we

can assume that n < m. Consequently, we express the error that RITS introduces
to the TDOA data when routing the timestamps to the data fusion node:

y′
Em − yEn = τ

n−1∑
i=1

(αi − α′
i) + τ

m−1∑
i=n

(αdf − α′
i) +

n−1∑
i=1

ei −
m−1∑
i=1

e′i. (6)

Due to the assumptions on the distribution of the skews and the message time-
stamping errors, the expected values of the first, third and fourth terms are
zero. Interestingly, the expected value of the second term is τ(m − n − 1)αdf .
This means that the clock skew of the data fusion node introduces an error
proportional to the clock skew of the data fusion node and the difference of
delivery times of the messages.

122 J. Sallai et al.

The variance of the two skew related terms sum up to τ [(n−1)+(m−1)]V (α),
meaning that the variance is proportional to the time the messages spend at a
given hop and to the sum of the lengths of the paths. The message timestamping
related error has a variance of [(n − 1) + (m − 1)]V (ei), which grows with the
sum of the path lengths.

An important special case is when the two paths overlap. Without loss of gen-
erality, we assume that P ′ = r1, . . . , rj , . . . , r

′
j+1, . . . , r

′
m. Using partially over-

lapping paths, the TDOA calculated by RITS changes as follows:

y′
Em − yEn = τ

n−1∑
i=j+1

(αi − α′
i) + τ

m−1∑
i=n

(αdf − α′
i) +

n−1∑
i=1

ei −
m−1∑
i=1

e′i. (7)

Since the skew related errors introduced by the nodes that are on both paths cancel
out, the variance of the skew related error decreases to τ [(n−1)+(m−1)−j)]V (α).
That is, the variance of the skew related errors is proportional to the time the
packet spend at the nodes and to the length of the disjoint regions of the routing
paths. Another factor is that the event times need to be close to each other. Oth-
erwise, the clock skew of the sender node introduces a large error. In particular,
the events should be kept on a node for as short period of time as possible.

4.3 Implications of Theoretical Results

We provide typical expected timestamping errors and clock skews for the most
common sensornet platforms to match the formal results of the previous section
to real world hardware in Table 1. We further concentrate on the applicability of
the RITS protocol and show an experimental test case, where the timesync error
of RITS does not scale well with the number of hops. Consequently, we provide
a set of properties that RITS requires from the sensornet applications. Finally,
we use the error analysis results and suggest two improvements of RITS.

Applicability of RITS. The design of RITS was heavily influenced by the
requirements of a specific sensornet application, acoustic event localization [4]:

– only time differences of arrivals are required to localize an acoustic event,
– fast routing to the sink is required, because the event source is mobile,

Table 1. Survey of timesync errors expected from timestamping and clock skews for
common sensornet platforms [13], [14]

Platform Timestamping error Clock skew error

Mica2 external crystal 30.5 μs 50ppm
(32 kHz, CC1000 radio) (= 1 clock tick) typically 30.5 μs per second
Mica2 internal oscillator 1.4 μs 50ppm
(7MHz, CC1000 radio) typically ≤ 20μs per second
Telos internal oscillator 0.125 μs 50ppm
(8MHz, CC2420 radio)

On the Scalability of Routing Integrated Time Synchronization 123

sink

Fig. 1. Large scale network detects an
event, the timestamps are then routed
along a spanning tree to the sink node

Average pairwise difference

0%

5%

10%

15%

20%

25%

30%

35%

0 10 20 30 40 50 60 70 80 90 100

Error(s)

P
er

ce
n

ta
g

e

 .

Fig. 2. The histogram of average errors for
the experiment with simulated transmis-
sion delays of 5 seconds at each node

– preservation of temporal ordering of events is not a requirement, and
– detected events are close to each other in space and time.

These properties are important because they place bounds on the terms in
Formula 6 that contribute to the error of RITS. Maximum RITS error of 80μs
and the average error of 8μs were reported in [8] using Mica2 platform and 7MHz
internal clock in a 10 hop network. However, only a small class of applications
can achieve similar results, the main problem being the error introduced by
the (uncompensated) clock skews. Table 1 shows that this error can become
significant even over moderate time intervals.

We experimentally verified the poor scalability of RITS if the routing time
to the sink node increases. We carried out an experiment similar to the one
described in [8]: we used 45 Mica2 motes arranged in a grid forming a 10-hop
network. Events that triggered nodes within a certain radius were periodically
simulated at random points in the network. Each event was simultaneously de-
tected at all triggered nodes, and the timestamps of these detections were sent
to the data fusion node (sink), as shown in Figure 1. We introduced an artificial
delay of five seconds between receiving and forwarding the message, thus inflat-
ing the time intervals it takes to route the event detection times. The maximum
and average synchronization errors are computed as the maximum and aver-
age pairwise difference of all timestamps received by the sink that correspond
to the same event detection. Compared to the non-delayed case [8], the mea-
sured maximum and average synchronization errors across 700 simulated events
grew significantly from 80μs to 265μs, and from 8μs to 29μs, respectively. The
histogram of average errors can be seen in Figure 2.

Mitigating the Error of RITS: Routing Strategies. Formula 6 shows that
if we fix a routing path P , then the variance of the term τ

∑
(αi − 1) grows with

the increased routing time to the sink. This causes a large timesync error along
the path P . The important observation is that this error is consistent, i.e. has a
relatively small variance, as it is caused by the timestamping errors alone, since
the skew related errors cancel out.

We verified this experimentally by deploying 50 Mica2 nodes logically
arranged on a line, forming a 50-hop network. The first node, the coordina-
tor, broadcasts a RITS packet with its current time. Other nodes retransmit the

124 J. Sallai et al.

Sending with no delay

-8

-6

-4

-2

0

2

4

6

8

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

hop count

ac
cu

m
u

la
te

d
 e

rr
o

r(
μs

)
.

-40

-30

-20

-10

0

10

20

30

40

va
ri

an
ce

(μ
s)

 .

average accumulated error (μs)
variance of errors (μs)

Sending with 5 second delay

0

100

200

300

400

500

600

700

800

1 5 9 13 17 21 25 29 33 37 41 45 49
hop count

ac
cu

m
u

la
te

d
 e

rr
o

r(
μs

)
.

0

10

20

30

40

50

60

70

80

va
ri

an
ce

(μ
s)

 .

average accumulated error (μs)
variance of errors (μs)

Fig. 3. 50 nodes arranged on a line experiment: errors of the RITS calculated time
compared to a single-node time for the no-delay and 5 seconds delay strategies are
shown. The accumulated errors are averaged over multiple runs and we plot the variance
of these errors.

packet upon receiving it, until the packet reaches the last node. The coordinator
overhears all retransmissions, uses RITS to convert the timestamp in the packet
to its local time and records the error of the timestamp after each hop. This
allowed us to study the error of RITS across multiple hops. Figure 3 shows the
accumulated error after each hop, averaged over multiple rounds. To make the
clock skew errors prevail over timestamping errors we introduced a delayed strat-
egy for the RITS packet retransmission: a node waits 5 seconds after receiving
the packet and only then retransmits it.

The promising fact is that the variance of the accumulated error is the same
in both experiments, which means that the motes introduce significant, but
consistent error. Consequently, we specify the applications requirements and
propose improvements to the RITS protocol to make it scale for large
networks:

– The original RITS protocol did not discuss the implications of using differ-
ent routing strategies. We observe the advantage of overlapping routes, and
suggest using spanning tree routing which ensures this property. In contrast,
gossip or epidemic protocols which can result in dynamic routing paths, will
not support scalability of RITS.

– The sink node introduces large error if the time between receiving two differ-
ent events is long. This error is caused by the clock skew error of the sink and
can be mitigated by synchronizing the sink with a high precision external
clock source.

With these improvements, RITS scales well with the number of hops and
communication delays, provided an application has the following properties:

– Applications need to be TDOA based; we know that a routing path intro-
duces large error which is unknown to the sink node, therefore, relating this
time to any global time scale is not possible,

– the stimulus event detections must be located within a small neighborhood,
as shown in Figure 1, so that the significant portions of the spanning tree
paths overlap.

On the Scalability of Routing Integrated Time Synchronization 125

5 Skew Compensation

The main features of RITS were that it does not require any a priori informa-
tion, does not need to know or maintain the skews of the nodes, and uses no
additional timesync messages to achieve synchronization. The improvements to
RITS discussed in the previous paragraph did not need to sacrifice any of these
features. Supporting a general class of applications, however, drives us to drop
one of these properties. We show that it is possible to estimate the clock skews
without using additional timesync messages, provided that there exists a lower
bound on the frequency of the stimulus events in the deployment area.

5.1 RITS with Clock Skew Compensation

Compensating for the skews between the clocks of the nodes along the routing
path can significantly decrease the variance of the timesync error. Recall that
RITS converts the event timestamps from the local time of the sender node to
that of the receiver node as the message is being passed from hop to hop. With-
out skew compensation, this conversion is achieved by adding the offset of the
clocks of the sender and the receiver nodes to the event timestamp in the local
time of the sender to yield the event timestamp in the local time of the receiver.

When skew compensation is employed, the conversion is more involved. We
do not assume that a node knows its clock skew from the nominal clock rate
(referred to as the absolute skew), however, it is assumed that it knows the
skews of their neighbors relative to its local clock rate (referred to as the relative
skew). This means that there is no global clock rate to which the elapsed time
at each hop could be converted.

The absolute skew of node i is defined as its skew relative to the nominal
clock rate fnom, that is, αi = fi

fnom
. Relative skew of node i with respect to node

j is defined as αi,j = fi

fj
.

5.2 The Approach

The proposed skew compensation approach is the following. When receiving a
packet – which includes event description and event timestamp in the sender’s
local time – the receiver node calculates the age of the packet in the sender’s time:

ages = ys
m − ys

E ,

where ys
m is the transmit timestamp of the message and ys

E is the event times-
tamp, both in the sender’s local time. Because a clock skew is present, the age
of the packet needs to be converted from the sender’s clock rate to the receiver’s
clock rate, which is achieved simply by dividing it with the relative skew.

ager =
ages

αs,r

Subtracting the converted packet age from the receive timestamp of the message
yields the event timestamp in the receiver’s local time.

yr
E = yr

m − ager

126 J. Sallai et al.

Expressing the conversion in one formula gives

yr
E = yr

m − ys
m − ys

E

αs,r
.

Eventually, when the packet reaches the sink node, the event timestamp is con-
verted to the sink node’s local time. In contrast with RITS without skew com-
pensation, the conversion takes into account differences of both offsets and skews
between the sink node and nodes registering the events.

5.3 Measuring the Relative Skew

Relative skew of a neighbor w.r.t. a given node is computed as the fraction of
the number of ticks of the neighbor’s clock and the number of ticks of the local
clock during a reference time interval.

While determining the clock offset of neighboring nodes requires only one
common reference point in time, acquiring their relative skew necessitates having
two of them. The estimation of relative skews is based on a neighbor skew table,
which contains records with the transmit and receive timestamps of the most
recent message from the neighbor, as well as the most up-to-date relative skew
to the neighbor, if known.

Maintenance of the skew table is carried out as follows. When a message is
received, we locate the sender’s record in the skew table. The record contains
the transmit and receive timestamps of the previous message from the sender.
The difference of the actual and the previous transmit timestamps (in Figure 4
denoted by ys

21 and ys
11, respectively) gives the time elapsed between the two

messages in the sender’s clock. Similarly, the difference of the actual and the
previous receive timestamps, yr

22 − yr
12, gives the time elapsed between the two

messages in the receiver’s clock. The relative skew is the fraction of the two
differences, which is exponentially averaged with the previously calculated skew
value, and stored in the skew table.

Our approach employs an implicit skew measurement technique. All radio
messages are timestamped by the sender and the receiver, regardless of message
content. Since the relative skew information is implicitly carried in the message
timestamps, measuring the skews requires no dedicated communication. This
solution, however, has its caveat: since the clock frequencies of the devices are not

yr y12

y11

y22

y21

yr

ys ys

m1 m2

Timeline of receiver

Timeline of sender

Fig. 4. Skew measurement

On the Scalability of Routing Integrated Time Synchronization 127

stable, relative skews become outdated if nodes communicate rarely. The problem
can be solved by periodically generating dummy messages, though RITS leaves
this to the application layer. A method to find the optimal beaconing period has
already been proposed by Ganeriwal et al. in [15] and [16].

5.4 The Challenge of Memory Constraints

Networked sensor nodes are severely constrained devices, where RAM is a pre-
cious resource. It is not unusual that the operating system, the middleware
services (multi-hop routing, timesync, etc.) and the application layer have to
share no more than 4kB of RAM. The neighbor table that augments skew mea-
surements and stores the relative skew values contains records in the following
structure.

typedef struct {
uint16_t nodeID; // ID of the neighbor
float skew; // relative skew w.r.t the neighbor
uint32_t lastTxTimeStamp; // Tx timestamp of last recvd message
uint32_t lastRxTimeStamp; // Rx timestamp of last recvd message

} neighborRec;

The size of this record is 14 bytes, which might seem negligibly small, how-
ever, sacrificing a few hundred bytes for a neighbor table of one of the many
middleware components might not always be a viable option.

We face two conflicting constraints here: small memory footprint versus scal-
ability with node density. If the size of the skew table is too small, skew compen-
sation will fail in dense networks, whereas a large neighbor table is not affordable
because of the memory constraints.

5.5 Maintaining a Bounded Skew Table

Clearly, the need for scalability with network density necessitates limiting the
size of the skew table. Furthermore, we may want to control which neighbors’
relative skews we store, and we need to decide how to compensate for the skews
of those neighbors for which no skew information is available. Our approach is
that a node stores the relative skews only for a subset of its neighbors. Using the
stored values, the node estimates its relative skew to the rest of the neighbors.

The most important property of this strategy is that the absolute skew of the
node itself does not influence which neighbors are stored in the skew table: this
decision is made purely on the observed relative skew values of the neighbors.
This way the skew compensation will work well even if the node itself has a
significant absolute skew.

5.6 Estimation of Unknown Skews

An appealing strategy is to keep the skew information of neighbors having the
worst absolute skews in the skew table, and not storing the relative skew infor-
mation of the remaining well-behaved neighbors. When a packet is received from

128 J. Sallai et al.

good

bad bad

1 1/ i

good

bad bad

1i

a.) Absolute skews

b.) Relative skews measured by node i

Absolute skew

Skew relative to
node i

Fig. 5. Distribution of absolute and relative skews measured by an arbitrary node i.
The white dot denotes node i, the grey and the black dots denote the bad and the
well-behaved neighbors, respectively.

a bad neighbor, which would normally introduce a considerable skew related
timesync error, the stored value is used for skew compensation. This way the
worst timesync errors will be compensated for. When receiving a packet from
a good neighbor, which has only minor contribution to the timesync error, we
compensate with an estimate of the mean of the relative skews of the neighbors.

Since the absolute skews cannot be measured directly, the categorization of
good and bad neighbors has to rely on the information carried in the relative skew
measurements. The neighbor’s relative skew values, as perceived by a node, are
normally distributed with the same variance as the distribution of the absolute
skews w.r.t. the nominal skew, but the values are centered around the reciprocal
of the node’s own absolute skew, not around 1. We can observe that the relative
skews of the good neighbors fall close to the median of the measured values,
while those of the bad neighbors are far from it.

If the bounded skew table is maintained such that the categorization of good
and bad skews is based on their distance from the median of the measured skew
values, the skew table will store the left and right tails of a random sample
representing the relative skews of the neighbors (even if the clock rate of the
local node significantly differs from the nominal rate). The values that are not
stored must fall between the maximum skew of the left tail and the minimum
skew of the right tail; from here, we estimate the unknown skews with the average
of the two.

The corresponding table maintenance strategy is implemented as follows. The
size of the skew table, denoted by n, is set to an even number. The skew records
are sorted by the skew values. When the skew table is full, and a new skew
measurement is completed, the new value is compared with the skews of the two
records in the middle (at positions n

2 and n
2 +1). If it is between the two values,

it is discarded. If it is below (above) the two values, the record at position n
2

On the Scalability of Routing Integrated Time Synchronization 129

(at position n
2 + 1) is evicted, and the new measurement is inserted in the skew

table. In a steady state, the two middle values give a lower and an upper bound
on the skews of the neighbors that are not stored.

5.7 Experimental Results

We repeated the experiment described in Section 4.3 using RITS augmented
with clock skew compensation. The 45 Mica2 motes were arranged in a grid
forming a 10-hop network, using a sufficiently large neighbor table. As in the
previous experiment, we introduced an artificial routing delay of five seconds at
every hop, to allow skew related errors to manifest.

To test the performance of our skew compensation algorithm, we set the size
of the skew table large enough to hold the skew information of all neighbors. As
Figure 6 shows, employing in-network skew compensation drastically reduced the
timesync error of RITS. Compared to the previous results (see Figure 2), the
average synchronization errors decreased from 29μs to 2.8μs. Not considering
the bootup period of the skew compensation algorithm when the skew table is
not populated, the maximum error decreased from 265μs to 44μs.

Maximum Error of RITS with Skew Compensation
(with measured skews only)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35 40 45 50 More
Error(us)

P
er

ce
n

ta
g

e

Fig. 6. The histogram of maximum errors for the experiment with a large skew table
holding the skew values of all neighbors

Maximum Error of RITS with Skew Compensation
(with measured and estimated skews)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35 40 45 50 More
Error(us)

P
er

ce
n

ta
g

e

Fig. 7. The histogram of maximum errors for the experiment with a limited skew table
holding the skew values of 6 neighbors

130 J. Sallai et al.

In the next experiment, we limited the size of the skew table to hold only
six records. As expected, the measured timesync errors increased compared to
the fully compensated case. Although the maximum error we experienced was
258μs, which is comparable to the non-compensated case, only 1% of the errors
were above 100μs. This can be attributed to the drastically small neighbor table.
However, as Figure 7 shows, skew compensation with partial skew information
is still a significant improvement over the non-compensated case, as the average
synchronization error was only 5.3μs.

6 Conclusions and Future Work

The Routing Integrated Time Synchronization protocol was specifically designed
with a single application in mind [4]. Although it was successfully tested in a
number of medium-scale deployments, our analysis found that its scalability with
network size and communication delay limits its general applicability.

In this paper we investigated the reasons for the scalability problems and pre-
sented an error analysis of RITS. We showed that the variance in clock rates is
responsible for the largest time synchronization errors. We found that the clock
skew related errors do not manifest in a special class of sensornet applications,
where only the time difference of arrival of the registered events are of concern,
and where event detections are close to each other in space and time. We pre-
sented an in-network skew compensation technique that improves the scalability
of RITS, making it suitable for a wide range of sensornet applications.

We further plan to investigate scalability limits of RITS augmented with skew
compensation. Since the skew measurement errors and the skew estimation errors
are expected to propagate in a multiplicative fashion, the precision of the skew
measurements and a probabilistic upper bound on the estimation error have to
be controlled. This can be achieved by setting a proper lower and upper limit on
the time difference of reception of the two messages that are used to measure the
skew and by choosing the size of the neighbor table large enough, such that the
skews of the good neighbors are bounded by a relatively small interval. Finding
the proper values of these constants demands further research.

Acknowledgments

The DARPA/IXO NEST program has partially supported the research described
in this paper. We also wish to thank Miklós Maróti and anonymous reviewers
for their valuable comments on our work.

References

1. Xu, N., Rangwala, S., Chintalapudi, K.K., Ganesan, D., Broad, A., Govindan,
R., Estrin, D.: A wireless sensor network for structural monitoring. SenSys ’04:
Proceedings of the 2nd international conference on Embedded networked sensor
systems (2004) 13–24

On the Scalability of Routing Integrated Time Synchronization 131

2. West, B.W., Flikkema, P.G., Sisk, T., Koch, G.W.: Wireless sensor networks for
dense spatio-temporal monitoring of the environment: A case for integrated circuit,
system, and network design. 2001 IEEE CAS Workshop on Wireless Communica-
tions and Networking (2001)

3. Wang, H., Elson, J., Girod, L., Estrin, D., Yao, K.: Target classification and
localization in a habitat monitoring application. Proc of IEEE ICASSP (2003)

4. Simon, G., Maróti, M., Lédeczi, A., Balogh, G., Kusý, B., Nádas, A., Pap, G.,
Sallai, J., Frampton, K.: Sensor network-based countersniper system. SenSys ’04:
Proceedings of the 2nd international conference on Embedded networked sensor
systems (2004) 1–12

5. Lédeczi, A., Nádas, A., Völgyesi, P., Balogh, G., Kusý, B., Sallai, J., Pap, G., Dóra,
S., Molnár, K., Maróti, M., Simon, G.: Countersniper system for urban warfare.
ACM Transactions on Sensor Networks 1 (2005) 153–177

6. Maróti, M., Kusý, B., Simon, G., Lédeczi, A.: The flooding time synchronization
protocol. SenSys ’04: Proceedings of the 2nd international conference on Embedded
networked sensor systems (2004) 39–49

7. Elson, J., Girod, L., Estrin, D.: Fine-grained network time synchronization using
reference broadcasts. SIGOPS Oper. Syst. Rev. 36 (2002) 147–163

8. Kusy, B., Dutta, P., Levis, P., Maroti, M., Ledeczi, A., Culler, D.: Elapsed time
on arrival: A simple and versatile primitive for canonical time synchronization
services. International Journal of Ad Hoc and Ubiquitous Computing 2 (2006)

9. Römer, K.: Time synchronization in ad hoc networks. Proceedings of MobiHoc
2001 (2001)

10. Elson, J., Estrin, D.: Time synchronization for wireless sensor networks. Pro-
ceedings of the 15th International Parallel and Distributed Processing Symposium
(IPDPS-01) (2001)

11. Elson, J.: Time synchronization in wireless sensor networks. Ph.D. Thesis (2003)
12. Maróti, M.: Directed flood-routing framework for wireless sensor networks. Pro-

ceedings of the 5th ACM/IFIP/USENIX international conference on Middleware
(2004) 99–114

13. Hill, J., Culler, D.: Mica: A wireless platform for deeply embedded networks. IEEE
Micro 22 (2002) 12–24

14. Polastre, J., Szewczyk, R., Culler, D.: Telos: Enabling ultra-low power wireless
research. Proceedings of the 4th Int. Conf. on Information Processing in Sen-
sor Networks: Special track on Platform Tools and Design Methods for Network
Embedded Sensors (IPSN/SPOTS) (2005)

15. Ganeriwal, S., Ganesan, D., Hansen, M., Srivastava, M.B., Estrin, D.: Rate-
adaptive time synchronization for long lived sensor networks. Proceedings of the
ACM international conference on Measurement and modeling of computer systems.
(SIGMETRICS 2005) (Short Paper) (2005)

16. Ganeriwal, S., Ganesan, D., Sim, H., Tsiatsis, V., Srivastava, M.B.: Estimating
clock uncertainty for efficient duty cycling in sensor networks. SenSys ’05: Third
ACM Conference on Embedded Networked Sensor Systems (2005)

Distributed Dynamic Shared Tree for Minimum
Energy Data Aggregation of Multiple Mobile

Sinks in Wireless Sensor Networks

Kwang-il Hwang, JeongSik In, and Doo-seop Eom

Department of Electronics and Computer Engineering, Korea University,
5-1ga, Anam-dong, Sungbuk-gu, Seoul, Korea

brightday@final.korea.ac.kr

Abstract. Sink mobility creates new challenges for several sensor net-
work applications. In mobile sink environments, each sink must propa-
gate its current location continuously, through a sensor field, in order to
keep all sensor nodes updated with the direction of data forwarding. This
method consumes large amounts of energy. Although several protocols,
such as DD, TTDD, and SEAD, have been proposed, in order to solve
mobile sink problems, no existing approaches provide both a low delay
and energy-efficient solution to this mobile sink problem. In this paper,
a distributed dynamic shared tree for minimum energy data aggregation
with low delay in highly mobile sink environments, is proposed. In the
proposed protocol, the tree is shared with the other slave sinks. Through
simulations it is shown that the DST is an extremely energy-efficient, ro-
bust protocol with relatively low delay, when compared to DD, TTDD,
and SEAD.

1 Introduction

Advances in MEMS, and microprocessor and wireless communication technolo-
gies have enabled the development of various applications through the deploy-
ment of sensor networks, composed of hundreds or thousands of tiny, low cost
nodes.

It is important to note that power is one of the most expensive resources
in sensor networks. Due to the difficulty in recharging of thousands of devices
in remote or hostile environments, maximizing battery lifetime by conserving
power is a matter of paramount importance.

These distributed sensors enable remote monitoring and event detection in a
geographically significant region or an inhospitable area. For example, as shown
in Fig. 1, explosion area rescuers or robots equipped with handheld devices
can obtain dynamic information from sensor nodes thrown over the area. In
this paper multiple mobile sinks environments are considered, while sensors are
stationary. In the above example, the rescuers or robots may change location,
but must be able to aggregate data continuously.

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 132–147, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distributed Dynamic Shared Tree for Minimum Energy Data Aggregation 133

Fig. 1. An example of mobile sink application in sensor networks

Sink mobility formulates attractive challenges for several sensor network ap-
plications. Several data aggregation protocols have been developed for sensor
networks, such as SPIN [5], Direct Diffusion [2] and GRAB [8]. These protocols
can efficiently aggregate data with low delay by constructing one or more ag-
gregation paths on the basis of sink. In-network processing [6] from sources on
the paths is also enabled. Nevertheless, these protocols must propagate the sink
location continuously through a sensor field in order to keep all sensor nodes
updated with the direction of data forwarding.

In order to reduce flooding effect caused by sink mobility, SAFE [3], which uses
geographically limited flooding, is proposed. However, in case of highly mobile
sinks, local flooding to retrieve the gate connecting itself to the tree increases
proportional to the number of sinks in the area.

While the above sink-oriented protocols require continuous reporting of all
nodes or paths as sinks move, source-oriented dissemination protocols, such as
TTDD [1] and SEAD [4], use mobile sinks’ access method to dissemination
paths, constructed from each source. Each data source in TTDD proactively
builds a grid structure, which enables mobile sinks to continuously receive data
regarding the move, by flooding queries within a local cell only. SEAD creates
a near-optimal dissemination tree by considering the distance and the packet
traffic rate among nodes. Each agent node continuously tracks sink movement.
Evidently, these source-oriented protocols perform energy-efficient data dissemi-
nation. However, the path per source makes in-network processing impossible. In
addition, due to the sinks’ access time, more delay is required to aggregate data.
No existing approaches provide both a low delay and energy-efficient solution to
mobile sink problems.

In this paper, an energy-efficient data aggregation protocol with low delay in
highly mobile sink environments is proposed. In order for an aggregation tree to
continuously pursue a dynamic sink, forward sink advertisement and distributed
fast recovery is exploited. In the proposed protocol, the shape of the tree is dy-
namically transformed according to master sink movement, and the tree is shared
with the other slave sinks. Therefore, this is called, the Dynamic Shared Tree

134 K.-i. Hwang, J. In, and D.-s. Eom

(DST) protocol. The DST conserves a considerable amount of energy, despite
maintaining robust connection from all sources to sinks, since tree maintenance
of the DST is accomplished by distributed local exchanges. In addition, since
this represents a kind of sink-oriented tree approach, the DST can aggregate
data with low delay along the tree and facilitates in-network processing.

The subsequent sections of this paper are organized as follows. Section 2 intro-
duces the proposed DST protocol. Section 3 describes the maintenance method
of the DST to minimize energy consumption. Section 4 illustrates the shared
approach of multiple sinks in the DST. In section 5, the energy efficiency of the
DST is analyzed in terms of total communication cost compared with DD and
TTDD. A comparative performance evaluation through simulation is presented
in Section 6. Section 7 concludes this paper.

2 Distributed Dynamic Shared Tree

In this section the basic model of the DST, which is designed to cope well with
the highly mobile sink environment, is presented. Then, the DST operation is
described in details. The network model for the DST makes the following basic
assumptions:

– Homogeneous sensor nodes are densely deployed.
– Sensor nodes communicate with each other through short-range radios. Long

distance data delivery is accomplished by forwarding data across multiple
hops.

– Each sensor node is aware of its own location (for example through receiving
GPS signals or through localization techniques such as [9]).

– Sensor nodes remain stationary at their initial location.
– Sink nodes possess much more energy than that of general sensor nodes,

since the battery of a sink node can be recharged and replaced by users.

2.1 Basic Design Concept

The main design goal of the DST protocol is for a tree to continuously pursue
a dynamic sink. That means the shape of the tree is dynamically transformed
according to the sink’s trajectory to maintain a sink-oriented tree as presented
in Fig 2.

In the DST protocol, a sink node appoints a Root node. The Root node as
an agent of sink becomes an actual root of entire tree, and has an upstream
connection to a sink node on behalf of the tree as shown in (a) of Fig. 2. In the
distributed DST protocol, the Root node is dynamically changed according to
the sink’s location, and then nodes in its local area are forced to change their
current parent direction to the newly appointed Root node. This DST operation
is accomplished by the forward sink advertisement and distributed fast recov-
ery protocol. For the forward sink advertisement, the DST employs a periodic
Update Request, which is a periodic local broadcast message. In addition, for
distributed fast recovery, Root node uses a Sink Lost timer. If a Root node does

Distributed Dynamic Shared Tree for Minimum Energy Data Aggregation 135

Fig. 2. Description of basic DST operation

not listen to the periodic Update Request message in a given update interval
as the sink moves, the Root node’s Sink Lost timer expires and the Root node
notifies neighbors that the current Root node is disconnected from the sink. If
the periodic Update Request interval and time-out value of Sink Lost timer are
given by the following Equations (1) and (2), which are related to radio range
and maximum sink speed, the current sink’s location is discovered by at least
one node within two hops of the old Root node, which lost the sink’s Update
message. Therefore, the nodes, which listen to both the current Update message
of the sink and Sink Lost message of the old root, notify its sink that the node
itself can become a new root. As soon as the sink receives the notification, it
appoints one of them as a new Root (The selection criteria of a new root is ar-
rival time of Root request message). After completing choice of a new root, Root
id field in periodic Update message of sink node is changed into new root id.
By the changed information, other nodes within sink radio range update parent
direction to new root node.

Eventually, according to sink’s movement, the original shape (a) of the tree is
transformed as shown in (b) and then (c) of Fig. 2. This distributed DST protocol
is simple but maintains a robust connectivity to sink. In addition, this distributed
approach solves the problems with the excessive energy drain and increased
collisions in the traditional sink location update message-based protocols, such
as flooding or Directed Diffusion, which require more frequent sink’s location
update throughout the sensor field. Compared with such sink oriented protocols,
the proposed DST save considerable energy more since sink’s periodic update
message requires the link reversal [7] of only the nodes in the new Root’s local
area, not entire sensor nodes in the sensor field.

In addition, since the update rates are used with Equation (1), which is pro-
portional to the radio range and inversely proportional to sink speed, the DST
can cope well with highly mobile sink environments, and energy waste caused
by an excessive update rate can be minimized.

Interval =
D

Vs−max
− (Tp + α) (1)

Timeout = 1.1 × Interval (2)

136 K.-i. Hwang, J. In, and D.-s. Eom

Vs−max denotes the maximum sink node speed (m/s), D is a maximum radio
range, Tp is a propagation time delay, and α is an additional delay caused by
the MAC layer and processing. For realistic interval calculation, (1) is rewritten
as follows:

Interval =
D

Vs−max
× K (3)

where K < 1.
Note that the K factor is an important performance parameter for the DST.

The optimal K factor is retrieved heuristically by experiment, including the MAC
and propagation delay. We choose K = 0.3 as a heuristically optimal value in
Section 6.

2.2 Overview of DST Protocol

For distributed operation of the DST in all sensor nodes, each node, except for
sink nodes, can have one of four states: Member, Root candidate, Old root, and
Root node as shown in Fig. 3.

All the nodes start with a member node state. If a member node listens to
the Update Request message with the any specific node’s address from a sink,
the node’s state is changed to the Root candidate state. Each candidate Root
maintains a candidate timer during the time receiving the Update request with
other node’s address. If the sink node moves far from the range of a candidate, the
candidate timer expire and the candidate nodes turn to a member state, again.
However, if one of them receives the Update Request with its own address, it
changes to the Root node state and becomes a new Root node.

A Root node also maintains the Sink Lost timer during receiving the update
request with its own address. If the sink moves far from the range of Root
node, the Root node cannot hear the next Update request, and therefore the
timer expires. As soon as the timer expires, the node changes to the Old root

Fig. 3. State transition diagram in each sensor node for distributed DST operation

Distributed Dynamic Shared Tree for Minimum Energy Data Aggregation 137

Fig. 4. Message flow in DST operation

state and broadcasts the Sink lost message. The current Root candidate nodes
simultaneously transmit the Root Request message to the sink nodes and the
only one of candidate nodes is chosen as a new Root node. The newly appointed
Root node forces its neighbors to change their parent direction into the new
Root node by broadcasting a Force change message. The Old Root node, which
hears a Force change message, simultaneously becomes a member node again.

Figure 4 illustrates the message flow for dynamic operation of the distributed
DST. Suppose that sensor nodes are initially deployed as in (1) of the Fig.
Initially, sink node enters the sensor field, with broadcasting the Update request
message periodically. Note that the initial Update request message from the
sink is broadcasted with Rood id (0). The nodes, which receive the Update
request message from sink, become a Root candidate node and transmit a Root
request message to the corresponding sink node as soon as each node receives
the Update request with Root id (0). In Fig. 4, the sink node selects node A
as a root node and broadcasts the Update request with Root id (A). The node
A checks whether the parent already exists and then if it has no parent, which
means there is currently no existing tree in the sensor field, it starts flooding. As
a result of flooding, a reverse tree as in (1) of the Figure is constructed. While
the sink remains within range of the current root, node A, the tree remains
stationary without any transforming.

Now, as the sink moves, the DST shows its ability to deal with the mobile
sink in earnest. Due to sink’s movement, the current Root node, node A, cannot

138 K.-i. Hwang, J. In, and D.-s. Eom

listen to the next Update Request message any more. Instead, node B and D
come to listen to the Update Request message from the sink. That means node
B and D became Root candidates. Note that since there is no change of Root
node by sink, the Root id in an Update request message is still (A). The Sink
Lost timer of current root, node A, eventually expires and the node A, which
becomes an Old root, broadcasts Sink Lost message. The Sink Lost message of
node A can hear only node B so that of the root candidates, node B transmit a
Root Request message to the sink.

The sink appoints node B as a new Root node and then restarts broadcasting
the Update Request message with Root id (B). As soon as node B receives
the new Update message with its own id, it changes the state into Root node
and then broadcasts Force Change message. All the nodes, which receives the
message, change their parent direction to node B. Eventually, the original tree
is transformed, as presented in (2) of Fig. 4. Through this method, the DST
can maintain a dynamic aggregation tree only with distributed local exchange
of messages.

3 DST Maintenance

3.1 Data Forwarding to Mobile Sink

The DST is intentionally designed to cope well with the mobile sink, so that
data forwarding from each source to mobile sink can be easily accomplished
along the aggregation tree. The distributed DST protocol can provide seamless
data aggregation without concern about the sink’s movement, as if the sink had
been stationary at the location. The DST outwardly follows a tree-based data
aggregation approach so that the data forwarding cost from the source node to
sink along the tree is available with O(

√
N). The DST also makes it possible to

perform data aggregation combined with In-network processing [6].

3.2 Self-recovery from Partitioned Tree

There are two kinds of situation that cause a partition of a tree.

Failure of fast recovery: This happens when the old Root misses the sink. In
this case, the old Root cannot hear the Force Change message of the new root
so that the loss of new Root node creates a partitioned tree in which the old
Root becomes a root.

Link Failure: All sensor nodes always overhear their own parent’s upstream
data delivery, except for Root node. When a node, which has upstream data
to its parent, cannot overhear its parent node’s upstream data forwarding, the
node identifies that its sub-tree is partitioned from its parent’s tree.

Both of these partitioned trees can be recovered by the self-recovery process
as follows. Figure 5 demonstrates the self-recovery process of the DST. If the
tree is partitioned by some failure factors as presented in (a) of Fig. 5, as soon as
a node identifies a failure, the node broadcasts the a Find Root message in the

Distributed Dynamic Shared Tree for Minimum Energy Data Aggregation 139

local area as presented in (b) of Fig. 5. Nodes hearing the Find Root message,
propagate the message to its upstream along the tree as presented in (c) of Fig. 5.
Since the root of a partitioned tree is the sender, itself (problem detection node),
the direction of Find Root message propagation is inclined only toward active
tree, which is connected to sink as presented in (c) of Fig. 5. In this propagation
of Find Root message, each parent avoids transmission of duplicate messages
from different children nodes by using a join request cache. The reason that the
root partitioned tree retrieves only the current Root of active tree, not the other
members, is because information from current root is considered as the most
reliable.

Eventually, the message reaches the current Root node and the current root
node unicasts the PERMIT JOIN message to the root of partitioned tree, through
route information obtained from Find Root message as presented in (d) of Fig. 5.
Therefore, the Root node of partitioned tree, which received the PERMIT JOIN
message, reconfigures its parent’s direction to the originator of the message, the
current Root node. Finally, as presented in (f) of Fig. 5, the partitioned tree
completes the successful joining of the active tree.

Fig. 5. Self-Recovery process from partitioned tree in DST

140 K.-i. Hwang, J. In, and D.-s. Eom

4 Multiple Sinks’ Share of DST

One of the outstanding features of the DST is the ability to accommodate multi-
ple mobile sinks simultaneously on the same tree. As presented in Fig. 6, multiple
mobile sinks share a dynamic tree, which is already constructed by a master sink.
Two types of sink are defined in the DST: Master sink and Slave sink. The for-
mer is a sink, which is first attended in the sensor filed and directed by root node
of the tree. The latter are slave sinks, which join the tree already constructed
by a master sink. The master sink must be the only one in a sensor field.

As presented in Fig. 6, slave sinks operate as a leaf node. However, it is differ-
ent from general member nodes in that the information is transmitted upstream
by periodically broadcasting the Periodic Reporting. For the delivery of slave
sinks’ Periodic Reporting, each node stores multiple sinks’ information using a
Sink info cache table and each parent checks the freshness of Reporting. Each
node, which receives the Periodic Reporting message from its child, stores a pair
of child id and Slave sink id as well as its sequence number into the Sink info
cache. If an identical message is received, the parent ignores the packet. However,
if the identical sink id and sequence number received, but from different node,
the parent node changes its child id to id of the node of later received message.
This is to maintain the freshest routing information in each node. The child ids
are used as routing information for downstream data delivery from master to
corresponding slave, later. Eventually, the Periodic Reporting message from a
slave reaches the master sink node. The master sink transmits the aggregated

Fig. 6. DST allows data dissemination from each source to multiple mobile sinks on
the same tree

Distributed Dynamic Shared Tree for Minimum Energy Data Aggregation 141

Fig. 7. Dynamic operation of the distributed DST as four sinks move: the operation of
the DST conducted on a SHOW ROUTE program based on the result of NS-simulator

data result to each slave sink through the freshest routing information in the
each node’s Sink info cache as presented in Fig. 6.

This shared-tree approach of the DST for multiple mobile sinks has advantages
described below. The first is to conserve considerable energy. This is because all
slave sinks are processed as dynamic leaf nodes on the tree, without requiring
additional flooding or each sink’s private agents. In addition, by virtue of each
parent’s route maintenance refresh, each sink’s movement is not affected to entire
network, but locally processed. The second is that the DST creates a logical star
topology between master and slave sinks. Each sink can communicate through
a master. In other words, the DST provides a completely two-tiered network
structure: the first is sink-oriented tree structure for sensor nodes and the second
is a star structure for sink nodes. This structure can facilitate operations of a
group of military units on the battlefield.

5 Efficiency Analysis

In this section the energy efficiency of the DST is analyzed. A specific metric is
measured: total communication cost for data aggregation of the DST, DD and
TTDD, respectively.

It is assumed that a square sensor field of area A in which N sensor nodes are
uniformly distributed, so that on each side there are approximately

√
N sensor

nodes. There are m event sources and n sink nodes. For grid structure analysis,
it is assumed that sensor fields are divided into cells; each cell has αsensor nodes.
NX is defined as the number of cells on the X-axis, and NY is the number of
cells on the Y-axis.

Directed Diffusion. For event forwarding, Directed diffusion requires four
steps: Interest flooding, Exploratory data forwarding, Reinforcement, and Data
forwarding. Since Interest forwarding by sink node uses flooding, its cost, in the
worst-case, is expressed as mN. The cost for the exploratory data forwarding
process to setup multi-paths from source to sink can be approximately given
by

√
N × √

N = N . The cost for reinforcement to select single path among
the multi-path by exploratory forwarding is also

√
N . Eventually, cost data

142 K.-i. Hwang, J. In, and D.-s. Eom

forwarding along the path is simply given by n
√

N . Accordingly, total com-
munication cost CDD for DD is given by

CDD = (m + 1)N + (n + 1)
√

N (4)

Therefore, in a sink mobile environment, total communication cost is rep-
resented as O(mN), including all cost required to construct and maintain a
dissemination path and data forwarding with respect to sink movement.

TTDD. TTDD exploits local flooding within the local cell of a grid, which
sources build proactively. Each source disseminates data along the nodes on the
grid line to the sinks. The TTDD can be divided into three independent steps:
Geographical forwarding for grid construction, Query forwarding by sinks, and
Data forwarding from sources. Initially, only nodes on the grid line take part in
the forwarding process during geographical forwarding. In addition, since the grid
is independently constructed by each source, the cost for geographical forwarding
is expressed as n × Nx × NY × √

α.
Next, the query is flooded using a sink within a cell and then forwarded

along the grid line. Therefore, the cost for query forwarding becomes αm +
m(

√
2N). Finally, data forwarding from each source to sink is expressed by

n
(√

2N +
√

2α
2

)
. This is because the worst-case sink will be found at the edge

cell of diagonal line from source. Eventually, the total communication cost for
TTDD is given by

CTTDD = n

(
N∗√α +

√
2α

2
+

√
2N

)
+m(

√
2N+ α) ,WhereN∗ = Nx×Ny

(5)
Therefore, the total cost is O(m

√
N) or O(n

√
N) where N∗ << N , however,

TTDD’ cost largely depends on the cell size. In addition, in case of many sources,
the cost rapidly increases.

DST. Similar to DD, the DST begins with flooding. However, the DST does
not require additional flooding with regard to increasing the sinks. Since the
tree constructed by flooding, is shared with other sinks, the tree construction
cost is only N + m

√
N . In addition, the cost to maintain the tree is negligible,

since the DST maintains the tree with some messages exchanged locally when
the sink moves. Data is forwarded upstream along the tree and then forward
to each slave sink along the tree, so the data forwarding cost is expressed by
(m + n)

√
N . Eventually, the total communication cost for the DST is given by

CDST = N + (2m + n)
√

N (6)

However, in spite of sink’s continuous movement, since flooding is required
only in initial tree construction phase, the actual communication cost becomes
O(n

√
N), where m¡n.

In summary, the DST is similar to the sink oriented data aggregation ap-
proaches in shape, however, the DST does not generate any additional flooding

Distributed Dynamic Shared Tree for Minimum Energy Data Aggregation 143

or create sizeable communication overhead. Therefore, the energy efficiency for
the DST is as good as the TTDD. However, the realistic TTDD’ cost largely
depends on the cell size as well as the number of sources. More realistic measures
are presented with a simulation in Section 6.

6 Performance Evaluation

In this section, the performance of the DST is evaluated through simulations.
Simulation metrics and methodology are described in Section 6.1. The main
goal in simulating the DST is to evaluate how well it actually conserves energy,
maintaining the robust DST connection and low delay in highly mobile environ-
ments. The parameters affecting the robustness of DST, are first studied. Then,
the performance of the DST is compared to DD, TTDD, and SEAD.

6.1 Metrics and Methodology

The DST is implemented as an independent routing agent module in ns-2.27.
In the basic simulation setting, the same energy model is used, which is two-ray
ground model and omni-directional antenna, as adopted in Directed Diffusion,
and TTDD implementation in ns. A 802.11 DCF is used as the underlying MAC
protocol. A sensor node’s transmitting, receiving, and idle power consumption
rates are set to 0.66W, 0.395W and0.035W, respectively. The network in the
simulation consists of 400 sensor nodes randomly or uniformly distributed in a
1000m x 1000m. Each simulation run lasts for 500 seconds. Each query packet
is 36 bytes and each data packet is 64 bytes in length, in order to facilitate
comparisons with other protocols.

Three metrics are used to evaluate the performance of the DST.

Success rate is the ratio of the number of successfully received data at a
sink from source. This metric demonstrates the robustness of the aggregation
path.

Average end-to-end delay is measured by averaging delay from source to
sinks. This metric indicates the freshness of data packets.

Energy consumption per node is defined as the total communication en-
ergy the node consumes. The communication energy includes tree construction,
data dissemination, and sink mobility management.

6.2 Robustness of DST

We first study on a parameter affecting the performance of DST. In Section 2,
we already emphasized the impact of k-value which is a parameter determinig
period of Update Request of sink for continuous connection of the dynamic tree
according to sink’s mobility.

Figure 8 (a) demonstrates the success rate at different sink speeds. Note that
the success rate with k-val more than 0.4 is drastically deteriorates around a sink
speed of 15 m/s. This is because the breaking probability of the tree is increased

144 K.-i. Hwang, J. In, and D.-s. Eom

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

(a) Success rate of DST v.s. Sink Speed

S
u
c
c
e
s
s
 R

a
te

Sink Speed(m/s)

 k-val = 0.2
 k-val = 0.3
 k-val = 0.4
 k-val = 0.5
 k-val = 0.6

0 5 10 15 20 25 30
0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

(b) Average dissipated energy v.s. Sink Speed

A
v
e
ra

g
e
 D

is
s
ip

a
te

d
 E

n
e
rg

y
 (

J
/n

o
d
e
)

Sink Speed (m/s)

 K-val=0.2
 K-val=0.3

Fig. 8. Robustness of the DST

with a large k value. However, it can be shown that the DST maintains a success
rate more than 0.9 with a k value of 0.2 and 0.3 in spite of the high mobility of
sink. Prior to choosing the best k value by the heuristic result of this experiment
in (a), another observation related to the k value is made presented in (b) of
Fig. 8. This represents the energy consumption of each k value, 0.2 and 0.3.
Intuitively, we know that the larger k value, the more energy increases. The
result in Fig. 8 (b) proves this fact. Consequently the two observations provide
the most efficient value for k, 0.3, for both robustness and energy conservation.

6.3 Impact of Sink’s Mobility

In this subsection the impact of sink mobility on the performance of the DST,
is evaluated. In the simulation setting, 8 mobile sinks and 30 randomly chosen
sources, in the sensor field, were used. Energy consumption and average end-to-
end delay according to varying the maximum speed of a sink, are measured from
0 to 30 m/s.

Figure 9 (a) presents the average dissipated energy as the sinks’ speed is var-
ied. In this Fig, the DST presents superior energy consumption over the other
protocols. This is because the DST can maintain the aggregation tree dynami-
cally as the sinks migrate. In addition, the DST does not require additional flood-
ing or location notification to access nodes or agents. In DD, the entire topology
is changed so the new location of the mobile sink is propagated throughout the
sensor filed in order for all nodes to obtain the sink’s location. The TTDD is
designed for mobile sinks, but cannot avoid rebuilding a new multi-hop path be-
tween the sink and the grid to track the sink’s location. Although SEAD based
on the source-oriented steiner tree shows smooth energy increase, SEAD has the
overhead that each sink must recognize their specific location to continuously
access nodes or to change access nodes.

Distributed Dynamic Shared Tree for Minimum Energy Data Aggregation 145

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

1.2

(a) Energy consumption v.s. Sink Speed

A
v
e
ra

g
e
 D

is
s
ip

a
te

d
 E

n
e
rg

y
 (

J
/n

o
d
e
)

Sink Speed (m/s)

 DST
 SEAD
 TTDD
 DD

0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

(b) Average delay v.s. Sink Speed
A

v
e
ra

g
e
 E

n
d
-t

o
-e

n
d
 D

e
la

y
 (

s
e
c
)

Sink Speed (m/s)

 DST
 DD
 TTDD
 SEAD

Fig. 9. Impact of sink’s mobility

Since the DST only uses local interactions on the basis of the sink to maintain
dynamic tree, the increase of energy consumption in terms of the entire sensor
network is considerably moderate, as presented in (a) of Fig. 9.

Figure 9 (b) presents the average end-to-end delay as the sinks’ speed is varied.
This Figure demonstrates that DD and DST maintain relatively lower delay than
TTDD and SEAD. TTDD and SEAD are source-oriented data dissemination
protocols so that they require finding a valid path from source to each sink,
whenever a source generates an event. Finding the valid path adds extra delay to
the protocols. Conversely, the DST and DD, which are sink-oriented approaches,
do not require such additional delay, since all sensor nodes already know the path
to each sink. Nevertheless, as a sink’s speed increases, DD demonstrates gradual
increase in delay. This is because of the flooding effect according to sink mobility.
However, the DST which maintains a dynamically dissemination tree oriented
to sink, shows an almost constant delay variation as presented in (b) of Fig. 9.

6.4 Impact of the Number of Sinks

In this subsection, the impact of the number of sinks on the performance of
the DST, is evaluated. In this simulation, the sinks’ speed is set at 10 m/s and
energy consumption is measured as the number of sinks increases to 8.

Figure 10 presents the energy consumption as the number of sinks is varied.
This Fig demonstrates that in case of a single sink TTDD and SEAD outper-
form the sink-oriented protocols, the DST and DD. This is because the DST
requires basic energy consumption to maintain the tree using the periodic Up-
date message. However, as the number of sinks increases, energy consumption
in the DST only slightly increases, in contrast to the other protocols. This is
because the dynamic tree is shared with the other multiple sinks. As a result,
there is little additional energy per sink, in contrast to the other protocols, such
as DD, TTDD, and SEAD.

146 K.-i. Hwang, J. In, and D.-s. Eom

2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 D
is

sp
at

ed
 E

ne
rg

y
(J

/n
od

e)

Number of Sink

 DST
 SEAD
 TTDD
 DD

Fig. 10. Energy consumption v.s. number of sinks

7 Conclusions and Future Work

In this paper, an energy-efficient data aggregation protocol with low delay in
highly mobile sink environments in sensor networks, is proposed. In order to
continuously maintain aggregation tree, a forward sink advertisement and dis-
tributed fast recovery, was utilized. In the proposed protocol, the tree is shared
with the other slave nodes so that it is called the Dynamic Shared Tree (DST)
protocol. Through simulations, we showed that the DST is a considerably energy-
efficient, robust protocol with low delay, compared to Directed Diffusion, TTDD,
and SEAD, in highly mobile sink environments.

The DST is currently being investigated on a large-scale sensor network
test-bed.

References

1. Haiyun Luo, Fan Ye, Jerry Cheng, Songwu Lu, Lixia Zhang, “TTDD: Two-tier
Data Dissemination in Large-scale Wireless Sensor Networks,” ACM/Kluwer Mobile
Networks and Applications, Special Issue on ACM MOBICOM,2002.

2. C. Intanagonwiwat, R. Govindan, and D. Estrin “Directed diffusion for Wireless
Sensor Networking,” IEEE/ACM Transaction on Networking, Vol. 11, 2003.

3. Sooyeon Kim, Sang H. Son, John A. Stankovic, Shuoqi Li, Yanghee Choi, “SAFE:
A Data Dissemination Protocol for Periodic Updates in Sensor Networks,” In Pro-
ceedings of the 23 rd International Conference on Distributed Computing Systems
Workshops (ICDCSW’03),2003.

4. Hyung Seok Kim, Tarek F. Abdelzaher, Wook Hyun Kwon “Minimum-energy asyn-
chronous dissemination to mobile sinks in wireless sensor networks,” In Proceeding
of Embedded Networked Sensor Systems (SenSys03), Los Angeles, California, USA,
2003.

Distributed Dynamic Shared Tree for Minimum Energy Data Aggregation 147

5. W. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive Protocols for Information
Dissemination in Wireless Sensor Networks,” ACM International Conference on
Mobile Computing and Networking (MOBICOM’99), 1999.

6. B. Krishnamachari, D. Estrin, and S. Wicker, “The Impact of Data Dissemination
in Wireless Sensor Networks,” In Proceedings of the 22nd International Conference
on Distributed Computing Systems Workshops, 2002.

7. C. Busch, S. Surapaneni, and S. Tirthapura. “Analysis of Link Reversal Routing
Protocols for Mobile Ad Hoc Networks,” SPAA 2003, pp. 210-219, San Diego, Cal-
ifornia, June 2003.

8. F. Ye, S. Lu, and L. Zhang. GRAdient Broadcast: A Robust, Long-lived Large
Sensor Network.

9. K. Langendoen and N. Reijers, “Distributed Localization in Wireless Sensor Net-
works,” Computer Networks (Elsevier), special issue on Wireless Sensor Networks,
August, 2003.

Constrained Tracking on a Road Network�

Micha�l Piórkowski and Matthias Grossglauser

School of Computer and Communication Sciences,
Ecole Polytechnique Fédérale de Lausanne (EPFL),

CH-1015 Lausanne, Switzerland
firstname.lastname@epfl.ch

Abstract. Many applications of wireless ad hoc sensor and actuator
networks (WSANs) rely on the knowledge of node locations. These are
challenging to obtain when nodes are mobile and are not equipped with
any specific positioning hardware. In this paper, we are interested in
scenarios where there are constraints on the movement of nodes, such as
with cars on a road network.

We develop and analyse a tracking algorithm called MOONwalk that
explicitly takes such constraints into account in order to improve the
tracking precision. Furthermore, MOONwalk does not require global
knowledge of the network, and therefore lends itself well to large-scale
and high-mobility applications.

We evaluate the accuracy of MOONwalk by comparing it to the opti-
mal maximum likelihood estimator, under different radio conditions and
deployment scenarios. We find that MOONwalk performs well despite
its localized operation.

1 Introduction

Numerous applications of sensor and sensor-actuator networks need to track
mobile objects, such as people, animals, cars, planes, etc. We are interested in
scenarios where the tracked object is equipped with a communication device,
but not with a positioning device, such as GPS. Such a situation may arise
because of energy, cost, or radio constraints, or because the tracking system has
to be operational indoors. In this case, an estimate of the location of the tracked
object can be computed from channel measurements between the tracked object
and a set of fixed devices. Several papers have considered this tracking problem,
where the estimated position of the tracked object is unconstrained, i.e., can lie
anywhere in Euclidean space [1–8].

In this paper, we study a related problem, but where the space of possible
locations is constrained to a graph. More specifically, the vertices of this graph
each correspond to a point in space, and each edge corresponds to a line segment
� The work presented in this paper was supported (in part) by the National Com-

petence Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation under
grant number 5005-67322. (http://www.mics.org)

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 148–163, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Constrained Tracking on a Road Network 149

connecting its adjacent vertices. The tracked object’s position always lies on this
graph. This formulation of the tracking problem is inspired by the tracking of
cars on the road network, where vertices model intersections and interpolation
points of curved roads.

Our main application for this problem is a fully distributed system called
SmartPark, which assists drivers in locating free parking spots and guides them
to these spots with turn-by-turn instructions [9]. The key idea is that every
parking spot is equipped with an embedded sensor, and a car is equipped with
a simple guidance device. For related projects, see [10, 11].

Although it would be possible to solve this problem by relying on an uncon-
strained tracking algorithm and projecting the location estimate onto the road
network, this may give rise to suboptimal precision and efficiency. In this paper,
we therefore develop constrained tracking algorithms from first principles, i.e.,
where the constraint is explicitly taken into account from the outset.

We first formulate this constrained tracking problem in a maximum-likelihood
(ML) framework, where the uncertainty stems from fading effects in the radio
channel between the car and the sensors. Although the resulting algorithm is
optimal, it is computationally demanding and requires knowledge of the full
road network graph, as well as knowledge of all the sensors and their geographic
positions, and it assumes a specific radio channel model.

In a system such as SmartPark, however, requiring every sensor and car to
have full knowledge of the road network and of all the sensors in parking spots
would be impractical. Moreover, none of the existing radio channel models fully
captures the real characteristics of radio propagation in an urban environment.
A realistic algorithm therefore has to be robust to channel uncertainties and has
to be able to compute the car’s location on the road network with only very
limited local information configured in the sensors, and no knowledge in the car.
This is because the set of sensors may be large (hundreds of thousands in a large
city), and may change over time (e.g., because of node outages). Furthermore, it
may be undesirable to configure sensors with their precise geographic position.

In this paper, we describe an algorithm called MOONwalk that relies on
considerably weaker assumptions than the ML algorithm. A key feature of this
algorithm is that the car’s guidance device does not need any a-priori knowledge
about the road network graph and about the set of sensors present in its vicinity.
This is challenging, because it implies that the guidance device loses valuable
information when a particular sensor is not able to communicate with the guid-
ance device, because it is not a-priori aware of the existence of this sensor. In
the ML formulation, this information is explicitly taken into account. MOON-
walk relies on some very limited state information in sensors to get around this
problem, which is particularly important in cases where sensor distributions are
very heterogeneous in space.

Another important feature of MOONwalk concerns the a-priori knowledge in
sensors, which typically has to be configured by hand or inferred through some
other process. ML requires the precise geographical position of each sensor but
MOONwalk only requires a set of potential positions on the road network (rather

150 M. Piórkowski and M. Grossglauser

than in Euclidean space). This simplifies configuration and makes the tracking
process more robust to small configuration errors.

This paper is organized as follows. In Section 2, we describe the models and
assumptions. The ML formulation is introduced in Section 3, and the MOON-
walk algorithm in Section 4. We report simulation results in Section 5, and show
that MOONwalk performs well compared to the optimal ML algorithm, despite
the complications cited above. In Section 6, we give a more detailed descrip-
tion of related work. In Section 7, we conclude the paper and describe future
research.

2 System Model

2.1 The Road Network Model

A vehicle is constrained to move on the road network. In the case of vehicle
tracking this fact becomes an opportunity, because one has to look for the vehicle
only within a road network. To model the road network we define the graph
G(V, E), where the set V of vertexes represents intersections and the set E
of directed edges represents line segments connecting the intersections [12, 13].
The proposed model can abstract any curved road as a set of straight roads
connecting virtual intersections. For the sake of simplicity we assume that G
is strongly connected and E contains one-way line segments only, i.e., any two
adjacent vertexes are directly connected only by one directed edge. We intend to
relax this assumption in the future. Since parking sensors are deployed usually
along the roads they can abstract the road topology as a G. At each sensor the
information about the line segment e = (v, w) and a distance from v and/or w to
its geographical location can be stored. Thus we distinguish between two different
types of locations of a sensor i, i.e., the geographical location in R

2: Xi, and
the road network location on G represented by so-called location-tuple: Li. The
location-tuple is defined by two functions Li = (e(Xi), β(Xi)) that characterise
the line segment and the distance between the actual location of a sensor Xi

and the location of the preceding (or the following) intersection Xv. In order to
simplify the notation we write the following Li = (ei, βi), where i represents the
sensor, ei = (vi, wi) ∈ E specifies the line segment on which i is located, and βi ∈
[0, 1] specifies i’s location on ei. The βi might be expressed as βi = ||Xi−Xv ||

||Xv−Xw|| ,
where ||Xi − Xv|| is the Euclidean distance between a sensor and the preceding
intersection and ||Xv − Xw|| represents the length of ei. However, one can use
some other metrics for the βi, e.g. a time needed to get from the preceding
intersection to the actual location Xi. Without loss of generality, as a metric
for the βi we use the ratio between the Euclidean distances. In the case of the
vehicle tracking on a road network one can rely on the parking sensors as they can
abstract the road network topology. We believe that this approach is appropriate,
since the navigation is performed based on the abstracted road topology, i.e.
the driver obtains the turn-by-turn instructions in the following format: “Drive
straight until the nearest intersection, then turn right. Your parking spot is the
fifth on the right side.”

Constrained Tracking on a Road Network 151

2.2 The Radio Model

All sensors and wireless guidance devices use omnidirectional antennas and nar-
rowband radio signals for communication. We investigate the probability of sig-
nal reception at a given distance from a vehicle and at a certain time, thus we use
the path loss radio communication combined with multipath propagation model.
The path loss attenuation between transceivers is given by d−α [14], where α
is the path loss exponent, which varies from 2 (free space) up to 6 (harsh en-
vironment), and d is the Euclidean distance between transceivers. The received
power level shows rapid and deep fluctuations about the local mean with the
movement of a mobile node and presence of obstacles. These fluctuations are
caused by multipath propagation. They are approximated by the Rayleigh dis-
tribution [15]. In our radio model we use the Rayleigh fading model, because it is
particularly appropriate when there is no direct line-of-sight between the trans-
mitters, which is often the case in a very harsh outdoor environment. The value
of the received power is in fact a random variable that depends on the actual
radio propagation characteristics and the distance to the transmitter. We have
verified, by means of simulations, that the proposed radio propagation model is
consistent with the experimental results achieved in [16]. We do not show these
results for the lack of space. Assuming that the transmitted power is 1 mW the
received power at the receiver is:

Pi(t, d, α, γ) = γ(t)θd−α (1)

where γ(t) is the random number drawn according to the Rayleigh p.d.f.:

p(r) =
{

r
σ2 exp(− r2

2σ2) for r ≥ 0
0 otherwise,

(2)

where r is the envelope amplitude of received signal and σ2 is its variance. The
random variable γ is chosen in such a way that its expected value is equal to
one. In that case the expected value of Pi is equal to d−α [14]. The exponent
θ represents the intensity of the fading, for example, when the multipath effect
decreases the level of received signal by 20 dB, then the θ is equal to 2.

3 Maximum Likelihood Approach

In this section we consider the case where the vehicle’s location estimate is ob-
tained without any restrictions on used hardware, decentralized implementation
or energy budget. We are looking for a scheme that will be optimal in terms of
accuracy. We expect that it will also give us an insight into how to develop and
implement an algorithm for more realistic scenarios.

We consider the following setting: the vehicle is equipped with a wireless
guidance device and it moves on the road network with a constant speed. It
broadcasts periodically a hello message. All sensors i that are in the vehicle’s
radio communication range are able to receive this message.

152 M. Piórkowski and M. Grossglauser

We introduce a random variable Zi(t) that describes the reception of a mes-
sage by a parking sensor. A message is received when the received power level
exceeds some predefined power reception threshold Pth:

Zi(t) =
{

1 if Pi ≥ Pth

0 otherwise (3)

In this method we assume that the following information is available for the
vehicle explicitly at any time t:

a) road network topology: G(V, E),
b) geographical locations of all sensors: Xi,
c) instantaneous radio communication conditions: α, distribution of γ; and all

sensor’s reception power threshold: Pth,
d) all instantaneous sensor’s message reception events: Zi(t).

Based on the aforementioned information, the vehicle executes the proposed
algorithm in order to determine its location on a road network. The random
variable Zi(t) is characterized by the conditional probability p(zi(t)|Xi). Know-
ing the power reception threshold and the radio communication conditions we
can express this conditional probability as follows: p(zi(t)|Xi) = P(PR > Pth) =

exp(− d2α/θP
2/θ
th

2σ2). For the purpose of the ML algorithm we define a vector z̄ of
N sensor’s reception events: z̄(t) = (z1(t), z2(t), ..., zN (t)), that represents values
of Z1(t), Z2(t), ..., ZN (t). We define a likelihood function corresponding to the
vehicle’s location on the road network as:

J (e, β) = p(z̄(t)|X) (4)

Due to the multipath propagation, when a transmitter sends a radio message, its
reception by spatially distributed sensors within an urban area is independent.
This implies that Z1(t), Z2(t), ..., ZN (t) are independent, hence the p(z̄(t)|ei, βi)
is the product of the marginals:

p(z̄(t)|Xi) =
N∏

i=1

p(zi(t)|Xi) (5)

Applying the radio model from section 2.2, we obtain:

J (e, β) =
N∏

i=1

{
exp(− d2α/θP

2/θ
th

2σ2) if zi(t) = 1

1 − exp(− d2α/θP
2/θ
th

2σ2) if zi(t) = 0,
(6)

where d = ||Xcar − Xi|| is the distance between a sensor i = 1...N and a hypo-
thetic vehicle location Xcar. The maximization is done on two sets - one discrete:
E and one continuous: β ∈ [0, 1]. This allows us to find a value of β that max-
imizes (6) for all given e ∈ E separately. Afterwards we simply select the line
segment e for which the (6) takes the maximum value. Therefore we obtain the

Constrained Tracking on a Road Network 153

ML estimates for both, the line segment e and the β parameter that define the
location estimate of the vehicle on the road network L̂car.

The ML tracking method is optimal in terms of accuracy and is robust to
node outages. We use this method to examine the best achievable accuracy
of the constrained tracking. Note that it depends on the instantaneous radio
propagation conditions that are different for each transceiver in the network.
Even if we knew explicitly the multipath characteristics, it would be hard to
know the current path loss exponent for each transmitter. The path loss exponent
depends on the specific spatial distribution of the obstacles within the area where
SmartPark operates. As such, it is very difficult or even impossible to characterize
the path loss exponent statistically [14].

4 MOONwalk Algorithm

4.1 From ML Towards a Realistic Scenario

In this section we develop an algorithm that, in contrast to the ML algorithm,
does not require to know:

a) the whole road network topology,
b) the precise geographical location of all deployed parking sensors,
c) specific radio channel assumptions,
d) sensors that got the hello message and those that did not.

We assume that right after the deployment, during the so-called warm-up
phase, all parking sensors have to discover where they are located on a road
network. They can infer their location-tuples Li = (e, β), from a set of the
vehicle’s movement observations, i.e. they might obtain information about the
time needed to get from a certain intersection to a given position on a certain
line segment. How these location-tuples are derived, is out of scope of this paper.
However, we assume that they might be imprecise, especially in the case of
sensors that are close to intersections. Because of this, we allow each sensor
to have more than one location tuple, so we define a set of location-tuples as:
Li = {(ek

i , βk
i), ..., (el

i, β
l
i)} that represents the set of possible candidates for the

real location of a sensor i. We also assume that the vehicle, while estimating its
road network location Lcar, can only rely on sensors’ road network locations:
Li and the received signal strength measurements of each received message: Pi.
We consider the following scenario: the vehicle moves on the road network and
broadcasts periodically a hello message. All sensors that can hear this message
respond to the vehicle with a reply message. Due to the multipath effects some
of the sensors will not be able to receive messages as shown in Figure 1.

The ML algorithm uses the geographical locations of all sensors to estimate
the road network location of the vehicle. We seek an algorithm that will not
use any information about the sensor’s geographical location nor any distance
measurement techniques. However, we can rely on distances between sensors
and the vehicle, while estimating the location, by using the relationship between

154 M. Piórkowski and M. Grossglauser

a parking sensor that was able to reply
to a "hello" msg

contour of a "hello" msg reception region
e=3

e=4 e=1

e=2A

B

D

C

a parking sensor

a parking sensor that got a "hello" msg
but was not able to send a "reply" msg

hello

reply

Kcar

vehicle sensor

Fig. 1. An example of the interaction between vehicle and parking sensors

distance and Pi. In a certain propagation direction the expected Pi is mono-
tonically decreasing [16, 17], thus we assume that the expected Pi should be
higher for sensors that are closer to the vehicle. Note that we do not make any
assumptions about the correlation between absolute distance and the expected
Pi. Relying only on instantaneous Pi measurements is not sufficient to design a
robust method for location estimation because of the multipath effects.

There might be different densities of sensors on different line segments; if a
vehicle can know these densities, such knowledge can help it to decide on which
line segment it is at the moment. This kind of information is very useful, e.g.
in cases when a vehicle is close to an intersection and it can communicate with
sensors that belong to different line segments as shown in Figure 1. Knowing
sensors that did and did not receive a hello message, helps to infer their den-
sities on line segments. In the ML algorithm the vehicle knows all the sensors
that did not receive its hello message. A naive approach, where one could take
into account only the sensors that respond to the hello message, would bias the
results of location estimation in favour of high sensor densities, thus it is hard
to design a robust real-life algorithm that may know about non-responding sen-
sors. However, even without direct sensor-to-sensor communication, sensors can
learn about all neighbouring sensors. For this purpose one could use vehicles that
would propagate information about sensors they were able to communicate with
recently. Based on such information, each sensor could learn over time about its
neighbourhood. The reason we want to rely only on sensor-to-vehicle communi-
cation is that the radio channel between sensors might be very obstructed, as
they are deployed in the ground. Moreover, the vehicle has an almost infinite
resource of energy thus we can easily extend the lifetime of the whole system if
we preserve sensors from direct communication between each other. The long-
term sensor’s observation of its neighbourhood could be sent to the passing by
vehicles. Thus a vehicle would be able to find out which sensors were able or not
to receive its hello message. Note that the accuracy of such information depends
on the number of vehicles that pass by and the radio propagation conditions.
The more vehicles and the better radio propagation conditions, the better ap-
proximation of the sensor’s real surrounding.

4.2 How to MOONwalk

The vehicle and parking sensors perform a three-way communication that is
needed to estimate the vehicle’s road network location as shown in Figure 1.

Constrained Tracking on a Road Network 155

The hello message contains a location query. The reply message contains the
sensor’s ID: i, the set of location-tuples: Li and its neighbour table: Ni. The
neighbour table Ni represents a sensor’s knowledge of its neighbourhood. Each
entry of this table: nij represents the number of occurrences of a sensor j in
the neighbourhood of sensor i: Ni = {(j, nij)}. Each sensor has an entry for
itself in this table. Note that the Ni does not represent a direct observation
of i’s neighbourhood, since there is no sensor-to-sensor communication. After
collecting all reply messages the vehicle finds two sets - the reply message set:
R = {(i, Ni, Li)} and the so-called one-hop neighbourhood set : Kcar. The defini-
tion of a neighbour is the following: if a sensor i can communicate directly with
the vehicle, after receiving a hello message, then i is called a vehicle’s neighbour,
thus Kcar = {i : i ∈ R} . The Kcar relies on bi-directional connectivity - if there
is only a uni-directional link between two transceivers, they are not considered
as neighbours. The Kcar represents only a snapshot of vehicle’s instantaneous
neighbourhood at a given time. Once the Kcar is found, the vehicle broadcasts
it to all the sensors in the vicinity, so that they can update their Ni tables.
Note that the nii element in Ni table corresponds to the total number of such
messages. We assume that both the set of location-tuples Li and the neighbour
table Ni of each sensor are given, i.e., all sensors have observed their surrounding
long enough.

Since the position of a node on the road network is specified by a location-
tuple, we can split the algorithm into two phases. During the first phase the
algorithm will identify the proper line segment on which a given vehicle is lo-
cated. In the second phase the algorithm will find the position on the line segment
found in the first phase.

In order to find the proper line segment we need to specify a statistic that rep-
resents the certainty of the vehicle’s presence on the corresponding line segment.
This statistic is a function of the vehicle’s observation (Kcar), local density of
sensors that belong to the same line segments (Nis) and the Pi measurements.
The proper line segment is found by comparing the statistics. Below we present
the MOONwalk algorithm in more details.

Phase I. After performing the three-way communication, a vehicle creates a
matrix ncar

ij using all the Ni tables it has collected:

ncar
ij =

{
nij if nij ∈ R
0 otherwise (7)

The size of this ncar
ij matrix is the number of all the sensors that are in the Kcar

and the sensors that are neighbours of the sensors from Kcar. Each element of
this matrix takes a value from a corresponding Ni table as shown in Table 1. All
the elements of the ncar

ij matrix represent the number of times a sensor j appeared
in the sensor i’s neighbourhood. If neighbourhoods of two sensors overlap, they
should see each other equally often, i.e. if the distance between two sensors i
and j is short enough, then it is more likely that they can receive the same
hello message from a vehicle. This shows how strong two sensors are correlated

156 M. Piórkowski and M. Grossglauser

with respect to their neighbourhoods. For this reason we apply a correlation
technique called Pearson’s correlation, which in general shows how strong is the
association between two variables:

φij =
∑

k(nik − n̄i·)(njk − n̄j·)√∑
k(nik − n̄i·)2

√∑
k(njk − n̄j·)2

(8)

Thus for all non-zero elements of the ncar
ij matrix the vehicle finds the Pear-

son’s correlation coefficients matrix φcar
ij .

Table 1. Ni tables for sensors A,B, and C respectively (left) and a corresponding ncar
ij

matrix (right)

Sensor ID # occur.
A 13
B 10
C 13
D 2

Sensor ID # occur.
A 8
B 11
C 11

Sensor ID # occur.
A 10
B 9
C 12
D 4

=⇒

... A B C D
A 13 8 10 0
B 10 11 9 0
C 13 11 12 0
D 2 0 4 0

After finding all correlation coefficients, for each line segment e, taken from
all the received position-tuples from R, the vehicle finds corresponding Se set
that contains all the sensors from Kcar, which belong to this line segment e:
Se = {i : e ∈ Li} ⊂ Kcar. Note that Kcar = ∪eSe. For each such set Se the
vehicle obtains a submatrix of coefficients from the φcar

ij matrix. The size of such
a submatrix is q x q, where q = |Se|. In such a submatrix both rows and columns
correspond to the sensors that belong to the same line segment. Suppose that
the vehicle has to decide whether it is on a line segment e = 1 or e = 2 as shown
in Figure 1. By inspecting the position-tuples, the vehicle knows that S1 = B, C
and S2 = A, B, C as shown in Table 2.

Table 2. An example of the two submatrices of the φcar
ij that contain pairwise corre-

lation coefficients of the sensors that belong to S1 (left) and S2 (right)

... B C
B 1.0000 0.9142
C 0.9142 1.0000

... A B C
A 1.0000 0.8889 0.9707
B 0.8889 1.0000 0.9142
C 0.9707 0.9142 1.0000

After finding these submatrices, the vehicle calculates the average correla-
tion for each candidate line segment: Φi

e = 1
q

∑q
j=1 φiSe[j], which approximates

the sensor’s belief about its line segment membership. Thus for different line
segments we have different coefficients for the same sensors. We use the Φi

e coef-
ficients as weights to determine the relative importance of the information about
a certain location provided by a sensor. At this point we also use the vehicle’s
set of Pi measurements and the size of each sensor’s neighborhood to define a

Constrained Tracking on a Road Network 157

statistic T used to find the proper line segment. By doing so we counterbalance
the effect of received responses of nodes which neighbours did not respond. The
T statistic takes a maximum value for a line segment for which the certainty of
the vehicle’s presence is highest.

Phase II. Once the estimated line segment: ê is found, the vehicle can search
for the estimate β̂ of the position on ê. Here the Pi measurements can be used
again. We are only considering the Pi measurements of the sensors that belong
to the same line segment ê, found in the first phase of the algorithm. Usually the
parking spots are placed along roads, so the expected Pi of each message, sent
by the sensors from the parking spots, should monotonically decrease with the
distance between the vehicle and a sensor. Thus we can expect that the sensor
for which Pi is the maximum is the closest to the vehicle. We simply take the β
parameter of such a sensor as the vehicle’s estimate of its position on a certain
line segment: β̂.

5 Evaluation

5.1 Methodology

In this paragraph we define the performance metric that will measure the accu-
racy of the proposed methods. The proposed metric is in fact a cost function that
shows how much effort a driver would have to devote to get from the estimated
location to the real one. Our motivation comes from the following observation:
it is easier to move between the real location and the estimated one if both
are on the same line segment, even if a driver would have to use the reverse
gear. Whereas it is much more difficult to get from the estimated location to
the real one through an intersection. Since the tracking subsystem will provide
other SmartPark subsystems (e.g. navigation and reservation subsystems) with
an actual vehicle’s location information, we need to define a performance metric
that will express the driver’s effort needed to recover from misleading instruc-
tions received from SmartPark. Therefore we specify the cost function in the
following way. If a driver has to move on the same line segment to get to the
estimated location, she does not have to spend more than C effort. When she
has to cross an intersection, she has to devote at least C effort. In our approach
we express the cost function as a road graph distance error ΔdG as follows:

ΔdG =

{
|β − β̂| if ê = e

2 − |β − β̂| if ê �= e
(9)

One can notice that a driver will have to devote at most C = 1 effort in the
first case, whereas in the second case the minimal cost will be at least C = 1.
Therefore we expect from the proposed algorithms that their accuracy in terms
of proposed error metric should be at least below 1 and close to 0 as much as
possible.

We compare the performance of the two proposed methods under different
conditions. The four differrent evaluation areas are illustrated in Figure 2. The

158 M. Piórkowski and M. Grossglauser

0 100 200 300
0

50

100

150

200

250

300
Sensors equally spaced along the roads

[m]

[m
]

0 100 200 300
0

50

100

150

200

250

300
Sensors spaced wrt uniform distribution along the roads

[m]

[m
]

0 100 200 300
0

50

100

150

200

250

300
Sensors spaced wrt Poisson distribution along the roads

[m]

[m
]

0 100 200 300
0

50

100

150

200
Basel city center

[m]

[m
]

Fig. 2. Four different simulation areas used in tests

first three differ only in terms of sensors’ distribution along the line segments.
The fourth one is a part of a city centre that contains 220 sensors that are placed
along the line segments - all parking spot coordinates and the road network
characteristics were taken from the map of Basel city centre.

First we check how the performace depends on the radio conditions for four
different deployments of sensors along the line segments. Next, we check the
accuracy of the two algorithms with respect to different sensor densities, within
three different simulation areas. For this case, we generate five different sets of
sensors for each deployment scheme on the grid road network topology.

Because of the MOONwalk algorithm requirements related to the warm-up
phase, we had to perform a special pre-computation that defines the road net-
work mapping and the Ni tables for each parking sensor. For this purpose we
have projected the road topology onto the parking sensors in the following way.
Since all sensors are deployed along the streets, we define an area A that is a
rectangle, whose symmetry axis is the given line segment e. If a sensor node is
inside this rectangle A, it means that it belongs to the line segment e. It may
happen that one parking sensor will be inside more than one such rectangle,
which is usually the case if it is close to an intersection; then this parking sensor
has more than one location-tuple that forms the set of location-tuples: Li. The
projection technique is shown in Figure 3.

In case of the Ni tables, we specified five different intervals of occurrences i.e
< 25, 20 >, < 20, 15 >, < 15, 10 >, < 10, 5 > < 5, 0 > and five corresponding
radii R1 < R2 < R3 < R4 < R5. The technique we used to construct the Ni

for each sensor was the following - if the distance between sensors i and j was
smaller than Rk then the number of occurrences of j in i’s neighbourhood was
uniformly chosen from the kth interval.

In our simulations we use one vehicle that is placed at a random intersection
and moves randomly with the constant speed, according to pre-defined road

Constrained Tracking on a Road Network 159

a sensor with one location-tuple

a sensor with two location-tuples

Fig. 3. The projection of the road network topology onto the fixed part of SmartPark

rules. We develop our own simulator written in MATLAB. Because the exact
distribution of ΔdG is unknown, we evaluate the performance based on the lower
quartile, the median and the upper quartile of ΔdG.

5.2 Comparison of the Algorithms

Using the same pre-defined path and radio communication conditions, we eval-
uate the performance of the proposed algorithms through the cumulative distri-
bution of ΔdG, shown in Figure 4. The ML method outperforms the MOONwalk
algorithm in all the cases. However the ΔdG is significantly lower than 1 for at
least 80% of cases for both algorithms.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δ d
G

E
m

pi
ric

al
 c

df
(Δ

 d
G

)

Empirical cdf of Δ d
G

 for the grid road network topology

with sensors equally spaced along the roads

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δ d
G

E
m

pi
ric

al
 c

df
(Δ

 d
G

)

Empirical cdf of Δ d
G

 for the grid road network topology

with sensors spaced wrt uniform distribution along the roads

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δ d
G

E
m

pi
ric

al
 c

df
(Δ

 d
G

)

Empirical cdf of Δ d
G

 for the grid road network topology

with sensors spaced wrt Poisson distribution along the roads

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δ d
G

E
m

pi
ric

al
 c

df
(Δ

 d
G

)

Empirical cdf of Δ d
G

 error for the Basel city center

MOONwalk

ML

MOONwalk

ML

MOONwalk

ML

MOONwalk

ML

Fig. 4. Comparison of the ML and MOONwalk algorithms based of the empirical cdf
of the ΔdG; simulation setup - pathloss exponent: 4, multipath fading: 20 dB, size of
each journey: 9 line segments, vehicle’s speed: 40 km/h

160 M. Piórkowski and M. Grossglauser

5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

multipath fading [dB]

m
ed

ia
n(

Δ
d G

)

Sensors equally spaced along the roads

MOONwalk
ML

5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

multipath fading [dB]

m
ed

ia
n(

Δ
d G

)

Sensors spaced wrt uniform distribution along the roads

MOONwalk
ML

5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

multipath fading [dB]

m
ed

ia
n(

Δ
d G

)

Sensors spaced wrt Poisson distribution along the roads

MOONwalk
ML

5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

multipath fading [dB]

m
ed

ia
n(

Δ
d G

)

Basel city center

MOONwalk
ML

Fig. 5. Performance evaluation of ML and MOONwalk algorithms for different in-
tensities of multipath fading on different simulation areas; simulation setup - pathloss
exponent: 4, size of each journey: 70 line segments (approximately 350 ΔdGs), vehicle’s
speed: 40 km/h

0 100 200 300
0

50

100

150

200

250

300

[m]

[m
]

Road network topology (:) and the route taken by the vehicle (−)

10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

number of sensors on a line segment

m
ed

ia
n(

Δ
d G

)

Sensors equally spaced along the roads

MOONwalk
ML

10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

number of sensors on a line segment

m
ed

ia
n(

Δ
d G

)

Sensors spaced wrt uniform distribution along the roads

MOONwalk
ML

10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

number of sensors on a line segment

m
ed

ia
n(

Δ
d G

)

Sensors spaced wrt Poisson distribution along the roads

MOONwalk
ML

Fig. 6. Performance evaluation of ML and MOONwalk algorithms for a different num-
ber of sensors per line segment on different simulation areas; simulation setup - pathloss
exponent: 4, multipath fading: 20 dB, size of each journey: 9 line segments, vehicle’s
speed: 40 km/h

Constrained Tracking on a Road Network 161

During the second test, we let the vehicle travel through 70 line segments.
We calculate the lower quartile, the median and the upper quartile of the ΔdG.
We do this for different intensities of Rayleigh fading. The median value of ΔdG

grows with multipath intensity for the ML algorithm, which is not the case for
the MOONwalk method, as shown in Figure 5. The results of the third test are
shown in Figure 6. Here we check how the number of active sensors affect the
algorithms performance. The median value of ΔdG decreases with the number of
sensors for both algorithms. The improvement is, however, not significant. This
is a good sign because the performance of both algorithms does not suffer from
sensor outages - if 80% of the sensors from a line segment cannot communicate
with a vehicle at a given time, the ΔdG decreases at most of 0.0128 and 0.0123
for ML and MOONwalk algorithms, respectively.

The MOONwalk algorithm depends mostly on the proper projection of the
road network topology onto the fixed part of SmartPark. However, its strong
advantage is that it does not require as much input data as ML in order to
achieve comparable accuracy. Moreover, its accuracy does not decrease in the
case of significant multipath fading and it is much easier to implement in a real-
life scenario than ML. This shows us that MOONwalk is a good candidate for
the tracking subsystem of SmartPark.

6 Related Work

Extensive research has been done on localization and tracking for wireless sensor
networks. A general survey on localization is found in [18]. Systems focused on
the locating problem on a large geographic scale use, for example, GPS. In
the past decade, there have been many different types of location-based projects
that work outdoors, where the radio signal is highly disturbed by the presence of
obstacles and moving objects. These systems are usually supported by networks
of small spatially distributed wireless devices. Here, we focus only on localization
techniques suitable for sensor networks that use only the Radio Frequency (RF)
based approach.

In [7] Gupta and Das have developed a simple detection and tracking algo-
rithm that involves only simple computation and local communication only to
the nodes in the vicinity of the target. They focus only on the unconstrained
tracking approach, where the target is unknown to the system and its appear-
ance alerts all sensors along the projected path of the target. In this approach all
sensors are capable of estimating the distance of the target to be tracked from
the sensor readings. This requires additional effort to map the sensor readings
to the distance. In order to track the target they use the triangulation method.

In [17] Youssef et. all present a method for inferring the location of a de-
vice based on FM radio signal strengths. The proposed method is robust to
measurement differences between devices by basing the inferences on rankings
of radio stations rather than on their absolute received signal strength. The
method does not require any manual survey of received signal strength as a
function of location. However, it requires the usage of the simulated radio maps

162 M. Piórkowski and M. Grossglauser

designed for a given area, validation of simulated received signal strength maps
and an additional pre-processing needed to reduce the number of rank vectors
that correspond to given locations.

Our approach also uses a RF-based method needed to perform the localization
of a mobile node within a wireless sensor network. However, in contrast to the
above-mentioned systems where the tracking is unconstrained, our work focuses
on the problem of how to build the mobile node’s movement constraints into the
tracking algorithm in order to meet the application needs. Given the fact that we
use a decentralized architecture of small devices that are relatively inexpensive,
our constrained tracking approach, especially MOONwalk with the option where
no extra hardware is needed, represents an attractive and powerful solution to
the vehicle tracking on a road network problem.

7 Conclusion and Future Work

The MOONwalk algorithm is a good candidate for the tracking subsystem of
SmartPark mainly because it does not require any additional range-measurement
hardware. Its accuracy is comparable with that achieved by the optimal approach
specified by ML algorithm. We believe there is still place for improvement. If
we introduce more vehicles we can rely not only on the sensor-to-vehicle, but
also on the vehicle-to-vehicle communication. We currently are investigating this
approach called collaborative tracking in more detail. Another possible improve-
ment is to let the vehicle send a hello message with the maximum RF power and
to let the parking sensor send back several reply messages, using different RF
power levels. One could combine this approach with the collaborative tracking.
By this it might be possible to achieve a sufficient trade-off between communica-
tion overhead and accuracy. We are also working on the dynamic version of both
methods where we are using the dead reckoning techniques. In order to improve
the accuracy of the location estimation, we apply the past location estimates
of a vehicle. Preliminary results show that the improvement is significant. We
are also investigating the problem of the road network topology projection onto
the fixed wireless network of parking sensors. We are currently evaluating the
MOONwalk algorithm on a test-bed in a real-life scenario.

References

1. J. Heidemann N. Bulusu and D. Estrin. GPS-less Low-Cost Outdoor Localization
for Very Small Devices. IEEE Personal Communications, 7:28–34, October 2000.

2. D. Niculescu and B. Nath. DV Based Positioning in Ad Hoc Networks. Telecom-
munication Systems, pages 267–280, January-April 2003.

3. H.T. Kung and D. Vlah. Efficient Location Tracking Using Sensor Networks.
In IEEE Wireless Communications and Networking WCNC2003, volume 3, pages
1954–1961, March 2003.

4. T. He, C. Huang, B.M. Blum, J.A. Stankovic, and T. Abdelzaher. Range-free Local-
ization Schemes for Large Scale Sensor Networks. In The 9th Annual International
Conference on Mobile Computing and Networking, pages 81–95, September 2003.

Constrained Tracking on a Road Network 163

5. D. Estrin N. Bulusu, V. Bychkovskiy and J. Heidemann. Scalable, Ad Hoc De-
ployable RF-based Localization. In The Grace Hopper Celebration of Women in
Computing Conference, October 2002.

6. A. Smith, H. Balakrishnan, M. Goraczko, and N. Priyantha. Tracking Moving
Devices with the Cricket Location System. In MobiSYS ’04: Proceedings of the
2nd international conference on Mobile systems, applications, and services, pages
190–202, New York, NY, USA, 2004. ACM Press.

7. R. Gupta and S.R. Das. Tracking Moving Targets in a Smart Sensor Network. In
IEEE Vehicular Technology Conference VTC2003-Fall, volume 5, pages 3035–3039,
October 2003.

8. L. Hu and D. Evans. Localization for Mobile Sensor Networks. In MobiCom ’04:
Proceedings of the 10th annual international conference on Mobile computing and
networking, pages 45–57. ACM Press, 2004.

9. SmartPark project website. http://smartpark.epfl.ch.
10. Vehicle Information and Communication System. http://www.vics.or.jp/

english/index.html.
11. www.roadtraffic-technology.com : The web site for the road traffic industry.

http://www.roadtraffic-technology.com/contractors/parking/.
12. J. Tian, L. Han, K. Rothermel, and C. Cseh. Spatially aware packet routing for

mobile ad hoc inter-vehicle radio networks. In Proceedings of the IEEE 6th In-
ternational Conference on Intelligent Transportation Systems (ITSC ’03), October
2003.

13. A. Leonhardi, Ch. Nicu, and K. Rothermel. A Map-Based Dead-Reckoning Pro-
tocol for Updating Location Information. In IPDPS ’02: Proceedings of the 16th
International Parallel and Distributed Processing Symposium, page 15, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

14. W.C. Jakes. Microwave Mobile Communications. Wiley-IEEE Press, May 1994.
15. B. Sklar. Rayleigh Fading Channels in Mobile Digital Communication Systems .I.

Characterization. IEEE Communications Magazine, 35:90–100, July 1997.
16. D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker.

Complex Behavior at Scale: An Experimental Study of Low-Power Wireless Sensor
Networks, February 2002.

17. A. Youssef, J. Krumm, E. Miller, G. Cermak, and E. Horvitz. Computing Lo-
cation from Ambient FM Radio Signals. In IEEE Wireless Communications and
Networking Conference (WCNC 2005), March 2005.

18. J. Hightower and G. Borriello. Location Systems for Ubiquitous Computing. In
IEEE Computer, volume 34, pages 57 – 66, August 2001.

Range-Based Localization in Mobile Sensor
Networks

Bram Dil1, Stefan Dulman2, and Paul Havinga1,2

1 Embedded Systems, University of Twente, The Netherlands
2 Ambient Systems, The Netherlands

b.j.dil@student.utwente.nl, havinga@cs.utwente.nl,
dulman@ambient-systems.net

Abstract. Localization schemes for wireless sensor networks can be
classified as range-based or range-free. They differ in the information
used for localization. Range-based methods use range measurements,
while range-free techniques only use the content of the messages. None of
the existing algorithms evaluate both types of information. Most of the
localization schemes do not consider mobility. In this paper, a Sequential
Monte Carlo Localization Method is introduced that uses both types of
information as well as mobility to obtain accurate position estimations,
even when high range measurement errors are present in the network and
unpredictable movements of the nodes occur. We test our algorithm in
various environmental settings and compare it to other known localiza-
tion algorithms. The simulations show that our algorithm outperforms
these known range-oriented and range-free algorithms for both static and
dynamic networks. Localization improvements range from 12% to 49% in
a wide range of conditions.

1 Introduction

A wireless sensor network is a network where small sensors with limited hard-
ware capabilities communicate wirelessly with each other. First all nodes are
placed in a random matter (like dropping them from an airplane). “When the
nodes are dropped”, they are capable of communicating with each other within a
certain communication radius. The network can be considered as an undirected
graph using its connectivity and range measurement information. When certain
information is propagated through the network, nodes can be located by using
that information.

Wireless sensor networks hold the promise of many new applications in the
area of monitoring and control. Examples include target tracking, intrusion de-
tection, wildlife habitat monitoring, climate control, and disaster management
([3]). Localization of the nodes is one of the main issues in a wireless sensor
network. While many algorithms have been proposed to estimate the position of
the nodes, there is still no algorithm that performs best in all networks.

As range measurements between nodes contain some error, the nodes’ loca-
tions can only be estimated. This is called “the range error” problem ([2]). Node

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 164–179, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Range-Based Localization in Mobile Sensor Networks 165

localization algorithms dependent on range measurements are sensitive to range
errors. While range-free algorithms overcome this problem, they perform badly
in irregular networks ([3], [4]). Several studies have been performed to minimize
the impact of these range measurement errors. These studies estimate a node’s
position by giving a certain weight to each measurement or estimated node’s
location. These weights are then used to compute a least square solution by
using an Iterative Weighted Least Square Method (IWLSM) ([2], [7], [19]).

In general, localization algorithms follow the following scheme ([3]): anchor-
unknown distance determination, deriving a node’s position given the anchor
distances, and then refinement of the position estimates. Because mobile sensor
networks are changing fast as time progresses, not much effort has been invested
in researching the refinement phase. However, this phase can be successfully
applied to static networks ([1], [2]).

Most of the current proposed localization algorithms apply an Iterative
Weighted Least Square Method ([1], [2], [6], [7], [18], [19]). They differ in deter-
mination of the anchor-unknown distances and in weights used in the IWLSM.

Improved MDS-MAP ([5]) uses a different technique: Multi-Dimensional Scal-
ing (MDS). This method uses all available local information around a node and
computes a local map for each node. By merging these local maps and known
anchor positions, a global map can be computed. With this global map avail-
able, the nodes can estimate their position. This centralized localization tech-
nique uses a lot of communication and is therefore not applicable in mobile
sensor networks. In this study, we compare our algorithm with an IWLSM, us-
ing the same weights as our localization scheme. These weights are based on
standard and available knowledge of the accuracy of the range measurement
hardware.

In addition, we compare our algorithm with the following range-free algo-
rithms: DV-hop ([18]) and an SMCL method ([13]). With increasing range mea-
surement error, the positioning error increases of the range-based algorithms. We
made a comparison with range-free algorithms when high range measurement
errors are present in the network.

Our algorithm adapts a Monte Carlo Localization (MCL) method, which has
been successfully implemented in robotics localization ([11], [12]) and range-free
localization in a mobile wireless sensor networks ([13]). Our Monte Carlo Local-
ization algorithm combines range-free and range-based information to improve
its performance. It uses the range-free information to increase its robustness even
when high range measurement errors are present in the network. In addition, it
improves the localization accuracy and lowers the computational costs by us-
ing the range measurements. In addition, we use the mobility in the network to
increase accuracy.

This paper is organized as follows: After the problem formulation in Section 2,
Section 3 describes a known Sequential Monte Carlo Localization solution in a
range-free mobile wireless sensor network. In section 4, we introduce our new
algorithm that uses all of the range-free information described in Section 3.
Section 5 presents the simulation reports and comparisons with other localization

166 B. Dil, S. Dulman, P. Havinga

algorithms. In Section 6, we analyze the results of our algorithm and compare
them with the results of other localization algorithms. Section 7 summarizes the
conclusions.

2 Problem Formulation

In a mobile sensor network, we assume that the time is divided into fixed constant
time units. In a time unit, the node moves away from its previous location to its
current location. When a time unit has elapsed, the localization algorithm has to
locate the unknowns with the information available. Our algorithm is interested
in estimating the filtering distribution of a node when range measurements are
available in the network. The Sequential Monte Carlo approach provides simula-
tion based solutions to estimate the posterior distribution of nonlinear discrete
time dynamic models ([9]).

We formulate the mobile localization problem in a state space form as follows:
Let t be the discrete time given in time units; lt is the position distribution of a
node given at time t; ot represents the observations of a node received from the
anchors between time t − 1 and t. We are interested in estimating recursively
in time the so-called filtering distribution: P (lt|o0:t). The filtering distribution
is represented by N weighted samples which are updated every time unit, using
an importance function. The performance of the Sequential Monte Carlo Local-
ization algorithm is highly dependent on this latter distribution function. In the
ideal case samples are drawn from the posterior distribution: P (l0:t|o0:t), but
most of the time it is impossible to sample directly from the posterior distribu-
tion. The general Sequential Monte Carlo method looks like ([15]):

P (l0:t|o0:t) = P (l0|o0)
t∏

k=1

P (lk|l0:(k−1), o0:k) (1)

Different importance functions have been proposed through the years, which are
most of the time special cases of this general algorithm ([15]). An overview of
Sequential Monte Carlo methods can be found in ([15]).

3 Known SMCL Solution

A Sequential Monte Carlo Localization algorithm for mobile wireless networks
is described in [13]. In this article no range measurements are present so the
observations of the node (ot) only consists of anchor positions. Connectivity con-
straints are constructed from these anchor positions. They use a prior importance
function ([17]), which implies that the importance function draws samples with-
out any knowledge of the observations. They use the following recursive function:

P (lt|o0:t) = P (l0)
t∏

k=1

P (lk|lk−1) (2)

w̃
(i)
t = w̃

(i)
t−1P (ot|l(i)t) (3)

Range-Based Localization in Mobile Sensor Networks 167

Their algorithm is divided into three phases which are described in the next
three subparagraphs. In the last subparagraph we discuss the observations and
extensions.

3.1 Prediction Phase

In the prediction phase the samples are drawn from the previous predictions:
P (lt|lt−1). The algorithm assumes that nodes know their maximum speed Vmax.
Given a previous position lt−1 and speed constraint Vmax, possible predicted
positions by lt−1 are within a circular region with origin lt−1 and radius Vmax.
This gives the following constraint:

P (lt|lt−1) =

{
1

πV 2
max

if d(lt, lt−1) ≤ Vmax,

0 otherwise.
(4)

Here d(lt, lt−1) is the distance between the current prediction lt and the previous
prediction lt−1. Our algorithm also uses this speed constraint (Section 4.2).

3.2 Filtering Phase

In the filtering phase the predictions that do not lie within the connectivity
constraints are filtered (Equation 3: P (ot|li)). Because the transmission range is
modelled as a perfect circle and only two-hop away information is available, the
following condition holds:

filter(p) = ∀a ∈ S, d(p, a) ≤ tr ∩ ∀b ∈ T, tr ≤ d(p, b) ≤ 2tr (5)

Here is p the prediction; S is the set of one-hop away anchors, T is the set
of two-hop away anchors; tr is the transmission range and d(p, a) is the dis-
tance between prediction p and anchor a. Because P (ot|li) (Equation 3) can
only be 1 or 0, the weights associated with the predictions are also 1 (valid) or
0 (invalid). Our algorithm uses an extended version of this filtering condition
(Section 4.2).

3.3 Re-sampling

After one prediction and filtering step, the number of valid predictions is of
variable size. To keep the number of valid predictions of constant size, the process
of predicting and filtering is repeated until N valid samples are drawn. The
simulations proved that N = 50 was sufficient ([13]). The final position estimate
is the mean of the predictions.

3.4 Observations and Extensions

In the first time unit, no previous predictions are available (P (l0)). In [13],
these previous predictions are placed randomly in the possible area. Placing
the previous predictions randomly gives poor results in the first few time units.

168 B. Dil, S. Dulman, P. Havinga

We propose that if no previous predictions are available, the algorithm makes
predictions based upon the first connectivity constraint received: P (l1|o(1)

1). This
proposal, shortly mentioned in [13], not only improves the results in the first few
time units but also decreases the “initialization phase” time. We then use the
following recursive function:

P (lt|o0:t) = P (l1|o(1)
1)

t∏
k=2

P (lk|lk−1) (6)

The importance function draws predictions based only on previous predictions.
This means that if the constraints based upon connectivity and previous predic-
tions are tight, many predictions have to be made to come to N valid predictions.
It is even possible that this algorithm cannot make any valid predictions. That
is why we use a looping limit that limits the number of times the process of
predicting and filtering is done. When the looping limit is reached and no valid
predictions are made, the algorithm makes predictions as if it had no previous
predictions.

4 SMCL and Range Measurements

In this section, we discuss the case when range measurements are present in the
network. When we include the range measurements into the recursive Sequential
Monte Carlo computation, we obtain the following filtering distribution:

P (lt|occ,0:t, orm,0:t) (7)

Here occ,0:t are the connectivity constraints andorm,0:tare the rangemeasurements.
We made an approximation of the optimal solution ([10]) by dividing the

optimal solution into several suboptimal solutions as the optimal solution cannot
be evaluated directly. We propose the following new recursive computation:

P (lt|occ,0:t, orm,0:t) ≈
∑

o
(i)
rm,1∈orm,1

P (l1|occ,1, o
(i)
rm,1)

t∏
k=2

∑
o
(i)
rm,k∈orm,k

P (lk|lk−1, occ,k, o
(i)
rm,k) (8)

Figure 1 shows an overview in pseudocode of the algorithm. The nodes locally
use this algorithm to estimate their positions with the received information of
the anchors. The different phases of the algorithm are discussed in the following
subsections.

Range-Based Localization in Mobile Sensor Networks 169

FOR EVERY "time unit" DO
saved predictions become saved previous predictions (section 4.2)
receive, save and forward anchor-unknown distances (section 4.1)
FOR ALL "received range measurements" DO

Compute Nlocal (section 4.3)
Predict and save Nlocal predictions (section 4.2)

END FOR;
Compute weight for each saved prediction (section 4.4)
Compute final position (section 4.4)

END FOR;

Fig. 1. Pseudocode of the range-based SMCL algorithm

4.1 Anchor-Unknown Distances

In this phase, the nodes determine their distance to one or multiple anchors by
using different range measurements. This information is needed by our algorithm
to localize the nodes. Our algorithm uses sum-dist to determine this distance,
nameless in [1] and later named in [3]:

First, anchors start flooding the network with their position, a hop distance
and path length set to zero. Each receiving node adds the measured range to the
path length and increases the hop distance by one. Only the shortest hop distance
and path length is forwarded for each anchor. At the end of this phase, every
node has stored the anchor positions, minimum hop distances, and minimum
path lengths to several anchors.

4.2 Prediction Phase

In the prediction phase, samples are drawn from the previous predictions, con-
nectivity constraints and one range measurement:

P (lk|lk−1, occ,k, o
(i)
rm,k) (9)

Our algorithm assumes that the nodes know their maximum speed Vmax (Sec-
tion 3.1, Equation 4), and the filtering condition that represent the connectivity
constraints (Section 3.2, Equation 5) is updated to support n-hop away anchors:

filter(p) = ∀a ∈ S, d(p, a) ≤ tr ∩ ∀b ∈ T, tr ≤ d(p, b) ≤ n · tr (10)

Here is T the set of n-hop away anchors, where n ≥ 2. We also assume that the
transmission range is a perfect circle.

The algorithm needs to evaluate one extra observation compared to the other
SMCL scheme: the range measurement. By using standard geometry, we can
easily evaluate Equation 9. We must do this for all range measurements. We use
this construction because the optimal solution cannot be evaluated directly. An
approximation is made by dividing the optimal solution into several suboptimal
solutions:

P (lt|lt−1, occ,t, orm,t) ≈
∑

o
(i)
rm,t∈orm,t

P (lt|lt−1, occ,t, o
(i)
rm,t) (11)

170 B. Dil, S. Dulman, P. Havinga

In this case, every range measurement can be seen as a sampling function, not
considering the other range measurements. Given range measurement rm to an-
chor position a, the predictions according to the range measurement are some-
where located at the edge of the circle with origin a and radius rm. This gives
the following constraint:

P (lt|orm) =

{
1 if d(lt, a) = rm,

0 otherwise.
(12)

Note that after the prediction phase we only have valid predictions, so we do
not need a filtering phase.

4.3 Weights and Sample Size

Our algorithm uses a constant number of predictions: N . This is done to keep
the computational costs at a low and constant level. In the prediction phase,
the sampling of the predictions is divided into several sampling functions by
the range measurements. So every sampling function samples a portion of N
predictions: Nlocal. The size of Nlocal depends on the precision of the range
measurement, formulated as: 1

σ2
rm

. σ2
rm stands for the variance of the range mea-

surement. This variance is based on the hop distance associated with the range
measurement. Every range measurement consists of “hop count” independent
range measurements. We use an approximation made in [19]:

σ2
rm,i ≈ i · σ2

rm,1 (13)

Here i stands for the number of hops. Our algorithm uses this approximation
to compute the ratio between the precisions of the various range measurements.
This ratio is used to compute the size of Nlocal, and is later used to compute
the final position estimation. Note that this ratio can be calculated only using
the “hop count” because we assume that the nodes have the same distance
measurement hardware (σ2

rm,1 is a constant).

4.4 Computing the Final Position Estimation

In this phase, the algorithm uses the predictions, made in the prediction phase,
to compute its position estimation. With the available range measurements and
associated weights (Equation 13), a weight is estimated for each prediction. Let
p1. . . pi be all predictions with locations x1, y1. . . xi, yi. Let A1. . .Aj be all known
anchor positions with associated range measurements R1. . . Rj to the specific
node. The weights of the predictions are computed by the summed squared
error multiplied by the appropriate range measurement weights:

σ2
pi

=
j∑

k=1

1
σ2

rm,k

(
d(pi, Ak) − Rk

)2
(14)

1
σ2

rm,k

stands for the precision estimate of range measurement Rk. We take the

summed square error as an estimate of the variance of prediction pi: σ2
pi

. Using

Range-Based Localization in Mobile Sensor Networks 171

this estimate, the precision of prediction pi is 1
σ2

pi

. If we have N predictions then

the optimal position (x, y) is where:
∑N

i=1
1

σ2
pi

(
(xi−x)2+(yi−y)2

)
is minimized.

This weighted least square solution can be computed with an iterative weighted
least square method. It can also be computed with a weighted mean method.
The weighted mean method uses less computation power and is therefore a good
replacement:

x =
1∑N

i=1 σ−2
pi

·
N∑

i=1

σ−2
pi

· xi

y =
1∑N

i=1 σ−2
pi

·
N∑

i=1

σ−2
pi

· yi

(15)

This algorithm uses the ratio between the weights to compute the weighted least
square solution.

4.5 Observations

It is possible that no valid predictions can be made. In this case, the algorithm
makes predictions as if it had no previous predictions. When the range measure-
ments are really bad, it is even possible that our algorithm cannot make any
valid predictions with no speed constraints. In that case, the recursive function
proposed in Section 3.4 is used (Equation 6).

A range measurement that does not satisfy its own connectivity constraint
changes its value to the nearest number that satisfies this constraint. This in-
creases the performance of the algorithm in several ways:

- More predictions can be made, giving a better representation of the position
distribution.

- Peaks in the range measurements have less influence on the final position
estimation.

5 Simulations

In this section, we analyze our algorithm by running several simulations using
MatLab. In these simulations, we test our algorithm with different values for
algorithm-specific parameters and under various environmental settings. In ad-
dition, we compare our results to other localization techniques: these are the
IWLSM, the range-free MCL scheme ([13]) and DV-HOP ([18]). We analyze
the results of the localization schemes by looking at the mean error versus the
communication costs.

5.1 General Simulation Set-Up

Except when stated otherwise, we use the same general set-up for all simulations.
The sensor nodes are uniformly placed within a 1x1 units2 area and a transmis-
sion range tr of 0.125 units is used. For simplicity, the transmission range is
simulated as a perfect circle and messages are always received correctly.

172 B. Dil, S. Dulman, P. Havinga

The parameters we vary are:

- The number of predictions drawn by the sampling function. In general, we
use a number of 50 samples.

- The number of nodes placed within the area. In general, we use a number
of 180 nodes. The node density (average number of 1-hop away nodes) is
determined by simulation. The general set-up has a node density of: 13.9.

- The number of anchors placed within the area. In general, we use a number
of 20 anchors. The anchor density (average number of 1-hop away anchors) is
determined by simulation. The general set-up has an anchor density of: 1.3.

- The speed of the nodes, which we choose randomly from [0, V max]. The
nodes’ speed is given as a ratio of the transmission range. In general, we use
a speed of [0, 1].

- The Time-To-Live (TTL) of the messages. This value indicates the number
of times a message is forwarded. We keep the communication costs per al-
gorithm the same with this parameter, so the performance of the different
algorithms are determined by the localization error. DV-Hop isn’t affected by
the TTL and has different communication costs than the other algorithms.
In general, we use a TTL of 4 for every algorithm.

- The range measurement errors, which we simulate by a Gaussian distribution
with the real distance as the mean. The standard deviation of the error
is represented as a ratio of the real range. In general, we use a standard
deviation of 0.2 ([7]). This value is based on the picoradio ([8]) that uses
Received Signal Strength Indication (RSSI) for range measurements.

- We tested each simulation setup for 50 runs, each consisting of 50 time units.

We adopt a modified ([13]) random waypoint mobility model ([16]) for the nodes.
With this model, a node randomly chooses its destination. After arriving at its
destination, the node chooses a new destination. Furthermore, the speed of the
nodes are changed and randomly chosen from [0, V max] after each time unit
and when the nodes arrive at their destinations. We use this model to maintain
an average speed. Before localization, we run the modified random waypoint
mobility model for several time units to maintain the distribution created by
this mobility model.

We use the following settings for the other localization schemes:

- The extensions proposed in this article (Section 3.4 and Equation 6) are
used for the range-free SMCL scheme ([13]). We also need another update to
support different values of TTL (Section 4.2, Equation 10). We use a looping
limit of 10 and a sample size of 50, which should be enough according to [13].

- The IWLSM uses the same weights and range measurement values as our
algorithm.

- We use the DV-hop localization scheme as proposed in ([18]).

5.2 Accuracy

In this section, we analyze the performance of the various algorithms in case of
the general settings, described in section 5.1. Figure 2 shows the mean error as a

Range-Based Localization in Mobile Sensor Networks 173

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50

m
e

a
n

 e
rr

o
r

a
s
 r

a
ti
o

 o
f

tr
a

n
s
m

is
s
io

n
 r

a
n

g
e

time units

range-based SMCL
WLSM

range-free SMCL
DV-HOP

Fig. 2. Mean error per time unit

 0.196

 0.198

 0.2

 0.202

 0.204

 0.206

 0.208

 0.21

 20 40 60 80 100 120 140 160 180 200

m
e

a
n

 e
rr

o
r

a
s
 r

a
ti
o

 o
f

tr
a

n
s
m

is
s
io

n
 r

a
n

g
e

sample size

range-based SMCL

Fig. 3. Mean error per sample size

ratio of the transmission range for all the nodes that received information from
three or more anchors. For both of the SMCL schemes, the localization process
can be divided into the initialization phase and the stable phase ([13]). In the
initialization phase, the positioning error decreases rapidly as new observations
are evaluated. The region of the position distribution becomes smaller until a
stable phase is reached. In the stable phase, the impact of the mobility and
connectivity constraints on the position distribution remain in equilibrium, and
the mean error fluctuates around some mean value. From the first to the last time
unit our SMCL scheme outperforms the other algorithms in terms of the mean
error. All the algorithms have the same communication costs (TTL), except for
DV-hop that has a higher communication cost.

The localization error in the first time unit gives an indication of the mean
error in a static network. The simulations show an improvement of the mean
error in the dynamic case of 36% and in the static case of 27%.

5.3 Sample Size

The predictions and associated weights are a representation of the probability
distribution. When more predictions are made, a better approximation of the
probability distribution is made. While maintaining more samples improves ac-
curacy, it also increases the computational and memory costs for the node. In
this section we try to find a balance between the benefits and losses.

Figure 3 shows that increasing the sample size beyond 20 has a minimal ef-
fect on the positioning error with these specific simulation settings. Choosing
the right sample size mainly depends on the quality and quantity of the received
observations per node. This quality and/or quantity is directly influenced by the
TTL of a message, seed density and precision of the range measurements. So more
samples are needed when the accuracy of the received observations increases.

5.4 Message TTL

The increase of the number of times a message is forwarded is equivalent to an
increase of the average amount of information received by a node. Using this
amount, we distinguished two types of nodes:

174 B. Dil, S. Dulman, P. Havinga

- Good connected nodes, that receive information from three or more anchors.
- Bad connected nodes, that receive information from two or less anchors.

These two types of nodes are not only divided by connectivity to anchors,
but also by localization error. Therefore, the ratio between the number of good
and bad connected nodes mainly determines the overall mean error. This ratio
is affected by the TTL. Figure 5 shows that increasing the TTL, decreases the
overall mean error rapidly. The drawback is that increasing the TTL, increases
the communication costs. Figure 6 shows what affect the TTL has on the av-
erage number of messages sent by a node. After each TTL wave the received
information is combined and forwarded in one message, so this average number
of messages represents the minimum. “Other algorithms” in Figure 6 and 7 rep-
resent the range-based, range-free and IWLSM localization algorithms, because
the communication costs for these algorithms are equal. The communication
costs of the DV-hop algorithm cannot be changed by the TTL, because it con-
sists of two predefined phases. Figure 6 shows that the communication costs for
the DV-Hop algorithm are more than twice as big as for the other algorithms.

Hence, every time a message is forwarded, the range measurements become
less precise and the connectivity constraints become less tight. This is illustrated

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 2 2.5 3 3.5 4 4.5 5

m
e

a
n

 e
rr

o
r

a
s
 r

a
ti
o

 o
f

tr
a

n
s
m

is
s
io

n
 r

a
n

g
e

TTL

range-based SMCL
IWLSM

range-free SMCL

Fig. 4. Mean error per TTL, good
connected nodes

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 2 2.5 3 3.5 4 4.5 5

m
e

a
n

 e
rr

o
r

a
s
 r

a
ti
o

 o
f

tr
a

n
s
m

is
s
io

n
 r

a
n

g
e

TTL

range-based SMCL
range-free SMCL

Fig. 5. Mean error per TTL, good and
bad connected nodes

 1

 2

 3

 4

 5

 6

 7

 8

 2 2.5 3 3.5 4 4.5 5

a
v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

e
s
s
a

g
e

s
 p

e
r

n
o

d
e

TTL

other algorithms
DV-HOP

Fig. 6. Number of messages per TTL

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 2.5 3 3.5 4 4.5 5

p
e

rc
e

n
ta

g
e

 o
f

g
o

o
d

 c
o

n
n

e
c
te

d
 n

o
d

e
s

TTL

other algorithms

Fig. 7. Good connected nodes per TTL

Range-Based Localization in Mobile Sensor Networks 175

by Figure 4, which shows a decrease of accuracy of good connected nodes with in-
creasing TTL. Figure 4 also shows that this decrease of accuracy with increasing
TTL is minimal.

The bad connected nodes have a dramatically high mean error compared
to the good connected nodes. So including the position estimates of the bad
connected nodes is questionable. When these position estimates are not included,
the chosen TTL for a mobile wireless sensor network mainly depends on the
desired localization coverage. Figure 7 shows the increase of good connected
nodes when the TTL increases.

Therefor, in this paper we use the good connected nodes for the determination
of the mean error.

5.5 Anchor Density

Increasing the number of anchors in the network increases the average number of
observations per node. The localization accuracy depends on this number. The
drawback is that deploying more anchors increases the network and deployment
costs. Figure 8 shows the effect of anchor density on the mean error. The number
of 10, 20 and 30 anchors represent the following anchor densities: 0.65, 1.3 and
1.9. Our algorithm performs in terms of mean error 31% better with low anchor
density and 33% with high anchor density than the best other algorithm.

5.6 Node Density

Figure 9 shows the effect of the node density on the localization accuracy. The
number of 100, 150, 200, 250 and 300 nodes represent the following node densi-
ties: 7.4, 10.6, 13.9, 17.0 and 20.1.

We only need the hop-distance to several anchors for the range-free SMCL
scheme to work. That is why this algorithm only requires a low node density to
run properly ([13]). Increasing the node density slowly increases the number of
observations per node, so the mean error of the range-free SMCL scheme remains
practically stable while the node density is changed. We know that range-based
algorithms, especially the performance of sum-dist, are affected by the node

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 10 15 20 25 30

m
e

a
n

 e
rr

o
r

a
s
 r

a
ti
o

 o
f

tr
a

n
s
m

is
s
io

n
 r

a
n

g
e

number of anchors

range-based SMCL
IWLSM

range-free SMCL
DV-hop

Fig. 8. Mean error per anchor density

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 100 150 200 250 300

m
e

a
n

 e
rr

o
r

a
s
 r

a
ti
o

 o
f

tr
a

n
s
m

is
s
io

n
 r

a
n

g
e

number of nodes

range-based SMCL
IWLSM

range-free SMCL
DV-hop

Fig. 9. Mean error per node density

176 B. Dil, S. Dulman, P. Havinga

density ([3]). Increasing the node density leads to straighter paths between the
nodes and anchors, so that the shortest path becomes a better approximation of
the real distance. When the real distances are better approximated, the range-
based algorithms perform better.

Figure 9 shows an improvement of the mean error of 25% with low node density
and 25% with high node density than the best other algorithm compared with
our algorithm.

5.7 Node Speed

The frequency of the localization announcements influences the traveled dis-
tances of the nodes per time unit. Therefore, if localization announcements are
more frequent, the speed of the node per time unit decreases. Updating the
position estimate more frequently improves localization accuracy at the cost of
communication.

Increasing the speed, increases the size of the prediction surface, which is
constructed by the speed and connectivity constraints. This size affects the lo-
calization error, because it limits the position distribution.

In this simulation set-up, we only compare our algorithm with its range-free
counterpart because the node speed is only used by the SMCL schemes. Figure 10
shows that our algorithm performs in terms of mean error 36% better with a low
speed and 49% with a high speed than the range-free MCL scheme.

5.8 Range Measurement Error

The precision of the range measurements has a significant influence on the ac-
curacy of the range-based localization schemes.

Figure 11 shows that our algorithm performs 40% better with a low range mea-
surement error and 41% with a high range measurement error than the IWLSM.
Even with a range measurement error of 0.4 our algorithm has a 12% lower mean
error than the best range-free algorithm.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 1.5 2 2.5 3

m
e
a
n
 e

rr
o
r

a
s
 r

a
ti
o
 o

f
tr

a
n
s
m

is
s
io

n
 r

a
n
g
e

speed in ratio of transmission range

range-based SMCL
range-free SMCL

Fig. 10. Influence of speed on mean error

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

m
e

a
n

 e
rr

o
r

a
s
 r

a
ti
o

 o
f

tr
a

n
s
m

is
s
io

n
 r

a
n

g
e

std of range measurement

range-based SMCL
IWLSM

range-free SMCL
DV-hop

Fig. 11. Influence of range measurement
error on mean error

Range-Based Localization in Mobile Sensor Networks 177

6 Analysis

In this section, we analyze our algorithm and compare it with other known
algorithms. Our algorithm is interested in the filtering condition (Equation 7).
We made an approximation of the optimal solution by using several suboptimal
solutions (Equation 11) as the optimal solution cannot be evaluated directly.
In our case, we use the range measurements to characterize these suboptimal
solutions. We use the same range measurements in the final position estimation.
This construction has several benefits:

- Bad range measurements filtered by the connectivity and/or speed con-
straints do not have any influence on the position distribution.

- Every range measurement gives an indication of the real position of the node,
so that all measurements are evaluated in the final position estimation.

- The performance of our algorithm is less dependent on the range measure-
ment errors (Figure 11).

The range-free MCL scheme([13]) uses a prior sampling function. This means
that this MCL scheme makes predictions based upon its previous predictions and
filters bad predictions with the connectivity constraints. This iterative two-step
construction is needed because the posterior distribution cannot be evaluated
directly. Our range-based algorithm uses a non-iterative MCL scheme and eval-
uates as much information as possible in the sampling function. This has several
benefits over its range-free counterpart:

- Every previous prediction has a more equal chance to make a prediction.
- The computational costs are more constant and less situation dependent.
- Our algorithm is less dependent on the speed of the node (Figure 10).
- Using the range measurements, our algorithm decreases localization error by

12% to 49% (Figure 11).

Many of the known range-based and range-free localization algorithms use
an Iterative Weighted Least Square Method to estimate positions. The IWLSM
starts from an initial estimation and improves the position until the improvement
is smaller than a certain value. The position estimate is the global or local mini-
mum of the summed weighted squared error, using the range measurements and
associated weights. In most situations, especially when the range error increases,
there are more local minima. Dependent on the starting position the IWLSM
chooses one of these local minima. Our approach uses the fact that these local
minima are located near the range measurements. Our algorithm tries to make
predictions near these local minima to evaluate the entire surface, while not
picking one of these local minima.

As an example, consider the case when the positions of the anchors are
collinear and the range measurements contain no error. In the perfect case, the
IWLSM chooses one of the local minima, while our algorithm chooses the mean
of the two local minima. If we also evaluate the previous position distribution,
the mobility and connectivity constraints the collinearity problem [1] is often
solved.

178 B. Dil, S. Dulman, P. Havinga

In this paper, the communication costs for the different algorithms are equal,
except for the DV-hop algorithm that uses much more communication (Figure 6).

7 Conclusions

In this paper, we proposed a non-iterative MCL scheme that uses all informa-
tion to improve localization accuracy and robustness. This information consists
of range measurements, connectivity constraints, and mobility information. Sim-
ulations show that our algorithm decreases the localization error by 12% to 49%
in static and dynamic networks under a wide range of conditions, even when
the node and network resources are limited. Future work aims at testing our
algorithm in other mobility models and real life settings.

References

1. A. Savvides, H. Park and M. Srivastava: The Bits and Flops of the N-Hop Multi-
lateration Primitive for Node Localization Problems. In First ACM International
Workshop on Wireless Sensor Networks and Application, Atlanta, GA, September
2002.

2. C. Savarese, J. Rabay and K. Langendoen: Robust Positioning Algorithms for Dis-
tributed Ad-Hoc Wireless Sensor Networks. USENIX Technical Annual Conference,
Monterey, CA, June 2002.

3. Koen Langendoen and Niels Reijers: Distributed localization in wireless sensor
networks: A quantitative comparison. In Computer Networks (Elsevier), special
issue on Wireless Sensor Networks, 2003.

4. Y. Shang, W. Ruml, Y. Zhang and M. Fromherz: Localization From Mere Connec-
tivity. MobiHoc’03, Annapolis, Maryland, June 2003.

5. Yi Shang and Wheeler Ruml: Improved MDS-based localization. In Infocom 2004
6. L.Evers,W.Bach, D.Dam,M.Jonker, H.Scholten, and P.Havinga: An iterative qual-

ity based localization algorithm for adhoc networks. In Department of Computer
Science, University of Twente, 2002.

7. L.Evers, S.Dulman, P.Havinga: A distributed precision based localization algorithm
for ad-hoc networks. Proceedings of Pervasive Computing (PERVASIVE 2004).

8. Jan Beutel: Geolocation in a picoradio environment. In MS Thesis, ETH Zurich,
Electronics Lab, 1999.

9. J.E.Handschin: Monte Carlo Techniques for Prediction and Filtering of Non-Linear
Stochastic Processes. Automatica 6. pp. 555-563. 1970.

10. V.S.Zaritskii, V.S.Svetnik, L.I.Shimelevich: Monte Carlo technique in problems of
optimal data processing. Automation and Remote Control 12: 95-103. 1974.

11. F.Dellaert, D.Fox, W.Burgard, S.Thrun: Monte Carlo Localization for Mobile
Robots. IEEE International Conference on Robotics and Automation (ICRA). May
1999.

12. S.Thrun, D.Fox, W.Burgard, F.Dellaert: Robust Monte Carlo Localization for Mo-
bile Robots. Artificial Intelligence Journal. 2001.

13. L.Hu, D.Evans: Localization for Mobile Sensor Networks. Tenth Annual Interna-
tional Conference on Mobile Computing and Networking (MobiCom 2004), USA.
2004.

Range-Based Localization in Mobile Sensor Networks 179

14. A.Kong, J.S.Liu, W.H.Wong: Sequential Imputations and Bayesian Missing Data
Problems. Journal of the American Statistical Association. Volume 89, pp. 278-288.
1994.

15. A.Doucet, S.Godsill, C.Andrieu: On Sequential Monte Carlo Sampling Methods
for Bayesian Filtering. Statistics and Computing. Volum 10, pp. 197-208. 2000.

16. T.Camp, J.Boleng, V.Davies: A survey of Mobility Models for Ad Hoc Networks
Research. Wireless Communications and Mobile Computing. Volume 2, Number
5. 2002.

17. H.Tanizaki, R.S.Mariano: Nonlinear and non-Gaussian statespace modeling with
Monte-Carlo simulations. Journal of Econometrics 83: 263-290. 1998.

18. D.Niculescu, B.Nath: Ad hoc positioning systems. In: IEEE Globecom 2001, San
Antonio. 2001.

19. S.Dulman, P.Havinga: Statistically enhanced localization schemes for randomly
deployed wireless sensor networks. DEST International Workshop on Signal Pro-
cessing for Sensor Networks, Australia. 2004.

Hierarchical Localization Algorithm Based
on Inverse Delaunay Tessellation

Masayuki Saeki1, Junya Inoue2, Kok-How Khor3, Tomohiro Kousaka1,
Hiroaki Honda3, Kenji Oguni3, and Muneo Hori3

1 Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
saeki@rs.noda.tus.ac.jp

2 The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
inoue@material.t.u-tokyo.ac.jp

3 Earthquake Research Institute, The University of Tokyo,
1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan

oguni@eri.u-tokyo.ac.jp

Abstract. This paper presents the hierarchical sensor network system
for robust localization. This system consists of parent nodes with a low
priced L1 GPS receiver and child nodes equipped with an acoustic rang-
ing device. Relative positions between child nodes are estimated based
on acoustic ranging through the inverse Delaunay algorithm. This algo-
rithm localizes all the nodes simultaneously, thus, the accumulation of
the error in the localization is suppressed. Relatively localized child sen-
sor nodes are given global coordinates with the help of GPS on parent
nodes. Field experiment was conducted with three GPS parent nodes
and twenty-one child nodes (MOTE).

1 Introduction

This paper presents the concept and the implementation of the hierarchical
sensor network system for robust localization. The physical implementation of
this system consists of child nodes with acoustic ranging device, parent nodes
with low cost L1 GPS and the central CPU (called as GPS server). Localization
of the sensor nodes in this system is achieved by a distributed algorithm called
“Inverse Delaunay Algorithm.” One of the final targets to apply this system is
civil infrastructures. High resolution sensing and on-site simulation using dense
sensor network on civil infrastructures can be regarded as a typical example of
sensor embedded society.

The sensor network applied to civil infrastructures should cover wide area
with high spatial resolution. This results in the requirement for numerous sensor
nodes with low cost. This cost consists of cost for sensor itself and the installa-
tion cost. Especially to reduce the installation cost, automatic localization of the
sensor nodes is needed. Although the required accuracy of localization depends
on the application, we aim at the accuracy of less than 10cm for all the sensor
nodes distributed over the space of the size of a whole city. Installation of GPS
receivers on all the sensor nodes is not a realistic option because of the cost

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 180–195, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Hierarchical Localization Algorithm Based on Inverse Delaunay Tessellation 181

of available GPS receivers with the accuracy under consideration. Therefore,
hierarchical sensor network with parent nodes equipped with GPS (to provide
reference coordinates) and child nodes with low cost devices (to determine rela-
tive positions) is the option we came up with.

Localization of the sensor nodes presented in this paper uses relative distance
between neighboring nodes measured by the acoustic ranging as input data.
Direct application of the techniques in surveying (i.e., starting from reference
nodes, localization is done on the nodes consecutively through the triangula-
tion) does not work in this case because of the noisy measurement on the rel-
ative distance and the accumulation of the error. It seems that the distributed
algorithm consisting of i) construction of local cluster of nodes with relative
positions identified in the local coordinates for the cluster and ii) inter-cluster
patching algorithm, works better for localization based on noisy measurement
on the relative distance between nodes. Existing work based on this approach
is summarized in Moore et al. [1] as attempts for graph realization problem. In
this problem, reduction of the flexibility of the local cluster of the nodes (e.g.,
flip ambiguity, discontinuous flex ambiguity) is the major concern[2]. The inverse
Delaunay algorithm presented in this paper is categorized in the attempts for
graph realization problem.

This paper presents the hierarchical localization algorithm and its physical
implementation as follows: In the second section, the overview of the system
is presented. A distributed algorithm, inverse Delaunay algorithm, for robust
localization of the sensor nodes is presented in the third section. The ingredients
for physical implementation of the system, the parent node with low cost L1
GPS is presented in the fourth section, then the acoustic ranging devices and
the algorithm implemented with the child node (Mote) are presented in the
fifth section. Discussion on GPS in the fourth section is mainly focused on the
improvement of the accuracy of the low cost L1 GPS up to a few cm order. This
improvement solves the dilemma between the cost and the accuracy, and makes
the pervasive use of the proposed system on the civil infrastructures possible.
Acoustic ranging discussed in the fifth section uses off-the-shelf acoustic actuator
(sounder) and acoustic sensor (microphone) on the Mica2. Unlike tone detection
often used in the ranging with ultrasonic wave, our method depends on the
digital data processing on the observed acoustic wave. This feature increases
the tolerance against the noise. By data stacking, accuracy of the ranging can
be improved. (Theoretically speaking, numerous stacking improves the accuracy
upto the resolution of ADC.) Finally, the results from field experiment showing
the performance of the system are presented in the sixth section.

2 Hierarchical Sensor Network

2.1 Hardware

The hierarchical sensor network system is composed of parent sensor nodes and
child sensor nodes. Both of the nodes are built upon the widely used Mica
mote platform developed by UC Berkeley [3]. Specifically, the second generation

182 M. Saeki et al.

L1 GPS receiver

Serial to TCP/IP converter

top

middle

bottom

Power circit

eless LAN card

Patch anntena

Fig. 1. Parent node

Server PC

Parent-node

Child-node

Data analysis

Sensor ID determination

GPS data receive

Sensor data receive

Sensor data acquisition

Acoustic ranging

E.P.
PC

wireless LAN

GPS MOTE

MOTE

sensor 1

sensor 2

wireless LAN

PIC or AVR

sensor ID

L1 carrier phases (GPS data)

acoustic ranges

sensor data

acoustic ranges
sensor data

Fig. 2. Hierarchical functions of the unit at each rank

Mica2, featuring a 7.3 MHz 8-bit Atmel ATmega 128L low power microcontroller,
a 315MHz Chipcon CC1000 multi-channel transceiver with 38.4kbps transfer
rate and a 4kB RAM and 128kB flash memory, is used. Each sensor node is con-
nected to an aoustic sensor board with a 4kHz sounder and a microphone for local
measurement of distance between nodes using acoustic ranging technique. The
parent node is equipped with an additional communication board with a 4MHz
8-bit Microchip PIC microcontroller, a L1 GPS receiver, and a Wireless LAN
adopter (IEEE 802.11b). Figure 1 shows the schematic view of the parent node.
GT-8032 GPS receiver (FURUNO CO., Ltd) is adopted in the present research.
The receiver has 16 channels to search for the C/A codes and capability to track
12 satellites simultaneously. Data in the extended NMEA format, which stores
navigation data, ephemeris, and L1 carrier phases, accompanied by some other
useful information, is generated every one second from a serial port. 1 PPS signal
synchronized to UTC (Coordinated Universal Time) is also available in the data.
A patch antenna is connected to the L1 GPS receiver. This type of antenna has
its advantage in the cost at the expense of the measurement accuracy. Since the
measurement of the L1 carrier phase cycles is significantly affected by the mul-
tipath noise, espcially in the case where the low cost L1 GPS receiver is utilized
with a patch antenna, a new algorithm is developed to compensate the disadvan-
tage. A communication board is designed to convert data format between serial
data for Mica mote platform and TCP/IP for Wireless LAN adopter. For this
purpose, EZL-80C (Sollae Systems Co., Ltd) is installed in the communication
board. A greater communication capability compared to the 38.4kbps transfer
rate of a Chipcon CC1000 is achieved by the use of Wireless LAN adopters.

2.2 System Overview

The overview of the hierarchical sensor network system can be summarised as
in the Figure. 2.

Hierarchical Localization Algorithm Based on Inverse Delaunay Tessellation 183

Parent node

Child node

GPS Server

Fig. 3. Schematic veiw of the hierarchical sensor network (left) and the routing path
(right)

The typical hierarchical sensor network system deployment will consist of
one GPS server, several parent nodes, and several tens of child nodes placed
at different locations in a large area of a study field as shown in Figure.3. The
communications between child nodes and parent nodes utilizes an ad hoc wire-
less sensor network built on the Mica mote platform, and those between par-
ent nodes and a GPS server is based on a conventional ad hoc wireless LAN
network.

After deployment, the child nodes start to find the closest route to one of the
parent nodes, based on the gradient convergecast policy[4], thus separate the
whole area of study into several subregions in which one parent node becomes
the only sink for the data acquired by corresponding child nodes as shown in
Figure.3. Since there will be no direct communication between a GPS server
and a child node, the resulting structure of the data transfer paths is in a tree
topology. Consequently, the total data transfer rate of the whole system can be
easily controlled by the number of parent nodes in the system. Once the routes
are established, measured distances between each sensor nodes will be delivered
to the GPS server.

The L1 GPS receiver on a parent node collects continuous data sets which
contains cycles of the L1 carrier phase as well as the C/A code. The L1 carrier
phase will be analysed by the method developed in the current study to obtain
a receiver absolute position which will be an anchor point for determining the
absolute localizations of sensor nodes through the inverse Delaunay algorithm,
as discussed later. Since the receiver also outputs an accurate time stamp that is
synchronized to the UTC, combined with the well-known RBS[5] and TPSN[6]
approach, one can implement a time synchronization module on TinyOS for
better time synchronization in data acquisition system. However, this feature
has not been implemented in the present research.

3 Inverse Delaunay Algorithm for Relative Localization

Before discussing the details of the inverse Delaunay algorithm, mathematical
definition and the characteristic of the Delaunay diagram [7] are given below.

184 M. Saeki et al.

For a set of finite number of points X =
{
x1,x2, · · · ,xn

}
on 2-dimensional

real space (�2) with a definition of Euclid distance d(x,y) between points x and
y, define

V (xi) =
{
x| x ∈ �2, d(x,xi) < d(x,xj), j �= i

}
. (1)

Then, V (xi) becomes a convex polygon and a set
{
V (x1), V (x2), · · · , V (xn)

}
provides a tessellation on �2. This tessellation is called Voronoi tessellation (or
Voronoi diagram) for a set X and denoted as V (X). Points in a set X are called
mother points of V (X), and V (xi) is called a Voronoi region for a mother point
xi. When V (xi) and V (xj) share the Voronoi edge (i.e., edges of the Voronoi
polygon), conjugate geometry to Voronoi diagram can be obtained by connecting
xi and xj . This diagram is called Delaunay diagram and the tessellation using
Delaunay diagram is called Delaunay tessellation. The vertices and the circum-
centers of the Delaunay polygon correspond to the mother points in Voronoi
tessellation and vertices of the Voronoi polygons, respectively. Polygons in the
Delaunay diagram on 2-dimensional real space are the triangles with
no mother point in their circumscribed circle. We use this characteristic
of the Delaunay diagram for the construction of local clusters.

The inverse Delaunay algorithm consists of two steps discussed in the following
subsections. For the sake of simplicity, description of the algorithm is given for
2-dimensional problem setting.

3.1 Construction of Local Cluster – Delaunay Cluster

Figure 4 shows a typical example of the local cluster. In this local cluster, the
center node is surrounded by the Delaunay triangles and all the nodes are lo-
calized in the local Euclidean coordinate system with the center node set as
the origin. Also, the nodes surrounding the center node (satellite nodes) are
numbered counter-clockwise in the local coordinate system. This numbering de-
termines the direction of the face of the local cluster. This Delaunay cluster is
identified for each node in the network.

x y

Fig. 4. Typical example of the local cluster

Delaunay!

Not Delaunay

12

3

4
5

(a) (b)

(c) (d)

Fig. 5. Delaunay cluster construction

Hierarchical Localization Algorithm Based on Inverse Delaunay Tessellation 185

The local cluster is constructed in the manner as shown in Figure 5.

1. A node is picked up as a center node (filled circle in the figure) and the clos-
est neighboring node is identified based on the measurement of the relative
distance. (Figure 5 (a))

2. Triangles are formed and checked whether it is Delaunay or not. Triangle
with dotted line in the Figure 5 (b) is not Delaunay since other node is
located in the circumscribed circle.

3. Delaunay check is continued using the edge of the constructed Delaunay
triangle as a starting edge of the next Delaunay triangle (Figure 5 (c)).

4. After surrounding the center node by Delaunay triangles, the satellite nodes
are numbered. The Delaunay cluster shown in Figure 5 (d) has the clockwise
numbering. This means the local coordinate for this Delaunay cluster is
flipped with respect to the global coordinate (which can be identified after
the global localization is done).

3.2 Cluster Merging Procedure

Once the local Delaunay clusters are constructed for all the nodes, the remaining
task is to merge those clusters together. Figure 6 shows this cluster merging
procedure.

1. Clusters are divided into two groups, i.e., the atomic clusters and the bridg-
ing clusters. The atomic clusters are those with satellite nodes not being
occupied by other clusters (i.e., polygons depicted by the edges with thick
lines in Figure 6). The bridging clusters are others. This categorization is
done by first-come-first-serve basis in the current version of our source code.
However, the categorization based on the reliability or the shape of the De-
launay cluster can be implemented.

2. Connect the atomic clusters (or groups) by the bridging clusters. If the order
of numbering of the corresponding satellite nodes of both clusters (or groups)
coincides, direction of the faces of these clusters (or groups) are different.
Either one of them should be flipped. In Figure 6, corresponding nodes in
the atomic and the bridging patch are numbered as 1 → 2 and 2 → 3,
respectively, i.e., both have the ascending order. Therefore, the bridging
cluster is flipped.

Flip
Rotation
Translation

1

234

5
6

7
8

1
2

4

3

5
Atomic

Bridging

Fig. 6. Cluster merging procedure

186 M. Saeki et al.

3. Apply the necessary flip, rotation and translation to the cluster or group to
be consolidated.

4. Continue the second and the third process until all the clusters are merged
into a group.

Note that the computational complexity of the construction of the Delaunay
clusters and this merging process are O(n), where n is the number of the nodes.

3.3 Discussion on the Inverse Delaunay Algorithm

As shown in the previous subsections, the proposed localization algorithm gives
the relative location of the nodes using local clusters consisting of the Delaunay
triangles. Thus, the algorithm is named as the inverse Delaunay algorithm. Al-
though the description of the algorithm in this paper is given in 2-dimensional
setting, it can be applied to 3-dimensional space by extending the space under
consideration to �3. In this case, Delaunay polygons become tetrahedrons, the
construction of the Delaunay cluster and cluster merging takes more time than
2-dimensional case. However, the computational complexity remains O(n).

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Fig. 7. Left: the quadrilateral is not robust because of the measurement noise in the
length BD, right: regardless of the position of node B, inverse Delaunay algorithm works

The major advantage of the inverse Delaunay algorithm is the robustness
against the measurement error in ranging. To close the discussion on this algo-
rithm, consider the situation shown in Figure 7 as a typical example. In this
situation, most of the localization algorithms based on robust quadrilaterals re-
gard this quadrilateral as a potential source of the flip ambiguity and discards
this quadrilateral. As a result, failure in localization of some nodes in the network
is often observed. On the other hand, as shown in Figure 7, this situation does
not cause any problem to the inverse Dealunay algorithm. This is due to the big-
ger margin allowed in checking the Delaunay condition than that for robustness
of the quadrilateral.

4 GPS Positioning Algorithm

This section is related to the determination of the absolute position of sensor
nodes based on low cost L1 GPS receivers.

Hierarchical Localization Algorithm Based on Inverse Delaunay Tessellation 187

A L1 GPS receiver is the receiver that is able to collect and output cycles
of the L1 carrier phase as well as the C/A code. The receiver position can be
determined by the accuracy of a few centimeters or less than a centimeter using
the relative positioning approach. This type of receiver was so expensive that
it was difficult to distribute such receivers in dense. However, in the last few
years, the price of some kind of L1 GPS receivers became drastically cheaper,
e.g., Novatel Superstar II and Furuno GT-8032. Therefore, it is now possible to
equip such L1 GPS receiver into the sensor nodes.

These low cost L1 GPS receivers are recently equipped in the deformation
measurement system for volcano monitoring [9]. They develop the deformation
monitoring system and assess its performance. They also conduct field experi-
ments and detect the deformation of the volcano. The difference between their
and our application is the noise environment. In our application, the noises due
to the troposphere and ionosphere are negligibly small. On the other hand, the
cycle slip frequently occurs.

The detection of the cycle slip and its repair is the important problem. There-
fore, a lot of approaches are developed. For example, Lee et al [10] detect and
repair the cycle slip using the help of the INS (Inertial Navigation System) de-
vice. In the most techniques, the external information is used as well as the L1
carrier phases. However, if the two receivers are very close to each other and the
positions are fixed, it is not difficult to detect and repair the cycle slip using only
the information of the L1 carrier phases.

In this section, first, the basic formulation for estimating the position and
integer ambiguities is summarized. Second, the simple cycle slip detection and
repair technique are presented. It uses only the information of the L1 carrier
phases but uses the feature of the sensor network.

4.1 Basic Formulation

There are many algorithm of the relative positioning [8]. The basic formulation
employed in this algorithm is summarized below.

Suppose that the position of the reference receiver is known and a receiver
whose position is unknown is fixed at a position. In the relative positioning, the
corrected carrier phases Φ(t) are modeled as the eq.(2)

Φ(t) = A(t)x (2)

where x is the unknown vector that includes the coordinates of the small pertur-
bation around the approximate position and the integer ambiguities Nkl

ij . A(t)
is the coefficient matrix of the unknown vector x which depends only on the
geometry of the satellites and the receiver. The components of the corrected
carrier phases φ̂kl

ij (t) are given as eq.(3).

φ̂kl
ij (t) = φkl

ij (t) − ρ̂kl
ij (t) (3)

where φkl
ij (t) is the double difference of the observed L1 carrier phases, ρ̂kl

ij (t) is
the double difference of the distance between the approximate position and the
satellites.

188 M. Saeki et al.

When ns satellites are tracked on both of i and j receivers, the number of
unknown variables is ns + 2 that is the sum of 3 for the components of the
small perturbation and ns − 1 for Nkl

ij . On the other hand, the number of the
independent equations is (ns − 1)nt, where nt is the number of sampling data.
Eq.(2) is solved using maximum likelihood method. As the result, the unknown
vector x is given as

x =

[∑
t

A(t)T R(t)−1A(t)

]−1 ∑
t

A(t)R(t)−1Φ(t) (4)

where R(t) is the variance-covariance matrix at time t. This solution x is called
the float solution.

The obtained Nkl
ij are the float values. In order to estimate the accurate

position, it is needed to find out the correct integer values that are called the
fixed solution. The integers are searched to minimize the following objective
function.

J =
(
N̂kl

ij − Nkl
ij

)
R−1

N

(
N̂kl

ij − Nkl
ij

)T

(5)

where N̂kl
ij is the fixed solution of the integer ambiguity, RN is the variance-

covariance matrix of the estimated Nkl
ij . The accurate position is estimated by

solving the eq.(2) with the estimated N̂kl
ij .

4.2 Cycle Slip Correction Based on the Kalman Filtering

When an obstacle passes through the straight line between the receiver and
the satellite, the carrier phase is unlocked and jumps by an integer value. This
phenomenon is called cycle slip. The cycle slip also occurs when people or a car
pass by the receiver. In order to estimate the accurate position of the sensor
nodes, it is needed to correct the observed carrier phases.

If the positions of the two receivers are known, the double difference of the
integer ambiguities are accurately estimated using the equation

N̂kl
ij (t) = φ̂kl

ij (t)/λ. (6)

where λ is the wavelength of the L1 carrier wave. In the general case in which the
position is unknown, the value N̂kl

ij (t) gradually varies with time. And when the
cycle slip occurs, N̂kl

ij (t) jumps by an integer value at the time. Figure 8 shows
an example of the temporal variation of the N̂kl

ij (t) that is calculated from the
data observed in the field experiment discussed in the later section. The vertical
and the horizontal axes correspond to the estimated N̂kl

ij (t) and the time [min]
from the start of the observation, respectively. The legends show the satellite
numbers used in the calculation. The data are plotted at every 5 seconds. In this
data, the cycle slip occurs 15 times in 10 minutes.

Here, we consider the behavior of the observation error. In the hierarchical
sensor network, the distance between the neighboring parent nodes is at most

Hierarchical Localization Algorithm Based on Inverse Delaunay Tessellation 189

0 2 4 6 8 10

4

2

-4

-2

0

-6

E
st

im
at

ed
ijk
l

N

#4 - #31
#7 - #31
#11- #31
#20 - #31

106

Time [min]

Fig. 8. Temporal variation of the estimated Nkl
ij

several hundreds meters. In this case, the noises due to the ionosphere and the
troposphere are negligibly small. The dominant noise is caused by the multipath
effect. The maximum change in N̂kl

ij (t) due to the multipath noise is less than
1/4. Therefore, if the N̂kl

ij (t) is estimated by the accuracy of 1/4, N̂kl
ij (t) can

be easily corrected by subtracting the integer value from N̂kl
ij (t) to minimize

the difference between the original and the corrected N̂kl
ij (t). The estimation of

N̂kl
ij (t) is carried out using the Kalman filter.
Since the N̂kl

ij (t) is almost linear in a short period of time, the value at the
next step N̂kl

ij (t + Δt) can be modeled as

N̂kl
ij (t + Δt) = aΔt + b + ε (7)

where a and b are constants. The observation equation can be defined as

yk = Hxk + εk, (8)

where yk is the observation vector and xk is the state vector.

0 2 4 6 8 10

Time [min]

#4 - #31

#7 - #31

#11- #31

#20 - #31

C
o
rr

ec
te

d
ijk
l

N

2

Fig. 9. The temporal variation of the corrected N̂kl
ij (t)

190 M. Saeki et al.

yk =

[
N̂kl

ij (t + Δt)
N̂kl

ij (t)

]
, H =

[
Δt 1
0 1

]
, xk =

[
a
b

]
The state vector xk+1 at the step of k + 1 is estimated using the conventional
Kalman filter with the observation equation (8).

Figure 9 shows an example of the temporal variation of the corrected N̂kl
ij (t).

The original data is shown in Figure 8. The vertical and horizontal axes cor-
respond to the temporal variation of the corrected N̂kl

ij (t) and the time [min]
from the start of the observation, respectively. The hight of the vertical axis of
each graph is set to be 2. The frequent cycle slips shown in Figure 8 are totally
suppressed.

5 Acoustic Ranging

The concept of acoustic ranging is based on measuring the time of flight of the
sound signal between the signal source and the acoustic receiver. The range
estimate can be calculated from the time measurement, assuming the speed of
sound is known. Note that the constant value of the speed of sound is greatly
dependent on the temperature. To accurately measure the time of flight (TOF),
synchronization mechanism needs to be performed. Since the sound propagates
much slower in air (approximately 106 times) than RF signals, TOF can be
precisely estimated from the time difference of arrival (TDOA) of simultaneously
emitted acoustic and radio signals. This can be achieved by having actuator
notify the receiver via a radio message at the same time when the acoustic signal
is emitted. The difference of the arrival times of the sound and radio signals is
a good indicator for the estimation of TOF.

The acoustic ranging can be done as following: Acoustic signals from acoustic
actuator are sampled by acoustic sensor using ADC. Lower and upper bounds for
the frequencies are 4.0 and 4.5kHz, respectively (same as the Mica2 sensor board
sounder specification); the sensors are, thus, tuned to search for the acoustic
signals in that frequency range.

5.1 Noise Reduction

To locate the beginning of the chirp, we need to increase the SNR ratio of the
samples. Since disturbances such as ambient noise are of Gaussian nature, they
are independent for each chirp, whereas the useful signal content will be identical.
The acoustic signal used in this research consists of a series of chirps, all of the
same length, with difference in intervals of silence in between. Delays between
consecutive chirps are varied to avoid a situation when multiple samples have the
same noise pattern at the same offset, which is a common phenomenon caused
by acoustic multi-path effects such as echoes from a wall in indoor environment.
The length of intervals and the actual emission time of each chirp are preset
in sensor and actuator. Once the sensor has received the radio message from
actuator, it controls the sampling timing based on the preset timing described

Hierarchical Localization Algorithm Based on Inverse Delaunay Tessellation 191

above. The chirps are sampled one by one, then added together and processed
as a single sampled signal. Adding together the series of samples improves the
SNR by 10 log(N)dB, where N is the number of chirps used. Specifically, in our
implementation, by using 64 consecutive chirps in an acoustic ranging signal,
the SNR is improved by 18dB.

5.2 Bandpass Filter

For finding integer coefficients of the band pass filter employed in this acous-
tic ranging application, the real acoustic signal samples containing both chirps
and silence obtained by Mica2 is used as input for Rectangular window func-
tions. Rectangular window function is used in order to gain the equal weight for
4.0kHz∼4.5kHz frequency range of the sounder. By using the rectangular win-
dow function, tap number is varied and the SNR ratio which serves as the highest
factor in effectively detect the first peak is used. The SNR ratio can easily be
calculated since the positions of the chirps and the silence are known. Since 64
series of samples are stacked to form a single sample, there is no big difference
in SNR ratio by varying the tap number from 21 to 41 for the samples gener-
ated by ADC with the sampling rate of 28.6kHz in the present study. Knowing
the Mica2 hardware limitation, 21-tap FIR filter with integer coefficients in the
[-7, 7] interval was chosen.

5.3 Time of Flight Detection Algorithm

In order to effectively locate the time of arrival, the following algorithm is
proposed.

1. Locate all the peaks for the filtered signals.
2. Pick up the maximum amplitude Amax from the first 40 samples of the

located peaks. For the frequency range between 4.0kHz and 4.5kHz, the
40th sample of the located peaks corresponds to about 100cm distance in
the real space. Since the spacing between child nodes are more than 100cm
in our application, the maximum amplitude Amax is the maximum ambient
noise level.

3. Using Amax as a reference point, compare the following peaks with it. Lo-
cate position Ts where the following peaks are all bigger than Amax. This
is based on the fact that, when acoustic signal arrives at the sensor, its
amplitude is much bigger than the ambient noise after the filtering. Using
Amax also speeds up the process of detecting the general position of time of
arrival.

4. Perform adverse look-back to find the exact position of time of flight TTOF .
The exact position of time of flight is defined as a point in which the ini-
tial rising slope intersects the average output level of ADC, as shown in
Figure.10. Assuming the rising slope linear, a simple Kalman filter is adopted
for extrapolating the initial rising slope.

192 M. Saeki et al.

Tambient

TTOA

Amax

Average output level of ADC

Slope at rising time

Ts

Fig. 10. TOF detect algorithm. A thin solid line shows the original signal, dashed ver-
tical lines are the event positions, and the thick solid lines represent the lines estimated
from the original signal.

(a) (b)

Fig. 11. Measurement error as a function of the distance: (a) Indoor environment with
severe echo (b) Urban noise environment

5.4 Performance Evaluation

The performance of the acoustic localization method is evaluated in the indoor
environment where we observe severe echoes as well as the moderate urban noise
environment. Figure.11(a) and (b) show the measurement errors for the indoor
and the outdoor environments, respectively. It is clearly visible that the precision
of the measurement in the urban noise is better, especially around 300cm. This is
because of the fact that we have conducted the indoor experiment in 6m×6m×8m
room surrounded by hard walls which reflect acoustic wave so that the effect of
the echo is severe. However, it can be concluded that the accuracy of the present
acoustic localization method is within 6cm even in the indoor environment.

6 Field Experiment

Field experiment was conducted to evaluate the performance of the whole system
for localization of sensor nodes spread on the plane (i.e., 2-dimensional arrange-
ment). Three parent nodes were deployed as shown in Figure 12 (left). The GPS
data were continuously received for 2 hours. The collected data were transmitted
to the GPS server using wireless LAN. The GPS positioning analysis was carried
out after the measurement. In the experiment, we intentionally walked around
the antenna (which caused frequent cycle slip) to give a hard time on the GPS
receivers and show the robustness of the parent nodes.

Hierarchical Localization Algorithm Based on Inverse Delaunay Tessellation 193

Local coordinate system

x

y

600 cm(0, 0)

892 cm

GPS1
GPS2

GPS3

0

200

400

600

800

1000

0 200 400 600 800 1000

Estimated Location

Actual Location

x-position (cm)

y-
po

si
tio

n
(c

m
)

N

Fig. 12. Schematic view of the deployment of sensor nodes (left) and a comparison of
the global positions of the nodes localized by our system with the actual positions of
the nodes (right)

Together with the parent nodes, twenty-one child nodes (Mote) were pseudo-
randomly spread on the site except three child nodes set on the foot of parent
nodes. These three nodes worked as the reference for global coordinates. Child
nodes measured the distances of the neighboring nodes by the acoustic ranging
method mentioned in the previous section.

6.1 Inverse Delaunay Localization

Figure 12 (right) shows the estimated global coordinates of the child nodes.
Child nodes were relatively localized by the Inverse Delaunay algorithm, then
given the reference of the global coordinates by the parent nodes. The details of
the GPS positioning of the parent nodes are mentioned in the section below.

The measurement error in the acoustic ranging in this experiment was ±3.8cm
in average (maximum of 16.8cm) against average distance between nodes of
321.6cm. In spite of this noisy measurement of the relative distance, no node
was missed in the localization and the error in the estimation was suppressed in
the reasonable range. The error in the estimation of the location of the boundary
nodes are relatively large. However, it should be noted that no attempt to redis-
tribute the error throughout the domain, such as Laplacian smoothing or spring
relaxation, was not applied in this estimation. No sign of the flip ambiguity, ac-
cumulation of the error can be observed. Although more detailed validation such
as numerical simulation on the arrangement of thousands of nodes with noise
in the ranging as a controlling parameter is required, this experimental result
implies the robustness of the system.

6.2 GPS Positioning

In the analysis, a small data segment is cut from the measurements and analyzed
using the developed GPS positioning algorithm. This operation is applied to the

194 M. Saeki et al.

various segments. The lengths of the segments are 5, 10 and 15 minutes. The
start time of the segment is shifted every 5 seconds.

The success rate of determining the correct integer ambiguities is shown in
Table 1. The success rate increases with the data length. The main cause of the
failures in the case of GPS1→3 is the data blank due to the failure of the wireless
LAN communication. In every case, the cycle slips are correctly detected and
repaired.

Table 1. Success rate of determining the correct integer ambiguities

Data length [min] GPS1→3 rate [%] GPS2→3 rate [%]
5 94.0 94.5
10 98.9 99.9
15 98.9 100.0

7 Conclusion

In this paper, a hierarchical sensor network system for robust localization is pre-
sented. This system consists of parent nodes with a low priced L1 GPS receiver
and child nodes equipped with an acoustic ranging device. The GPS positioning
algorithm discussed in this paper employs cycle slip correction based on Kar-
man filtering. This enables a low priced L1 GPS receiver to determine its position
within the accuracy of a few centimeters. Relative position of the child nodes
is determined by the inverse Delaunay algorithm. The major advantage of the
inverse Delaunay algorithm is its robustness against the error in the ranging.
Compared with the localization algorithms based on so-called “robust quadri-
laterals”, the inverse Delaunay algorithm is tougher against the flip ambiguity
caused by the erroneous measurement in the distance between nodes.

The proposed GPS positioning algorithm and the inverse Delaunay algorithm
are implemented with noise tolerant acoustic ranging algorithm to localize a
sensor network consisting of three parent nodes and twenty-one child nodes.
This field experiment shows robustness of the hierarchical sensor network system
presented in this paper.

References

1. Moore, D., Leonard, J., Rus, D. & Teller, S. (2004), Robust Distributed Network
Localization with Noisy Range Measurements, Proc. Second ACM SenSys.

2. Eren, T., Goldenberg, D., Whiteley, W., Yang, Y. R., Morse, A. S., Anderson, B.
D. O. & Belhumeur, P. N. (2004), Rigidity, computation, and randomization in
network localization, Proc. IEEE INFOCOM.

3. Hill, J. & Culler, D. (2002), Mica: A Wireless Platform for Deeply Embedded
Networks, IEEE Micro, 22(6), pp.12–24.

4. Maroti, M. (2004), The Directed Flood Routing Framework, Proc of
ACM/IFIP/USENIX 5th International Middleware Conference.

Hierarchical Localization Algorithm Based on Inverse Delaunay Tessellation 195

5. Elson, J., Girod, L. & Estrin, D. (2002), Fine-grained network time synchronization
using reference broadcasts, ACM SIGOPS Operating Systems Review, issue SI, 36.

6. Ganeriwal, S., Kumar, R. & Srivastava, M.B. (2003), Timing-sync protocol for
sensor networks, Proc. First ACM SenSys.

7. de Berg, M., van Kreveld, M., Overmars, M. & Schwarzkopf, O. (1997), Computa-
tional Geometry, Algorithms and Applications, Springer-Verlag Berlin Heidelberg.

8. Hofmann, B., Wellenhof, H. Lichtenegger & J. Collins (2001), GPS, Theory and
Practice, Springer Wien NewYork.

9. Seynat, C., Hooper, G., Roberts, C. & Rizos, C. (2004), Low-cost deformation
measurement system for volcano monitoring, Proceedings of The 2004 International
Symposium on GNSS/GPS.

10. Lee, H.K., J. Wang, C. Rizos, B. Li, & W.P. Park (2003), Effective cycle slip
detection and identification for high accuracy integrated GPS/INS positioning,
6th Int. Symp. on Satellite Navigation Technology Including Mobile Positioning
& Location Services, Meibourne, Australia, 22-55 July, 2003, CD-ROM proc.,
paper 43.

Power Management for Bluetooth Sensor
Networks

Luca Negri1 and Lothar Thiele2

1 Politecnico di Milano, Dept. of Electrical Eng. and Comp. Science (DEI)
2 ETH Zurich, Computer Eng. and Networks Lab (TIK)

Abstract. Low power is a primary concern in the field of wireless sen-
sor networks. Bluetooth has often been labeled as an inappropriate tech-
nology in this field due to its high power consumption. However, most
Bluetooth studies employ rather over–simplified, fully theoretical, or in-
adequate power models. We present a power model of Bluetooth including
scatternet configurations and low–power sniff mode and validate it exper-
imentally on a real Bluetooth module. Based on this model, we introduce
a power optimization framework employing MILP (Mixed–Integer Linear
Programming) techniques, and devise optimal power management poli-
cies in the presence of end–to-end delay constraints. Our optimizations,
if backed by power–aggressive hardware implementations, can make Blue-
tooth viable for a wider range of sensor networks.

1 Introduction

Low power consumption has always been a primary goal in the design of wire-
less sensor networks. Moreover, communication accounts for a relevant power
contribution on sensor nodes, fact that is true even for more complex mobile
systems [1]. Communication among sensors can be implemented with custom
solutions or standardized radio interfaces. If on one hand custom solutions carry
the greatest power optimization potential, the choice of widespread wireless com-
munication standards guarantees interoperability as well as ease of connection
with existing commercial devices.

Communication protocols are often endowed with power/performance trade-
offs, which can be used to match application requirements with power consump-
tion; such protocols are known as power–aware protocols [2]. Power–aware is a
broad term and may denote a protocol that (i) manages power/performance
tradeoffs offered by lower layer protocols, (ii) exposes further tradeoffs to the
layers above or (iii) both. Examples of power/performance tradeoffs are modu-
lation scaling [3] and power control [4] at the physical layer, Bluetooth’s low–
power modes (hold, sniff, park) and WiFi’s Power Save Protocol (PSP) at the
MAC layer. In order to exploit these features an abstraction describing power
behavior on tradeoff curves is required: such abstraction is called a power model.

Bluetooth (BT) is a leading standard for short–range ad–hoc connectivity in
the Personal Area Networks (PAN) field. Although initially designed for sim-
ple point–to–multipoint cable replacement applications, Bluetooth has proved

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 196–211, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Power Management for Bluetooth Sensor Networks 197

very appealing also to build multi–hop ad–hoc networks (called scatternets) [5]
and even for high bandwidth sensor networks [6]. BT provides low–power modes
(hold, sniff, park) which trade throughput and latency for power. We believe
these features, if backed by a power–aggressive hardware implementation, can
make the protocol fit for a wider range of sensor networks, allowing for an ap-
propriate tuning of communication performance (and power) on the application
requirements. Nevertheless, to achieve this, a power model describing all possible
states (number of links, low–power mode of each link etc.) is necessary.

There is indeed a lack of such a model in the literature to date. Many Blue-
tooth power–optimization proposals, such as [7] and [8], are based on over–
simplified power models, not considering number and role (master vs. slave) of
links. Also, such models are normally not based on experimental measurements,
but rather on theoretical assumptions. Other BT–related studies employ rather
old and inadequate power models that were derived for other wireless systems
[9]. Finally, the few power measurements for Bluetooth in the literature (see [10]
and [6]) do not cover low–power modes and scatternet configurations.

In this paper we describe a full power model of Bluetooth in a complex scat-
ternet scenario where each link can be in active or low–power sniff mode. The
model is experimentally characterized and validated (RMS error below 4%) for
the BTnode, a BT–based ad–hoc network prototyping platform developed at
ETH Zurich [11]. We employ then the power model to build a flexible power
optimization framework based on Mixed–Integer Linear Programming (MILP),
which can be used to solve a number of power vs. Quality of Service (QoS) prob-
lems. In particular, in this paper we focus on the power/delay tradeoff offered by
BT’s sniff mode and determine the best network configuration that grants the
lowest power consumption while meeting given end–to–end delay requirements.
Such a power management policy can be either centrally determined and dis-
tributed to all nodes when needed or pre–computed for different requirements
sets and stored in the nodes themselves.

After Section 2 briefly introduces Bluetooth and describes the BTnode plat-
form, the main contributions of this work are presented: the power model of
BT in Section 3, the power/delay problem in Section 4 and its solution for se-
lected topologies in Section 5. Section 6 concludes the paper, outlining further
possible usages of the optimization framework and its re–application to different
protocols and scenarios.

2 Bluetooth and the BTnode Platform

The Bluetooth standard is based on 79 independent channels working at 1 Mbit/s
(1μs symbols) selected thorough a frequency hopping algorithm. The MAC layer
is based on a TDMA (Time Division Multiple Access) scheme using slots of
625μs each, and supports up to 8 devices within the same piconet (set of nodes
sharing the same hopping sequence), one of them being the master of the piconet
and polling the other slave devices. Master/slave communication is handled in a
TDD (Time Division Duplexing) fashion, where the master uses even slots and

198 L. Negri and L. Thiele

Fig. 1. The BTnode rev3 node

Fig. 2. Experimental setup with current
datalogger connected for Bluetooth power
consumption measurements

the polled slaves respond in the odd ones. Nodes are allowed to participate in
more than one piconet in a time–sharing fashion, to form a scatternet.

During normal piconet operation (active mode), a master regularly polls its
attached slaves every Tpoll slots. However, slaves are completely unaware of the
polling algorithm and are required to listen to the channel at the beginning of
each master slot, to find out whether a packet is sent to them. Sniff mode allows
for a lower duty cycle on both sides, with a master polling its slaves at regularly
spaced beacon instants. Since beacon spacing can be in the range of seconds,
rather than tens of slots (as for Tpoll), this mode allows for power savings. More
precisely, sniff mode is regulated by three parameters called Sniff Interval (SI),
Sniff Attempt (SA) and Sniff Timeout (ST), which are specified in number of
slot pairs1. SI is the time between beacons. At each beacon the slave listens to
its master for SA slot pairs, during which it is allowed to send data if polled.
The slave continues then listening for an extra ST slot pairs after the last packet
received from the master.

The BTnode (see Figure 1) is a versatile, lightweight, autonomous platform
based on a Bluetooth radio, a second independent low-power radio and a mi-
crocontroller [12]. The device is designed for fast prototyping [11] of ad-hoc and
wireless sensor network applications and is well suited to investigate different
protocols, operation parameter tradeoffs and radio alternatives. The Bluetooth
radio is a Bluetooth 1.2 compliant device (Zeevo ZV4002) with radio circuits,
baseband, MAC and link controller and an ARM7 core integrated on a sin-
gle system-on-chip. The Atmel ATmega128l microcontroller serves as Bluetooth
host controller and interfaces to the Host Controller Interface of the ZV4002 via
UART. Embedded applications are integrated into BTnut, a custom C-based
threaded operating system that offers drivers for the peripherals as well as com-
munication protocol stacks for the radios. Benefits of this platform are a small
form factor of 5x3 cm and comfortable programmability while maintaining in-
teroperability through its standardized wireless interface. Simple sensors and
actuators can be attached and powered through generic interfaces. Three direct

1 However they are often specified in second in this document.

Power Management for Bluetooth Sensor Networks 199

current access points are available where in-situ measurements of the power
consumption of the radios and the microcontroller core can be performed (see
Figure 2). This allows for very fine grained and subsystem-specific power con-
sumption measurements in the live system under standard operating conditions
as opposed to an artificial lab setup with developer boards only.

3 Power Model of Bluetooth

3.1 Experimental Phase

The TDMA, connection–oriented nature of Bluetooth makes it substantially
different from other systems employing contention–based MAC protocols (e.g.
802.11). This reflects in a different power model, where power contributions
also exist to merely keep links alive, even with no data transfer. In [13] and
[14] we presented a complete power model of BT for the point–to–point case,
i.e. limited to a device being master or slave of a single link. Such a model
highlights three major contributions: (i) a standby power consumption Pstby ,
always present, (ii) a Link Controller (LC) power consumption varying if the
device is master (Pmaster) or slave (Pslave) of the link and (iii) an additional data
level consumption for transmission (Ptx) and/or reception (Prx) of data over the
link. In this model ‘stby’, ‘master’, ‘slave’, ‘tx’ and ‘rx’ are called logical activities,
and the model is said to be characterized for a specific BT implementation once
a value has been assigned to the correspondent Pstby , Pmaster , etc.

The work in [13] shows that the modeling abstraction of summing up power
related to useful data transmissions and to link maintenance activities holds well
for the point–to–point case when validating the model for a real BT device. We
have run some tests in the presence of multiple links, and verified that the same
property also holds for a multipoint scenario2. Therefore, we concentrate here
on the Link Controller layer model and extend it to the piconet and scatternet
cases, allowing for an arbitrary number of master/slave, active/sniff connections
(within the limits of BT specifications).

In order to extend the model we have followed the same methodology outlined
in [13] and [14]. We have run a set of roughly 100 experiments on BTnodes,
tracing in each experiment the current draw of the Zeevo BT chip on the BTnode
(see Section 2) for 20 seconds via a bench multimeter. The voltage, which we
assumed constant during the experiments, was previously measured at 3.3 V
and the multimeter was set to operate at 50 samples/s (integration time 20
ms). The following parameters have been varied among the experiments: (i)
number of nodes connected to the device under test and role of these connections
(maximum 7 slaves and 3 masters supported by the Zeevo chip) (ii) mode of these
connections (active vs. sniff). In sniff mode, Sniff Interval (SI), Sniff Attempt
(SA) and Sniff Timeout (ST) were also varied.

Figure 3 and Figure 4 compare the current consumption curve in active and
sniff mode, for a master and slave role connection, respectively. We denote with
2 In particular, this is true for low duty cycle or bursty traffic patterns.

200 L. Negri and L. Thiele

0 100 200 300 400 500 600 700 800 900 1000
10

15

20

25

30

35

40

45 Master Role - Active Master Role - Sniff

C
u

rr
e

n
t

(m
A

)

Samples

SI

SA

Fig. 3. Current in active and sniff mode
on a master (SI=5.12 s, SA=ST=0.64 s)

0 100 200 300 400 500 600 700 800 900 1000
10

15

20

25

30

35

40

45

50

Slave Role - Active Slave Role - Sniff

C
u
rr

e
n
t
(m

A
)

Samples

SA+ST

SA

SI

Fig. 4. Current in active and sniff mode
on a slave (SI=5.12 s, SA=ST=0.64 s)

master role connection a connection to a slave (since the device is master of the
link) and with slave role connection a connection to a master. The active–mode
slave role curve (around 30 mA) is significantly higher than the master one (just
above 15 mA); we believe this is due to the continuous listening activity a slave
is required to perform.

Figure 3 and Figure 4 also highlight the bursty behavior of sniff mode, with
periodic peaks every SI slot pairs. The baseline value is lower than the active
master and active slave ones, and is equal to the standby current, which had been
previously measured at 13.51 mA. Conversely, the height of the peaks surpasses
both active master and slave values, reaching 40 mA; this can be justified with
the increased frequency of POLL packets sent by the master during the SA (Sniff
Attempt), which also causes higher power consumption on the slave receiving
them. According to BT specs, the slave continues then listening for an extra ST
slot pairs, and this justifies the wider peaks in Figure 4.

Figure 5 concentrates on the effects of multiple active–mode connections on
the total power consumption. The left cluster of bars represents the average
current in piconet mode, with an increasing number of connections to slaves (0
to 6), but no master attached. These values exhibit the interesting property that
each additional slave after the first one brings a nearly constant power penalty.

The right cluster of bars in Figure 5 is the average current when an increasing
number of slaves are attached (0 to 6, as before) but when the device also has a
master ; in this situation the BTnode is in scatternet mode. The values are higher
than in piconet mode, and all lie in the neighborhood of 30 mA, which is the
active slave role consumption as discussed for Figure 4. This can be explained
as follows: with no data transfers, the only duty of the node in its piconet (as a
master) is to poll its slaves, which accounts for a small time fraction; hence, the
node spends far more time in slave mode, listening in the second piconet, and its
current consumption is then much closer to the slave than to the master one. A
second interesting property emerges: the total power is only slightly affected by
the number of active slaves attached if an active master is present. In one word,
the slave role dominates the master one.

Power Management for Bluetooth Sensor Networks 201

0

0

1

1

2

2

3

3

4

4

5

5

6

6

0

5

10

15

20

25

30

35

No Master Attached 1 Active Master Attached

A
v
e

ra
g

e
C

u
rr

e
n

t
(m

A
)

Number of active slaves attached

Fig. 5. Average current with sole active–
mode links. Left cluster: 0 to 6 slaves at-
tached (piconet mode); right cluster: 0
to 6 slaves plus one master (scatternet
mode).

0 50 100 150 200 250
10

15

20

25

30

35

40

45

Master-role sniff Slave-role sniff

C
u
rr

e
n
t
(m

A
)

Samples

SI

SI

SA+ST

SA SA

Fig. 6. Current with mixed master (one)
and slave (one) sniff–mode links (SI=2.56
s, SA=ST=0.16 s)

Figure 6 refers to scatternet mode, but where all links are in sniff mode; more
specifically, one master and one slave role links are present here. The exhibited
behavior is a simple extension of that with a single link in sniff mode (as in
Figure 3 and Figure 4), with the BT module scheduling each sniff attempt as
far away as possible from the others.

Figure 7 shows the current plots in the case of multiple coexisting links in
active and sniff mode; all links are here towards slaves (master roles) and the
device is not in scatternet mode. The graph represents a single period of the 20
seconds experiments, whose waveforms are periodic with SI, namely 2.56 sec-
onds or 128 samples. The first curve (dashed) represents the case of 3 active
slaves, and shows no major peaks. The second curve (solid, 2 active and 1 sniff
slaves) has a lower baseline average value but exhibits one peak of width SA.
The third curve (solid with dots, 1 active and 2 sniff slaves) presents an even
lower baseline value but features two peaks of width SA, according to what said
for Figure 6. Finally, the fourth curve (solid with squares) has a baseline value

0 20 40 60 80 100 120

15

20

25

30

35

40

45
3 Active Slaves 2 Active, 1 Sniff Slaves 1 Active, 2 Sniff Slaves 3 Sniff Slaves

128 samples = 2.56 s = SI = period of the waveform

128

C
u
rr

e
n
t
(m

A
)

Samples

Fig. 7. Current with active and sniff master roles: 3 slaves attached, switched from
active to sniff mode one after the other in a sequence (SI=2.56 s, SA=ST=0.16 s)

202 L. Negri and L. Thiele

equal to standby but contains three sniff attempts, two of which are clustered
together in a peak of width 2 · SA; this behavior is in line with the fact that all
links are now in sniff mode. The rules emerging from Figure 7 are the following:
(i) outside sniff attempt peaks power consumption is determined by the number
of active–mode links; (ii) the height of the sniffing peaks is not influenced by the
number of active links.

A set of experiments similar to that of Figure 7 has been performed on coex-
isting slave–role active and sniff–mode links (not shown here). The behavior in
this case is slightly different: although there are still a baseline value and regular
peaks due to sniff, the baseline value shows only marginal fluctuations around
the value of active slave power consumption (circa 30 mA), regardless of the
number of active slave roles (1, 2 or 3). The same holds true if active master
roles (connections to slaves) are added, and this confirms the rule of the slave
role dominance introduced earlier when discussing Figure 5.

3.2 Model Characterization and Validation

We extend here the set of LC logical activities of the point–to–point model
(Pmaster , Pslave) to handle multiple connections and sniff mode. We seek a com-
pact set of activities Ai, each with power consumption Pi, whose linear combina-
tion approximates with a reasonable error the actual consumption of the device
in all cases. Our choice is driven by the knowledge gained in the experimental
phase, which can be summarized in the following rules:

1. Power consumption is the sum of three terms: (i) a standby term (Pstby)
always present, (ii) a baseline power value on top of standby due to active
connections and (iii) periodic peaks due to sniff links.

2. When an active slave role connection exists, this fixes the baseline value at
Pslave, regardless of additional active masters and/or slaves attached. �l

3. When no active slave role connection exists, baseline value is determined by
the number of active master roles, with the first contributing Pmaster and
each additional one contributing Padd slv (with Padd slv < Pmaster).

4. On top of the previously determined baseline value, which shall be called
PBAS , contributions from sniff–mode peaks are added as follows, respectively
for master roles (1) and slave roles (2):

PM,SN = (Psniff − PBAS) · (
SA

SI
) (1)

PS,SN = (Psniff − PBAS) · (
SA

SI
) + (Pslave − PBAS)(

ST

SI
) (2)

where Psniff is the peak value during sniff attempts.

Figure 8 shows a generic BTnode having K masters and J slaves attached, that
is K slave roles and J master roles. In this situation the total power consumption
as predicted by the model is:

Power Management for Bluetooth Sensor Networks 203

Node

M

M

M

M

S

S

S

S

M

M
M

M
S

S
S

S

Roles

K slave roles J master roles

�
�

�
�

�J

�j

...

�
�

�
�

�K

�k

...

... ...

Fig. 8. The four main degrees of freedom of Link Controller state including multiple
master/slave and active/sniff links

P = Pstby +

Sniff Master Roles

J

j=1

(1 − αj)PM,SN +

Sniff Slave Roles

K

k=1

(1 − βk)PS,SN + (3)

β0Pslave

Active Slave Roles

+ (1 − β0)α0(Pmaster − Padd slv) + (1 − β0)
J

j=1

αjPadd slv

Active Master Roles

where:

αj = 1 ⇔ link to j–th slave is active (1 ≤ j ≤ J)
βk = 1 ⇔ link to k–th master is active (1 ≤ k ≤ K)
α0 = 1 ⇔ ∃ one active link to a slave (α0 = α1 ∨ α2 . . . ∨ αJ)
β0 = 1 ⇔ ∃ one active link to a master (β0 = β1 ∨ β2 . . . ∨ βK)

The extended set of logical activities that make up the model are hence Pstby ,
Pmaster , Padd slv, Pslave, Psniff . To characterize the model for the BTnode
means to assign numeric values to these quantities, following the methodology
fully described in [13]. For each experiment, the average power measured during
the experiment is equaled to the prediction of the model according to (4). For a
single experiment j, all αj and βk coefficients are fixed, and thus (4) becomes a
linear combination the activity power consumptions:

V · Ij =
N∑

i=0

Pitji (4)

where P1 = Pstby , P2 = Pmaster , etc. are to be determined, Ij is the average
current during the experiment, tji are coefficients determined by the values of
the αjs and βks, and V is the operating voltage of 3.3 V.

Since the number of experiments is significantly higher than the number
of unknowns, the equations (4) for all experiments, if taken together, form a
strongly over–constrained linear system, which can be solved reliably with the
Least Squares method. Doing so yields the values that best fit the experimental
data, shown in Table 1.

204 L. Negri and L. Thiele

Table 1. Numerical power model for the BTnode

Activity Description Value
Pstby Always present 44.58 mW
Pmaster Being master of 1 slave 12.97 mW
Padd slv Having additional slaves 4.55 mW
Pslave Being slave 56.63 mW
Psniff Peak value in sniff mode 86.96 mW

We have validated our linear model using the LOO (Leave One Out) technique
[15] as described in [13]. This implies solving the model repeatedly, excluding
each time a different test, and using that test to calculate a residual (difference
between measure and prediction). The RMS value of such residuals (actually,
percentile residuals) is the validation error and amounts to 3.7%, whereas the
maximum residual among all experiments is around 10%. Although the numbers
in Table 1 might seem very specific to the BTnode, our experience and further
measurements on other Bluetooth modules confirm that the power model and
some of the trends highlighted by Table 1, such as Psniff > Pslave > Pmaster >
Padd slv, are common to most BT implementations [14].

4 The Power/Delay Problem in Bluetooth Scatternets

The presented power model, while guaranteeing an accuracy below 4%, is an-
alytically simple enough to be used in solving a number of power management
problems. We define a generic power management problem as the seek of a net-
work configuration that minimizes some power figure (total power of the net-
work, maximum power of a node, standard deviation of power over all nodes
etc.) whilst satisfying some QoS requirements.

In particular, in this work we focus on the power/delay problem, which can
be stated as follows: given a scatternet topology, a power model for each node
and a set of end–to–end maximum delay requirements between a root node and
all other nodes in the network, determine the best configuration (whether each
link should be in active or sniff mode, and the value of SI, SA, ST in the second
case) that minimizes the total power in the network, or alternatively optimizes
some other objective functions. We approximate the delay introduced by a single
link as equal to SI in sniff mode, or 0 if active. We limit our study here to tree
topologies, which eliminates routing issues. Figure 9 visualizes the problem in
graphical notation: the same delay requirement Dmax is applied here to all leaves
(which implies to all nodes) of the tree considering node 1 as the root, topology
and master–slave orientations are given.

This kind of optimization problem suits well all situations in which the main
limiting requirement is delay and not throughput, which maps to all applica-
tions that use Bluetooth but would not strictly require its whole bandwidth of
1 Mbit/s. This includes all sensor networks handling time–critical data with rel-
atively low packet sizes, such as security, health and environmental monitoring

Power Management for Bluetooth Sensor Networks 205

S

M

M
S

S

1(Root)

23

4

5

6

7

8

Dela
y<

D
m

ax

D
elay<D

m
ax

Delay<D
m

axDelay<Dmax

D
e
la

y
<

D
m

a
x

S

M

S

M

S

M

M

M

S

Fig. 9. The power/delay problem in a
tree of BTnodes; links are oriented away
from root, delay requirements are from
node 1 (root) to all leaves, M and S indi-
cate Master and Slave roles on links

0 2 4 6 8 10
100

150

200

250

300

350

400

Total delay (s)

T
o
ta

l
p
o
w

e
r

(m
W

)

Active-Active

Active-Sniff

Sniff-Active

Sniff-Sniff

M SM/S

3 nodes, 2 links

Fig. 10. Power vs. delay Pareto curves
for a chain of three nodes (two links)
varying SI with fixed SA,ST. Depending
on the target delay, active or sniff mode
are more convenient.

systems. The framework can be as well applied to throughput–constrained sce-
narios; this is discussed as ongoing work in Section 6.

Figures 3 and 4 in Section 3 suggest a power tradeoff between active and sniff
mode as the Sniff Interval (SI) is varied. This is confirmed by Figure 10, which
plots the power consumption of three nodes connected in a chain (two links)
according to (4) as the mode of the links is switched between active and sniff,
and as SI is varied (SA, ST fixed).

When the number of links in the network grows, it is inefficient to evaluate
all possible combinations of link mode and sniff interval. Hence, we have chosen
MILP (Mixed–Integer Linear Programming) as an optimization tool to solve the
problem for bigger networks. The problem must be slightly modified before it
can be handled by a MILP optimizer; in fact, the model is linear w.r.t. the power
consumption of the logical activities Pstby , Pmaster , Pslave, Padd slv, Psniff but
not linear w.r.t. other parameters, such as the link mode binary variables αj

and βk and the Sniff Intervals SI. However, these issues can be tackled with
standard techniques as adding additional variables and constraints, as well as
approximating nonlinear functions (such as P ∝ 1/SI).

An initial complexity study on our power/delay linear programs (using Cplex
on a Unix workstation) exhibits a quadratic behavior with the number of nodes
for medium–size networks (up to 300 nodes) and an exponential growth there-
after, when the MILP optimizer starts employing different algorithms.

5 Selected Case Studies

5.1 Total Power in a Chain of Nodes

Figure 11 shows a chain of 10 BTnodes, where each node has different mas-
ter/slave roles (M-M,M-S,S-M,S-S). In this case all sniff parameters are fixed at
SI=2s, SA=ST=.01s, and only the mode (active vs. sniff) of each link is treated

206 L. Negri and L. Thiele

1 2 3 4 5 6 7 8 9 10

B A C E D D G H I
D

F

MS SM SM MS MS SM SM MS MS

(Root)

Fig. 11. Chain of 10 nodes, each link can be in active mode or sniff mode with SI=2s,
SA=ST=.01s, objective is sum of power over all nodes. As delay requirement from root
to other nodes is decreased from 18 s to 10 s links start switching from sniff to active
mode; the order in which this happens is indicated by the letters (A, then B, etc.).

1 2 3
(Root)

MS MS

Dmax

Dmax 22 20 19 18 15 10 5 4 3 2 1 .5 .2
SI(1,2) 10 10 9 8 5.3 4.7 2.3 1.3 1.3 .7 A A A
SI(2,3) 10 10 10 10 9.7 5.3 2.7 2.7 1.7 1.3 1 .5 A

Fig. 12. Chain of 3 nodes, each link can be in active mode or sniff mode with
SA=ST=.01s and variable SI between 0.1 s and 10 s, objective is sum of power over
all nodes. Table shows best configuration for decreasing values of Dmax. A stands for
Active, numbers are SIs.

as an optimization variable. The objective function is here the sum of power over
all nodes. In Figure 11, the optimization is run repeatedly as the end–to–end
delay requirement Dmax from node 1 (root) to all other nodes is gradually low-
ered from 18 s to 10 s. Initially, all links are in sniff mode; as Dmax decreases,
links start switching to active mode; the order in which this happens is indicated
in figure by capital letters (A first, then B, etc.). The lessons learned with this
simple experiment are:

– As delay requirement is decreased links switch from sniff to active mode.
– Active links stick together. This is convenient power–wise, as experiments

have proved that additional active roles cost less than the first one.
– Active links appear first on S-S nodes, then on M-S and finally on M-M

nodes. This can again be justified with the rules described in Section 3.2.

Figure 12 still refers to a chain of nodes (three in this case), but where the
Sniff Interval is also an optimization variable, in the range 0.1s ≤ SI ≤ 10s.
The objective function is still the total power consumption in the network, and
the end–to–end delay requirement is decreased from 20 s to 0.2 s. The table in
Figure 12 shows the best combination of link mode and SI for both links. Further
considerations are:

– The best combination of Sniff Intervals on a chain of links is the one in which
all intervals are equal to Dmax/(number of links)3.

– The switch from sniff to active happens earlier for higher values of SA/ST.

3 This can be proved analytically. We have verified that the deviation from this ‘sym-
metric’ behavior exhibited by the values in Figure 12 is due to linearization.

Power Management for Bluetooth Sensor Networks 207

5.2 Total Power in a Tree of Nodes

In Figure 13 a fixed–SI optimization (SI=2) is applied repeatedly to a tree
topology. Again, for sufficiently high values of the maximum delay require-
ment Dmax, all links are in sniff mode. Conversely, as Dmax is decreased, links
start switching to active mode, in the order indicated by the capital letters in
Figure 13 (A first, then B, etc.). The observed behavior can be summarized
as follows:

– The first candidates to become active are the links (thus the nodes) that
serve a higher number of downstream nodes at the same time. They are
followed by minor branches and, at last, by leaves. The tree in Figure 13
has a sort of backbone (main branch) along nodes 1, 18, 15, 14, 5, 11, then
branches from node 11, and finally numerous leaves along the backbone and
branches: the above rule is clearly obeyed.

– In addition, the same rules found for the simple chain of nodes apply: S-S
nodes are the best candidates, followed by M-S and M-M.

Figure 14 refers to the same tree shown in Figure 13, but now the Sniff
Intervals are used as optimization variables (0.1 ≤ SI ≤ 10 s). The table is
divided into three parts:

1(Root)

2

3

4

5

6

7

8

9
10

11
12

13

14

15

16

17

18

19

20

M
S

M

S

M S

S
MS

M

S
M

M
S

M

S

S

M

M

S

S M

M
S

S

M

S

M

M
S

M SS

M

S
M

S
M

A

G

B

C
D

E

F

F

G

G

G

G

GG

G

G

G

G

G

Fig. 13. Random tree, each link can
be active or sniffing with SI=2s,
SA=ST=.1s, objective is total power.
Dmax from root to other nodes is de-
creased from 15 s to 0 s; letters indicate
order in which links switch from sniff to
active (A first, then B, etc.).

Dmax

Link 15 10 5 2.5
1,18 1.3 1.3 0.6 A
18,15 1.3 1.3 1 A
15,14 1.3 A A A
14,5 1.3 A A A
5,11 3 1.3 A A
11,4 3.3 2.6 1.3 1.1
11,7 3.3 3.3 A A
18,19 10 8.6 4.3 2.5
15,16 10 7.3 3.3 2.5
15,17 10 7.3 3.3 2.5
5,12 9.6 7.3 3.3 2.5
5,13 9.6 7.3 3.3 2.5
11,2 6.6 6 3.3 2.5
11,3 6.6 6 3.3 2.5
11,6 6.6 6 3.3 2.5
4,8 3.3 3.3 2 1.3
4,9 3.3 3.3 2 1.3
4,10 3.3 3.3 2 1.3
7,20 3.3 2.6 3.3 2.5

Fig. 14. Random tree (see Fig. 13), op-
timizing total power with variable SI,
SA=ST=.1s; optimal SI (or A=Active)
for different values of Dmax

208 L. Negri and L. Thiele

– The first five links are those of the backbone, and first switch to active.
– The second block contains links (11,4) and (11,7), which represent branches

from node 11, each with its own leaves. Interestingly, for Dmax = 5s, (11,7) is
active but (11,4) is not, forcing two active slave roles on node 11; at the same
time, (15,18) and (1,18) on the main backbone are not active. This suggests
that a tradeoff exists between the previously devised rules concerning size of
branches and node roles (S-S, M-S, M-M), and that the order of application
of these rules is not fixed.

– The third and last block groups all “leaf links”, whose sniff interval decreases
with Dmax as well as with the distance from the root (e.g. SI(18, 19) <
SI(11, 2) < SI(4, 8)). However, in certain cases, some values can increase
for lower Dmax, as other links closer to the root switch to active (see link
(7,20) for instance).

5.3 Coping with Real World Constraints

The solutions we have presented so far do not take into account an important
limitation of the BTnode’s BT subsystem: if multiple sniff links are activated on
a node they must have equal SI. This constraint, which simplifies link scheduling
for the BT hardware, definitely changes the structure of the problem. Figure 15
and Figure 16 depict the optimal solutions for the same scenario of Figure 13
with this additional constraint, for Dmax = 15s and Dmax = 10s respectively. It
is worth noting that:

– Applying the SI equality constraint implies that the whole network must use
the same SI unless some active links exist.

1(Root)

2

3

4

5

6

7

8

9
10

11
12

13

14

15

16

17

18

19

20

M
S

M

S

M S

S
MS

M

S
M

M
S

M

S

S

M

M

S

S M

M
S

S

M

S

M

M
S

M SS

M

S
M

S
M

SI=3.3 s

SI=2.5 s

Active

Links

Fig. 15. Total power optimization with
variable SI, but fixed SI for each node.
Dmax = 15s.

1(Root)

2

3

4

5

6

7

8

9
10

11
12

13

14

15

16

17

18

19

20

M
S

M

S

M S

S
MS

M

S
M

M
S

M

S

S

M

M

S

S M

M
S

S

M

S

M

M
S

M SS

M

S
M

S
M

SI=3.3 s

SI=10 s

Active

Links

SI=10 s

Active

Links

Fig. 16. Total power optimization with
variable SI, but fixed SI for each node.
Dmax = 10s.

Power Management for Bluetooth Sensor Networks 209

– If active links exist, they act as separators among iso–SI clusters of nodes.
– These two rules cause the best solution already for Dmax = 15 (Figure 15)

to contain two active links, as compared to all sniff links in Figure 14.

5.4 Total Power vs. Maximum Power Optimization

Table 2 compares the optimal solution for different values of Dmax as different
combinations of objective functions and constraints are employed:

– Columns a refer to the results already presented, taking the total power
in the network (sum over all nodes) as objective to be minimized. This is
equivalent to minimizing the average power consumption of a node, but with
no check on the standard deviation. This causes the optimum to be quite
unfair among the nodes, e.g. links (15,14) and (14,5) are switched early (as
Dmax decreases) to active mode as it is best for the whole network, however
this quickly drains the battery of node 14.

– To overcome this limitation, columns b use a different objective function,
namely the maximum power consumption of a single node4. The results for

Table 2. With reference Fig. 13, SA=ST=.1s, optimal mode and SI for each link with
different objective functions and constraints: a) minimizing total power; b) minimizing
maximum power of a single node; c) as in b but with equal SI on all links on each node

Dmax = 15 Dmax = 10 Dmax = 5 Dmax = 2.5
Link a b c a b c a b c a b c
1,18 1.3 1.3 2.14 1.3 0.6 1.42 0.6 0.6 ACT ACT ACT ACT
18,15 1.3 1.3 2.14 1.3 1.1 1.42 1 0.6 ACT ACT 0.6 1.25
15,14 1.3 1.3 2.14 ACT 1 1.42 ACT ACT ACT ACT ACT ACT
14,5 1.3 2.5 2.14 ACT 1.3 1.42 ACT ACT ACT ACT ACT ACT
5,11 3 2.5 2.14 1.3 1.3 1.42 ACT 0.6 1.6 ACT ACT ACT
11,4 3.3 2.6 2.14 2.6 2.4 1.42 1.3 1.3 1.6 1.1 ACT ACT
11,7 3.3 4.7 2.14 3.3 3.1 1.42 ACT 1.6 1.6 ACT ACT ACT
18,19 10 10 2.14 8.6 9.3 1.42 4.3 4.3 ACT 2.5 2.5 1.25
15,16 10 10 2.14 7.3 8.2 1.42 3.3 3.6 5 2.5 1.8 1.25
15,17 10 10 2.14 7.3 8.2 1.42 3.3 3.6 5 2.5 1.8 1.25
5,12 9.6 8.5 2.14 7.3 5.8 1.42 3.3 3.6 1.6 2.5 1.8 1.25
5,13 9.6 8.5 2.14 7.3 5.8 1.42 3.3 3.6 1.6 2.5 1.8 1.25
11,2 6.6 6 2.14 6 4.5 1.42 3.3 3 1.6 2.5 ACT ACT
11,3 6.6 6 2.14 6 4.5 1.42 3.3 3 1.6 2.5 ACT ACT
11,6 6.6 6 2.14 6 4.5 1.42 3.3 3 1.6 2.5 ACT ACT
4.8 3.3 3.3 2.14 3.3 2 1.42 2 1.6 1.6 1.3 ACT ACT
4.9 3.3 3.3 2.14 3.3 2 1.42 2 1.6 1.6 1.3 ACT ACT
4,10 3.3 3.3 2.14 3.3 2 1.42 2 1.6 1.6 1.3 ACT ACT
7,20 3.3 1.3 2.14 2.6 1.3 1.42 3.3 1.3 1.6 2.5 1.8 1.25

4 The actual objective is a linear combination of the maximum power of a single node
and of the total power, where the latter has a lower weight.

210 L. Negri and L. Thiele

Dmax = 10 show lower sniff intervals and no active links, as compared to
strategy a, meaning that power consumption, even though higher, is more
evenly distributed among nodes. This trend is confirmed by the cases of
Dmax = 5 and Dmax = 2.5, where sniff–mode links have low SIs, leveling
their power consumption with that of active links.

– Finally, columns c have the same objective as b, but with the additional
constraint introduced in Section 5.3, which imposes the same SI on all links
on each node. Comparing the results with those of Figure 15 and Figure 16
it is apparent that iso–SI clusters begin forming for lower values of Dmax. In
fact, for Dmax =10, all links are here in sniff mode with SI=1.42 s, whereas
in Figure 16 (still Dmax =10, but minimizing total power) 4 active links and
3 clusters exist.

6 Conclusions and Extensions of the Framework

We have presented a real–world power model of a Bluetooth device in a scatter-
net scenario, where links can be in active or low–power sniff mode. The model
has been validated experimentally with an average validation error below 4%.
Based on our model, we have described a framework which employs Mixed–
Integer Linear Programming to solve power/delay optimization problems. Re-
sults have been shown for selected topologies ranging from chains to trees of
nodes.

The results provide useful rules to determine the best network configura-
tion power–wise given certain requirements. These rules constitute a power
management policy for the network, which can be implemented in different
ways. The policy can be centrally computed in the root and distributed to
all nodes every time the requirements change; alternatively, the solution for
the most used requirements sets (e.g. high responsiveness, low responsiveness,
idle) for the network can be pre–computed and stored in the nodes as look–up
table.

Building on top of this work, we are currently exploring a number of exten-
sions, including mesh topologies (which implies routing), park and hold modes,
mixed delay and throughput requirements as well as a traffic matrix on top
of open connections. Additionally, heterogeneous networks (e.g. different power
budgets in the nodes) and battery models could be taken into account.

Although the BTnode employed in this study presents a standby consumption
which is too high to implement long–life sensor networks, the methodology we
have followed could be easily re–applied in the future to more power–aggressive
implementations of Bluetooth as well as to other protocols (e.g. Zigbee) that
promise a better power/performance ratio. In this direction we are investigating
the possibility of completely switching off and on the BT radio of the BTnode
using the microcontroller to obtain a low–power mode that performs better than
sniff for extremely low duty cycles.

Power Management for Bluetooth Sensor Networks 211

References

1. Raghunathan, V., Pering, T., Want, R., Nguyen, A., Jensen, P.: Experience with a
low power wireless mobile computing platform. In: Proc. ISLPED-04, ACM Press
(2004) 363–368

2. Jones, C.E., Sivalingam, K.M., Agrawal, P., Chen, J.C.: A survey of energy efficient
network protocols for wireless networks. Wireless Networks (7) 343–358

3. Schurgers, C., Aberthorne, O., Srivastava, M.: Modulation scaling for energy aware
communication systems. In: Proc. ISLPED 2001, (ACM Press) 96–99

4. Rulnick, J.M., Bambos, N.: Mobile power management for wireless communication
networks. Wirel. Netw. 3 (1997) 3–14

5. Kazantzidis, M., Gerla, M., Johansson, P., Kapoor, R.: Personal area networks:
Bluetooth or ieee 802.11? Intl. Journal of Wireless Information Networks, Special
Issue MANETs Standards, Research, Applications (2002)

6. Leopold, M., Dydensborg, M.B., Bonnet, P.: Bluetooth and sensor networks: a
reality check. In: SenSys ’03: Proc. 1st international conference on Embedded
networked sensor systems, New York, NY, USA, ACM Press (2003) 103–113

7. Chakraborty, I., Kashyap, A., Rastogi, A., Saran, H., Shorey, R., Kumar, A.: Poli-
cies for increasing throughput and decreasing power consumption in bluetooth mac.
(In: Proc. 2000 IEEE intl. conf. on Personal Wireless Comm.) 90–94

8. Zhu, H., Cao, G., Kesidis, G., Das, C.: An adaptive power-conserving service
discipline for bluetooth. In: 2002 IEEE intl. conf. on Communication. Volume 1.
(2002) 303–307

9. Ashok, R.L., Duggirala, R., Agrawal, D.P.: Energy efficient bridge management
policies for inter-piconet communication in bluetooth scatternets. In: Proc. Vehic-
ular Tech. Conf. (2003)

10. Meier, L., Ferrari, P., Thiele, L.: Energy-efficient bluetooth networks. Technical
Report 204, Comp. Eng. and Networks Laboratory (TIK), ETH Zurich (2005)

11. Beutel, J., Kasten, O., Mattern, F., Römer, K., Siegemund, F., Thiele, L.: Proto-
typing wireless sensor network applications with BTnodes. In: Proc. 1st European
Workshop on Sensor Networks (EWSN 2004). Volume 2920 of Lecture Notes in
Computer Science., Springer, Berlin (2004) 323–338

12. Beutel, J., Dyer, M., Hinz, M., Meier, L., Ringwald, M.: Next-generation proto-
typing of sensor networks. In: Proc. 2nd ACM Conf. Embedded Networked Sensor
Systems (SenSys 2004), ACM Press, New York (2004) 291–292

13. Negri, L., Sami, M., Macii, D., Terranegra, A.: Fsm–based power modeling of
wireless protocols: the case of bluetooth. In: Proceedings of the 2004 international
symposium on Low power electronics and design, ACM Press (2004) 369–374

14. Negri, L., Zanetti, D., Tran, Q.D., Sami, M.: Flexible power modeling for wire-
less systems: Power modeling and optimization of two bluetooth implementations.
In: Proc. WoWMoM 05 - IEEE Intl. Symp. on World of Wireless, Mobile and
Multimedia Networks. (2005) 408–416

15. Hassoun, M.: Fundamentals of Artificial Neural Networks. MIT Press (1995)

FlexCup: A Flexible and Efficient Code Update
Mechanism for Sensor Networks

Pedro José Marrón, Matthias Gauger, Andreas Lachenmann, Daniel Minder,
Olga Saukh, and Kurt Rothermel

IPVS, Universität Stuttgart, Universitätsstr. 38,
D-70569 Stuttgart, Germany

{marron, gauger, lachenmann, minder, saukh,
rothermel}@informatik.uni-stuttgart.de

Abstract. The ability to update the program code installed on
wireless sensor nodes plays an import role in the highly dynamic en-
vironments sensor networks are often deployed in. Such code update
mechanisms should support flexible reconfiguration and adaptation of
the sensor nodes but should also operate in an energy and time effi-
cient manner. In this paper, we present FlexCup, a flexible code update
mechanism that minimizes the energy consumed on each sensor node for
the installation of arbitrary code changes. We describe two different ver-
sions of FlexCup and show, using a precise hardware emulator, that our
mechanism is able to perform updates up to 8 times faster than related
code update algorithms found in the literature, while consuming only an
eighth of the energy.

1 Introduction

The continuous miniaturization process of computing devices combined with the
proliferation of sensor technology has led to an increase in the number and the va-
riety of devices that are able to sense their environment, gather and process data
and communicate their results either to a base station or to other neighboring
devices. Such wireless sensor networks are usually characterized by the limited
resources available at each individual device, and the fact that each sensor node
cooperates with its peers in a distributed fashion to accomplish a common task.

The ability to update the program code installed on wireless sensor nodes is
an important feature in such systems, necessary not only for correcting errors
but also for being able to adapt the running software to changed environmen-
tal conditions or modified application requirements. In particular, we expect a
growing demand for adaptive system software support in sensor networks due to
the increasing complexity of applications and the inherent dynamics of typical
sensor network environments.

Current system software implementations do not provide the flexibility need-
ed to dynamically adapt the software running on sensor nodes. This motivates
the work of the TinyCubus project in our research group [1], which aims at de-
veloping a generic and reconfigurable system software for sensor networks based

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 212–227, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

FlexCup: A Flexible and Efficient Code Update Mechanism 213

on TinyOS. Two important building blocks of TinyCubus are support for struc-
tured cross-layer optimizations provided by the Tiny Cross-Layer Framework
and adaptation capabilities for system and application components provided by
the Tiny Data Management Framework.

In this paper, we present FlexCup (“FLEXible Code UPdates”), a code up-
date mechanism that enables on the fly reinstallation of software components
in TinyOS-based sensor nodes in an efficient way. FlexCup has been developed
as part of TinyCubus to provide code update capabilities for the adaptation of
components in the Tiny Data Management Framework, but it can also be used
independently as a general code update mechanism for sensor networks.

A code update mechanism for sensor networks needs to take into account that
sensor networks usually consist of small devices with extreme resource limita-
tions. The optimization of resource usage and energy considerations are therefore
crucial challenges that needed to be addressed in the development of FlexCup.

The mode of operation of FlexCup is divided in two phases: the code gener-
ation phase, where relevant information is generated at compile time; and the
linking phase, where the modified components are combined with other compo-
nents at runtime.

The remainder of this paper is structured as follows. Section 2 starts by giving
information about existing approaches and their shortcomings. Section 3 deals
with the details of our code update approach and its compile time and runtime
algorithms. Section 4 gives experimental results on the complexity and efficiency
of FlexCup by comparing it to other approaches. Finally, section 5 concludes this
paper and gives some insight regarding future work.

2 Related Work

TinyOS [2] is probably the most widely-used operating system for sensor networks
and is the target system for FlexCup. It has been ported to several hardware
platforms including the MICA2 motes from Crossbow Technologies. Thanks to
the wiring and event abstractions available in nesC, the component-based pro-
gramming abstraction for TinyOS [3], this operating system is well suited for the
requirements of sensor network applications. However, TinyOS does not allow
components to be replaced at runtime. Instead, the entire program image con-
taining both system and application components has to be exchanged if any one
of the components needs to be replaced.

Another operating system developed for sensor networks and other resource
constrained devices is Contiki [4]. In contrast to TinyOS, Contiki does provide
support for dynamic loading of applications and system services as a core func-
tionality of the system. However, this flexibility requires additional levels of in-
direction for calls to these dynamic services which adds some runtime overhead.

Maté [5] executes application code using a virtual machine. Since the actual
application is only stored in RAM, this system can easily deal with code updates,
but the overhead of running a virtual machine on each sensor node is consid-
erable. The advantage of virtual machine approaches is that the size of their

214 P.J. Marrón et al.

bytecode can be smaller than native code, which reduces the energy consumed
for code transfers. However, for long-running applications the energy overhead
generated by code interpreted at runtime outweighs this advantage [5].

There are several middleware solutions for sensor networks that provide some
functionality related to our work. For example, Impala [6] adds abstractions
that allow for dynamic updates of modules and adaptation. Modules which are
already linked and which are reused in a new software version do not have to
be re-linked. However, both the update and the adaption mechanism have not
been implemented in the actual system yet. MiLAN [7] monitors the network
situation and manages the quality needs of applications by adapting its behavior
and optimizing the network topology. While MiLAN is in that way able to change
its operation at runtime, it does not include support for dynamic code updates.

Several approaches try to efficiently disseminate code updates in a sensor
network using multi-hop communication [8,1,5,9,6]. However, the efficient distri-
bution of code is an issue orthogonal to our approach, which aims at reducing
the size of such updates and adding the flexibility needed for adaptation. With
little effort, FlexCup can be combined with any of these approaches.

Many current algorithms dealing with code updates always transmit the com-
plete code image (including the system software), which usually amounts to
several kilobytes of data. One example of this approach is Deluge [8]. Deluge is
included in recent TinyOS releases and provides functionality to disseminate code
updates in multi-hop networks while keeping the number of network packets low.

A more advanced approach found in the literature to reduce the number of
packets to be transmitted for each code update is to compare the new code
with the previously installed software version and transmit only the differences.
Reijers and Langendoen [10] use a diff-like approach to compute a diff script
that transforms the installed code image into a new one. Likewise, the incre-
mental network programming protocol presented by Jeong and Culler [11] uses
the Rsync algorithm [12] to find variable-sized blocks that exist in both code im-
ages and then only transmits the differences. However, both of these approaches
just compare the code image using very limited knowledge about the application
structure, if at all.

Koshy and Pandey [13] describe a scheme that uses incremental linking (on a
PC) to reduce the number of changes in the code and transmit the code update
with a diff-like algorithm. They leave most parts of the previous program image
unchanged and modify only those functions that actually change. In order to
avoid address shifts when the size of a function changes they add empty space
behind each function. However, this approach does not provide the flexibility
offered by FlexCup since the linking process is still performed at the base sta-
tion. Koshy and Pandey even argue that linking on the sensor nodes – the very
approach of FlexCup presented in this paper – cannot be done in practice due
to high costs for transmission and storage of object files.

Most approaches assume that code updates will be distributed to all nodes
in the network. However, the complexity of applications and the need for recon-
figuration indicate that it might be desirable to install the required components

FlexCup: A Flexible and Efficient Code Update Mechanism 215

only on those nodes that need it and maybe store other components in a free
part of flash memory for later adaptation, since flash memory is typically less
limited than program memory. Therefore, our solution uses knowledge about
the application structure by grouping the components forming the application
and the operating system. It offers more flexibility than just replacing arbitrary
pieces of code because it makes it possible to dynamically change the current
set of installed components through adaptation. That way, the sensor nodes can
store several instances of a component at a time even though they only need one
of them to fulfill their current task. When the task changes or other factors make
it necessary, the node can easily replace the currently used component with a
more efficient one.

3 FlexCup

FlexCup implements an efficient code update algorithm that allows exchanging
only the components of a program that have actually changed. This helps saving
deployment time as well as energy on the sensor nodes.

To perform its tasks, FlexCup needs to be involved in the process of compiling
the components on the base station, and installing the code update on the sensor
nodes: During the code generation process, FlexCup generates meta-data that
describes the compiled components. FlexCup then uses this meta-data during a
code update to place the new component inside the running application, relink
function calls to the appropriate locations and perform address binding of data
objects, as we will see in the next sections.

Using this method, FlexCup is able to reconfigure, exchange or reinstall parts
of an application running on sensor nodes without having to retransmit the
whole program image. Furthermore, since there is no real distinction between
system and application components in current sensor network devices, FlexCup
can be used for updating parts of TinyOS or TinyCubus just as it can be used
for exchanging application components.

We have implemented and tested FlexCup using the MICA2 sensor platform
available from Crossbow Technologies. Although developed as part of TinyCu-
bus, the implementation of FlexCup is independent of any operating system or
system software. This has two advantages: First, since FlexCup is written in
ANSI C and does not have dependencies to specific system libraries, it can be
easily ported to other frameworks. Second, FlexCup only runs during the process
of installing code updates and does not impose further restrictions on the RAM
available for application components.

3.1 Component and Meta-data Generation

Component Generation. TinyOS applications developed using the nesC pro-
gramming language consist of a set of system and application components that
are “wired” to generate a running program. The nesC compiler produces a sin-
gle C file combining the source code of all these components, thereby generating a

216 P.J. Marrón et al.

tightly interwoven application. This approach has the advantage that the com-
piler can perform optimizations like function inlining on the entire program.
However, there is no simple way of replacing only a part of the compiled pro-
gram like exchanging a component or a function inside a component.

This potential limitation is to some extent addressed by a new concept in-
troduced in a recently released version of the nesC compiler (nesC 1.2). The
new concept allows compiling a set of nesC components into a separate object
file, a so called binary component. Such binary components can be wired like
traditional nesC components and are then combined by the linker to create the
complete application code. However, this linking is still done on the base station
prior to the deployment in the sensor network.

FlexCup uses the concept of binary components and extends it by performing
the linking process on the sensor node itself.

The use of binary components still allows the compiler to perform code opti-
mizations inside of the individual binary components. Global optimizations are
no longer possible. However, if the application developer segments the applica-
tion based on the semantic relation of the components, we expect an application
using binary components to perform similarly to a globally optimized version.

Our experience with FlexCup indicates that a reasonable segmentation of
an application into binary components can be easily identified by examining the
semantics of the components and their use in the system. We used several heuris-
tics including the degree of interaction with other components and the expected
likelihood of components being exchanged together. Typical examples of com-
ponents combined into individual binary components are the ones implementing
radio communication, the sensor access and the application components.

The segmentation of components into binary components is a design decision
to be made by the system and application developers. In the long run, we ex-
pect most system components of TinyOS to be available segmented into binary
components, so that the application developer will only have to consider his own
components implementing application-specific functionality.

Meta-data Generation. FlexCup requires meta-data to be able to integrate
new components into the existing program code on a sensor node. On the sensor
nodes, this meta-data is stored in external flash memory and consists of the fol-
lowing three parts: generic program information, a program-wide symbol table,
and a relocation table for each binary component in the program. The generic
program information lists the number and relative offsets of all binary compo-
nents, as well as the addresses of the symbol and relocation tables. The symbol
table contains information about the global data and function symbols used in
all components, sorted by their identifiers in ascending order. The relocation
tables list the references from inside the component code to data or function
symbols specified in the symbol table. Fig. 1 shows a pictorial representation of
a sample program consisting of three binary components and its representation
in the external flash memory after being loaded onto a sensor node.

As can be seen in Fig. 1, FlexCup stores a copy of the program code in the
external flash right after the meta-data. This copy is used for constructing the

FlexCup: A Flexible and Efficient Code Update Mechanism 217

Program meta-data

Program code

Program information

Symbol table

Relocation table B

Component Code A

Component Code B

Component Code C

Relocation table A

Relocation table C

0x0000

0x0108

0x0318

0x0420

0x0630

0x0738

0x08A0

0x21B0

00A2 013E
00B0 00FA
00B6 03A0

00A2 09A4 10B2 1500 18AA
00B6 12AA

00A2

00A2
00A2

00B6

00A2

Fig. 1. Sample code and meta-data

new program code during a code update. Our implementation leaves free spaces
(hatched blocks in Fig. 1) between the symbol table, each relocation table and
the program code to allow for size changes of this data without having to pay
the penalty of moving large pieces of data or even the whole program code.

Optimizations. The transmission and storage of the meta-data required for the
dynamic linking of the components incurs an overhead on the sensor nodes. We
have implemented several optimizations to minimize these effects: First, symbols
in the symbol and relocation tables are identified by a two-byte id instead of a
human-readable string. Second, we compress the size of the relocation tables by
combining entries with the same id. For example, if there are several relocation
entries referencing the same symbol, all entries are grouped together so that the
identifier is needed only once. These simple optimizations incur savings in space
of over 40% with respect to our original implementation.

3.2 Runtime Linking

Fig. 2 outlines the sequence of operations performed by FlexCup on a sensor node
during the update of a binary component. The operation of the algorithm can
be split up into five steps: (1) Storage of code and meta-data; (2) symbol table
merge; (3) relocation table replacement; (4) reference patching; (5) installation
and reboot.

(1) Storage of Code and Meta-Data. The first step in the runtime linking
process involves receiving the update data, including code and the meta-data
of the component, and storing it into flash memory. The external flash memory

218 P.J. Marrón et al.

External Flash

Program Memory

0000 0000 0000 0000

Program

Meta-data
and code
comp. B’

Free

1

3

2

4

5FA1 0104 0A64 32F8

Free

Program

Boot loader

RAM
Sym. table diffs.

Free

5FA1

0104

5

Code component A

Code component B

Code component C

Radio

Fig. 2. Runtime linking process

of the MICA2 sensor nodes has a capacity of 512 kBytes and is normally used
to store sensor readings and measurement results. For the purposes of FlexCup,
flash memory is used as an external memory component where code updates and
program meta-data can be stored for processing.

Even though accesses to the flash memory are very costly, using the flash
memory for storing the received data is necessary for two reasons: First, the
size of a code image is usually much larger than the 4 kBytes of RAM available
on the nodes, so that the code image cannot be prepared completely in RAM.
Second, the program code can only be written to program memory from a special
bootloader section and writes are only possible on a page by page basis, so that
the code image must be prepared externally before writing it to program memory.
However, the degree of use of the external flash memory directly influences the
amount of energy consumed by the algorithm.

Regarding the actual transmission of the modified binary component and
meta-data, FlexCup allows two different modes of operation. The first one, called
FlexCup Basic, transfers the whole binary component and its meta-data with-
out considering the data already stored on the sensor node. This algorithm can be
inefficient, especially if the binary component is relatively large and the number
of changes is small. For this reason, FlexCup also supports a diff-based approach,
called FlexCup Diff, that only transfers the incremental changes between the
new binary component and the one already stored on the sensor node. FlexCup
Diff can operate more efficiently than pure diff-based solutions as the processed
binary code does not yet contain references to specific addresses in memory (only
default values). For this reason, address shifts, which are one of the main reasons
for change entries in pure diff-based approaches, do not increase the size of the
data transmitted. However, just like in all diff-based approaches, the base station
needs to have knowledge about the exact configuration of the sensor nodes in
order to be able to prepare the diff script.

FlexCup: A Flexible and Efficient Code Update Mechanism 219

(2) Symbol Table Merge. The second step of the linking process involves
combining the existing program symbol table with the newly received symbol
data. Since both tables are sorted by symbol id in ascending order, an algorithm
similar to merge sort is used to create the new symbol table.

Merging is performed with the help of 3 kBytes of temporary buffer in RAM
used by FlexCup to store all changed symbol information. This buffer space is
guaranteed to be available since FlexCup does not run in parallel to the applica-
tion1. The advantage of this buffering is that accessing RAM is much faster and
much more energy efficient than using the external flash for all operations. At
the end of this step, the new symbol table is written back to the external flash
at once.

A challenging task for FlexCup is the management of the application’s data
variables. Each component uses a set of variables, initializing some of them
with predefined values. FlexCup has to cope with possible size changes, changed
initialization data and the addition and the removal of such variables. It needs
to calculate an adequate layout for the storage of the variables in data memory
and needs to set the symbol addresses accordingly. FlexCup also has to prepare
the initial values that are then loaded during the startup of the system.

(3) Relocation Table Replacement. This step deals with the replacement of
the relocation table. This task is much simpler than the previous step, because
each binary component contains an individual relocation table sent as part of
the component update. Correspondingly, this step only involves copying the
new relocation table to the appropriate location and, if necessary, shifting the
following tables backward by the right amount of bytes.

(4) Reference Patching. The fourth step involves going through the entries
of the relocation tables of all components, and checking whether any of the
references needs to be updated. An update is required for all references coming
from the new component code and for all references to symbols that changed their
destination address during the update. If an update is required, FlexCup jumps
to the address specified in the relocation table and writes the new destination
address value. This procedure strongly benefits from the fact that the change
set of entries in the symbol table is already buffered in RAM and does not need
to be searched for again in flash memory. At the end of the reference patching
step, all references of the components point to the right location in program or
data memory and the code image is ready to be copied to program memory.

(5) Installation and Reboot. The last step takes care of copying the pro-
gram code from external flash to program memory and reboots the sensor node
afterwards. This is done using a custom bootloader installed in the bootloader
section of the processor’s program memory.

One important reason for rebooting the sensor nodes are potential layout
changes of the application. Without a reboot, pointer variables might point to
1 It is not possible to use all 4 kBytes of RAM for the symbol table because FlexCup

itself needs 724 bytes of RAM for its operation.

220 P.J. Marrón et al.

locations in memory that are no longer valid. If the sensor network applica-
tion needs to preserve state despite a reboot, it is necessary to use an external
mechanism that saves the application state to non-volatile memory.

4 Experimental Evaluation

To evaluate the performance of FlexCup in terms of time and energy consumed
for the update of sensor network applications, we compare FlexCup Basic and
FlexCup Diff with two related approaches found in the literature: Deluge [8]
and a diff-based update mechanism (from now on “MOAP-Diff”) available as
part of the MOAP project [9,14]. Deluge transmits the whole program image as
a monolithic block of code, whereas MOAP-Diff implements a modified version
of Reijers and Langendoen’s original diff algorithm.

4.1 Experimental Setup

For the performance measurements detailed below, we have used a modified ver-
sion of the MICA2 emulator atemu [15] which we calibrated using measurements
on real sensor hardware. The modified version of the emulator includes an imple-
mentation of the external flash memory component found on the MICA2 sensor
nodes and allows precise measurements of the energy consumption and the time
needed to run the algorithms under test. The experimental results have been
obtained by calculating the average results over 20 runs.

Selected Applications. For our performance comparisons we have selected
three typical applications that can be downloaded from the TinyOS CVS repos-
itory:2 OscilloscopeRF, Surge and AcousticLocalization. OscilloscopeRF
is a simple application that periodically reads a sensor value and transmits it
via radio to a base station located within transmission range. Surge is similar
to OscilloscopeRF, but includes a multi-hop routing protocol that dynami-
cally builds a routing tree along which sensor readings are forwarded to the
base station. Finally, AcousticLocalization is able to determine the distance
of neighboring sensor nodes by taking advantage of the difference in speed of
radio waves and sound. Table 1 gives details about the complexity of the three
applications showing the respective code size, the number of nesC components
and the number of binary components.

Code Modifications. Using the described applications as test cases for the
code update algorithms, we examine three different classes of changes to the
code, ranging from small updates or bug fixes through internal updates affecting
only a single binary component to external changes that imply the modification
and update of several binary components at the same time.

Table 2 gives an overview of the changes we have performed for the experi-
ments below, as well as the class they belong to. The three modifications to the

2 http://cvs.sourceforge.net/viewcvs.py/tinyos/

FlexCup: A Flexible and Efficient Code Update Mechanism 221

Table 1. Complexity of sample applications

Size Number of nesC Number of binary
Applications (bytes) components components
OscilloscopeRF 11784 39 6
Surge 17096 53 10
AcousticLocalization 24272 69 15

Table 2. Changes performed on the applications

Application Class Code Update
OscilloscopeRF small global constant
OscilloscopeRF small additional call
OscilloscopeRF small sensor reading
Surge internal function exchange
Surge internal wiring configuration
AcousticLocalization external component exchange

OscilloscopeRF application are relatively simple. They involve changes to the
port data is sent to (global constant), the addition of a call to an initialization
function (additional call), and a modification of the value returned by the sensor
(sensor reading).

The two internal modifications to Surge involve, in the first case, the re-
placement of the shortest-path-first routing algorithm with MintRoute, another
routing algorithm providing the same interface that considers the quality of links
for route selection. The second change involves the removal of the LED interface
used for visual feedback which causes changes to the wiring configuration of the
application. Finally, our last and only external modification changes the routing
algorithm in the AcousticLocalization application to disallow the forwarding
of messages – changing the modified nodes to behave as leaf nodes.

4.2 Size of Components and Meta-data

The first characteristic that distinguishes one code update algorithm from an-
other is the amount of code and meta-data involved in the process of a code
update installation. We consider two different metrics: (1) the size of the code
update algorithm itself, and (2) the amount of data transmitted over radio for
each update. For the evaluation of the second metric, we assume that both the
original application and the code update algorithm have already been installed in
program memory. Therefore, the sensor node is able to receive the code update
and, depending on the algorithm, process the code image (Deluge), interpret
the diff script (MOAP-Diff), or perform the linking process (FlexCup Basic and
FlexCup Diff).

Table 3 shows the average size of the three code update algorithms we evaluate
in this paper as they are installed in program memory. MOAP-Diff is about 55%
larger than Deluge, and FlexCup is in turn about 60% larger than MOAP-Diff.
For all three algorithms, the exact sizes differ between applications because they

222 P.J. Marrón et al.

Table 3. Average size of code update algorithms

Program Code Size (bytes)
MOAP-

Application Deluge Diff FlexCup
OscilloscopeRF 10868 16742 26715
Surge 11326 17213 27466
AcousticLocalization 10650 16728 26692

Table 4. Size of components and meta-data (in bytes)

Transmitted Data Size Flash Memory Data Size
MOAP- FlexCup Basic FlexCup Diff MOAP- FlexCup

Code Update Deluge Diff Meta Code Total Meta Code Total Deluge Diff Basic Diff
global const. 23142 11 799 1198 1997 530 15 545 23142 28538 37337 35885
additional call 23142 1230 801 1202 2003 760 5 765 23142 28542 37343 36105
sensor reading 23142 2835 537 886 1423 523 114 637 23142 28608 36743 35977
function exch. 28652 7684 1056 3258 4314 1110 1587 2697 28652 33440 43561 41944
wiring config. 28652 375 1355 2142 3497 1290 8 1298 28652 34272 42744 40545
comp. exch. 34162 7802 2565 4773 7338 2611 532 3143 34162 40156 58014 53736

have to be compiled together with the application code. The resulting size differ-
ences are due to differences in the set of system components already included by
the applications and to different optimizations performed by the nesC compiler.
In the case of FlexCup, however, there is a fixed part of 16212 bytes that is
compiled and executed independently of the application and is, therefore, not
subject to these effects. As program memory size does not seem to be a limit-
ing factor for most current sensor network applications, we do not expect these
differences in code size to inhibit the use of FlexCup.

Apart from the size of the code update algorithms and the one-time penalty
that sensor nodes have to pay for their installation, a more relevant metric is
the amount of data to be transmitted when an application is modified. The
left-hand side of Table 4 shows the number of bytes transmitted by Deluge,
MOAP-Diff, FlexCup Basic and FlexCup Diff for performing the six code up-
dates introduced in the previous section. For example, for the modification of
the OscilloscopeRF application so that it returns a different sensor reading
(third code update in Table 4), Deluge has to transmit 23142 bytes, whereas
MOAP-Diff only requires transmitting 2835 bytes. As detailed in section 3, both
FlexCup Basic and FlexCup Diff need to transmit meta-data, i.e., the symbol
and relocation tables, as well as the code of the component that changes. In
total, FlexCup Basic transmits 1423 bytes and FlexCup Diff only 637 bytes.
This implies more than 90% savings in the number of packets comparing FlexCup
Basic to Deluge and more than 75% if we compare FlexCup Diff to MOAP-Diff.

Only in cases where the actual change is very small, like for the change of
a global constant in OscilloscopeRF or the update of the wiring configuration
in Surge, does MOAP-Diff perform much better than any other algorithm under
test. For FlexCup Diff, much of the overhead comes from the transmission of
the new meta-data information. Looking at the pure code size, FlexCup Diff

FlexCup: A Flexible and Efficient Code Update Mechanism 223

would easily outperform MOAP-Diff in most cases. In general, FlexCup Basic
only requires between 6% and 21% of the number of transmissions of Deluge.
FlexCup Diff saves more than 75% in the best case compared to MOAP-Diff
and requires less transmission volume than MOAP-Diff in four out of six cases.

However, there is another relevant factor. The right part of Table 4 shows the
size of the information that needs to be stored in flash memory for performing
a given update. In the case of Deluge, this is just the data received over the
radio link, but for MOAP-Diff and FlexCup this also includes the code of already
installed components and meta-data. For that reason, Deluge is in all cases
more efficient than the three other approaches in terms of space complexity.
This might be an important factor in scenarios where the application stores large
amounts of data locally on the sensor nodes before uploading it to a base station.
Although the size of the flash memory on the MICA2 nodes amounts to 512
kBytes and should be sufficient for most applications, long-running applications
might still benefit from the extra space. In general, MOAP-Diff requires between
16 and 25% more space than Deluge. FlexCup Diff needs about 50% more
space and the space requirements of FlexCup Basic are 50 to 70% higher than
the requirements of Deluge depending on the specific code update. Most of the
overhead of the last two approaches comes from the storage of the symbol and
relocation tables.

4.3 Efficiency of the Code Update Algorithms

Let us now look at the performance characteristics of the four code update
algorithms. For the purpose of the experiments below, we measure the efficiency
of the algorithms based on two metrics: execution time and energy consumption.

In general, it is clear that both metrics are not independent from each other
and that a longer execution time usually also implies a higher energy consump-
tion. However, the diverse energy characteristics of the hardware components,
especially the external flash memory and the radio interface, indicate that consid-
ering the execution time alone is not sufficient for determining which algorithm
is more energy-efficient.

In the experiments, we consider execution time and energy consumption
throughout the three phases “Transmission”, “Processing” and “Installation”.
To guarantee a fair comparison between the algorithms, we assume perfect con-
ditions during the transmission phase, ignoring possible collisions, errors and
the specific protocol overhead. To simplify the evaluation, we also assume that
each node receives the code update data exactly once and then forwards it to its
neighbor nodes.

Execution Time. Fig. 3 shows the duration of the three phases of the four code
update mechanisms for all six code updates. As one can see, the time required
for installation is dominated by the transmission time in the case of Deluge and
by the processing time for MOAP-Diff, whereas in the case of FlexCup Basic
and FlexCup Diff, transmission and processing times are of similar magnitude.

FlexCup Basic and FlexCup Diff are about 4 times faster than MOAP-Diff
and have on average almost 8 times better execution times than those of Deluge.

224 P.J. Marrón et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

FDFBMDDFDFBMDDFDFBMDDFDFBMDDFDFBMDDFDFBMDD
AcousticLocalization

Component exchange
Surge

Wiring configuration
Surge

Function exchange
OscilloscopeRF
Sensor reading

OscilloscopeRF
Additional call

OscilloscopeRF
Global constant

E
xe

cu
tio

n
tim

e
in

 s

Deluge

MOAP-Diff

FlexCup
Basic

FlexCup
Diff

Installation
Processing

Transmission

Fig. 3. Execution times of the code updates

FlexCup Diff is marginally faster than FlexCup Basic by saving a significant
part of the transmission time while requiring some additional time for processing
the diff script.

In general, MOAP-Diff is faster than Deluge, although large parts of its sav-
ings in transmission time are spent for processing the diff script in the processing
phase. An extreme example can be seen in the ‘function exchange’ case of the
Surge application, where the difference in execution time between MOAP-Diff
and Deluge amounts to only 0.55 seconds. FlexCup Diff is actually slower than
FlexCup Basic in this example with the processing effort outweighing the trans-
mission savings.

Energy Consumption. Fig. 4 shows the amount of energy in millijoules con-
sumed by the four code update mechanisms during the three phases of the code
updates. The measurements confirm the good performance of FlexCup compared
to the other approaches, showing that in the best case FlexCup consumes only
an eighth of the energy of Deluge and MOAP-Diff. On the other hand, the re-
sults cannot confirm the relatively good performance of MOAP-Diff compared
to Deluge observed for the execution times of the code updates. Energy-wise,
MOAP-Diff performs worse than Deluge in three out of the six cases. This is
mainly due to the relatively inefficient implementation of MOAP-Diff which uses
a lot of access operations to the external flash memory. These access operations
are very energy expensive on the MICA2 hardware.

The expensive implementation of MOAP-Diff also explains the inferior perfor-
mance of FlexCup Diff, which uses the MOAP-Diff algorithm for extracting its
component data. It remains to be investigated whether a more efficient imple-
mentation of the diff approach is able to retain more of the advantage achieved
during the transmission phase and to improve on the results of FlexCup Basic.

Nevertheless, our experiments show that FlexCup Basic and FlexCup Diff,
although similar in energy consumption and execution time, use the sensor node
hardware in different ways. In general, FlexCup Basic transmits more data
than FlexCup Diff, but the latter has extra overhead regarding the decoding
of the binary component to be installed in program memory. Thus, depending

FlexCup: A Flexible and Efficient Code Update Mechanism 225

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

FDFBMDDFDFBMDDFDFBMDDFDFBMDDFDFBMDDFDFBMDD
AcousticLocalization

Component exchange
Surge

Wiring configuration
Surge

Function exchange
OscilloscopeRF
Sensor reading

OscilloscopeRF
Additional call

OscilloscopeRF
Global constant

E
ne

rg
y

co
ns

um
pt

io
n

in
 m

J Deluge

MOAP-Diff

FlexCup
Basic

FlexCup
Diff

Installation
Processing

Transmission

Fig. 4. Energy consumption of the code updates

on the physical characteristics of the external flash memory and radio compo-
nents, it might be preferable to use FlexCup Basic instead of FlexCup Diff,
or vice versa.

An additional lesson that can be learned from the results in Fig. 3 and 4 is
that counting the number of bytes a code update algorithm needs to transmit
does not necessarily give information about the time and energy efficiency of the
algorithms. All relevant factors, including processing and flash memory access
costs, need to be part of the evaluation.

4.4 Advantages and Limitations of FlexCup

FlexCup exhibits several advantages compared to other code update mecha-
nisms. First of all, it allows for greater flexibility in the exchange of application
and system software components at runtime, thereby offering functionality re-
quired by adaptive system software like TinyCubus. Second, FlexCup is able to
reduce the number of bytes transferred to each sensor node and to minimize the
amount of energy needed for the processing of code updates, which immediately
translates into a better overall energy consumption.

One limitation of FlexCup is its use of external flash memory for the storage
of meta-data and the use of program memory for the storage of the FlexCup
program code. Both are only possible if there is enough free space available after
fulfilling the requirements of the application. Like other code update mecha-
nisms, FlexCup also has to deal with the access characteristics of the platform’s
flash memory. Especially the problem of wear levelling in flash memory remains
to be addressed.

5 Conclusions and Future Work

In this paper we have presented FlexCup a flexible code update mechanism for
sensor networks that offers the functionality and performance required by adap-
tive system software. We have evaluated FlexCup by analyzing several realistic
code updates with the help of emulation tools calibrated on real sensor nodes.

226 P.J. Marrón et al.

Compared to related approaches, FlexCup was able to perform the same updates
up to 8 times faster while consuming only an eighth of the energy.

We have also shown that the overall code image size of TinyCubus and
FlexCup, as needed for the reconfiguration functionality required by more com-
plex sensor network applications, is comparable to other approaches such as
Deluge and Reijers’ and Langendoen’s diff-based algorithm, although FlexCup
is able to provide more flexibility and adaptation capabilities.

Regarding future work, we would like to explore more complex algorithms for
the management of flash memory and reserved RAM space to further reduce the
time and energy consumption for linking in FlexCup. We are also considering
the use of more efficient diff algorithms that would contribute to reducing the
amount of energy needed for the execution of the diff scripts in FlexCup Diff.
Finally, it would also be interesting to evaluate the influence of different hardware
properties on our implementation by porting FlexCup to other platforms such
as the EYES sensor nodes.

References

1. Marrón, P.J., Lachenmann, A., Minder, D., Hähner, J., Sauter, R., Rothermel, K.:
TinyCubus: A flexible and adaptive framework for sensor networks. In: Proc. of
the 2nd European Workshop on Wireless Sensor Networks. (2005) 278–289

2. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System archi-
tecture directions for networked sensors. In: Proc. of the 9th Intl. Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems. (2000)
93–104

3. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
language: A holistic approach to networked embedded systems. In: Proc. of the
ACM SIGPLAN 2003 Conf. on Programming Language Design and Implementa-
tion. (2003) 1–11

4. Dunkels, A., Grönvall, B., Voigt, T.: Contiki – a lightweight and flexible operating
system for tiny networked sensors. In: Proceedings of the First IEEE Workshop
on Embedded Networked Sensors 2004 (IEEE EmNetS-I). (2004)

5. Levis, P., Culler, D.: Maté: A tiny virtual machine for sensor networks. In: Proc.
of the 10th Int. Conf. on Architectural Support for Programming Languages and
Operating Systems. (2002) 85–95

6. Liu, T., Martonosi, M.: Impala: A middleware system for managing autonomic,
parallel sensor systems. In: Proc. of the 9th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming. (2003) 107–118

7. Heinzelman, W.B., Murphy, A.L., Carvalho, H.S., Perillo, M.A.: Middleware to
support sensor network applications. IEEE Network 18 (2004) 6–14

8. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol
for network programming at scale. In: Proc. of the 2nd Intl. Conf. on Embedded
Networked Sensor Systems. (2004) 81–94

9. Stathopoulos, T., Heidemann, J., Estrin, D.: A remote code update mechanism for
wireless sensor networks. Technical Report CENS-TR-30, University of California,
L.A. (2003)

10. Reijers, N., Langendoen, K.: Efficient code distribution in wireless sensor networks.
In: Proc. of the 2nd ACM Intl. Conf. on Wireless Sensor Networks and Appl. (2003)
60–67

FlexCup: A Flexible and Efficient Code Update Mechanism 227

11. Jeong, J., Culler, D.: Incremental network programming for wireless sensors. In:
First IEEE Comm. Soc. Conf. on Sensor and Ad Hoc Communications and Net-
works. (2004)

12. Tridgell, A.: Efficient Algorithms for Sorting and Synchronization. PhD thesis,
The Australian National University (1999)

13. Koshy, J., Pandey, R.: Remote incremental linking for energy-efficient reprogram-
ming of sensor networks. In: Proc. of the 2nd European Workshop on Wireless
Sensor Networks. (2005) 354–365

14. Yeh, T., Yamamoto, H., Stathopolous, T.: Over-the-air reprogram-
ming of wireless sensor nodes. UCLA EE202A Project Report (2003)
http://lecs.cs.ucla.edu/∼thanos/EE202a final writeup.pdf.

15. Polley, J., Blazakis, D., McGee, J., Rusk, D., Baras, J.S.: ATEMU: a fine-grained
sensor network simulator. In: Proc. of the First IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks. (2004)

Transforming Protocol Specifications for
Wireless Sensor Networks into Efficient

Embedded System Implementations

Gerald Wagenknecht, Daniel Dietterle, Jean-Pierre Ebert, and Rolf Kraemer

IHP microelectronic GmbH, Wireless Communication Systems,
P.O. Box 1466, 15204 Frankfurt (Oder), Germany

{wagenknecht, dietterle, ebert, kraemer}@ihp-microelectronics.com
http://www.ihp-microelectronics.com

Abstract. In this paper, we present an efficient way how protocols mod-
elled in SDL (Specification and Description Language) can be trans-
formed into efficient implementations for resource-constrained wireless
sensor nodes. We will show how SDL concepts such as processes, timers,
or signals can be mapped to operating system concepts provided by the
Reflex operating system. Our approach is based on optimized, automat-
ically generated C code derived from the Telelogic TAU SDL Suite that
can be left as is. The overhead caused by our SDL run-time environ-
ment is minimal, thus making it applicable in embedded systems. By
pre-allocating memory for SDL signals it is possible to completely avoid
dynamic memory allocation. We will also highlight some SDL modelling
guidelines that help to avoid common SDL implementation overhead.

1 Introduction

Wireless sensor networks (WSN) have attracted much research effort in recent
years. Typical WSN applications target several months or years of unsupervised
operation. Applications as well as communication protocols for WSNs are be-
coming increasingly complex as the processing capabilties of sensor nodes grow.
There is a strong need for reliable software when WSNs shall become economi-
cally successful.

The material presented here are results of work within the scope of the BA-
SUMA (Body Area System for Ubiquitous Multimedia Application) project [4].
Here, we are designing a wireless communication platform for sensor nodes lo-
cated on and around the human body. Though not using multi-hop commu-
nication as often assumed in WSNs, most of the implementation challenges in
wireless sensor node design appear also in our scenario.

In particular, reliability is a major concern for us as the BASUMA system
shall be used for autonomous, long-term health monitoring. The medium access
control (MAC) protocol proposed for the BASUMA communication system is
modelled in SDL. A 32-bit open-core processor, the LEON2 processor, was se-
lected for the BASUMA platform. On this processor, the real-time operating

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 228–243, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Transforming Protocol Specifications for Wireless Sensor Networks 229

system (OS) Reflex [5] from Brandenburg University of Technology Cottbus is
running. Reflex is a tiny, data-flow oriented OS for deeply embedded systems.
Although quite similar to TinyOS [7], we believe it is better tailored for reliable
systems because of its earliest-deadline-first process scheduling strategy. Process
priorities can be expressed by shorter deadlines. This way, it is much easier and
less error-prone to implement time-critical functions, something that requires
much effort in TinyOS.

SDL [1] — a high-abstraction level formal description language — has long
been used for modelling, simulation, and verification of communication protocols
([8], [9], [10]). Formal verfication can be employed to design reliable systems.

However, SDL should not only be used for system modelling and verification.
SDL models should be also the basis for tailored, efficient sensor node protocol
implementations. There is a range of tools for automatic C/C++ code genera-
tion, real-time operating system integration, and even hardware synthesis from
SDL models available from both academia and industry. A well-known commer-
cial tool is Telelogic TAU SDL Suite [2].

Software developed with SDL is still not efficient and small enough to be
utilized in embedded systems with severe processing and storage limitations as
we are faced with in todays wireless sensor nodes. Reasons for this are some SDL
concepts and data types that incur high implementation overhead as well as an
inefficient SDL run-time environment.

By restricting ourselves to a subset of the SDL language for system modelling
and by replacing the SDL run-time environment with a thin operating system
integration layer, we achieve tiny SDL-based software implementations with little
overhead, nonetheless preserving the SDL semantics. The integration layer has
been designed specifically for the Reflex OS, but can be adapted to any other
OS. It is combined with the C code generated by the Telelogic TAU SDL tool
through the definition of C macros that are part of the generated code. Our
approach is called tight integration in the Telelogic documentation [2].

This paper is organised as follows: Section 2 introduces briefly the BASUMA
communication system and the protocol that will be implemented using our
integration approach. Section 3 describes the basic concepts of SDL so much
as required for an understanding of this paper. Likewise, Section 4 gives an
overview of the Reflex OS. The main part of this paper, Section 5 is dedicated
to a detailed presentation of the integration approach of the generated C code
into Reflex. After that, limitations of our approach as well as modelling guidelines
for SDL software designers for embedded systems are given in Section 6. Our
results are presented in Section 7. Finally, in Section 8 the paper is summarized
and conclusions are drawn.

2 BASUMA Wireless Communication Platform

BASUMA [4] (Body Area System for Ubiquitous Multimedia Applications) is
a research project started in 2004 that has the objective to develop a platform
for wireless communication around the human body. This platform will consist

230 G. Wagenknecht et al.

Processor
Memory

BASUMA wireless sensor node Sensor

Output
Input /

Lung
sound

Blood
pressure

ECG

Accelerometer

Body Area Network
(BAN)

Digital
Baseband

UWB
Frontend

LEON2

Fig. 1. Body area network and BASUMA hardware architecture

of hardware and software components that are specifically designed for small,
low-power devices.

The capabilities of the BASUMA platform are to be demonstrated with a
medical application. A number of battery-powered sensor nodes measuring var-
ious bioparameters, such as heart rate, temperature, or ECG are attached to
the human body and form a wireless network. This body area (sensor) net-
work (BAN) forms the basis for long-term monitoring of chronically ill patients.
The signals measured by the sensor nodes are locally analyzed (preprocessed)
and evaluated within the node or network, and communication with a remote
medical center is only initiated, if necessary. An application scenario and the
BASUMA hardware architecture are shown in Fig. 1.

All nodes in the BAN are in communication range of each other, hence multi-
hop communication is not required. We investigate ultra-wide band (UWB) tech-
nology as the means of communication. We assume IEEE 802.15.3 MAC protocol
[3] as very suitable for medical applications due to its offered functionality such
as reserved time slots, power management, security features, and network coor-
dinator handover. We have reduced the complexity of the protocol by omitting
not required functions. The MAC protocol was modelled in SDL and simulated
using Telelogic TAU SDL Suite. A description of our SDL model can be found
in [12].

The validated SDL model should be the basis for the MAC protocol im-
plementation by an automatic transformation. The effort of re-implementing
the protocol in C/C++ would be too high and error-prone compared to an

Transforming Protocol Specifications for Wireless Sensor Networks 231

optimisation approach where inefficient SDL concepts in the model are replaced
by equivalent functions with less overhead. Additionally, the time to achieve
a fully tested implementation is considerable shortened. Here, instead of using
an SDL run-time environment, we tightly integrate the SDL model with the
underlying OS. This approach is described in the following sections in more
detail.

3 Specification and Description Language (SDL)

In a way, SDL can be considered as a programming language with a graphical
user interface that offers high-abstraction level programming elements to the
designer. It was standardised by ITU-T in Recommendation Z.100 [1]. SDL
models can be simulated, which allows verification of system functionality during
an early stage in the design flow.

In this section, we will first introduce the basic concepts of the language and,
later, describe how SDL models can be implemented using Telelogic TAU SDL
Suite.

3.1 Basic Concepts

The SDL description of system behavior is based on communicating
extended finite state machines (CEFSM) that are executed concurrently. State
machines are represented by SDL processes. Processes communicate with each
other and the system environment by exchanging asynchronous signals that may
carry any number of parameters. SDL also provides timers that can be config-
ured to generate signals at defined points in time. Each process in an SDL
system contains a FIFO (First-In-First-Out) input buffer (with infinite space)
into which the received signals and timer events are queued. This is shown in
Fig. 2 (a).

SDL models are hierarchically structured. The system level, which is the top
level, consists of blocks connected via channels. Channels are used as signal
carriers. Each block may contain any number of sub-blocks. The lowest level
sub-block contains the actual processes. A process may have local variables and
may contain procedures. Processes communicate within the same or across dif-
ferent blocks via signal routes. Procedures are the lowest level in the functional
hierarchy and have their own local scope.

In Fig. 2 (b), a typical SDL transition is shown. Transitions are triggered
by receiving a signal from the signal input queue of the process. During state
transition, the SDL process may perform computations, send any number of
signals to other processes, set/reset timers, call procedures, and, finally, settle
in the next state. Only then, a new signal can be consumed from the head of
the input queue. If no transition is specified for a received signal, it is simply
discarded. It is also possible, and often used in system modeling, to use the SAVE
symbol in order to defer the reception of a particular signal from the queue. This
means, that the saved signal is not removed from the input queue, but the next
signals in the queue can be processed instead.

232 G. Wagenknecht et al.

ProcA

(b)(a)

[SigB]

[SigA]

z := x + y;

SigB(z)

State_T

SigA(x, y)

State_S State symbol

Signal input

Task

Signal output
ProcB

Fig. 2. (a) SDL processes with signal route and emphasised input queue. (b) Sample
SDL transition.

3.2 Code Generator and OS Integration Approach of Telelogic TAU
SDL Suite

Telelogic TAU SDL Suite [2] is a tool that allows modelling, simulating, validat-
ing, and implementing SDL systems. The CAdvanced code generator translates
the SDL model into C code. This C code contains definitions of the required SDL
structures such as processes, signals, etc., but also the state machine implemen-
tations of the SDL processes in the so-called PAD (process activity description)
function. In this function, SDL transitions are triggered depending on the current
state and signal input.

TO ProcA

State_S

State_T

SigIn

SigOut

YPAD_FUNCTION(yPAD_z01_ProcB) {
...
switch(yVarP->RestartAddress) {
...

//INPUT SigIn
case 1:
...

//OUTPUT SigOut
case 4:

ALLOC_SIGNAL(SigOut, ySigN_z2_SigOut,
TO_PROCESS(Prs1, yPrsN_z00_ProcA), XSIGNALHEADERTYPE)

SDL_2OUTPUT(xDefaultPrioSignal, (xIdNode *)0, SigOut,
ySigN_z2_SigOut, TO_PROCESS(Prs1, yPrsN_z00_ProcA),
0, "SigOut")

//NEXTSTATE State_T
case 5:

SDL_NEXTSTATE(State_T, z001_State_T, "State_T")
...

Fig. 3. Fragment of generated code by CAdvanced for the PAD function

Transforming Protocol Specifications for Wireless Sensor Networks 233

Scheduling

Process 1 Process 2

OS process with SDL system

SDL system

SDL run−time env.
External OS process

layer
Operating system

Application layer

SDL send
primitive

SDL recv
primitive

xOutEnv xInEnv

Inter−proc. comm.

Fig. 4. Light Integration approach

The generated code is independent of the underlying OS. It can be the basis
for a system simulation or implementation. This is achieved by using C macros
wherever a run-time environment specific implementation is required. By defin-
ing these C macros in an appropriate way, the generated code is turned into
a simulation or OS-specific implementation. An example of the code generator
output for a PAD function is shown in Fig. 3.

Telelogic TAU supports three integration models for creating an application
from an SDL system description. Here, we will focus on the Light Integration
and the Tight Integration approach. With Light Integration, there is an OS-
independent run-time environment that provides, for instance, functionality for
process scheduling, signal exchange and queueing, or timer handling. Together
with all SDL processes of the system, it runs in its own OS process. Environment
functions form the interface between the SDL system and other OS processes.
The Light Integration approach is shown schematically in Fig. 4.

While porting to a new OS is made relatively simple with the Light Integra-
tion approach, it causes some overhead due to its run-time environment, since
scheduling and some form of inter-process communication are also common OS
services. Therefore, in order to avoid redundancy, the Tight Integration approach
does without the run-time environment. All SDL processes are running as sep-
arate OS processes. Signal exchange and scheduling is performed by using the
native OS services. This is depicted in Fig. 5.

For an integration of SDL systems with Reflex, the OS we chose for our sensor
nodes, we have adopted the Tight Integration approach because of its reduced
memory footprint. This involved the definition of a number of C macros that are
present in the generated code and some additional support functions. Note, that

234 G. Wagenknecht et al.

Application layer

External OS process

layer
Operating system

Process 1 Process 2

SDL system

OS process OS process

Inter−proc. comm.Scheduling

OS process with SDL system

Fig. 5. Tight Integration approach

the approach is general and therefore utilizable with other embedded system
OSs such as TinyOS. In Section 5 we present in detail how we used the services
offered by the Reflex OS as a substitute for the SDL run-time environment.
Before that, a brief introduction into Reflex is needed and can be found in the
following section.

4 Reflex

Reflex (Real time Event Flow EXecutive) [5] is a small operating system for
deeply embedded devices. It mainly consists of a scheduler and a general inter-
rupt handling mechanism. Reflex provides programming abstractions that were
specifically designed to support data-flow oriented applications, for instance pro-
cessing of sensor signals [6]. With the exception of some hardware-specific ini-
tialization routines, the OS is written completely in C++. It has been ported
to a number of 8-bit microprocessors and, recently, to the LEON2 processor,
an open-core 32-bit SPARC instruction set processor. The LEON2 port requires
about 4 kbytes of memory.

In Reflex, there are two kinds of activities: schedulable and non-schedulable
activities. The non-schedulable ones are interrupt handlers triggered by hardware
events. Schedulable activities are posted by interrupt handlers or other activities
and are managed by the scheduler. Each schedulable activity is derived from a
base class and provides a run() function that is called by the scheduler to start
the activity.

The scheduler schedules activities according to an earliest-deadline-first
(EDF) strategy. Running activities can only be preempted by interrupts. In
case that the interrupt handler posts an activity with an earlier deadline than
the interrupted activity, the scheduler will start this new activity. Only after
its completion, the interrupted activity is resumed. This behaviour has got the
advantage that a single stack for the whole application is sufficient.

Transforming Protocol Specifications for Wireless Sensor Networks 235

In comparison with TinyOS [7] — the operating system most often used for
wireless sensor nodes — software development based on Reflex is made much
easier in some respects. While TinyOS tasks run to completion before any other
task is scheduled, time-critical activities in Reflex will interrupt a lower-priority
activity. Such a behaviour is difficult to achieve in TinyOS. A possible solution is
to break tasks into smaller chunks, so that the processor is never occupied with
a task for a longer period of time and a task switch can take place. In essence,
all tasks in a system need to collaborate to ensure that time-critical tasks get
scheduled in time. This tight coupling impedes re-use of system components.

Furthermore, TinyOS applications are written in the nesC language. As has
been reported in the literature [11], debugging applications is made much more
complicated compared with the traditional C/C++ approach.

5 Integration of SDL Systems in Reflex

In this section, we will describe our approach towards a mapping of SDL concepts
to the programming abstractions and services offered by Reflex. This approach
is based on the generated code for the SDL system from the Telelogic TAU tool.
Therefore, we will also immerse into some C macros that are in the code and
must be defined for an OS-specific integration.

5.1 SDL Processes and Reflex Activities

In our approach, each SDL process is mapped directly to a Reflex activity. As
introduced before, the behaviour of SDL processes is contained in their PAD
(process activity description) functions. When the SDL process receives an in-
put signal, a new transition is triggered and the PAD function called. This
corresponds very well to how activities are handled in Reflex.

Therefore, our solution is to create a wrapper object for each SDL process
instance. This wrapper object is a Reflex activity and has the SDL process
representation — a C structure in the generated code — associated with it.
From the activity’s run() function, the PAD function of the associated process
is called when the activity is started. This relationship is shown in Fig. 6.

5.2 Communication Between Processes

SDL processes communicate via signals. When modelling a SDL system, it is
not required to explicitly state the receiver of a signal, rather the system will
determine from the static signal routes, which process shall receive the signal.
However, this route finding operation causes overhead as it is performed at run-
time when a signal is sent without an explicit destination. In our approach, since
we are targetting sensor nodes, only direct addressing is allowed, that is for each
signal output the receiver process must be stated.

A global symbol table stores the identifiers of all processes. The symbol table
is managed by a system object (see Section 5.3). The sending process gets the
reference of the receiving process from the symbol table calling the GetPrsId()

236 G. Wagenknecht et al.

xSDLReflexPrs *sdlReflexPrs

xInputAction xFindInputAction()

void xRestartScheduler()

DeadlineActivity

void run()

xSDLReflexPrs

SignalQueue *signalQueue

xPrsIdNode prsIdNode

void run()

xPrsIdNode

xNameType Name

xStateIdNode *StateList

xSignalIdNode *SignalSet

void (*PAD_Function)(xPrsNode)

void (*Free_Vars)()

xPrsNode prsVar

Fig. 6. Process wrapper class (xSDLReflexPrs) and associated SDL process represen-
tation

function. With this reference, it gets access to the input queue and outputs the
signal using the SendSig() function.

The hierarchical SDL system structure (system, blocks, processes) will no
longer exist, as it is not relevant for the implementation and would mean a
waste of memory resources.

Each process wrapper object manages its own FIFO signal queue (see Fig. 7).
Sending a signal to a process involves adding the signal to the queue of the
receiver process. The signal queue is implemented as a trigger variable, a special
programming concept in the Reflex OS. Trigger variables are attached to an
activity object, writing to the trigger variable causes scheduling of the activity
object. This way, the run() function and, consequently, the PAD function are
called and the signal is consumed from the input queue.

5.3 System Initialisation

We have introduced an SDL system object that is responsible for the creation
and initialisation of processes. This happens at the start of the application and
not dynamically during process execution (see Section 6). The system creates
processes by calling the function CreatePrs(). With the function RegPrsId(),

SignalQueue: TriggerVariable

xInputAction xFindInputAction()

void xRestartScheduler()

xSDLReflexPrs

SignalQueue *signalQueue

xPrsIdNode prsIdNode

void run()

xSDLReflexPrs *sdlreflexPrs

void operator=()
void xReleaseSignalFromQueue()
QueueElem* xGetNextSignal()
void xFindAndDeleteSignal()
void xIsSignalInQueue()

Fig. 7. The SignalQueue class

Transforming Protocol Specifications for Wireless Sensor Networks 237

processes register themselves in the symbol table. The system object is a Reflex
activity. It also owns a queue for SDL timers, that are described in more detail
in the following Section 5.4.

5.4 Timers

In SDL it is possible to set and reset timers and to check whether a particular
timer is active. In the generated code, C macro calls are included for these
operations. We have provided our own definitions for these macros.

In our integration approach, SDL timers are managed by the system object,
which has got a timer queue. In this queue, all timers of all processes are ordered
according to their expiration time. If a timer expires, it is transformed into a
signal and written into the signal queue of the according process. This causes
the process to be scheduled. The system object is notified with every tick of
the system clock by calling its Tick() function. These ticks are generated by
the interrupt handler of the system clock. When the system’s Tick() function is
executed, the current system time is read and any expired timers are transformed
into signals.

The system object handles timer reset, as well. This means removing the timer
from the timer queue. Additionally, the input queue of the process is browsed to
remove the timer signal, in case the timer has expired already and was not yet
consumed.

5.5 Communication with the Environment

The SDL processes communicate with the environment directly via signals using
the SigOutput() function. The environment is derived from the SDL process
wrapper class, this means that it is a Reflex activity and has its own signal
queue. However, since its behaviour is not specified in the SDL model, there is
no associated SDL process and, hence, no PAD function. The unique identifier
of the environment in the symbol table is xEnv.

Communication from the environment to other processes follows the same
scheme as introduced in Section 5.2 by calling SigOutput(). The identifier of
the receiving process has to be specified.

The behavior of the environment is not specified in the model. It can be used
as an interface to the lower layers of the application as shown in Fig. 8. If a sensor
or another device triggers an interrupt, an interrupt handler can transform this
interrupt into a signal and send it to the right process. Similarly, processes can
communicate via the environment with drivers and trigger actuators.

5.6 Source Code Example

Now, our implementation shall be described by means of a small source code
example. It is based on the state machine fragment and code generator output
presented in Fig. 3 and shown again in Fig. 9.

The generated code contains the PAD function, where all state transitions are
implemented. Here, we look at one part of a transition where the process sends

238 G. Wagenknecht et al.

RegPrsId

processprocess

symbol table

interrupt handler clock driver interrupt handler

Schedulable
activity

Non−schedulable
activity

SetTimer
ResetTimer

SigOutput

SigOutput

Tick

SigOutput

GetPrsId

system clock
layer

hardware

layer
driver

application
layer

Software event
(function call)

Software event
(trigger)

Hardware event

system environment

GetNow

actuator sensor

Fig. 8. Interactions between the SDL system and the Reflex OS

a signal (SigOut) to process ProcA. The signal will be allocated (ALLOC_SIGNAL)
and then sent (SDL_2OUTPUT) to the receiving process (TO_PROCESS). After this,
the process goes into the next state (SDL_NEXTSTATE).

The macro ALLOC_SIGNAL defines the memory allocation of the signal:

#define ALLOC_SIGNAL(SIG_NAME, SIG_IDNODE, RECEIVER, SIG_PAR_TYPE) \
OUTSIGNAL_DATA_PTR = ((xSDLReflexPrs*) RECEIVER)->

AllocSignal(SIG_NAME, SIG_IDNODE);

Sending a signal includes two more steps: finding the receiver process and writ-
ing the signal into the input queue. The former is implemented by the macro
TO_PROCESS:

#define TO_PROCESS(PROC_NAME, PROC_IDNODE) \
((xSDLReflexPrs*) symbolTable[PROC_NAME])->prsIdNode->prsVar

The unique name of the process (ProcA) serves as an index for the symbol table
where the reference of the process activity is stored. With this reference, access

TO ProcA

State_T

SigOut

//OUTPUT SigOut
case 4:

ALLOC_SIGNAL(SigOut, ySigN_z2_SigOut,
TO_PROCESS(Prs1, yPrsN_z00_ProcA), XSIGNALHEADERTYPE)

SDL_2OUTPUT(xDefaultPrioSignal, (xIdNode *)0, SigOut,
ySigN_z2_SigOut, TO_PROCESS(Prs1, yPrsN_z00_ProcA),
0, "SigOut")

//NEXTSTATE State_T
case 5:

SDL_NEXTSTATE(State_T, z001_State_T, "State_T")

Fig. 9. Fragment of generated code in the PAD function

Transforming Protocol Specifications for Wireless Sensor Networks 239

to its input queue is possible. In the second step, the signal will be written into
the input queue:

#define SDL_2OUTPUT(PRIO, VIA, SIG_NAME, SIG_IDNODE, RECEIVER,
SIG_PAR_SIZE, SIG_NAME_STRING) \

xSigOutput((xSignalNode) OUTSIGNAL_DATA_PTR, SIG_IDNODE,
VarP, RECEIVER);

The function xSigOutput() composes the signal and writes the signal into the
input queue. The first two parameters are the structur of the signal. The third
parameter VarP is a reference to the sending process. The symbol RECEIVER is a
reference to the receiving process. Now the process goes to the next state. The
macro SDL_NEXTSTATE defines this:

#define SDL_NEXTSTATE(STATE_NAME, STATE_IDNODE, STATE_NAME_STRING) \
xGetNextState(VarP, STATE_IDNODE); \
return;

The function xGetNextState() gets the ID of the following state
(z001_STATE_T). This ends the transitions. The PAD function call returns and
the handling of the process is completed.

5.7 Static Allocation of Signals

Dynamic memory management is often not needed or desired for embedded
systems design, because it is inefficent in terms of time and space. Instead, one
common approach is to manage pools of pre-allocated buffers of equal size. This
can be implemented with less overhead and requires a-priori knowledge about
the pool size to be used.

When sending a signal to a process in the SDL system, a signal buffer must be
allocated first, so that signal parameters can be set. In the original SDL run-time
environment, this involves dynamic memory allocation.

We have chosen a different approach to be more efficinet: The provision of
a signal buffer is the responsibilty of the receiving process. The process can
either dynamically allocate the requested memory space when dynamic memory
management is available — or take the buffer from a pool of pre-allocated signals.
At compile time, the pool size is fixed and memory is reserved for it.

Static allocation requires an careful analysis of the SDL system to identify
required pool space. The SDL system will expect in any case that a signal could
be successfully allocated or it will lead to a system failure.

However, when sending a signal from the environment into the SDL system,
it is possible that the SDL system cannot handle any more input signals and
returns no valid buffer to the environment. In this case, the signal cannot be
sent and the environment needs to handle the situation appropriately. This could
happen, for example, in a communication protocol model when no more received
packets can be processed and must be dropped or buffered for some time. It is
the responsibility of the programmer of the environment functions to handle the
case that no valid signal buffer was returned in order to avoid system failure.

240 G. Wagenknecht et al.

6 Limitations and SDL Modelling Guidelines

The most important features of the SDL language are implemented and can be
used for system modelling, but there are unavoidable limitations:

– It is not possible to use processes with multiple instances and to create pro-
cess instances dynamically. Only processes with a single instance are sup-
ported in our implementation.

– There are different possibilities in SDL to send a signal. One can specify the
signal route (key word: VIA) or trigger a spontaneaus transition using the
key word NONE. There are only two possibilities in our approach to send a
signal. One need to specify the receiver. Either one specifies the receiver by
using its unique name or one uses the identifier of the process. The reason
for the restriction are the inefficient SDL runtime calculations of the receiver
using the VIA function.

There are some further guidelines and recommendations for an SDL system
modeller:

– Avoid (remote) procedures. They are cumbersome. If possible, use external
C procedures and call the C function from SDL. Of course, this limits the
ability to verify the formal protocol description.

– Avoid certain SDL predefined types such as Octet String, Bit String. Use
the corresponding XNOUSE compiler flag.

– Avoid copying parameters.

7 Implementation Results

In this section, we will show some experimental results of our work, in particular
the system performance and the usage of memory space.

7.1 Performance

Our approach will be compared with the original run-time environment from
Telelogic TAU SDL Suite running on the operating system eCos (Light Inte-
gration). Both systems are compiled with the sparc-elf-gcc cross-compiler and
executed on a LEON2 processor.

To measure the performance, a small communication system was modelled,
containing two processes that exchange a number of signals (1000, 3000, and
8000). Execution time will be measured between the Start signal from the envi-
ronment (indicating the start of the signal exchange) and the Stop signal sent to
the environment (indicating the end of the signal exchange). The system clock
accuracy in the measurement was 10 millicesonds. The measured performance
results are summarised in Table 1.

The execution time of our Tight Integration approach is notable 40% of the
execution time of the original run-time environment. This equals a performance
increase by a factor of 2.5.

Transforming Protocol Specifications for Wireless Sensor Networks 241

Table 1. System performance with two communicating processes

Number of signals Own approach Telelogic TAU RTE
1000 0.050 s 0.120 s
3000 0.140 s 0.360 s
8000 0.400 s 0.980 s

Signal exchange is a common operation in all SDL systems. A complex MAC
protocol model will consist of more processes than just two. First experiments
with a larger number of SDL processes have confirmed the same order of mag-
nitude performance improvement.

7.2 Memory Consumption

Here, we report on the required memory space for our integration approach. The
sizes of the text, data, and bss sections of the object files are given in Table 2.
They have been collected for a LEON2 compilation and broken down into the
categories Reflex OS, integration layer, and sample SDL system. The code for
the SDL system consists of the generated C code and system-specific wrappers
containing, among other things, signal pools. We have used the sparc-elf-gcc
3.2.3 cross-compiler with optimisation level set to -O2.

The text segment contains the program code and is read-only. The data and
bss segments contain global variables and uninitialised data, such as stack space.
They are not read-only. The last row in Table 2 shows the memory space required
for the executable application (SDLDemo.elf). This includes the Reflex OS, the
integration layer, as well as the SDL system. The application is linked only with
libgcc — a shared library of support routines used by the gcc compiler’s runtime.

Table 2. Code sizes for a demonstration system

text data bss
Operating system: 9852� 272 148
Integration layer: 4592 236 16
SDL System

Generated code: 1172 472 160
System-specific wrappers: 1892 184 136
SDLDemo.elf
(linked with libgcc): 20056 704 460

� This number includes 4 kbytes for the interrupt handler table (256
interrupts x 16 bytes) and about 1 kbyte for debug output rou-
tines. Since only few interrupts are required, the code size can be
dramatically reduced.

8 Conclusions

In this paper, we have presented an efficient integration of SDL systems with the
operating system Reflex. Our work is based on the C code generator of Telelogic

242 G. Wagenknecht et al.

TAU SDL Suite. We have demonstrated its feasibility for resource-constrained
embedded systems such as the BASUMA platform, which is a wireless sensor
node, enabling SDL-based software development for this class of devices. This
leads to verified and reliable systems that can be used for long-term, unsuper-
vised applications. So far, we have not yet thoroughly tested and verified our
implementation. This would be required before it can be applied to real commer-
cial or safety-critical systems. We are in the process of implementing a 802.15.3
MAC protocol, that we modelled already in SDL for a body area sensor network
based on our presented work.

Acknowledgments

This work was partly funded by the German federal ministry of economics and
labour (BMWA) under grant no. 01 MT 306.

References

1. ITU-T: ITU-T Recommendation Z.100 (11/99). SDL: Specification and Description
Language (1999)

2. Telelogic AB: Telelogic Tau SDL Suite (2004) Available from
http://www.telelogic.com/products/tau/sdl

3. IEEE Standard 802: Part 15.3: Wireless Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks
(2003)

4. BASUMA - Body Area System for Ubiquitous Multimedia Applications. Available
from http://www.basuma.de

5. Nolte, J.: Reflex - Realtime Event FLow EXecutive (2005) Available from
http://www-bs.informatik.tu-cottbus.de/38.html?&L=2

6. Walther, K., Hemmerling, R., Nolte, J.: Generic Trigger Variables and Event Flow
Wrappers in Reflex. In: ECOOP — Workshop on Programming Languages and
Operating Systems (2004)

7. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System Architec-
ture Directions for Networked Sensors. In: Architectural Support for Programming
Languages and Operating Systems (2000)

8. Graney, M.: Speeding Up Wireless Standards Development. In: CommsDesign
(2000). Available from
http://www.commsdesign.com/main/2000/09/0009stand.htm

9. Drosos, C., Zayadine, M., Metafas, D.: Embedded real-time communication pro-
tocol development using SDL for ARM microprocessor. In: Dedicated Systems
Magazine Q1 (2001) 37-43

10. Hännikäinen, M., Knuutila, J., Hämäläinen, J., Saarinen, J.: Using SDL for Im-
plementing a Wireless Medium Access Control Protocol. In: IEEE International
Symposium on Multimedia Software Engineering. IEEE Computer Society (2000)
229-236

11. Beutel, J., Dogan, A.: Using TinyOS on BTnodes. In Römer, K. (ed.): 4. GI/ITG
KuVS Fachgesprch ”Drahtlose Sensornetze”. Technischer Bericht TR 481, Departe-
ment Informatik, ETH Zürich (2005) 6-10

Transforming Protocol Specifications for Wireless Sensor Networks 243

12. Dietterle, D., Bababanskaja, I., Dombrowski, K., Kraemer, R.: High-Level Be-
havioral SDL Model for the IEEE 802.15.3 MAC Protocol. In Langendörfer, P.,
Liu, M., Matta, I., Tsaoussidis, V. (eds.): Proc. of the 2nd International Con-
ference on Wired/Wireless Internet Communications (WWIC). Lecture Notes in
Computer Science, Vol. 2957. Springer-Verlag, Berlin Heidelberg New York (2004)
165-176

Extending Network Lifetime Using an
Automatically Tuned Energy-Aware MAC

Protocol

Rebecca Braynard, Adam Silberstein, and Carla Ellis�

Department of Computer Science, Duke University, Durham, NC 27708, USA
{rebecca, adam, carla}@cs.duke.edu

Abstract. Sensor network devices have limited battery resources pri-
marily consumed by radio communication. Network nodes play different
communication roles and consequently consume different amounts of en-
ergy. Nodes with heavier communication burdens prematurely deplete
their batteries and potentially partition the network such that other
nodes are unable to communicate despite having energy remaining. We
have developed Seesaw, an asynchronous and asymmetric MAC protocol
that balances the energy consumption among nodes with differing loads,
and thus prolongs network lifetime. Balancing is possible through See-
saw mechanisms that allow heavily burdened nodes to shift some of the
effort of maintaining communication to more lightly loaded neighboring
nodes. We show how to exploit the flexibility of asynchrony and asym-
metry to balance energy consumption across the network, and develop
methods for automatically tuning each node to achieve this.

1 Introduction

Sensor networks are constrained by limited battery power resources, of which the
primary consumer is the radio. Sensor nodes may play different communication
roles and consequently consume different amounts of energy. Thus, nodes carry-
ing a heavier burden of communication may prematurely deplete their batteries
and partition the network such that other nodes cannot communicate despite
having energy remaining. We address the specific goal of extending the effec-
tive sensor network lifetime, defined as time prior to the first node dying. The
nodes likely to play a critical role in maintaining connectivity and delivering
the sensor data are those at greatest risk for depletion. We have developed See-
saw, an asynchronous and asymmetric MAC-layer protocol that balances energy
consumption among nodes to prolong network lifetime.

Figure 1 illustrates the problem using a three node topology with source, s,
forwarder, f , and destination, d. The energy consumption of multihop communi-
cation is given in the bar charts for two different protocols. In each plot, the lower
bar components represent the energy to transmit and receive sensor data, while
the upper components represent energy consumed by protocol overhead. Data
� This work has been supported, in part, by NSF grant 0204367.

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 244–259, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Extending Network Lifetime 245

protocol cost data cost highest burdened node

s f d

mJ

s f d

Source

s

Forwarder

f

Destination

d
data flow data flow

Fig. 1. Offloading protocol overhead from high loaded nodes to light loaded neighbors
can increase system lifetime

cost for each node is necessarily equal between the two plots because the same
data is exchanged. A horizontal line marks the most heavily consuming node,
the first to die from battery depletion. In this example that is f , by virtue of its
sending and receiving. Minimizing the maximum energy consumption across all
nodes maximizes the time until some node dies.

A solution is illustrated by the right plot in Figure 1. Since data costs are
fixed, the protocol overhead must be the focus of energy management efforts.
On the left, overhead is equal at each node. The idea is to shift some of the
protocol burden onto s and d to reduce the protocol cost at f . This decreases
the total energy consumption at f and increases consumption at s and d, leading
to balanced energy consumption among them. This better utilization of network
energy supplies results in increased time until the first node dies, thus extending
network lifetime. In fact, with complete balance, all nodes die together, leaving
no unused energy. In some cases, due to the workload and topology, perfect
energy consumption balance cannot be achieved. In these, Seesaw balances the
heaviest consumers, while avoiding excess consumption at lightly loaded nodes.

An important mechanism for controlling consumption is exploitation of
power-saving radio states. Wireless radios provide a number of possible power
states [10,17,18], including off, sleeping (0.015mW), idle or listening (14.4mW),
receiving (14.4mW) and sending (36mW). Furthermore, changing state to save
energy comes at a cost [6]. For example, changing from sleeping to idle costs a
node about twice the idle power for about 800 μseconds [4,12]. Nodes could eas-
ily waste energy by switching between power states too often. Our challenge is to
design a protocol that leverages these states while still providing the connectivity
to meet desired performance levels.

The energy used for sending and receiving is dictated by the data traffic
generated by the sensor application. While a radio in the idle state does not
actively process packets, it is listening – able to detect a transmission and begin
receiving. Without changing the application’s data demands,1 reducing idle time
offers the most promising opportunities to improve energy use. In particular, a
node wastes energy while listening for a transmission when none is forthcoming,

1 Application-specific techniques to filter, aggregate, and otherwise reduce sensor data
are valuable but orthogonal to this work.

246 R. Braynard, A. Silberstein, and C. Ellis

while listening through a transmission not intended for it, and in the overhead
of dealing with collisions. These are opportunities to exploit the sleeping state
at the cost of possibly missing transmission attempts.

Seesaw2 is an asymmetric protocol designed to achieve flexible overhead dis-
tribution. An asymmetric protocol allows nodes to utilize different idle/sleeping
duty cycle schedules. By not forcing nodes to have identical schedules, nodes
are better able to adapt to their environments (e.g., adjusting to local traffic).
Seesaw is also an asynchronous protocol; nodes are not globally coordinated,
nor do they rely upon a shared timing mechanism. Asynchronous protocols
avoid the communication overhead involved in synchronizing clocks solely for
the purpose of connectivity. We claim an asynchronous and asymmetric protocol
provides the flexibility to shift the burden of maintaining communication among
neighbors.

Contributions
We a) investigate Seesaw’s ability to extend network lifetime until the first
node failure, b) show the impact of asymmetry in protocol parameter settings
on balancing energy consumption, c) automatically tune parameter settings to
achieve balance, and d) have built a sophisticated simulator, validated by repro-
ducing results from our implementation in TinyOS on Mica2 Motes, and related
protocol published results. As a preview of our results, we show:

– Asymmetry in duty cycles can be effectively exploited to balance energy
consumption across nodes.

– The flexibility of Seesaw’s asymmetry and asynchrony, Seesaw, does not
incur significant energy or performance costs compared to other MAC pro-
tocols, which would otherwise inhibit its practical effectiveness.

– Protocols parameters can be successfully tuned by automated methods,
showing that its flexibility can be leveraged in practice.

The paper is organized as follows: Section 2 provides related work. In
Section 3, we present Seesaw. In Section 4, we propose Seesaw parameter
tuning methods. We evaluate our protocol mechanisms and tuning techniques in
Section 5. Lastly, we conclude in Section 6.

2 Background in Energy Savings in Wireless Protocols

Collisions produce extra traffic and waste energy. A node in a contention-based
network may not directly detect another transmission within its own range [1].
The classic solution is the distributed coordination function of IEEE 802.11 and
the RTS-CTS (Request To Send-Clear To Send) handshake [7]. This approach
continues to be adapted as a protocol foundation, Seesaw included. The TDMA
alternative (e.g. [14]) allows nodes to communicate with a reduced chance of

2 Seesaw comes from the analogy of two children of different weights cooperating to
play on a teeter totter by asymmetrically adjusting their distances from the fulcrum.

Extending Network Lifetime 247

collisions by designating time slots. Overhearing transmissions intended for other
nodes while in idle listening mode represents another form of wasted energy.
The idea of overhearing avoidance, presented in PAMAS [13], allows nodes to
determine if a packet is for them and, if not, to disable their radio for the duration
of the packet to reduce energy wasted receiving a packet for another node.

Coordinating between nodes by predictive schemes [19] or scheduling through
advertising data paths [20] can enable nodes to sleep more often and reduce the
number of transmission attempts when coordinating communication.

Flexible Power Scheduling (FPS) [5] uses a two-level architecture for saving
energy while supporting varying demand. At the network layer, the distributed
protocol provides coarse-grained scheduling to plan data flow communication,
allowing nodes to sleep during idle times. At the MAC layer, finer-grained
scheduling is used to handle channel access. FPS uses the combination of slots,
cycles and reservations in a time division protocol to coordinate communication
between neighbors in a tree to forward data toward a sink. The node sched-
ules are adaptive based on supply and demand of data flows in the neighbor-
hood. While the protocol provides opportunities to save energy in idle slots,
nodes with higher demand (e.g., forwarding nodes) will still have higher duty
cycles.

S-MAC [17,18] incorporates virtual clusters to coordinate node sleep sched-
ules, and message passing to reduce latency from contention. This involves
fragmenting packets into smaller packets forming a burst, with one RTS-CTS
exchange, much like fragmentation in 802.11. S-MAC does not attempt to reduce
the energy consumption of the vital, forwarding nodes. Building upon S-MAC
is another protocol, T-MAC [16], which adds the concept of a threshold for idle
time during an active cycle. If an event does not occur within a threshold, the
radio transitions back to the sleep state earlier, decreasing power consumption.
While this does vary node schedules, nodes are still expected to be active based
upon a set schedule so that neighbors can predict their cycle. This makes the
protocol not truly asymmetric in the sense that we describe.

Asynchronous protocols [15,8,9] are motivated by clock synchronization over-
head. Tseng, et al. [15], present three power management protocols applying to
the power-save mode of IEEE 802.11 mobile ad hoc networks. Polastre, et al. [9],
introduce B-MAC, an asynchronous-symmetric protocol for low power listening.
B-MAC nodes periodically check for transmissions using a defined interval. To
ensure that receiving nodes will receive a transmission, B-MAC senders transmit
a preamble that takes longer than the check interval, alerting neighboring nodes
of an upcoming data transmission. Every time a node needs to send data, it must
first send the preamble. For senders, sources and forwarders, this requires an in-
creased burden when compared to the sinks that do not transmit preambles.
Z-MAC [11] is a hybrid protocol that dynamically adapts to contention levels
at nodes. It is built upon B-MAC to behave like a CSMA protocol under low
contention and incorporates a loosely synchronized TDMA schedule to prioritize
transmissions under higher contention. The primary effect on energy comes from
reducing collision overhead at high contention.

248 R. Braynard, A. Silberstein, and C. Ellis

Unlike previous asynchronous protocols using duty cycles greater than 50% to
guarantee overlapping neighbor awake times, Seesaw decouples advertisements
from the listening duty cycle, allowing for more flexibility.

3 Seesaw Protocol

Seesaw extends system lifetime by balancing node energy consumption in a
wireless network. To achieve this, it utilizes three main features: probabilistic
communication, decoupled advertising and listening, and batching. These are
enabled by four node parameters, a combination of asynchrony and asymmetry,
and three packet types. Probabilistic communication means we cannot guarantee
that communication will occur in the time of one interval, but, by relaxing this
requirement, we allow nodes to tailor their schedules to their workloads.

3.1 Description

Seesaw has three main packet types: Ad, Accept and Data. Ads advertise data
to their next hop. Data packets hold application data to be sent. Accept pack-
ets have two purposes; they establish a connection between nodes for sending
Data packets, and provide a means for acknowledging Data packets. To prevent
overhearing transmissions, Accept and Data packets have the bytes to transmit
listed in their headers. This allows neighboring nodes to sleep for the remainder
of the transmission to avoid wasting energy.

We provide a node action overview and discuss a simple example. Consider
three node types: senders, forwarders and destinations, as shown in Figure 1 as
s, f and d. In reality, each node can take any of the duties, even simultaneously.
All nodes invoke the same algorithm, but act based on their parameters. During
an interval, according to their respective listening times and ad rates, nodes
listen for Ads and, if they have data to transmit, advertise. Data are collected
at s, filling a buffer until it reaches the batch size. s then advertises to the next
hop with Ads evenly spaced throughout the interval. Meanwhile, f fulfills its
listening time requirement. When s sends an Ad that overlaps with f ’s listening,
data transfer begins (assuming no collisions). To reduce the hidden terminal
problem, nodes utilize virtual carrier sense and backoffs after sleeping using the
time it takes to transmit both a Data and an Accept packet. When s receives
an Accept packet from f , it responds with a Data packet. Each Data packet is
reciprocated with an Accept packet until batchsize Data packets have been sent.
This same process repeats between f and d, since the data are meant for d.

Figure 2 shows the three nodes: s is the source (left), f is the forwarder
(middle) and d is the destination (right). While this is only 0.78 seconds of a
simulation, it illustrates Seesaw. s transitions to listen at point A and waits to
send an Ad. Since f is sleeping, the Ad is missed and s transitions to sleep. At B,
s wakes up and sends another Ad. Since f is listening, it receives the second Ad
and establishes the connection. The batch is transmitted at C. After the batch
is sent, f tries to send an Ad, but d is sleeping and misses it, and f then goes to
sleep. f wakes and attempts another Ad at D, but again, d is sleeping. Finally,

Extending Network Lifetime 249

 0

 1

 2

 3

 65.6 65.7 65.8 65.9 66 66.1 66.2 66.3

S
ta

te
 N

um
be

r
 (

S
le

ep
 =

 0
, I

dl
e

=
 1

, R
ec

ei
vi

ng
 =

 2
 a

nd
 S

en
di

ng
 =

 3
)

Time (seconds)

A

B

C

Source

 0

 1

 2

 3

 65.6 65.7 65.8 65.9 66 66.1 66.2 66.3

Time (seconds)

C D F

Forwarder

 0

 1

 2

 3

 65.6 65.7 65.8 65.9 66 66.1 66.2 66.3

Time (seconds)

E

F

Destination

Fig. 2. State information from a portion of a Seesaw simulation run

d wakes up at E and receives the next Ad from f . The batch is transmitted at
F and the data are delivered to d.

3.2 Parameters

Node Interval (i): Each node has an interval of i seconds. The length of i
influences system performance. Short node intervals can reduce latency, how-
ever, they also increase the number of radio state transitions, reducing energy
efficiency. Note that Seesaw does not rely upon precise time synchronization
between nodes, which reduces system control overhead. Clock rates of different
nodes need only be relatively stable to maintain i.

Listening Time (l): Within each interval, nodes listen for a continuous time,
L, of at least (li), where 0.0 ≤ l ≤ 1.0. As expected, the closer l is to 0.0, the more
energy is conserved, while the closer l is to 1.0, the more energy is consumed,
but with the boon of reducing latency. Seesaw allows nodes to adopt different
l values, making it an asymmetric protocol. l at a node x is l(x).

Number of Advertisements (a): Nodes with data to send notify the next
hop using Ad packets sent during each interval. The number of Ads sent is
determined by a. While Ads can be sent any time during the interval (i.e. without
synchronization), they should be spaced uniformly over the interval, independent
of the active time spent listening for transmissions. Again, there is a tradeoff
between latency and energy consumption. The more Ads a node transmits, the
more energy is consumed, not only at the sender, but also at neighboring nodes
able to overhear the transmission. a at node x is denoted as a(x).

Batch Size (B): The number of Data packets in each batch also influences the
tradeoff. The higher a data rate, the faster a node reaches B, reducing buffering
latency. Depending on the application, different batch sizes may be tolerated,
or even encouraged, to conserve energy. Higher batch sizes lower control over-
head and overheard transmissions. Batching also allows neighboring nodes to
make fewer transitions and remain asleep longer using overhearing avoidance
mechanisms. B at node x is B(x).

3.3 Advertisement Reception

Like the IEEE 802.11 RTS/CTS exchange, nodes advertise data to the packet’s
next hop. An Ad can be sent any time with a free medium, but, for it to be
answered with an Accept, the next hop must be listening to receive it and reply.

250 R. Braynard, A. Silberstein, and C. Ellis

Time

Time

Node 0:

Node 1:

Awake : Receiving

Awake : Advertising

2 Intervals = size i

Fig. 3. Two i subset time subset for each of two unsynchronized nodes

Given a node x with data to send to a node y, x advertises the data a(x)
times each interval of i seconds. Destination y is awake to hear a transmission,
including from x, for a time of length i∗ l(y) = L. y must be awake to receive the
advertisement from x; however, we do not require that x and y have synchronized
duty cycles. Thus, it is possible for multiple intervals to pass before x successfully
notifies y of the pending traffic. We determine a lower bound on the probability
that y hears x’s advertisement in the absence of other traffic.

Any two adjacent intervals of node x are guaranteed to overlap with one con-
tinuous awake cycle by node y, given that all nodes share the same size interval.
This is depicted in Figure 3, which shows two unsynchronized intervals for nodes
0 and 1. The top line shows the behavior of node 0, as sender, advertising twice
per interval. This pair of intervals at 0 overlaps one continuous awake cycle on 1.
In other words, in the time two intervals pass at 0, at least one full interval passes
at 1. If the listening time at 1 is longer than the time between Ads at 0, an Ad
must arrive during a listening period at 1. There may be other overlapping Ads
and listening periods, but these only increase the probability that 1 successfully
receives the Ad by 0.

We give a lower bound on the probability that node y hears an advertisement
from node x, called P (y rcv Ad), within a 2i time interval.

P (y rcv Ad) ≥ listening time(y) ∗ num ads(x)
time

≥ (l(y) ∗ i) ∗ (2a(x))
2i

≥
{

l(y) ∗ a(x) if l(y) ∗ a(x) ≤ 1
1 otherwise

If the goal is to conserve energy at y, we should reduce l(y), meaning a(x) →
∞ and l(y) → 0. Of course, state transition and transmission costs bound the
frequency at which x can advertise its packets.

4 Parameter Tuning

To exploit its flexibility, Seesaw must be accompanied by a self-tuning method-
ology. We require that nodes communicate with their neighbors to determine
adjustments for their own advertising and listening rates. Ideally, given a stable

Extending Network Lifetime 251

pattern of data traffic, these tuning decisions, made in a decentralized manner
at each node, should eventually lead to an optimal network state where the time
until a single node exhausts its energy is maximized.

We make two contributions toward this goal. We begin with a centralized,
off-line method of encoding a quadratic programming model to find optimal set-
tings of node parameters. The solution demonstrates the feasibility of automatic
tuning and its effectiveness corroborates our understanding of how settings affect
energy consumption. We then present an online algorithm.

4.1 Offline

The set R contains all directed edges (x, y), such that x communicates with y.
Table 1 defines the functions that describe behavior at each node. More details
on their derivations appear in [3]. α(x) is the total expected energy cost at
node x to advertise to each receiver yn such that (x, yn) ∈ R, given its listening
rate of l(yn). The higher l(yn), the sooner x establishes communication and can
stop advertising. Therefore, the cost of advertising is based both on the chosen
advertising rate at the sender and the listening rates at the receivers. x may also
receive data. λ(x) gives the energy cost at x to listen based on its l(x). δ(x) gives
the energy cost at x to send and/or receive its data load.

We develop a quadratically-constrained quadratic program that maximizes
the time until any node dies.

Maximize

min
∀ m

{ e(xm)
(α(xm) + λ(xm) + δ(xm)

}(1)

a(xm) ∗ l(yn) ≥ S ∀ (xm, yn) ∈ R(2)

Line (1) states the optimization objective. Each node’s time until its energy is
exhausted is calculable from its starting energy and total consumption rate. The
goal is to maximize the minimum of these. Line (2) encodes the constraint that
along all edges, all communication must be completed at a minimum expected
service level of S, the inverse of the expected number of intervals until commu-
nication is achieved. The solution to this program gives advertising and listening
rates for each node that when applied, as described in Section 5.3, achieve our
goal of maximizing the time before any node exhausts its battery.

Table 1. Objective function notation

Consumption Components
e(x) energy at node x (mJ)
α(x) Avg advertising energy at x (mJ/s)
λ(x) Avg listening energy at x (mJ/s)
δ(x) Avg data transfer energy at x (mJ/s)

252 R. Braynard, A. Silberstein, and C. Ellis

Table 2. Parameter changes for assisting neighbors

mW % Diff a Change l Change
> 60% +4 ∗1.6
> 40% +3 ∗1.4
> 20% +2 ∗1.2
> 10% +1 ∗1.1
> 5% +1 ∗1.01
less a ∗1.001

4.2 Online

In practice nodes must automatically tune their values. We present a simple
gradient descent algorithm that balances energy consumption, using only local
information. Nodes utilize header information in Accept and Data packets.

A receiver, y, lists l(y) along with an energy consumption value (average mW).
A sender, x, lists a(x) and its average consumption. Nodes store their neighbors’
energy header information for those with which they communicate, and use it to
determine if changes are needed in their own settings. This information encodes
relationships. If a node stores an a for a neighbor, it is a receiver for it; if it
stores an l, it is a sender.

After each interval, each node invokes a function to determine if it should
adjust its parameters. This involves looping through its neighbor information
and comparing the consumption between each neighbor and itself. If the maxi-
mum difference among these is higher than a user-defined threshold (2% in our
experiments) the node adjusts its parameters. Actions are role-specific. If a node
determines it must assist a neighbor and absorb protocol overhead, it changes
its respective a and/or l value based on its communication role and the values in
Table 2. These increases allow neighboring nodes to reduce their a and l values
to the minimum given a service level. In experiments we require a(x)∗ l(y) ≥ 1.2.
For example, if x is a receiver for y and it needs to assist y based on a 10% dif-
ference in average mW, it would increase l(x) by 10%. This action allows y to
decrease a(y) after the next batch.

5 Evaluation

This section answers three questions. Will the additional overhead required by an
asynchronous-asymmetric protocol be prohibitive in terms of consumed energy
and packet delivery performance? Will Seesaw’s flexibility allow us to tune
parameters to achieve a variety of network-wide energy goals including balancing
energy consumption? Can tuning be automated?

To evaluate Seesaw, we developed a discrete event simulator, SenSim, able
to provide energy consumption detail, including radio state transition costs (time
and energy). Using simulator parameters for the Mica2 Mote radio characteristics
(Section 1) and the published S-MAC and B-MAC parameters, we reproduced
results presented in [18,9]. This is omitted here, but available in [3].

Extending Network Lifetime 253

2

Direction of

Data flow

0

1

4

7

3

5 6

Fig. 4. Sink Topology

Data from 1 to 3

Data from 0 to 4

2

1 4

30

Fig. 5. Cross Topology

We implemented Seesaw in TinyOS on Mica2 Motes and used its measure-
ments to validate Seesaw simulation results. Again, these results are in [3]. To
summarize, though, despite not modeling all real-world factors, the SenSim re-
sults correspond to those produced running on the Mica2 Mote hardware. The
remainder of this paper presents results produced with SenSim.

5.1 Is an Asymmetric and Asynchronous Protocol Too Costly?

Seesaw provides flexibility, however, these mechanisms are not free. In this
section we compare the energy consumption of our asynchronous-asymmetric
protocol to published protocols based on the other three combinations of
(A)Synchrony and (A)Symmetry. We measure total system and per packet en-
ergy consumption, number of delivered packets, and latency.

We use the sink topology in Figure 4 with source nodes 0, 1, 4 and 6, sending
data (50B packets) through forwarder nodes 2, 3 and 5, to destination node 7.
Sources generate 30 packets and tests run for 30 ∗ generation interval seconds.

We perform two sets of experiments, one with base protocols and the second
with enhancements. Both sets use a protocol to represent each of four permu-
tations: SS (Synchronous-Symmetric), AS, SA and AA. In the first set, the SS
and SA protocols are based upon S-MAC, however, we eliminated the need for
SYNC packets by allowing the nodes to utilize simulator time, reducing their
overhead. For the SA protocol, nodes have different duty cycles as proposed in
[18] (i.e. asymmetric schedules): nodes 0, 1, 4 and 6 use 1% duty cycles, nodes
2 and 5 use 8%, node 3 uses 5% and node 7 uses 20%. For SS, we use 10% duty
cycles, as in [18]. The AS protocol is based upon the Overlapping Duty Cycles
protocol [15] that guarantees overlapping active cycles with neighbors by having
nodes awake > 50% of the interval. In these experiments, we use an awake period
of 55% of the interval and 10 Ads are transmitted within that active period. The
final protocol, AA, is Seesaw, with (a, l) settings as follows: sources (12, 0.0),
forwarders 2 and 5 (8, 0.1), forwarder 3 (6, 0.13) and sink (0, 0.2). All Seesaw
nodes have B = 1.

The second experiment set incorporates protocol enhancements and repeats
the design. We incorporate adaptive listening in S-MAC and batching to Seesaw
(B values: sources B = 1, forwarders 2 and 5 B = 2, forwarder 3 and sink B = 4).
For the AS protocol, B-MAC [9] replaces the > 50% protocol. For B-MAC, we
use the recommended values described in [9]. The node check interval is 0.1

254 R. Braynard, A. Silberstein, and C. Ellis

Fig. 6. Base: Total system energy Fig. 7. Base: Delivered packets

Fig. 8. Base: Energy per packet Fig. 9. Base: Avg packet latency

Fig. 10. Better: Total system energy Fig. 11. Better: Delivered packets

Fig. 12. Better: Energy per packet Fig. 13. Better: Avg packet delay

Extending Network Lifetime 255

Fig. 14. Three target scenarios Fig. 15. Balanced consumption - cplex

seconds and the preamble is 271B. All other protocols (base included) use the
recommended node interval of 1.15 seconds [18].

Figure 6 shows the four base protocols and their total system energy con-
sumption. The x-axis varies the data generation interval (time between data
packet creation). Due to the necessity of long active cycles, the AS protocol has
the highest consumption, however, it also has the best performance for the num-
ber of packets delivered and latency (Figures 7 and 9). The two S-MAC-based
protocols and Seesaw have comparable energy consumption, but perform dif-
ferently for packet delivery. S-MAC without adaptive listening is restricted in
the amount of data it can deliver, and at what speed (packets are buffered at
intermediate nodes in the network). Looking more closely at Seesaw (AA), for
data generation intervals of about 1-6 seconds, we see it has higher consumption
than the two protocols based on S-MAC. But if we look at Figure 7, we see
this increased energy consumption is due to Seesaw’s ability to deliver more
packets. It consumes more energy because it does more work. In Figure 8, for
data generation intervals of greater than 2 seconds, Seesaw has the lowest per
packet energy consumption. With data generation intervals of 1 and 2 seconds
there is contention at the sources, so Ad packets may collide. Utilizing batching
reduces control overhead and, therefore, contention.

The protocol enhancements reduce energy consumption (Figure 10) and im-
prove performance. For data packet delivery (Figure 11) we see that the protocols
based on S-MAC and Seesaw improve. Figure 12 shows the per packet energy
consumption, this time with a small amount of batching. Seesaw has the lowest
energy consumption per packet for all data generation intervals tested. Turning
to the data packet delivery latencies (Figure 13) we see Seesaw delivers the
data with delays close to that of the AS protocol and is faster than both of the
S-MAC-based protocols, even with data buffering. B-MAC provides lower laten-
cies because of the small (100 ms) check interval. We could increase the check
interval for B-MAC to 1.15 seconds, like the other protocols, however, this would
require senders transmit longer preambles and consume more energy. Instead,
we use the parameters recommended by their authors.

Despite having nodes do extra advertising to coordinate transmissions due to
asynchrony, Seesaw is competitive with the SS, SA and AS protocols. Seesaw
utilizes its four parameters to quickly deliver data without consuming compara-
bly more energy.

256 R. Braynard, A. Silberstein, and C. Ellis

5.2 Utilizing Flexibility

Having shown an asynchronous and asymmetric schedule can competitively de-
liver data, we turn to Seesaw’s flexibility. Can Seesaw be tuned to achieve
system-wide energy goals? We provide a base case with a Symmetric scheme
where all nodes have the same settings. We also demonstrate Seesaw’s abil-
ity to tailor itself to benefit a backbone-like scheme, Elected Forwarder, where
the nodes are heterogeneous, with forwarding nodes having larger, possibly un-
limited energy supplies. Finally, we demonstrate Seesaw’s ability to balance
consumption in a network of homogeneous nodes.

Each test is run on the cross topology 5 times, in Figure 5, with averages
and standard deviations shown. Each source generates a packet every 5 seconds
and tests run for 600 seconds. For the Symmetric scheme, all nodes have a = 10
and l = 0.1. In the Elected Forwarder scheme, the (a, l) settings are as fol-
lows: sources (6, 0.0), forwarders (18, 0.2), and sinks (1, 0.05). The final scheme,
Balanced, settings are sources 14, 0.0), forwarders (7, 0.08) and sinks (1, 0.19).

Figure 14 demonstrates how Seesaw’s flexibility meets the target system-
wide goals for the scenarios. The data latencies are approximately the same, but
the nodes have varied energy consumption. In the Symmetric scheme, nodes all
have the same schedule, despite having different roles. The destinations (3 and 4)
have the lowest consumption, since receiving is less expensive than sending. In
the Elected Forwarder scheme, the forwarder (2) provides connectivity with a
high l value, resulting in greater consumption, letting remaining nodes have low
consumption. In the final scheme, Balanced, consumption across all nodes is
balanced, so they exhaust their batteries at the same time.

Each parameter differently affects the energy of a node and its neighbors, and
latency. Due to space restrictions, figures exploring tuning capabilities of the four
parameters are omitted, but available in [2]. Additionally, we performed 24-hour
clock stability tests on Mica2 Motes and interval length sensitivity experiments
for Seesaw and determined it is robust to any differences in interval lengths
likely to be encountered [2].

5.3 Tuning

Seesaw’s flexibility lets us tune parameters to meet consumption goals, but is
only useful if parameters can be automatically tuned. In this section, we show
an offline algorithm generates effective advertising and listening values.

Table 3. cplex a, l values for 3 rates

Node Type 1pkt/2s 1pkt/5s 1pkt/10s
ID(s) a l a l a l

Source 0,1,4,6 15 .021 16 .021 19 .021
Forwarder 2,5 10 .09 12 .09 15 .07
Forwarder 3 6 .13 8 .11 9 .09

Sink 7 1 .27 1 .19 1 .14

Extending Network Lifetime 257

Fig. 16. Cumulative energy consumption
with static settings

Fig. 17. Cumulative energy consumption
for each node with auto tuning

Offline. We implemented the quadratic program from Section 4.1 using cplex
8.1. We built an integer approximation of it by discretizing settings for a(x) and
l(x), and generating expected energy cost tables for all possible setting combi-
nations. We run this program for the sink topology with three data rates. We
then apply the solution in SenSim by assigning the returned settings (Table 3)
to the respective nodes, and simulate for 1000 seconds. The results, Figure 15,
show balanced consumption at each node for the three data rates. The program
shows it is possible to automatically achieve balanced consumption.

Online. Finally we come to the question of whether Seesaw nodes can au-
tomatically tune their own parameters to balance system-wide energy con-
sumption, given only local information. In a 50, 000 second test, we use
the algorithm presented in Section 4.2 with the the sink topology and a 2
second data generation interval for each source. Nodes start with symmet-
ric settings (a = 12 and l = 0.1). We compare delivery performance and
total consumption for each node to a run with static parameters. In the static
parameter test, the sink receives 99, 990 packets with an average delay of 5.35
seconds. With automatic tuning, the sink receives 99, 991 packets with an aver-
age delay of 4.50 seconds. Figures 16 and 17 show node energy consumption in
mJ. Average node consumption is 255, 212 mJ +/- 1.2% compared to the static
run with an average of 265, 974 mJ +/- 27.9%. Without balancing, node 3 has
the highest energy consumption and the node 7 the lowest. When 3 depletes its
batteries, the network will be partitioned. The consumption among the nodes
is much more balanced, so all nodes will fail at roughly the same time, increas-
ing the time until a node fails. Note that in Figure 16, node 3 consumes almost
400, 000 mJ while in Figure 17 all nodes consume about 250, 000 mJ, demonstrat-
ing about a 37% improvement. The nodes determine parameter settings similar
to those produced using the offline algorithm, Table 4. Despite nodes having
vastly different data communication responsibilities, their energy consumption is
balanced.

258 R. Braynard, A. Silberstein, and C. Ellis

Table 4. Online tuning parameter values

Node Type ID(s) online offline
a l a l

Source 0,1,4,6 16,15,15,16 .021 (all 4) 15 (all 4) .021 (all 4)
Forwarder 2,5 11,13 .098,.09 10 .09
Forwarder 3 5 .13 6 .13

Sink 7 1 .279 1 .27

6 Conclusions and Future Work

We have presented Seesaw, an asynchronous and asymmetric MAC protocol
for wireless sensor networks that offers flexibility to tailor energy consumption
on a per-node basis. In particular, we address the problem that different nodes
may consume very different amounts of energy and the nodes with the heaviest
burdens of communication are often in a position to disrupt the sensor network
most seriously when they die. When this happens, the network may become
partitioned such that other nodes are unable to communicate despite having
energy remaining. Our solution is to balance the energy consumption among
nodes with differing communication loads to prolong network lifetime. Balanc-
ing is possible through mechanisms that allow heavily burdened nodes to shift
protocol overhead to more lightly loaded neighboring nodes.

Our contributions include simulation results showing Seesaw’s flexibility does
not incur significant energy or performance costs compared to other MAC pro-
tocols, and that Seesaw can be effectively used to achieve balanced energy
consumption. We develop offline and online methods for automatically tuning
the parameters to extend system lifetime. Future work includes developing more
sophisticated online tuning algorithms and more extensive evaluations in both
our simulator and TinyOS implementation.

References

1. V Bharghavan, A Demers, S Shenker, and L Zhang. MACAW: a media access
protocol for wireless LAN’s. In Proc of the conference on Communications archi-
tectures, protocols and apps, 1994.

2. Rebecca Braynard, Shobana Ravi, and Carla Ellis. Exploring the design of an
asynchronous and asymmetric MAC protocol. In International Workshop on Mea-
surement, Modeling, and Performance Analysis of Sensor Networks, July 2005.

3. Rebecca Braynard, Adam Silberstein, and Carla Ellis. Extending network lifetime
using an automatically tuned energy-aware mac protocol. Technical Report CS-
2005-05, Duke University Department of Computer Science, 2005.

4. P Havinga and G Smit. Energy-Efficient TDMA Medium Access Control Packet
Scheduling. In Asian International Mobile Computing Conference AMOC 2000,
Nov 2000.

5. B Hohlt, L Doherty, and E Brewer. Flexible power scheduling for sensor networks.
In IPSN’04, 2004.

Extending Network Lifetime 259

6. E Jung and N Vaidya. A power control MAC protocol for ad-hoc networks. In
Proc of ACM MOBICOM, 2002.

7. P. Karn. MACA - A New Channel Access Method for Packet Radio. In
ARRL/CRRL 9th Comp Net Conf, 1990.

8. M McGlynn and S Borbash. Birthday Protocols for Low Energy Deployment and
Flexible Neighbor Discovery in Ad Hoc Wireless Networks. In 2nd Intl Symposium
on Mobile Ad Hoc Networking and Computing, 2001.

9. J Polastre, J Hill, and D Culler. Versatile low power media access for wireless
sensor networks. In SenSys, 2004.

10. RF Monolithics Inc. ASH Transceiver TR3000 Data Sheet.
11. I Rhee, A Warrier, M Aia, and J Min. Z-MAC: A hybrid MAC for wireless sensor

networks. In SENSYS’05: Proceedings of the 3rd ACM Conference on Embedded
Networked Sensor Systems, Nov 2005.

12. T Simunic, H Vikalo, P Glynn, and G De Micheli. Energy efficient design of
portable wireless systems. In Proc of the 2000 international symposium on Low
power electronics and design, 2000.

13. S. Singh and C. Raghavendra. Power efficient MAC protocol for multihop radio
networks. In Proc of IEEE PIRMC’98 Vol 1, Sep 1998.

14. K Sohrabi, J Gao, V Ailawadhi, and G Pottie. Protocols for Self-Organization of
a Wireless Sensor Network. In Proc of the 37th Allerton Conference on Commu-
nication, Computing and Control, September 1999.

15. Y Tseng, C Hsu, and T Hsieh. Power-Saving Protocols for IEEE 802.11-Based
Multi-Hop Ad Hoc Networks. In Proceedings of INFOCOM, 2002.

16. T van Dam and K Langendoen. An Adaptive Energy-Efficient MAC protocol for
Wireless Sensor Networks. In SenSys, 2003.

17. W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC Protocol for
Wireless Sensor Networks. In IEEE INFOCOM, 2002.

18. W Ye, J Heidemann, and D Estrin. Medium access control with coordinated adap-
tive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw., 2004.

19. R Zheng, J Hou, and L Sha. Asynchronous wakeup for ad hoc networks. In Proc of
the 4th ACM Intl symposium on Mobile ad hoc networking and computing, 2003.

20. R Zheng and R Kravets. On-demand Power Management for Ad Hoc Networks.
In Proc. IEEE INFOCOM, 2003.

Sift: A MAC Protocol for Event-Driven
Wireless Sensor Networks�

Kyle Jamieson1, Hari Balakrishnan1, and Y.C. Tay2

1 MIT Computer Science and Artificial Intelligence Laboratory,
The Stata Center, 32 Vassar St., Cambridge, MA 02139

jamieson@csail.mit.edu, hari@csail.mit.edu
2 Department of Computer Science, National University of Singapore,

Kent Ridge 117543, Republic of Singapore
tay@acm.org

Abstract. Nodes in sensor networks often encounter spatially-correlated con-
tention, where multiple nodes in the same neighborhood all sense an event they
need to transmit information about. Furthermore, in many sensor network appli-
cations, it is sufficient if a subset of the nodes that observe the same event report
it. We show that traditional carrier-sense multiple access (CSMA) protocols for
sensor networks do not handle the first constraint adequately, and do not take ad-
vantage of the second property, leading to degraded latency as the network scales
in size. We present Sift, a medium access control (MAC) protocol for wireless
sensor networks designed with the above observations in mind. We show using
simulations that as the size of the sensor network scales up to 500 nodes, Sift can
offer up to a 7-fold latency reduction compared to other protocols, while main-
taining competitive throughput.

1 Introduction

Every shared wireless communication channel needs a medium access control (MAC)
protocol to arbitrate access to the channel. Over the past several decades, many MAC
protocols have been designed and several are in operation in wireless networks today.
While these protocols work well for traditional data workloads, they are inadequate
in emerging wireless sensor networks where the nature of data transmissions and ap-
plication requirements are different. This paper argues that wireless sensor networks
require a fresh look at MAC protocol design, and proposes a new protocol that works
well in this problem domain by taking advantage of application requirements and data
characteristics. We start with an example of a real sensor network.

Machine room monitoring. A fire in a basement machine room of the computer science
building triggers a number of redundant temperature and smoke sensors to begin report-
ing the event. They all simultaneously become backlogged with the sensor reports and

� This material is based upon work supported by the National Science Foundation under Grant
Nos. CNS-0205445 and CNS-0520032. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 260–275, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Sift: A MAC Protocol for Event-Driven Wireless Sensor Networks 261

use a MAC protocol to arbitrate access to the medium. Higher-level applications need
some number of event reports that is less than the number of reporting sensors.

From these example, we make the following observations:

1. Many sensor networks are event-driven and have spatially-correlated contention.
In most sensor networks, multiple sensors are deployed in the same geographic
area, usually for fault-tolerance and reliability. In addition to sending periodic ob-
servations, when an event of interest happens, the sensing nodes that observe the
event send messages reporting the event. The result is spatially-correlated con-
tention. Multiple sensors sharing the wireless medium all have messages to send at
almost the same time because they all generate messages in response to the same
event.

2. Not all sensing nodes need to report an event. In sensor network applications such
as the machine room example above, not all the nodes that sense an event need to
report it. It is enough for a subset of the event reports to reach the data sink.

3. The density of sensing nodes can quickly change. In many sensor networks, the
size of the set of sensing nodes changes quickly with time, e.g., when a target
enters a field of sensors. The potential for sensor nodes to continue decreasing
in size [1] leads us to believe that the number of sensing nodes could quickly
become very large. As a result, we need a MAC protocol that not only handles
spatial correlations, but also adapts well to changes in the number of contending
nodes.

These three observations lead to a problem statement for wireless sensor MAC proto-
col design that is different from classical MAC design. Specifically, in a shared medium
where N nodes sense an event and contend to transmit on the channel at the same time,
our goal is to design a MAC protocol that minimizes the time taken to send R of these
messages without collisions. Notice that when R = N , this becomes the throughput-
optimization problem that classical MAC protocols are designed for. When R < N ,
what we seek is a protocol that allows the first R winners of the contention protocol to
send their messages through as quickly as possible, with the remaining N −R potential
transmitters suppressing their messages once R have been sent. In the rest of this paper,
we denote the number of nodes that have data to send as N , and the number of reports
that the sink needs as R.

At their core, all randomized carrier-sense multiple access (CSMA)-based MAC pro-
tocols attempt to adapt to the active population size of contending nodes. Typically, each
node maintains a slotted contention window with collisions (i.e., unsuccessful transmis-
sions) causing the window to grow in size, and successful transmissions causing it to
shrink. Each node transmits data at a slot picked uniformly at random within the current
contention window. This approach does not work well when we are interested in the first
R of N potential reports, and has problems scaling well when N suddenly grows. The
result is degraded response latency.

Our protocol, Sift, is based on the intuition that when we are interested in low latency
for the first R reports, it is important for the first few successful slots to be contention-
free. To tightly bound response latency, we use a fixed-size contention window, but a
non-uniform, geometrically-increasing probability distribution for picking a transmis-
sion slot in the window.

262 K. Jamieson, H. Balakrishnan, and Y.C. Tay

We give theoretical justification for Sift’s choice of geometrically-increasing prob-
ability distribution and show using simulations that Sift can offer up to a 7-fold la-
tency reduction as the number of sensors in one radio range scales up to 500 nodes.
We also show that Sift delivers slightly worse throughput than other CSMA protocols
when N is small, and slightly better throughput when N is large. Finally, we describe
the theoretically-optimal non-persistent CSMA MAC when one report of each event is
enough, and show that Sift’s latency approaches optimal.

2 Sift Design

Sift is a non-persistent CSMA wireless MAC protocol. In such protocols, the time im-
mediately after any transmission is divided into CW contention slots, whose duration
is usually several orders of magnitude smaller than the time it takes to send a data
packet. Immediately after a transmission or collision, each station picks a random con-
tention slot r ∈ [1, CW]. During the contention slots prior to r, each station carrier
senses the medium, and aborts or delays its pending transmission if it hears the be-
ginning of another transmission. At contention slot r, the station begins its transmis-
sion. If two nodes pick the same slot, they both transmit at the same time, causing a
collision. Wireless nodes infer that a collision has occurred by the absence of a link-
level acknowledgment. When a collision occurs, most CSMA protocols specify that
the colliding nodes double their value of CW . This is known as binary exponential
backoff (BEB). 802.11 [2], B-MAC [3], S-MAC [4], and MACAW [5] are all based
on BEB.

By increasing CW , most other CSMA protocols attempt to adapt to the current
active population size to make a collision-free transmission more likely. There are two
problems with this method. First, it takes time for CW to increase to the right value
when the active population (N) becomes large, such as when an event is observed by
many sensors after a previously-idle period. Second, if CW is already large (because
of traffic congestion that has just subsided) and N is small, then such protocols waste

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 8 16 24 32

P
ro

ba
bi

lit
y

m
as

s
fu

nc
tio

n

Slot number

α=0.7
α=0.8
α=0.9

Fig. 1. The probability distribution for the contention slot number that each Sift station chooses.
We show various values of α, the parameter of the distribution.

Sift: A MAC Protocol for Event-Driven Wireless Sensor Networks 263

Node 1

Node 2

Node 3

Node 4

Node 0

Data

ACK

Data

ACK

Data

ACK

Data

ACK

Fig. 2. A timeline of five nodes running the Sift protocol with N = R = 4. Nodes 1–4 each send
one packet to Node 0. Every time the medium becomes idle, stations re-select a slot at random
according to the Sift distribution (Figure 1) before transmitting in that slot. The small bars signify
contention, and the number of small bars signifies which slot each station picked.

bandwidth “backing off.” Furthermore, CW is usually chosen to ensure that all active
nodes get a chance to send their data, whereas we are interested in the collision-free
transmission of the first R of N potential reports of some event.

In contrast to previous protocols, Sift uses a small and fixed CW . Of course, nodes
can no longer pick contention slots from a uniform distribution, because this would
lead to collisions for even moderate values of N . The key difference between Sift and
previous CSMA-based wireless MAC protocols is that the probability of picking a slot
in this interval is not uniform. Instead, with a carefully-chosen fixed CW and fixed
probability distribution, we will show that Sift can perform well in a sensor network.

The following intuition leads us to propose the geometrically-increasing probability
distribution for picking a contention slot, shown in Figure 1. When N is large, most
nodes will choose medium to high slot numbers to transmit (see Figure 1), but a small
number will choose low slot numbers, making a collision-free transmission likely in
a low slot number. When N is medium, most nodes will choose high-numbered slots,
making a collision-free transmission likely in a medium slot number. Finally, when N
is small, a collision-free transmission is likely in a high slot number1. Thus, for any N ,
and no matter how fast N changes, a collision-free transmission is likely. We make this
intuition precise in Section 2.1.

Figure 2 shows an example run of the Sift MAC protocol. Note that when the trans-
mission or collision finishes, all competing Sift nodes select new random contention
slots, and repeat the process of contending over the fixed contention window.

In the rest of this section we describe Sift’s probability distribution and compare
it to an optimal (for R = 1) non-persistent CSMA. We then give a formal protocol
specification, and qualitatively compare Sift to other contention window-based CSMA
protocols.

2.1 The Sift Probability Distribution

Suppose each sensor picks a slot r ∈ [1, CW] with probability pr. We say that slot r
is silent if no sensor chooses that slot, and there is a collision if more than one sensor

1 This is the motivation behind the name Sift: the non-uniform probability distribution “sifts”
the (collision-free) winners from the entire contending set of nodes.

264 K. Jamieson, H. Balakrishnan, and Y.C. Tay

chooses that slot. Also, a sensor wins in slot r if it is the only one to choose slot r,
and all others choose later slots. Finally, there is success if some sensor wins some slot
in [1, CW].

Sift uses the truncated, increasing geometric distribution

pr =
(1 − α)αCW

1 − αCW
· α−r for r = 1, . . . , CW, (1)

where 0 < α < 1 is a parameter. For these values of α, pr increases exponentially with
r, so the later slots have higher probability.

To motivate this choice, view each sensor’s choice of which slot to pick as a decision
procedure with CW stages. Each node starts in stage 1 with some overestimate N1
of N and chooses slot 1 with a small probability.2 If no sensor chooses slot 1, that is
an indication that N1 is an overestimate of N , so each node updates its guess of the
population size by decreasing N1 to N2, and proceeds to choose slot 2 with a different
probability in stage 2. If slot 2 is also silent, this guess is reduced to N3 in stage 3, and
so on; in general, Nr is the updated guess after there is silence in slots 1, . . . , r − 1. In
previous work [6], we have shown that a near-optimal choice of α for a wide range of

population sizes is α = N
− 1

CW−1
1 .

The points in Figure 3 plot the result of an experiment in which N sensors choose
slots using the distribution in Equation 1 with α = 512−

1
31 ≈ 0.818. Each point in

the graph represents one run with N sensors. Note that although we engineered the
Sift probability distribution for a maximum number of sensors N1 = 512, performance
degrades gracefully when the true number of contending stations exceeds 512. This
degradation happens because the first slot starts to get picked by more than one sensor,
resulting in a collision. We ran the same simulation with α set to various values in the
range [0.7, 0.9]. Our results verified that we had chosen the correct α, and that over this
range, the success rate is not sensitive to the exact choice of α.

Figure 3 also shows that although the sensors do not know N and use a fixed dis-
tribution pr, the probability of a successful transmission is constantly high for a large
range of N . In the next section, we will see that this probability of success is in fact
close to the maximum that is achievable even if the sensors knew N and used a distri-
bution tuned for N . We emphasize that we introduced Nr and p′r here for explanatory
purposes only, as a way of understanding our choice of pr. In particular, nodes running
Sift do not maintain an explicit estimate of Nr.

2.2 Comparison with an Optimal Protocol

Suppose each contending station had perfect knowledge of the true number of contend-
ing stations at the instant it started contending for the shared medium, and picked a
contention slot in which to transmit at the beginning of the contention period, with no

2 N1 is a fixed parameter that defines the maximum population size Sift is designed for. All
practical MACs have such a parameter; for example 802.11 limited the maximum contention
window size to 1024 for commodity hardware at the time this paper was written. In Section 2.2,
we show that above this population size, Sift’s performance degrades gracefully.

Sift: A MAC Protocol for Event-Driven Wireless Sensor Networks 265

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

Number of contending stations (N), logarithmic scale

Optimal
Sift

Fig. 3. A comparison between Sift with α = 0.818 and CW = 32, and an optimal protocol, with
CW = 32. The optimal protocol has full knowledge of N ; Sift has no knowledge of N . The
Sift distribution shown above was engineered for a maximum value of N = 512 nodes, but its
performance degrades gracefully when N exceeds that figure.

other information provided to it during the contention period.3 In related work [6], we
derive the distribution p∗ that optimizes the probability of a successful transmission.

Figure 3 shows the success probability of the Sift distribution as well as the theoret-
ical success probability of the optimal distribution. When R = 1, the Sift distribution
(which does not know N) performs almost as well as the optimal distribution (which
needs to know N). As we argued in Section 1, it is most often the case that N is un-
known and hard to predict.

The RTS/CTS Exchange. For large packet sizes (those above a tunable threshold),
Sift uses the RTS/CTS exchange in the same way as IEEE 802.11 [2]. Instead of using
the Sift distribution to compete on data packets, we use it to compete on sending the
RTS packet. Since sensor network workloads mostly contain short packets, we evaluate
the Sift’s performance in Section 3 and 802.11 with RTS/CTS disabled, sending short
data packets. In Section 3.4 we run some experiments with RTS/CTS enabled, sending
large data packets.

Hidden Terminals. Modern spread-spectrum radios have a carrier-sensing range ap-
proximately twice that of their transmission range [2, 7], making it more likely that a
node will carrier-sense a transmission that can interfere at the receiver of its transmis-
sion. This lessens the frequency of hidden terminals. For large packets, Sift uses the
RTS/CTS exchange to avoid collisions between hidden terminals. In the case of col-
lisions between small data packets among hidden terminals, senders can arbitrate as
CODA [8] proposes, or can vary their transmit phases with respect to one other to avoid
collisions [9]. We evaluate Sift under hidden terminal conditions in Section 3.5.

3 These conditions exclude non-contention-window-based protocols like tree-splitting con-
tention resolution. We address such protocols in related work [6].

266 K. Jamieson, H. Balakrishnan, and Y.C. Tay

Implementing Suppression. In the introduction, we described a workload in which
sensors suppress their event reports after some number of reports R have been sent. In
some scenarios, such as the last hop to a base station, this suppression is not hard to
implement: sensors listen to the base station for R acknowledgment packets (ACKs)
from data packets delivered to the base station. In general, when not at the last hop to
a base station, sensors listen for R events timestamped within some time interval away
from the event of interest before suppressing their event report.

2.3 Exploring the CSMA Design Space

Current sensor network designs (such as B-MAC [3], the MAC layer of TinyOS4) use a
fixed-window CSMA protocol, choosing contention slots uniformly at random. The ad-
vantage of this design choice is simplicity, and good performance under most practical
sensor network deployment scenarios. The disadvantage of this design choice is a lack
of scalability under highly-correlated traffic or large numbers of sensor nodes.

Bharghavan et al. proposed MACAW [5], a MAC protocol for wireless local-area
networks. MACAW uses BEB (described at the beginning of Section 2), and so without
some way to share information about the state of the wireless medium, MACAW would
suffer from the well-known Ethernet capture problem: a station that just transmitted
resets its contention window to the minimum value, and is thus more likely to trans-
mit again in subsequent competitions. MACAW’s solution to this belongs to a class of
techniques that we term shared learning. Stations copy the CW value of a station that
transmits to their own CW value, and modify BEB so that instead of resetting CW
after a successful transmission, decreases it linearly (a multiplicative increase, linear
decrease policy).

Instead of shared learning, 802.11 [2] uses memory to solve the fairness problem.
When stations begin to compete, they set a countdown timer to a random value picked
uniformly from the contention window CW . When the medium becomes busy, the
station pauses the countdown timer. When the medium becomes idle and the station
wants to compete again, 802.11 resumes its countdown timer. When the countdown
timer expires, the station begins its transmission.

In 802.11, a station that successfully transmits resets its CW to a small, fixed mini-
mum value of CW . Consequently, the station has to rediscover the correct CW , wasting
some bandwidth.

Table 1. Some design parameters in the contention window-based CSMA space. Sift requires
neither shared learning, a variable-sized contention window, nor memory to perform well.

Protocol Contention window Shared learning? Memory? Distribution
BEB Variable No No Uniform
802.11 Variable No Yes Uniform
MACAW Variable Yes No Uniform
802.11/copy Variable Yes Yes Uniform
B-MAC, S-MAC Fixed No No Uniform
Sift Fixed No No Reverse-exponential

4 See http://tinyos.net.

Sift: A MAC Protocol for Event-Driven Wireless Sensor Networks 267

One might think that shared learning could help the problem of high rate of change
of N with respect to time. The spurious intuition behind this is that when a node is
successful in its transmission, it might have found the correct value of CW for all nodes
to use. 802.11 with shared learning, which we term 802.11/copy, still suffers when N
increases quickly. We substantiate this claim in Section 3.

Table 1 summarizes the design parameters we have reviewed. From the table, it is
clear that Sift explores a novel region of the contention window-based MAC design
space. We now show that this particular point in the design space results in good per-
formance in sensor networks with respect to throughput, latency, and fairness.

3 Performance Evaluation

In our experiments, we compare Sift configured with CW = 32 and α = 0.818 to
802.11 and 802.11/copy (defined in Section 2.3). We choose the 802.11 family because
it is a practical CSMA protocol whose mechanism for adapting to the number of trans-
mitting stations (BEB) has been included, unmodified, in several proposals for the MAC
layer of a sensor network [4, 9].

We run experiments using version 2.1b9 of the ns-2 [7] network simulator, with all
nodes within range of a common base station. We modify all the MACs in our experi-
ments to perform suppression: if a sensor hears R acknowledgments for motion event
E from the base station, it suppresses its report of E and removes E’s packet from its
transmit queue. For experiments with small data packets (40 bytes), we compare Sift,
802.11 without RTS/CTS, and 802.11/copy without RTS/CTS. For the fairness experi-
ments in Section 3.4, where data packets are 1500 bytes long, we enable RTS/CTS for
both Sift and the 802.11 protocols. All experimental results average 20 runs using dif-
ferent random seeds for each run, except the fairness experiments in Section 3.4 which
average 5 runs.

3.1 Event-Based Workloads

Constant-bit-rate (CBR) or TCP flows do not suffice to evaluate protocols for sensor
networks, because they capture neither the burstiness inherent in the network, nor some
underlying physical process that the network should be sensing. We therefore propose
two event-based workloads to evaluate our design.

Trace-Driven Event Workload. We model a sensor network that detects the presence
of people or cars in a region of a busy street. Rather than deploying this sensor network,
we acquire video from a camera pointed at a busy street and log motion events to a
database. This data captures the physical process of person and car inter-arrival times
on the street. We call this the trace-driven event workload.

To run an experiment with this trace-driven workload, we create an ns-2 scenario
where sensors are placed uniformly at random on a two-dimensional plane. At the time
given by each motion event in the database, all sensors within dreport meters of the
location of that event send a 40 byte report packet, suppressing their reports after R
have been sent.

268 K. Jamieson, H. Balakrishnan, and Y.C. Tay

Constant-Rate Event Workload. In some experiments, we measure the network not
in the steady-state, but in a dynamic situation where the network has quiesced, then N
nodes sense an event and report that event, suppressing their reports after R have been
sent. Event reports are 40 bytes in size. We call this the constant-rate event workload.

3.2 Latency Experiments

We begin by evaluating latency under the constant-rate event workload. To capture vary-
ing propagation delays in the environment, variations between sensor electronics, and
uncertainty in software system delays on the sensor nodes themselves, we add a random
delay in [0, 1] ms to the time that each sensor sends its event report. We measure the
time for the base station to receive the first, median, and 90th percentile event report.
We plot these times as a function of N .

Figure 4 shows the results of this experiment. When N is small, the minimum 802.11
contention window size is large enough to quickly resolve contention between the
nodes. As N grows, however, the 802.11 and 802.11/copy contention window needs
to grow before even one event report can be successfully sent (see the bottom of the
error bars in Figure 4), while Sift’s fixed contention window resolves contention in
constant time with respect to N . Turning to the median and 90th percentile event re-
porting times, we see that Sift also improves latency for these measures as well, up to
N = 256. This is primarily due to Sift’s improvement in the first event reporting time,
but it also shows that Sift can deliver enough throughput to keep up with 802.11 and
802.11/copy as it sends subsequent event reports.

802.11/copy does not improve performance much because some stations transmit
before they have estimated the optimal CW value, broadcasting values of CW that are
too low. As a result, CW cannot increase quickly enough when N is large. Sift does
not need any time to adapt to large N , and so performs well over a large range of N .
Figure 4 shows that as N increases, Sift achieves a seven-fold latency reduction over
802.11.

 0.1

 1

 10

 100

 8 16 32 64 128 256 512

D
el

ay
 (

m
s)

Number of nodes

802.11
Sift

802.11/copy

Fig. 4. Latency as a function of N (number of sensors reporting an event). 16 reports are required
(R = 16). We show the time that the first (bottom of error bar), median (point in error bar), and
90th percentile (top of error bar) event report was received at the base station. This experiment
uses the constant-rate event workload, and all three protocols use suppression.

Sift: A MAC Protocol for Event-Driven Wireless Sensor Networks 269

3.3 Throughput Experiments

We now compare the throughput of Sift, 802.11, and 802.11/copy under a variety of
workloads that saturate the capacity of the wireless medium.

Trace-Driven Events. Using our trace-driven workload, we measure the time each
protocol takes to deliver R reports for each motion event, varying R. N also varies,
depending on how many of the 128 total nodes are within range of each motion event,
but averages 100. Since the traffic pattern is bursty, when R grows (and the number of
reports suppressed shrinks), we quickly reach the capacity of the medium. When this
happens, interface queues at the senders start to build up, and latency sharply increases.
To examine the capacity of the medium using Sift versus using 802.11, we increased the
upper bound on the interface queue length by an order of magnitude, from 50 packets
to 500 packets. We then measured the latency to receive R events for Sift, 802.11,
and 802.11/copy. Figure 5 shows the results of this experiment. As expected, when
R is small, Sift has lower latency than either 802.11 or 802.11/copy, because it can
resolve contention faster than a BEB protocol. Furthermore, noting the position of the
knee of each curve, Sift can continue delivering low-latency events for higher values
of R because it can deliver higher throughput under the varying values of N that this
workload generates.

Constant-Rate Events. Now we measure the time it takes to receive R events when N
is fixed at 128. Figure 6 shows that Sift achieves better throughput than 802.11 under
this workload. The reason for this is again that Sift does not have to track the sudden
change in N like BEB does.

The Sift Performance Space. In Figure 7, we explore the Sift performance space when
we vary both N and R. Consider first the five bottom-most curves (R = 1, 2, 4, 8, 16)

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

A
ve

ra
ge

 d
el

ay
 (

m
s)

Number of reports required (R)

802.11
802.11/copy

Sift

Fig. 5. Average delay as a function of R (number of reports required) for each camera motion
event. The sensor range in this experiment is fixed at 20 meters (dreport = 20), and there are
128 nodes in this experiment. N is a function of event location, as explained in the text. This
experiment uses the trace-driven event workload, and all three protocols use suppression.

270 K. Jamieson, H. Balakrishnan, and Y.C. Tay

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10 12 14 16 18

D
el

ay
 (

m
s)

Number of reports required (R)

802.11
802.11/copy

Sift

Fig. 6. Average and standard deviation latency to receive R event reports when 128 sensors report
an event (N = 128). All sensors detect the event at the same time. This experiment uses the
constant-rate event workload, and all three protocols use suppression.

with zero slope. They show that no matter how many stations report an event (N), Sift
can deliver R = 1, 2, 4, 8, or 16 messages with a small, constant latency. Now consider
the remaining curves (R = 24, 32, 64) in Figure 7, which have a non-zero slope. They
show that once R becomes greater than or equal to 24 messages, Sift requires more time
to deliver R messages as N grows. Thus to a point, Sift scales well simultaneously with
respect to R and N .

3.4 Fairness Experiments

We now examine whether Sift fairly allocates bandwidth between stations. It has been
shown that 802.11 does not, but that minor changes to 802.11 can yield a fair

 0.25

 1

 4

 16

 64

 256

 16 32 64 128 256 512

A
ve

ra
ge

 d
el

ay
 (

m
s)

Number of nodes (N)

R=1
R=2

R=4
R=8

R=16
R=24

R=32
R=64

Fig. 7. Average delay of Sift event reports as a function of N (number of sensors reporting an
event). We show curves for various values of R (number of reports required). Note that R ≤ N .
This experiment uses the constant-rate event workload with suppression.

Sift: A MAC Protocol for Event-Driven Wireless Sensor Networks 271

protocol [10]. We duplicate the experimental setup given by the authors of the distrib-
uted fair scheduling (DFS) protocol [10]. We place some even number of nodes in the
same radio range, and set up a traffic pattern where each node is either a traffic source
or a traffic sink. The packet size is 1500 bytes, and the RTS/CTS exchange is enabled
for both 802.11 and Sift. We ensure that each node is backlogged so that the offered
load exceeds the available wireless capacity.

Figure 8 shows the throughput achieved by each node in six seconds as a function
of the node number. Note that as expected, 802.11/copy outperforms 802.11 in terms
of fairness. Also notice that Sift outperforms 802.11 in terms of fairness. Sift does
not in fact achieve a perfectly-fair bandwidth allocation. We expect that this is not a
major issue, since sensor networks will contain many redundant nodes reporting similar
observations about the environment. However, due to the simplicity of Sift, we expect
that a similar approach to DFS could be applied to Sift should fairness become an
issue.

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

pa
ck

et
 c

ou
nt

)

Destination node of a flow (cardinal)

802.11
802.11/copy

Sift

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

pa
ck

et
 c

ou
nt

)

Destination node of a flow (cardinal)

802.11
802.11/copy

Sift

Fig. 8. Fairness comparison of 802.11 and Sift. Left: eight nodes; right: 32 nodes. In each exper-
iment there are half as many flows as there are nodes. This experiment uses a CBR workload,
without suppression. RTS/CTS is enabled for all three protocols.

 0.1

 1

 10

 100

 1000

 1 2 3 4

A
ve

ra
ge

 d
el

ay
 (

m
s)

Number of mutually-hidden clusters

802.11
802.11/copy

Sift

Fig. 9. Latency comparison between Sift and 802.11 in the presence of varying numbers of hidden
terminals. This experiment uses an event-based workload with suppression. RTS/CTS is disabled,
and each packet is 40 bytes in length.

272 K. Jamieson, H. Balakrishnan, and Y.C. Tay

3.5 Hidden Terminal Experiments

We now compare Sift with 802.11 and 802.11/copy in the presence of hidden terminals.
In this experiment, we arrange N = 128 nodes in closely-spaced clusters around the
base station to which they send event reports. Nodes in each cluster can carrier-sense
each others’ transmissions, and defer and suppress accordingly. Nodes in separate clus-
ters cannot carrier-sense each others’ transmissions: they are hidden terminals with re-
spect to each other. We vary the number of clusters around the base station, and measure
the time to receive R = 1 report. Figure 9 shows that as the number of hidden terminals
increases, latency increases due to a significantly-increased number of collisions. Sift
performs better than 802.11 in hidden terminal situations because it does not incur the
penalty of contention-window doubling when a collision occurs.

4 Related Work

We compared Sift to 802.11, B-MAC, and MACAW in Section 2.3. We now review
more related work.

There have been a number of proposals [11–14] for controlling the flow of infor-
mation in a sensor network at the application layer. While these proposals are essential,
they are orthogonal to the choice of MAC layer, and that choosing an appropriate MAC
is important for the performance of a sensor network.

Cai et al. [15] propose CSMA with a truncated polynomial distribution over a fixed
contention window. There are several significant differences between their proposal
and Sift. First, Sift uses the exponential distribution, which is close to optimal over all
possible distributions, as described in Section 2.2. Furthermore, Cai et al. optimize only
over the polynomial distributions, not over all possible distributions. Finally, Sift was
designed and evaluated in an event-based workload (see Section 3), while Cai et al.
evaluate their proposal using a Poissonian workload.

Like Sift, the HIPERLAN standard [16] for wireless LANs uses a truncated geomet-
ric probability distribution in the “elimination” phase of its contention protocol. Cho
et al. [17] describe and analyze HIPERLAN’s MAC protocol in detail. Sift uses tradi-
tional CSMA, where immediately following a busy channel, the first station to break
the silence wins access to the medium. In contrast, HIPERLAN stations transmit noise
bursts of varying length after the medium becomes idle, and the station that ceases its
noise burst last wins access to the medium. Sift compares favorably with HIPERLAN
for two reasons. HIPERLAN’s noise bursts raise the overall noise floor of the network
when there are many stations, and consume more power than listening for the same
amount of time on most radio hardware.

Mowafi and Ephremides [18] propose Probabilistic Time Division (PTD), a TDMA-
like scheme in which stations transmit in each TDMA slot with a given probability.
Each station chooses one TDMA slot in each round with a fixed probability a. By
tuning a, PTD achieves a compromise between TDMA and pure random access. Our
proposal differs from PTD because we compute an optimal probability distribution on
contention slots, which in practice are several orders of magnitude smaller than TDMA
data slots.

Sift: A MAC Protocol for Event-Driven Wireless Sensor Networks 273

Rhee et al. propose Z-MAC [19], a MAC for sensor networks that combines the
strengths of TDMA and CSMA. Sift stands out from Z-MAC because Sift’s probability
distribution reduces the likelihood of collisions compared to CSMA’s uniform distribu-
tion. Z-MAC is one of many examples of a MAC protocol that could incorporate Sift’s
probability distribution to improve performance.

Tan and Guttag [20] demonstrate that 802.11 nodes use globally-inefficient trans-
mission strategies that lead to degraded aggregate throughput. They propose changes to
802.11’s backoff window that increase network capacity. Sift has the orthogonal goal
of minimizing response latency of a wireless network.

Woo and Culler [9] compare the performance of various contention window-based
MAC schemes, varying carrier sense time, contention window size increase/decrease
policies, and transmission deferral policies. All of their protocols use contention win-
dows with the uniform distribution. They find that CSMA schemes with a fixed-size
window are the most energy-efficient, since nodes spend the least time listening. This
further motivates the case for Sift, because Sift uses a fixed-size contention window.
Woo and Culler also find that fixed-size contention window protocols perform well in
terms of throughput.

S-MAC [4] is a MAC protocol designed for saving energy in sensor networks. It uses
periodic listen and sleep, the collision avoidance facilities of 802.11, and overhearing
avoidance to reduce energy consumption. LEACH [21] is designed for sensor networks
where an end-user wants to remotely monitor the environment. It includes distributed
cluster formation, local processing to reduce global communication, and randomized
rotation of the cluster-heads to extend system lifetime. PAMAS [22] reduces energy
consumption by powering off nodes when they are about to overhear a transmission
from one of their neighbors. While S-MAC, LEACH, and PAMAS govern medium-
access to some degree they do not address the contention portion of a medium-access
protocol. Since Sift is a CSMA protocol, it can be implemented concurrently with these
protocols.

There have also been a number of proposals [23–25] for topology-control in wireless
networks. Although their goal is energy savings, if topology formation protocols could
be adapted to take into account the number of sensor reports required, it might be pos-
sible to provide an alternate solution to our problem; we leave this idea as future work.
We note that Sift can be used as a building block in the underlying MAC to arbitrate
access between the large numbers of nodes that need to rendezvous at the same time
and elect coordinators.

5 Conclusion

We have presented Sift, a MAC protocol for wireless sensor networks that performs
well when spatially-correlated contention occurs and adapts well to sudden changes in
the number of sensors that are trying to send data. Sift is ideal for sensor networks,
where it is often sufficient that any R of N sensors that observe an event report it,
with the remaining nodes suppressing their transmissions. The key idea in Sift is to
use a geometrically-increasing probability distribution within a fixed-size contention
window, rather than varying the window size as in many traditional MAC protocols.

274 K. Jamieson, H. Balakrishnan, and Y.C. Tay

Using trace-driven experiments, we have shown that Sift outperforms 802.11 and other
BEB-based protocols both when the ratio R/N is low, and when both N and R are
large. For R = 1, we have identified the optimal non-persistent CSMA protocol, and
shown that Sift’s performance is close to optimal.

References

1. Kahn, J., Katz, R., Pister, K.: Mobile Networking for Smart Dust. In: Proc. of the ACM
MOBICOM Conf., Seattle, WA (1999) 271–278

2. IEEE 802.11 Standard: Wireless LAN Medium Access Control and Physical Layer Specifi-
cations (1999)

3. Polastre, J., Hill, J., Culler, D.: Versatile Low Power Media Access for Wireless Sensor
Networks. In: Proc. of the ACM SenSys Conf., Baltimore, MD (2004) 95–107

4. Ye, W., Heidemann, J., Estrin, D.: An Energy-Efficient MAC Protocol for Wireless Sensor
Networks. In: Proc. of the IEEE INFOCOM Conf., New York, NY (2002) 1567–1576

5. Bharghavan, V.: MACAW: A Media Access Protocol for Wireless LANs. In: Proc. of the
ACM SIGCOMM Conf., London, UK (1994) 212–225

6. Jamieson, K., Tay, Y.C., Balakrishnan, H.: Sift: a MAC Protocol for Event-Driven Wireless
Sensor Networks. Technical Report MIT-LCS-TR-894, Massachusetts Institute of Technol-
ogy (2003)

7. USC ISI: ns-2 Notes and Documentation (2002) http://www.isi.edu/nsnam/ns.
8. Wan, C.Y., Eisenmen, S., Campbell, A.: CODA: Congestion Control in Sensor Networks.

In: Proc. of the ACM Sensys Conf., Los Angeles, CA (2003) 266–279
9. Woo, A., Culler, D.: A Transmission Control Scheme for Media Access in Sensor Networks.

In: Proc. of the ACM MOBICOM Conf., Rome, Italy (2001) 221–235
10. Vaidya, N., Bahl, V., Gupta, S.: Distributed Fair Scheduling in a Wireless LAN. In: Proc. of

the ACM MOBICOM Conf., Boston, MA (2000) 167–178
11. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed Diffusion: A Scalable and Robust

Communication Paradigm for Sensor Networks. In: Proc. of the ACM MOBICOM Conf.,
Boston, MA (2000) 56–67

12. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: TAG: a Tiny AGregation Service for
Ad-Hoc Sensor Networks. In: Proc. of the USENIX OSDI Symp., Boston, MA (2002) 131–
146

13. Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L.: A Two-Tier Data Dissemination Model for
Large-Scale Wireless Sensor Networks. In: Proc. of the ACM MOBICOM Conf., Atlanta,
GA (2002) 148–159

14. Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., Shenker, S.: GHT: A
Geographic Hash Table for Data-Centric Storage. In: Proc. of the ACM WSNA Workshop,
Atlanta, GA (2002) 78–87

15. Cai, Z., Lu, M., Wang, X.: Randomized Broadcast Channel Access Algorithms for Ad Hoc
Networks. In: Proc. of the IEEE Intl. Conf. on Parallel Processing. (2002) 151–158

16. European Telecommunication Standard: HIgh PErformance Radio Local Area Network
(HIPERLAN) Type 1; Functional Specification (1996)

17. Cho, K.O., Shin, H.C., Lee, J.K.: Performance Analysis of HIPERLAN Channel Access
Control Protocol. Proc. of the ICICE Trans. on Comm. E85-B (2002) 2044–2052

18. Mowafi, O., Ephremides, A.: Analysis of a Hybrid Access Scheme for Buffered Users—
Probabilistic Time Division. IEEE Trans. on Software Engineering 8 (1982) 52–60

19. Rhee, I., Warrier, A., Aia, M., Min, J.: Z-MAC: A Hybrid MAC for Wireless Sensor Net-
works. In: Proc. of the ACM SenSys Conf., San Diego, CA (2005) 90–101

Sift: A MAC Protocol for Event-Driven Wireless Sensor Networks 275

20. Tan, G., Guttag, J.: The 802.11 MAC Protocol Leads to Inefficient Equilibria. In: Proc. of
the IEEE INFOCOM Conf., Miami, FL (2005) 1–11

21. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-Efficient Communication Pro-
tocol for Wireless Microsensor Networks. In: Proc. of the 33rd Hawaii International Conf.
on System Sciences (HICSS). (2000)

22. Singh, S., Woo, M., Raghavendra, C.: Power-Aware Routing in Mobile Ad Hoc Networks.
In: Proc. of the ACM MOBICOM Conf., Dallas, TX (1998) 181–190

23. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: An Energy-Efficient Coordina-
tion Algorithm for Topology Maintainence in Ad Hoc Wireless Networks. In: Proc. of the
ACM MOBICOM Conf., Rome, Italy (2001) 85–96

24. Wattenhofer, R., Li, L., Bahl, V., Wang, Y.M.: Distributed Topology Control for Wireless
Multihop Ad-hoc Networks. In: Proc. of the IEEE INFOCOM Conf., Anchorage, AK (2001)
1370–1379

25. Xu, Y., Heidemann, J., Estrin, D.: Geography-Informed Energy Conservation for Ad Hoc
Routing. In: Proc. of the ACM MOBICOM Conf., Rome, Italy (2001) 70–84

f-MAC: A Deterministic Media Access Control
Protocol Without Time Synchronization

Utz Roedig, Andre Barroso, and Cormac J. Sreenan

Mobile and Internet Systems Laboratory (MISL),
Computer Science Department, University College Cork (UCC), Ireland

{u.roedig, a.barroso, c.sreenan}@cs.ucc.ie

Abstract. Nodes in a wireless network transmit messages through a
shared medium. Thus, a Media Access Control (MAC) protocol is neces-
sary to regulate and coordinate medium access. For some application ar-
eas it is necessary to have a deterministic MAC protocol which can give
guarantees on message delay and channel throughput. Schedule based
MAC protocols, based on time synchronization among nodes, are cur-
rently used to implement deterministic MAC protocols. Time synchro-
nization is difficult and costly, especially in energy constrained sensor
networks. In this paper the f-MAC protocol is presented which can give
guarantees regarding message delay and channel throughput without the
requirement of time synchronization among nodes. The various trade-offs
of f-MAC are analysed and discussed and application areas that would
benefit from f-MAC are presented.

1 Introduction

Nodes in a wireless network transmit messages through a shared medium. Thus,
some form of organization among the nodes is necessary to enable an effective
usage of the shared resource. This organization is implemented by a Media Access
Control (MAC) protocol that each node has to obey. Currently a number of
varying MAC protocols with different properties and requirements exist. These
properties might be high data throughput or transmission delay guarantees.
Requirements might be time synchronization among all nodes or the capability
of detecting a busy channel (carrier sense).

Most MAC protocols used in wireless networks today can be divided into two
major classes: contention and schedule based MAC protocols. Both types differ
in their properties and requirements.

A contention based MAC protocol is relatively simple to implement since
there is no coordination necessary among the nodes. A node simply detects if
the channel is currently used by another node; if not, the message is transmitted.
If the channel is busy, the node backs off and tries again after some time. The
problem of such a MAC protocol is that no worst-case guarantees can be given
regarding throughput or maximum transmission delay. However, many applica-
tion areas, for example medical applications, require strict guarantees.

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 276–291, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

f-MAC: A Deterministic Media Access Control Protocol 277

A schedule based MAC protocol is more difficult to implement because accu-
rate time synchronization among neighbouring nodes is required. Each node uses
a dedicated time slot to transmit messages. As fixed time slots are used, guar-
antees regarding bandwidth and message delay can be given. The main problem
of such a MAC protocol is the complexity introduced by time synchronization.
Especially in highly constrained sensor networks the synchronization overhead
might not be acceptable.

This paper presents the f -MAC protocol which overcomes the aforementioned
restrictions. The protocol has, among other benefits shown in the paper, the
following main features:

1. Bandwidth and delay guarantees are provided.
2. Time synchronization among nodes is not necessary.

The f-MAC protocol uses a framelet approach: fixed sized frames are retrans-
mitted a fixed number of times with a specific frequency. Thus, the abbreviation
f-MAC is used to refer to the presented protocol. As it will be shown in the
paper, the capability of giving guarantees is traded for a lower bandwidth and
higher transmission delay. However, for many application areas this is acceptable
as hard guarantees are considered to be the most important design goal.

The remaining paper is organized as follows. In Section 2, the functionality
and requirements of f-MAC are described. In Section 3 basic properties such as
bandwidth and transmission delay are investigated analytically and by exper-
iment. Section 4 compares the delivery probability of a simple random MAC
with f-MAC. Section 5 describes cluster forming issues in larger f-MAC based
networks. Section 6 shows application areas that benefit from the use of f-MAC.
In Section 7 related work is discussed. Section 8 concludes the paper.

2 f-MAC Concept

In this section, the basic concept of f-MAC is presented. f-MAC uses a framelet
approach as it is described in detail in [1].

2.1 The Framelet Approach

In the framelet approach, the same message is transmitted several times using
small, fixed sized data packets. Each data packet of the transmission is called
a framelet. A message transmission via the framelet approach is depicted in
Fig. 1. The transmission duration of a framelet is denoted as d. Each transmission
consists of r framelets and the framelets are sent with a frequency of f = 1/t.

Certain types of ultra low-power transceivers, such as the Nordic nRF2401 [3],
the Chipcon CC2420 [5] or the nanoNET TRX [4], are able to transmit small,
fixed sized packets at a high speeds of typically 1Mb/s. These transceiver types
are currently used in sensor networks and are capable of supporting the framelet
approach.

278 U. Roedig, A. Barroso, and C.J. Sreenan

1 d

Framelet

n1

second messagefirst message

t

Fig. 1. Framelet transmission

T

t’

t’

t’

3

2

1

n

n

3

2

1n

t

t

t

3

Fig. 2. f-MAC operation

A framelet approach is normally used to increase transmission reliability or to
allow a power efficient operation of the transceivers (see [1, 2], implementation of
duty cycles). As the same information is transmitted several times, the available
bandwidth is reduced. However, in many cases reliability and especially power
efficiency is considered more important than a high throughput.

2.2 Collision Handling Using Framelets

Instead of using the framelet approach to increase transmission reliability or
to allow power efficient transceiver operation, it can be used to deal with the
problem of collisions. If several nodes in the same radio range transmit data
via a set of framelets, collisions can still occur. However, if each node uses a
specific unique framelet transmission frequency fi, it is possible to ensure that
one framelet of a set is always received, even if collisions are not prevented. This
is the basic idea behind the f-MAC protocol and is explained in detail in the
next paragraph.

2.3 Framelet Media Access Control

In f-MAC, no collision detection or time synchronisation between the nodes is
used. The number of framelets per message and the framelet frequencies are
selected such that it is guaranteed that at least one framelet per message is de-
livered without collision. f-MAC defines the following simple transmission policy:

Rule#1 Each node has to transmit messages as framelets. The framelet length
d is defined by the f-MAC base unit δ as follows:

d = δ/2 (1)

Rule#2 The number of framelets r per message is defined by the number of
nodes N in transmission range.

r = N (2)

Rule#3 Each node ni has to use a specific framelet frequency fi = 1/ti =
1/(ki · δ). The ki ∈ N+ must satisfy the following equation:

ki · (r − 1) < LCM(ki, kj) ∀ki < kj 1 ≤ i, j ≤ N (3)

f-MAC: A Deterministic Media Access Control Protocol 279

Rule#4 After the start of the transmission of the last framelet of a message,
a node must wait at least the time t′ before a next message can be
transmitted. t′ is computed as:

kmax = max
0≤i≤N

{ki}

t′ = (kmax · (r − 1) + 1) · δ (4)

From the previous described rules it can be deduced that a node ni needs in
the worst case the following time Ti to transmit a message:

Ti = (r − 1) · ti + t′ (5)

Example. Fig. 2 shows an example with three nodes (N = 3). The num-
ber of framelets is therefore r = 3. A possible1 set of ki satisfying Equation
(3) is k1 = 4, k2 = 5 and k3 = 6. According to Equation (4), the nodes use
t′ = 13 · δ. In the example it is assumed that n2 starts first at an arbitrary
time with a message transmission. Shortly after, n3 and then n1 start a trans-
mission as well. In the example, framelet#3 of n1 and n2 collide. However, all
other remaining framelets of each node’s ongoing transmissions can be transmit-
ted successfully. After the time t′ of node n1 and n2 expires, both nodes start
immediately a new transmission. Here framelet#1 of n1 and n2 collide and are
destroyed. However a framelet of each transmission can be subsequently sub-
mitted successfully. n3 sends a message some time after its waiting period t′ is
over. Framelet#1 of this transmission collides with framelet#2 of the ongoing
transmission of node n1. Framelet#2 of the transmission of n3 collides with the
framelet#3 of n2. However the last framelet of n3’s transmission is successfully
transmitted.

2.4 Validation

The previous stated example shows that the transmission scheme is feasible
under certain conditions. However, it has to be shown that the transmission
scheme is successful for all possible time shifts between the nodes.

Lemma 1. If node ni sends u (u ∈ N+) consecutive messages mi,u and node
nj sends v (v ∈ N+) consecutive messages mj,v, only framelets of exactly one
message mi,u can collide with framelets of exactly one message mj,v.

Proof. Assume for the sake of contradiction that framelets of message mi,u−1
and mi,u with u �= 1 collide with message mj,v. For this to happen, the following
equation must be fulfilled (see Equation 5):

t
′
< (r − 1) · tj + δ

1 This set of ki is possible, but not optimal. The optimal set of ki is shown in Section 3.

280 U. Roedig, A. Barroso, and C.J. Sreenan

The origin of this inequality can be described using the example shown in
Fig. 2. The inequality describes the case where a message transmission of n2
does fit between two consecutive transmissions of n1. This inequality can be
simpified the following way:

(kmax · (r − 1) + 1) · δ < (kj · (r − 1) + 1) · δ ⇒ kmax < kj

According to f-MAC Rule#4 and Equation 4, this statement can not be ful-
filled and thus contradicts the initial assumption.

Lemma 2. If node ni and node nj transmit a message, no more than one
framelet of these two message transmissions can collide.

Proof. Assume that more than one framelet of the transmission collide. There-
fore, after one collision happened, ni and nj must send again a framelet at the
same time. This can only be achieved if ki and kj have a least common mul-
tiplier within the period ki is sending its framelets. This can be expressed as
follows:

LCM(ki, kj) < ki · (r − 1) ∀ki < kj 1 ≤ i, j ≤ N

This statement obviously contradicts Rule#3 and Equation 3 and thus
contradicts the initial assumption.

Theorem 1. At least one framelet of any message transmission will be trans-
mitted collision-free (f-MAC theorem).

Proof. According to Lemma 1 and 2 only one framelet collision per message
transmission between two nodes can occur. According to f-MAC Rule#2 and
Equation 2 exactly r = N framelets are transmitted. Thus, even under worst
case conditions, only N − 1 framelets can be affected by a collision as a node
cannot produce a collision with itself.

3 f-MAC Properties

Two important properties of a MAC protocol are the message delay and the
available bandwidth. For most MAC protocols, the figures of these properties
vary with the number of nodes that participate in a collision domain. This is
observed as well within f-MAC and analyzed within this section.

Regarding message delay it has to be noted that an upper bound can be
computed. This is the main feature and design goal of f-MAC. Many available
MAC protocols do not allow us to compute such a deterministic bound. For
example collisions might occur and random back-off times are used.

Regarding bandwidth it has to be pointed out that f-MAC’s design goal is
not an optimisation of the channel utilisation. In fact, the channel utilisation is
reduced to enable strict guarantees for the message delay. Therefore, f-MAC has
a naturally poor channel utilisation.

f-MAC: A Deterministic Media Access Control Protocol 281

3.1 Worst Case Message Delay

The upper bound for the message delay between two nodes is given by the time
Tmax. Tmax is computed the following way using Equation 5:

Tmax = max
0≤i≤N

{Ti} (6)

f-MAC ensures that after a delay of Tmax a message is delivered between
two arbitrary nodes. This is the worst-case delay bound for all nodes. If just one
specific node is investigated, it might be possible to give a better upper bound of
the message delay. This is possible as some nodes are able to transmit messages
faster than others (They have a Ti < Tmax). Thus, the worst case delay bound
Tmin for the fastest node of the set is defined as:

Tmin = min
0≤i≤N

{Ti} (7)

To analyse how the times Tmin and Tmax increase with the number of nodes,
a program was implemented to determine the combination of ki for a given N
that leads to a minimal Tmax. The result of this computation is shown in Table 1
and Tmin and Tmax are shown graphically in Fig. 3 (The value Tav is explained
and obtained by simulation in Section 3.3).

As shown, the worst case delay bound increases exponentially with the number
of nodes that are in the same collision domain. Obviously, the number of nodes
used in one collision domain has a dramatic impact on the transfer delay. Thus,
f-MAC might not be useful in highly populated networks.

It also has to be noted that the gap between Tmin and Tmax increases with
the number of nodes. Some nodes are able to send messages faster than others.
This feature might be useful in cases where specific nodes have to deal with a
high traffic load.

Example. If, for example, N = 5 nodes are selected and a Nordic nRF2401
transceiver [3] with a message size of b = 32 bytes and a transmission speed of
1Mbit/s is assumed, the following value for the transfer delay bound is obtained:

δ = 2 · 0.25 ms = 0.5 ms ⇒ Tmax = 89 · 0.5 ms = 44.5 ms

Table 1. Sets satisfying the f-MAC
condition

N Set ki Tmin Tmax Tav

2 {2,3} 6δ 7δ 3δ

3 {2,3,5} 15δ 21δ 8δ

4 {3,4,5,7} 31δ 43δ 16δ

5 {3,5,7,8,11} 57δ 89δ 32δ

6 {5,7,8,9,11,13} 91δ 131δ 50δ

7 {5,7,8,9,11,13,17} 133δ 205δ 70δ

8 {5,9,11,13,14,16,17,19} 169δ 267δ 101δ

 0

 50

 100

 150

 200

 250

 300

 350

 2 3 4 5 6 7 8 9

D
e
la

y
 [
d
e
lt
a
]

Number of Nodes [N]

Tmin
Tmax

Tav

Fig. 3. Transmission delay Tmin and
Tmax and Tav

282 U. Roedig, A. Barroso, and C.J. Sreenan

3.2 Bandwidth

The available bandwidth Bi between two arbitrary nodes is given by the time
Ti and the fixed framelet size b in byte.

Bi =
b

Ti
(8)

The available maximum bandwidth Bmax (at the node using the smallest ki)
and minimal available bandwidth Bmin can thus be calculated using Tmin and
Tmax. The available bandwidth decreases exponentially as it depends on the
exponentially increasing message delay bound Ti.

Example. If, for example, N = 5 nodes are selected and a Nordic nRF2401
transceiver [3] with a message size of b = 32 bytes and a transmission speed of
1Mbit/s is assumed, the following value is obtained:

Bmin =
32 byte

44.5 ms
= 7.2

kbit

s

In this example, the maximum bandwidth is available for the node with ki = 3.
In this case Tmin is:

Tmin = (r − 1) · ti + t′i = 4 · 03 · δ + 45 · δ = 57 · δ ⇒ Bmax = 11.23
kbit

s

This small example shows that some nodes have a Ti < Tmax and therefore
have a higher bandwidth available.

3.3 Average Message Delay

As previously described, f-MAC guarantees that a message is delivered within
the time Tmax between arbitrary nodes. However, as each message transmission
consists of several framelets, it is likely that the destination node will receive
a message earlier than Tmax. In the previous paragraphs, the worst case upper
bound for the message transfer delay was calculated. In this section, the average
message transfer delay Tav between nodes is determined by simulation for specific
traffic patterns.

If a node wants to transmit a message using the f-MAC protocol, three factors
contribute to the observed message delay. First, the node ni might have to wait
for a portion of t

′
before it is allowed to start the transmission of the framelets

containing the message (see Section 2.3, f-MAC rules). Second, it depends which
framelet of the framelet trail sent the receiver gets first. Third, the transfer delay
depends on the ki of the f-MAC set the node is using to transmit. A node with
a small ki repeats the framelets relatively fast and thus the receiver has a high
chance to catch an uncollided framelet early.

One can expect that the average message transfer delay Tav is less than the
guaranteed message delivery time Tmax. Obviously, the resulting average message
transfer delay depends on the network configuration used and the particular
traffic pattern.

f-MAC: A Deterministic Media Access Control Protocol 283

Experiment. The f-MAC protocol was implemented within a simulation envi-
ronment. The ns2 network simulator was used for the experimental evaluation.

For the experiment, N nodes (2 ≤ N ≤ 8) are setup to transmit to one base
station (star topology). All N nodes are in the communication range of each
other and the base-station.

For the experiment, a Nordic nRF2401 transceiver [3] with a message size of
b = 32 bytes and a transmission speed of 1Mbit/s is assumed. Thus δ = 0.5 ms is
used. Each of the N nodes creates new messages according to a Poisson distrib-
ution. The arrival rate λ is the same at each node. Throughout all experiments,
an arrival rate of a quater of the maximum possible rate, determined by the
minimum available bandwidth Bmin is used.

The experimentally obtained values of Tav are shown together with the an-
alytically obtained results of Tmin and Tmax (see Section 3.1) in Table 1 and
Fig. 3. As expected, the experiments show that the average message transfer de-
lay is considerably better than the guaranteed maximum message transfer delay.
If the arrival rate λ is increased, the transfer delay Tav increases as more single
framelet collisions occur. As expected, Tav is always - regardless of the λ selected
- smaller than Tmax.

Furthermore, the experiments show that the communication among all nodes
can take place without any collision. The experiments show as well that the
f-MAC protocol implementation is relatively simple. To complete a full f-MAC
implementation, only 100 lines of C++ code were necessary. This simplicity
makes the MAC protocol useful for implementation in the very constrained sen-
sor network environment.

3.4 Findings

The guaranteed upper bound for the message delay and the available bandwidth
depend heavily on the node density in the network. More specificly:

1. The available bandwidth drops exponentially with the number of nodes.
2. The worst case delay increases exponentially with the number of nodes.

Therefore, it can be concluded that f-MAC is beneficial in sparsely populated
networks where each node has only a few neighbours.

However, the experiments show that in realistic traffic scenarios, the worst
case is not necessarily equal to the average operational case. Therefore the av-
erage message delay Tav is significantly smaller than the worst case message
delay Tmax.

4 Delivery Probability Analysis

f-MAC provides 100% message delivery if it is assumed that messages are only
lost due to collisions. In this section, the collision probability of a simple random
transmission scheme is investigated. It is analysed how close such a simple MAC
protocol will get to the design goal of 100% collision-free message delivery.

284 U. Roedig, A. Barroso, and C.J. Sreenan

Under real world conditions, even a collision-free protocol can not guarantee
100% message delivery as the wireless channel is lossy2. Thus, one could argue
that a MAC protocol does not need to be 100% collision-free; it would be enough
if the probability of a message loss is not significantly increased by an additional
collision probability. It is therefore of interest to know how a more primitive
MAC protocol with properties similar to f-MAC performs regarding its collision
probability. The comparison allows us to assess the operation conditions that
justify the use of f-MAC instead of a more simple solution.

4.1 Random Transmission Scheme

The MAC protocol used for comparison with f-MAC is similar to the MAC
protocol described and analysed in detail in [13].

The protocol is selected because it uses a framelet approach comparable to
f-MAC. Different to f-MAC, the transmitted r framelets are distributed in a
random fashion within the time interval TRS . The time interval TRS is divided
in r subintervals. A framelet of the current message is submitted within each
subinterval. The transmission time of the framelet in the subinterval is given by
a uniformly distributed random variable on [0, (TRS/r) − δ/2] (Fig. 4).

The resulting MAC protocol is simpler than f-MAC as no coordination (careful
determination of the ki) among neighbouring nodes is needed. Bandwidth and
delay bounds of the protocol are equal to f-MAC if TRS = Tmax is selected.
Basically, the collision-free behaviour of f-MAC is traded for simplicity of the
described random MAC.

Table 2. Delivery probability P of the
random transmission scheme

N Tmax PST PBT

2 7δ 0.651428 0.640000
3 21δ 0.944530 0.858846
4 43δ 0.984797 0.944530
5 89δ 0.998696 0.989094
6 131δ 0.999716 0.995770
7 205δ 0.999975 0.999134
8 267δ 0.999995 0.999667

RS

first message

n1

second message

T
r subintervals

Fig. 4. Random transmission scheme

4.2 Traffic Analysis

f-MAC attains a message delivery probability equal to 1 if it is assumed that
only collisions will be responsible for packet losses. If N nodes are contending for
transmission, then f-MAC requires each node to transmit r = N framelets and
every message will have been delivered after Tmax. With the random transmission
2 It has to be noted that TDMA based protocols also have to deal with lossy media

and are therefore unable to provide a 100% delivery probability.

f-MAC: A Deterministic Media Access Control Protocol 285

scheme, a message is transmitted within the time TRS but the message could be
lost due to collisions. Thus, the probability P of a successful transmission is less
than 1 (P < 1).

Saturated Traffic. In this comparison it is assumed that N nodes contend-
ing for the media are sending messages with the maximum available rate. If
f-MAC is used in this traffic scenario, a message is sent every Ti seconds, de-
pending on the nodes specific ki. If the random scheme is used, every node
is sending a message every TRS seconds. To enable a fair comparison - both
schemes provide the same bandwidth - the following value for TRS is selected:
TRS = Tmax. In this scenario, f-MAC attains a message delivery probability equal
to 1. For the analytic analysis it is assumed that all nodes start the transmission
of messages at the same point in time. In this case, the random transmission
scheme attains a transmission probability that can be calculated the following
way:

P (TRS) = 1 −
⎛⎝1 −

(
TRS

N − δ
TRS

N − δ
2

)2N
⎞⎠N

(9)

The probability depends on the number of nodes that are in communication
range of a potential message receiver. The delivery probability PST = P (TRS =
Tmax) is shown in Table 2. For small N , the delivery probability is significantly
lower than 100%. In this operation area, the usage of the more complicated
f-MAC sceme instead of the imsple random scheme is justified.

Bursty Traffic. In this traffic scenario, it is assumed that sporadically an event
triggers N nodes to send a message to a receiver (similar to the application
example described in Section 6). The time between events is assumed to be far
larger than Tmax. Consequently, the channel will be temporarily saturated as
nodes contend for transmission. Such a channel usage is for example likely if
the nodes are sensor nodes. The sensor nodes in one area of the field might be
triggered by the same event that all nodes are set-up to monitor.

If f-MAC is used in this case, messages are guaranteed to be delivered after
the time: (r − 1) · ti + δ/2 (the waiting time t

′
must not be considered, as it is

assumed that messages of previous events have been completely processed by the
system). For comparison purposes, the same delivery time should be achieved
by the random scheme. Thus, TRS = (r − 1) · tmax + δ/2 is selected.

The delivery probability PBT can be calculated using Equation (9). PBT =
P (TRS = (r − 1) · tmax + δ/2) is shown in Table 2. Here again, the delivery
probability for small N is significantly lower than the 100% achieved by the
f-MAC protocol.

4.3 Findings

In the real world, collision-free is not equal to 100% message delivery probability.
Channel loss by interference will occur as well. However, in sparsely populated

286 U. Roedig, A. Barroso, and C.J. Sreenan

networks (small N), the probability of a message loss by collision can be con-
siderable if a simple MAC protocol is used. f-MAC can reduce the number of
message losses significantly as only message losses due to lossy links occur. Thus,
f-MAC can be considered useful in sparsely populated networks with bursty traf-
fic patterns if the link quality is not too bad.

5 f-MAC Clusters

The f-MAC scheme described previously allows only a collision-free delivery if
all nodes participate in the scheme. Thus, if a large number of nodes have to
communicate (e.g. many wireless sensors in a sensor field), the following problem
arises. The number of framelets per transmission r is equal to the number of
nodes N in the field. Additionally, kmax might be a high number so that Rule#3
can be satisfied. This will result in a large Tmax which finally defines the upper
bound for transmission latency and the lower bound for bandwidth.

This problem can be attenuated by forming clusters. In most cases, not all
nodes will be within the transmission range of all other nodes. Alternatively,
the transmission power of the nodes can be dynamically adjusted such that only
a few nodes are in transmission range of each other. Thus, the f-MAC scheme
can be applied in localized areas that are formed by nodes that are within each
others radio range.

5.1 Cluster Example

An example is depicted in Fig. 5. All nodes are assumed to have the same radio
range R. Thus, n1, n2 and n3 are within each others radio range and form cluster
C1. Within the cluster, the different ki have to be selected according Rule#3.
For example k1 = 3, k2 = 5 and k3 = 7 can be used. Within cluster C2, which
comprises the next set of nodes that are in each others radio range, the ki have
to be selected. As n2 is member of 2 different clusters, it will use the already
selected k2 = 5. n5 and n6 can not select the same ki used by n1 and n3 due
to the hidden terminal problem. If for example n5 would use k5 = 3, messages
sent by n1 and n5 to n2 might collide at n2. Thus, cluster C1 and C2 must
obey the f-MAC rule set together. After computing the equations in Rule#3,
the following set of ki can be chosen for the clusters: k1 = 3, k2 = 5, k3 = 7,
k4 = 8, k5 = 11. Now, in C1 and C2 kmax = 11 is obtained and the upper bound
for the transmission delay is Tmax = 89 · δ. Cluster C3, containing another three
nodes (n5, n6, n7) can now be added in a more simplistic way. k5 = 11 can be
maintained, for n6 k6 = 3 can be selected as n1 is not in the collision domain
of C3. For the same reason, k7 = 7 can be selected for n7. Now the clusters are
setup and can be used with the f-MAC protocol.

5.2 Cluster Forming

Obviously, a method is necessary to form clusters and compute the ki after a
field is first set-up. This can be done statically after deployment, or a dynamic

f-MAC: A Deterministic Media Access Control Protocol 287

n2 n5 n6n1

n3 n4 n7

C2 C3C1

R

Fig. 5. f-MAC cluster forming Fig. 6. Noise-event detection

protocol for cluster forming has to be used. This paper focus on the investigation
of the basic features of f-MAC and therefore cluster forming techniques are not
discussed in this paper.

6 f-MAC Application Areas

The two exemplary application areas described in this Section benefit from the
use of f-MAC.

The first application is the use of f-MAC to realise deterministic sensor net-
works. As f-MAC provides hard guarantees on the information transfer delay, it
can be used as one building block of a sensor network that can guarantee proper
functioning in all possible operation cases. The second application is the use of
f-MAC to realise a sensor network that is used for time critical event detection.

For both described areas other solutions than f-MAC exist. However, for
some characteristics of the described applications, f-MAC represents the better
solution.

6.1 Worst Case Dimensioning

Application areas for wireless sensor networks may encompass production sur-
veillance, road traffic management, medical care or military applications. In these
areas it is crucial to ensure that the sensor network is functioning even under
worst case circumstances.

Analytical tools such as network calculus can be used to determine the numer-
ical range of network properties such as message transfer delay and node buffer
requirements [7]. It is then possible to dimension the sensor nodes in a way such
that all possible (even the worst cases) traffic scenarios can be supported by
the network. Supported means here that the specifications regarding message
transfer delay or node buffer requirements stay within the defined bounds at
any time.

288 U. Roedig, A. Barroso, and C.J. Sreenan

To implement a sensor network that complies with the analytically determined
specifications, deterministic network components are necessary. For example it
is necessary to give a maximum upper bound for the message forwarding delay.
Hence it is necessary to have a deterministic MAC layer. Contention based MAC
protocols do not provide these guarantees. Collisions may occur and a back-off
time is necessary. It is not possible to give an upper bound for the amount of
back-offs that are necessary to transmit a message successfully. Thus, scheduled
based MAC protocols are used if deterministic behaviour of the MAC protocol
is required. These protocols have the desired deterministic behaviour but need
a complicated and energy expensive time synchronisation among the nodes.

f-MAC provides the necessary deterministic behaviour in the MAC layer with-
out costly time synchronisation. Thus, f-MAC can be seen as a building block
for wireless sensor networks with deterministic behaviour.

6.2 Time Critical Event Detection

Sensor networks are often used to observe time critical events. For these kind of
measurements it is necessary to associate measurements with the accurate point
in time when they were taken. Particularly, if all measurements are analyzed
at one point (e.g. a base station), it must be known at which point in time
the measurements were taken. The example of such an application is shown in
Fig. 6. The figure shows a base station and 4 sensors. The sensors are used to
detect a specific acoustic event (e.g. a loud bang). Immediately after detection
of the event a message is generated and sent to the base station. If the base
station knows now when each of the sensors detected the event, it can calculate
the position of the noise source. This is possible because the sound wave needs
different times to reach each of the sensors.

Each sensor node places a time-stamp in each message sent towards the base
station. Either a time synchronisation among the nodes is used or the base station
determines the time offset of each node after the measurement was reported
[6]. However, time synchronisation among nodes might not be possible or is too
costly and the determination of time offsets after event detection needs additional
protocol steps.

To work around these problems, f-MAC can be used. Each node detecting an
event can immediately send a message to the base-station. The base station can
then, knowing which framelet of a transmission was received and which ki was
used, compute the time when the event was detected. This is possible as f-MAC
provides a deterministic message delay. In this case no time synchronization
among the nodes or additional protocol steps are necessary. Another advantage
of using f-MAC for the described application is the fact that collisions can be
handled. The detection of the acoustic event is very close together in time at
each sensor. Therefore, if a contention based MAC protocol would be used,
collisions would occur and the nodes would need to deal with this problem as
well. This will increase the hardware complexity of the sensor node; an f-MAC
sensor is simpler as it only has to send the framelets (no carrier sensing feature
is necessary).

f-MAC: A Deterministic Media Access Control Protocol 289

For the given application scenario, f-MAC provides a simpler alternative
solution.

7 Related Work

MAC protocols for sensor networks can be coarsley classified in two groups: con-
tention based and schedule based. Examples of contention based protocols are
S-MAC [8] and T-MAC [9]. Representatives of the schedule based approach are
TRAMA [10] and μ-MAC [11]. The primary design goal of most MAC protocols
for the area of wireless networks is energy efficiency and channel utilization. The
primary design goal of the presented f-MAC protocol in contrast is a determin-
istic, collision-free behavior without time synchronization.

f-MAC shares with the contention based approach the lack of coordination
between contending nodes for shared medium access. However, f-MAC differs
from the cited contention based approaches because it is able to prevent message
losses due to collisions with 100% guarantee. Schedule based protocols are are
able to ensure collision-free communication but they invariably require some
form of coordination between nodes. Mainly, time synchronisation among nodes
is used which is not required in in the presented f-MAC protocol.

The Bitmac [12] protocol differs from the previously described, classical pro-
tocols and has similar properties and design goals as the presented f-MAC. Sim-
milar to f-MAC, collisions are not seen as “bad thing”. If several nodes transmit
a bit at the same time, the transmission collides and the receiver gets the bit-
wise OR of the transmission. This feature can be used for specific applications in
sensor networks. Additionally Bitmac has, similar to f-MAC, a deterministic be-
haviour. In difference to f-MAC, Bitmac requires synchronisation (time-division
multiplexing) among nodes.

8 Conclusion

The paper presented the f-MAC protocol that allows the implementation of a
deterministic MAC layer without the need of time synchronization among the
nodes. The protocol is collision-free and thus gives hard guarantees on message
transfer delays and available bandwidth. The price for the deterministic behavior
is a low channel utilization. However, some application scenarios might require
a deterministic behavior and not necessarily a high throughput.

As shown, the message transfer delay increases exponentially with the number
of nodes present in the same collision domain. Similarly, bandwidth degrades
exponentially with the number of nodes in the same collision domain. Therefore,
in most cases, f-MAC is only useful in sparsely populated networks.

The protocol is relatively simple to implement and therefore useful in areas
where nodes are resource constrained. A timer is necessary within each node to
implement the protocol. This timer is needed to time the transmission of the
framelets and to measure when a next message can be transmitted. This timer

290 U. Roedig, A. Barroso, and C.J. Sreenan

has to be accurate only during the relatively short transmission time of one mes-
sage. Thus, relatively simple clocks can be used which helps an implementation
of f-MAC in constrained environments.

As the delivery of at least one framelet of a message is guaranteed, a node
does not have to perform a carrier sense. This is advantageous in a wireless
environment as a reliable carrier sensing mechanism is difficult to implement.
Additionally, the protocol deals with the hidden terminal problem. Two nodes
which are not in radio range of each other can send simultaneously to a third
node without additional protocol mechanisms (e.g. a CTS/RTS mechanism).

If power consumption has to be optimised within a network, f-MAC can be
tuned in a way that duty cycles are implemented. In this case a message is
repeated j times by a node (a message is sent j times using r framelets for
each message transmission). The receiver can then alter between a short energy
intensive listen period and a long energy saving sleep period (sleeping j−1 times,
awake 1 time). In this case, the message delay is increased by the factor j.

Clustering is necessary if f-MAC is used in a larger network. The cluster con-
figuration might be obtained by a clustering protocol or via static configuration.
Within a mobile environment, this might lead to an unacceptable communica-
tion overhead to maintain a cluster structure. Therefore, f-MAC might be only
suitable for a non mobile network environment.

Consolidated, f-MAC is useful in constrained, static and sparsely populated
networks where guarantees on the message transport delay are required.

The f-MAC protocol was implemented within a simulation environment and
it was shown that the protocol has a low complexity and is therefore suitable in
the sensor network environment. Currently we are incorporating the protocol in
our sensor platform to evaluate the protocol in a real environment.

Acknowledgments

The support of the Informatics Research Initiative of Enterprise Ireland is grate-
fully acknowledged.

References

1. B. O’Flynn, A. Barroso, S. Bellis, J. Benson, U. Roedig, K. Delaney, J. Barton,
C. Sreenan, and C. O’Mathuna. The Development of a Novel Miniaturized Mod-
ular Platform for Wireless Sensor Networks. In Proceedings of the IPSN Track
on Sensor Platform, Tools and Design Methods for Networked Embedded Systems
(IPSN2005/SPOTS2005), Los Angeles, USA, April 2005.

2. S. Mahlknecht and M. Boeck. CSMA-MPS: A Minimum Preamble Sampling MAC
Protocol for Low Power Wireless Sensor Networks. In Proceedings of the 5th IEEE
International Workshop on Factory Communication Systems (WFCS2004), Vi-
enna, Austria, September 2004.

3. Nordic Inc. nRF2401 Single Chip 2.4GHz Radio Transceiver Data Sheet, 2002.
4. NannoNET. nanoNET TRX Transceiver Data Sheet, http://www.nanotron.com.
5. Chipcon. CC2420 Transceiver Data Sheet, http://www.chipcon.com, 2004.

f-MAC: A Deterministic Media Access Control Protocol 291

6. G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap, J. Sallai,
K. Frampton: Sensor Network-Based Countersniper System, SenSys 04, Baltimore,
USA, November 2004

7. J. Schmitt and U. Roedig. Sensor Network Calculus - A Framework for Worst Case
Analysis. In Proceedings of the International Conference on Distributed Computing
in Sensor Systems (DCOSS05), Marina del Rey, USA, June 2005.

8. W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for wireless
sensor networks. In Proceedings of the IEEE Infocom 2002 (INFOCOM2002), New
York, USA, June 2002.

9. T. van Dam and K. Langendoen. An adaptive energy-efficient mac protocol for
wireless sensor networks. In Proceedings of the First ACM Conference on Em-
bedded Networked Sensor Systems (SenSys 2003), Los Angeles, USA, November
2003.

10. V. Rajendran, K. Obraczka, and J. Garcia-Luna-Aceves. Energy-efficient, collision-
free medium access control for wireless sensor networks. In Proceedings of the First
ACM Conference on Embedded Networked Sensor Systems (SenSys 2003), Los
Angeles, USA, November 2003.

11. A. Barroso, U. Roedig, and C. J. Sreenan. u-MAC: An Energy-Efficient Medium
Access Control for Wireless Sensor Networks. In Proceedings of the 2nd IEEE
European Workshop on Wireless Sensor Networks (EWSN2005), Istanbul, Turkey,
January 2005.

12. M. Ringwald and K. Roemer. BitMAC: A Deterministic, Collision-Free, and Robust
MAC Protocol for Sensor Networks. Proceedings of 2nd European Workshop on
Wireless Sensor Networks (EWSN 2005), Istanbul, Turkey, January 2005.

13. B. Davidson and C. Bostian. A One-Way Packet Communication Channel with
Retransmissions. SIGMOBILE Mobile Computing and Communication Review,
vol. 2, no. 1, 1998.

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 292 – 309, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Measurement-Based Analysis of the Interaction
Between Network Layers in TinyOS

Umberto Malesci1,2 and Samuel Madden1

1 MIT CSAIL, Cambridge, MA 02139
{umberto, madden}@csail.mit.edu

2 Fluidmesh Networks, Inc., Boston, MA 02111
umberto.malesci@fluidmesh.com

Abstract. There have been a number of recent proposals for link and network-
layer protocols in the sensor networking literature, each of which claims to be
superior to other approaches. However, a proposal for a networking protocol at
a given layer in the stack is typically evaluated in the context of a single set of
carefully selected protocols at other layers. Because of the limited data
available about interactions between different protocols at various layers of the
stack, it is difficult for developers of sensor network applications to select from
amongst the range of alternative sensor networking protocols. This paper
evaluates the interaction between several protocols at the MAC and network
layers measuring their performance in terms of end-to-end throughput and loss
on a large testbed. We identify some common sources of poor performance;
based on this experience, we propose a set of design principles for the designers
of future interfaces.

1 Introduction

The sensor network community has proposed a number of different networking
protocols for routing [14, 21], media access [4, 5, 8, 16, 17], and power management
[6, 8, 16, 17]. Despite significant innovation in each of these areas, there has been little
work addressing the interaction of protocols across areas into a single network stack.
Published papers typically propose changes in one abstraction (e.g., a new MAC layer)
while using some “default” implementation of the other abstractions (e.g., using the
“standard” multihop routing protocol in TinyOS) and evaluating on a particular
topology and a particular workload. This approach has led to a large number of
competing protocol proposals which are difficult to compare with one another due to
varying choices made by authors about appropriate defaults, application workloads,
and network topologies. This makes it hard for an application designer to select the
best set of protocols for his or her application and impossible for other researchers to
understand whether claimed differences between protocols are simply due to artifacts
in one experimenter’s setup or are true differences between protocols.

In this paper, we focus on the TinyOS [7] operating system, because source code
for many different protocol implementations is widely available and because it
appears to be the current platform of choice for sensor network research. In TinyOS,
problems related to the interactions between protocols are aggravated by significant
disagreement in the community about how functionality should be spread across

A Measurement-Based Analysis of the Interaction Between Network Layers in TinyOS 293

different network ‘layers’. Lines between layers are blurred, making innovation
difficult and mixing and matching of implementations tricky as interfaces are poorly
specified. As an example, consider per-link acknowledgments and retransmissions,
which are widely regarded as an important feature for reducing loss in sensor
networks. Different designers implement these features in different parts of the
network stack. Retransmissions due to negative or failed acknowledgments can be
implemented at either the link or network layers, as can duplicate suppression.
Placement of these operations is not consistent across implementations; for example,
the B-MAC [17] link/MAC protocol implements acknowledgments but assume that
retransmissions and not duplicate suppression should be implemented in the layers
above, whereas the S-MAC protocol implements all three. If a researcher wants to
design a new ‘network’ layer, he must choose which of ACKs, retransmissions, and
duplicate suppression to implement. These choices will invariably tie his
implementation to a particular MAC layer and limit the generality and impact of his
work; worse yet, due to unstated assumptions in various implementations, he may
believe his protocol will work with a particular MAC layer only to find it does not. If
the abstraction boundaries between layers were more cleanly implemented and
specified, these issues would not arise.

In this paper, we present a systematic study of the performance (in terms of
network loss rate) of different combinations of MAC, routing, forwarding, and power
management protocols that have been previously proposed in the literature. Our aim
is to provide measurements that will enable a first step towards fixing these problems
with the network protocols in TinyOS by:

1. Benchmarking several widely published protocols with the same application
workload and on the same network topology.

2. Highlighting the significant differences between different implementations
protocols that are ostensibly at the same ‘layer’.

3. Illustrating a number of examples where interactions between different layers lead
to significant performance degradation.

4. Recommending combinations of protocols for particular application workloads.
5. Illustrating that no one protocol at any of these layers strictly dominates any other

protocol (despite claims to the contrary in the literature), and that there are many
hidden assumptions and subtle issues with even widely used network protocols.

The purpose of this paper is not to proscribe a specific layering or to suggest that
one implementation is better than another. Rather, we aim illustrate some of the
limitations of the current state of software in TinyOS so that the community can move
towards a cleaner set of interfaces that support greater protocol diversity and allow
application developers to make more informed choices about the appropriate selection
of networking protocols.

2 Sensor Network Architecture

A common architecture and set of abstractions has emerged for the network stack for
wireless sensor networks. As in most network architectures, the basic abstraction is
the layer. However, the TinyOS network stack differs from the traditional Internet
stack in several ways:

294 U. Malesci and S. Madden

 Layers make abundant use of cross-layering in order to increase throughput and
decrease power consumption [10].

 Power management is present in many different forms in several layers.

The network stack in TinyOS can be broken into four major layers: the physical
layer, the link/MAC layer (to keep consistent with the naming using in many
publications, we refer to this simply as the MAC layer in the remainder of this paper),
the forwarding/routing layer (we refer to this as the routing layer in the remainder of
this text), and the application layer. Moreover, the network stack also performs other
two major services that are not present in Internet routing: power management and
link-quality estimation.

This paper mainly focuses on the analysis of the interaction between MAC layer,
routing layer, and power management taking into consideration the application-
specific requirements.

2.1 MAC Layer

As far as the Medium Access Control (MAC) protocol is concerned, the major
distinction is between the use of TDMA or CSMA to negotiate channel access. In
this paper, we focus on CSMA-based implementations, because, although several
TDMA protocols have been proposed [4], they are not available in implementations
that are easily integrated with existing multi-hop forwarding and routing protocols.

The different MAC protocols developed for sensor network also differ in the
additional services that they provide. For example, some MAC protocols, such as S-
MAC [8, 16], also perform link level acknowledgment and retransmission and
hidden-terminal avoidance via RTS/CTS. Moreover many MAC protocol also take
care of power management for the entire network stack [8, 16, 17]. However, the
needs of the application layer are not always considered when the MAC protocol
takes care of power management. For example, often the application needs require the
mote to wake up and sense the environment at specific times and rates that are not the
same as the forwarding needs of the communication stack.

Contention-Based Approaches

Contention-based approaches rely on protocols that detect and avoid packet-
collisions. Packet-collisions are detected by means of acknowledgment packets and
can be partially avoided using RTS/CTS (Request-To-Send/Clear-To-Send) packets
as well as exponential back-off on resend when a collision occurs. The major
advantages of contention-based MAC protocols are:

 No need for a very precise time-synchronization between the devices [8].
 Flexibility in terms of both changes in the network topology and changes in the

data-rates.

On the other hand, the major disadvantages of contention-based MAC protocols
are related to the possible contention for the medium and to the lack of innate energy
management mechanisms:

 Collisions increase the number of retransmissions and decrease channel capacity.
 They require the use of RTS/CTS packets to avoid collisions or per-link

acknowledgment packets to determine if a collision occurred.

A Measurement-Based Analysis of the Interaction Between Network Layers in TinyOS 295

 Power management is difficult. Inserting a duty cycle in CSMA-based protocols
requires both time-scheduling and time-synchronization. Without such
mechanisms, motes always listen to the channel, wasting energy [5].

Power management is often performed in the MAC layer and there are several
contention-based protocols designed for sensor networks that introduce duty-cycles in
order to save energy [5, 7, 8].

TDMA-Based Approaches

Though we do not experimentally evaluate TDMA, we briefly survey its merits
because it has some attractive properties that potentially make it useful in sensor
networks. In TDMA, a single radio-frequency channel is divided into multiple time
slots. Each time slot is assigned to a different device (e.g. mote) that requires access
to the medium. The two main strengths of the TDMA-based approach are that it
eliminates packet collisions since every device transmits during a different time slot
and that it provides a built-in power management scheme since devices only need to
be “on” in slots when they are sending or receiving data [4].

The major disadvantages of the TDMA approach in sensor networks is that it
requires precise time synchronization and provides a fixed, inflexible bandwidth
allocation to every node.

In addition to pure TDMA, Hohlt et al [6] propose a hybrid solution, where
transmission is scheduled using time slots, but medium contention and packet
collisions are still possible. This hybrid approach reduces medium contention by
assigning different time slots to different clusters of motes, while simultaneously
avoiding complexities in terms of time-synchronization that a full TDMA solution
would require. However, the current implementation only allows a one-way
communication toward the root of the routing tree and it therefore cannot be deployed
with many data-collection applications, such as TinyDB [9], that need broadcast and
multicast communication as well. Hence, we could not evaluate it in this study.

2.2 Routing Layer

Multi-hop protocols are widely used in sensor networks because, by multi-hopping,
nodes are able to send data-packets beyond the transmission range of a single low-
power radio.

In tree-based multi-hop routing, every node in the network keeps a neighborhood
table containing the best neighbor nodes that it can use to route packets toward the
root of the tree. A node has a parent that it uses to route packets toward the root; the
routing protocol decides which neighbor node should play this role and when it
should switch parents. The most recent multi-hop protocols base routing decisions on
the number of hops and on the estimated link quality [14, 15, 21].

Some services such as link-level retransmission and link-quality estimation are
performed in the routing layer in some implementations and in the MAC layers in
other implementations. This irregularity regarding the placement of key services
inside the network stack makes designing a new, general-purpose implementation of a
specific network layer difficult, as the layer will have to make assumptions about the
services provided by other layers that will invariably tie it to one set of accompanying
implementations. For example, some routing protocols rely heavily on snooping

296 U. Malesci and S. Madden

packets addressed to other nodes [14]. Therefore, power management schemes
implemented in the MAC layer that save energy by decreasing overhearing will break
when used with such routing protocols.

This tight and non-standardized correlation between the services required by the
routing protocol and the services provided by the underlying MAC layer make many
implementations difficult to reuse across multiple implementations; in Sections 4 and
5, we illustrate a number of such problems that exist in practice today, and discuss
some design options for remedying these problems in Section 6.

2.3 Power Management

Many sensor network applications require the network to survive several months or
years in the field without changing batteries. To achieve such lifetimes, it is necessary
to keep devices in a low-power (“sleeping”) state most of the time. The devices wake
up only when they need to perform a particular task, such as sensing or receiving and
transmitting data. This duty cycling needs to adapt to different application-specific
data rates and to variable network sizes.

Power management is often performed in the MAC layer and there are several
contention-based protocols designed for sensor networks that introduce duty-cycles in
order to save energy [5, 8, 16, 17]. Some protocols, such as B-MAC, implement a
power management scheme (called “low-power listening” by the B-MAC designers)
that increases packet preamble length (and hence transmission costs) but decreases
idle-listening costs by requiring nodes to listen for packet transmissions only once per
preamble period. Note, however, that this approach does not solve the “problem” of
nodes consuming power listening to packets addressed to other nodes.

Other protocols, such as S-MAC [8, 16] or T-MAC [5], employ a listen/sleep duty-
cycle, creating a cluster of neighboring nodes that share the same schedule and
therefore wake up and go to sleep all at the same time.

Another commonly used power management scheme for sensor nets, used in the
TASK/TinyDB system [1], works at the application layer and divides the time into
two frames; an active frame and a sleeping frame. In the active frame, motes transmit
and route the data-packets that were queued during the sleeping frame. Due to the
large size of the two frames, this approach does not need very precise time-
synchronization. However, it is not very flexible because the size of the frames is
fixed and does not adapt to either the network size or to the traffic characteristics.

3 Studied Implementations

We focused our effort in working with routing, MAC and power management
protocols that have been implemented using the TinyOS platform. Unfortunately only
a small percentage of all the protocols that have been proposed in the literature have a
mature and robust enough implementation that can be integrated and used on a real
test bed. Therefore, we had to limit the research are to two different MAC protocols
(B-MAC [17] and S-MAC [8, 16]) and three different routing protocols (/lib/Route,
MINTRoute and ReliableRoute [14]). Both B-MAC and S-MAC implement a power
management scheme integrated with the MAC layer, therefore in our experiments
changing MAC protocol meant also changing power management scheme. Within

A Measurement-Based Analysis of the Interaction Between Network Layers in TinyOS 297

each protocol variant, we look at performance differences with and without power
management.

3.1 MAC Protocols

B-MAC and S-MAC are the most mature and widely used MAC protocols within the
TinyOS project. They are both based on packet-collision avoidance schemes and they
both integrate a power management scheme within the MAC protocol. However, they
differ greatly in their architecture, in the additional services they provide, and in the
techniques they use to achieve energy-efficient operations.

B-MAC

The standard TinyOS MAC protocol is a contention-based protocol called B-MAC
[17]. As discussed above, B-MAC provides power management via low-power
listening; the “recommended” preamble length in B-MAC is 100ms [17], which is the
value we use here. B-MAC has been shown to outperform other MAC protocols in
previous studies [17], and has been carefully tuned for the radio used in Mica2 motes
like those in our deployment.

On Mica2 nodes with CC1000 radios, B-MAC supports synchronous acknow-
ledgments that require only a few extra bit-times on the end of each packet to transmit.
This depends on the ability of the sender and receiver to quickly switch roles at the end
of a packet transmission and remain synchronized before any additional sender can
sense an idle channel and begin transmitting.

B-MAC does not perform link-level retransmission or hidden terminal avoidance
using RTS/CTS schemes. The designers assume that such protocols will be
implemented at higher layers if necessary.

In B-MAC, every mote overhears every packet transmitted; this allows high-layer
network protocols to employ snooping for link-quality estimation [14] and in-network
processing [9].

The designers of B-MAC do not assume that a single set of parameters will work
with every possible application and they do not try to make B-MAC oblivious to the
protocols that run above it. Instead, B-MAC offers control to the protocols that sit on
top of it, allowing to the routing and application layers to change parameters like the
low-power listening duration or the number and type of retransmissions used. The
idea is to enable cross-layer optimization without imposing a particular API on end
users. Unfortunately, as far as we know, most implemented routing layers do not
make use of this cross-layer tuning API.

The authors of BMAC [17] claim that their protocol consistently delivers 98,5% of
packets. Our results show that, in fact, such low loss rates are only possible under
optimal conditions, and that, in many cases, BMAC performs far worse, delivering a
relatively small fraction of packets even under lightly loaded conditions.

S-MAC

S-MAC [8, 16] is a contention based MAC protocol that adds into the MAC layer
power management, link-level retransmission, duplicate packet suppression, hidden
terminal avoidance using RTS/CTS, and link-quality estimation.

298 U. Malesci and S. Madden

The power management scheme is based on shared schedules between “neighbor-
hoods” of small groups of motes. Some motes follow more than one schedule
simultaneously and therefore are able to forward packets from one neighborhood to
another.

The S-MAC power management scheme tries to minimize energy consumption by
decreasing the overhearing of other motes’ transmissions. Motes sleep when they
detect a transmission not addressed to them, and neighborhoods deactivate during
times when they are not actively scheduled.

Unlike B-MAC, S-MAC does not provide any way for the higher layers to change
its MAC parameters but assumes, as in Internet routing, that every layer can be
completely separated and independent from the others.

3.2 Routing Protocols

The three different routing protocols we tested differ in terms of both the routing
algorithm and the services they provide. /lib/Route seeks to minimizes the number of
hops that each packet traverses. On the other hand, MINTRoute and ReliableRoute
route packets based on link-quality estimates that seek to maximize the probability of
a packet being delivered.

/lib/Route. Route was the standard routing protocol in TinyOS 1.1.0; it has been
supplanted by MINTRoute. Route performs link-quality estimates but bases routing
decisions mainly on hop count, using link-quality estimates simply as a threshold to
prune very low quality links.

MINTRoute. MINTRoute is the new standard routing protocol for TinyOS. Unlike
/lib/Route, MINTRoute bases its routing decisions mainly on link-quality estimates
rather than minimum hop count. The quality estimates for sending and receiving are
used to select a parent that will minimize the expected number of transmissions to
reach the root of the network. The literature [1, 14, 15, 21] reports better performance
using link quality estimates rather than minimum hop count. Moreover, MINTRoute
adds to /lib/Route a topology stabilization mechanism in order to avoid frequent
parent switching.

MINTRoute’s design and implementation involves several hidden assumptions that
make it inappropriate under certain conditions. For example, MINTRoute assumes the
capability to snoop every neighbor’s packets. This makes using MINTRoute with a
MAC that doesn’t conform to this specification (such as S-MAC) problematic; we
discuss this issue further in Section 5.

ReliableRoute. ReliableRoute uses the same routing algorithm as MINTRoute but
implements link-level retransmissions. However, it does not implement duplicate
suppression; to provide valid end-to-end throughput results, we implemented a
duplicate suppression algorithm for purposes of our experiments. By default
ReliableRoute performs up to 5 link-level retransmissions. In our experiments we
decreased the maximum number of retransmissions to 3 in order to achieve
consistency with S-MAC which also performs up to 3 retransmissions by default.

ReliableRoute performs packet retransmissions based on acknowledgement
information that it expects the MAC layer to provide and therefore does not work
with any MAC protocol, such as S-MAC, that does not conform to this specification.

A Measurement-Based Analysis of the Interaction Between Network Layers in TinyOS 299

3.3 Application Workload

Our experiments use a workload similar to that of many environmental monitoring
applications like TinyDB [9] or Surge (a simple TinyOS application designed to
collect readings from all motes in a network at a fixed rate).

Environmental monitoring applications, broadly speaking, have low, fixed data
rates, require relatively long-lived deployments, do not require reliable data delivery,
are tolerant of a high degree of latency, are generally many-to-one (e.g., can use tree-
based routing.) As our work is mainly focused on sensor networks for data collection,
we use several different workloads of this type. In particular, we use different routing
and MAC layers under the Surge application.

4 Evaluations and Experiments

In this section, we study the performance of the different MAC and routing protocols
under different application workloads. All our results are based on experiments run on
a 61-a Mica2 [18] and Cricket [19] test bed which covers about 20,000 square feet
and 8-10 network hops. Although both types of motes are able to run the same
executables, in order to ensure consistent results, we run only on the Mica2 motes,
therefore using only 46 out of 61 motes. Each Mica2 mote has an Atmel
ATmega128L processor with 4 KB of RAM, 128 KB of flash, and a CC1000 433
MHz radio that modulates at 38.4 symbols per second using Manchester encoding.
Moreover, each mote was attached to a Crossbow MIB6000 Ethernet interface board.
The board provides power to the mote and allows remote reprogramming and data
collection via Ethernet. We managed and controlled the entire testbed though a
Motelab [3]-based web interface.

In all experiments, each mote was running the same version of Surge (TinyOS
1.1.0 release [7]). Surge transmits sensor readings at a fixed rate. We ran our
experiments at several different data rates; we report here results where we send one
packet every 10 seconds and one packet every 60 seconds, representing a high-load
and a low-load scenario.

One packet every 10 seconds creates a high-contention situation even with no
power-management scheme enabled. Polastre et al. [17] show that a 20-node Mica2
network can deliver (in aggregate) about 16 packets per second when running B-MAC.
With 46 nodes each sending 1 packet every 10 seconds, with an average of node-depth
of 3, the entire network sends 13.5 packets per second, which is close B-MAC
maximum throughput capabilities. Following the trends shown by Polastre et al. [17],
we expect our 46 node network to have somewhat less throughput than a 20 node
network.

At a rate of 60 seconds per packet, we generate 2.25 packets per seconds on the
network, clearly below the B-MAC throughput limits.

4.1 B-MAC

In our experiments with B-MAC we varied three different parameters: the routing
protocol, the transmission rate and the preamble duration. We tested the latest version

300 U. Malesci and S. Madden

Table 1. Performance usingz B-MAC and various routing protocols

B-MAC Always On
High Data Rate (10 seconds period)

Protocol Throughput
 Avg. Max. Min.

MINT 56% 12% 72% 45%
/lib/Route 48% 2% 51% 46%

Reliable Route 47% 6% 54% 41%

Low Data Rate (60 seconds period)

Protocol Throughput
 Avg. Max. Min.

MINT 49% 5% 54% 43%
/lib/Route 61% 14% 82% 47%

Reliable Route 55% 10% 71% 45%

B-MAC LPL 100 ms
High Data Rate (10 seconds period)

Protocol Throughput
 Avg. Max. Min.

MINT 37% 3% 41% 33%
/lib/Route 24% 7% 33% 17%

Low Data Rate (60 seconds period)

Protocol Throughput
 Avg. Max. Min.

MINT 40% 2% 43% 39%
/lib/Route 24% 11% 34% 8%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 7% 14
%

21
%

28
%

35
%

42
%

49
%

56
%

63
%

70
%

77
%

84
%

91
%

98
%

Throughput

C
D

F

LPL 100 ms Route 60 sec

LPL 100 ms MINT 60 sec

BMAC Always ON MINT 60 sec

BMAC Always ON Reliable 60 sec

BMAC Always ON Route 60 sec

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 8% 16
%

24
%

32
%

40
%

48
%

56
%

64
%

72
%

80
%

88
%

96
%

Throughput

C
D

F

LPL 100 ms Route 10 sec
LPL 100 ms MINT 10 sec
BMAC Always ON Reliable 10 sec
BMAC Always ON Route 10 sec
BMAC Always ON MINT 10 sec

Fig. 1. On the left, CDF of the average throughput using various configurations of B-MAC and 60
sec data rate. Here, steeper, more convex curves indicate worse performance (as fewer nodes
achieve high throughput), whereas more concave curves indicate better performance. On the right,
CDF of the average throughput using various configurations of B-MAC and 10 sec data rate.

of B-MAC [17] using three different routing protocols: /lib/Route, MINTRoute, and
ReliableRoute. We performed experiments at both high and low data rate. We used
two variants of power management: in “always-on” mode and using low-power
listening with the default preamble length of 100 ms. Unfortunately there is no
existing implementation of ReliableRoute integrated with low-power listening.

A Measurement-Based Analysis of the Interaction Between Network Layers in TinyOS 301

Therefore, the combination ReliableRoute LPL is missing in Table 1. Each
experiment ran for 60 minutes and was repeated 5-8 times.

We measured throughput by calculating the percentage of messages sent by the
motes that were actually collected by the root node. Table 1 shows the results using
different power-management schemes and traffic conditions. Here, avg. and
represent the average throughput and the standard deviation of all trials, min and max
represent the best and worst trial in the set.
From the results reported in Table 1 and Figure 1, we observe:

 In always-on mode and under high data rate conditions, there is no significant
difference in performance among the different routing protocols. We believe this
is due to frequent packets collisions that void the benefits that any particular
routing metric provides.

 In always-on mode and under low-traffic conditions, /lib/Route performs better
than MINTRoute and ReliableRoute. However, in always-on mode the
throughput of the various protocols is not dramatically different; our results in
Section 5.2 suggest that B-MAC may not be well suited to the particular
application workload generated by Surge.

 Link-level retransmissions slightly improve throughput when medium contention
is low, but decrease throughput when medium contention is high. Link-level
retransmissions create a trade-off: on one hand they increase the probability that a
particular packet is successfully received; on the other hand, they increase
medium contention by increasing the average number of packets that need to be
transmitted.

4.2 S-MAC

As with B-MAC, in our experiments with S-MAC we varied the routing protocol, the
transmission rate and the duty cycle. We tested the latest version of S-MAC (version
1.2) using: /lib/Route and MINTRoute (we did not try ReliableRoute because S-MAC
implements retransmissions at the link layer).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 7% 14
%

21
%

28
%

35
%

42
%

49
%

56
%

63
%

70
%

77
%

84
%

91
%

98
%

Throughput

C
D

F

SMAC MINT 60 sec 10%
SMAC Route 60 sec 10%
SMAC MINT 60 sec 90%
SMAC Route 60 sec 90%

0

10

20

30

40

50

60

5:00:58 5:02:24 5:03:50 5:05:17 5:06:43 5:08:10

Arrival Time

N
od

e
ID

Fig. 2. On the left, average throughput CDF using various configurations of S-MAC with 60
sec data rate. On the right, arrival pattern of packets at the root node using S-MAC/Route with
10% duty cycle at 60 sec data rate.

302 U. Malesci and S. Madden

Table 2. Performance of S-MAC at 90%
duty cycle and various routing protocols

Table 3. Performance of S-MAC at 10%
duty cycle and various routing protocols

S-MAC 90% duty cycle

High Data Rate (10 seconds period)

Protocol Throughput

 Avg. Max Min
MINT 44% 13% 61% 26%

/lib/Route 31% 10% 40% 20%

Low Data Rate (60 seconds period)
Protocol Throughput

 Avg. Max Min

Route 90% 3% 92% 85%

/lib/Route 89% 2% 91% 87%

S-MAC 90% duty cycle (no retransmit)

High Data Rate (10 seconds period)

Protocol Throughput

 Avg. Max Min

Route 32% 15% 45% 6%

/lib/Route 26% 7% 36% 19%

Low Data Rate (60 seconds period)

Protocol Throughput

 Avg. Max Min

Route 90% 1% 91% 88%

/lib/Route 85% 3% 87% 80%

S-MAC 10% duty cycle

High Data Rate (10 seconds period)

Protocol Throughput

 Avg. Max Min
MINT 13% 7% 19% 2%

/lib/Route 20% 9% 36% 14%

Low Data Rate (60 seconds period)
Protocol Throughput

 Avg. Max Min

Route 36% 7% 45% 28%

/lib/Route 63% 10% 74% 50%

S-MAC 10% duty cycle (no retransmit)

High Data Rate (10 seconds period)

Protocol Throughput

 Avg. Max Min

Route 16% 4% 21% 10%

/lib/Route 26% 7% 36% 19%

Low Data Rate (60 seconds period)

Protocol Throughput

 Avg. Max Min

Route 37% 4% 42% 31%

/lib/Route 84% 3% 88% 81%

 We use the same high-rate and low-rate workloads as in the previous section. We
tested S-MAC using two duty cycles: 90% and 10%. The latter is the default value for
S-MAC and we picked 90% because is close to always-on mode but it still involves
scheduling and neighborhood management.
 Tables 2 and 3 show the results under different duty cycles and traffic conditions,
with S-MAC with and without link-level retransmissions. From the results in Table 2
and 3 and from Figures 2 and 3, we observe:

 As in the case of B-MAC, link-level retransmissions do not always improve end-
to-end throughput. At 90% duty cycle retransmissions slightly improve end-to-
end throughput at both rates. However, at 10% duty cycle, when medium
contention is higher, retransmissions consistently harm end-to-end throughput.

 At 90% duty cycle, MINTRoute performs slightly better than /lib/Route.
However, at 10% duty cycle /lib/Route substantially outperforms MINTRoute.

 By studying the nodes routing tables, we determined that nodes using
MINTRoute had difficulty finding a parent and tended to lose their parent once
they found one. We believe this is because MINTRoute takes advantage of
snooping to perform link-quality estimation and it is unable to cope with a MAC

A Measurement-Based Analysis of the Interaction Between Network Layers in TinyOS 303

layer that saves energy by turning off the radio to reduce idle-listening. On the
other hand, the /lib/Route algorithm is based mainly on minimum hop count and
is much more robust under low duty cycle operations.

 From Figures 3 we can see that increasing the S-MAC duty cycle creates instability
in the parent selection algorithm. Figure 3 (left) shows stable parent selection when
a 90% duty cycle is used. Figure 3 (right) shows that parent selection becomes
unstable and parent switching more frequent with a 10% duty cycle.

 By looking at Figure 2 (right), we deduce that S-MAC duty cycling is able to
spread in time packets that are simultaneously transmitted by all nodes and
therefore take advantage of additional medium capacity.

-2

8

18

28

38

48

58

-2 8 18 28 38 48 58

Node ID

P
ar

en
t

ID

0

10

20

30

40

50

60

-2 8 18 28 38 48 58

Node ID

P
ar

en
t

ID

Fig. 3. On the left, parent distribution based on child’s node ID using S-MAC with 90% duty
cycle, Route and 60 sec. data rate. Circle size is proportional to the number of times a given
node routed data via a given parent. On the right, parent distribution based on child’s node ID
using S-MAC with 10% duty cycle, Route and 60 sec. data rate.

5 Overall Performance

In this section, we compare the performance results from S-MAC and B-MAC to
further study the source of many of the differences that we observed. Table 4 and
Figure 4 summarizes our results.

Table 4. Best protocol combinations matrix with respective average throughput

 POWER MANAGEMENT

 Enabled Disabled

H
i
g
h

MINTRoute
B-MAC

37%

MINTRoute
B-MAC

51%

DATA
RATE

L
o
w

Route
S-MAC

84%

MINTRoute
S-MAC

90%

304 U. Malesci and S. Madden

In the low-contention scenario with a data rate of 1 packet per minute (Figure 4,
right), S-MAC with Route clearly outperforms all the other combinations of MAC and
routing protocols. S-MAC at 10% duty cycle with Route reaches a throughput nearly
equivalent to S-MAC at 90% duty cycle and much higher than B-MAC in any
configuration.

In the high data rate scenario (Figure 4, left), the best configuration was B-MAC
in always-on mode with MINTRoute.

Fig. 4. On the left, average throughput comparison between S-MAC and B-MAC using
different routing protocols and energy-management scheme and high data rate. On the right,
average throughput comparison between S-MAC and B-MAC using different routing protocols
and energy-management scheme and low data rate (60 sec).

5.1 Power Management

Looking at the results for low-power configurations in Figure 5, B-MAC Low Power
Listening with a preamble of 100 ms and MINTRoute clearly outperformed S-MAC
at 10% duty cycle, either with Route or MINTRoute. However, in the high-rate, low-
power scenario, no configuration was able to exceed a 50% throughput (even with
retransmissions), making all the studied protocols inappropriate for the majority of
real-life applications.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 7%
14

%
21

%
28

%
35% 42% 49

%
56% 63

%
70

%
77% 84

%
91% 98%

Throughput

C
D

F

SMAC MINT 10 sec 10%
LPL 100 ms Route 10 sec
SMAC Route 10 sec 10%
LPL 100 ms MINT 10 sec

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 8% 16
%

24
%

32
%

40
%

48
%

56
%

64
%

72
%

80
%

88
%

96
%

Throughput

C
D

F

SMAC MINT 60 sec 10%
SMAC Route 60 sec 10%
LPL 100 ms MINT 60 sec
LPL 100 ms Route 60 sec

Fig. 5. On the left, CDF of throughput at high data rate (10 sec) using Low Power Listening
with B-MAC or 10% duty cycle with S-MAC. On the right, CDF of throughput using Low
Power Listening with B-MAC or 10% duty cycle with S-MAC and low data rate (60 sec).

0% 20% 40% 60% 80% 100%

M
IN

T
 R

ou
te

/li
b/

R
ou

te

Throughput

B-MAC Always-On
S-MAC 90% duty
B-MAC LPL 100ms
S-MAC 10% duty

0% 20% 40% 60% 80% 100%

M
IN

T
 R

ou
te

/li
b/

R
ou

te

Throughput

B-MAC Always-On
S-MAC 90% duty
B-MAC LPL 100 ms
S-MAC 10% duty

A Measurement-Based Analysis of the Interaction Between Network Layers in TinyOS 305

 Figure 5 (right) shows the CDF of the throughput for the experiment at 60 sec. data
rate experiments with power management enabled. Notice that the curve
corresponding to S-MAC with Route is much more concave than the others,
suggesting that a large fraction of nodes is able to achieve relatively high throughputs,
whereas other approaches performed quite poorly in this setting.

5.2 Inter-arrival Time of Send Requests

The application layer strongly influences the performance of the entire network. We
varied the pattern of send requests across different nodes and studied how this
variation impacts the performance of both B-MAC and S-MAC. In the standard case,
nodes in Surge transmit data at the beginning of every time period with no
randomization; since nodes begin running at about the same time, this leads many
send requests occurring at the same time across many nodes . To study the effect of
eliminating this bursty behavior, we forced nodes to be out of phase by having them
delay by a time proportional to their node ID. Using B-MAC, the average throughput
increased from 49% to 93% transmitting at 60 sec. per packet rate and from 56% to
91% transmitting at 10 sec. per packet rate (Figure 6). With S-MAC, we see no
benefits from using this technique, since S-MAC already spreads results in time (as
shown in Figure 2, right).

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 5 9 13 17 21 25 29 33 37 41 45 49 53

Node ID

T
h

ro
u

g
h

p
u

t

Gain from Spreading Transmission
Mint Normal

Fig. 6. Average throughput per node. MAC/MINT combination at data rate of 10 sec data rate
with and without application-level delays between sending at different nodes (“spreading”).

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

5 15 30 46
Number of Active Nodes

A
ve

ra
ge

 T
h

ro
ug

h
pu

t

B-MAC MINT
S-MAC MINT

Fig. 7. Average throughput of B-MAC and S-MAC as network size varies. B-MAC is in
always-on mode at 60 sec data rate, S-MAC is at 90% duty cycle and 60 sec data rate. Error
bars are ±2 .

306 U. Malesci and S. Madden

5.3 Scaling Issues

Figure 7 shows the performance of S-MAC and B-MAC with networks of different
sizes. From these experiments, it is clear that B-MAC does not scale as well as S-
MAC since the end-to-end average throughput decreases as we increase the number
of transmitting nodes in the network. Using B-MAC and MINTRoute and a data rate
of 60 seconds per packet, we measured an average throughput of 78% when we had
only 15 nodes operational and of 49% when we had 46 nodes operational. On the
other hand, because S-MAC partitions the network into different schedules and
spreads sending over time, it is able to scale much better – in fact, we did not see any
performance degradation as we increased the network size.

6 Discussion

Here we briefly relate some observations derived from our performance analysis of
the state of networking in TinyOS:

 Some power management schemes (and MAC layers) prohibit snooping on non-
local radio traffic while some applications and routing layers rely on snooping for
proper functioning. This is a fundamental issue that limits the ability to intermix
different layer implementations. We discuss this issue in Section 6.1 in more
details.

 Tuning power management settings (e.g., LPL preamble length and S-MAC sleep
percentage) as well as other constants (e.g., link quality thresholds) is very hard
for application designers, and making appropriate choices can dramatically affect
application performance. For example, we saw that large, high-rate, power-
managed networks with default power management settings in TinyOS perform
poorly with any combination of MAC/routing layer, while small networks can
perform quite well with default power management settings. Even when
interfaces for tuning parameters are provided (as in B-MAC), it is often unclear
how adjusting these settings will affect network performance.

 Application workload and type of traffic dramatically affect network throughput.
For example, we saw how introducing delays at the application can increase
network average throughput in B-MAC from 50% to 90%, but that such changes
have little effect on S-MAC. Such hidden dependencies make it very difficult for
application designers to switch from one network stack to another and can be
quite frustrating when deploying an application.

 No MAC/routing combination wins in every possible situation. The choice of
MAC layer, in particular, can dramatically affect the effective channel utilization
of applications in unexpected ways.

 Aside from issues where MINTRoute and S-MAC’s power management scheme
interacted very badly, we observed surprisingly little sensitivity to routing
protocol in any of our experiments. Switching from Route to MINTRoute
increases overall throughput by about 5% (s=3.1%) (excluding the S-MAC at
10% duty-cycle case). In contrast, choosing the appropriate MAC for a given
workload affects the overall throughput by about 16% on average.

A Measurement-Based Analysis of the Interaction Between Network Layers in TinyOS 307

 Link-level retransmissions do not always help and sometimes they hurt end-to-
end throughput by increasing overall network contention. We discuss this issue in
more detail in Section 6.2.

 Some protocols do not scale properly when run on larger networks. For example,
B-MAC’s performance with 46 transmitting nodes is 30% lower than with only
15 transmitting nodes. This effect is much less pronounced with S-MAC.

6.1 The Idle Listening vs. Snooping Trade-Off

Our experiments suggest that there is a fundamental tradeoff between reducing idle-
listening and utilizing overhearing in sensor networks.

There appear to be two primary uses for overhearing: in in-network processing,
with applications such as TinyDB [9] or monitoring diffusion phenomena [11], and in
network protocols such as MINTRoute that use it to collect statistics about network
performance. In the former case, overheard messages are used to improve
performance but are not necessary for correctness; in the latter case, as in
MINTRoute, overhearing is necessary for acceptable network performance. In cases
when the ability to overhear is impaired (as when S-MAC shuts off the radio
channel), very bad behavior can result.

In the literature there are several examples of successful link-quality estimation
techniques that do not involve overhearing of unicast packets addressed to other
nodes [15, 21]. Therefore, we believe that link-quality estimation can be performed
without the need for overhearing, which suggests that building routing protocols that
depend on it is probably a bad idea (since any power-conscious application will turn
off the radio at least some of the time).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 8% 16
%

24
%

32
%

40
%

48
%

56
%

64
%

72
%

80
%

88
%

96
%

Throughput

C
D

F

SMAC Route 10 sec 90%
SMACnoRx Route 10 sec 90%
SMAC Route 10 sec 10%
SMACnoRx Route 10 sec 10%

Fig. 8. Throughput CDF using S-MAC and varying the maximum number of link-level
retransmissions and the data rate

6.2 Link-Level Retransmissions

Several proposals have claimed that link-level retransmissions substantially increase
reliability of wireless sensor networks [13, 14, 17].

Our results show that this is not always the case. Link-level retransmissions
present a trade-off between increasing the probability of end-to-end transmission
success and decreasing overall medium-contention. From our results, we noticed

308 U. Malesci and S. Madden

that if the network is not congested, link-level retransmission tends to benefit the
overall end-to-end throughput. However, in cases where the network is already
congested, link-level retransmissions actually decrease overall throughput, as
illustrated in Figure 8. This figure illustrates that at high duty cycles when
medium-contention is low, link-level retransmissions improve throughput; on the
other hand, at low duty cycle when medium-contention is high, link-level
retransmissions decrease performance.

These observations suggest that network protocols need some facility to determine
if losses are due to contention or simply transient external interference.

6.3 Cross-Layering

Others have noted the porosity of network layers and the extent of cross-layering
optimization in sensor networks [10, 20]. We observed this as well; for example,
different components of the routing layer choose to implement different parts of link-
layer retransmissions in different layers. In the case of B-MAC, for example, the
application implements duplicate suppression, the network layer implements
retransmissions, and the MAC layer implements acknowledgements. This makes the
job of application designers very difficult. Our experience suggests that this cross-
layering is a source of incompatibility among protocols, since, as with the routing and
link layers in B-MAC, it tends to create coupled sets of layers that depend on specific,
non-standard cross-layer APIs. Though this coupling may help increase performance
of a single application or network stack in the short-term, careless cross-layering
limits the ability of protocol designers to innovate at different layers and will
ultimately make developing solid implementations of sensor network protocols very
hard. Hence, the sensor network community must converge on standard APIs and
agree to abide by them.

7 Conclusion

By studying how different combinations of MAC, routing, and power
management schemes interact with each other under several different application
workloads, we have illustrated several issues with the current state of protocol
implementations in TinyOS. First, and somewhat to our surprise, we found that no
combination of MAC and routing protocols dominates all others, and that some
combinations of MAC and routing protocols are particularly incompatible with
one another. Second, we observed that some issues that we thought would
dramatically affect performance (routing protocols, retransmissions) had little
effect. Third, we observed (as others have), that cross-layer optimizations tend to
blur lines between layers in sensor networks, and that this blurring makes the
design of modular, interchangeable software components very difficult. We
believe these lessons are an important step towards understanding the source of
performance problems in sensor networks and that they will prove invaluable in
our own and other’s future work designing next generation protocol architectures
for sensor networks.

A Measurement-Based Analysis of the Interaction Between Network Layers in TinyOS 309

References

1. P. Buonadonna, D. Gay, J. Hellerstein, W. Hong, and S. Madden: TASK: Sensor Network
in a Box. European Workshop on Sensor Networks, January 2005.

2. Geoff Werner-Allen, Jeff Johnson, Mario Ruiz, Jonathan Lees, and Matt Welsh:
Monitoring Volcanic Eruptions with a Wireless Sensor Network. European Workshop on
Sensor Networks, January 2005.

3. M. Welsh, and G. Werner-Allen: G. Motelab webpage – http://motelab.eecs.harvard.edu.
4. V. Rajendran, K. Obraczka, and J.J. Garcia-Luna-Aceves: Energy-Efficient, Collision-Free

Medium Access Control for Wireless Sensor Networks. ACM SenSys ’03, November
2003.

5. T. van Dam, K. Langendoen: An Adaptive Energy-Efficient MAC Protocol for Wireless
Sensor Networks. SenSys ’03, November 2003.

6. B. Hohlt, L. Doherty and E. Brewer: Flexible Power Scheduling for Sensor Networks. In
Proceedings of IPSN, April 2004.

7. TinyOS: http://webs.cs.berkeley.edu/tos/
8. W. Ye, J. Heidemann, and D. Estrin: An energy-efficient MAC protocol for wireless

sensor networks. In INFOCOM, June 2002.
9. S. Madden, M. Franklin, J. Hellerstein, and W. Hong: TAG: a tiny aggregation service for

ad-hoc sensor networks. In 5th Symposium on Operation System Design and
Implementation, December 2002.

10. P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. Brewer and D. Culler:
The Emergence of Networking Abstractions and Techniques in TinyOS. In NSDI, March
2004.

11. L. Rossi, B. Krishnamachari, C. Kuo: Distributed Parameter Estimation for Monitoring
Diffusion Phenomena Using Physical Models. In SECON, October 2004.

12. R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler: Lessons from a sensor network
expedition. European Workshop on Sensor Networks, January 2004.

13. J. Zhao, and R. Govindanm: Understanding Packet Delivery Performance in Dense
Wireless Sensor Networks. ACM SenSys ’03, November 2003.

14. A. Woo, T. Tony, and D. Culler: Taming the Underlying Challenges of Reliable Multihop
Routing in Sensor Networks. ACM SenSys 2003, November 2003.

15. D. De Couto, D. Aguayo, J. Bicket, and R. Morris: A High-Throughput Path Metric for
Multi-Hop Wireless Routing. In Proceedings of. ACM MobiCom, September 2003.

16. W. Ye, J. Heidemann, and D. Estrin: Medium Access Control With Coordinated Adaptive
Sleeping for Wireless Sensor Networks. In Transactions on Networking (2004) 493-506.

17. J. Polastre, J. Hill, and D. Culler: Versatile Low Power Media Access for Wireless Sensor
Networks. ACM SenSys 2004, November 2004.

18. Crossbow: http://www.xbow.com
19. Crickets: http://www.nms.lcs.mit.edu/crickets
20. J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica: A Unifying Link

Abstraction for Wireless Sensor Networks. ACM SenSys 2005, November 2005.
21. M. Yarvis, W. Conner, L. Krishnamurthy, J.Chhabra, B. Elliott, and A. Mainwaring: Real-

World Experiences with an Interactive Ad Hoc Sensor Network. IWAHN 2002, August
2002.

Results of Bit Error Measurements with Sensor
Nodes and Casuistic Consequences for Design

of Energy-Efficient Error Control Schemes

Andreas Willig1 and Robert Mitschke2

1 Telecommunication Networks Group, Technical University Berlin
awillig@ieee.org

2 Hasso-Plattner-Institute, University of Potsdam
robert.mitschke@carmeq.com

Abstract. For the proper design of energy-efficient error control schemes
some insight into channel error patterns is needed. This paper presents
bit error and packet loss measurements taken with sensor nodes running
the popular RFM TR 1001 wireless transceiver. Some key facts from the
measurements are presented and it is evaluated, how energy-efficient se-
lected combined forward error correction (FEC) and automatic repeat
request (ARQ) schemes would be over the measured channel. One inter-
esting result is that FEC schemes are less energy-efficient than schemes
without FEC, even when the additional energy required to decode a
packet is not considered. On the other hand, the energy-efficiency can
be improved when retransmissions are postponed for a short time.

1 Introduction

A popular saying in the sensor networks community is that “Every bit transmit-
ted brings a sensor node one moment closer to death”1 and quiet sensor nodes
potentially have the longest lifetime. However, from time to time communication
is unavoidable. This communication takes place over inherently unreliable wire-
less channels, and error control schemes are needed to protect the data against
the channel impairments [9, Chap. 6]. To properly design error control schemes
in an energy-efficient way, a good understanding of channel error patterns is
needed. While theoretical channel models like Gaussian noise [5] on the level
of waveforms, or bit-level models like the binary symmetric channel [5] or the
well-known Gilbert-Elliot model [7,4] may give useful insights during the early
stages of the protocol design process, a realistic performance evaluation of such
error control schemes requires incorporation of more realistic channel models.
However, in the literature on wireless sensor networks only a few studies are
available which present empirical data on channel errors and most performance
evaluation studies of sensor network protocols resort to the theoretical models.

The aim of this paper is to fill this gap, to provide results from realistic
measurements and to draw some conclusions on the effectiveness of different
1 Greg Pottie, MIT Technology Review, Jul./Aug. 2003.

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 310–325, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Results of Bit Error Measurements with Sensor Nodes 311

error-control approaches when faced to the measured channels. Specifically, we
present the results of a bit error measurement study carried out with the Scat-
terWeb ESB (Embedded Sensor Board) nodes from the Computer Systems and
Telematics Group at the Free University Berlin.2 These nodes employ the pop-
ular RF Monolithics TR 1001 transceiver. The study took place on a publicly
accessible floor within the building of the Hasso-Plattner-Institute at the Uni-
versity of Potsdam. The results indicate that not all of the different error-control
mechanisms prove effective in reducing the energy consumption while ensuring
reliable transmission. We have considered different combinations of forward-error
correction (FEC) schemes with automatic repeat request (ARQ) schemes [12].
Our evaluations show that FEC schemes are less energy-efficient than schemes
without FEC, even when the additional energy required to decode a packet is
not considered. On the other hand, the energy-efficiency can be improved when
retransmissions are postponed for a short time.

The paper is structured as follows: in the following Section 2 we describe
our measurement setup and the approach to evaluation of measurement results.
Following this, in Section 3 we survey the most interesting results of our mea-
surements. The effectiveness and energy-efficiency of different (hybrid) forward
error correction (FEC) and automatic repeat request (ARQ) schemes is investi-
gated in Section 4. In Section 5 the related work is discussed and in Section 6
our conclusions are given.

2 Measurement Setup and Evaluation Method

2.1 The Sensor Node Platform

The ESB sensor nodes designed by the FU Berlin3 use a 16 bit Texas Instruments
MSP430F149 microcontroller offering 60 kbyte of flash memory and 2 kbytes of
RAM, an instruction cycle time of 125 nsec, and several peripheral devices,
including a UART to control a serial device.4 The radio transceiver is an RF
Monolithics RFM TR1001 module, which was configured to use a 19.200 bit per
second OOK (on-off-keying) modulation scheme in the frequency range around
868 MHz at an output power of 0.75 mWatt (-0.28 dBm).5

2.2 Measurement Setup

We have used a setup consisting of a single transmitter and ten receivers, all
arranged in an array on a plank, a schematics is shown in Figure 1. In the figure,
2 See http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb net/esb/
index.shtml

3 Scatterweb project, see http://www.inf.fu-berlin.de/inst/ag-tech/
scatterweb net/esb/index.shtml

4 The data sheet is provided here: http://www.inf.fu-berlin.de/inst/ag-tech/
scatterweb net/downloads/MSP430f149.pdf

5 See http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb net/downloads/
TR1001.pdf

312 A. Willig and R. Mitschke

Data

Collector

1 2 3 4 5 Tx 7 8 9 106

Fig. 1. Schematics of the measurement setup

the receivers are numbered from one to ten. The distance between any two sensor
nodes (transmitter or receiver) on the plank is 30 centimeters. Please note that
the transmitter is placed in the middle of the plank.

For a specific measurement, the transmitter sends a well-known sequence of
packets (see below). The receivers try to capture the packets, timestamp each
packet according to their local clock6 and write the timestamp and the received
data immediately onto their serial interface. The serial interface of all receivers
is attached to a single central station, called the data collector, which writes the
received data along with an identification of the receiver nodes into tracefiles
on a harddisk. The evaluation of the stored measurement results is done offline.
The serial interface of the transmitter is also attached to the data collector, in
order to control start and stop the measurements.

To convince ourselves that the observed packet losses are really losses on the
air interface and do not occur between the receivers and the data collector /
harddisk, we have performed a stress test: each receiver generates data on the
serial interface at the full rate of 115.2 kbit/s (i.e. at a much higher rate than
used on the wireless interface). The data collector managed to collect all this data
for half an hour without any losses. As a side effect, this test showed also that
the serial links between the receivers and the data collector is working correctly.

We have performed a number of measurements. Within a single measurement
the transmitter transmits a sequence of 9000 packets, all having the same size and
well-known contents. For the next measurement, the plank was turned clockwise
by 30 degrees, with the transmitter position being constant. The transmitter
generates the packet at equidistant times (every 200 msec) without doing any
carrier-sensing or running any kind of medium access control (MAC) protocol.

The packet format used for the measurements is quite simple: A packet starts
with a PHY header of six bytes length, used to let the receiver acquire bit
synchronization. The last byte of the PHY header is a fixed start frame delimiter
(SFD). After sending the SFD byte the transmitter transmits the same 32-bit
sequence number sixteen times, making up for a total packet size of 64 bytes
(512 bits). The transmitter increments the sequence number before each new

6 The local clock was incremented every 5 msec, but no attempt has been made to
synchronize receivers clocks or to compensate different drift rates – this was done in
the postprocessing stage.

Results of Bit Error Measurements with Sensor Nodes 313

packet. There are no separate MAC headers or MAC trailers like checksums.
To help the receiver keeping synchronized, the transmitter must send each byte
twice, the first time directly, and the second time as an inverted version.7 The
receiver waits for an incoming SFD. When this arrives, the receiver writes its
current timestamp onto the serial interface and starts to output all the user
bytes received from the wireless transceiver on the serial interface, the inverted
bytes are dropped. The end of a frame is detected from time gaps.

2.3 Evaluation Approach

The data collector collects from all sensor nodes the received packets/bytes along
with a timestamp, and stores this data in a tracefile (one packet per line and one
file per receiver). As an example, we reproduce a few such (shortened) lines from
the start of a tracefile (the initial line numbers are inserted for ease of reference):

1 25726.001A001A001A001A001A001A001A001A001A001A001A001A
2 25764.001B001B001B001B001B001B001B001B001B001B001B001B
3 25802.001C001C001C001C001C001C001C001C001C001C001C001C
4 25840.001D001D001D001D001D001D001D001D001D001D001D001D
5 25879.
6 25918.001F001F001F001F001F001F001F001F001F001F001F001F
7 25956.
8 25996.002100210021002100210021002100210021002100210021
9 26034.002200220022002200220022002200220022002200220022
10 26073.002300230023FFDCFFDCFFDCFFDCFFDCFFDCFFDCFFDCFFDC
11 26150.002500250025002500250025002500250025002500250025
12 26187.0026002600260026002600260026002600260

The number before the dot is the timestamp assigned locally by the receiving
sensor node, while the characters after the dot denote the received bytes in
hexadecimal format. Please observe that different things can happen:

– Certain packets are entirely missing (what happened to sequence numbers
0001 to 0019?). We refer to this as unobserved packets.

– Occasionally a line does not have the full length (line 12). We refer to this
as a truncated packet.

– Other lines contain a timestamp but not a single data byte (lines 5 and 7).
These are referred to as packet loss.

– Finally, of course we can have full-length lines with bit errors (line 10).

A likely explanation for the first three phenomena has to do with bit synchro-
nization. Remember that a packet begins with a PHY header (for acquisition
purposes) and a start frame delimiter (SFD). An unobserved packet can occur
when the receiver fails to acquire synchronization from the PHY header. A packet
loss can occur when synchronization is acquired (and the receiver is thus aware
of an incoming packet) but the SFD is missed. A packet truncation can occur
when PHY header and SFD are acquired but synchronization gets lost in the

7 This avoids too long runs of zeroes and ones and keeps the receiver DC-free.

314 A. Willig and R. Mitschke

middle of the packet. In other lines (like in line 10 of our example) the received
data changes suddenly and the error patterns are not “sporadic” anymore. We
suspect that due to synchronization errors the receiver looses or inserts a bit and
back-inverts the bytes at wrong places.

The goal of the postprocessing is to figure out for each transmitted bit whether
it is received correctly or not. Of course, this postprocessing cannot be applied
to lost packets. We aim to create an indicator sequence, which marks correctly
received bits by a zero and erroneously received bits by a one [17]. This requires
to compare the received bits stored in the logfile with the transmitted bits. More
precisely: the received bits are grouped into 32-bit words and compared with the
transmitted sequence number. The main problem to solve is the following: given
a line with received and noisy bytes, what could be the sequence number trans-
mitted by the transmitter? This information cannot be derived directly from
the timestamps, since no attempt has been made to synchronize the clocks of
transmitter and receivers, and thus their clock offsets and drifts can be consid-
ered random. In a nutshell, our approach for guessing the transmitted sequence
numbers for a given tracefile is as follows:

– In a first step, the data part of each line is split into groups of four characters,
which are then converted into a 32 bit numbers.

– In a second step, for each line a histogram of the 32-bit values is computed
and the most frequent value is called the mode of the line.

– In a third step, so-called anchors are identified: an anchor is constituted by
four subsequent lines having modes i0, i0+1, i0+2 and i0+3. If such a group
of lines is detected, their modes are accepted as their true (transmitted)
sequence numbers and the lines are marked as identified.

– In the fourth step we check all the remaining unidentified lines. When the
mode of such a line is truly within the sequence number range left free
by neighbor anchors, the modes are accepted as the transmitted sequence
numbers. For example, consider that line n with mode Mn is unidentified,
that line m < n with mode Mm is the largest identified line smaller tham
n and line o > n with mode Mo is the smallest identified line larger than
n, and if furthermore Mm < Mn < Mo holds, then line n is marked as
identified with mode Mn. A second, quite heuristic criterion is applied to
those lines which do not match this criterion: We have observed many lines
in our traces which look quite similar to line 10 of our example: the first few
32 bit values are correct, while the remaining ones are impressingly wrong.
If the first two 32-bit values are identical and belong to the sequence number
range left free by the neighboring anchors, the first values are accepted as
the true sequence number.

– It may happen that after the previous steps still some lines (i.e. their true
sequence numbers) remain unidentified. Here, we analyze the timestamp of
the packet with respect to timestamps of already identified neighbored pack-
ets and their respective sequence numbers to estimate the missing sequence
number. Due to rounding to 5 msec intervals and for other reasons the time-
stamp values are noisy, too, and the possible presence of unobserved packets

Results of Bit Error Measurements with Sensor Nodes 315

adds further vaguery. Therefore, we have estimated a timestamp/sequence-
number least-squares line through a number of neighbored and already iden-
tified timestamp/sequence number pairs. Suppose we are given this least-
squares line, a range I of yet unidentified lines with timestamps t1, t2, tk, and
the timestamps and sequence number pairs (tl, sl), (tu, su) of the identified
lines surrounding I. The sequence numbers sl < s1 < . . . < sk < su assigned
to the timestamps t1, . . . , tn are chosen such that for all possible assignments
of sequence numbers sl < s1 = x1 < s2 = x2 < . . . < sk = xk < su to the
present timestamps the sum-of-squared errors with respect to the estimated
least-squares line is minimized.

Of course, we have applied consistency checks (like for example that the identified
sequence numbers should be strictly monotonically increasing) after each of these
steps, and indeed our evaluation passes these tests. After having determined
the true sequence numbers it was straightforward to compute the per-packet
indicator sequences. For packets with entirely missing contents (like in lines 5
and 7 of our example) no indicator sequence has been computed, since this would
be meaningless.

3 Survey of Measurement Results

In this section we survey the results of our measurements. It should be noted that
truncated packets have been removed from the traces, unless stated differently.
This does not bias the results significantly, since the number of truncated packets
was 647 out of 531968 recorded packets, amounting to ≈ 0.12% of all packets.

3.1 Packet Losses

We first present results on the packet loss rates. Packet losses are an important
kind of channel errors, because a priori they cannot be handled by any error-
correcting FEC code, since FEC assumes the presence of (albeit) noisy data
bytes. Packet losses are only correctable with the help of retransmissions carried
out by an ARQ protocol. In this evaluation we are only interested in packet
losses (like in lines 5 and 7 of our example), all other lines having the correct
length are treated as “correct”, even if they have bit errors.

In Table 1, we show the packet loss rates observed for all the measurements
and each receiver. Each packet loss rate is computed as the fraction of lost
packets out of the total of 9000 transmitted packets. It can be seen that the
packet loss rate varies between 0.03% and up to 9.8%. Furthermore, there is
no clear dependence of the packet loss rates on the position of the node on the
plank. Taking all the measurements together, the average packet loss rate is
about 3.8%.

We have investigated the statistics of packet losses a bit further. Specifically,
we have investigated the lengths of bursts of subsequent packet losses and of loss-
free periods (called runs) for all measurements at once (by simply concatenating
the measurement traces). The observed range of run lengths is between one and

316 A. Willig and R. Mitschke

Table 1. Packet loss rates for the different receivers and the different angles of the
plank

0 deg 30 deg 60 deg 90 deg 120 deg 150 deg
Rcv. 1 0.0087 0.0187 0.07211 0.0452 0.0397 0.0253
Rcv. 2 0.0288 0.0533 0.09822 0.0843 0.0801 0.0583
Rcv. 3 0.0047 0.0088 0.009 0.0266 0.0398 0.0526
Rcv. 4 0.009 0.0172 0.06155 0.06 0.0473 0.0397
Rcv. 5 0.0003 0.0026 0.01522 0.0321 0.039 0.0544
Rcv. 6 0.0474 0.0587 0.02911 0.0234 0.0222 0.0203
Rcv. 7 0.0445 0.0534 0.08122 0.0831 0.0617 0.049
Rcv. 8 0.0048 0.0095 0.09533 0.0852 0.0576 0.0645
Rcv. 9 0.0131 0.0055 0.07244 0.0598 0.0322 0.0501
Rcv. 10 0.0015 0.003 0.002 0.0052 0.0048 0.0058

5039, the average run length is ≈ 25.3 packets, and the coefficient of variation
(standard deviation divided by average) was approximately 3.56. The observed
distribution function for the run lengths is shown in Figure 2. The 50% quantile
is at ≈ 7 packets, the 90% quantile is at ≈ 46 packets. Stated differently: In 50%
of all cases a run lasts for at most seven packets before the next packet is lost.

For the case of packet loss bursts we show in Figure 3 the relative frequencies
of the observed packet loss burst lengths. It can be seen that the overwhelming
majority (≈ 98.4%) of loss bursts comprises of only a single lost packet, and
in ≈ 99.9% of all cases the burst length is no more than two packets. This

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 10 100 1000 10000

P
r[

R
un

 le
ng

th
 <

=
 x

]

Run length

’packet-loss-burst-lengths-overall.run-lengths.cdf’ using 3:15

Fig. 2. Cumulative distribution function of the lengths of loss-free periods (runs), taken
over all measurements

Results of Bit Error Measurements with Sensor Nodes 317

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0 1 2 3 4 5

R
el

at
iv

e
fr

eq
ue

nc
y

Burst length

’packet-loss-burst-lengths-overall.burst-lengths.histo’ using 5:15

Fig. 3. Relative frequencies of the lengths of packet loss bursts, taken over all mea-
surements

statistic is interesting for designing a retransmission strategy: if a receiver does
not receive a packet due to packet loss, the transmitter can perform an immediate
retransmission (with respect to the chosen interpacket duration) and enjoys a
high probability that the next packet is not lost. The question, however, whether
this next packet is really useful or has bit errors is answered in the following
section.

3.2 Packet Failures

We denote as a packet failure a packet which is either a lost packet or which
has at least one bit error and thus would need a retransmission when no FEC
scheme is used. We have also looked into the statistics of bursts of subsequent
packet failures and runs of subsequent failure-free packets.

The observed range of burst lengths varies between one and 393 packets, the
average burst length is ≈ 1.77 packets, the coefficient of variation is ≈ 1.65, and
more than 90% of all bursts have a length of three packets or less. Single-packet
bursts make up for 72% of all bursts. The histogram with the relative frequencies
of burst lengths is shown in Figure 4.

With respect to the successful runs, the following findings are interesting: The
range of observed run lengths is between one and 2904 packets. The average run
length is ≈ 9.3 packets, with a coefficient of variation of ≈ 3.8. Approximately
70% of all runs have a length of four packets or less, 90% of all runs have a
length of 19 packets or less. Because of the larger range, we show the cumulative
distribution function of run-lengths in Figure 5.

318 A. Willig and R. Mitschke

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

R
el

at
iv

e
fr

eq
ue

nc
y

Burst length

’packet-failure-burst-lengths-overall.burst-lengths.histo’ using 5:15

Fig. 4. Relative frequencies of the lengths of packet failure bursts, taken over all mea-
surements

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 10 100 1000 10000

P
r[

R
un

 le
ng

th
 <

=
 x

]

Run length

’packet-failure-burst-lengths-overall.run-lengths.cdf’ using 3:15

Fig. 5. Cumulative distribution function of the lengths of failure-free periods (runs),
taken over all measurements

Results of Bit Error Measurements with Sensor Nodes 319

3.3 Per-Packet Bit Error Rate

In the next evaluation we have counted the number of bit errors in each packet.
We have looked at all full-length packets from all the measurements, and we
have counted the overall number of bit errors in each packet. Obviously, in the
following statistics the lost packets are not included. The cumulative distribution
function for the number of erroneous bits per packet is shown in Figure 6. The
percentage of error-free packets is ≈ 87%, hence, about 13% of the non-lost
packets have at least one bit error. The average number of bit errors per packet
is ≈ 16.68, the coefficient of variation is ≈ 3.5. The average number of bit errors
in an erroneous packet is ≈ 132.8 bits.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 100 200 300 400 500 600

P
r[

N
um

be
r

of
 b

it
er

ro
rs

 <
=

 x
]

Number of bit errors per packet

’per-packet-numerrors-overall.cdf’ using 3:15

Fig. 6. Cumulative distribution function of the number of bit errors per packet, taken
over all measurements

We can already conclude from this distribution some insights about the useful-
ness of practically realizable FEC codes. In general, FEC codes have the ability
to correct a number of bit errors, but they come at a price: the overhead bits
increase the on-times of the transmitter’s transceiver8, and the receiver has to
spend a (sometimes significant) amount of energy to decode the packets (see
[8,15,10,16,11] and [9, Chap. 6]. Let us for ease of exposition consider the case of
block coding FEC schemes. The number t of reliably correctable bits in a block
of length n bits depends on the actual coding scheme; however, an upper bound

8 Conversely, when the on-times of the transmitter are kept fixed, fewer user data bits
can be transmitted in a packet.

320 A. Willig and R. Mitschke

is imposed by the Hamming bound, which states that a block code with k user
bits mapped to n channel bits can correct up to t bit errors only if the relation

2n−k ≥
t∑

i=0

(
n

i

)
holds. The fact that a triple (n, k, t) satisfies this relation does not imply that a
code with this properties really exists. However, let us assume for the moment
that we live in a perfect world, and for each (n, k, t) satisfying the above relation
there really exists a code. We are interested in the fraction of erroneous packets
which can be corrected under different code strengths. Let us fix n to 512 and
investigate different numbers of correctable bits t. After analyzing our data,
we found that in order to correct 50% of all erroneous packets, the number of
correctable bits must be t = 105. However, the numbers n = 512 and t = 105
allow for at most k = 141 user data bits, which amounts to a code rate of
≈ 27.54%. If we want to correct 90% of all erroneous packets, we would need
t = 312 correctable bits, but then we are not able to transmit any data at all.

4 Evaluation of Different Hybrid FEC/ARQ Strategies

To get a deeper insight in the efficiency in terms of energy-consumption of error
control methods, we have evaluated different hybrid FEC/ARQ protocols [12]
running between a transmitter and receiver over a common wireless channel. The
chosen protocols are either straightforward choices from the domain of hybrid
FEC/ARQ protocols or have been suggested in the literature.

The “wireless channel” used in our model actually uses our measurement
results directly: we have concatenated all the traces (after removing truncated
packets) and extracted for each packet the observed number of bit errors in
n = 512 bits. Lost packets are treated as having 512 bit errors. These bit error
counts are fed into the simulation model. This list covers N = 531968 packets
in total. Each time the channel is used for data packet transmission, the next
number is fetched from the file and assigned to the transmitted packet as the
number of bit errors that occur during transmission. For simplicity, we have
assumed that acknowledgements are always transmitted correctly.

As for the ARQ protocol, we have chosen the alternating-bit protocol (ABP)
as a basis. Since our interest is not in throughput issues and the channel delay
is of no concern to this study, higher-level protocools like selective repeat need
not be considered.

In the first investigated hybrid scheme (called no adaptation), ABP is com-
bined with a constant FEC code, i.e. we apply the same coding scheme to each
packet. The code is able to correct up to t bit errors in a packet of length n = 512
bits, where t is varied throughout the study. The number of user-bits k which can
be transmitted in such a packet is again obtained from the Hamming bound. As
our performance measure, we have taken the goodput, which is defined as the ra-
tio of the total number of user bits which have been successfully received, to the

Results of Bit Error Measurements with Sensor Nodes 321

total number of transmitted bits, after all the N packets have been exhausted.
This goodput is a measure of the energy-efficiency achievable for transmitting
user data (total bits per user bit), and no other sources of energy consumption
like idle listening or collisions are taken into account. We made the advantageous
assumption that the FEC decoding requires no extra energy as compared to the
FEC-less case. Depending on the implementation, the decoding energy might
actually be significant [15,16].

In the second scheme (called fixed-switch-on), the FEC strength (i.e. the num-
ber t of correctable bits in a packet of length n = 512 bits) is varied between two
values: when the previous packet required zero retransmissions, t is set to zero for
the next packet. When the previous packet required one or more retransmissions,
t is set to a fixed value. This choice is made after each successfully transmitted
packet, whereas during the retransmissions the code strength is kept fixed. Stated
differently: once the transmission of a k-bits piece of user data has started, it is
repeated without changing the FEC strength t until the transmitter receives an
acknowledgement.9

In the third scheme, the FEC strength is varied according to an additive-
increase-multiplicative-decrease (AIMD) scheme. Specifically, when the previous
packet required zero retransmissions, the t-value is halved, when it required one
retransmission, the t value is kept constant and when it required more than one
retransmission, the t-value is increased by a specified increment.

Finally, in the postponing scheme (compare [1,2]) adaptation takes place when
the transmitter has noticed the lack of an acknowledgement. Specifically, the
transmitter postpones a retransmission by a specified amount of packet times.
FEC is not used.

In Figure 7 we compare the three strategies no-adaptation, fixed-switch-on
and AIMD against the baseline scheme where only ABP but no FEC is used.
For each scheme the goodput is shown versus the number of correctable bits
t. The t parameter corresponds in the no-adaptation scheme to the (constant)
strength of FEC, in the fixed-switch-on scheme to the FEC strength used after
switching FEC on, and in the AIMD scheme to the FEC strength by which the
current FEC strength is increased after requiring two or more retransmissions for
the previous packet. As a reference, we have drawn a horizontal line depicting
the goodput of the baseline scheme. The figure confirms a conclusion that is
already suggested from the statistics of the number of bit errors per packet seen
in Section 3.3: FEC does not pay out energetically, because packets tend to be
either correct or damaged well beyond the capabilities of practical FEC schemes.

In Figure 8 we investigate the postponing strategy as compared to the baseline
scheme. Specifically, we display the goodput versus the number of packet slots
a retransmission is postponed. It can be seen that postponing can potentially
save energy. Of course, it depends on the details of a nodes energy consumption
profile whether this promise can be kept. For example, the transmitter knows
exactly about the fate of a packet trial and for how long it will postpone the

9 This choice has practical reasons: it does not force the transmitter to re-packetize an
in-transit packet, thus it can be kept in hardware buffers and retransmitted directly.

322 A. Willig and R. Mitschke

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

G
oo

dp
ut

Number of correctable bits

no adaptation
fixed-switch-on

AIMD
baseline (ABP, no FEC)

Fig. 7. Goodput vs. number of correctable bits t for the no-adaptation, switch-fixed-on
and AIMD strategies, taken over all measurements

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

G
oo

dp
ut

Packet times to postpone retransmission

postponing
baseline (ABP, no FEC)

Fig. 8. Goodput vs. number of packet times to postpone retransmission, taken over all
measurements

Results of Bit Error Measurements with Sensor Nodes 323

retransmission; it can readily exploit this waiting time by going into sleep mode.
However, in order for the receiver to exploit a sleep mode, too, it must be ab-
solutely sure about when the preceding trial ended and when it has to awake
in order to receive the next trial. A more detailed investigation of practical and
energy-efficient postponing schemes will be subject of future work.

5 Related Work

The quality of a wireless link can be measured at different levels. On the lowest
level, certain characteristics of wave propagation like the rms delay spread or the
path loss coefficient are measured for example from using channel sounders to
obtain channel impulse responses [14]. However, for the design of protocols, the
error characteristics on the level of bits or packets are more important. A number
of studies have measured relevant information for wireless LAN technologies, for
example [17,3,13].

To the best of our knowledge, so far only few studies have appeared that
characterize link quality in wireless sensor networks. In [18] and [6] link quality
is expressed in terms of packet loss rates, but there is no distinction between
packet losses because of synchronization failure and packet losses due to check-
sum failures. In [6] link quality measurements in a 13 × 13 grid of 169 motes
spaced two feets apart on an open parking place are presented. There is a sin-
gle transmitter, all other motes are receivers. For a given transmit power there
appears no deterministic relationship between distance and link quality; nodes
at the same distance from the transmitter can experience widely varying packet
loss rates. The region around a node having a certain packet loss rate does not
have the shape of a circle, but is irregularly shaped. They have also shown that
there is a significant degree of asymmetric links, where packets sent from node
A to node B are received by B with small packet loss rates, while the packets
from B to A experience a high packet loss rate. The fraction of asymmetric links
grows with distance, reaching values between 5% and 15% of all links.

In [18] results of a measurement in a linear network are presented. The quality-
vs-distance relationship (with quality measured as packet reception rate) shows
three different regions: in the effective region receiving nodes have a distance of
at most ten feet to the transmitter and receive consistently more than 90% of
the packets. In the poor region the loss rates are consistently well beyond 90%.
In the transitional region in between, the variance of the experienced loss rates
for nodes at the same distance is significant. Another study considering packet
losses on the physical, as well as on the MAC layer is [19].

6 Conclusions and Outlook

We believe that, despite the obvious limitations of this study like the usage of
only a single type of transceiver and the investigation of just a single scenario, our
results can give valuable input to the energy-efficient and channel-aware design
of link-layer / error-control schemes in wireless sensor networks. Any scheme

324 A. Willig and R. Mitschke

will quite likely be faced with environmental conditions such as ours, because
it really was an almost randomly selected place in an office building, and not a
clean-room laboratory environment.

Of course, much interesting further work can be done. This starts with a more
detailed analysis of our results, looking at each receiver separately. A logical
second step would be to devise a methodology that allows the identification
and parameterization / estimation of suitable stochastic channel models, i.e. the
identification of stochastic processes having only a few parameters but having
enough degrees of freedom to approximate our results well. And finally, the
incorporation of other transceiver types and environments would give more hints
on how representative our results are.

References

1. Pravin Bhagwat, Partha Bhattacharya, Arvind Krishna, and Satish K. Tripathi.
Using channel state dependent packet scheduling to improve TCP throughput over
wireless LANs. Wireless Networks, 3(1):91–102, March 1997.

2. Richard Cam and Cyril Leung. Multiplexed ARQ for time-varying channels – part
I: System model and throughput analysis. IEEE Transactions on Communications,
46(1):41–51, January 1998.

3. David A. Eckhardt and Peter Steenkiste. A trace-based evaluation of adaptive
error correction for a wireless local area network. MONET - Mobile Networks and
Applications, 4:273–287, 1999.

4. E. O. Elliot. Estimates of error rates for codes on burst-noise channels. Bell
Systems Technical Journal, 42:1977–1997, September 1963.

5. Robert G. Gallager. Information Theory and Reliable Communication. John Wiley
& Sons, New York, 1968.

6. Deepak Ganesan, Bhaskar Krishnamachari, Alec Woo, David Culler, Deborah Es-
trin, and Stephen Wicker. Complex behavior at scale: An experimental study of
low-power wireless sensor networks. Technical Report UCLA/CSD-TR 02-0013,
Computer Science Dept., University of California, Los Angeles (UCLA), 2002.

7. E. N. Gilbert. Capacity of a burst-noise channel. Bell Systems Technical Journal,
39:1253–1265, September 1960.

8. Manish Goel and Naresh R. Shanbhag. Low-Power Channel Coding via Dynamic
Reconfiguration. In Proc. International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Phoenix, Arizona, March 1999.

9. Holger Karl and Andreas Willig. Protocols and Architectures for Wireless Sensor
Networks. John Wiley & Sons, Chichester, 2005.

10. Heikki Karvonen, Zach Shelby, and Carlos Pomalaza-Raez. Coding for energy
efficient wireless embedded networks. In Proc. International Workshop on Wireless
Ad Hoc Networks (IWWAN), Oulu, Finland, June 2004.

11. Paul Lettieri, Curt Schurgers, and Mani B. Srivastava. Adaptive link layer strate-
gies for energy-efficient wireless networking. Wireless Networks, 5(5):339–355,
November 1999.

12. Hang Liu, Hairuo Ma, Magda El Zarki, and Sanjay Gupta. Error control schemes
for networks: An overview. MONET – Mobile Networks and Applications, 2(2):167–
182, 1997.

Results of Bit Error Measurements with Sensor Nodes 325

13. Giao T. Nguyen, , Randy H. Katz, Brian Noble, , and Mahadev Satyanarayanan.
A trace-based approach for modeling wireless channel behavior. In Proceedings of
the Winter Simulation Conference, Coronado, CA, December 1996.

14. Theodore S. Rappaport. Wireless Communications – Principles and Practice.
Prentice Hall, Upper Saddle River, NJ, USA, 2002.

15. Y. Sankarasubramaniam, I.F. Akyildiz, and S.W. McLaughlin. Energy efficiency
based packet size optimization in wireless sensor networks. In Proc. 1st IEEE Intl.
Workshop on Sensor Network Protocols and Applications (SNPA), Anchorage, AK,
May 2003.

16. Eugene Shih, Benton H. Calhoun, Seong-Hwan Cho, and Anantha P. Chan-
drakasan. Energy-efficient link layer for wireless microsensor networks. In Proc.
Workshop on VLSI 2001 (WVLSI ’01), april 2001.

17. Andreas Willig, Martin Kubisch, Christian Hoene, and Adam Wolisz. Measure-
ments of a wireless link in an industrial environment using an IEEE 802.11-
compliant physical layer. IEEE Transactions on Industrial Electronics, 49(6):1265–
1282, 2002.

18. Alec Woo, Terence Tong, and David Culler. Taming the underlying challenges
of reliable multihop routing in sensor networks. In Proc. ACM SenSys 03, Los
Angeles, California, November 2003.

19. Jerry Zhao and Ramesh Govindan. Understanding packet delivery performance in
dense wireless sensor networks. In Proc. ACM SenSys 03, Los Angeles, California,
November 2003.

An Empirical Characterization of Radio Signal
Strength Variability in 3-D IEEE 802.15.4

Networks Using Monopole Antennas

Dimitrios Lymberopoulos, Quentin Lindsey, and Andreas Savvides

Embedded Networks and Applications Lab, ENALAB,
Yale Univerisity, New Haven, CT 06520, USA

{dimitrios.lymberopoulos, quentin.lindsey, andreas.savvides}@yale.edu

Abstract. The wide availability of radio signal strength attenuation
information on wireless radios has received considerable attention as a
convenient means of deriving positioning information. Although some
schemes have been shown to work in some scenarios, many agree that the
robustness of such schemes can be easily compromised when low power
IEEE 802.15.4 radios are used. Leveraging a recently installed sensor
network testbed, we provide a detailed characterization of signal strength
properties and link asymmetries for the CC2420 IEEE 802.15.4 compliant
radio using a monopole antenna. To quantify the several factors of signal
unpredictability due to the hardware, we have collected several thousands
of measurements to study the antenna orientation and calibration effects.
Our results show that the often overlooked antenna orientation effects
are the dominant factor of the signal strength sensitivity, especially in
the case of 3-D network deployments. This suggests that the antenna
effects need to be carefully considered in signal strength schemes.

1 Introduction

The existence of radio connectivity and the attenuation of radio signal with dis-
tance are attractive properties that could potentially be exploited to estimate
the positions of small-wireless devices featuring low-power radios. Radio signal
strength indicator (RSSI), a standard feature in most radios, has attracted a
lot of attention in the recent literature for obvious reasons. RSSI eliminates the
need for additional hardware in small wireless devices, and exhibits favorable
properties with respect to power consumption, size and cost. As a result, several
RSSI based algorithms have been proposed that either assume a complete profil-
ing of the network deployment area [1],[9][3],[15],[2],[8],[14],[16],[19] or a specific
signal attenuation model that can provide distance or area information directly
or indirectly from the raw RSSI data [21],[6],[7],[18],[11],[13],[12],[5].

Despite the increasing interest in signal strength localization using IEEE
802.14.5 radios, there is still a lack of detailed characterization of the fundamen-
tal factors contributing to large signal strength variability. To investigate these
factors, and to get a better understanding of the asymmetries that arise in 3-D

K. Römer, H. Karl, and F. Mattern (Eds.): EWSN 2006, LNCS 3868, pp. 326–341, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Empirical Characterization of Radio Signal Strength Variability 327

schemarios, we present a detailed characterization of signal strength behaviors
in an IEEE 802.15.4 sensor network with monopole antennas. Instead of propos-
ing a specific algorithm, in this paper we focus on showing the sources of signal
strength variability. We do so by collecting a large number of measurements
from a 40-node testbed, both in an indoor and an open-field environment. This
characterization differs from previous studies using IEEE 802.11 radios, since it
examines a new radio technology with less powerful radio transmissions. Fur-
thermore, a large fraction of the measurements are taken in a three-dimensional
testbed deployment that emulates a realistic environment where sensor network
deployments are likely to occur.

Our findings demonstrate that the relative antenna orientation between
receiver-transmitter pairs is a major factor in signal strength variability, even in
the absence of multipath effects. This suggests that many schemes using radio
signal strength on similar radios should carefully consider these factors before go-
ing to actual deployments. The approximately 15,000 measurements collected for
this study are available online at http : //www.eng.yale.edu/enalab/rssidata/.

Our presentation of this paper proceeds as follows: Section 2 provides an
overview of other characterizations and schemes that use signal strength. This
is followed by a discussion of the signal strength variability components and a
detailed evaluation of our system.

2 Related Work

Some of the issues related with received signal strength ranging where presented
by Whitehouse et. al. in an outdoor scenario characterization described in [20].

Three recent sensor network localization algorithms using low power sen-
sor node radios are Ecolocation [21], MoteTrack[9] and Probability Grid [18].
Ecolocation determines the location of unknown nodes by examining the ordered
sequence of received signal strength measurements taken at multiple reference
nodes. The key idea of Ecolocation is that the distance-based rank order of refer-
ence nodes constitutes a unique signature for different regions in the localization
space. Ecolocation reports a location error of 10ft for a very small outdoor net-
work deployment area (26ft x 49ft) while Probability Grid reports a location
error that is equal to the 70%-80% of the communication range for a 410ftx410ft
outdoor network deployment. In the case of Probability Grid it is assumed that
the goal of the sensor network deployment is to form a grid topology. Given
this a priori knowledge, Probability Grid attempts to compute in a probabilistic
way the one-hop distance and the number of hops that an unknown node is
far away from an anchor node. MoteTrack is very similar to RADAR[1] but it
does not require a back-end server where all the data have to be transferred and
processed. Conversely, in Moterack the location of each mobile node is computed
using a received radio signal strength signature from numerous beacon nodes to
a database of signatures that is replicated across the beacon nodes themselves.
The location error reported by Motetrack is approximately 13ft for an indoor
network deployment area of 18751ft2.

328 D. Lymberopoulos, Q. Lindsey, and A. Savvides

Several schemes have also been presented using IEEE 802.11 radios. In [6]
a comparative study of many RSSI based localization techniques using 802.11
cards is presented. According to the results of this study all the localization
techniques produce approximately the same location error over a range of
environments.

Other work on RSSI-based localization algorithms has been developed in the
context of two broad categories: map based such as [1],[9],[3],[15],[2],[8],[14],[16],
[19], and distance (or area) prediction based [21],[6],[7],[18],[11],[13],[12],[5].

3 Experimental Infrastructure

In the next sections we quantify the sources of RSSI variability using our Zigbee
based infrastructure. A three dimensional, battery operated scalable testbed in
our lab is used for indoor sensor network deployments. The testbed illustrated in
Figure 1(b) is a 3-D structure measuring 4.5m(W) x 6m(L) x 3m(H) and it is de-
signed to host a large number of static and mobile nodes to instrument a variety
of application scenarios. The centerpiece of our infrastructure is the XYZ sensor
node [10], an open-source general purpose sensing platform designed around the
OKI ML67Q500x ARM/THUMB microprocessor and the IEEE 802.15.4 com-
pliant CC2420 radio from Chipcon [4].

The communication subsystem of the XYZ sensor node was designed so that
the correct operation of the radio chip is ensured. The radio chip is powered by
the on-board voltage regulator and thus fluctuations in the battery voltage level
do not affect the operation of the communication subsystem. In addition, the
area under the chip on the PCB is used for grounding and it is well connected to
the ground plane with several vias. The ground pins of the radio are connected
to ground as close as possible to the package pin using individual vias and the
microcontroller (as well as its support circuitry) was placed far away from the
radio chip in order to avoid interference with the RF circuitry.

(a) (b)

Fig. 1. a) The XYZ sensor node, b) Testbed node placement

An Empirical Characterization of Radio Signal Strength Variability 329

The Chipcon CC2420 IEEE 802.15.4 radio transceiver operates in the 2.4GHz
ISM band and includes a digital direct sequence spread spectrum (DSSS) mo-
dem providing a spreading gain of 9dB and an effective data rate of 250Kbps.
It was specifically designed for low power wireless applications and supports 8
discrete power levels: 0dBm, −1dBm, −3dBm, −5dBm, −7dBm, −10dBm,
−15dBm and −25dBm at which its power consumption varies from 29mW
to 52mW [10]. A built-in received signal strength indicator gives an 8-bit dig-
ital value: RSSIV AL. The RSSIV AL is always averaged over 8 symbol periods
(128μs) and a status bit indicates when the RSSIV AL is valid (meaning that
the receiver was enabled for at least 8 symbol periods). The power P at the
RF pins can be obtained directly from RSSIV AL using the following
equation:

P = RSSIV AL + RSSIOFFSET [dBm] (1)

where the RSSIOFFSET is found empirically from the front-end gain and it
is approximately equal to −45dBm. In the next sections when we refer to the
RSSI value we refer to the RSSIV AL and not the power P unless otherwise
stated.

A straight piece of wire is used as a monopole antenna for our sensor node. The
length of our antenna is equal to 1.1inch, the optimal antenna length according
to the CC2420’s datasheet [4]. In all of the experiments described in the next
sections, the length of the antenna on all the nodes was 1.1inch unless otherwise
stated.

4 Sources of RSSI Variability

In addition to multipath, fading and shadowing of the RF channel, signal strength
measurements are also affected by the following factors:

1. Transmitter variability: Different transmitters behave differently even
when they are configured exactly in the same way. In practice, this means
that when a transmitter is configured to send packets at a power level of d
dBm then the transmitter will send these packets at a power level that is
very close to d dBm but not necessarily exactly equal to d dBm. This can al-
ter the received signal strength indication and thus it can lead to inaccurate
distance estimation.

2. Receiver variability: The sensitivity of the receivers across different radio
chips is different. In practice, this means that the RSSI value recorded at
different receivers can be different even when all the other parameters that
affect the received signal strength are kept constant.

3. Antenna orientation: Each antenna has its own radiation pattern that is
not uniform. In practice, this means that the RSSI value recorded at the
receiver for a given pair of communicating nodes and for a given distance
between them varies as the pairwise antenna orientations of the transmitter
and the receiver are changed.

330 D. Lymberopoulos, Q. Lindsey, and A. Savvides

4.1 Path Loss Prediction Model

The majority of RSSI localization algorithms that do not use full location pro-
filing of the deployment environment make use of a signal propagation model
that maps RSSI values to distance estimates [17]. The most widely used signal
propagation model is the log-normal shadowing model:

RSSI(d) = PT − PL(d0) − 10η log10
d

d0
+ Xσ (2)

where, PT is the transmit power, PL(d0) is the path loss for a reference distance
d0, η is the path loss exponent and Xσ is a gaussian random variable with zero
mean and σ2 variance, that models the random variation of the RSSI value.

Using the CC2420 radio we were able to verify the log-normal shadowing
model in an obstacle-free environment(basketball court). The effects of orienta-
tion and calibration were isolated by taking measurements with a single pair of
nodes, with the receiver and the transmitter on the same plane. Figure 5a shows
the RSSI vs Distance plots. Based on our measurements in the basketball court,
RSSI changes linearly with the log of the distance.

5 Variations Across Different Radios

In order to quantify the variability among different transmitter-receiver pairs
we conducted 2 different experiments. To characterize transmitter variations we
used a single receiver and 9 different transmitters. In all of our experiments the

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35
0 Degrees

Transmitter ID

R
S

S
I(

db
m

)

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35
90 Degrees

Transmitter ID

R
S

S
I(

db
m

)

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35
180 Degrees

Transmitter ID

R
S

S
I(

db
m

)

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35
270 Degrees

Transmitter ID

R
S

S
I(

db
m

)

Fig. 2. Quantifying transmitter’s variability

An Empirical Characterization of Radio Signal Strength Variability 331

1 2 3 4 5
0

5

10

15

20

25

30
0 Degrees

Receiver ID

R
S

S
I(

db
m

)

1 2 3 4 5
0

5

10

15

20

25

30
90 Degrees

Receiver ID

R
S

S
I(

db
m

)

1 2 3 4 5
0

5

10

15

20

25

30
180 Degrees

Receiver ID

R
S

S
I(

db
m

)

1 2 3 4 5
0

5

10

15

20

25

30
270 Degrees

Receiver ID

R
S

S
I(

db
m

)

Fig. 3. Quantifying receiver’s variability

receiver was exactly in the same position and with the same antenna orientation.
One transmitter at a time was placed at a specific location that was 1.31ft far
away from the receiver. Each transmitter was transmitting packets at −15dBm
while in 4 different orientations (0, 90, 180, and 270 degrees). The nodes under
test were placed in the middle of a room without furniture in order to minimize
the effect of the reflections in our measurements.

Figure 2 shows the RSSI values recorded at the receiver for all the transmitter
and for all 4 orientations. For each orientation the average RSSI value and its
standard deviation are computed. Averaging over all the average standard de-
viations for all different orientations we find that the overall standard deviation
of the received RSSI value is equal to: 2.24dBm. Using the log-normal signal
propagation model shown in Figure 5a we find that the 2.24dBm RSSI standard
deviation corresponds to 0.4ft distance standard deviation.

To quantify the variability in the receiver we used a similar setup using 1
transmitter and 5 different receivers. The transmitter was transmitting pack-
ets at −15dBm while in 4 different orientations (0, 90, 180, and 270 degrees).
Figure 3 shows the RSSI values recorded at the different receivers for all 4 ori-
entations of the transmitter. For each orientation the average RSSI value and
its standard deviation are computed. Averaging over all the average standard
deviations for all different orientations we find that the overall standard devi-
ation of the received RSSI value is equal to: 1.86dBm. Using the log-normal
signal propagation model shown in Figure 5a we find that the 1.86dBm RSSI
standard deviation corresponds to 0.33ft distance standard deviation. The same
experiment was performed several times with different transmitters in order to
make sure that we were measuring the receiver variability and not something
else that had to do with the specific transmitter.

332 D. Lymberopoulos, Q. Lindsey, and A. Savvides

6 Antenna Characterization

The XYZ sensor node, as most of the generic sensor node platforms, uses a simple
wire as a monopole antenna. Ideally, the radiation pattern of this antenna should
be uniform and it should look like a circle (2-D space) or a sphere (3-D space). Of
course, this does not hold in practice. However, without knowing our antenna’s
radiation pattern it would be impossible to attempt inferring distance or location
information directly from RSSI measurements.

We characterized our antenna in a basketball court measuring 79ft in length
and 46ft in width. The ceiling of the court was at a height of 30ft. In order to
avoid the interference of the floor we attached our transmitter node to a string
running from the one side of the court to the other. The transmitter node was
at a height of approximately 8ft from the ground at the center of the court. Its
antenna was vertical to the PCB board pointing down towards the floor.

We measured RSSI with a receiver node at 3 different heights from the floor:
1.25ft, 3.5ft, and 6.5ft. For each one of these heights we measured the RSSI
values for 8 different angles of the receiver with respect to the transmitter: 0,
45, 90, 135, 180, 215, 270, and 315 degrees. For each of these orientations we
recorded the RSSI values on the receiver at a distance resolution of 2ft. We
stopped taking measurements for a given height and orientation only when the
receiver was not able to receive any packets.

6.1 Antenna Length: Using a Suboptimal Antenna

According to the Chipcon’s Zigbee radio chip datasheet [4] the optimal length of
the monopole antenna should be 1.1inch. Therefore, in our first attempt to mea-
sure the antenna we used a wire with 1.1inch length as the monopole antenna.
Both receiver and transmitter had exactly the same antenna.

Initially we tried to measure the antenna at the lowest power level (−25dBm)
of the radio. We noticed that even at the lowest power level, transmitter and
receiver could communicate for almost any position of the receiver in the basket-
ball court. In addition, we noticed that the RSSI values recorded at the receiver
were changing dramatically with very small changes in the distance between
transmitter and receiver even when the orientation of the nodes was kept con-
stant. Therefore, it was impossible to infer any signal propagation model based
on the RSSI data. Apparently, even at the lowest power level the 802.15.4 radio
from Chipcon has a large communication range that is able to generate signifi-
cant reflections even in the basketball court. Hence, the results in a real indoor
environment with furniture and people would be much worse. By increasing the
transmission power level of the radio we found out that even at slightly higher
power levels two nodes could communicate over long distances even without
line-of-sight. To reduce the effective communication range of the nodes we used
a suboptimal antenna. Instead of using the recommended length (1.1inch) mono-
pole antenna we used a 2.9inch wire as our monopole antenna. As it can be seen
in Figure 5b, the communication range of the radio when using the suboptimal
antenna is significantly reduced but the signal attenuation properties remain
the same.

An Empirical Characterization of Radio Signal Strength Variability 333

6.2 Antenna Orientation in Basketball Court

After replacing the 1.1inch antennas, on both the receiver and the transmitter,
with 2.9inch antennas we repeated the same experiment. At the lowest transmis-
sion power level of the radio the communication range was 3.3-6.6ft. Despite the
fact that changing the length of the antenna reduced the communication range,
still we could not get any signal propagation model at the lowest power level. It
was obvious that communication was totally unreliable at the lowest power level
with the 2.9inch antenna.

However, we noticed that by using the next higher transmission power level
we were getting consistent RSSI values on the receiver and we had reliable com-
munication in a wide range of distances. The same was valid for all the other
transmission power levels. Therefore, we decided to measure the 2.9inch antenna
at the power level of −15dBm using all the possible combinations described in
the previous section.

Figures 4a, 4b, and 4c show the RSSI values versus distance for all the orienta-
tions and for the 6.5ft, 3.5ft, and 1.25ft receiver heights respectively. Note that
when the receiver is at 1.25ft (Figure 4c) and 3.5ft (Figure 4b) height from the
ground the raw RSSI data cannot be used to infer any distance information. The
reason is that significantly different distances can produce the same or almost
the same RSSI values. In addition, similar distances correspond to very different
(even up to 11dBm) RSSI values for different antenna orientations.

However, when the receiver is at 6.5ft height from the ground (Figure 4a) the
RSSI versus distance plot can be easily fitted to the widely used log-normal sig-
nal propagational model. Note that as the distance between transmitter and
receiver increases the variability in the RSSI value that corresponds to this
distance also increases. In other words different ranges of RSSI values provide
distance information with different levels of accuracy. This suggests that a prob-
abilistic approach for translating RSSI values to distance information should
be used. This can be easily implemented by computing the probability
distribution of the raw RSSI values over the different distances. Using this prob-

0 5 10 15 20 25
−45

−40

−35

−30

−25

−20
6.5ft − All orientations

Distance(feet)

R
S

S
I (

d
b

m
)

0
45
90
135
180
225
270
315

0 5 10 15 20 25 30
−48

−46

−44

−42

−40

−38

−36

−34

−32

−30
3.5ft − All orientations

Distance(feet)

R
S

S
I (

d
b

m
)

0
45
90
135
180
225
270
315

5 10 15 20 25 30
−48

−46

−44

−42

−40

−38

−36

−34
1.5ft − All orientations

Distance(feet)

R
S

S
I (

d
b

m
)

0
45
90
135
180
225
270
315

(a) (b) (c)

Fig. 4. RSSI vs. Distance plots at different heights a) 6.5ft, b) 3.5ft, c) 1.25ft. RSSI
values equal to −48dBm indicate absence of communication between receiver and
transmitter

334 D. Lymberopoulos, Q. Lindsey, and A. Savvides

-44

-42

-40

-38

-36

-34

-32

-30

-28

-26

-24

-22

-20
0 2 4 6 8 10 12 14 16 18 20 22

Distance (ft)

R
S

S
I (

d
b

m
)

0 2 4 6 8 10 12 14 16
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

Distance (ft)

R
S

S
I (

d
b

m
)

Optimal Antenna
Suboptimal Antenna

(a) (b)

Fig. 5. a)RSSI vs Distance plots for an obstacle-free environment (basketball court).
Each data point is the average RSSI value recorded for 20 packets, b) The effect of
using a suboptimal antenna in an obstacle free indoor environment of size 24ft x 20ft.

ability distribution we can map an RSSI value to a specific distance with a given
probability. The higher the probability the higher the accuracy of the distance
estimation.

Figures 4a, 4b, and 4c clearly show that different antenna orientations can
produce different sets of RSSI values for the same distances between receiver and
transmitter. In practice, this implies that the raw RSSI values cannot be directly
translated to distance information. Extra knowledge about the specific antenna
orientation that corresponds to this set of RSSI values is needed. Furthermore,
our results show that even if we are able to map a set of RSSI values to a
specific antenna orientation this does not necessarily mean that we can extract
any useful distance information. The reason is that some antenna orientations
do not provide a consistent signal attenuation.

0 5 10 15 20 25
−45

−40

−35

−30

−25

−20
Orientation: 135 degrees

Distance(feet)

R
S

S
I (

d
b

m
)

6.5ft
3.5ft
1.5ft

0 5 10 15 20 25
−50

−45

−40

−35

−30

−25
Orientation: 180 degrees

Distance(feet)

R
S

S
I (

d
b

m
)

6.5ft
3.5ft
1.5ft

(a) (b)

Fig. 6. a) The best angle between receiver and transmitter, b) One of the worst an-
gles between the receiver and the transmitter. RSSI values equal to −48dBm indicate
absence of communication between receiver and transmitter.

An Empirical Characterization of Radio Signal Strength Variability 335

Figures 6a and 6b provide some more insight to the antenna orientation effect.
Figure 6 shows the best transmitter antenna orientation. Note that a single
signal propagation model can be extracted that is independent of the height of
the receiver.

On the other hand, Figure 6a shows the worst transmitter antenna orienta-
tion. It is obvious that any attempt to infer distance information directly from
the RSSI values is impossible. Different heights of the receiver produce very
different RSSI values. However, when the receiver is at 6.5ft height a signal
propagation model can still be extracted. This implies that when the receiver is
at 6.5ft the radiation pattern of the antenna seems to be very symmetric. This
allows us to infer a signal propagation model independently of the antenna ori-
entation of the transmitter. In other words, when the height difference between
the transmitter and the receiver is small, antenna orientation does not affect the
signal propagation model. But, as figure 6b shows, when the height difference
between the transmitter and the receiver increases then the antenna orientation
becomes a major factor that greatly affects the signal propagation model.

Side View Top View

Communication range

Symmetric Region

Antenna orientation
independent regions

Communication
range

≈45 degrees

0 2 4 6 8 10 12 14 16
−50

−45

−40

−35

−30

−25

−20

Distance (ft)

R
S

S
I (

d
b

m
)

6.17ft

5.65ft

 4.6ft

1.25ft

(a) (b)

Fig. 7. a) Radiation Pattern of the monopole antenna, b) Indoors antenna character-
ization. RSSI values equal to −48dBm indicate absence of communication between
receiver and transmitter.

This can be seen in figure 7 where the radiation pattern of our monopole
antenna is shown. The radiation pattern was constructed using all the measure-
ments we collected in the basketball court. The shaded region of the antenna
radiation pattern is the symmetric region for which a single signal propagation
model can be extracted. Since the antenna orientation is not a major factor when
the receiver and the transmitter are at the same height, the log-normal shad-
owing model is very accurate in the case of a 2-D sensor network deployment
at an obstacle-free environment (outdoor deployment). However, the log-normal
shadowing model is not able to capture the effect of the transmitter’s antenna
orientation in the case of a 3-D sensor network deployment even in an obstacle-
free environment.

336 D. Lymberopoulos, Q. Lindsey, and A. Savvides

Consequently, a robust RSSI localization method should try to operate only in
the shaded region of the antenna radiation pattern ,shown in Figure 7, where the
log-normal shadowing model seems to hold. This requires isolating the shaded
area from the rest of the communication region where the RSSI values are sig-
nificantly affected by the antenna orientation of the transmitter and they cannot
provide any reliable distance or location information. To demonstrate the dif-
ficulty of this task, consider the following case where a beacon is transmitting
packets and a set of receivers listen the packets and record the RSSI values which
are then send back to the beacon node. The beacon node is aware of a set of
pairs of the following format: < nodeID,RSSI >. How can the beacon identify
the nodes that were in the shaded area of its communication range? The only
case where the beacon is able to identify those nodes is the case where the RSSI
values recorded on the nodes that were in the shaded area of the communication
range of the beacon node are unique. In other words, there is a unique set of
RSSI values that can be recorded on the receiver only when the receiver is in the
symmetric region of the communication range of the transmitter. Unfortunately,
Figures 4 and 6 show that this unique set of RSSI values is very small and covers
only a small range of short distances.

6.3 Antenna Orientation in Indoor Environments

In this section we focus on the effect of the indoor environment on the received
signal strength between a pair of communicating nodes. Our first indoors exper-
iment focused on the effect of reflections on the antenna radiation pattern. We
tried to replicate the experiment that we run in the basketball court in the 3-D
testbed (15ft(W) × 20ft(L) × 10ft(H)) that is installed in our lab. Exactly the
same transmitter that was used in the basketball court experiment was placed
at a height of approximately 7ft from the ground. The same receiver that was
used in the basketball court experiment was placed in four different heights from
the ground: 1.25ft, 4.6ft, 5.65ft, and 6.17ft. For each one of these heights the
receiver recorded the RSSI values for different distances from the transmitter
with a distance resolution of 1ft(the transmitter was transmitting packets at
the same power level as in the basketball court, −15dBm). In this experiment
we focused only on a single transmitter antenna orientation, the one that gave
us a single signal propagation model that was independent of the height of the
receiver(Figure 6) in the obstacle-free environment.

The RSSI values that were recorded on the receiver for all the different dis-
tances and for all the different heights of the receiver can be seen in Figure 7b.
When the receiver is at 6.17ft from the ground a clear log-normal signal prop-
agation model can be derived as in the case of the obstacle-free environment.
However, for the other three heights of the receiver the RSSI values seem totally
random and no actual distance information can be extracted from these sets of
RSSI values. What is even more interesting, is the fact that the randomness that
the reflections introduce in the RSSI values directly affects the symmetric region
of the antenna and makes it significantly narrower. Note that every RSSI value
that is equal or smaller than −30dBm can actually correspond to any distance

An Empirical Characterization of Radio Signal Strength Variability 337

that is larger than 1.6ft and smaller than the communication range. The only
RSSI values that can be used to accurately estimate the distance between the
nodes are the RSSI values that are higher than −30dBm. This range of RSSI
values can only be produced by the symmetric region of the antenna and it is not
affected by the reflections in the room or the height of the receiver. In addition,
this range of RSSI values can be fitted to a linear signal propagation model and
not to a log-normal signal propagation model. Unfortunately, the maximum dis-
tance that this region of RSSI values can cover is very small and approximately
3ft to 4ft. This suggests that even for small rooms a very large number of sensor
nodes is required in order to perform accurate RSSI localization.

6.4 Indoor Testbed Experiment

In order to verify the results of the previous section, we deployed 381 nodes
with 2.9inch antennas on our 3-D testbed located inside our lab. The nodes were
placed in 3-dimensions inside the testbed as shown in Figure 1b. The antennas
of all the nodes on the floor were pointing to the ceiling and the antennas of
the nodes on the testbed were pointing either towards the center of the testbed
or towards the floor. In all cases, the antennas were vertical with respect to the
PCB of the XYZ sensor node.

In our experiment, each node broadcasts 10 packets at each one of the eight
available power levels. All the nodes that hear a packet record the RSSI value
for this packet and the sender id. At every time instant only one node is broad-
casting packets. After a node has finished transmitting packets, a gateway node
connected to a PC polls the recorded data from each node in the testbed sepa-
rately. This process continues until all nodes transmit 10 packets at each power
level. The experiment took place during the night when no people were in the lab.

Received Signal Strength Data. Figures 8a, 8b, 8c show the recorded RSSI
values versus the true distances that they correspond to for different power levels
and for all 38 nodes. It is obvious that no actual distance information can be
extracted directly from the RSSI values. This is due to the reflections and the
random placement of the nodes which created communicating pairs of nodes with
random pairwise antenna orientations. Note, that as the transmitting power level
used decreases, the RSSI data starts looking less random. The reason is that as
the power level increases the reflections in the testbed also increase. However,
even at the low power level it is very difficult to fit the RSSI data to a signal
propagation model.

Connectivity and Link Symmetry. Our 38 node deployment also provided
useful insight about the connectivity and the symmetry of the links in a real
IEEE 802.15.4 sensor network. Figures 10a, 10b, and 10c show the connectivity
achieved by the lowest, low and maximum power levels respectively.

1 Initially we deployed 40 nodes. Unfortunately, as it can be seen in Figure 10, the bat-
teries of nodes 20 and 21 were not full and therefore these nodes did not send/receive
any packets.

338 D. Lymberopoulos, Q. Lindsey, and A. Savvides

0 3 6 9 12 15 18 21 24 27
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

DISTANCE (ft)

A
ve

ra
g

e
R

S
S

I (
d

b
m

)

0 3 6 9 12 15 18 21 24 27
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

DISTANCE (ft)

A
ve

ra
g

e
R

S
S

I (
d

b
m

)

0 3 6 9 12 15 18 21 24 27
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

DISTANCE (ft)

A
ve

ra
g

e
R

S
S

I (
d

b
m

)

(a) (b) (c)

Fig. 8. RSSI vs Distance plots for the 38 node indoor sensor network deployment at
different power levels: a) 0dBm, b) -5dBm, c) -15dBm

1 2 3 4 5 6 7 8
20

22

24

26

28

30

32

34

36

Power Level (1−> Maximum)

P
er

ce
n

ta
g

e
o

f
O

n
e−

W
ay

 L
in

ks

One way Links

1 2 3 4 5 6 7 8 9
20

25

30

35

40

45

50

55

Power Level (1−> Maximum)

P
er

ce
n

ta
g

e
o

f
as

sy
m

et
ri

c
lin

ks

>=2

>=3

>=4

>=5

>=6

(a) (b)

Fig. 9. Percentage of a) One-way links and b) asymmetric links

0
1

2
3

4
5

6

0

1

2

3

4

5
0

0.5

1

1.5

2

2.5

7

8

9

6

27

10

5

28

12

42

X

33

4

30

35

29

11

13

14

3

34

32

37

36

17

31

41

25

15

1

2

38
39

18

26

24

16

Y

40

19

22

23

20

21

Z

0
1

2
3

4
5

6

0

1

2

3

4

5
0

0.5

1

1.5

2

2.5

7

8

9

6

27

10

5

28

12

42

X

33

4

30

35

29

11

13

14

3

34

32

37

36

17

31

41

25

15

1

2

38
39

18

26

24

16

Y

40

19

22

23

20

21

Z

0
1

2
3

4
5

6

0

1

2

3

4

5
0

0.5

1

1.5

2

2.5

7

8

9

6

27

10

5

28

12

42

X

33

4

30

35

29

11

13

14

3

34

32

37

36

17

31

41

25

15

1

2

38
39

18

26

24

16

Y

40

19

22

23

20

21

Z

(a) (b) (c)

Fig. 10. Connectivity plots for the 38 node indoor sensor network a)-25dBm
b) -15dBm, c) 0dBm. Nodes 20 and 21 were not equipped with fully charged batteries.

Figures 9a and 9b show the percentage of one-way links and the percentage
of asymmetric2 links respectively. As the power level of transmission decreases

2 We call (A, B) link an asymmetric link if the RSSI value recorded at B when A is
transmitting is different than the RSSI value recorded at A when B is transmitting.
We call (A, B) link an one-way link if node A can reach node B but node B cannot
reach node A. Asymmetric links include the one-way links.

An Empirical Characterization of Radio Signal Strength Variability 339

the percentage of asymmetric links and their absolute difference as well as the
percentage of one-way links increase. What is even more important, is the fact
that the asymmetry of the links does not depend on the actual RSSI values.
Our experimental data show that when node A transmits packets, node B
might record a very high RSSI value that can be even equal to −23dBm or
-25dBm. However, when node B transmits packets, node A might record a very
small RSSI value or it might not record any RSSI value at all because it is
not able to receive any packets. Our experimental results, shown in Figure 9,
show that the percentage of asymmetric links vary from 21% to 36% of the to-
tal number of links in the network depending on the power level used during
transmission.

7 Discussion

Based on our detailed characterization we found that antenna orientation greatly
impacts RSSI and link asymmetry in indoor and outdoor scenarios. This is es-
pecially the case in 3-D indoor deployments with random antenna orientations.
These observations influence the assumptions of many node localization algo-
rithms that utilize RSSI information. This includes RSSI distance prediction
and profiling algorithms as well as other statistical approaches. Our results show
that direct distance prediction from raw RSSI data in 3-D indoor environments
is impossible. For profiling approaches, our measurements show that antenna
orientation information should be included in the fingerprint. However, even if
the antenna orientation that corresponds to a set of RSSI values is known it
might be impossible to infer any distance information since some antenna orien-
tations do not provide a consistent signal attenuation. This observation shows
that modeling the antenna orientation effect as a random variable with gaussian
distribution, as it is modeled in equation 1, is not realistic.

Our experiments also show that the antenna orientation has a great impact on
the ordering of the RSSI values. The ordering of RSSI values is meaningful only
when the communication takes place in the symmetric region of the antenna as
it is shown in Figure 7(a). According to our findings this region of the antenna
is only a small fraction of the communication range and therefore the ranking of
the RSSI values provides little or no information in the case of 3-D deployments
where the antenna orientations of the communicating nodes are almost random.

The antenna orientation effect has also implications on the statistical RSSI
localization algorithms. In most probabilistic algorithms a probability distri-
bution, usually gaussian, of the RSSI values is assumed. In general, such an
assumption holds only in the symmetric region of the antenna. When the com-
munication between two nodes takes place in the non-symmetric region of the
antenna, which is generally the case in a 3-D network deployment, the variation
in the RSSI values cannot be modeled by a gaussian distribution since, according
to our experiments, there is a huge variation in the RSSI values. Consequently,
our observations suggest that new probabilistic models that better capture RSSI
variations need to be developed for 3-D environments.

340 D. Lymberopoulos, Q. Lindsey, and A. Savvides

In the case of indoor environments, reflections become the main problem in
performing RSSI distance prediction. Only a very small range of RSSI values
can be used for extracting distance information for up to 3− 4ft. In this region,
RSSI changes linearly with distance. In addition, our findings show that 3-D
indoor sensor network deployments suffer of a high degree of link asymmetry.
This link asymmetry is due to the multipath and fading effects as well as due to
the random pairwise antenna orientations used during communication.

8 Conclusions

We have conducted an empirical study of signal strength behavior using mono-
pole antennas and the widely used Chipcon CC2420 radio. Our experiments in
a large open space with minimal multipath effects have shown that antenna
orientation corrupts signal strength. This significantly alters the quality of in-
formation that RSSI can provide for deriving spatial relationships. Our results
and experience from this work show that signal strength localization will work in
specially instrumented scenarios. In other scenarios and 3D deployments, signal
strength localization remains an extremely challenging task. Statistical tech-
niques and specific deployment scenarios will mitigate some of these challenges.
However, the large amount of characterization needed will make the use of sig-
nal strength approaches with low power radios practically impossible. Our study
also provides valuable insight into link asymmetry in indoor 3D deployments.

Acknowledgment

This work was supported in part by the National Science Foundation under
award #0448082 and a gift from OKI Semiconductors. The authors would also
like to thank Prof. Sekhar Tatikonda for his valuable feedback on this work.

References

1. P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-based user location
and tracking system. In Proc. IEEE Infocom, pages 775–784, Tel-Aviv, Israel, April
2000.

2. M. Berna, B. Lisien, B. Sellner, G. Gordon, F. Pfenning, and S. Thrun. A learning
algorithm for localizing people based on wireless signal strength that uses labeled
and unlabeled data. In Proceedings of IJCAI 03, pages 1427-1428, 2003.

3. P. Castro, P. Chiu, T. Kremenek, and R. Muntz. A Probabilistic Location Service
for Wireless Network Environments. Ubiquitous Computing 2001, September 2001.

4. Chipcon: CC2420 802.15.4 compliant radio. http://www.chipcon.com.
5. D.Niculescu and B. Nath. Vor base stations for indoor 802.11 positioning. In

Proceedings of Mobicom, 2004.
6. E. Elnahrawy, X. Li, and R. M. Martin. The limits of localization using signal

strength: A comparative study. In Proceedings of Sensor and Ad-Hoc Communica-
tions and Networks Conference (SECON), Santa Clara California, October 2004.

An Empirical Characterization of Radio Signal Strength Variability 341

7. T. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelzaher. Range-free local-
ization schemes for large scale sensor networks. In International Conference on
Mobile Computing and Networking(Mobicom), September 14-19 San Diego Cali-
fornia, September 2003.

8. Jeffrey Hightower, Roy Want, and Gaetano Borriello. SpotON: An indoor 3d loca-
tion sensing technology based on RF signal strength. UW CSE 00-02-02, University
of Washington, Department of Computer Science and Engineering, Seattle, WA,
February 2000.

9. Konrad Lorincz and Matt Welsh. Motetrack: A robust, decentralized aproachto rf-
based location tracking. In Proceedings of the International Workshop on Location-
and Context-Awareness (Loca 2005), 2005.

10. D. Lymberopoulos and A. Savvides. Xyz: A motion-enabled, power aware sensor
node platform for distributed sensor network applications. In IPSN, SPOTS track,
April 2005.

11. D. Madigan, E. Elnahrawy, and R. Martin. Bayesian indoor positioning systems.
In Proceedings of INFOCOM 2005, Miami, Florida, March 2005.

12. D. Niculescu and B. Nath. Localized positioning in ad hoc networks. In Proceed-
ings of the First IEEE International Workshop on Sensor Network Protocols and
Applications, San Diego, CA, May 2003.

13. N. Patwari and A. O. Hero III. Using proximity and quantized rss for sensor
localization in wireless networks. In WSNA03, San Diego, CA, September 2003.

14. Prasithsangaree, P. Krishnamurthy, and P. K. Chrysanthis. On indoor position lo-
cation with wireless lans. In The 13th IEEE International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC 2002), 2002.

15. S. Ray, W. Lai, and I. Pascalidis. Deployment optimization of sensornet-based
stochastic location-detection systems. In Proceedings of INFOCOM 2005, Miami,
Florida, March 2005.

16. S. Saha, K. Chaudhuri, D. Sanghi, and P. Bhagwat. Location determination of a
mobile device using ieee 802.11 access point signals. In IEEE Wireless Communi-
cations and Networking Conference (WCNC), 2003.

17. Scott Y. Seidel and Theodore S. Rapport. 914 MHz path loss prediction model for
indoor wireless communications in multifloored buildings. IEEE Transactions on
Antennas and Propagation, 40(2):207–217, February 1992.

18. R. Stoleru and J. Stankovic. Probability grid: A location estimation scheme for
wireless sensor networks. In Proceedings of Sensor and Ad-Hoc Communications
and Networks Conference (SECON), Santa Clara California, October 4-7 2004.

19. P. Myllymaki T. Roos and H. Tirri. A statistical modeling approach to location
estimation. In IEEE Trnsactions on Mobile Computing, pages 1:59–69, 2002.

20. K. Whitehouse, A. Woo, C. Karlof, and D. Culler F. Jiang. The effects of ranging
noise on multi-hop localization: An empirical study. In Proceedings of Information
Processing in Sensor Networks (IPSN), Los Angeles, CA, April 2005.

21. K. Yedavalli, B. Krishnamachari, S. Ravula, and B. Srinivasan. Ecolocation: A
technique for rf based localization in wireless sensor networks. In Proceedings of
Information Processing in Sensor Networks (IPSN), Los Angeles, CA, April 2005.

Author Index

Aberer, Karl 3
Ahn, Sungjin 38

Balakrishnan, Hari 260
Barroso, Andre 276
Bischoff, Urs 54
Braynard, Rebecca 244

Chua, Kee Chaing 69

Dietterle, Daniel 228
Dil, Bram 164
Dulman, Stefan 164
Dutta, Prabal 115

Ebert, Jean-Pierre 228
Ellis, Carla 244
Eom, Doo-seop 132

Gauger, Matthias 99, 212
Grossglauser, Matthias 148

Havinga, Paul 164
Hazas, Mike 54
Honda, Hiroaki 180
Hori, Muneo 180
Hwang, Kwang-il 132

In, JeongSik 132
Inoue, Junya 180

Jamieson, Kyle 260

Khor, Kok-How 180
Kim, Daeyoung 38
Kortuem, Gerd 54
Kousaka, Tomohiro 180
Kraemer, Rolf 228
Kusý, Branislav 115

Lachenmann, Andreas 99, 212
Lédeczi, Ákos 115

Lindsey, Quentin 326
Liu, Jie 5
Lymberopoulos, Dimitrios 326

Madden, Samuel 1, 21, 292
Malesci, Umberto 292
Marrón, Pedro José 99, 212
Minder, Daniel 99, 212
Mitschke, Robert 310
Mohaisen, Abedelaziz 83

Negri, Luca 196
Nyang, Dae-Hun 83

Oguni, Kenji 180

Piórkowski, Micha�l 148

Roedig, Utz 276
Rothermel, Kurt 99, 212

Saeki, Masayuki 180
Sallai, János 115
Saukh, Olga 99, 212
Savvides, Andreas 326
Silberstein, Adam 244
Sreenan, Cormac J. 276
Srinivasan, Vikram 69
Strohbach, Martin 54

Tay, Y.C. 260
Thiele, Lothar 196
Tulone, Daniela 21

Wagenknecht, Gerald 228
Wang, Bang 69
Wang, Wei 69
Wattenhofer, Roger 2
Whitehouse, Kamin 5
Willig, Andreas 310

Zhao, Feng 5

	Frontmatter
	Tutorials
	Data Management in Sensor Networks
	Algorithms for Wireless Sensor Networks

	Invited Talk
	Unleashing the Power of Wireless Networks Through Information Sharing in the Sensor Internet

	Query Systems
	Semantic Streams: A Framework for Composable Semantic Interpretation of Sensor Data
	PAQ: Time Series Forecasting for Approximate Query Answering in Sensor Networks
	Proactive Context-Aware Sensor Networks

	Sensor Network Services
	Constraint-Based Distance Estimation in Ad-Hoc Wireless Sensor Networks
	Sensor Density for Complete Information Coverage in Wireless Sensor Networks
	Hierarchical Grid-Based Pairwise Key Predistribution Scheme for Wireless Sensor Networks

	Routing
	Generic Routing Metric and Policies for WSNs
	On the Scalability of Routing Integrated Time Synchronization
	Distributed Dynamic Shared Tree for Minimum Energy Data Aggregation of Multiple Mobile Sinks in Wireless Sensor Networks

	Localization
	Constrained Tracking on a Road Network
	Range-Based Localization in Mobile Sensor Networks
	Hierarchical Localization Algorithm Based on Inverse Delaunay Tessellation

	Platforms and Development
	Power Management for Bluetooth Sensor Networks
	FlexCup: A Flexible and Efficient Code Update Mechanism for Sensor Networks
	Transforming Protocol Specifications for Wireless Sensor Networks into Efficient Embedded System Implementations

	Medium Access Control
	Extending Network Lifetime Using an Automatically Tuned Energy-Aware MAC Protocol
	Sift: A MAC Protocol for Event-Driven Wireless Sensor Networks
	f-MAC: A Deterministic Media Access Control Protocol Without Time Synchronization

	Measurements
	A Measurement-Based Analysis of the Interaction Between Network Layers in TinyOS
	Results of Bit Error Measurements with Sensor Nodes and Casuistic Consequences for Design of Energy-Efficient Error Control Schemes
	An Empirical Characterization of Radio Signal Strength Variability in 3-D IEEE 802.15.4 Networks Using Monopole Antennas

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

