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Abstract. In the present work we show that the linear operations in the
space of Hausdorff continuous functions are generated by an extension
property of these functions. We show that the supremum norm can be
defined for Hausdorff continuous functions in a similar manner as for
real functions, and that the space of all bounded Hausdorff continuous
functions on an open set is a normed linear space. Some issues related
to approximations in the space of Hausdorff continuous functions by
subspaces are also discussed.

1 Introduction

The concept of Hausdorff continuity generalizes the concept of continuity of real
functions to interval-valued functions [4, 8]. Due to a minimality condition with
respect to inclusion of graphs, Hausdorff continuous (H-continuous) functions re-
tain some important properties of continuous functions, e.g. they are completely
determined by their values on a dense subset of their domain. It is well-known
that the operations (addition and multiplication by scalars) associated with in-
terval structures typically do not infer a linear space [5]. In this regard the set
of H-continuous functions is a notable exception. It is shown in [9] that one can
define addition and multiplication by scalars on the set H(Ω) of all H-continuous
functions on an open subset Ω of R

n in such a way that H(Ω) is a linear space.
Naturally, these operations are not defined in a point-wise manner. In Sections
3 and 4 of the present work we show that the linear space operations on H(Ω)
are a direct consequence of an extension property of H-continuous functions. In
Section 5 we show that the supremum norm can be defined for H-continuous
functions in a similar way as for real functions, and that the space Hb(Ω) of all
bounded H-continuous functions on the open set Ω is a normed linear space.
However, due to the involvement of discontinuous functions, a natural metric to
be associated with the space Hb(Ω) is the Hausdorff metric considered in Sec-
tion 6. Issues related to approximations in H(Ω) by subspaces are also discussed.
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2 General Setting

The real line is denoted by R and the set of all finite real intervals by IR =
{[a, a] : a, a ∈ R, a ≤ a}. Given an interval a = [a, a] = {x : a ≤ x ≤ a} ∈ IR,
w(a) = a − a is the width of a, while |a| = max{|a|, |a|} is the modulus of a. An
interval a is called proper interval, if w(a) > 0 and point interval, if w(a) = 0.
Identifying a ∈ R with the point interval [a, a] ∈ IR, we consider R as a subset of
IR. We denote by A(Ω) the set of all locally bounded interval-valued functions
defined on an arbitrary set Ω ⊆ R

n. The set A(Ω) contains the set A(Ω) of
all locally bounded real functions defined on Ω. Recall that a real function or
an interval-valued function f defined on Ω is called locally bounded if for every
x ∈ Ω there exist δ > 0 and M ∈ R such that |f(y)| < M, y ∈ Bδ(x), where
Bδ(x) = {y ∈ Ω : ||x − y|| < δ} denotes the open δ-neighborhood of x in Ω.

Let D be a dense subset of Ω. The mappings I(D, Ω, ·), S(D, Ω, ·) : A(D) −→
A(Ω) defined for f ∈ A(D) and x ∈ Ω by

I(D, Ω, f)(x) = sup
δ>0

inf{f(y) : y ∈ Bδ(x) ∩ D},

S(D, Ω, f)(x) = inf
δ>0

sup{f(y) : y ∈ Bδ(x) ∩ D},

are called lower and upper Baire operators, respectively. The mapping F :
A(D) −→ A(Ω), called graph completion operator, is defined by

F (D, Ω, f)(x) = [I(D, Ω, f)(x), S(D, Ω, f)(x)], x ∈ Ω, f ∈ A(D).

In the case when D = Ω the sets D and Ω will be omitted, thus we write
I(f) = I(Ω, Ω, f), S(f) = S(Ω, Ω, f), F (f) = F (Ω, Ω, f).

Definition 1. A function f ∈ A(Ω) is S-continuous, if F (f) = f .

Definition 2. A function f ∈ A(Ω) is Hausdorff continuous (H-continuous), if
g ∈ A(Ω) with g(x) ⊆ f(x), x ∈ Ω, implies F (g)(x) = f(x), x ∈ Ω.

Theorem 1. [1, 8] For every f ∈ A(Ω) the functions F (I(S(f))) and F (S(I(f)))
are H-continuous.

H-continuous functions are similar to usual continuous real functions in that they
assume point values everywhere on Ω except for a set of first Baire category. More
precisely, it is shown in [1] that for every f ∈ H(Ω) the set

Wf = {x ∈ Ω : w(f(x)) > 0} (1)

is of first Baire category and f is continuous on Ω\Wf . Since a finite or countable
union of sets of first Baire category is also a set of first Baire category we have:

Theorem 2. Let the set Ω be open and let F be a finite or countable set of
H-continuous functions. Then the set DF = {x ∈ Ω : w(f(x)) = 0, f ∈ F} =
Ω \

⋃

f∈F
Wf is dense in Ω and all functions f ∈ F are continuous on DF .
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The graph completion operator is inclusion isotone i) w. r. t. the functional
argument, that is, if f, g ∈ A(D), where D is dense in Ω, then

f(x) ⊆ g(x), x ∈ D =⇒ F (D, Ω, f)(x) ⊆ F (D, Ω, g)(x), x ∈ Ω, (2)

and, ii) w. r. t. the set D in the sense that if D1 and D2 are dense subsets of Ω
and f ∈ A(D1 ∪ D2) then

D1 ⊆ D2 =⇒ F (D1, Ω, f)(x) ⊆ F (D2, Ω, f)(x), x ∈ Ω. (3)

In particular, (3) implies that for any dense subset D of Ω and f ∈ A(Ω) we have
F (D, Ω, f)(x) ⊆ F (f)(x), x ∈ Ω. The graph completion operator is idempotent.
Moreover [2], if the sets D1 and D2 are both dense in Ω and D1 ⊆ D2 then

F (D2, Ω, ·) ◦ F (D1, Ω, ·) = F (D1, Ω, ·). (4)

Let f ∈ A(Ω). For every x ∈ Ω the value of f is an interval [f(x), f (x)] ∈
IR. Hence, f can be written in the form f = [f, f ] where f, f ∈ A(Ω) and
f(x) ≤ f(x), x ∈ Ω. The lower and upper Baire operators as well as the graph
completion operator of an interval-valued function f can be represented in terms
of f and f , namely, for every dense subset D of Ω: I(D, Ω, f) = I(D, Ω, f),
S(D, Ω, f) = S(D, Ω, f), F (D, Ω, f) = [I(D, Ω, f), S(D, Ω, f)].

3 Extension and Restriction Properties

Let Ω ⊆ R
n and let D be dense in Ω. Extending a function f defined on D to Ω

while preserving its properties (e.g. linearity, continuity) is an important issue
in functional analysis. Recall that if f is continuous on D it does not necessarily
have a continuous extension on Ω. The next theorem shows that an H-continuous
function on D has a unique H-continuous extension on Ω.

Theorem 3. Let ϕ ∈ H(D), where D is dense subset of Ω. Then there exists
unique f ∈ H(Ω), such that f(x) = ϕ(x), x ∈ D. Namely, f = F (D, Ω, ϕ).

Proof. Let f = F (D, Ω, ϕ). From the fact that ϕ is H-continuous on D it
follows that F (D, D, ϕ) = ϕ. Therefore, for every x ∈ D we have f(x) =
F (D, Ω, ϕ)(x) = F (D, D, ϕ)(x) = ϕ(x). Hence f is an extension of ϕ over Ω.
We show next that f is H-continuous on Ω. Using property (4) we obtain

F (f) = F (Ω, Ω, F (D, Ω, ϕ)) = F (D, Ω, ϕ) = f. (5)

Let g ∈ A(Ω) satisfy the inclusion

g(x) ⊆ f(x), x ∈ Ω. (6)

Then using the inclusion isotone property (2) of the operator F we have

F (g)(x) ⊆ F (f)(x) = f(x), x ∈ Ω. (7)
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Relation (6) implies g(x) ⊆ f(x) = ϕ(x), x ∈ D. Using again the H-continuity
of ϕ on D we obtain F (D, D, g)(x) = ϕ(x), x ∈ D. From this equality and
properties (2) and (3) of F we obtain

f(x) = F (D, Ω, F (D, D, g))(x) ⊆ F (D, Ω, F (g))(x) ⊆ F (g)(x), x ∈ Ω. (8)

Inclusions (7) and (8) give F (g) = f which implies that f is H-continuous on Ω.
Finally, we prove uniqueness. Let h ∈ H(Ω) be another extension of ϕ, that

is, h(x) = ϕ(x), x ∈ D. We have f(x) = F (D, Ω, ϕ)(x) = F (D, Ω, h)(x) ⊆
F (h)(x) = h(x), x ∈ Ω. Then the H-continuity of h implies that F (f) = h.
Using (5) we obtain f = h, which completes the proof of the theorem.

Corollary 1. Let f, g ∈ H(Ω) and let D be a dense subset of Ω. Then
a) f(x) ≤ g(x), x ∈ D =⇒ f(x) ≤ g(x), x ∈ Ω,
b) f(x) = g(x), x ∈ D =⇒ f(x) = g(x), x ∈ Ω.

Let D ⊆ Ω. For f ∈ A(Ω) denote by f |D the restriction of f on D, i. e.
f |D ∈ A(D) and f |D(x) = f(x), x ∈ D. The next theorem shows that the
restriction of an H-continuous function on an open subset is H-continuous.

Theorem 4. Let D be an open subset of Ω. If f ∈ H(Ω) then f |D ∈ H(D).

Proof. Since D is open for every x ∈ D we have Bδ(x) ⊆ D for δ > 0 small
enough. Hence, for x ∈ D we have S(D, D, f |D)(x) = S(f)(x), I(D, D, f |D)(x) =
I(f)(x), F (D, D, f |D)(x) = F (f)(x). Then the theorem follows from Theorem 1.

4 The Linear Space of Hausdorff Continuous Functions

In the sequel we assume that the set Ω is open. For every two functions f, g ∈
H(Ω) denote Dfg = Ω \ (Wf ∪ Wg), where Wf and Wg are defined by (1). Using
addition of intervals the point-wise sum of f = [f, f ] ∈ H(Ω) and g = [g, g] ∈
H(Ω) is given by (f + g)(x) = f(x) + g(x) = [f(x) + g(x), f(x) + g(x)], x ∈ Ω.
It is easy to see that the point-wise sum of H-continuous functions is not always
H-continuous [9]. However, the restrictions of f , g and f + g on the set Dfg

which is dense in Ω, see Theorem 2, are continuous real functions. This suggests
the definition of a new operation addition “⊕” on H(Ω) as follows.

Definition 3. Let f, g ∈ H(Ω). Then f⊕g is the unique H-continuous extension
of (f + g)|Dfg

on Ω given by Theorem 3, that is, f ⊕ g = F (Dfg, Ω, f + g).

Multiplication by scalars on H(Ω) is defined point-wise; for f ∈ H(Ω), α ∈ R

(α ∗ f)(x) = αf(x) =

{
[αf(x), αf (x)] if α ≥ 0,

[αf(x), αf (x)] if α < 0.

It can be verified that operations “⊕” and “∗” satisfy on H(Ω) the axioms of
a linear space [9]. In particular, the second distributive law, which is usually
violated in interval structures, holds true; thus (H(Ω), ⊕, ∗) is a linear space.
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Denote by Hb(Ω) the set of all bounded H-continuous functions on Ω. Clearly
Hb(Ω) is a linear subspace of H(Ω). Note that the assumption that Ω is open,
made in the beginning of the section, is not a significant restriction with regard to
Hb(Ω). One can easily see that the sets Hb(Ω) and H(Ω), where Ω is the closure
of Ω are identical. Indeed, according to Theorem 3 every function f ∈ Hb(Ω) has
a unique H-continuous extension e(f) on Ω, that is, e(f) ∈ H(Ω). Conversely,
the restriction of every function H(Ω) on Ω belongs to Hb(Ω), see Theorem 4.
Then the mapping e : Hb(Ω) −→ H(Ω) is a bijection. Identifying f with e(f)
gives Hb(Ω) = H(Ω). Hence by considering Hb(Ω) we deal implicitly with the
case when the domain is a closure of an open set. It is also easily seen that the
supremum norm and the Hausdorff metric discussed in the sequel are preserved
by e. Further we prefer to work with Hb(Ω) rather then H(Ω) since the linear
operations are defined for Ω open and working with Ω closed or compact requires
an extension of these definitions. We remark that similar approach is not possible
for sets of continuous functions, since the set Cb(Ω) of all bounded continuous
functions on Ω satisfies the inclusion C(Ω) ⊆ Cb(Ω) but the inverse inclusion is
generally not true.

5 Supremum Norm and Approximations

The supremum norm on Hb(Ω) can be defined as usually by

||f || = sup
x∈Ω

|f(x)|, f ∈ Hb(Ω). (9)

Lemma 1. If D is dense in Ω, then for f ∈ Hb(Ω) we have ||f ||=supx∈D |f(x)|.

Proof. The inequality supx∈D |f(x)| ≤ ||f || is obvious. To prove the inverse
inequality denote m = supx∈D |f(x)|. From −m ≤ f(x) ≤ m, x ∈ D, it fol-
lows −m ≤ F (D, Ω, f)(x) ≤ m, x ∈ Ω. Since f is H-continuous the inclusion
F (D, Ω, f)(x) ⊆ F (f)(x) = f(x), x ∈ Ω, implies f = F (D, Ω, f). Therefore
|f(x)| ≤ m x ∈ Ω, which gives ||f || ≤ m. This completes the proof of Lemma 1.

Theorem 5. The mapping || · || : Hb(Ω) −→ R given in (9) is a norm on the
linear space Hb(Ω).

Proof. Let f, g ∈ Hb(Ω). According to Definition 3 for every x ∈ Dfg we have
(f ⊕ g)(x) = f(x) + g(x). Hence,

sup
x∈Dfg

|(f + g)(x)| = sup
x∈Dfg

|f(x) + g(x)| ≤ sup
x∈Dfg

|f(x)| + sup
x∈Dfg

|g(x)|.

Using Lemma 1 the above inequality implies ||f+g|| ≤ ||f ||+||g||. The remaining
properties of the norm are trivially satisfied.

Theorem 5 shows that Hb(Ω) considered with the operations “⊕”, “∗” and the
supremum norm is a normed linear space. Clearly the supremum norm on Hb(Ω)
is an extension of the supremum norm on the set of usual bounded continuous
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functions which is a subset of Hb(Ω). Thus the familiar normed linear space
Cb(Ω) is a subspace of Hb(Ω).

It is well-known that the supremum norm has limited applications in the
approximation of discontinuous functions. It is easy to construct examples of
approximations in Hb(Ω) by subspaces where the error of the approximation
remains bounded away from zero irrespective of the dimension of the subspace.
However, approximations with respect to the supremum norm work, in the case
when the approximated function and/or some of its derivatives have only “jump”
type of discontinuities at a finite number of points which are known. This is a
situation which may arise e. g. in the solution of PDE’s where discontinuities of
the given boundary conditions are propagated in a predictable way within the
interior of the domain of the solution [3].

6 Hausdorff Distance and Approximations by Finite
Dimensional Subspaces

A natural metric to be associated with H-continuous functions is the Hausdorff
metric denoted here by ρ. Let us recall that for f, g ∈ Hb(Ω) the distance ρ(f, g)
is defined as the Hausdorff distance between the graphs of f and g considered as
subsets of R

n+1 [8]. It should be noted that the operation “⊕” is not continuous
with respect to the Hausdorff metric as can be shown by easy examples. Hence
Hb(Ω) is not a linear metric space in the sense of [6]. However, the next theorem
shows that the operation “⊕” satisfies a condition rather close to continuity. In
the sequel “convergence” is meant in the sense of Hausdorff metric.

Theorem 6. If the sequences (fk)k∈N ⊆ Hb(Ω) and (gk)k∈N ⊆ Hb(Ω) converge
respectively to f, g ∈ Hb(Ω), then the sequence (fk ⊕ gk)k∈N converges to an
S-continuous function h, s. t. the only H-continuous function satisfying the in-
clusion φ(x) ⊆ h(x), x ∈ Ω, is φ = f ⊕g. Moreover, if h ∈ Hb(Ω) then h = f⊕g.

The proof is rather technical and will be omitted.

We next illustrate the ideas of approximation in Hb(Ω) by elements of finite
dimensional linear subspaces in the case of functions of one variable, that is,
Ω = (a, b) ⊆ R. Denote by ϕ the Π-form function:

ϕ(x) =

⎧
⎨

⎩

1 if 0 < x < 1;
[0, 1] if x ∈ {0, 1};

0 if x < 0 or x > 1.

For every j ∈ N we consider the following set of linearly independent functions

{φjk : k ∈ Z}, φjk(x) = ϕ(2jx − k), j, k ∈ Z. (10)

It is easy to see that φjk ∈ H(R), j, k ∈ Z. Therefore every linear combination
of functions from the set (10) is also in H(R).

We now discuss approximation of H-continuous functions by linear combina-
tions of functions from the set (10). To simplify matters we consider approxima-
tions on the interval (0, 1), that is, in the set Hb(0, 1). It follows from Theorem 4
that the restrictions of the functions (10) to the interval (0, 1) belong to Hb(0, 1).
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In the sequel φjk denotes the restriction to the interval (0, 1) of the function φjk

given in (10). Clearly in Hb(0, 1) for every j ∈ N it is enough to consider the set

{φjk : k = 0, 1, ..., 2j − 1}. (11)
Denote by Vj the linear subspace of H(0, 1) spanned by the set of functions
(11). Using that φj−1,k(x) = φj,2k(x) + φj,2k+1(x), j, k ∈ Z, one can see that the
inclusions V0 ⊂ V1 ⊂ ... ⊂ Vj ⊂ ... ⊂ H(0, 1) hold true. Hence we have a similar
situation to the adaptive multiresolution analysis discussed in [7].

Consider the operators Iδ : A(0, 1) −→ A(0, 1) and Sδ : A(0, 1) −→ A(0, 1)
where δ > 0 and for every f ∈ A(0, 1)

Iδ(f)(x) = inf{z ∈ f(y) : y ∈ (0, 1), |y − x| < δ}, x ∈ (0, 1),
Sδ(f)(x) = sup{z ∈ f(y) : y ∈ (0, 1), |y − x| < δ}, x ∈ (0, 1).

For a given δ > 0 the modulus of H-continuity τ(f, δ) of a function f ∈ A(0, 1)
is the Hausdorff distance between the completed graphs of Iδ/2(f) and Sδ/2(f),
that is, τ(f, δ) = ρ(F (Iδ/2(f)), F (Sδ/2(f))). It is shown in [8] that a function
f ∈ A(0, 1) is H-continuous if and only if limδ→0 τ(f, δ) = 0.

Let f = [f, f ] ∈ H(0, 1) and let j ∈ N. Using the operators Iδ(f) and Sδ(f)
we can construct in Vj a lower approximation L(f, j) of f and an upper approx-
imation U(f, j) of f as follows:

L(f, j) =
2j−1∑

k=0

Ih(f)((2k+1)h)φjk, U(f, j) =
2j−1∑

k=0

Sh(f)((2k+1)h)φjk, (12)

where h = 2−j−1 and the sums are in terms of the addition “⊕”. The inequality

L(f, j)(x) ≤ f(x) ≤ U(f, j)(x), x ∈ (0, 1), (13)

can be easily verified. Indeed, if we have x ∈ (2−jk, 2−j(k + 1) for some k ∈
{0, 1, ..., 2j − 1} then L(f, j)(x) = Ih(f)(2−j(k + 1

2 ))φjk(x) ≤ f(x). Similarly,

U(f, j)(x) ≥ f(x). Hence (13) holds on the set
2j−1⋃
k=0

(2−jk, 2−j(k + 1)) which is

dense on (0, 1). Using that the functions involved in (13) are all H-continuous,
we obtain that (13) holds for all x ∈ (0, 1), see Corollary 1.

Theorem 7. For every f ∈ H(0, 1) and j ∈ N we have

ρ(L(f, j), f) ≤ τ(f, 2−j+1), ρ(U(f, j), f) ≤ τ(f, 2−j+1).

Proof. Let h = 2−j−1 as in (12). From the inequalities

I2h(f)(x) ≤ L(f, j)(x) ≤ f(x) ≤ U(f, j) ≤ S2h(f)(x), x ∈ (0, 1),

it follows that ρ(L(f, j), f) ≤ ρ(F (I2h(f)), F (S2h(f))) = τ(f, 4h) = τ(f, 2−j+1).
Similarly, ρ(U(f, j), f) ≤ τ(f, 2−j+1).

It follows from Theorem 7 that for every f ∈ Hb(0, 1) both sequences (L(f, j))j∈N

and (U(f, j))j∈N converge to f with respect to the Hausdorff distance ρ. Hence
∞⋃

j=1
Vj is a dense subspace of Hb(0, 1) considered as a metric space w. r. t. ρ.
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7 Conclusion

H-continuous functions have a number of interesting and rather unique properties
due to the fact that they share characteristics of both real-valued and interval-
valued functions. The extension property discussed in Section 3 is in this category
as it is typical neither for classes of real functions usually considered in Functional
Analysis nor for classes of interval functions considered in Interval Analysis. We
show that this extension property generates the linear space operations in H(Ω)
proposed in our previous work [9]. Our further discussion is devoted to issues
of norm, metric and approximations of H-continuous functions. We introduce
the supremum norm for H-continuous functions and prove that the set Hb(Ω) of
all bounded H-continuous functions is a normed linear space w. r. t. this norm.
Recognizing the limitations of the supremum norm when discontinuous functions
are involved we consider the Hausdorff metric on Hb(Ω) and establish a strong
connection between the metric and the linear space operations. The considered
approximations by a subspace show that the Hausdorff metric is a natural metric
to be associated with H-continuous functions.
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