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Preface

The 5th International Conference on Large-Scale Scientific Computations
(LSSC 2005) was held in Sozopol, Bulgaria, June 6–10, 2003. The conference was
organized and sponsored by the Institute for Parallel Processing at the Bulgarian
Academy of Sciences. Partial support was also provided from project BIS-21++
funded by the European Commission in FP6 INCO via grant 016639/2005.

The plenary invited speakers and lectures were:

– O. Axelsson, Eigenvalue Estimates for Preconditioned Saddle Point Matrices
– R. Blaheta, Algebraic Multilevel Methods with Aggregations
– S. Brenner, Additive Multigrid Theory
– C. Carstensen, Review on the Convergence of Adaptive Finite Element

Methods
– S. Heinrich, Numerical Analysis on a Quantum Computer
– U. Langer, Inexact Date-Sparse Boundary and Finite Element Domain De-

composition Methods
– R. Lazarov, Discontinuous Galerkin Method as Stabilization Technique for

Nonconforming Finite Element Approximations of PDEs
– J. Waśniewski, New Data Storage Formats for Dense Matrices Lead to Va-

riety of High-Performance Algorithms
– Z. Zlatev, Parallel Treatment of General Sparse Matrices

The success of the conference and the present volume in particular are the
outcome of the joint efforts of many colleagues from various institutions and
organizations. Firstly thanks to all the members of the Scientific Committee
for their valuable contribution forming the scientific face of the conference, as
well as for their help in reviewing contributed papers. We especially thank the
organizers of the special sessions. We are also grateful to the staff involved in
the local organization.

Traditionally, the purpose of the conference is to bring together scientists
working with large-scale computational models of environmental and industrial
problems, and specialists in the field of numerical methods and algorithms for
modern high-speed computers. The key lectures reviewed some of the advanced
achievements in the field of numerical methods and their efficient applications.
The conference lectures were presented by the university researchers and practi-
cal industry engineers including applied mathematicians, numerical analysts and
computer experts. The general theme for LSSC 2005 was large-scale scientific
computing with a particular focus on the organized special sessions.



VI Preface

Special sessions and organizers were the following:

– Multiscale and Multiphysics Computations — P. Bochev, R. Hoppe, R. La-
zarov

– Robust Algebraic Multigrid and Hierarchical Preconditioning Methods —
R. Blaheta, U. Langer, S. Margenov

– Monte Carlo: Tools, Applications, Distributed Computing — D. Vasileska,
M. Nedyalkov, T. Gurov

– Control/Uncertain Systems and Validated Numerics — N. Dimitrova,
M. Krastanov, V. Veliov

– Operator Splittings, Their Application and Realization — I. Faragó
– Distributed Numerical Methods and Algorithms for Grid Computing —

T. Sakuray, M. Sato, S. G. Petiton
– Environmental Modelling — A. Ebel, K. Georgiev, Z. Zlatev
– Large-Scale Computation of Engineering Problems — P. Minev, O. Iliev
– Numerical Methods for the Schrödinger Equation and Application —

H. Kosina
– Advances in Computational Mechanics — S. Brenner, C. Carstensen

Special events comprised:

– “Bulgarian Involvement in European Grid Initiatives” — presentation and
discussion

– Grid Help Desk and Demos

More than 120 participants from all over the world attended the conference
representing some of the strongest research groups in the field of advanced large-
scale scientific computing. This volume contains 80 papers submitted by authors
from over 20 countries.

The 6th International Conference, LSSC 2007, will be organized in June 2007.

November 2005 Ivan Lirkov
Svetozar Margenov

Jerzy Waśniewski
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Andrzej Stefański, Jerzy Wojewoda, Tomasz Kapitaniak . . . . . . . . . . . . 321

VII Operator Splitting, Their Application and Realization

Operator Splitting Procedures for Air Pollution Transport Models
Petra Csomós . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Adjoint Computations in Data Assimilation Problems Using a 4-Stage
Rosenbrock Method

Gabriel Dimitriu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Operator Splittings and Numerical Methods
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Algebraic Multilevel Methods with
Aggregations: An Overview

Radim Blaheta

Department of Applied Mathematics, Institute of Geonics AS CR,
Studentská 1768, 70800 Ostrava-Poruba, Czech Republic

blaheta@ugn.cas.cz

Abstract. This paper deals with the numerical solution of elliptic
boundary value problems by multilevel solvers with coarse levels cre-
ated by aggregation. Strictly speaking, it deals with the construction
of the coarse levels by aggregation, possible improvement of the sim-
ple aggregation technique and use of aggregations in multigrid, AMLI
preconditioners and two-level Schwarz methods.

1 Introduction

This paper considers multilevel solvers for algebraic systems arising from the fi-
nite element approximation to selfadjoint elliptic problems. It is well known that
nested finite element grids allow to introduce two-level and multilevel methods
for solving the finite element systems. Multigrid methods [13], AMLI precondi-
tioners [1] and Schwarz methods [24] are typical examples of numerical methods
exploiting the grid hierarchy.

Algebraic multilevel methods avoid the necessity of nested triangulation of the
problem domain and allowalgebraic construction of coarser spaces by using mostly
only information involved in the matrix of the solved problem. As multilevel iter-
ative methods reduce the error by two complementary tools like relaxation on the
fine grid and coarse grid correction for multigrid methods, the algebraic approach
also enables to construct the coarse space with approximating properties that are
necessary for efficiency of the complementary tool. In this way, the algebraic ap-
proach enhances the robustness of the multilevel solution methods.

In this paper, we outline the aggregation techniques that constitute one of
possible approaches to algebraic multilevel methods. The aggregation technique
originally appeared in the context of multigrid methods but can be exploited also
in hierarchical algebraic multilevel preconditioners and the two-level Schwarz
domain decomposition methods.

The paper provides an overview of applications of the aggregation technique,
which undergo an important development during the last decade.

2 AMG with Aggregation

Let us consider the solution of linear systems appearing from the finite element
(FE) approximation of elliptic boundary value problems and let Th be a FE

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 3–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



4 R. Blaheta

triangulation which arises as a refinement of a coarser triangulation TH of the
problem domain Ω. Then the FE system corresponding to the fine triangula-
tion Th,

Ahuh = bh, uh, bh ∈ Rnh (1)

can be solved by the following iterative two-grid method. Its one iteration ui+1
h =

TG(Ah, bh, u
i
h) is described as follows

function TG(Ah, bh, u
i
h = ū)

ν1 − times : ū←S(Ah, bh, ū) pre-smoothing
rH = IH

h (bh −Ahū) restriction of the residual
vH = A−1

H rH coarse grid correction
ū = ū+ Ih

HvH prolongation of the correction
ν2 − times : ū←S(Ah, bh, ū) post-smoothing

return (ui+1
h = ū)

Above, the smoothing ū←S(Ah, bh, ū) represents one iteration of an inner iter-
ative (relaxation) procedure like Jacobi, Gauss-Seidel etc. The coarse grid cor-
rection uses matrix AH from FE discretization of the solved problem on the
coarse grid, restriction IH

h to the coarse FE space and prolongation Ih
H induced

by the natural interpolation between the nested grids. The smoothing procedure
should collaborate with the coarse grid correction. Usually S efficiently reduces
oscillating error components and produces smooth error that can be reduced
by the coarse grid correction. Therefore S is called the smoother. Note that the
introduced two-level method can be naturally extended to the multilevel one.

For a broad class of problems, it can be shown that multigrid methods are
highly efficient and even optimal, which means that the system (1) is solved in
O(nh) operation. But application of multigrid methods can also meet two draw-
backs: it can be difficult or impossible to produce a sequence of auxiliary coarser
discretizations of the solved boundary value problems and it can be difficult to
produce coarse discretizations collaborating well with the used smoother in the
case of problems with certain anisotropy, singularity etc.

These difficulties motivate an interest in algebraic multigrid methods (AMG),
which construct the prolongation, restriction and coarse matrices by using only
the information included in the solved system or very little additional geometric
information. In the AMG context, the system at a current level k (k = 1 is the
finest level) is written as

Akuk = bk, uk, bk ∈ Rnk (2)

and the coarser level works with nk+1×nk+1 matrixAk+1 = Ik+1
k Ak I

k
k+1 defined

with the aid of a prolongation Ik
k+1 and a restriction Ik+1

k . For symmetric positive

definite (SPD) problems, we choose Ik+1
k =

(
Ik
k+1

)T ensuring that Ak remains
also SPD. Note that in this case

∥∥ek − Ik
k+1vk+1

∥∥
Ak

= min is equivalent to the
coarse correction

(Ik
k+1)

TAkI
k
k+1vk+1 = Ak+1vk+1 = (Ik

k+1)
TAkek.
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One iteration ui+1
k = MGμ(Ak, bk, u

i
k) of the multilevel AMG method is

recursively described as follows

function MGμ(Ak, bk, u
i
k = ū)

ν1 − times : ū←S(Ak, bk, ū) pre-smoothing
rk+1 = Ik+1

k (bk −Akū) residual restriction
if k + 1 = coarsest then coarse grid correction

vk+1 = A−1
k+1rk+1

else
vk+1 = 0
μ− times : vk+1 = MGμ(Ak+1, rk+1, vk+1)

end
ū = ū+ Ik

k+1vk+1 correction prolongation
ν2 − times : ū←S(Ak, bk, ū) post-smoothing

return(ui+1
k = ū)

For discrete PDE problems, AMG has the following advantages:

– there is no need for creating nested grids, it is possible to develop black box
solvers,

– instead of seeking of smoothers adapted to the coarse problem, the coarse
grid can be adapted to the smoother,

– the size of the coarse problem can be controlled e.g. for balancing the work
load on many processors in the case of two-level Schwarz method.

AMG methods can be based on different ideas including the aggregation tech-
nique on which we focus our interest. From the other ideas, we can mention AMG
based on an C-F decomposition and interpolation developed by A. Brandt, J.W.
Ruge, K. Stüben, and others, see e.g. [23].

2.1 Aggregation of Unknowns

We shall restrict our attention to SPD problems, when AMG needs only to define
the interpolation Ik

k+1. The simplest interpolation and restriction are in the form
Ik
k+1 = RT , Ik+1

k = R with nk+1 × nk Boolean matrix R with just one unity in
each column, e.g.

R =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1

1 1
1 1

1 1
1 1

1 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Definition of R is equivalent to the division of the set of nk unknowns into
nk+1 disjoint groups (aggregation of unknowns)

{1, . . . , nk} =
nk+1⋃
i=1

Gi, where Gi = {j : Rij = 1} .
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Fig. 1. An aggregation on regular 1D and 2D grids, regular clustering of 2 and 2 × 2
nodes, respectively

For 1D problems, the aggregation of unknowns can be easily defined by clus-
tering of neighbouring nodes. This clustering can be easily generalized to reg-
ular grids in 2D and 3D domains, see e.g. Fig. 1. More general aggregation on
irregular grids will be discussed later in Subsection 2.4. For an application of
the two-level and multilevel aggregation methods, it is important that the pro-
longation, restriction and construction of the coarse matrix can be efficiently
implemented.

The idea of aggregation in the context of iterative solution methods was al-
ready used in [22]. In the context of multigrid methods for solving elliptic bound-
ary value problems, the aggregations were used e.g. in [2, 3, 4] and [9].

2.2 Overcorrection

Let us consider a model 1D or 2D Dirichlet problem for Poisson equation in an
interval or a square (see Fig. 1) and the linear finite element discretization of
these problems on uniform meshes with mesh size h providing 3 and 5 point
stencil, respectively. Then the aggregations can be constructed e.g. by regu-
lar clustering of 2 and 2 × 2 nodes, respectively. In these cases, it is easy to
compute the coarser matrices and see that these matrices differ from matrices
arising from discretization on the coarser uniform grids with mesh size 2h by the
factor 2.

We can also consider a 1D Dirichlet problem for the equation −u′′ = f in
〈0, 1〉, aggregation by regular clustering and approximation of a hat shape error
in the energy norm, see Fig. 2. The computed approximation from the coarse
space created by aggregation indicates the possible improvement by scaling the
correction by the factor 2.

For the 1D model problem, it is also possible to apply the Fourier anal-
ysis [2, 4] to show that the smooth error components are only partly re-

Fig. 2. Correction by aggregation (solid line) computed to a hat shape error (dashed
line) for a 1D model problem
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duced by the correction from the aggregated space and that the efficiency
of multi-level aggregation method can be substantially improved by the
overcorrection,

x̄ = x̄+ ω Ik
k+1vk+1 with the scaling factor ω > 1.

The use of overcorrection was introduced in [3, 4] and [9]. For more general
problems, a variational computation of ω was suggested in [3, 4] by using the
following algorithm

vk+1 = A−1
k+1rk+1 corse grid correction

v̄k = Ik
k+1vk+1 prolongate the correction

η − times : v̄k ← S(Ak, rk, v̄k) smooth the correction
ω = 〈v̄k, rk〉 / 〈v̄k, Akv̄k〉 compute the scaling factor

= argmin
∥∥A−1

k bk − (x̄+ ωv̄k)
∥∥

Ak

x̄ = x̄+ ω Ik
k+1vk+1 or x̄ = x̄+ ωv̄k perform the overcorrection

2.3 Smoothing

Above, we mentioned that the matrix created by aggregation is too stiff. This
matrix is a Galerkin type matrix defined with the aid of basis functions in aggre-
gation space, which are sums of basis functions in the original fine FE space or in
a previous aggregation space. A difficulty is in a high energy of these aggregation
basis functions. The improvement can be find in smoothing the aggregation basis
functions, which produces new ones with a lower energy, see e.g. [25, 26, 27].

For a 1D model problem in Fig. 3, the smoothing of the aggregation
basis function φa by S = I − 2

3A produces new basis function Sφa having
a larger support but a lower energy. For this model problem, the new
smoothed aggregations are even piecewise linear. But it is not true in more
general cases.

The process of smoothing can be formalized as follows. Firstly, we define a
prolongation Ik

k+1defined by aggregation (tentative prolongation). Then, a more
efficient prolongation operator is constructed in the form

Ik
k+1 = SkIk

k+1 with Sk = I − ωΛ−1
k Āk.

Fig. 3. 1D model problem, aggregation basis functions before and after smoothing
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In [26], the prolongation smoother S has the components ω = 2
3 , Λk =

diag(Ak) and Āk = (āij) arises from Ak = (aij) by filtering,

āij =
{
aij if |aij | ≥ ε

√
aii
√
ajj

0 otherwise

}
for i �= j, āii = aii −

∑
i�=j

(aij − āij).

A heuristic choice of the parameter ε is ε = 0.08 (1
2 )k−1.

In [27], ω = 4
3λk

, Λk = (P 1
k )TP 1

k , where P 1
k = I1

2 · · · Ik−1
k and λk ≥ ρ(Λ−1Ak),

Āk = Ak. A possible choice is λk = 9k−1ρ, where ρ ≥ ρ(A1). For this choice, the
convergence factor qMG−L of L level multigrid can be estimated as follows,

qMG−L ≤ 1− 1
C(L)

,

where C(L) is a polynomial in L, see [27] for the proof.

2.4 Construction of Aggregations

The construction of aggregations on general meshes with paying the attention
to strong couplings between unknowns (smooth error character) can be node or
element oriented. A standard node oriented algorithm for creating the aggregates
is the following one:

preliminary phase: separate isolated points as individual aggregates,
phase I: repeat until all unaggregated nodes are adjacent to an aggregate:

a) pick the root node not adjacent to any existing aggregate,
b) define new aggregate as the root node plus all its neighbours,

phase II: sweep unaggregated nodes into existing aggregates (to which they
are connected) or use them to form new aggregates.

Such algorithm can be found e.g. in [26] and has many variants. At first, some
measures can be done for not leaving too many nodes for the phase II. Secondly,
the connection and neighbourhood can be defined in a strong sense to create
the coarse problem suitable for handling those error components, which can
not be removed by the smoother. A typical strong coupling between the nodes
(unknowns) i and j means that

|aij | ≥ ε
√
aii
√
ajj .

For elasticity problems, the aggregation of unknowns is restricted to aggre-
gation of unknowns corresponding to the displacements in the same coordinate
direction. Alternatively, we can still start with aggregation of the nodes and
assign more degrees of freedom (DOF) to each aggregate (see also next subsec-
tion). The strength of coupling can be defined by means of blocks corresponding
to nodal DOFs, see [16].

A further information about the character of the smooth error can be obtained
from an auxiliary iterative solution of the homogeneous variant Ak = 0 of the
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solved problem (2). This information can be used for an improved construction
of aggregations, see e.g. [11].

From the other algorithms for the construction of aggregations, we can men-
tion subsequent pairing [9, 19]. The algorithm can be described as follows

step I: repeat until all unaggregated nodes are classified as aggregated pair or
singleton:
* pick up a node i and find the node j with the strongest coupling to i.

If this coupling is not strength enough classify i as singleton otherwise
create a pair {i, j}.

* aggregate the matrix
step II: apply the previous algorithm to aggregated nodes and aggregated ma-

trix to create generalized quaternion aggregations, etc.

This algorithm creates aggregations similar to aggregations on a regular grid.
The aggregations can be also created by agglomeration of adjacent finite ele-

ments. Such approach is described e.g. in [15, 12].

2.5 Enriched Aggregations

For scalar boundary value problems, the aggregation of unknowns is equal to
aggregation of nodes, i.e. one DOF is assigned to each aggregate of nodes. For
elasticity problems or systems of equations, it is natural to aggregate separately
displacements in different directions or unknowns corresponding to different phe-
nomena. In other terminology, more DOFs are assigned to the aggregates. For
elasticity, these DOFs can be two or three displacements per aggregate but an
additional enhancement is also possible, e.g by adding the rotations [14]. For 2D
elasticity, it gives 3 unknowns: the displacements u, v and rotation angle α per
aggregate. If (xT , yT ) is the barycentre of the aggregate, then the prolongation
assign the displacement (u−α(y− yT ), v+α(x−xT )) to any node (x, y) of the
aggregate.

In the case of aggregation by agglomeration of finite elements, a further en-
richment can be done by using low energy eigenvectors corressponding to the
agglomeration matrices, see [15, 12].

3 AMLI Preconditioners with Aggregation

Aggregation based AMG methods can be also used as preconditioners, a pio-
neering work in this respect is [9].

Beside multigrid preconditioners, there is also a class of hierarchical AMLI
preconditioners, which use a space decomposition and work separately on the
coarse space and its complement. These preconditioners can be also constructed
with the aid of aggregation, see [18, 19].

In the case of scalar boundary value problem and the system Au = b, u, b ∈
Rn, we start with creating the aggregations {Gi : i = 1, . . . ,m} and selecting
one node in each aggregation as a C-node. All remaining nodes are considered
to be F-nodes. The F-C decomposition induces a decomposition of the matrix A,
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A =
[
A11 A12
A21 A22

]
=

[
I
A21A

−1
11 I

] [
A11

SA

] [
I A−1

11 A12
0 I

]
and a preconditioner

B =
[
I
A21P

−1
11 I

] [
P11

S

] [
I P−1

11 A12
0 I

]
where S ∼ SA and P11 ∼ A11. In [19], S is given by a scaled aggregation and
P11 is realized by dynamically constructed MILU factorization. The dynamic
feature means that F-nodes, which are problematic for the MILU factorization,
are shifted among C-nodes. Multilevel preconditioners then arise by solution of
the second pivot block by inner iterations (CG) with the same type of hierarchical
preconditioner.

Alternatively, we can create a hierarchical basis (HB) with basis functions

φHB
i =

∑
k∈Gi

Jik φ
h
i if i ∈ C and φHB

i = φh
i if i ∈ F,

where C and F denote the sets of C-nodes and F-nodes, respectively. The trans-
formation between the standard and hierarchical bases is given by the matrix J ,
which can be written as follows,

J = (Jij) =
[
I1 0
I21 I2

]
F
C

where I21 is a Boolean matrix with one unity per column, I1 and I2 are identity
matrices of proper dimensions.

The matrix A can be transformed to the hierarchical form AHB and both
matrices A and AHB can be written in F-C, F-C ordering as follows

A =
[
A11 A12
A21 A22

]
, AHB = J AJT =

[
H11 H12
H21 H22

]
,

where A11 = H11 and H22 is the matrix arising from aggregation of A. This
decomposition enables to define both additive and multiplicative preconditioners

BA = J−1

[
H̃11

H̃22

]
J−T , B−1

A = JT

[
H̃11

H̃22

]−1

J,

BM =
[
I

A21H̃
−1
11 I

] [
H̃11

H̃22

][
I H̃−1

11 A12
I

]
,

where H̃11 ∼ H11 and H̃22 ∼ H22. Some analysis and comparisons with standard
AMLI can be done on the basis of the strengthened CBS inequalities, see [7].
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4 Schwarz Methods with Aggregation

The algebraic coarse space created by aggregation can be also used in the frame-
work of the two-level additive and hybrid Schwarz preconditioners. General form
of these preconditioners is as follows

BA = B0 +B1L, B1L =
∑

1mBk , Bk = RT
kA

−1
k Rk (3)

where Ak (k = 1, . . . ,m) are FE matrices of local subproblems and A0 is a coarse
matrix created by aggregation. More details will be provided later. We shall also
consider nonsymmetric hybrid preconditioner defined by

BH = B0 +B1L(I −AB0) (4)

and its symmetrized version

BSH = B0 + (I −B1LA)B0(I −AB1L), (5)

More details about the Schwarz preconditioners can be found e.g. in [24].
Now, let us solve the system (1) arising from a finite element discretization

of an elliptic boundary value problem in Ω. Let Th be a FE triangulation of the
domain Ω and Vh be a corressponding FE space. The triangulation Th can be
divided into m parts in two steps: firstly Th is divided into nonoverlapping sets
T 0

k , which are consequently extended to overlapping sets T δ
k . We shall denote

Ω0
k = ∪{E : E ∈ T 0

k }, Ωδ
k = ∪{E : E ∈ T δ

k }.

Now, we can define the local FE spaces Vk ⊂ Vh of admissible functions on
Ω which vanish outside Ωk, matrices Ak and restrictions Rk. Let Aδ

k be the FE
matrix arising from assembling the element matrices AE for E ∈ T δ

h . Then Ak

will be the matrix arising from Aδ
k by incorporating homogeneous Dirichlet type

boundary conditions on the inner boundary ∂Ωδ
k \∂Ω. The boundary conditions

on the outer boundary ∂Ωδ
k ∩ ∂Ω are given from the solved boundary value

problem.
The decomposition Vh = V1 + · · · + Vm can be enriched by a coarse space

V0 created algebraically by aggregation, which ensures the numerical scalability
with respect to the number of the subdomains. IfG1, . . . , GN be the aggregations
and Vh = span{φh

1 , . . . , φ
h
n}, where φh

i are basis functions, then it is possible to
define aggregated basis functions ψk and the space V0 ⊂ V as follows,

ψk =
∑
i∈Gk

φh
i , V0 = span{ψ1, . . . , ψN} .

We shall assume that the aggregations are regular, i.e. there is a constant β̄
such that each suppψk contains a ball with diameter β̄H , where

H ∼ max
k

diam(suppψk).
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Such construction gives again a stable decomposition V = V0 +V1 + · · ·+Vm

resulting in numerically scalable preconditioners BA and BSH . For more details
see [10, 17, 6, 21].

We shall conclude this section with some numerical examples. The efficiency
of various preconditioners arising from implementation of the described ideas
can be compared by solving two boundary value problems in Ω = 〈0, 2〉 × 〈0, 3〉
with pure homogeneous Dirichlet boundary conditions (∂ΩD = ∂Ω). The first
problem is for the Poisson equation, the second one is a model elasticity (plane
deformation) problem with the elasticity modulus E = 1 and Poisson ratio
ν = 0.3. The right hand side is a linear function in both cases.

The problems are discretized by linear triangular FE on a uniform grid with
the mesh size h = 1/30. The local problems are given on subdomains Ωk =
〈0, 2〉×〈xk, xk+1〉 with overlap δ = 2h. The subproblems are solved exactly.

The required numbers of iterations for the accuracy ε = 10−3 and vari-
ous additive (AP) and hybrid (HP) Schwarz preconditioners can be seen in
Tables 1 and 2. The hybrid preconditioners are used in nonsymmetric form in
combination with a generalized conjugate gradient method GPCG[1], see [5].
The coarse problem uses either the nested coarse triangular grid with the mesh
size H = 2h or the aggregations with clustering 2×2 square macroelements (3×3
nodes). The smoothing was done by S = I− 2

3diag(A)−1Ā where Ā was equal to
A in both cases. For the elasticity, we test also sparser Ā given by the separate
displacement component part of A but both choices give the same results.

Table 1. Poisson equation problem. Numbers of iterations for ε = 10−3. AP=additive
preconditioner, HP=hybrid preconditioner + GPCG[1].

Overlap 2h, #subdomains: 4 16 24

c-grid H=3h, AP 7 7 8
c-grid H=3h, HP 6 6 6
aggreg. 2h, AP 13 17 17
aggreg. 2h, HP 10 11 11

smooth. aggreg. 2h, AP 10 11 11
smooth. aggreg. 2h, HP 7 7 8

Table 2. Elasticity problem. Numbers of iterations for ε = 10−3. AP=additive pre-
conditioner, HP=hybrid preconditioner + GPCG[1].

Overlap 2h, #subdomains: 4 16 24
c-grid H=3h, AP 8 8 9
c-grid H=3h, HP 6 7 8
aggreg. 2h, AP 17 20 20
aggreg. 2h, HP 12 13 14

aggreg. 2h-rotat, AP 16 18 19
aggreg. 2h-rotat, HP 11 12 12

smooth. aggreg. 2h, AP 12 14 14
smooth. aggreg. 2h, HP 9 10 10
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5 Conclusions

In this paper, we provide an overview of possible applications of the aggregation
technique in multilevel methods. Additionally, we can mention application of
the aggregation technique in a nonoverlapping Schwarz method with interfaces
on the coarse grid, see [6], or a specific aggregations for construction of AMLI
preconditioners for nonconforming Crouzeix-Raviart finite elements [8].
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Abstract. The computational approximation of solutions of complex
systems such as the Navier-Stokes equations is often a formidable task.
For example, in feedback control settings where one often needs solu-
tions of the complex systems in real time, it would be impossible to use
large-scale finite element or finite-volume or spectral codes. For this rea-
son, there has been much interest in the development of low-dimensional
models that can accurately be used to simulate and control complex sys-
tems. Reduced-order modeling approaches based on proper orthogonal
decompositions and centroidal Voronoi tessellations are discussed. The
important implementation issue of how boundary conditions containing
multiple parameters are handled in the reduced-order modeling context
is highlighted.

1 Introduction

Computational solutions of (nonlinear) complex systems are expensive to obtain
with respect to both storage and CPU costs. As a result, it is difficult if not im-
possible to deal with a number of situations that require multiple state solutions
(e.g., continuation or homotopy methods for computing state solutions, paramet-
ric studies of state solutions, and optimization and optimal control problems)
and/or real-time state solutions (e.g., feedback control settings). Not surpris-
ingly, a lot of attention has been paid to reducing the costs of the nonlinear
state solutions by using reduced-order models for the state; these are (very)
low-dimensional approximations to the state.

Reduced-order modeling (ROM) has been and remains a very active research
direction in many seemingly disparate fields, e.g., to name five: linear algebra
(singular value decomposition); statisitics (Karhunen-Loève analysis and clus-
tering); information science (representation, interpolation, and reconstruction);
boundary layer theory (in a fluids setting, replacing the Navier-Stokes equations
with the simpler Prandtl boundary layer equations); and turbulence modeling
(again, in a fluids setting, replacing the Navier-Stokes equations by another com-
plex system, e.g., a k-ε or LES model, that is “easier” to approximate).

� Supported in part by Sandia National Laboratories under contracts 233519 and
406670.
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For a state simulation of a nonlinear partial differential equation, a reduced-
order method would proceed as follows. One chooses a reduced basis Ψi, i =
1, . . . , d; hopefully, d is very small compared to the usual number of functions
used in a finite element approximation or the number of grid points used in a
finite difference approximation. Next, one seeks an approximation urom to the
state u of the form

urom =
d∑

j=1

cjΨj ∈ V ≡ span{Ψ1, . . . , Ψd}.

Then, one determines the coefficients ci, i = 1, . . . , d, by solving the state equa-
tions in the set V , e.g., one could find a Galerkin solution of the state equations
in a standard way, using V for the space of approximations. The cost of such a
computation would be very small if d is small, ignoring the cost of the off-line
determination of the reduced basis {Ψi}d

i=1.
In control or optimization settings, one is faced with multiple state solves

or real-time state solves. If one approximates the state in the reduced, low-
dimensional set V , then state solutions will be relatively very cheap to obtain.
In an adjoint or sensitivity equation-based optimization method, one would also
employ the adjoint or sensitivity equations for the low-dimensional discrete state
equations; thus, if d is small, the cost of each iteration of the optimizer would be
very small relative to that using full, high-fidelity state solutions. In a feedback
control setting, the approximate state equations in the low-dimensional space
could possibly be solved in real time.

All reduced bases share some common features. They all require the solution
of high-fidelity and therefore very expensive discrete state and/or sensitivity
equations; the idea is that these expensive calculations can be done off line before
a state simulation or the optimization of the design parameters or feedback
control is attempted. Moreover, one hopes that a single reduced basis can be
used for several state simulations or in several design or control settings.

All reduced basis functions are global in nature, i.e., the support of the basis
functions is global. Therefore, solving the state or sensitivity or adjoint equations
with respect to any of the reduced bases requires the solution of dense linear and
nonlinear systems; thus, unless the dimension of a reduced basis is “small,” it
cannot be effectively used.

The question remains about how one determines a reduced basis. One can also
ask when and if are reduced-order methods effective. Below, we describe two
approaches to ROM: proper orthogonal decomposition (POD) and centroidal
Voronoi tessellations (CVT). First, however, we briefly discuss the second ques-
tion about the effectiveness of ROM’s.

It is clear that reduced-order methods should work in an interpolatory setting.
In a simulation setting, one has the tautology that if the state can be approxi-
mated well in the reduced basis V , then one should expect that things will work
well. In an optimization setting, if the optimal solution and the path to the opti-
mal solution can be well approximated in the reduced basis V , then one should
expect that things will work well; if all the states determined by the feedback
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process can be well approximated in the reduced basis V , then again one should
expect that things will work well. Thus, the reduced basis V should be chosen
so that it contains all the features, e.g., the dynamics, of the states encountered
during the simulation or the control process. This, of course, requires some in-
tuition about the states to be simulated or about where in parameter space the
optimal set of parameters are located.

What happens in an extrapolatory setting (for which the reduced basis may not
contain sufficient information to accurately approximate the states encountered)
is not so clear. Most reduced order simulation and control computations have
been done in an interpolatory regime. It is obvious that if the reduced set V
does not contain a good approximation to the solution one is trying to obtain,
then one cannot hope to successfully determine that solution.

Despite any misgivings about the effectiveness of reduced-order modeling,
one realizes that without an inexpensive method for effecting state simulations,
it is unlikely that the solution of three-dimensional optimization and control
problems involving complex systems, e.g., the Navier-Stokes system, will become
routine anytime soon. Thus, it is certainly true that these methods deserve more
study from the computational and theoretical points of views.

2 Snapshot Sets

The state of a complex system is determined by parameters that appear in the
specification of a mathematical model for the system. Of course, the state of
a complex system also depends on the independent variables appearing in the
model. Snapshot sets consist of state solutions corresponding to several sets
of parameter values and/or the state solution evaluated at several time instants
during the evolution process. Sensitivities of the state with respect to parameters
appearing in the model may also be included in the snapshot set. Snapshot sets
are usually determined by solving the full, very large-dimensional discretized
system obtained by, e.g., a finite volume or finite element discretization.

Snapshots sets often contain “redundant” information; therefore, snapshot
sets are post-processed to remove as much of the redundancy as possible before
they can be used for reduced-order modeling. POD and CVT are simply different
ways to post-process snapshot sets.

Since snapshot sets are the underpinning for most usages of POD and CVT
reduced-order modeling, we briefly discuss how they are generated in practice.
At this time, the generation of snapshot sets is an art and not a science; in
fact, it is a rather primitive art. The generation of snapshot sets is an exercise
in the design of experiments, e.g., for stationary systems, how does one choose
the sets of parameters at which the state (and perhaps the sensitivities) are to
be calculated (using expensive, high-fidelity computations) in order to generate
the snapshot set? Clearly, some a priori knowledge about the types of states to
be simulated or optimized using the reduced-order model is very useful in this
regard; the large body of statistics literature on the design of experiments has
not been used in a systematic manner for the generation of snapshot sets.
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For time-dependent systems, many (ad hoc) measures have been invoked in
the hope that they will lead to good snapshot sets; time-dependent parameters
(e.g., in boundary conditions) are used to generate states that are “rich” in tran-
sients, even if the state of interest depends only on time-independent parameters.
In order to generate even “richer” dynamics, impulsive forcing is commonly used,
e.g., starting the evolution impulsively and/or introducing impulsive changes in
the parameters in the middle of a simulation.

In the future, a great deal of effort needs to be directed towards developing
and justifying methodologies for generating good snapshot sets; after all, a POD
or CVT basis is only as good as the snapshot set used to generate it.

We next describe how POD and CVT bases are constructed from a snapshot
set. We will view snapshots as vectors in Euclidean space. They represent, e.g.,
the nodal values of a finite element approximation of the solution of the partial
differential equation.

3 Proper Orthogonal Decomposition (POD)

We begin with n snapshots sj ∈ RN , j = 1, . . . , n. Here, N could be the dimen-
sion of the finite element approximating space. Let d ≤ n < N . Then, the POD
basis {φi}d

i=1 of cardinality d is found by successively solving, for i = 1, . . . , d,
the problem

λi = max
|φi|=1

1
n

n∑
j=1

|φT
i sj |2 and φT

i φ� = 0 for � ≤ i− 1.

Let S denote the N × n snapshot matrix whose columns are the snapshots sj ,
i.e.,

S =
(
s1 , s2 , . . . , sn

)
.

Let K denote the n× n (normalized) correlation matrix for the snapshots, i.e.,

Kj� =
1
n
sT
j s� or K =

1
n
STS.

Let χi with |χi| = 1 denote the eigenvector corresponding to the i-th largest
eigenvalue λi of K. Then, the i-th POD basis vector is given by φi = 1√

nλi
Sχi.

The POD basis is orthonormal, i.e., φT
i φj = 0 for i �= j and φT

i φi = 1. POD
is closely related to the statistical method known as Karhunen-Loève analysis
or the method of empirical orthogonal eigenfunctions or principal component
analysis.

POD is also closely related to the singular value decomposition (SVD) of
the snapshot matrix S. Let S = UΣV T denote the SVD of S; then, σ2

i = nλi

for i = 1, . . . , n, where σi denotes the i-th singular value of S. The POD basis
vectors are the first d left singular vectors of the snapshot matrix S, i.e., φi = ui

for i = 1, . . . , d, where ui denotes the i-th left singular vector of S.
The POD basis is optimal in the following sense. Let {ψi}n

i=1 denote an ar-
bitrary orthonormal basis for the span of the snapshot set {sj}n

j=1. Let Pψ,dsj
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denote the projection of the snapshot sj onto the d-dimensional subspace
spanned by {ψi}d

i=1. Clearly we have, for each j = 1, . . . , n, Pψ,dsj =
∑d

i=1 cjiψi,
where cji = ψT

i sj for i = 1, . . . , d. Let the error be defined by

E =
n∑

j=1

|sj − Pψ,dsj |2.

Then, the minimum error is obtained when ψi = φi for i = 1, . . . , d, i.e., when
the ψi’s are the POD basis vectors.

The connection between POD and SVD makes it is easy to show that the
error of the d-dimensional POD subspace is given by

Epod =
n∑

j=d+1

σ2
j = n

n∑
j=d+1

λj , where
{
n = number of snapshots
d = dimension of the POD subspace.

If one wishes for the relative error to be less than a prescribed tolerance δ, i.e.,
if one wants Epod ≤ δ

∑n
j=1 |sj|2, one should choose d to be the smallest integer

such that ∑d
j=1 σ

2
j∑n

j=1 σ
2
j

=

∑d
j=1 λj∑n
j=1 λj

≥ γ = 1− δ. (1)

There have been several variations introduced in attempts to “improve” POD.
Weighted POD gives more weight to some members of the snapshot set; this can
be accomplished, e.g., by including multiple copies of an “important” snapshot in
the snapshot set. POD with derivatives gets more information into the snapshot
set in order to get a “better” POD basis; e.g., one adds derivatives or numerical
approximations to derivatives (especially time derivatives) of simulated states to
the snapshot set. H1 POD changes the error measure for POD in order to get a
“better” POD basis; e.g., one can use H1 norms and inner products (instead of
L2) in the definition and construction of POD bases. Constrained POD imposes
a constraint (e.g., symmetry) on the POD basis. Adaptive POD changes the
POD basis when it no longer seems to be working; this requires detection of
failure of the POD basis, the determination of new snapshot vectors, and the
solution of the eigenvalue or SVD problem for the new correlation or snapshot
matrix determined from the new snapshot vectors. Details about POD reduced-
order modeling and its variants may be found in, e.g., [1, 2] and the references
cited therein.

4 Centroidal Voronoi Tessellations (CVT)

Given a discrete set of snapshots W = {sj}n
j=1 belonging to RN , a set {Vi}d

i=1
is a tessellation of W if Vi ⊂ W for i = 1, . . . , d, Vi ∩ Vj = ∅ for i �= j, and
∪d

i=1Vi = W , i.e., if {Vi}d
i=1 is a subdivision of W into d disjoint, covering

subsets. Given a set of points {zi}d
i=1 belonging to RN (but not necessarily to

W ), the Voronoi region corresponding to the point zi is defined by

V̂i = { s ∈ W : |s− zi| ≤ |s− zj | for j = 1, . . . , d, j �= i},
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where equality holds only for i < j. The set {V̂i}d
i=1 is called a Voronoi tes-

sellation or Voronoi diagram of W corresponding to the set of points {zi}d
i=1.

The points in the set {zi}d
i=1 are called the generators of the Voronoi diagram

{V̂i}d
i=1 of W .

Given a density function ρ(y) ≥ 0, defined for y ∈W , the mass centroid z∗ of
any subset V ⊂ W is defined by

∑
y∈V ρ(y)|y − z∗|2 = infz∈V ∗

∑
y∈V ρ(y)|y −

z|2, where the sums extend over the points belonging to V ; the set V ∗ can be
taken to be V or it can be an even larger set such as all of RN in which case z∗

is the ordinary mean

z∗ =

∑
y∈V ρ(y)y∑
y∈V ρ(y)

.

In this case, z∗ �∈W in general.
If zi = z∗i for i = 1, . . . , d, where {zi}d

i=1 is the set of generating points of
the Voronoi tessellation {V̂i}d

i=1 and {z∗i }d
i=1 is the set of mass centroids of the

Voronoi regions {V̂i}d
i=1, we refer to the Voronoi tessellation as being a centroidal

Voronoi tessellation or CVT for short. The concept of CVT’s can be extended
to more general sets, including regions in Euclidean spaces, and more general
metrics.

CVT’s are optimal in the following sense. Given the discrete set of points
W = {sj}n

j=1 belonging to RN , we define the error of a tessellation {Vi}d
i=1 of

W and a set of points {zi}d
i=1 belonging to RN by

F
(
(zi, Vi), i = 1, . . . , d

)
=

d∑
i=1

∑
y∈Vi

ρ(y)|y − zi|2.

Then, it can be shown that a necessary condition for the error F to be minimized
is that the pair {zi, Vi}d

i=1 form a CVT of W .
CVT’s of discrete sets are closely related to optimal K-means clusters so that

Voronoi regions and centroids can be referred to as clusters and cluster centers,
respectively. The error F is also often referred to as the variance, cost, distortion
error, or mean square error.

There are several algorithms known for constructing centroidal Voronoi tes-
sellations of a given set. Lloyd’s method is a deterministic algorithm which is the
obvious iteration between computing Voronoi diagrams and mass centroids, i.e.,
a given set of generators is replaced in an iterative process by the mass centroids
of the Voronoi regions corresponding to those generators. MacQueen’s method
is a very elegant probabilistic algorithm which assigns randomly sampled points
into one of d sets or clusters according to the distance to the mean of the clus-
ters. Various other methods based on the minimization properties of CVT’s have
also been developed. Another probabilistic method which may be viewed as a
generalization of both the MacQueen and Lloyd methods and which is amenable
to efficient parallelization has also been developed.

CVT’s are useful in a variety of applications including optimal quadrature
rules; covolume and finite difference methods for PDE’s; optimal representation,
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quantization, and clustering; cell division; data compression; optimal distribu-
tion of resources; territorial behavior of animals; optimal placement of sensors
and actuators; grid generation in 2D, 3D, and on surfaces; meshfree methods;
clustering of gene expression data; and image segmentation and reconstruction.
Details about algorithms, applications, and theory of CVT can be found in
[1, 2, 3, 5] and the references cited therein.

Since CVT’s have been successfully used in several data compression appli-
cations, it is natural to examine CVT’s in another data compression setting,
namely reduced-order modeling.

5 POD, CVT, and Model Reduction

The idea, in both the POD and CVT settings, is to extract, from a given set
of snapshots {sj}n

j=1 of vectors in RN , a smaller set of vectors also belonging
to RN which “captures” the information contained in the snapshot set. In the
POD setting, the reduced set of vectors was the d-dimensional set of POD vectors
{φi}d

i=1. In the CVT setting, the reduced set of vectors is the d-dimensional set
of vectors {zi}d

i=1 that are the generators of a centroidal Voronoi tessellation of
the set of snapshots. POD produces an optimal reduced basis in the sense that
the error E is minimized; CVT produces an optimal reduced basis in the sense
that the error F is minimized. One can, in principle, determine the dimension d
of an effective POD basis, e.g., using the singular values of the correlation matrix.
Similarly, one can, in principle, determine the dimension k of an effective CVT
basis by examining the (computable) error F(·).

For the sake of concreteness, suppose that we wish to solve the problem:

given θ ∈ Θ, find u(t, x) ∈ U such that
N(u; θ; v) = 0 ∀ v ∈ U, a.e. t ∈ (0, T ), (2)

where U and Θ are given solution and parameter function spaces, respectively
and (0, T ) is a specified time interval. The mapping N : U × Θ × V is linear in
its third argument and is generally nonlinear in its first two arguments; N(·; ·; ·)
in general involves space and time derivatives and integrals of combinations of
its arguments. In (2), θ denotes a set of parameters that serve to specify the
problem, u denotes the desired solution, and v denotes a suitable test function.
Thus, (2) implicitly defines a solution mapping u(θ) : Θ → U . The object of a
computational simulation is to find approximations of this mapping.

A finite element method could be used to find approximate solutions of (2). In
general, for complex systems of practical interest, the dimension of the approxi-
mating finite element space may be in the many thousands or even millions. As
a result, it may be very expensive to solve the finite element discrete system for
a single set θ of parameter values and it may be prohibitively expensive to solve
it for many sets of parameter values. The latter is exactly one of the situations
that cause the interest in reduced-order modeling. So, instead of using standard
finite element bases, we use POD or CVT reduced bases to find approximations
of the solutions of (2).
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Let Vrom denote the reduced basis space. We view the POD and CVT basis
sets {φi}d

i=1 and {zi}d
i=1, respectively, as coefficient vectors in the expansion of

the corresponding basis functions {Φi(x)}d
i=1 and {Zi(x)}d

i=1 in terms of a finite
element basis. Then let Vrom = span{Ψi}d

i=1, where, for i = 1, . . . , d, Ψi = either
Φi or Zi. Then, a reduced-order solution of (2) is found by solving the problem

given θ ∈ Θ, find urom(t, x) ∈ Vrom such that
N(urom; θ; v) = 0 ∀ v ∈ Vrom, a.e. t ∈ (0, T ). (3)

Since the reduced order solution has the form urom =
∑d

j=1 cj(t)Ψj(x) for some
time dependent functions cj , j = 1, . . . , d, we have that (3) is equivalent to

given θ ∈ Θ, find cj(t), j = 1 . . . , d, such that
N

(∑d
j=1 cjΨj ; θ;Ψi

)
= 0 for i = 1, 2, . . . , d, t ∈ (0, T ). (4)

Since, so far, we have only effected spatial discretization, (4) is a system of
nonlinear ordinary differential equations for cj(t), j = 1 . . . , d. Thus, further
discretization in time is usually needed to solve (4).

POD and CVT bases often (or at least sometimes) do well at capturing the
information contained in the snapshot set; in fact, they are designed to do just
that in different optimal senses. It is important to note that this does not neces-
sarily imply that these bases do well at approximating solutions of the complex
system. We have that ‖u− urom‖ ≈ ‖usnapshot − urom‖+ ‖u− usnapshot‖. POD
and CVT reduced-order modeling often render ‖usnapshot−urom‖ small; to make
‖u− usnapshot‖ small, one has to have “good” snapshots to begin with.

A comparison of the relative performance of POD and CVT-based reduced-
order modeling is given in [1, 2].

6 Handling Multiple Parameters in the Boundary Data

Most implementations of POD and CVT-based reduced-order modeling involve
a single parameter appearing in the specification of the problem; see, e.g., [1, 2]
and the references cited therein. Handling multiple parameters, especially in
the data associated with Dirichlet-type boundary conditions, is not a totally
straightforward endeavor. We present two methods for handling problems with
inhomogeneous Dirichlet boundary data which contain K multiplicative param-
eters. More details about the methods and more extensive comparisons between
the methods can be found in [4].

The first approach is an obvious generalization of the standard approach
used in the literature for the one-parameter case. One uses reduced-order basis
functions that satisfy homogeneous boundary data. The reduced-order solution
is then written as a linear combination of these basis vectors plus another linear
combination of particular solutions of the complex system that is specifically
chosen to satisfy the desired inhomogeneous boundary conditions. To make this
precise, suppose we are using a reduced-order modeling technique to obtain
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urom(x, tn) which approximates the solution u(x, t) at the time tn to a nonlinear
partial differential equation defined in a domainΩ with boundary Γ . We suppose
that the boundary conditions

u(x, t) =
{
βk(t)gk(x) on Γk, k = 1, . . . ,K
0 on Γ − ∪K

k=1Γk
(5)

where ∩K
k=1Γk = 0 and ∪K

k=1Γk may be a portion of the boundary Γ or the entire
boundary. The functions {gk(x)}K

k=1 are assumed given so that there are K
(time-dependent) parameters {βk}K

k=1 that serve to specify the problem. Then,
the first method for treating such boundary conditions in the reduced-order
modeling context is given as follows.

method i

(i) Generate vectors αk ∈ RK , k = 1, . . . ,K;
(ii) generate up

k, k = 1, . . . ,K, where up
k = (αk)igi(x) on Γi, i = 1, . . . ,K;

(iii) generate snapshots sj , j = 1, . . . , n, which satisfy sj = (σj)igi(x) on Γi,
i = 1, . . . ,K for some σj ∈ RK ;

(iv) form modified snapshots s̃j , j = 1, . . . , n, that satisfy homogeneous bound-
ary conditions on all of Γ by subtracting from sj the linear combination of
particular solutions up

k, k = 1, . . . ,K, that have the same boundary data
as does sj ;

(v) generate a reduced-order basis (POD or CVT) Ψj , j = 1, . . . , d, from the
modified snapshots s̃j , j = 1, . . . , n; the resulting reduced-basis functions
satisfy homegeneous boundary conditions;

(vi) at each time level tn, determine the appropriate linear combination∑K
k=1 ηk,nu

p
k of the solutions up

k which satisfy the given boundary con-
ditions βk(tn)gk(x) on Γk, k = 1, . . . ,K;

(vii) at each time level tn, set urom(x, tn) =
∑M

j=1 μj,nΨj +
∑K

k=1 ηk,nu
p
k and

solve the discrete weak problem tested against each Ψi, i = 1, . . . , d, to
determine μj,n, j = 1, . . . , d.

We leave the discussion of the choices for αk and up
k which are used for forcing

the snapshots to satisfy homogeneous boundary conditions and for the formation
of urom until we consider some numerical results. These choices can have a
significant effect on the quality of the reduced-order solution.

The second method is a more “natural” approach for handling multi-param-
eter, reduced-order modeling problems. This approach is similar to the stan-
dard approach in finite element methods where one does not constrain the trial
functions to satisfy the inhomogeneous boundary conditions, but instead one
adds additional equations to satisfy those conditions. In this approach we set
urom =

∑m
j=1 μj,nΨj , where now Ψj , j = 1, . . . ,m, are reduced-order basis vec-

tors which, in general, do not satisfy homogeneous boundary data. They are
determined via either a POD of CVT analysis applied to the unmodified snap-
shot functions sj , j = 1, . . . , n. Note that the basis vectors Ψj do not satisfy
the boundary conditions (involving the parameter choice αk) that were used to
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determine the snapshots. We cannot satisfy the boundary conditions (5) for our
problem by simply setting some of the coefficients μj,n because the basis func-
tions are global rather than nodal. However, we can add K equations to satisfy
the K boundary conditions. The difficulty is that we can no longer test our dis-
crete weak problem against all m basis functions Ψj because we would obtain an
overdetermined system of equations, i.e., we would have m+K equations in m
unknowns.

We recall that in the standard finite element setting we would test against
functions which vanish on the boundary. Consequently, in the reduced-order set-
ting, we want to test againstm−K linear combinations of the originalm reduced
basis functions that are linearly independent and that vanish on the boundary.
The question then becomes one of finding the appropriate linear combinations
of the global basis vectors Ψj , j = 1, . . . ,m. The QR algorithm is useful in this
situation, as is evidenced in the following algorithm.

method ii

(i) Generate the snapshot functions sj , j = 1, . . . , n, that satisfy sj = (σj)i

gi(x) on Γi, i = 1, . . . ,K, for some σj ∈ RK ;
(ii) generate a reduced-order basis (either of POD or CVT type) Ψj , j =

1, . . . ,m from the snapshots sj , j = 1, . . . , n;
(iii) use the QR algorithm to determine the linear combinations Ψ̂�, � = 1, . . .,

d = m−K of Ψj , j = 1, . . . ,m, which vanish on the boundary;
(iv) at each time level tn, set urom(x, tn) =

∑m
j=1 μj,nφj and solve the m-

dimensional system formed by testing the discrete weak problem against
each Ψ̂i, i = 1, . . . , d = m−K plus the additionalK equations urom(xγi , tn)
= βk(tn)gk(xγi), where xγi is any point on Γi.

To clarify step (iii), let xγk
be a point on Γk, k = 1, . . . ,K, and let B be an

m×K matrix with entries given by

Bij = Ψi(xγj ), i = 1, . . . ,m, j = 1, . . . ,K.

We now want to determine d = m−K vectors in Rm that are linearly independent
and orthogonal to the span of columns of B; this can, of course, be done by
performing a QR decomposition of B. Thus, the last d = m−K columns of the
m×m orthogonal matrixQ determine the coefficients of the linear combination of
the basis functions Ψj that we use as test functions. Specifically, for � = 1, . . . , d,
we have that φ̂� =

∑m
j=1Qj,�+KΨj .

Note that in step (ii), we determine a reduced basis of dimension m = d+K
compared to the d-dimensional basis of Method I. This is because when we
compare the two approaches, we want to compare results for which we are using
the same number of test functions in each method. For Method II, we “use up”
K of the basis functions (to be more precise, K independent linear combinations
of those basis function) to satisfy the boundary conditions, so that we need to
start with m = d+K basis functions to end up with d test functions. Of course,
for Method I, instead of using up K basis functions, we have to use K particular
solutions to satisfy the boundary conditions.
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6.1 Numerical Results

In this section we present numerical results comparing the two approaches for
handling multi-parameters appearing in the boundary conditions. We take as a
simple prototype example the nonlinear parabolic problem

∂u

∂t
−Δu+ f

(
u
)

= 0 x ∈ Ω = (0, 1)× (0, 1), 0 < t ≤ 1, (6)

where f(u) = u2 or f(u) = eu, along with the initial condition u(x, 0) = 0 and
the boundary conditions

u(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β1(t)4x1(1− x1) when x2 = 1
β2(t)4x1(1− x1) when x2 = 0
β3(t)4x2(1− x2) when x1 = 0
β4(t)4x2(1− x2) when x1 = 1.

(7)

Note that K = 4 time-dependent parameters {βk(t)}4k=1 appear in the boundary
conditions.

We use a finite element method to discretize in space; a uniform, triangular
grid consisting of 128 triangles along with continuous, piecewise quadratic basis
functions is employed. The number of degrees of freedom is 225. In time, we
use the backward Euler method. The nonlinear discretized problem is solved
using Newton’s method. Reduced-order bases are generated using standard POD
techniques.

To determine the particular solutions up
i , i = 1, . . . , 4 (see steps (i) and (ii)

of Method I), we choose α1 = (3, 0, 0, 0), α2 = (0, 3, 0, 0), α3 = (0, 0, 3, 0), and
α4 = (0, 0, 0, 3). A total of 300 snapshots are determined for f(u) = u2 and 288
for f(u) = eu. The specific values of the boundary parameter functions βk(t),
k = 1, . . . , 4, used to generate the snapshots are described in detail in [4]. Here,
we merely mention that the parameter functions are impulsively changed several
times during the snapshot generation process; between the changes, the solution
is allowed to relax to a steady state.

For Method I, a total of 16 POD vectors were generated from the snapshots
while for Method II a total of 20 POD basis vectors were computed. The singular
values are plotted in Figure 1. These results can be used in conjunction with (1)
to choose an effective value for d, the number of POD basis vectors one uses for
ROM. The POD basis functions are used to determine reduced-order solutions
of (6)-(7) for

β1(t) =

{
2t 0 ≤ t ≤ 0.5
2(1− t) 0.5 ≤ t ≤ 1,

β2 = 4(t− t2)
β3 = | sin 2πt|, β4 = | sin 4πt|. (8)

Note that these choices for the parameter functions are quite different than
those used to generate snapshots or, for Method I, for generating the particular
solutions up

k, k = 1, . . . , 4. The normalized L2-errors between the reduced-order
solution and the full finite element solution using both methods are given in
Figures 2 and 3. Note that the errors are comparable in all cases.
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Fig. 1. Comparison of the POD singular values for Method I (left) for which the
basis functions satisfy homogeneous boundary data and for Method II (right) where
the basis functions do not satisfy homogeneous boundary data
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Fig. 2. Relative L2-norm difference between the POD solution and full the finite ele-
ment solution vs. time for f(u) = u2 using Method I (left) and Method II (right)
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ment solution vs. time for f(u) = eu using Method I (left) and Method II (right)
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6.2 Discussion

For Method I, the main question is the choice of {up
k}K

k=1 which are used to
make the reduced-order solution satisfy the inhomogeneous boundary conditions.
There is clearly a myriad of choices for up

k; a thorough discussion of some of these
choices is given in [4].

Another issue is the satisfaction of initial conditions. In our example, we had
zero data in the initial conditions so that it was easy to make a reduced-order
solution satisfy the initial condition. If the initial data is non-zero, there are
several approaches to applying the initial condition, including projecting the
initial data onto the reduced-order space. A detailed discussion is given in [4].

Although there seems to be little difference between the results obtained using
the two methods, Method II is more straightforward and therefore is easier to
implement. Also, Method I is rather sensitive to the choice of {up

i }k
i=1; Method

II avoids having to make this choice. These and some other differences between
the two approaches give the edge to Method II. More details are given in [4].
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Abstract. We give a short introduction to quantum computing and
its relation to numerical analysis. We survey recent research on quantum
algorithms and quantum complexity theory for two basic numerical prob-
lems — high dimensional integration and approximation. Having match-
ing upper and lower complexity bounds for the quantum setting, we are
in a position to compare them with those for the classical deterministic
and randomized setting, previously obtained in information-based com-
plexity theory. This enables us to assess the possible speedups quantum
computation could provide over classical deterministic or randomized
algorithms for these numerical problems.

1 Introduction

A quantum computer is a computing device based on quantum mechanical laws
of the (sub)atomic world. The first idea of such a computer is due to Manin
[21] in 1980 (see also [22]), and Feynman [7] in 1982. An abstract, theoretical
model of quantum computation was developed in 1985 by Deutsch [5]. The break-
through of quantum computing occurred in 1994, when Shor [31] proved that
a quantum computer could factor large integers N in O((logN)3) operations,
while no polynomial in logN classical (deterministic or randomized) algorithm
is known. (By “classical” we always mean “non-quantum”.) Another important
result was obtained by Grover [8] in 1996, who dealt with the following problem:
Let f : {0, . . . , N − 1} → {0, 1} with the property that there is a unique i0 with
f(i0) = 1. Find this i0. It is not difficult to show that classically (deterministi-
cally or randomized) one needs O(N) operations. In the quantum setting Grover
showed that O(

√
N) suffice.

This created a challenge to physicists: Find quantum systems suitable for
computation, i.e., build a quantum computer. In recent years, various realizations
are tested in laboratories. So far only systems with a small number of components
(qubits) are possible.

The challenge of quantum computing to mathematicians and computer scien-
tists, on the other hand, is: Find more problems for which quantum algorithms
are (provably) better than all classical algorithms. In the sequel, all kinds of dis-
crete problems were investigated. Much less was done for problems of analysis.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 28–39, 2006.
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A natural question is the following: What could a quantum computer bring for
the solution of numerical problems? Research in this direction was started in
1998 by Boyer, Brassard, Høyer, Mosca, and Tapp [3, 4], who developed a quan-
tum algorithm for computing the mean of a sequence of numbers. Nayak and Wu
[23] showed matching lower bounds. Novak [26] was the first to give a quantum
complexity analysis for the integration of functions from Hölder spaces. Com-
puting the mean of p-summable sequences, integration in Sobolev spaces, and
the rigorous quantum setting of information-based complexity theory are due to
Heinrich [11, 12].

Numerous further recent contributions include Traub, Woźniakowski [33]
(path integration), Novak, Sloan, Woźniakowski [27] (integration and approxi-
mation in reproducing kernel Hilbert spaces), Heinrich [13, 14] (approximation of
Sobolev embeddings), Wiegand [35] (parametric integration), Kacewicz [17, 18]
(intitial value problems for systems of ordinary differential equations), Papa-
georgiou, Woźniakowski [28] (eigenvalue computation for the Sturm-Liouville-
problem), Kwas [19] (Feynman-Kac path integrals), and Heinrich [15] (elliptic
PDE).

Combining the results above with known results from information-based com-
plexity theory about the classical deterministic and randomized setting [25, 34,
10], one can prove the superiority of quantum algorithms for many of these
problems.

In this paper I want to give an introduction to the ideas of quantum computing
and survey a few typical recent results concerning basic numerical problems: high
dimensional integration and approximation. This will include a comparison of
the potential of quantum algorithms with that of deterministic and randomized
classical ones.

For further reading on quantum computation we refer to the surveys by Aha-
ronov [1], Ekert, Hayden, and Inamori [6], Shor [32], and the monographs by
Pittenger [30], Gruska [9], and Nielsen and Chuang [24]. Basic notions and results
in information-based complexity theory can be found in the monographs by
Traub, Wasilkowski, and Woźniakowski [34] and Novak [25], and the survey [10]
of the randomized setting.

2 Quantum Computing

First we describe the mathematical framework of quantum computing. LetH1 :=
C2 be the two-dimensional complex Hilbert space (the unit sphere of H1 repre-
sents the state space of a qubit – quantum bit). Let {e0, e1} be the unit vector
basis. In accordance with quantum mechanical notation we write |0〉 instead of
e0 and |1〉 instead of e1.

The basic quantum computing device is given by an m-qubit-system. Math-
ematically, it is represented by the tensor product

Hm := H1 ⊗H1 ⊗ . . .⊗H1︸ ︷︷ ︸
m

,
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with the basis

ei0 ⊗ ei1 ⊗ . . .⊗ eim−1 (i0, i1, . . . , im−1) ∈ {0, 1}m.

Thus, Hm is the 2m-dimensional complex Hilbert space, its unit sphere is the
state space of the m-qubit system, and a quantum computation is a trajec-
tory through this state space according to specific rules, which we describe
below.

We make the following further notational conventions:

ei0 ⊗ ei1 ⊗ . . .⊗ eim−1 =: |i0〉 |i1〉 . . . |im−1〉 =: |i〉

where i := (i0i1 . . . im−1)2 :=
∑m−1

k=0 ik2m−1−k.
The basis states |i〉 = |i0〉 |i1〉 . . . |im−1〉 represent the classical states of the

system, the general quantum states of the m-qubit system are given by super-
positions

|ξ〉 =
2m−1∑
i=0

αi |i〉
(

2m−1∑
i=0

|αi|2 = 1

)
.

How to use m-qubit quantum systems for computing? To explain this, let us
first consider an example of a classical computation – the addition of two m-
bit numbers, which we write as follows (the i’s and j’s denote the bits of the
summands, the k’s stand for the bits of the result):

|i0〉 . . . |im−1〉 |j0〉 . . . |jm−1〉 |0〉 . . . |0〉
↓

|i0〉 . . . |im−1〉 |j0〉 . . . |jm−1〉 |k0〉 . . . |km〉

This computation is realized using circuits of classical gates (and, or, not,
xor) in the usual way: add the last bits, then the second last plus the carry bit
etc. Let us emphasize here: Classically, we add two numbers at a time.

Now, which operations are allowed in a quantum system? Schrödinger’s equa-
tion implies: all evolutions of a quantum system must be represented by unitary
transforms of Hm. Quantum computing assumes that we are able to per-
form a number of elementary unitary transforms – (quantum) gates
on the system. A typial set is the following:

One qubit gates: They manipulate only one component of the tensor product
H1 ⊗H1 ⊗ . . .⊗H1:

Hadamard gate: H1 → H1

|0〉 → |0〉+ |1〉√
2

|1〉 → |0〉 − |1〉√
2

(a unitary transform is uniquely determined by its values on the elements of a
basis).
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Phase shift: For each parameter θ ∈ [0, 2π) a quantum gate H1 → H1 is
defined by

|0〉 → |0〉
|1〉 → eıθ |1〉

Two qubit gates: They manipulate two components of H1 ⊗H1 ⊗ . . .⊗H1:

Quantum xor gate (also called controlled-not gate): H1 ⊗H1 → H1 ⊗H1

|0〉 |0〉 → |0〉 |0〉
|0〉 |1〉 → |0〉 |1〉
|1〉 |0〉 → |1〉 |1〉
|1〉 |1〉 → |1〉 |0〉

These gates form a universal system: Each unitary transform in Hm can be
represented as a finite composition of these gates. If we restrict ourselves to one
single phase shift with θ = π/4, we obtain an approximately universal system:
Each unitary transform can be approximated in the operator norm to arbitrary
precision by suitable finite composition of these gates.

So once we can implement these gates we can carry out all unitary trans-
forms (of course, the efficiency of such a representation or approximation is
still an issue). Physicists are working on implementations of these gates in
various quantum systems such as photons, trapped ions, magnetic resonance
systems.

Let us mention two crucial features:

1. These gates can transform classical states into superpositions. Example:
the Hadamard gate applied to the first and then to the second qubit

|0〉 |0〉 −→ 1
2

(|0〉 |0〉+ |0〉 |1〉+ |1〉 |0〉+ |1〉 |1〉)

2. They act also on superpositions. Examples:
2.1. The quantum xor gate:

α0 |0〉 |0〉+ α1 |0〉 |1〉+ α2 |1〉 |0〉+ α3 |1〉 |1〉
↓

α0 |0〉 |0〉+ α1 |0〉 |1〉+ α2 |1〉 |1〉+ α3 |1〉 |0〉

2.2. Quantum addition of binary numbers (a classical gate implementation
can easily be turned into a quantum gate implementation):∑

αij |i0〉 . . . |im−1〉 |j0〉 . . . |jm−1〉 |0〉 . . . |0〉
↓∑

αij |i0〉 . . . |im−1〉 |j0〉 . . . |jm−1〉 |k0〉 . . . |km〉

Assuming that all αij �= 0, we see that starting with the superposition of all
possible inputs, and carrying out the quantum implementation just once, we



32 S. Heinrich

obtain (by linearity of the quantum gates) the superposition of the results of all
possible inputs.

That is, in the quantum world, we add all possible binary m-digit numbers in
parallel.

But does that mean that we have an exponentially powerful parallel com-
puter? No, because we cannot access all components of the superposition!
According to quantum mechanics, we have to measure the system, which
destroys the superposition. So:

Quantum computing assumes that we are able to access the results
of the quantum computation process via measurement (with respect to
the canonical basis). Measuring a system in a (superposition) state

|ψ〉 =
2m−1∑
i=0

αi |i〉
(

2m−1∑
i=0

|αi|2 = 1

)
results in one of the classical states:

|i〉 with probability |αi|2 (i = 0, . . . , 2m − 1).

Coming back to our example of quantum addition of binary numbers we would
get

|i0〉 . . . |im−1〉 |j0〉 . . . |jm−1〉 |k0〉 . . . |km〉
with probability |αij |2. This is not much of a gain: just one single result, and on
top of that a random one!

The reasoning above indeed showed typical features of a quantum compu-
tation, but, on the other hand, made it also plausible, that in order to let a
quantum computer behave more efficiently than a classical one, more ingenious
and sophisticated techniques are required. We will briefly discuss some of them
in section 5.

To study numerical problems in the quantum setting, a few more preparations
are required. First of all, we shall view a numerical problem as given by an
operator S : F → G, the solution operator. Here F is a set (usually a set of
functions), G is a normed space (either a space of functions or the scalar field),
and S(f) ∈ G is the (exact) solution of the problem at input f ∈ F .

If we consider the example of numerical integration, we have that F is a set
of functions on some domain D, G = R, and

S(f) =
∫

D

f(t)dt.

How does the quantum algorithm get information about f ∈ F? It is helpful to
look first at the binary case: Let

f : {0, 1, . . . , 2m1 − 1} → {0, 1}.

A classical black box (query, subroutine) produces f(i) at request i, that is, maps
(i, 0)→ (i, f(i)). Quite similarly, the quantum (binary) query:

|i〉 |0〉 → |i〉 |f(i)〉
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This mapping has many extensions to a bijection of classical states, and hence,
to a unitary operator Qf : Hm → Hm. The following is customary:

Qf : |i〉 |j〉 → |i〉 |j ⊕ f(i)〉

(where ⊕ stands for addition modulo 2).
For problems of analysis we have to consider the general case of functions f

from a domain D to R (or, analogously, to C). The appropriate quantum query
Qf : Hm → Hm is defined as follows:

Qf : |i〉 |j〉 → |i〉 |j ⊕ β(f(τ(i)))〉 ,

where 1 ≤ m1 < m, Hm is identified with Hm1 ⊗Hm−m1 ,

τ : {0, . . . , 2m1 − 1} → D

maps indices i to nodes τ(i) ∈ D, the mapping

β : R→ {0, . . . , 2m−m1 − 1}

encodes the real number f(τ(i)) as a binary integer β(f(τ(i))), and ⊕ stands
for addition modulo 2m−m1 (the choice of m1, τ and β is part of the algorithm
design). Thus we arrived at the quantum model of computation for nu-
merical problems:

starting state:
|i0〉 ∈ Hm (a classical state)

computation:
|i0〉 → U0 |i0〉 → QfU0 |i0〉 → U1QfU0 |i0〉 → . . .
→ UnQfUn−1 . . .QfU1QfU0 |i0〉 =: |ξ〉

measurement:
|ξ〉 =

∑2m−1
i=0 αi |i〉 → |i〉 with probability |αi|2

output:
|i〉 → φ(i) =: An(f) ∈ G

The Ui represent the composition of the quantum gates applied before, between,
and after the queries, and φ symbolizes any classical computation performed on
the measurement result i to obtain the final output. We call this a quantum
algorithm with n queries. The output An(f) is a random variable.

We introduce the (probabilistic) error of An at input f :

e(S,An, f) = inf {ε : P{‖S(f)−An(f)‖G ≤ ε} ≥ 3/4} ,

and the error of An over F by

e(S,An, F ) = sup
f∈F

e(S,An, f).

Note that the choice of the probability threshold 3/4 is inessential: By re-
peating the algorithm k times and computing the median of the results, the
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success probability can be increased to 1−2−ck for some c > 0 not depending
on k.

The crucial quantity for complexity analysis is the quantum n-th minimal
error

eqn(S, F ) = inf
An

e(S,An, F ).

It gives the minimal possible error among all quantum algorithms which use
at most n quantum queries. For the problems we consider here, this is, up to
logarithmic factors, also the best possible errors among all algorithms of cost
(number of gates, queries, and measurements) at most n. Along with eqn(S, F )
we shall also consider

edet
n (S, F ), the best possible error among all deterministic classical algorithms

with cost (number of arithmetic operations, function values) ≤ n, and
erann (S, F ), the best possible error among all randomized classical algorithms
with cost (number of random generator calls, arithmetic operations, function
values) ≤ n.

For detailed definitions and references for the respective results in the classical
settings we refer to [25, 34, 10].

3 Multivariate Integration

Let D = [0, 1]d, f : [0, 1]d → R,

S(f) = Idf :=
∫

[0,1]d
f(t)dt

and consider the following function classes: Let r ∈ N0, 0 < s ≤ 1 and define
the Hölder classes by

F = B(F r,s
d ) = {f ∈ Cr([0, 1]d), ‖f‖∞ ≤ 1,

|∂αf(x)− ∂αf(y)| ≤ |x− y|s, |α| = r}.

Here Cr([0, 1]d) is the set of r times continuously differentiable functions and ∂α

is the partial derivative corresponding to the multiindex α.
Next define the Sobolev classes for r ∈ N, 1 ≤ p ≤ ∞, satisfying r/d > 1/p

(Sobolev embedding condition), by

F = B(W r
p,d) = {f ∈ Lp([0, 1]d) : ‖∂αf‖Lp ≤ 1, |α| ≤ r}

with ∂α being the respective weak partial derivative. We will be particularly
interested in the behaviour of the complexity in the various settings for large d.

The following result is due to Novak [26].

Theorem 1.
eqn(Id,B(F r,s

d )) � n− r+s
d −1
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Let us compare this with the classical deterministic and randomized setting:

edet
n (Id,B(F r,s

d )) � n− r+s
d

erann (Id,B(F r,s
d )) � n− r+s

d −1/2

We write an � bn for sequences of nonnegative reals (an) and (bn) if there
are constants c1, c2 > 0, n0∈N, such that c1an≤bn≤c2an for all n∈N with
n≥ n0.

It is interesting to look at these rates for small (r + s)/d (that is, for large
d). We see that in the classical deterministic setting, the exponent is negligible,
meaning there is no chance to solve this problem deterministically. This is the
well-known curse of dimension. In the classical randomized settting the situation
is different: The exponent is always smaller than −1/2 even for very small (r +
s)/d, corresponding to the fact that randomization (Monte Carlo integration)
allows to overcome the curse of dimension. Comparing, finally, the quantum
setting with the classical randomized setting, we have essentially a quadratic
speedup (the exponent close to −1/2 is replaced by an exponent close to −1).
This is the same sort of speedup as in the Grover search algorithm mentioned
in the beginning.

Novak’s result settled the Hölder case, that is, function classes related to
the maximum norm, but what about function spaces involving the L2, or,
more generally, the Lp norm for 1 ≤ p < ∞. Since L2 is the natural space
for Monte Carlo algorithms, it was an open, interesting question whether
Monte Carlo algorithms could possibly be as good as quantum algorithms,
say for p = 2? Furthermore, it was known that for p = 1, Monte Carlo algo-
rithms do not yield a speedup over (classical) deterministic algorithms. Will
quantum algorithms do so? These questions are answered in the following
theorem from [12]. To suppress inessential for the purpose of our survey log-
arithmic factors, we write an �log bn if there are constants c1, c2 > 0, n0 ∈ N,
α1, α2 ∈ R such that

c1(log(n+ 1))α1an ≤ bn ≤ c2(log(n+ 1))α2an

for all n ∈ N with n ≥ n0.

Theorem 2. Let 1 ≤ p <∞, r, d ∈ N, r/d > 1/p. Then

eqn(Id,B(W r
p,d)) �log n

−r/d−1.

In the classical deterministic setting we have

edet
n (Id,B(W r

p,d)) � n−r/d,

while in the classical randomized setting the following holds:

erann (Id,B(W r
p,d)) � n−r/d−1/2 if 2 ≤ p <∞

erann (Id,B(W r
p,d)) � n−r/d−1+1/p if 1 ≤ p < 2.
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We see that the same spedup of the quantum over the classical randomized
setting (a gain of −1/2 in the exponent) holds through for all p ≥ 2. For
1 ≤ p < 2 the gain is even greater, reaching −1 for p = 1, the case where
classical randomization does not yield any gain over classical deterministic
algorithms.

4 Approximation of Sobolev Embeddings

It was well-known that Monte Carlo methods are especially suited for problems
whose output is a scalar (integration, computation of functionals of solutions
of integral equations). The integration results presented above are of this kind,
leaving the question how quantum algorithms would behave if the output were
not a scalar, but a function. A particularly typical situation is function approx-
imation — we are asked to compute an approximation to a function using (a
limited number of) values of that function.

Let 1 ≤ p, q ≤ ∞,

S = Jpq : W r
p ([0, 1]d)→ Lq([0, 1]d), Jpq(f) = f,

and put F = B(W r
p,d). Thus, given f ∈ B(W r

p,d), we seek to approximate f in
the norm of Lq([0, 1]d). The following was shown in [13, 14].

Theorem 3. Let r, d ∈ N, 1 ≤ p, q ≤ ∞ and assume r/d > max(1/p, 2/p−2/q).
Then

eq
n(Jpq,B(W r

p (D))) �log n
−r/d.

Again it is instructive to compare with the classical deterministic and random-
ized setting:

edet
n (Jpq,B(W r

p,d)) � erann (Jpq,B(W r
p,d))

�
{
n−r/d if p ≥ q

n−r/d+1/p−1/q if p < q.

We observe a possible improvement of n−1 (for p = 1, q = ∞) of quantum
algorithms over the classical deterministic and randomized case. This is the
same speedup as in Theorem 2 for p = 1. We also see that there are regions of
the parameter domain where the speedup is smaller, and others, where there is
no speedup at all.

5 Further Comments

Let us summarize the results in a table (suppressing again constants and loga-
rithmic factors).
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deterministic random quantum

Integration

B(F r,s
d ) n−(r+s)/d n−(r+s)/d−1/2 n−(r+s)/d−1

B(W r
p,d), 2 ≤ p ≤ ∞ n−r/d n−r/d−1/2 n−r/d−1

B(W r
p,d), 1 ≤ p < 2 n−r/d n−r/d−1+1/p n−r/d−1

Approximation

B(W r
p,d)→ Lq, p ≥ q n−r/d n−r/d n−r/d

B(W r
p,d)→ Lq, p < q n−r/d+1/p−1/q n−r/d+1/p−1/q n−r/d

We mentioned in section 2 that a naive view on quantum computation does
not bring us very far. So what are the algorithmic methods that make quantum
computers superior to classical ones? There is, first of all, the quantum Fourier
transform, a highly efficient implementation of the discrete Fourier transform on
a quantum system. Based on this, Shor [31] developed a technique of estimating
eigenvalues of unitary operators, which eventually lead to his seminal results on
factoring. The crucial idea of the Grover search is an iterative amplification of the
amplitude of the state we are interested in (the state |i0〉 with i0 such that f(i0) =
1). Finally, Boyer, Brassard, Høyer, Mosca, and Tapp [3, 4], combined this by
estimating the eigenvalues of the Grover transform using the Shor approach and
this way produced an efficient counting algorithm (estimating the number of 1’s
in a huge sequence of bits, or, equivalently, estimating the mean of a sequence
of bits). For a good, self-contained exposition of these basic techniques see [24].
The lower bound results by Nayak and Wu [23] are derived by the polynomial
method [2]: the succcess probability is a polynomial (in the bits the mean of
which is to be computed) of degree at most the number of queries. Interesting
from the point of view of approximation theory: Nayak and Wu use the Bernstein
and Markov inequalities for polynomials to get their result.

Novak’s Theorem 1 is built on these results, combining them with techniques
from information-based complexity [25, 34], in particular for the lower bound
proof. The upper bound is shown by adopting a technique from Monte Carlo
methods: separation of the main part (control variate).

These were L∞-results exclusively. The step from p =∞ to arbitrary p needed
for Theorem 2 is based on respective results for mean computation in finite
dimensional lNp spaces [11, 16]. Those are achieved by splitting the function into
dyadic levels, distributing queries over levels, combining decay of means and
precise error estimates for counting. In the case of 1 ≤ p < 2 a combination with
the Grover search is used. A new discretization technique (inspired by Maiorov’s
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technique [20] from approximation theory), reducing integration to a sequence
of mean computation problems [12], leads to Theorem 2.

Related techniques (Grover search, multilevel splittings, discretization) are
also used in [13, 14] to prove the upper bounds in Theorem 3. The lower bound
technique is a new one: multiplicativity of minimal quantum errors. This was
inspired by functional analysis — the multiplicativity of s-numbers [29].
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Abstract. Recent experimental investigations [20] of solid 4He have been
interpreted as showing possible superfluidity in the solid at low tempera-
tures, below 0.2 K. A solid behaving this way, exhibiting both long range
translational order and superfluidity, has been called a supersolid phase.
The existence of a supersolid phase was proposed many years ago [1], and
has been discussed theoretically. In this paper we review simulations of the
solid state of bulk 4He at or near absolute zero temperature by quantum
Monte Carlo techniques. The techniques considered are variational cal-
culations at zero temperature which use traditional Bijl-Dingle-Jastrow
wavefunctions or more recently, shadow wavefunctions; Green’s function
Monte Carlo calculations at zero temperature; diffusion Monte Carlo, and
finally, the finite temperature path integral Monte Carlo method. A brief
introduction to the technique will be given followed by a discussion of the
simulation results with respect to solid helium.

1 Introduction

After many years of investigation, the properties of the solid phases of bulk, 4He,
were felt to be well understood [3]. At temperatures near absolute zero, 4He exists
in both the solid and fluid states. The crystalline structure is known to exhibit
hexagonal closest packing (hcp) rather than the face centered cubic packing ex-
pected for a three-dimensional hard sphere system. Even at absolute zero, the
atoms exhibit zero point motion around their lattice positions which leads to a
very “loose” solid at densities near melting. In the 1960’s, Andreev and Lifshitz
[1] proposed that such quantum solids could sustain superfluidity. One indicator
of the onset of superfluidity is the Bose-Einstein condensate, the fraction of the
atoms condensed into the zero momentum state. The condensed atoms acquire
quantum mechanical coherence over macroscopic length scales. Quantum Monte
Carlo simulations observed a Bose-Einstein condensate of several percent in liq-
uid 4He systems [34]; but only detected a condensate in a quantum solid when
the atoms were interacting with a Yukawa potential [6].

Interest has been recently renewed by the torsional oscillator experiments of
Kim and Chan [20]. Ultrahigh-purity 4He was confined in a torsion cell and
subjected to pressures between 26 and 66 bars to reach the solid phase. A non-
classical rotational inertia fraction that can be associated with superflow was

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 40–52, 2006.
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observed at temperatures below 230 milliKelvin. These observations have lead
to renewed interest in the measurements of the Bose-Einstein condensate and
other measures of superfluidity in simulations of the properties of solid helium.

4He systems may be studied theoretically by solving the appropriate
Schrödinger or Bloch equation. At absolute zero, the behavior of an N body
helium system is described by the eigenfunction of the Schrödinger equation in
3N dimensional space:

[−∇2 + V (R)]Ψ0(R) = E0Ψ0(R) (1)

where R ≡ {ri | i = 1, . . . , N} and the ri are the positions of the individ-
ual atoms. V(R) represents the interaction potential between the atoms in the
system. The term [−∇2 + V (R)] is the Hamiltonian, H, for the system and is
written here in dimensionless form. Knowledge of the physical relationships be-
tween the atoms can be built into a parametrized mathematical form for a trial
wavefunction, ΨT (R), an approximation to Ψ0(R). The variational energy can be
minimized with respect to the parameters through the Monte Carlo evaluation
of the expectation value of the ground energy, E0. This technique is referred
to as variational Monte Carlo (VMC). Approaches where the simulation results
are subject only to statistical uncertainties are referred to as Quantum Monte
Carlo (QMC) methods. In the Green’s function Monte Carlo (GFMC) method
the integral transform of the Schrödinger equation, (1), is iterated by performing
a random walk in the configuration space of the N atoms to yield an asymptot-
ically exact solution. Such a solution can also be obtained by sampling a short
time Green’s function followed by an extrapolation of the results to account for
the time step errors introduced by the approximation. This technique is known
as diffusion Monte Carlo (DMC). Finally, finite temperature systems may be
studied by considering the Bloch Equation:

[−∇2 + V (R) + ∂/∂t]�B(R, t) = 0, (2)

where �B(R, t) is the many-body density matrix. Path integrals [12, 16] Monte
Carlo (PIMC) simulations can be performed and for small enough temperature
intervals, the density matrix can be compared to the ground state eigenfunction
from (1).

In the following sections, the results of applying the techniques outlined above
to the simulation of solid 4He will be described.

2 Variational Monte Carlo Methods

Given a trial wavefunction, ΨT (R), an estimator for the variational energy,

ET =
〈ΨT |H |ΨT 〉
〈ΨT |ΨT 〉

≥ E0, (3)

is an upper bound to the true ground state energy E0 of the system. The lowest
variational energy is obtained through a minimization process with respect to
the parameters in ΨT (R). In the coordinate representation (3) becomes:
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ET =
∫
dRΨ∗

T (R)HΨT (R)∫
dR|ΨT (R)|2 =

∫
dRπ(R)EL(R), (4)

where dR ≡ d3r1d
3 . . . rN . The last term of the above equation, EL(R), the local

energy, is obtained by multiplying and dividing the numerator of (3) by ΨT (R),

EL(R) =
HΨT (R)
ΨT (R)

, (5)

and π(R) is a normalized probability distribution function,

π(R) =
|ΨT (R)|2∫
dR|ΨT (R)|2 . (6)

2.1 Trial Wavefunctions

As point out by Feenberg [11] a plausible general form for the exact ground-state
wavefunction of a system of N interacting bosons is

Ψ(R) =
∏
i<j

f2(rij)
∏

i<j<k

f3(i, j, k)
∏

i<j<k<l

f4(i, j, k, l) · · · (7)

= exp
1
2

⎡⎣∑
i<j

u(rij) +
∑

i<j<k

u3(i, j, k) +
∑

i<j<k<l

u4(i, j, k, l)

⎤⎦ · · · (8)

In the liquid phase, the simplest variational function, the so called Bijl-Dingle-
Jastrow or Jastrow trial function, considers only a single term of the above
expression: u2(rij). The first computer simulation for a system of helium atoms
was performed by McMillan [22] using u2(r) = b/r5 and reasonable results were
obtained. A better approximation to the variational wavefunction which included
three-body correlations [28], u3(i, j, k), led to an improvement of about 10% in
the estimated values of the energies.

For the solid phase, the usual approach was to write the trial wavefunction as

ψTsol(R) =
∏
i<j

f2(rij)Φ(R), (9)

where Φ(R) is a model function, ideally, a permanent of localized single particle
orbitals. However, since the effect of the quantum statistics on the energy is
minor, Φ(R) is left unsymmetrized. Gaussian orbitals were used in simulations
performed by Hansen and Levesque [14] with reasonable results. The inclusion of
triplet correlations, f3(i, j, k), in the trial wavefunction lead to an improvement
of about 15% in the simulations results [32]. The introduction of higher-order cor-
relations in a trial wavefunction has become feasible by introducing the shadow
wavefunction [30], discussed more fully below.

The functional form of correlation factors in a trial wavefunction can be fully
optimized. The idea is to write the correlation factors as a sum of the elements
of a basis set [31]. For the two-body correlation factor,
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f(r) =
M∑

n=1

cnfn(r), (10)

where the fn are functions of the basis set and the cn are variational parameters.
If the basis is well chosen, a small value of M is sufficient to recover all the
energy associated with the correlation under consideration. For (10), a very
suitable basis is the one obtained by solving for the lowest M energy states of
the Schrödinger-like equation involving a pair of helium atoms,(

− h̄

2m
∇2 + V (r)

)
fn(r) = λnfn(r). (11)

The boundary conditions are such that at a distance d, chosen as a cutoff or
eventually as a variational parameter, the functions fn go smoothly to 1 or to
a function that gives the correct long range behavior of the system. One of the
advantages of this method is to automatically obtain an optimal correlation at
small values of r. Since, the wavefunction is small when r → 0, it is difficult to
sample this very important region of configuration space. Thus, the usual Monte
Carlo optimization of the trial function, does not perform well at small r.

2.2 Monte Carlo Techniques

The simulation starts by sampling the normalized probability distribution π(R)
of (6), i. e., by constructing a sequence of points {Ri|i = 1, . . . ,M} in the
configuration space. More formally we require [19] that Ri belong to the sequence
with probability given by

Pr{Ri} =
∫

Ω

dRπ(R) (12)

for any Ω ⊂ Ω0 of the sample space Ω0. The sampling in most cases is performed
using the Metropolis [23] algorithm.

If we consider M independent samples, the variational energy is estimated as

EM =
1
M

M∑
i=1

EL(Ri). (13)

In the limit of large M we have EM → ET . This energy is obtained without any
uncontrolled approximations or nonconvergence for any form of the wavefunction
and is subject only to statistical uncertainties of O(M−1/2). The statistical error
is easily estimated. Variance reduction techniques, e. g. importance sampling, can
be used to reduce the multiplicative factor that appears in the calculation of the
error. Other properties of the system can also be readily estimated.

2.3 Variational Results on Solid 4He

The earliest variational calculations could not differentiate between a crystal
with fcc packing and one with hcp order. Chester [10] showed that a Jastrow
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wavefuntion, ΨT (R) =
∏

i<j f(rij), supports a Bose-Einstein condensate. How-
ever, this pair product form without the localization provided by φ(r), as in (9),
only crystallizes at a very high density [15]. Therefore the use of gaussian one-
body orbitals, φ(r), was introduced. This, however, precluded the observation of
a Bose-Einstein condensate.

Recently, Vitiello considered in great detail the question of the ground-state
structure of solid helium using the most recent he-he potential of interaction.
Performing careful variational calculations and employing reweighting, he was
able to show that the hcp order is favored in the 4He system [29].

2.4 Shadow Wavefunction Calculations

The construction of trial functions based on the inclusion of auxiliary variables,
“shadow particles”, is a very successful approach within the variational methods.
These trial functions are particular representations of the Feenberg form [11],
where one is able to introduce tractable correlations up to the number of particles

ΨSh(R) =
∏
i<j

f(rij)
∏

i<j<k

f
(3)
ijk . . .

∏
i<j...<w

f
(N)
ij...w. (14)

The variational shadow wavefunction is defined in terms of an integral over
auxiliary variables S ≡ {si|i = 1, . . . , N} in the whole space

ΨSh(R) =
∫
Ξ(R,S)dS, (15)

where Ξ is a function that includes a factor of the Jastrow form dependent solely
on the configuration space coordinatesR, a Gaussian coupling between the space
variables ri and the auxiliary variables si, and a term of the Jastrow form that
correlates the si among themselves:

Ξ(R,S) = exp

⎛⎝−∑
i<j

1
2

(
b

rij

)5

−
∑

i

C|ri − si|2 −
∑
i<j

γV (δsij)

⎞⎠ . (16)

In this formulation ΨSh(R) depend on the He-He interacting potential and four
variational parameters: b, C, γ and δ. Since the auxiliary variables, due to the
last term of Eq. (16), are isomorphic to the coordinates of a system of particles
interacting through V , we call the auxiliary variables shadow particles.

A trial wavefunction that can correlate all the atoms in the system is impor-
tant by itself. In addition, there are strong physical motivations to deal with
such a class of variational wavefunctions: Feynman’s path integrals in imaginary
time and justifications from projection methods.

Shadow wavefunctions have enabled the investigation of disorder phenomena
in solid 4He such as vacancies [24] or the interfacial region between a solid and
a liquid at coexistence [25] by variational calculations. This is possible because
with the shadow wavefunction approach both the fluid phase and solid phases can
be described, without the introduction of single particle orbitals. Moreover the
Bose symmetry is manifestly maintained and so relaxation around non-localized
defects are allowed.
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3 Green’s Function Monte Carlo

If the potential energy in (1) is bounded from below V (R) ≥ −V0, (1) can be
rewritten as:

[−∇2 + V (R) + V0]Ψ0(R) = (E0 + V0)Ψ0(R). (17)

A Green’s function,

[−∇2 + V (R) + V0]G(R,R0) = δ(R−R0) (18)

can be derived with the same boundary conditions as Ψ0(R) and used to trans-
form (17) into an integral equation:

Ψ0(R) = (E0 + V0)
∫
G(R,R′)Ψ0(R′)dR′. (19)

Since the ground-state wavefunction and Green’s function for a Bose system are
non-negative; the ground state wavefunction and approximations to it may be
treated as probability distribution functions. The Green’s function may also be
used as a distribution function for R conditional on the previous position R′.
The integral version of the Schrödinger equation, (19), is solved by a Neumann
iteration starting with a zeroth order approximation, such as a trial wavefunction
optimized in a variational calculation. A population of points {R′} is sampled
from ΨT (R′) and a new set of points {R} is sampled from (Et + V0)G(R,R′)
where Et is an approximation to the ground-state energy. As this process is
repeated, at the nth iteration the set of points {R′} has been sampled from ψ(n)

and the next generation of points, n+1, is sampled from:

ψ(n+1)(R) = (Et + V0)
∫
G(R,R′)ψ(n)(R′)dR′. (20)

Equation (20) defines one step of a random walk whose asymptotic distribution
is Ψ0(R). Since the simulation system is composed of N atoms with periodic
boundary conditions, the Schrödinger equation has a discrete spectrum and the
iterations are guaranteed to converge.

The procedure may be made computationally more efficient and the variance
reduced by employing an importance sampling transformation [18]. Let ΨT (R) be
a trial wavefunction which may be the same as ψ(0)(R) and Ψ̄(R) = ΨT (R)Ψ(R),
then (19) becomes

Ψ̄(R) = (E + V0)
∫

[ΨT (R)G(R,R′)/ΨT (R)]Ψ̄(R′)dR′. (21)

The sequence of functions obtained by iteration of the integral equation con-
verges to ΨT (R)Ψ0(R) and Et is chosen such that the random walk is stable.

Unfortunately, the Green’s function, (18), is not known analytically owing to
the complexity of the boundary conditions. However, to implement the algorithm
represented by (20) or (21), it is not necessary to know the full Green’s function;
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it is sufficient to develop a method to sample configurations from G(R,R′). The
Green’s function may be written as,

G(R,R′) =
∫ ∞

0
G(R,R′, τ)dτ (22)

G(R,R′, τ) is the Green’s function for a Bloch equation, (2),

(H + ∂/∂τ)G(R,R′, τ) = δ(R −R′)δ(τ). (23)

For a given configuration, R0, a finite domain, D(R0), may be chosen such that
the potential of interaction, V(R), is bounded from above within the domain by
the constant, U(R0). A domain Green’s function may then be defined:

[−∇2 + U(R1) + ∂/∂τ ]GU (R1, R0, τ) = δ(R1 −R0)δ(τ) (24)

subject to the boundary condition that GU (R1, R0, τ) = 0 whenever R1 is on
the boundary or outside of D(R0). Physically, (24) represents a diffusion process
of a particle in a domain with a constant absorption rate and a perfectly ab-
sorbing boundary. Multiplying (18) by GU (R1, R0, τ) and (24) by G(R,R1, τ),
integrating both equations over R1 and subtracting the two resulting equations
yields:

G(R,R0, τ) = GU (R,R0, τ)

+
∫

∂D(R0)

(
∂GU (R1, R0, τ − τ0)

∂n

)
G(R,R1, τ0)dR1 (25)

+
∫

D(R0)
(U(R0)− V (R1))GU (R1, R0, τ − τ0)G(R,R1, τ0)dR1

Equation (26) is a linear integral equation for G(R,R0, τ) in terms of GU (R,R0,
τ). In the second term of the right hand side of (26), the boundary condition
for GU (R1, R0, τ) has been used to convert a volume integral into a surface
integral over ∂D(R0) and the derivative normal to the domain’s surface, ∂/∂n
has been introduced. The domain, D(R0) may be chosen in any convenient way;
in particular, as the Cartesian product of three-dimensional spheres or cubes
centered at R0. GU (R,R0, τ) is known analytically and may be interpreted as a
conditional probability distribution function. Thus, points {R} may be sampled
by a random walk governed by (26) for any given set {R0}.

An asymptotically unbiased estimator for the energy is given by

Em =
∫
Ψn(R)HΨT (R)dR∫
Ψn(R)ΨT (R)dR

. (26)

Except for statistical sampling and convergence errors, (26) is an exact estima-
tor for the ground state energy. For other properties of the physical system,
F(R), that do not commute with the Hamiltonian, a “mixed” estimator may be
defined as

〈F 〉m =
∫
Ψn(R)F (R)ΨT (R)dR∫
Ψn(R)ΨT (R)dR

. (27)
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If the trial wavefunction ΨT (R) is “close” to the actual ground state wave-
function, ΨT (R) = Ψ0(R) + δψ(R), then a linear extrapolation may be used to
estimate the exact value to within an order δ2:

〈F 〉x = 2〈F 〉m − 〈F 〉T (28)

where 〈F 〉T is the variational value calculated with ΨT (R). It was shown [34] that
this extrapolation process gave the same expected value as the random walk
based on the “forward walking” algorithm but with much smaller statistical
errors. The extrapolated value was also shown to be independent of the trial
wavefunction used.

As in variational calculations, the result of the GFMC simulations is a wave-
function represented as an ensemble of configurations of atomic positions.
Through (27) and (28), the Bose-Einstein condensate fraction can be obtained
for the helium system. The fraction of particles in the zero-momentum state is
given by the asymptotic limit of n(r),

n0 = lim
r→∞

n(r). (29)

The one-body density matrix, n(r), is a measure of the change in the wavefunc-
tion for given displacement r and is the fourier transform of the momentum
distribution, n(k):

n(r) =
∫
eik·rn(k)dk

=
〈
Ψ(r1, r2, · · ·, ri + r, · · ·, rn)
Ψ(r1, r2, · · ·, ri, · · ·, rn)

〉
. (30)

The first calculation of the Bose-Einstein condensate in solid 4He using the GFMC
method [7] involved the trial wavefunction of Eq. (9) and the Lennard-Jones po-
tential of interaction [4]. It was of course recognized that the form of the trial
wavefunction that was used as an importance function might bias the results and,
not surprisingly, the condensate fraction was less than 1%. Additional calculations
[34], showed that the Lennard Jones potential itself was inadequate to describe the
helium system. A further investigation of the Bose-Einstein condensate concluded
that Ceperley, et. al. [6] observed a condensate because they used a translationally
invariant wavefunction for the importance function. The GFMC simulations were
repeated using a more realistic form for the potential of interaction, the HFDHE2
potential [2] and improved wave-functions [17]. However, no condensate fraction
within statistical error was observed in the solid phase [35, 36].

In a variational calculation using a shadow wavefunction, when the density
of a system of helium atoms reaches the appropriate value, a state with trans-
lationally broken symmetry is spontaneously produced. Thus, it was natural to
introduce shadow wavefunctions as importance functions in GFMC calculations.
In order to perform these calculations, Whitlock and Vitiello [33] made an ex-
tension to the GFMC method such that the shadow degrees of freedom where
updated using the Metropolis algorithm according to the probability distribu-
tion of (16). Despite good results for some of the properties of the system, the
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variance of the calculation did not encourage further attempts to compute the
condensate fraction in the solid phase. However the idea of using the shadow
wavefunction ideas in a QMC method seems promising.

3.1 Diffusion Monte Carlo

The time dependent Schrödinger equation in imaginary time t→ it/h̄,

∂ψ(R, t)
∂t

= −(−∇2 + V (R)− Et)ψ(R, t), (31)

is equivalent to the classical diffusion equation with sources represented by V (R).
In (31), the Hamiltonian H has been written as the sum of the kinetic energy
T , −∇2, plus the potential energy V (R) displaced by a trial energy Et, which
does not change the description of the state of the system.

In a short time approximation, the Green’s function for (31) can be written
to O(t) as,

G(R,R′, δt) ≈ 〈R|e−V (R)δt/2e−Tδte−V (R′)δt/2eEtδt|R′〉. (32)

It is possible to rewrite the above expression as the product of a rate term,

w(R,R′, δt) = exp(−(V (R) + V (R′))
δt

2
+ Etδt), (33)

times a propagator, identified as the Green’s function for ordinary diffusion,

Gd(R,R′, δt) = 〈R|e−Tδt|R′〉 = (4πδt)−3N/2 exp
(
− (R−R′)2

4δt

)
. (34)

In a simulation, for each R′ in a given set of configurations, a new R is easily
sampled from Gd and weighted by w(R,R′, δt). By repeating these steps and
performing a suitable extrapolation to t → 0, the results will yield an estimate
of the ground-state energy if Et ≈ E0. This is shown by writing the formal
solution of the time dependent Schrödinger equation as

ψ(R, t) =
∑

i

ϕi(R)e−i(Ei−Et)t/h̄, (35)

where the ϕi(R) are an orthogonal basis set.
The method presented so far is very inefficient due to the branching process

and because the random walk may explore unimportant regions of the configura-
tion space. Here again an importance sampling transformation as in (21) allows
the simulations to converge faster and more efficiently. If (31) is multiplied by a
trial wavefunction ψT , it can be written in the coordinate representation as

∂ψ̄(R, t)
∂t

= −
(
−∇2 +∇ ·F(R) + F(R) · ∇ − (Et − EL(R)

)
ψ̄(R, t), (36)

where ψ̄(R, t) = ψT (R)ψ(R, t), EL(R) is the local energy and F(R) = 2∇ ln
ψT (R). If we compare the above expression with equation (31), it still includes
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a branching process, given by V = EL(R) − Et. The diffusion process has a
superimposed drift velocity given by the two last terms of the expression, −∇2+
∇ · F(R) + F(R) · ∇.

By taking the short time approximation, as before we can write:

Ḡ(R,R′, δt) = W̄ (R,R′, δt)Ḡd(R,R′, δt), (37)

where

W̄ (R,R′, δt) = exp
(
−(EL(R) +EL(R′))

δt

2
+ Etδt

)
, (38)

and

Ḡd(R,R′, δt) = (4πδt)−3N/2 exp
(
− (R−R′ − δtF(R))2

4δt

)
. (39)

Simulations that include importance sampling converge to ψTψ. Instead of com-
puting V (R), now we calculate EL which approaches a constant as ψT (R) goes
to the true eigenfunction of the system. This is important since the simulations
become much more stable. Moreover, the drift guides the random walk to the
important regions of the configuration space.

4 Path Integral Monte Carlo

All static and, in principle, dynamic properties of a many-body quantum system,
such as 4He, at thermal equilibrium, may be obtained from the density matrix,
�(R,R′, β), the solution to the Bloch equation, (2). β represents an inverse tem-
perature or “imaginary time”, β = 1/kT . The solution to the Bloch equation
can be written in the coordinate representation as:

�(R,R′, β) =< R|e−βH |R′ > (40)

For distinguishable particles, the density matrix is non-negative for all values
of its arguments and can be interpreted as a probability distribution function.
If two density matrices are convoluted together, a density matrix at a lower
temperature results:

< R|e−(β1+β2)H |R′ >=
∫
< R|e−β1H |R′′ >< R′′|e−β2H |R′ > dR′′. (41)

The integral over R′′ may be evaluated using a generalization of the Metropo-
lis sampling algorithm [26, 8]. Starting at a sufficiently high temperature, the
density matrix may be accurately written as an expansion in one and two-body
density matrices. Then, multiple convolutions can be performed to reduce the
temperature to near absolute zero.

The density matrix for a boson system such as 4He is obtained from the
distinguishable particle density matrix by using the permutation operator to
project out the symmetric component,

< R|e−(βH)|R′ >B=

∑
℘ < ℘R|e−(βH)|R′ >

N !
(42)

The sum over permutations is performed by a Monte Carlo technique.
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To calculate the momentum distribution requires obtaining the off-diagonal
parts of the density matrix. In one method, an atom is displaced off the diagonal
by a distance r while the other atoms and permutation are held fixed while n(r),
(30), is computed. This method is very accurate at small r. In a second method, one
atom is again off the diagonal, but the distance between the two ends of the path for
that atom is allowed to vary. This allows the calculation of n(r) at large r [9].

Ceperley and Bernu [5] have found that the superfluid density observed in
PIMC simulations of solid 4He are strongly affected by the size of the system
simulated. A 48 atom system exhibits a 1.2% superfluid density at 55 bars pres-
sure while a 180 atom systems has zero superfluid density. They conclude that
the phenomenon observed by Kim and Chan can not be explained by vacancies
or interstitials in the equilibrium bulk 4He system.

4.1 Path Integral Ground State Calculations

Ground state expectations values at finite temperatures can be efficiently cal-
culated by using a path integral ground state Monte Carlo method [27]. The
integral equation in imaginary time equivalent to the Schrödinger equation is

ψ(R, t) =
∫
G(R,R′, t− t0)ψ(R′, t0)dR′. (43)

In the above equation, G(R,R′, t) is the propagator of (23). As was seen in the
previous section, this propagator is viewed as density matrix operator corre-
sponding to an inverse temperature β and simulated by path integrals.

The difference in the present method compared to PIMC is that a truncated
path on a trial wavefunction is considered instead of periodic boundary condi-
tions in imaginary time as the trace of G(R,R′, t) requires. Since the ground
state eigenfunction can be obtained by filtering a suitable trial function ψT

ψ0(R) = lim
t→∞

ψ(R, t) = lim
t→∞

∫
G(R,R′, t)ψT (R′)dR′, (44)

the ground sate expectation value of any operator can be written as

〈O〉 =
〈ψt|G(t)OG(t′)|ψT 〉
〈ψt|G(t)G(t′)ψT 〉

. (45)

If the convolution of the density matrix of (41) is divided into N time steps,
β/N = t/N = δt,

G(R,R′, t) =
∫
dR1dR2 · · · dRN−1ρ(R,R1, δt)ρ(R1, R2, δt)ρ(RN−1, R

′, δt)

(46)
and substituted in (45), we obtain

〈O〉 =

∫ ∏N
i=0 dRiO(RM )ψT (R0)

(∏N−1
i=0 ρ(Ri, Ri+1, δt)

)
ψT (RN )∫ ∏N

i=0 dRiψT (R0)
(∏N−1

i=0 ρ(Ri, Ri+1, δt)
)
ψT (RN )

, (47)
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where R0 = R, RM = R′ and RM is an internal time slice. For a converged
calculation, if the operator is placed on the extreme edges of the path one gets
a mixed estimator. If RM is in the middle, the exact expectation value of the
ground state is obtained. The paths are sampled using the Metropolis algorithm.
Samples that do not include coordinates of the trial wavefunction are performed
as in PIMC.

Galli and Reatto [13] have employed this formalism using the shadow wave-
function as ΨT (R) to study confined solid 4He. Their model system contains a
large static spherical object that uses a purely repulsive potential to prevent the
helium atoms from reaching the center of the simulation cell. As a consequence
of the periodic boundary conditions this correspond to a static lattice of hard
core spheres. They observe that the freezing pressure increases to about 38 atm.
This behavior is comparable to that found in experiments of 4He confined in
vycor [21]. In addition they observe that the disorder induced by the mismatch
between the 4He crystalline structure and the static hard spheres induces delo-
calization. This is a necessary condition to have off-diagonal long range order in
the system. Also, the presence of a Bose-Einstein condensate requires delocaliza-
tion of the atoms. These results could be relevant in explaining the observation
of a supersolid phase for 4He in vycor [21].

However, to date, no quantum Monte Carlo studies have observed delocaliza-
tion or Bose-Einstein condensation in the pure bulk solid 4He.
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Parallel Treatment of General Sparse Matrices
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Abstract. The discretization of large mathematical models, which arise
in many fields of science and engineering, leads to the solution of long se-
quences of systems of linear algebraic equations. These systems are often
very large (up to many millions of equations). Therefore, it is desirable to
achieve high performance when such systems (with coefficient matrices
the order of which is greater than or equal to one million) are treated on
modern high-speed computers. In order to achieve high performance, it
is absolutely necessary to exploit efficiently:

– the sparsity of the coefficient matrices of these systems,
– the caches in the multi-hierarchical memory of the modern high-

speed computers,
and
– the power of the modern parallel architectures.

An algorithm, in which these three tasks are successfully resolved, has
been developed and tested. This algorithm is described and many results
obtained by using this algorithm are presented and discussed. Some com-
parisons with the well-known code SuperLU for the treatment of sparse
matrices are presented. The results of these comparisons show clearly
that the option of the new code, in which small non-zero elements are
dropped, is much faster than SuperLU. Some plans for further improve-
ments are discussed in the end of the paper.

1 Treatment of General Sparse Matrices

The discretization of large-scale mathematical models arising in different fields
of science and engineering leads to the solution of very large systems of linear al-
gebraic equations. It will be assumed here that the Gaussian elimination is used
in the solution of the systems of linear algebraic equations (but many of the ideas
can also be applied when other methods are used, as, for example the House-
holder method or the Givens method). By the use of the Gaussian elimination
the original matrix A is decomposed into two triangular factors L and U (some
decompositions of A are to be obtained also when other methods are used).

Sparse matrix techniques have to be used during the Gaussian elimination,
because the coefficient matrices of this systems are, as mentioned above, very
large. The use of a sparse matrix algorithm means that one stores only the
non-zero elements of the matrix and works only with the non-zero elements.
The number NZ of the non-zero elements is very small in the beginning of the
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c© Springer-Verlag Berlin Heidelberg 2006



54 Z. Zlatev

computations (NZ ≤ kN , where N is the order of the matrix, which is assumed
to be greater than 106 in this paper, while k is a small integer; as a rule k ≤ 20).
However, non-zero elements are created during the computations (in positions
where originally zero elements were located). The number of these new non-zero
elements, fill-ins, can be very large. Therefore, special devices are to be used in
order to keep the number of fill-ins small, i.e. in the efforts to preserve better
the sparsity of the treated matrix during the computations. The pivotal strategy
and different dropping criteria are the major devices which can successfully be
used in order to reduce the number of fill-ins.

It should be pointed out here that in the pivotal strategies for sparse matri-
ces not only an attempt is made to keep the number of fill-ins small, but an
attempt to preserve the stability of the computations is also carried out. These
two requirements, the preservation of the stability and keeping the sparsity are
working in opposite direction. Therefore, the pivotal strategy for general sparse
matrices is always a compromise between these two requirements.

A special parameter RELTOL, the relative drop-tolerance, is used to decide
which elements are to be dropped. If RELTOL = 0, then no non-zero element
is dropped. Positive values of RELTOL, 0 < RELTOL < 1, will result in
dropping, during the computation of the factors L and U by the Gaussian elim-
ination, all elements aij that are in absolute value smaller than the product of
RELTOL and the largest in absolute value element in row i. The use of positive
values of RELTOL may result in an efficient preservation of the sparsity, but
the factors L and U calculated in this way are normally inaccurate, which leads
to an inaccurate solution of the system of linear algebraic equations. Therefore,
the obtained by using dropping factorization of matrix A should be used as a
preconditioner in some iterative method.

The pivotal strategy and the dropping devices will not be further discussed
in this paper. It will be assumed that

– some good pivotal strategy,
– some efficient device for dropping small elements,

and
– some fast and accurate preconditioned iterative method

have been selected. More details about the choice of a pivotal strategy, a dropping
device and a preconditioned iterative method can be found in Zlatev [9, 10]
and [12].

2 Cache Problems for Very Large Sparse Matrices

It will be assumed in the remaining part of this paper that the matrices that are
to be handled are very large, which mean that the order N is greater than 106.
Cache problems arise when the matrices are very large, because their structure
is as a rule very irregular. Therefore, it is worthwhile to develop some methods
by which the problems related to the use of the cache memory can, at least,
be reduced. One of the methods used in Zlatev [12], implemented in the code
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y12m3, can easily be modified for efficient runs of modern computers with multi-
hierarchical caches. The main ideas on which these modification are based will
be discussed in this section.

In y12m3 the matrix is reordered (before the start of the computations) by
row-column permutations, which are made to move the non-zero elements in
the lower part of the matrix as close as possible to the main diagonal. This
reordering allows us to divide the matrix into block-rows with approximately
the same number of rows in each of them. Moreover, it is possible to specify
the number q of the desired block-rows. When the reordering is prepared and
the matrix is divided into the desired number q of block-rows, the Gaussian
elimination is performed in three steps (which are fully described in [12]):

(a) factorizing the block-rows,
(b) producing zeros in the appropriate locations in the unfinished during the

previous step rows,
and
(c) reordering again the matrix and factorizing the unfinished matrix in the

lower right-hand corner or the reordered matrix.

If the reordering made before the start of the computation is a good one, then
the numbers of unfinished rows that are to be treated in (b) is small and the
unfinished matrix obtained after the reordering in (c) is also small. Therefore
the major part of the computational work in y12m3 consists in the treatment
of the block-rows in step (a) and improvements in this step are most desirable.
Such improvements were achieved in the following way. Assume that the non-
zero elements are stored in a one-dimensional array ALU of length NN , where
NN ≤ NZ (in fact, NZ must be considerably larger than NN in order to
ensure some elbow room for fill-ins; see again Zlatev [12]). Assume also that the
number of block-rows that will be used in the run is q (the block-rows contain
approximately equal number of rows). Then array ALU is divided into q equal
parts and the non-zero elements of each block-row are stored in one of these
parts. Arrays, in which information about the non-zero elements (about row
numbers, column numbers, etc.) is stored, are also to be divided, in the same
way, into q parts.

When block-row i, i = 1, 2, . . . , q, is executed only the data stored in a small
part of array ALU , the part where the non-zero elements of block-row i are
stored, participate in the computations (together with the data in the corre-
sponding parts of the arrays in which information about the non-zero elements
is stored). This means that if the number q of block-rows selected is sufficiently
large, then there is a good chance that the amount of the data participating in
computations (when block-row i, i = 1, 2, . . . , q, is executed) is not very large
and, thus, these data will stay longer in cache. However, the number of blocks
should not be too large, because in such a case the work that has to be done in
steps (b) and (c) see above, is also becoming larger. The numerical experiments
show clearly that if the matrix is very large, then the use of a large number of
block-rows leads to considerable savings in computing time.
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3 Parallel Computations

It is obvious that the block-rows that are treated in step (a) of the algorithm
sketched in the previous section can be run in parallel. There are also parallel
tasks in steps (b) and (c).

An attempt to parallelize some parts of the preliminary reordering of the non-
zero elements of the matrix as well as some parts of the preconditioned iterative
method by only inserting compiler options in the code was not very successful.
Numerical results will be given in the next section in order to demonstrate
this fact. However, the numerical results show also that the computational work
spent to reorder the matrix and to solve the system by a preconditioned iterative
method is much smaller than the computational work needed in the factorization
part, i.e. than the computational work in steps (a), (b), and (c). This shows that
the successful parallelization of the factorization of matrixA will ensure efficiency
when the number of processors used is not very large.

4 Numerical Experiments with Very Large Matrices

The numerical algorithm discussed in previous sections has been tested by using
different matrices produced by one of the matrix generators described in Zlatev
[12]. There are several advantages when such generators are used:

(1) one can produce arbitrarily many matrices (while the number of test-matri-
ces in the available data-bases of general sparse matrices is limited; see, for
example, the matrices given in Davis [1]),

(2) one can vary the size of the matrices,
(3) one can vary the sparsity pattern,
(4) one can vary the number of non-zero elements,
and
(5) one can vary the condition number of the matrices tested.

All experiments were carried out on SUN computers at the Danish Center
for Scientific Computing (DCSC). Some experiments on IBM computers at the
University of Århus gave quite similar results.

4.1 Checking the Utilization of the Cache Memory

The ability of the code y12m3 to exploit efficiently the cache memory has been
tested by performing a series of runs in which the number of block-rows is varied.
Results obtained when both small and very large matrices were tested will be
presented in this sub-section.

Varying the Number of Block-Rows for Small Matrices. Systems con-
taining 512 000 linear algebraic equations are used. The number of the non-zero
elements is 5 120 110 (i.e. the average number of non-zero elements per row is
about 10). The number q of block-rows is varied in the range from 4 to 512.
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Table 1. Computing times (measured in seconds) obtained in the solution of a system
of 512000 linear algebraic equations with different values of parameter q (different
numbers of block-rows). The number of non-zero elements in the coefficient matrix is
5120110. RELTOL = 0.1 is used.

Block-rows ORD time FACT time SOLV time TOTAL time
4 7.34 647.52 4.68 659.54

32 7.79 73.16 4.72 85.65
128 7.87 17.58 4.85 30.30
512 7.80 53.70 5.63 67.03

Some results are shown in Table 1 (the computing times are given in seconds).
Computing times measured in seconds are also used in all remaining tables. If
small non-zero elements are to be dropped, then this is always achieved (in the
remaining part of the paper) by setting RELTOL = 0.1. The notation that is
applied in all the tables can be explained as follows:

(A) ORD time is the sum of the time needed for the reordering of the matrix
and the time needed to divide the matrix into block-rows.

(B) FACT time is the time need to obtain the approximate LU -factorization,
which is used to solve the system directly if RELTOL = 0 or as a precondi-
tioner if 0 < RELTOL < 1.

(C) SOLV time is the time needed
– if RELTOL = 0, then to obtain a the solution directly by performing a

back substitution step
or
– if 0 < RELTOL < 1, then to calculate a starting approximation to the

solution and to improve it by performing iterations until a prescribed
accuracy (an accuracy requirement of 10−7 was actually used in all ex-
periments) is achieved by the preconditioned iterative method chosen
(the Modified Orthomin Method from Zlatev [12] was actually used in
all runs reported in this paper).

(D) TOTAL time is the total computing time spent in the run.

Several conclusions can be drawn by studying the results in Table 1 (similar
conclusions can be drawn by using the results of many other runs which were
performed).

1. The ORD times and the SOLV times do not depend too much on the pa-
rameter q (on the number of block-rows).

2. The FACT times (and, therefore, also the TOTAL times) depend on the
choice of q. For this matrix, the best result is obtained with the choice
q = 128. Using a small number of blocks (see the results in Table 1 for
q = 4) is very expensive. It should be mentioned here that the use of a very
large number q of blocks is also inefficient.

3. When the FACT time is the best one (i.e. when q = 128), the sum of the
ORD time and the SOLV time is comparable with the FACT time.



58 Z. Zlatev

Table 2. Computing times (measured in seconds) obtained in the solution of a system
of 16384000 linear algebraic equations with different values of parameter q (different
numbers of block-rows). The number of non-zero elements in the coefficient matrix is
163840110. RELTOL = 0.1 is used.

Block-rows ORD time FACT time SOLV time TOTAL time
4 259 679563 176 679999

32 270 86244 178 86691
256 256 10845 183 11301
512 268 5390 179 5837

1024 275 2887 185 3348

Varying the Number of Block-Rows for Large Matrices. The number
of equations in the system of linear algebraic equations is increased 32 times,
i.e. from 512000 to 16384000. The number of non-zero elements in the matrix
is increased from 5120110 to 163840110, i.e. the average number of non-zero
elements per row is again about 10. This very large system was also solved by
using different values of q. Results are shown in Table 2.

1. It is clearly seen that both the ORD times and the SOLV times practically
do not depend on the parameter q (on the number of block-rows).

2. The FACT times (and, therefore, also the TOTAL times) depend on the
choice of q. For this matrix, the best result is obtained with the choice
q = 1024. Using a small number of blocks is very expensive.

3. The FACT time is the largest part of the TOTAL time also with the best
choice of q (i.e. when q = 1024).

The results obtained in many other runs show the same trends. We shall give
an example with even bigger matrix in order to illustrate this statement. The
number of equations in the system of linear algebraic equations is increased 4
times, i.e. from 16384000 to 65536000. The number of non-zero elements in the
matrix is increased from 163840110 to 655360110, i.e. the average number of
non-zero elements per row is again about 10. Results are shown in Table 3. It is
a computational disaster to run this matrix with q = 4. Even the run with 32
block-rows is very difficult when the matrix is so large.

Table 3. Computing times (measured in seconds) obtained in the solution of a system
of 65536000 linear algebraic equations with different values of parameter q (different
numbers of block-rows). The number of non-zero elements in the coefficient matrix is
655360110. RELTOL = 0.1 is used.

Block-rows ORD time FACT time SOLV time TOTAL time
32 1497 1401211 936 1403646

512 1491 87338 891 89721
1024 1550 44664 1002 47216
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Table 4. Computing times (measured in seconds) obtained in the solution of a system
of 65536000 linear algebraic equations when different numbers of processors are used.
The number of non-zero elements in the coefficient matrix is 655360110. These runs
were performed by using RELTOL = 0.1. The number of blocks used in these runs is
q = 512.

Processors ORD time FACT time SOLV time TOTAL time
1 1085 70964 676 72724
2 1008 35532 540 37081
4 979 17871 473 19323
8 959 9050 441 10452

Table 5. Speed-ups obtained in the solution of a system of 65536000 linear algebraic
equations when different numbers of processors are used. The number of non-zero
elements in the coefficient matrix is 655360110. These runs were performed by using
RELTOL = 0.1 The number of blocks used in these runs is q = 512. The computing
times for the same runs are given in Table 4.

Processors ORD time FACT time SOLV time TOTAL time
2 1.08 (54%) 1.99 (99%) 1.25 (63%) 1.96 (98%)
4 1.11 (28%) 3.97 (99%) 1.43 (36%) 3.76 (94%)
8 1.13 (14%) 7.84 (98%) 1.53 (19%) 6.96 (87%)

Running Very Large Matrices in Parallel. The largest example, i.e. the
matrix of order 65536000 and with 655360110 non-zero elements has been run
by using different number of processors. The results from these runs are given in
Table 4 (computing times) and in Table 5 (speed-ups). It should be mentioned
here that the results given in 4 and Table 5 were run on an upgraded and
slightly faster version of the computer used to produced the results given in
Table 3.

It is seen, as mentioned above, that good speed-ups are achieved in the fac-
torization part. The speed-ups for the total times are also good (because the
factorization times are much larger that the times spent for the remaining parts
of the computational work).

The speed-ups for the ORD times and the SOLV times are rather poor. We
have not developed special techniques for the parallelization of these two parts
(excepting the fact that some directives were inserted before several loops in
these parts; however, the effects of this attempt to obtain parallelization are,
as mentioned above, minimal). It is not very clear at present how to improve
the parallel performance in these two parts. Fortunately, the computing time
spent in these two parts is much smaller than the computing time spent in the
factorization part when the matrix is very large. Nevertheless, some efforts have
to be carried out in order to improve the parallelization in the ordering part
and in the solution part when large systems of linear algebraic equations the
coefficient matrices of which are general sparse matrices.
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5 Comparisons with Another Sparse Matrix Code

The numerical results obtained with the sparse code y12m3, in which an attempt
to utilize better the cache memory, indicate that very considerable reductions of
the computing time can be achieved the following two conditions are satisfied:

(a) when the matrices are very large
and
(b) when the number of block-rows is carefully chosen.

The natural question, which has to be answered, is: could we conclude (by
using the numerical results presented in the previous section) that algorithm based
on using block-rows is efficient? Unfortunately, the results that were presented
in the previous section do not allow us to draw such a conclusion, because the
algorithm studied by us might be slower (even when used with the best division
of the matrix into block-rows) than other codes for sparse matrices. Therefore, it
is necessary to compare the performance of our algorithm with the performance
of a good code for general sparse matrices.

We have selected the code SuperLU. This code is well-known, has been used
by many scientists and can be down-loaded from the Internet (this can be done
by searching for ”SuperLU” using the search-machine Google). Documentation
of the code is also available on the Internet, but the code is also well-described
in several papers:

– The version of the SuperLU, which is best designed for sequential computers,
is described in Demmel et al. [4].

– The version of SuperLU, which is best designed for shared memory comput-
ers, is described in Demmel et al. [5].

– The version of SuperLU which is best designed for distributed memory com-
puters, is described in Li and Demmel [8].

Dropping of small non-zero elements is not used in SuperLU. Therefore, we
had to use much smaller matrices in this section.

5.1 Comparing the Performance of the Two Codes on One
Processor

Comparisons of the codes y12m3 and SuperLU by performing runs on one proces-
sor were carried carried out in the beginning. Some of the results obtained in the
experiments are presented in Table 6. It is clear that the following conclusions
can be drawn:

– If the code y12m3 is run without dropping, then it is at least comparable
with the performance of SuperLU.

– The code y12m3 is performing much better when it is used with the op-
tion for dropping small non-zero elements (dropping is carried out by using
RELTIOL = 0.1 in Table 6).
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Table 6. Comparison of computing times obtained by SuperLU with results obtained
by the code in which the cache memory is exploited by using block-rows (y12m3).
The latter code was run both with dropping and without dropping of small non-zero
elements. RELTOL = 0.1 is used to drop small elements. Dropping is switched off
with RELTOL = 0. The numbers of blocks used are given in brackets.

Order SuperLU Without dropping With dropping
128000 33 21 (16) 8 ( 32)
256000 67 45 (32) 14 ( 64)
512000 139 112 (32) 30 (128)

1024000 277 237 (64) 68 (256)
2048000 560 551 (96) 179 (512)

It should be mentioned here that the utilization of the cache memory in the
code y12m3 will require some search for the number of blocks that gives best
results. However, it has been shown in the previous section that this option is
performing best when the matrices treated are very large. If this is the case, then
one has as a rule to run many different scenarios. Therefore, it is worthwhile to
try in the beginning to find a good value of the number of blocks and then to
carry out the whole computational process by using this number of blocks.

The choice of a good value of the drop-tolerance RELTOL, when the code
y12m3 is used, may also require some search in the beginning of the computa-
tions. The results in the previous section and in this section show clearly that a
good value of RELTOL can give great savings in both computing time and stor-
age. In fact, some of the problems solved in the previous section can be treated
successfully only by using a proper positive value of RELTOL.

5.2 Parallel Runs with the Two Codes

As stated in the previous sub-section, dropping of small non-zero elements is not
used in SuperLU. Therefore, we had to use small matrices in this sub-section (as
in the comparisons performed in the previous sub-section). In fact, the largest
matrix which could be run by SuperLU when up to eight processors are used
is of order 1024000 (it was possible to solve a system with 2096000 when one
processor only is used, i.e. the storage used by SuperLU seems to be increased
when the number of processors is increased). It should be mentioned here that
larger matrices (of order up to 4096000) can be handled when y12m3 is used.

Results obtained when a system of 1024000 linear algebraic equations is solved
are given in Table 7 and Table 8. The number of non-zero elements is 10240110;
i.e. again the average number of non-zero elements per row is 10.

Computing times obtained in the parallel runs are given in Table 7. Speed-ups
are given in Table 8.

It is seen (see the third column in Table 8) that the direct solution version
of the code y12m3 is not performing very well when the matrices are not very
large. The reason for this is perhaps the fact that the blocks are not very well
balanced in this case. The situation becomes slightly better when the precondi-
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Table 7. Comparison of computing times obtained by SuperLU with results obtained
by the code in which the cache memory is exploited by using block-rows (y12m3).
The latter code was run both with dropping and without dropping of small non-zero
elements. RELTOL = 0.1 is used to drop small elements (the number of blocks is
q = 512 in this case). Dropping is switched off by setting RELTOL = 0 (the number
of blocks is q = 80 in this case; this choice is probably not optimal).

Processors SuperLU Without dropping With dropping
1 277 217 92
2 162 158 62
4 115 143 45
8 101 140 41

Table 8. Speed-ups obtained by SuperLU with results obtained by the code in which
the cache memory is exploited by using block-rows (y12m3). The latter code was run
both with dropping and without dropping of small non-zero elements. RELTOL = 0.1
is used to drop small elements (the number of blocks is q = 512 in this case). Dropping
is switched off with RELTOL = 0 (the number of blocks is q = 80 in this case; this
choice is probably not optimal).

Processors SuperLU Without dropping With dropping
2 1.71 (86%) 1.37 (69%) 1.48 (74%)
4 2.41 (60%) 1.52 (38%) 2.04 (51%)
8 2.74 (34%) 1.55 (19%) 2.24 (28%)

tioned version is used (see the fourth column of Table 8). However, the speed-
ups obtained by SuperLU are also in this case better (see the second column of
Table 8).

On the other hand, the computing times for the direct version of the code
y12m3 are comparable with the computing times for SuperLU (compare the
results given in the second and third columns in Table 7), while the precondi-
tioned version is performing clearly better for this matrix (compare the results
given in the second and fourth columns in Table 7).

6 Conclusions and Remarks

The discretization of modern large-scale mathematical models leads to huge
computational tasks. The treatment of general sparse matrices is crucial when
such tasks are to be solved on modern parallel computers. It was shown in this
paper that at least some of the problems can be resolved when

– the cache memories of the available computer are efficiently utilized

and

– the potential power of the parallel architecture is efficiently utilized.
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It was shown that the proper utilization of the cache memories and of the par-
allel abilities of the computer available allowed us to resolve huge computational
tasks which cannot be handled when this is not done.

The big question is: will it be possible to improve further the algorithm used in
the code y12m3? Several improvements can possibly be achieved by performing
the following actions:

– improving the reordering procedure which is carried out before the beginning
of the computations,

– performing in a better way the division into block-rows,
– parallelizing the preconditioned iterative method,

and
– developing an MPI version of the code y12m3.

There are some plans to prepare an improved version of the code y12m3 in
which the above requirements are taken into account.

It has been assumed that the Gaussian elimination is used in the solution of
the systems of linear algebraic equation. It must be emphasized here, however,
that the ideas are general and most of them can easily be applied also when
some other methods for solving very large systems of linear algebraic equations
(as, for example, the methods that are discussed in Zlatev, [11] and [12]).

Furthermore, some of the ideas are applicable also when other methods for
the treatment of general sparse matrices are used (as the methods for treating
general sparse matrices that are discussed in Davis and Davidson [2], Davis and
Yew [3], George and Ng [7], and Duff et al. [6]).
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Abstract. Transport processes of large biomolecules in microdevices
are of high interest for biological research and biomedical applications.
Such devices have been proposed recently to address the problem of sep-
arating different components of macromolecules. From the mathematical
point of view, such problems can be modeled by multiscale partial differ-
ential equations, which can be analyzed and numerically simulated. In
this paper we propose a framework to model a class of transport problems
which arise in microdevices and discuss their numerical simulation.

1 Introduction

Transport of biomolecules in microdevices provides molecular biologists novel op-
portunities for sample analysis. Without attempting to be exhaustive, we mention
[6, 8, 9, 10], where separation procedures of large biomolecules based on transport
in microarray have been proposed. In these experiments, microfabricated silicon
arrays replace the agarose gel used in electrophoresis [16]. We also mention [13, 15],
where electrophoretic transport of DNA in microarrays have been studied.

In this paper we discuss the simulation of transport processes of macromole-
cules as proposed in [6, 8, 9, 10], in the multiscale modeling approach proposed
recently in [3]. The numerical techniques follow a general methodology for the
numerical solution of multiscale transport problems proposed in [5].

2 Multiscale Transport in Microdevices

In this section we introduce the multiscale advection-diffusion equation, coupled
with a multiscale elliptic equation, modeling the transport of the macromolecules
in microdevices.

Let Ω be a domain in R2 representing the microdevice or a sample of it. In
the following, we will consider microdevices with periodic asymmetric obstacles
as sketched in Figure 1. We consider the evolution of a scalar physical field, a
mass density, c(t, x) : I × Ω −→ R advected by a velocity field v : Ω −→ R2

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 67–75, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Sample of microdevices with various geometries. The initial particles location
is at the left upper corner. The shadowed square at the lower left corner represents a
typical periodic structure of the array.

and submitted to molecular diffusion. Standard conservation laws yield the
advection-diffusion equation ∂c

∂t +∇ · (vc) = DΔc, together with suitable initial
and boundary conditions. In the sequel we will assume that the diffusion tensor
D is a constant, but we emphasize that our numerical method also apply for
non-scalar or non-constant diffusion tensors. Following [9, 10], we suppose that
the velocity field is induced by a difference of (electrical) potential u and given
by v = −ρk∇u, where k is the electrical conductivity and ρ the charge density of
the electrical array which we assume for simplicity to be constant and set to one.

In our transport problems in microdevices, we have two typical length scale
involved. A small length scale y = x/ε, which represents a self-similar structure of
the device, and a large length scale x at which the transport behavior is observed.
Assuming that the concentration and the velocity field depend on both the macro
and micro length scale, we will denote them as cε(t, x) and vε(x) where we add a
superscript ε to emphasize the dependence of these quantities on ε. The obstacles
of the microdevice introduce a micro-scale variability of the conductivity and we
write it as kε = k(x/ε) = k(y). In Figure 1 the shadowed square (at the left lower
corner) represents a typical self-similar structure of the microdevice (which will
also be called a “periodic cell”), where ε represents the length of this cell. Thus,
the conductivity coefficients kε is periodic, more precisely, k(y) is 1-periodic in
Y = (0, 1)2 (see [3] for details).

The velocity field is given by an elliptic equation for the potential u

−∇ · (kε∇uε) = f,

where f is a source term and where we also add a superscript ε to u, to emphasize
its dependence on ε.

Summarizing, the evolution of an initial concentration of particles in a mi-
crodevice (see Figure 1) is given by the following coupled equations

∂cε

∂t
+∇ · (vεcε) = DΔcε, (1)

vε = −kε∇uε, (2)
−∇ · (kε∇uε) = f, (3)
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together with suitable initial and boundary conditions for equations (1) and (3).
In order to have a unique solution for equation (3), we will assume the tensor
kε to be coercive and bounded.

The direct numerical solution of (1-3) is difficult, often impossible due to the
work needed to resolve the small scale of the problems. The typical size of the
obstacles is a few micrometers, whereas the size of the microdevices is of a few
centimeters, so that even in 2D the degrees of freedom with a mesh resolving
the small scale can be of order 108 − 109 for realistic simulations.

Remark 1. To analyze the behavior of particles following equations (1-3), a
widely used framework is the homogenization theory [7]. In the present con-
text of microdevices, the homogenization procedure has been described in [3].
With suitable assumption it can be shown for incompressible velocity, ∇·vε = 0,
that cε converges in the L2 norm towards c̄ when ε→ 0, where c̄ is given by (see
[14] and the reference therein)

∂c̄

∂t
+ v̄ · ∇c̄ = ∇ · D̄∇c̄, (4)

and where v̄ is a mean velocity and D̄ is an effective diffusivity tensor involving
the solution of so-called cell problems (see also [3]).

3 Numerical Method

We describe in this section the numerical procedures proposed in [5] which will
be applied to our transport problems in microdevices in order to overcome the
problem of resolving the fully detailed equations (1-3). This method is based on
the combination of the following ideas.
(A) An approximation of the velocity field vε,h of the small scale velocity vε,
which captures the fine scale information at a much lower cost than the one
needed for the full resolution of the elliptic problem (3).
(B) A high order Chebyshev method (ROCK) for the time integration of the
equation (1) for the concentration (where the velocity field is replaced by its
numerical counterpart obtained in (A)). Discretizing the spatial variables of (1)
by finite differences, leads to a large system of ordinary differential equations
(ODEs). Such systems of ODEs are known to be stiff since standard explicit
solvers, as for example the forward Euler method, will have a restriction of the
step-size due to stability issues. Using implicit solvers avoid such problems but
at the cost of solving linear systems of dimension n×n, where n is the dimension
of the system of ODEs (corresponding to the number of grid points in Ω chosen
for the spatial discretization). The ROCK2 and ROCK4 methods, belonging to
the class of Chebyshev methods, are explicit, avoiding linear algebra problems,
possess extended stability properties for diffusion dominated advection-diffusion
problems, avoiding the severe step-size restriction for standard explicit solvers
and have variable step-size. These ROCK methods recently proposed [1, 2] are
of order 2 and 4.
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We will briefly describe (A) and we refer the reader to [1, 2, 5] for more details
and for a description of (B). We consider the elliptic problem (3) together with
zero Dirichlet boundary conditions, for simplicity of the presentation. Applying
a standard finite element method to the variational form of (3) requires usually
a meshsize h < ε for convergence, i.e., to resolve the small scale of the problem.
The FE-HMM (Finite Element Heterogeneous Multiscale Method) for elliptic
homogenization problems introduced in [11] and analyzed in [4] and [12] is based
on the following ideas. Define a quasi-uniform macro triangulation TH of Ω,
assumed to be a convex polygon. By macro triangulation we mean that the size
H of a triangle K ∈ TH can be much larger than ε. In each macro triangle K,
we define a micro sampling domain Kε of size ε as sketched in the Figure below.

K_e

K

Associated to the macro triangulation, we define a Macro Finite Element
space S1

0(Ω, TH), the subset of functions of H1
0 (Ω) which are piecewise linear on

each triangle K. We also define a quasi-uniform triangulation Th of the sampling
domain Kε, which will be referred as micro triangulation, since T ∈ Th is of size
h < ε. Associated to the micro triangulation, we define a Micro Finite Element
space S1

per(Kε, Th), the subset of functions in H1(Kε) which are piecewise linear
on each triangle T , periodic in Kε and have vanishing mean

∫
Kε
vhdx = 0 (see

[4] for a precise definition).
We define a modified macro bilinear form for uH , vH ∈ S1

0(Ω, TH)

B(uH , wH) :=
∑

K∈TH

|K|
|Kε|

∫
Kε

∇uh k(x/ε)(∇wh)T dx, (5)

where |K|, |Kε| denote the measure of K and Kε, respectively. Note that the
factor |K|/|Kε| is a scaling factor. The macro FE-HM solution is defined by the
following variational problem: find uH ∈ S1

0(Ω, TH) such that

B(uH , wH) = 〈f, wH〉, ∀wH ∈ S1
0(Ω, TH). (6)

To compute the bilinear form, one needs to know uh (or wh), which is the solution
of the following micro problem: find uh such that (uh − uH) ∈ S1

per(Kε, Th) and

bKε(u
h, zh) :=

∫
Kε

∇uha(xk, x/ε)(∇zh)Tdx = 0 ∀zh ∈ S1
per(Kε, Th). (7)

It can be shown that the problem (6) is well posed and has a unique solution
[4, 12]. The macro solution uH converges in the H1 norm to the homogenized so-
lution of equation (3) without the need of computing explicitly the homogenized
equations [4, 12]. The saving of the method, compared to the full resolution,
comes from the fact that the small scale problems are solved only on sampling
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domains within each macro triangle, usually much smaller than the overall do-
main. The extension for the non uniformly periodic case, kε = k(x, x/ε), has also
been studied [4, 12]. For periodic problems the convergence is independent of ε.
Note that since the cell problems within each macro element are independent,
these problems can be solved in parallel. The algorithm does not rely on periodic
problems, although the error analysis in the nonperiodic case is mostly open. We
refer to [4] and [12] for the analysis of the FE-HMM.

So far, we have obtained a numerical approximation of the homogenized solu-
tion of (3), that is, the solution of the limit equation (3), when ε→ 0. However,
the known micro solution uh on the sampling domain obtained from (7), and the
macro solution uH obtained from (6), allow to reconstruct an approximation of
the small scale solution uε in the following way

uε,h|K := uH + (uh − uH)|#K , (8)

where |#K denotes the periodic extension of the fine scale solution (uh − uH),
available in Kε, on each macro element K. To give a convergence estimate, we
define a broken H1 norm ‖u‖H̄1(Ω) := (

∑
K∈TH

‖∇u‖2L2(K))
1/2, since uε,h can

be discontinuous across the macro elements K. The following convergence result
has been obtained in [4].

Theorem 1. Let uε be the solution of problem (3), let uH be the solution of
problem (6) and consider uε,h defined in (8). Then

‖uε − uε,h‖H̄1(Ω) ≤ C(
√
ε+H + (h/ε)), (9)

where H is the size of the triangulation of the macro finite element space
S1

0(Ω, TH) and h is the size of the triangulation of the micro finite element space
S1

per(Kε, Th).

Notice that if we denote by M = dim S1
per(Kε), then the mesh size of the micro

finite element space on Kε (of measure |Kε| = ε2 ) is given by h � εM− 1
2 .

Therefore, the quantity h/ε does not depend on ε but only on the dimension of
S1

per(Kε), i.e., the degrees of freedom of the micro finite element space.
We define a numerical approximation of the velocity field vε := −kε∇uε by

vε,h|K := −k(x/ε)∇uε,h for K ∈ TH , (10)

where uε,h is defined in (8). Since kε is assumed to be bounded (see Section 1),
with help of Theorem 1 we obtain

‖vε − vε,h‖L̄2(Ω) ≤ C(
√
ε+H + h/ε), (11)

where we also used a mesh-dependent norm.

Remark 2. A numerical procedure to simulate the effective or homogenized equa-
tion (4) can also be obtained in the present framework. The approximation of
the mean velocity v̄ involves the homogenized tensor and the homogenized so-
lution of equation (3). The macro solution uH of the FE-HMM approximates
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the homogenized solution of (3) and the homogenized tensor can be recovered
from the known micro solution in the sampling domain, during the assembly
procedure of the FE-HMM. We refer to [5] for more details. An approximation
of the effective diffusion tensor D̄ can be obtained via perturbation theory [3].

4 Numerical Experiments

We present in this section numerical experiments illustrating the use of the
described method for a transport problem in a microdevice. Let Ω = (0, 1)2

represent the microdevice. This square domain is surrounded by points electrodes
sketched in Figure 2. The corners of the device are insulated. The molecules,
supposed to be negatively charged (as for example the DNA molecules), are
injected into the top corner of the device and are propelled due to the electrical
field as explained in Section 1.

We follow for our example [9, 10] and we suppose that the velocity field vε =
−kε∇uε is divergence free. The equation for the potential uε is given by

−∇ · (kε∇uε) = 0 in Ω (12)
uε|ΓD0

= u−, uε|ΓD1
= u+ (13)

n ·
(
k(
x

ε
)∇uε

)
|ΓN = 0 on ΓN := ∂Ω\ΓN , (14)

where ΓD0 :={(x1, x2);x1 = 0, x2 ∈ [α, β]}∪{(x1, x2);x1∈ [α, β], x2 = 1}, ΓD1 :=
{(x1, x2);x1 = 1, x2 ∈ [α, β]}∪{(x1, x2);x1 ∈ [α, β], x2 = 0}. The Neumann
boundary condition (14) represents the insulated regions, whereas the Dirichlet
conditions ΓDi the charged sites of the boundary, chosen as u−=0, u+ =1.

We discretize Ω with a meshsize h = 1/400 in each spatial direction. We
chose α = 0.25, β = 0.75 and kε to be given by the geometry of the left sample
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Fig. 2. Illustration of the trajectory of particles injected in a microdevice surrounded
with electrodes (left picture). Convergence rate of the reconstructed velocity vε,h to-
wards vε for macro mesh refinement H = 1/2, 1/4, 1/8, 1/16 (right picture).
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in Figure 1. We set kε(x) = 0.01 in the obstacles and kε(x) = 1 outside the
obstacles. We chose ε = 0.0625, which represents the size of the periodic cell of
the sample. Notice that with the method described in Section 3 we could have
chosen a much smaller value for ε compared to the overall domain Ω. We chose
this value in order to compute a reference solution via scale resolution with
a standard FEM. Recall that the small scale approximation vε,h is obtained
as explained in Section 3, by computing a macro solution uH and performing
the reconstruction procedures (8) and (10). The convergence of vε,h towards vε

depends on both macro and micro meshes. For the micro mesh within each sam-
pling domain, we take h = 1/400 and for the macro mesh we take successively
H = 1/2, 1/4, 1/8, 1/16. The amount of work needed to obtain a velocity ap-
proximation is to solve 2(1/H)2 micro problems and one macro problem of size
∼ (1/H)2, while the full resolution of the fine scale requires, with the same h
as used for the sampling domain, 160801 degrees of freedom. Since the tensor
kε is uniformly periodic (i.e. it does not depend on the macro variable) it is
sufficient to solve one micro problem. This is however no longer possible in the
more general situation where kε = k(x, x/ε).

With the numerical reconstructed velocity field, we then discretize the spatial
variable of the transport problem

∂cε

∂t
+∇ · (vεcε) = DΔcε, (15)

and integrate the semi-discrete system obtained with the ROCK4 method as ex-
plained in Section 3. We take zero Dirichlet boundary conditions and we perform
the transport simulation on a sub-domain Ωs = [0.1125, 0.8875]×[0.1125, 0.8875]
in order to minimize the influence of the artificial boundary conditions. The ini-
tial concentration is set to be c0(x) = 1 for x ∈ B and 0 otherwise, where
B = [0.1125, 0.1375] × [0.1125, 0.1375]. For the diffusion coefficient we chose
D = 0.001.

In Figure 2 we study the convergence in the L2 norm of vε,h towards a refer-
ence solution for vε (left picture) for macro mesh refinement H = 1/2, 1/4, 1/8,
1/16. The errors are computed in Ωs, the same subdomain as used for the trans-
port simulation. We see in Figure 2 that vε,h converges nicely, first linearly than
with a slightly slower rate. The cell problems have been solved with sufficient
precision as to avoid the influence of the h/ε term in (11). Notice that since ε is
not very small, the influence of the term

√
ε may appear in further macro mesh

refinement. However, this influence becomes smaller when ε → 0, while in this
case the full resolution becomes harder.

Finally, we simulate the transport problem (15) with the initial and boundary
conditions described above. We compare in Figure 3 the evolution of the par-
ticles advected by a reference velocity field (obtained via scale resolution) and
a reconstructed velocity field obtained with a very coarse macro mesh chosen
as H = 1/4. We perform the time integration for t ∈ [0, 1.2] and record the
solution at discrete time t = 0, 0.3, 0.6, 0.9, 1.2, to compare the evolution of the
two transport problems. We see in Figure 3 that the solution with the recon-
structed velocity field agrees very well with the reference solution, illustrating the
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Fig. 3. Transport simulation in the microdevice with a reference velocity field (left)
and a reconstructed velocity field (right), H = 1/4. The cloud of particles represent the
concentration evolution at time t = 0, 0.3, 0.6, 0.9, 1.2 starting from the top left corner.

efficiency of the proposed method. We also note that the particles are distracted
from the 450 diagonal, i.e., the effective conductivity tensor becomes anisotropic
due to the micro arrays. We refer to [3] where this observation has been discussed
and explained.

Acknowledgments

The work of A. Abdulle is partially supported by the Swiss National Foundation
under grant 200021-103863/1.

References

1. A. Abdulle and A.A. Medovikov, Second order Chebyshev methods based on or-
thogonal polynomials, Numer. Math. 90, 1–18, 2001.

2. A. Abdulle, Fourth order Chebyshev methods with recurrence relation, SIAM
SISC, Vol.23, No. 6, pp. 2041–2054, 2002.

3. A. Abdulle and S. Attinger, Homogenization methods for Transport of DNA par-
ticles in Heterogeneous Arrays, Lect. Notes in Comp. Sci. and Eng., 39, 23–34,
2004.

4. A. Abdulle, On a-priori error analysis of Fully Discrete Heterogeneous Multiscale
FEM, SIAM Multiscale Model. Simul., 4 2, 447–459, 2005.

5. A. Abdulle, Multiscale methods for advection-diffusion problems, to appear AIMS,
Discrete and Continuous Dynamical Systems, 2005.

6. R.H. Austin, N.Darnton, R. Huang, J. Sturm, O. Bakajin, T. Duke, Ratchets:
the problems with boundary conditions in insulating fluids, Appl. Phys. A, 75,
279–284, 2002.



Numerical Methods for Transport Problems in Microdevices 75

7. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic
Structures, North Holland, Amsterdam, 1978.

8. Chou et al., Sorting biomolecules with microdevices, Electrophoresis, 21, 81–90,
2000.

9. T.A. Duke and R.H. Austin, Microfabricated Sieve for the Continuous Sorting of
Macromolecules, Phys. Rev. Lett. 89 7, 1552–1555, 1998.

10. D. Ertas, Lateral Separation of Macromolecules and Polyelectrolytes in Microlitho-
graphic Arrays, Phys. Rev. Lett. 80 7, 1548–1551, 1998.

11. W. E and B. Engquist, The Heterogeneous Multi-Scale Methods, Comm. Math.
Sci., 1 1, 87–132, 2003.

12. W. E, P. Ming and P. Zhang, Analysis of the heterogeneous multi-scale method
for elliptic homogenization problems, J. Amer. Math. Soc. 18, 121–156, 2004.

13. S. K. Kassegne et. all, Numerical modeling of transport and accumulation of DNA
on electronically active biochips, Sensors and Actuators B, 94, 81–98, 2003.

14. A. J. Majda and P. R. Kramer, Simplified models for turbulent diffusion: Theory,
numerical modelling and physical phenomena, Physics Reports, 314, 237–574, 1999.

15. R. Radtkey et. all, Rapid, high fidelity analysis of simple sequence repeats on an
electronically active DNA microchip, Nucleic Acids Research, 28 7, 2000.

16. D. Rickwood and B.D. Hames, Gel electrophoresis of the nucleid Acids: A Practical
Approach, Oxford University Press, Oxford, 1990.



Discretization of Integro-Differential Equations
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Abstract. We study a dynamic model for viscoelastic materials based
on a constitutive equation of fractional order. This results in an integro-
differential equation with a weakly singular convolution kernel. We dis-
cretize in the spatial variable by a standard Galerkin finite element
method. We prove stability and regularity estimates which show how
the convolution term introduces dissipation into the equation of motion.
These are then used to prove a priori error estimates. A numerical ex-
periment is included.

1 Introduction

Fractional order operators (integrals and derivatives) have proved to be very suit-
able for modeling memory effects of various materials and systems of technical
interest. In particular, they are very useful when modeling viscoelastic materials,
see, e.g., [3].

Numerical methods for quasistatic viscoelasticity problems have been studied,
e.g., in [2] and [8]. The drawback of the fractional order viscoelastic models is
that the whole strain history must be saved and included in each time step. The
most commonly used algorithms for this integration are based on the Lubich
convolution quadrature [5] for fractional order operators. In [1, 2], we develop
an efficient numerical algorithm based on sparse numerical quadrature earlier
studied in [6].

While our earlier work focused on discretization in time for the quasistatic
case, we now study space discretization for the fully dynamic equations of mo-
tion, which take the form of an integro-differential equation with a weakly singu-
lar convolution kernel. A similar equation but with smooth kernel was studied in
[7]. The singular kernel requires a different approach. Inspired by [4] we introduce
appropriate function spaces and prove stability estimates for both the continuous
and discrete problems. These are used to prove a priori error estimates. Finally,
we present a numerical example for a two-dimensional viscoelastic body. Time-
discretization, sparse quadrature, and a posteriori error estimates are subject to
future investigations.
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2 Viscoelastic Equations of Motion

Assuming isothermal and isotropic conditions, the fractional order linear vis-
coelastic constitutive equation for the stress σ can be written in convolution
integral form as

σ(t) = σ0(t)−
∫ t

0
β(t− s)σ1(s) ds, with

σ0(t) = 2μ0ε(t) + λ0tr(ε(t))I, σ1(t) = 2μ1ε(t) + λ1tr(ε(t))I,
(1)

where λ0 > λ1 > 0 and μ0 > μ1 > 0 are the elastic constants of Lamé type, ε is
the strain and β is the convolution kernel

β(t) = − d
dt

(
Eα(−(t/τ)α)

)
=
α

τ

( t
τ

)α−1
E′

α(−(t/τ)α). (2)

Here Eα(x) =
∑∞

k=0
xk

Γ (1+αk) is the Mittag-Leffler function of order α.
In the convolution kernel (2), τ is a relaxation constant and α ∈ (0, 1) is

the order of the fractional derivative. The convolution kernel is weakly singular
and β ∈ L1(0,∞) with

∫∞
0 β(t) dt = 1. The fractional order model represents

a fading memory because the convolution kernel in (2) is a strictly decreasing
function (i.e., dβ/dt < 0). The Lamé constants in (1) can be expressed as

μ0 =
E0

2(1 + ν)
, μ1 =

E1

2(1 + ν)
, λ0 =

E0ν

(1 + ν)(1 − 2ν)
, λ1 =

E1ν

(1 + ν)(1− 2ν)
,

where ν is the Poisson ratio, E0 is the instantaneous uniaxial elastic modu-
lus, while E0 − E1 > 0 can be identified as the relaxed uniaxial modulus. For
convenience we introduce γ = μ1

μ0
= λ1

λ0
= E1

E0
< 1, and note that σ1 = γσ0.

We are now in the position to formulate the viscoelastic dynamic problem.
The basic equations in strong form are

ρü(x, t)−∇ · σ0(u;x, t)

+
∫ t

0
β(t− s)∇ · σ1(u;x, s) ds = f(x, t) in Ω × I,

u(x, 0) = u0(x) in Ω,
u̇(x, 0) = v0(x) in Ω,
u(x, t) = 0 on ΓD × I,
σ(u;x, t) · n(x) = g(x, t) on ΓN × I,

(3)

where ρ is the (constant) mass density, f ,g represent the volume and surface
loads, respectively, u is the displacement vector, σ0 and σ1 are the stresses
according to (1), and the strain is defined through the usual linear kinematic
relation ε = 1

2

(
∇u + (∇u)T

)
.

In order to give the equations (3) a convenient mathematical formulation, we
let Ω ⊂ Rd, d = 2, 3, be a bounded domain with ∂Ω = Γ̄D ∪ Γ̄N, ΓD ∩ ΓN = ∅,
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meas (ΓD) > 0, and we defineH = L2(Ω)d with its usual inner product and norm
denoted by (·, ·) and ‖ · ‖. We also define V = {v ∈ H1(Ω)d : v = 0 on ΓD} and
the bilinear form

a(v,w) =
∫

Ω

(
2μ0εij(v)εij(w) + λ0εii(v)εjj(w)

)
dx, v,w ∈ V.

It is well known that a is coercive on V . The corresponding operator Au =
−∇ · σ0(u), defined together with the homogeneous boundary conditions in (3)
(g = 0), so that a(u,v) = (Au,v) for sufficiently smooth u,v ∈ V , can be
extended to a self-adjoint, positive definite, unbounded linear operator on H .

The equation of motion (3) can then be written in weak form: Find u(t) ∈ V
such that u(0) = u0, u̇(0) = v0 and, with 〈g,v〉ΓN =

∫
ΓN

g · v dS,

ρ(ü(t),v) + a(u(t),v) − γ
∫ t

0
β(t− s)a(u(s),v) ds

= (f(t),v) + 〈g(t),v〉ΓN , ∀v ∈ V.
(4)

We next introduce the spatially semidiscrete finite element method. Let Vh ⊂ V
be a standard piecewise linear finite element space based on a triangulation of
Ω. The finite element problem is to find uh(t) ∈ Vh such that uh(0) = uh,0,
u̇h(0) = vh,0 and

ρ(üh(t),vh) + a(uh(t),vh)− γ
∫ t

0
β(t− s)a(uh(s),vh) ds

= (f(t),vh) + 〈g(t),vh〉ΓN , ∀vh ∈ Vh.

(5)

3 Stability Estimates

By adapting the analysis in [4] we can show existence and uniqueness of solutions
of (3) by means of the theory of strongly continuous semigroups. We leave the
details to a forthcoming paper and show only the main ingredient, namely, that
the convolution term introduces dissipation into the equation. We introduce the
function

ξ(t) = 1− γ
∫ t

0
β(s) ds,

which is decreasing with ξ(0) = 1, lim
t→∞

ξ(t) = 1− γ, so that ξ(t) ≥ 1 − γ > 0.
We also use the norms

‖v‖l = ‖Al/2v‖ =
√

(v, Alv), l ∈ R.

Theorem 1. Let u be the solution of (4) with sufficiently smooth data u0,v0, f ,
g, and denote v = u̇ and w(t, s) = u(t)−u(t− s). Then, for any l ∈ R, T > 0,
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we have the identity

ρ‖v(T )‖2l + ξ(T )‖u(T )‖2l+1

+ γ

∫ T

0
β(t)‖u(t)‖2l+1 dt+ γ

∫ T

0
β(s)‖w(T, s)‖2l+1 ds

+ γ

∫ T

0

∫ t

0
[β(s)− β(t)] Ds‖w(t, s)‖2l+1 ds dt

= ρ‖v0‖2l + ‖u0‖2l+1 + 2
∫ T

0
(f , Alv) dt+ 2

∫ T

0
〈g, Alv〉ΓN dt,

(6)

where all terms on the left-hand side are non-negative. Moreover, for l = 0,

ρ
1
2 ‖u̇(T )‖+ (1 − γ) 1

2 ‖u(T )‖1 ≤ C
[
ρ

1
2 ‖v0‖+ ‖u0‖1

+ ρ−
1
2

∫ T

0
‖f‖ dt+ (1 − γ)− 1

2

(
max
[0,T ]

‖g‖L2(ΓN) +
∫ T

0
‖ġ‖L2(ΓN) dt

)]
.

(7)

We remark that if g = 0, then we can kick back for any l and estimate ‖u̇(T )‖l+
‖u(T )‖l+1, see Theorem 2 below.

Proof. Equation (4) can be written in the form

ρ(v̇(t),ψ) + ξ(t)a(u(t),ψ) + γ

∫ t

0
β(s)a(w(t, s),ψ) ds

= (f(t),ψ) + 〈g(t),ψ〉ΓN , ∀ψ ∈ V.
(8)

Taking ψ = Alv(t) in (8) and integrating in t we get:

ρ

∫ T

0
(Dtv, Alv) dt+

∫ T

0
ξ(t)(Au, Alv) dt

+ γ

∫ T

0

∫ t

0
β(s)(Aw(t, s), Alv(t)) ds dt =

∫ T

0
(f , Alv) dt+

∫ T

0
〈g, Alv〉ΓN dt.

We consider each term on the left-hand side. For the first term we have:

ρ

∫ T

0
(Dtv, Alv) dt =

ρ

2

∫ T

0
Dt‖v‖2l dt =

ρ

2
‖v(T )‖2l −

ρ

2
‖v0‖2l . (9)

For the second one we have:∫ T

0
ξ(t)(Au, Alv) dt =

1
2

∫ T

0
ξ(t)Dt‖u‖2l+1 dt

=
1
2
ξ(T )‖u(T )‖2l+1 −

1
2
‖u0‖2l+1 +

γ

2

∫ T

0
β(t)‖u(t)‖2l+1 dt.

(10)
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For the third term, using v(t) = u̇(t) = Dtw(t, s) + Dsw(t, s), we get:∫ T

0

∫ t

0
β(s)

(
Aw(t, s), Alv(t)

)
ds dt

=
1
2

∫ T

0

∫ t

0
β(s)

(
Dt‖w(t, s)‖2l+1 + Ds‖w(t, s)‖2l+1

)
ds dt.

(11)

In the first term we change the order of integration:

1
2

∫ T

0

∫ T

s

β(s)Dt‖w(t, s)‖2l+1 dt ds

=
1
2

∫ T

0
β(s)‖w(T, s)‖2l+1 ds− 1

2

∫ T

0
β(s)‖w(s, s)‖2l+1 ds.

Using that

1
2

∫ T

0
β(s)‖w(s, s)‖2l+1 ds =

1
2

∫ T

0

∫ t

0
β(t)Ds‖w(t, s)‖2l+1 ds dt,

we can write∫ T

0

∫ t

0
β(s)

(
Aw(t, s), Alv(t)

)
ds dt =

1
2

∫ T

0
β(s)‖w(T, s)‖2l+1 ds

−1
2

∫ T

0

∫ t

0
[β(t)− β(s)] Ds‖w(t, s)‖2l+1 ds dt.

(12)

To show the positivity of the last term we consider, for 0 < ε < t, the integral∫ t

ε

[β(t) − β(s)] Ds‖w(t, s)‖2l+1 ds = − [β(t)− β(ε)] ‖w(t, ε)‖2l+1

+
∫ t

ε

β′(s)‖w(t, s)‖2l+1 ds ≤ β(ε)‖w(t, ε)‖2l+1,

where we have taken into account that β′(s) ≤ 0 and β(t) ≥ 0. Using

w(t, ε) = w(t, 0) +
∫ ε

0
Dsw(t, s) ds =

∫ ε

0
Dsw(t, s) ds,

and the Cauchy-Schwarz inequality we get

‖w(t, ε)‖2l+1 ≤
( ∫ ε

0
‖Dsw(t, s)‖l+1 ds

)2
≤

∫ ε

0

ds
β(s)

∫ ε

0
β(s)‖Dsw(t, s)‖2l+1 ds,

and consequently∫ t

ε

[β(t) − β(s)] Ds‖w(t, s)‖2l+1 ds ≤
∫ ε

0

β(ε)
β(s)

ds
∫ ε

0
β(s)‖Dsw(t, s)‖2l+1 ds.
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But
β(ε)
β(s)

≤ 1, which yields
∫ ε

0

β(ε)
β(s)

ds ≤
∫ ε

0
ds = ε, so that

∫ t

ε

[β(t)− β(s)] Ds‖w(t, s)‖2l+1 ds ≤ ε

∫ ε

0
β(s)‖Dsw(t, s)‖2l+1 ds.

According to [4] we have
∫ T

0 β(s)‖Dsw(t, s)‖2l+1 ds <∞ provided that the data
are sufficiently smooth (Al+2u0 ∈ H , Al+1v0 ∈ H , and certain conditions on f ,
g). Letting ε → 0 we get∫ t

0
[β(t) − β(s)]Ds‖w(t, s)‖2

l+1 ds ≤ 0. (13)

From (9), (10), (12), and (13) we conclude (6), from which (7) follows easily, in
view of the trace inequality and the fact that the energy norm ‖·‖1 is equivalent
to the H1 norm. ��
The previous proof applies also to the finite element problem (5) if we use the
orthogonal projection Ph : H → Vh and the operator Ah : Vh → Vh defined by

a(vh,wh) = (Ahvh,wh) ∀vh,wh ∈ Vh,

and use the discrete norms

‖vh‖h,l = ‖Al/2
h vh‖ =

√
(vh, Al

hvh), vh ∈ Vh, l ∈ R.

It is sufficient to prove the discrete stability with boundary data g = 0.

Theorem 2. Let uh solve (5) with g = 0. Then, for any l ∈ R, T > 0, we have

ρ
1
2 ‖u̇h(T )‖h,l + (1− γ) 1

2 ‖uh(T )‖h,l+1

≤ C
[
ρ

1
2 ‖vh,0‖h,l + ‖uh,0‖h,l+1 + ρ−

1
2

∫ T

0
‖Phf‖h,l dt

]
.

(14)

4 A Priori Error Estimates

Let Rh : V → Vh be the Ritz projection defined by

a(Rhv − v,vh) = 0 ∀vh ∈ Vh. (15)

In this section we assume the elliptic regularity estimate

‖v‖H2 ≤ C‖Av‖ ∀v ∈ D(A), (16)

so that the following error estimates can be proved (by duality)

‖Rhv − v‖Hl ≤ Chm−l‖v‖Hm , (17)

for all integers 0 ≤ l < m ≤ 2. The elliptic regularity (16) holds, for example, for
the pure Dirichlet problem (ΓD = ∂Ω) when Ω is a convex polygonal domain. For
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more general boundary conditions and domains the situation is more complicated
and we refrain from a discussion of this.

Theorem 3. Let u and uh be the solutions of (4) and (5), respectively, and
denote e = uh − u. Then, with C depending on ρ, γ,

‖ė(T )‖ ≤ C
(
‖vh,0 − v0‖+ ‖uh,0 −Rhu0‖H1

)
+ Ch2

(
‖v0‖H2 + ‖u̇(T )‖H2 +

∫ T

0
‖ü‖H2 dt

)
,

‖e(T )‖H1 ≤ C
(
‖vh,0 − v0‖+ ‖uh,0 − u0‖H1

)
+ Ch

(
‖v0‖H1 + ‖u0‖H2 + ‖u(T )‖H2 +

∫ T

0
‖ü‖H1 dt

)
,

‖e(T )‖ ≤ C
(
‖vh,0 − v0‖+ ‖uh,0 − u0‖

)
+ Ch2

(
‖v0‖H2 + ‖u0‖H2 + ‖u(T )‖H2 +

∫ T

0
‖ü‖H2 dt

)
.

Proof. In the usual way we split the error uh−u = θ +ρ, where θ = uh−Rhu,
ρ = Rhu − u. In view of (17) it is sufficient to estimate θ. From (4), (5), and
(15) we have

ρ(θ̈,vh) + a(θ,vh)− γ
∫ t

0
β(s)a(θ(t− s),vh) ds = −ρ(ρ̈,vh) ∀vh ∈ Vh.

Applying the stability estimate (14) in Theorem 2 with l = 0, and using the fact
that ‖ · ‖h,0 = ‖ · ‖ and that ‖ · ‖h,1 is equivalent to ‖ · ‖H1 , we get

‖θ̇(T )‖+ ‖θ(T )‖H1 ≤ C
(
‖θ̇(0)‖+ ‖θ(0)‖H1 +

∫ T

0
‖Phρ̈‖ dt

)
,

where C depends on ρ, γ. Similarly, with l = −1, we have

‖θ̇(T )‖h,−1 + ‖θ(T )‖ ≤ C
(
‖θ̇(0)‖h,−1 + ‖θ(0)‖+

∫ T

0
‖Phρ̈‖h,−1 dt

)
.

Using that ‖ · ‖h,−1 ≤ C‖ · ‖, e = θ + ρ, ‖θ(0)‖ ≤ ‖e(0)‖ + ‖ρ(0)‖, we obtain
the desired estimates. ��

5 Numerical Example

The purpose of the present numerical method is demonstrated by solving the
dynamic viscoelastic equations in (3) for a two-dimensional structure under plane
strain condition. Initial conditions, boundary conditions and model parameters
read:

u(x, 0) = 0m, u̇(x, 0) = 0m/s, f(x, t) = 0N/m3,
u(x, t) = 0m at x1 = 0 m, g(x, t) = (0,−1)Θ(t) Pa at x1 = 1.5 m,
γ = 0.5, E0 = 10 MPa, α = 0.5, ν = 0.3, ρ = 40 kg/m3

,
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Fig. 1. The left figure shows the spatial discretization. The right figure shows the
computed vertical displacement at the point (1.5,1.5) m.

where Θ is the Heaviside function. The geometry and the spatial discretization
are shown in Figure 1. Figure 1 also shows the computed vertical displacement
versus nondimensional time at the point (1.5, 1.5)m. For comparison the qua-
sistatic (i.e., neglecting inertia, ρü ≈ 0) solution is included. As expected, the
two solutions coincide for large times.
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Abstract. We propose a new class of Discontinuous Galerkin (DG)
methods based on variational multiscale ideas. Our approach begins with
an additive decomposition of the discontinuous finite element space into
continuous (coarse) and discontinuous (fine) components. Variational
multiscale analysis is used to define an interscale transfer operator that
associates coarse and fine scale functions. Composition of this operator
with a donor DG method yields a new formulation that combines the
advantages of DG methods with the attractive and more efficient com-
putational structure of a continuous Galerkin method. The new class of
DG methods is illustrated for a scalar advection-diffusion problem.

1 Introduction

Discontinuous Galerkin (DG) methods offer several important computational ad-
vantages over their continuous Galerkin counterparts. For instance, DG methods
are particularly well-suited for application of h and p-adaptivity strategies. DG
methods are also felt to have advantages of robustness over conventional Galerkin
methods for problems of hyperbolic type [13, 11, 12]. There has also been recent
interest in applying DG to elliptic problems so that advective-diffusive phenom-
ena can be modeled; see Brezzi et al. [3], Dawson [7], and Hughes, Masud and
Wan [10]. For a summary of the current state-of-the-art and introduction to the
literature we refer to [1] and [6].

Despite the increased interest in DG methods, there are shortcomings that
limit their practical utility. Foremost among these is the size of the DG linear
system. Storage and solution cost are, obviously, adversely affected, which seems
the main reason for the small industrial impact the DG method has had so far.

In [8] we proposed a new multiscale DG method that has the computational
structure of a standard continuous Galerkin method. In this paper we extend
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this idea to a general multiscale framework for DG methods. Our approach starts
with an additive decomposition of a given discontinuous finite element space
into continuous (coarse) and discontinuous (fine) components. Then, variational
multiscale analysis is used to define an interscale transfer operator that associates
coarse and fine scale functions. Composition of this operator with a donor DG
method yields a new formulation that combines the advantages of DG methods
with the attractive and more efficient computational structure of a continuous
Galerkin method. Variational multiscale analysis leads to a natural definition
of local, elementwise problems that allow for an efficient computation of the
interscale operator.

2 Notation

Throughout this paper Ω will denote an open bounded region in Rn, n = 2, 3
with a polyhedral boundary ∂Ω. We recall the standard Sobolev spaces L2(Ω)
and H1(Ω). Let Th be a regular partition of Ω into finite elements K that
contains only regular nodes [4]. For simplicity, we limit our discussion to two
space dimensions. Extension to three dimensions is straightforward.

Every element K ∈ Th is an image of a reference element K̂ that can be a
triangle T̂ or a square Q̂. The vertices v and the edges e of K form the sets
V (K) and E(K), respectively; V (Th) = ∪K∈Th

V (K), E(Th) = ∪K∈Th
E(K), Γ 0

h

is the set of all internal edges and Γh is the set of all edges on ∂Ω.

The local space. The reference space Sp(K̂)(K̂) on K̂ is defined as follows:

Sp(K̂)(K̂) =

⎧⎪⎪⎨⎪⎪⎩
ϕ =

∑
i,j

aijξ
i
1ξ

j
2 , 0 ≤ i, j ≤ p(K̂); i+ j ≤ p(K̂) if K̂ = T̂

ϕ =
∑
i,j

aijξ
i
1ξ

j
2 , 0 ≤ i, j ≤ p(K̂) if K̂ = Q̂

(1)

The local element spaces Sp(K)(K) are defined by a mapping of the reference
space (1) to the physical space.

The discontinuous finite element space. Given two integers 0 ≤ pmin < pmax we
consider the following finite element subspace of L2(Ω)

Φh(Ω) =
{
ϕh ∈ L2(Ω) |ϕh|K ∈ S

p(K)(K), pmin ≤ p(K) ≤ pmax; ∀K ∈ Th

}
.

(2)
We will assume that pmin ≥ 1. Note that Φh(Ω) is a formal union of the local
spaces Sp(K)(K).

The continuous finite element space. The additive decomposition of Φh(Ω) is
induced by a finite element subspace Φh(Ω) of H1(Ω), defined with respect to
the same partition Th of Ω into finite elements. The space Φh(Ω) can be defined
in many possible ways. However, to ensure H1 conformity, functions in this
space are constrained to be continuous across element interfaces; see [5]. Here,
for simplicity we consider a minimal choice of Φh(Ω) given by (see Fig. 2)
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Φh(Ω) =
{
ϕh ∈ H1(Ω) |ϕh|K ∈ S1(K)

}
. (3)

In Φh(Ω) we consider a nodal basis {V v}; v ∈ V (Th) such that V vi(vj) = δij .
The basis functions have local supports given by supp(V v) = ∪v∈V (K)K . For
K ∈ supp(V v), V v|K = Vv where v ∈ V (K) is the local vertex that corresponds
to the global vertex v ∈ V (Th). Owing to the assumption pmin ≥ 1 the space
Φh(Ω) is contained in Φh(Ω). While the actual choice of Φh(Ω) and the resulting
decomposition will have an impact on the accuracy of the multiscale DG, it will
not affect formulation of the overall framework.

Orientations, jumps and averages. We briefly review the relevant notation fol-
lowing the Brezzi conventions. We assume that all edges in E(Th) are endowed
by orientation. A convenient way to orient an edge is to pick a normal direction
to that edge; see Fig. 2. An element can be oriented by selecting one of the two
possible normal directions to its boundary ∂K. Without loss of generality, all
elements are oriented by using the outward normal.

An internal edge e ∈ Γ 0
h is shared by exactly two elements. The outward

normal on one of these elements will coincide with the normal used to orient e;
we call this element K−. The outward normal on the other element will have the
opposite direction to the normal on e; we call this element K+; see Fig. 2. Edge
orientation also induces partition of the boundary of an internal element into
∂+K, consisting of all edges whose normal direction coincides with the outer

Fig. 1. The space Φh(Ω) (left) and the corresponding minimal C0 space Φh(Ω) (right)

Fig. 2. Orientation of internal edges in Th and +/− elements with respect to an edge
(left). Partition of element boundary into ∂+K and ∂−K (right).
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normal on ∂K and ∂−K, consisting of all edges e whose normal direction is
opposite to the outer normal on ∂K.

Let ϕ be a scalar field, and ϕ± := ϕ|K± . For e ∈ Γ 0
h we define the average

and the jump as 〈ϕ〉 := 1
2 (ϕ+ + ϕ−) and [ϕ] := ϕ+n+ + ϕ−n−, respectively.

Analogously, if u is a vector field, 〈u〉 := 1
2 (u++u−) and [u] := u+ ·n++u− ·n−.

Note that, by definition of “[ · ]”, the jump of a scalar quantity is a vector and
the jump of a vector quantity is a scalar. For edges belonging to Γh, [ϕ] = ϕ n
and 〈u〉 = u . It will not be necessary to define 〈ϕ〉 and [u] on the boundary Γ ,
because they are never utilized.

3 Multiscale Discontinuous Galerkin Method

We consider an abstract linear boundary value problem

L(x, D)ϕ = f in Ω and R(x, D)ϕ = g on Γ . (4)

The multiscale DG framework for problem (4) has two basic components. The
first is a donor DG formulation for (4): find ϕh ∈ Φh(Ω) such that

BDG(ϕh;ψh) = FDG(ψh) ∀ψh ∈ Φh(Ω) . (5)

In (5), BDG(·; ·) is a continuous bilinear form Φh(Ω) × Φh(Ω) �→ R and FDG(·)
is a bounded linear functional Φh(Ω) �→ R. We assume that (5) has a unique
solution ϕh that depends continuously on the data and converges (in a suitable
norm) to all sufficiently smooth solutions ϕ of (4). The second component is an
interscale transfer (or expansion) operator

T : Φh(Ω) �→ Φh(Ω) . (6)

We assume that T is a bounded linear operator, however, it is not required to
be surjective, or invertible. Thus, in general T (Φh(Ω)) will be a proper subspace
of the discontinuous space Φh(Ω).

We define the Multiscale DG (MDG) method by a composition of the donor
DG scheme with the interscale transfer operator T : find ϕh ∈ Φh(Ω) such that

BDG(Tϕh;Tψh) = FDG(Tψh) ∀ψh ∈ Φh(Ω) . (7)

Substitution of discontinuous test and trial functions in the donor DG method by
Tψh and Tϕh reduces the number of degrees-of-freedom in the MDG formulation
to that of a standard Galerkin method posed on Φh(Ω). Since T (Φh(Ω)) ⊂
Φh(Ω), (7) occupies a middle ground between a DG and a CG method for (4).

3.1 Definition of the Interscale Operator

The definition of the interscale operator T is key to a robust, efficient and ac-
curate MDG method. For instance, it is desirable to compute T locally on each
element. To discuss definition of this operator assume that

BDG(ϕh; ψh)=
K∈Th

BK(ϕh; ψh)+
e∈Γh

BΓ (ϕh; ψh)+
e∈Γ0

h

Be {ϕ−
h , ϕ+

h }; {ψ−
h , ψ+

h } (8)
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where BK(·; ·) is a bilinear local element form defined for every K ∈ Th, BΓ (·; ·)
is a bilinear form defined on e ∈ Γh, and Be ({·}; {·}) is an edge bilinear form
defined for e ∈ Γ 0

h .
To define T we proceed to formally split functions ϕh ∈ Φh(Ω) into a con-

tinuous (“coarse” scale) part ϕh ∈ Φh(Ω) and a discontinuous (“fine” scale)
component ϕ′

h ∈ Φh(Ω), viz. ϕh = ϕh + ϕ′
h. Then, (5) takes the following form:

BDG(ϕh;ψh) +BDG(ϕ′
h;ψh) = FDG(ψh) ∀ϕh ∈ Φh(Ω)

BDG(ϕ′
h;ψ′

h) +BDG(ϕh;ψ′
h) = FDG(ψ′

h) ∀ψ′
h ∈ Φh(Ω)

(9)

The first line in (9) is the coarse scale equation. The second line is the fine scale
equation that will be used to define T . Treating the coarse scale function as data
we write this equation as: find ϕ′

h ∈ Φh(Ω) such that

BDG(ϕ′
h;ψ′

h) = FDG(ψ′
h)−BDG(ϕh;ψ′

h) ∀ψ′
h ∈ Φh(Ω) . (10)

We restrict (10) to an element K by choosing test functions ψ′
h ∈ Sp(K)(K)

that vanish outside of this element. With the above selection of a test function,
(ψ′

h)+ = χ(∂−K)ψ′
h and (ψ′

h)− = χ(∂+K)ψ′
h where χ(·) is the characteristic

function. Using these identities and that (ϕh)+ = (ϕh)− = ϕh , for a C0 function,
the restricted fine scale problem can be expressed as follows: find ϕ′

h ∈ Sp(K)(K)
such that

BK(ϕ′
h;ψ′

h)+BΓ (ϕ′
h;ψ′

h) +
∑

e∈E(K)

Be
(
{(ϕ′

h)−, (ϕ′
h)+}; {χ(∂+K)ψ′

h, χ(∂−K)ψ′
h}

)
= FDG(ψ′

h)−BK(ϕh;ψ′
h)−BΓ (ϕh;ψ′

h)

−
∑

e∈E(K)

Be
(
{ϕh, ϕh}; {χ(∂+K)ψ′

h, χ(∂−K)ψ′
h}

)
∀ψ′

h ∈ Sp(K)(K) .

(11)
Problem (11) relates fine scales to the coarse scales, but remains coupled to
the contiguous elements through the numerical flux terms in (11). Therefore, it
does not meet our criteria for localized computation of the interscale transfer
operator T . However, we make the important observation that our goal is not
to solve the DG problem (9) but rather use it to define a local computation
procedure for T that maps ϕh into the local space Sp(K)(K). We note that this
objective is reminiscent of other applications of variational multiscale analysis
in which the fine scale problem is used for estimation rather than approximation
of the unresolved solution component. This process can be accomplished by a
modification of the numerical flux inherited from the donor DG formulation, or
by using a new flux defined only in terms of the local function ϕ′

h ∈ Sp(K)(K).
Let B′

e ({·}; {·}) be the new numerical flux. The local fine scale problem obtained
from (11) is: find ϕ′

h ∈ Sp(K)(K) such that

BK(ϕ′
h; ψ′

h) + BΓ (ϕ′
h; ψ′

h) +
e∈E(K)

B′
e {ϕ′

h}; {ψ′
h}

= FDG(ψ′
h) − BK(ϕh; ψ′

h) − BΓ (ϕh; ψ′
h)

−
e∈E(K)

Be {ϕh, ϕh}; {χ(∂+K)ψ′
h, χ(∂−K)ψ′

h} ∀ψ′
h ∈ Sp(K)(K) .

(12)
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Problem (12) is a local equation that can be solved on an element by element
basis. This problem defines an operator TK : Φh(Ω) �→ Sp(K)(K) that maps
any given C0 finite element function ϕh to a function in the local element space
Sp(K)(K). Therefore,

T : Φh(Ω) �→ Φh(Ω); T |K = TK ∀K ∈ Th (13)

defines an interscale transfer operator T for the MDG method. The abstract
variational equation (7) and the local problem (12) complete the definition of
the MDG framework.

4 Multiscale DG for a Scalar Advection-Diffusion
Problem

We consider a model advection diffusion problem written in conservative form:{
∇ · (Fa + Fd) = f in Ω; −(Fa + Fd) · n = h− on Γ−

n

ϕ = g on Γg; −(Fd) · n = h+ on Γ+
n

(14)

where Fd = −κ∇ϕ and Fa = aϕ denote diffusive and advective flux, respectively.
The total flux is F = Fa +Fd. The Neumann boundary condition can be written
compactly as −(χ(Γ−

n )Fa + Fd) · n = h; where h = χ(Γ−
n )h− + χ(Γ+

n )h+ .

4.1 A Donor DG Method for the Model Problem

When dealing with advection-diffusion problems it is profitable to coordinate
edge orientations with the advective direction. Given an edge e we choose the
normal ne for which ne · a ≥ 0. A general weighted residual form of a Discon-
tinuous Galerkin method for (14) is given by: find ϕ ∈ Φh(Ω) such that

0 =
nel

i=1

−
Ki

(Fi · ∇ψ + fψ) dΩ +
Γn

(χ(Γ+
n )Fa · n − h)ψdl +

Γg

(F · n)ψdl+

Γg

ε(ϕ − g)W (ψ)dl +
e∈Γ0

h
e

F h
b (ϕ+; ϕ−)·[ψ]+F h

c (ψ+; ψ−)·[ϕ]+α[ϕ][ψ] dl
(15)

for all ψ ∈ Φh(Ω). Above, W (ψ) is a weight function that enforces the Dirichlet
boundary condition weakly,

Fh
b

def= s11F
h
a + s12F

h
d and Fh

c
def= s21F

h
a + s22F

h
d (16)

are numerical models of the total flux across e ∈ Γ 0
h and

Fh
a

def= Fh
a (ϕ+, ϕ−) and Fh

d
def= Fh

d (ϕ+, ϕ−) (17)

are constitutive relations for the advective and the diffusive fluxes across e in
terms of the solution states ϕ+ and ϕ− from the two elements that share e. The
component bilinear forms in (8) can be easily identified from (15):
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BK(ϕ; ψ) =
K

−FK · ∇ψ dΩ (18)

BΓ (ϕ; ψ) =
Γn

(χ(Γ+
n )Fa · n)ψ dl +

Γg

(F · n)ψ dl + ε
Γg

ϕW (ψ) dl (19)

Be {ϕ+; ϕ−}; {ψ+; ψ−} =
e

F h
b (ϕ+; ϕ−)·[ψ]+F h

c (ψ+; ψ−)·[ϕ]+α[ϕ][ψ] dl . (20)

particular donor DG method is obtained from (15) by specification of ε, α, the nu-
merical fluxes in (16)–(17) for the internal edgesΓ 0

h , and the weight functionW (ψ).
We set ε = α = δκ/h⊥, where δ > 0 is non-dimensional parameter and

h⊥ = (meas(K+) + meas(K−))/(2 meas(e)). Roughly speaking, h⊥ is a length
scale in the direction perpendicular to the edge e, close to the length of the
segment joining the barycenters of K− and K+.

A standard choice for Fh
a is the upwinded advective flux Fh

a (ψ+;ψ−) =
Fa(ψ−) = aϕ− . Possible choices for the numerical diffusive flux are the av-
eraged flux Fh

d (ψ+;ψ−) = 〈Fd(ψ)〉 = − 1
2 (κ∇ψ+ + κ∇ψ−) or the upwinded flux

Fh
d (ψ+;ψ−) = Fd(ψ−) = −κ∇ψ− . To define Fh

b and Fh
c we set s11 = s12 = 1,

s21 = 0 and s22 = s ∈ {−1, 0,+1} in (16). This leads to two different donor DG
methods: DG-A which uses averaged diffusive flux, and DG-B which uses the
upwinded version of that flux; see [8]. Flux and weight function definitions for
the two methods are summarized in Table 1.

The effect of the parameter s has been extensively studied in the discontinuous
Galerkin literature (see Arnold et al. [1], Baumann and Oden [2], and Hughes et
al. [9]). The symmetric formulation (s = −1) is adjoint-consistent, guaranteeing
optimal L2-convergence rates in the diffusive limit. Ostensibly, the skew formu-
lation (s = +1) has superior stability properties but the ε and α-terms can be
used to improve the stability behavior of the neutral (i.e., s = 0) and symmetric
formulations. For more details about the implementation of the donor DG and
numerical results we refer to [8].

For DG-B the numerical flux F h
b is simply the upwinded total flux F (ϕ−).

DG-A and DG-B have the same element form BK(·; ·) (given by (18)) and the
same boundary form:

BΓ (ϕ; ψ) =
Γn

(χ(Γ+
n )Fa · n)ψ dl +

Γg

(F · n)ψ dl + ε
Γg

ϕ (ψ − sκ∇ψ · n)

W (ψ)

dl (21)

The internal edge form for DG-A is

Be
(
{ϕ+;ϕ−}; {ψ+;ψ−}

)
=

∫
e
α[ϕ][ψ] dl

+
∫
e

(
(aϕ− − (κ∇ϕ+ + κ∇ϕ−)/2)︸ ︷︷ ︸

F h
b

·[ψ]− s(κ∇ψ+ + κ∇ψ−)/2︸ ︷︷ ︸
F h

c

·[ϕ]
)
dl

(22)
while for DG-B this form is given by

Be
(
{ϕ+;ϕ−}; {ψ+;ψ−}

)
=
∫
e
α[ϕ][ψ] dl+

∫
e

(
(aϕ−−κ∇ϕ−)︸ ︷︷ ︸

F h
b

·[ψ]− sκ∇ψ−︸ ︷︷ ︸
F h

c

·[ϕ]
)
dl .

(23)
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Table 1. Specialization of fluxes and weight function for the donor DG methods

Function DG-A DG-B
F h

b (ϕ+; ϕ−) Fa(ϕ−) + 〈Fd(ϕ)〉 Fa(ϕ−) + Fd(ϕ−)
F h

c (ψ+; ψ−) s〈Fd(ψ)〉 sFd(ψ−)
W (ψ) ψ + sFd(ψ) · n

4.2 The Interscale Operator

We develop a consistent approach that reduces the edge form Be ({·}; {·}) in the
donor DG method to a form defined in terms of the local (fine scale) variable ϕ′

and test function ψ′. In doing so we aim to preserve as much as possible from
the structure of the donor DG method in the local problem.

For this purpose we redefine the calculation of the jump, the average and the
states ϕ±, ψ± as follows: given ψ ∈ Sp(K)(K) its states are defined by

ψ+ = χ(∂−K)ψ and ψ− = χ(∂+K)ψ (24)

its jump is the vector
[ψ] = nKψ , (25)

and its average is the function itself:

〈ψ〉 = ψ . (26)

The rules in (24)-(26) have the following interpretation. To compute the states
and the jump of ψ, extend by zero to a function ψ0 ∈ L2(Ω). Then [ψ0] =
n+χ(∂−K)ψ0 + n−χ(∂+K)ψ0 = nKψ0 . Definition (26) can be motivated by
noting that for affine elements ψ can be trivially extended to a functionψ∞ ∈
C∞(Ω) for which 〈ψ∞〉 = 1

2 (ψ∞ + ψ∞) = ψ∞ giving (26). The local definitions
of the numerical fluxes obtained through (24)-(26) are summarized in Table 2.

Local Problem for DG-A. The localized edge form for DG-A method is

B′
e ({ϕ}; {ψ}) =

∫
e

(
(aχ(∂+K)ϕ− κ∇ϕ)︸ ︷︷ ︸

F h
b

·nKψ − sκ∇ψ︸ ︷︷ ︸
F h

c

·nKϕ+ αϕψ
)
dl . (27)

The last two terms can be combined into a single weight function Wα(ψ) =
αψ − sκ∇ψ · nK . Thus, the local problem obtained from DG-A is: given a
ϕ ∈ Φh(Ω) find ϕ′ ∈ Sp(K)(K) such that

Table 2. Specialization of fluxes for the local problem

Function DG-A DG-B
F h

b (ϕ) Fa(χ(∂+K)ϕ) + Fd(ϕ) Fa(χ(∂+K)ϕ) + Fd(χ(∂+K)ϕ)
F h

c (ψ) sFd(ψ) sFd(χ(∂+K)ψ)
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BK(ϕ′;ψ′) +BΓ (ϕ′;ψ′) +
∑

e∈∂K

∫
e

(
(aχ(∂+K)ϕ′− κ∇ϕ′) · nKψ

′ + ϕ′Wα(ψ′)
)
dl

= FDG(ψ′)−BK(ϕ;ψ′)−BΓ (ϕ;ψ′)

−
∑

e∈∂K

Be
(
{ϕ,ϕ}; {χ(∂+K)ψ′, χ(∂−K)ψ′}

)
∀ψ′ ∈ Sp(K)(K) . (28)

Remark 1. This local problem is identical to the one used in [8].

Local Problem for DG-B. For DG-B we have the localized edge form:

B′
e ({ϕ}; {ψ}) =

∫
e

(
χ(∂+K)(aϕ− κ∇ϕ)︸ ︷︷ ︸

F h
b

·nkψ−sχ(∂+K)κ∇ψ︸ ︷︷ ︸
F h

c

·nKϕ+αϕψ
)
dl .

(29)

The last two terms can be combined into the weight function W−
α (ψ) = αψ −

sχ(∂+K)∇ψ ·nK , which is an ”upwinded” version of Wα(ψ). The local problem
is: given a ϕ ∈ Φh(Ω) find ϕ′ ∈ Sp(K)(K) such that

BK(ϕ′;ψ′)+BΓ (ϕ′;ψ′)+
∑

e∈∂K

∫
e

(
χ(∂+K)(aϕ′−κ∇ϕ′) · nKψ

′+ϕ′Wα(ψ′)
)
dl

= FDG(ψ′)−BK(ϕ;ψ′)− BΓ (ϕ;ψ′)

−
∑

e∈∂K

Be
(
{ϕ,ϕ}; {χ(∂+K)ψ′, χ(∂−K)ψ′}

)
∀ψ′ ∈ Sp(K)(K) . (30)

5 Conclusions

In this work we extended the DG method developed in [8] to a general framework
for multiscale DG methods that have the computational structure of continuous
Galerkin methods. This represents a solution to a fundamental and long-standing
problem in discontinuous-Galerkin technology, namely, restraining the prolif-
eration of degrees-of-freedom. Numerical results reported in [8] indicate that
for a scalar advection-diffusion equation the new method at least attains, and
even somewhat improves upon, the performance of the associated continuous
Galerkin method. Within the framework of the multiscale discontinuous Galerkin
method, the local problem provides a vehicle for incorporating the necessary sta-
bilization features such as discontinuity capturing and upwinding. There seems
to be a potential connection here with ideas from wave propagation methods
based on solutions of the Riemann problem, which is worth exploring in more
detail.

The MDG formulation can be also viewed as an approach that enables un-
coupling of storage locations of the data from the computational locations where
this data is used. For example, one can envision a situation where information is
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stored at the nodes and then mapped to flux and circulation degrees-of-freedom
by the operator T . Such an extension of MDG appears to be a fruitful direction
for further research.
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Abstract. Solutions of Friedrichs systems are in general not of Sobolev
regularity and may possess discontinuities along the characteristics of
the differential operator. We state a setting in which the well-posedness
of Friedrichs systems on polyhedral domains is ensured, while still al-
lowing changes in the inertial type of the boundary. In this framework
the discontinuous Galerkin method converges in the energy norm under
h- and p-refinement to the exact solution.

1 Introduction

Friedrichs systems are first-order linear boundary value problems which allow
the study of a wide range of hyperbolic, parabolic and elliptic differential equa-
tions in a unified framework [1]. Because of this unifying approach, Friedrichs
systems provide tools for the study of mixed-type problems, i.e. boundary value
problems, which change their type depending on the position in the domain.
For instance, equations in compressible gas dynamics can be transformed into
Friedrichs systems, where regions of supersonic flow correspond to a locally hy-
perbolic differential operator, while subsonic regions correspond to a local model
of elliptic type [2].

In general, the solution of a Friedrichs systems is not contained in a Sobolev
space. Instead it belongs to the associated graph space, i.e. it is weakly differ-
entiable along the characteristics of the differential operator. Functions in the
graph space may be discontinuous. In addition, poles in the solution, due to type-
changes of the differential operator or the boundary conditions, may lead to a
loss of the integration-by-parts rule in its classical sense [3]. This is in close con-
nection to the question of well-posedness of Friedrichs systems [4, 5, 6, 7, 8, 9, 10].

In 1973 Reed and Hill [11, 12] introduced the discontinuous Galerkin method
(DGFEM) to solve the neutron transport equation. Already in this paper, nu-
merical experiments make the good approximation and stability properties of
the DGFEM for boundary value problems with discontinuous solution apparent.

Assuming shape-regularity, LeSaint and Raviart prove in [13] for meshes with
triangular and quadrilateral elements the suboptimal L2(Ω)-error bound

‖u− uDG‖L2(Ω) ≤ C hp ‖u‖W p+1,2(Ω), C > 0,

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 94–101, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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for solutions u in W p+1,2(Ω) and DG solutions uDG. Johnson and his coworkers
[14, 15] show for equations with non-constant coefficients and certain Friedrichs
systems an improved O(hp) bound in the DG energy norm. Bey and Oden [16]
extend the analysis to non-uniform p. In the framework by Houston, Schwab and
Süli [17, 18] the exact solution u is only required to be elementwise of Sobolev
regularity. Thus u may be discontinuous along element edges.

The afore-mentioned publications have in common that their a priori analysis
is restricted to solutions which are of elementwise or global Sobolev regularity.
Solutions with discontinuities across elements are not covered, for which already
Reed and Hill and also others [16, 18] highlighted the competitive performance
of the DG method with numerical experiments.

In this publication we address the convergence of the discontinuous Galerkin
method in graph spaces. We base our analysis on Friedrichs systems which allow
typical changes in the inertial type of the boundary conditions such as between
in- and outflow components, but which at the same time satisfy basic require-
ments such as the integration-by-parts formula.

2 Friedrichs Systems

Let Ω be a bounded Lipschitz domain in IRn. Let m ∈ IN. Given a tensor
B ∈W 1,∞(Ω)m×m×n and a matrix C ∈ L∞(Ω)m×m, we consider the differential
operator

L : v �→ ∂k(Bijk vj) + Cijvj ,

making use of the Einstein summation convention and assuming that v and the
coefficients B and C are real-valued. We denote by ν the unit outward normal
of Ω and by B(ν) the matrix B(ν)ij = Bijk νk. With Dij := Cij + 1

2 ∂kBijk , the
symmetry condition

Bijk = Bjik, i, j ∈ {1, . . . ,m}, k ∈ {1, . . . , n}, (1)

implies for v, w ∈ H1(Ω)m

〈Lv, w〉Ω + 〈v,Lw〉Ω = 2〈Dv,w〉Ω + 〈B(ν) v, w〉∂Ω , (2)

where 〈·, ·〉Ω and 〈·, ·〉∂Ω are the L2-scalar products on Ω and ∂Ω. If (1) is
satisfied and there is a constant γ > 0 such that v ·Dv− γv · v is positive on Ω,
we call L accretive. Notice that 〈Lv, v〉Ω ≥ γ ‖v‖L2(Ω)m for v ∈ H1

0 (Ω)m.
Boundary operators J : ∂Ω → IRm×m are semi-admissible if R := J + 1

2 B(ν)
is positive semi-definite [1]. Then, due to (2),

〈Lv, v〉Ω + 〈Jv, v〉∂Ω = 〈Dv, v〉Ω + 〈Rv, v〉∂Ω ≥ γ ‖v‖L2(Ω)m (3)

for v ∈ H1(Ω)m. Let JT be the transpose of J . Given the formal adjoint operator
L′ : v �→ −Bjik∂kvj + Cjivj , the adjoint boundary operator J ′ = JT + B(ν)
satisfies

〈Lv, w〉Ω + 〈Jv, w〉∂Ω = 〈v,L′w〉Ω + 〈v, J ′w〉∂Ω , v, w ∈ H1(Ω)m.
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Let f ∈ L2(Ω)m. One says that a function u ∈ L2(Ω)m solves the boundary
value problem Lu = f, Ju = 0 weakly if for all v ∈ C1(Ω)m with J ′v = 0 the
identity

〈f, v〉Ω = 〈u,L′v〉Ω (4)

holds.
Friedrichs [1] proves that a weak solution always exits if L is accretive and J is

semi-admissible. Clearly, Lu is equal to f in the sense of distributions. Therefore
the solution u belongs to the graph space of L. That is the set

H(L, Ω) := {v ∈ L2(Ω)m : Lv ∈ L2(Ω)m},

which is normed by

‖v‖2L := ‖v‖2L2(Ω)m + ‖Lv‖2L2(Ω)m .

In what sense u satisfies the boundary conditions is more intricate. We assume
initially that u belongs to C0(Ω)m to delay the definition of a trace operator.
Because the test functions in (4) are contained in kerJ ′, the test space may be
too small to ensure that Ju = 0. We call PJ , PJ′ ∈ IRm×m a pair of projections
if

PJ + PJ′ = I and PJPJ′ = PJ′PJ = 0.

Semi-admissible boundary operators J are called admissible if for each x ∈ ∂Ω
there is a pair of projections PJ , PJ′ ∈ IRm×m such that

J(x) = −PJ (x)TB(ν, x) and J ′(x) = B(ν, x)PJ′(x).

Under sufficient regularity, e.g. for each v ∈ C1(Ω)m there is a v̇ ∈ C1(Ω)m

such that PJv = v̇ on ∂Ω, admissibility of J guarantees Ju = 0. Boundary
value problems consisting of an accretive differential operator and admissible
boundary operators are called Friedrichs systems.

The following example, which is an adaptation of [3], shows that for weak
solutions the integration-by-parts formula is in general not valid.

Example 1. Let Ω = (0, 1)2 and

Lv := LCRv + v, LCRv :=
(
−∂x ∂y

∂y ∂x

) (
v1
v2

)
.

The boundary conditions

J |x=1 :=
(

1 1
0 0

)
, J |x=0 :=

(
0 0
1 1

)
, J |y=1 :=

(
0 −1
0 0

)
, J |y=0 :=

(
0 1
0 0

)
are admissible. Since LCR is the Cauchy-Riemann operator and the function
v(φ, r) := r−1/2(cosφ/2,− sinφ/2) in polar coordinates (φ, r) represents the
holomorphic function z−1/2, it follows that LCRv = 0 and Lv = v. Let ψ ∈
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C1(Ω) be a radially symmetric function with support in the unit ball and which
is equal to 1 in a neighbourhood of the origin. Then u := ψ v ∈ L2(Ω)m satisfies
pointwise and weakly the homogeneous boundary conditions Ju = 0 on ∂Ω and
Lu = f with f := (ψ(r) − ψ′(r))v ∈ L2(Ω)m.

For bounded smooth functions w which satisfy the homogeneous boundary
conditions, the operator iLCR is self-adjoint and therefore

∫
Ω LCRw · w dx = 0.

In contrast,
∫

Ω
LCRu · u dx = π/4. Consequently, formula (2) is not valid for

u ∈ H(L, Ω).

The loss of the integration-by-parts formula has far-reaching implications on
the analysis of the discontinuous Galerkin method. It is, for instance, used for
the definition of the energy norm.

Insight why the formula fails is given by the trace operator of H(L, Ω). We
report relevant properties of the operator, but refer for details to [19]. The trace
operator

T : H(L, Ω)→ H−1/2(∂Ω)m, v �→ 〈B(ν)v, ·〉

is bounded, but in general not surjective. We equip the trace space H(T , ∂Ω) :=
im T with the norm

‖v‖T := inf{‖w‖L : w ∈ H(L, Ω) and T w = v}.

The terminology trace operator and trace space for T and H(T , ∂Ω) is justified
by the observation that all mappings J : H(L, Ω) → V which vanish onH1

0 (Ω)m

can be factorised in the form J = J̇ ◦T where J̇ : H(T , ∂Ω)→ V is continuous
and V is any abstract normed vector space. Up to homeomorphy only H(T , ∂Ω)
has this property.

Example 2. Let Ω := {(x, y) ∈ IR2 : y > |x| and y < 1} and Lv = ∂xv. Then
y−1/2 ∈ H(L, Ω). The only admissible boundary conditions with respect to L are
inflow conditions. Yet for them, 〈Jv, v〉∂Ω diverges. Thus (v, w) �→ 〈Jv, w〉∂Ω is
not continuous on H(L, Ω)×H(L, Ω) and (3) cannot be continuously extended
from H1(Ω)m to H(L, Ω).

The properties of the trace space are connected to the eigenvalues of B(ν).
Due to (1), for each x ∈ ∂Ω there is an orthogonal transformation X and a
diagonal matrix Λ such that B(ν) = XTΛX . Substituting in Λ negative entries
by 0 gives Λ+. The positive and negative semi-definite components of B(ν) are
B+(ν) := XTΛ+X and B−(ν) := B(ν)−B+(ν), respectively. The absolute part
is |B|(ν) := B+(ν)−B−(ν). A change in the rank of B+(ν) or B−(ν) is termed
a change in the inertial type of B(ν).

The space L2
B(∂Ω) is the set of all integrable functions v : ∂Ω → IRm for

which the norm

‖v‖2B :=
∫

∂Ω

v · |B|(ν)v dx
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is finite. The space L∞
B (∂Ω)m×m consists of the matrices in L∞(∂Ω)m×m which

define an endomorphism on L2
B(∂Ω).

Traces 〈B(ν)v, ·〉 contained in H−1/2(∂Ω)m \ L2(∂Ω)m can arise through a
coupling of in- and outflow components. Pointwise we understand under in-
and outflow components the eigenspaces of B(ν) associated to negative and
positive eigenvalues, respectively. For instance, in Example 2 in- and outflow
boundary are coupled through the sign change of B(ν) at the origin. Traces in
H−1/2(∂Ω)m \L2(∂Ω)m are not limited to domains with corners. Coupling with
tangential components of L has comparable effects.

Example 3. Let Ω = {(x, y) ∈ IR2 : x > 0} and

Lv = ∂x

⎛⎝−1 0 0
0 1 0
0 0 0

⎞⎠ v +
∂y√

2

⎛⎝ 0 0 −1
0 0 1
−1 1 0

⎞⎠ v.

The trace space of u ∈ H(L, Ω) is equal to

{(v1 − v2, v1 + v2, 0) : v1 ∈ H1/2(∂Ω)m and v2 ∈ H−1/2(∂Ω)m}

with the intrinsic norm (‖v1‖2H1/2(∂Ω)m + ‖v2‖2H−1/2(∂Ω)m)1/2.

To provide a basis for definition of the discontinuous Galerkin method for
Friedrichs systems, we introduce the additional condition that there is a fac-
torisation of B(ν) of the form B(ν) = (R + RT)F . Then one can ensure that
the solution of the Friedrichs system is unique and contained in the closure
H(L, B,Ω) of H1(Ω)m in the norm

(‖v‖2L + ‖v‖2B)1/2, v ∈ H1(Ω)m.

Functions in H(L, B,Ω) have a trace in L2
B(∂Ω) and satisfy formula (2).

Theorem 1. Let L be an accretive operator and J be semi-admissible. Suppose
that there are two projections P1, P2 ∈ L∞

B (∂Ω)m×m such that J = −B(ν)P1 and
J ′ = B(ν)P2. We also adopt the hypothesis that there is an F ∈ L∞

B (∂Ω)m×m

such that B(ν) = (R + RT)F . Then for each f ∈ L2(Ω)m and g ∈ L2
B(∂Ω)

there is a unique function u ∈ H(L, B,Ω) which solves Lu = f and Ju = Jg.
Furthermore, u depends continuously on f and g.

For details we refer to [19]. We remark that P1 and P2 are not necessarily a pair
of projections. Also note that we assume g ∈ L2

B(∂Ω) and not g ∈ H(T , ∂Ω).

Example 4. Let H be the Heaviside function. Selecting

(P1)ij := XkiH(Λkk)Xkj , (P2)ij := XkiH(−Λkk)Xkj , F := P2 − P1

shows that inflow boundary conditions satisfy the requirements set in Theorem 1.
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3 The Discontinuous Galerkin Method

Let T = {κ1, κ2, . . . , κN} be a decomposition of Ω into polyhedral elements κi.
Suppose that all κ ∈ T are an affine image of a fixed master element κ̂, i.e.
κ = Fκ(κ̂) for all κ ∈ T , where Fκ is an injective affine mapping and where κ̂
is either the open unit simplex or the open unit hypercube in IRn. We denote
by Pk the space of polynomials on κ̂ with total degree less or equal k. If κ̂ is
the hypercube then we also consider the space Qk of tensor-polynomials on κ̂
with degree less or equal k in each coordinate direction. Let p = (p1, p2, . . . , pN)
be a vector which associates to each element κi the polynomial degree pi. We
consider the finite element spaces

S(T, p) = {v ∈ L2(Ω) : v|κ ◦ Fκ ∈ Rpκ},

where Rk is either Pk or Qk.
The finite element spaces S(T, p) are contained in the broken graph space

H(L, B, T ) :=
⊕
κ∈T

H(L, B, κ).

At the boundary ∂κi∩∂κj between the element κi and a neighbour κj , a member
v of H(L, B, T ) has, in general, two distinct traces: one from the restriction
v|κi and one from v|κj . We denote the internal trace(v|κi)|∂κi of κi by v+and
the external trace(v|κj )|∂κi∩∂κj of κi by v−. Altogether the external trace v− is
composed from the traces of all elements neighbouring κi. The difference v+−v−
is denoted by [v].

For v, w ∈ H(L, B, T ) let

BDG(v, w) = 〈Lv, w〉Ω + 〈Jv, w〉∂Ω +
∑
κ∈T

〈B−(ν)[v], w+〉∂κ\∂Ω ,

�DG(w) = 〈f, w〉Ω + 〈Jg, w〉∂Ω .

The integration-by-parts formula

BDG(v, v) = 〈Dv, v〉Ω + 〈Rv, v〉∂Ω + 1
2

∑
κ∈T 〈|B|(ν)[v], [v]〉∂κ\∂Ω

induces the energy norm ‖v‖DG :=
√
BDG(v, v) on H(L, B, T ). We remark that

H(L, B, T ) is not complete in this norm.
Let T ′ be another finite element mesh on Ω and suppose that v ∈ H(L, B, T )

∩H(L, B, T ′). The energy norm is mesh-independent in the sense that

〈Dv, v〉Ω + 〈Rv, v〉∂Ω + 1
2

∑
κ∈T 〈|B|(ν)[v], [v]〉∂κ\∂Ω

= 〈Dv, v〉Ω + 〈Rv, v〉∂Ω + 1
2

∑
κ∈T ′〈|B|(ν)[v], [v]〉∂κ\∂Ω .

The positive definiteness of BDG implies that there is a unique discontinuous
Galerkin solution uDG ∈ S(T, p) to

BDG(uDG, w) = �DG(w) ∀w ∈ S(T, p).
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The solution satisfies the stability estimate

‖uDG‖DG ≤ γ−1‖f‖L2(Ω)m + C‖g‖B.

The constant C > 0 depends on the boundary operator J but not on the ap-
proximation space [19].

The next theorem shows that the discontinuous Galerkin method converges
in the energy norm under h- and p-refinement.

Theorem 2. The discontinuous Galerkin solution satisfies the bound

‖u− uDG‖DG ≤ C inf{‖u− v‖L : v ∈ S(T, p) ∩H(L, Ω)}.

The constant C > 0 is independent of p and T .

The proof relies on Galerkin orthogonality and on the factorisation of the bound-
ary operator with F , cf. [19].
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Abstract. A major task in the simulation of micromagnetic phenomena
is the effective computation of the stray-field H and/or of the correspon-
ding energy, where H solves the magnetostatic Maxwell equations in the
entire space. For a given FE magnetization mh, the naive computation of
H via a closed formula typically leads to dense matrices and quadratic
complexity with respect to the number N of elements. To reduce the
computational cost, it is proposed to apply H-matrix techniques instead.
This approach allows for the computation (and evaluation) of H in linear
complexity even on adaptively generated (or unstructured) meshes.

1 Basic Micromagnetics

Let Ω ⊂ Rd be the bounded spatial domain of a ferromagnet. Then, the mag-
netization m : Ω → Rd induces the so-called stray-field [9] (or demagnetization
field) H : Rd → Rd, which is the solution of the magnetostatic Maxwell equations

curlH = 0 and div B = 0 on Rd. (1)

Here, B = H + m denotes the magnetic induction, with m extended by zero to
Rd\Ω. Stokes’ Theorem implies H = −∇u, with a potential u that solves

div (−∇u+ m) = 0 in D′(Rd). (2)

Thus, there holds

u =
d∑

j=1

∂G

∂xj
∗mj for any m ∈ L2(Ω)d, (3)
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where G is the Newtonian kernel defined by G(x) = (2π)−1 log |x| for d = 2 and
by G(x) = −(4π)−1|x|−1 for d = 3, respectively. Therefore, the components of
the stray-field can be written as convolutions in the sense of Calderón-Zygmund.
The operator P : L2(Ω)d → L2(Ω)d mapping m onto the corresponding stray-
field H is an orthogonal projection. Details and the precise mathematical setting
can be found in [12].

The remainder of this paper is organized as follows: Section 2 introduces the
stiffness matrix A arising from the FE discretization of (2). Section 3 recalls the
definition of H2-matrices and indicates how A can be approximated by a d× d
block matrix AH consisting of H2-matrix type blocks. Sections 4 and 5 contain
our main results: In Section 4, we prove that AH can in fact be interpreted as
a global H2-matrix approximation for A. Section 5 provides an a priori anal-
ysis of the corresponding approximation error for a quite general class of FE
discretizations. Some numerical experiments in Section 6 conclude the work.

2 Stray-Field Discretization

In FE simulations of micromagnetic phenomena, one usually restricts oneself to
a finite dimensional subspace Sh of L2(Ω). Fix a basis {φj}N

j=1 of Sh. Then,
the functions Φ[j,α] = φjeα, with eα ∈ Rd the α-th standard unit vector, define
a basis of Sd

h ⊂ L2(Ω)d. To fix a numbering of these basis functions, we set
[j, α] = j + (α− 1)N for 1 ≤ α ≤ d. Now, for an FE discretization of P , one has
to compute the corresponding stiffness matrix A ∈ RdN×dN defined by

Ajk =
∫

Ω

(PΦj)(x)Φk(x) dx. (4)

Actually, we consider the individual blocks Aαβ ∈ RN×N of A separately, where

Aαβ
jk =

∫
Ω

(PΦ[j,α])(x)Φ[k,β](x) dx for 1 ≤ α, β ≤ d. (5)

Lemma 1. The matrix A is a symmetric d×d block matrix. Furthermore, each
of the N ×N blocks Aαβ of A also is symmetric.

Proof. The symmetry of A is a consequence of the L2 orthogonality of P . The
symmetry of the blocks Aαβ follows from Calderón-Zygmund theory [12, Propo-
sition 6.1]. ��

3 Blockwise H2-Approximation of A

When applying H-matrix techniques to approximate A, and hence to reduce the
cost of computing H, one possibility is to treat each block Aαβ of A individually,
as is done in [10]. To that end, one requires a classical integral representation of
the associated far field.
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Lemma 2. Given a basis function φj of Sh, let supp (φj) denote its support. If
supp (φj) ∩ supp (φk) = ∅ for 1 ≤ j, k ≤ N , then

Aαβ
jk =

∫
Ω

∫
Ω

∂αβG(x − y)φj(y)φk(x) dy dx, (6)

with ∂αβG the second derivative of G.

Proof. On supp (φk), there holds P(φjeα)·(φkeβ) = ∂β(∂αG∗φj)φk. By classical
convolution results, we have ∂αG ∗ φj ∈ C1(Rd\supp (φj)) and ∂β(∂αG ∗ φj) =
∂αβG ∗ φj . This concludes the proof. ��

The kernel functions καβ(x, y) := ∂αβG(x − y) appearing in (6) are asymp-
totically smooth. Therefore, each Aαβ can be approximated by an H2-matrix
obtained from tensorial interpolation of καβ [3].

Let I = {1, . . . , N} denote the index set corresponding to the basis {φj}N
j=1.

Given a cluster σ ⊆ I, let ∪σ :=
⋃
{supp (φj) : j ∈ σ}, and let Bσ =∏d

�=1[a�, b�] ⊂ Rd denote the box of minimal size containing ∪σ. For j ∈ σ,
fix an element xj ∈ supp (φj) (e.g., the center of mass).

From I, we build a so-called cluster tree T by binary space partitioning [1],
calling the function clustertree via clustertree(I, ∅):

function clustertree(σ, varT)function clustertree(σ, varT)function clustertree(σ, varT)
if |σ| ≤ 1

return
else

split Bσ along longest edge into boxes B1
σ, B2

σ of equal volume
if σ1 := {j ∈ I : xj ∈ B1

σ} �∈ {∅, σ}
add σ1, σ2 := σ\σ1 to T
call clustertree(σ1 , varT)
call clustertree(σ2 , varT)

end
end

Having constructed T, we generate a block partitioning P for I×I as follows:
For a fixed parameter η > 0, we call (σ, τ)∈T×T an admissible (far field) block if

diam (Bσ ×Bτ ) ≤ η dist (Bσ, Bτ ). (7)

Otherwise, (σ, τ) is an inadmissible (near field) block. Now, the following re-
cursive function, called by partition(I, I,T, varP), partitions I × I into ad-
missible blocks (σ, τ) ∈ Pfar and inadmissible blocks (σ, τ) ∈ Pnear; clearly,
P = Pfar ∪ Pnear. Here, sons(σ) denotes the set of all sons of σ ∈ T with re-
spect to T.

function partition(σ, τ,T, varP)function partition(σ, τ,T, varP)function partition(σ, τ,T, varP)
if (σ, τ ) admissible

add (σ, τ ) to Pfar
elseif sons(σ) �= ∅

if sons(τ ) �= ∅
for all (σ′, τ ′) ∈ sons(σ) × sons(τ ) call partition(σ′, τ ′, T, var P)
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else
for all σ′ ∈ sons(σ) call partition(σ′, τ, T, var P)

end
elseif sons(τ ) �= ∅

for all τ ′ ∈ sons(τ ) call partition(σ, τ ′, T,var P)
else

add (σ, τ ) to Pnear
end

Note that for (σ, τ) ∈ Pfar, Lemma 2 applies. Since καβ is smooth on Bσ × Bτ ,
we may replace it by its tensorial Čebyšev interpolation,

καβ(x, y) ≈ καβ
στ (x, y) :=

pd∑
m,n=1

καβ(xσ
m, x

τ
n)Lσ

m(x)Lτ
n(y). (8)

Here, Lσ
m and Lτ

n are tensorial Lagrange polynomials of overall degree pd (i.e. of
degree p in each of the coordinate directions), with corresponding interpolation
nodes xσ

m ∈ Bσ and xτ
n ∈ Bτ , respectively. This leads to an approximation of

Aαβ via

Aαβ |σ×τ ≈ Aαβ
H |σ×τ := VσM

αβ
στ V

T
τ for (σ, τ) ∈ Pfar, (9)

where (Vσ)jm =
∫

Ω
φjL

σ
m dx and (Mαβ

στ )mn = καβ(xσ
m, x

τ
n). Moreover, there

holds the additional hierarchy

Vσ|σ′ = Vσ′Tσ′σ for σ′ ∈ sons(σ),

with a transfer matrix T given by (Tσ′σ)mn = Lσ
n(xσ′

m). The following complexity
estimate is a standard result from H2-matrix theory [1].

Theorem 1. Given T and P as constructed above, define the sparsity constant
Csp = maxσ∈T #{τ ∈ T : (σ, τ) ∈ P}. Assume that for (σ, τ) ∈ Pnear and
(j, k) ∈ σ× τ , each entry Aαβ

jk can be computed with complexity O(1). Then, for
Aαβ

H , the assembly, storage, and matrix-vector multiplication can be performed
with complexity O(Cspp

2dN). ��

4 Global H2-Approximation of A

We now define an approximation AH for the stiffness matrix A by replacing all
blocks Aαβ by their H2-matrix approximants Aαβ

H . In fact, we show that AH
can be interpreted as a global H2-approximation for A if one takes into account
the following considerations:

• In contrast to the previous section, we now consider the index set Î =
{1, . . . , dN}. Given the cluster tree T built from I = {1, . . . , N}, we make
d copies Tα of T which correspond to the indices Iα = {[1, α], . . . , [N,α]}.
This gives us a cluster tree T̂ for Î. The root of T̂ has precisely the d son
branches Tα.
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• We use the same admissibility condition (7) as before, but replace φj in the
definition of ∪σ by Φj .

• Finally, when σ = Î and σ′ = Iα, the transfer matrices Tσ′σ are just the
identities.

Theorem 2. The partitioning P̂ induced by T̂ and the modified admissibility
condition coincides blockwise with the partitioning P for Aαβ

H . Therefore, and
with the above definition of the additional transfer matrices needed, AH is an
H2-matrix. ��

This important result allows us to apply any algorithm from H2-matrix theory
to A as a whole. In particular, this concerns algorithms for the preconditioning
or recompression of H2-matrices or the assembly of A by use of adaptive cross
approximation [11]. So far, we were only able to apply the respective algorithms
blockwise, i.e. to each Aαβ individually [10].

5 Approximation Error Estimate

It remains to study the approximation error which results from replacing Aαβ

by Aαβ
H . For καβ(x, y) = ∂αβG(x − y) and καβ

στ as defined in (8), there holds

‖καβ − καβ
στ ‖∞,Bσ×Bτ ≤ C Λ(p) (1 + 2/η)−p,

with η > 0 as in (7). Here, Λ(p) grows logarithmically with p, and C is a
numerical constant which depends only linearly on dist (Bσ, Bτ )−d, cf. [2, 10].
In particular, the error decreases exponentially with the approximation order p.
Now, given CH > 0, choose p large enough such that

‖καβ − καβ
στ ‖∞,Bσ×Bτ ≤ CH for all (σ, τ) ∈ Pfar. (10)

As a first direct consequence, we obtain

Theorem 3. The matrix error in the Frobenius norm satisfies

‖Aαβ −Aαβ
H ‖F ≤ CHN max

j=1,...,N
‖φj‖2L1. ��

More interesting than the matrix error, however, is the error for the correspond-
ing bilinear forms: For a discrete magnetization mh ∈ Sd

h, let m̂h ∈ RdN denote
the coefficient vector with respect to the basis functions Φ[j,α]. Then, replacing
A by AH corresponds to replacing the bilinear form a(mh,nh) = m̂h ·An̂h by

aH(mh,nh) := m̂h ·AHn̂h for mh,nh ∈ Sd
h.

The error analysis for these bilinear forms requires some additional assumptions
on the basis functions φj : First, assume that∑

j∈σ

|supp (φj)| ≤ Cloc

∣∣∣ ⋃
j∈σ

supp (φj)
∣∣∣ (11)
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for any σ ⊆ {1, . . . , N}, with some Cloc > 0. Moreover, let Cstab > 0 be a
constant such that for any coefficient vector x ∈ RN ,

C−1
stab

∥∥∥ N∑
j=1

xjφj

∥∥∥2

L2
≤

N∑
j=1

‖xjφj‖2L2 ≤ Cstab

∥∥∥ N∑
j=1

xjφj

∥∥∥2

L2
. (12)

Note that assumptions (11) and (12) are quite natural. For a triangular mesh
and the corresponding P 1 hat functions, (11) is essentially an assumption on the
angles in the triangulation. Moreover, the usual FE bases satisfy (12) even for
a quite general class of meshes [7]. In particular, both (11) and (12) are clearly
satisfied for piecewise constant basis functions, with Cloc = 1 = Cstab.

The following theorem is our second main result:

Theorem 4. Under the above assumptions, there holds

|a(mh,nh)− aH(mh,nh)| ≤ CHClocC
2
stab|Ω|d2 ‖mh‖L2‖nh‖L2 (13)

for all mh,nh ∈ Sd
h.

Proof. For m ∈ Sd
h and σ ⊆ I, we write mσ :=

∑
�∈σ m̂�Φ�. With this notation,

the error e = a− aH for the bilinear forms reads

e(m,n) =
∑

(σ,τ)∈Pfar

∫
∪σ

∫
∪τ

mσ(x)
(
καβ − καβ

στ

)
(x, y)nτ (y) dy dx.

From (10) and the Hölder and Cauchy Inequalities, one obtains

|e(m,n)| ≤ CH
∑

(σ,τ)∈Pfar

| ∪ σ|1/2| ∪ τ |1/2‖mσ‖L2‖nτ‖L2

≤ CH
( ∑

(σ,τ)∈Pfar

| ∪ σ|| ∪ τ |
)1/2( ∑

(σ,τ)∈Pfar

‖mσ‖2L2‖nτ‖2L2

)1/2
.

Finally, a direct calculation shows that these sums can be dominated by
d2C2

loc|Ω|2 and d2C4
stab‖m‖2L2‖n‖2L2 , respectively. ��

6 Numerical Experiments

To underline our theoretical results, we performed numerical experiments for
the Landau-Lifshitz minimization problem in the large-body limit [8]. We dis-
cretized the corresponding Euler-Lagrange equations by a Galerkin method with
T -piecewise constant ansatz and test functions, where T is a triangulation of
Ω ⊂ R2 by rectangular elements which admits hanging nodes. More specifically,
we considered a ferromagnetic rod Ω = (−0.5, 0.5)× (−2.5, 2.5), with the uni-
form initial mesh consisting of N = 20 squares. For the corresponding numerical
analysis and an effective implementation, the reader is referred to [5, 6].
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The experiments were conducted using the HLib software package by S. Börm
and L. Grasedyck of the Max-Planck-Institute for Mathematics in the Sciences
(Leipzig, Germany). We utilized a Compaq/HP AlphaServer ES45 under Unix,
with 32 GB of RAM and four Alpha EV68 CPUs running at 1 GHz each. Imple-
mentational details can be found in [10, 11]; in particular, the H2-factorization
of a block Aαβ |σ×τ was stored only if this was cheaper than storing the exact
matrix block.

Tables 1–3 contain experimental results (assembly times, storage require-
ments, and the error ‖A −AH‖2 computed by a power iteration) for uniform
mesh-refinement. Moreover, we compared AH to the matrix Arcp

H obtained by
adaptive H2-recompression [4] of AH. Note that Arcp

H provides almost the same
accuracy as AH, but typically requires only 70% of the storage, and that the re-
compression times are negligible in comparison to the respective assembly times.

Finally, in Tables 4–6, we give the corresponding results for a sequence of
adaptively generated meshes. Here, T (j+1) is obtained from T (j) as follows: First,

Table 1. Assembly times (left) and recompression times (right) for AH ([ms/N], uni-
form mesh-refinement)

NNN / ppp 222 333 444 555 666
320320320 2.1 2.1 2.1 2.7 2.7
128012801280 4.3 4.3 4.3 6.0 6.1
512051205120 5.8 5.8 6.1 11.2 11.2
204802048020480 6.7 6.7 6.8 13.8 13.9
819208192081920 7.0 7.0 7.0 15.2 15.3

NNN / ppp 222 333 444 555 666
320320320 0.1 0.1 0.1 0.1 0.2
128012801280 0.1 0.1 0.2 0.2 0.3
512051205120 0.1 0.2 0.3 0.4 0.6
204802048020480 0.2 0.2 0.4 0.6 1.0
819208192081920 0.2 0.2 0.5 0.7 1.2

Table 2. Storage requirements of AH (left) and of Arcp
H (right) ([kB/N], uniform

mesh-refinement). For comparison, we give the values for the full matrix A.

NNN / ppp 222 333 444 555 666 full
320320320 5.9 6.4 7.7 9.5 11.7 10.0
128012801280 12.3 13.5 16.8 20.9 25.4 40.0
512051205120 17.8 21.1 30.0 40.5 50.9 160.0
204802048020480 21.0 26.0 39.5 56.9 76.4 640.0
819208192081920 22.8 28.9 45.2 67.0 92.9 2560.0

NNN / ppp 222 333 444 555 666
320320320 5.8 5.9 6.0 7.4 7.5
128012801280 12.1 12.3 12.8 17.0 17.3
512051205120 17.4 18.4 20.7 32.4 33.1
204802048020480 20.4 21.7 24.3 41.9 43.4
819208192081920 22.1 23.6 27.4 47.3 49.3

Table 3. Errors ‖A−AH‖2 (left) and ‖A−Arcp
H ‖2 (right) (uniform mesh-refinement)

NNN / ppp 222 333 444 555 666
320320320 2.7−5 2.9−6 3.3−7 3.5−8 4.0−9

128012801280 1.5−5 1.6−6 1.7−7 1.8−8 2.1−9

512051205120 5.5−6 5.8−7 6.0−8 6.1−9 6.7−10

204802048020480 1.7−6 1.8−7 1.8−8 1.8−9 2.1−10

NNN / ppp 222 333 444 555 666
320320320 3.7−5 3.6−6 2.9−7 2.3−8 2.0−9

128012801280 2.5−5 2.0−6 2.6−7 2.0−8 1.9−9

512051205120 8.4−6 9.2−7 1.3−7 8.0−9 6.7−10

204802048020480 2.4−6 3.0−7 4.2−8 2.2−9 2.7−10
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Table 4. Assembly times (left) and recompression times (right) for AH ([ms/N], adap-
tive mesh-refinement)

NNN / ppp 222 333 444 555 666
308308308 2.0 2.0 2.1 2.3 2.4
124412441244 4.4 4.4 4.4 6.2 6.2
654865486548 5.0 5.1 8.5 9.2 13.5
262042620426204 6.1 6.1 10.9 12.6 18.4
117524117524117524 7.0 7.2 13.3 13.4 22.5

NNN / ppp 222 333 444 555 666
308308308 0.1 0.1 0.1 0.1 0.2
124412441244 0.1 0.1 0.1 0.2 0.3
654865486548 0.2 0.2 0.3 0.5 0.6
262042620426204 0.2 0.3 0.3 0.8 0.9
117524117524117524 0.2 0.3 0.5 0.9 1.3

Table 5. Storage requirements of AH (left) and of Arcp
H (right) ([kB/N], adaptive

mesh-refinement). For comparison, we give the values for the full matrix A.

NNN / ppp 222 333 444 555 666 full
308308308 5.7 6.1 7.3 9.0 11.5 9.6
124412441244 12.7 13.9 17.3 21.0 25.0 38.9
654865486548 18.0 23.8 34.2 46.5 54.9 204.6
262042620426204 21.8 30.7 46.6 66.0 80.4 818.9
117524117524117524 24.9 33.9 54.0 76.8 101.3 3672.6

NNN / ppp 222 333 444 555 666
308308308 5.5 5.6 5.6 6.5 6.6
124412441244 12.3 12.6 12.8 17.3 17.5
654865486548 16.8 18.0 26.5 29.1 37.9
262042620426204 20.8 30.7 35.8 40.0 53.1
117524117524117524 23.6 25.9 41.2 43.8 65.6

Table 6. Errors ‖A−AH‖2 (left) and ‖A−Arcp
H ‖2 (right) (adaptive mesh-refinement)

NNN / ppp 222 333 444 555 666
308308308 3.9−5 3.9−6 6.1−7 3.9−8 1.9−9

124412441244 2.5−5 2.8−6 2.9−7 2.7−8 4.1−9

654865486548 1.4−5 1.6−6 1.5−7 1.6−8 2.5−9

262042620426204 5.1−6 5.8−7 5.5−8 6.8−9 9.7−10

NNN / ppp 222 333 444 555 666
308308308 1.6−4 1.3−5 2.4−6 1.0−7 4.6−9

124412441244 1.6−4 7.5−6 1.1−6 4.7−8 8.6−9

654865486548 3.1−5 2.6−6 2.1−7 2.6−8 3.2−9

262042620426204 6.8−6 6.4−7 5.7−8 6.8−9 9.7−10

T (j) is refined uniformly. Then, in a second step, we additionally refine either the
four corner elements of Ω (for j even) or all the elements along the edges of Ω
(for j odd). Meshes of this type are observed in [6] for an adaptive mesh-refining
strategy based on a residual a posteriori error estimate.
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Abstract. This paper discusses preconditioners for the iterative solu-
tion of nonsymmetric indefinite linear algebraic systems of equations as
arising in modeling of the purely elastic part of glacial rebound processes.
The iteration scheme is of inner-outer type using a multilevel precondi-
tioner for the inner solver. Numerical experiments are provided showing
a robust behavior.

1 Introduction

The need to approximate the Schur complement of a matrix often arises in
the context of constructing preconditioners for iterative solution methods for
linear systems of equations. One example is the framework of block factorized
preconditioners. These are based on some block 2×2 form of the original matrix
A and its exact factorization

A =
[
A11 A12
A21 A22

]
=

[
I 0

A21A
−1
11 I

] [
A11 A12
0 S

]
, (1)

where S = A22−A21A
−1
11 A12 is the Schur complement. A preconditioner to A is

then sought in the form

R =
[

I 0
A21P

−1 I

] [
P A12
0 Q

]
, (2)

where P is an approximation of A11 and Q is an approximation of S.
The block 2× 2 structure of the matrix can be obtained in various ways.

(i) It can correspond to a splitting of the mesh nodes and the corresponding
degrees of freedom into fine and coarse, related to a refinement of some
given (coarse) mesh.

(ii) It can be due to a splitting of the nodes into fine and coarse, where the
coarse mesh may be obtained via some agglomeration technique.

(iii) The splitting can be based also on splitting the matrix graph into indepen-
dent sets.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 113–120, 2006.
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All these techniques can be applied recursively, leading to a multilevel pre-
conditioner, in which the block Q in Equation (2) is again written in the same
block-factorized form. Setting (i) is the framework of the Algebraic Multilevel
Iteration (AMLI) methods, originally developed in the hierarchical basis func-
tions (HBF) framework ([3] and followup work). An example of a method from
class (ii) is the AMGE method [8]. As representatives of class (iii) we mention
[14] and [7].

Another context where approximations of a Schur complement matrix are
required is that to precondition saddle point matrices

A =
[
M BT

B −C

]
, (3)

which arise when solving Stokes problem, Oseen’s problem, or linear systems
from constraint optimization. For these matrices, one of the frequently used
preconditioner is of block lower- or upper-triangular form, for example

D =
[
D1 0
B −D2

]
, (4)

where D1 ≈ M and D2 is an approximation of the negative Schur complement
S = C+BD−1

1 BT . For more details on the spectral properties of D−1A we refer
to [2], and to [6] for a recent survey on preconditioners for saddle point matrices.

When constructing an approximation Q of the true Schur complement S,
where the latter is in general a full matrix, we aim at achieving

1 a good approximation of S, for example, in the symmetric case, satisfying a
spectral equivalence relation of the form βS ≤ Q ≤ βS, where β, β do not
depend on problem or discretization parameters;

2 a sparse matrix Q, to save computational cost;
3 an approximation, which can easily be handled in a parallel environment.

In some cases it is known how to obtain a good quality approximation for the
Schur complement. For example, for red-black orderings on regular meshes, A11
becomes diagonal and even the exact Schur complement is computed at low cost.
In some applications it is enough to approximate A11 by its diagonal or by some
sparse approximate inverse of A11. For other problems S can be approximated on
a differential operator level, as done for the Oseen’s problem in [9]. For the Stokes
problem it is known that a good approximation of BM−1BT is the pressure
mass matrix. For the AMLI-type of methods, the usual approximation of S is
the coarse mesh stiffness matrix.

In Section 2 we describe a method to construct Q, possessing all properties
1–3. In Section 3 we describe a problem, which leads to the solution of systems
with saddle point matrices. To precondition those, we use a preconditioner of
the form (4), where in addition, systems with D1 and D2 are solved using a
preconditioner of the form (2).

Although the analysis of the above mentioned Schur complement matrices
is done so far for symmetric positive definite (spd) matrices only, we include
some tests with non-symmetric matrices, which indicate that the validity of the
theoretical results can be extended beyond the class of spd problems.
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2 Schur Complement Approximation Obtained Via
Assembly of Element Schur Complements

In this paper we stay in the framework (i), i.e., we assume that two (or more)
nested meshes are obtained from a given coarse mesh by regular refinements.
The two-by-two structure of A corresponds to a splitting of the mesh nodes into
coarse (belonging to the coarse mesh) and fine (the rest). The system matrix A
arises from a finite element (FE) discretization of a (system of) partial differential
equation(s), and it is assembled from local element matrices Ae.

6

23

4 1 5

39 8

4 5 2

716

Fig. 1. A macroelement on a quadrilateral and a triangular mesh

We assume that e represents a macroelement, depicted in Figure 1 for trian-
gular and quadrilateral meshes. The local macroelement stiffness matrix admits
the same 2× 2 block structure as the global matrix, i.e.

Ae =
[
Ae

11 A
e
12

Ae
21 A

e
22

]
.

We then assemble an approximate Schur complement Sa from local Schur com-
plements, Sa =

∑
e S

e, Se = Ae
22−Ae

21A
e
11

−1Ae
12, computed exactly on macroele-

ment level (originally proposed in [10]). The so-constructed approximation Sa

possesses some attractive properties.

(a) Clearly, Sa is sparse by construction.
(b) In [10] it is shown that for symmetric positive definite matrices, Sa is spec-

trally equivalent to the true Schur complement S, namely the relation βS ≤
Q ≤ S holds for second order elliptic problems. The estimated β in [10] is not
optimal with respect to some problem parameters and can be improved. In
what follows, we assume that β is independent of discretization and problem
parameters, such as anisotropy, for instance.

(c) From the construction of Sa, which is the same as for the global stiffness
matrix, it is clear that the parallelization techniques applied to handling FE
matrices are applicable for Sa as well.

(d) Sa inherits the properties of A and automatically generates symmetric or
nonsymmetric approximations of S, which is not true for some of the other
above mentioned techniques. For instance, C+Bdiag(M)−1BT will be sym-
metric even if M is nonsymmetric.

In addition, the framework can be used recursively and permits multilevel
extensions. As we see from the numerical experiments, it works well even for
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some nonsymmetric problems. The theory, however, is not yet completed. When
constructing a multilevel preconditioner of type (2), not using the hierarchical
basis, and in order to assure that R is positive definite and κ(R−1A) is indepen-
dent of the mesh size, several issues have to be addressed. The approximation
P cannot be chosen as an arbitrary p.d. approximation of A11. To observe this,
we let βS ≤ Sa ≤ S, and then we have

vTRv = vTAv − vT
1 (A11 − P )v1 + vT

2 (Sa − S)v2 + vT
2 A21(P−1 −A−1

11 )A12v2

= (vTAv − vT
2 Sv2) + vT

2 Sav2 + vT
2 A21(P−1 −A−1

11 )A12v2

+ vT
1 (A11 − P )v1. (5)

Hence, the last two terms are positive and positive definiteness of R is guaran-
teed, only if P ≤ A11 and P−1 ≥ A−1

11 . The issue is discussed in [11] and some
safe ways to approximate A11 are presented.

3 Numerical Experiments

We test the above preconditioning methods on a problem from modeling of
glacial rebound, including only the purely elastic response of the viscoelastic
earth to glaciation and deglaciation.

A 2D flat Earth model is subjected to a Heaviside load of a 1000 km wide and 2
km thick ice sheet. The size of the domain is 10000 km width and 4000 km depth
and the boundary conditions (b.c.) are homogenous Dirichlet b.c. on the boundary
y = −4000 km, symmetry b.c. on the boundaryx= 0, and homogeneous Neumann
b.c. on the boundary x = 10000 km and on the boundary y = 0, x > 1000 km. The
domain is discretized with a quasi-regular quadrilateral finite element mesh.

The model is described by the following system of PDEs

−2μΔu− μ∇×∇u−∇(b · u) + c(∇ · u)− μ∇p = 0
μ∇ · u− μ

λp = 0, (6)

where u = [u v]T are the displacements, and p is the kinematic pressure.
The first order terms in Equation (6), describe the advection of pre-stress

(∇(b · u)), where b is the pre-stress gradient, and the buoyancy (c(∇ · u)),
arising from density changes. The material parameters μ = E/2/(1 + ν) and
λ = 2μν/(1 − 2ν) are the Lamé coefficients, where ν ∈ [0, 0.5] is the Poisson
number and E = 400 GPa is the Youngs modulus. For details on the model, and
how Equation (6) is related to the linearized Navier-Stokes equation, see [5], and
the references therein.

For the discretization we use standard bilinear basis functions both for u and
p, and a consistently stabilized finite element formulation of Equation (6) (see
[5]). The problem reads as follows.

Find uh ∈ Vh ⊂ H1
0 (Ωh) and ph ∈ P h ⊂ P ≡ {p ∈ L2(Ωh) :

∫
Ωh
μp = 0}

such that

a(uh,vh) + b(vh, ph) = 〈vh, l〉 ∀vh ∈ Vh

b(uh, qh)− c(ph, qh)− σd(ph, qh) = −σe(qh,uh, ph,b, c) ∀qh ∈ P h,
(7)
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where e(q,u, p,b, c) =
∫

Ω

[
qΔ(u · b)− μ

λpq∇ · c
]

and d(p, q) =
∫

Ω

(
μ+ μ2

λ

)
∇p·

∇q. The bilinear form 〈·, ·〉 is a traction term, arising from the loading boundary
condition.

For this problem, b = [0, ρg] and c = [0, ρg], where g is the gravitational
acceleration and ρ = 3000 kg m−3. For these b and c, the bilinear form a(u,v)
in Equation (7) is coercive, and thus, the discrete solution exists and is unique.

For the finite element discretization we use the C++ package deal.II [4], and
for the numerical linear algebra the package PETSc [12]. The tests are performed
on a Sun Ultra-Sparc IV 1050 MHz processor running under Sun Solaris 9.

The matrix in the so-arising linear system is of the form (3) and it is solved us-
ing the generalized conjugate gradient-minimized residual (GCG-MR) method.
The iterative method is preconditioned with D and solved until a relative stop-
ping criterion 10−6 is achieved.

To define a preconditioner D1 for M , we order the displacements u using the
so-called separate displacement ordering (sdo), i.e., we order all displacements
in the x-direction first. This introduces a 2 × 2 block structure in M , M =[
M11 M12
M21 M22

]
. We recall thatM is non-symmetric, and that it is a sum of a(u,v) =

â(u,v)+ ā(u,v), where â(u,v) =
∫

Ω
[2μ

∑2
k=1(∇uk) ·(∇vk)−μ(∇×u) ·(∇×v)]

and ā(u,v) =
∫

Ω
[−∇(u · b)v + (∇ · u)(c · v)].

We test three preconditioners when solving with M , D1, D̂1 and D̃1. The
bilinear form a(u,v) is dominated by the elastic part â(u,v). This motivates the
choice of the preconditioner D̂, where M is solved by an inner iteration method,
preconditioned by a symmetric block-diagonal matrix D̂1 (d̂1ij = â(ui,vj)), and
the preconditioner (2) is applied to the latter matrix.

Due to Korn’s inequality, â(u,v) is spectrally equivalent to the scaled vector
Laplacian ã(u,v) =

∫
Ω 2μ

∑2
k=1(∇uk) · (∇vk). This motivates the choice of

the preconditioner D̃, in which the inner solver is preconditioned by a block-

diagonal matrix D̃1 =

[
D̃

(1)
1

D̃
(2)
1

]
. The preconditioner (2) is applied to each

of the diagonal blocks.
In the preconditioner D, the inner solver for M is preconditioned with (2).

M is nonsymmetric, so we construct the preconditioner without a theoretical
justification. Nevertheless, the numerical results show that it is stable and scal-
able, and this is also the case for the inner solver for the nonsymmetric matrix
D2. Whenever there is no risk of confusion, the˜and̂are omitted and D and
D1 indicate generic preconditioner for A and M . The diagonal blocks of D, D1
and D2, are solved with GCG-MR, to relative stopping criteria τ and 10−6,
correspondingly.

The block-factorized multilevel preconditioners for the inner solvers are sta-
bilized with two inner iterations on every second level, and the block P in (2) is
approximated with an incomplete LU-factorization (ILUT), (see [13]). The pa-
rameters for ILUT are; drop tolerance – 10−5, column pivot – 10−2, fill-in — equal
to the maximum number of nonzero elements per row in the underlying matrix.
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Table 1. Dependence of the preconditioner on τ , the relative tolerance criterion in the
inner solver of D1. The problem size N = 31395 and ν = 0.5.

D D D
τ # iter t (s) # iter t (s) # iter t (s)

5e-1 18(3,1) 19.94 16(2,1) 16.25 20(2,1) 16.56
1e-1 13(4,1) 20.27 13(3,1) 17.65 15(4,1) 20.79
1e-2 12(6,1) 26.11 12(5,1) 22.19 13(8,1) 28.66
1e-3 12(8,1) 32.34 12(7,1) 26.77 12(11,1) 36.48
1e-4 12(10,1) 38.81 12(8,1) 32.12 12(14,1) 45.92
1e-5 12(12,1) 45.25 12(10,1) 37.85 12(17,1) 54.52
1e-6 12(14,1) 51.56 12(12,1) 43.75 12(19,1) 62.76

The numerical experiments illustrate the performance of the proposed precon-
ditioner D, depending on the accuracy of the inner solver for D1, τ , the Poisson
number ν, the problem size N and the number of levels l in (2). The notations
in the tables are the following. The first iteration count in every column is the
number of outer iterations, the figures in the parentheses are the average number
of inner iteration for D1 and D2, and the last figure is the time to set up the
preconditioner and the solve with A once.

Table 1 shows how the performance of D is affected by the accuracy of the
inner solver for D1, and one finds that the smallest τ gives the fastest solution
time. The performance of D2 is extraordinary good as only one iteration is
needed to reach the required convergence. This convergence rate is, as shown
in Tables 2–4, independent of problem size, Poisson number and the number of
mesh levels.

Table 2 depicts how the number of outer iterations rises as the material be-
comes incompressible. This follows well the result observed in [5]. The increase in
solution time agrees with the number of outer iterations since the inner iteration
count is unaffected by the growth in ν.

Table 3 shows the dependence on the problem size. For large enough problems
N > 120000, a jump in the inner iteration count, similar to what is observed
in [10] for nearly incompressible material, is seen for D and D̂, destroying the
scalability of those preconditioners. For D̃ the solver nearly scales with N both
in iteration count and solution time.

The results in Table 4 show that there exist a balance between the number
of levels and the solution time. The cost to solve a larger coarse mesh matrix

Table 2. Dependence of the preconditioner on the Poisson number ν. The problem
size N = 31395 and τ = 5 · 10−1.

D D D
ν # iter t (s) # iter t (s) # iter t (s)

0.2 11(2,1) 12.97 10(2,1) 12.67 13(2,1) 12.49
0.3 12(2,1) 15.13 13(2,1) 13.77 14(2,1) 12.94
0.4 14(3,1) 16.74 14(2,1) 14.85 17(2,1) 14.49
0.5 18(3,1) 19.94 16(2,1) 16.25 20(2,1) 16.56
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Table 3. Performance of the preconditioner, depending on the problem size N . The
Poisson number ν = 0.5 and τ = 5 · 10−1.

D D D
N # iter t (s) # iter t (s) # iter t (s)

8019 18(2,1) 3.71 16(2,1) 3.29 19(2,1) 3.2
31395 18(3,1) 19.94 16(2,1) 16.25 20(2,1) 16.56
124227 22(6,1) 181.9 17(3,1) 98.9 18(2,1) 74.94
494211 24(12,1) 1754.97 23(10,1) 1355.83 18(3,1) 392.38

Table 4. Performance of the preconditioner, depending on the number of levels l. The
Poisson number ν = 0.5 and τ = 5 · 10−1.

D D D
# iter t (s) # iter t (s) # iter t (s)

N = 124224
l = 2 16(3,1) 95.45 16(3,1) 95.69 18(2,1) 79.64
l = 3 15(3,1) 86.66 15(3,1) 84.3 18(2,1) 76.11
l = 4 19(5,1) 132.83 17(3,1) 91.29 18(2,1) 73.26
l = 5 19(5,1) 143.63 17(3,1) 94.49 18(2,1) 75.08

N = 494211
l = 2 18(5,2) 778.85 19(5,2) 808.47 18(2,2) 406.16
l = 3 19(5,2) 810.08 20(5,2) 818.88 17(2,2) 385.98
l = 4 20(11,2) 1392.75 22(10,2) 1305.02 18(3,2) 414.64
l = 5 21(10,2) 1350.98 21(11,2) 1399.93 18(3,2) 421.53

is balanced by less overhead in the short recurrence, which will be even more
pronounced for parallel implementations.

4 Conclusions

We present a preconditioner for a nonsymmetric saddle point problem, which
exhibits a robust behavior provided that its diagonal blocks well approximate
the pivot block M , and the (negative) Schur-complement of the system matrix.

The block D2 in the outer preconditioner approximates this Schur com-
plement, and it is assembled from element Schur matrices. Numerically, this
approximation shows to work well.

The blocks D1 and D2 are solved with an inner iterative solver, precondi-
tioned with an algebraic multilevel preconditioner. For both blocks, approx-
imated (coarse mesh) Schur complements are assembled from element Schur
complements.

The numerical experiments show also that a low accuracy for the inner solver
for M , combined with a short recursion in the multilevel preconditioner, leads to
the shortest solution time. For not strongly nonsymmetric blocks M , the choice
of a block-diagonal, spectrally equivalent and symmetric preconditioner for M
gives an outer preconditioner that is robust and scalable.
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Algebraic Multigrid
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Abstract. We are interested in the design of efficient algebraic multi-
grid (AMG) methods for the solution of large sparse systems of linear
equations arising from finite element (FE) discretization of second-order
elliptic partial differential equations (PDEs). In particular, we introduce
the concept of so-called “edge matrices”, which–in the present context–
are extracted from the individual element matrices. This allows for the
construction of spectrally equivalent approximations of the original stiff-
ness matrix that can be utilized in the framework of AMG.

The edge matrices give rise to modify the definition of “strong” and
“weak” connections (edges), which provides a basis for selecting the
coarse-grid nodes in algebraic multigrid methods. Moreover, a repro-
duction of edge matrices on coarse levels offers the opportunity to com-
bine classical coarsening algorithms with effective (energy minimizing)
interpolation principles involving small-sized “computational molecules”
(small collections of edge matrices). This yields a flexible and robust new
variant of AMG, which we refer to as AMGm.

1 Introduction

We are concerned with the solution of large-scale systems of linear equations

Au = f (1)

where A is symmetric and positive definite (SPD). Moreover, we want to as-
sume that A stems from assembling small-sized symmetric positive semidefinite
(SPSD) matrices AT , e.g., element matrices, which typically arise out of finite
element modeling of self-adjoint elliptic boundary-value problems (BVPs).

In many instances (of this huge class of problems) algebraic multigrid (AMG)
methods [2, 11] can be used to build highly efficient and robust linear solvers
[5, 11, 12]. AMG using element interpolation (AMGe) [3, 7, 8], so-called spectral
AMGe [4], and AMG based on smoothed aggregation [13, 14] have even broad-
ened the range of applicability of the classical AMG algorithm [11]. These more
recent developments are based on techniques of energy-minimizing interpola-
tion (or prolongation). Our approach can be viewed as a further development
(generalization) of the so-called element preconditioning technique introduced
in [6, 10].

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 121–129, 2006.
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The computation of edge matrices, we are proposing in the present paper,
is motivated by the fact that they provide a good starting point for building
efficient AMG components, while keeping their set-up costs low. We suggest a
modification of the concept of “strong” and “weak” connections, as it is used
in the process of coarse-grid selection (and interpolation) with classical AMG.
The interpolation component in our approach is very similar to the element in-
terpolation known from AMGe methods. However, the computational molecules
involved in the arising local min-max problem are assembled from edge matrices
in our case.

First tests indicate the robustness of the considered method to which we refer
as AMGm (Algebraic MultiGrid based on computational molecules).

2 The Concept of Edge Matrices in AMG

2.1 Edge Matrices

Let AT be an SPSD (nd)× (nd) element matrix of a Lagrangian finite element.
Here, n denotes the number of nodes of the element T , and d denotes the number
of degrees of freedom (dofs) associated with each node, i.e., d = 1 corresponds
to the case of scalar problems. Further, let ET :={eij : 1 ≤ i < j ≤ n} denote the
set of (topological) edges of the element T .

Definition 1. An (nd) × (nd) matrix Eij whose entries are zero except for a
(2d)×(2d) submatrix corresponding to the dofs associated with nodes {i, j} defin-
ing an edge eij ∈ ET , 1 ≤ i < j ≤ n, is called an edge matrix if it preserves the
kernel of AT , i.e., Eijv = 0 for all vectors v ∈ ker(AT ).

One can ask for the class of SPSD element matrices AT that can be split exactly
(disassembled) into SPSD edge matrices, i.e., for a characterization of SPSD
matrices that allow for a semipositive splitting. For the scalar case d = 1 one can
prove the following result, see Reference [9].

Theorem 1. A symmetric (element) matrix AT has a representation

AT =
∑

eij∈ET

Eij (2)

with Eij being SPSD (Eij ≥ 0) if and only if the L-ation of AT is SPSD. If, in
addition, AT is singular, the splitting (2) is unique.

Remark 1. Note that if AT = (aij)i,j is not an L-matrix, then there is a unique
L-matrix CT = (cij)i,j such that |aij | = |cij | for all i, j. We say that CT is the
L-ation of AT .1

1 A real N×N matrix that has only nonnegative diagonal entries and nonpositive
off-diagonal entries is called an L-matrix.



On the Utilization of Edge Matrices in Algebraic Multigrid 123

An immediate consequence of Theorem (1) is:

Corollary 1. For d = 1, a singular SPSD matrix AT = (aij)i,j has an exact
semipositive splitting if and only if it is a singular M-matrix.2

Remark 2. For d > 1, the matrices that allow for an exact semipositive splitting
give rise to a generalization of symmetric (singular) M-matrices.

However, in case an exact semipositive splitting of AT into edge matrices does
not exist (the case of non-M matrices), one can relax the problem and admit
general edge matrices. Alternatively, instead of requiring the exact splitting (2),
one can switch to the following Problem (P1).

(P1): Find a set of edge matrices {Eij} that provides an approximate splitting

AT = BT + RT =
∑

eij∈ET

Eij + RT , Eij ≥ 0 ∀eij ∈ ET (3)

which minimizes the general spectral condition number κ(AT , BT ):=λmax/λmin:

λmax := inf {λ : xTAT x ≤ λxTBT x ∀x} (4)
λmin := sup{λ : xTAT x ≥ λxTBT x ∀x}. (5)

Dealing with scalar second-order elliptic PDEs the individual element (stiffness)
matrices throughout have a one-dimensional kernel (spanned by the constant
vector (1, 1, . . . , 1)T ). Thence, Corollary (1) implies that the solution of the con-
strained minimization problem (P1)-((3)–(5)) results in the best approximation
of AT by a singular M-matrix BT in the sense of minimizing its (general) spec-
tral condition number. From this viewpoint the above problem has already been
considered in References [6, 10]. Symbolic methods turned out to speed up the
(numerical) solution of this kind of (local) low-dimensional optimization prob-
lems considerably [10] (for the case n = 3, 4 and d = 1). The resulting (global)
M-matrix B, assembled from the BT ’s, was used to build a preconditioner for
A, or, more precisely, (classical) AMG was applied to B instead of A.

Regarding (coupled) systems of second-order elliptic PDEs, e.g., in structural
mechanics, the solution of Problem (P1), but now for d > 1, is the key to
generalize this approach in a proper way. As one easily finds, even the element
matrices arising in the plane-stress elasticity problem (approximating the x- and
y-displacements in the finite element space of piecewise linear functions) cannot
exactly be split into edge matrices (and thus an exact semipositive splitting of
AT does not exist a fortiori). We therefore propose to solve Problem (P1) as a
basis for constructing efficient AMG methods for SPD non-M matrices (in this
more general setting of edge matrices).

2 According to Reference [1] a symmetric matrix C that has nonpositive offdiagonal
entries is an M-matrix if and only if it is nonnegative definite.
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2.2 Reference to AMGm

In a recent work [9], a new variant of algebraic multigrid (AMGm) has been
considered (for scalar problems). The major new aspects of this approach are:

Definition of strong connections (strong edges). Based on the knowledge
of edge matrices the concept of “strong” edges can be established:

Definition 2. (Direct connections) Any two nodes i and j are said to be directly
connected iff there is an edge {i, j} connecting nodes i and j; let Eij denote the
corresponding edge matrix.

Now for every loop of length 3 (triangle) in the algebraic grid with direct con-
nections (edges) {i, j}, {j, k}, and {k, i} we consider the molecule

M (i,j,k):=Eij + Ejk + Eki, (6)

which in general is a (3d)× (3d) matrix. Furthermore, for d ≥ 1, let

M:={M (i,j,k) = (Cpq)p,q : Cpp �= 0 ∀p = 1, 2, 3} (7)

be the set of all such local matrices given as the sum of three edge contributions
(for edges that form a triangle) for which the three d×d diagonal blocks (asso-
ciated with the nodes i, j, k) are SPD. Then the following definition provides a
(symmetric!) strong connectivity relation (“strong” edges).

Definition 3. The strength of a (direct) connection {i, j} is measured by

sij := min{1, min
M(i,j,k)∈M�

{
‖Eij‖

2 ·
√
‖Cpipi‖ · ‖Cpjpj‖

}
} (8)

where connections with sij ≥ θ are said to be strong, 0 < θ < 1 (e.g., θ = 1/4).
Here pi and pj denote the local numbers associated with nodes i and j, i.e.,
1 ≤ pi ≡ p(i), pj ≡ p(j) ≤ 3, and Cpipi and Cpjpj are the corresponding d×d
blocks in the diagonal of M (i,j,k).

Remark 3. For the scalar case d = 1, (regarding a triangular mesh) formula (8)
reduces to

sij := min{1, min
M(i,j,k)∈M�

{|cpipj |/
√
|cpipicpjpj |}} (9)

and essentially yields the energy cosine of the abstract angle between the i-th
and j-th (nodal) basis function.

Locally energy-minimizing interpolation (based on molecules). The
task is to define suitable computational molecules, assembled from edge ma-
trices, for building interpolation. Assume that “weak” and “strong” edges have
been identified, the coarse grid has been selected, and a set of edge matrices is
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Fig. 1. Formation of interpolation molecule

available. Then for any f-node i (to which interpolation is desired) we define a
so-called interpolation molecule

M(i) :=
∑
k∈Sc

i

Eik +
∑

j∈N f
i :∃k∈Sc

i ∩Nj

Eij +
∑

k∈Sc
i ∩Nj : j∈N f

i

Ejk. (10)

This molecule arises from assembling all edge matrices associated with three
types of edges: The first sum corresponds to the strong edges connecting node
i to some coarse direct neighbor k (interpolatory edges), i.e., k ∈ Sc

i . The sec-
ond sum represents edges connecting the considered f-node i to any of its fine
direct neighbors j being directly connected to at least one c-node k ∈ Sc

i , i.e.,
j ∈ N f

i : ∃k ∈ Sc
i ∩ Nj . Finally, the last sum in (10) corresponds to these lat-

ter mentioned connections (edges) between fine direct neighbors j and strongly
connected coarse direct neighbors k of node i, i.e., k ∈ Sc

i ∩ Nj : j ∈ N f
i . The

formation of an interpolation molecule is illustrated in Figure 1.
Now, let

M(i) = M =
(
Mff Mfc

Mcf Mcc

)
(11)

be the interpolation molecule where the 2×2 block structure in (11) corresponds
to the nf

M f-nodes and the nc
M c-nodes the molecule is based on. Assuming that

M(i) is SPSD and Mff is SPD the interpolation

Pfc:=−M−1
ff Mfc (12)

then provides the minimum-energy extension (harmonic extension) with respect
to M(i). For a more detailed discussion, see [9].

Reproduction of edge matrices (for coarse-edges). We suggest the fol-
lowing practicable procedure for an inexpensive computation of coarse-edge
matrices:

– Firstly, one generates a coarse edge connecting any pair of c-nodes {i, j} if
either or both of the statements below are true:
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Fig. 2. Basic molecule for coarse-edge matrix

1. Nodes i and j are directly connected on the fine grid D.
2. There exists an f-node k such that nodes i and j both are strongly

connected to k, i.e., {i, j} ⊂ Sc
k.

– Secondly, for any coarse edge {i, j} one forms a specific computational mole-
cule M (i,j), which is a pre-stage for the computation of the corresponding
edge matrix; here, the molecule M (i,j) accumulates the contributions (edge-
matrices) of all edges that yield paths of length two, starting in node i,
passing some f-node k, and ending in node j, including also the contribution
of a direct edge {i, j} if there is one, see Figure 2.

– Finally, one generates the coarse-edge matrix by computing the Schur
complement of M (i,j) with respect to its two c-nodes (eliminating all dofs
associated with all of its f-nodes), i.e.,

Ec
ij := M (i,j)

cc −M (i,j)
cf

(
M

(i,j)
ff

)−1
M

(i,j)
fc . (13)

Thus, another particular class of molecules can be used for computing coarse-
edge matrices. As can be seen from Figure 2, the important pairs of edges in
these molecules are those connecting f-nodes k to both of the c-nodes i and j,
which are going to be connected via a coarse edge. Additionally, one could take
into account the (fine) edges connecting the corresponding f-nodes among each
other, as indicated by the dotted lines in Figure 2.

AMGm. Regarding the multilevel algorithm, we notice that the AMGm method
agrees with classical AMG, except for the coarse-grid selection and the interpo-
lation component, which are controlled by edge matrices in case of AMGm. One
can also view this as involving an auxiliary problem–the one determined by the
edge matrices–in the coarsening process. Similar to AMGe, we use an interpola-
tion rule that is based on local energy minimization (12) but now with respect
to the molecules (10), which replace the local neighborhood matrices (assem-
bled from certain element matrices) as used in AMGe. The coarse-grid matrices,
however, are still computed via the usual Galerkin tripple matrix product, i.e.,
Ak+1 = PT

k AkPk at all levels k = 0, 1, . . . , l − 1.
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3 Numerical Results

The numerical results presented in this section are for the model problem:

Problem 1.

−∇ · [C∇u] = f in Ω ⊂ R3 (14)
u = g on ΓD ⊂ ∂Ω (15)

∂u

∂n
= 0 on ΓN ⊂ ∂Ω \ ΓD, (16)

where

C =

⎛⎝1 0 0
0 ε 0
0 0 ε

⎞⎠ , 0 < ε ≤ 1, f = 0, Ω = (−3, 3)3 \ (Ω1 ∪Ω2),

Ω1 = (0.2, 0.3)×(−0.5, 0.5)2, Ω2 = (−0.3,−0.2)×(−0.5, 0.5)2,

ΓN = ∂[(−3, 3)3], ΓD = ∂Ω1 ∪ ∂Ω2,

and

g =
{

1 on ∂Ω1
−1 on ∂Ω2

We obtained similar convergence rates for rotated diffusion equations, i.e., the
case in which the matrix C is no longer diagonal, see Reference [9].

Problem 1 was discretized using piecewise linear nodal-basis functions to build
finite element spaces of increasing dimension. The underlying (unstructured)
triangular meshes were generated using the NETGEN3 mesh generator, which
is integrated in the software package NGSolve4.

Note that the considered global stiffness matrices are not contained in the class
of M-matrices. Especially for small values of the parameter ε, or, equivalently,
strong mesh anisotropy, the positive off-diagonal entries gain weight and the
variation from an M-matrix increases.

All linear systems were solved using the conjugate gradient method applying
a single AMGm iteration for preconditioning (PCG). The threshold parameter
θ was 1/6 in all computations.

We compared V- and W-cycles, performing one respectively two symmetric
Gauß-Seidel pre- and post-smoothing step(s). In order to reduce computational
complexity, the considered W-cycle was truncated to a V-cycle on every other
level; it is therefore denoted as W(1,1)� hereafter. Table 1 contains the number
of PCG iterations that was required to reduce the residual norm by a factor
10−8, the average convergence factor ρ, as well as the grid complexity σΩ and
the operator complexity σA. 5

3 http://www.hpfem.jku.at/netgen/index.html
4 http://www.hpfem.jku.at/ngsolve/index.html
5 σΩ is the ratio of the total number of points on all grids to that on the fine grid,

whereas σA is the ratio of the total number of nonzero entries in all matrices to that
in the fine-grid matrix.
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Table 1. AMGm based on semipositive splittings

#elements 3269 26152 209216 1673728
#levels 2 4 6 8

#it. ρ #it. ρ #it. ρ #it. ρ

ε = 1: V(1,1) 7 0.05 9 0.12 11 0.17 12 0.21
V(2,2) 5 0.02 6 0.04 7 0.07 9 0.11
W(1,1)� 7 0.05 8 0.10 10 0.14 10 0.16
σΩ 1.28 1.40 1.42 1.42
σA 1.80 2.65 2.93 3.04

ε = 0.5: V(1,1) 7 0.06 10 0.14 12 0.19 14 0.25
V(2,2) 5 0.02 7 0.05 8 0.09 9 0.12
W(1,1)� 7 0.06 9 0.11 10 0.15 11 0.19
σΩ 1.29 1.40 1.42 1.43
σA 1.84 2.64 2.94 3.06

ε = 0.1: V(1,1) 9 0.11 12 0.20 14 0.25 17 0.33
V(2,2) 6 0.04 7 0.07 9 0.13 12 0.21
W(1,1)� 9 0.11 11 0.18 11 0.19 12 0.21
σΩ 1.34 1.47 1.49 1.48
σA 1.99 2.97 3.31 3.32

ε = 0.05: V(1,1) 10 0.16 13 0.24 16 0.30 20 0.39
V(2,2) 7 0.07 10 0.14 10 0.15 14 0.26
W(1,1)� 10 0.16 12 0.19 12 0.21 13 0.23
σΩ 1.38 1.54 1.54 1.52
σA 2.10 3.32 3.59 3.59

ε = 0.01: V(1,1) 12 0.20 21 0.41 27 0.50 32 0.56
V(2,2) 8 0.10 14 0.26 21 0.41 24 0.46
W(1,1)� 12 0.20 15 0.29 15 0.29 15 0.29
σΩ 1.45 1.64 1.64 1.61
σA 2.24 3.68 4.09 4.09
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Comparison of Geometrical and Algebraic
Multigrid Preconditioners for Data-Sparse

Boundary Element Matrices

U. Langer and D. Pusch

Institute of Computational Mathematics, Johannes Kepler University Linz, Austria

Abstract. We present geometric (GMG) and algebraic multigrid (AMG)
preconditioners for data-sparse boundary element matrices. Data-sparse
approximation schemes such as adaptive cross approximation (ACA) yield
an almost linear behavior in Nh, where Nh is the number of (boundary) un-
knowns. The treated system matrix represents the discretized single layer
potential operator (SLP) resulting from the interior Dirichlet boundary
value problem for the Laplace equation. It is well known, that the SLP
has converse spectral properties compared to usual finite element matri-
ces. Therefore, multigrid components have to be adapted properly. In the
case of GMG we present convergence rate estimates for the data-sparse
ACA version. Again, uniform convergence can be shown for the V-cycle.

Iterative solvers dramatically suffer from the ill-conditioness of the
underlying system matrix for growing Nh. Our multigrid-preconditioners
avoid the increase of the iteration numbers and result in almost optimal
solvers with respect to the total complexity. The corresponding numerical
3D experiments are confirming the superior preconditioning properties
for the GMG as well as for the AMG approach.

Keywords: integral equations of the first kind, single layer potential
operator, boundary element method, adaptive cross approximation, alge-
braic multigrid, geometrical multigrid, preconditioners, iterative solvers.

1 Introduction

In this paper we are concerned with the fast solution of data-sparse boundary
element equations by geometrical and algebraic multigrid methods.

The application of iterative solvers only will be reasonable, if the drawback of
dense matrices can be overcome. In the last years different sparse approximation
techniques for boundary element matrices have been developed. The multipole
method [14], the panel clustering method [7], the H-matrix approach [6] and
wavelet techniques [9] are certainly now the most popular ones. In our paper
we will consider the adaptive cross approximation (ACA) method suggested by
M. Bebendorf and S. Rjasanow [1,2]. The basic idea is to decompose the sys-
tem matrix into its near-field and far-field contributions. Finding an appropriate
low-rank approximation for the far-field matrix yields a data-sparse BEM matrix
approximating the original dense matrix in such a way that the discretization

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 130–137, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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error is not affected. In conclusion, the application of a sparse representation al-
gorithm allows us to realize the matrix-by-vector multiplication in almost O(Nh)
operations.

Boundary element matrices originating from the discretization of the single
layer potential lead to ill-conditioned system matrices with a condition number
of order O(h−1). Thus, it is obvious that we need appropriate preconditioning
techniques in order to avoid the steady rise of the number of iterations for finer
and finer discretizations. In [11,10] we introduced algebraic multigrid precon-
ditioners for dense BEM matrices as well as for large-scaled data-sparse BEM
matrices. In this paper we focus on the comparison between the GMG and AMG
approach. Moreover, we give a convergence result for the geometric version of
our multigrid approach.

The paper is organized as follows: Section 2 gives a brief overview on the
considered single layer potential operator and its properties. In addition, the
ACA-method is briefly described. In Section 3, we introduce the multigrid com-
ponents designed for ACA-matrices and give convergence results for the geomet-
rical variant. Some results of our numerical studies are presented in Section 4.
Finally, we end up with some conclusions and discuss further investigations in
Section 5.

2 Problem Formulation and the ACA-Method

Let Ω ⊂ Rd (d=2,3) be a bounded, simply connected domain with one closed
boundary piece Γ = ∂Ω that is supposed to be sufficiently smooth. We consider
the boundary element technique by means of the interior Dirichlet problem for
Laplace’s equation:

−Δu(x) = 0 x ∈ Ω
u(x) = g(x) x ∈ Γ

(1)

Once the Neumann and Dirichlet data are available, it is possible to formulate
the solution of the interior Dirichlet equation by the representation formula

σ(y)u(y) =
∫
Γ

∂u

∂nx
(x)E(x, y)dsx −

∫
Γ

u(x)
∂E

∂nx
(x, y)dsx (2)

where nx denotes the unit outward normal vector and E(x, y) is the fundamental
solution for the Laplace equation, i.e. in R3 we have E(x, y) = 1

4π
1

|x−y| . For y ∈ Ω

we have σ(y) = 1, for y /∈ Ω̄ it changes to σ(y) = 0. In the case of y ∈ Γ and
Γ is sufficiently smooth we will obtain σ = 1/2, that is still valid for applying
Galerkin discretization on C0,1 domains. In that case the first integral defines the
single layer potential operator V : H−1/2(Γ ) �→ H1/2(Γ ). In addition the second
integral gives the double layer potential operator K : H1/2(Γ ) �→ H1/2(Γ ). It
can be shown that the single layer potential operator is symmetric and positive
definite. These and other properties can be found in e.g. [15].
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Applying Galerkin discretization with the use of piecewise constant trial func-
tions leads to the matrix equation

Vhvh = f
h

= (
1
2
Ih + Kh)g

h
(3)

where g
h

is the discrete Dirichlet data obtained by linear interpolation, (Vh)ij =∫
Γj

∫
Γi

E(x, y)dsxdsy and (Kh)ij =
∫

Γi

∫
Γ

∂E
∂nx

(x, y)ψj(x)dsxdsy with the linear
trial function ψj . At this point we have to notice that Vh is still fully populated
and the condition number is of order O(h−1). To overcome the drawback of
dense matrices we replace the system matrix with some approximation matrix
provided by the ACA-algorithm. On the contrary to other matrix approxima-
tion techniques, an explicit description of the integral kernel is not necessary.
More precisely, only a procedure for evaluating selected matrix entries has to be
available. The rest are simple algebraic operations.

The basic idea is to decompose the computational domain into smaller clusters
Di and classify the interaction of two clusters into a near-field part and a far-field
part of the generated matrix, respectively. Based on geometrical information we
split the index set I = {1, ..., Nh} into index clusters ti ⊂ I which corresponds
to the partitioning of the domain Ω =

⋃
iDi. In order to select the blocks which

can be approximated by low-rank matrices, we give an admissibility condition
that classifies clusters-pairs into a near-field part and a far-field part.

Definition 1. Let (D1,D2) be a cluster pair with D1,D2 ⊂ Rd, then (D1,D2)
is called η - admissible if

diamD2 ≤ η dist(D1,D2). (4)

As usual dist(X, Y ) = inf{|x− y|, x ∈ X, y ∈ Y }.
Both, the clustering procedure and the approximation algorithm will cause

a overall complexity of O(ε−αN1+α
h ) with an arbitrarily small positive α. In [2]

one can find the appropriate algorithms and more detailed information. Since
the proposed adaptive cross approximation technique provides a low-rank ap-
proximation of V far

h consisting of submatrices which are η-admissible we obtain
the result

Ṽh = V near
h + Ṽ far

h . (5)

Starting from this representation we are able to present an appropriate construc-
tion of multigrid methods in the next section. Finally, we refer to [1,2] for more
detailed proofs and further remarks concerning the ACA-technique.

3 Multigrid Methods

In the previous section we showed, that our system matrix coincides with the
approximated discretized single layer potential operator Ṽh, which is the most
interesting case concerning our multigrid approach. Hence, we have to solve
Ṽhvh = f

h
in RNh with vh are the unknown Neumann data and f

h
the cor-

responding right-hand side. In order to make multigrid methods really efficient,
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it is necessary to adapt the multigrid components properly according to the
underlying physical problem and variational formulation. In the following we
are discussing the multigrid components by means of a twogrid algorithm. The
indices h and H denote the fine grid and coarse grid quantities, respectively.

In fact, the efficiency of multigrid methods depends on a clever interaction of
smoothing sweeps on the fine level and coarse grid correction on the coarse level.
Once a grid hierarchy (GMG) or a matrix hierarchy (AMG) is available we can
apply multigrid methods like the well-known V-cycle presented in Algorithm 1.
The coarsest level is denoted by the variable COARSELEVEL therein.

Algorithm 1 Multigrid V-Cycle

MG(u�, f�
, �)

if � = COARSELEVEL
calculate u� = (V�)−1f

�
by some coarse grid solver

else
smooth νF times on V�u� = f

�
calculate the defect d� = f

�
− V�u�

restrict the defect to the next coarser level � + 1 : d�+1 = P�
� d�

set u�+1 ≡ 0
call MG(u�+1, d�+1, � + 1)
prolongate the correction s� = P�u�+1
update the solution u� = u� + s�

smooth νB times on V�u� = f
�

end if

Since the single layer operator represents a pseudo-differential operator of order
minus one, the eigenvalues and eigenvectors act conversely compared to those of
finite element matrices. Therefore, standard smoothing procedures like damped
Jacobi or Gauß-Seidel does not provide a satisfying smoothing sweep. Bramble,
Leyk and Pasciak [3] present an appropriate approach to this problem class of
operators. In order to reduce the highly oscillating components of the error we
introduce a matrix Ah ∈ RNh×Nh being some discretization of the Laplace-
Beltrami operator on the boundary Γ . Consequently, we obtain a smoothing
iteration of the form

uh ← uh + τh ·Ah(f
h
− Ṽhuh) (6)

with a well chosen damping parameter τh, see e.g. [10].
In the case of algebraic multigrid we need a matrix hierarchy which represents

a ’virtual’ grid on each level. Therefore, we first construct prolongation operators
Ph : RNH �→ RNh by exploiting a sparse auxiliary matrix Bh which includes
geometrical information [11]. Then, we are applying Galerkin’s method to obtain
the system matrix VH = P�

h VhPh on the coarse level. In addition, the restriction
of a fine ACA matrix Ṽh immediately leads to matrices on the coarse level

V near
H = P�

h V near
h Ph, Ṽ far

H =
NB∑
i=1

ri∑
j=1

P�
h ui

j (P�
h vi

j)
� (7)
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where NB denotes the number of admissible blocks and ri the rank of the ith

block. Due to the exact preserving of representation (5) on the coarse grid, we
are able to use the same ACA-datastructures in our numerical realization.

On the other hand in the geometrical version of our multigrid approach a
nested mesh-hierarchy is available. In this case we are calculating the discretized
single layer potential on each grid separately. Strictly speaking, we apply the
ACA-algorithm level by level to obtain the approximated single layer potential
operators. Again we provide a set of data-sparse system matrices, which are used
within the V-cycle.

In order to obtain results for convergence, we verify conditions on the ap-
proximated single layer potential operator Ṽh. Based on theoretical results in [4]
which are weaker than the regularity and approximation conditions, we have to
show the spectral equivalence inequalities

c1(Vhv, v) ≤ (Ṽhv, v) ≤ c2(Vhv, v) v ∈ RNh (8)

and an approximation result in the sense

|(Vhv, w)− (Ṽhv, w)| ≤ c0λ
−β/2
J ||vh||Vh

||wh||Vh
vh, wh ∈ RNh . (9)

In the last inequality λJ denotes the largest eigenvalue of the induced operator
V defined by (Vvh, wh)−1 = (Vhvh, wh) with the functions vh, wh described by
the basis coefficients vh, wh. Moreover, β is a arbitrary small positive parameter.
It can be proofed, that (8) holds with the spectral constants

c1 = (1 − ε
√

Nhκ(Vh))
c2 = (1 + ε

√
Nhκ(Vh)). (10)

Furthermore, we can show that the estimate

|(Vhvh, wh)− (Ṽhvh, wh)| ≤ c0εh
γλ

−β/2
J ||vh||Vh

||uh||Vh
vh, wh ∈ RNh (11)

is valid, where ε is the accuracy from the ACA-approximation. Nevertheless,
the upper bound still depends on the typical mesh size h and whose exponent
γ = −(d + β + 4)/2 additionally includes the dimension d of the boundary
parameterization of ∂Ω. With an appropriate choose of ε one can cancel out
the h-dependency. However, in our numerical experiments we kept ε fix and
cannot observe a negative influence anyway. From these estimates and the general
convergence theory given in [4] we can immediately proof uniform convergence
of the V-cycle.

4 Numerical Studies

In order to show the efficiency of the suggested multigrid approach we present
some results in 3D for the interior Dirichlet boundary value problem for the
Laplace equation. The Galerkin boundary element matrices are generated by
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(a) L-Shape (b) Fichera Corner

Fig. 1. 3D Geometries

Table 1. Assembling Vh and Setup Times for L-Shape

AMG (sec) GMG (sec)
Number of Assembling Galerkin Assembling Matrix-
Unknowns Vh Projection Vh hierarchy

7168 77 15 32.5 6.9
28672 158 30 158 40

the software package OSTBEM developed by O. Steinbach, cf. [16], the AMG-
preconditioner is realized within the software package PEBBLES [8].

For our numerical comparison of the geometrical multigrid preconditioner and
the algebraic multigrid preconditioner, we choose a few rather simple 3D geome-
tries, see Figure 1. Nevertheless, these domains include a wide spectrum of prob-
lem classes, for e.g. edges, corners and non-convex domains. First of all, we com-
pare the times for constructing the AMG matrix hierarchy by Galerkin projection
and building up the ACA matrices for GMG on the coarser grids. These CPU-
times are almost of the same order, see Table 1. It is obvious, that most of the
assembling time is needed for construction the system matrix Ṽh. Secondly, we
compare the numbers of iterations, that are needed within the preconditioned
conjugate gradient (PCG) method. Moreover, the CPU-time of one single PCG-
iteration for different numbers of unknowns are listed in Table 2. One can clearly
observe the expected almost linear increase of the CPU-times for one iteration

Table 2. Key data for AMG/GMG Preconditioner

Number of AMG GMG
Unknowns PCG-Cycle (sec) Iterations PCG-Cycle (sec) Iterations
L-Shape

1792 0.1 6 0.1 7
7168 0.8 6 0.6 7

28672 4.2 9 2.9 7
Fichera-Corner

1920 0.1 14 0.1 15
7680 0.8 15 0.6 15

30720 5.0 17 3.2 15
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with respect to the number of unknowns. Considering the time for one PCG-
iteration, we notice, that the GMG version is faster for larger problems.

Furthermore, we obtain constant iteration numbers for a wide range of problem
sizes.That implies thatourdata-sparsemultigridpreconditioner for the single layer
potential operator is of high quality. In the case of AMG preconditioning we also
have small iteration numbers, nevertheless they are slightly increasing. Because the
coarsermatrix levels are produced in a purely algebraic way, it is hardly possible to
preserve corresponding ’virtual’ coarse grids of the original geometry.

5 Conclusions and Further Remarks

In this paper we presented a geometrical multigrid and algebraic multigrid ap-
proach for the solution of large-scale boundary element equations. For that pur-
pose an approximation of the boundary element matrices is absolutely essential.
Our numerical experiments have been realized by the adaptive cross approxi-
mation technique which guarantees that the effort for storing the matrices and
for a single matrix-by-vector multiplication can be reduced to almost O(Nh).
The discretized single layer potential operator yields symmetric positive defi-
nite matrices in the original dense version as well as in the ACA representation.
Therefore, the system of boundary element equations can be solved by means
of multigrid preconditioned CG-algorithms. Due to the sparse representation of
our matrices, we had to adapt each component of our AMG-algorithm properly.
In order to set up the matrix hierarchy and the corresponding transfer opera-
tors an auxiliary matrix was constructed for the AMG method. On the other
hand the matrices were built accordingly to the grid hierarchy in the GMG
method. The smoothing procedure was realized by the proposed BLP-smoother
for pseudo-differential operators of order minus one.

The overall algorithm provides interesting numerical results. One can notice
small constant iteration numbers for the GMG method and also small (but
slightly increasing) iteration numbers for the AMG approach. That confirms the
high quality of our multigrid preconditioners. In addition, the CPU time for a
single iterative step almost grows like O(Nh). As expected, the GMG variant is
faster than the AMG version. We mention that efficient multigrid preconditioner
for the discrete single layer potential operator are very important as building
blocks in primal and dual domain decomposition preconditioners [5,12,13].

Last but not least we would like to acknowledge the Austrian Science Fund
‘Fond zur Förderung der wissenschaftlichen Forschung (FWF)’ for supporting
this work under grant P14953 ‘Robust Algebraic Multigrid Methods and their
Parallelization’.
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Abstract. For the solution of convection-diffusion problems we present
a multilevel self-adaptive mesh-refinement algorithm to resolve locally
strong varying behavior, like boundary and interior layers. The method
is based on discontinuous Galerkin (Baumann-Oden DG) discretization.
The recursive mesh-adaptation is interwoven with the multigrid solver.
The solver is based on multigrid V-cycles with damped block-Jacobi
relaxation as a smoother. Grid transfer operators are chosen in agree-
ment with the Galerkin structure of the discretization, and local grid-
refinement is taken care of by the transfer of local truncation errors
between overlapping parts of the grid.

We propose an error indicator based on the comparison of the discrete
solution on the finest grid and its restriction to the next coarser grid. It
refines in regions, where this difference is too large. Several results of
numerical experiments are presented which illustrate the performance of
the method.

Keywords: convection-dominated problems, adaptive refinement, mul-
tigrid, discontinuous Galerkin method.

1 Introduction

Recently new interest arose in application of discontinuous Galerkin (DG) meth-
ods for the solution of partial differential equations of convection-diffusion type.
An important reason is their ability to conveniently handle difficulties related
to grid- and order-adaptation. This motivates our present work on self-adaptive
DG discretisation which is combined with a multigrid (MG) method so that
optimal efficiency can be expected.

A detailed description of the multigrid approach and the corresponding smoo-
thing analysis in the case of discontinuous Galerkin methods with constant co-
efficients can be found in [5, 6, 7].

The paper is organized as follows. Section 2 concerns the governing equation
and its discretisation. The third section describes the multigrid h-adaptive re-
finement algorithm. The adaptive criterion is presented in the fourth section and
the last section contains results from numerical experiments.
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2 Discontinuous Galerkin Discretisation

We consider the linear boundary value problem:

− εΔu + ∇ · (bu) + cu = f in Ω ⊂ Rd, d = 1, 2, 3, (1)
u(x) = u0(x) on Γ = ∂Ω,

where x = (x1, . . . , xd), ε > 0 is a small parameter, the coefficients b(x) =
(b1(x), . . . , bd(x)) ∈ (C1(Ω))d, c(x) ≥ 0, c(x) ∈ L∞(Ω) and the right-hand side
f(x) ∈ L2(Ω). We assume that Ω allows a regular partitioning Ωh = {Ωe | ∪e

Ωe = Ω, Ωi ∩Ωj = ∅, i �= j}, into equally sized square cells Ωe of size h.
As weak form for (1) we use Baumann-Oden’s [2, 1] discontinuous Galerkin

formulation: find u ∈ H1(Ωh), such that

L(u, v) = F (v) for all v ∈ H1(Ωh) , (2)

where H1(Ωh) is the broken Sobolev space

H1(Ωh) =
{
u ∈ L2(Ω) | u|Ωe ∈ H1(Ωe), ∀Ωe ∈ Ωh

}
,

L(u, v) =
∑

Ωe∈Ωh

(∫
Ωe

(ε∇u ·∇v −∇v · bu + cuv) dx +
∫

∂Ωe\Γ−
vu−b · n ds

)
+

∫
Γint∪Γ

(
ε〈∇v〉 · [u]− ε〈∇u〉 · [v]

)
ds ,

F (v) =
∑

Ωe∈Ωh

∫
Ωe

vf dx +
∫

Γ

ε∇v · nu0 ds−
∫

Γ−
vu0b · n ds ,

Γ− = {x ∈ ∂Ω | (b · n)(x) < 0) denotes the instream boundary of the domain
Ω and n is the unit outward pointing normal on the boundary. With u−, the
‘upwind’ value of u is denoted, defined by u− = limε↓0 u(x− εb(x)). The interior
cell boundaries are denoted by Γint = ∪e∂Ωe \ ∂Ω.

The jump operator [·] for a scalar valued function w(x) and the average op-
erator 〈·〉 for a vector valued function τ (x) are defined at the common interface
Γi,j = Ωi ∩Ωj between two adjacent cells Ωi and Ωj by

[w(x)] = w(x)|∂Ωini + w(x)|∂Ωj nj , 〈τ (x)〉 =
1
2
(τ (x)|∂Ωi + τ (x)|∂Ωj ) .

For the DG discretisation of (2) we take: find uh ∈ Sh such that

L(uh, vh) = F (vh) for all vh ∈ Sh, (3)

where Sh = {
∑

e φe, φe ∈ P3(Ωe), Ωe ∈ Ωh} denotes the space of piecewise
cubic polynomials on the partitioning Ωh. In order to introduce a basis of Sh we
first take the polynomials basis on the one-dimensional unit interval,

φ2n+m(t) = tn+m(1− t)n+1−m, n = 0, 1, m = 0, 1. (4)

Then, on the unit cube in Rd we use a basis of tensor-product polynomials based
on (4) and a basis for P3(Ωe) is obtained by the usual affine mapping.
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The coefficients b, c and the right-hand side f are approximated using the
same set of basic functions (or a set of lower order). The discretisation (3) yields
a linear system Lhuh = fh, where the matrix Lh has a diagonal block structure
with blocks of size 4d × 4d. We order the basic functions cell-wise or point-wise
(for details see [5, 6, 7]), depending on the equation coefficients and h.

3 MG Realization on the Adaptive Grid

For the discontinuous Galerkin method we describe the application of an h-self-
adaptive multi-level algorithm [3, 4].

The algorithm to determine the mesh is closely connected with the discretiza-
tion and consist of several stages. In the first stage the equation is discretized
and solved on the global coarsest grid Ω0 with step size h0. In later stages,
k = 1, 2, · · · , some cells of Ωk−1 are selected for refinement. These cells are all
divided into 2d smaller cells of equal size, which together form the grid Ωk on
a subset of Ωk−1. The solution on Ωk is interpolated from Ωk−1 and several
relaxation sweeps are made on the interior of Ωk, followed by a coarse grid cor-
rection on the whole of Ωk−1. Thus, by recursive application, multigrid V-cycles
are made. More details are given below.

By the recursive construction of the meshes Ωk we see that the meshes cover
nested areas Ωk ⊂ Ωk−1, and that all cells in these meshes form a tree-structure.
In this tree, for k > 0 each cell has one father and possibly 2d children.
Restrictions and prolongations. Given the nested partitioning {Ωk} for the
domain Ω = Ω0, on each mesh Ωk we have a space of piecewise cubic polyno-
mials Sk and the restriction of Sk to Ωk+1 is a subset of Sk+1. This induces
a natural prolongation Pk+1,k : Sk → Sk+1 on Ωk+1. The restriction opera-
tor for the residues, R̄k,k+1 : Sk+1 → Sk is defined as the adjoint of Pk+1,k.
Because of the consistency of these operators with the DG discretisation, the
Galerkin relation exists between the discretisation on the coarse and the fine
grid Lk = R̄k,k+1Lk+1Pk+1,k. We use another restriction Rk,k+1 for the solu-
tion, which preserves the function values and the derivatives at the coarse cell
vertices. It is a left-inverse of the prolongation, Rk,k+1Pk+1,k = Ik, where Ik is
the identity operator on Sk.
The internal boundaries. In the case of local refinement the finer grid Ωk usu-
ally covers only a part of the domain, covered by the coarser grid Ωk−1. So some
cells Ωe ∈ Ωk have no neighbours on the same grid at some of their faces, but
these faces will be not on the boundary ∂Ω. We call this the internal boundary.
We take care that no internal boundaries coincide for different levels k, i.e., if
Ωe ∈ Ωk, then all the neighbours of its father F (Ωe) exist on Ωk−1. This can
always be ensured performing some additional refinements of neighbouring cells.

At the internal boundaries for the discretization on Ωk we take Dirichlet
boundary conditions, derived by interpolation from Ωk−1.
The relative truncation error. If uk is the solution of the fine grid system,
i.e., Lkuk = fk, then its restriction to the coarser grid Ωk−1 satisfies

Lk−1Rk−1,kuk = R̄k−1,kfk + τk−1,k(uk) ,
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where the relative local truncation error τk−1,k(yk) is defined by

τk−1,k(yk) = Lk−1Rk−1,kyk − R̄k−1,kLkyk .

During the computation, however, we do not know the fine grid solution uk, but
only an approximation ũk. So to obtain an accurate solution on the coarse grid,
that corresponds to the solution on the fine grid (where this exists), we solve the
coarse grid system Lk−1ũk−1 = f̃k−1, where

f̃k−1 =

⎧⎨⎩fk−1 on Ωk−1 \Ωk , where no finer grid exists,
R̄k−1,k f̃k + τk−1,k(ũk) on Ωk , where ũk is the current approx-

imation on the finer grid.

MG iteration. Each multigrid V-cycle on level k, denoted by MS(k, ν1, ν2),
consists of the following steps:

1. Perform ν1 (pre-) relaxation steps (damped block-Jacobi relaxation) on the
discrete system Lkũk = f̃k, taking as initial approximation

ũk =
{

Rk,k+1ũk+1 on Ωk+1 ,
ũk on Ωk \Ωk+1 ;

2. If k > 0
– perform MS(k − 1, ν1, ν2) ;
– Compute the correction ũk = ũk + Pk,k−1 (ũk−1 −Rk−1,kũk) ;

3. With the current approximation for ũk perform ν2 (post-) relaxation steps
on the discrete system Lkũk = f̃k .

On the coarsest level MS(0, ν1, ν2) consists of ν1 + ν2 relaxation sweeps on Ω0.
Because this is a very coarse grid, an alternative way to solve L0ũ0 = f̃0 is by
Gaussian elimination.

4 Adaptation Criterion

On level Ω0 all cells are refined at least once. Let K be the current number of
grid levels. In order to decide which unrefined cells in Ωk, k = 1, 2, . . . , K, in the
structure will be further refined, we compare the current solution uk(x) and its
restriction to the previous level, Rk−1,kuk(x). The reason for this choice is the
following. Let u(x) be the exact solution of our problem (1) and let Rlu(x) be
its restriction to Ωl, where (similar to Rl,l+1) the restriction Rl : H1(Ω) → Sl

preserves the function values and the derivatives at the vertices of each Ωe ∈ Ωl.
Then, with u ∈ CM (Ωe),

‖Rl+1u−Rlu‖C(Ωe) < C‖u‖CM(Ωe)2
−lM , for M = 1, 2, 3, 4.

From this we derive that for piecewise CM -functions, M ≤ 4, and asymptotically
for large k and l

‖Rl+1u− Rlu‖C(Ωk
e ) � ql+1−k‖Rku−Rk−1u‖C(Ωk−1

e ) for l ≥ k, (5)
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with q = 2−M . Here Ωk
e ∈ Ωk and Ωk−1

e := F (Ωk
e ) is its father. For finite

l ≥ k estimate (5) may be not true: then always a smooth function u(x) can be
constructed such that ‖Rku−Rk−1u‖C(Ωk−1

e ) = 0, but ‖Rl+1u−Rlu‖C(Ωk
e ) > 0

for l ≥ k.
Let R̃u be the restriction of u to the unrefined cells of ∪K

k=1Ωk, where for
each unrefined cell Ωk

e ∈ Ωk we define R̃u := Rku, then under the assumption
of (5) we estimate ‖u − R̃u‖C(Ωk

e ) only by using ‖Rku − Rk−1u‖C(Ωk−1
e ) and q.

As during the computation we do not know Rku and Rk−1u, we use the best
available approximant uk. With rk := ‖uk −Rk−1,kuk‖C(Ωk−1

e ),

‖u−Rku‖C(Ωk
e ) ≤

∞∑
l=k

‖Rl+1u−Rlu‖C(Ωk
e ) �

∞∑
l=k

ql+1−krk =
q

1− q
rk .

With T a desired tolerance and rk
q

(1−q) ≤ T for all unrefined Ωk
e ∈ ∪K

k=1Ωk, we
have

‖u− R̃u‖C(Ω) = max
Ωk

e

‖u−Rku‖C(Ωk
e ) � max

Ωk
e

rk
q

(1 − q)
≤ T.

Notice that we can estimate the local smoothness of the solution by estimating
q from computable equivalents of (5). Let

rl := ‖Rluk −Rl−1uk‖C(Ωl−1
e ), l ≤ k ,

where Ωl−1
e := F (Ωl

e), l ≤ k. Then asymptotically we expect q = liml→∞ rl/rl−1.
Based on this relation and additional heuristics we arrive at an estimated local
value qest. Then we introduce the local error estimate η(Ωk

e ) := rk
qest

(1−qest)
and

we refine cell Ωk
e if

η(Ωk
e ) > T or qest ≥ 1.

As the amount of work, needed to compute rl in the 2D and 3D case, can not
be neglected, in the examples below we only estimate rl even in the 1D case.

5 Examples

In all examples in this section, the gridrefinements started on an initial grid with
mesh size 1. Ten multigrid sweeps with 1 pre- and 1 post-smoothing iteration
(ν1 = ν2 = 1) are performed in each stage.

Example 1. We consider the one dimensional equation

εu′′ + (x − 1)u′ = −επ2 cos(π(x− 1))− π(x − 1) sin(π(x − 1)), x ∈ (0, 2),

with Dirichlet boundary conditions, corresponding to the following exact solution

u(x) = erf
(
(x− 1)/

√
2ε

)
+ cos(π(x − 1)).

In Fig. 1 the exact solution and the difference between the exact and the ap-
proximate solution are plotted for ε = 0.0001 and T = 0.01. The corresponding
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Fig. 1. The exact solution for Example 1 and the corresponding error for T = 0.01

Fig. 2. The approximate solution for Example 2

grid is shown at the bottom of the right picture: 8 levels are used in order to
achieve the prescribed tolerance. Similar results are obtained for T = 0.001, then
9 levels are used. In both cases the grid is properly refined in the interior layer
area and the C-norm of the error is less than T. The total number of cells in the
final grid is respectively N = 28 and N = 32.

Example 2. In two dimensions a similar problem is considered, with an interior
layer skew to the mesh:

ε

(
∂2u

∂x2 +
∂2u

∂y2

)
+ (x + y − 1)

(
∂u

∂x
+

∂u

∂y

)
= f(x, y), x ∈ (0, 2), y ∈ (0, 2),

f(x, y) = −2επ2 cos(π(x + y − 1))− 2π(x + y − 1) sin(π(x + y − 1)),

with Dirichlet boundary conditions, corresponding to the following exact solution

u(x, y) = erf
(
(x + y − 1)/

√
2ε

)
+ cos(π(x + y − 1)).

In Fig. 2 the approximate solution is plotted for ε = 0.0001 and T = 0.01.
The grid is refined around the interior layer and 8 levels are used to achieve the
prescribed tolerance. The C-norm of the difference between the exact and
the approximate solution is less than the prescribed tolerance.
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Fig. 3. The exact solution for Example 3 and the corresponding error for T = 0.01

Fig. 4. The approximate solution for Example 4

Example 3. The third example is a one-dimensional problem with a turning
point and two boundary layers:

εu′′ − (x− 1)u′ − u = 0, x ∈ (0, 2),

with Dirichlet boundary conditions, corresponding to the following exact solution

u(x) =
erf

(
(x − 1)/

√
2ε

)
exp((x− 1)2/2ε)

erf
(
1/
√

2ε
)
exp(1/2ε)

.

In Fig. 3 the exact solution and the difference between the exact and the
approximate solution are plotted, for ε = 0.0001 and T = 0.01. To achieve
the result the algorithm uses 14 levels and the resulting C-norm of the error is
less than 0.01. If we require T = 0.001, 15 levels are used and the maximal error
is less than 0.001.

Example 4. The following two dimensional problem is considered

ε

(
∂2u

∂x2 +
∂2u

∂y2

)
− x

∂u

∂x
− y

∂u

∂y
− 2u = f(x, y), x ∈ (0, 1), y ∈ (0, 1),

the right-hand side f(x, y) and Dirichlet boundary conditions correspond to the
exact solution

u(x, y) = −xy(1− exp((x− 1)/ε)(1− exp((y − 1)/ε).
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The approximate solution for ε = 0.01 and T = 0.01 is plotted in Fig. 4. The
grid is properly refined around the boundary layers and the C-norm of the error
is less than 0.01. The algorithm uses 8 levels. Note, in this case the solution is
sufficiently smooth and if we take q = 2−4, almost the same grid refinement is
achieved.

6 Conclusion

One- and two-dimensional numerical experiments demonstrate that the proposed
self-adaptive mesh-generation, embedded in a multigrid strategy and applied
with the Baumann-Oden discontinuous Galerkin method, can be successfully
used for the automatic resolution of boundary and interior layers in the solution
of convection-dominated problems. The strategy is based on the comparison of
the numerical approximation on the finest and the one-but-finest grid. Thus, it
makes use of the local regularity of the solution. The method used to estimate
the local regularity, qest, is still based on heuristic arguments. Although the
numerical experiments are quite satisfying, the mathematical motivation needs
a more solid theoretical base. This is a subject for further research.
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Abstract. The ultrafast evolution of optically excited carriers which
propagate in a quantum wire and interact with three dimensional
phonons is investigated. The equation, relevant to this physical problem,
is derived by a first principle approach. The electron-phonon interaction
is described on a quantum-kinetic level by the Levinson equation, but
the evolution problem becomes inhomogeneous due to the spatial depen-
dence of the initial condition. The initial carrier distribution is assumed
Gaussian both in energy and space coordinates, an electric field can be
applied along the wire. A stochastic method, described in Part II of the
work, is used for solving the equation. The obtained simulation results
characterize the space and energy dependence of the evolution in the zero
field case. Quantum effects introduced by the early time electron-phonon
interaction are analyzed.

1 The Coupled Electron-Phonon System

We consider a system of electrons which interact with the lattice vibrations. The
electric forces which accelerate the electrons are due to the structure potential
and the applied bias, Coulomb interaction between the electrons is neglected.
The description of the system is provided by both the electron and the phonon
degrees of freedom. We derive the Wigner equation for the coupled electron-
phonon system. The corresponding Hamiltonian is given by the free electron
part H0, the structure potential V (r), the free-phonon Hamiltonian Hp, and the
electron-phonon interaction He−p:

H = H0 + V +Hp +He−p =

− �2

2m
∇r + V (r) +

∑
q

b†qbq�ωq + i�
∑
q

F(q)(bqeiqr − b†qe−iqr) (1)
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Here b†q and bq are the creation and annihilation operators for the phonon mode
q, ωq is the energy of that mode, and F(q) is the electron-phonon coupling
element, which depends on the type of phonon scattering analyzed. The state of
the phonon subsystem is presented by the set {nq} where nq is the occupation
number of the phonons in mode q. The representation of the basis set is provided
by the vectors |{nq}, r〉 = |{nq}〉|r〉.

The considered structure is a quantum wire, formed by potential barriers
which confine the electron system in the plane normal to the wire. In this plane,
at low temperatures, the system occupies the ground state Ψ . A homogeneous
electric field E can be applied along the direction of the wire z. It holds:

H0 + V (r) = H⊥ +Hz = H0⊥ + V⊥ +H0z + V (z); H⊥Ψ = E⊥Ψ,

V (z) = −eEz and |r〉 = |r⊥〉|z〉. The generalized electron-phonon Wigner func-
tion is defined by the Fourier transform of the density operator ρ̂:

fw(z, pz, {nq}, {n′
q}, t) =

∫
dr′

2π�
e−ipzz′/�〈z +

z′

2
, {nq}|〈r′⊥|ρ̂t|r′⊥〉|{n′

q}, z −
z′

2
〉

The evolution problem is separated with respect to the normal and z coordinates
as follows:

ρ̂ = |Ψ〉〈Ψ |ρ̂tz ; 〈r, {nq}|ρ̂t|{n′
q}, r′〉 = Ψ∗(r′⊥)Ψ(r⊥)ρ(z, z′, {nq}, {n′

q}, t)

Assuming that Ψ is normalized to unity it is obtained:

fw(z, pz, {nq}, {n′
q}, t) =

∫
dz′

2π�
e−ipzz′/�ρ(z +

z′

2
, z − z′

2
, {nq}, {n′

q}, t)

The equation of motion of fw is obtained from the von-Neumann equation for
the density matrix:

∂fw(z, pz, {nq}, {n′
q}, t)

∂t
=

1
i2π�2

∫
dz′

∫
dr⊥e−ipzz′/�〈z +

z′

2
, {nq}|〈r⊥| [H, ρ̂t]− |r⊥〉|{n′

q}, z −
z′

2
〉

The right hand side, evaluated for each term of the Hamiltonian (1) gives rise to
the generalized Wigner equation for the confined electron system. The equation
couples an element fw(..., {n}, {m}, t) to four neighborhood elements for any
phonon mode q. For any such mode nq can be any integer between 0 and infinity
and a sum over q′ couples all modes. Of interest is the reduced or electron Wigner
function defined as the trace over the phonon coordinates:

fw(z, pz, t) =
∑
{nq}

fw(z, pz, {nq}, {nq}, t)

A closed equation for the reduced Wigner function is obtained by a set of assump-
tions and approximations: A diagonal element is linked to elements, called first
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off-diagonal elements, which are diagonal in all modes but the current mode q′ of
the summation. In this mode the four neighbors of nq′ , nq′ namely nq′±1, nq′ and
nq′ , nq′±1 are concerned. For convenience we denote the phonon state, obtained
from {nq} by increasing or decreasing the phonons in mode q′ by unity as {nq}±q′ .
The first off-diagonal elements are linked to elements which in general are placed
further away from the diagonal ones by increasing or decreasing the phonon num-
ber in a second mode, q′′, by unity. These are the second off-diagonal elements.
The only exception is provided by two contributions which recover diagonal ele-
ments. They are obtained from ({{nq}+q′}−q′′ , {nq}) and ({nq}+q′ , {nq}+q′′) in the
case when the two phonon modes coincide: q′ = q′′. The first approximation is
to keep only such terms in the equations for the first off-diagonal terms. Then
the equations for the diagonal and the four first off-diagonal terms form a closed
system. Furthermore, the four first off-diagonal equations can be solved and
substituted in the diagonal one. The obtained equation contains only diagonal
terms such as fw(z, pz, {nq}, {nq}, t) and fw(z, pz, {nq}±q′ , {nq}±q′ , t). The next
major assumption is that the phonon system remains in equilibrium during the
evolution. This allows to take the trace on the phonon coordinates and to ob-
tain an equation for the reduced Wigner function fw(z, pz, t). After few steps of
transformations, which include the settings∑

q′
=

V

(2π)3

∫
dq′; kz = pz/�; k′z = kz − qz

and a conversion to an integral form, the equation reads:

f(z, kz, t) = f(z(0), kz(0), 0) +
∫ t

0
dt′

∫ t′

0
dt′′

∫
dq′

⊥

∫
dk′z × (2)[

S(k′z, kz, t
′, t′′,q′

⊥)f(z(t′′) +
�q′z
2m

(t′ − t′′), k′z(t′′), t′′)−

S(kz , k
′
z, t

′, t′′,q′
⊥)f(z(t′′) +

�q′z
2m

(t′ − t′′), kz(t′′), t′′)
]

S(k′z, kz , t
′, t′′,q′

⊥) =
2V

(2π)3
|G(q′

⊥)F(q′
⊥, kz − k′z)|2 ×[

(n(q′) + 1)cos

(∫ t′

t′′
dτ

1
�

(
ε(kz(τ))− ε(k′z(τ)) + �ωq′

))

+ n(q′)cos

(∫ t′

t′′
dτ

1
�

(
ε(kz(τ))− ε(k′z(τ))− �ωq′

))]
Equation 2 generalizes the Levinson equation [1] for the case of a space dependent
initial condition. The Newton trajectories, initialized at z, kz, t, are governed by
the electric force F :

z(t′′) = z − 1
m

∫ t

t′′
pz(τ)dτ ; kz(t′′) = kz − F (t− t′′); F =

eE

�
(3)
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The shape of the wire affects the electron-phonon coupling through the factor G:

G(q′
⊥) =

∫
dr⊥eiq′

⊥r⊥ |Ψ(r⊥)|2

2 Phase Space Transform

The equation reveals a very inconvenient from a numerical point of view property,
namely that a solution for a phase space point (z, kz) at t is linked with the
solutions on the trajectories (3). Thus the simulation domain grows with the
force F and the evolution time t in both position and wave vector subspaces.
The following transform (kz1 = kz , k

′
z) is suggested to cope with this problem:

kt
z1 = kz1−Ft; kz1(τ) = kt

z1 +Fτ ; f(z, kz, t) = f(z, kt
z +Ft, t) def= f t(z, kt

z, t)

The following equalities can be easily shown:

f(z, kz(t′′), t′′) = f(z, kt
z + Ft′′, t′′) = f t(z, kt

z, t
′′)

z(t′′) = z −
(

�kt
z

m
+

�F
2m

(t+ t′′)
)

(t− t′′)

and q′z = kz − k′z = kt
z − k′tz .

ε(k′z(τ))− ε(kz(τ)) = ε(k′tz )− ε(kt
z)−

2�2

2m
F.q′zτ

All terms in the equation are now expressed as functions of kt
z , k

′t
z . By omitting

the superscripts of the arguments it is obtained:

f(z, kz, t) = f(z − �kz

m
t+

�F
2m

t2, kz , 0) +
∫ t

0
dt′′

∫ t

t′′
dt′

∫
dq′

⊥

∫
dk′z × (4)[

S(k′z, kz , t
′, t′′,q′

⊥)f
(
z − �kz

m
(t− t′′) +

�F
2m

(t2 − t′′2) +
�q′z
2m

(t′ − t′′), k′z , t′′
)

−S(kz, k
′
z, t

′, t′′q′
⊥)f

(
z − �kz

m
(t− t′′) +

�F
2m

(t2 − t′′2)− �q′z
2m

(t′ − t′′), kz , t
′′
)]

S(k′z, kz , t
′, t′′,q′

⊥) =
2V

(2π)3
|G(q′

⊥)F(q′
⊥, kz − k′z)|2 ×[

(n(q′) + 1)cos
(
ε(kz)− ε(k′z) + �ωq′

�
(t′ − t′′) +

�
2m

F.q′z(t
′2 − t′′2)

)
+n(q′)cos

(
ε(kz)− ε(k′z)− �ωq′

�
(t′ − t′′) +

�
2m

F.q′z(t
′2 − t′′2)

)]
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3 Simulation Results and Discussions

We first consider the numerical properties of (4). The integration is in the wave
vector space, while the real space variable enters as a parameter modified by the
two time integrals. The advantage of (4) as compared to (2) is that the wave
vector variable is decoupled from the time variable and thus the integration
domain can be maintained independent of the force and the evolution time.
Despite that the numerical challenges posed by (4) are heavy already in the
homogeneous problem [2]. In the latter case one of the time integrals can be
assigned to S. Furthermore another integration in the wave vector space can be
spared due to symmetry considerations. In the inhomogeneous problem it is no
more possible to assign the time integral to S due to the t′ dependence of f in the
right hand side of (4). The physical origin of this dependence is associated with
the finite duration of the electron-phonon interaction: the real space trajectory
is modified by the half of the phonon wave vector q′z times the duration t′ − t′′

of the interaction. Thus in the general case each iteration step increases the
dimensionality by five more integrals and thus the computational burden.

The equation accounts for interesting quantum effects demonstrated by the
presented simulation results. Considered is a GaAs material with a single polar
optical phonon having a constant energy �ω. The electric field is zero. The initial
condition is a product of two Gaussian distributions of the energy and space.
The k2

z distribution corresponds to a generating laser pulse with an excess energy
of about 150meV . The z distribution is centered around zero. A quantum wire
with a rectangular cross section is assumed. At very low temperature the physical
system has a transparent semiclassical behavior. We recall the major results of
the homogeneous case [2]. Semiclassical electrons can only emit phonons and
loose energy equal to a multiple of the phonon energy �ω. They evolve according
to an energy distribution, patterned by replicas of the initial condition shifted
towards low energies. Such electrons cannot appear in the region above the
initial distribution. The quantum solutions demonstrate two effects of deviation
from the semiclassical behavior. The replicas are broadened and the broadening
reduces with the time. A finite density of electrons appears in the semi-classically
forbidden region above the initial condition. These effects are due to the lack of
the energy conserving delta function, which is build up by the cosine function in
S for long evolution times.

In the inhomogeneous case the wave vector (and respectively the energy) and
the density distributions are given by the integrals

f(kz, t) =
∫

dz

2π
fw(z, kz, t); n(z, t) =

∫
dkz

2π
fw(z, kz, t)

Figure 1 shows the redistribution of the initial electrons after 50 femtoseconds
evolution time as a function of the proportional to the energy quantity k2

z . A
window of values for k2

z and f is chosen, where the broadening of first replica
and the finite density of electrons with energies above the initial condition is well
visible. Figure 2 shows the distribution in the whole simulation domain after 150
femtoseconds evolution. The first replica becomes sharper, but still broadened
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Fig. 1. Initial condition and energy distribution at 50fs evolution time
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Fig. 2. Initial condition and energy distribution at 150fs evolution time

with respect to the initial condition. Also the place of the second replica can
be recognized. In the absence of electric field there is a symmetry in the kz di-
rections. The behavior is analogous to the homogeneous case despite that the
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Fig. 3. Electron density after 50fs evolution time
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Fig. 4. Electron density after 150fs evolution time

coupling constant is now modified by G. Figure 3 compares the electron density
with (n) and without (ballistic) electron-phonon interaction for 50 femtoseconds
evolution time. The initial peak at the origin splits into two symmetric distri-
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butions which evolve to the left and right respectively. In the central part the
n curve is much higher than the ballistic curve due to the electrons which are
slowed down by the phonons. The external fronts of the two curves coincide
and hence are formed by the fastest electrons in the initial condition. The third
curve is the shifted to the left half of the initial condition. It shows that at such
small evolution time the real space broadening is practically zero. The same
quantities ( the half initial condition shifted to the right) are compared for 150
femtoseconds evolution time in Fig. 4. A window in the position is chosen for a
better resolution. The broadening of the ballistic curve already becomes sensi-
ble. It shows the largest distance away from the origin which classical electrons
can attain. The most interesting effect is demonstrated by the n curve: there
is an excess electron density below approximately four orders of magnitude of
the peak value. Such electrons penetrate in the semi-classically forbidden spa-
tial zone. This purely quantum effect is due to the electrons, which occupy the
energy region above the initial energy distribution. This effect has been recently
observed in the solutions of a density matrix model of the zero field physical
problem [3].

A Wigner equation for the evolution of spatially inhomogeneous electron dis-
tribution excited by a laser pulse in a quantum wire has been derived and solved
by a Monte Carlo approach. A transformation is proposed which fixes the prob-
lem with the spreading integration domain in presence of electric field. It is
shown that the quantum character of the electron-phonon interaction causes at
low temperatures a speed-up effect on the electron front evolving in the wire.
The proposed approach is suitable for exploration of the influence of the field
on this effect. The numerical burden increases with the increase of the evolution
time and requires large scale computational solutions such as parallel and GRID
technologies.
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Abstract. We present a stochastic approach for solving the quantum-
kinetic equation introduced in Part I. A Monte Carlo method based on
backward time evolution of the numerical trajectories is developed. The
computational complexity and the stochastic error are investigated nu-
merically. Variance reduction techniques are applied, which demonstrate
a clear advantage with respect to the approaches based on symmetry
transformation. Parallel implementation is realized on a GRID infras-
tructure.

1 Introduction

A Wigner equation for nanometer and femtosecond transport regime has been
previously derived from a three equations set model based on the generalized
Wigner function [7]. The complete equation poses serious numerical challenges
so that we consider limiting versions of the equation corresponding to simplified
physical. Two limiting cases, namely the Wigner-Boltzmann equation [8] and the
homogeneous Levinson (or Barker-Ferry) equation [5, 4] have been analyzed with
various Monte Carlo (MC) approaches. In particular, spherical and cylindrical
transformations have been used to reduce the dimensions in the momentum
space. The equation derived in Part I presents a third limiting case, where the
electron-phonon interaction is described on the quantum-kinetic level by the
Levinson equation, but the evolution problem becomes inhomogeneous due to
the spatial dependence of the initial condition. The problem is relevant e.g. for
description of the ultrafast dynamics of optically generated carriers. Particularly
we consider a quantum wire, where the carriers are confined in the plane normal
to the wire by infinite potentials. At low temperatures the carriers remain in
the ground state in the normal plane. Thus, the evolution is described in the
two dimensional phase space of the carrier wave vector and the position, while
the phonons are three dimensional. The initial carrier distribution is assumed
Gaussian both in energy and space coordinates, and an electric field can be

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 157–163, 2006.
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applied along the wire. We recall the integral form of the derived in Part I
quantum-kinetic equation:

fw(z, kz, t) = fw(z − �kz

m
t+

�F
2m

t2, kz, 0) +
∫ t

0
dt′′

∫ t

t′′
dt′

∫
dq′

⊥

∫
dk′z× (1)[

S(k′z, kz , t
′, t′′,q′

⊥)fw

(
z − �kz

m
(t− t′′) +

�F
2m

(t2 − t′′2) +
�q′z
2m

(t′ − t′′), k′z , t′′
)

−S(kz, k
′
z , t

′, t′′,q′
⊥)fw

(
z − �kz

m
(t−t′′) +

�F
2m

(t2−t′′2)− �q′z
2m

(t′−t′′), kz , t
′′
)]

S(k′z, kz , t
′, t′′,q′

⊥) =
2V

(2π)3
|G(q′

⊥)F(q′
⊥, kz − k′z)|2 ×[

(n(q′) + 1) cos
(
ε(kz)− ε(k′z) + �ωq′

�
(t′ − t′′) +

�
2m

F.q′z(t
′2 − t′′2)

)
+n(q′) cos

(
ε(kz)− ε(k′z)− �ω′

q

�
(t′ − t′′) +

�
2m

F.q′z(t
′2 − t′′2)

)]
Here, f(z, kz, t) is the Wigner function described in the 2D phase space of the
carrier wave vector kz and the position z, and t is the evolution time.
F = eE/�, where E is a homogeneous electric field along the direction of the

wire z, e being the electron charge and � - the Plank’s constant.
n′
q = 1/(exp(�ω′

q/KT ) − 1) is the Bose function, where K is the Boltzmann
constant and T is the temperature of the crystal, corresponds to an equilibrium
distributed phonon bath.

�ω′
q is the phonon energy which generally depends on q′ = q′

⊥ + q′z = q′
⊥ +

(kz − k′z), and ε(kz) = (�2k2
z)/2m is the electron energy.

F is obtained from the Fröhlich electron-phonon coupling by recalling the
factor i� in the interaction Hamiltonian, Part I:

F(q′
⊥, kz − k′z) = −

[
2πe2ω′

q

�V

(
1
ε∞

− 1
ε s

)
1

(q′)2

] 1
2

,

where (ε∞) and (εs) are the optical and static dielectric constants. The shape
of the wire affects the electron-phonon coupling through the factor

G(q′
⊥) =

∫
dr⊥eiq′

⊥r⊥ |Ψ(r⊥)|2 ,

where Ψ is the ground state of the electron system in the plane normal to the
wire.

In the inhomogeneous case the wave vector (and respectively the energy) and
the density distributions are given by the integrals

f(kz, t) =
∫

dz

2π
fw(z, kz, t); n(z, t) =

∫
dkz

2π
fw(z, kz, t). (2)

Our aim is to estimate these quantites, as well as the Wigner function (1) by
MC approach.
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2 Monte Carlo Approach

Consider the problem of evaluating the following functional of the solution of
the integral equation (1)

Jg(f) ≡ (g, f) =
∫ T

0

∫∫
D

g(z, kz, t)fw(z, kz, t)dzdkzdt, (3)

by a MC method. Here we specify that the phase space point (z, kz) belongs to
a rectangular domain D = (−Q1, Q1)× (−Q2, Q2), and t ∈ (0, T ). The arbitrary
function g(z, kz, t) belongs to the space L∞.

Now (1) can be written in the following form:

fw(z, kz, t) = fw(z − z(kz, t), kz , 0) + (4)

+
∫ t

0 dt
′′ ∫ t

t′′ dt
′ ∫

G
d3k′{K1(kz ,k′, t′, t′′)fw (z + h(kz, q

′
z, t, t

′, t′′,F), k′z, t
′′)}

+
∫ t

0 dt
′′ ∫ t

t′′ dt
′ ∫

G
d3k′{K2(kz ,k′, t′, t′′)fw (z + h(kz,−q′z, t, t′, t′′,F), kz, t

′′)},

where
z(kz, t) =

�kz

m
t− �F

2m
t2 ,

h(kz, q
′
z , t, t

′, t′′,F) = −�kz

m
(t− t′′) +

�F
2m

(t2 − t′′2) +
�q′z
2m

(t′ − t′′) ,

K1(kz,k′, t′, t′′) = S(k′z, kz, t
′, t′′,q′

⊥) = −K2(k′, kz , t
′, t′′),

and
∫

G
d3k′ =

∫
dq′

⊥
∫ Q2

−Q2
dkz . We note that the Neumann series of such integral

equations as (4) converges [5]. Thus, the functional (3) can be evaluated by a
MC estimator [6].

Let us construct a biased MC estimator for evaluating the functional (3) using
backward time evolution of the numerical trajectories in the following way:

ξs[Jg(f)] =
g(z, kz, t)
pin(z, kz, t)

W0fw(., kz, 0) +
g(z, kz, t)
pin(z, kz, t)

s∑
j=1

Wα
j fw

(
., kα

z,j , tj
)
, (5)

where
fw

(
., kα

z,j , tj
)

={
fw

(
z + h(kz,j−1, kz,j−1 − kz,j , tj−1, t

′
j , tj ,F), kz,j , tj

)
, if α = 1,

fw

(
z + h(kz,j−1, kz,j − kz,j−1, tj−1, t

′
j , tj ,F), kz,j−1, tj

)
, if α = 2,

Wα
j = Wα

j−1
Kα(kz,j−1,kj , t

′
j , tj)

pαptr(kj−1,kj , t′j, tj)
, Wα

0 = W0 = 1, α = 1, 2, j = 1, . . . , s .

The probabilities pα, (α = 1, 2) are chosen to be proportional to the absolute
value of the kernels in (4). The initial density pin(z, kz, t) and the transition
density ptr(k,k′, t′, t′′) are chosen to be tolerant1 to the function g(z, kz, t) and

1 r(x) is tolerant to g(x) if r(x) > 0 when g(x) �= 0 and r(x) ≥ 0 when g(x) = 0.
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the kernels, respectively. The first point (z, kz,0, t0) in the Markov chain is chosen
using the initial density, where kz,0 is the third coordinate of the wave vector
k0. Next points (kz,j , t

′
j , tj) ∈ (−Q2, Q2) × (tj , tj−1) × (0, tj−1) of the Markov

chain:

(kz,0, t0) → (kz,1, t
′
1, t1) → · · · → (kz,j , t

′
j , tj)→ · · · → (kz,s, , t

′
s, ts)

do not depend on the position z of the electrons. They are sampled using the
transition density ptr(k,k′, t′, t′′) as we take only the z-coordinate of the wave
vector k. Note the time t′j conditionally depends on the selected time tj . The
Markov chain terminates in time ts < ε1, where ε1 is a fixed small positive
number called a truncation parameter.

In order to evaluate the functional (3) by N independent samples of the
estimator (5), we define a Monte Carlo method

1
N

N∑
i=1

(ξs[Jg(f)])i
P−→ Jg(fs) ≈ Jg(f), (6)

where P−→ means stochastic convergence as N →∞; fs is the iterative solution
obtained by the Neumann series of (4), and s is the number of iterations. The
relation (6) still does not determine the computational algorithm. To define a
MC algorithm we have to specify the initial and transition densities, as well the
modeling function (or sampling rule). The modeling function describes the rule
needed to calculate the states of the Markov chain by using uniformly distributed
random numbers in the interval (0, 1).

Here, the transition density is chosen:

ptr(k,k′, t′, t′′) = p(k′/k)p(t, t′, t′′)

p(t, t′, t′′) = p(t, t′′)p(t′/t′′) =
1
t

1
(t− t′′)

p(k′/k) = c1/(k′ − k)2

(c1 is the normalized constant). Thus, if we know t, the next times t′′ and t′

are computed by using the inverse-transformation rule. The wave vector k′ are
sampled in the same way as described in [3]. The difference here is that we have
to compute all three coordinates of the wave vector although we need only the
third coordinate.

The choice of pin(z, kz, t) depends on the function g(z, kz, t). The cases when

(i) g(z, kz, t) = δ(z − z0)δ(kz − kz,0)δ(t− t0),

(ii) g(z, kz, t) =
1
2π
δ(kz − kz,0)δ(t− t0),

(iii) g(z, kz, t) =
1
2π
δ(z − z0)δ(t− t0),

are of special interest, because they estimate the values of the Wigner function
(1), the wave vector and the density distribution (2) in fixed points.
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3 Grid Implementation and Numerical Results

The computational complexity of an MC algorithm can be measured by the quan-
tity CC = N × τ × M(sε1). The number of the random walks, N , and
the average number of transitions in the Markov chain,M(sε1), are related to the
stochastic and systematic errors [5]. The mean time for modeling one transition, τ ,
depends on the complexity of the transition density functions and on the sampling
rule, as well as on the choice of the random number generator (rng).

It is proved [5, 4] that the stochastic error has order O(N−1/2 exp (c2t)), where
t is the evolution time and c2 is a constant depending on the kernels of the
quantum kinetic equation under consideration. This estimate shows that when
t is fixed and N → ∞ the error decreases, but for large t the factor exp (c2t)
looks ominous. Therefore, the algorithm solves an NP -hard problem concerning
the evolution time. To solve this problem for long evolution times with small
stochastic error we have to combine both MC variance reduction techniques and
distributed or parallel computations.

It is well known that the MC algorithms are very convenient for implemen-
tations on parallel computer systems [1], because every realization of the MC
estimator can be done independently and simultaneously. Although MC algo-
rithms are well suited to parallel computation, there are a number of potential
problems. The available computers can run at different speeds; they can have
different user loads on them; one or more of them can be down; the rng’s that
they use can run at different speeds; etc. On the other hand, these rng’s must
produce independent and non-overlapping random sequences. Thus, the parallel
realization of the MC algorithms is not a trivial process on different parallel
computer systems.

By using the grid environment provided by the EGEE project middleware2

[2] we were able to reduce the computing time of the MC algorithm under con-
sideration. The simulations are parallelized on the existing Grid infrastructure
by splitting the underlying random number sequences. The numerical results
discussed in Fig. 1 are obtained for zero temperature and GaAs material param-
eters: the electron effective mass is 0.063, the optimal phonon energy is 36meV ,
the static and optical dielectric constants are εs = 10.92 and ε∞ = 12.9. The
initial condition is a product of two Gaussian distributions of the energy and
space. The k2

z distribution corresponds to a generating laser pulse with an excess
energy of about 150meV . The z distribution is centered around zero. A quantum
wire with orthogonal cross section is assumed.
2 The Enabling Grids for E-sciencE (EGEE) project is funded by the European

Commission and aims to build on recent advances in grid technology and develop
a service grid infrastructure which is available to scientists 24 hours-a-day. The
project aims to provide researchers in both academia and industry with access to
major computing resources, independent of their geographic location. The EGEE
project identifies a wide-range of scientific disciplines and their applications and
supports a number of them for deployment. To date there are five different scientific
applications running on the EGEE Grid infrastructure. For more information see
http://public.eu-egee.org/.
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Fig. 1. Evolution of optically generated distribution of electrons in a quantum wire.
The electric field E is 0, the number of the random walks per point is N = 10 millions,
t is 150 femtoseconds.

Table 1. The CPU time (seconds) for all 800×260 points, the speed-up, and the parallel
efficiency. The number of random walks is N = 100000. The evolution time is 100 fs.

Number of CPUs CPU Time (s) Speed-up Parallel Efficiency
2 9790 - -
4 4896 1.9996 0.9998
6 3265 2.9985 0.9995

The solution f(z, kz, t) is estimated in 800×260 points (see Figure 1) that are
symmetrically located in the rectangular domain (−Q1.Q1)× (−Q2, Q2), where
Q1 = 400× 109m−1 and Q2 = 66× 107m−1.

In our research, the MC algorithm has been implemented in C. The SPRNG
library has been used to produce independent and non-overlapping random se-
quences [9]. Successful tests of the algorithm were performed at the Bulgarian
SEE-GRID3 sites using the Resource Broker at ULAKBIM — Turkey. The MPI

3 South Eastern European GRid-enabled eInfrastructure Development (SEE-GRID)
project is funded by the European Commission and aims to provide specific
support actions to pave the way towards the participation of the SE European
countries to the Pan-European and worldwide Grid initiatives. The SEE-GRID con-
sortium consists of eleven contractors: ten representatives or incubators of National
Grid initiatives (NGIs) from SE European countries and CERN. The consortium
contractors that represent NGIs are: GRNET (Greece), SZTAKI (Hungary), ICI
(Romania), IPP (former CLPP, Bulgaria), TUBITAK (Turkey), INIMA (Albania),
BIHARNET (Bosnia-Herzegovina), Ss Cyril and Methodius University (FYRoM),
University of Belgrade (Serbia-Montenegro), RBI (Croatia). For more information
see http://www.see-grid.org/.
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implementation was MPICH 1.2.6, and the execution is controlled from the Com-
puting Element via the Torque batch system.

The timing results for evolution time t=100 femtoseconds are shown in
Table 1. The parallel efficiency is close to 100%.

4 Conclusion

A Wigner equation for the evolution of spatially inhomogeneous electron distri-
bution excited by a laser pulse in a quantum wire has been solved by a Monte
Carlo approach. Numerical results are obtained for the Wigner function without
applied electric field, but the proposed approach is suitable for exploration of the
influence of the field. The numerical problem is CPU intensive and thus suit-
able for implementation on Grid infrastructures, especially since high parallel
efficiency is achieved.

Acknowledgments. This work has been supported by the Bulgarian NSF grant
I-1201/02, by the project BIS-21++ funded by FP6 INCO grant 016639/2005,
and by the Austrian Science Funds, FWF Project START Y247-N13.
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Abstract. Noise modeling in the semiclassical framework of the Boltz-
mann transport equation (BTE) is analyzed. The usual approach to solve
the BTE, the Monte Carlo method, is found to be prohibitively CPU in-
tensive for technically relevant frequencies below 100GHz. A numerical
alternative based on a spherical harmonics expansion of the BTE is pre-
sented, of which the CPU time does not depend on the frequency. In
addition, this approach allows to solve the Langevin-type BTE, which
gives more physical insight into noise. This is demonstrated for some
relevant device applications.

1 Introduction

Electronic noise is one of the limiting factors for the performance of analog cir-
cuits [1] and the most advanced models for devices are based on the semiclassical
Boltzmann transport equation (BTE) [2]. The method of choice for solving the
BTE is the Monte Carlo (MC) approach [3, 4] which solves the BTE in the time
domain and inherently contains noise. By Fourier transformation of the correla-
tion functions into the frequency domain the important power spectral densities
(PSD) are obtained. But recently it has been shown that it is difficult to calcu-
late electronic noise in the technically important frequency range below 100GHz
with this time-domain based approach [5, 6]. At such frequencies the CPU time
is at least inversely proportional to the minimum frequency investigated and
thus prohibitively long.

An alternative approach is based on the spherical harmonics expansion (SHE)
of the BTE [7, 8, 9]. In this case the BTE can be solved directly in the frequency
domain avoiding the problems of MC at low frequencies [10]. In addition, it
is possible to solve the Langevin Boltzmann equation (LBE) with SHE [11].
The LBE, which is equivalent to the BTE w.r.t. to the solutions obtained [2],
has the advantage that the Langevin approach is well-known and the problems
encountered in [10] can be easily avoided.

First, noise calculation in the framework of the BTE is discussed. Second, the
Langevin approach is presented and its advantages outlined. Third, the problems

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 164–171, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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of the MC approach for noise are investigated, and finally results of the SHE
method are presented. For the sake of brevity only the case of stationary and
spatially homogeneous systems is discussed in Sec. 2 for which the real space
coordinates can be neglected and the BTE is linear.

2 Theory

Electronic noise in a stationary system is characterized by the one-sided PSD
Sxy which is the Fourier transform of the corresponding correlation function of
the two microscopic quantities x and y [12, 2]

Sxy(ω) = S∗
yx(ω) = 2

∫ ∞

−∞
〈[x(t) − 〈x〉][y(0)− 〈y〉]〉 exp(−iωt)dt , (1)

where ω = 2πf ≥ 0 is the angular frequency, the asterisk denotes the complex
conjugate, and 〈〉 an expectation. The correlation function of the fluctuations is
given by

〈x(t)y(0)〉 − 〈x〉〈y〉 =
∫∫

x(k)
(
p(k, t; k′, 0)− p(k)p(k′)

)
y(k′)d3kd3k′ (2)

with the joint probability density

p(k, t; k′, 0) =

{
p>(k, t|k′, 0)p(k′) for t ≥ 0

p>(k′,−t|k, 0)p(k) for t < 0
. (3)

The stationary single-particle probability density p(k) and the conditional prob-
ability density (CPD) p>(k, t|k′, 0), which gives the probability that a particle,
which was at time zero in the state k′, is found at t in the state k for t ≥ 0, are
both normalized∫

p(k)d3k = 1 ,

∫
p>(k, t|k′, 0)d3k = 1 (4)

and must both satisfy the linear BTE (the CPD w.r.t. to the first set of argu-
ments) {

∂

∂t
− q

�
E∇

}
p = Ŵ{p} (5)

with the scattering integral

Ŵ {p} =
Ω

(2π)3

∫
W (k|k′′)p(k′′)−W (k′′|k)p(k)d3k′′ , (6)

where E is the electric field, W (k|k′′) the transition rate, and Ω the system
volume [13]. The initial condition of the CPD is given at t = 0 by

p>(k, 0|k′, 0) = δ(k − k′) . (7)
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The Fourier transform of the joint probability density can be rearranged with (3)

P (k,k′, ω) =
∫ ∞

−∞
[p(k, t; k′, 0)− p(k)p(k′)] exp(−iωt)dt

=
∫ ∞

0
[p(k′, t; k, 0)− p(k′)p(k)] exp(iωt)dt

+
∫ ∞

0
[p(k, t; k′, 0)− p(k)p(k′)] exp(−iωt)dt

=
∫ ∞

0
[p>(k′, t|k, 0)− p(k′)] exp(iωt)dt p(k)

+
∫ ∞

0
[p>(k, t|k′, 0)− p(k)] exp(−iωt)dt p(k′)

= P> ∗(k′,k, ω)p(k) + P>(k,k′, ω)p(k′) (8)

with
P>(k,k′, ω) =

∫ ∞

0
[p>(k, t|k′, 0)− p(k)] exp(−iωt)dt . (9)

The corresponding PSD is given by

Sxy(ω) = S>
xy(ω) + S> ∗

yx (ω) (10)

with
S>

xy(ω) =
∫∫

x(k)P>(k,k′, ω)p(k′)y(k′)d3kd3k′ . (11)

Only in the case of an autocorrelation function (x = y) does this expression
reduce to the result given in [10, (22)]

Sxx(ω) = S>
xx(ω) + S> ∗

xx (ω) = 2"
{
S>

xx(ω)
}
. (12)

With the MC method the CPD can be directly evaluated. In the case of a
numerical solver (e.g. SHE) this is very CPU intensive, because the CPD has
two sets of arguments. In order to reduce the complexity, conditional microscopic
quantities are introduced [14, 10]

P>
y (k, ω) =

∫
P>(k,k′, ω)p(k′)y(k′)d3k′ , (13)

which can be evaluated by solving the BTE in the frequency domain{
iω − q

�
E∇

}
P>

y = Ŵ{P>
y }+ p(k)[y(k)− 〈y〉] , (14)

where the additional term on the RHS appears due to the half-sided Fourier
transform (cf. (9)) of the derivative with respect to time [15]. The PSD reads
now

Sxy(ω) =
∫
x(k)P>

y (k, ω) + y(k)P> ∗
x (k, ω)d3k . (15)
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Thus to calculate the PSD, (5) has to be solved for p(k) and (14) for all condi-
tional microscopic quantities of interest.

An alternative approach is based on the LBE [2]{
∂

∂t
− q

�
E∇

}
p = Ŵ{p}+ ξ(k, t) , (16)

where the probability density itself is now a fluctuating quantity. ξ is a Langevin
force with zero mean and delta-correlation in time

E
{
ξ(k, t)ξ(k′, t′)

}
= Sξξ(k,k′)δ(t − t′) . (17)

The white and symmetric PSD of the Langevin force is given by

Sξξ(k,k′) =
2Ω

(2π)3

[∫
W (k′′|k)p(k) +W (k|k′′)p(k′′)d3k′′ δ(k − k′)

−W (k|k′)p(k′)−W (k′|k)p(k)

]
(18)

= Sξξ(k′,k)

The corresponding Green’s functions G(k,k′, ω) are the solutions of a modified
BTE {

iω − q

�
E∇

}
G = Ŵ{G}+ δ(k − k′) . (19)

With the Wiener-Lee theorem [12] the PSD of the single-particle probability
density reads

Spp(k,k′, ω) = S∗
pp(k

′,k, ω) =
∫∫

G(k,k1, ω)Sξξ(k1,k
′
1)G

∗(k′,k′
1, ω)d3k1d3k′1

(20)
and the PSD for x, y

Sxy(ω) =
∫∫

x(k)Spp(k,k′, ω)y(k′)d3kd3k′ . (21)

Similar to the case of the BTE, Green’s functions are defined for the microscopic
quantities to reduce the CPU time

Gx(k′, ω) =
∫
x(k)G(k,k′, ω)d3k , (22)

which can be calculated directly with the adjoint technique [16]. Sxy reads now

Sxy(ω) =
∫∫

Gx(k, ω)Sξξ(k,k′)G∗
y(k′, ω)d3kd3k′ . (23)

Thus in contrast to (15), it is possible to separate the source of the fluctuation,
which is due to particle scattering (cf. (18)), and the propagation of the fluc-
tuations, which are described by the Green’s functions. In this sense the LBE
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approach gives more physical insight into noise than the BTE. The numerical
effort is in both cases the same and much smaller than for a MC simulation.
Furthermore, the CPU time does not depend on the frequency and even zero
frequency is accessible. This is important for the investigation of low-frequency
noise, which is almost impossible to simulate by MC.

The above presented approaches are not limited to the calculation of elec-
tronic noise. They can be also used to investigate the efficiency of different MC
algorithms [17, 18]. Under stationary conditions MC results are often averaged
over time. The variance of such an average is given with Macdonald’s function by

σ2
x(T ) =

∫ ∞

0
Sxx(ω)

1− cos(ωT )
π(ωT )2

dω ≈ Sxx(0)
2T

, (24)

where T is the total simulation time and the approximation holds for a suffi-
ciently large T . Therefore, the efficiency of an MC algorithm is proportional to
the PSD of the estimated variable.

3 Results

In Fig. 1 the PSD of the velocity is shown for undoped bulk Si. Both approaches,
SHE and MC yield the same results, where SHE is at least two orders of magni-
tude faster than MC, although (19) was solved for 41 different frequencies and
a large set of microscopic quantities. At lower frequencies the advantage of the
SHE approach becomes increasingly larger. Results for a simulation including a
generation/recombination process with a life time of 5ns are shown in Fig. 2. Due
to the life time of 5ns the PSD depends even below 1GHz on the frequency. No
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Fig. 1. Power spectral density of the longitudinal velocity fluctuations for an electric
field of 30kV/cm in undoped Si
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Fig. 3. Spatial distribution of the terminal current noise for the N+NN+ structure at
300K and 1.0V bias

MC simulations were performed, because these would entail CPU times many
orders of magnitude larger than the one for Fig. 1, which was already four days.

In the case of device simulations the problems of the MC method for fre-
quencies below 100GHz become worse, but also the CPU time of SHE increases,
because the additional real space dimensions lead to a huge increase in the
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number of grid points in the phase space. Therefore, only 1D results are shown
for SHE. A 1D N+NN+ structure, which consists of a 400nm long region with a
doping concentration of 2 ·1015/cm3, to which on both sides 100nm long regions
of 5 · 1017/cm3 are attached, is simulated by SHE and the current flows into
the 〈100〉 direction. In Fig. 3 the spatial origin of the terminal current noise is
shown. This result can only be obtained by solving the LBE. It clearly shows
that the terminal current noise at technically relevant frequencies below 100GHz
originates from the low density area in the device. On the other hand, the high
density regions, where the strongest plasma oscillations occur, dominate the less
relevant ultra-high frequency noise. W.r.t. MC simulations this means that the
variance of the terminal current is mainly determined by the particles in the low
density regions [13]. The high frequency fluctuations of the high density regions
are filtered out by Macdonald’s function (24).

4 Conclusions

It has been demonstrated that the MC method is not necessarily the best method
for noise calculation. Especially in the case of technically relevant frequencies
below 100GHz MC becomes prohibitively CPU intensive. In this case SHE is
a viable alternative with the additional benefit that the LBE can be solved,
which provides more physical insight than the BTE. The method is not limited
to electronic noise, but can be used to calculate the variance of all kinds of MC
variables.
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Abstract. The problem of computing electrostatic properties of a
pollutant molecule in solvent is considered. To solve it, the ‘walk-on-
the-boundary’ algorithm is applied. For the problems considered in the
article, this Monte Carlo method has advantages when compared to
random walks on spheres, balls or a grid, and is competitive to conven-
tional computational methods. To accelerate the convergence, we study
the properties of the algorithm when quasirandom sequences instead of
pseudorandom numbers are used to construct the walks on the bound-
ary. The results of numerical experiments confirm theoretical estimates
of the convergence rate improvement.

1 Introduction

Electrostatics is one of the fundamental interactions that determines the struc-
ture, stability, binding, chemical and physical properties of pollutants’ molecules,
especially of organic origin. It is essential to take electrostatics into account when
investigating numerically the mechanisms and strength of interaction of pollu-
tant with the environment and biological structures. One of the most important
mathematical problems that arises in the process of investigating reactive prop-
erties of large organic molecules in solvent is the problem of calculating their
internal electrostatic energy, point values of the potential and the electrostatic
forces that a molecule is subjected to in the dielectric medium.

There are different approaches to describing the electrostatic field on the
molecular level. One of the possible and widely used models is a continuum
model [1]. For a given charge distribution ρ(x), the electrostatic potential is
determined as a solution to Poisson’s equation

−∇ε∇u(x) = ρ(x) , x ∈ R3 , (1)
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where ε is a position-dependent permittivity. In biophysics applications, the ge-
ometry of a problem is taken into account by thinking of a molecule as a cavity,G,
with point charges and constant ε inside. The exterior is considered as a dielectric
medium with different permittivity and some charge distribution. Clearly, certain
boundary conditions on the surface of a molecule have to be added.

The common approach to solving these kinds of problems is the finite-differ-
ence technique (see e.g. [1, 2]); boundary element and finite element methods are
successfully used as well. It is essential to note, however, that in the molecular
electrostatics computations there is often no need in finding the entire solution.
Usually, only point values of the electrostatic potential and the electric field
have to be computed. This clears the way to application of competitive Monte
Carlo algorithms as alternative methods of treating computationally boundary
value problems. For elliptic equations, the most efficient and commonly used
are the walk on spheres (WOS) method [3] and random walk on the boundary
algorithm [4, 5].

It is worth noting, however, that Monte Carlo methods were well established
for the equations with constant coefficients and classical boundary conditions. In
molecular electrostatics problems, we have to deal with coupling different equa-
tions through continuity boundary conditions. Recently, we proposed some new
Monte carlo techniques for solving such boundary-value problems [6, 7]. Our ap-
proach was based on the combination of WOS, walk-in-subdomains methods [8]
and finite-difference approximation of the boundary condition. Later, we imple-
mented more subtle and efficient treatment of boundary conditions. The results
will be published soon. We found out that the efficiency of WOS-based Monte
Carlo algorithm essentially depends on the charge density in the exterior of
the molecule. With no charges present and convex G, the random walk on the
boundary algorithm becomes more efficient [9, 10]. In these papers, we also in-
vestigated the effect of using quasirandom sequences instead of pseudorandom
numbers. We found out that walk-on-the-boundary algorithm is very very suited
for such transformation and that the estimate’s convergence improved as well as
we expected.

In this paper, we continue our investigation of quasirandom walks on the
boundary for solving boundary-value problems of molecular electrostatics. We
consider the non-convex case and different versions of the algorithm. For the ge-
ometries with low probability of multiple boundary intersections, we found out
that the random walk-on-the-boundary algorithm and its quasirandom counter-
part work well and efficiently.

The paper is organized as follows. The formulation of the problems are given
in §1. The random walk on the boundary method is described in §2. In §3 the use
of quasirandom sequences is discussed, and some numerical results are presented.

2 Formulation of the Problem

In calculating the internal electrostatic energy of a molecule, we accept the model
which is commonly used in bio-molecular electrostatics computations [1]. The
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molecule in question is considered as a union of a large number of intersecting
balls (atoms) that constitutes a compact set G ∈ R3. Every spherical atom has
its electrical charge, qm, which is positioned at its center, xm, and rm is the radius
of this atom (ball). Hence, the electrostatic potential, u(x), satisfies Poisson’s

equation (1) inside G for the particular charge density ρ(x) =
M∑

m=1

qmδ(x− xm).

Here, the dielectric permittivity, ε = εi, is constant.
Usually, the molecule is surrounded by some dielectric (e.g., water). The clas-

sical approach is to treat the exterior medium as continuous with some constant
permittivity, εe. Assume that there are no dissolved ions outside the molecule.
This means that the electrostatic potential, u, satisfies the Laplace equation ((1)
with zero charge density ρ) in G1 ≡ R3 \ G. The continuity conditions on the
boundary that couple the potential values inside and outside the molecule are:

ui(y) = ue(y) , εi
∂ui

∂n(y)
= εe

∂ue

∂n(y)
, y ∈ ∂G . (2)

Here, for convenience, we denote ui as the solution to (1) in the interior of G,
and ue as the solution in the exterior, G1. We also assume that ue(x) → 0 as |x|
goes to infinity.

In the linear case, the electrostatic free energy of the molecule is given by [1]

E =
1
2

M∑
m=1

umqm ,

where um is the regular part of the electrostatic potential at the center of the
m-th atom. This means that in calculation of E we take um = u(0)(xm). Here,
u(0) comes from the available explicit decomposition of the potential inside G:

u(x) = u(0)(x) + g(x) , (3)

where g(x) =
M∑

m=1

qm
4πεi

1
|x− xm|

.

With the assumption that ∂G is smooth enough, it is possible to represent
the regular part of the solution in the form of the single-layer potential [11, 12]

u(0)(x) =
∫

∂G

1
2π

1
|x− y|μ(y)dσ(y) . (4)

Taking into account boundary conditions (2) and discontinuity properties of the
single-layer potential’s normal derivative [11], we arrive at the integral equation
for the unknown density, μ:

μ = −λ0Kμ+ f , (5)

which is valid almost everywhere on ∂G. Here, λ0 =
εe − εi
εe + εi

, and the kernel

of the integral operator K is
1
2π

cosφyy′

|y − y′|2 , where φyy′ is the angle between the
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external normal vector n(y) and y − y′. The free term of this equation equals

λ0
∂g

∂n(y)
, and it can be computed analytically. Since λ0 < 1, and the spectral

radius of K is equal to 1, the Neumann series for (5) converges (see, e.g., [11, 12]),
and it is possible to calculate the solution as

u(0)(x) =
∞∑

i=0

(hx, (−λ0K)i
f) , (6)

where hx(y) =
1
2π

1
|x− y| . Usually, however, εe # εi and, hence, 1 − λ1 =

2εi
εe + εi

$ 1. Here, λ1 = −λ0 is the eigenvalue of the integral operator in (5)

with the largest modulus. This means that convergence in (6) is rather slow.
To speed up the convergence in (6), we apply the method of spectral param-

eter substitution (see, e.g., [13], and [5] for Monte Carlo algorithms based on
this method). This means that we consider the parameterized equation μλ =
λ(−λ0K)μλ + f and analytically continue its solution given by the Neumann se-
ries for |λ| < 1/λ0. This goal can be achieved by substituting in λ its analytical
expression in terms of another complex parameter, η, and representing μλ as a
series in powers of η.

In this particular case, it is possible to use the substitution λ =
2η

λ0(1− η)
≡

χ(η), and hence

u0(x) =
n∑

i=0

l
(n)
i (−λ0)i

(
hx,Kif

)
+O(qn+1) , (7)

where q =
λ0

2 + λ0
=

εe − εi
3εe − εi

<
1
3
, and l

(n)
i =

n∑
j=i

(
i−1
j−1

)
(2|λ0|)iqj . The rate, q,

of geometric convergence of the transformed series in powers of η at the point
η0 = χ−1(1) is determined by the ratio of |η0| and L = mini |χ−1(−λi/λ0)|.
Here, 1/λi are eigenvalues of K and L = 1 [11, 13].

Given a desired computational accuracy, we calculate the number of terms
needed in (7). Thus, the problem reduces to computing a finite number of mul-
tidimensional integrals.

3 Random Walks on the Boundary

To construct Monte Carlo estimates for u0(x), it is sufficient to calculate the
integral functionals Ii(x) =

(
hx,Kif

)
of iterations of the integral operator. Here,

the domain of integration is [∂G]i+1.
Let G be a convex domain. In this case, the kernel, k(y, y′), of K corresponds

to the uniform in a solid angle distribution of the point y as viewed from the point
y′. This means that the most convenient way to construct a random estimate for
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double integral (hx,Kf) is to use for choosing y′ some density p0 that conforms
with f , and to sample y in accordance with the conditional density p(y′ → y) =
k(y, y′). This construction leads to using so-called ‘direct’ estimates for Ii(x) [5].
Therefore

Ii(x) = EQihx(yi) , (8)

where Y = {y0, y1, . . .} is the Markov chain of random points on the bound-
ary ∂G, with the initial density p0 and transition density p(yi → yi+1) =
1
2π

cosφyi+1yi

|yi+1 − yi|2
. Here, random weights are Qi = Q0 =

f(y0)
p0(y0)

, i = 1, 2, . . . , n.

Therefore, O(qn+1)-biased estimate for u(0) is

θ =
n∑

i=0

l
(n)
i (−λ0)iQihx(yi) . (9)

Consider now a non-convex molecule G. In this case, first, there is a possibil-
ity of multiple intersections of a straight line with the boundary, and, second,
cosφyi+1yi can be negative. There are two different approaches to overcome this
difficulty. Let ni(yi) be the number of these crossings, yi excluded. The first
solution is to choose the next point of Markov chain yi+1 randomly from ni

intersections. This corresponds to the transition density p1 =
1
ni
|p| and there-

fore Qi+1 = Qi ni sign(cosφyi+1yi). The second approach is to use a branching
Markov chain, thus taking into account all intersections. In this case the tran-
sition density is p2 = |p|, weights Qi+1 = Qi sign(cosφyi+1yi) can only change
their signs but not their moduli, and every point yi gives birth to ni(yi) points
in the next generation.

There is no exact criterion that could determine which of these two approaches
is more efficient. On the one hand, the random choice of the next point leads to
a fixed length of the Markov chain, which results in smaller computational time
needed to construct one sample of the solution’s estimate. On the other hand,

the weight factor in this approach can be as large as
n+1∏

1

ni, and this could result

in large variance. The estimate based on construction of a branching Markov
chain has the opposite properties. Branching could result in small variance, but
it also requires longer computations needed to obtain an estimate’s sample.

In both approaches, the construction of the Markov chain, Y , is based on its
geometrical interpretation. Given a point, yi, we simulate a random isotropic
direction ωi and find the next point yi+1 as the intersection of this direction
with the boundary surface ∂G. It is well known that different procedures can
be used to choose ωi = (ωi,1, ωi,2, ωi,3). We consider the procedure based on the
direct simulation of the longitudinal angle. Normally, an acceptance-rejection
method would be used. But since we plan to use quasirandom numbers, this is
inadvisable (see, e.g. [14]). So we use the following algorithm: ωi,3 = 1 − 2αi,1,

ϕi = 2παi,2, d =
√

1− ω2
i,3, ωi,1 = sinϕi/d, ωi,2 = cosϕi/d, where the αi are

standard uniform pseudorandom numbers in the unit interval.
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4 Quasirandom Walks on the Boundary

In this section we discuss how to use quasirandom numbers for solving the
boundary-value problem (1), (2). To construct Monte Carlo estimates, in §1,
we reformulated the original problem into the problem of solving integral equa-
tion (5). So, in order to make use of these representations when constructing
quasirandom estimates, we have to refer to a Koksma-Hlawka type inequality
for integral equations, [15]:∣∣∣∣∣u[Y ∗]− 1

N

N∑
1

θ∗[Y ∗]

∣∣∣∣∣ ≤ V (θ∗) D∗
N(Q) , (10)

where Q is a sequence of quasirandom vectors in [0, 1)s, s = d× T , and d is the
number of QRNs in one step of a random walk, T is the maximal number of
steps in a single random walk, and θ∗ corresponds to an estimate θ[Y ] based on
the random walk Y ∗ generated from Q by a one-to-one map.

This inequality ensures convergence when θ∗ is of bounded variation in the
Hardy-Krause sense, which is a very serious limitation. But even when this con-
dition is satisfied, the predicted rate of convergence is very pessimistic due to the
high (and, strictly speaking, possibly unbounded) dimension of the quasirandom
sequence in the general Monte Carlo method for solving these integral equations,
(e.g. (6)). To avoid this limitation, we consider variants of the method with each
random walk having fixed length. Clearly, the smaller the dimension of Q, the
better the rate estimate in (10).

Guided by this reasoning, we used the representation (7) and the correspon-
dent random estimate θ, to construct quasirandom solutions to the original
boundary-value problems.

It is essential to note that despite the improved rate of convergence of our
quasirandom-based calculations, constants in the error estimates are hard to
calculate. On the contrary, the statistical nature of Monte Carlo solutions makes
it possible to determine confidence intervals almost exactly.

5 Numerical Tests

We performed numerical tests with the simple model problem of finding the
potential and its derivatives (electric field components) for a molecule in the
shape of the dumbbell made of two spheres. To solve this problem, we fix
the length of series to be n = 6 that provides a 0.1% bias. For a convex do-
main, the number of random (or quasirandom) points needed to construct the
estimate will also be fixed: 2(n+ 1). In non-convex domains the length (dimen-
sion) of random (or quasirandom) sequence varies for different Markov chain
trajectories. We can only give an upper estimate for this number. In the algo-
rithm with random choice of the next point in the Markov chain the dimension
of a sequence is less than or equal to 3(n + 1). In the branching random walk
on boundary, the number of points depends on the geometry of the domain. Let
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R

(+A,0,0)(0,0,0)(−A,0,0)

Fig. 1. Test problem

Table 1. Approximate values of energy, potential and X derivative for different number
of random trajectories

N Energy Potential at (A,0,0) X derivative at (A,0,0)
102 -0.3861 -0.2880 -0.5601
103 -0.3915 -0.4007 -0.4508
104 -0.3421 -0.3424 -0.3107
105 -0.3436 -0.3435 -0.3309
106 -0.3441 -0.3419 -0.3340
107 -0.3432 -0.3426 -0.3346

statistical error 0.0003 0.0008 0.0012
(N = 107)

Exact values -0.3434 -0.3434 -0.3343

nmax +1 be the maximal possible number of intersections of a straight line with
the boundary. Then the length of a sequence is bounded from above by nn+1

max.
To use quasirandom sequences efficiently we chose the different approach.

Every direction in one generation was sampled using the same pair of numbers.
This introduced correlation between the points but did not compromised the
convergence.

6 Conclusions

In this paper we presented a successful application of quasirandom sequences in
constructing the walk on boundary Markov chain that was used for solving non-
standard elliptic boundary-value problem in the whole space with the boundary
conditions given on the non-convex surface. The problem was reduced to calcu-
lating a small number of multidimensional integrals. This is the key point for the
successive use of quasirandom sequences. The computational results with Sobol
sequences show the better rate of convergence than the statistical one that was
obtained by using pseudorandom numbers. We found out that the accuracy of
the quasirandom walk-on-the-boundary method is better and the advantage of
this method is significant.
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Table 2. Approximate values of energy, potential and X derivative for different number
of quasirandom trajectories

N Energy Potential at (A,0,0) X derivative at (A,0,0)
102 -0.3545 -0.3747 -0.3163
103 -0.3348 -0.3359 -0.3408
104 -0.3426 -0.3392 -0.3415
105 -0.3443 -0.3434 -0.3362
106 -0.3436 -0.3434 -0.3352
107 -0.3433 -0.3433 -0.3343

Exact values -0.3434 -0.3434 -0.3343

-0.347

-0.346

-0.345

-0.344

-0.343

-0.342

-0.341

-0.34

 10000  100000  1e+06  1e+07

’resultsSOBOL’ using 1:2
’resultsRANDOMcorr’ using 1:2

’resultsRANDOM’ using 1:2

Fig. 2. Dependence of energy on the number of simulated samples for different choices
of sequences

Results of our computational experiments with a model molecule confirm
that Monte Carlo and quasi-Monte Carlo methods can be successfully applied to
calculating electrostatic properties of pollutant molecules in solvent. The choice
between WOS and walk-on-the-boundary algorithms depends on the form of
the molecule and the presence of dissolved ions outside the molecule. It is also
worth noting that WOS-based algorithm is, in general, more simple to implement
numerically. This, however, depends on the geometry of the boundary.
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Abstract. In many areas of the science there is a need to evaluate a
functional of the solution of a given problem directly without computing
the solution itself. The problem here is a linear functional of the solu-
tion of an elliptic boundary value problem to be estimated. Such kind
of problems are similar to the air pollution problems in environmental
sciences, where a rough estimate of the solution is acceptable. For practi-
cal computations it means that the relative error is about 5% – 10%. To
solve this problem a grid–free Monte Carlo (MC) algorithm is used. The
algorithm makes use of a Monte Carlo procedure called “Walk on the
balls”. Here we consider parallel realizations of the considered grid–free
MC algorithm. Various numerical results are obtained by the implemen-
tation of the proposed parallel algorithms on several high performance
machines: IBM +p690 Regata system and Sun Fire 15K server. One can
see that the efficiency of the proposed parallel algorithm is close to 100%.

1 Formulation of the Problem

Consider the functional J(u):

J(u) ≡ (g, u) =
∫
Ω

g(x)u(x)dx, (1)

where Ω ⊂ R3 and x = (x1, x2, x3) ∈ Ω is a point in the Euclidean space R3.
The functions u(x) and g(x) belong to the Banach space X and to the adjoint
space X∗, respectively. Let X = L1(Ω). Then X∗ = L∞ (Ω) [4].

The problem under consideration consists of the calculation of the functional
J(u), where u(x) is the solution of the following boundary value problem:

Mu(x) = −Φ(x), x ∈ Ω, Ω ⊂ R3 (2)

u(x) = ψ(x), x ∈ ∂Ω, (3)
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and the operator M is defined by

M =
3∑

i=1

(
∂2

∂x2
i

+ bi(x)
∂

∂xi

)
+ c(x). (4)

If in the closed domain Ω ∈ A(1,λ) the coefficients of the operator M satisfy
the conditions: bi, i = 1, 2, 3, c ∈ C(0,λ)(Ω), c ≤ 0 and Φ ∈ C(0,λ)(Ω)

⋂
C(Ω),

ψ ∈ C(∂Ω), the problem (2) - (3) has an unique solution u(x) ∈ C2(Ω)
⋂
C

(
Ω
)

[1]. Definitions for the classes A(k,λ) and C(k,λ) can be found in [8].
The MC algorithm used here is based on a local integral representation of

the solution in the form u(x) = Ku(x) + f(x). From Green’s formula when the
Levy’s function is used the local integral representation of the solution of our
problem can be obtained in the following form [5]:

u(x) =
∫

B(x)

M∗
yLp(y, x)u(y)dy +

∫
B(x)

Lp(y, x)Φ(y)dy. (5)

B(x) is the maximal ball with center at the point x, lying in the domain Ω.
Lp(y, x) is the Levy’s function [8] of the problem considered. Its explicit form is:

Lp(y, x) = μp(R)

R∫
r

(
1
r
− 1
ρ

)
p(ρ)dρ,

where r =| x− y |, μp(R) = 1
4πqp(R) , qp(R) =

R∫
0
p(ρ)dρ, R is the radius of

B(x), and p(r) is a density function.
In the integral equation (5) M∗ is the adjoint operator to the operator M .

The components of the vector-function b(x) are assumed to satisfy the conditions
given above and divb(x) = 0. The Levy’s function and its derivatives vanish on
the boundary. With these conditions satisfied it is proved that the adjoint oper-

ator has the following form [2]: M∗
yLp(y, x) = μp(R)p(r)

r2 − μp(R)c(y)
R∫
r

p(ρ)
ρ dρ+

μp(R)
r2

[
c(y)r +

3∑
i=1

bi(y)yi−xi

r

]
R∫
r

p(ρ)dρ.

2 Monte Carlo Algorithm

The MC estimator with mathematical expectation equal to J(u) is

Θ[g] =
g(ξ0)
π(ξ0)

∞∑
j=0

Qjf(ξi), (6)

where Q0 = 1, Qj = Qj−1k(ξj−1, ξj)/p(ξj−1, ξj),

f(x) =

{ ∫
B(x)

Lp(y, x)Φ(y)dy, x ∈ Ω\∂Ω,

ψ(x), x ∈ ∂Ω,
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and ξ0, ξ1, ... is a Markov chain in Ω with initial density function π(x) and tran-
sition densities p(x, y), which are tolerant1 to g(x) and k(x, y), respectively. We

have to calculate the value: ζN = 1/N
N∑

s=1
Θ[g]s, where Θ[g]s is the value of the

random variable Θ[g] obtained over the s-th trajectory. The Monte Carlo pro-
cedure called “Walk on the balls” is used for the construction of these Markov’s
chains. The process starts at point ξ0 = x ∈ Ω, which is chosen correspondingly
with some initial density function π(x). The next random point is determined
with transition density function p(x, y). In [2] it was proved that the kernel,
k(x, y) = M∗

yLp(y, x), of the integral equation (5) inside the ball B(x) can
be used as a transition density in the Markov chain when it is non-negative.
This condition is satisfied in case when the density function is p(r) = e−kr,
k = b∗ + Rc∗, where b∗ = max

x∈Ω
| b(x) |, and R is the radius of the maximal

ball, lying inside Ω [6]. The function p(x, y) in spherical coordinates can be
expressed as:

p(r,w) =
sin θ
4π

p(r)
qp(R)

pr(w),

where pr(w) = 1 +
[
|b(x+rw)| cos(b,w)+c(x+rw)r

p(r)

] R∫
r

p(ρ)dρ − c(x+rw)r2

p(r)

R∫
r

p(ρ)
ρ dρ.

For simulating random variable with density function pr(w) we use the selection

algorithm [2]. Since pr(w) ≤ 1 + b∗
p(r)

R∫
r

p(ρ)dρ = h(r), the function h(r) can be

used as a majorant.
To ensure the convergence of the ball process, an ε-strip of the boundary is

introduced and the process terminates when the point falls into it. Here follows
the algorithm for one random walk [2]. This algorithm is presented first by Sipin
[5]. The ball process is similar to the well known spherical process [3, 7, 9].

Algorithm 1
1. Calculate the radius R(x).
2. Sample the jump r with density p(r)/qp(R).
3. Calculate the function h(r).
4. Compute the independent realizations wj of a unit isotropic vector in R3.
5. Compute the independent realizations γj of a uniformly distributed ran-

dom variable in the interval [0, 1].
6. Repeat the steps 4 and 5 until the parameter j0 is defined from the condition:

j0 =min{j : h(r)γj ≤ pr(wj)}. The random vector wj0 has the density pr(w).
7. Calculate the next random point y by the formula y = x+ rwj0 .
8. Stop the algorithm when the random process reaches the ε-strip of the

boundary. If y /∈ ∂Ωε then the algorithm has to be repeated for x = y.

1 The density function p(x) is tolerant to the function f(x), if p(x) > 0 in all points
x ∈ Ω, where f(x) �= 0.
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3 Parallel Realizations

The progress of contemporary parallel architectures coupled with new technolo-
gies leads to the development and the improvement of efficient parallel algorithms
solving various problems. If A is one parallel algorithm, then let tp(A) be the
CPU time of this algorithm on p processors. The productivity of the algorithm A
is characterized by the parameters speed–up Sp(A) and efficiency Ep(A), defined
as follows: Sp(A) = t1(A)/tp(A), S1(A) = 1; Ep(A) = Sp(A)/p,E1(A) = 1. In
the case when A is a MC parallel algorithm an exact value for tp(A), in general,
is impossible to be obtained. Practically the mathematical expectation of the
time is estimated and the speed–up of the algorithm is given by the formula:
Sp(A) = Mt1(A)/Mtp(A).

A portable parallel code is written in Fortran and C. It is based on the Message
Passing Interface (MPI) - standard that solves the problem under consideration.
The Scalable Parallel Random Number Generator (SPRNG) library for Monte
Carlo simulation is used [13].

Concerning the MC algorithms all the particular realizations of the random
variables used can be obtained on different processors without any communi-
cations between them during the computations. Communications occur at the
beginning of the algorithm when the initialization of the processes have to be
done, and at the end when the results obtained on every processor have to
be collected to finalize the work. For this data transfer, one can use point-to-
point connections or collective communications among the processors. In our
case, one process needs to send the same data to all processes in the group.
MPI provides the broadcast primitive to accomplish this task. Its use is more
natural than the usage of the point-to-point scheme. What distinguishes the col-
lective communication from the point-to-point communication is that it always
involves every process in the specified communicator. Collective communica-
tion routines have been built by using point-to-point communication routines.
A great deal of hidden communication takes place with collective communica-
tion. The performance of the two approaches depends greatly on the particular
implementation and optimizations made by MPI over the concrete hardware
architectures.

4 Numerical Results

The parallel grid–free MC algorithm studied and analyzed here solves the elliptic
boundary value problem (2)–(4) with

Φ(x) = 0, x ∈ Ω = [0, 1]3, ψ(x) = ea1x1+a2x2+a3x3 , (x1, x2, x3) ∈ ∂Ω,

and b1(x) = a2a3(x2 − x3), b2(x) = a3a1(x3 − x1), b3(x) = a1a2(x1 −
x2), c(x) = −(a2

1 + a2
2 + a2

3), a1, a2, a3 are parameters of the problem. Dif-
ferent values for the parameters ai and ε-strip are considered. The functional
J(u) estimates the value of the solution of the considered elliptic problem at the
point x0 = (0.5, 0.5, 0.5), i.e. g(x) = π(x) = δ(x − x0). This problem is similar
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Table 1. HPCx, N = 12800000, LCG

NP Time Speed–up Efficiency
1 567.771107 1 1
2 284.153646 1.998113 0.999056
4 142.230000 3.991919 0.997979
8 71.082815 7.987459 0.998432
16 35.618116 15.940514 0.996282
32 17.808856 31.881391 0.996293
64 8.946657 63.461816 0.991590
128 4.692989 120.982833 0.945178
256 2.286821 248.279599 0.969842
512 1.162261 488.505475 0.954112
1024 0.600173 946.012411 0.923840
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Fig. 1. Speed–up, HPCx, LCG

to problems that arise in environmental mathematics and describe the pollution
transport due to advection and diffusion and take into account the deposition of
pollution in areas free of emission sources.

Using the access to the high performance facilities at EPCC (Edinburgh Par-
allel Computer Center), various numerical results have been obtained on IBM
+p690 Regata system (HPCx), each Regatta system frame consisting of 32 1.7
GHz POWER4 processors. Table 1 shows the dependence between the number
of processors (NP) and the CPU time (Time). N is the number of the Markov’s
chains, or the number of the realizations of the random variable whose math-
ematical expectation coincides with the value of the functional J(u). We can
see the very high efficiency of the parallel algorithm. Its speed–up is shown on
Figure 1 when the LCG (64 Bit Linear congruential Generator with Prime
Addent) is used.

Table 2 gives some information about the accuracy of the considered algo-
rithm. ũ is the calculated value of the solution of our problem, and “error” is the
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Table 2. u(x0) = 1.454991, HPCx, N = 12800000, ε = 0.01, a = 0.25, LCG

u Error maximal length average length
1.455326 0.000335 401 36.313202
1.455310 0.000318 381 36.304678

Table 3. Comparison between collective and point–to–point communication, HPCx,
N = 12800000, LFG

NP Time PtoP Time Coll Eff PtoP Eff Coll
1 565.690130 555.904211 1 1
2 282.885402 278.569411 0.999857 0.997784
4 141.571208 139.448884 0.998949 0.996609
8 70.933412 69.536864 0.996868 0.999297
16 35.379827 34.820882 0.999316 0.997792
32 17.775869 17.748940 0.994483 0.978762
64 8.896796 8.725489 0.993493 0.995474
128 4.460827 4.410374 0.990725 0.984724
256 2.260612 2.205313 0.977490 0.984667
512 1.187796 1.114026 0.930179 0.974618
1024 0.742966 0.561282 0.743549 0.967205

difference between the exact and the approximated solution. It is seen that the
error is much less than ε. This is due to the simplicity of the model numerical
problem considered here. The maximal and the average length of the Markov’s
chains in the ball process are shown in last columns.

Two variants of the parallel codes were implemented and analyzed. The first
one uses point–to–point communication between the processors, while the sec-
ond one is developed on the base of the collective communications among the
processors. The CPU time and the efficiency obtained are presented in Table 3
and are shown on Figure 2. The LFG is the Modified Lagged Fibonacci Gen-
erator. We can see that the productivity of the two algorithms is practically
the same. When 1024 processors are used, the runtime of the algorithm de-
creases and slight decrease in the efficiency is seen. The explanation is that
when the CPU time is small and number of the processors is large the efficiency
is not so good as the most of CPU time is used for communications among the
processors.

Analogous results are obtained on Sun Fire server (Lomond) with 52 Ultra-
SPARC III Cu 1.2 GHz processors. Table 4 and Figure 3 illustrate the same
tendency. Figure 4 shows the relation between runtimes of the parallel grid–free
MC algorithm on HPCx and Lomond. One can see that HPCx is almost twice
faster.

The proposed parallel realizations of the considered MC algorithm have very
high efficiency and almost linear speed-up. Depending on the architecture and
the optimizations available the appropriate communications between the proces-
sors at the initial and at the final step of the algorithm can be used.
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Table 4. Comparison between collective and point–to–point communication, Lomond,
N = 12800000, LFG

NP Time PtoP Time Coll Eff PtoP Eff Coll
1 1527.050621 1530.728717 1 1
2 768.326065 770.484069 0.993751 0.993355
4 385.833667 382.627477 0.989448 1.000142
8 191.048133 191.620971 0.999126 0.998539
16 97.068294 95.851060 0.983232 0.998116
32 48.577554 48.562958 0.982353 0.985015
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Abstract. A new adaptive genetic algorithm using mutation matrix is
introduced and implemented in a single computer using the quasi-parallel
time sharing algorithm for the solution of the zero/one knapsack problem.
The mutation matrix M(t) is constructed using the locus statistics and
the fitness distribution in a population A(t) with N rows and L columns,
where N is the size of the population and L is the length of the encoded
chromosomes. The mutation matrix is parameter free and adaptive as it
is time dependent and captures the accumulated information in the past
generation. Two strategies of evolution, mutation by row (chromosome),
and mutation by column (locus) are discussed. Time sharing experiment
on these two strategies is performed on a single computer for solving the
knapsack problem. Based on the investment frontier of time allocation,
the optimal configuration for solving the knapsack problem is found.

1 Introduction

Parallel computation using the Darwinian principle of survival of the fittest has
been implemented quite successfully in the framework of Genetic algorithms
[1,2] with many successful application in many areas, such as solving the crypto-
arithmetic problem [3], time series forecasting [4], traveling salesman problem
[5], function optimization [6], and adaptive agents in stock markets [7,8]. How-
ever, the necessity of parameter setting in the application of genetic algorithm is
a serious drawback for its practitioners, as its efficiency depends very much on
the experience of the user on the problem at hand. One notable example of this
drawback concerns the ad-hoc manner in the choice of the selection mechanism.
One may need to use different percentage of the population for survival for dif-
ferent problems. Indeed, even for the same problem, the percentage of survivors
in the evolution process should be time dependent for higher efficiency. Though
some advances in adaptive parameter control on selection have been made, such
as in the solution of the financial knapsack problem [9], the need for parameters
setting remains. Here we like to address a novel way to do the selection process
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by the introduction of a mutation matrix that is time dependent but problem
independent. We call our method mutation only genetic algorithm, or MOGA.

A second issue of parallel computation is the allocation of computer resource.
It is desirable to devise a method for locating the optimal parameters in running
the bottleneck program in a single computer that satisfies the criteria of both
high speed and high confidence. Based on the ideas of Hogg and Huberman and
collaborators [10], Szeto and Jiang [11] developed a formalism of quasi-parallel
genetic algorithm, which is a method of combining existing algorithms into new
ones that are unequivocally preferable to any of the component algorithms using
the notion of risk in economics [12]. Here we assume that only one computer is
available and the sharing of resource is realized only in the time domain. The
concept of optimal usage is defined economically by the “investment frontier”,
characterized by low risk and high speed to solution. In this paper, we combine
the work on mutation only genetic algorithm and time sharing in the framework
of quasi-parallel genetic algorithm. We test this approach on the 0/1 knapsack
problem with satisfactory results, locating the investment frontier for the knap-
sack problem.

2 Mutation Matrix

2.1 Mutation Matrix for Traditional Genetic Algorithm

In traditional simple genetic algorithm, the mutation/crossover operators are
processed on the chromosome indiscriminately over the loci. The loci statistics
is never employed. The recent work of Ma and Szeto [13] on Locus Oriented
Adaptive Genetic Algorithm (LOAGA) has demonstrated the importance of the
locus specific mutation rate for solving the zero/one knapsack problem. In this
paper, we generalize their method and further demonstrate the advantage of
using the information on the loci statistics on mutation operator. First let’s
show that traditional genetic algorithm can be treated as a special case in our
formulation. We consider a population of N chromosomes, each of length L
and binary encoded. We describe the population by a N × L matrix, which en-
try Aij(t), i = 1, ..., N ; j = 1, ..., L being the value of the jth locus of the ith
chromosome. The convention is to order the rows of A by the fitness of the chro-
mosomes, fi(t) ≤ fk(t) for i ≥ k. Next we introduce a mutation matrix with
elements Mij ≡ ai(t)bj(t), i = 1, ..., N ; j = 1, ..., L, where 0 ≤ ai(t), bj(t) ≤ 1
are called the row mutation probability and column mutation probability re-
spectively. Traditionally we divide the population of N chromosomes into three
groups: (1) Survivors who are the fit ones. They form the first N1 rows of the
population matrix A(t + 1). Here N1 = c1N with the survival selection ratio
0 < c1 < 1. (2) The number of children is N2 = c2N and is generated from the
fit chromosomes by genetic operators such as mutation. Here 0 < c2 < 1− c1 is
the second parameter of the model. We replace the next N2 population matrix
A(t+1) (3) The remaining N3 = N −N1−N2 rows are the randomly generated
chromosomes to ensure the diversity of the population so that the genetic al-
gorithm continuously explores the solution space. In our formalism, traditional
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genetic algorithm with mutation only corresponds to a time independent mu-
tation matrix with elements Mij ≡ 0 for i = 1, ..., N1, Mij ≡ m ∈ (0, 1) for
i = N1, ..., N2, and finally we have Mij = 1 for i = N2, ..., N . Here m is the
time independent mutation rate. We see that traditional genetic algorithm with
mutation only requires at least three parameters: N1, N2 and m .

2.2 Mutation Probability

We first consider the case of mutation on a fit chromosome. We expect to mutate
only a few loci so that it keeps most of the information unchanged. This corre-
sponds to “exploitation” of the features of fit chromosomes. On the other hand,
when an unfit chromosome undergoes mutation, it should change many of its
loci so that it can explore more regions of the solution space. This corresponds
“exploration”. Therefore, we require that Mij(t) should be a monotonic increas-
ing function of the row index i since we order the population in descending order
of fitness. One simple solution is to use ai(t) = (i− 1)/(N − 1) . Next, we must
decide on the choice of loci for mutation once we have selected a chromosome
to undergo mutation. This is accomplished by computing the locus mutation
probability of changing to X(X = 0or1) at locus j as pjX by

pjX =
∑N

k=1(N + 1− k)× δkj(X)∑N
m=1m

(1)

Here k is the rank of the chromosome in the population. δkj(X) = 1 if the jth
locus of the kth chromosome assume the value X , and zero otherwise. The factor
in the denominator is for normalization. Note that pjX contains information of
both locus and row and the locus statistics is biased so that heavier weight for
chromosomes with high fitness is assumed. This is in general better than the
original method of Ma and Szeto[13] where there is no bias on the row. After
defining pjX , we define the column mutation rate as

bj =
1− |pj0 − 0.5| − |pj1 − 0.5|∑N

j′=1 bj′
(2)

For example, if 0 and 1 are randomly distributed, then pj0 = pj1 = 0.5. We
have no useful information about the locus, so we should mutate this locus, and
bj = 1. When there is definitive information, such as when pj0 = 1−pj1 = 0 or 1,
we should not mutate this column and bj = 0.

3 Mutation Only Genetic Algorithm: MOGA

Once the mutation matrix M is obtained, we are ready to discuss the strategy
of using M to evolve A. There are two ways to do Mutation Only Genetic
Algorithm. We can first decide which row (chromosome) to mutate, then which
column (locus) to mutate, we call this particular method the Mutation Only
Genetic Algorithm by Row or abbreviated as MOGAR. Alternatively, we can
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first select the column and then the row to mutate, and we call this the Mutation
Only Genetic Algorithm by Column or abbreviated as MOGAC.

For MOGAR, we go through the population matrix A(t) by row first. The first
step is to order the set of locus mutation probability bj(t) in descending order.
This ordered set will be used for the determining of the set of column position
(locus) in the mutation process. Now, for a given row i, we generate a random
number x. If x < ai(t) , then we perform mutation on this row, otherwise we
proceed to the next row and Aij(t + 1) = Aij(t), j = 1, ..., L . If row i is to be
mutated, we determine the set Ri(t) of loci in row i to be changed by choosing the
loci with bj(t) in descending order, till we obtainKi(t) = ai(t)×Lmembers. Once
the set Ri(t) has been constructed, mutation will be performed on these columns
of the ith row of the A(t) matrix to obtain the matrix elements Aij(t + 1), j =
1, ..., L. We then go through all N rows, so that in one generation, we need to
sort a list of L probabilities and generate N random numbers for the rows. After
we obtained A(t+1), we need to compute the Mij(t+1) = aibi(t+1)and proceed
to the next generation.

For MOGAC, the operation is similar to MOGAR mathematically except now
we rotate the matrix A by 90 degrees. Now, for a given column j we generate
a random number y. If y < bj(t), then we mutate this column, otherwise we
proceed to the next column and Aij(t + 1) = Aij(t), i = 1, ..., N . If column j
is to be mutated, we determine the set Sj(t) of chromosomes in column j to be
changed by choosing the rows with the ai(t) in descending order, till we obtain
Wj(t) = bj(t) ×N members. Since our matrix A is assumed to be row ordered
by fitness, we simply need to choose the N,N−1, ..., N−Wj +1 rows to have the
jth column in these row mutated to obtain the matrix elements Aij(t + 1), i =
1, ..., N . We then go through all L columns, so that in one generation, we need to
sort a list of N fitness values and generate L random numbers for the columns.

4 Quasi-parallel Algorithm

Now we switch our discussion from MOGA to the problem of allocation of com-
putational resource to two algorithms: MOGAR and MOGAC in one single
computer when solving a particular optimization problem. The framework for
proper mixing of computing algorithms is the quasi-parallel algorithm of Szeto
and Jiang [11]. Here we first summarize this algorithm. A simple version of our
quasi-parallel genetic algorithm (QPGA = (M,SubGA, Γ, T )) consists of M in-
dependent sub-algorithms SubGA. The time sharing of the computing resource
is described by the resource allocation vector Γ . If the total computing resource
is R, shared byM sub-algorithmsGi, i = 1, 2, ...,M , with resourceRi assigned to
Gi in unit time, then we introduce τi = Ri/R, 0 ≤ τi ≤ 1 for any i = 1, 2, ...,M ,
and

∑M
i=1 τi = 1, and the allocation of resource for sub-algorithms is defined by

the resource allocation vector, Γ = (τ1, τ2, ..., τM )′ . In our case, we have M = 2
and our SubGA are MOGAR and MOGAC. For resource allocation, we only
have one parameter 0 < γ < 1 which is the fraction of time the computer is
using MOGAR, and the remaining fraction of time (1 − γ) we use MOGAC.
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The termination criterion T is used to determine whether a QPGA should stop
running. Thus, we have a mixture of MOGAR with MOGAC in the framework
of quasi-parallel genetic algorithm with a mixing parameter γ. The parallel ge-
netic algorithm described above can be implemented in a serial computer. For a
particular generation t, we will generate a random number z. If z < γ, then we
perform MOGAR, otherwise we perform MOGAC to generate the population
A(t + 1). We now apply this quasi-parallel mutation only genetic algorithm to
solve the 0/1 knapsack problem and try to obtain the investment frontier that
give the mixing parameter γ that yields the fastest speed for solving the problem
while also running with most certainty (minimum risk) of getting the solution.

5 The Zero/One Knapsack Problem

The model problem to test our ideas on mutation only genetic algorithm is the
Knapsack problem. We define the 0/1 knapsack problem [14] as follow. Given
L items, each with profit Pi, weight wi and the total capacity limit c, we need
to select a subset of L items to maximize the total profit, but its total weight
does not exceed the capacity limit. Mathematically, we want to find the set
xi ∈ {0, 1}, i = 1, ..., L to

Maximize
L∑

j=1

Pjxj subjected to constraint c ≥
L∑
j

wjxj . (3)

We consider a particular knapsack problem with size L = 150 items, c = 4000.
The set Pi ∈ [0, 1000] and wi ∈ [0, 100] are chosen randomly to define our prob-
lem, but afterwards fixed. In order not to violate the constraint of the problem,
we use two tricks, “Punishment” and ”Repairing”. Punishment reduces the fit-
ness when the constraint is violated, while Repairing modifies the chromosome
(adding/deleting items) until the constraint is satisfied. We will use a method
called Greedy Repair. If a chromosome violates the constraint (total weight is
over the constraint in the Knapsack), the repair scheme will find the site k with
minimum value of Pk/wk and reset xk to zero, i.e., removing the kth item from
the knapsack. This process continues till the constraint is satisfied. When the
constraint is satisfied, and if some empty space remains, Greedy Repair will
tried to fill the knapsack “as full as possible” by picking up the unselected item
(those sites m where xm=0) and fill them in the knapsack in descending order
of Pm/wm. Repair operation stops once the constraint is violated. This scheme
can repair all chromosomes into local optimal solution in Hamming space.

6 Results

In the early version of our ideas on mutation matrix [13], we have found that locus
oriented adaptive genetic algorithm (LOAGA) outperforms dynamic program-
ming which is the usual method for Knapsack problem. We have found evidence



194 K.Y. Szeto and J. Zhang

Fig. 1. Mean first passage time to solution and its standard deviation of 1000 runs as
a function of time sharing parameter γ

that mixing MOGAR with MOGAC in a time-sharing manner produces supe-
rior results compared to (LOAGA) in numerical experiment for the 0/1 knapsack
problem. Here we like to find the optimal time sharing parameter by locating the
investment frontier of our mutation only genetic algorithm. We first define our
MOGAR and MOGAC. We choose the simplest form of ai(t) = (i− 1)/(N − 1).
Here N(= 100) is the size of the population in all genetic algorithms. For a given
generation time t, we generate a random number z. If z < γ, then we perform
MOGAR, otherwise we perform MOGAC to generate the population A(t + 1).
Next we address the stopping criterion. We use exhaustive search to locate the
true optimal solution of the knapsack problem. Then, we run our mixed MOGA
in QPGA formalism 1000 times to collect statistical data. For each run, we de-
fine the stopping time to be the generation number when we obtain the optimal
solution, or 1500, whichever is smaller. The choice of 1500 as the upper bound
is based on our numerical experience since for a wide range of γ, all the runs are
able to find the optimal solution within 1500 generations. Only for those extreme
cases where γ is near 1 or 0, meaning that we use MOGAR alone or MOGAC
alone, a few runs fail to find the optimal solution within 1500 generations. This
is expected since we know row mutation only GA has low speed of convergence
while column mutation only GA has early convergence problem. These extreme
cases turn out to be irrelevant in our search of the investment frontier as demon-
strated in Fig.1, where we plot the mean first passage time to solution and its
standard deviation of 1000 runs as a function of the time sharing parameter γ.
These results demonstrate the power of QPGA (i.e., time-sharing of computa-
tional resource) based on Mutation Only Genetic Algorithm. In Fig.2, we plot
average first passage time to solution versus standard deviation. The curve is
parameterized by γ. We see that there is a point on the curve which is closest
to the origin. This point is unique in this experiment, corresponding to a value
of γc = 0.22 ± 0.02. The interpretation of this time sharing parameter is that
our QPGA will be fastest and most reliable (least risky) in finding the optimal
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Fig. 2. Average passage time to solution versus standard deviation. The curve is pa-
rameterized by γ.

solution of the 0/1 knapsack problem. In another word, the investment frontier
of this problem consists of a single critical point at γc.

7 Conclusion

Using the simple observation that ordinary genetic algorithm can be considered
as a special case of evolutionary computation using a special static form of mu-
tation matrix, we develop a general formalism for mutation matrix that allows
adaptive genetic algorithm without the need to preset selection parameters. We
further generalize the evolution by making use of the locus statistics and de-
velop MOGAC, mutation only genetic algorithm by column. This new algorithm
has high speed of convergence. By combining it with MOGAR, mutation only
genetic algorithm by row, we find a way to combine efficiently two processes:
exploration of solution space and exploitation of the features of locus statistics
for the fit chromosomes. The method we use is time sharing of MOGAR and
MOGAC in the framework of quasi-parallel genetic algorithm. This methodol-
ogy is tested on the 0/1 knapsack problem. We succeed in locating the critical
value of time sharing in the investment frontier of mixing MOGAR and MOGAC
to be 0.22, meaning that statistically we should use 22% of the computational
resource on mutation by row, and 78% on mutation by column when solving the
knapsack problem. Our general formalism can be used to address various types
of optimization problems such as Ising model in random fields, Potts model, and
traveling salesman problem. Our future work will address the incorporation of
crossover in our formulation.

Acknowledgement

K.Y. Szeto acknowledged that this work is supported by RGC grant no.
HKUST6157/01P and 603203.



196 K.Y. Szeto and J. Zhang

References

1. J.H. Holland: Adaptation in natural and artificial systems. Ann Arbor, MI: Uni-
versity of Michigan Press, 1975.

2. D.E. Goldberg: Genetic algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, Reading, MA, 1989.

3. S. P. Li and K.Y. Szeto: Crytoarithmetic problem using parallel Genetic Algo-
rithms, Mendl’99, Brno, Czech, 1999.

4. K.Y. Szeto and K.H. Cheung: Multiple time series prediction using genetic algo-
rithms optimizer. Proceedings of the International Symposium on Intelligent Data
Engineering and Learning, Hong Kong, IDEAL’98, 127–133, 1998.

5. R. Jiang and K.Y. Szeto, Y.P. Luo and D.C. Hu: Distributed parallel genetic algo-
rithm with path splitting scheme for the large traveling salesman problems. Pro-
ceedings of Conference on Intelligent Information Processing, 16th World Com-
puter Congress 2000, Aug.21-25, 2000, Beijing, Ed. Z. Shi, B. Faltings, and M.
Musen, Publishing House of Electronic Industry, 478–485, 2000.

6. K.Y. Szeto, K.H. Cheung and S.P. Li: Effects of dimensionality on parallel ge-
netic algorithms. Proceedings of the 4th International Conference on Information
System, Analysis and Synthesis, Orlando, Florida, USA, 2, 322–325, 1998.

7. K.Y. Szeto and L.Y. Fong: How adaptive agents in stock market perform in the
presence of random news: a genetic algorithm approach, LNCS/LNAI, Vol. 1983,
Ed. K. S. Leung et al. Spriger-Verlag, Heidelberg, 2000, IDEAL 2000, 505–510,
2000.

8. Alex L.Y. Fong and K.Y. Szeto: Rule Extraction in Short Memory Time Series
using Genetic Algorithms, European Physical Journal B Vol.20, 569–572 (2001).

9. Kwok Yip Szeto and Man Hon Lo: An Application of Adaptive Genetic Algorithm
in Financial Knapsack Problem, The 17th International Conference on Industrial
& Engineering Applications of Artificial Intelligenc & Expert Systems, Ed Bob
Orchard, et al. May 17-20, 2004, LNAI 3029, Springer Verlag, 1220–1227, 2004.

10. B.A. Huberman, R.M. Lukose and T. Hogg: An economics approach to hard com-
putational problems, Science, 275 3, 51–54, 1997.

11. Kwok Yip Szeto and Jiang Rui: A quasi-parallel realization of the Investment
Frontier in Computer Resource Allocation Using Simple Genetic Algorithm on a
Single Computer, LNCS 2367, 6th International Conference, PARA 2002, Espoo,
Finland, June 15-18, 2002 116–126. Springer-Verlag.

12. H. Markowitz: J. of Finance, 7, 77, 1952.
13. C.W. Ma and K.Y. Szeto: Locus Oriented Adaptive Genetic Algorithm: Appli-

cation to the Zero/One Knapsack Problem, Proceeding of The 5th International
Conference on Recent Advances in Soft Computing, RASC2004 Nottingham, UK.
410–415, 2004.

14. V. Gordon, A. Bohm, and D. Whitley: A Note on the Performance of Genetic Al-
gorithms on Zero-One Knapsack Problems, Proceedings of the 9th Symposium on
Applied Computing (SAC’94), Genetic Algorithms and Combinatorial Optimiza-
tion, Phoenix, Az, 194–195, 1994.



Part IX

Environmental Modelling



Approximate Gradient/Penalty Methods with
General Discretization Schemes for Optimal

Control Problems

Ion Chryssoverghi

Department of Mathematics, National Technical University of Athens,
Zografou Campus, 15780 Athens, Greece

ichris@central.ntua.gr

Abstract. We consider an optimal control problem described by ordi-
nary differential equations, with control and state constraints. The state
equation is first discretized by a general explicit Runge-Kutta scheme
and the controls are approximated by piecewise polynomial functions.
We then propose approximate gradient and gradient projection methods,
and their penalized versions, that construct sequences of discrete controls
and progressively refine the discretization during the iterations. Instead
of using the exact discrete cost derivative, which usually requires tedious
calculations of composite functions, we use here an approximate deriva-
tive of the cost defined by discretizing the continuous adjoint equation by
the same, but nonmatching, Runge-Kutta scheme backward and the in-
tegral involved by a Newton-Cotes integration rule. We show that strong
accumulation points in L2 of sequences constructed by these methods
satisfy the weak necessary conditions for optimality for the continuous
problem. Finally, numerical examples are given.

1 Introduction

In this paper, we consider an optimal control problem for systems governed by
nonlinear ordinary differential equations, with control and state constraints. In
order to solve this problem numerically, the state equation is first discretized by
an explicit Runge-Kutta scheme of maximal global order m and the controls are
approximated by vector functions whose components are piecewise polynomial of
degree l ≤ m− 1, but not necessarily continuous. We then propose approximate
gradient and gradient projection methods, and their penalized versions, that con-
struct sequences of discrete controls and progressively refine the discretization
during the iterations. Since the matching adjoint of the discrete state equation
and the derivative of the cost functional usually involve tedious calculations of
partial derivatives of composed functions, we use at each iteration an approx-
imate cost derivative defined by discretizing the continuous adjoint equation
by the same, but nonmatching, Runge-Kutta scheme backward and the integral
defining the cost derivative by a Newton-Cotes integration rule with nodes equal
to the l + 1 polynomial interpolation points, both schemes involving maximal
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global order approximations of intermediate values of states and adjoints. Since
the discrete adjoints are nonmatching here, the exact derivative of the discrete
cost is not defined in adjoint form, and one must necessarily use a progressive re-
fining procedure, with the adjoint matching only in the limit. This approach has
the advantage of reducing computing time and memory. The main result is that
strong accumulation points in L2, if they exist, of sequences generated by this
method satisfy the weak necessary conditions for optimality for the continuous
problem. Finally, numerical examples are given. For discretization and optimiza-
tion methods in optimal control problems, see [1, 2, 3, 4, 5, 7, 10, 11]. The results
of this paper extend those of [2] by using general discretization schemes (Runge-
Kutta, integration rule, polynomial parameterization) in conjunction with a pe-
nalized gradient projection method for solving state constrained problems.

2 The Continuous Optimal Control Problem

Consider the following optimal control problem, with state equation

y′(t) = f(t, y(t), w(t)) in I := [0, T ], y(0) = y0,

where y(t) ∈ Rp, constraints on the control w

w(t) ∈ U in I,

where U is a convex, closed, but not necessarily bounded, subset of Rq, state
constraints

G1(w) := g1(y(T )) = 0, G2(w) := g2(y(T )) ≤ 0,

where g1 : Rp → Rp1 , g2 : Rp → Rp2 , and cost functional to be minimized

G0(w) := g0(y(T )).

If the problem involves additional integral state constraints or cost functionals, it
can classically be transformed into a problem with final cost only by introducing
scalar differential equations. The problem could also include pointwise pure state
constraints, but this was not done here for simplicity of presentation.

We denote by ‖.‖ the Euclidean norm in Rn and by ‖.‖2 the usual norm in
L2. We define the sets of controls

W = {w ∈ L2(I,Rq) | w : I → U }, W∞ := W ∩ L∞,

both endowed with the relative norm topology of L2. We suppose in the sequel
at least that f, fy, fu are Lipschitz continuous w.r.t. (t, y, u) and g, ∇g are
Lipschitz continuous on every bounded set. Then, in particular, for every w ∈
W∞, the state equation has a unique absolutely continuous solution y := yw.
Moreover, for every given b0 ≥ 0, there exists b1 ≥ 0 such that ‖yw‖∞ ≤ b1, for
every w ∈ W∞, with ‖w‖2 ≤ b0 (or ‖w‖∞ ≤ b0). The two following results are
standard, see e.g. [12].
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Proposition 1. Dropping the index r in gr and Gr, given controls w,w′ ∈ W∞,
the directional derivative of the functional G is given by

DG(w,w′ − w) := lim
α→0+

G(w + α(w′ − w)) −G(w)
α

=
∫

I

z(t)T fu(t, y(t), w(t))[w′(t)− w(t)]dt,

where y := yw, and the adjoint state z := zw is defined by the adjoint equation

z′(t) = −fy(t, y(t), w(t))T z(t) in I, z(T ) = ∇g(y(T )).

Theorem 1. If the control w ∈ W∞ is optimal, then w is extremal, i.e. there
exist multipliers λ0 ∈ R, λ1 ∈ Rp1 , λ2 ∈ Rp2 (λ1, λ2 row vectors), with λ0 ≥ 0,
λ2 ≥ 0, λ0, λ1, λ2 not all zero, such that

2∑
r=0

λrDGr(w,w′ − w) ≥ 0, for every w′ ∈W∞,

λ2G2(w) = 0 (Transversality condition).

The above inequalities are equivalent to the weak pointwise minimum principle

z(t)T fu(t, y(t), w(t))w(t) = min
u∈U

[z(t)T fu(t, y( t), w(t))u], a.e. in I,

where z is defined with g :=
2∑

r=0
λrgr in the end-point condition of the adjoint

equation.

3 Discretizations

Let (Nn)n≥1 be a sequence of positive integers. We suppose that Nn → ∞ as
n→∞ and that for each n, either Nn+1 = Nn, or Nn+1 = MNn, where M ≥ 2
is a positive integer. For each n ≥ 1, we define the discretization Δn by setting

N := Nn, hn := T/N, tni = ihn, i = 0, ..., N,

Ini := [tn,i−1, tn,i), i = 1, ..., N − 1, InN := [tn,N−1, tnN ].

For given l+ 1 (l ≤ m− 1) interpolation points tkni in each Ini of the form

tkni = tn,i−1 + hn/l, k = 0, ..., l.

we define the set of discrete admissible controls

Wn ={wn∈W∞|wn∈Πl(Ini) on Ini, wni(tkni)=w
k
ni∈U, k=0, ..., l, i=1, ..., N},

where Πl(Ini) denotes the set of q-vector functions whose components are poly-
nomials of degree ≤ l on Ini, and where it is understood that the values at the
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possible interpolation jump points tkni = tn,i−1, tni are right/left limit values, on
each Ini.

Next, we discretize the state equation by an explicit Runge-Kutta scheme
of maximal global order m, and with m intermediate points (not necessarily
distinct), which can be written in the form

φj
ni = f(t̄jni, yn,i−1 + hn

j−1∑
s=1

αisφ
s
ni, w̄

s
ni), w̄

j
ni = wni(t̄

j
ni), j = 1, ...,m,

t̄jni = tn,i−1 + θ̄jhn, with θ̄j ∈ [0, 1], j = 1, ...,m, θ̄1 = 0, θ̄m = 1,

yni = yn,i−1 + hn

m∑
j=1

βjφj
ni, with

m∑
j=1

βj = 1, βj ≥ 0, j = 1, ...,m,

i = 1, ..., N, yn0 = y0.

We have chosen here an explicit scheme for simplicity, but the theory below can
be extended to implicit ones. For wn ∈ Wn, with corresponding state yn, we
define the discrete functionals

Grn(wn) := gr(ynN ), r = 0, 1, 2.

The next Theorems 2,3,4 generalize Theorems 2,4,5 in [2], respectively.

Theorem 2. (Consistency) Let (wn) be a sequence with wn ∈Wn, ‖wn‖∞ ≤ b̄′,
for n ≥ 1, and first order divided differences (DD) of the wn uniformly bounded.
If wn → w in L2, then, y−n → y, y+

n → y uniformly (y−n , y
+
n piecewise constant

functions defined by left/right values), and Gn(wn) → G(w), as n→∞.

Theorem 3. (Error estimates) For wn ∈ Wn, with ‖wn‖∞ ≤ b̄′ and DD of
order 1, ..., l of wn bounded by L̄, let yn be the corresponding discrete state and
ỹn the corresponding solution of the continuous state equation. If f is sufficiently
smooth (e.g. f ∈ Cm) w.r.t. (t, y, u) ((t, y) if l = 0), then

max
0≤i≤N

‖yni − ỹn(tni)‖ ≤ chm
n ,

‖Gn(wn)−G(wn)‖ ≤ chm
n ,

‖Gn(wn)−Gn′(wn)‖ ≤ chm
n , if n′ > n, and Nn �= Nn′ .

where c denotes various constants, independent of n and wn.

Next we define, for given wn ∈ Wn, with corresponding discrete state yn, the
(general) approximate discrete adjoint zn (dropping r in gr) as the solution of
the initial Runge-Kutta scheme applied formally backward to the continuous
time adjoint equation

ψj
ni = fy(t̄jni, ȳ

j
ni, w̄

j
ni)

T (zn,i−1 + hn

j+1∑
s=m

αisψ
s
ni), j = m, ..., 1,

zn,i−1 = zni + hn

1∑
j=m

βjψj
ni, i = N, ..., 1, znN = ∇g(ynN ),
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and using, instead of the exact values, intermediate state approximations ȳj
ni at

the points t̄jni, of maximal local order m (hence inducing, at best, a local error
O(hm+1

n ) in the adjoint scheme), which can be computed as linear combinations
of the intermediate function evaluations φj

ni of the Runge-Kutta scheme for the
state equation, with some additional function evaluations, if m ≥ 5 (for such
Runge-Kutta approximations, see [6, 8]). These evaluations require much less
computations than the direct calculation of the matching adjoint of the discrete
state equation, which requires the computation of Jacobians w.r.t. y of multi-
stage composite functions.

Now let as above yk
ni, z

k
ni be approximations of maximal local order m of the

state and adjoint, and wk
ni the exact control values, at the interpolation points

tkni. For given wn, w
′
n ∈ Wn, and yn, zn corresponding to wn, the approximate

discrete derivative of each functional G is defined by applying formally, on each
Ini, some Newton-Cotes integration rule, with nodes tkni and of maximal global
order m′, to the continuous time cost derivative, and using in this rule the
approximate values yk

ni, z
k
ni, instead of the exact values, and the exact control

interpolation values wk
ni = wn(tkni)

DnG(wn, w
′
n − wn) := hn

N∑
i=1

l∑
k=0

Ck
l (zk

ni)
T fu(tkni, y

k
ni, w

k
ni)(w

′k
ni − wk

ni),

with
l∑

k=0

Ck
l = 1, Ck

l ≥ 0, k = 0, ..., l.

Define the Ini-piecewise constant functions wk
n(t) = wk

ni in Ini, i = 1, ..., N, and
similarly for yk

n, z
k
n.

Theorem 4. (i) (Consistency) Let (wn), (w′
n) be sequences with wn, w

′
n ∈ Wn,

‖wn‖∞ ≤ b̄′, ‖w′
n‖∞ ≤ b̄′, for n ≥ 1, and first order DD of the wn, w

′
n uniformly

bounded. If wn → w and w′
n → w′ in L2 strongly. Then yk

n → y = yw, zk
n → z =

zw, uniformly, and

DnG(wn, w
′
n − wn)→ DG(w,w′ − w).

(ii) (Error estimates) If f, fy are sufficiently smooth (e.g. ∈ Cm) w.r.t.
(t, y, u) ((t, y) if l = 0), and the DD of order 1, ..., l of the wn are uniformly
bounded, then

max
0≤i≤N

‖zni − z̃n(tni)‖ ≤ chm
n ,

where z̃n is the exact solution of the continuous adjoint equation corresponding
to wn and ỹn. If the DD of order 1, ...,min(l,m′) of the wn, w

′
n are uniformly

bounded and f, fy, fu are sufficiently smooth (e.g. ∈ Cm), then

|DnG(wn, w
′
n − wn)−DG(wn, w

′
n − wn)| ≤ chm̄

n , with m̄ = min(m,m′).

Let W̄n denote the set of discrete piecewise constant controls. We have W̄n ⊂Wn

for every n. The following result is classical (see [9]).

Proposition 2. (Approximation by discrete controls) For every w ∈ W (or
w ∈W∞), there exists a sequence (wn ∈ W̄n) such that wn → w in L2.
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4 Approximate Gradient/Penalty Methods

For a given constant L′ ≥ 0, define the projection set of controls

W ′
n := {wn ∈Wn| 1st order DD of wn bounded by L′} ⊂Wn,

and for wn ∈Wn, the discrete norm

‖wn‖22,n := hn

N∑
i=1

l∑
k=0

Ck
l

∥∥wk
ni

∥∥2
=

l∑
k=0

Ck
l

∥∥wk
n

∥∥2
2.

Let (M j
r ), r = 1, 2, be nonnegative increasing sequences such that M j

r → ∞ as
j → ∞, (εj) a nonnegative decreasing sequence such that εj → ∞, and define
the sequence of penalized discrete functionals

Gj
n(wn) = G0n(wn) +

1
2
{M j

1

p1∑
s=1

|G1n,s(wn)|2 +M j
2

p2∑
s=1

[max(0, G2n,s(wn))]2}.

Algorithm
Step 1. Choose an initial discretization Δ1, integers m ≥ 1, l ∈ [0,m−1], M ≥ 2
(U = Rq, or U �= Rq with l ≤ 1), or M = l (U �= Rq with l > 1), L′ ≥ 0,
b, c ∈ (0, 1), s ∈ (0, 1] (s ∈ (0,+∞) if U = Rq), γ > 0, w1 ∈ W ′

1, and set
n := 1, κ := 1, j := 1.

Step 2. Find vn ∈W ′
n such that

en := DnG
j(wn, vn − wn) + (γ/2)‖vn − wn‖22,n

= min
v′

n∈W ′
n

[
DnG

j(wn, v
′
n − wn) + (γ/2)‖v′n − wn‖22,n

]
,

and set dn := DnG
j(wn, vn−wn). If there are no state constraints, go to Step 4.

Step 3. If |dn| ≤ εj, set nj := n, wj
n := wn, v

j
n := vn, e

j
n := en, d

j
n := dn, j :=

j + 1, and go to Step 2.

Step 4. (Armijo step search) Set and α0 = s. If the inequality

Gj
n(wn + αl(vn − wn))−Gj

n(wn) ≤ αlbdn,

is not satisfied, set successively αl+1 := cαl and find, if it exists, the first αl ∈
(0, 1], say ᾱ, such that it is satisfied. [Optional : Else, set successively αl+1 := αl/c
and find the last αl ∈ (0, 1], say ᾱ, such that this inequality is satisfied.]

If ᾱ is found, set αn := ᾱ, w̃n := wn + αn(vn − wn), nκ := n, κ := κ + 1.
Else, set w̃n := wn.

Step 5. Define wn+1 by:

(a) Cases U = Rq, or U �= Rq with l ≤ 1: Set Nn+1 := Nn or Nn+1 := M Nn

(refining). In both cases, set wn+1 := w̃n.
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(b) Case U �= Rq with l > 1: Set Nn+1 := Nn or Nn+1 := l Nn (refin-
ing). If Nn+1 = Nn, set wn+1 := w̃n. If Nn+1 = l Nn, then, for each
i = 1, ..., Nn+1, compute the multi-vector of interpolation values w̃n+1,i :=
(w̃0

n+1,i, ..., w̃
l
n+1) of w̃n on In+1,i for the discretization Δn+1, and find the

projection Pn+1,iw̃n+1,i of w̃n+1,i onto U l+1 subject to the (linear) first or-
der DDn+1 constraints (i.e. first order DDn+1 bounded by L′). Then define
wn+1 as the piecewise polynomial function of degree ≤ l interpolating all
these projection values on I for the discretization Δn+1.

Step 6. Set n := n+ 1 and go to Step 2.

Define the set of successful iterations K := (nκ)κ∈N (see Step 4), and the
sequences of multipliers (w.r.t. j)
λj

1n = M j
1G1n(wj

n), λj
2n = M j

2 max (0, G2n(wj
n)), with n := nj (see Step 3),

where max denotes a vector of max values and wj
n is defined in Step 3.

Theorem 5. We suppose that f, fy, fu are at least Lipschitz continuous w.r.t.
(t, y, u) ((t, y) if l = 0).

(i) (No state constraints – Gradient projection method) If K is finite (resp.
infinite) and there exists a subsequence (wn)n∈L⊂N (resp. (wn)n∈L⊂K) that
converges strongly in L2 to some w and is bounded in L∞ if U is unbounded,
then dn →

n∈L
0, en →

n∈L
0, w ∈W∞, and w is extremal.

(ii) (State constraints – Penalized gradient projection method) If the sequence
(wn) is infinite (i.e. n → ∞) and converges strongly in L2 to some w,
(wn) is bounded in L∞ if U is unbounded, and the sequences of multipliers
(λj

1n), (λj
2n) are bounded, then w is admissible and extremal.

Proof. (Sketch). (i) The results are proved here using the techniques of [2], with
some modifications due to the more general polynomials used, if l > 1, and the
discrete projections in Step 5 (b).

(ii) By our assumptions, Step 3, and (i), j cannot remain constant in the
Algorithm. Setting n := nj (see Step 3), we thus have j → ∞, dj

n → 0, ej
n →

0, hence
∥∥v′n − wj

n

∥∥2
2,n

→ 0. It can then be shown, similarly to (i), that w ∈
W∞. Since the sequences (λj

1n), (λj
2n) are bounded, we can suppose that (up to

subsequences) λj
1n → λ1, λ

j
2n → λ2. By Theorem 4, we have

0 = lim
l→∞

λj
1n

M j
1

= lim
j→∞

G1n(wj
n) = G1(w),

0 = lim
j→∞

λj
2n

M j
2

= lim
j→∞

[max(0, G2n(wj
n))] = max(0, G2(w)),

which show that w is admissible. Now let any v′ ∈ W and, by Proposition 2, let
(v′n ∈Wn) be a sequence of piecewise constant discrete controls that converges to
v′. Let (λj

1n), (λj
2n) be subsequences converging to some λ1, λ2. By Step 2, we have
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DnG0(wj
n, v

′j
n − wj

n) + λj
1nDnG1(wj

n, v
′j
n − wj

n) + λj
2nDnG2(wj

n, v
′j
n − wj

n)

+(γ/2)
∥∥v′n − wj

n

∥∥2
2,n
≥ dj

n.

Using Theorem 4, we can pass to the limit as j → ∞ in this inequality and
obtain

DG0(w, v′ − w) + λ1DG1(w, v′ − w) + λ2DG2(w, v′ − w) ≥ 0, ∀v′ ∈W.
If G2,s(w) < 0, for some s, then for sufficiently large j we have G2n,s(wj

n) < 0
and λj

2n = 0, hence λ2 = 0, i.e. the transversality condition holds. Therefore, w
is extremal. ��

5 Numerical Examples

Set I := [0, 1], and define the control w̄ = (w̄1, w̄2), where

w̄1(t) :=

⎧⎨⎩ 0, t ∈ [0, 0.5)

et−0.5−1
e0.5−1 , t ∈ [0.5, 1]

w̄2(t) :=
e1−t − 1
e− 1

, t ∈ I,

and the state ȳ(t) := (e−t, e−t, 0), t ∈ I.
a) Consider the following optimal control problem, with state equations

y′1 = −y2 + w1 − w̄1, y′2 = −y1 + w2 − w̄2,
y′3 = [(y1 − ȳ1)2 + (y2 − ȳ2)2 + (w1 − w̄1)2 + (w2 − w̄2)2]/2,
y1(0) = y2(0) = 1, y3(0) = 0,

control constraint set U := [0, 1]2, and cost G(w) := y3(1). Clearly, the optimal
control here is w∗ = w̄, with optimal state y∗ = ȳ and cost G(w∗) = G(w̄) = 0.

The Algorithm was applied to this example without penalties, using the 4th

order 4-point Runge-Kutta scheme, with θ̄2 = 1/3, θ̄3 = 2/3, the 3/8-Newton-
Cotes 4th order 4-point integration rule, and piecewise cubic controls (l = 3)
with interpolation points coinciding with the Runge-Kutta points

tkni = t̄kni = tn,i−1, tn,i−1 + hn/3, tn,i−1 + 2hn/3, tni.

With the following successive step sizes

hn = M−j/60, for Kj + 1 ≤ n ≤ K(j + 1), j = 0, 1, 2,

refining factor M = l = 3, refining period K = 12, first order DD constraints
constant L′ = 10, gradient projection parameter γ = 0.35, Armijo step search
parameters b = c = 0.5, option skipped in Step 4, and constant initial control
(0.5, 0.5), we obtained after 36 iterations the results

G0n(wn) = 4.727 · 10−14, dn = −0.723 · 10−21,

ζn = 2.505 · 10−11, ηn = 1.404 · 10−11,
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where ζn (resp. ηn ) is the discrete max control (resp. state) error at the tkni

(resp. tni).
b) With the same state equations, cost, and step sizes M = 3, K = 27,

control constraint set U := [0.2, 1]2, and additional state constraint G1(w) :=
y1(1)− 0.5 = 0, we obtained after 81 iterations in n the results

G0n(wn) = 1.785503596281293 · 10−2,

G1n(wn) = y1n(1)− 0.5 = −1.489 · 10−6, dn = −5.733 · 10−7.

Finally, the above results with progressive refining were found to be of similar
accuracy to those obtained with constant last step size 1/540, but required here
about half the computing time. This shows that finer discretizations become pro-
gressively more efficient as the control iterate gets closer to the extremal control,
while coarser ones in the early iterations have not much influence on the final
results. Anyway, the progressive refining is necessary here for the convergence of
the method, since this method uses approximate gradients.
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Abstract. A nonlinear anaerobic digester model of wastewater treat-
ment plants is considered. The stabilizability of the dynamic system is
studied and a continuous stabilizing feedback, depending only on an on-
line measurable variable, is proposed. Computer simulations are carried
out in Maple to illustrate the theoretical results.

1 Introduction

The interest to biological wastewater treatment plants has recently highly in-
creased due to the strong necessity of keeping the quantity of the organic matter
in industrial and urban effluents up to a critical level. This necessity has led
to development of adequate mathematical models and to application of vari-
ous techniques for monitoring, optimization and control of the processes [2, 6].
The present paper proposes a continuous stabilizing feedback of a model of an
anaerobic digestion process, described by the following ODEs [1]

ds1
dt

= u(si
1 − s1)− k1μ1x1 (1)

dx1

dt
= (μ1 − αu)x1 (2)

ds2
dt

= u(si
2 − s2) + k2μ1x1 − k3μ2x2 (3)

dx2

dt
= (μ2 − αu)x2 (4)

dc

dt
= u(ci − c) + k4μ1x1 + k5μ2x2 −Q (5)

dz

dt
= u(zi − z), (6)

where

μ1 = μ1(s1) =
μmaxs1
ks1 + s1

, μ2 = μ2(s2) =
μ0s2

ks2 + s2 +
(
s2
kI

)2

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 208–215, 2006.
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are model functions for the specific growth rates of the microorganisms. The
state variables s1, s2, x1 and x2 are concentrations (measured in g/l) of chemical
oxygen demand (COD), volatile fatty acids (VFA), acidogenic and methanogenic
bacteria respectively; c and z are concentrations (measured in mmol/l) of the
total inorganic carbon and of the strong ions in the medium; si

1, s
i
2, c

i and zi are
the corresponding influent concentrations; u is the dilution rate [day−1]; Q is the
gaseous CO2 molar flow rate; k1 is the yield coefficient for COD degradation;
k2 is the yield coefficient for VFA production of x1; k3 is the yield coefficient
for VFA consumption of x2; k4 is the yield coefficient for CO2 production due
to x1; k5 is the yield coefficient for CO2 production due to x2; μmax is the
maximum acidogenic biomass growth rate; μ0 is the maximum methanogenic
biomass growth rate; ks1 is a saturation parameter associated with s1; ks2 is a
saturation parameter associated with s2; kI is an inhibition constant associated
with s2; α is the proportion of dilution rate reflecting the process heterogeneity,
taking values from the interval (0, 1].

This model has been experimentally validated for an anaerobic up-flow fixed
bed reactor used for the treatment of industrial wine distillery wastewater. More
details about that can be found in [1] and in the references there.

The dilution rate u is considered as a control input which takes its values in
a convex compact subset U of the set of the positive real numbers. It is assumed
that the substrate concentrations s1 and si

1 are measurable. Usually, model-
based on-line estimations of the variables s1 and si

1 are obtained applying the so
called adaptive observers (the Luenberger observer [3, 4], the extended Kalman
filter [5] etc.).

The paper is organized as follows. Steady state analysis of the dynamic
system (1)–(6) is included in Section 2. A continuous feedback, stabilizing asymp-
totically the control system (1)–(6), is proposed in Section 3. Computer sim-
ulations illustrating the robustness of the proposed feedback, are reported in
Section 4.

2 The Equilibrium Points

Let α be an arbitrary point from the interval (0, 1]. The equilibrium points are
solutions of the nonlinear algebraic system, obtained from (1)–(6) by setting the
right-hand side functions equal to zero.

Excluding the trivial solutions x1 = 0, x2 = 0, s1 = si
1, s2 = si

2 (called wash-
out steady states), it is straightforward to see that the equilibrium points are
presented by

s1(u) =
αuks1

μmax − αu
, x1(u) =

si
1 − s1(u)
αk1

,

s2(u) =
2αuks2

μ0 − αu +
√
Δ(u)

, Δ(u) = α2
(

1− 4
ks2

k2
I

)
u2 − 2αμ0u+ μ2

0,
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x2(u) =
si
2 − s2(u) + k2αx1(u)

αk3
,

c(u) = ci + α(k4x1(u) + k5x2(u))−
Q

u
, z(u) = zi,

and are defined for every u from the interval

U = [u0, u1] =
[
u0,

1
α

min
{
μ2

(
kI

√
ks2

)
, μ1(si

1)
}]

,

where u0 is such that c(u0) ≡ 0 (such a point exists because limu→0+ c(u) = −∞
and c(u1) > 0). Note also that s̃2 = kI

√
ks2 is the point where the function

μ2(s2) takes its maximum [4].
Let u∗ be an arbitrary point from the interior int U of U. Denote s∗1 = s1(u∗),

x∗1 = x1(u∗), s∗2 = s2(u∗), x∗2 = x2(u∗), c∗ = c(u∗), z∗ = z(u∗) = zi and
ζ∗ = (s∗1, x

∗
1, s

∗
2, x

∗
2, c

∗, z∗)T. In the following, ζ∗ is called a rest or a reference
point.

3 Stabilization of the Nonlinear Model

We shall study the asymptotic stabilizability of the system (1)–(6) in a suitable
compact and convex neighborhood Ω of the point ζ∗. To state the problem,
we introduce some assumptions, notions and notations. Let us fix a positive real
number r > 0. By B(ζ∗, r) we denote the closed ball with radius r centered at the
point ζ∗. Let the set U of admissible values of the control is a compact interval
containing the set U in its interior. Any continuous function k : B(ζ∗, r) → U is
called a continuous feedback.

Now, let us fix an arbitrary point α from the interval (0, 1]. We define the
following continuous feedback

kδ(s1) :=
1
α
μ1(s1)− δ(s1 − s∗1), (7)

where δ > 0 is a parameter. It should be noted that the feedback kδ(·) depends
only on the on-line measurable variable s1. Under suitable assumptions, we prove
that this feedback stabilizes asymptotically the system (1)–(6) to the point ζ∗.

Theorem 1. There exist a positive δ and a convex and compact neighborhood
Ω of the point ζ∗ such that for each point ζ ∈ Ω the feedback (7) stabilizes
asymptotically the control system (1)–(6) to ζ∗.

Proof. Since the proof is very technical, we shall present only its basic features
and drop many technicalities.

Let us substitute u by the feedback kδ(·) defined in (7) in (1)–(6). The value of
the positive parameter δ will be determined later. With respect to the obtained
closed-loop system Σ, we have that the set

Ω0 :=
{
(s1, x1, s2, x2, c, z)T : 0 < s1 < si

1, x1 > 0, s2 > 0, x2 > 0, c > 0, z > 0
}
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is positively invariant. This means that every trajectory of Σ starting from a
point of Ω0 remains in Ω0. In particular, the second and the fourth coordinate,
x1 and x2, of this trajectory will never vanish.

Let us fix the positive constants δ, b−s1
and b+s1

in such a way that b−s1
< s∗1 < b+s1

and the values of the feedback kδ(·) are admissible values for the control at each
point of the set

Ω1 := {(s1, x1, s2, x2, c, z)T ∈ Ω0 : b−s1
≤ s1 ≤ b+s1

},

i. e. kδ(s1) ∈ U for each point (s1, x1, s2, x2, c, z)T ∈ Ω1.
Using the fact that si

1−s1 = s∗1−s1+αk1x
∗
1, the first and the second equation

of the closed-loop system Σ can be written as follows:

d

dt
s1 = −kδ(s1)[s1 − s∗1 + αk1(x1 − x∗1)]− αδk1x1(s1 − s∗1) (8)

d

dt
x1 = αδx1(s1 − s∗1). (9)

Consider the function

V1(s1, x1) = [s1 − s∗1 + αk1(x1 − x∗1)]2 + α(1− α)k2
1(x1 − x∗1)2.

Let us denote by F1(s1, x1) the right-hand side of (8)–(9). It can be directly
checked that

〈grad V1(s1, x1), F1(s1, x1)〉 = −2
{
[kδ(s1) + δk1α(1− α)x1](s1 − s∗1)2

+ 2k1αkδ(s1)(s1 − s∗1)(x1 − x∗1) + α2k2
1kδ(s1)(x1 − x∗1)2

}
.

The discriminant D1(s1, x1) of the last expression, considered as a quadratic
function with respect to the variables s1 − s∗1 and x1 − x∗1, is

D1(s1, x1) = −4α3(1− α)k3
1δx1kδ(s1).

Obviously, the value of D1(s1, x1) is negative on the set Ω1 \ {ζ∗}, hence

〈grad V1(s1, x1), F1(s1, x1)〉 < 0 (10)

for each point (s1, x1, s2, x2, c, z)T ∈ Ω1 \ {ζ∗}.
Consider now the third and the fourth equation of (1)–(6) with x1 and u

substituted by x∗1 and u∗ := kδ(s∗1), respectively, i. e. we consider the following
system of differential equations:

d

dt
s2 = u∗(si

2 − s2) + k2αu
∗x∗1 − k3μ2(s2)x2 (11)

d

dt
x2 = (μ2(s2)− μ2(s∗2))x2. (12)

For each ν ∈ (0, s̃2), we define the set

Ων
2 := {(s1, x1, s2, x2, c, z)T ∈ Ω1 : s2 ≤ s̃2 − ν}.
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Let us consider the function

V2(s2, x2) := [s2 − s∗2 + αk3(x2 − x∗2)]2 + α(1 − α)k2
3(x2 − x∗2)2.

According to the mean-value theorem, there exists a point θ between the numbers
s2 and s∗2 such that

〈grad V2(s2, x2), F2(s2, x2)〉 = −2[u∗ + k3(1− α)μ′
2(θ)x2](s2 − s∗2)2

− 4k3μ2(s∗2)(x2 − x∗2)(s2 − s∗2)− 2αk2
3μ2(s∗2)(x2 − x∗2)2,

(13)

where F2(s2, x2) denotes the right-hand side of (11)–(12). Let D2(s2, x2) be
the discriminant of the expression (13), considered as a quadratic function with
respect to the variables s2− s∗2 and x2−x∗2. The function μ2(·) is increasing and
strictly concave. Moreover, its derivative μ′

2(·) is a decreasing function which
vanishes at the point s̃2. Hence, μ′

2(θ) > μ′
2(s̃2 − ν) > μ′

2(s̃2) = 0. This and the
definition of the set Ων

2 imply that

D2(s2, x2) < −4α(1− α)k3
3μ2(s∗2)μ

′
2(s̃2 − ν)x2 < 0

on the set Ων
2 \ {ζ∗}.

For each ε > 0, we define the function

V ε(ζ) = V1(s1, x1) + εV2(s2, x2) + ε(c− c∗)2 + (z − z∗)2,

where ζ := (s1, x1, s2, x2, c, z)T. Clearly, V ε(·) is a smooth function which is
positive on the set Ων

2 \ {ζ∗} and V ε(ζ∗) = 0. Let us denote by F (·) the right-
hand side of the closed-loop system Σ. Let us fix an arbitrary point ζ from the set
Ων

2 \ {ζ∗}. Then 〈grad V ε(ζ), F (ζ)〉 can be represented as a quadratic function
with respect to the variables s1 − s∗1, x1 − x∗1, s2 − s∗2, x2 − x∗2, c − c∗, z − z∗

whose coefficients depend on ζ. To check that it is negative definite, we calculate
successively the leading principal minors of the corresponding symmetric matrix
generated by the coefficients of the considered quadratic form:

Δε
1(ζ) = −2(kδ(s1) + δk1α(1 − α)x1) < 0

Δε
2(ζ) = −D1(s1, x1) > 0

Δε
3(ζ) < −2εD1(s1, x1)(u∗ + k3x2(1 − α)μ′

2(s̃2 − ν)) + o1(ε)
Δε

4(ζ) = ε2D1(s1, x1)D2(s2, x2) + o2(ε2)
Δε

5(ζ) = −2ε3kδ(s1)D1(s1, x1)D2(s2, x2) + o3(ε3),
Δε

6(ζ) = 4ε3k2
δ (s1)D1(s1, x1)D2(s2, x2) + o4(ε3).

Clearly, if we fix ε0 > 0 to be sufficiently small, then

Δε0
3 (ζ) < 0, Δε0

4 (ζ) > 0, Δε0
5 (ζ) < 0, Δε0

6 (ζ) > 0.

Hence,
〈grad V ε0(ζ), F (ζ)〉 < 0 (14)
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for each point ζ ∈ Ων
2 \ {ζ∗}. Let us choose β > 0 as large as possible and such

that the set
Ω := {ζ ∈ R6 : V ε0(ζ) ≤ β }

is a subset of the set Ων
2 . Clearly, Ω is a compact and convex neighborhood of the

point ζ∗. Moreover, the relation (14) implies that V ε0(·) is a Lyapunov function
of the closed-loop system Σ on the set Ω. So, Σ is asymptotically stable on Ω.

This completes the proof.

4 Numerical Simulation

The theoretical results are illustrated numerically and graphically using the com-
puter algebra system Maple.

From [1] we take the following numerical values for the model coefficients:
Q = 20 [mmol/l], k1 = 10.53 [g COD/g], k2 = 28.6 [mmol VFA/g], k3 = 1074
[mmol VFA/g], k4 = 12.42 [mmol CO2/g], k5 = 1375 [mmol CO], μmax = 1.2
[day−1], μ0 = 0.74 [day−1], ks1 = 7.1 [g COD/l], ks2 = 9.28 [(mmol VFA/l)1/2],
kI = 16 [mmol VFA/l].

With α = 0.5 and si
1 = 6.9, si

2 = 70, ci = 52, zi = 67, the admissible
interval for the control is U = [0.1169, 1.0718]. For u∗ = 0.4 ∈ int U (which
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is close to the on-line experimental results in [1]), the rest point ζ∗ is ζ∗ =
(1.42, 1.04, 3.45, 0.15, 112.71, 67). Using the feedback kδ(s1) with δ = 7,
Figures 1 and 2 present the projections of the phase portraits of the stabilized
system on different phase planes. In all plots, the symbol diamond % denotes the
corresponding projection of the rest point.

In practice, the influent concentrations si
1, s

i
2, c

i and zi are usually not exactly
known. For the computer simulations we assume that these values change step-
wise (see [1], Figures 2 to 5):
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si
1 ∈ {5.7, 6.9, 6}, si

2 ∈ {53, 70, 59}, ci ∈ {46, 52, 62}, zi ∈ {53, 67, 58}.

The end-points of the admissible interval U and the steady states x1(u), x2(u),
c(u) and z(u) depend explicitly on si

1, si
2, ci and zi, thus they change as well. The

three different admissible intervals have an intersection U = [0.1461, 1.0687].
The three reference points ζ∗1 , ζ∗2 and ζ∗3 , related to the above step changes
in the influent concentrations are ζ∗1 = (1.42, 0.81, 3.45, 0.11, 79.36, 53), ζ∗2 =
(1.42, 1.04, 3.45, 0.15, 112.7, 67), ζ∗3 = (1.42, 0.87, 3.45, 0.13, 104.4, 58).
Starting with the initial point s1(0) = 1.39, x1(0) = 0.6, s2(0) = 4.1, x2(0) =
0.08, c(0) = 40, z(0) = 51, the numerical results are visualized on Figures 3, 4
and 5. In these plots the symbol circle ◦ denotes the corresponding coordinate of
the initial point. The horizontal dot-line segments go through the corresponding
coordinate of the rest point. The right plot in Figure 3 shows the time profile of
the feedback kδ(t); the horizontal dot-line segment goes trough the point u∗.
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Abstract. We investigate approximation in W 1,2 topology of the solu-
tion set of a differential inclusion with Kamke Lipschitz right-hand side.
The results are then applied to Bolza optimal control problem in form
of differential inclusions. Namely it is shown that the optimal solution is
the limit of optimal solution of appropriately defined finite dimensional
nonlinear programming problems.

1 Introduction

Here we continue recent authors investigations presented in [2]. We study discrete
approximations of the following differential inclusion:

ẋ(t) ∈ F (t, x(t)), x(0) = x0, t ∈ I = [0, 1] (1)

in order to apply the results to the Bolza optimal control problem:

min J [x] := ϕ(x(1)) +
∫ 1

0
f(t, x(t), ẋ(t)) dt (2)

subject to (1). Here and further in the paper F (·, ·) is a continuous map from
I × Rn into C(Rn) (the set of all nonempty compact subsets of Rn).

The problem of finding optimal Hamiltonian or/and Euler–Lagrange condi-
tions is studied in a large number of papers. We note here only [1, 7, 9, 12] and
the references therein. In all these papers the right-hand side is assumed to be
locally Lipschitz.

There are also a lot of papers devoted to approximation of the solution and
reachable set of (1). We mention only [4, 6], survey papers [5, 8] and the references
therein.

We note [9], where refined Euler-Lagrange optimal conditions are obtained
with the help of discrete approximations. Although the optimality conditions
require some properties of subdifferentials which hold only for locally Lipschitz
functions, the approximation in W 1,2 can be proved for much larger class.

Denote by B the open unit ball in Rn. Given two closed bounded sets A,B
we let DH(A,B) := max{max

b∈B
min
a∈A

|b− a|,max
a∈A

min
b∈B

|b− a|} – Hausdorff distance.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 216–222, 2006.
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Recall that a continuous function w : I × R+ → R+ is said to be Kamke
function if w(t, 0) ≡ 0 and the only solution of the differential equation ṡ(t) =
w(t, s(t)), s(0) = 0 is s(t) ≡ 0.

Standing Hypothesis

1) There exists λ > 0 such that |F (t, x)| ≤ λ(1 + |x|) for every x.
2) F (·, ·) is continuous multifunction with nonempty compact values.

Further we assume that for every bounded set A ⊂ Rn there exists a Kamke
function wA(·, ·) such thatDH(F (t, x), F (t, y)) ≤ wA(t, |x−y|) for every x, y ∈ A,
which we call locally Kamke–Lipschitz (KL) condition.

It is shown in [2] that almost all continuous convex compact valued (CCC)
multi-functions satisfy the locally KL condition. That means that our results
are applicable for almost all CCC differential inclusions. Commonly used locally
Lipschitz condition hold on a first Baire category set (in the complete metric
space of continuous CCC multi-functions).

When the right-hand side is one sided Lipschitz the approximation of the
solution set (in C(I,Rn)) is studied in [3]. Although this condition is weaker
than Lipschitz one and it does not follow from the Kamke–Lipschitz condition
it is shown in [2] that the set of all locally one sided Lipschitz continuous multi-
functions is of first Baire category. Of course one can study locally one sided
KL multi-functions, however, it is not clear how to obtain W 1,2 approximation
replacing KL by one sided KL.

The aim of this paper is the extension of the approximation results of Mor-
dukhovich [9] to the case of locally KL right-hand side. Notice that our results
hold for almost all continuous differential inclusions (as it was pointed out above).
This implies that the approach of [9, 10] is more flexible then the approach in
[1, 7, 12] etc.

We mentioned the paper [13], where the approximation of reachable set for
locally Kamke–Lipschitz differential inclusions is studied. More for Kamke func-
tions one can find in [11, 14].

Let Δk =
{
tj =

j

k

}
, j = 0, 1, . . . , k be a uniform grid of I. To (1) we juxta-

pose the following discrete system:
For j = 0, 1, . . . , k − 1 we let xk

j = lim
t↑tj

xk(t) and for t ∈ [tj , tj+1):

ẋk(t) = vj ∈ F (tj , xk
j ), xk(t) = xk

j + vj(t− tj). (3)

Of course xk(0) = x0.

2 The Results

In this section we prove (in more general form) two theorems announced in [2].
These theorems are (partial) extensions of Theorem 3.1 and Theorem 3.3 of [9]
respectively.
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First we study W 1,2 approximation of the solution set of (1) with discrete
trajectories (the solution set of (3)).

Theorem 1. Assume F satisfies the standing hypothesis and locally KL con-
dition. Let x(·) be a solution of (1). Then there exists a sequence {xk(·)}∞k=1 of
solutions of (3) such that

lim
k→∞

max
t∈I

|xk(t)− x(t)| = 0, and

lim
k→∞

∫
I

|ẋ(t)− ẋk(t)|2 dt = 0.

Proof. First it is easy to see that there exist constants M and P such that
|x(t)| ≤ M and |F (t, x(t) + B)| ≤ P for every absolutely continuous function
x(·) with x(0) = x0 and ẋ(t) ∈ F (t, x(t) + B). Hence without loss of generality
one can assume that F (t, ·) is KL with respect to Kamke function w(·, ·).

On the set A := I × (MB) the mappings F (·, ·) and wA(·, ·) are uniformly
continuous. Furthermore every discrete or continuous trajectory is P–Lipschitz.

Since the step functions are dense in L2(I), one has that there exists a se-
quence of polygonal functions yk(·) (functions with constant on [tj , tj+1) deriv-

atives) such that lim
k→∞

∫
I

|ẋ(t)− ẏk(t)|2 dt = 0 and yk(t) → x(t) uniformly on I.

Moreover if uk(·) → ẋ(·) in L2(I), then for every ε > 0 there exists a compact
Iε ⊂ I with measure greater than 1− ε such that uk(·) → ẋ(·) uniformly on Iε.
Since F (·, ·) is uniformly continuous, one has that for every δ > 0 there exists
k(δ) such that for j = 0, 1, . . . , k− 1 we have dist (ẏk(t), F (tj , yk

j )) ≤ δ for every
t ∈ [tj , tj+1) and every k > k(δ).

Let δn ↓ 0 as n → ∞. We let δ above to be equal to δn For j = 0, 1, . . . , k −
1 we define xkn

j = lim
t↑tj

xkn(t), xkn(t) = xkn

j + (t − tj)vkn . Here t ∈ [tj , tj+1)

and vkn belongs to the projection set of ẏkn(t) on F (tj , xkn

j ). It is easy to see
that

∣∣ẋkn(t)− ẏkn(t)
∣∣ ≤ w

(
t,
∣∣xkn(t)− ykn(t)

∣∣ + δn
)

+ δn. Therefore denoting
rkn(t) =

∣∣xkn(t)− ykn(t)
∣∣ we have: rkn(0) = 0 and ṙkn(t) ≤ w(t, rkn (t)+δn)+δn.

Since w(·, ·) is a Kamke function, one has that lim
n→∞

∣∣xkn(t)− ykn(t)
∣∣ = 0 uni-

formly on I. Moreover, lim
n→∞

∫
I

∣∣ẋkn(t)− ẏkn(t)
∣∣2 dt = 0. The proof is therefore

complete thanks to the triangle inequality. ��
Remark 1. Theorem 1 when F (·, ·) is also convex valued (provided with very
concise and not complete proof) is given in [2].

Notice that for absolutely continuous functions with bounded by P derivatives
the W 1,1 and W 1,2 norms are equivalent.

The following definition is from Mordukhovich [9]:

Definition 1. The arc x̄(·) is said to be a local intermediate minimum (LIM) if
there exists ε > 0 such that J [x̄] ≤ J [x] for any other trajectory x(·), satisfying

|x̄(t)− x(t) < ε, ∀t ∈ I and
∫ 1

0
|ẋ(t)− ˙̄x|2 dt < ε.
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Let x̄(·) be LIM. To optimal control problem (1) – (2) we juxtapose the
following discrete minimization problem:

min Jk(xk) = ϕ(xk
k) +

1
k

k−1∑
j=0

f
(
tkj , x

k
j , k

(
xk

j+1 − xk
j

))
+

k−1∑
j=0

∫ tj+1

tj

∣∣(xk
j+1 − xk

j

)
k − ˙̄x(t)

∣∣ dt, (4)

for discrete trajectories xk(·) such that |xk
j − x̄(tj)| ≤

ε

2
, j = 0, 1, . . . , k and

k−1∑
j=0

∫ tj+1

tj

∣∣k(xk
j+1 − xk

j )− ˙̄x(t)
∣∣ dt ≤ ε

2
. (5)

The functions f(·, ·, ·) and ϕ(·) are assumed to be continuous.

Theorem 2. Assume all the conditions of Theorem 1 hold. Let z(·) be LIM of
the problem (1) – (2). Then every sequence {xn(·)}∞n=1 of solutions of the discrete
problem (3) – (4) converges as n→∞ to z(·) on W 1,2(I).

Proof. We will follow with modifications the proof of Theorem 3.3 of [9]. It
follows from Theorem 1 that every optimal solution of (3) – (4) satisfies (5) for
n big enough. Due to Weierstrass theorem such an optimal solution, denoted by
xn(·), exists.

First we will show that lim
n→∞

Jn[xn] = J [z], where the sequence xk(·) approx-

imates z(·) in W 1,2.
Since ϕ(·) is continuous, one has that ϕ(xn(1)) → ϕ(z(1)). Also

lim
n→∞

k−1∑
j=0

∫ tj+1

tj

∣∣∣∣∣xk
j+1 − xk

j

hk
− ż(t)

∣∣∣∣∣ dt = 0,

because xn(·)→ z(·) in W 1,2 and hence also in W 1,1.
We have only to see that

1
n

n−1∑
j=0

f
(
tnj , x

n
j , n(xn

j+1 − xn
j )

)
→

∫ 1

0
f(t, x(t), ż(t)) dt.

Since f(·, ·, ·) is continuous one has that:

lim
n→∞

1
n

n−1∑
j=0

f
(
tj , x

n
j , n

(
xn

j+1 − xn
j

))
= lim

n→∞

n−1∑
j=0

∫ tj+1

tj

f
(
tj , x

n
j , v

n(t)
)
dt

= lim
n→∞

n−1∑
j=0

∫ tj+1

tj

f(t, xn(t), vn(t)) dt = lim
n→∞

n−1∑
j=0

∫ tj+1

tj

f(t, z(t), ż(t)) dt
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If x̄n(·) is an optimal solution of (3) – (4) then lim sup
n→∞

Jn[x̄n] ≤ J [z].

Now we will use the fact that z(·) is LIM for (1) – (2). We let cn :=
∫

I

| ˙̄xn(t)−

ż(t)|2 dt. It remains to prove that lim
n→∞

cn =0. Suppose the contrary, i.e. lim sup
n→∞

cn

= c > 0. Since xn(·) are P – Lipschitz and xn(0) = x0, one has that (passing to
subsequences if necessary) xn(·) → x(·) uniformly on I and ẋn(·) ⇀ x(·) weakly
L2(I). Furthermore

lim
n→∞

∣∣∣∣∣∣ 1n
n−1∑
j=0

f
(
tj , x

n
j , n

(
xn

j+1 − xn
j

))
−

∫
I

f(t, xn(t), ẋn(t)) dt

∣∣∣∣∣∣→ 0

thanks to Theorem 1.
Due to Mazur theorem there is a sequence of convex combinations which

(passing to subsequences) converges for a.e. t ∈ I to ẋ(·).
We let fF (t, x, v) := f(t, x, v) + χF (t,x)(v), where

χA(v) =

{
0 if v ∈ A
∞ otherwise.

Let f̂F be the biconjugate function of fF . Obviously x(·) is a solution of the
relaxed differential inclusion (the right-hand side is closed convex hull of F (t, x)).
It is easy to see that

∫
I

f̂F (t, x(t), ẋ(t)) dt ≤ lim inf
n→∞

1
n

n−1∑
j=0

f
(
tj , x

n
j , n

(
xn

i+1 − xn
j

))
. (6)

Furthermore I[v] :=
∫

I

|v(t) − ẋ(t)|2 dt is lower semicontinuous with respect to

the weak topology of L2(I). Therefore

∫
I

|ẋ(t)− ż(t)|2 dt ≤ lim inf
n→∞

1
n

n−1∑
j=0

∫ tj+1

tj

∣∣n (
xn

i+1 − xn
j

)
− ż(t)

∣∣2 dt. (7)

One has |x(t)− z(t)| ≤ ε

2
on I. Furthermore

∫
I

|ẋ(t)− ż(t)|2 ≤ ε

2
thanks to (7).

Due to (6) we have:

Ĵ [x] := ϕ(x(1)) +
∫

I

f̂F (t, x(t), ẋ(t)) dt+ c ≤ lim inf
n→∞

Jn[xn].

Thus Ĵ [x] < J [z] – contradiction. ��
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3 Concluding Remarks

Remark 2. When F (·, ·) is Caratheodory (almost continuous) one can study
W 1,2 approximation of (1) by (3) with the help of the multifunctions:

Fh(t, x) =
1

meas(It,h)

∫
It,h

F (t, x) dt.

Here It,h = I
⋂

[t − h, t + h]. Obviously DH (Fh(t, x), Fh(t, y)) ≤ wh(t, |x − y|),
where wh(·, ·) is defined as Fh(·, ·). The main difficulty is to see when wh(·, ·) is
a Kamke function.

These questions are interesting, but are not considered here.

Notice that our results may be extended to the case of functional differential
systems having the form:

ẋ(t) ∈ F (t, xt), x0 = φ.

Here x ∈ Rn, t ∈ I = [0, 1] and F is a compact valued map from I ×X into Rn.
X = C([−τ, 0],Rn) is the space of the continuous maps from [−τ, 0] into Rn and
xt(s) = x(t− s) for s ∈ [−τ, 0]. The minimization criterium is:

min J [x] := ϕ(x(1)) +
∫ 1

0
f(t, x(t), xt, ẋ(t)) dt.

This problem requires some other techniques and will be studied in another
paper.
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Abstract. The properties of set-valued solutions (trajectory tubes) for
measure driven (impulsive) differential control systems are considered.
Numerical simulation results related to the procedures of set-valued ap-
proximations of trajectory tubes of linear impulsive systems are also
given.

1 Introduction

In many applied problems the evolution of a dynamical system depends not
only on the current system states but also on uncertain disturbances or errors in
modelling. There are many publications devoted to different aspects of treatment
of uncertain dynamical systems (e.g., [1, 2, 3, 4, 5]).

The model of uncertainty considered here is deterministic, with set — mem-
bership description of uncertain items which are taken to be unknown but
bounded with given bounds.

In the paper we consider the properties of set-valued solutions (trajectory
tubes) for measure driven (impulsive) differential control systems. The solution
to the impulsive differential system is introduced and studied here in the frame-
work of the theory of uncertain dynamical systems through the techniques of
informational states (or set-valued state vectors) of the impulsive system:

dx(t) = f(x(t), u(t))dt +B(x(t), u(t))dv(t), (1)

x ∈ Rn, t0 ≤ t ≤ T,

with unknown but bounded initial condition

x(t0 − 0) = x0, x0 ∈ X0. (2)

Here u(t) is a usual (measurable) control, with constraint: u(t) ∈ U , U ⊂ Rm,
and v(t) is an impulsive control function which is continuous from the right, with
the bounded variation on [t0, T ]. The trajectory tube to the system (1) - (2) is
the set

X [·] = {x[·] = x(·, t0, x0)|x0 ∈ X0} (3)

of solutions to (1) – (2) with its t-cross-section X [t] being the reachable set (the
informational set) at instant t of the system (1)–(2) which is found under above
given assumptions on the uncertainty constraints.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 223–230, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In such problems the trajectories x(t) are discontinuous and belong to a space
of functions with bounded variation. Among many problems related to treatment
of dynamic systems of this kind let us mention the results devoted to a precise
definition of a solution to (1) especially for the case B = B(t, x) ([6]) and a long
list of publications concerning the optimality conditions (e.g., [7, 8, 9]).

In this paper we consider the properties of generalized trajectory tubes X [·]
(such as compactness, sensitivity or continuity of these tubes on some groups
of parameters that define the restrictions on uncertain data). Numerical results
using examples related to procedures of set-valued approximations of X [·] are
also presented.

2 Nonlinear Systems: Qualitative Results

Basing on the techniques of approximation of the discontinuous generalized tra-
jectory tubes to (1)–(2) by the solutions of usual differential systems without
measure terms [10, 11] it is possible to study the dependence of generalized tra-
jectory tubes and their cross-sections (reachable sets) on parameters that define
the restrictions on uncertain values (initial data, a variation of impulses, con-
straints on measurable controls).

2.1 Uncertain Impulsive Systems with Parameter Disturbance

In this section we consider a dynamic system described by the following differ-
ential equation with measures

dx(t) = f(t, x(t), u(t))dt + B(t)dv(t), (4)

with unknown but bounded initial condition

x(t0 − 0) = x0, x0 ∈ X0
λ. (5)

Here x ∈ Rn, t0 ≤ t ≤ T and we assume that matrix function B in (1) depends
on time only and u(t) is a usual (measurable) control with the parameterized
constraint

u(t) ∈ Uλ, Uλ ⊂ Rm,

and v(t) is an impulsive control function which is continuous from the right, with

Vart∈[t0,T ] v(t) ≤ μλ.

Here λ is a finite dimensional parameter (λ ∈ Rk) that will be taken as tending
to some fixed value λ0 (obviously without loss of generality we may take λ0 = 0).

We study the dependence of trajectory tubes X [·] of the impulsive differen-
tial system on system parameters λ that define the constraints on initial data,
a variation of impulses, restrictions on measurable controls. These parameter
disturbances may be treated, e. g., as errors of the system modelling or as hard
bounds on admissible system noises.
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So the main problem of the section is to study the sensitivity of the considered
differential system (and its set-valued solutions) with respect to model errors.

Along with the system (4)–(5) let us consider a new system, namely, a differ-
ential inclusion of the following type

dx(t) ∈ Fλ(t, x(t))dt +B(t)dv(t), (6)

with the initial condition

x(t0 − 0) = x0, x0 ∈ X0
λ. (7)

Here we use the notation

Fλ(t, x) = f(t, x, Uλ) = ∪{ f(t, x, u) | u ∈ Uλ }

for the set-valued map Fλ in (6).
The introduction of this differential inclusion (6) which we will study further

may be motivated by the well known results given by the control theory [12] and
also by results of the theory of differential inclusions [13, 14].

Let Xλ(·, t0, X0
λ) be the set of all solutions to the inclusion (6) that emerge

from X0
λ (the trajectory tube related to all initial state vectors x0 and all ad-

missible impulse controls v(t) is defined in (3)). Denote Xλ[t] = Xλ(t, t0, X0
λ) to

be its cross-section at instant t. The set Xλ[t] is actually the reachable set of
the impulsive differential inclusion (6) - (7) (or, equivalently, of the impulsive
control system (4) – (5)) from the initial set X0

λ taken at instant t.
So the main problem may be reformulated in terms of the differential inclu-

sions theory, i.e. in order to answer the main questions we need to find first the
type of the dependance of set-valued solutions Xλ[·] of (6) on the variation of
parameter vectors λ.

2.2 Preliminaries

Assume that Fλ is a continuous multivalued map (Fλ : [t0, T ]× Rn → convRn)
that satisfies the Lipschitz condition with constants L1, L2 > 0, namely for all
x, y ∈ Rn and t1, t2 ∈ [t0, T ] we have

h(Fλ(t1, x), Fλ(t2, y)) ≤ L1|t1 − t2|+ L2 ‖ x− y ‖,

where convRn denotes the space of all compact and convex subsets of Rn and
h(A,B) is the Hausdorff distance [2, 13, 14] for A, B ⊆ Rn.

Assume also the Lipschitz continuity of the matrix function B(t)

‖ B(t1)−B(t2) ‖≤ L3|t1 − t2|, ∀t1, t2 ∈ [t0, T ]

and also the so-called extendability condition [12]

Fλ(t, x) ⊂ c(1 + ||x||)S, S = { x ∈ Rn | ||x|| ≤ 1 }.
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Definition 1. A function x[t] = x(t, t0, x0) (x0 ∈ X0
λ, t ∈ [t0, T ]) will be called

a solution (a trajectory) of the differential inclusion (6) if for all t ∈ [t0, T ]

x[t] = x0 +

t∫
t0

ψ(t)dt+

t∫
t0

B(t)dv(t), (8)

where ψ(·) ∈ Ln
1 [t0, T ] is a selector of Fλ, i.e. ψ(t) ∈ Fλ(t, x[t]) a.e.

The last integral in (8) is taken as the Riemann–Stieltjes one. Following the
scheme of the proof of the well-known Caratheodory theorem we can prove the
existence of solutions x[·] = x(·, t0, x0) ∈ BV n[t0, T ] for all x0 ∈ X0 where
BV n[t0, T ] is the space of n-vector functions with bounded variation at [t0, T ].

Let us introduce a new time variable η and a new state coordinate τ ([6, 7, 8]):

η(t) = t+

t∫
t0

dv(t), τ(η) = inf { t | η(t) ≥ η }.

Consider the following auxiliary differential inclusion

d

dη

(
z
τ

)
∈ Gλ(τ, z) (9)

with the initial condition

z(t0) = x0, τ(t0) = t0, t0 ≤ η ≤ T + μλ.

Here

Gλ(τ, z) =
⋃

0 ≤ν≤ 1

{
(1− ν)

(
Fλ(τ, z)

1

)
+ ν

(
B(τ)

0

) }
. (10)

Let us mention here two auxiliary results connected with two properties of the
system (9) [15].

Lemma 1. The map Gλ(τ, z) is convex and compact valued

Gλ : [t0, T + μλ]×Rn → convRn+1

and Gλ(τ, z) is Lipschitz continuous in both variables τ , z.

In addition to the above assumptions we will assume further that the initial
problem constraints depend continuously on a parameter λ (λ ∈ Rk) in such a
way that

lim
λ→0

h(X0
λ, X

0) = 0, lim
λ→0

h(Uλ, U) = 0, lim
λ→0

μλ = μ.

The next auxiliary property provides the continuous dependance of the set-
valued right-hand side Gλ(τ, z) of the differential inclusion (9) on a parameter λ.

Lemma 2. Under the above assumptions we have

lim
λ→0

h(Gλ(τ, z), G0(τ, z)) = 0, ∀(τ, z) ∈ Rn+1.
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2.3 Sensitivity Properties

Denote by w = {z, τ} the extended state vector of the system (9) and consider
trajectory tube of this differential inclusion (which has no measure or impulse
components):

Wλ[η] =
⋃

w0∈X0
λ×{t0}

w(η, t0, w0), t0 ≤ η ≤ T + μλ.

From Lemmas 1–2 and from the properties of trajectory tubes of ordinary dif-
ferential inclusions [12, 5] we can conclude that the following result is valid.

Theorem 1. The limit equality

lim
λ→0

h(Wλ[T + μλ],W0[T + μ]) = 0.

is true.

The next lemma explains the construction of the auxiliary differential inclu-
sion (9).

Lemma 3. The set Xλ[T ] is the projection of Wλ[T + μλ] at the subspace of
variables z:

Xλ[T ] = πzWλ[T + μλ].

The proof of this Lemma follows from the structure of the auxiliary system (9).
Combining Theorem 1 and Lemma 3 we get the property of the continuity of

time cross-sections of trajectory tubes with respect to system parameters.

Theorem 2. The following equality

lim
λ→0

h(Xλ[T ], X0[T ]) = 0

is true.

3 Linear Impulsive Systems: Ellipsoidal Estimation
Algorithm

3.1 Linear Impulsive Systems with Ellipsoidal Constraints

Let us consider a linear control system

dx = A(t)xdt +B(t)du,
x(0) ∈ X0, 0 ≤ t ≤ T

(11)

with impulsive control u(·) restricted by a set U that will be defined further, X0
is convex and compact in Rn (in particular, X0 may be an ellipsoid in Rn ).

Let E0 = {l ∈ Rm | l′Ml ≤ 1} be an ellipsoid in Rm where M is a symmetric
positive definite matrix.
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Denote by Cm[0, T ] the space of all continuous m-vector functions defined
on [0, T ]. It is well known that the conjugate space to Cm[0, T ] coincides with
the space BV m[0, T ] of m-vector functions with bounded variation at [0, T ]:
( Cm[0, T ] )∗ = BV m[0, T ]. Denote also E = {y(·) ∈ Cm[0, T ] | y(t) ∈ E0 ∀t ∈
[0, T ]} and let us take U = E∗ where E∗ is the conjugate ellipsoid [2, 14] to E
(U = E∗ ⊂ BV m[0, T ]) that is

E∗ = {u(·) ∈ BV m[0, T ] |
∫

[0,T ]

y′(t)du(t) ≤ 1 ∀ y(·) ∈ E}.

We assume in this section that admissible controls u satisfy the restriction u(·) ∈
U = E∗. In particular it follows from the structure of the set U of admissible
controls u(·) that their jumps Δu(ti) = u(ti+1) − u(ti) have to belong to the
conjugate ellipsoid E∗

0 = {l ∈ Rm | l′M−1l ≤ 1} [17, 18].
The following theorem gives the structure of the cross-section of trajectory

tubes [17, 18].

Theorem 3. The reachable set X(t, t0, X0) is convex and compact for all t ∈
[0, T ]. Every state vector x ∈ X(t, t0, X0) may be generated by a solution x(·)
of (11) with x(t) = x and corresponding to a piecewise control u(·) with (n+ 1)
jumps belonging to E∗

0 .

3.2 Ellipsoidal Estimation Approach

The method of constructing the external (or “upper” with respect to inclusion)
estimates of trajectory tubesX(·, t0, X0) of a differential system with uncertainty
is based on the ellipsoidal calculus [16, 4] and on the new procedures of external
approximation of a convex hull of the union of a variety of some ellipsoids [17, 18].
Each of these ellipsoids corresponds to the reachable set of the system (11) when
only unique impulse ”jump” of the admissible control function is allowed [18].
The convex hull operation which we need to take additionally over the union
of all these auxiliary ellipsoids in order to get the final reachable set X [t] is
motivated by the above Theorem 3.

The following example shows how to find the reachable set X (T ;X0) basing
on the above theorems.

Example 1 (External Ellipsoidal Estimates). Consider the following control sys-
tem: {

dx1(t) = x2(t)dt+ du1(t),
dx2(t) = du2(t),

(12)

Here we take X0 = {0} and the set U generated by the ellipsoid

E0 =
{
l ∈ R2 | l′Q0l ≤ 1

}
, Q0 =

(
a2 0
0 b2

)
, a, b ∈ R, a, b > 0.

From Theorems 1-3 we find the reachable set X (T ; 0) given at Fig. 1.
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Fig. 1. The reachable set X (T ) = X (T ;X0)
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Fig. 2. The external ellipsoidal estimate of X (T )

Here we use the notation

x∗1 =
a2

√
a2 + 0.25T 2b2

< a, x∗2 =
a2 + 0.5T 2b2√
a2 + 0.25T 2b2

> Tb,

E1 = {x ∈ R2 | 1
a2 (x1 − x2T )2 +

x2
2

b2
≤ 1}, E2 = {x| x′Q−1

0 x ≤ 1}.

The external ellipsoidal estimate E2 is shown at Fig. 2. Comparing with Fig.1
we note that X (T ) ⊂ E2.
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Abstract. We study the limit behavior of reachable sets for time-inva-
riant linear control systems under two types of the control bounds: the
geometric bounds, and the bound for the total impulse.

Our main results consist in the description of the arising (as time
tends to ∞) attractors in the space of shapes of the reachable sets, shape
being the totality of sets obtained from a fixed one by an invertible affine
transformation.

1 Introduction

In this paper we compare fundamental asymptotic properties of reachable sets
of linear control systems under two types of the control bounds: the geometric
bounds, and the bound for the total impulse. The investigation of the asymptotic
behavior is quite nontrivial and far from completion for the non-autonomous
linear systems. It is still nontrivial in the time-invariant case which we will deal
with here, but in this case a more or less complete description of the asymptotics
can be found.

The governing equations are traditional

ẋ = Ax+Bu, x ∈ V = Rn, u ∈ W = Rm, (1)

and should be augmented with the initial condition

x(0) ∈M, (2)

and the control constraints. We consider two types of the constraints: geometric
one meaning

u = u(t) ∈ U, (3)

where U is a fixed set, and the following bound for the total impulse:∣∣∣∣∣
∫ T

0
f(t)u(t) dt

∣∣∣∣∣ ≤ 1 (4)
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for all continuous vector functions f such that |f(t)| ≤ 1, t ∈ [0, T ]. In the
geometric case, the admissible control is a measurable vector function subject
to (3), while in the impulse case, it is a vector-valued measure satisfying (4).

Here, we are going to compare two families

Dgeom(t) = D(t;M) = {x(t); x satisfies (1), (2), (3)},

and
Dimpulse(t) = D(t;M) = {x(t); x satisfies (1), (2), (4)}

of the reachable sets as t→ +∞.
It was discovered in [5] that there is a great advantage in studying the shapes

of the reachable sets instead of the reachable sets themselves. Here, the shape
ShΩ is the entity of the sets which can be obtained from one set Ω by means of
invertible linear (or affine) maps.

A brief reflection reveals that for stable systems, (both families of) the reach-
able sets have a limit as the time t→ +∞. By the stable systems we mean the
systems such that the spectrum SpecA (set of eigenvalues) of the matrix A is
contained in the left half-plane. In particular, it was found in [5] that ShDgeom(t)
has a limit as t → +∞ irrespective of whether the matrix A is stable or not.
This is a proper generalization of the mentioned property of stable systems.

In a more general setup, say, for time-dependent linear systems , there is no
reason to expect the similar simplest possible asymptotic behavior even at the
level of shapes of the reachable sets. Furthermore, it was found recently [8] that,
in general, ShDimpulse(t) has no limit as t → +∞ as well. Instead, there arises
an attractor A of positive dimension.

Generally speaking, if t �→ γ(t) is a curve in a compactK, it defines an obvious
attractor A =

⋂
T>0 {γ(T + s), s ≥ 0} also known as the ω-limit set of the curve

γ. Here, X stands for the closure of a set X in K. The attractor A consists of all
limits of sequences γ(ti), i = 0, 1, . . . , where ti → +∞. In our cases of interest,
γ(t) is either ShDgeom(t) or ShDimpulse(t), while K is a suitable space of shapes.

If γ is an integral curve of a dynamic system, the maps φ(τ) : γ → γ given
by φ(τ)(γ(t)) = γ(t+ τ) can be extended by continuity on the attractor A, i.e.,
to a dynamic system φ(τ) : A → A, τ ∈ R. Note that although Dgeom(t) and
Dimpulse(t) are integral curves of the dynamic system, the curves ShDgeom(t)
or ShDimpulse(t) are not. Nevertheless, one can define by continuity a natural
dynamic system φ(τ), τ ∈ R, acting on the corresponding attractor.

Now, the problem we deal with is to give an explicit description of the attrac-
tor A together with the dynamic system φ(τ) : A → A. It should be emphasized
that here we do not recede too far from the original problem on the asymptotics
of the reachable sets. The final results can be translated into the asymptotic
equality:

D(t;M) ∼ C(t)φ(t)Ω as t→ +∞,

where C(t) is a matrix multiplier, and Ω ∈ A is a fixed set. Note that the
structures of the multiplier C(t) and the operators φ(t) are, in fact, very simple.
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2 Preliminaries on Convex Bodies

Let the geometric bound U on control (see (3)) be a central symmetric compact
convex body, and the system (1) satisfy the Kalman controllability condition
which can be equivalently expressed by any of the following ones:

– The composite matrix (B,AB, . . . , An−1B) has the maximal rank equal to
n = dim V.

– If the set U of admissible control vectors is replaced by the vector space
[U ] = SpanU , the system is completely controllable.

– The minimal A-invariant vector space containing U coincides with V.
– For any T > 0, the reachable set D(T ) is a convex body (i.e., has a nonempty

interior).

We also assume that the initial set M is a central symmetric convex com-
pact. Under these assumptions, the set D(T ), where D(T ) stands for either
Dgeom(T ) or Dimpulse(T ), is a central symmetric convex body with the center at
0 ∈ V.

The space B of central symmetric convex bodies possesses a distinguished
metric ρ invariant under natural action of the general linear group GL(V) of
nonsingular matrices (ρ(Ω1, Ω2) = ρ(CΩ1, CΩ2), where C is any nonsingular
matrix).

Definition 1. Let Ω1, Ω2 ⊂ V be central symmetric convex bodies,

t(Ω1, Ω2) = inf{t ≥ 1; tΩ1 ⊃ Ω2}, and

ρ(Ω1, Ω2) = log(t(Ω1, Ω2)t(Ω2, Ω1)).

Then the function ρ is called the Banach–Mazur distance in the space B.

Example 1. Let V = R2 and L be the subspace of B consisting of ellipses E(Q)
with detQ = 1. Then the metric space (L, ρ) coincides with the Lobachevsky
plane. (Indeed, (L, ρ) is a symmetric space with involution E(Q) �→ E(Q−1)
corresponding to the unit circle as a base point).

Definition 2. The space S of shapes of central symmetric convex bodies is the
factor space S = B/GL(V), while the shape ShΩ ∈ S of a convex body Ω ∈ B is
the orbit

ShΩ = {CΩ; detC �= 0} of Ω under GL(V)-action.

The space S can be equivalently characterized as the space of Banach structures
(norms) on Rn up to an isomorphism.

Since the Banach–Mazur distance is GL(V)-invariant, it defines a good metric
ρ on S making it a metric space.

The convergence of the reachable sets D(T ) and their shapes ShD(T ) is to be
understood in the Banach–Mazur metric. In particular, two B-valued functions
are said to be asymptotically equal Ω1(T ) ∼ Ω2(T ) if ρ(Ω1(T ), Ω2(T )) → 0 as
T →∞.
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Remark. From the homotopy-theoretic point of view the space S is the classifying
space BG of the group G = GLn(R)/±1 since S = B/G, B is contractible, and
the action of G on B is free outside a subset of infinite codimension (cf. [1]).

3 Attractors and Related Dynamics

Suppose we are given a continuous curve Γ : [0,∞) → K in a compact K. It
defines the ω-limit set, or attractor A, as follows:

A =
⋂

T>0

Γ≥T ,

where Γ≥T is the set {Γ (T + s), s ≥ 0}. Denote by φ(τ) : Γ−τ → Γ the map
given by φ(τ)(Γ (t)) = Γ (t+ τ).

We will speak about dynamics on the attractor in the event that the maps
φ(τ) can be extended to the attractor A by continuity, i.e., if ti → ∞, and
Γ (ti) → a ∈ A, then φ(τ)Γ (ti) = Γ (ti + τ) → b ∈ A. In this case, we write
b = φ(τ)a.

Theorem 1. Consider either the curve ShDgeom(t) or ShDimpulse(t) in the
space S of shapes. Then, one can define by continuity a natural dynamic sys-
tem φ(τ), τ ∈ R, on the corresponding attractor.

Remark. In fact, the ShDgeom(t)-part of the above theorem is trivial. As is shown
in the next section (see Theorem 2), the corresponding attractor is reduced to
one point.

4 Splitting Principle and Main Results

We will use below the following well-known constructions of convex geometry.
Let Ωi ⊂ Vi be convex bodies in the vector spaces Vi, and the index i run
over a finite set. Then, ⊕Ωi ⊂ ⊕Vi is by definition the cartesian product of
Ωi in the cartesian product (also known as the direct sum) of Vi. Suppose now
that Ωi ⊂ V are convex compacts in a vector space V, then we define the join
Ω = ∗iΩi as

Ω = {x ∈ V : x =
∑

i

tixi, where ti ≥ 0,
∑

i

ti = 1, and xi ∈ Ωi}.

By a slight abuse of the language, we will use the similar notations for the
corresponding shapes: ⊕ ShΩi := Sh⊕Ωi, and ∗i ShΩi := Sh ∗iΩi.

Consider the canonical decomposition of the matrix A from (1)

A = A+ ⊕A0 ⊕A− (5)

into unstable, neutral and stable components (according to the sign of the real
part of eigenvalues), and the corresponding decomposition of the phase space

V = V+ ⊕ V0 ⊕ V−. (6)
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Denote by Vij , where i, j ∈ {+, 0,−}, and i �= j, the direct sums Vij = Vi⊕Vj,
and by Pi, Pij : V → Vi,Vij the corresponding canonical projectors. For each
index α s.t. α = i or α = ij, i �= j ∈ {+, 0,−}, we obtain a new dynamic system
governed by

ẋα = Aαxα +Bαu, xα ∈ Vα, u ∈ W = Rm, (7)

where Aα = PαA, Bα = PαB. The initial conditions are

xα(0) ∈Mα = PαM, (8)

while the control constraints (3) or (4) remain unchanged.

Theorem 2. The limit shape D̄(∞) = lim
T→∞

ShDgeom(T ) of the reachable set

Dgeom(T ) does exist (in the space S) and splits as

D̄(∞) = D̄+(∞)⊕ D̄0(∞)⊕ D̄−(∞)

in accordance with decomposition (5), (6). Here, D̄α(∞), α = i ∈ {+, 0,−}, is
the limit shape of the reachable set corresponding to the system (7), (8), (3).

In this case, the attractor A is reduced, in fact, to a single point D̄(∞), and the
corresponding limit shape admits a further reduction to the independent sum of
three limit shapes.

In order to state the result for impulsive control systems, we consider the
Jordan decomposition A0 = D +N of the neutral component A0 of the matrix
A. Here, the matrix D is diagonalizable, N is nilpotent, and DN = ND.

Define T ⊂ GL(V0) as the torus generated by the one-parameter group of
operators {eDt : V0 → V0} in the neutral canonical subspace V0 ⊂ V.

Theorem 3. The following asymptotic formula holds as T →∞ :

ShDimpulse(T ) ∼ Sh
[(
eDTΩ+0

)
∗Ω−0 + eDTM+0

]
,

where Ω+0, Ω−0 are certain limit convex bodies in the spaces V+0, V−0, and
M+0 = M+ ⊕ F∞M0, where F∞ is a projector of V0 upon kerN .

In other words, the attractor A is an image of the torus T under a continuous
map Φ such that for t ∈ T we have Φ(t) = Sh [(tΩ+0) ∗Ω−0 + tM+0]. Fur-
thermore, the canonical dynamic system φ(τ) on the attractor A comes from
multiplication by eDτ on the torus T : φ(τ)Φ(t) = Φ(eDτt).

5 Examples

Assume that A is a “generic” skew-symmetric matrix, and the system (1) in the
case of geometric bounds takes the form

ẋ = Ax+ bu, b ∈ V, |u| ≤ 1. (9)
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Here, the genericity condition is that

SpecA = {±
√
−1ωj , ωj > 0, j = 1, ..., n = dim V/2},

and there are no nontrivial relations of the form

n∑
j=1

mjωj = 0, mj ∈ Z.

This means that (9) is a non-resonant oscillatory system. Then the limit shape
D̄(∞) of the reachable set can be described by the following support function:

H(ξ) =
∫ 2π

0
. . .

∫ 2π

0

∣∣∣∑ |ξi| cosφi

∣∣∣ dφ1 . . . dφn, (10)

where ξ = (ξ1, . . . , ξn) ∈ Cn. This means that, for any body Ω of the shape
D̄(∞), there exists an isomorphism P : V∗ → Cn such that HΩ(η) = H(Pη),
where HΩ(η) is the support function of Ω. Note that according to (10) the limit
shape D̄(∞) depends neither on the matrix A nor the vector b provided that
these data are “generic”.

Note that, in the case of the bounded total impulse, there still exists a limit
shape and even the limit reachable set D(∞). Moreover, its support function
can be obtained from (10) when substituting integration by taking supremum,
and takes a simple form:

H(ξ) =
∑

|ξi|,

which reveals that D(∞) is a polydisk, i.e., {z ∈ Cn; |zi| ≤ 1}.

Reminder. By definition HΩ(η) = supx∈Ω〈x, η〉, where η ∈ V∗ is a vector of a
dual space, and 〈x, η〉 is the canonical pairing. The support function HΩ deter-
mines a closed convex set Ω uniquely.

One can give an expression for the support function (10) via the Bessel func-
tions

H(ξ) =
∫ ∞

0

(
n∏

k=1

J0(|ξk|ρ)− 1

)
dρ

ρ2 (11)

and without multiple integrals. Here,

J0(x) =
1
π

∫ π

0
eix cos φ dφ =

∞∑
k=0

(−1)k

k !2
(x

2

)2k

is the zero-index Bessel function.



Limit Shapes of Reachable Sets for Linear Control Systems 237

More generally, consider the generic neutral control system with geometric
bounds on control:

ẋ = Ax+Bu, x ∈ R2n = Cn, u ∈ U ⊂ Rm, (12)

where A is the same as in (9), and U ⊂ Rm is a central symmetric convex body
with the support function h.

Then, the limit shape of the relevant reachable sets can be described by a
formula similar to (10):

H(ξ) =
∫
T
h(B∗eφξ) dφ. (13)

Here, T is the n-dimensional torus T = (R/2πZ)n, and

eφξ = (eiφ1ξ1, . . . , e
iφnξn),

where φ = (φ1, . . . , φn) ∈ (R/2πZ)n, dφ = dφ1 . . . dφn, and ξ = (ξ1, . . . , ξn) ∈
Cn. In this case, it is still possible to rewrite the multiple integral (13) as an
integral over Rm involving the Bessel functions.

In fact,

H(ξ) =
∫
Rm

ĥ(λ)
n∏

k=1

J0(|ξk ⊗Bλ|k) dλ, (14)

where ĥ is the Fourier transform of h, and | · |k stands for a Euclidean norm on
the space R2m = C⊗R Rm.

Formula (11) corresponds to

ĥ(λ) =
1− δ(λ)
|λ|m+1 ,

which is true for any dimension m if U is the unit ball.

6 Conclusion

Our investigation of the asymptotic properties of the reachable sets to linear
control systems reveals a hidden rich geometric structure. Although we can de-
scribe to a great extent the asymptotic behavior of the reachable sets in the
time-invariant case with either geometric or impulse bounds, some basic ques-
tions remains obscure. In particular, it is not clear yet how to unify the results for
the cases of geometric and impulse bounds. Much less clear is the corresponding
issue in time-dependent case.
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Abstract. Starting from states near to a closed set S we want to steer
S and to stay always close to S. Unfortunately, open-loop controls are
very sensitive to disturbances and can lead to very bad practical results.
For that reason, we propose an approach for constructing a discontinu-
ous feedback control law that asymptotically stabilizes the system in a
neighborhood of the set S.

1 Introduction

Let S be a closed subset of Rn, Ω be a neighborhood of S and U be a closed
subset of Rm. We consider the following control system:

ẋ(t) = f(x(t), u(t)), u(t) ∈ U a.e., (1)

where x(t) ∈ Ω is the state, u(t) ∈ U is the control and f : Rn ×Rm → Rn is a
smooth map.

Starting from states close to the set S, we want to steer S and to stay always
close to S. To explain the difficulties related to this problem, let us consider
the case when the set S is a point: Let S = {0} and let us assume that the
control system (1) is small-time local controllable at the origin, i.e. for any
T > 0 there exists a neighbourhood Ω of the origin such that for any point
x0 ∈ Ω there exists an open-loop control ux0(.) that steers the point x0 to the
origin in time not greater than T . Unfortunately, open-loop controls are very
sensitive to disturbances and can lead to very bad practical results (cf., e.g., [14],
Chapter 1, §4). Taking this into account, one can try to find a feedback control
law k : Ω → U such that all solutions of the ordinary differential equation:

ẋ(t) = f(x(t), k(x(t))) (2)

asymptotically approach the origin. Such a feedback has the advantage of com-
pensating automatically all random perturbations when they are sufficiently
small.

A minimal condition for the existence of classical solutions to the ordinary
differential equation (2) is that the feedback law k(·) be continuous on Rn \ {0}
(cf. [1] where several concepts of generalized solutions of ODE are considered). A

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 239–246, 2006.
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classical result (cf., e.g., [14], Theorem 7, p.134) shows that the small-time local
controllability of a linear control system implies that this system can be assymp-
totically stabilized by means of a stationary continuous feedback. However, as
was shown by Sontag and Sussmann [15], even when m = n = 1, such a contin-
uous feedback k(·) need not exist. Moreover, Brockett proves in [2] a topological
condition, which is necessary for the existence of a continuous stabilizing feed-
back law. It can be directly checked that the following analytic three-dimensional
control system

ẋ = u, ẏ = v, ż = vx− uy (3)

is small-time locally (and even globally) controllable at the origin but does not
satisfy the Brockett necessary condition, and hence can not be asymptotically
stabilized by means of a continuous feedback law. Brockett’s necessary condition
holds true even when Filippov solutions are considered.

To get around the problem of impossibility to stabilize nonlinear systems by
a continuous autonomous feedback, some alternative approaches are proposed.
The approach proposed by Coron [5, 6] and [7] deals with continuous periodic
time-varying feedbacks. Clarke, Ledyaev, Sontag and Subbotin [3] constructed
a discontinuous stabilizing feedback. Their approach is based on the so called
”closed loop system sampling” solution concept for (2) employed by Krasovskii
and Subbotin [10] in the differential game theory. Unfortunately, the above men-
tioned two approaches have mainly theoretical importance. The reason is that
it is not clear how to construct explicitly stabilizing controls in the general case
(when only a control system is given, but we do not know a Lyapunov func-
tion or any other feedback design tool). A different approach is proposed by
Hermes in [8] (cf. also [13]). The basic idea is to compute ”stabilizing feedback
controls” when a suitable sufficient condition for small-time local controllability
holds true.

In this paper we propose an approach similar to those of Hermes. This ap-
proach uses a suitable class of high-order control variations variations with re-
spect to a closed set. The control system (3) is considered as an illustrative
example. Some simulation results, carried out in Maple, are presented at the
end of the paper.

2 The Main Result

Let S be an arbitrary closed subset of Rn. Let δ0 > 0 and Sδ0 be the closed
neighbourhood of the set S consisting of all points x such that distS(x) ≤ δ0
(here distS (x) denotes the distance between the point x and the set S). If x is
an arbitrary point of Rn, we set

πS(x) := {y ∈ S : ‖x− y‖ = distS(x)} ,

i.e. πS(x) is the set of all metric projections of the point x on the set S. Let y
belong to the boundary ∂S of the set S. A vector ξ ∈ Rn is called a proximal
normal to S at y provided there exists r > 0 so that the point y+ rξ has closest
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point y in S. The set of all proximal normals at a point y is a cone, and is
denoted by Np

S(y) (for a more detailed treatment of proximal analysis, cf. [4]).
We consider the following control system in Sδ0 :

ẋ(t) = f(x(t), u(t)), (4)

where x(t) is the state and u(t) ∈ U ⊂ Rm is the control. We assume that
f : Sδ0 × U → Rn is a smooth map and for each point s from the boundary of
S there exists us ∈ U such that f(s, us) = 0.

Let u(·) be an integrable function defined on the interval [0, T ] with values
from U . An absolutely continuous function x(·) satisfying (4) for almost every
t from [0, T ] is called an admissible trajectory of (4) defined on [0, T ], starting
from the point x(0) and corresponding to the control u(·). By R(x, t) we denote
all points of Rn reachable from the point x by means of admissible trajectories
of (4) defined on [0, T ] and starting from the point x.

We assume that measurements can be made at discrete moments of time.
Suppose that the first measured state is x1. We give an constructive algorithm
to generate an admissible control u(t, x1), t ∈ [0, tx1 ]. Let x2 denote the value
of the solution of (4) at time t = tx1 starting from the point x1 at time t = 0
and corresponding to the control u(·, x1). The algorithm may then be used to
generate a new control u(t, x2), t ∈ [0, tx2], etc. The controls generated in this
way are such that if δ ∈ (0, δ0] is sufficiently small and whenever the starting
point belongs to the neighborhood Sδ of the set S, then the sequence x1, x2, . . .
converges to the set S. In this sense, the proposed algorithm may be considered
as generating a stabilizing feedback control.

To explain our approach, we need

Definition 1. Let S be an arbitrary closed subset of Rn, x0 be a point of Rn,
α be a positive real number and A be a locally Lipschitz continuous vector-field
defined on a neighborhood of x0. It is said that A is a control variation of order
α of the control system (4) at the point x0 with respect to the set S iff there exist
a convex compact neighborhood K of the point x0 and some positive numbers T ,
M , N , θ, β > α, pi, i = 1, . . . , k, and 1 ≤ q1 < q2 < · · · < qk such that for each
t ∈ [0, T ] and each x ∈ K the following inclusion holds true

x+ tαA(x) + b(x, t) ∈ R(x, p(t)), (5)

where p(t) =
k∑

i=1

pit
qi and the continuous function b(·, ·) : K × [0, T ] → Rn

satisfies the estimate ‖b(x, t)‖ ≤ M.tθ.distS(x) + N.tβ. By Vα
x0,S we denote the

set of all control variations of order α of the control system (4) at the point x0
with respect to the set S.

Remark 1. By setting t := tα̃/α, it can be proved that the relation A ∈ Vα
x,S

implies the relation A ∈ V α̃
x,S whenever α̃ > α.

Remark 2. For the smooth case, the results in [9, 11, 12, 16] and [17] can be useful
for constructing of high-order control variations when a control system is given
in the form of differential equation, differential inclusion and etc.
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Let V be a subset of
⋃

x∈Sδ0

Vα
x,S. To formulate our main result, we need some reg-

ularity properties of the set of control variations V . Roughly speaking, it is said
that V is a regular subset of

⋃
x∈Sδ0

Vα
x,S iff all elements of V are Lipschitz contin-

uous functions with one and the same Lipschitz constant as well as all functions
(involved according to Definition 1) are uniformly bounded. This assumption is
technical and guaranteed the existence of suitable uniformly bounded trajecto-
ries of (4) on some fixed interval [0, T ]. This is especially important for the case
of unbounded closed set S.

Now we can formulate the main result.

Theorem 1. Let S be a closed subset of Rn, μ > 0, T0 > 0, δ0 > 0 and A be
a regular subset of

⋃
x∈Sδ0\S

Vα
x,S consisting of control variations defined on the

interval [0, T0]. Let us assume that whenever x ∈ Sδ0 \ S there exist y ∈ πS(x),
ξ ∈ Np

S(y) and A ∈ V such that

< ξ,A(y) > ≤ −μ.‖ξ‖. (6)

Then there exist real numbers q ∈ (0, 1) and δ > 0 such that for each point x ∈ Sδ

there exist tx > 0 and a piece-wise constant control function ux : [0, tx]→ U such
that the solution z(·, x, ux) of (4) starting from x and corresponding to the con-
trol ux is well defined on [0, tx] and satisfies the inequality distS(z(tx, x, ux)) ≤
q.distS(x).

Remark 3. Let all assumptions of Theorem 1 hold true and let x1 be an ar-
bitrary point of Sδ. Applying Theorem 1, we obtain the existence of a num-
ber q ∈ (0, 1) such that the point x2 := z(tx1 , x1, ux1) satisfies the inequality
distS(x2)) ≤ q.distS(x1). Then, Theorem 1 may be applied again to generate a
new control ux2(t), t ∈ [0, tx2 ]. The point x3 := z(tx2 , x2, ux2) satisfies the in-
equality distS(x3)) ≤ q.distS(x2), etc. Hence, the obtained sequence x1, x2, . . . ,
of points of Sδ converges to the set S. In this sense, Theorem 1 may be applied
to generate a stabilizing feedback control.

3 Numerical Results

In this section we present some illustrative examples. All computations are per-
formed using the computer algebra system Maple V.

Example 1. Let us consider the following three-dimensional control system

ẋ1 = u, x1(0) = 0, u ∈ [−1, 1],
ẋ2 = v, x2(0) = 0, v ∈ [−1, 1],
ẋ3 = vx1 − ux2, x3(0) = 0,

which does not satisfy the Brockett necessary condition, and hence can not be
assymptotic stabilized by means of a continuous feedback law.
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Let us denote x = (x1, x2, x3)T, B(x) = (1, 0,−x2)T, C(x) = (0, 1, x1)T. Then
[B,C](x) = (0, 0, 2)T. It could be directly checked that B, C and [B,C] are the
only nonvanishing Lie brackets of the Lie algebra L generated by the vector fields
B and C. The considered control system belongs to the class of the so called
”symmetric” control systems. To realize B, C and [B,C] as control variations of
high order, we use the following construction: Let (β1, β2, β3)

T be an arbitrary
vector whose components belong to the interval [−1, 1]. We define the following
admissible control:

uβ :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u = β3, v = 0, for t ∈ [0, t)
u = 0, v = 1, for t ∈ [t, 2t)
u = −β3, v = 0, for t ∈ [2t, 3t)
u = 0, v = −1, for t ∈ [3t, 4t)
u = β1, v = β2, for t ∈ [4t, 4t+ t2)

.

It could be directly verified that the corresponding trajectory z(·, x, uβ) is defined
on [0, 4t+ t2] and

z(x, uβ, 4t+ t2) = x+ t2(β1B(x) + β2C(x) + β3[B,C](x)).

We set

Ω :=
{
x = (x1, x2, x3)T : |x1| ≤ 1, |x2| ≤ 1, |x3| ≤ 2

}
and tx :=

√
‖x‖.

Then, every point x ∈ Ω can be present as follows:

x = α1(x)B(x)+α2(x)C(x)+α3(x)[BC](x), with αi(x) ∈ [−1, 1], i = 1, 2, 3}.

We set

βi(x) := −αi(x)
‖x‖ , i = 1, 2, 3,

Table 1. Simulation results for Example 1 for four different starting points x =
(x1, x2, x3)T. Each end-point z = (z1, z2, z3)T is reached from the corresponding starting
point x in time tx.

x1 x2 x3 tx z1 z2 z3

1 −2 5
√

30 + 4 4
√

30 −3.219647.10−14 9.992007.10−15 −5.457833.10−14

1 2 -5
√

30 + 4 4
√

30 −3.219647.10−14 −9.992007.10−15 −4.534174.10−14

1 1 −2
√

6 + 4 4
√

6 7.394085.10−14 −2.597922.10−14 −1.562844.10−13

1 −1 2
√

6 + 4 4
√

6 −2.59792188.10−14 2.597922.10−14 0.0
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and use the feedback control uβ(x) on the interval [0, 4tx + t2x]. The condition
(6) holds true with μ = −1. Moreover, it could be directly verified that the
corresponding trajectory z(·, x, uβ(x)) is defined on [0, 4tx + t2x] and z(4tx +
t2x, x, uβ(x)) = 0. We apply this feedback control for different starting points
x. Some of the corresponding numerical results are presented in Table 1.

Example 2. Let us consider the following closed subset of R2: S = {(x, y)T : 0 ≤
x ≤ 1, y ≤ 0} and the following control system

x = u, u ∈ [−1, 1],
y = x2 + 1− x1 + v, v ∈ [−1, 1]. (7)

To move in direction (0,−1)T, we construct control variation of second order as
follows: Let T ∈ [0, 1], t ∈ (0, T/2] and z = (x, y)T with x, y ∈ [0, 1]. We set

vt(s) = −1 for each s ∈ [0, t] and ut(s) :=
{

1, if s ∈ [0, t];
−1, if s ∈ [t, 2t];

Then the trajectory zt(·) = (xt(·), yt(·))T of (7) starting from the point z and
corresponding to the controls ut(·) and vt(·) is well defined on the interval [0, 2t],
xt(2t) = 0 and

yt(2t) = e2t (y − 1− x) + 2et + x− 1.

Hence, we can represent zt(2t) as follows:

zt(2t) = z + t2A(z) + a1(t, z) + a2(t, z), (8)

where A(z) = (0,−1)T, a1(t, z) = (0, 2t(1 + t)(y − x))T and a2(t, z) is deter-
mined by (8). Taking into account that dS(z) = y, we obtain that ‖a1(t, z)‖ ≤
4t.distS(z) and ‖a1(t, z)‖ ≤ C.t3 for some positive constant C . This implies that
A(z) = (0,−1)T is a control variation of second order. Some simulation results,
obtained for different starting points, are presented in Table 2.

Table 2. Simulation results for Example 2 for four different starting points x =
(x1, x2)T. Each end-point z = (z1, z2)T is reached from the corresponding starting point
x in time tx.

x1 x2 tx z1 z2

1.5 0.5 1.284211638 1.0 −2.949259209.10−5

−0.2 0.5 5.371304140 3.0087043967.10−14 −1.891439399.10−4

0.8 0.5 7.166944604 0.800000000000000154 −2.454711917.10−5

0.1 0.5 2.057154154 0.099999999999999976 −3.737032781.10−5
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Example 3. Let us consider the following three-dimensional control system
(cf. [8]):

ẋ1 = x2+ u, x1(0) = 0, u ∈ [−1, 1],
ẋ2 = x1x3+ u, x2(0) = 0,
ẋ3 = sin(x1) , x3(0) = 0.

We take X(x) = (x2, x1x3, sin x1)T, Y = (1, 1, 0)T. These vector fields gener-
ate an infinite-dimensional Lie algebra. So, theoretically, we can not expect to
reach the origin in finite steps. It can be directly calculated the following Lie
brackets: [Y,X ](x) = (1, x3, cos x1)T and [X, [X,Y ]](x) = (x3, x1 cos x1 + x3 −
sin x1, cos x1 +x2 sin x1)T. Then Y , [Y,X ] and [X, [X,Y ]] are linearly indepen-
dent at every point sufficiently close to the origin. The results of [9, 16, 17] and
[12] imply that Y , [X,Y ] and [X, [X,Y ]] are control variations of third order.
For the sample run, shown in Table 3, the computations end after 11 steps.

Table 3. Simulation results for Example 3. At each step, starting from the point
x = (x1, x2, x3)T we move along a suitable chosen trajectory time tx. The calculated
end-point is a starting point for the next iteration.

step x1 x2 x3 tx

1 −0.7 0.6 −0.7 5.964160037

3 6.46243645.10−1 2.68204626.10−1 8.17140796.10−1 4.977525366

5 −1.38120390.10−1 −7.25770966.10−2 −1.11551718.10−1 1.896470928

7 1.65818311.10−5 −1.86612233.10−5 −1.23494724.10−5 1.26774871.10−1

9 4.99196520.10−11 1.12568962.10−9 −6.05404117.10−10 2.53457987.10−3

11 4.47233396.10−19 1.91497208.10−17 −3.13242048.10−18 7.93634219.10−6
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Abstract. In this paper, we investigate the existence of controls which
allow to reach a given target through trajectories of a nonlinear control
system in the case of a non exactly known initial state. For doing this,
we use the key concept of weakly invariant tubes and we give a new
compactness property for weakly invariant tubes with values in a pre-
scribed collection of sets. We give some consequences of this property on
the minimal time function to reach the target, and we prove a sufficient
condition for the attainability of the target by weakly invariant tubes of
the considered system. If the attainability property is not satisfied, we
characterize a subcollection of initial sets from which the attainability
property holds true, and we provide an algorithm to compute it.

1 Introduction

We consider a control system defined by

x′(t) = f(x(t), u(t)), a.e. t ≥ 0, (1)

where x ∈ IRn is the state vector, u : [0,+∞) → U is the control, U ⊂ IRl is
compact, f : IRn × U → IRn Lipschitz. Given an initial condition x(0) = x0 and
a measurable control function u(·), we denote by t �→ x[x0, u(·)](t) the trajectory
of system (1) starting from x0 associated with control u(·).

Let us first recall that the problem of small time local attainability of a given
closed set C by trajectories of (1) consists in answering the following question:
– For any given T > 0, does there exist a closed neighborhood K of C such that
for any point x0 ∈ K \ C, there exists a measurable control u(·) such that the
corresponding solution to (1) reaches the set C before T :

∀T > 0, ∃r > 0, ∀x0 ∈ K\C where K := C+rB, ∃u(·), ∃t < T, x[x0, u(·)](t) ∈ C.

A comprehensive answer to this question can be found in [3, 6, 10, 14]. The speci-
ficity of the problem considered in the present paper lies in the fact that the
initial state x(0) is not supposed to be exactly known but to belong to a given

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 247–254, 2006.
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set: x(0) = e ∈ E0 ⊂ IRn. We denote by x[E0, u(·)](t) := {x[e, u(·)](t) | e ∈ E0}
the reachable state of system (1) at time t for all the trajectories starting from
E0 associated with control u(·). The set-valued map t �→ x[E0, u(·)](t) is called
the solution tube of (1) in IRn starting from E0 ⊂ IRn.

Then, the attainability property with uncertain initial state could be refor-
mulated as follows: Given an initial set E0 and a measurable control u(·), we
say that the corresponding solution tube x[E0, u(·)](·) of (1) in IRn “reaches”
C at time T when we have x[E0, u(·)](T ) ⊂ C. In other words, if the tube
x[E0, u(·)](·) reaches C at time T , we guarantee that any corresponding tra-
jectory x[x0, u(·)](·) starting from any x0 ∈ E0 reaches C before T . Roughly
speaking, our attainability property is “robust” with respect to variations of
the initial condition x0 in E0. Thus, the small time local attainability question
becomes:
– For any given T > 0, does there exist a neighborhood K := C + rB of C such
that for any initial set E0 ⊂ K, there exists a measurable control u(·) such that
a corresponding solution tube of (1) in IRn starting from E0 reaches the set C
before T :

∀T > 0, ∃r > 0, ∀E0 ⊂ K := C + rB, E0 �⊂ C, ∃u(·), ∃t < T, x[E0, u(·)](t) ⊂ C.

In the control context, further numerical applications of these theories require
to deal with “simple” prescribed collections of sets E , rather than general classes
of subsets of IRn. Therefore, it is important to consider evolutions of outer ap-
proximations of the solution tube t �→ x[E0, u(·)](t). So, following [15], we will
use evolutions of sets in a given collection of compact sets E ⊂ comp(IRn). Of
course when E = comp(IRn), it reduces to the previous problem, but interesting
classes of compact sets E will be formed of simple sets - for instance polyhedrons,
ellipsoids, etc.

To describe the evolution of such outer approximations, we can find a set-
valued map E(·) : [0,+∞]→ E satisfying some invariance properties with respect
to (1), and such that x[E0, u(·)](t) ⊂ E(t) ∈ E for all t ≥ 0. We might refer to
E(·) as a weakly invariant tube of system (1) with values in E starting from E0.

Now, let E be given. The main question we address in the present paper is that
of the small time local attainability of C by weakly invariant tubes of system
(1) with values in E . In other words:
– For any given T > 0, does there exist a neighborhood K := C + rB of C such
that for any initial set E0 ∈ EK := E ∩ comp(K) with E0 �⊂ C, there exists a
measurable control u(·) such that a corresponding weakly invariant tube of (1)
with values in E, starting from E0, reaches the set C in a time not greater than T :

∀T > 0, ∃r > 0, K := C + rB, ∀E0 ∈ EK := E ∩ comp(K), E0 �⊂ C,
∃u(·), ∃t < T, E(t) ⊂ C.

Before answering this question, let us give a few important consequences of a
possible positive answer to the previous question:
– The set C is viable for system (1). Namely, starting from any initial set
E0 ⊂ C there exists a weakly invariant tube E(·) of system (1) with values
in E such that E(t) ⊂ C for all t ≥ 0.
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– The minimal time function

Θ(E0) := inf{t > 0 | ∃E(·) weakly invariant tube of system (1) with values
in E , starting from E0, such that E(t) ⊂ C}

(2)
takes finite values when E0 ∈ EK .

– When E = comp(IRn), we have in particular: ∀T > 0, ∃r > 0, ∃u, ∃t <
T, x[C+rB, u](t) ⊂ C which requires that, starting from C+rB, there exist
some “decreasing” tubes x[C + rB, u](·) of system (1), the latter meaning
that ∀t1, t2 ∈ [0, T ], t1 < t2 ⇒ x[C + rB, u](t2) ⊂ x[C + rB, u](t1).

In order to describe the evolution of set-dynamics, one can consider two re-
lated approaches: The approach of the “funnel equations” [7, 8, 9, 11, 15] and the
framework of the mutational equations [2, 4, 5] which is based on a generaliza-
tion of the notion of derivative. Within the control context, it is necessary to use
prescribed collections of simple sets rather than general classes of subsets of the
state space. Moreover, it is crucial to use here the Hausdorff semidistance which
is suitable to characterize set inclusions. Therefore, our work is also related to
the work of [12].

Let us explain how the paper is organized. In Section 2, we introduce some
preliminaries on collections of sets, weakly invariant tubes with values in a pre-
scribed collection, and viability for tubes. Then, we state in Section 3 a new
compactness result on the space of weakly invariant tubes in E and we give
some consequences on the minimal time function Θ(·). Section 4 is devoted to
our main result: Using the key concept of viability for tubes introduced in [12],
we prove a sufficient condition for the attainability of a closed set C by weakly
invariant tubes of system (1) with values in a prescribed collection E . Finally,
using viability kernels, we characterize those collections of initial sets from which
starts at least one trajectory reaching C in finite time.

2 Preliminaries

2.1 Hypothesis

We denote by comp(IRn) the collection of all compact subsets of IRn and by B the
unit ball in IRn with respect to Euclidean norm. For two sets A,B ∈ comp(IRn),
we denote by H+(A,B) := min{ε ≥ 0 | A ⊂ B+εB} the Hausdorff semidistance
from A to B and by H(A,B) := max{H+(A,B), H+(B,A)} the Hausdorff dis-
tance between A and B. Let C ∈ comp(IRn) be a given set. In order to make the
reading easier, we denote by H+

C (A) := H+(A,C) the Hausdorff semidistance to
C. Throughout the paper, we denote by E ⊂ comp(IRn) a nonempty collection
of compact subsets of IRn satisfying the following condition:

Condition 1.

1. E consists of nonempty compact sets and is closed in the Hausdorff topology,
2. For every Z ∈ comp(IRn) there is some E ∈ E containing Z,
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3. There exist1 ε̄ > 0 and Lε > 0 such that for each ε ∈ [0, ε̄) and each E ∈ E
there exists E′ ∈ E for which E + εB ⊂ E′ ⊂ E + εLεB.

Equipped with the Hausdorff distance, the set comp(IRn) is a complete metric
space. Therefore the notions of closedness and compactness of a collection of
sets E ⊂ comp(IRn) make sense. Some of our results also require the following
condition which is related to Condition 1.2:

Condition 2. For every Z ∈ comp(IRn), there is a unique minimal (with respect
to inclusion) element of E containing Z.

In the sequel, we consider system (1) under the following standing condition:

Condition 3.

1. f(·, ·) : IRn × U → IRn has the form f(x, u) = f0(x) + f1(x)u, where f0(·) :
IRn → IRn and f1(·) : IRn → IRn×l are locally Lipschitz mappings and U is
a convex compact subset of IRl bounded by M > 0 (U ⊂ MBIRl , BIRl being
the unit ball in IRl)

2. f satisfies the linear growth condition: ∃c > 0, ∀x ∈ IRn, ∀u ∈ U, ||f(x, u)|| ≤
c(1 + ||x||).

2.2 Tubes in a Prescribed Collection

Definition 1. A set-valued map E(·) : [0, T ]→ comp(IRn) is called a tube if it
is nonempty compact valued and has closed graph.

All tubes in this paper are supposed to fulfill the following condition:

Condition 4. The tube E(·) is upper semicontinuous and locally Lipschitz from
the right:

∀T > 0, ∃L > 0, E(s) ⊂ E(t) + L(t− s)B, ∀ 0 ≤ s ≤ t ≤ T.

For example, let u(·) be given and E0 ∈ comp(IRn). The solution tube
x[E0, u(·)](·) : [0, T ] → IRn is a tube. An important property of tubes is the
weak invariance which is defined as follows:

Definition 2. Let a measurable control function u(·) be given. A tube E(·) is
said to be weakly invariant with respect to (1) in [0, T ] if, for all t ∈ [0, T ) and
for all x(·) solution to (1) on [t, T ] with x(t) ∈ E(t), we have

x(t+ s) ∈ E(t+ s), ∀s ∈ [0, T − t].

The weak invariance property is also characterized in the following way:

∀t ∈ [0, T ), ∀s ∈ [0, T − t], x[E(t), u(t+ ·)](s) ⊂ E(t+ s). (3)
1 Condition 1.3 is equivalent to the following one: There exist real ε > 0 and Lε such

that for each Z ∈ comp(IRn) and each E ∈ E for which H(Z, E) ≤ ε there exists a
minimal element E′ of E containing Z and satisfying H+(E′, Z) ≤ LεH(Z, E).
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Thus, a weakly invariant tube of (1) with values in E is a tube E(·) : [0, T ]→ E
satisfying property (3)2.

This property, even though it is noticeably different from the invariance property
introduced by the Viability Theory (see [1]), is called “weak invariance” because,
for a given control u(·), any trajectory of system (1) starting from a point inside
the tube remains in the tube. We describe the evolution of a weakly invariant
tube E(t) of system (1) with values in E , starting from E0 ∈ E , by the following
set-dynamic equation:

lim
h→0+

1
h
H+ ((Id+ hf(·, u(t)))(E(t)), E(t + h)) = 0, (4)

with initial condition
E(t0) = E0. (5)

System (4) is similar to the funnel equations (see [8]), but it applies for nonlinear
systems. All of the solutions of (4) are weakly invariant with respect to (1). We
now introduce the solution tube with values in E which is a minimal weakly
invariant tube of (1) with values in E :

Definition 3. Let E satisfy Condition 1.
A solution tube of (1) with values in E is a weakly invariant tube E(·) with values
in E, such that E(·) is minimal (with respect to inclusion).

Moreover, if E satisfies Condition 2, the solution tube with values in E starting
from a given E0 is unique. For example, when E = comp(IRn), under Con-
dition 3, the solution tube is E(t) = x[E0, u(·)](t). It is the unique minimal
tube that starts from E0 and is weakly invariant with respect to (1). But when
E ⊂ comp(IRn), we have E(t) ⊃ x[E0, u(·)](t). More examples of “tractable”
collections are given in [13].

2.3 Viability

In this section, we recall some basic material from Viability theory with uncertain
initial state information. Let L be a convex subset of the space C(IRn, IRn) of
continuous mappings IRn → IRn such that the restrictions of the functions from
L to any compact subset of IRn are equi-Lipschitz and uniformly bounded. By
definition (see [12]), the collection E ⊂ comp(IRn) is a viability domain for L if
and only if ∀E ∈ cl(E), TE(E) ∩ L|E �= ∅, with

TE (E) = {l(·) : E → IRn | lim inf
h→0+

1
h

inf
Ẽ∈E

H+
(
Id + hl(·))(E), Ẽ

)
= 0},

where l(·) is called a contingent field. In other words,

l(·) : E → IRn ∈ TE(E) ⇐⇒

⎧⎨⎩
∃hk → 0+
∃γk → 0
∃Ẽk ∈ E

, ∀x ∈ E, x+ hkl(x) ∈ Ẽk + hkγkB.

2 As a consequence of property (3), we obviously have: ∀t ∈ [0, T ], x[E0, u(·)](t) ⊂
E(t) ∈ E .
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A contingent field l(·) does not need to be necessarily continuous but, in this
paper, we restrict our considerations to continuous contingent fields for the sake
of simplicity. Moreover, in the case of a collection of single points, the notion of
contingent field coincides with that of the Bouligand contingent vector. We now
recall a viability result for tubes adapted to our framework.

Theorem 1 (Theorem 1.2 in [12]). Suppose that control system (1) satisfies
Condition 3. Let collection E satisfy Condition 1 and let K be a given bounded set.

If EK := E ∩ comp(K) is a closed viability domain, then for every E0 ∈ EK ,
there exist a time τ and a measurable u(·) : [0, τ ] → U such that there exists a
tube E(·) solution to (4) on [0, τ ] with values in EK and initial condition (5).
This tube is a weakly invariant tube of (1) with values in E, starting from E0.

Under Condition 3 and according to Proposition 2 of [12], given a collection E
which satisfies Condition 1, given a bounded setK and a subset L = {f(·, u) | u ∈
U} of C(IRn, IRn), there exists a maximal viability domain for L that is contained
in EK . This set, denoted by ViabL(EK), is called the viability kernel of EK for L.

3 Compactness of the Set of Solutions

Proposition 1. Let E satisfy Conditions 1 and 2, and let f : IRn × U → IRn

satisfy Condition 3. Fix K ∈ comp(IRn) and T > 0. Let (Ek
0 )k∈IN be a sequence

of compact sets from collection EK and let (Ek(·))k∈IN be a sequence of weakly
invariant tubes of system (1) with values in E associated with controls (uk(·))k∈IN,
where for every k ∈ IN, tube Ek(·) starts from Ek

0 .
Then, there exists a sequence of solution tubes (Ẽk(·))k∈IN of system (1) with

values in E (where for every k ∈ IN, tube Ẽk(·) starts from Ek
0 ) such that

∀k ∈ IN, ∀t ∈ [0, T ], Ẽk(t) ⊂ Ek(t) ∈ E ,

and there exists a compact subset E0 of E and a continuous weakly invariant
tube E(·) of system (1) with values in E starting from E0, such that

lim inf
k→+∞

H
(
Ẽk(t), E(t)

)
= 0, ∀t ∈ [0, T ].

We deduce the following from Proposition 1.

Corollary 1. Let Conditions 1, 2 and 3 be satisfied.

1. If Θ(E0) < +∞ there exists an optimal weakly invariant tube of (1) with
values in E starting from E0. Namely, the infimum in (2) is attained.

2. The minimal time function Θ(·) is lower semicontinuous.

4 Small Time Local Attainability

Here is the main result of this paper:

Proposition 2. Suppose that Conditions 1 and 3 are fulfilled. Let γ be a positive
constant, and define L∗ := {(f(·, u),−γ) | u ∈ U}. Fix a nonempty compact set
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C and a constant r > 0. Let K := C + rB and EK := E ∩ comp(K). We denote
by E∗K the epigraph of H+

C (·) restricted to EK , defined as follows:

E∗K := Epi(H+
C (·)|EK

) = {(E, y) ∈ EK × IR+ | H+
C (E) ≤ y}.

If the following condition is satisfied

∀E ∈ EK such that H+
C (E) > 0, TE∗

K
(E,H+

C (E)) ∩ L∗
|(E,H+

C (E)) �= ∅, (6)

then for any set of initial conditions E0 ∈ EK , there exists at least one tube of
system (4) starting from E0 and reaching C in finite time.

From the proof of Proposition 2, we deduce the following.

Corollary 2. Suppose that Condition 2 is satisfied. Under the assumptions
made in Proposition 2, condition (6) yields Θ(E0) ≤ V

(
H+

C (E0)
)

= H+
C (E0)

γ .

If a given collection E satisfies condition (6) then, for any given initial state
E0 ∈ E , there exists at least one weakly invariant tube E(·) of system (1) in
E reaching C before time T = V

(
H+

C (E0)
)
. Roughly speaking, we say that the

tube E(·) reaches C with a speed greater than γ. If condition (6) is not satisfied,
we want to characterize the collection of initial sets E0 from which starts at least
one weakly invariant tube of system (1) with values in E reaching C with a speed
greater than γ. This collection of initial sets is known as the capture basin of C
for system (1). It is denoted by CaptL(C, EK) and can be characterized through
a viability kernel of E∗ for an extended system:

Proposition 3. Suppose that Conditions 1 and 3 are fulfilled and let ΠE : E∗K →
E be the projection onto E such that ΠE(E, y) := E. For h > 0, we denote by
Eh

K the limit of the following algorithm when k → +∞:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Eh
0 = E∗K

Eh
k+1 =

{
(E, y) ∈ Eh

k | E ⊂ C or ∃u ∈ U, ∃(Ẽ, ỹ) ∈ Eh
k , y − γh ≥ ỹ

and (Id+ hf(·, u)) (E) ⊂ Ẽ +
LMf

2
h2B

}
, k = 0, 1, ...

(7)

where Mf is a bound of f(·, u) uniformly in u ∈ U . Then we have

CaptL(C, EK) = ΠE

(
lim

h→0+
Eh

K

)
.

where the limit is with respect to the Hausdorff distance between compact subsets
in the space comp(IRn).

This algorithm is a first step towards numerical analysis. Even though it is essen-
tially a tool for providing a collection of initial sets satisfying some attainability
properties, we can imagine to use it in a constructive way: When implemented,
it could save all of the “good” values of u in order to find a selection u(·) such
that a corresponding weakly invariant tube of (1) with values in E reaches C
with a speed greater than γ.
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Abstract. An overview of numerical methods for solving optimal con-
trol problems described by ODE and integral equations is presented. We
consider direct and indirect methods. The finer indirect methods use
necessary optimality conditions. Direct methods transform the control
problem after discretization to an optimization problem. The nonlinear
optimization problem can be solved by means of SQP–methods or gradi-
ent methods. Known variants of this method are GESOP and DIRCOL.
Then a wave–method is mentioned, in which the state variables are var-
ied at first. The direct methods apply the maximum principle, often it is
possible to eliminate the control with the help of the necessary condition.
The control problem is transformed to a boundary value problem for the
state and the adjoint variable, which is solved by multiple shooting. The
iterative procedures of Krylow/Chernousko and Sakawa, respectively, are
based on the maximum principle, too. It is referred to the gradient meth-
ods described in the monograph of Pytlak and to prox–methods.

1 Introduction

The control theory (a generalization of the calculus of variations) was developed
in the last fifty years as a powerful tool to describe real processes in economics,
armed forces, industry and life sciences and to obtain optimal solutions in the
mathematical model. Numerical methods were searched from the very beginning
to solve such mathematical problems, particularly such coming from military
aircraft and astronautics. Most of the papers dealing with such methods were
top secret for a long time and some are still unknown. The numerical ideas were
restricted by the slowness of the computers and the strong limitedness of their
results until the 80th. Necessary optimality conditions are the most well-known
results in optimal control theory for engineers. Pontryagin and his team (see [9])
proposed to calculate the optimal control using the maximum principle.

Here we consider some direct and indirect numerical methods for solving opti-
mal control problems. In the direct methods the control problem is approximated
by a (finite dimensional) optimization problem. The finer indirect methods are
based on necessary optimality conditions. Pytlak [10] studied feasible direction
algorithms, in his opinion they are the most promising first order algorithms. In
[1] we proposed a combination of gradient and prox–methods.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 255–262, 2006.
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2 The Problem

Assume f : [0, T ] × IRn × IRr −→ IRn, f0 : [0, T ] × IRn × IRr −→ IR and
r : IRn×IRn −→ IRp and g : IRn −→ IRs to be continuous functions and U ⊆ IRr,
G ⊆ IRn given sets. G may be described by g(x(t)) ≥ 0 for all 0 ≤ t < T , where
[0, T ] is a fixed time–interval.

To minimize is the functional

I(u(·)) = J(x(·), u(·)) =

T∫
0

f0(t, x(t), u(t))dt (1)

with respect to
ẋ = f(t, x(t), u(t)) (2)
r(x(0), x(T )) ≥ 0 (3)
x(t) ∈ G a.e. (4)
u(t) ∈ U a.e. (5)

u(·) piecewise continuous, x(·) absolutely continuous.
Two points of view are possible: J can be considered as a functional of x(·)

and u(·), where the state equation (2) and the conditions (3) – (5) are restrictions
of the control problem. On the other hand, (1) is a functional I of u(·), where
u(·) determines x(·) by means of (2) – (5).

To apply direct methods we put a grid {ti} on [0, T ], for instance an equidistant
grid with mesh points ti = ih, h = T/N ,N ∈ IN. Discretize the trajectory and the
control: x(·) −→ (x0, x1, . . . , xN ), u(·) −→ (u0, u1, . . . , uN−1), where xi ≈ x(ti)
and ui ≈ u(ti), i = 0, . . . , N − 1. A very simple discretization of (1) – (5) is
obtained by means of the Euler scheme and the rectangle integration formula

N−1∑
i=0

f(ti, xi, ui) = min! (6)

subject to

xi+1 = xi − hf(ti, xi, ui) (7)
r(x0, xN ) ≥ 0 (8)
xi ∈ G, ui ∈ U for all i. (9)

The following method deals with (6) as a functional of xi with corresponding
controls ui.

3 Variations in States

Reinbach [11] tested some well-known methods in applications. The idea is to
reduce the dimension of the finite dimensional optimization problem (6) – (9),
the price is to deal with a big number of optimization problems. Let us approx-
imate the functional (1) by the trapeze rule. Start with an admissible vector
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(x0, x1, . . . , xN ) ∈ IRn(N+1). Let ek ∈ IRn denote the k–th unit vector. Com-
pare the initial vector (x0, . . . xN ) for every i = 1, . . . , N − 1, starting with
i = 1, with 2n disturbed trajectories (x0, . . . , xi−1, y

±k
i , xi+1, . . . , xN ), where

y±k
i = xi ± hkek, hk ∈ IR fixed, such that y±k

i ∈ G. That means, compare the
vector with all trajectories connecting xi−1 with xi+1 via y±k

i and find that with
a minimal cost functional: For every y±k

i minimize

J±
ik = f0(ti−1, xi−1, ui−1) + f0(ti, xi ± hkek, ui)

with respect to ui−1, ui ∈ U . Compare the best way with the cost functional of
the trajectory (x0, . . . , xN ). If all J±

ik are bigger or equal to f0(ti−1, xi−1, ui) +
f0(ti, xi, ui) then put x̃i = xi ũi−1 = ui−1, ũi = ui; otherwise define x̃i, ũi−1,
ũi with the solution of the problem with the smallest value J±

ik: x̃i = xi +
heee or x̃i = xi − heee, respectively, and ũi−1, ũi ∈ U are the corresponding
controls. In the next step we repeat the algorithm with i + 1. (N − 1) steps
give (x0, x̃1, . . . , x̃N−1, xN ) and (ũ0, . . . , ũN−1). Go to the beginning and vary
x̃1 once more, and so on. Stop if the process is numerically convergent. Have in
mind, that there must not exist solutions ũi−1, ũi ∈ U minimizing the “small”
optimization problems. We are not able to prove convergence. There are some
modifications known as wave method, method of traveling tubes, see [6]. We
mention, that Bellman’s dynamic programming is a tool to solve (6) – (9), too.

4 The Finite Dimensional Problem

The problem (6) – (9) obtained by simple discretization is to solve as a (nonlin-
ear) optimization problem. Therefore consider u0, . . . uN−1 ∈ IRr and x0, . . . xN

∈ IRn to be free variables between which certain constraints (equations and
inequalities) (7) – (9) are to be fulfilled. We used the solver LANCELOT by
Conn, Gould and Toint [3], that is a FORTRAN–package for Large–Scale Non-
linear Optimization. LANCELOT is based on SQP–methods. The user has to
declare all variables and can cluster some groups of variables and functions into
groups which are also to declare. In a certain sense, LANCELOT is a special
computer language for nonlinear optimization.

5 Direct Collocation Method

The discretization of the control problem is done in a better and in a “more
effective” manner. There are software packages TROPIC (by Well, Schnepper,
Jänsch) and DIRCOL (by v. Stryk [15]).

The idea is to choose a (collocation) grid 0 = t0 < · · · < tN = T of the time
interval. The control u(·) is approximated by a constant or a linear function in
every subinterval [ti, ti+1], the state x(·) is taken as a cubic polynomial S(t) in
each [ti, ti+1]. For simplicity we take n = 1. Then

Si(t) = ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)3,
ti ≤ t ≤ ti+1, is the state with certain coefficients ai, bi, ci, di. Of course, ai =
Si(ti) = xi, S(ti+1) = xi+1. From the state equation (2) it follows
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S′
i(ti) = f(ti, xi, ui) and S′

i(ti+1) = f(ti+1, xi+1, ui+1).

Therefore the unknown parameters ai, bi, ci, di can be calculated as functions of
xi, xi+1, ui, ui+1.

The piecewise cubic polynomial S(t) is at least once continuously differen-
tiable in [0, T ] and satisfies the state equation at the nodes ti. The computer–
software DIRCOL demands the state equation in the points t1/2

i = 1
2 (ti+1 − ti),

too: The derivative of Si(t) is calculated as S′
i(t) = bi + 2ci(t− ti) + 3di(t− ti)2

and the condition
S′

i(t
1/2
i ) = f(t1/2

i , S(t1/2
i ), u(t1/2

i ))

is to take into consideration. Because u(·) is constant or linear, the new conditions
are equations of type

Ki(xi, xi+1, ui, ui+1) = 0, i = 0, . . . , N − 1.

The constraints (9) are to be fulfilled at the middle points of each interval:

g(t1/2
i , Si(t

1/2
i ), u(t1/2

i )).

The original control problem is replaced by the (nonlinear) programming prob-
lem in the variables x0, . . . , xN , u0, . . . uN∑

i

γif0(ti, xi, ui) = min!

subject to constraints
Ki(xi, xi+1, ui, ui+1) = 0

and phase constraints

g(t1/2
i , xi, xi+1, ui, ui+1) ≥ 0, i = 0, . . . , N − 1.

6 Direct Multiple Shooting

This method is similar to that described in the next section, but it does not
exploit necessary optimality conditions. We choose a grid (for multiple shooting)
with respect to the states: 0 = t0 < t1 · · · < tN = T and finer grid for the
controls ti = τ i

1 < τ i
2 < · · · < τ i

ki
= ti+1, i = 0, . . . , N1. Each component

of the control vector is approximated within a shooting interval [ti, ti+1] by
polynomials (constant, linear, quadratic, cubic) or splines, respectively, which
depend on unknown controls uij , j = 1, . . . , ki, i = 1, . . . , N − 1. We suppose
(unknown) initial values si for x(ti) in every interval [ti, ti+1]. Then we integrate
the process equation in [ti, ti+1] numerically and obtain a solution x(t, ; ti, si)
with the initial value x(ti; ti, si) = si. The trajectory is an admissible one if
x(ti+1; ti, si) = si+1 for all i = 0, . . . , N − 1. Of course, the function x(t; ti, si)
depends on the controls uij , j = 1, . . . , ki, i = 0, . . . , N − 1.
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Here the control vectors uij and the initial values si are the variables which
determine x(t; si, uij) as the (numerical) solution of an ODE. The programming
problem is to minimize

T∫
0

f0(t, x(t, uij , si), u(t))dt

subject to

x(ti; ti, si) = si

x(ti+1; ti, si) = si+1

and
g(τ i

j , xi(τ i
j), ui(τ i

j )) ≥ 0, i = 0, . . . , N − 1, j = 1, . . . , ki

in the variables uij and the initial values si. This can be done by a combination
of a SQP–method and an ODE–solver.

7 Multiple Shooting – An Indirect Method

It was the idea of Pontryagin and his team [9] in 1961 and Morrison (1962) to find
the optimal control by means of the maximum principle as a function of the state
and the adjoint variable. We get a boundary value problem of (2n) ODE which
can be solved by a shooting method. This method for solving boundary value
problems depends very sensitively on the initial values which are to calculate.
An effective way is to solve the boundary value problem by the multiple shooting
method. It is very well described in the textbook of Stoer and Bulirsch [13], a
FORTRAN program can be found in Oberle and Grimm [8]. A similar method
is used by Korytowski and Szymkat [4] to find an optimal control of a fedbatch
fermentation process.

The H–function corresponding to (1) – (5) is

H(t, x, u, λ0, λ, ψ) = ψf(t, x, u) + λ0f0(t, x, u) + λg(t, x, u).

If û(·), x̂(·) is optimal, then the adjoint equation is

ψ̇(t) = −ψ(t)fx(t, x̂(t), û(t))− λ0f0x(t, x̂(t), û(t))− λ(t)gx(t, x̂(t), û(t)),
ψ(T ) = 0.

From the maximum principle we often get û(t) = u(t, x(t), ψ(t)). If the process is
singular in the sense g(t, x(t), u(t)) = 0 in a certain interval, we use this boundary
condition to find û(t) = u(t, x(t)). It is necessary to know the structure of the
optimal solution. The state equation and the adjoint equation are

ẋ = f(t, x(t), u(t, x(t), ψ(t)) = F (t, x(t), ψ(t))
ψ̇(t) = −ψ(t)fx(t, x(t), u(t, x(t), ψ(t)) − λ0f0x(t, x(t), u(t, x(t), ψ(t)) −

−λ(t)gx(t, x(t), u(t, x(t), ψ(t)) = Ψ(t, x(t), ψ(t))

and it is λ(t)g(t, x(t), u(t)) = 0 a.e.. We want to find initial values x0, ψ0 such
that the (numerical) solution of
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ẋ = F (t, x(t), ψ(t)), x(0) = x0

ψ̇ = Φ(t, x(t), ψ(t)), ψ(0) = ψ0

fulfills the boundary conditions r(x0, x(T )) = 0 and ψ(T ) = 0. Therefore we take
a grid in [0, T ]: 0 = t0 < t1 < · · · < tn = T and we solve the ODE–system in
every [ti, tt+1] with an initial vector si. Then z = (x, ψ) depends on si and it is
z(t) = z(t; ti, si) with z(ti, ti, si) = si. We have to find (s0, . . . , sN−1) such that
z(ti+1, ti, si) = si+1, i = 0, . . . , N−1 and r(x0, x(T ); tN−1, sN−1) = 0, ψ(T ) = 0.
The derived system of (nonlinear) equations can be solved by Newton’s method.
There are variants of this multiple shooting methods for parallel computing. The
collocation method of v. Stryk gives informations on the values of the adjoint
variables at the mesh–points.

8 The Method of Krylov and Chernousko

This is an iterative procedure. Start with a dispatcher control u0(·) and calculate
the corresponding solution x0(·) of the state equation and then ψ0(·) of the
adjoint equation. From the maximum condition we find

u1(t) = arg max
u∈U

H(t, x0(t), u, ψ0(t)), a.e.

and repeat the procedure with u1 instead of u0. For simplicity we did not con-
sider phase constraints. Unfortunately, in many cases the method is not conver-
gent. Chernousko and Lyubushin [5] presented some modifications with better
properties.

The algorithm of Sakawa is applicable to a much broader class of control
problems. Sakava [12] introduced an augmented Hamiltonian of the form

H(t, x, u, v, λ0, λ) + β||u− v||2.

Then
u1(t) = arg max

u∈U
{H(t, x0(t), u, ψ0(t)) + β(u − u0(t))}, a.e.

9 Control Process Described by Integral Equations

The functional

F =

T∫
0

f0(t, x(t), u(t))dt (10)

is to be minimized subject to

x(s) =

T∫
0

f(s, t, x(t), u(t))dt, s ∈ [0, T ] (11)

u(t) ∈ U, t ∈ [0, T ] (12)
g(t, x(t), u(t)) ≥ 0 t ∈ [0, T ] (13)
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A direct method is to solve the programming problem∑
i

f0(ti, xi, ui)

subject to

xi =
N∑

j=1

γjf(ti, tj , xj , uj),

ui ∈ U, g(ti, xi, ui) ≥ 0, i = 0, . . . , N.

0 = t0 < t1 < · · · < tN = T is a grid, the integrals are approximately re-
placed by an integration formula with modes ti and weights γi. We apply SQP–
methods which do not need the knowledge of admissible starting vectors xi, ui,
i = 0, . . . , N .

A variant of the Chernousko–method is described in [13] as an indirect method.
Define

H(t, x, ψ(·), u) =

T∫
0

ψ(s)f(s, t, x, u)ds− f0(t, x, u), 0 ≤ t ≤ T

and the adjoint equation

ψ̇(t) = Hx(t, x̂(t), û(t), ψ(·)), 0 ≤ t ≤ T. (14)

Phase constraints (13) are to be taken into account as penalty terms. Then the
algorithm is:

(i) Input Nmax as the maximal number of subintervals taken into considera-
tion.

(ii) k := 0. Start with an admissible control u0(·).
(iii) Compute a solution xk of (11) and ψk of (14) with respect to the arguments

xk, uk. Find a control vk as a solution of the optimization problems

H(t, xk(t), ψk(·), vk(t)) = max
v∈U

H(t, xk(t), ψk(·), v), t ∈ J.

(iv) Set ΔH(t) = H(t, xk(t), ψk(·), vk(t)) −H(t, xk(t), ψk(·), uk(t)), t ∈ J and

calculate μk =
T∫
0
ΔH(t)dt.

(v) N := 1.
(vi) h := 2−NT . Find τ ∈ {h, 3h, . . . , (2N − 1)h} such that

1
2h

r+h∫
r−h

ΔH(t)dt ≥ 1
T
μk.
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(vii) Define ur,h(t) = vk(t) for τ − h < t ≤ τ + h and ur,h(t) = uk(t) else.
(viii) Compute xr,h corresponding to ur,h as solution of (11) and the value

F(ur,h) of the functional (10).
(ix) If F(ur,h) ≤ F(uk) − h

T μk then {put uk+1 := ur,h; k := k + 1 and goto
(iii)} else goto (x).

(x) N := N + 1.
(xi) If N ≤ Nmax goto (vi) else stop.

Under some regularity conditions the cost functional of the constructed con-
trols and states converge to the optimal one. The Sakawa–algorithm (see [11])
can be applied to control processes with a Volterra integral equation.

Integral processes can be solved by gradient methods, too.
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Abstract. The paper presents a class of time-discretization schemes for
terminal optimal control problems for linear systems. An error estimate
is obtained for the optimal control and for the optimal performance,
although the optimal control is typically discontinuous, and neither Lip-
schitz nor structurally stable with respect to perturbations.

1 Introduction

A key point in the error/sensitivity analysis in optimal control is the sufficiency
and Lipschitz stability of the system of necessary optimality conditions. In the
context of discrete approximations, also certain regularity (differentiability) of
the optimal control is required in order to ensure consistency of the discretization
(see e.g. Dontchev at al. [3] for a bibliographic account). For problems that are
linear with respect to the control neither of the above requirements is satisfied.
Sufficient conditions for optimality and for structural stability in the case of non-
coercive problems have been obtained only recently (Osmolovskii [10], Agrachev
et al. [1], Noble and Schaettler [9], Kostyukova and Kostina [7], Felgenhauer
[4, 5], Maurer and Osmolovskii [8]) and the research in this direction is still in
progress.

In this paper we consider a terminal optimal control problem for a linear sys-
tem. To ensure consistency of the discrete approximation (also for discontinuous
controls) we use as control variables in the discrete problem the integral moments
of the continuous-time control. This is in contrast to the traditional approach,
where the control in the discrete problem takes values in the same set in which
the continuous-time control takes values (c.f. [14, 3]). Using integral moments as
discrete-time controls is proposed in [16] for a specific Runge-Kutta scheme, and
developed in [6] for general Runge-Kutta schemes and linear systems. To obtain
error estimates for the optimal control problem in the lack of Lipschitz stability
of the system of necessary conditions we use an indirect approach involving four
main ingredients: (i) estimation of the error in the reachable set caused by the
time-discretization; (ii) a sensitivity estimate for convex problems, depending on
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the convexity index of the objective function and that of the constraining set; (iii)
estimation of the convexity index of the reachable set; (iv) estimation of the sen-
sitivity of the optimal control with respect to perturbations in the adjoint equa-
tion. Our main result extends for higher order approximations that in [17], which,
to our knowledge, provides the first error estimate for discretizations of bang-
bang control systems. Using higher order schemes is especially advantageous
for large scale problems arising from space-discretizations of distributed control
systems. Among the main motivations are the “compartmental” versions of first
order PDEs arising in population dynamics and convection-reaction equations.

The paper is organized as follows: Section 2 presents the problem and its dis-
crete approximation, Section 3 contains the main result – the error estimate, Sec-
tion 4 sketches the proof, and Section 5 discusses the accuracy of the estimation.

2 The Problem and Its Discrete Approximation

We consider the following optimal control problem (P )

g(x(T )) −→ min (1)

ẋ = Ax+Bu, x(0) = x0, (2)

u ∈ U ⊂ Rm, (3)

where x ∈ Rn is the state, u ∈ Rm is the control, A and B are matrices of
respective dimensions, assumed constant just for the sake of brevity.

We start with a list of notations that will be used later on:

Rn (resp. Rm, R) is the Euclidean space with the respective dimension;
| · | and 〈·, ·〉 are the norm and the scalar product;
∂R is the boundary of the set R ⊂ Rn;
coX is the convex hull of the set X ⊂ Rn;
NR(x) is the (external) normal cone to the convex closed set R at x ∈ R;
N1

R(x) is the set of all external unit normal vectors;
H(X,Y ) is the Hausdorff distance between two compact subsets X,Y ⊂ Rn;
meas(Δ) is the Lebesgue measure of Δ ⊂ R;
∗ means transposition.

Definition 1. A function g : R �→ R (where R is a convex subset of Rn) is locally
κ-convex at x ∈ R if there exists a constant ρ > 0 and a neighborhood Z of x,
such that for every y ∈ R∩Z it holds that g(1

2 (x+y)) ≤ 1
2 (g(x)+g(y))−ρ|x−y|κ.

We shall formally admit also the case κ = +∞, where the inequality in
Definition 1 is required with ρ = 0.

Let (x̂(·), û(·)) be a solution of problem (P ).

Standing Assumptions: The function g : Rn �→ R is convex, differentiable with
locally Lipschitz derivative, and is locally κ-convex at x̂(T ) with κ ∈ [2,+∞];
moreover, g′(x̂(T )) �= 0. The set U is a convex compact polyhedron with finite
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number of vertices, for which the general position hypothesis [13] holds: for every
edge l of U

rank{Bl, . . . , An−1Bl} = n.

Suppose that U be represented as a product of q ≥ 1 polyhedral sets1: U =
U1 × . . .×Uq. Denote by ν(i) the maximal number such that Ui has ν(i) edges,
each two non-parallel to each other. For example, if U is a box-like set in Rm,
then q = m and ν(i) = 1 for all i = 1, . . . , q. If Ui is a nondecomposable
equilateral polygon in R2 with k vertices we have

ν(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3 if k = 3,
2 if k = 4,
5 if k = 5,
3 if k = 6,

....

Also we denote

Uj(Ui) = {u(·) : [0, 1]→ Ui : u(·) is piece-wise constant, with at most j jumps}.

Then for the natural numbers r ≥ 1 and p ≥ 0 we define the sets

Wr,p =
{

(v0, . . . , vr) =
(∫ 1

0
u(t) dt, . . . ,

∫ 1

0
(1− t)ru(t) dt

)
: (4)

u(·) ∈ Upν(1)(U1)× . . .× Upν(q)(Uq)}.
The lower indexes of U·(Ui), indicating the number of jumps, is the product
pν(j), therefore they depend on the geometry of the Cartesian components of
U . Notice that the integration is taken on the normalized interval [0, 1] rather
than on [0, h].

GivenN , we introduce theN -stage problem with state trajectories (y0, . . . , yN)
and control sequences (v0, . . . , vN−1), where yk ∈ Rn and vk = (v0

k, . . ., v
r
k) ∈

coWr,r−1. The discrete-time problem (PN ) is defined as

g(yN) −→ min, (5)

yk+1 = yk + hAr(h)yk + h

r∑
i=0

Bi(h)vi
k, y0 = x0, (6)

(v0
k, . . . , v

r
k) ∈ coWr,r−1, (7)

where h = T/N and

Ar(h) = A+ . . .+
hr

(r + 1)!
Ar+1, Bi(h) =

hi

i!
AiB.

1 As it will become clear below, it is preferable to decompose U in form of a Cartesian
product of as many as possible components. For this purpose it may be useful to
perform an appropriate change of the control variable in advance.
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Notice that (PN ) has the same state dimension as (P ), while the dimension of
the control is, in general, higher. There is only one exception: the case p = 0,
where

coWr,0 = Wr,0 = {(u, u
2
, . . . ,

u

r + 1
) : u ∈ U},

therefore dim(Wr,0) = dim(U). In general, dim(coWr,p) = (r + 1)dim(U). One
can prove that coWr,r−1 ⊂ Wr,r = coWr,r, and that all the results below hold
(with simpler proofs, in fact) if coWr,r−1 is replaced with Wr,r in (7). Using
Wr,r instead of Wr,r−1 is essential in the context of Lagrange problems, where
a functional

∫ 1
0 G(x(t)) dt is to be minimized. The error estimate in this case is,

however, somewhat worse than that in Theorem 1 in the next section. Due to
the space limitation we do not consider Lagrange problems in this paper.

Notice that the set coWr,p does not depend on the data of problem (P ) ex-
cepting the control constraining set U . Therefore it can be calculated in advance
for some typical sets U , in particular for U = [−1, 1] (which encompasses all
box-like sets U = [a1, b1]× . . .× [am, bm] after a Cartesian decomposition).

3 The Error Estimate

Let R denote the reachable set of (2), (3) on [0, T ], which consists of all end
points x(T ) of trajectories of (2) corresponding to measurable selections of U .

Let V be the set of all vertices of U , and E be the set of all edges2 of U .
Moreover, given p ∈ Rn we denote by λ[p](·) the backward solution of the
adjoint equation

λ̇ = −A∗λ, λ(T ) = p. (8)

For l ∈ Rn we define

V (l) = {v ∈ V : 〈l, v〉 = max
u∈U

〈l, u〉},

and
E(l) = {[v, w] ∈ E : v, w ∈ V (l)}.

That is, E(l) consists of all “extremal” edges with respect to the direction l.
Clearly, E(l) = ∅ if V (l) is a singleton.

For x ∈ ∂R we define σ(x) as the minimal natural number σ ≥ 2 for which

σ−1∑
i=1

|〈λ[p](t), Ai−1Be〉| > 0 ∀t ∈ [0, T ], ∀p ∈ N1
R(x), ∀e ∈ E(B∗λ[p](t)). (9)

The last part of Standing Assumptions ensures that λ[p](t) �= 0 for every p ∈
N1

R(x) and t, which easily implies that the number σ(x) exists for every x ∈ ∂R,
and σ(x) ≤ n+ 1. Further we denote σ = σ(x̂(T )).

2 The edges will be interpreted either as sets (segments) [u, v], or as vectors v − u. In
both cases u, v ∈ V , and [u, v] is an extremal subset of U .
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By the definition of Wr,r−1, for every sequence v = {(v0
k, . . . , v

r
k)}N−1

k=0 of
elements of Wr,r−1 there is a measurable selection u = u(v) of U such that
τ −→ u(tk + hτ) belongs to Upν(1)(U1) × . . . × Upν(q)(Uq) for p = r − 1, and
corresponds to (v0

k, . . . , v
r
k) in (4). For each boundary point v of Wr,r−1 the

corresponding function u(v) is unique, piece-wise constant with values in V , and
can be determined explicitly if Wr,r−1 is determined explicitly (i.e. for small r).

Theorem 1. There exist numbers C and N0 such that for every N ≥ N0 and
for every optimal control v̂N of (PN ), the corresponding control ûN(·) = u(v̂N )
is unique, and the following estimation holds:

meas{t ∈ [0, T ] : ûN(t) �= û(t)} ≤ C
(
h

r
σ−1 + Lg′h

r+1
s(σ−1)

)
, (10)

where Lg′ is the Lipschitz constant of g′ at x̂(T ), and s = min{κ, σ}. Moreover,
if the control ûN (·) is plugged in (2), the corresponding objective value satisfies

g(x̂N (T )) ≤ g(x̂(T )) + Chr+1.

The above theorem does not include the Euler scheme, which corresponds to the
case r = 0, p = 0. The right-hand side of (10) becomes in this case

C
(
h

1
σ−1 + Lg′h

1
s(σ−1)

)
.

4 Sketch of the Proof

1. The first step in the proof is to estimate the Hausdorff distance between the
reachable sets R and RN of the continuous and the discrete-time system. The
latter consists of all points yN generated by system (6), (7). Clearly, both R
and RN are convex compact sets. Below c and C denote real numbers which are
independent of N but may be different in different places.

Having in mind the definition of the numbers ν(i), one can deduce the follow-
ing result from Theorem 1 in [2].

Proposition 1. For every r ≥ 1

H(R,RN) ≤ Chr+1.

2. The second step is to estimate the difference between the solutions x̂(T ) and ŷN

of problems (P ) and (PN ), respectively. These problems can be reformulated as

min
x∈R

g(x), min
y∈RN

g(y).

Definition 2. The set R ⊂ Rn is locally μ-convex at the point x ∈ R if there
exists a constant γ > 0 and a neighborhood Z of x, such that for every y ∈ R∩Z
the ball of radius γ|x− y|μ centered at 1

2 (x+ y) is contained in R.

For γ = 0 this is merely the local star-shape property, which formally corresponds
to the case μ = +∞. If the above property is fulfilled at every point of R with
μ = 2 and with the same γ, then R it is also called “strong convexity” (c.f
[11, 12]).
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Proposition 2. Assume that R is locally μ-convex at x̂ (with μ ∈ [2,+∞]).
Assume also that s = min{κ, μ} < +∞. Then there exist numbers ε > 0 and
c such that for every compact set R̃ ⊂ Rn with H(R̃, R) ≤ ε and for every
minimizer x̃ of g on R̃ it holds that

|x̃− x̂| ≤ c(H(R̃, R))
1
s . (11)

Combining the above two propositions we obtain the estimation

|x̂(T )− ŷN | ≤ ch
r+1

s . (12)

3. The next step is to estimate the convexity index μ at x̂(T ). Here we use a
result from [15] in the stronger form presented in Proposition 2 in [17].

Proposition 3. The reachable set is locally σ(x̂(T ))-convex at x̂(T ).

Hence (12) holds with the definition of s in the formulation of Theorem 1.

4. The next step involves the maximum principle for (P ) and (PN ). For problem
(P ) it claims that the optimal control û(·) satisfies for a.e. t

B∗λ̂(t) ∈ NU (û(t)) where λ̂(t) = λ[−g′(x̂(T ))](t),

or equivalently,
〈B∗λ̂(t), u− û(t)〉 ≤ 0 ∀u ∈ U. (13)

The maximum principle for (PN ) claims that⎛⎜⎝B∗
0(h)λ̂k+1

...
B∗

r (h)λ̂k+1

⎞⎟⎠ ∈ NWr,r−1(v̂0
k, . . . , v̂

r
k), (14)

where λ̂k is the backward solution of the discrete system

λk − λk+1

h
= A∗

r(h)λk+1, k = N − 1, . . . , 1, λN = g′(ŷN ).

According to (12), we obtain

|λ̂(T )− λ̂N | ≤ cLg′h
r+1

s . (15)

For every sequence v = {(v0
k, . . . , v

r
k)}N−1

k=0 we defined in Section 3 a control
u = u(v) that generates v according to the definition of the set Wr,r−1 in (4).
As before, let ûN(·) = v(v̂N ) correspond to an optimal control of (PN ).

Denote

λN (t) =
r∑

i=0

(tk+1 − t)i

i!
(A∗)i

λ̂k+1 for t ∈ (tk, tk+1].
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One can verify that (14) is equivalent to the variational inequality

N−1∑
0

∫ tk+1

tk

〈
B∗λN (t), ũ(t)− uN(t)

〉
≤ 0,

which holds for every piece-wise constant selection ũ of U , for which the j-th
component in its Cartesian decomposition has at most (r − 1)ν(j) jumps.

Lemma 1. |λN (t)− λ[λ̂N ](t)| ≤ chr.

Combining the above inequality with (15) we obtain

|λN (t)− λ̂(t)| ≤ chr + cLg′h
r+1

s .

5. The first claim of the theorem follows from the last estimation by arguments
similar to those in Lemma 6 in [17].

The second claim of the theorem follows directly from Proposition 1.

5 Discussion

The proof of Theorem 1 involves several steps and some of them may bring
redundancy in the order of the estimation. Below we discuss this issue.

1. To analyze the sharpness of step 5 of the proof we assume that g is linear,
therefore Lg′ = 0 and the estimation (10) is of order r/(σ − 1). This estimation
is certainly sharp if σ = 2. If σ > 2, however, the numerical experiments with
σ = 3, 4, 5 suggest an error estimate of order r/(σ − 2). The reason is a sort
of a super-convergence of the discrete approximation to the switching function
around its zeros. The issue is not studied theoretically yet.

2. Another important issue is that of the definition of the number σ = σ(x̂(T )).
Our definition differs from that in [4] (where only the case σ = 2 is considered),
since (9) does not involve only p = λ̂(T ), rather, the whole normal set N1

R(x̂(T )).
This makes the definition of σ non-constructive even a posteriori, in contrast to
the following definition: σ ≥ 2 is the minimal natural number such that

σ−1∑
i=1

|〈λ̂(t), Ai−1Be〉| > 0 ∀t ∈ [0, T ], ∀e ∈ E(B∗λ̂(t)). (16)

In fact, σ is involved in two different steps of the proof, and the definition as
given in (9) is needed only to estimate the convexity index of R at x̂(T ), while
definition (16) is good enough in part 5 of the proof. Having in mind that s ≤ κ,
and assuming that κ is finite, we may replace estimation (10) with

meas{t ∈ [0, T ] : ûN(t) �= û(t)} ≤ Ch
r+1

κ(σ−1) ,
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where now σ is defined by (16), therefore the estimation is a posteriori construc-
tive. In the typical case κ = 2, σ = 2 the estimation is of order (r + 1)/2, that
is of first order if r = 1, which is sharp.

3. Another source of redundancy in the estimation (9) comes from the numbers
ν(i) which are involved in the definition of Wr,p. The value of ν can, in fact, be
slightly decreased for some non-decomposable sets. For example, for a triangular
we have ν = 3, while it may be shown that Theorem 1 is still true if one takes
ν = 2 in the definition of Wr,r−1.
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Abstract. We formulate certain numerical problems with stochastic
numbers and compare algebraically obtained results with experimental
results provided by the CESTAC method. Such comparisons give addi-
tional information related to the stochastic behavior of random roundings
in the course of numerical computations. The good coincidence between
theoretical and experimental results confirms the adequacy of our alge-
braic model and its possible application in the numerical practice.
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1 Introduction

Stochastic numbers are gaussian random variables with a known mean value and
a known standard deviation. Some fundamental properties of stochastic num-
bers are considered in [9]. The mean values of the stochastic numbers satisfy
the usual real arithmetic, whereas standard deviations are added and multiplied
by scalars in a specific way. As regard to addition standard deviations form
an abelian monoid with cancellation law. This monoid can be embedded in an
additive group and after a suitable extension of multiplication by scalars one
obtains a so-called s-space, which is in fact a vector space with a specifically
defined multiplication by scalar [2], [4]. This allows us to introduce in s-spaces
concepts like linear combination, basis, dimension etc. Thus, in theory, compu-
tations in s-spaces are reduced to computations in vector spaces. This opens the
road to finding explicit expressions for the solution of certain algebraic problems
involving stochastic numbers.

Alternatively, stochastic numbers can be computed experimentally using the
CESTAC method, which is a Monte-Carlo method consisting in performing each
arithmetic operation several times using an arithmetic with a random rounding
mode [3], [7], [8]. For a survey of methods using Monte-Carlo arithmetic see [6].
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In Sections 2 we briefly present the main results of our theory of s-spaces as
regard to the arithmetic operations for addition and multiplication by scalars
needed for the purposes of this study; for a detailed presentation of the theory, see
[4]. Section 3 considers the algebraic solution of linear systems of equations with
right-hand sides involving stochastic numbers. In Section 4 we extend further our
idea from [5] to compare the theoretic solution of an algebraic problem involv-
ing stochastic numbers with the solution obtained numerically by the CESTAC
method. Numerical experiments are reported and a good coincidence between
theoretical and experimental results is observed.

2 Stochastic Numbers and Stochastic Arithmetic

By R we denote the set of reals; the same notation is used for the linearly
ordered field of reals R = (R,+, ·,≤). For any integer n ≥ 1 we denote by Rn

the set of all n-tuples (α1, α2, ..., αn), αi ∈ R. The set Rn forms a vector space
under the familiar operations of addition and multiplication by scalars denoted
by Vn = (Rn,+,R, ·), n ≥ 1. By R+ we denote the set of nonnegative reals.

2.1 The Arithmetic for Stochastic Numbers

A stochastic number X = (m; s) is a gaussian random variable with mean value
m ∈ R and (nonnegative) standard deviation s ∈ R+. The set of all stochastic
numbers is S = {(m; s) | m ∈ R, s ∈ R+}. Let X1 = (m1; s1), X2 = (m2; s2) ∈ S.
Addition and multiplication by scalars are defined by:

X1 +X2 = (m1; s1) + (m2; s2)
def
=

(
m1 +m2;

√
s21 + s22

)
,

γ ∗X = γ ∗ (m; s)
def
=

(
γm; |γ|s

)
, γ ∈ R.

It has to be noticed that the operations on stochastic numbers are error free and
are only used for theory. In this approach stochastic numbers are only used as a
model for computation on data containing errors.

A stochastic number of the form (0; s), s ∈ R+, is called (centrally) symmet-
ric. If X1, X2 are symmetric stochastic numbers, then X1+X2 and λ∗X1, λ ∈ R,
are also symmetric stochastic numbers. Thus there is a 1–1 correspondence be-
tween the set of symmetric stochastic numbers and the set R+. We shall use
special symbols “⊕”, “∗” for the arithmetic operations over standard deviations,
as these operations are different from the corresponding ones for numbers. The
operations “⊕”, “∗” induce a special arithmetic on the set R+. Consider the
system (R+,⊕,R, ∗), such that for s, t ∈ R+, γ ∈ R:

s⊕ t =
√
s2 + t2, γ ∗ s = |γ|s. (1)

Proposition 1. [4] The system (R+,⊕,R, ∗) is an abelian additive monoid with
cancellation, such that for s, t ∈ R+, α, β ∈ R:
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α ∗ (s⊕ t) = α ∗ s⊕ α ∗ t, (2)
α ∗ (β ∗ s) = (αβ) ∗ s, (3)

1 ∗ s = s, (4)
(−1) ∗ s = s, (5)√

α2 + β2 ∗ s = α ∗ s⊕ β ∗ s, α, β ≥ 0. (6)

More generally, we can extend componentwise operations (1) for n-tuples s =
(s1, ..., sn), si,∈ R+, that is,

(s1, ..., sk)⊕ (t1, ..., tk) = (s1 ⊕ t1, ..., sk ⊕ tk), (7)
γ ∗ (s1, s2, ..., sk) = (|γ|s1, |γ|s2, ..., |γ|sk), γ ∈ R. (8)

The corresponding system ((R+)n,⊕,R, ∗) again satisfies the conditions of
Proposition 1. A system satisfying the conditions of Proposition 1 is called an
s-space of monoid structure. Such a structure can be naturally embedded into a
group, obtaining thus an s-space of group structure, as shown below.

2.2 The S-Space of Group Structure

For s ∈ R denote τ(s) = {+, if s ≥ 0; −, if s < 0}. We extend the operation
addition “⊕” for all s, t ∈ R, admitting thus negative reals, corresponding to
improper standard deviations:

s⊕ t def
= τ(s+ t)

√
|τ(s)s2 + τ(t)t2|. (9)

We note that τ(s + t) = τ(τ(s)s2 + τ(t)t2) = τ(s ⊕ t) for s, t ∈ R. Using (9) we
embed isomorphically the monoid (R+,⊕) into the system (R,⊕), which is an
abelian group with null 0 and opposite element opp(s) = −s, i. e. s⊕ (−s) = 0.
Indeed, from (9) we have s⊕ (−s) = τ(s − s)

√
|τ(s)s2 − τ(s)s2| = τ(0)

√
0 = 0.

Here are some examples of addition in the system (R,⊕): 1⊕1 =
√

2, 1⊕2 =
√

5,
3 ⊕ 4 = 5, 4 ⊕ (−3) =

√
7, 3 ⊕ (−4) = −

√
7, 5 ⊕ (−4) = 3, 4 ⊕ (−5) = −3,

(−3)⊕ (−4) = −5, 1⊕ 2⊕ 3 =
√

14, 1⊕ 2⊕ (−3) = −2.
Using (9) and τ(s1 ⊕ ...⊕ sn) = τ(s1 + ...+ sn) we obtain for n ≥ 2

s1 ⊕ s2 ⊕ ...⊕ sn = τ(s1 + ...+ sn)
√
|τ(s1)s21 + ...+ τ(sn)s2n|. (10)

Proposition 2. For s1, s2, ..., sn, t ∈ R the equation s1 ⊕ s2 ⊕ ... ⊕ sn = t is
equivalent to τ(s1)s21 + ...+ τ(sn)s2n = τ(t)t2.

The proof follows immediately from the fact that the equation τ(s)
√
|s| = t

implies s = τ(t)t2, and, in particular, τ(t) = τ(s).
Multiplication by scalars is naturally extended on the set R of generalized

standard deviations by: γ ∗ s = |γ|s, s ∈ R. Multiplication by −1 (negation) is
(−1) ∗ s = | − 1|s = s, s ∈ R, in accordance with (4)–(5). To avoid confusion
we shall write the scalars always to the left side of the standard deviation.
Under this convention we have, e. g. (−2) ∗ 2 = 4, whereas 2 ∗ (−2) = −4.
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Note that if s is a standard deviation, then we have γ ∗ s = (−γ) ∗ s for any
γ ∈ R; thus multiplication by negative scalar does not change the type of s
(proper/improper).

It is easy to check that all conditions (2)–(6) of Proposition 1 hold true for
generalized standard deviations. This justifies the following definition:

Definition 1. A system (S,⊕,R, ∗), such that: i) (S,⊕) is an abelian additive
group, and, ii) for any s, t ∈ S, α, β ∈ R relations (2)–(6) hold, is called an
s-space over R (with group structure).

3 Linear Systems with Stochastic Right-Hand Side

3.1 Canonical S-Spaces and Dot Product

For any integer k ≥ 1 the set S = Rk of all k-tuples (s1, s2, ..., sk) forms an
s-space over R under the operations (7)–(8), whenever the sums si ⊕ ti in (7)
are defined by (9). The s-space Sk = (Rk,⊕,R, ∗) is the canonical s-space (of
standard deviations). In the s-space Sk we introduce a scalar (dot) product.
Namely, for α = (α1, α2, ..., αk) ∈ Rk, s = (s1, s2, ..., sk) ∈ Sk we define α ∗ s =
α1 ∗ s1 ⊕ α2 ∗ s2 ⊕ ...⊕ αk ∗ sn.

Using (10) we obtain for α = (α1, α2, ..., αk) ∈ Rk, s = (s1, s2, ..., sk) ∈ Sk

α ∗ s = α1 ∗ s1 ⊕ ...⊕ αk ∗ sk = τ(α ∗ s)
√
|α2

1τ(s1)s
2
1 + ...+ α2

kτ(sk)s2k|.

Example 1. Let αi = 1, si = s, i = 1, ..., k. Then α ∗ s = s ⊕ ...(k times) ⊕ s =
τ(s)

√
ks2 = s

√
k. This fact has been already known for long [1].

Proposition 3. For α = (α1, α2, ..., αk) ∈ Rk, (s1, s2, ..., sk) ∈ Sk the equation
α ∗ s = t is equivalent to α2

1τ(s1)s21 + ...+ α2
kτ(sk)s2k = τ(t)t2.

Remark. It is used in the proof that τ(αi ∗ si) = τ(si).

3.2 S-Spaces and Their Relation to Vector Spaces

Proposition 4. Let (S,+,R, ∗) be an s-space over R. Then the system (S,+,R, ·)
where the operation “·”: R× S −→ S is defined by

α · c =

{√
|α| ∗ c, if α ≥ 0;√
|α| ∗ (−c), if α < 0,

(11)

is a vector space over R. Conversely, let (S,+,R, ·) be a vector space over R.
The system (S,+,R, ∗) is an s-space over R whenever “∗” is defined by

α ∗ c = α2 · c. (12)

Proposition 4 shows that each one of the two associted spaces (S,+,R, ∗) and
(S,+,R, ·) can be obtained from the other one by a redefinition of the operation



Numerical Study of Algebraic Solutions to Linear Problems 277

multiplication by scalars using (11), resp. (12). Assume that S = (S,+,R, ∗) is
an s-space over R and (S,+,R, ·) is the associated vector space. All vector space
concepts from the vector space (S,+,R, ·), such as linear combination, linear
dependence, basis etc., apply to the s-space (S,+,R, ∗) [4].

Theoretically stochastic numbers are defined as elements of the direct sum
V ⊕ S of a vector space V and a s-space S both of same dimension k. Namely,
let V = Vk be a k-dimensional vector space with a basis (v(1), ..., v(k)) and
let S = Sk be a k-dimensional s-space having a basis (s(1), ..., s(k)). Then
(v(1), ..., v(k); s(1), ..., s(k)) is a basis of the k-dimensional space Vk ⊕ Sk. Such a
setting allows us to consider numerical problems involving vectors and matrices,
wherein certain numeric variables have been substituted by stochastic ones.

3.3 Stochastic Linear Systems

We consider a linear system Ax = b, such that A is a real n × n-matrix and
the right-hand side b is a vector of stochastic numbers. Then the solution x
also consists of stochastic numbers, and, respectively, all arithmetic operations
(additions and multiplications by scalars) in the expressionAx involve stochastic
numbers; we denote this by writing A ∗ x instead of Ax.

Problem. Assume that A = (αij)n
i,j=1, αij ∈ R, is a real n × n-matrix, and

b = (b′; b′′) is a n-tuple of (generalized) stochastic numbers, such that b′, b′′ ∈ Rn,
b′ = (b′1, ..., b

′
n), b′′ = (b′′1 , ..., b

′′
n). We look for a (generalized) stochastic vector

x = (x′;x′′), x′, x′′ ∈ Rn, satisfying the system A ∗ x = b.

Solution. Due to A∗x = A∗(x′;x′′) = (Ax′;A∗x′′) the system A∗x = b reduces
to a linear system Ax′ = b′ for the vector x′ = (x′1, ..., x

′
n) of mean values and a

system A ∗ x′′ = b′′ for the standard deviations x′′ = (x′′1 , ..., x
′′
n). If A = (αij) is

nonsingular, then x′ = A−1b′. We shall next concentrate on the solution of the
system A ∗ x′′ = b′′ for the standard deviations.

The i-th equation of the system A∗x′′ = b′′ reads αi1 ∗x′′1⊕ ...⊕αin ∗x′′n = b′′i .
According to Proposition 3, this is equivalent to

α2
i1τ(x

′′
1 )x′′21 + ...+ α2

inτ(x
′′
n)x′′2n = τ(b′′i )b′′2i , i = 1, ..., n.

Setting τ(x′′i )(x′′i )2 = yi, τ(b′′i )(b′′i )2 = ci, we obtain a linear n × n system
Dy = c for y = (yi), where D = (α2

ij), c = (ci). If D is nonsingular we can solve
the system Dy = c for the vector y, y = D−1c, and then obtain the standard
deviation vector x′′ by means of x′′i = τ(yi)

√
|yi|. Thus for the solution of the

original problem it is necessary and sufficient that both matrices A = (αij) and
D = (α2

ij) are nonsingular.
Summarizing, to solve A ∗ x = b we perform the following steps:

i) check the matrices A = (αij) and D = (α2
ij) for nonsingularity;

ii) find the solution x′ = A−1b′ of the linear system Ax′ = b′;
iii) find the solution y = D−1c of the linear system Dy = c, where c = (ci),

ci = τ(b′′i )(b′′2i ). Compute x′′i = τ(yi)
√
|yi|; then the solution of A ∗ x = b is

x = (x′;x′′).
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4 Numerical Experiments

Numerical experiments have been performed in order to compare the theoretical
results with numerical results obtained by means of the CESTAC method for
imprecise stochastic data.

Scalar Product. Let α be a real vector of size N with αi = i, i = 1, ..., N .
Assume that b is a stochastic vector of size N . All samples for the components
of b have been generated with a gaussian generator with mean value m = 1 and
standard deviation σ = 0.001.

Theoretically, the standard deviation of the dot product α ∗ b is equal to
σ
√
N(N + 1)(2N + 1)/6. On the other hand, according to the theory of the

CESTAC method, a stochastic number can be represented by an n-tuple of
random values with a known mean value m and a known standard deviation σ.
In our examples n = 3 as implemented in the CADNA software [3].

With the above conditions (m = 1, σ = 0.001) the scalar product α ∗ b has
been computed k times for various sizes N = 10, 100, ..., 10000. For each size N
the mean value δ of the standard deviation δi of the result (i = 1, 2, ..., k) has
been computed.

This provides samples of size k whose mean values approximate the theoretical
standard deviation.

Table 1 reports the percentages of cases where the theoretical standard devia-
tion σ

√
N(N + 1)(2N + 1)/6 is outside the computed confidence interval. These

percentages have been computed with 1000 runs.

Comments: From Table 1, it is clear a posteriori that the distribution of the scalar
product is effectively gaussian, as a size of 4 to 5 for the samples is enough to
approximate the theoretical value, whereas if this were not the case, then the
samples should have rather be of size 30.

4.1 Solution of a Linear System A ∗ x = b

In this numerical example A is a real matrix such that aij = i, if i = j, else
aij = 10−|i−j|, i, j = 1, .., N , N = 10. Assume that b is a stochastic vector such
that the component bi is generated with a gaussian generator with a mean value∑n

j=1 aij and a standard deviation equal to 1.e − 4 = 10−4. With such kind of
system, the solutions xi are around 1.

The theoretical standard deviations on each component of the solution are
obtained according the method described in the previous section. First the ma-
trix D is computed from matrix A. Then the system y = D−1c is solved, and

Table 1. Percentages of theoretical standard deviation outside the confidence interval

N \ k 3 4 5 6 7 10
10 12.1 6.3 3.3 2.1 1.5 0.3

100 12.6 5.3 3.8 2.3 1.0 0.3
1000 13.2 4.6 3.9 1.6 1.4 0.2

10000 11.6 5.4 2.9 1.9 1.4 0.2
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Table 2. Theoretical and computed standard deviations

Component i Theoretical mean value of the computed
standard deviation x′′ standard deviations

1 9.98e-05 10.4e-05
2 4.97e-05 4.06e-05
3 3.32e-05 3.21e-05
4 2.49e-05 2.02e-05
5 1.99e-05 1.81e-05
6 1.66e-05 1.50e-05
7 1.42e-05 1.54e-05
8 1.24e-05 1.02e-05
9 1.11e-05 0.778e-05
10 0.999e-05 0.806e-05

the standard deviations are computed with the formula x′′i = τ(yi)
√
|yi|. The

values x′′i are given in the first column in Table 2.
The experimental results only concern the standard deviations on the compo-

nents of the solution. They are obtained in the following way: 30 different vectors
b(k), k = 1, ..., 30 and thus 30 systems A ∗ x = b(k) are generated as above. Then
they are solved using the CADNA software using Gaussian elimination. This
CADNA software provides the standard deviation of each component the solu-
tion. In the end, the mean value of the standard deviations of the 30 samples are
computed for the N = 10 components and printed in Table 2. As we can see in
Table 2, the theoretical standard deviations and the computed values are very
close to each other.

The influence of the variation of the error σ on the right hand side b on the
results is studied as follows: The same as above procedure is performed but here
only the first component of the solution is considered. As before, 30 solutions for
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x are obtained and the standard deviations of the 30 first components x(1) and
their corresponding mean value named δ̄i(1) are computed. This procedure has
been performed 1000 times. Therefore, we obtained 1000 values for δ̄i(1) which
are classified in 20 classes from 0.5x′′i to 1.5x′′i . The graphs of the number of
elements in each class obtained with the 4 values of σ = 1.e− 4, 1.e− 3, 1.e−
2, 1.e− 1 are reported in Fig. 1.

5 Conclusion

The theoretic study of the properties of stochastic numbers with respect to the
operations addition and multiplication by scalars allows the solution of certain
algebraic problems involving stochastic numbers. This gives us a possibility to
compare algebraically obtained results with practical applications of stochastic
numbers, such as the ones provided by the CESTAC method [3]. Such compar-
isons give additional information related to the stochastic behaviour of random
roundings in the course of numerical computations. It may be expected that the
proposed theory can be used in the computational practice.
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Abstract. In the present work we show that the linear operations in the
space of Hausdorff continuous functions are generated by an extension
property of these functions. We show that the supremum norm can be
defined for Hausdorff continuous functions in a similar manner as for
real functions, and that the space of all bounded Hausdorff continuous
functions on an open set is a normed linear space. Some issues related
to approximations in the space of Hausdorff continuous functions by
subspaces are also discussed.

1 Introduction

The concept of Hausdorff continuity generalizes the concept of continuity of real
functions to interval-valued functions [4, 8]. Due to a minimality condition with
respect to inclusion of graphs, Hausdorff continuous (H-continuous) functions re-
tain some important properties of continuous functions, e.g. they are completely
determined by their values on a dense subset of their domain. It is well-known
that the operations (addition and multiplication by scalars) associated with in-
terval structures typically do not infer a linear space [5]. In this regard the set
of H-continuous functions is a notable exception. It is shown in [9] that one can
define addition and multiplication by scalars on the set H(Ω) of all H-continuous
functions on an open subset Ω of Rn in such a way that H(Ω) is a linear space.
Naturally, these operations are not defined in a point-wise manner. In Sections
3 and 4 of the present work we show that the linear space operations on H(Ω)
are a direct consequence of an extension property of H-continuous functions. In
Section 5 we show that the supremum norm can be defined for H-continuous
functions in a similar way as for real functions, and that the space Hb(Ω) of all
bounded H-continuous functions on the open set Ω is a normed linear space.
However, due to the involvement of discontinuous functions, a natural metric to
be associated with the space Hb(Ω) is the Hausdorff metric considered in Sec-
tion 6. Issues related to approximations in H(Ω) by subspaces are also discussed.
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2 General Setting

The real line is denoted by R and the set of all finite real intervals by IR =
{[a, a] : a, a ∈ R, a ≤ a}. Given an interval a = [a, a] = {x : a ≤ x ≤ a} ∈ IR,
w(a) = a− a is the width of a, while |a| = max{|a|, |a|} is the modulus of a. An
interval a is called proper interval, if w(a) > 0 and point interval, if w(a) = 0.
Identifying a ∈ R with the point interval [a, a] ∈ IR, we consider R as a subset of
IR. We denote by A(Ω) the set of all locally bounded interval-valued functions
defined on an arbitrary set Ω ⊆ Rn. The set A(Ω) contains the set A(Ω) of
all locally bounded real functions defined on Ω. Recall that a real function or
an interval-valued function f defined on Ω is called locally bounded if for every
x ∈ Ω there exist δ > 0 and M ∈ R such that |f(y)| < M, y ∈ Bδ(x), where
Bδ(x) = {y ∈ Ω : ||x− y|| < δ} denotes the open δ-neighborhood of x in Ω.

Let D be a dense subset of Ω. The mappings I(D,Ω, ·), S(D,Ω, ·) : A(D) −→
A(Ω) defined for f ∈ A(D) and x ∈ Ω by

I(D,Ω, f)(x) = sup
δ>0

inf{f(y) : y ∈ Bδ(x) ∩D},

S(D,Ω, f)(x) = inf
δ>0

sup{f(y) : y ∈ Bδ(x) ∩D},

are called lower and upper Baire operators, respectively. The mapping F :
A(D) −→ A(Ω), called graph completion operator, is defined by

F (D,Ω, f)(x) = [I(D,Ω, f)(x), S(D,Ω, f)(x)], x ∈ Ω, f ∈ A(D).

In the case when D = Ω the sets D and Ω will be omitted, thus we write
I(f) = I(Ω,Ω, f), S(f) = S(Ω,Ω, f), F (f) = F (Ω,Ω, f).

Definition 1. A function f ∈ A(Ω) is S-continuous, if F (f) = f .

Definition 2. A function f ∈ A(Ω) is Hausdorff continuous (H-continuous), if
g ∈ A(Ω) with g(x) ⊆ f(x), x ∈ Ω, implies F (g)(x) = f(x), x ∈ Ω.

Theorem 1. [1, 8] For every f ∈ A(Ω) the functions F (I(S(f))) and F (S(I(f)))
are H-continuous.

H-continuous functions are similar to usual continuous real functions in that they
assume point values everywhere on Ω except for a set of first Baire category. More
precisely, it is shown in [1] that for every f ∈ H(Ω) the set

Wf = {x ∈ Ω : w(f(x)) > 0} (1)

is of first Baire category and f is continuous onΩ\Wf . Since a finite or countable
union of sets of first Baire category is also a set of first Baire category we have:

Theorem 2. Let the set Ω be open and let F be a finite or countable set of
H-continuous functions. Then the set DF = {x ∈ Ω : w(f(x)) = 0, f ∈ F} =
Ω \

⋃
f∈F

Wf is dense in Ω and all functions f ∈ F are continuous on DF .
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The graph completion operator is inclusion isotone i) w. r. t. the functional
argument, that is, if f, g ∈ A(D), where D is dense in Ω, then

f(x) ⊆ g(x), x ∈ D =⇒ F (D,Ω, f)(x) ⊆ F (D,Ω, g)(x), x ∈ Ω, (2)

and, ii) w. r. t. the set D in the sense that if D1 and D2 are dense subsets of Ω
and f ∈ A(D1 ∪D2) then

D1 ⊆ D2 =⇒ F (D1, Ω, f)(x) ⊆ F (D2, Ω, f)(x), x ∈ Ω. (3)

In particular, (3) implies that for any dense subsetD of Ω and f ∈ A(Ω) we have
F (D,Ω, f)(x) ⊆ F (f)(x), x ∈ Ω. The graph completion operator is idempotent.
Moreover [2], if the sets D1 and D2 are both dense in Ω and D1 ⊆ D2 then

F (D2, Ω, ·) ◦ F (D1, Ω, ·) = F (D1, Ω, ·). (4)

Let f ∈ A(Ω). For every x ∈ Ω the value of f is an interval [f(x), f (x)] ∈
IR. Hence, f can be written in the form f = [f, f ] where f, f ∈ A(Ω) and
f(x) ≤ f(x), x ∈ Ω. The lower and upper Baire operators as well as the graph
completion operator of an interval-valued function f can be represented in terms
of f and f , namely, for every dense subset D of Ω: I(D,Ω, f) = I(D,Ω, f),
S(D,Ω, f) = S(D,Ω, f), F (D,Ω, f) = [I(D,Ω, f), S(D,Ω, f)].

3 Extension and Restriction Properties

Let Ω ⊆ Rn and let D be dense in Ω. Extending a function f defined on D to Ω
while preserving its properties (e.g. linearity, continuity) is an important issue
in functional analysis. Recall that if f is continuous on D it does not necessarily
have a continuous extension on Ω. The next theorem shows that an H-continuous
function on D has a unique H-continuous extension on Ω.

Theorem 3. Let ϕ ∈ H(D), where D is dense subset of Ω. Then there exists
unique f ∈ H(Ω), such that f(x) = ϕ(x), x ∈ D. Namely, f = F (D,Ω,ϕ).

Proof. Let f = F (D,Ω,ϕ). From the fact that ϕ is H-continuous on D it
follows that F (D,D,ϕ) = ϕ. Therefore, for every x ∈ D we have f(x) =
F (D,Ω,ϕ)(x) = F (D,D,ϕ)(x) = ϕ(x). Hence f is an extension of ϕ over Ω.
We show next that f is H-continuous on Ω. Using property (4) we obtain

F (f) = F (Ω,Ω, F (D,Ω,ϕ)) = F (D,Ω,ϕ) = f. (5)

Let g ∈ A(Ω) satisfy the inclusion

g(x) ⊆ f(x), x ∈ Ω. (6)

Then using the inclusion isotone property (2) of the operator F we have

F (g)(x) ⊆ F (f)(x) = f(x), x ∈ Ω. (7)
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Relation (6) implies g(x) ⊆ f(x) = ϕ(x), x ∈ D. Using again the H-continuity
of ϕ on D we obtain F (D,D, g)(x) = ϕ(x), x ∈ D. From this equality and
properties (2) and (3) of F we obtain

f(x) = F (D,Ω, F (D,D, g))(x) ⊆ F (D,Ω, F (g))(x) ⊆ F (g)(x), x ∈ Ω. (8)

Inclusions (7) and (8) give F (g) = f which implies that f is H-continuous on Ω.
Finally, we prove uniqueness. Let h ∈ H(Ω) be another extension of ϕ, that

is, h(x) = ϕ(x), x ∈ D. We have f(x) = F (D,Ω,ϕ)(x) = F (D,Ω, h)(x) ⊆
F (h)(x) = h(x), x ∈ Ω. Then the H-continuity of h implies that F (f) = h.
Using (5) we obtain f = h, which completes the proof of the theorem.

Corollary 1. Let f, g ∈ H(Ω) and let D be a dense subset of Ω. Then
a) f(x) ≤ g(x), x ∈ D =⇒ f(x) ≤ g(x), x ∈ Ω,
b) f(x) = g(x), x ∈ D =⇒ f(x) = g(x), x ∈ Ω.

Let D ⊆ Ω. For f ∈ A(Ω) denote by f |D the restriction of f on D, i. e.
f |D ∈ A(D) and f |D(x) = f(x), x ∈ D. The next theorem shows that the
restriction of an H-continuous function on an open subset is H-continuous.

Theorem 4. Let D be an open subset of Ω. If f ∈ H(Ω) then f |D ∈ H(D).

Proof. Since D is open for every x ∈ D we have Bδ(x) ⊆ D for δ > 0 small
enough. Hence, for x ∈ D we have S(D,D, f |D)(x) = S(f)(x), I(D,D, f |D)(x) =
I(f)(x), F (D,D, f |D)(x) = F (f)(x). Then the theorem follows from Theorem 1.

4 The Linear Space of Hausdorff Continuous Functions

In the sequel we assume that the set Ω is open. For every two functions f, g ∈
H(Ω) denote Dfg = Ω \ (Wf ∪Wg), where Wf and Wg are defined by (1). Using
addition of intervals the point-wise sum of f = [f, f ] ∈ H(Ω) and g = [g, g] ∈
H(Ω) is given by (f + g)(x) = f(x) + g(x) = [f(x) + g(x), f(x) + g(x)], x ∈ Ω.
It is easy to see that the point-wise sum of H-continuous functions is not always
H-continuous [9]. However, the restrictions of f , g and f + g on the set Dfg

which is dense in Ω, see Theorem 2, are continuous real functions. This suggests
the definition of a new operation addition “⊕” on H(Ω) as follows.

Definition 3. Let f, g ∈ H(Ω). Then f⊕g is the unique H-continuous extension
of (f + g)|Dfg

on Ω given by Theorem 3, that is, f ⊕ g = F (Dfg, Ω, f + g).

Multiplication by scalars on H(Ω) is defined point-wise; for f ∈ H(Ω), α ∈ R

(α ∗ f)(x) = αf(x) =

{
[αf(x), αf (x)] if α ≥ 0,

[αf(x), αf (x)] if α < 0.

It can be verified that operations “⊕” and “∗” satisfy on H(Ω) the axioms of
a linear space [9]. In particular, the second distributive law, which is usually
violated in interval structures, holds true; thus (H(Ω),⊕, ∗) is a linear space.
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Denote by Hb(Ω) the set of all bounded H-continuous functions on Ω. Clearly
Hb(Ω) is a linear subspace of H(Ω). Note that the assumption that Ω is open,
made in the beginning of the section, is not a significant restriction with regard to
Hb(Ω). One can easily see that the sets Hb(Ω) and H(Ω), where Ω is the closure
of Ω are identical. Indeed, according to Theorem 3 every function f ∈ Hb(Ω) has
a unique H-continuous extension e(f) on Ω, that is, e(f) ∈ H(Ω). Conversely,
the restriction of every function H(Ω) on Ω belongs to Hb(Ω), see Theorem 4.
Then the mapping e : Hb(Ω) −→ H(Ω) is a bijection. Identifying f with e(f)
gives Hb(Ω) = H(Ω). Hence by considering Hb(Ω) we deal implicitly with the
case when the domain is a closure of an open set. It is also easily seen that the
supremum norm and the Hausdorff metric discussed in the sequel are preserved
by e. Further we prefer to work with Hb(Ω) rather then H(Ω) since the linear
operations are defined for Ω open and working with Ω closed or compact requires
an extension of these definitions. We remark that similar approach is not possible
for sets of continuous functions, since the set Cb(Ω) of all bounded continuous
functions on Ω satisfies the inclusion C(Ω) ⊆ Cb(Ω) but the inverse inclusion is
generally not true.

5 Supremum Norm and Approximations

The supremum norm on Hb(Ω) can be defined as usually by

||f || = sup
x∈Ω

|f(x)|, f ∈ Hb(Ω). (9)

Lemma 1. If D is dense in Ω, then for f ∈ Hb(Ω) we have ||f ||=supx∈D |f(x)|.

Proof. The inequality supx∈D |f(x)| ≤ ||f || is obvious. To prove the inverse
inequality denote m = supx∈D |f(x)|. From −m ≤ f(x) ≤ m, x ∈ D, it fol-
lows −m ≤ F (D,Ω, f)(x) ≤ m, x ∈ Ω. Since f is H-continuous the inclusion
F (D,Ω, f)(x) ⊆ F (f)(x) = f(x), x ∈ Ω, implies f = F (D,Ω, f). Therefore
|f(x)| ≤ m x ∈ Ω, which gives ||f || ≤ m. This completes the proof of Lemma 1.

Theorem 5. The mapping || · || : Hb(Ω) −→ R given in (9) is a norm on the
linear space Hb(Ω).

Proof. Let f, g ∈ Hb(Ω). According to Definition 3 for every x ∈ Dfg we have
(f ⊕ g)(x) = f(x) + g(x). Hence,

sup
x∈Dfg

|(f + g)(x)| = sup
x∈Dfg

|f(x) + g(x)| ≤ sup
x∈Dfg

|f(x)|+ sup
x∈Dfg

|g(x)|.

Using Lemma 1 the above inequality implies ||f+g|| ≤ ||f ||+||g||. The remaining
properties of the norm are trivially satisfied.

Theorem 5 shows that Hb(Ω) considered with the operations “⊕”, “∗” and the
supremum norm is a normed linear space. Clearly the supremum norm on Hb(Ω)
is an extension of the supremum norm on the set of usual bounded continuous
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functions which is a subset of Hb(Ω). Thus the familiar normed linear space
Cb(Ω) is a subspace of Hb(Ω).

It is well-known that the supremum norm has limited applications in the
approximation of discontinuous functions. It is easy to construct examples of
approximations in Hb(Ω) by subspaces where the error of the approximation
remains bounded away from zero irrespective of the dimension of the subspace.
However, approximations with respect to the supremum norm work, in the case
when the approximated function and/or some of its derivatives have only “jump”
type of discontinuities at a finite number of points which are known. This is a
situation which may arise e. g. in the solution of PDE’s where discontinuities of
the given boundary conditions are propagated in a predictable way within the
interior of the domain of the solution [3].

6 Hausdorff Distance and Approximations by Finite
Dimensional Subspaces

A natural metric to be associated with H-continuous functions is the Hausdorff
metric denoted here by ρ. Let us recall that for f, g ∈ Hb(Ω) the distance ρ(f, g)
is defined as the Hausdorff distance between the graphs of f and g considered as
subsets of Rn+1 [8]. It should be noted that the operation “⊕” is not continuous
with respect to the Hausdorff metric as can be shown by easy examples. Hence
Hb(Ω) is not a linear metric space in the sense of [6]. However, the next theorem
shows that the operation “⊕” satisfies a condition rather close to continuity. In
the sequel “convergence” is meant in the sense of Hausdorff metric.

Theorem 6. If the sequences (fk)k∈N ⊆ Hb(Ω) and (gk)k∈N ⊆ Hb(Ω) converge
respectively to f, g ∈ Hb(Ω), then the sequence (fk ⊕ gk)k∈N converges to an
S-continuous function h, s. t. the only H-continuous function satisfying the in-
clusion φ(x) ⊆ h(x), x ∈ Ω, is φ = f⊕g. Moreover, if h ∈ Hb(Ω) then h = f⊕g.
The proof is rather technical and will be omitted.

We next illustrate the ideas of approximation in Hb(Ω) by elements of finite
dimensional linear subspaces in the case of functions of one variable, that is,
Ω = (a, b) ⊆ R. Denote by ϕ the Π-form function:

ϕ(x) =

⎧⎨⎩
1 if 0 < x < 1;

[0, 1] if x ∈ {0, 1};
0 if x < 0 or x > 1.

For every j ∈ N we consider the following set of linearly independent functions

{φjk : k ∈ Z}, φjk(x) = ϕ(2jx− k), j, k ∈ Z. (10)

It is easy to see that φjk ∈ H(R), j, k ∈ Z. Therefore every linear combination
of functions from the set (10) is also in H(R).

We now discuss approximation of H-continuous functions by linear combina-
tions of functions from the set (10). To simplify matters we consider approxima-
tions on the interval (0, 1), that is, in the set Hb(0, 1). It follows from Theorem 4
that the restrictions of the functions (10) to the interval (0, 1) belong to Hb(0, 1).
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In the sequel φjk denotes the restriction to the interval (0, 1) of the function φjk

given in (10). Clearly in Hb(0, 1) for every j ∈ N it is enough to consider the set

{φjk : k = 0, 1, ..., 2j − 1}. (11)
Denote by Vj the linear subspace of H(0, 1) spanned by the set of functions
(11). Using that φj−1,k(x) = φj,2k(x) + φj,2k+1(x), j, k ∈ Z, one can see that the
inclusions V0 ⊂ V1 ⊂ ... ⊂ Vj ⊂ ... ⊂ H(0, 1) hold true. Hence we have a similar
situation to the adaptive multiresolution analysis discussed in [7].

Consider the operators Iδ : A(0, 1) −→ A(0, 1) and Sδ : A(0, 1) −→ A(0, 1)
where δ > 0 and for every f ∈ A(0, 1)

Iδ(f)(x) = inf{z ∈ f(y) : y ∈ (0, 1), |y − x| < δ}, x ∈ (0, 1),
Sδ(f)(x) = sup{z ∈ f(y) : y ∈ (0, 1), |y − x| < δ}, x ∈ (0, 1).

For a given δ > 0 the modulus of H-continuity τ(f, δ) of a function f ∈ A(0, 1)
is the Hausdorff distance between the completed graphs of Iδ/2(f) and Sδ/2(f),
that is, τ(f, δ) = ρ(F (Iδ/2(f)), F (Sδ/2(f))). It is shown in [8] that a function
f ∈ A(0, 1) is H-continuous if and only if limδ→0 τ(f, δ) = 0.

Let f = [f, f ] ∈ H(0, 1) and let j ∈ N. Using the operators Iδ(f) and Sδ(f)
we can construct in Vj a lower approximation L(f, j) of f and an upper approx-
imation U(f, j) of f as follows:

L(f, j) =
2j−1∑
k=0

Ih(f)((2k+1)h)φjk, U(f, j) =
2j−1∑
k=0

Sh(f)((2k+1)h)φjk, (12)

where h = 2−j−1 and the sums are in terms of the addition “⊕”. The inequality

L(f, j)(x) ≤ f(x) ≤ U(f, j)(x), x ∈ (0, 1), (13)

can be easily verified. Indeed, if we have x ∈ (2−jk, 2−j(k + 1) for some k ∈
{0, 1, ..., 2j − 1} then L(f, j)(x) = Ih(f)(2−j(k + 1

2 ))φjk(x) ≤ f(x). Similarly,

U(f, j)(x) ≥ f(x). Hence (13) holds on the set
2j−1⋃
k=0

(2−jk, 2−j(k + 1)) which is

dense on (0, 1). Using that the functions involved in (13) are all H-continuous,
we obtain that (13) holds for all x ∈ (0, 1), see Corollary 1.

Theorem 7. For every f ∈ H(0, 1) and j ∈ N we have

ρ(L(f, j), f) ≤ τ(f, 2−j+1), ρ(U(f, j), f) ≤ τ(f, 2−j+1).

Proof. Let h = 2−j−1 as in (12). From the inequalities

I2h(f)(x) ≤ L(f, j)(x) ≤ f(x) ≤ U(f, j) ≤ S2h(f)(x), x ∈ (0, 1),

it follows that ρ(L(f, j), f) ≤ ρ(F (I2h(f)), F (S2h(f))) = τ(f, 4h) = τ(f, 2−j+1).
Similarly, ρ(U(f, j), f) ≤ τ(f, 2−j+1).

It follows from Theorem 7 that for every f ∈ Hb(0, 1) both sequences (L(f, j))j∈N

and (U(f, j))j∈N converge to f with respect to the Hausdorff distance ρ. Hence
∞⋃

j=1
Vj is a dense subspace of Hb(0, 1) considered as a metric space w. r. t. ρ.
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7 Conclusion

H-continuous functions have a number of interesting and rather unique properties
due to the fact that they share characteristics of both real-valued and interval-
valued functions. The extension property discussed in Section 3 is in this category
as it is typical neither for classes of real functions usually considered in Functional
Analysis nor for classes of interval functions considered in Interval Analysis. We
show that this extension property generates the linear space operations in H(Ω)
proposed in our previous work [9]. Our further discussion is devoted to issues
of norm, metric and approximations of H-continuous functions. We introduce
the supremum norm for H-continuous functions and prove that the set Hb(Ω) of
all bounded H-continuous functions is a normed linear space w. r. t. this norm.
Recognizing the limitations of the supremum norm when discontinuous functions
are involved we consider the Hausdorff metric on Hb(Ω) and establish a strong
connection between the metric and the linear space operations. The considered
approximations by a subspace show that the Hausdorff metric is a natural metric
to be associated with H-continuous functions.
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Abstract. We compare two approaches, the interval and the ellipsoidal
ones, to the guaranteed estimation of errors of vector operations by con-
sidering the problem of multiplication of a vector by a matrix. It is shown
that for a large class of linear operators the ellipsoidal estimates are more
precise than the interval ones, even if the initial vector has interval error
bounds.

1 Introduction

These days the interval analysis is the most common approach to the guaranteed
estimation of computational errors [1]. In this approach, we deal with the inter-
vals containing the values known up to a bounded error. For instance, instead of
a scalar a one considers an interval [a−, a+], where a is known to belong. Sim-
ilarly, instead of an n–dimensional vector x with components xi, i = 1, . . . , n,
one considers a box defined by the inequalities

x−i ≤ xi ≤ x+
i , i = 1, . . . , n, (1)

such that its edges are parallel to the coordinate axes. We will call these par-
allelepipeds boxes. The boxes (1), when regarded as indeterminacy sets for un-
known vectors, has some important properties which make them suitable for
computations. Namely, a box is characterized by a relatively small amount of
defining parameters (2n if x ∈ Rn), simple shape of the boundary, and easy
visualization. However, this class of indeterminacy sets is not invariant with
respect to affine transformations; thus, each transform of this kind makes the
estimate of the indeterminacy set worse, since we have to substitute a box for
the transformed one. This accumulation of errors might make the final estimate
worthless.

To avoid this loss of precision, it is reasonable to use an affine invariant class
of indeterminacy sets. For instance, one might use ellipsoidal estimators. The
optimal algebraic operations with ellipsoids are designed in [2, 3]. These opera-
tions are applied to estimation of reachable sets of dynamic systems. Ellipsoids
require more defining parameters (n coordinates of the center and n(n + 1)/2
elements of the symmetric matrix, if x ∈ Rn). This number is, however, almost
two times less then the number n(n+ 1) of defining parameters of an arbitrary
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parallelepiped. The class of ellipsoids is invariant under affine transformations.
Therefore, there is no need to make estimator more worse after this transfor-
mation. We note that both methods (the interval and the ellipsoidal ones) are
the same when applied to scalars, because in the scalar case both ellipsoids and
parallelepipeds degenerate into intervals.

2 Statement of the Problem

We consider the problem of multiplication of a vector x, given by interval bounds
(1), by a known square n× n matrix A. We need to estimate the extent of error
of this operation, i.e., indeterminacy of the vector y = Ax ∈ Rn. By coordinate
scaling and translation of the origin one might bring the bounds (1) to the form:

−1
2
≤ xi ≤

1
2
, i = 1, . . . , n. (2)

Thus, the initial problem is reduced to that of multiplication of a unit
n-dimensional cube, centered at the origin, by a given matrix A. We use two
approaches in order to solve the problem.

The first approach is to apply the interval analysis, so that the final bound
for the vector y = Ax takes a form of a box:

y−i ≤ yi ≤ y+
i , i = 1, . . . , n. (3)

In the second approach, we begin with the substitution of the minimal volume
ellipsoid containing the cube for the initial unit cube. Clearly, this ellipsoid is
a ball. Then we transform the ball by the matrix A and declare the resulting
ellipsoid the final estimate for y. We conduct an analysis which shows that for
most matrices A the second approach is better, at least if our criterion is the
volume of the set of indeterminacy. From now on, we assume that the matrix
A is nonsingular. We notice that if A is singular, then the transformed ellipsoid
has zero volume, which is the best possible outcome not reachable in general by
the interval approach.

3 Interval Approach

The transformed unit cube (2) is not a box in general. Therefore, we have to
make a weaker estimate by substituting minimal box for the exact transform.
To do this, we find the maximal value of the projection of the vector y on the
ith coordinate axis. In other words, we have to find the maximum over all x
containing in the unit cube (2) of the expression

yi =
n∑

k=1

aikxk, |xk| ≤ 1/2, i, k = 1, . . . , n,

where aik are elements of A. It is clear that the maximum is attained at xk =
1
2 sign (aik). This gives us the following interval estimate:
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−1
2

n∑
k=1

|aik| ≤ yi ≤
1
2

n∑
k=1

|aik|, i = 1, . . . , n.

The volume of the above box equals to:

VΠ =
n∏

i=1

n∑
k=1

|aik|. (4)

Now we turn to the structure of the matrix A. One can represent it in the form of
a product (the Iwasava decomposition) A = SO, where S is an upper triangular
matrix such that its diagonal element are nonnegative,O is an orthogonal matrix.
We can obtain a lower estimate for VΠ which does not involve the orthogonal
part of the matrix A. To do this, we inscribe the maximal volume ellipsoid into
the initial unit cube (2). Clearly, this is the unit ball. In notations of [2, 3] for
an n-dimensional ellipsoid

E (a,Q) = {x :
(
Q−1(x − a), (x− a)

)
≤ 1}, (5)

where a is n-dimensional vector of the center of the ellipsoid, Q is a positive-
definite n× n matrix, this ball takes the form

Einn = E

(
0,

1
4
I

)
,

where I is a unit matrix. Then, we transform the ball by the matrix A and
substitute a minimal box for the obtained ellipsoid. The volume of this ellipsoid
is less than or equal to the volume (4). It follows from the identity AE (a,Q) =
E

(
Aa,AQAT

)
, cf. [2,3], and from the orthogonality of the matrix O that the

ball Einn is transformed into the ellipsoid

E′
inn = E

(
0,

1
4
SST

)
. (6)

In order to estimate the ellipsoid E′
inn from outside by a box, we find its maximal

projection on the kth coordinate axis. According to the well-known formula for
the support function of the ellipsoid E (a,Q), its maximal projection on the
direction η equals to

(Qη, η)
1
2 + (a, η) .

By substituting the parameters of ellipsoid (6) for the above formula and choos-
ing η = ek, where ek is the kth coordinate vector, we obtain the parameters of
the parallelepiped we are looking for:

−1
2
(
SST ek, ek

) 1
2 ≤ yk ≤

1
2
(
SST ek, ek

) 1
2 , k = 1, . . . , n. (7)
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The triangular matrix S can be represented in the form:

S = DU =

⎛⎜⎜⎜⎜⎜⎝
ρ1 0 0 . . . 0
0 ρ2 0 . . . 0
0 0 ρ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . ρn

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1 δ11 δ12 . . . δ1,n−1
0 1 δ21 . . . δ2,n−2
0 0 1 . . . δ3,n−3
...

...
...

. . .
...

0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠ , (8)

where ρi > 0, i = 1, . . . , n, since A = SO is nonsingular. It is clear that(
SST ek, ek

)
(in other words, the kth diagonal element dk of the matrix SST ) is

equal to

dk = ρ2
k(1 +

n−k∑
i=1

δ2ki), k = 1, . . . , n− 1; dn = ρ2
n.

By introducing the notation

n−k∑
i=1

δ2ki = Δ2
k, k = 1, . . . , n− 1, (9)

we can present the parallelepiped (7) in the form

− 1
2ρk

√
1 + Δ2

k ≤ yk ≤ 1
2ρk

√
1 + Δ2

k, k = 1, . . . , n− 1,

− 1
2ρn ≤ yn ≤ 1

2ρn.
(10)

From (10) we obtain the following lower bound for the volume of the paral-
lelepiped which is provided by the interval analysis:

VΠ ≥
n∏

k=1

ρk

√√√√n−1∏
k=1

(1 + Δ2
k). (11)

4 Ellipsoidal Approach

Now, we find the volume of the ellipsoid resulting from the ellipsoidal analysis
of the problem. To this end, we replace the initial unit cube with the minimal
volume bounding ellipsoid. This ellipsoid is, clearly, the ball centered at the
origin and having radius equal to half the diagonal of the unit n-cube, i.e.,
Eout = E

(
0, n

4 I
)
. Transforming it by A we come to ellipsoid

E′
out = E

(
0,
n

4
AAT

)
= E

(
0,
n

4
SST

)
.

The volume of the transformed ellipsoid E′
out is

Vol (E′
out) = cn| detA| = cn

n∏
k=1

ρk, (12)
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where ρk are diagonal elements (12) of the matrix S, and

cn =
(πn)

n
2

2nΓ
(

n
2 + 1

) (13)

is the volume of n-dimensional ball of radius
√
n/2.

5 Comparison

From (11) and (12) we obtain an inequality describing a domain in the parameter
space of matrices S, where the ellipsoidal estimates are evidently better than the
interval ones at least in the sense of volume. Namely,√√√√n−1∏

k=1

(1 + Δ2
k) > cn. (14)

Note, that cn exponentially increases with n. The sequence

μn = n−1
√
cn (15)

is bounded and monotone increasing with the limit

μ∞ = lim
n→∞

μn =
πe

2
≈ 4.27.

Getting back to notation (9) we obtain a sufficient condition (in terms of the
elements of the matrix S) for the advantage of the ellipsoidal approach vs. the
interval one. Namely,

Δ2
k =

n−k∑
i=1

δ2ki >
(
μ2

n − 1
)
, k = 1, . . . , n− 1. (16)

Every inequality (16) gives the complement of a ball in the space of elements
of kth row of the matrix U . Thus, the domain, where the interval estimates are
better than the ellipsoidal ones, is bounded by a ball such that its radius never
(for any dimension of the initial vector) exceeds

√
μ2
∞ − 1 ≈ 4.151. This result

might be interpreted geometrically as follows: the diagonal matrix A retains
the class of boxes, and, therefore, there is no loss of precision due to noninvari-
ance under affine transformations. If, on the other hand, the matrix A is far
from diagonal, the ellipsoidal analysis gives better estimate than the interval
one.

6 Two-Dimensional Case

Estimate (16) of the domain, where ellipsoids have an advantage over the in-
tervals, might be improved greatly if the orthogonal part O of the matrix A is
taken to account. Consider the case n = 2 in more detail. Any invertible 2 × 2
matrix A can be represented uniquely in the form A = SO, where
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S =
(
ρ1 0
0 ρ2

)(
1 ξ
0 1

)
, O =

(
cosϕ − sinϕ
sinϕ cosϕ

)
and ρi > 0, i = 1, 2.

We can find the volume (area) of the rectangle by (4):

VΠ = ρ1ρ2 (| sinϕ|+ | cosϕ|) (| cosϕ+ ξ sinϕ|+ | − sinϕ+ ξ cosϕ|) .

The area of the ellipse is given by (12): VE = πρ1ρ2/2. Then the domain, where
ellipsoids has an advantage over rectangles, is given by the following inequality
in the space of parameters ξ, ϕ:

(| sinϕ|+ | cosϕ|) (| cosϕ+ ξ sinϕ|+ | − sinϕ+ ξ cosϕ|) > π

2
. (17)

Denote the left-hand side of the inequality (17) by v (ξ, ϕ) and describe the
domain, where

v (ξ, ϕ) >
π

2
. (18)

One can easily check, that

v
(
ξ, ϕ+

π

2

)
= v (ξ, ϕ) , v (−ξ,−ϕ) = v (ξ, ϕ) . (19)

The first relation (19) implies, that it suffices to study (18) in the domain |ϕ| ≤
π/4, and the second relation (19) implies, that one might confine himself with
the study of the domain 0 ≤ ϕ ≤ π/4, where cosϕ > sinϕ > 0.

There are three cases:

1) ξ < − cotϕ. Inequality (18) reduces to

v (ξ, ϕ) = − cos 2ϕ− ξ (1 + sin 2ϕ) > π/2. (20)

2) − cotϕ ≤ ξ ≤ tanϕ. From (18) we obtain

v (ξ, ϕ) = 1 + sin 2ϕ− ξ cos 2ϕ > π/2. (21)

3) ξ > tanϕ. In this case, it follows from (18) that

v (ξ, ϕ) = cos 2ϕ+ ξ (1 + sin 2ϕ) > π/2. (22)

Inequality (20) always holds in the domain ξ < − cotϕ, ϕ ∈ [0, π/4] because in
this set

v (ξ, ϕ) ≥ − cos 2ϕ+ cotϕ (1 + sin 2ϕ) = cotϕ+ 1 > 2 > π/2.

Inequalities (21) and (22) imply that

ξ < ξ1 (ϕ) =
2 + 2 sin 2ϕ− π

2 cos 2ϕ
, ξ > ξ2 (ϕ) =

π − 2 cos 2ϕ
2 + 2 sin 2ϕ

.
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Fig. 1.

The curves ξ1(ϕ) and ξ2(ϕ) are drawn in Fig. 1 and marked with numbers 1, 2.
These curves are defined in the interval [0, ϕ∗], where

ϕ∗ = arctan [(π − 2)/2] = 0.5187 < π/4,

and they cross at the point (ϕ∗, ξ∗), where ξ∗ = (π − 2)/2. Outside the domain
D, bounded by these curves and curves obtained from these by symmetry with
respect to the origin, the interval estimates has an advantage over the ellip-
soidal ones. One can see from Fig. 1 that the domain D is a relatively small
part of the strip |ϕ| < π/4, − ∞ < ξ < ∞ of parameters of an arbitrary
matrix A.

Note, that estimate (16) together with (15) and (13) gives

|ξ| >
√
μ2

2 − 1 =
√
π2/4− 1 ≈ 1.211.

This is an upper estimate of the set of parameters, where interval estimates are
better than the ellipsoidal ones. In Fig. 1 the boundary of the corresponding
domain is drawn as a dotted line. One can see easily, that this bound is much
worse than the exact estimate given by the domain D.

7 Conclusion

In many cases the ellipsoidal estimates are better than the interval ones, even if
the initial vector is estimated by means of intervals.
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Abstract. Uncertain dynamical systems with two time scales are un-
der consideration. The ratio of the magnitudes of the multi-valued vec-
tor fields related to the slow and fast subsystems is given as a singular
perturbation parameter. The averaging method is employed in order to
construct a limiting system for the slow subsystem, representing the case
of a vanishing perturbation parameter. This method is a classical one in
connection with continuous time systems, but works as well for uncer-
tain systems in discrete time. However, the relation between a continuous
time system and its time-discretized version along with the limiting be-
havior as the perturbation tends to zero has not yet been elaborated.
In the present work it is shown that both limiting procedures, the van-
ishing singular perturbation parameter and the vanishing discretization
step, are commutable.

1 Introduction

We consider the continuous time singularly perturbed system Σε in IRm × IRn

of the form

ż(t) = εf(z(t), y(t)), z(0) = z0,

ẏ(t) ∈ G(z(t), y(t)), y(0) = y0, t ∈
[
0,

1
ε

]
.

Here, the perturbation parameter ε > 0 is considered to be small and hence
reflects the presence of two time scales. Via averaging we construct a limit-
ing system Σaver describing the dynamics of the IRm-components for vanishing
perturbation parameter. We simultaneously examine the corresponding discrete
time singularly perturbed system Σh

ε in IRm × IRn given by

zk+1 − zk = hεf(zk, yk), z0 = z0,

yk+1 − yk ∈ hG(zk, yk), y0 = y0, k ∈
{

0, 1, . . . ,
[

1
hε

]}
.

Naturally, for any fixed perturbation parameter ε > 0 the system Σh
ε is just the

Euler discretization of Σε. The approximating properties of Euler discretizations
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for differential inclusions have been investigated in a variety of articles, see for
instance [1, 2, 6, 7]. In particular in [7] it is shown that under stability type sup-
positions on the IRn-components, the rate of convergence, as the stepsize h > 0
tends to zero, does not depend on the perturbation parameter ε > 0. Still, the
limiting behavior of Σh

ε as (ε, h)→ (0, 0) has not yet been investigated. It is the
main purpose of this paper to show that the IRm-components of Σh

ε converge to
the trajectories of the continuous time averaged system Σaver, as (ε, h)→ (0, 0).
This convergence implies that both limiting processes, ε → 0 and h → 0, are
commutable. If we first let ε → 0, then the IRm-components of Σh

ε converge to
the IRm-components of a discrete time averaged system Σh

aver. In particular it
turns out that the rate of convergence is independent of the step size h > 0.
If, in a second step, we let h → 0, then the IRm-components of Σh

aver tend to
the trajectories of the continuous time averaged system Σaver. This interplay of
discretization and perturbation can be expressed in the following commutative
diagram.

Perturbation
Σaver −→ Σε

Discretization ↓ ↓ Discretization
Σh

aver −→ Σh
ε

Perturbation

We present the regularity suppositions on the mappings involved.

Assumption 1. The mapping f : IRm× IRn → IRm is Lipschitz continuous with
Lipschitz constant L ≥ 0.

Assumption 2. The multi-valued mapping G : IRm × IRn → CC (IRn) is Lip-
schitz continuous with Lipschitz constant L ≥ 0. Furthermore, there are real
constants 0 < α ≤ β such that for all z ∈ IRm, y1, y2 ∈ IRn, v1 ∈ G(z, y1) there
is a v2 ∈ G(z, y2) with

〈v2 − v1, y2 − y1〉 ≤ −α‖y2 − y1‖2, ‖v2 − v1‖ ≤ β‖y2 − y1‖.

These assumptions guarantee that for any compact set M0×N0 ⊂ IRm× IRn of
initial conditions, the trajectories of the singularly perturbed systems involved
stay in a compact set M ×N ⊂ IRm× IRn and that certain averages constructed
below have limits.

Organization of the paper. In Section 2, we focus on continuous time systems
and recall some known results on the relation between Σε and Σaver. In particular
the construction of the continuous time averaged system Σaver is displayed.

Section 3 provides a discrete time version of the averaging result. Here it is
shown that the relation between Σh

ε and Σh
aver is independent of the step size

h > 0.
In Section 4, the discrete time averaged system Σh

aver is considered as a Euler
discretization of the continuous time averaged system Σaver.

Finally, in Section 5 we recall some known results on the relation between Σε

and its Euler discretization Σh
ε .
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Notation. Given a normed space X , we denote by C(X) the family of compact,
nonvoid subsets of X . By CC(X), we denote the family of compact, convex,
nonvoid subsets of X . For two subsets A,B ∈ C(X), the distance of A to B is
given by distH(A,B) := supa∈Adist(a,B), where, as usual we set dist(x,B) :=
infb∈B‖x − b‖, for x ∈ X . The Hausdorff metric is defined by dH(A,B) :=
max{distH(A,B), distH(B,A)}. For the comparison of trajectory sets, through-
out the maximum norm is used. For the comparison of a continuous time tra-
jectory with a discrete time trajectory, we linearly interpolate the discrete time
trajectory.

2 Continuous Time Averaging

Definition 1. For z ∈ IRm, y0 ∈ IRn, S > 0, we define the individual continu-
ous time average as the set

FS(z, y0) :=
⋃
y(·)

1
S

∫ S

0
f(z, y(t))dt,

where the union is taken over all solutions to the multi-valued differential
equation

ẏ(t) ∈ G(z, y(t)), y(0) = y0, t ∈ [0, S]. (1)

Lemma 1. Let Assumptions 1 and 2 be effective. Let M × N0 ⊂ IRm × IRn

be a compact subset. Then there is a Lipschitz continuous multi-valued mapping
Faver : M → CC(IRm) such that uniformly in (z, y0) ∈ M × N0 the individual
continuous time averages satisfy the estimate

dH
(
FS(z, y0), Faver(z)

)
= O(S− 1

2 ), as S →∞.
Proof. This statement can be shown in the same way as Lemma 3 in [5]. A
complete proof of the convergence is contained in [4]. ��
The continuous time averaged system Σaver in IRm is given by

ż(t) ∈ εFaver(z(t)), z(0) = z0, t ∈
[
0,

1
ε

]
.

Let Sε(z0, y0) be the solution set to Σε (projected to the IRm-components) and
let Saver(z0) be the solution set to Σaver. The following theorem states that Σaver
adequately describes the limiting behavior of Σε, as the perturbation parameter
ε > 0 is vanishing.

Theorem 1. Let Assumptions 1 and 2 be effective. For any compact sets M0 ⊂
IRm, N0 ⊂ IRn, we can estimate

dH
(
Sε(z0, y0),Saver(z0)

)
= O(ε

1
3 ), as ε→ 0,

uniformly in (z0, y0) ∈M0 ×N0.

Proof. This statement can be shown in the same way as Theorem 1 in [5]. A
complete proof of the convergence is contained in [4]. ��
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3 Discrete Time Averaging

Definition 2. For z ∈ IRm, y0 ∈ IRn, K > 0, we define the individual discrete
time average as the set

Fh
K(z, y0) :=

⋃
y(·)

1
K

K−1∑
k=0

f(z, yk),

where the union is taken over all solutions to the multi-valued discrete time
system

yk+1 − yk ∈ hG(z, yk), y0 = y0, k ∈ {0, . . . ,K − 1}. (2)

Lemma 2. Let Assumptions 1 and 2 be effective. Let M ×N0 ⊂ IRm× IRn be a
compact subset. Then there is a multi-valued mapping Fh

aver : M → CC(IRm) such
that uniformly in (z, y0) ∈ M × N0 and in h ∈

(
0, α

β2

]
the individual discrete

time averages satisfy the estimate

h
1
2 dH

(
Fh

K(z, y0), Fh
aver(z)

)
= O(K− 1

2 ), as K →∞.

Furthermore, the mapping Fh
aver : M → CC(IRm) is Lipschitz continuous with

Lipschitz constant Λ ≥ 0.

Proof. Let
(
y1

k

)
k∈{0,...,K−1} be a solution to the multi-valued discrete system

yk+1 − yk ∈ hG(z, yk), k ∈ {0, . . . ,K − 1}, (3)

with initial value y1
0 = ψ1. We construct a solution y2

k to the multi-valued discrete
system (3) with initial condition y2

0 = ψ2 according to Assumption 2. Then we
can achieve that

‖y2
k+1 − y1

k+1‖2 = 〈y2
k − y1

k + h(v2 − v1), y2
k − y1

k + h(v2 − v1)〉
= ‖y2

k − y1
k‖2 + h2‖v2 − v1‖2 + 2h〈v2 − v1, y2

k − y1
k〉

≤ (1 + β2h2 − 2αh)‖y2
k − y1

k‖2,

which yields for 0 < h ≤ α
β2 the estimation

‖y2
k+1 − y1

k+1‖ ≤
(

1− αh

2

)
‖y2

k − y1
k‖.

Obviously, the estimation above implies exponential stability type properties
of the multi-valued discrete system (3). Accordingly we have for the individual
discrete time averages

dH
(
Fh

K(z, ψ2), Fh
K(z, ψ1)

)
≤ L

K

K−1∑
k=0

(
1− αh

2

)k

‖ψ2 − ψ1‖ ≤
2L
αhK

‖ψ2 − ψ1‖.
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Note that in general the individual discrete time averages are not convex, but
according to the estimation above their convex hulls form a Cauchy sequence
in CC(IRm), as (hK) → ∞. The claim follows from the fact that the convex
combinations of any set A ∈ C(IRm) approximate its convex hull via

dH

(
1
k

k∑
i=1

A, conv(A)

)
= O(k−1), as k →∞,

see [3], Lemma 4. As for the Lipschitz continuity of the multi-valued mapping
Fh

aver : M → CC(IRm) we argue as follows. The exponential stability type proper-
ties of the multi-valued discrete system (3) imply that there is a constant C ≥ 0
such that for any sequences (z1

k), (z2
k) ⊂ M , any initial value y0 ∈ N0, any

K > 0, any step size 0 < h ≤ α
β2 and any solution y1

k to

yk+1 − yk ∈ hG(z1, yk), y0 = y0, k ∈ {0, . . . ,K − 1},

there is a solution y2
k to

yk+1 − yk ∈ hG(z2, yk), y0 = y0, k ∈ {0, . . . ,K − 1},

with
max

k∈{0,...,K−1}
‖y1

k − y2
k‖ ≤ C max

k∈{0,...,K−1}
‖z1

k − z2
k‖.

Hence, the individual discrete time averages have a common Lipschitz constant
in the first argument, which is transferred to the limit set and the proof is
finished. ��

The discrete time averaged system Σh
aver in IRm is given by

zk+1 − zk ∈ hεFh
aver(zk), z(0) = z0, k ∈

{
0, 1, . . . ,

[
1
hε

]}
.

Let Sh
ε (z0, y0) be the solution set to Σh

ε (projected to the IRm-component) and
let Sh

aver(z0) be the solution set to Σh
aver. The following theorem is the main

result of this paper. It states in particular that the approximation via averaging
is independent of the step size.

Theorem 2. Let Assumptions 1 and 2 be effective. For any compact sets M0 ⊂
IRm, N0 ⊂ IRn we can estimate

dH
(
Sh

ε (z0, y0),Sh
aver(z

0)
)

= O(ε
1
3 ), as ε→ 0,

uniformly in the initial states (z0, y0) ∈M0×N0 and in the stepsize h ∈
(
0, α

β2

]
.

Proof. We define the mapping n : (0, 1] ×
(
0, α

β2

]
→ IN, (ε, h) �→ nh

ε :=
[

ε− 2
3

h

]
.

We set

lhε :=
[

1
εhnh

ε

]
.
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Let (zk)k∈{0,..,[1/ε]} ⊂ IRm be a trajectory of the discrete time singularly per-
turbed system Σh

ε . Then we have z0 = z0 and

z(l+1)nh
ε

= zlnh
ε

+ ε

(l+1)nh
ε −1∑

k=lnh
ε

hf(zk, yk)

for l ∈ {0, .., lhε }. We define a family (ξl)l∈{0,..,lh
ε } ⊂ IRm by ξ0 := z0 and

ξl+1 := ξl + ε

(l+1)nh
ε −1∑

k=lnh
ε

hf(ξl, yl
k),

where (yl
k)k∈{lnh

ε ,...,(l+1)nh
ε −1} ⊂ IRn denotes the trajectory of the system

qk+1 − qk ∈ hG(ξl, qk), qlnh
ε

= ylnh
ε
, k ∈ {lnh

ε , . . . , (l + 1)nh
ε − 1}.

We define Δl := ‖zlnh
ε
− ξl‖ and obtain

Δl+1 ≤ Δl + ε

(l+1)nh
ε −1∑

k=lnh
ε

h(L(Δl + εnh
ε hP ) + L‖yk − yl

k‖).

By Assumption 1 we can choose yl
k in a way that for k ∈ {lnh

ε , . . . , (l+1)nh
ε −1}

we have

‖yk − yl
k‖ ≤ C max

k∈{lnh
ε ,...,(l+1)nh

ε −1}
‖zk − ξl‖ ≤ C

(
Δl + εnh

εhP
)
,

where the constant C ≥ 0 only depends on the one-sided Lipschitz constant
α > 0 and on the Lipschitz constant L ≥ 0. We conclude that

Δl+1 ≤ Δl(1 + εhnh
εL(1 + C)) + (εhnh

ε )2(LP + LCP ).

Since lhε ≤ 1/(εhnh
ε ) we have

Δl ≤ εhnh
ε (LP + LCP )eL(1+C)

for all l ∈ {0, .., lhε }. We choose vl ∈ Faver(ξl) such that

√
h

∥∥∥∥∥∥vl −
1
nh

ε

(l+1)nh
ε −1∑

k=lnh
ε

f(ξl, yl
k)

∥∥∥∥∥∥ ≤ O

(
1√
nh

ε

)

and define a family (ηl)l∈{0,..,lh
ε } ⊂ IRm by η0 := z0 and

ηl+1 := ηl + εhnh
ε vl.
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Then we can estimate
√
h‖ηl − ξl‖ ≤ O

(
1√
nh

ε

)
for all l ∈ {0, .., lhε }. Note that ηl is not yet a trajectory of the discrete time aver-
aged system Σh

aver. For this reason we finally define a trajectory (xk)k∈{0,..,[1/ε]}
⊂ IRm of the discrete time averaged system Σh

aver by x0 = z0 and

xk+1 − xk = εwk,

where wk ∈ Faver(xk) is chosen such that for k ∈ {lnh
ε , . . . , (l + 1)nh

ε − 1} we
have

‖wk − vl‖ ≤ Λ‖xk − ηl‖.
We define Dl := ‖xlnh

ε
− ηl‖ and obtain

Dl+1 ≤ Dl + εhnh
εΛ(εhnh

εP +Dl)

which yields
Dl ≤ εhnh

εΛPe
K

for all l ∈ {0, .., lhε }. Overall we have the estimation

‖zk − xk‖ ≤ O(εhnh
ε ) +O

(
1√
hnh

ε

)

and by the choice of nh
ε we obtain the estimation

distH
(
Sh

ε (z0, y0),Sh
aver(z

0)
)

= O(ε
1
3 ),

as ε→ 0. The proof of the converse estimation is similar and we omit it. ��

4 Discretization of the Averaged System

Theorem 3. Let Assumptions 1 and 2 be effective. For any compact sets M0 ⊂
IRm we can estimate

dH
(
Sh

aver(z
0),Saver(z0)

)
= O(h), as h→ 0,

uniformly in the initial states z0 ∈M0.

Proof. Let us note that the individual discrete time averages Fh
K(z, y0) ⊂ IRm

converge to the limit set Fh(z) ⊂ IRm for 0 < h < α
β2 . The construction of

the limit set Fh(z) ⊂ IRm is based on exponential stability properties of the
multi-valued discrete system (2). By the convexity of the sets G(z, y) ⊂ IRn

the solutions to the multi-valued discrete system (2) are Euler approximations
of the multi-valued differential equation (1) and the approximation is of order
O(h) on bounded time intervals., see for instance [1, 6, 7]. By the exponential
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stability properties of (2) and (1), the Euler approximation can be extended
to the interval [0,∞), where it is of order O(h) as well. Hence, we have the
estimation

dH
(
Fh

aver(z), Faver(z)
)

= O(h),

as h → 0, uniformly in z ∈ M0. On the other hand, the trajectories of the dis-
crete time averaged system Σh

aver form Euler approximations of the solutions to
the multi-valued differential equation given by Fh

aver(z) and the order of approx-
imation is O(h) as well. This observation finishes the proof.

5 Discretization of the Singularly Perturbed System

Theorem 4. Let Assumptions 1 and 2 be effective. For any compact sets M0 ⊂
IRm, N0 ⊂ IRn and any upper bound ε0 > 0 we can estimate

dH
(
Sh

ε (z0, y0),Sε(z0, y0)
)

= O(h), as h→ 0,

uniformly in the initial states (z0, y0) ∈ M0 × N0 and in the perturbation pa-
rameter ε ∈ (0, ε0].

Proof. The estimation

distH
(
Sh

ε (z0, y0),Sε(z0, y0)
)

= O(h),

as h → 0, can be deduced from Theorem 3 in [7]. The proof of the converse
estimation is similar and we omit it. ��
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Abstract. In this paper we discuss an inclusion method for solving rect-
angular (over- and under-determined) dense linear systems where the in-
put data are uncertain and vary within given intervals. An improvement
of the quality of the solution enclosures is described for both indepen-
dent and parameter dependent input intervals. A fixed-point algorithm
with result verification that exploits the structure of the problems to be
solved is given. Mathematica functions for solving the discussed rectangu-
lar problems are developed and presented. Numerical examples illustrate
the advantages of the proposed improved approach.

1 Introduction

Consider linear systems (1) where A ∈ Sm×n, b ∈ Sm and S ∈ {R,C},

A · x = b. (1)

Form > n, the linear system (1) is overdetermined and has no solution in general.
In this case we are interested in a vector x̃ ∈ Sm which minimizes the Euclidean
norm ||b − Ax̃|| of the residual vector. If m < n we have an underdetermined
system. In general, there are infinitely many solutions and we look for a vector
ỹ ∈ Sm for which Aỹ = b and ||ỹ|| is minimal. If the rank of A is maximal, the
solution for both problems is uniquely determined. It is well known [9], that if

m > n and rank(A) = n then x̃ is the solution of AHAx = AHb (2)
m < n and rank(A) = m then ỹ = AHx, where AAHx = b. (3)

However, AHA and AAH are in general ill-conditioned and furthermore not
representable in the computer. In order to find guaranteed enclosures of the
solutions to the above non-square problems, S. Rump [6] proposes to consider
the following augmented square linear systems(

A −I
0 AH

)
·
(
x
y

)
=

(
b
0

)
for m > n, (4)(

AH −I
0 A

)
·
(
x
y

)
=

(
0
b

)
for m < n, (5)
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instead of solving (2), (3). It is shown in [6] as a direct consequence that Rump’s
fixed-point inclusion method for square systems can be used to verify solvabil-
ity of the over-/underdetermined problem, the maximum rank = min(m,n) of
the matrix A, and to produce guaranteed bounds for the uniquely determined
solution. The method is naturally extendable to interval and complex interval
matrices [A] ∈ ISm×n and vectors [b] ∈ ISm.

Following this approach, over-/underdetermined linear system solvers with
result verification were implemented in the environments of PASCAL-XSC [2]
and C-XSC [1]. For problems with interval (real or complex) input data these
implementations are based on solving square interval linear systems (4), (5)
assuming that all the elements vary independently in their intervals. A close
look at the structure of the matrices in the systems (4), (5) shows that each
element of the matrix A appears twice in the augmented square matrix which
means that this matrix involves dependencies. As is well-known “the dependency
problem” in interval analysis causes severe overestimation of the corresponding
solution set and may lead to an interval iteration matrix involving singular ones.

In this paper we derive an algorithm for sharp enclosure of the solution
set to the square linear system used as a basis for the solution of an over-
/underdetermined interval (real or complex) linear problem (2), (3). The pro-
posed algorithm improves the approach used in [1, 2] by taking into account the
dependencies in the augmented matrix in order to improve the sharpness of the
solution enclosure, and by using block matrix computations, related to the spe-
cial structure of the matrix, to reduce the number of floating-point operations.

The following notations are used. IR, IC are the sets of real, resp. complex
intervals. We assume that the reader is familiar with basic results of interval
analysis (cf. [3]). For an interval [a] := [a−, a+] ∈ IR, mid([a]) := (a− + a+)/2 is
the mid point of [a]. By ISn, ISm×n denote the sets of interval (real or complex)
n-vectors, resp. m × n matrices. For Σ ⊆ Rn the interval hull ♦(Σ) is defined
by ♦(Σ) :=

⋂
{[w] ∈ IRn | Σ ∈ [w]}. AH denotes the Hermitian matrix of a

matrix A (i.e. the transposed matrix in the real, resp. real interval case). I is the
identity matrix. An interval matrix [A] has rank n if every A ∈ [A] has rank n.

2 Theory and Algorithm

Let [A] ∈ ISm×n, [b] ∈ ISm, where S ∈ {R,C}, and m �= n.
If m > n and rank([A]) = n, define the set

Σm>n := {x̃ ∈ Sn | ∃A ∈ [A], ∃ b ∈ [b], x̃ = argminx∈Sn ||b−Ax||}
=

{
x ∈ Sn | ∃A ∈ [A], ∃ b ∈ [b], AHAx = AHb

}
. (6)

If m < n and rank([A]) = m, define the set

Σm<n :=
{
ỹ ∈ Sn | (∃A ∈ [A])(∃ b ∈ [b])(ỹ = argminy∈Sn ||y||, Ay = b)

}
=

{
y ∈ Sn | (∃A ∈ [A])(∃ b ∈ [b])(y = AHx, AAHx = b)

}
. (7)

We are interested in finding verified enclosures of the solution sets (6), (7)
whenever they are bounded, that is interval vectors [x], [y] ∈ ISn such that
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[x] ⊇ ♦ (Σm>n) and [y] ⊇ ♦ (Σm<n). The following theorems permit to calcu-
late very sharp bounds to the solution sets (6), (7) and to estimate the sharpness
of the calculated bounds. Define

(o) [B] :=
(

[A] −I
0 [A]H

)
, [v] := ([b], 0)�; (8)

(u) [B] :=
(

[A]H −I
0 [A]

)
, [v] := (0, [b])�. (9)

Theorem 1. Let [A] ∈ ISm×n, [b] ∈ ISm, m > n. Define [B] ∈ IS(m+n)×(m+n),
[v] ∈ ISm+n to be the square matrix, resp. the vector in (8) and let R ∈
S(m+n)×(m+n), ũ ∈ Sm+n.
1) Let [z] ∈ ISm+n be defined by

[zi]|m+n
i=1 :=

m∑
μ=1

riμ([bμ] + ũn+μ)−
m∑

μ=1

n∑
ν=1

(riμũν + ri,m+ν ũn+μ)Re([aμν ])

−
m∑

μ=1

n∑
ν=1

(riμũν − ri,m+ν ũn+μ)Im([aμν ]) (10)

then [z] = ♦ ({R · (v −Bũ) | B ∈ [B], v ∈ [v]}).
2) Let [C] ∈ IS(m+n)×(m+n) is defined by [C] := I −R · [B] and let [u] ∈ ISm+n.
Define [w] ∈ ISm+n by

[wi]|m+n
i=1 := {[z] + [C] · [uu]}i, where [uu] := ([w1], . . . , [wi−1], [ui], . . . , [um+n])�

If [w] � [u], then every matrix A ∈ [A] has a full rank n, and for every A ∈ [A],
b ∈ [b] with x̂ minimizing ||b − Ax||, the unique solution x̂ satisfies x̂ ∈ x̃ + [x],
where x̃ and [x] are the first n components of ũ, resp. [w].
3) With [Δ] := [C] · [w] ∈ ISm+n and [xx] ∈ ISn defined by

[xxi] := [inf([zi]) + sup([Δi]), sup([zi]) + inf([Δi])], 1 � i � n,

the following inner and outer estimations hold true

x̃+ [xx] � ♦ (Σm>n) � x̃+ [x].

Proof. 1) Let us represent R by a block structure R = (R1, R2), where

R1 = (r1iμ) := (riμ), R2 = (r2iν) := (ri,m+ν), 1 ≤ μ ≤ m, 1 ≤ ν ≤ n, (11)
1 ≤ i ≤ m+ n.

Since for arbitrary A ∈ [A], b ∈ [b] we have

z := R(v −B · ũ) = R1 · b− (R1, R2) ·
(
Aũ1 − ũ2

AH ũ2

)
= R1 · b− (R1, R2) ·

(
Aũ1 − ũ2

(ũ2�A)�

)
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= R1 · b− R1 ·

⎛⎜⎝
∑n

ν=1 aμν ũ
1
ν − ũ2

μ
...

μ = 1, . . . ,m

⎞⎟⎠−R2 ·

⎛⎜⎝
∑m

μ=1 aμν ũ
2
μ

...
ν = 1, . . . , n

⎞⎟⎠ ,

zi|m+n
i=1 =

m∑
μ=1

riμbμ −
m∑

μ=1

r1iμ

n∑
ν=1

aμν ũ
1
ν +

m∑
μ=1

r1iμũ
2
μ −

n∑
ν=1

r2iν

m∑
μ=1

ũ2
μaμν

=
m∑

μ=1

riμ(bμ + ũn+μ)−
m∑

μ=1

n∑
ν=1

(riμũν + ri,m+ν ũn+μ)Re(aμν)

−
m∑

μ=1

n∑
ν=1

(riμũν − ri,m+ν ũn+μ)Im(aμν)

then 1) follows by a Theorem by Moore [3] because in (10) each interval variable
occurs only once and to the first power. 2) follows from the fixed-point verifi-
cation theory for non-square systems [6] and for parametric systems [8]. 3) is a
consequence of the theory for estimating the quality of an outer enclosure [7].

Define another block structure for R = (R3, R4), where 1 ≤ i ≤ m+ n and

R3 = (r3iν ) := (riν), R4 = (r4iμ) := (ri,n+μ), 1 ≤ ν ≤ n, 1 ≤ μ ≤ m. (12)

Deriving analogously the expression which gives the exact range for the residuum

z := R(v −B · ũ) = R4 · b− (R3, R4) ·
(
AH ũ1 − ũ2

Aũ2

)

= R4 · b−R3 ·

⎛⎜⎝
∑m

μ=1 aμν ũ
1
μ − ũ2

ν

...
ν = 1, . . . , n

⎞⎟⎠−R4 ·

⎛⎜⎝
∑n

ν=1 aμν ũ
2
ν

...
μ = 1, . . . ,m

⎞⎟⎠ ,

zi|m+n
i=1 =

m∑
μ=1

r4iμbμ −
n∑

ν=1

r3iν

m∑
μ=1

aμν ũ
1
μ +

n∑
ν=1

r3iν ũ
2
ν −

m∑
μ=1

r4iμ

n∑
ν=1

aμν ũ
2
ν

=
m∑

μ=1

ri,n+μbμ −
m∑

μ=1

n∑
ν=1

(riν ũμ + ri,n+μũm+ν)Re(aμν)

+
n∑

ν=1

riν ũm+ν +
m∑

μ=1

n∑
ν=1

(riν ũμ − ri,n+μũm+ν) Im(aμν),

we proof the following theorem for the underdetermined case.

Theorem 2. Let [A] ∈ ISm×n, [b] ∈ ISm, m < n and define [B] ∈
IS(m+n)×(m+n), [v] ∈ ISm+n to be the square matrix, resp. the vector in (9)
and let R ∈ S(m+n)×(m+n), ũ ∈ Sm+n.
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1) Let [z] ∈ ISm+n be defined by

[zi]|m+n
i=1 :=

m∑
μ=1

ri,n+μbμ +
n∑

ν=1

riν ũm+ν −
m∑

μ=1

n∑
ν=1

(riν ũμ + ri,n+μũm+ν)Re(aμν)

+
m∑

μ=1

n∑
ν=1

(riν ũμ − ri,n+μũm+ν) Im(aμν), (13)

then [z] = ♦ ({R · (v −Bũ) | B ∈ [B], v ∈ [v]}).
2) Let [C] ∈ IS(m+n)×(m+n) is defined by [C] := I −R · [B] and let [u] ∈ ISm+n.
Define [w] ∈ ISm+n by

[wi]|m+n
i=1 := {[z] + [C] · [uu]}i, where [uu] := ([w1], . . . , [wi−1], [ui], . . . , [um+n])�

If [w] � [u], then every matrix A ∈ [A] has a full rank m, and for every A ∈ [A],
b ∈ [b] with Aŷ = b and ŷ = min ||y||, the unique solution ŷ satisfies ŷ ∈ ỹ + [y],
where ỹ and [y] are the last n components of ũ, resp. [w].
3) With [Δ] := [C] · [w] ∈ ISm+n and [yy] ∈ ISn defined by

[yyi] := [inf([zi]) + sup([Δi]), sup([zi]) + inf([Δi])], m+ 1 � i � m+ n,

the following inner and outer estimations hold true

ỹ + [yy] � ♦ (Σm<n) � ỹ + [y].

Now, the following algorithm computes guaranteed enclosures of the solution
sets (6), (7), for [A] ∈ IRm×n, [b] ∈ IRm, m �= n.

1. Initialization. b̌ := mid ([b]); Ǎ := mid ([A]);
Compose B̌ corresponding to (4), (5); Compute R ≈ B̌−1 ∈ R(m+n)×(m+n).
Decompose R into blocks defined by (11), (12).

2. Compute the approximate mid-point solution ũ = Rv̌, where

(o) ũ = R1b̌, (u) ũ = R4b̌.

3. Enclosure for the residuum, where for 1 ≤ i ≤ m+ n

(o) [zi] =
m∑

μ=1

riμ([bμ] + ũn+μ)−
m∑

μ=1

n∑
ν=1

(riμũν + ri,m+ν ũn+μ)[aμν ];

(u) [zi] =
m∑

μ=1

ri,n+μ[bμ] +
n∑

ν=1

riν ũm+ν −
m∑

μ=1

n∑
ν=1

(riν ũμ + ri,n+μũm+ν)[aμν ].

4. Enclosure for the iteration matrix:
(o) [C] = I− (R1[A], R2[A]�−R1), (u) [C] = I− (R3[A]�, R4[A]−R3).

5. Verification
[uu] := [z];
repeat

[unew] := [uu] := blow([uu], ε)
for i = 1 to m+ n do [uui] := [zi] + [Ci] · [uu]

until [uu] � [unew] or max iteration exceeded
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6. If [uu] � [unew] then
a unique solution u exists and u ∈ ũ+ [uu], hence
♦(Σm>n) ⊆ x̃+[x], where x̃ and [x] are the first n components of ũ, resp. [uu];
♦(Σm<n) ⊆ ỹ+[y], where ỹ and [y] are the last n components of ũ, resp. [uu].
else algorithm fails, matrix [B] is ill conditioned or singular.

The above algorithm can be rigorously implemented on a computer. Function
blow([uu], ε) (for the definition see [1, 4, 2]) does the so-called ε-inflation which
blows up the intervals somewhat, in order to catch the nearby fixed point. Some
modifications of the above algorithm can be done in order to make it more robust
in the case of almost singular matrices [2]. A cheap method for computing an
estimation of the sharpness of the calculated outer bounds is presented in [4].

3 Parameter Dependence

Let us suppose now that the elements of the matrix A and the vector b depend
affine-linearly on a parameter vector p = (p1, . . . , pk)�, p ∈ [p] ∈ IRk. In this
case A(p) and b(p) have the following factored representation

A(p) = A(0) +A(1)p1 + · · ·+A(k)pk, A(j) ∈ Rm×n, (14)
b(p) = b(0) + b(1)p1 + · · ·+ b(k)pk, b(j) ∈ Rm, j = 0, 1, . . . , k. (15)

For 1 ≤ i ≤ m+ n we have the following exact ranges for the residuum

(o) [zi] =
m∑

μ=1

(
ũn+μ + b(0)μ +

n∑
ν=1

(riμũν + ri,m+ν ũn+μ)a(0)
μν

)

+
k∑

j=1

[pj ]

(
m∑

μ=1

riμb
(j)
μ −

m∑
μ=1

n∑
ν=1

(riμũν + ri,m+ν ũn+μ)a(j)
μν

)
,

(u) [zi] =
m∑

μ=1

ri,n+μb
(0)
μ +

n∑
ν=1

riν ũm+ν −
m∑

μ=1

n∑
ν=1

(riν ũμ + ri,n+μũm+ν)a(0)
μν

+
k∑

j=1

(
m∑

μ=1

ri,n+μb
(j)
μ −

m∑
μ=1

n∑
ν=1

(riν ũμ + ri,n+μũm+ν)a(j)
μν

)
[pj ].

The improved enclosure of the iteration matrix C, for m > n e.g., is

[C] = I −

⎛⎝R1A(0) +
k∑

j=1

[pj ]
(
R1A(j)

)
, R2A(0)� −R1 +

k∑
j=1

[pj ]
(
R2A(j)�

)⎞⎠ .

An implementation of the methods/algorithm, presented in Section 2, which
exploits the above given expressions for the exact ranges of the residual and the
iteration matrix will produce very sharp bounds for the solution sets to over- and
underdetermined linear systems which elements depend on parameters varying
within given intervals.
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4 Mathematica Software, Numerical Examples

Methods and algorithms discussed in this paper are implemented in the environ-
ment of Mathematica [10]. The Mathematica package IntervalComputations
‘LinearSystems‘ contains a collection of functions which compute guaranteed
inclusions for the solution set of a square interval linear system [5]. The par-
ticular solvers differ upon the type of the linear system to be solved and the
implemented solution method. Now, this package is extended by functions that
find guaranteed enclosures to the solutions of over- and underdetermined real
linear systems which do or do not involve parameter dependencies.

ILinearSolve[A, b] computes guaranteed bounds for the solution sets of a
square interval linear system and for the solution sets (6), (7), where all elements
vary independently in their intervals. The input elements can be either numerical
intervals or elements from the domain Real.

ParametricSSolve[Ap, bp, parLst] computes guaranteed enclosures for
the solutions of over- and underdetermined real linear systems whose elements
depend on interval parameters. The parameters and their interval values should
be specified by a list of rules parLst. Mathematica [10] allows convenient sym-
bolic description of the parametric matrix and the right hand side vector.

All the iterative solvers can take options affecting the computational pro-
cess and/or the output of the particular function. The three options, associated
with everyone of the iterative solvers are InnerEstimation, Refinement, and
Statistics. InnerEstimation, when set to True, specifies the computing of
component-wise inner approximation of the solution set in addition to the outer
enclosure. Inner estimations allow to obtain the very important measure for the
degree of sharpness of an outer solution set enclosure [7]. Refinement set to
True implies the application of an iterative refinement procedure for the outer
solution set approximation. Statistics set to True implies output of the num-
ber of iterations and the relative improvement by the refinement procedure. The
three options are set to False by default.

A web access to the above solvers for interval linear systems can be found at
http://cose.math.bas.bg/webComputing/.

Example 1. Consider the (6×5)-matrixM3, taken from [11–p.143], with rank= 4
and depending on a real parameter a. The following matrix A(a) with full rank
is obtained by deleting the fourth column in M3. The right-hand side vector b
is constructed so that for every a the exact solution of A(a)�A(a)x = A(a)�b is
ex = (1,−1, 1,−1)� (see [12]), thus

A(a) =

⎛⎜⎜⎜⎜⎜⎜⎝
a a+ 1 a+ 2 a
a a+ 2 a+ 3 a+ 1

a+ 1 a+ 2 a+ 3 a+ 2
a+ 2 a+ 3 a+ 4 a+ 3
a+ 3 a+ 4 a+ 5 a+ 5
a+ 5 a+ 5 a+ 6 a+ 7

⎞⎟⎟⎟⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎜⎜⎜⎝
3
1
−2
−3
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ , ex =

⎛⎜⎜⎝
1
−1
1
−1

⎞⎟⎟⎠ .

Matrix A(a) is ill-conditioned with cond∞(A) ≈ 2602 for a = 1.0. We solve the
system [A]x = b, where [A] = ♦({A(a) | a ∈ [0.999, 1.001]}) by the improved
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algorithm and get the following inclusion intervals

♦ (Σm>n) � (16)
([0.8629, 1.1371], [−1.8273,−0.1727], [0.4924, 1.5076], [−1.2742,−0.7257])�.

The linear solver for the corresponding augmented square system which does not
accounts for the particular matrix structure gives a solution enclosure overesti-
mating the enclosure (16) by 6–10%.

Example 2. We solve an overdetermined parametric system A(a)x = b, where
A(a) and b are defined in Example 1, and a ∈ [0.99, 1.01]. Our parametric solver
found in 1 iteration a sharp enclosure (the numbers have 16-digits mantissa)

([0.9 . . . 97440, 1.0 . . .02573], [−1.0 . . .016600,−0.9 . . .983394],
[0.9 . . . 989643, 1.0 . . .010354], [−1.0 . . .05294,−0.9 . . .94715])�

of the exact solution ex = (1,−1, 1,−1)� which actually does not depend on a.

The main application of the improved methods and algorithms presented in this
paper is for parameter identification in approximation and interpolation when
there are errors (uncertainties) in both the output and the variables.
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Abstract. A multivalued version of the implicit midpoint rule is ap-
plied to one type of convex differential inclusions. Local as well as global
estimates are obtained. For numerical implementations of the method
certain selection strategy algorithm is suggested and its accuracy
estimated.

1 Introduction

We consider the differential inclusion

dx(t)
dt

∈ co
k⋃

i=1

ai(x(t)), x(0) = x0, t ∈ [0, T ], (1)

where co means the convex hull and ai(·) : Rn → Rn. We address the prob-
lem of approximation of this differential inclusion by discrete-time inclusions by
means of a specific Runge-Kutta scheme. We apply two versions (multivalued) of
the implicit midpoint rule when the functions ai(·) satisfy conditions for linear
growth and continuous differentiability. Our analysis is based on the represen-
tation of the solutions set of (1) by the solutions of some family of differential
equations. The set-valued modification of the implicit midpont rule, known from
the field of differential equations, requires a solution of certain implicit algebraic
equation in order some approximate solution of (1) to be obtained. The second
version of the implicit midpoint rule, suggested here, allows one to obtain a set of
approximate solutions as convex combinations of the solutions of a finite number
k of algebraic implicit equations, which makes the method more useful for prac-
tical purposes. Some of the estimates obtained here for either of the considered
schemes are of second order, including the case of nonsmooth approximated solu-
tions. To the authors best knowledge, approximation order better than linear for
Runge-Kutta schemes is obtained for strongly convex differential inclusions [1],
and when the approximated trajectory has continuous derivatives with bounded
variation [2].
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2 Preliminary Material

Let us assume:

A1: ai(·) are continuously differentiable, and
A2: ai(·) are with linear growth: ‖ai(x)‖ ≤ ϑ(1 + ‖x‖) for some positive

ϑ, where ‖ · ‖ is the Euclidean norm.

The assumptions A1 and A2 imply that the solutions set X [0, T ] of (1) is
nonempty and compact in the space of the continuous functions C[0, T ] and the
set of all values of the solutions is compact in Rn [3].

For any sequence of k elements (f1, f2, . . . , fk) we use the notation {fi}k
i=1.

Denote A =
{
{αi}k

i=1

∣∣∣∣ αi ∈ R,
k∑

i=1
αi = 1, αi ≥ 0

}
. The set of all measurable

(single-valued) selections of the mapping t �→ A, defined on [0, T ] is given

by M[0, T ] =
{
{μi(·)}k

i=1

∣∣∣∣ μi(·) ∈ L1[0, T ],
k∑

i=1
μi(t) = 1, μi(t) ≥ 0

}
. It follows

from the lemma of Filippov in [4] that, for a given solution x(t) of the differential
inclusion (1), there exists a measurable selection {μi(·)}k

i=1 ∈M[0, T ], such that

dx(t)
dt

=
k∑

i=1

μi(t)ai(x(t)) for almost all t ∈ [0, T ], x(0) = x0. (2)

Conversely, thanks to the conditions A1 and A2, for a given sequence {μi(·)}k
i=1

in M[0, T ], (2) has an unique solution, which is a solution of the differential
inclusion (1). We come to the conclusion that X [0, T ] can be represented by the
solutions of the differential equations (2), defined by the elements of M[0, T ],
namely it holds

X [0, T ] =
{
x(·)

∣∣x(t) = x0 +

t∫
0

k∑
i=1

μi(s)ai(x(s))ds on [0, T ],

{μi(·)}k
i=1 ∈ M[0, T ]

}
. (3)

The reachable set of (1) at t ∈ [0, T ] is defined by R(t) =
{
x(t)|x(·) ∈ X [0, T ]

}
.

Implicit Midpoint Rule. For some h = T
m (m is a given natural number) and solu-

tions setZ(h, xjh) of the implicit inclusion z ∈
{

k∑
i=1

αiai(xjh+ h
2 z)

∣∣∣∣{αi}k
i=1 ∈ A

}
calculate the vector x(j+1)h ∈

{
xjh + hz| z ∈ Z(h, xjh)

}
.

Convex Combinations Selection Scheme. Select any z that belongs to the set

Z̄(h, xjh) ≡
{

k∑
i=1

αizi| {αi}k
i=1 ∈ A

}
, where zi is a solution of the equation

zi = ai(xjh + h
2 zi) and compute x(j+1)h = xjh + hz.



The Implicit Midpoint Rule for a Class of Convex Differential Inclusions 315

Provided h is sufficiently small, Z(h, xjh) and Z̄(h, xjh) are not empty [5].
The approximate solution (x0, xh, . . . , xmh) is denoted, either by Xh, or by
X̄h, depending on whether it is associated with the implicit midpoit rule, or
the convex combinations selection scheme, respectively. The corresponding ap-
proximate reachable sets are defined by Rjh = {x|x = xjh for some Xh} and
R̄jh = {x|x = xjh for some X̄h}. Obviously, R̄jh ⊂ coRjh. By induction it can
be proven that the set {x|x = xjh for some Xh

⋃
X̄h} belongs to some closed ball

B̂ ⊂ Rn together with all exact solutions in X [0, T ]. Via the assumption A1 we
take advantage of the obvious Lipschitz continuity of ai(·) and the Jacoby ma-
trixes a′i(·) on B̂ denoting their Lipschitz constant by M . H(A,B) denotes the
excess of A from B and haus(A,B) is used for the Hausdorff distance between
A and B, where A,B ⊂ Rn.

3 Main Results

Theorem 1 (local estimation). Consider the problem (1), its reachable set
R(h), and the approximate reachable set Rh obtained by the implicit midpoint
rule. If the conditions A1 and A2 are assumed, then for all sufficiently small h
the following estimates hold true:

1. For any xh in Rh, there exists x(h) in R(h) such that ‖x(h)− xh‖ = O(h3),
where O(h3) does not depend on xh;

2. For any x(·) ∈ X [0, T ], there exists xh ∈ Rh such that ‖x(h)−xh‖ = O(h2),
where O(h2) does not depend on x(·);

Proof. Let us consider the difference

x(h)− xh =

h∫
0

k∑
i=1

[
μi(s)ai(x(s)) − αiai(x0 +

h

2
z(h, x0))

]
ds,

(see the representation (3) of x(·)) and apply the Taylor’s formula to the func-
tions ai(·)

x(h)− xh =

h∫
0

k∑
i=1

(μi(s)− αi)ai(x0)ds+

+

h∫
0

k∑
i=1

μi(s)a′i(x0)(x(s) − x0)−
h∫

0

k∑
i=1

αia
′
i(x0)sz(h, x0)ds+O(h3). (4)

The term O(h3) depends on the Lipschitz constant M and the radius of the ball
B̂. Interpolating by xs = x0 + sz(h, x0) we can write
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x(h) − xh =

h∫
0

k∑
i=1

(μi(s)− αi)ai(x0)ds+

h∫
0

k∑
i=1

(μi(s)− αi)a′i(x0)sz(h, x0)ds+

h∫
0

k∑
i=1

μi(s)a′i(x0)(x(s) − xs)ds+O(h3).

Finally, we arrive at

‖x(h)− xh‖ ≤

∥∥∥∥∥∥
k∑

i=1

ai(x0)

h∫
0

(μi(s)− αi) ds

∥∥∥∥∥∥ +

‖z(h, x0)‖
k∑

i=1

‖a′i(x0)‖

∣∣∣∣∣∣
h∫

0

(μi(s)− αi)sds

∣∣∣∣∣∣ +M0

h∫
0

‖x(s)− xs‖ ds+O(h3);

M0 =
k∑

i=1
‖a′i(x0)‖. Applying the Gronwall’s inequality we obtain

‖x(h)− xh‖ ≤ c1(h) + c2(h) +O(h3) +M0e
M0h

h∫
0

(c1(h) + c2(h) +O(h3)) ds,

where

c1(h) =

∥∥∥∥∥∥
k∑

i=1

ai(x0)

h∫
0

(μi(s)− αi) ds

∥∥∥∥∥∥
c2(h) = ‖z(h, x0)‖

k∑
i=1

‖a′i(x0)‖

∣∣∣∣∣∣
h∫

0

(μi(s)− αi)sds

∣∣∣∣∣∣ .
1. Let us fix an element in Rh associated with the sequence {αi}k

i=1 in A.
Hence, by the sequence of functions {μi(·)}k

i=1 in M[0, T ] defined on [0, h] by
the substitutions μi(s) = αi, we choose a point x(h) in R(h), for which the last
inequality implies the first estimate.

2. Let us fix a sequence {μi(·)}k
i=1 in M[0, T ], that is equivalent to choose a

solution x(·) in X [0, T ]. Set

αi(h) =
1
h

h∫
0

μi(s) ds, i = 1, 2, · · · , k. (5)

It is easy to check that ∣∣∣∣∣∣
h∫

0

(s− h

2
)μi(s)ds

∣∣∣∣∣∣ ≤ h2

8
, (6)
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As a result we obtain c1(h) = 0 and c2(h) = O(h2). For the latter estimate we
make use of the boundedness of ‖z(h, x0)‖.

The local error estimation can be apparently expressed in terms of the Haus-
dorff distance.

Corollary. On the assumptions A1 and A2 for all sufficiently small h it holds
haus(Rh, R(h)) = O(h2).

Remark. For continuous {μi(·)}k
i=1, by applying the L’Hopital rule, we have

limh→0
1
h2

h∫
0
(s− h

2 )μi(s) ds = 0, thereby c2(h) = o(h2). As a result we obtain: for

any continuously differentiable x(·) ∈ X [0, T ], produced by continuous selections
{μi(·)}k

i=1, there exists xh ∈ Rh, such that ‖x(h) − xh‖ = o(h2), where o(h2)
depends on x(·).

The next example shows that the estimate of the Hausdorff distance between
Rh and R(h) can not be better than O(h2).

Example. Consider the differential inclusion

dx1(t)
dt

= x2(t),
dx2(t)
dt

∈ [−1, 1], x(0) = 0, t ∈ [0, T ] (7)

and the family of its solutions

x1(τ ; t) =
t2

2
, x2(τ ; t) = t, t ∈ [0, τ ]

x1(τ ; t) = − t
2

2
+ 2τt− τ2, x2(τ ; t) = −t+ 2τ, t ∈ [τ, T ], τ ∈ [0, T ].

It is easily obtained that Rh =
{

(x1,
2
hx1)

∣∣∣ −h2

2 ≤ x1 ≤ h2

2

}
. Let us introduce

the function ρ(τ ; h) = 1
h2 d(x(τ ;h), Rh). We have ρ(τ ; h) = 0 for h ∈ [0, τ ] and

ρ(τ ;h) = 2τ(h−τ)
h2

√
h2+4

for h ∈ [τ, T ].
It is obvious, in fact, that for a given solution from the family (for each

τ ∈ [0, T ]) we get lim
h→0

ρ(τ ;h) = 0, i.e. we obtain d(x(τ ;h), Rh) = o(h2). But,

we claim that this latter estimate is, actually, not uniform with respect to the
parameter τ . Indeed, take h ∈ (0, T ] and note the limit ρ( h

2n ; h
2n−1 ) → 1

4 for
n→∞, implying: for each ε in the interval (0, 1

4 ) there exists a positive number
N(ε), such that for all integer n > N(ε) it holds ρ( h

2n ; h
2n−1 ) > ε. This proves

our claim.
As it is shown in [6], the reachable set of (7) is

R(h) =
{

(x1, x2)
∣∣∣∣ (x2 + h)2

4
− h2

2
≤ x1 ≤

h2

2
− (x2 − h)2

4
, |x2| ≤ h

}
.

Hence, for the excess from Rh to R(h) we have

H(R(h), Rh) = sup
(x1,x2)∈R(h)

h
∣∣ 2
hx1 − x2

∣∣
√
h2 + 4

= sup
x2∈[−h,h]

| ± x2
2 ∓ h2|

2
√
h2 + 4

,



318 N. Pulova and V. Pulov

and thus H(R(h), Rh) = h2

2
√

h2+4
, implying the estimate of H(R(h), Rh) is O(h2)

but not o(h2). Taking into account Rh ⊂ R(h), we come to the conclusion that
haus(Rh, R(h)) is not better than O(h2).

Theorem 2 (global estimation). Consider the problem (1) and the implicit
midpoint rule with an uniform stepsize h = T

m . Assume A1 and A2. Then for
all sufficiently small h, the following estimates hold true:

1. For every approximate solution Xh, there exists a solution x(·) of the differ-
ential inclusion (1) such that max

0≤j≤m
‖x(jh) − xjh‖ = O(h2), where O(h2)

does not depend on Xh;
2. Given a solution x(·) of (1), there exists an approximate solution Xh such

that max
0≤j≤m

‖x(jh)− xjh‖ = O(h), where O(h) does not depends on x(·).

The proof is obtained in a standard way by using the previous result.

Theorem 3 (convex combinations selection scheme). Consider the prob-
lem (1), its reachable set R(h), and the approximate reachable set R̄h obtained
by the convex combinations selection scheme. If the conditions A1 and A2 are
assumed, then for all sufficiently small h the following estimates hold true:

1. For any x(·) ∈ X [0, T ], there exists xh ∈ R̄h such that ‖x(h)−xh‖ = O(h2),
where O(h2) does not depend on x(·);

2. For any xh in R̄h, there exists x(h) ∈ R(h) such that ‖x(h)− xh‖ = O(h2),
where O(h2) does not depend on xh;

3. Consider, either n = 1, or n > 1 with ai(·) of the form

ai(x) = ak(x) +Aix+ Pi, i = 1, . . . , k − 1, (8)

where Ai ∈ R, Pi ∈ Rn are arbitrary constants. Then for any xh in R̄h,
there exists a x(h) in R(h) such that ‖x(h) − xh‖ = O(h3), where O(h3)
does not depend on xh.

Proof. The proofs of the estimates 1 and 2 are obtained by using (4), where z
is replaced by zi and by choosing {μi(·)}k

i=1 and {αi}k
i=1 as it is done in the

respective parts 1. and 2. in the Theorem 1.
3. Let us fix a xh ∈ R̄h defined by {αi}k

i=1 ∈ A and consider the difference

x(h) − xh =

h∫
0

k∑
i=1

[
μi(s)ai(x(s)) − αiai(x0 +

h

2
zi)

]
ds,

where {μi(·)}k
i=1 ∈ M[0, T ] are twice continuously differentiable and xh ∈ R̄h.

Applying the Taylor’s formula we obtain

x(h) − xh = h

k∑
i=1

(μi(0)− αi)ai(x0) +
h2

2

k∑
i=1

[
dμi(0)
dt

ai(x0) +

+ μi(0)a′i(x0)
dx(0)
dt

− αia
′
i(x0)zi

]
+O(h3).
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Then, taking into account that zi = ai(x0 + h
2 zi) = ai(x0) +O(h) and

dx(0)
dt

=
k∑

i=1

μi(0)ai(x0)

the last expression is transformed to

x(h)− xh = h

k∑
i=1

(μi(0)− αi)ai(x0) +
h2

2

k∑
i=1

[
dμi(0)
dt

E +

+ μi(0)
k∑

j=1

μj(0)a′j(x0)− αia
′
i(x0)

]
ai(x0) +O(h3), (9)

where E is n×n identity matrix. Then we find a sequence of functions {μi(·)}k
i=1

∈M[0, T ] that satisfy on [0, h] the equation

k∑
i=1

⎛⎝dμi(s)
dt

E + μi(s)
k∑

j=1

μj(s)a′j(x0)− μi(s)a′i(x0)

⎞⎠ ai(x0) = 0 (10)

with the initial conditions μi(0) = αi, i = 1, 2, . . . , k. Imposing each one of
the terms in (10) to be equal to zero, after some equivalent transformations we
obtain the system(

1
μi(s)

dμi(s)
dt

− 1
μk(s)

dμk(s)
dt

)
E = a′i(x0)− a′k(x0),

k∑
j=1

μj(s) = 1, i = 1, 2 . . . , k − 1 (11)

that must be satisfied by the unknown functions μi(s) on the interval [0, h],
under the initial conditions μi(0) = αi, i = 1, 2, . . . , k.

The system (11) has the solution:
– for the one-dimensional case n = 1

μi(s) =
αi

αk
μk(s)e(a

′
i(x0)−a′

k(x0))s , i = 1, 2, . . . , k − 1

μk(s) =

(
1 +

k−1∑
i=1

αi

αk
e(a

′
i(x0)−a′

k(x0))s

)−1

, s ∈ [0, h]; (12)

– for n > 1 with ai(·) given by (8):

μi(s) =
αi

αk
μk(s)eAi(s−t), i = 1, 2, . . . , k − 1

μk(s) =

(
1 +

k−1∑
i=1

αi

αk
eAi(s−t)

)−1

, s ∈ [0, h]. (13)

Finally, for any xh ∈ R̄h we deduce from (9): each sequence {μi(·)}k
i=1 inM[0, T ],

defined on [0, h] either by (12) or by (13), determines a point x(h) in R(h), which
satisfies the desired estimate for the respective considered case.
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Synchronization of Chaotic Systems with
Diagonal Coupling

Andrzej Stefański, Jerzy Wojewoda, and Tomasz Kapitaniak

Technical University of Lodz, 90-924 Lodz, ul. Stefanowskiego 1/15, Poland
steve@p.lodz.pl

Abstract. In this paper we define a simple criterion of the synchroniza-
tion threshold in the set of coupled chaotic systems (flows or maps) with
diagonal diffusive coupling. The condition of chaotic synchronization is
determined only by two “parameters of order”, i.e. the largest Lyapunov
exponent and the coupling coefficient. Our approach can be applied for
both regular chaotic networks and arrays or lattices of chaotic oscillators
with irregular, arbitrarily assumed structure of coupling.

1 Introduction

Chaotic synchronization in networks of coupled dynamical systems has been
intensively investigated in recent years. It has been demonstrated that two or
more chaotic systems can synchronize by linking them with mutual coupling
or with a common signal or signals (see e.g. [1, 3]). The first analytical condi-
tion for complete synchronization of the sets of symmetrically coupled identical
continuous-time dynamic systems has been formulated in [3]. The complete syn-
chronization [7] takes place when all trajectories converge to the same value
and remain in step during further evolution in phase space. Next this condition
has been developed for discrete-time systems [10]. Many approaches have been
applied for describing the synchronization problem for particular coupling con-
figurations as well as for more general cases [2, 4, 5, 8, 9, 10, 11, 12]. Most of the
existing works on networks synchronization refer to regular, symmetrical struc-
ture of coupling. However, nonsymmetrical and random coupling configuration
have been also considered in some papers [2, 4, 5, 8, 9, 11, 12]. Especially notewor-
thy is a concept called Master Stability Function (MSF) introduced by Pecora &
Carroll [8, 9] which allows to solve the networks synchronization problem for any
set of coupling weights and connections and any number of coupled oscillators.
Other interesting solutions are the applications of graph theory to configura-
tions of oscillators [12] and the concept of the so-called small-world networks
[11] which connect the properties of regular and random networks.

In this paper, we present how to exploit the properties of diagonal diffusive
coupling for the estimation of network synchronization threshold. Our approach
can be successfully applied both for flows and for maps with arbitrarily assumed
structure of coupling.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 321–328, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Stability of Synchronization

Consider a set of n identical dynamical systems with diagonal diffusive coupling
of arbitrary configuration between the oscillators. The equations of motion for
the system are

ẋi = f(xi) +
n∑

j=1

Dij(xj − xi) (1)

where xi ∈ Rk (k ∈ N ≥ 3), f(xi) is a function which governs the dynamics of
each individual oscillator and Dij=diag[dij , dij , . . ., dij ] ∈ Rk are diagonal cou-
pling matrices defining rates of coupling between each pair of the subsystems in
network (i, j = 1, 2, . . . , n). For Dij=0 (absence of coupling) each of subsystems
given by Eq.(1) evolves on the asymptotically stable chaotic attractor A. Since
these oscillators are identical, it can be assumed that the solutions of equation
ẋi = f(xi) starting from different initial points of the same basin of attraction,
represent the set of n uncorrelated trajectories evolving on the attractor A (after
a period of transient motion). Let us introduce a new variable

xij = xi − xj (2)

representing the trajectories separation between any pair of oscillators. Complete
synchronization of all subsystems requires a fulfillment of the expression

lim
t→∞

‖xij(t)‖ = 0, ∀i, j. (3)

As it results from the definition of Lyapunov exponents, the average distance
between nearby trajectories diverges with the rate determined by LLE. On the
other hand, non-zero diffusive coupling causes mutual convergence of these tra-
jectories. In several prior works [4,11,14,16] it has been confirmed that diffusive
interaction of identical strange attractors leads to the direct dependence between
LLE and coupling coefficient, which can be used for the estimation of synchro-
nization threshold. In our analysis we have assumed that the analogous effect
occurs in the system under consideration (Eq.(1)). According to this approach,
for sufficiently small initial trajectory separation distance xij(0) (where linear
effects are dominant) synchronization process is a product of two independent
factors:

(i) exponential divergence of nearby trajectories with mean rate being propor-
tional to the positive LLE,

(ii) exponential convergence caused by introduced diffusive coupling with a rate
being proportional to effective coupling.

An exact determination of synchronization condition can be done analytically
only in some simple cases of coupling configurations, e.g. symmetrical or global
coupling. More complex structure of network requires an application of advanced
mathematical and numerical techniques [2, 4, 8, 9, 12]. As follows from the Master
Stability Function approach [8, 9], in the case of diagonal coupling, only these
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two parameters of order are important for the complete synchronization. Thus,
we can substitute the node by any other system characterized by the same value
of LLE without the influence on the process of network synchronization and
the level of synchronization threshold. This property can be used to simplify
the mathematical description of complete synchronization of chaotic networks.
Namely, we can reduce the system under consideration (Eq.(1)) to the linear
case with xi ∈ R1 and determine the synchronization threshold on the basis of
linear stability analysis of the simplified system. In order to preserve necessary
properties, two conditions have to be fulfilled in the simplified system:

(i) the substituted system in R1 is characterized by the same value of LLE as
the original one,

(ii) original and simplified systems have identical configuration of coupling.

The presented approach can be applied for continuous-time systems as well
as for discrete-time systems.

2.1 Continuous-Time Systems

In order to construct a linear model of the system (1) with one-dimensional
nodes we use the substitutions:

f(x) = λ1x, (4)

Dij = dij . (5)

Substituting (4) and (5) into (1) we obtain a model for the network of one-
dimensional systems

ẋi = λ1xi +
n∑

j=1

dij(xj − xi). (6)

This simplified model can be rewritten in the vector form:

Ẋ = λ1X + GX, (7)

where X=[x1,x2, . . . ,xn]T , and

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
n∑

j=1
d1j d12 · · · d1n

d21
. . .

...
...

. . . dn−1n

dn1 · · · dnn−1 −
n∑

j=1
dnj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

is the coupling configuration matrix (note that dii=0).
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Let us now introduce the trajectories separation between arbitrarily chosen
base subsystem and any other j-th oscillator of the network. If we mark the base
subsystem by subscript “1” we obtain

x1j = x1 − xj ,
xj − xr = x1r − x1j ,

(9)

where (j, r = 2, 3, ..., n). Subtracting the remaining subsystems from the base
node and applying the introduced substitutions (9) we can rewrite the simplified
system in (n − 1)-dimensional form where trajectories separation variables are
given clearly:

Ẏ = SY, (10)

where Y = [x12,x13, . . . ,x1n]T ∈ Rn−1 and (n−1)×(n−1) matrix S assumes the
form

S =

λ1 − d12 +
n

j=1
d2j · · · d2k − d1k · · · d2n − d1n

...
. . .

... . .
. ...

di2 − d12 · · · λ1 − d1k +
n

j=1
dij · · · din − d1n

... . .
. ...

. . .
...

dn2 − d12 · · · dnk − d1k · · · λ1 − d1n +
n

j=1
dnj

,

(11)

where indices i and k enumerate rows and columns, respectively. System (9)
now incorporates only transverse dynamics to the synchronization hyperplane.
Therefore complete synchronization of all subsystems of the system (6) takes
place if the critical point of trajectories separation Y=0 is a stable attractor.
Such situation occurs if real parts of all eigenvalues of the matrix (10) are neg-
ative. Thus, in agreement with the above assumptions, we can formulate the
synchronization condition for general case of network of chaotic time-continuous
systems (Eq.(1)) in the following form:

Re(si) < 0, (12)

where si (i=1, 2, ... , n−1) are eigenvalues of matrix S, which we named Syn-
chronization Stability Matrix (SSM) due to its universal character, i.e. the form
of SSM depends only on the network coupling configuration and LLE of the
dynamical system considered as a network node. The SSM can be constructed
directly from the coupling matrix (8) according to the model formula given by
(10). In general case we can choose any node of the network as the base to de-
fine the SSM, because it is of no significance for the results of synchronization
stability analysis.
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2.2 Discrete-Time Systems

The system analogous to Eq.(1) but consisting of n diffusively coupled identical
maps is described as follows:

xi(m+ 1) = f (xi(m)) +
n∑

j=1

dijIk [f (xj(m))− f (xi(m))], (13)

where xi(m) ∈ Rk, k ∈ N ≥ 1) and Ik represents k × k unit matrix. We obtain
the simplified version of Eq.(13) applying the simplest discrete-time system

x(m+ 1) = exp(λ1)x(m), (14)

which fulfills the first condition of the system simplification, i.e. LLE of the
map given by Eq.(13) is equal to λ1. Using Eqs(5) and (13), the system under
consideration (Eq.(12)) is reduced to the form analogous to Eq.(6) but described
by the following set of difference equations:

xi(m+ 1) = exp(λ1)xi(m) +
n∑

j=1

dij [exp(λ1)xj(m)− exp(λ1)xi(m)], (15)

or in the vector form

Xm+1 = exp(λ1) [Xm +GXm] . (16)

Substituting Eq.(9) into Eq.(14) and proceeding in way shown in section 2.1 we
formulate the difference equations of trajectories separation evolution:

Y(m+ 1) = MY(m), (17)

and a version of SSM for maps:

M = exp(λ1)

1 − d12+
n

k=1
d2k · · · d2j − d1j · · · d2n − d1n

...
. . .

... . .
. ...

di2 − d12 · · · 1 − d1j +
n

k=1
dik · · · din − d1n

... . .
. ...

. . .
...

dn2 − d12 · · · dnj − d1j · · · 1 − d1n+
n

k=1
dnk

.

(18)

Hence, the synchronization threshold for the ensembles of chaotic maps with
regular or random configuration of coupling is defined by the inequality

|μi| < 1, ∀i, (19)

where μi (i=1, 2, ... , n−1) are eigenvalues of SSM (Eq.(17)).
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3 Numerical Example

In numerical simulations the examples of classical dynamical systems (Rössler
system and Henon map) have been applied as the network nodes. Table 1 presents
form of detailed equations which describe these examples with their correspond-
ing LLE’s. The network consists of four randomly coupled chaotic oscillators
according to the scheme shown in Fig.1. The corresponding coupling configura-
tion matrix has the following form

G = d

⎡⎢⎢⎣
−3 1 2 0

2 −2 0 0
1 0 −1 0
3 2 0 −5

⎤⎥⎥⎦ (20)

Irregular coupling configuration causes non-symmetrical, random structure of
SSM’s:

S =

⎡⎣ λ1 − 3d −2d 0
−d λ1 − 3d 0
0 −2d λ1 − 4d

⎤⎦ (21)

and

M = exp(λ1)

⎡⎣ 1− 3d −2d 0
−d 1− 3d 0
0 −2d 1− 4d

⎤⎦ . (22)

Eigenvalues of the above matrices (20) and (21) can be calculated analytically:

s1 = λ1 − 4d, s2,3 = λ1 −
(
3±

√
2
)
d

or
μ1 = exp(λ1)(1− 4d), μ2,3 = exp(λ1)

[
1−

(
3±

√
2
)
d
]
.

Substituting these eigenvalues into inequalities (11) and (18) we obtain the syn-
chronization ranges of parameter d for the network shown in Fig.2:

d >
λ1

3−
√

2
(23)

for flows (Rössler systems) and

1− exp(−λ1)
3−

√
2

< d <
1 + exp(−λ1)

3 +
√

2
(24)

Table 1. Dynamical systems used in numerical simulations

Dynamical system Equations of motion LLE – λ1

Rössler system
ẋ = −y − z
ẏ = x + 0.15y
ż = 0.20 + z(x − 10.0)

0.085

Henon map
xm+1 = 1 − 1.40x2

m + ym

ym+1 = 0.30xm
0.419
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x 1

x 2

x 3

2d

d

d

x 4

3d2d

2d

Fig. 1. Four oscillators with irregular configuration of coupling

d > 0.0535

�j 1 j avg|x -x | �j 1 j avg|x -x |

(a) (b)

Fig. 2. Bifurcation diagrams (the sum of average trajectories separations vs. coupling
coefficient) representing the comparison of the synchronization ranges in the ensembles
of dynamical systems ((a) set of Rössler systems, (b) set of Henon maps) connected as
in Fig. 1. Analytically obtained ranges according to (22) and (23) marked in black.

for maps (Henon maps). The confirmation of complete synchronization stability
regions given by inequalities (22) and (23) is shown in Figs 2(a) and 2(b).

4 Conclusions

The presented theoretical analysis supported by numerical simulations leads to
main conclusion that chaotic synchronization in the networks composed of iden-
tical oscillators with diagonal, diffusive-type interaction between them can be
considered as simple, linear dynamical process. Two “parameters of order”, i.e.
the largest Lyapunov exponent of the network node system and effective coupling
rate between the nodes, play the dominant role in this process. This property
of diagonal coupling allows us to estimate the synchronization threshold for
arbitrary configuration of coupling. Such method bases on the simplified, linear
model of the network. The advantage of this approach is a simplicity of its appli-
cation for both continuous-time and discrete-time systems. In order to examine
the stability of synchronization state we introduce the concept of Synchronization
Stability Matrix. The SSM is constructed directly from coupling configuration
matrix and allows the linear stability analysis. However, one should note that
our approach can be realized only in the case of diagonal coupling because only
in such case we can substitute the coupling matrices for coupling coefficients
according to (5). Non-diagonal coupling (realized by not all system coordinates
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for each pair of nodes) forces us to take full mathematical form of node system in
considerations of network synchronization process, that makes impossible sim-
plification of the network given by (4) and (5). In such cases other techniques
for determination of synchronization condition have to be used, eg. MSF. We
would like to point out that the presented approach can be qualified as a version
of MSF method, but its possibilities of use in very different systems (maps and
flows) makes it widely useful.
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Abstract. In the present paper a simple two dimensional air pollution
transport model is investigated applying a sequential operator splitting
procedure. A comparison is done between the cases when Eulerian and
semi-Lagrangian schemes are used for the advection sub-problem.

1 Introduction

Air pollution transport models forecast the spatial distribution of the concen-
trations of air pollutants. Changes in the concentrations are caused by different
physical processes in the atmosphere: advection, diffusion, emission, deposition,
and chemical reactions. The effect of these processes lead to the time-evolution
of the concentrations, which is mathematically modelled by a system of partial
differential equations. Due to the complexity of these equations, usually, it is
hard to find appropriate numerical methods which could be efficiently used to
solve the problem numerically.

In order to simplify the system, operator splitting procedures have been intro-
duced. Application of an operator splitting procedure means that instead of the
original problem, a sequence of certain sub-problems is solved. In the case of air
pollution transport models each sub-model describes mathematically one of the
above mentioned physical processes. Applying a splitting procedure, however,
gives rise to a certain amount of error.

In the present paper this error is investigated through a numerical study of
solving a simple air pollution transport model applying sequential splitting and
two different numerical methods for solving the advection sub-problem.

2 Air Pollution Transport Models

Time-evolution of concentrations of air pollutants is caused by the combined
effect of the following atmospheric physical processes. Advection describes the
transportation due to the wind field. Diffusion occurs due to the termic motion of
the gas particles in the air. Deposition means the purification of the atmosphere
� This research was supported by Hungarian Scientific Research Fund under the grant

OTKA T043765, and NATO Collaborative Linkage Grant EST CLG 980505.
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due to the gravity and the rain. Chemical reactions between different species
cause reduction and increase of certain concentrations. Emission is the source
of the air pollutants.

Let c = c(x, t) ∈ Rr denote the concentrations of r species of air pollutants,
where c is a function of the location (x ∈ R3) and the time (t ∈ [0, T ]). The
time-evolution of the concentration vector can be mathematically described by
a system of the following partial differential equations referring to the cl com-
ponent of c ([1]):

∂cl
∂t

= −∇(ucl) +∇(K∇cl) + Rl(c) + E − σcl, t ∈ (0, T ],

cl(x, 0) = c0l
(x)

⎫⎬⎭ (1)

for l = 1, . . . , r, where u = u(x, t) describes the wind velocity, K = K(x, t)
is the diffusion coefficient, the usually non-linear function Rl(c) = Rl(x, t, c)
describes the chemical reactions between the investigated species, E = E(x, t)
is the emission function, and σ = σ(x, t) describes the deposition. Initial and
boundary conditions are also attached to the system (1).

We note that the operator on the right-hand side of system (1) is a sum
of different sub-operators, among those there are also first- and second-order
spatial differential operators. Each of these sub-operators describes one of the
physical processes. The idea of the operator splitting comes from the observation
that system (1) cannot be solved efficiently by using a numerical method which
treats together all the sub-operators. However, solving the sub-problems having
only the corresponding sub-operators on the right-hand side, leads to an easier
problem.

3 Operator Splitting Procedures

Although, there exist several splitting techniques (see, e.g. [2, 3, 4]), we will focus
on the sequential splitting, because usually this is applied in the air pollution
transport models.

Let B denote a Banach space, and X is a properly chosen space of functions
of type [0, T ]→ B. We consider the following abstract Cauchy problem:

dw(t)
dt

= Aw(t), t ∈ (0, T ]

w(0) = w0,

⎫⎬⎭ (2)

where w ∈ X is the unknown function, w0 ∈ B is a given element, and A is an
operator of type B → B. Let us assume that A can be written formally as a sum
of s sub-operators Ai (i = 1, . . . , s). We may assume that the sub-operators Ai

have simpler structure than operator A, and problem (2) has a unique solution
in X . Then let us divide the time interval [0, T ] into m ∈ N sub-intervals with
length τ , where τ is called the splitting timestep, i.e. T = mτ .

Application of the sequential splitting means that first we solve the sub-
problem related to the sub-operator A1 on the time interval [0, τ ], using the
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original initial condition w0 (thus, initial condition is needed also in the case
of (1)). Then we solve the sub-problem related to A2 also on the time interval
[0, τ ], using the solution of the previous sub-problem as an initial condition.
We continue this process until As (always using the previous solution as initial
condition). Then we start again with A1, using the solution of the previous sub-
problem (i.e. related to As) as an initial condition, but on the time interval [τ, 2τ ].
Finally, we arrive to the last time interval [(m−1)τ,mτ ]. The solution of problem
(2) at time t = T applying sequential splitting is the solution of the sub-problem
related to As at the time t = mτ . We note that the approximation obtained
after the treatment of the last sub-model is accepted as an approximation to
the solution at the splitting timestep under consideration. If s = 2, i.e. there are
only two sub-operators, the above process can be written as follows:

dw(k)
1 (t)
dt

= A1w
(k)
1 (t), t ∈ ((k − 1)τ, kτ ]

w
(k)
1 ((k − 1)τ) = wspl ((k − 1)τ)

⎫⎪⎬⎪⎭
dw(k)

2 (t)
dt

= A2w
(k)
2 (t), t ∈ ((k − 1)τ, kτ ]

w
(k)
2 ((k − 1)τ) = w1(kτ)

wspl(kτ) := w
(k)
2 (kτ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
with k = 1, . . . ,m, and wspl(0) = w0, where wspl(kτ) is the solution of the split
problem defined in the points {kτ : k = 0, 1, . . . ,m}.

We remark that the application of a splitting procedure for solving (2) gives
rise to a certain amount of error.

4 Numerical Methods

In real situations, the exact solution of system (1) is not known, therefore, certain
numerical methods have to be used in order to determine the forecast values of
the concentrations c at time t = T . Applying a splitting procedure, instead of
one problem more sub-problems have to be solved individually. Therefore, the
advantage of applying a splitting procedure is that different numerical methods
can be used for solving each sub-problem. For each numerical method different
time step Δt can be chosen. The only important restriction is that the solutions
have to “meet” at time t = kτ (k = 1, . . . ,m). This means that each step size
(for fixed grid size) can be chosen to satisfy the stability condition only of the
corresponding numerical method. Taking the advantage of this possibility the
integration of the model can take shorter time. In the following, we summarize
the numerical methods which we use for the different sub-problems in our test
air pollution transport model introduced in the next section.

We use finite difference methods for discretizing the diffusion equation. The
emission and the deposition equations are discretized by using first-order finite
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difference schemes. Chemical reactions are not considered. Since in our investi-
gation we apply two different numerical schemes for the advection sub-model, in
what follows, we describe them in more details.

4.1 Advection Equation

For the sake of simplicity, let us assume that x ∈ R. Let us define the temporal
and the spatial meshes ωt and ωx, respectively, as

ωt := {i ·Δt, i = 0, 1, . . . , I} and ωx := {j ·Δx, j = 0, 1, . . . , J},

where Δt is the numerical step size, and Δx denotes the spatial grid size. Then
the advection equation has the following form:

∂c

∂t
= −∂(uc)

∂x
, (3)

where c is the concentration of a certain species, and u is the wind velocity. For
solving the advection equation (3), two methods are introduced.

Eulerian aspect. When measurements in certain temporal and spatial points are
available, it is useful to discretize equation (3) directly on the meshes ωt and ωx,
applying a finite difference method. The simplest one is the so-called up-wind
scheme, which can be written in the following way:

ci+1
j − cij
Δt

= −
ui

j+1c
i
j+1 − ui

jc
i
j

Δx
, (4)

where cij and ui
j denote the approximations of c and u, respectively, at time

i ·Δt ∈ ωt at the gridpoint j ·Δx ∈ ωx.
The stability condition of a numerical scheme has a crucial importance.

Scheme (4) is stable only if the Courant-Friedrichs-Levy condition is satisfied,
namely,

Δt · umax

Δx
≤ 1, (5)

where umax is the maximal wind velocity appearing during the integration of the
model. Hence, applying this scheme the step size has to be chosen carefully.

Semi-Lagrangian aspect. Another aspect of solving the advection equation (3) is
from the point of view of the flowing medium. We assume that each fluid domain
contains a certain amount of pollution which is constant during the integration.
When solving the equation in the semi-Lagrangian manner, we follow all fluid
domains back in time, and examine their pollution-contents. The same amount
of pollution they had at time t, they have at time t+Δt. In order to determine
the path of each fluid domain, for first guess we say that a certain fluid domain
comes from the dimensionless distance α := ui

j · Δt
Δx , where α = p+ α̂ with p ∈ Z

and α̂ ∈ (0, 1). Hence, it may happen that a fluid domain starts between two
gridpoints. To avoid this phenomenon, an interpolation onto the mesh ωx is made
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in each time step. Applying linear interpolation, the value of ci+1
j (the forecast

value of the concentration at the gridpoint j ·Δx ∈ ωx) can be determined as

ci+1
j = (1− α̂) cij−p + α̂ cij−p−1. (6)

When the wind velocity u depends on the location and the time, then usually
an iteration is done.

Because of the interpolation (we do not follow the same domains for all time),
this scheme is called semi-Lagrangian scheme (see, e.g. [5]). The great advan-
tage of this scheme is that it is unconditionally stable if the flow is laminar. This
means that the numerical step size Δt can be chosen independently from the
grid size Δx.

5 Errors Appearing in the Numerical Solution

If we apply splitting procedure and numerical methods for solving system (1), the
following kinds of solutions can be defined (as before, τ is the splitting timestep):

– c(x, t) denotes the exact solution of problem (1) at time t;
– c̃(x, kτ) denotes the numerical solution of problem (1) at time kτ ;
– c̃spl(x, kτ) denotes the numerical solution of the split problem at time kτ ,

for k = 1, . . . ,m. Using the above notations, we can define the following two
errors:

– total error: Etot(x, kτ) := |c(x, kτ) − c̃spl(x, kτ)|
– practical error: Eprac(x, kτ) := |c̃(x, kτ) − c̃spl(x, kτ)|

for k = 1, . . . ,m. The difference between the two errors is that the total error can
only be computed when the exact solution is known. However, we are interested
in this error because this tells us how much the numerical solution differs from
the exact solution. In cases when (1) describes a real physical situation, the exact
solution is not known, therefore, the practical error has been introduced. In this
case the numerical solution obtained without applying splitting plays the role of
the exact solution.

6 A Test Problem

In our test model the time-evolution of the concentration of one chemical species
is investigated in two dimensions (i.e. x = (x, y)), without taking into account
the chemical reactions. The physical coefficients and the wind velocity are chosen
to be constant in space and time. Hence, we study the following equation:

∂c

∂t
= −u0x

∂c

∂x
− u0y

∂c

∂y
+K0

(
∂2c

∂x2 +
∂2c

∂y2

)
+ E − σ0c, t ∈ (0, T ],

c(x, y, 0) = c0(x, y),

⎫⎬⎭ (7)
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where u(x, y, t) =
(
u0x , u0y)

)
. In order to measure the above defined errors

caused by the application of the splitting procedure and the numerical methods,
two kinds of emission functions are defined.

One can derive an emission function, for which the exact solution can be
defined as a Gaussian surface in two dimensions growing in time:

cG(x, y, t) = E0 e
te−β((x−x0)2+(y−y0)2). (8)

From this solution not only the practical but the total error can be computed.
In what follows we refer this case as Gaussian emission.

The emission of a town describes a real physical phenomenon: we consider
the uniform emission field of a circle-shaped town in the following form:

Ech(x, y, t) =

{
E0

(
x− 1

2

)2 +
(
y − 1

2

)2 ≤ R2

0 anywhere else,
(9)

where E0 is constant in space and time, and R is the radius of the field. For this
case c0(x, y) = 0. The exact solution is not known, therefore, only the practical
error can be computed.

6.1 Solution of the Test Problem

For solving numerically equation (7), we run the model in the following three
ways: (i) without applying splitting procedure, and using the up-wind scheme for
the advection equation; (ii) applying sequential splitting procedure, and using
the up-wind scheme for the advection equation – we will refer to this case as
Eulerian case; (iii) applying sequential splitting procedure, and using the semi-
Lagrangian scheme for the advection equation – we will refer to this case as
semi-Lagrangian case.

Our forecast domain is 50 km× 50 km large, the grid sizes are equal in both
directions: Δx = Δy = 0.5 km. We forecast the concentration for T = 8 hour
in the case of the Gaussian emission, and T = 1 day in the case of the town,
using a step size Δt = 1 minute. The splitting timestep is chosen as τ = 1 hour.
The most important difference between the Eulerian and the semi-Lagrangian
case is that the latter method is unconditionally stable. Therefore, in this case
the integration of the advection equation does not need the small step size Δt,
therefore, we can use the larger timestep τ . Hence, the integration of the model
takes shorter time in the semi-Lagrangian case.

The parameters in (7) are chosen as follows:

u0x = u0y = 0.5 km/h, K0 = 0.5 km2/h, E0 = 10−4 kg/km3/h, σ0 = 10−5 1/h,

the radius of the emission field of the town equals R = 7 km, which is located
in the center of the domain (i.e. x0 = y0 = 25 km).

In Figure 1 the numerical solutions of equation (7) can be seen using the two
emission functions. We have very similar results without applying splitting, and
also for the Eulerian and the semi-Lagrangian case.
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Fig. 1. Numerical solution of (7) using the Gaussian emission (left panel), and the
emission field of a town (right panel) (similar results without splitting, and for Eulerian
and semi-Lagrangian case)

6.2 Errors Appearing in the Numerical Solution

The spatial distribution of the practical error in the Eulerian (left panel) and
semi-Lagrangian case (right panel) can be seen in Figure 2 and 3 for the Gaussian
emission and for the town, respectively. We note that the spatial distribution of
the total error for the Gaussian emission is similar to the case of the practical
error.

One can see that the structures of the errors reflect the physical processes,
i.e. one can distinguish the effect of the emission (the error field has a typical cen-
ter), the advection (the error field is transported “top-right”), and the diffusion
(the error field is spread).

In the case of the Gaussian emission there is not a significant difference be-
tween the shapes of the error fields for the Eulerian and the semi-Lagrangian
methods. This case, however, is very simple, because the solution always has the
same shape, the concentration is only growing in time. The case of the town is
more complex. In this case the practical errors also behave similarly, however,

Fig. 2. Spatial distribution of practical error for Gaussian emission in the Eulerian
(left panel) and semi-Lagrangian case (right panel) at time t = 8 hour
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Fig. 3. Spatial distribution of practical error for the town in the Eulerian (left panel)
and semi-Lagrangian case (right panel) at time t = 1 day

their shapes differ significantly. It is important that in both cases the practi-
cal error of the Eulerian method is smaller than it is for the semi-Lagrangian
method.

7 Conclusion

To summarize our paper we can say that applying a splitting procedure for solv-
ing a partial differential equation numerically, gives us the possibility to use dif-
ferent numerical method for each sub-problem. Application of semi-Lagrangian
instead of Eulerian scheme for solving the advection equation results shorter
integration time, however, it is less accurate.

After these preliminary results we plan to continue our investigations regard-
ing to the sequential splitting using physical parameters changes in space and
time. Then the same investigations should be done applying Strang – Marchuk
and weighted splittings.
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Abstract. In the past decade the variational methods (3D-var, 4D-
var) have been successfully applied in meteorological data assimilation
and showed promising results for atmospheric chemistry models. In this
paper we describe adjoint computations in data assimilation problems
using a 4-stage Rosenbrock method. The order 4 formula is L-stable and
has an embedded order 3 formula for error control.

1 Introduction

In the 4D-var data assimilation approach a cost function is defined as the
weighted least squares distance between model predictions and observations
over the assimilation window. A minimization procedure is then used to find
the set of control variables that minimizes the cost function. Most of the pow-
erful minimization methods require the evaluation of the gradient of the cost
function which for large scale models is a very intensive computational pro-
cess. Using the adjoint technique, the gradient of the cost funtion can be com-
puted at the expense of few evaluations, making the optimization algorithm very
efficient.

In this paper we describe adjoint computations in data assimilation problems
using a 4-stage Rosenbrock method. The order 4 formula is L-stable and has an
embedded order 3 formula for error control. The number of function evaluations
for the 4 stage method is kept to 3, i.e., one function evaluation is saved.

We consider a 3D atmospheric transport-chemistry model given by the system
of differential equations ([3]):

∂

∂t
ci = −∇ · (uci) +∇ · (IK · ∇ci) + fi(c) + Ei, i = 1, . . . , S. (1)

The initial condition is c(t0) = c0 and appropriate boundary values are pre-
scribed. The solution c(t, x, y, z) ∈ IRS of problem (1) represents the concentra-
tion vector of the chemical species in the model, u is the wind field and IK is
the eddy diffusivity tensor. The chemical reactions are governed by the nonlinear
stiff terms fi(c) = Pi(c)−Di(c)ci, with Pi(c), Di(c), the chemical production and
destruction terms; Ei represents the source term, and depositions are modeled
as a boundary condition at the surface of the earth: −ni · (IK · ∇ci) = Qi − νici
with ni the inward vector normal to the surface, Q and νi, the surface emission

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 339–346, 2006.
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rate and deposition velocity of species i, respectively. We will refer to prob-
lem (1) as the forward model and c(t), t ∈ [t0, T ] will represent the “forward
trajectory”. Typical choices for the set of control variables in data assimila-
tion are the boundary values, initial concentrations, emissions and deposition
rates.

2 4D Variational Data Assimilation

We consider here the 4D variational data assimilation problem associated to
(1) with the set of control variables given by the initial state of the model, c0.
Under suitable assumptions, forward model (1) has a unique solution, viewed as
a function of the initial conditions, c = c(x, y, z, c0).

If space discretization is applied to forward model (1) on a grid (Nx, Ny, Nz),
the resulting ODE system of dimension N = S ×Nx ×Ny ×Nz is:

dc

dt
= FA(c) + FD(c) + FR(c), c(t0) = c0, (2)

where FA represents the advection and horizontal diffusion, FD is the vertical
diffusion, and the reaction terms are given by FR. We assume that a “background
estimate” cb of c0 with the error covariances matrix B, has been generated from
the output of a previous analysis, using some assumptions of consistency in time
of the model state, like stationarity (hypothesis of persistence) or the evolution
predicted by a forecast model. The measurements c0k, k = 1, . . . ,m of the con-
centrations at moments tk are scattered over the interval [t0, T ]. The errors in
measurements and model representativeness are given by the covariances ma-
trices Rk, k = 1, . . . ,m. The covariance matrices B and Rk are symmetric and
positive definite such that B−1, R−1

k are well defined. In practice, B and Rk

are often taken diagonal, which corresponds to the assumption that there is no
spatial and chemical correlation in the background errors, and measurement and
model errors are uncorrelated in space and time.

The 4D-var data assimilation determines an initial state c0 that minimizes
the distance between the model predictions and observations expressed by the
cost function:

F (c0) =
1
2
(c0 − cb)TB−1(c0 − cb) +

1
2

m∑
k=1

(ck − c0k)TR−1
k (ck − c0k) . (3)

Most of the powerful optimization techniques require the evaluation of the
gradient ∇c0F of the cost function. In a comprehensive atmospheric chemistry
model the dimension of the vector c0 can easily be of order 106, which makes
the optimization a very expensive computational process.

In the variational approach, the gradient of the functional F is computed
by using the “adjoint method”. The general theory of adjoint equations and
the derivation of the adjoint model are given in many studies (see, for example,
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[5, 7, 11] and [15]). Below we sketch the basic ideas following [3]. The gradient of
the cost function is:

∇c0F (c0) = B−1(c0 − cb) +
m∑

k=1

(
∂ck
∂c0

)T

R−1
k (ck − c0k) . (4)

Using the chain rule (∂ck)/∂c0)T = (∂ck−1/∂c0)T (∂ck/∂ck−1)T in its trans-
pose form, we can construct the algorithm to compute the gradient:

Step 1. Initialize gradient = 0 .
Step 2. for k = m, 1,−1 do

gradient = (∂ck/∂ck−1)T
[
R−1

k (ck − c0k) + gradient
]
.

Step 3. gradient = B−1(c0 − cb) + gradient .

The main advantage of the adjoint method is that explicit computation of the
Jacobian matrices ∂ck/∂ck−1 is avoided and the matrix-vector products can be
computed directly at Step 2 ([7]).

Problem (2) is usually solved by using the operator splitting ([1, 2, 6]). This
method has the advantage that processes such as advection, vertical diffusion and
chemical reactions can be treated with different numerical schemes. In a second
order accurate Strang splitting approach ([14]) with the time step h = tn+1− tn
the solution cn+1 is obtained from cn as follows:

cn+1 = FA

(
tn+ 1

2
,
h

2

)
FD

(
tn+ 1

2
,
h

2

)
FR(tn, h)FD

(
tn,

h

2

)
FA

(
tn,

h

2

)
cn ,

(5)

where the operators F are defined by the numerical method used to solve the cor-
responding processes. If J denotes the Jacobian matrix associated to F , the ad-
joint algorithm to compute the gradient (4) of the cost function requires products
of the form J

T
u, with u an arbitrary seed vector. For large systems, constructing

the adjoint code by hand can be a frustrating process and raises questions of
technical implementation. In this respect, automatic tools have been developed
([4, 7]).

3 Adjoint Computations for a 4-Stage Rosenbrock
Method

Following the basic ideas in [3] applied to a 2-stage Rosenbrock method, this
section develops the adjoint formulas for a general 4-stage Rosenbrock method
leading to an efficient implementation, suitable for automatization. We consider
the following problem:

dc

dt
= f(c), c(t0) = c0 , (6)
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with c(t), c0 ∈ IRn and f : IRn → IRn, f = f1, f2, . . . , fn)T . One step from t0 to
t1 with h = t1 − t0 of a 4-stage Rosenbrock method reads:

(
1

γ11h
I − J0)k1 = f(c0)

(
1

γ22h
I − J0)k2 = f(c0 + α21k1) +

β21

h
k1

(
1

γ33h
I − J0)k3 = f(c0 + α31k1 + α32k2) +

β31

h
k1 +

β32

h
k2 (7)

(
1

γ44h
I − J0)k4 = f(c0 + α41k1 + α42k2 + α43k3) +

β41

h
k1 +

β42

h
k2 +

β43

h
k3

c1 = c0 +m1k1 +m2k2 +m3k3 +m4k4

ĉ1 = c0 + m̂1k1 + m̂2k2 + m̂3k3 + m̂4k4 ,

where J0 is the Jacobian matrix of f evaluated at c0, J0 = (∂f/∂cj)ij |c=c0

and the coefficients γii, i = 1, 4, α21, α3j , β3j , j = 1, 2, α4s, β4s, s = 1, 2, 3.
The coefficients m1, m2, m3 and m4 are chosen to obtain a desired order of
consistency and numerical stability (see Table 1, [9]).

Table 1. Set of coefficients for the 4-stage Rosenbrock method

α21 = 1.14563212 β21 = 2.341993127112013949170520
α31 = 0.520920789130629029328516 β31 = -0.027333746543489836196505
α32 = 2.341993127112013949170520 β32 = 0.213811650836699689867472
α41 = 0.520920789130629029328516 β41 = -0.259083837785510222112641
α42 = 0.134294186842504800149232 β42 = -0.190595807732311751616358
α43 = 0. β43 = -0.228031035973133829477744
m1 = 0.324534707891734513474196 m̂1 = 0.520920789130629029328516
m2 = 0.049086544787523308684633 m̂2 = 0.144549714665364599584681
m3 = 0. m̂3 = 0.124559686414702049774897
m4 = 0.626378747320742177841171 m̂4 = 0.209969809789304321311906

We consider the case when γ11 = γ22 = γ33 = γ44 = γ, since of special in-
terest are the methods that require only one LU decomposition of (1/γii)I − J0
per step. The value of the parameter γ determines the stability properties of
the Rosenbrock method. In this context, the diagonal entry of the Rosenbrock
formula is suggested in [9] as γ = 0.57281606, which is used for the proposed
algorithm. The coefficients m̂i belong to the order 3 embedded formula. The
difference c1 − ĉ1 can be used as a local error estimator. For the adjoint compu-
tations we have from (7):

(
∂k1

∂c0

)T

=
(
JT

0 + (
∂J0

∂c0
× k1)T

)(
(

1
γh
I − J0)T

)−1
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(
∂k2

∂c0

)T

=

((
I + α21

∂k1

∂c0

)T

JT
1 +

β21

h
(
∂k1

∂c0
)T +

(
∂J0

∂c0
× k2

)T
)

·
(

(
1
γh
I − J0)T

)−1

(
∂k3

∂c0

)T

=

((
I + α31

∂k1

∂c0
+ α32

∂k2

∂c0

)T

JT
2 +

β31

h
(
∂k1

∂c0
)

+
β32

h
(
∂k2

∂c0
)T +

(
∂J0

∂c0
× k3

)T
)
·
(

(
1
γh
I − J0)T

)−1

(
∂k4

∂c0

)T

=

((
I + α41

∂k1

∂c0
+ α42

∂k2

∂c0

)T

JT
3 +

β41

h
(
∂k1

∂c0
)T

+
β42

h
(
∂k2

∂c0
)T +

β43

h
(
∂k3

∂c0
)T +

(
∂J0

∂c0
× k4

)T
)
·
(

(
1
γh
I − J0)T

)−1

,

where J1 is the Jacobian of f evaluated at c0+α21k1, J2 is the Jacobian evaluated
at c0 +α31k1 +α32k2, J3 is the Jacobian evaluated at c0 +α41k1 +α42k2 +α43k3
and the terms (∂J0/∂c0) × ki, i = 1, 2, 3, 4 are n × n matrices whose j column
is (∂J0/∂c

j
0)ki, i = 1, 2, 3, 4. We took into account in the evaluation of the last

equality above that α43 = 0 (see Table 1). We want to point out here the
fact that these matrices are not symmetric. From (7) and using the notation
( 1

γhI − J0)T v = u and the equalities stated above, for an arbitrary seed vector
u ∈ IRn, one obtains:

(
∂c1
∂c0

)T

u = u+m1

(
JT

0 +
(
∂J0

∂c0
× k1

)T
)
v +m2

((
I + α21

∂k1

∂c0

)T

JT
1

+
β21

h

(
∂k1

∂c0

)T

+
(
∂J0

∂c0
× k2

)T
)
v +m3

((
I + α31

∂k1

∂c0
+ α32

∂k2

∂c0

)T

JT
2

+
β31

h

(
∂k1

∂c0

)T

+
β32

h

(
∂k2

∂c0

)T

+
(
∂J0

∂c0
×k3

)T
)
v+m4

((
I+α41

∂k1

∂c0
+α42

∂k2

∂c0

)T

JT
3

+
β41

h

(
∂k1

∂c0

)T

+
β42

h

(
∂k2

∂c0

)T

+
β43

h

(
∂k3

∂c0

)T

+
(
∂J0

∂c0
× k4

)T
)
v .

We are going to show that the computations can in fact be arranged in a
much efficient way. In order to avoid frequent recomputations and to exploit the
particular properties of the method, the order of the operations in the formula
above becomes important. Below we describe the following algorithm:
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Step 1. Solve for v the linear system ( 1
γhI − J0)T v = u. Then, taking into

account that m3 = 0 (see Table 1), we have

(
∂c1
∂c0

)T

u = u+m1

(
JT

0 +
(
∂J0

∂c0
× k1

)T
)
v +m2J

T
1 v +m2

(
∂J0

∂c0
× k2

)T

v

+m2

(
∂k1

∂c0

)T (
α21J

T
1 +

β21

h
I

)
v +m4

(
∂k1

∂c0

)T(
α41J

T
3 +

β41

h
I

)
v

+m4J
T
3 v +m4

(
∂k2

∂c0

)T (
α42J

T
3 +

β42

h
I

)
v (8)

+m4
β43

h

(
∂k3

∂c0

)T

v +m4

(
∂J0

∂c0
× k4

)T

v .

Step 2. Compute

ω1 = JT
1 (m2v); ω11 = α21ω1 + (m2β21/h)v;

ω2 = JT
3 (m4v); ω21 = α41ω2 + (m4β41/h)v;

ω22 = α42ω2 + (m4β42/h)v;
ω3 = JT

2 (m4v); ω33 = (m4β43/h)v .

Step 3. Solve for θ1, θ2, θ3 and θ4 the linear systems:

(
1
γh
I − J0)T θ1 = ω11 , (

1
γh
I − J0)T θ2 = ω21 ,

(
1
γh
I − J0)T θ3 = ω22 , and (

1
γh
I − J0)T θ4 = ω33 ,

respectively. Then, compute θ =
∑4

i=1 θi. After replacing in (8), one obtains:

(
∂c1
∂c0

)T

u = u+ JT
0 (m1v) + JT

1 (m2v) + JT
3 (m4v)

+
(
∂J0

∂c0
× k1

)T

(m1v) +
(
∂J0

∂c0
× k2

)T

(m2v) +
(
∂J0

∂c0
× k4

)T

(m4v)

+

(
JT

0 +
(
∂J0

∂c0
× k1

)T
)
θ1 +

(
JT

0 +
(
∂J0

∂c0
× k1

)T
)
θ2 (9)

+
(
∂k2

∂c0

)T

θ3 +
(
∂k3

∂c0

)T

θ4 ,

and after arranging the terms in (9) we have:
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Step 4. Compute(
∂c1
∂c0

)T

u = u+ ω1 + ω2 + JT
0 (m1v + θ) + JT

1 (θ3 + θ4) + JT
2 (θ4)

+
(
∂J0

∂c0
× k1

)T

(m1v + θ) +
(
∂J0

∂c0
× k2

)T

(m2v + θ3 + θ4)

+
(
∂J0

∂c0
× k4

)T

(m4v) . (10)

4 Computational Issues

From relation (10) we see that it is enough to call the routine to compute the
product JT

0 s (s a seed vector) once, with the seed vector m1v + θ. The same
remark is made for the product [(∂J0/∂c0)× k1]T (m1v+ θ) and for the last two
terms of (10).

We now concentrate on the terms [(∂J0/∂c0)× k]T v whose evaluation domi-
nate the computational cost of the algorithm given by Steps 1-4. Here k, v ∈ IRn

are arbitrary constant vectors. For the ith component we have:(
(
∂J0

∂c0
× k)T v

)
i

=
(
∂J0

∂ci0
k

)T

v = kT

(
∂(JT

0 v)
∂ci0

)
=

(
∂(JT

0 v)
∂ci0

)T

k . (11)

Consider now the function g : IRn → IRn, g(c0) = JT
0 v. Using (7) results in:

[(∂J0/∂c0)× k]T v = [∂g(c0)/∂c0]k .

Notice that the Jacobian matrix of g is symmetric (for details, see [3]). The
symmetry of the Jacobian matrix of the function g plays a significant role in the
implementation of the adjoint code.

The integration of the forward model (1) using implicit methods ([8, 9]), to-
gether with the performance analysis was carried out in [13]. Implementation of
the Rosenbrock methods ([3, 10]) can be done in the symbolic kinetic preproce-
sor KPP environment ([4]), which generates the sparse matrix factorization LU
required in (2), (3) and the routine to forward-backward solve the linear sys-
tems without indirect addressing. The computations are independent, allowing
parallel implementation ([12]).

5 Concluding Remarks

In this study we described adjoint computations in data assimilation problems
using a 4-stage Rosenbrock method. We focused on constructing an efficient
algorithm which exploits the particular properties of the method and avoids
frequent recomputations. The algorithm presented in Section 3 has the great
benefit that the adjoint of the chemistry integration can be generated completely
automatically, taking full advantage of the sparsity of the system. Moreover,
rounding errors are avoided since symbolic computations can be used, and the
accuracy of the results goes up to the machine precision.
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Abstract. The operator splitting method is a widely used technique
which is frequently applied to the solution of complex problems. How-
ever, its application is not enough to the practical solution of the prob-
lems. The split sub-problems still require some numerical method. In
this paper we give a unified investigation of the operator splitting and
the numerical discretization. Moreover, we consider the interaction of
the operator splitting method and the applied numerical methods to the
solution of the different sub-processes. We show that many well-known
fully-discretized numerical schemes to solving the Cauchy problems can
be obtained in this manner. We investigate the convergence of these
methods, too.

1 Introduction

Many problems of the mathematical modelling lead to the solution of the Cauchy
problem for the system of ordinary equations in the form

dw(t)
dt

= Aw(t) ≡
d∑

i=1

Aiw(t), t ∈ (0, T )

w(0) = w0,

⎫⎪⎬⎪⎭ (1)

where w : [0, T )→ IRN is the unknown function, w0 ∈ IRN is a given element,
Ai ∈ IRN×N , (i = 1, 2, . . . d) are given matrices. (This approach has a lot of
application on different fields, like in the parameter identification [3] and the
numerical solution of the Maxwell equation [5].) We approximate the above
problem with the one-step iterative method of the form

yn+1 = r(τA)yn, (2)

where τ $ T is some given parameter. Here the problem is the determination of

r(τA) being a suitable approximation of the matrix exponential exp

(
τ

d∑
i=1

Ai

)
.

In fact this means that using the notation a = (a1, a2, . . . an), r(a) should approx-
imate the exponential function exp(

∑d
i=1 ai). Hence, the approximation method
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is defined by the choice of the function r(τA). For d = 1 the problem is widely
investigated and has a waste of literature. (For an overview see, e.g. [2, 6].) The
different operator splitting methods are based on the special form of the ap-
proximation for the case d > 1. (E.g. [4, 6].) This means that these methods
aren’t defined by the formal substitution the sum A =

∑d
i=1 Ai into the func-

tion r(τA). However, the classical operator splittings are elaborated mainly for
d = 2. In this paper we generalize the concept for any d.

The paper is organised as follows. In Section 2 we consider the possible ap-
proximations of the exponential function with different d. We introduce the
sequential, Strang-Marchuk and the weighted sequential splittings. In Section 3
we define special numerical methods, the so called θ-scheme to the numerical
solution of the sub-problems. We prove the convergence of these fully discretiza-
tions for different operator splittings. In Section 4 we re-call some well-known
discretization schemes which can be obtained from the general setting.

2 Operator Splitting Methods

We recall that our aim is a suitable approximation of the exponential function
exp(

∑d
i=1 ai).

The first choice of the approximation function r(a) is the following

rss(a) =
d∏

i=1

exp(ad+1−i). (3)

Then the iteration (2) reads as

yn+1
ss =

d∏
i=1

exp(τAd+1−i)yn
ss. (4)

In order to put the choice (3) in a new light, let us consider the problem (1) for
d = 2 and we investigate the following sequence of the initial value sub-problems

dwn
1

dt
(t) = A1w

n
1 (t), (n− 1)τ < t ≤ nτ,

wn
1 ((n− 1)τ) = wn−1

2 ((n− 1)τ),

⎫⎬⎭ (5)

and
dwn

2

dt
(t) = A2w

n
2 (t), (n− 1)τ < t ≤ nτ,

wn
2 ((n− 1)τ) = wn

1 (nτ),

⎫⎬⎭ (6)

for n = 1, 2, . . .K, where K denotes the supremum of the integers K1 such that
K1τ ≤ T and w0

2(0) = u0. This is called sequential operator splitting and the
function wsp(nτ) = wn

2 (nτ), defined at the points tn = nτ is called splitting
solution of the problem. Obviously, in (4), for d = 2, the approximation yn

ss
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corresponds to the exact solution at t = nτ of the above sequential operator
splitting problem, i.e. wsp(nτ) = yn

ss.
The second choice is

rstr(a) =

(
d−1∏
i=1

exp(
ai

2
)

)
exp(ad)

(
d−1∏
i=1

exp(
ad+1−i

2
)

)
. (7)

Then the iteration (2) means

yn+1
str =

(
d−1∏
i=1

exp(
τ

2
Ai)

)
exp(τAd)

(
d−1∏
i=1

exp(
τ

2
Ad+1−i)

)
yn

str. (8)

Similarly to the sequential operator splitting, for d = 2 we establish contact be-
tween the iteration and some sequence of initial value problems. Let us consider
the sub-problems

dwn
1

dt
(t) = A1w

n
1 (t), (n− 1)τ < t ≤ (n− 0.5)τ,

wn
1 ((n− 1)τ) = wn−1

3 ((n− 1)τ),

⎫⎬⎭ (9)

dwn
2

dt
(t) = A2w

n
2 (t), (n− 1)τ < t ≤ nτ,

wn
2 ((n− 1)τ) = wn

1 ((n− 0.5)τ),

⎫⎬⎭ (10)

and
dwn

3

dt
(t) = A1w

n
3 (t), (n− 0.5)τ < t ≤ nτ,

wn
3 ((n− 0.5)τ) = wn

2 (nτ),

⎫⎬⎭ (11)

for n = 1, 2, . . .K, where w0
3(0) = u0, and the function wsp(nτ) = wn

3 (nτ),
defined at the points tn = nτ . Clearly, wsp(nτ) is the corresponding splitting
solution of the problem. This kind of operator splitting is called Strang-Marchuk
operator splitting [11, 8]. As before, yn

str in (8) corresponds to the exact solu-
tion at t = nτ of the above Strang-Marchuk operator splitting process, i.e.
wsp(nτ) = yn

str.
The generalization of the sequential and Strang operator splittings to d oper-

ators (d ≥ 3) is straightforward.

Remark 1. There are several other choice of the operator splitting functions. In
order to symmetrize the sequential operator splitting, we can set

rwss(a) =
1
2

(
d∏

i=1

exp(ad+1−i) +
d∏

i=1

exp(ai)

)
. (12)

This method is called weighted sequential operator splitting, introduced for d = 2
in [10] and analyzed in [1].
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Remark 2. Important question is the accuracy of the approximation of exp(τA)
by r(τA). Clearly, for the scalar case we have equality. However, when the sub-
operators Ai are not commuting then usually we don’t have equality. The ex-
pression Errspl = exp(τA)− r(τA) is called local splitting error. If the order of
the local splitting error is O(τp+1) then the given splitting is called of p-th order.
One can check that the sequential operator splitting is of first order, while the
Strang and the weighted sequential operator splittings are of second order [1, 6].
When the sub-operators in the sum of the operators A are commuting then the
local splitting error is vanishing, i.e. the operator splitting is accurate.

However, the practical use of the operator splitting method has a basic draw-
back: each splitting requires the computation of the matrix exponentials for the
sub-operators in the sum of A. Whereas these matrices usually have simpler
structure, the exact computation of their exponentials is seldom possible. So,
the operator splitting is not directly useful for practical purposes. The main
benefit is that this method leads the original complex problem to the sequence
of simpler sub-problems. Hence, the rational approximation of the exponential
function (i.e. application of some numerical method) is not only the necessary
step in the solution process but its suitable choice becomes easier.

3 Numerical Methods Based on the Splittings

The typical choice of the rational approximation (which defines the numerical
method) to the exponential function, called θ-approximation, is

rθ(z) = (1− θz)−1(1 + (1− θ)z), (13)

where θ ∈ [0, 1] is a given parameter. In this section we will use this approxima-
tion to the different split sub-problems.

When we approximate in the sequential splitting (3) each exponential by the
θ-approximations (13), then we get the approximation function

rss,θ(a) =
d∏

i=1

(1− θiai)−1(1 + (1− θi)ai), (14)

where θi ∈ [0, 1] (i = 1, 2, . . . d) are given constants. Then the iteration (2) means

yn+1
ss,θ =

d∏
i=1

(I− θiτAi)−1(I + τ(1 − θi)Ai)yn
ss,θ. (15)

This approximation has second order when θi = 0.5 for each i = 1, 2, . . . d, and
first order otherwise. Hence (15) yields a consistent numerical scheme to the
problem (1). In the following we analyze its absolute stability and contractivity
in the Hilbert space H = (IRN , (·, ·)H), where (·, ·)H denotes a scalar product
in IRN .
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Theorem 1. Assume that the matrices Ai are negative definite and θi ∈ [0.5, 1]
for each i = 1, 2, . . . d. Then the numerical method (15) is absolute stable and
contractive in the norm ‖x‖2H = (x, x)H .

Proof. Obviously it is enough to show that under the conditions of the lemma
the estimation

‖(I− θiτAi)−1(I + τ(1 − θi)Ai)‖2H ≤ 1 (16)

holds for each i = 1, 2, . . . d. We have

‖(I− θiτAi)−1(I + τ(1 − θi)Ai)‖2H =

sup
x∈H

(
(I− θiτAi)−1(I + τ(1 − θi)Ai)x, (I − θiτAi)−1(I + τ(1 − θi)Ai)x

)
H

(x,x)H

= sup
y∈H

((I + τ(1 − θi)Ai)y, (I + τ(1 − θi)Ai)y)H

((I− θiτAi)y, (I − θiτAi)y)H

=

= sup
y∈H

(y,y)H + 2τ(1 − θi)(Aiy,y)H + τ2(1− θi)2(Aiy,Aiy)H

(y,y)H − 2τθi(Aiy,y)H + τ2(1− θi)2(Aiy,Aiy)H
.

Since (Aiy,y)H ≤ 0, therefore in case θi ∈ [0.5, 1] the expression in the above
supremum is not greater than one for any y ∈ H, which proves the statement.

Remark 3. The statement (16) is the generalization of the Kellogg lemma [7].

When we use the θ-approximations (13) for each exponential in the Strang-
Marchuk splitting (7) then the approximation function is

rstr,θ(a) =
d−1∏
i=1

(1− θ1i
ai

2
)−1(1 + (1− θ1i )

ai

2
)

(1− θ1dad)−1(1 + (1− θ1d)ad)
d−1∏
i=1

(1− θ2i
ai

2
)−1(1 + (1− θ2i )

ai

2
),

(17)

where θk
i ∈ [0, 1] for k = 1, 2 and i = 1, 2, . . . d. Then the iteration (2) means

yn+1
str,θ = rstr,θ(τA)yn

str,θ . (18)

When d = 2 then (18) results in the following numerical scheme:

yn+1
str,θ = (I− θ11

τ

2
A1)−1(I + (1− θ11)

τ

2
A1)(I− θ12τA2)−1

(I + (1− θ12)τA2)(I− θ21
τ

2
A1)−1(I + (1− θ21)

τ

2
A1)yn

str,θ.
(19)

On the base of the proof of the Theorem 1 we can check the validity of the
following

Theorem 2. Assume that the matrices Ai are negative definite and θi ∈ [0.5, 1]
for each i = 1, 2, . . . d. Then the numerical method (18) is absolute stable and
contractive in the norm ‖x‖2H = (x, x)H .



352 I. Faragó

Remark 4. For the weighted sequential splitting the definition of the rwss,θ(z)
from the function rss,θ(z) is straightforward. Namely, for two operators (d = 2)
we have

yn+1
wss,θ = rwss,θ(τA)yn

wss,θ , (20)

where

rwss,θ(τA) = 0.5[r(1,2)
ss,θ (τA) + r(2,1)

ss,θ (τA)]. (21)

(Here r(1,2)
ss,θ (τA) and r(2,1)

ss,θ (τA) denote the operators rss,θ(τA) in different order-
ing w.r.t. the sub-operators A1 and A2.) As an obvious consequence of Theorem
1, we get that for the negative definite matrices A1 and A2 the numerical method
(20) is also absolute stable and contractive in the norm ‖ · ‖H by the choices of
the parameters θi ∈ [0.5, 1] for each i = 1, 2, 3, 4.

Obviously, in numerical methods for the different sub-problems not only the
weight parameters θk

i can be chosen differently, but the step-sizes, too. Let us
denote by Δt the step-size of the numerical method. Then we can choose Δt =
τ/M for some M integer. This results in that the numerical method chosen
should be used M -times in order to solve the split sub-problem in one split
step. For instance, for the sequential splitting, by the choice of the step-size
Δti = τ/Mi for the i-th sub-problem (i = 1, 2, . . . d), we have

yn+1
ss,θ =

d∏
i=1

[(I− θiτ

Mi
Ai)−1(I +

τ(1 − θi)
Mi

Ai)]Miyn
ss,θ. (22)

Clearly, Theorems 1 and 2 remain valid for such case, too. We remark that, even
in the case of commutativity of the operators, the different choices of M result
in different numerical methods. E.g. for M = 1 (i.e. τ = Δt) for one operator
the explicit Euler method is

yn+1 = (I + τA)yn, (23)

while for M = 2 (i.e. τ = Δt/2) the method is

yn+1 = (I +
τ

2
A)(I +

τ

2
A)yn = (I + τA +

τ2

4
A2)yn. (24)

However the difference of the methods coincides with the order of the method.

4 Some Splitting Schemes

In this section we give some known splitting schemes to the problem (1) and we
point out their relation to the above operator splitting-numerical schemes.
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4.1 The Splitting Method Based on Implicit Scheme ([9], p.231)

Let us consider the following scheme

yn+ 1
d − yn

τ
= A1y

n+ 1
d

...
yn+1 − yn+ d−1

d

τ
= Ady

n+1

(25)

where y0 = w0 and n = 0, 1, 2, . . ..
Obviously, this method corresponds to the sequential splitting with implicit

Euler method to each sub-problems, i.e. (25) is a special case of (15) with θi = 1
for each i = 1, 2, . . . d.

4.2 Componentwise Splitting Based on Crank-Nicolson Schemes
([9], p.235)

Let us consider the following scheme

yn+ 1
d − yn

τ
=

1
2
A1(yn + yn+ 1

d )
...

yn+1 − yn+ d−1
d

τ
=

1
2
Ad(yn+ d−1

d + yn+1)

(26)

where y0 = w0 and n = 0, 1, 2, . . ..
Obviously, this method corresponds to the sequential splitting with middle

point method to each subproblems, i.e. (26) is a special case of (15) with θi = 0.5
for each i = 1, 2, . . . d. This method has of second order accuracy.

4.3 Two-Cycle Multi-component Splitting ([9], p.247)

Let us consider the following scheme

yn+ 1
2d − yn

τ
=

1
4
A1(yn + yn+ 1

2d )
...

yn+ d
2d − yn+ d−1

2d

τ
=

1
4
Ad(yn+ d−1

2d + yn+ d
2d )

...
yn+1 − yn+ 2d−1

2d

τ
=

1
4
A1(yn+ 2d−1

2d + yn+1)

(27)

where y0 = w0 and n = 0, 1, 2, . . .. This method corresponds to the Strang-
Marchuk splitting with the middle point integration rule and Δt = τ for the
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problems with the operators Ai ( i = 1, 2, . . . d − 1) and Δt = τ/2 for the Ad.
We note that the method (27) is connected with the method (26) in the following
way. Let us cut in half the splitting interval. If we use the method (26) on the
first half on the interval in the indicated order of the operators and then we use
the same method on the second half but in the reverse order of the operators,
then we obtain (27).

Finally we remark that many others numerical schemes can be also obtained,
see [4].

5 Conclusion

In this paper we analyzed the combination of the operator splitting method
with the numerical methods applied to the split sub-problems. We proved that
both methods can be considered as approximation to the exponential function.
Therefore, their common investigation is possible and the well-known numerical
schemes can be obtained.

This approach perhaps can be used successfully for the general case, i.e. when
we consider (1) as an abstract Cauchy problem in Banach space under the as-
sumption that the linear operatorA is a generator of the C0-semigroup. However,
this approach needs some further investigations.
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1. Csomós, P., Faragó, I., and Havasi, Á., Weighted sequential splittings and their
analysis, Comput. Math. Appl., 50 (2005) 1017–1031.

2. Dekker, K. and Verwer, J. G. Stability of Runge-Kutta methods for stiff nonlinear
differential equations, North-Holland, Amsterdam (1984).

3. Dimitriu, G., Parameter identification in a two-dimensional parabolic equation us-
ing an ADI based solver, Lect. Notes Comp.Sci. 2179, Springer Verlag, Berlin,
(2001) 479–486.
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hagi@nimbus.elte.hu

Abstract. The shallow water equations describe motions in a shallow,
incompressible, non-viscous fluid layer on the rotating Earth. Due to
their relative simplicity, they are widely used for testing and analysing
new numerical methods developed for weather predicition models. In this
paper we apply different operator splittings to the linearized form of the
shallow water equations obtained by the method of small perturbations.
This system has three harmonic wave solutions with known dispersion
relations and phase velocities. We investigate how the application of op-
erator splitting modifies these important characteristics, and compare
the performance of different splitting methods from this point of view.

1 Introduction

Operator splitting is widely applied in different fields of applied mathematics,
where huge systems of partial differential equations are to be solved. This pro-
cedure allows us to lead the solution of the original problem back to the solution
of a sequence of simpler sub-problems.

An important area where splitting is often used is large-scale air pollution
modelling. Results on the application of splitting in transport-chemistry models
can be found e.g. in [9, 1, 2]. Splitting can also be applied in dynamical (weather
prediction) models, where the hydro- and thermodynamic variables of the at-
mophere are predicted. In [4] the Strang splitting and approximate matrix fac-
torization are applied to the linearized shallow water equations. We would like
to supplement the results of that paper by examining and comparing different
splitting methods in the test problem fomulated there.

The structure of the paper is as follows. In Section 2 the shallow water equa-
tions and their linearized form are presented. In Section 3 we apply different
splitting methods to this problem and give the formulae of the corresponding
numerical frequencies. In Section 4 we show the results of our numerical com-
parisons between the sequential, symmetrically weighted sequential (SWS) and
additive splittings. Two characteristic properties of the wave solutions are ex-
amined: their artificial amplification or damping and their phase velocities. The
conclusions are summarized in Section 5.
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2 The Shallow Water Equations and Their Dispersion
Relations

The shallow water equations describe motions in a shallow, incompressible, non-
viscous fluid layer on the rotating Earth. The derivation of the shallow water
equations can be found e.g. in [5]. Let u and v denote the horizontal velocity
components, h the height of the top boundary of the fluid, g the gravitational
acceleration and f the Coriolis parameter 2Ω sinφ, where Ω is the angular veloc-
ity of the Earth and φ the latitudinal degree. Then the shallow water equations
read as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂h

∂x
− fv = 0, (1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂h

∂y
+ fu = 0, (2)

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
+ h(

∂u

∂x
+
∂v

∂y
) = 0. (3)

We restrict our investigation to the so-called normal modes of this system. To this
aim we linearize the equations by means of the method of small perturbations.
Assume that changes of the model variables around their average fields are small
compared to these average fields. Then, referring to the average values by upper
bars and to the small perturbations by apostrophies, the instantaneous values
of u, v and h can be written as u = u + u′, v = v + v′ and h = h + h′. Let us
substitute these sums into equations (1)-(3). Exploiting the fact that the average
fields satisfy the nonlinear equations and that the terms containing products of
perturbation quantities can be neglected, we obtain the following linearized form
of the shallow water equations

∂u′

∂t
+ u

∂u′

∂x
+ v

∂u′

∂y
+ g

∂h′

∂x
− fv′ = 0, (4)

∂v′

∂t
+ u

∂v′

∂x
+ v

∂v′

∂y
+ g

∂h′

∂y
+ fu′ = 0, (5)

∂h′

∂t
+ u

∂h′

∂x
+ v

∂h′

∂y
+ h(

∂u′

∂x
+
∂v′

∂y
) = 0. (6)

with the corresponding initial and periodic boundary conditions which are mo-
tivated by the physics of the problem.

As usual in dispersion analysis, we apply Fourier’s method, i.e., we seek the
solution in the form

u′(x, y, t) = Ue−iωtei(k1x+k2y), (7)

v′(x, y, t) = V e−iωtei(k1x+k2y), (8)

h′(x, y, t) = He−iωtei(k1x+k2y). (9)
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Here U , V and H are the amplitudes of the waves, and

k1 =
2π
Lx

, k2 =
2π
Ly
, ω =

2π
T

(10)

are the wave numbers and the frequency. Substituting (7), (8) and (9) into
system (4)-(6), we are led to the so-called characteristic system of homogeneous,
linear algebraic equations for the determination of the amplitudes U , V and H .
This has a non-trivial solution only if its determinant is zero, which means the
following condition:

ω̂3 + ω̂(f2 + gh(k2
1 + k2

2)) = 0, (11)

where ω̂ = −iω + uik1 + vik2. For fixed values of k1 and k2 this equation gives
three different solutions for ω, namely:

ω1 = uk1 + vk2, (12)

ω2 = uk1 + vk2 −
√
f2 + gh(k2

1 + k2
2), (13)

ω3 = uk1 + vk2 +
√
f2 + gh(k2

1 + k2
2). (14)

The first value corresponds to a slow, so-called advective wave, while the second
and third to fast gravity waves. Note that none of these frequencies has an
imaginary part, which means that the wave solutions are neither amplified, nor
damped. The propagation (or phase) velocities of these waves can be obtained
by dividing the frequencies by |k| =

√
(k2

1 + k2
2).

3 Operator Splitting Techniques

In order to apply operator splitting in the linearized shallow water equations,
first we transform (4)-(6) into a more convenient from. For solutions of the form
q̂(t)ei(k1x+k2y) system (4)-(6) is equivalent to the following system of ODE’s:

dq̂

dt
= Aq̂(t), (15)

where

A =

⎛⎝−uk1i− vk2i f −gk1i
−f −uk1i− vk2i −gk2i

−hk1i −hk2i −uk1i− vk2i

⎞⎠ . (16)

We split the right-hand side of (15) into the sum A1q̂(t) +A2q̂(t), where

A1 = −ik1

⎛⎝u i f
k1

g

0 u 0
h 0 u

⎞⎠ , A2 = −ik2

⎛⎝ v 0 0
−i f

k2
v g

0 h v

⎞⎠ . (17)
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This decomposition is convenient to apply in large-scale computations since it
involves directional separation of all derivatives and the Coriolis terms in system
(4)-(6). For the application of splitting we first divide the time axis into sub-
intervals of length τ , the so-called splitting time step. Denote the n-th time level
by tn, and let q̂(tn) be arbitrary. The simplest splitting method is the sequential
splitting, which means that we solve the following sequence of problems at the
sub-intervals [tn, tn + τ ]: ⎧⎪⎨⎪⎩

dq̂(1)

dt
= A1q̂

(1),

q̂(1)(tn) = q̂(tn)
(18)

⎧⎪⎨⎪⎩
dq̂(2)

dt
= A2q̂

(2),

q̂(2)(tn) = q̂(1)(tn + τ),
(19)

and the splitting solution at tn+1 is defined as q̂(2)(tn+1) = q̂(2)(tn + τ).
If a function q̂sp(tn), n = 1, 2, . . . is a solution to problem (18), (19) then

q̂sp(tn + τ) = eA2τeA1τ q̂sp(tn). (20)

Let us look for the solution in the form

q̂sp(tn) = qe−iωsptn , (21)

where q = const ∈ IR3. By substituting (21) into (20), we are led to the equality

qe−iωsp(tn+τ) = eA2τeA1τqe−iωsptn . (22)

Dividing the two sides by e−iωsptn we obtain that

e−iωspτq = eA2τeA1τ q. (23)

Consequently, qe−iωsptn is a solution of (20) if and only if e−iωspτ is an eigenvalue
of the matrix eA2τeA1τ , and the values of ωsp are

ωsp,j =
lnλ(Mseq)j

τ
i, j = 1, 2, 3, (24)

where Mseq stands for the matrix eA2τeA1τ and λ for its eigenvalues.
Other traditional splitting methods are the Marchuk–Strang splitting [7] and

the symmetrically weighted sequential (SWS) splitting [6, 1]. A recently devel-
oped splitting method is the additive splitting [3]. Here we give the correspond-
ing matrices, by which Mseq should be replaced when the latter three splitting
methods are applied:

– Marchuk–Strang (MS) splitting: MMS = eA1
τ
2 eA2τeA1

τ
2 ,

– SWS splitting: MSWS = 1
2e

A2τeA1τ + 1
2e

A1τeA2τ ,
– additive splitting: Madd = eA2τ + eA1τ − I.
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It is well-known that in terms of the local splitting error the MS and SWS
splittings have second order, while the sequential and additive splittings only
first order. Therefore, one would expect the former two methods to perform
better in the comparisons. However, it can be proved that in our case the MS
splitting and the sequential splitting will give the same result.

First, it is easy to show that the sequential splitting in the order A1 → A2
will result in the same numerical frequencies as in the order A2 → A1. This
follows from the fact that for any matrices F,G ∈ IRn×n, n ∈ IN , σ(FG) =
σ(GF ), where σ denotes the spectrum of a matrix. (For an elegant proof see
[8], p. 63.) Applying this theorem to F = eA1τ and G = eA2τ , we obtain that
σ(eA1τeA2τ ) = σ(eA2τeA1τ ).

The following statement deals with the relation between the spectrum of Mseq
and MMS.

Proposition 1. Let λ ∈ σ(eF eG) with an eigenvector x ∈ IRn. Then λ ∈
σ(eG/2eF eG/2) with the eigenvector x̂ = eG/2x.

Proof. Due to the assumption, we have

eF eGx = λx. (25)

Hence, the following relations are valid:

eG/2eF eG/2x̂ = eG/2eF eGx = eG/2(λx) = λeG/2x = λx̂, (26)

which proves our statement.

Remark. It is easy to prove that the converse inclusion is also true.

From the above consideration it follows that, from the viewpoint of the dis-
persion analysis, the MS splitting is not worth applying in our model problem,
because the application of the sequential splitting gives the same result with less
computation. Therefore, we will not deal with this splitting scheme in the sequel.
(We remark that this equality of the eigenvalues is already not true concerning
the SWS and additive splitting methods.) Our aim is to compare the numer-
ical frequencies ωsp,j, j = 1, 2, 3 obtained in the sequential, SWS and additive
splitting methods with their exact values under (12)-(14).

4 Numerical Comparisons

In this part we investigate both the real and imaginary parts of the numerical
frequencies ωsp,j , j = 1, 2, 3 obtained by the different splittings. Positive imagi-
nary parts express amplification, while negative imaginary parts damping of the
wave solutions. Let us reiterate here that the exact normal modes propagate
with a constant amplitude. The real parts divided by |k| give the phase velocity
of the waves.
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We only investigate waves with wave vectors k for which k1 = cosβl and
k2 = sinβl with βl = l 2π

36 , l = 1, 2, . . .36. (Increasing the resolution did not
affect the results considerably.) In the comparisons the splitting time steps τ are
chosen as 10−4, 10−3 and 10−2s. (The time period of the fastest wave of the exact
solution for |k| = 1 is approximately 2 · 10−2s.) We used the same parameter
set as that used in [4], namely: u = v = 10m/s, h = 10000m, g = 9.8m/s2 and
φ = 45o. The computations were done in Matlab.

4.1 Artificial Amplification or Damping

We computed the minimum and maximum values of the imaginary parts of
the frequencies ωsp,j for the three different wave solutions and for the 36 wave
vectors. The results obtained for the sequential, SWS and additive splittings are
given in Table 1.

Table 1. Minimum and maximum values of the imaginary parts of the frequencies for
the different splitting schemes. The first value in each cell corresponds to the advective
wave, and the second and third values to the gravity waves.

τ Sequential SWS Additive
Min Max Min Max Min Max

-2.08E-9 2.07E-9 -2.91E-4 -1.11E-12 -2.38E+0 -2.22E-12
10−4 -1.04E-9 1.04E-9 -1.46E-4 -2.22E-12 -7.77E-12 1.41E+0

-1.04E-9 1.04E-9 -1.46E-4 0 -7.77E-12 1.41E+0
-2.07E-7 2.07E-7 -2.88E-1 -2.22E-12 -2.40E+1 -2.44E-12

10−3 -1.04E-7 1.04E-7 -1.44E-1 -8.88E-13 3.77E-12 1.38E+1
-1.04E-7 1.04E-7 -1.44E-1 -7.77E-13 3.55E-12 1.38E+1
-2.56E-5 2.56E-5 -2.98E+2 -4.39E-12 -1.88E+2 4.72E+1

10−2 -1.28E-5 1.28E-5 -2.88E+2 1.87E-12 -5.98E+1 8.44E-1
-1.28E-5 1.28E-5 -1.43E+2 1.89E-12 -4.32E-2 4.72E+1

According to our expectations, all the methods produce decreasing errors
with decreasing time step. In the case of the sequential splitting the amplifi-
cation and damping are equally important. This splitting causes the smallest
damping among the three methods. In the SWS splitting there is only negligible
amplification for some waves, but the damping is a few magnitudes stronger than
for the sequential splitting, and especially strong for the biggest τ . The additive
splitting shows strong amplification for the gravity waves and strong damping
for the advective waves even for the smaller values of τ , and for the biggest time
step both effects are significant.

4.2 Numerical Phase Velocities

We computed the real parts of the frequencies ωsp,j for the 36 wave vectors
under consideration. Since for these wave number vectors |k| = 1, therefore
the real parts of the frequencies ωsp,j are equal to the phase velocities of the
corresponding wave solutions.
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Fig. 1. The exact phase velocities (left panel) and the numerical phase velocities
obtained by the additive splitting (right panel)

We found that for τ < 10−2s all the three methods give excellent results. For
τ = 10−2s the solutions are already different. The left panel of Fig. 1 shows the
exact phase velocities. The additive splitting produces unacceptably big errors,
especially for the advective wave, as shown in the right panel of Fig. 1. The other
two methods give realistic velocity values for all wave components. However, the
directions of propagation of the gravity waves are not always simulated properly.
Note that the exact gravity waves propagate always in the opposite directions
(left panel of Fig. 1). In the case of the sequential splitting we can already find
some wave vectors for which the direction of propagation is the same for the
two gravity waves, see the left panel of Fig. 2. From this point of view, the SWS
splitting gave even worse results: according to the right panel of Fig. 2, here the
two gravity wave solutions propagate always in the same direction!
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Fig. 2. The numerical phase velocities obtained by the sequential splitting (left panel)
and the SWS splitting (right panel)
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5 Conclusion

We investigated the effect of splitting on the solution of the linearized shallow
water equations without space discretization. We showed that the first-order
sequential splitting and the second-order Strang splitting result in the same
numerical frequencies. Therefore, in the comparisons we concentrated only on
three splitting methods: the sequential, SWS and additive splittings. We found
that on the whole the sequential splitting gave the most reliable results, while the
additive splitting is not recommended, especially for relatively big time steps.
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of the Maxwell’s Equations
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Erzsébet u. 9, 9400 Sopron, Hungary

rhorvath@ktk.nyme.hu

Abstract. In this paper, the operator splitting techniques are applied
for the semi-discretized Maxwell’s equations. The semi-discretization is
performed on a staggered grid structure like other frequently used meth-
ods (YEE, NZCZ, KFR). We show how these methods fit into the frame-
work of the splitting methods. We construct a new unconditionally stable
solution method, which possesses all favourable properties of the NZCZ-
method, and additionally it conserves the energy density of the electro-
magnetic field. We compare the new method with the NZCZ-method
presenting a 2D numerical example.

Keywords: Maxwell’s equations, FDTD-Method, Unconditional
Stability.

1 Introduction

The mathematical model of electromagnetic problems can be formulated in the
form of the so-called Maxwell’s equations (in source-free case)

ε∂tE = ∇×H, μ∂tH = −∇×E (1)

∇(εE) = 0, ∇(μH) = 0, (2)

where E = (Ex(t, x, y, z), Ey(t, x, y, z), Ez(t, x, y, z)) is the electric field strength,
H = (Hx(t, x, y, z), Hy(t, x, y, z), Hz(t, x, y, z)) is the magnetic field strength,
ε = ε(x, y, z) is the electric permittivity and μ = μ(x, y, z) is the magnetic
permeability. It is well-known that the divergence equations in (2) follow from the
curl equations in (1) when we suppose that the fields E and H were divergence-
free at the initial point of time (see e.g. [10]). This means that we must solve
only the curl equations applying divergence-free initial conditions for E and H.
In real-life problems, the exact solution of this system is very complicated or
even impossible. This is why numerical methods are generally applied.

The most frequently used method is the YEE-method (or Finite-Difference
Time-Domain method), which was introduced for the Maxwell’s equations in
1966 ([13]). This method starts with the definition of a generally rectangular
mesh (with the choice of the step-sizes Δx,Δy and Δz) for the electric field
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and another staggered (by Δx/2, Δy/2 and Δz/2) grid for the magnetic field
in the computational domain. In the time domain, the YEE-method applies the
leap-frog scheme, ensuring second order accuracy both in time and spatial vari-
ables. Albeit investigations show (see e.g. [8]) that comparing the non-staggered,
the colocated staggered and the non-colocated staggered grids the last one has
the most favourable properties, the YEE-method suffers from a strict stability
condition. Namely, the method is stable if and only if the condition

Δt <
1

c
√

(1/Δx)2 + (1/Δy)2 + (1/Δz)2
(3)

is fulfilled, where c = 1/
√
εμ is the maximal speed of light in the computational

domain. A comprehensive survey of the YEE-method can be found in [10].
A lot of efforts has been invested during the last decades to bridge the stability

problem of the YEE-method. The main goal was to construct methods, where
Δt can be chosen based on accuracy considerations instead of stability reason.
Papers [9] and [11] came up with an unconditionally stable method in 1999
(NZCZ-method). The NZCZ-method is an alternating direction implicit (ADI)
method, where the alteration is applied in the terms of the curl operator. In
the above papers, the stability was shown only on test-problems or with the
extensive use of computer algebra (see [12]). Pure mathematical proofs can be
found, for instance, in [1, 3, 6]. The paper [7], which was appeared in 2001, also
discusses an unconditionally stable numerical scheme (KFR-method).

In this paper, we shed light on the way the above methods fit into the frame-
work of operator splitting techniques and apply operator splitting to construct
and investigate a new unconditionally stable numerical scheme.

The operator splitting method is an efficient tool for the solution of differential
equations. The basic idea of the method is the splitting of the original problem
into sub-problems according to the physical and/or chemical processes involved.
Then these sub-problems, which are supposed to be handled more easily, are
solved sequentially using some appropriate methods. The solution of the original
problem is approximated by the solutions of the sub-problems. As we will apply
the splitting methods for the semi-discretized Maxwell’s equations, we give a
short mathematical description of the method for linear systems of first order
ordinary differential equations. (For more general description consult e.g. [2]
and [4].)

Let us consider the initial value problem

w′(t) = Aw(t), t ∈ (0, T ], w(0) = w0, (4)

where w : [0, T ] → IRd is the unknown function and A ∈ IRd×d is an arbi-
trary matrix. As it is well-known, the solution of the problem can be written
in the form w(t) = exp(tA)w0. Unfortunately, in the general case, the matrix
exponential cannot be computed explicitly for large matrices even though they
are sparse, what typically occurs in the numerical solutions of the Maxwell’s
equations.
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Now assume that the matrix A is split into the sum of the matrices A1 and
A2. (Naturally the procedure what follows can be directly extended to more
than two split matrices.) We introduce a parameter τ > 0, which is much less
than T and, instead of the original problem, we consider the sequence of initial
value problems of the form

w̃′
k(t) = A1w̃k(t), t ∈ ((k − 1)τ, kτ ], w̃k((k − 1)τ) = ŵk−1((k − 1)τ), (5)

ŵ′
k(t) = A2ŵk(t), t ∈ ((k − 1)τ, kτ ], ŵk((k − 1)τ) = w̃k(kτ), (6)

for k = 1, 2, . . . , T/τ and ŵ0(0) = w0. After the kth cycle, we approximate the
exact solution w(kτ) ≡ exp(kτA)w0 by the function

u(kτ) = (exp(τA2) exp(τA1))kw0. (7)

We will refer to this splitting method as sequential splitting (S-splitting).
Another well-known splitting procedure is the so-called Strang-splitting:

w̃′
k(t) = A1w̃k(t), t ∈ ((k−1)τ, (k−1/2)τ ], w̃k((k−1)τ) = w̄k−1((k−1)τ), (8)

ŵ′
k(t) = A2ŵk(t), t ∈ ((k − 1)τ, kτ ], ŵk((k − 1)τ) = w̃k((k − 1/2)τ), (9)

w̄′
k(t) = A1w̄k(t), t ∈ ((k − 1/2)τ, kτ ], w̄k((k − 1/2)τ) = ŵk(kτ), (10)

with k = 1, 2, . . . , T/τ and w̄0(0) = w0. In this case the exact solution w(kτ) is
approximated by the function

u(kτ) = (exp((τ/2)A1)exp(τA2)exp((τ/2)A1))kw0. (11)

Obviously, in the above splitting methods some approximation error occurs un-
less the matrices A1 and A2 commute. The so-called splitting error, defined as
ErrSp = w(τ)− u(τ) shows that the S-splitting is a first order splitting scheme,
while the Strang-splitting has second order accuracy.

2 Semi-discretized Maxwell’s Equations

Discretizing the Maxwell’s equations in spatial coordinates on a non-colocated
staggered grid (applying N Yee-cells) we arrive at a system of first order linear
ordinary differential equations of the form (4). Namely, let us introduce the set
of indices

I = {(i/2, j/2, k/2) | i, j, k ∈ IN, not all odd and not all even, (12)

(iΔx/2, jΔy/2, kΔz/2) is in the computational domain},
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and define the functions Ψi/2,j/2,k/2 : IR→ IR ((i/2, j/2, k/2) ∈ I) as

Ψi/2,j/2,k/2(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
εi/2,j/2,k/2Ex(t, iΔx/2, jΔy/2, kΔz/2), if 2� |i, 2|j, k,

√
εi/2,j/2,k/2Ey(t, iΔx/2, jΔy/2, kΔz/2), if 2� |j, 2|i, k,

√
εi/2,j/2,k/2Ez(t, iΔx/2, jΔy/2, kΔz/2), if 2� |k, 2|i, j,

√
μi/2,j/2,k/2Hx(t, iΔx/2, jΔy/2, kΔz/2), if 2|j, k, 2� |i,

√
μi/2,j/2,k/2Hy(t, iΔx/2, jΔy/2, kΔz/2), if 2|i, k, 2� |j,

√
μi/2,j/2,k/2Hz(t, iΔx/2, jΔy/2, kΔz/2), if 2|i, j, 2� |k.

(13)

Here εi/2,j/2,k/2 and μi/2,j/2,k/2 denote the electric permittivity and magnetic
permeability at the point (iΔx/2, jΔy/2, kΔz/2), respectively. Ordering this
functions into a vector we get a vector-scalar function Ψ : IR → IR6N , for which
we have a system of first order linear ordinary differential equations

Ψ ′(t) = AΨ(t), Ψ(0) is given, (14)

where the matrix A ∈ IR6N×6N is a skew-symmetric matrix. Furthermore, it can
be seen easily that every row of A consists at most four nonzero elements in the
form

1
√
ε.,.,.μ.,.,.Δ.

(15)

(see e.g. [6] and [7]).
Owing to the earlier mentioned reasons, (14) can be solved only applying some

numerical methods. The direct numerical solution of (14) is problematic, because
the explicit Euler method is unstable and implicit methods require a solution of a
system of linear equations, which is very expensive considering the huge number
of unknowns. This is why splitting methods are applied for (14) in order to
split the original system into several sub-problems. Solving these sub-problems
exactly or with a suitable combination of explicit and implicit Euler methods we
are able to define relatively cheap and stable numerical methods. In the YEE-,
NZCZ- and KFR-methods the above approach was employed, although, this is
not always clear from the formulation of the methods.

3 Splitting in the YEE-, NZCZ- and KFR-Methods

First let us consider the YEE-method. Here we split the matrix A into the form
A = A1Y + A2Y , where the splitting is done according to the magnetic and
electric fields. Namely, the two matrices A1Y and A2Y are defined as follows.
The matrix A1Y is composed from the matrix A changing the rows belonging to
the electric field variables to zero rows. A2Y can be derived in similar manner,
zeroing the rows belonging to the magnetic field variables. Employing S-splitting
with these matrices we can notice that the sub-problems (5)–(6) can be solved
exactly due to the equalities A2

1Y = 0 and A2
2Y = 0. Thus, we arrive at the

iteration
Ψn+1 = (I + τA2Y )(I + τA1Y )Ψn, Ψ0 is given, (16)
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where Ψn stands for the approximation of Ψ at time-level nτ and I is the unit
matrix. We remark that the YEE-method starts with a vector Ψ0 that consists
the approximations of the magnetic field at the time-level τ/2. To keep the
YEE-method stable the time-step must be bounded (see (3) with τ = Δt).

The NZCZ-method employs the splitting A = A1N +A2N , where A1N comes
from the discretization of the first items in the curl operator, and A2N comes
from the second ones. It is not difficult to see that A1N and A2N are skew-
symmetric matrices. Applying the Strang-splitting, the sub-systems (8)–(10)
cannot be solved exactly, numerical methods are needed. We denote the time-
step in the numerical methods by Δt, which is chosen to be equal to τ . We
arrive at the NZCZ-method when (8) is solved by the explicit Euler method, (9)
is solved by the Crank-Nicolson method, and (10) is solved by the implicit Euler
method. In this way we obtain the iteration

Ψn+1 = (I− (Δt/2)A1N )−1(I+(Δt/2)A2N )(I− (Δt/2)A2N )−1(I+(Δt/2)A1N )
(17)

(the second and third matrices commute). In practice, the above procedure can
be simplified to the solution of two systems of linear equations with symmetric
tridiagonal matrices in each iteration step. The NZCZ-method is unconditionally
stable.

In the KFR-method, the matrix A is split into six skew-symmetric matrices
and the S-splitting, the Strang-splitting or other higher order splittings are used.
The sub-systems can be solved exactly again, and the unconditional stability
is guaranteed by the fact that the exponential of a skew-symmetric matrix is
an orthogonal matrix, and as such it has unit second norm. For example, for
the system Ψ ′(t) = AΨ(t) with the matrix A = tridiag[−1, 0, 1] ∈ IR5×5, the
splitting A = A1K + A2K and the iteration (in the case of the S-splitting)

Ψn+1 = exp (τA1K) exp (τA2K)Ψn =

= exp

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

0 τ 0 0 0
−τ 0 0 0 0
0 0 0 τ 0
0 0 −τ 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ · exp

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 τ 0 0
0 −τ 0 0 0
0 0 0 0 τ
0 0 0 −τ 0

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠Ψn (18)

can be applied, where the exponentials can be computed with the equality

exp
([

0 τ
−τ 0

])
=

[
cos τ sin τ
− sin τ cos τ

]
. (19)

Both the NZCZ- and KFR-methods possess the nice properties of the YEE-
method. Some advantages of the methods are: easy understandability, solution
of a wide frequency range with one simulation (time domain method), anima-
tion displays, specification of the material properties at all points within the
computational domain and the computation of the electric and magnetic fields
directly.



368 R. Horváth

The NZCZ and KFR methods are unconditionally stable, which means that
the time-step can be chosen arbitrarily in the numerical calculations. Naturally,
the increase in the time-step necessitates decrease in the accuracy. It is observed
for example in [5, 6, 12], that although the NZCZ-method is slower with a factor
about five than the YEE-method, choosing greater time-steps than the stability
bound of the YEE-method, it computes the solution faster in the long run. In
the KFR-method, we experienced that the method is relatively inaccurate, and
to make it much more accurate (for example choosing a fourth order splitting
method or higher) costs a lot of computational time. This phenomenon shows
the importance of a proper splitting.

4 A New Efficient Scheme Based on Splittings

In this section, we construct a new numerical scheme for the Maxwell’s equations.
As we have seen in the previous section it is worth to keep in view the following
issues in the construction.

1. The method must be based on some splitting of the matrix A.
2. The sub-problems must be exactly solvable or at least easily solvable with

computationally cheap numerical methods.
3. The new method must be unconditionally stable.

Let us consider the splitting A = A1N +A2N , which splitting was applied in
the NZCZ-method. Instead of the Strang-splitting, we apply now the S-splitting,
and solve the sub-systems (5)–(6) by the Crank-Nicolson method. This method
will be called sequential NZCZ-method (shortly SNZCZ) in the sequel. The tem-
poral discretization results in the equations

Ψ̂ − Ψn

Δt
=

1
2
A1N Ψ̂ +

1
2
A1NΨ

n, (20)

Ψn+1 − Ψ̂
Δt

=
1
2
A2NΨ

n+1 +
1
2
A2N Ψ̂ , (21)

where getting rid off the intermediate vector Ψ̂ we obtain the iteration

Ψn+1 = (I− Δt

2
A2N )−1(I +

Δt

2
A2N )(I− Δt

2
A1N )−1(I +

Δt

2
A1N )Ψn. (22)

It is easy to see (see e.g. [6]) that the product of the first two matrices, and
the product of the second two ones are orthogonal matrices owing to the skew-
symmetry of the matrices A1N and A2N . Thus we obtain the relation ‖Ψn‖2 =
‖Ψ0‖2 (n = 1, 2, . . . ), which indicates the unconditional stability of the iteration.
What is more, the second norm of the iteration vector does not change during
the iteration process, that is the energy density of the electromagnetic field is
conserved in the computations.

We can notice that the iteration (22) actually is a reordering of (17). This
suggests that the number of operations of the two methods to achieve a certain
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time-level are close to each other. Indeed, the inverses of the matrices in the
SNZCZ-method can be computed similarly to the NZCZ-method, that is solv-
ing a system of linear equations with a symmetric tridiagonal matrix. In one
time-step of the SNZCZ-method, we have to store the old values of one of the
field components, which increases the memory consumption and slows down the
computations with 5-10%.

5 Numerical Example

We demonstrate the applicability of the SNZCZ-method on a 2D example. Let us
suppose that the Maxwell’s equations are solved on the square [0, 1]× [0, 1] with
perfect conductor boundaries and only the components Ez, Hx and Hy change
with the spatial coordinates. In this case, an exact solution can be written in
the form

Ez(t, x, y) = − sin(πx) sin(πy) sin(
√

2πt), (23)

Hx(t, x, y) = − 1√
2

sin(πx) cos(πy) cos(
√

2πt), (24)

Hy(t, x, y) =
1√
2

cos(πx) sin(πy) cos(
√

2πt) (25)

We set the values ε = μ = 1, Δx = Δy = 1/30 and compute the error in l2-norm
at the time-level t = 1.7067 = 210Δx/20. The errors and the CPU times for the
NZCZ- and SNZCZ-methods are listed in Table 1.

The classical YEE-method is not stable for time-steps greater than Δtmax =
0.7071Δx = Δx/

√
2 = 0.0236. The considered two methods, however, result

in acceptable errors even for the time-step Δt = 10Δtmax, that is in the long
run they compute the solution two times faster than the YEE-method. (The
YEE-method computes one iteration step five times faster than the other two
methods.)

Table 1. Computational results with the NZCZ- and SNZCZ-methods. The times-step
is measured compared to Δx. The first value is the l2 error, the CPU time can be found
in parenthesis, in seconds.

Δt (×Δx) NZCZ SNZCZ
0.05 1.20×10−3 (289.24) 5.57×10−4 (329.16)
0.10 1.22×10−3 (104.82) 5.04×10−5 (117.98)
0.20 1.36×10−3 (52.40) 1.25×10−3 (59.04)
0.40 1.71×10−3 (36.31) 3.41×10−3 (29.49)
0.80 3.33×10−3 (13.13) 7.11×10−3 (20.67)
1.60 9.59×10−3 (6.59) 1.13×10−2 (7.41)
3.20 3.35×10−2 (4.56) 8.50×10−3 (4.74)
6.40 1.15×10−1 (1.70) 3.94×10−2 (1.87)
12.80 2.54×10−1 (0.88) 2.24×10−1 (0.93)
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The values in Table 1 show that the SNZCZ-method is a little bit slower,
but it computes the solution with a slightly smaller error especially for large
time-steps. This is a favourable property of the method.

6 Conclusion

Based on the splitting methods for systems of first order linear ordinary
differential equations, we have constructed a new numerical method for the
time-dependent Maxwell’s equations. The SNZCZ-method employs the same de-
composition of A like the NZCZ-method, but instead of the Strang-splitting it
applies the S-splitting in the time coordinate. The SNZCZ-method possesses all
the favourable properties of the NZCZ-method, and what is more, it is uncondi-
tionally stable by construction conserving the energy density of the electromag-
netic field. This can make the method very useful in computations of density of
states.
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Abstract. We consider the inverse problem for identification of the coef-
ficient in an elliptic partial differential equation inside of the unit square
D, when over-posed boundary data are available. Following the main
idea of the Method of Variational Imbedding (MVI), we “imbed” the
inverse problem into a fourth-order elliptic boundary value problem for
the Euler-Lagrange equation being the necessary condition for minimiza-
tion of the quadratic functional of the original equation. The fourth-order
boundary value problem becomes well-posed with the two boundary con-
ditions considered here. The Euler-Lagrange equation for the unknown
coefficient provides an explicit equation for the coefficient. A featuring
example is elaborated numerically.

1 Introduction

Consider the elliptic partial differential equation

Δu(x, y) + n(x, y)u(x, y) = 0 (1)

inside the unit square D = (x, y) : 0 < x < 1; 0 < y < 1. The equation (1) has a
unique solution under the boundary condition

u|∂D = ϕ , (2)

provided that the coefficient n(x, y) is a known negative function(see [3]).
Suppose that the coefficient n is unknown. In order to identify it, we need

more information. There can be different sources of such information, e.g., one
or more of the solution functions; additional data at the boundaries, etc.

Let us consider the case when over–posed boundary data are available:

∂u

∂ν

∣∣∣∣
∂D

= ψ . (3)

If the coefficient n = n(x, y) is given, then the problem (1)–(3) for u(x, y)
is over-determined; i.e., for arbitrary ϕ and ψ there may be no solution u(x, y)
satisfying all of the conditions (2) and (3). On the other hand, when n(x, y) is

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 372–379, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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not known a priori, then under certain conditions it may be possible to find a
coefficient n(x, y) such that the problem (1) has a unique solution u(x, y), and
this solution also satisfies (2) and (3). In this case we say that the functions
(u, n) constitute a solution to the problem (1), (2), (3).

To assure the uniqueness we will consider the following two cases:

Case 1. The coefficient n(x, y) is a piecewise constant function inD, i.e., n(x, y) =
cγ = const, when (x, y) ∈ Dγ , where D is divided into Γ disjoint regions Dγ and
D =

⋃Γ
γ=1Dγ .

Case 2. Another special case is present when the coefficient is a function of a
single variable, i.e., n(x, y) = n(ω), where ω = ω(x, y) is known a priori. For
example, ω = x, or ω = x2 + y2, etc.

Generally speaking, the problem (1)–(3) is over-determined under the assump-
tions above. We assume that the boundary conditions (2), (3) are self-consistent
and the solution of the problem (1), (2), (3) exists. The problem for identification
(u, n) from (1), (2), (3) is of an inverse nature and it is similar to the problem
of identification of the heat-conductivity coefficient from over-posed data [1, 2].
For more information on the existing methods for solving inverse problems, we
refer the reader to Isakov [5], Engl et al [4], Tikhonov et al [6], and the references
therein.

2 Variational Imbedding

Following the previous authors’ works on the coefficient identification in
parabolic equations, we replace the original problem by the problem of the min-
imization of the following functional

J (u, n) =
∫∫
D

(Δu+ nu)2 dxdy , (4)

where u must satisfy the conditions (2) and (3). The functional J is a quadratic
and homogeneous function of (Δu + nu), and hence it attains its minimum if
and only if Δu + nu ≡ 0. In this sense, there is a one–to–one correspondence
between the original equation (1) and the minimization problem (4).

2.1 The Imbedding Boundary-Value Problem for u(x, y)

The necessary conditions for the minimization of (4) are the Euler-Lagrange
equations for the functions u(x, y) and n(x, y). The equation for u reads

ΔΔu+Δ[n(x, y)u] + n(x, y)Δu + n2(x, y)u = 0 . (5)

This equation is of the fourth order and its solution can satisfy the two bound-
ary conditions (2) and (3). In this sense the problem (5), (2) and (3) is well–posed
if the function n(x, y) is considered as known.



374 T.T. Marinov, R.S. Marinova, and C.I. Christov

2.2 Equation for the Coefficient n(x, y)

The Euler-Lagrange equation for the unknown coefficient n(x, y) provides an
explicit equation of following form

n(x, y) = −A1(x, y)
A2(x, y)

. (6)

The calculation of the functions A1(x, y) and A2(x, y) is slightly different for
the two cases discussed above. In Case 1, the functional J (u, n) can be rewritten
as a sum

J (u, n) =
∫
D

∫
(Δu+ nu)2 dxdy =

Γ∑
γ=1

∫
Dγ

∫
(Δu+ nu)2 dxdy , (7)

and, taking into account that n(x, y) = cγ = const, if (x, y) ∈ Dγ , after some
manipulations

A1 =
∫
Dγ

∫
uΔudxdy, A2 =

∫
Dγ

∫
u2dxdy . (8)

In Case 2, after the change of variables ω = ω(x, y) and η = η(x, y), the
functional J (u, n) can be rewritten as

J (u, n) =
∫
D∗

∫
(Δu(ω, η) + n(ω)u(ω, η))2

∣∣∣∣ ∂(x, y)
∂(ω, η)

∣∣∣∣dωdη . (9)

Here η = η(x, y) is the function for which
∣∣∣ ∂(x,y)
∂(ω,η)

∣∣∣ �= 0 . Taking into account that
n(x, y) = n(ω), the functions A1(x, y) and A2(x, y) adopt the form

A1 =
∫
Ωc

uΔu

∣∣∣∣∂(x, y)
∂(ω, η)

∣∣∣∣ dη, A2 =
∫
Ωc

u2
∣∣∣∣ ∂(x, y)
∂(ω, η)

∣∣∣∣dη , (10)

where Ωc := {(x, y) ∈ D;ω(x, y) = c},

3 Difference Scheme

Consider the model problem in the unit square D. Let us introduce an axis–
parallel orthogonal mesh with a total number of grid lines in the x− and y−direc-
tion, equal to M and N , respectively. A straightforward approximation of equa-
tion (1) with boundary condition (2) gives the correct number of equations for
identifying the discrete function u. The number of additional equations obtained
from the boundary condition (3) is 2(M +N − 1). Our problem lies in finding a
way to transfer this additional information to the unknown function n(x, y). The
number of unknown values of the function n(x, y) must be equal to the number
of equations we have available for this function, i.e., 2(M +N − 1). This means
that it is not possible to use the same mesh for the coefficient—the number of
grid nodes for the function n(x, y) must be less or equal to 2(M +N − 1). For
this reason we have constructed a special numerical scheme.
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3.1 Grid Pattern and Approximations

In order to have second–order approximations of the derivatives that enter the
boundary conditions, we use staggered grids in both directions. For the grid
spacings we have hx ≡ 1/(M − 2) and hy ≡ 1/(N − 2), where M is the total
number of grid lines in the x–direction and N—in the y–direction. Then the grid
lines are defined as follows (see Figure 1): xi = (i− 1.5)hx for i = 1, . . . ,M and
yj = (j − 1.5)hy for j = 1, . . . , N .

i=1 i=2 i=3 i=M-1 i=M

n
11

j=1

j=2

j=3

j=N-1

j=N

n
1L

n
KL

n
K1

n
12

n
K2

Fig. 1. Grid pattern

The grid for the coefficient n is also staggered, the total number of grid lines
in the x–direction is equal to K, and the total number of grid lines in the y–
direction—to L. Then the grid spacings for n are: Hx ≡ 1/K and Hy ≡ 1/L,
and the grid lines are defined as follows (see Figure 1): Xl = (l − 0.5)Hx for
l = 1, . . . , L, and Yk = (j − 0.5)Hy for k = 1, . . . ,K. Let us introduce the mesh
functions (notations):

uij = u(xi, yj) for i = 1, . . . ,M ; j = 1, . . . , N ; (11)
nkl = n(xk, yl) for k = 1, . . . ,K; l = 1, . . . , L. (12)

It is convenient to use an additional piecewise mesh function ñij defined as:

ñij = nkl when Xk−1/2 ≤ xi ≤ Xk+1/2; Yl−1/2 ≤ yj ≤ Yl+1/2 , (13)

where Xk±1/2 = Xk ±Hx/2 and Yl±1/2 = Yl ±Hy/2. However, there are rela-
tionships between the mesh-steps for the functions u and n as Hx = phx and
Hy = qhy, where p and q are integers.

3.2 Scheme for the Fourth-Order Elliptic Equation

We use the iterative procedure based on the coordinate–splitting method similar
to the method in [7], because of its computational efficiency. Let us introduce
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the notations Λxx and Λyy for the central difference approximation of the op-
erators ∂2

∂x2 and ∂2

∂y2 , respectively. The most straightforward approximation for
the imbedding fourth–order problem is the following

(Λxx + Λyy) [(Λxx + Λyy) + ñi,j ]ui,j + ñi,j(Λxx + Λyy)ui,j + ñ2
i,jui,j = 0 (14)

for i = 3, . . . ,M − 2 and j = 3, . . . , N − 2, respectively.
The equation (14) adopts the form of a parabolic difference equation after

introducing the fictitious time:

uk+1
i,j − uk

i,j

σ
= −(ΛxxΛxx + ΛyyΛyy)uk+1

i,j − 2ΛxxΛyyu
k
i,j − ñi,j(Λxx

+ Λyy)uk+1
i,j − (Λxx + Λyy)ñi,ju

k+1
i,j − ñ2

i,ju
k+1
i,j .

(15)

Then the applied splitting is defined as follows:

ũi,j − uk
i,j

σ
= −ΛxxΛxxũi,j − (ΛyyΛyy + 2ΛxxΛyy)uk

i,j − ñi,jΛxxũi,j

− ñi,jΛyyu
k
i,j − (Λxx + Λyy)(ñi,ju

k
i,j)− ñ2

i,j ũi,j

(16)

uk+1
i,j − ũi,j

σ
= (−ΛyyΛyy − ñi,jΛyy)

(
uk+1

i,j − uk
i,j

)
, (17)

where ũi,j is a half-time-step variable, and uk
i,j is a full-time-step one.

The fractional-step scheme (16), (17) has a total approximation in full steps
for equation (15).

The staggered in both directions grid for u allows one to use central differences
with a second-order of approximation on two-point stencils for the boundary
conditions.

3.3 Scheme for the Coefficient

In Case 1, taking into account that the function n is piecewise, the Euler-
Lagrange equation (6) for the piecewise function ñ(x, y) is approximated by
the following second order difference scheme:

nk,l = −

∑
Xk−1/2≤xi≤Xk+1/2

∑
Yl−1/2≤yj≤Yl+1/2

ui,j(Λxx + Λyy)ui,j∑
Xk−1/2≤xi≤Xk+1/2

∑
Yl−1/2≤yj≤Yl+1/2

u2
i,j

, (18)

for k = 1, . . .K and l = 1, . . . L.
In Case 2 the idea is similar, although the calculations are more complicated.

3.4 Algorithm

(I) With a given initial guess for nold
k,l < 0, the fourth-order boundary value

problem (14), (2) and (3) is solved for the function ui,j.
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(II) With the newly computed values of ui,j , the function nnew
k,l is evaluated. If

the difference between the new and the old field for n is less than ε, i.e.

max
i,j
|nnew

k,l − nold
k,l | < ε,

then the calculations are terminated, otherwise go to step (I).

4 Numerical Experiments

The first experiment is performed to verify the fact that for a given coefficient
and boundary data, the solution of the “imbedding” problem does coincide with
the solution of the “direct” problem. Our calculations confirmed this fact in
order of the round-off error in double precision arithmetics.

The accuracy of the developed difference scheme is checked with the manda-
tory tests involving different grid spacing hx, hy, Hx and Hy. We conducted
calculations with different values of mesh parameters and compared them in or-
der to verify the practical convergence, approximation, and consistency of the
difference scheme.

4.1 Constant Coefficient

The truncation error term is O(h2
x+h2

y+H2
x+H2

y ), and the total error also should
be O(h2

x +h2
y +H2

x +H2
y ). In order to verify the O(h2

x +h2
y) approximation of the

scheme, let us consider an example where the coefficient n(x, y) is a constant,
because in such a case one can use K = L = 1, i.e. Hx = Hy = 1 and

ñk,l = n = −

⎡⎣M−1∑
i=2

N−1∑
j=2

(Λxx + Λyy)ui,j

⎤⎦⎡⎣M−1∑
i=2

N−1∑
j=2

u2
i,j

⎤⎦−1

, (19)

for k = 2, . . .M − 1 and l = 2, . . .N − 1. In this case, the problem is strongly
over-determined, but for the boundary data, which are self-consistent, the MVI
converges to the solution, because it provides the global minimum of the
functional.

Table 1. Obtained values of the coefficient n = const and the rate of convergence for
five different mesh size

h n rate of convergence
exact -2.0 —
1/8 -2.00260551699214 —
1/16 -2.00065111900421 2.000576511
1/32 -2.00016275800837 2.000192715
1/64 -2.00004068266175 2.000242553
1/128 -2.00001016475638 2.000838435
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The following numerical results demonstrate clearly the error orders and the
convergence. We have computed a test problem with an exact solution

udirect(x, y) = ex+y, ndirect(x, y) = −2 (20)

with five different sizes of the mesh-steps hx = hy = h. The values of the
identified coefficient n with five steps are given in the Table 1. The rate of
convergence, calculated as

rate = log2

∣∣∣∣n2h − ndirect

nh − ndirect

∣∣∣∣ , (21)

is shown also in Table 1.
In this case, the developed scheme shows the second order of approximation.

Even more: when we introduce the difference solution into the difference scheme
for the “direct” problem, we achieve point-wise satisfaction of the latter better
than 10−8, i.e., the variational functional is of the order of 10−15.

4.2 The Coefficient Is a Function of Single Variable

Another test example was constructed in order to illustrate the Case 2 from
Section 1 and to check the accuracy of the developed difference scheme and al-
gorithm with tests involving different grid spacings Hx and Hy. For this reason,
we conducted a number of calculations with different values of the mesh pa-
rameters, and compared them in order to verify the practical convergence and
approximation of the difference scheme.

A test problem with a known exact solution

udirect(x, y) = e(x2+y) , ndirect(x, y) = −(4x2 + 3) , (22)
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Fig. 2. The discretization error for three different grid steps h = 1/16; 1/32; 1/64
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is used to illustrate the O(h2
x + h2

y +H2
x +H2

y ). For these calculations

ñi,j = ni = −

⎡⎣N−1∑
j=2

(Λxx + Λyy)ui,j

⎤⎦⎡⎣N−1∑
j=2

u2
i,j

⎤⎦−1

, (23)

for i = 2, . . .M − 1 and j = 2, . . .N − 1, since Hy = 1.
The shape of the discretization error (ninverse−ndirect)/ndirect for the obtained

values of the coefficient ni,j with three different grid steps hx = hy = Hx = h
is shown in Figure 2. It is clearly seen that the numerical solution approximates
the analytical one with O(h2).

5 Conclusions

In the present paper we have displayed the performance of the technique called
Method of Variational Imbedding for solving the inverse problem of coefficient
identification in elliptic partial differential equation. The inverse problem for
identification n(x, y) from over–posed boundary data is replaced by a minimiza-
tion problem for the quadratic functional of the original equation. The Euler–
Lagrange equations for minimization comprise a fourth–order elliptic equation
for the function u = u(x, y), and an explicit equation for the unknown coefficient
n = n(x, y). For this system, the boundary data are not over–posed. Thus the
inverse problem is imbedded into a higher–order but well posed for the given
boundary data elliptic boundary value problem. Two examples are considered.
The numerical results confirm the theoretical statement that the two problems
are equivalent, giving a solution for the inverse problem.
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Abstract. Recently a lot of effort has been made in the construction
and implementation of a class of methods called exponential integrators.
These methods are preferable when one has to deal with stiff and highly
oscillatory semilinear problems, which often arise after spatial discretiza-
tion of Partial Differential Equations (PDEs). The main idea behind the
methods is to use the exponential and some closely related functions
inside the numerical scheme. In this note we show that the integrat-
ing factor methods, introduced by Lawson in 1967, are also examples of
exponential integrators with very special structure for the related expo-
nential functions. In order to prove this relation, we use the approach
based on bi-coloured rooted trees and B-series. We also show under what
conditions every bi-coloured rooted tree can be expressed as a linear com-
bination of standard non-coloured rooted trees.

1 Introduction

Realistic models of many physical processes require effective numerical solvers
for a special class of partial differential equations, which after semi-discretization
in space, can be written in the following form

u′ = Lu+N(u(t)), u(t0) = u0, (1)

where u : R → Rd, L ∈ Rd×d, N : Rd → Rd and d is a discretization para-
meter equal to the number of spatial grid points. Several interesting problems
can be brought to this form. Examples are the Allen-Cahn, Burgers, Cahn-
Hilliard, Kuramoto-Sivashinsky, Navier-Stokes, Swift-Hohenberg and nonlinear
Scrödinger equations. Typically the linear part of the problem will be stiff and
the nonlinear part will be nonstiff. Many numerical integrators have been de-
veloped to overcome the phenomenon of stiffness. Exponential integrators were
introduced in the early sixties as an alternative approach for solving stiff sys-
tems. The main idea behind these methods is to integrate exactly the linear
part of the problem and then use an appropriate approximation of the nonlin-
ear part. Thus the exponential function, and functions which are closely related
to the exponential function, appear in the format of the method. This was the
reason why, until recently, these methods have not been regarded as practical.
The latest achievements in the field of computing approximations to the matrix

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 380–386, 2006.
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exponential, have raised a new interest in the construction and implementation
of exponential integrators [2, 3, 7, 6, 9].

The main requirements imposed on the functions which appear in the format
of an exponential integrator are: to be analytic, map the spectrum of L into a
bounded region in C and can be computed exactly or up to arbitrarily high order
cheaply. Suppose that, for all l ∈ N and λ ∈ R, the operators φ[l](λ) : Rd×d →
Rd×d satisfy the above conditions and can be expanded in the form

φ[l](λ)(hL) =
∑
j≥0

φ
[l]
j (λ)(hL)j .

The φ[l] functions, which are used in practice, are associated with the so
called Exponential Time Differencing methods [3, 4, 10, 11], and can be written
explicitly as

φ[l](λ)(hL) = (λhL)−l

(
eλhL −

l−1∑
k=0

(λhL)k

k!

)
. (2)

If h represents the stepsize and Ui denotes the internal stage approximation
of the exact solution for i = 1, 2, . . . , s, then the computations performed in
step number n of an exponential Runge–Kutta (RK) method are related by the
equations

Ui =
s∑

j=1

s∑
l=1

α
[l]
ij φ

[l](ci)(hL) hN(Uj) + ecihLun−1,

un =
s∑

j=1

s∑
l=1

β
[l]
j φ[l](1)(hL) hN(Uj) + ehLun−1,

(3)

where α[l]
ij and β[l]

j are the parameters of the method and the vector c = (c1, c2,

. . . , cs)T is the abscissa vector. If α[l]
ij = 0 for all j ≥ i, then the method is

explicit, and implicit otherwise. Alternatively the computations performed in
step number n can be represented in a more Runge–Kutta type formulation as
follows

c α[1] α[2] · · · α[s]

β[1]T β[2]T · · · β[s]T
,

where each element in row number i of the matrix α[l] is multiplied by φ[l](ci)(hL)
and each element in the vector β[l]T is multiplied by φ[l](1)(hL). The resulting
matrices are then added componentwise.

An other important class of methods which are also used for solving the
semilinear problem (1) are the Integrating Factor (IF) methods. The idea behind
these methods goes back to the work of Lawson [8]. He proposes to ameliorate
the effect of the stiff linear part of equation (1) by using the change of variables
(also known as Lawson transformation)

v(t) = e−tLu(t).
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The initial value problem (1) written in the new variable is

v′(t) = e−tLN(etLv(t)) v(t0) = v0, (4)

where v0 = e−t0Lu0. The approach now is to apply an arbitrary s-stage Runge–
Kutta method to the transformed equation (4) and then to transform the result
back into the original variable. Thus, a method which satisfy just the nonstiff
order conditions will not suffer from severe order reduction when it is applied to
stiff problems.

The aim of this paper is to show that the IF methods are examples of expo-
nential RK methods with special choices for the φ[l] functions and the parameters
α[l] and β[l]T . We also prove that in this special case the nonstiff order theory for
the exponential RK methods reduces to the classical Runge–Kutta order theory,
which explains why the IF methods exhibit the expected order.

The paper is organized as follows: We briefly survey the nonstiff order theory
for the exponential RK methods in Section 2. Next, in Section 3, we define the
structure of the matrices α[l] and the vectors β[l]T as well as the form of the
functions φ[l], which correspond to the IF methods. Finally, in Section 4, we
conclude with several remarks and questions of future interest.

2 Nonstiff Order Conditions

The nonstiff order theory for the exponential RK methods was first constructed
in [4] and later developed in [11]. Here we follow the approach suggested in [9].
It is based on bi-coloured rooted trees and B-series. For those not familiar with
these concepts we suggest the monographs [1, 5] for a complete treatment.

Let 2T∗ denote the set of all bi-coloured (black and white) rooted trees with
the requirement that the valency of the white nodes is always one. This corre-
spods to the fact that the first term on the right hand side of (1) is linear. Let
∅ represents the empty set, which remains if the root of the one node tree or
is removed. The order of the tree τ ∈ 2T∗ is defined as the number of vertices
in the tree, and it is denoted by |τ |. The density γ of the tree is defined as the
product over all vertices of the order of the subtree rooted at that vertex. An
exponential Runge–Kutta method with elementary weight function a : 2T∗ → R
has nonstiff order p, if for all τ ∈ 2T∗, such that |τ | ≤ p, a(τ) = 1/γ(τ).

In order to give a practical representation of the elementary weight function a
of the numerical solution, it is convenient to introduce some notations. Let for l =
0, 1, . . . and k = 1, . . . ,m the s× s matrix φ[k]

l (c) = diag
(
φ

[k]
l (c1), . . . , φ

[k]
l (cs)

)
and C = diag(c1, . . . , cs).

Define

A[l] =
s∑

k=1

φ
[k]
l (c)α[k], b[l]

T

=
s∑

k=1

φ
[k]
l (1)β[k]T ,

C [l] = 1
(l+1)!C

l+1.

(5)
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The elementary weight function a of the numerical solution can be computed
using the following non-recursive rule:

– Attach b[j]
T

to the root black node.
– Attach A[j] to all remaining nonterminal black nodes.
– Attach A[j]e to all terminal black nodes.
– Attach C [j]e to all terminal white nodes.
– Attach I to all remaining white nodes.

The value j is the number of white nodes directly below the corresponding node,
I is the s × s identity matrix and e = (1, . . . , 1)T . Now for each tree multiply
from the root to the leaf as in the case for Runge–Kutta methods, then multiply
these expressions in a component by component sense.

3 IF Methods as a Special Case

Applying a standard s-stage Runge–Kutta method to the transformed equation
(4) and then transforming back the result into the original variable, leads us to
the following φ[l] functions

φ[l](λ)(hL) = e(λ−cl)hL. (6)

Every IF method can be represented in the form (3) with φ[l] functions given by
(6) and with a special choice of the coefficient matrices α[l] and the coefficient
vectors β[l]T . This choice reduces the set of all order conditions to a set which
consists only of the order conditions corresponding to the black trees. To prove
this fact we need the following lemma.

Lemma 1. Let t ∈ R\{0,−1,−2, ...}, then for j = 0, 1, 2, . . .

j∑
k=0

(−1)k

k!(j − k)!
1

(k + t)
=

1
t(t+ 1) · · · (t+ j)

.

Proof. The proof of this statement is by induction on j.

The following theorem defines the structure of the matrices α[l] and the vectors
β[l]T for the IF methods. With this structure of the coefficients, to achieve certain
nonstiff order, it is sufficient to satisfy only the black trees. This implies that the
transformed differential equation (4) is solved using a Runge–Kutta method.

Theorem 1. Let all the non-zero coefficients of an exponential Runge–Kutta
method (3), with φ[l] functions given by (6) be located in column number l of the
matrix α[l] and in position number l of the vector β[l]T for l = 1, 2, . . . , s. The
method has nonstiff order p iff all order conditions corresponding to the black
trees are satisfied.
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Proof. It follows directly that if the exponential Runge–Kutta method has non-
stiff order p then all order conditions corresponding to the black trees are sat-
isfied. Let us assume that all the order conditions corresponding to the black
trees are satisfied. We need to prove that all the remaining order conditions are
also satisfied. From the definition of the φ[l] functions (6), it follows that for
j = 0, 1, 2, . . .,

φ
[l]
j (1) =

(1− cl)j

j!
, φ

[l]
j (c) =

1
j!

diag((c1 − cl)j , . . . , (cs − cl)j). (7)

Since all order conditions corresponding to the black trees involve only the coef-
ficients A[0], b[0]

T

and c, we need to express every other order condition in terms
of these coefficients. Having in mind the special structure of the matrices α[l]

and the vectors β[l]T , after substituting (7) into (5), we obtain for j = 1, 2, . . .,

A[j] =
j∑

k=0

(−1)k

k!(j − k)!C
[0]j−k

A[0]C [0]k ,

b[j]
T

=
j∑

k=0

(−1)k

k!(j − k)!b
[0]TC [0]k .

(8)

From the fact that all order conditions corresponding to the black trees are
satisfied, it follows that A[0], b[0]

T

and c form a Runge–Kutta method. Therefore,

C [0]e = A[0]e, C[0]ζ = (A[0]e)ζ,
C [0]kζ = (A[0]e) . . . (A[0]e)ζ,

(9)

where ζ is an arbitrary vector and the multiplications between the elements in
the brackets are in a component by component sense.

Now, we are in the position to define a procedure which transforms every
coloured tree τ into a linear combination of black trees of order at most |τ |.
Each tree τ can be decomposed as τ = (τb, τj , τt), where τb is a coloured tree
on the bottom with fewer white nodes than τ ; τj is a tall white tree with j ≥ 1
white nodes and τt is a black tree on the top. First applying formula (8) and then
(9), for the order condition corresponding to a tree τ , we obtain the following
three representations in terms of black trees or trees with fewer white vertices.
If τt = ∅, then τ reduces to

τ = τb
=

1
j! τb

.

If τb = ∅, then τ reduces to

τ =
τt

= δ0 τt + · · ·+ δk τt + · · ·+ δj τt,

where δk = (−1)k

k!(j−k)! for k = 0, 1, 2, . . . , j. In the general case when τ{t,b} �= ∅, τ
can be represented as

τ =
τt

τb
= δ0

τt
τb

+ · · ·+ δk
τt
τb

+ · · ·+ δj
τt
τb
.

(10)
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For each of the trees in the linear combination we apply the same procedure.
Thus, after a finite number of steps all the trees in the combination will be black.
From (5) it is clear that the order of every single black tree cannot exceed the
order of a coloured tree. To complete the proof we need to show that a(τ) =
1/γ(τ) for all coloured trees τ , where |τ | ≤ p. We prove this by induction on the
number of steps θ in the transformation process. Let θ = 1. Every coloured tree τ
has representation τ =

∑j
k=0 δkτk, where all τk are black trees. If γ(τt) = x1|τt|x2

then a(τk) = 1
γ(τk) = 1

x1(|τt|+k)x2
and by Lemma 1 for t = |τt| it follows that

a(τ) =
j∑

k=0

(−1)k

k!(j − k)!a(τk) =
j∑

k=0

(−1)k

k!(j − k)!
1

x1(|τt|+ k)x2

=
1

x1|τt|(|τt|+ 1) · · · (|τt|+ j)x2
=

1
γ(τ)

.

Assume that a(τ) = 1/γ(τ) for all coloured trees τ with θ steps in the transfor-
mation process. Let τ be a tree with θ + 1 steps in the transformation process.
From (10) it follows that τ =

∑j
k=0 δkτk, where τk are coloured trees with θ steps

in the transformation process and hence a(τk) = 1/γ(τk). If γ(τt) = x1|τt|x2 then
a(τk) = 1

γ(τk) = 1
x1(|τt|+k)x2

and by Lemma 1 for t = |τt| it again follows that
a(τ) = 1/γ(τ).

4 Conclusions

We have shown that the IF methods are examples of exponential Runge–Kutta
methods with special structure of the coefficient matrices and the related φ[l]

functions. We have also proven that, in this special case, the nonstiff order theory
for the exponential RK methods reduces to the classical Runge–Kutta order
theory. This explains why the IF methods exhibit the expected order. Examples
of the φ[l] functions, other than (2) and (6), arise from the framework of Lie
group methods, see [9]. The question of how to find the best set of φ[l] functions
is open and needs further investigation.
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An Operator Splitting Scheme for Biharmonic
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Abstract. We consider the acceleration of operator splitting schemes
for Dirichlet problem for biharmonic equation. The two fractional steps
are organized in a single iteration unit where the explicit operators are
arranged differently for the second step. Using an a-priori estimate for
the spectral radius of the operator, we show that there exists an op-
timal value for the acceleration parameter which speeds up the conver-
gence from two to three times. An algorithm is devised implementing the
scheme and the optimal range is verified through numerical experiments.

1 Introduction

Biharmonic boundary value problems arise in many different areas of mechanics
of continua such as the stream function formulation for stationary Navier-Stokes
equations and the equations for deformation of elastic plates. Constructing effi-
cient numerical algorithms is of prime importance in these cases. A well estab-
lished approach to the problem is to introduce an artificial time in the elliptic
equation and to use operator splitting technique for the resulting parabolic equa-
tion. The technique is summarily known as Alternative Directions Implicit (ADI)
method. To the authors’ knowledge, the first work in which an ADI scheme was
applied to biharmonic equation is [5]. The CD scheme exhibits the best of the
world of ADI schemes, as being absolutely stable and low cost per iterations, but
its rate of convergence has been shown to be rather slow in some cases (see, [7, 6]).
In order to accelerate the convergence we consider an iteration unit consisting
of a CD scheme and a modified scheme, the latter dependent on a parameter.
The two schemes damp different part of the spectrum differently and we show
in the present paper that the combination of them yields a faster convergence
than the original ingredients.

2 Differential Equations and Conte-Dames ADI Scheme

Consider the following two-dimensional higher-order parabolic equation with
Dirichlet boundary value problem

ut = −Δ2u(x, y) + F (x, y), (x, y) ∈ D; (1)
u(0, y) = f1(y), u(1, y) = f2(y), u(x, 0) = f3(x), u(x, 1) = f4(x), (2)

ux(0, y) = g1(y), ux(1, y) = g2(y), uy(x, 0) = g3(x), uy(x, 1) = g4(x), (3)
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where D is a square region {(x, y)|0 < x < 1, 0 < y < 1} and D̄ = D ∪ ∂D
is its closure. Δ2 is the biharmonic operator. Equations (1)-(3) are also called
“clamped plate problem” in elasticity.

In order to obtain second order of approximation of the difference scheme we
assume that function u possesses derivatives up to sixth order.

We employ an uniformly spaced mesh in D̄ with spacings hx = hy = h =
1/N , where N is the grid size and replace D and ∂D by sets of grid points
Dh = {(ih, jh)|i = 1, 2, · · · , N − 1; j = 1, 2, · · · , N − 1} and ∂Dh. Respectively,
un

i,j is the difference approximation to u at the grid point x = ih, y = jh and
time stage t = nτ , where τ is the time increment. The differential operators are
approximated by the usual central difference operators, denoted by δ4x, δ4y and
δ2xδ

2
y. The scheme of Conte and Dames [5] (called in what follows “CD”) consists

of following two sweeps in x and y directions

ũi,j = un
i,j − τ(δ4xũ+ 2δ2xδ

2
yu

n
i,j + δ4yu

n
i,j − Fi,j), (4)

un+1
i,j = ũi,j − τ(δ4yun+1

i,j − δ4yun
i,j), (5)

where u0
i,j = 0 is an (arbitrary) initial condition and the time increment τ plays

the role of an iteration parameter and can be chosen to accelerate convergence.
Second-order approximations for the boundary conditions are obtained by means
of central differences on the grid that overflows the actual region, e.g.

ũi,j = un+1
i,j = fi,j, for (ih, jh) ∈ ∂Dh, (6)

φ−1,j = φ1,j − 2hg1(jh), φN+1,j = φN−1,j + 2hg2(jh), (7)
φi,−1 = φi,1 − 2hg3(ih), φi,N+1 = φi,N−1 + 2hg4(ih), (8)

for i = 1, 2, · · · , N − 1 and j = 1, 2, · · · , N − 1. Here φ stands for the different
time stages ũ, and un+1.

Eliminating the intermediate variable ũi,j between Eqs. (4) and (5) one gets

(E + τδ4x + τδ4y + τ2δ4xδ
4
y)un+1 = (E − 2τδ2xδ

2
y + τ2δ4xδ

4
y)un + τF, (9)

where F stands for the grid function of F (x, y) on Dh, E denotes the identity
matrix and the difference operators are considered as the corresponding matrices
for grid function un. The subscripts i,j are omitted for brevity of notation. The
transition matrix T from one time step to another is

T = (E + τδ4x + τδ4y + τ2δ4xδ
4
y)−1(E − 2τδ2xδ

2
y + τ2δ4xδ

4
y). (10)

The convergence of CD scheme for arbitrary positive iteration parameter τ is
shown in [5] by demonstrating that ‖T ‖ < 1 for any τ > 0 for the case when the
second-order derivatives are specified at the boundary. However,the dependence
of spectral radius of T on the iteration parameter τ has not been investigated
so far, because of the difficulty in obtaining appropriate eigenvectors of the
difference operator for biharmonic problem with Dirichlet boundary conditions.
If an arbitrary τ is chosen, the convergence rate of CD scheme can be quite slow
(see, discussions in[7] and [6]).
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Therefore we have three essential objectives to achieve in this work: (1) to
reformulate the CD scheme in a manner that allows one to accelerate its conver-
gence rate depending on an iteration parameter; (2) to prove that acceleration
is possible and to find an estimate for the iteration parameter introduced; (3) to
find optimal choice of the iteration parameter through numerical experiment.

Suppose that w is the grid function that is the solution of the stationary
difference problem with the same Dirichlet boundary conditions. Define the error
vector for the n-th iteration as ξn = un − w. By (9) and b.c. (6)-(8), we obtain
the system of equations with homogeneous boundary conditions for ξn

ξn+1 = Tξn on Dh, (11)

ξn+1 = 0 on ∂Dh, (12)

ξn+1
−1,j = ξn+1

1,j ξn+1
N+1,j = ξn+1

N−1,j ; (13)

ξn+1
i,−1 = ξn+1

i,1 ξn+1
i,N+1 = ξn+1

i,N−1. (14)

Using Courant’s theorem [2], Conte and Dames [5] showed that for the boundary
conditions (12)-(14) the transition matrix T has a complete set of eigenvectors
vk for the vector space Φ defined on Dh and the corresponding eigenvalues are
0 < α(T ) = λ1 ≤ λ2 ≤ · · · ≤ λm−1 ≤ λm = β(T ) < 1. This is the only a-priori
information about transition matrix T needed for us to improve the original CD
method. For convenience, we denote the matrices involved in the scheme as

Bx = E + τδ4x, By = E + τδ4y . R = E − 2τδ2xδ
2
y + τ2δ4xδ

4
y. (15)

Then T can be written as T = B−1
y B−1

x R.

3 The Modified Splitting Scheme

In order to accelerate the convergence of the iterations for a given time increment
τ we try to find a modification of the CD scheme in which the transition operator
has smaller norm than the original scheme.

The gist of present paper is that we introduce an iteration unit consisting of
two CD iterations with different arrangements of the explicit terms by means of
an auxiliary parameter θ as follows

(n+1)-th unit =

{
BxByu

n+1 = Run + τF (a)
BxByu

n+2 = R[(θ + 1)un+1 − θun] + τF (b)
, (16)

where the intermediate variable ũ is eliminated and (θ+1)un+1− θun is consid-
ered as the input vector to compute un+2 using CD scheme in (b). The boundary
conditions are the same for the two steps and are omitted for the sake of brevity.
Clearly, there is no extra cost for implementing of the new scheme.

To study the convergence of the iteration units we observe that one can recast
the equations of the full iteration unit (16) as equations for the error ξn, namely

ξn+1 = Tξn, ξn+2 = [(θ + 1)T 2 − θT ]ξn. (17)
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Begin with a trivial initial condition u0 = 0, which means that the initial
condition for the error is ξ0 = −w. The Fourier expansion of ξ with respect to
the complete set of eigenvectors {vk} of T reads

ξ0 = −w =
m∑

k=1

ckvk, ξn =

{∑m
k=1 λkρ

l
θ(λk)ckvk if n = 2l+ 1∑m

k=1 ρ
l
θ(λk)ckvk if n = 2l

(18)

where ck is the corresponding Fourier coefficient for l = 0, 1, 2, · · · ; where we
define quadratic function ρθ(λk) = (1 + θ)λ2

k − θλk and λk is the corresponding
eigenvalue for T . In order to show the convergence of the iteration units, it is
sufficient for us to show that for each λk, |ρθ(λk)| < 1, since 0 < λk < 1. Indeed,
we have

max
λk

|ρθ(λk)| ≤ max
0<x<1

|ρθ(x)| ≤ max{|ρθ(0)|, |ρθ(1)|, |ρθ

(
θ

2(θ + 1)

)
|}, (19)

where we consider only θ > 0 because only positive choice of θ can accelerate
the iterations. Since ρθ(0) = 0 and ρθ(1) = 1, Eq.(19) will hold when

|ρθ

(
θ

2(θ + 1)

)
| = θ2

4(θ + 1)
< 1, (20)

whence it follows that 0 < θ < 2 + 2
√

2 must hold in order to ensure that we
have maxλk

|ρθ(λk)| < 1 needed for the convergence of the iteration unit (16).
Now we analyze the acceleration of the convergence for the iteration units.

Consider the error ξn
cd for the CD scheme after n iterations. Using (11) and

(18) we can represent ξn
cd in terms of Fourier expansion with respect to the

eigenvectors vk of the transition matrix T , namely

ξn
cd =

m∑
k=1

λn
k (ckvk). (21)

The coefficients of vk in the error vector ξn
cd decrease in absolute value by the

multiplicative factor of λk. The least affected is the coefficient of vm, which
corresponds to the largest eigenvalue λm. Repeating CD iterations leads us to
the asymptotic case, because for n # 1 all other coefficients become negligibly
small compared to the coefficient of vm, and hence we have the error for CD
scheme given by

ξn
cd = λmξ

n−1
cd = β(T )ξn−1. (22)

From (22) follows for the standard norm ‖ξn
cd‖2 = (ξn

cd, ξ
n
cd) that

‖ξn
cd‖ = β(T )‖ξn−1

cd ‖. (23)

Although for small n the amplifier of the norm depends on the iteration, the
performance of the iterative process is usually judged by the asymptotic rate of
convergence s (n# 1) which is defined as

s = − ln |β(T )| = − ln
‖ξn‖
‖ξn−1‖ . (24)
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By the recursive relation (23) we obtain the asymptotic equation

‖ξn‖ = en ln β(T )‖ξ0‖ = e−ns‖ξ0‖. (25)

In this way, the asymptotic rate of convergence s characterizes the rate of the
exponential error decrease. The cause of slow convergence of CD scheme is that
β(T ) is close to unity. In such a case we use the notation β = 1 − p where
0 < p$ 1. Using the Taylor expansion, the asymptotic rate of convergence s of
CD scheme is given by s = − ln(1− p) ≈ p$ 1.

In the same manner, we investigate the asymptotic rate of convergence s of
our iteration units. In order not to obscure the main idea we limit the discussion
here to some typical values of θ, as θ = 3, which is in the range 0 < θ <
2 + 2

√
2. The coefficient of eigenvector vk in (18) decreases in absolute value

by the multiplicative factor of |ρ3(λk)|. Since ρ3(x) = 4x2 − 3x is a quadratic
function, it is easy to show that its minimum is at x = 3

8 and has the magnitude
of 9

16 . Then
max

0<λk≤1−p

|ρ3(λk)| ≤ max{ 9
16 , |ρ3(1 − p)|}, (26)

which mean that if 9/16 > |ρ3(1 − p)|, we have already obtained a very fast
convergence of the iteration units which will reduce the error to 10−5 within 20
iteration units.

On the other hand, for p$ 1 we have |ρ3(1−p)| = |(1−p)(1−4p)| ≈ (1−5p)
and using (17) asymptotically for n # 1, we can write ‖ξn+2‖ ≈ (1 − 5p)‖ξn‖.
Therefore, the corresponding asymptotic rate of convergence of our iteration
units is

s = − 1
2 ln(1− 5p) ≈ 2.5p, (27)

where we compare one iteration unit consisted of two iterations with two original
CD iterations for which the reduction factor would be (1− p)2 ≈ 1− 2p. All this
means that the introduction of the iteration unit can speed up the convergence
rate at least 2.5 times. Note that the actual factor of acceleration depends on
the value of time increment τ and is discussed in the next Section. Similarly, we
can verify that for 0 < θ < 2 +

√
2, the asymptotic rate of convergence is

s = − 1
2 ln ρθ(1− p) = − 1

2 ln{(1− p)[(θ + 1)(1− p)− θ]} ≈ 1
2 (θ + 2)p. (28)

But this conclusion depends on the assumption that 1− β(T ) = p$ 1 and∣∣∣∣ρθ

(
θ

2(1 + θ)

)∣∣∣∣ =
θ2

4(1 + θ)
≤ ρθ(1− p). (29)

Actually, the maximum eigenvalue β(T ) of the transition matrix can be es-
timated in the numerical experiment, based on which we can choose a proper
value of the auxiliary parameter θ to maximize the acceleration of the devised
iteration units. By (9) and (10), we have the recursive relation

(un+1 − un) = T (un − un−1). (30)
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Since ‖T ‖ = β(T ) < 1, after a few CD iterations the largest eigenvalue β(T )
becomes the dominant multiplicative factor in the iterations while other smaller
eigenvalues become negligible. Therefore we can compute the numerical quantity

q = ‖un+1 − un‖/‖un − un−1‖ (31)

in each iteration and when q varies little between two consecutive iterations,
an estimate of β(T ) is obtained. Based on the a-posteriori numerical estimate
q ≈ β(T ), we can determine the optimal choice of θ to maximize the acceleration.
At first, we notice that ρθ(q) is a linear function of θ when q is fixed

h1(θ) = ρθ(q) = (q2 − q)θ + q2. (32)

since q2 − q < 0, h1(θ) is a monotone decreasing function. Next, we consider
another function h2 of θ

h2(θ) =
∣∣∣∣ρθ

(
θ

2(1 + θ)

)∣∣∣∣ =
θ2

4(1 + θ)
, (33)

which is a monotone increasing for θ ∈ (0, 2
√

2) because

h′2(θ) =
θ2 + 2θ
4(θ + 1)

> 0. (34)

To maximize the acceleration, by (19) we need to find θ from

min
0<θ<2+

√
2

max{|h1(θ)|, h2(θ)}. (35)

By the monotonicity of h1(θ) and h2(θ), it is easy to verify that the optimal θ
has to be the positive solution of the following equation and automatically in
the range (0, 2 + 2

√
2),

(q2 − q)θ + q2 = 1
4θ

2(1 + θ)−1. (36)

Therefore, we obtain the optimal θ by solving (36)

θopt(q) =
2q2 + (

√
2− 1)q

−2q2 + 2q + 1
2

. (37)

Since h1(0) = q2 and h1(θ) is a decreasing function, then we have

0 < h1(θopt) =
θ2opt

4(1 + θopt)
< q2 (38)

where q2 stands for the convergent effect of two CD iterations. Hence, we have
shown that for different choices of the iteration parameter τ in the CD method,
which give us different transition matrices T (i.e. different q), we are always able
to select a θopt to accelerate the original CD iterations.

By (28) and (37), we can see that when β(T ) is closer to unity, that is to say,
the original CD method has a slower convergence, larger auxiliary parameter θ
can be chosen in the iteration units which leads us to a more significant accel-
eration over the CD method. Since the value of θ is bounded by 2 + 2

√
2 ≈ 4.8,

by (28) the best acceleration that our method can reach is 3.4 times faster than
CD method.
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4 Results and Discussion

We begin with numerical verification of the performance of a single iteration-unit
as introduced above. In implementation of the algorithm we follow [4] where a
splitting scheme of type of CD was applied to lid-driven cavity flow of viscous
liquid. Later on a similar algorithm was used in [3] for another kind of higher-
order diffusion equation.

We select two different problems for which analytical solutions are available

û(x, y) = sin2(πx) sinh2 y, (a) and û(x, y) = 2350x4(x− 1)2y4(y − 1)2 (b).
(39)

The first of these was created by us, and the secon is from [1].
The operator to be inverted is the same in both cases and does not depend on

the actual solution, and hence on the right hand side. Yet, the convergence rate
depends on the specific solution because of the fact that different eigenfunctions
decay differently with the iterations. Since different analytical solutions have dif-
ferent content of eigenfunctions, the rate could be rather different which warrants
checking the performance for two radically different analytical solutions.

It is important to demonstrate that an iteration unit does give the same
truncation error as a single CD iteration. For this particular test we fix θ =
1, 2 and τ = 1

4h and calculate the solution with three different grids. Here,
we fix the value of θ and vary the number of grid points both along x and y
directions simultaneously. We define the computed order of approximation as
R = log2 [‖uN − û‖/‖u2N − û‖]. For second order schemes O(h2), the value of
R = 2. Table 1 shows that in both cases, the computed convergence rate is very
close to two. Having confirmed the second-order accuracy of the scheme we can
address the issue of computational efficiency. The pertinent parameter here is
the number of iterations, say Niter, needed to reduce the norm of the difference
between two iterations to 10−6. Clearly, the rate of convergence is a function
of the time increment, τ , and the optimization parameter θ. For different θ we
performed calculations with several different τ . In Fig. 1 we present Niter for
which the norm between two iterations for Eq. (39)(b) go down to 10−6. For
θ ≤ 2 there is a conspicuous minimum of Niter for the original CD scheme,
as well as for the scheme with one iteration unit. In this range of θ, our Niter

is at least twice smaller than CD scheme. In the range of non-optimal τ , the
acceleration is even larger. The result in Fig. 1 is in very good agreement with
the theoretical estimate, Eq. (37), which gives us θoptimal ≈ 1.8 when q ≈ 0.77.
This is the fastest result one can get for Eq. (39)(b) with a splitting scheme of
the type of CD.

Table 1. Order of approximation R for different grids

case Eq. (39)(a)
N θ = 1 R θ = 2 R

256 1.578E-5 - 1.582E-5 -
512 3.797E-6 2.05 3.810e-6 2.05
1024 9.687E-7 1.97 9.747E-7 1.967

case Eq. (39)(b)
N θ = 1) R θ = 2 R

256 3.093E-4 - 3.080E-4 -
512 7.981E-5 1.95 8.063e-5 1.93
1024 1.823E-5 2.13 1.884E-5 2.09
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Fig. 1. Number of iterations, as function of time increment for different values of θ and
grid size 1024 × 1024

It is interesting to mention here the nonmonotone behavior of Niter with
the increase of θ, which means that there is an optimum for θ, but only in the
vicinity of optimal τ . If one cannot chose a-priori an optimal τ , then the scheme
proposed here will overperform the CD scheme even for a wider range of θ. We
obtained a similar result for grid size 512 × 512, for which the values of Niter

consistently lower by 10% from the presented case. This is natural for iterative
algorithms since the eigenvalues of difference operators depend on spacing h.
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Testing Variational Data Assimilation Modules

Zahari Zlatev and Jørgen Brandt

National Environmental Research Institute,
Frederiksborgvej 399, P. O. Box 358, DK-4000 Roskilde, Denmark

Abstract. The use of the variational data assimilation approach is be-
coming more and more popular in the attempts to improve the accuracy
of the results obtained by different air pollution models. Different tests
were carried out in order both to check the ability of the data assimilation
procedures to improve the initial concentrations and to start building up
a benchmark for testing the performance of these procedures on different
modern high-speed computers.

1 Statement of the Problem

The variational data assimilation approach could be viewed as an attempt to
adjust globally the results obtained by a given model to a set of available ob-
servations. The idea was probably applied for the first time in 1971 in a paper
written by Morel et al. [3]. They defined and implemented a procedure in which
the assimilating model is repeatedly integrated forward and backward in time,
the observations being constantly introduced in the model. The heuristic idea
behind that procedure, supported by a number of numerical results, was that
repeated calculations and corrections of model results would converge to a so-
lution which would be compatible, at least to a certain degree of accuracy, with
the observations.

2 Basic Ideas

Assume that observations are available at time-points tp, where p ∈ {0, 1, 2, . . . ,
P}. These observations can be taken into account in an attempt to improve the
results obtained by a given model. This can be done by minimizing the value of
the following functional (see, for example, Lewis and Derber [1]):

J{c̄0} =
1
2

P∑
p=0

< W (tp) (c̄p − c̄obs
p ) , c̄p − c̄obs

p >, (1)

where the functional J{c̄0} depends on the initial value c̄0 of the vector of the
concentrations, W (tp) is a matrix containing some weights and <,> is an in-
ner product in an appropriately defined Hilbert space (it will be assumed here
that the usual vector space is used, i.e. it is assumed that c̄ ∈ Rs). J{c̄0} is
expressed by the weights and the differences between calculated by the model
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concentrations c̄p and observations c̄obs
p at the time-levels tp at which observa-

tions are available, but it will be assumed that W (tp) is the identity matrix I in
this study. In general weights are to be defined in some way.

The task is to find an improved initial field c̄0 , which minimizes the func-
tional J{c̄0} . This can be achieved by using some optimization algorithm. Most
of the optimization algorithms are based on the application of the gradient of
the functional J{c̄0} . The adjoint equation has to be defined and used in the
calculation of the gradient of the functional J{c̄0}.

It is assumed here that data assimilation techniques are applied to improve
an initial field of concentrations, but data assimilation can be applied for other
purposes too. Other applications are (a) improving emission fields, (b) checking
boundary conditions and, in a more general context, (c) checking the sensitivity
of the concentrations to variation of different parameters.

3 Calculating the Gradient of the Functional

It is convenient to explain the basic ideas that are used when the gradient of
the functional J{c̄0} is calculated by the following very simple example. Assume
that observations are available at five time-points: t0, t1, t2, t3 and t5. The
calculations have to be performed in five steps.

– Step 1. Use the model to calculate c̄1 (performing integration, in a forward
mode, from time-point t0 to time-point t1 ). Calculate the adjoint variable
q̄1 = c̄1−c̄obs

1 . Form the adjoint equation (corresponding to the model used in
the forward mode). Perform backward integration (by applying the adjoint
equation) from time-point t1 to time-point t0 to calculate the vector q̄10 ,
where the lower index shows that q̄10 is calculated at time-point t0 , while
the upper index shows that q̄10 is obtained by using q̄1 = c̄1− c̄obs

1 as an initial
vector in the backward integration.

– Step 2 - Step 4. Perform the same type of calculations, as those in Step 1
to obtain q̄20 , q̄

3
0 and q̄40 .

– Step 5. The sum of the vectors q̄10 , q̄
2
0 , q̄30 , q̄40 obtained in Step 1 - Step 4 and

vector q̄00 = q̄0 = c̄0− c̄obs
0 gives the required gradient of the functional J{c̄0}.

It is clear that this approach can also be used for an arbitrary value of P (instead
of P = 4). In the general case, the gradient of the functional J{c̄0} can be
calculated by performing one forward step from time-point t0 to time-point tP
and P backward steps from time-points tp, p = 1, 2, . . . , P , to time-point t0. This
explains the main idea in a very clear way, but it is expensive when p is large. In
fact, the computational work can be reduced by performing only one backward
step (see, again, [1]).

4 Forming the Adjoint Equations

Assume that a linear model is written in the following general form:

∂c̄

∂t
= Ac̄. (2)
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Let q̄ = c̄−c̄obs be the adjoint variable (it is assumed here that some interpola-
tion rules are used in order to get the continuous variable c̄obs from the available
discrete values of the observations). Then the adjoint equation is defined by

∂q̄

∂t
= −AT q̄, (3)

where the superscript T means that if we form the matrix by which the adjoint
operator is represented after some kind of discretization, then this matrix is
transposed to the matrix representing operator A (again after some kind of
discretization). Normally, the notation A∗ is used instead of AT . The operator
A∗ is the conjugate operator of operator A. The notation AT is used in order
to facilitate the understanding of the linear algebra operations which have to be
carried out when the data assimilation procedure is used in practice.

If the model is non-linear, then it is first necessary to produce a linearized
version. In other words, the non-linear model

∂c̄

∂t
= B(c̄), (4)

is rewritten as
∂(δc̄)
∂t

= B′(c̄) δc̄, (5)

where δc̄ is some small variation of c̄ and B′ is a linear operator obtained by
differentiation of B. The adjoint equation of (4) can be formed as follows:

∂q̄

∂t
= − [B′(c̄)]T q̄. (6)

The adjoint equation is always linear, see (3) and (6). In the non-linear case
the adjoint operator depends on the values of c̄. This causes difficulties (all
values of c̄ calculated during the forward mode have to be saved because they
are needed in the backward mode).

More details about adjoint equations can be found in Marchuk [2].

5 Algorithmic Representation

A data assimilation algorithm can be represented by applying the procedure
described in Fig. 1. An optimization procedure is needed for the calculations that
are to be carried out in the loop “DO ITERATIONS”. In many optimization
subroutines, the direction of the steepest descent is to be found and then the
value of parameter ρ that gives the largest decrease in the direction found is to
be used to improve the current solution. In practice, however, it is only necessary
here to find a good standard minimization subroutine. In our experiments we
used the subroutine E04DGF from the NAG Numerical Library [4]. It should be
relatively easy to call another appropriate subroutine.

Nearly all optimization subroutines need the value of the functional J{c̄0}
and its gradient. The calculation of these values is performed in the loop “DO
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LARGE STEPS” in Fig. 1. P STEP is the number of time-points at which ob-
servations are available. P LENGTH is the number of time-steps carried out
between two time-points at which observations are available. This is a major
part of the computational work and is based on scheme described in Section 3.
Let us reiterate here that multiple backward steps can be avoided. The algo-
rithm with multiple backward modes is given here only because it facilitates the
understanding of the main idea behind the data assimilation procedure.

Initialize scalar variables, vectors and arrays; set the initial gradient
C

DO ITERATIONS = 1, MAX ITERATIONS
C

DO LARGE STEPS = 1, P STEP
C

F START=(LARGE STEPS-1)∗P LENGTH+1
F END=LARGE STEPS∗P LENGTH
DO FORWARD STEPS = F START,F END

Perform forward steps by using the model
END DO FORWARD STEPS

C
Form the adjoint variable and update the value of the functional
DO BACKWARD STEPS = F END,1,-1

Perform backward steps by using the adjoint equation
END DO BACKWARD STEPS
Update the value of the gradient of the functional

C
END DO LARGE STEPS

C
Compute an approximation of the optimization parameter ρ
Update the initial values field:
NEW FIELD=OLD FIELD + ρ∗GRADIENT
Exit from loop DO ITERATIONS if the stopping criteria are satisfied

C
END DO ITERATIONS

C
Perform output operations and stop the computations

Fig. 1. An algorithm for performing variational data assimilation by carrying out
multiple backward calculations

6 Using Splitting Techniques

It is well-known (see, for example, Zlatev [5]) that splitting procedures are
used in all operational large-scale air pollution models. The algorithm shown in
Fig. 1 can easily be modified for the case where some splitting procedure is imple-
mented. Assume that the original model (the model used in Fig. 1) is split to two
sub-models: “sub-model-1” and “sub-model-2”. Then in the body of the loop DO
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FORWARD STEPS in Fig. 1 one should perform successively at each time-step
calculations with “sub-model-1” and “sub-model-2” (instead of the calculations
carried out by “model”). Denote the adjoint equations corresponding to “sub-
model-1” and “sub-model-2” by “adjoint-equation-1” and “adjoint-equation-2”.
Then in the body of the loop DO BACKWARD STEPS in Fig. 1 one should
perform successively at each time-step calculations with “adjoint-equation-1”
and “adjoint-equation-2” (instead of the calculations carried out by the adjoint
equation of the original model).

The use of splitting procedures simplifies considerably the computations re-
lated to the data assimilation algorithm. It is clear that one should prepare mod-
ules for performing forward and backward steps for each sub-model obtained by
the splitting procedure and, after that, combine these modules in an appropriate
way. This observation was used to prepare modules for the two most important
processes in an air pollution model, the advection and the chemistry. Some tests
obtained with these two modules will be shown.

It should be emphasized, however, that it is also necessary to check carefully
the performance of the splitting procedure. Such checks will be carried out in
the near future.

7 Numerical Examples

It is necessary to build up a large benchmark of relevant examples by which dif-
ferent properties of the variational data assimilation procedures can be studied.
Two examples will be used in this paper. The first example is a linear first-oder
PDE, which is in some sense similar to the problems arising in the advection
sub-model when splitting procedures are implemented. The second example is
a non-linear system of ODEs, which is similar to the problems arising in the
chemical sub-model.

7.1 Example 1

One-dimensional transport of a single pollutant in the atmosphere can be de-
scribed mathematically (see [1]) by

∂c̄

∂t
= −V ∂c̄

∂x
, x ∈ [a, b], t ∈ [0, T ], c̄(x, 0) = f(x), (7)

where
[a, b] = [0, 2π], f(x) = sin(x), V (x) =

6
(2π)2

x(2π − x). (8)

The exact solution of the problem defined by (7) and (8) is given by

c̄(x, t) = sin
(

2πx
x+ (2π − x) exp (3t

π )

)
. (9)

The problem is solved numerically by a method based on finite differences and
described in [1]. In the experiments the initial values of the discretized problem
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are perturbed and an attempt to improve the accuracy of the perturbed initial
field is carried out by using data assimilation in which the role of the observations
is played by the exact solution of the problem at the prescribed time-points.

7.2 Example 2

A non-linear system of ODEs (the chemical reactions in an air pollution model
are also described mathematically by non-linear systems of ODEs) of the type
y′ = f(t, y) has been solved. The exact solution is known. Five numerical meth-
ods (the Backward Euler Method, the Implicit Mid-point Rule, the Trapezoidal
Rule, a Runge-Kutta Method of order two and a Runge-Kutta Method of or-
der six) were used in the experiments. The same approach as in Example 1 has
been used in the experiments with Example 2 (i.e. again the initial values of the
problem are perturbed and an attempt to improve the accuracy of the perturbed
initial field is carried out by using the data assimilation procedure, in which the
role of the observations is played by the exact solution of the problems at the
prescribed time-points).

8 Some Results from the Runs

The following issues were tested during the experiments: (a) the correct imple-
mentation of the forward module, (b) the effects of using different grids, (c) the
application of unbiased perturbations of the initial values, (d) the insertion of bi-
ased perturbations in the initial values, (e) the effects of reducing the number of
observations and (f) the variation of the number of analyses (or, in other words,
the variation of the number of time-points at which observations are available).
Only a few results are given in this section. The influence of the number of
available observation on the accuracy of the final results for Example 1 is shown
in Table 1. Nx and Nt are the numbers of grid-points along the x and t axes.
Errors of about 5% were inserted in the initial field by using the perturbation
parameter α = 0.1. ERRimpr

global is the global error obtained with the improved by
the data assimilation procedure initial field. It is clearly seen that the results do
not depend too much on the number of time-points at which observations are
available. However the number of observations is very important (the accuracy
becomes very poor when the number of observations is small).

Table 1. Values of ERRimpr
global obtained by using the variational data assimilation

algorithm with Nx = 1001, Nt = 10000, α = 0.1, five values of N OBS and different
numbers of analyses P STEP

P STEP N OBS=1000 N OBS=500 N OBS=125 N OBS=20 N OBS=5
1000 2.64 ∗ 10−5 3.21 ∗ 10−5 3.39 ∗ 10−4 1.34 ∗ 10−2 2.05 ∗ 10−1

100 2.66 ∗ 10−5 3.20 ∗ 10−5 3.48 ∗ 10−4 1.34 ∗ 10−2 2.06 ∗ 10−1

10 2.90 ∗ 10−5 3.04 ∗ 10−5 3.91 ∗ 10−4 1.50 ∗ 10−2 2.15 ∗ 10−1

1 5.27 ∗ 10−5 5.27 ∗ 10−5 5.87 ∗ 10−4 2.75 ∗ 10−2 3.55 ∗ 10−1
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Results obtained when Example 2 is run on different grids by using the Back-
ward Euler Method (the order of this method is one) and the Runge-Kutta
Method of order six are given in Table 2 and Table 3 respectively. It is seen that

Table 2. Running Example 2 on different grids by using the Backward Euler Method.
The initial values are perturbed by using α = 1.0 (which means that the size of per-
turbations is about 50% of the values of the initial concentrations). The times are
given in seconds. ERRimpr

global is the global error obtained with the improved by the data
assimilation procedure initial field. RATIO is the ratio of the errors obtained in two
successive runs.

Nt Time ERRimpr
global RATIO

40 0.02 3.286E-01
80 0.04 3.416E-01 0.962

160 0.07 2.189E-01 1.561
320 0.17 1.233E-01 1.774
640 0.26 6.426E-02 1.919

1280 0.82 3.317E-02 1.937
2560 0.77 1.690E-02 1.962
5120 1.57 8.514E-03 1.985

10240 3.95 4.270E-03 1.994
20480 4.32 2.140E-03 1.996
40960 12.30 1.071E-03 1.999
81920 28.09 5.357E-04 1.999

163840 67.51 2.679E-04 1.999
327680 110.80 1.340E-04 2.000
655360 257.54 6.699E-05 2.000

1310720 630.42 3.349E-05 2.000
2621440 966.52 1.675E-05 2.000
5242880 1855.20 8.342E-06 2.008

10485760 3539.76 4.164E-06 2.003
20971520 8830.68 2.309E-06 1.803
41943040 14021.17 9.550E-07 2.418
83886080 31744.91 5.246E-07 1.820

Table 3. Running Example 2 on different grids by using the Runge-Kutta Method of
order six. The initial values are perturbed by using α = 1.0 (which means that the size
of perturbations is about 50% of the values of the initial concentrations). The times
are given in seconds. ERRimpr

global is the global error obtained with the improved by the
data assimilation procedure initial field. RATIO is the ratio of the errors obtained in
two successive runs.

Nt Time ERRimpr
global RATIO

40 0.03 6.002E-04
80 0.04 1.031E-05 58.234

160 0.08 1.586E-07 64.979
320 0.18 1.979E-08 8.015
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if the problem solved is smooth (Example 2 is such a problem) then the use
of a more accurate numerical method is very profitable. The accuracy achieved
by the Runge-Kutta method by using only 320 time-steps is greater than the
accuracy achieved when the Backward Euler Method is used with more than 83
million time-steps (although the improvement of the accuracy achieved by the
Backward Euler Method is in some sense optimal, i.e. reducing the time-stepsize
by a factor of two is leading to an improvement of the accuracy also by a factor
of two, which should be expected when the order of the method is one).
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Abstract. Grid computing is a form of distributed computing that in-
volves coordinating and sharing computing, application, data storage
or network resources across dynamic and geographically dispersed or-
ganizations. The goal of grid task scheduling is to achieve high system
throughput and to match the application needed with the available com-
puting resources. This is matching of resources in a non-deterministically
shared heterogeneous environment. The complexity of scheduling prob-
lem increases with the size of the grid and becomes highly difficult to
solve effectively. To obtain good methods to solve this problem a new
area of research is implemented. This area is based on developed heuris-
tic techniques that provide an optimal or near optimal solution for large
grids. In this paper we introduce a tasks scheduling algorithm for grid
computing. The algorithm is based on Ant Colony Optimization (ACO)
which is a Monte Carlo method. The paper shows how to search for the
best tasks scheduling for grid computing.

1 Introduction

Computational Grids are a new trend in distributed computing systems. They
allow the sharing of geographically distributed resources in an efficient way, ex-
tending the boundaries of what we perceive as distributed computing. Various
sciences can benefit from the use of grids to solve CPU-intensive problems, cre-
ating potential benefits to the entire society. With further development of grid
technology, it is very likely that corporations, universities and public institutions
will exploit grids to enhance their computing infrastructure. In recent years there
has been a large increase in grid technologies research, which has produced some
reference grid implementations.

Task scheduling is an integrated part of parallel and distributed comput-
ing. Intensive research has been done in this area and many results have been
widely accepted. With the emergence of the computational grid, new scheduling
algorithms are in demand for addressing new concerns arising in the grid envi-
ronment. In this environment the scheduling problem is to schedule a stream of
applications from different users to a set of computing resources to maximize
system utilization. This scheduling involves matching of applications needs with
resource availability.

There are three main phases of scheduling on a grid [10]. Phase one is resource
discovery, which generates a list of potential resources. Phase two involves gath-
ering information about those resources and choosing the best set to match the
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application requirements. In the phase three the job is executed, which includes
file staging and cleanup. In the second phase the choice of the best pairs of jobs
and resources is NP-complete problem [4].

A related scheduling algorithm for the traditional scheduling problem is Dy-
namic Level Scheduling (DLS) algorithm [11]. DLS aims at selecting the best
subtask-machine pair for the next scheduling. To select the best subtask-machine
pair, it provides a model to calculate the dynamic level of the task-machine pair.
The overall goal is to minimize the computational time of the application. In the
grid environment the scheduling algorithm no longer focuses on the subtasks of
an application within a computational host or a virtual organization (clusters,
network of workstations, etc.). The goal is to schedule all the incoming appli-
cations to the available computational power. In [1, 7] some simple heuristics
for dynamic matching and scheduling of a class of independent tasks onto a
heterogeneous computing system have been presented.

There are two different goals for task scheduling: high performance computing
and high throughput computing. The former aims is minimizing the execution
time of each application and later aims is scheduling a set of independent tasks
to increase the processing capacity of the systems over a long period of time.

Our approach is to develop a high throughput computing scheduling algo-
rithm based on ACO. ACO algorithm can be interpreted as parallel replicated
Monte Carlo (MC) systems [12]. MC systems [9] are general stochastic simu-
lation systems, that is, techniques performing repeated sampling experiments
on the model of the system under consideration by making use of a stochastic
component in the state sampling and/or transition rules. Experimental results
are used to update some statistical knowledge about the problem, as well as the
estimate of the variables the researcher is interested in. In turn, this knowledge
can be also iteratively used to reduce the variance in the estimation of the de-
scribed variables, directing the simulation process toward the most interesting
state space regions. Analogously, in ACO algorithms the ants sample the prob-
lem’s solution space by repeatedly applying a stochastic decision policy until a
feasible solution of the considered problem is built. The sampling is realized con-
currently by a collection of differently instantiated replicas of the same ant type.
Each ant “experiment” allows to adaptively modify the local statistical knowl-
edge on the problem structure. The recursive retransmission of such knowledge
determines a reduction in the variance of the whole search process the so far most
interesting explored transitions probabilistically bias future search, preventing
ants to waste resources in not promising regions of the search.

The organization of the paper is as follows. In section 2 the ACO method is
discussed. In section 3 grid scheduling algorithm is introduced. We make some
experimental testing and conclude this study in sections 4 and 5.

2 Ant Colony Optimization

Real ants foraging for food lay down quantities of pheromone (chemical cues)
marking the path that they follow. An isolated ant moves essentially at random
but an ant encountering a previously laid pheromone will detect it and decide to
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follow it with high probability and thereby reinforce it with a further quantity of
pheromone. The repetition of the above mechanism represents the auto catalytic
behavior of real ant colony where the more the ants follow a trail, the more
attractive that trail becomes.

The ACO algorithms were inspired by the observation of real ant colonies
[2, 3]. An interesting behavior is how ants can find the shortest paths between
food sources and their nest. While walking from a food source to the nest and
vice-versa, ants deposit on the ground a substance called pheromone. Ants can
smell pheromone and then they tend to choose, in probability, paths marked by
strong pheromone concentrations. The pheromone trail allows the ants to find
their way back to the food source (or to the nest).

The above behavior of real ants has inspired ACO algorithm. ACO algo-
rithm, which is a population-based approach, has been successfully applied to
many NP-hard optimization problems [2, 3]. One of its main ideas is the indirect
communication among the individuals of ant colony. This mechanism is based on
an analogy with trails of pheromone which real ants use for communication. The
pheromone trails are a kind of distributed numerical information which is modi-
fied by the ants to reflect their experience accumulated while solving a particular
problem.

The ACO algorithm uses a colony of artificial ants that behave as co-operative
agents in a mathematical space were they are allowed to search and reinforce
pathways (solutions) in order to find the optimal ones. Solution that satisfies the
constraints is feasible. After initialization of the pheromone trails, ants construct
feasible solutions, starting from random nodes, then the pheromone trails are
updated. At each step ants compute a set of feasible moves and select the best
one (according to some probabilistic rules) to carry out the rest of the tour.
The transition probability is based on the heuristic information and pheromone
trail level of the move. The higher value of the pheromone and the heuristic
information, the more profitable it is to select this move and resume the search.
In the beginning, the initial pheromone level is set to a small positive constant
value τ0 and then ants update this value after completing the construction stage.

procedure ACO
begin

Initialize the pheromone
while stopping criterion not satisfied do

Position each ant in a starting node
repeat

for each ant do
Chose next node by applying the state transition rate

end for
until every ant has build a solution
Update the pheromone

end while
end
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All ACO algorithms adopt specific algorithmic scheme as is shown above.
After the initialization of the pheromone trails and control parameters, a main
loop is repeated until the stopping criteria are met. The stopping criteria can be
a certain number of iterations or a given CPU time limit or time limit without
improving the result. In the main loop the ants construct feasible solutions and
then the pheromone trails are updated. More precisely, partial problem solutions
are seen as states: each ant starts from random state and moves from state i
to another state j of the partial solution. At each step, ant k computes a set
of feasible solutions to its current state and moves to one of these expansions,
according to a probability distribution specified as follows. For ant k the proba-
bility pk

ij to move from a state i to a state j depends on the combination of two
values:

pk
ij =

{
τij .ηij

l∈allowedk
τil.ηil

if j ∈ allowedk

0 otherwise
(1)

where

– ηij is the attractiveness of the move as computed by some heuristic informa-
tion indicating a prior desirability of that move;

– τij is the pheromone trail level of the move, indicating how profitable it has
been in the past to make that particular move (it represents therefore a
posterior indication of the desirability of that move);

– allowedk is the set of remaining feasible states.

Thus, the higher the value of the pheromone and the heuristic information, the
more profitable it is to include state j in the partial solution. In the beginning,
the initial pheromone level is set to τ0, which is a small positive constant. In the
nature there is not any pheromone on the ground at the beginning, or the initial
pheromone in the nature is τ0 = 0. If in ACO algorithm the initial pheromone
is zero, than the probability to chose next state will be pk

ij = 0 and the search
process will stop from the beginning. Thus it is important the initial pheromone
to be positive value.

The pheromone level of the elements of the solutions is changed by applying
following updating rule:

τij ← ρ.τij +Δτij , (2)

where the rule 0 < ρ < 1 models evaporation and Δτij is an additional
pheromone and it is different for different ACO algorithms. Normally the quan-
tity of the added pheromone depends on the quality of the solution.

3 Grid Scheduling Model

Our scheduling algorithm is designed for distributed systems shared asynchro-
nously by both remote and local users.
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3.1 Grid Model

The grid considered in this study is composed of a number of hosts send, each
host is composed of several computational resources, which may be homogeneous
or heterogeneous. The grid scheduler does not own the local hosts, therefore does
not have control over them. The grid scheduler must make best effort decisions
and then submit the jobs to the hosts selected, generally as a user. Furthermore,
the grid scheduler does not have control over the set of jobs submitted to the grid,
or local jobs submitted to the computing hosts directly. This lack of ownership
and control is the source of many of the problems yet to be solved in this area.
The grid scheduling is a particular case of tasks scheduling on machines problem.
In the grid scheduling every machine can execute any task, but for different time.

3.2 Grid Scheduling Algorithm

While there are scheduling request from applications, the scheduler allocates the
application to the host by selecting the best match from the pool of applications
and pool of the available hosts. The selecting strategy can be based on the
prediction of the computing power of the host [6]. We will review some terms
and definitions [7, 8].

The expected execution time ETij of task ti on machine mj is defined as the
amount of time taken by mj to execute ti given that mj has no load when ti is
assigned. The expected completion time CTij of the task ti on machine mj is
defined as the wall-clock time at which mj completes ti (after having finished
any previously assigned tasks). Let M be the total number of the machines. Let
S be the set containing the tasks. Let the beginning time of ti be bi. From the
above definitions, CTij = bi +ETij . The makespan for the complete schedule is
then defined as maxti∈S(CTij). Makespan is a measure of the throughput of the
heterogeneous computing system. The objective of the grid scheduling algorithm
is to minimize the makespan. It is well known that the problem of deciding on
an optimal assignment of jobs to resources is NP-complete. We develop heuristic
algorithm based on ACO to solve this problem.

Existing mapping heuristics can be divided into two categories: on-line mode
and batch mode. In the on-line mode, a task is mapped onto a machine as soon
as it arrives at the mapper. In the batch mode, tasks are not mapped onto the
machines as they arrive, instead they are collected in a set that is examined for
mapping at pre-scheduled times called mapping events. This independent set of
tasks that is considered for mapping at mapping events is called meta-task. In the
on-line mode, each task is considered only once for matching and scheduling. The
minimum completion time heuristic assigns each task to the machine so that the
task will have the earliest computation time [5]. The minimum execution time
heuristic assigns each task to the machine that performs that tasks’ computation
in the least amount of execution time. In batch mode, the scheduler consider a
meta-task for matching and scheduling at each mapping event. This enable the
mapping heuristics to possibly make better decision, because the heuristics have
the resource requirement information for the meta-task and known the actual
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execution time of a larger number of tasks. Our heuristic algorithm is for batch
mode.

Let the number of the tasks in the set of tasks is greater than the number of
machines in the grid. The result will be triples (task,machine, startingtime).
The function free(j) - shows when the machine mj will be free. If the task ti is
executed on the machine mj then the starting time of ti becomes bi = free(j)+1
and the new value of the function free(j) becomes free(j) = bi +ETij = CTij .

An important part of implementation of ACO algorithm is the graph of the
problem. We need to decide which elements of the problem to correspond to
the nodes and which ones to the arcs. Let M = {m1,m2, . . . ,mm} is the set
of the machines and t = {t1, t2, . . . , ts} is the set of the tasks and s > m.
Let {Tij}s×m is the set of the nodes of the graph and to machine mj ∈ M
corresponds a set of nodes {Tkj}s

k=1. The graph is fully connected. The problem is
to choose s nodes of the graph thus to minimize the function F = max(free(j)),
where [bi, CTij ] ∩ [bk, CTkj ] = + for all i, j, k. We will use several ants and
every ant starts from random node to create their solution. There is a tabu list
corresponding to every ant. When a node Tij is chosen by the ant, the nodes
{Tik}m

k=1 is included in tabu list. Thus we prevent the possibility the task ti to
be executed more than ones. An ant add new nodes in the solution till all nodes
are in the tabu list. Like heuristic information we use:

ηij =
1

free(j)
.

Thus if a machine is free earlier, the corresponding node will be more desir-
able. At the end of every iteration we calculate the objective function Fk =
max(free(j)) over the solution constructed by ant k and the added pheromone
by the ant k is:

Δτij =
(1 − ρ)
Fk

.

Hence in the next iterations the elements of the solution with less value of the
objective function will be more desirable. Our ACO implementation is different
from ACO implementation on traditional tasks machines scheduling problem.
The new of our implementation is using of multiple node corresponding to one
machine. It is possible because in grid scheduling problem every machine can
execute any task.

Two kind of sets of tasks are needed: set of scheduled tasks and set of arrived
and unscheduled tasks. When the set of scheduled tasks becomes empty the
scheduled algorithm is started over the tasks from the set of unscheduled tasks.
Thus is guaranteed that the machines will be fully loaded.

4 Experimental Testing

We have developed 3 simulated grid examples to evaluate the newly proposed
ACO algorithm for grid scheduling. In our experimental testing we use 5 het-
erogeneous machines and 20 tasks. The initial parameters are set as follows:



Ant Algorithm for Grid Scheduling Problem 411

τ0 = 0.01 and ρ = 0.5 and we use 1 ant. We compare achieved by ACO algo-
rithm result with often used online-mode.

The results are in minutes. We observe the outperform of ACO algorithm and
the improvement of the result with. In online-mode the arriving order is very
important. In ACO algorithm the most important is the execution time of the
separate task.

Table 1. Makespan for the execution on first free machine and ACO algorithm

online-mode ACO improvement
80 67 16%
174 128 26.4%
95 80 15.8%

5 Conclusion

To confront new challenges in tasks scheduling in a grid environment, we present
in this study heuristic scheduling algorithm. The proposed scheduling algorithm
is designed to achieve high throughput computing in a grid environment. This is a
NP-problem and to be solved needs an exponential time. Therefore the heuristic
algorithm which finds a good solution in a reasonable time is developed. In
this paper heuristic algorithm based on ACO method is discussed and it basic
strategies for a grid scheduling are formulated. This algorithm guarantee good
load balancing of the machines. In ACO technique it is very important how the
graph of the problem is created. Another research direction is to create different
heuristic based algorithms for problems arising in grid computing.
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Abstract. This paper covers an efficient strategy for exploring the sam-
pling parameters on auto-tuning processes. Byte/flop is considered as a
performance indicator, and finding the best parameter is interpreted as
an optimisation problem with some hardware-specific constrained condi-
tions. In this work, we also evaluate the performance of various unrolled
loops both in a rank-update operation and a matrix-vector multiplica-
tion which appear in a significant operation of an eigensolver. The tuned
routines running on a single processor of a Hitachi SR8000 and a Fujitsu
VPP5000 record 1080 MFLOPS and 8342 MFLOPS respectively.

1 Introduction

In the recent development of a numerical library, it is strongly required to reduce
the maintenance cost and keep higher and more stable performance. Because
of the rapid change of the hardware specification, it becomes quite harder to
develop and implement new optimisation techniques. For that difficulty, the auto-
tuning mechanism is proposed, and facilitated as the integration of empirical
optimisation techniques on a high performance numerical library. The auto-
tuning mechanism selects an optimal code fragment at the installation phase,
and then generates more effective executables. The most successful projects,
which adopt this technique, are ATLAS[7] at UTK, PHiPAC[2] at UCB, I-Lib[4]
at Tokyo University, and so forth.

In terms of the network-based computation, the concept of server portals has
matured, and the Ninf project[5] at AIST and the Netsolve project[1] at UTK
are going on. They enable us to handle a thousand of computational resources
geographically spread over the world without users’ awareness. Key issues of
constructing a numerical portal are ‘processing speed’, ‘accuracy’, and ‘instal-
lation cost’ as well as the underlying middleware supports, and they sometimes
conflict with the QoS and each other. Therefore, performance stability and the
installation cost must be deeply discussed. However, the existing performance
evaluation reports emphasise mainly a pinpoint result, and they have not con-
sidered the stability on the whole range of problems.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 413–421, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this paper, we focus on performance stability and installation costs, and
concentrate to exploit full and particular evaluation of various unrolled loops at
the auto-tuning process. Specifically, ‘Byte/Flops’, that is related to the dense
matrix computation [6], is used for one of the performance metrics. We propose a
novel algorithm to explore the degree of loop-unrolling. Applying the exploring
algorithm, the parameters to be swept can be dramatically reduced, and we
expect selected loop fragments provide us with the highest performance and
performance stability.

2 Householder Transform and Auto-tuning Method

The numerical algorithm objected in this work is block Householder transform,
and it is known as a significant operation in an eigenvalue calculation. The algo-
rithm is presented as follows. Here, N and M mean dimension of the matrix and
the block width respectively, and subscripts indicate the range of submatrices.

for j = N, . . . , 1 step −M
U ← ∅, V ← ∅,W ← A(∗,j−M+1:j)
for k = 0, . . . ,M − 1

(1) Householder reflector: u(k) = H(W(∗,j−k))
(2) Matrix-Vector multiplication

v(k− 2
3 ) ← A(1:j−k−1,1:j−k−1)u

(k)

(3) v(k− 1
3 ) ← v(k− 2

3 ) − (UV T + V UT )u(k)

(4) v(k) ← v(k− 1
3 ) −

((
u(k), v(k− 1

3 )
)
/2|u(k)|2

)
u(k)

U ← [U, u(k)], V ← [V, v(k)].
(5) W(∗,j−k:j) ←W(∗,j−k:j) −

(
u(k)v(k)T

+ v(k)u(k)T
)

(∗,j−k:j)
endfor
A(∗,j−M+1:j) ←W
(6) 2M rank-update

A(1:j−M,1:j−M) ← A(j−M :j−M)−(UV T +V UT )(j−M,j−M)
endfor

   do M=1,MB
      do J=1,N, 2
         do I=1,J+1
            A(I,J+0)=A(I,J+0)-V(I,M)*U(J+0,M)
                                       -U(I,M)*V(J+0,M)
            A(I,J+1)=A(I,J+1)-V(I,M)*U(J+1,M)
                                       -U(I,M)*V(J+1,M)
         enddo
      enddo
   enddo

   do J=1,N,2
      do I=1,J+1
         V(J+0)=V(J+0)+A(I,J+0)*U(I)
         V(J+1)=V(J+1)+A(I,J+1)*U(I)
         V(I)=V(I)+A(I,J+0)*U(J+0) &
                       +A(I,J+1)*U(J+1)
      enddo
   enddo
   do J=1,N
       V(J)=V(J)+D(J)*U(J)
   enddo

Fig. 1. An example of two degree of loop unrolling, the rank-update procedure (left),
and the matrix-vector multiplication procedure (right)
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The core parts of Householder transform are the rank-update process and the
matrix-vector multiplication. Former has three-fold loop structure, and latter
has two-fold one as illustrated in Figure 1. In the figure, example codes of loop
unrolling (the degree of unrolling is two) which appear in an auto-tuning process
are presented. The degrees of unrolling to these loops are denoted by (Xr, Yr, Zr)
and (Xm, Ym), respectively, in order from the outer loop to the inner one.

3 Exploring Algorithm

General requirements to the numerical library with an auto-tuning facility are

1. Performance, high speed calculation,
2. Stability, which does not depend on problems, and
3. Smaller installation cost.

The first issue is naturally known as the main objective of auto-tuning. We ap-
ply loop unrolling to a source code, and investigate a better auto-tuning strat-
egy on general processors. The second issue is removed by a cache stabilising
algorithm[3], which authors proposed as a fundamental technique for an auto-
tuning facility, and we do not pay special attentions to instability caused by
cache conflict. The third issue is intended to reduce the total cost at the instal-
lation, while a hundred patterns of parameter sets are sampled. It means a lot
loss of the brute force searching must be improved by using more intelligent and
reasonable algorithms.

We take advantage of the performance indicator ‘Byte/Flops’ which is defined
by required data amounts per a single floating instruction in a loop structure[6].
Since Byte/Flops can be formulated by a function of the tuning parameters,

Object function to be minimised : F (X1, X2, . . . , Xn)

Constrained condition (I) : C(X1, X2, . . . , Xn) ≤ L

X1 > 0, X2 > 0, . . . , Xn > 0.

1. Find the point x∗ which minimise the object function F under the constrained
condition (I) by Lagrange’s method with indeterminate coefficients.

2. Compute the gradient of the object function (∇F ) at x∗, and determine an
anchor point x+ by moving along each axis direction by one from x∗ toward
increasing direction of the object function.

3. Calculate the value f+ = F (x+), and add new constrained condition (II),
F (X1, X2, ..., Xn) ≥ f+.

4. Explore the grid points which satisfy the conditions (I) and (II), and evaluate
unrolled-loop codes specified by parameters (X1, X2, . . . , Xn) successively.

5. If no grid point satisfies the both conditions, replace the minimising point by
the anchor as x∗ := x+, and return step 2.

Fig. 2. Exploring algorithm of the degree of loop unrolling
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assuming that ‘the number of registers required for loop-unrolling cannot ex-
ceed the number of physical registers L’, immediately, leads searching the best
parameter set to the optimisation problem to find the parameter set which min-
imises Byte/Flops. Formal optimisation, however, involves performance fluctua-
tion. Thus we examine the performance at each parameter, and should expand
the range of parameter set. The exploring algorithm is summarised as Figure 2.

3.1 Tuning on a Hitachi SR8000

Rank Update. In case of an SR8000, that has scalar processor element, soft-
ware pipelining optimisation prevents reuse of registers, though an SR8000 would
have 128 floating point registers. We have the assignment strategy that; all the
variables to registers, however, they do not waste up the physical registers. Ac-
cording to this strategy, the optimisation problem is formulated as follows.

minimise 4(Xr + Yr)/XrYr (1)
where 2(XrYr + ZrXr) + YrZr ≤ Ls (2)

Xr > 0, Yr > 0, Zr > 0 (3)

If we consider the fact that two-word load/store instruction is available on an
SR8000, and the degree of loop unrolling to the most-inner loop must be chosen
as Zr = {2, 4}, then the constrained conditions are

XrYr + 2Xr + Yr ≤ Ls/2 (Zr = 2) (4)
XrYr + 4Xr + 2Yr ≤ Ls/2 (Zr = 4). (5)

Though an SR8000 has 128 floating point register, several registers are reserved
by a compiler as intermediates, thus we assume Ls = 110 in this paper.

Figure 3 illustrates two conditions (4) and (5), and inequalities are held below
the lines. Dotted lines are isometric plot of the object function F , and three lines
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Fig. 3. Isometric plot of the object function and constrained conditions for the Rank-
update procedure on an SR8000 (2 lines the constrained conditions (4) and (5))
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satisfy F (Xr, Yr) = {1.33, 1.60, 2.00}. The minimising point of the constraint (4)
is x∗2 = (5.79, 6.43), and the minimum value of F is 1.316. The other constraint
(5) leads x∗3 = (4.60, 5.53), and the minimum value is 1.590. According to the
step two, anchor points are x+

2 or 3 = x∗2 or 3 − 1, and then new constrained
conditions are added. Finally we search all the grid points enclosed by F (Xr, Yr),
the original constraints, and the additional constraints F (Xr, Yr) = F (x+

2 or 3).
The number of all the grid points contained in the region is totally 16.

Matrix-Vector Product. Optimisation problem for the matrix-vector multi-
plication is formulated as follows.

minimise 2(Xm + 3)/Xm (6)
where XmYm + 3Xm + 2Ym ≤ 110 (7)

Xm > 0, Ym > 0 (8)

If we fix the parameter Ym 2 or 4, constrained conditions become Xm ≤ 21.2
(Ym = 2), Xm ≤ 14.5 (Ym = 4). Obviously searching range ofXm is {1, 2, ..., 21}.

3.2 Tuning on a Fujitsu VPP5000

Rank Update. In case of a vector computer, the most inner loop is target of
vectorisation, and we do not take the most inner loop as an object to unrolling.
Thus we fix formally Xr = 1 on a vector computer. When vector pipelines
work fully, vector registers for load–store should be separate. Considering this,
constrained conditions become as follows.

2Xr + 2Yr ≤ Lv (9)
XrYr ≤ Lf (10)

Lv and Lf mean the number of available vector registers and floating point reg-
isters respectively. In case of a VPP5000, the number of vector registers is varied
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Fig. 4. Isometric plot of the object function and constrained conditions for the Rank-
update procedure on a VPP5000
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according to vector length, thus Lv = 2d(4 ≤ d ≤ 8) is possible configuration
(16, 32, or 64 are practical). The region painted in gray on Figure 4 shows the
candidates of exploring, and the number of all the grids is counted up to 32.

Matrix-Vector Product. As the optimisation problem of an SR8000 is for-
mulated, constraints of a VPP5000 are also shown as,

Xm + 3 ≤ Lv = {16, 32, 64} (11)
Xm ≤ Lf = 64 (12)
Xm > 0. (13)

4 Numerical Experiment and Evaluation

In this section, we examine our exploring algorithm on a single processor of two
types of supercomputer systems. By using the exploring algorithm, the number
of candidate parameters is reduced, however, it is hard to sweep the entire di-
mension on all the parameter sets because of the CPU time limitation. Thus we
also reduce the sampling points as every 128 dimension, 1 to 4000 on an SR8000,
and 1 to 6000 on a VPP5000. The test matrix used in a tridiagonalisation is the
Frank matrix. Sampling is carried on tree times on each dimension and the best
performance is adopted. Table 1 to 3 show the best result of our codes.

On an SR8000, the best parameters of the rank-update are (4,8,2), (5,5,4),
(4,6,4) on less than 1000, 1000 to 2000, and other dimensions, respectively. The

Table 1. Results of the rank-update routine (left), and the matrix-vector multiplication
routine (right) on a Hitachi SR8000, (the value shown in a column is the mean value
of corresponding dimension range, and unit is in MFLOPS)

Unroll ∼ 1000 ∼ 2000 ∼ 3000 ∼ 4000
(4,8,2) 1006 1145 1109 1158
(4,9,2) 969 1137 1156 1163
(5,6,2) 984 1120 1139 1142
(5,7,2) 961 1113 1139 1151
(6,5,2) 869 1052 1088 1097
(6,6,2) 917 1098 1127 1135
(7,4,2) 869 992 1026 1035
(7,5,2) 888 1036 1073 1095
(8,4,2) 857 1003 1046 1061
(3,7,4) 1001 1117 1134 1114
(3,8,4) 962 1055 1061 1029
(4,5,4) 942 1109 1134 1136
(4,6,4) 969 1146 1194 1193
(5,4,4) 959 1096 1093 1128
(5,5,4) 973 1147 1152 1188
(7,3,4) 875 1029 1062 1120

Unroll ∼ 1000 ∼ 2000 ∼ 3000 ∼ 4000
(9,2) 632 910 959 989
(10,2) 634 909 962 992
(11,2) 632 910 966 994
(12,2) 632 911 964 991
(13,2) 633 910 967 994
(14,2) 632 911 961 988
(7,4) 622 896 915 944
(8,4) 629 909 948 961
(9,4) 633 918 962 979
(10,4) 636 922 965 983
(11,4) 633 923 973 994
(12,4) 645 922 968 990
(13,4) 651 935 987 1008
(14,4) 648 937 991 1015
(15,4) 643 931 988 1014
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Table 2. Results of the rank-update routine on a Fujitsu VPP5000, (the value shown in
a column is the mean value of corresponding dimension range, and unit is in MFLOPS)

Unroll ∼1000 ∼2000 ∼3000 ∼4000 ∼5000 ∼6000
(2,6,1) 5304 7452 7437 7552 7555 7386
(3,3,1) 4644 7076 7317 7489 7531 7454
(3,4,1) 5099 7383 7611 7805 7871 7816
(3,5,1) 5144 7501 7819 7991 8056 8044
(4,3,1) 5023 7507 7751 7905 7939 7875
(4,4,1) 5405 7700 8018 8165 8204 8115
(5,3,1) 5111 7640 8006 8217 8290 8306
(6,2,1) 4603 7445 7845 8044 8103 8114
(5,11,1) 5287 7697 8161 8375 8484 8453
(6,10,1) 5358 7783 8271 8500 8641 8647
(6,9,1) 5309 7721 8226 8458 8590 8585
(7,7,1) 5425 7865 8348 8624 8748 8768
(7,8,1) 5328 7869 8331 8561 8684 8669
(7,9,1) 5334 7886 8357 8591 8729 8714
(8,7,1) 5229 7850 8372 8649 8783 8812
(8,8,1) 5353 7915 8414 8629 8751 8750
(9,6,1) 5263 7807 8359 8651 8810 8848
(9,7,1) 5261 7856 8392 8703 8861 8902
(10,6,1) 5189 7823 8400 8694 8827 8875
(11,5,1) 4984 7707 8307 8640 8753 8831
(13,18,1) 4854 7658 8306 8652 8741 8891
(13,19,1) 4834 7647 8343 8643 8741 8896
(14,17,1) 4793 7636 8329 8629 8715 8874
(14,18,1) 4841 7674 8360 8672 8767 8920
(15,15,1) 4892 7630 8315 8603 8698 8861
(15,16,1) 4775 7652 8354 8633 8763 8915
(16,15,1) 4701 7580 8269 8579 8666 8832
(16,16,1) 4974 7774 8449 8728 8781 8965
(17,14,1) 4617 7559 8271 8567 8640 8824
(18,13,1) 4554 7499 8189 8502 8580 8777
(18,14,1) 4572 7526 8212 8531 8609 8792
(19,13,1) 4453 7430 8160 8494 8552 8766

performance on 3000 to 4000 dimension records 80% to theoretical peak. As
the authors have tuned this code up so far, and the best parameter choice was
(5,5,4) [6]. The exploring algorithm reveals that much better parameter exists on
unexamined range. The best parameter sets of the matrix-vector multiplication
are found on the intervalXm = {7, 8, . . . , 15}. (13,4) and (14,4) should be chosen
for less than 1000 dimension and for other dimension, respectively.

On a VPP5000, larger parameter space is explored than that of a SR8000.
The best parameter sets are (7,7,1), (8,8,1), (16,16,1), (16,16,1), (9,7,1), (16,16,1)
in ascending order, for every 1000 dimensional interval respectively. Differences
between performance of the best parameter sets and of others are not so large,
but the performance depends on the dimension of the input matrices. Thus to
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Table 3. Results of the matrix-vector multiplication routine on a Fujitsu VPP5000,
(the value shown in a column is the mean value of corresponding dimension range, and
unit is in MFLOPS)

Unroll ∼1000 ∼2000 ∼3000 ∼4000 ∼5000 ∼6000
(10,1) 2449 5283 6284 6806 7067 7272
(11,1) 2792 5846 6794 7272 7472 7641
(12,1) 2857 5982 6939 7395 7598 7749
(13,1) 2922 6088 7037 7478 7673 7829
(20,1) 3032 6289 7264 7726 7932 8088
(21,1) 3005 6285 7274 7749 7961 8104
(22,1) 3091 6392 7342 7798 8013 8150
(23,1) 2941 5806 6650 7118 7338 7488
(24,1) 3017 5908 6715 7192 7392 7546
(25,1) 2770 5384 6161 6619 6834 6985
(26,1) 2938 5705 6526 7015 7221 7390
(27,1) 2828 5528 6339 6832 7054 7216
(28,1) 2976 5819 6675 7166 7384 7546
(29,1) 2836 5586 6448 6949 7173 7342
(30,1) 2958 5849 6718 7210 7438 7603

Table 4. Performance results of our Householder transform routines on an SR8000F1
and a VPP5000, 1000 to 4000 on an SR8000 (left), 1000 to 6000 on a VPP5000 (right)

1000 2000 3000 4000
MFLOPS 880 1018 1074 1080
time[sec] 1.51 10.4 33.5 78.9

1000 2000 3000 4000 5000 6000
MFLOPS 5273 7068 7739 8115 8279 8342
time[sec] 0.25 1.51 4.65 10.5 20.1 34.5

select a code fragment, which corresponds to the optimal parameter set, is an
effective strategy to develop a stable library. Additionally, it found thatXm = 22
is the best parameter of all the dimensions on the matrix-vector multiplication.

Finally, we compare our tuned code with vendor-tuned numerical libraries.
Table 4 shows the result of our tuned routines. Peak performance of our codes
on two machines record 1080 MFLOPS and 8342 MFLOPS, respectively. On an
SR8000, vendor-tuned LAPACK achieves 746 MFLOPS, and on a VPP5000, the
function DTRD1 in SSL/II VP does 3720 MFLOPS. This concludes that our
tuning strategy is quite effective, and the tuned codes perform stable.

5 Summary

In this paper, we mainly focused on performance stability, and detailed per-
formance evaluation for the loop unrolling technique was carried out. We in-
troduced a novel exploring algorithm for the degree of loop unrolling, in which
‘Byte/Flops’ plays a role of performance indicator, a cost function of optimi-
sation problems. The exploring algorithm works excellently, and it reduces the
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number of parameter sets rather than existing strategies like the brute force
searching. Our tuned codes also perform stable, and they record 1080 MFLOPS
and 8342 MFLOPS on a Hitachi SR8000 and a Fujitsu VPP5000, respectively.

Finally, the authors would like to thank Prof. Yuba, and Dr. Katagiri of the
Univ. of Electro-Communications, Prof. Suda of the Univ. of Tokyo, and Dr.
Yamamoto of Nagoya University for their fruitful discussions on auto-tuning
mechanisms and numerical algebra, and to Japan Atomic Energy Research In-
stitute for their sincere support of the supercomputer systems.
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Abstract. We investigate an automatic tuning method for an eigen-
solver of a dense symmetric matrix. The aim of this paper is to inves-
tigate how to select the unrolling depth. To do this, we evaluate the
performance of various unrolled reduction loops of the eigensolver for
every matrix size from 3000 to 4000 on the Hitachi SR8000/F1 and on
the IBM RS/6000 SP3. We also analyze the trend between Byte/Flop
and performance for various patterns of loop unrolling. The result shows
that the performance is degraded with higher depth of unrolling in some
matrix sizes, where it does not occur with lower depth of unrolling. The
result also shows that selection of the unrolling depth should be examined
in the case of several matrix sizes.

1 Introduction

The aim of this paper is to investigate the automatic tuning functions for the
implementation of eigensolvers on different types of supercomputers. This paper
focuses on the loop unrolling tuning for the main loop of eigenvalue computa-
tions and presents a numerical experiment based on research [9], which found
performance degradation by unrolling of a loop in our eigensolver.

There are two primary background issues that led to doing this study. First,
in the past decade, network libraries such as Ninf [11] and NetSolve [10] have
been developed. These are used from any PC without being conscious of the lo-
cation of a supercomputer in use. They enable us to use several types of matrix
libraries on such supercomputers without installing them on our PCs. Second,
libraries with automatic tuning functions, such as PHiPAC [1], FFTW [4], AT-
LAS [12], I-LIB [7] [6], and frameworks for automatic tuning, such as SANS [2],
FIBER [5], and SIMPLE [8], have recently been developed. These are used to
achieve higher performance on the computers where the libraries are installed.
For example, ATLAS tunes LAPACK automatically, while I-LIB tunes a parallel
library automatically.

In light of such trends, we assume that automatic tuning functions will be
regarded as more important for network libraries, because more access to the

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 422–429, 2006.
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various kinds of network libraries will lead to a greater need for high quality
software installed on each platform.

However, the previous studies on automatic tuning remain inadequate for two
reasons. First, it is possible to select an unsuitable loop unrolling. The methods
used to determine the loop unrolling in these studies measured the performance
on limited pinpoint parameters. For example, they measured the performances
with matrix size N = 1000, 2000, and 4000. An inherent instability sometimes
appears because of cache conflicts, but this small number of measurements does
not reveal the instability; therefore, an unsuitable loop unrolling is sometimes
selected. Second, the previous studies had to treat a wide range of loop unrolling
to determine loop unrolling parameters when the automatic tuning libraries are
installed on the target platform.

Therefore, this paper evaluates the performance of loops for every matrix size,
with multiple patterns of loop unrolling, to reveal the inherent instability of loop
unrolling. Moreover, from these detailed measurements, evaluations are made
on the relationship between a loop performance indicator and the measured
performance in order to develop an effective method of selecting the optimal
pattern of loop unrolling.

2 Target of the Evaluation

This paper targets the reduction loop in the tridiagonalization of eigenvalue com-
putations in the evaluation. The number of floating operations in reduction loop
counts about 2/3N3, where N is the size of the matrix. Therefore, the reduction
loop is critical in performance. The reduction loop targeted in this paper is based
on the block tridiagonalization method [3] and described as follows;

do M = 1, MB
do J = 1, N

do I = 1, J
A(I, J) = A(I, J) |( V(I, M)*U(J, M) + U(I, M)*V(J,M) )

enddo
enddo

enddo

where A is the matrix with the size N by N, V and U are the bundle of vectors
with the size NB by N, and NB is fixed at 20 or 40, for example.

This paper evaluates loop unrolling method for the reduction loop. The
method is often used for the reduction loop to achieve higher performance.

The evaluation is executed on the range of matrix size N = 3000 to 4000
because of the following two reasons. First, performance evaluations for matrix
computations find performance fluctuation problems occurred by cache conflicts.
Therefore, the evaluation executes on the consecutive points of the matrix size
to clarify the fluctuation. Second, performance evaluations also find lower per-
formance problems occurred by startup overhead in the case of small size matrix
computation. On the platforms used in this paper, performance of the reduction
loop with matrix size N from 3000 to 4000 does not dramatically change.
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subroutine tunecore222(
& i$1, i$5, i$3, m0_mod6, m0, i$nnod, i$inod, l1$a, u, v, nm
& )
implicit double precision (a-h,o-z),integer(i-n)
double precision l1$a(nm,*), u(nm,*), v(nm,*)

*voption vec
*soption noloopreroll

do i$1=i$5,i$3,2
*soption noloopreroll

do i0=m0_mod6+1,m0,2
j$0=(i$1-1+0)*i$nnod+i$inod; j$1=j$0+i$nnod
u0_0 = u(j$0,i0+0); u1_0 = u(j$1,i0+0)
u0_1 = u(j$0,i0+1); u1_1 = u(j$1,i0+1)
v0_0 = v(j$0,i0+0); v1_0 = v(j$1,i0+0)
v0_1 = v(j$0,i0+1); v1_1 = v(j$1,i0+1)

*soption unroll(2)
*soption noloopreroll
*voption vec

do k=1,j$1
l1$a(k,i$1+0)=l1$a(k,i$1+0)

1 - u0_0*v(k,i0+0) - v0_0*u(k,i0+0)
1 - u0_1*v(k,i0+1) - v0_1*u(k,i0+1)

l1$a(k,i$1+1)=l1$a(k,i$1+1)
1 - u1_0*v(k,i0+0) - v1_0*u(k,i0+0)
1 - u1_1*v(k,i0+1) - v1_1*u(k,i0+1)

enddo
enddo

enddo
return
end

Fig. 1. Programming source code of loop unrolling (2-2-2)

The evaluation also limits the patterns of loop unrolling. This paper denotes
the pattern of loop unrolling as (X-Y-Z), where X is the depth of the most outer
loop, Y is the depth of the next outer loop, and Z is the depth of the innermost
loop. For example, the pattern of unrolling (4-3-2) means the unrolling of M
with the depth of four, J with the depth of three, and I with the depth of two.

The patterns of the evaluation on the SR8000/F1 are the following thirteen;

(1-1-1), (1-1-2), (2-2-1), (2-2-2), (3-3-1), (3-3-2),
(4-4-1), (4-4-2), (5-5-1), (5-5-2), (5-5-4), (6-6-1), (6-6-2),

while the patterns of the evaluation on the RS6000/SP3 are the following eight;
(1-1-1), (2-2-1), (2-2-2), (2-3-2), (3-2-2), (3-3-1), (3-3-2), (4-4-1).

The example of the programming source code with the pattern of (2-2-2) loop
unrolling on the SR8000/F1 is described in Figure 1. As shown in the figure, in the
two outer loops, the hand unrolling is used. On the other hand, in the innermost
loop, the directives ‘*soption unroll(2)’ is used. The directive means the compiler
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should unroll the loop in the depth of two. The calculation is executed only in the
upper triangular part of the matrix in the original source code, while the unrolled
code executes the lower triangular part in the block diagonal part. Although the
amount of the calculations is limited, we can neglect the degradation of perfor-
mance compared with the total amount of the reduction computation.

3 Detailed Performance Measurements of the Loop
Unrolling

This section details the performance measurement results of the patterns of loop
unrollings defined in Section 2, in order to reveal the instability of loop unrolling
at higher depths.

The performance results for every matrix size N from 3000 to 4000, with the
patterns of unrolling at the depth of (*-*-1), where * = 1,2,3,4,5, and 6, on the
SR8000/F1 are plotted in Figure 2. It was confirmed that the performance gen-
erally improves as the unrolling depth increases from (1-1-1) to (6-6-1). With
some matrix sizes, however, the performance does not increase even when the
unrolling depth increases. Furthermore, it was found that the performance de-
grades on some other points when the unrolling depth increases. For example,
the performance of (4-4-1) was superior to that of (6-6-1) for the matrix size of
3280, while the situation was opposite for most matrix sizes from 3000 to 4000.
This suggests that there is a pitfall in evaluating the effectiveness of unrolling
on just a few points.

From Figure 2, we can see that there were also steep degradations in per-
formance. It was confirmed that the unrolling performance of (1-1-1) did not
degrade very much from the average performance in the measured range, but
the performances of the others degraded remarkably. The performance of (6-6-1),
for example, fell to about 1020 Mflop/s for the matrix size from 3057 to 3080,

Fig. 2. Evaluation results of (*-*-1) unrolling (SR8000/F1, 1CPU)
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Fig. 3. Evaluation results of (*-*-2) unrolling (SR8000/F1, 1CPU)

Fig. 4. Evaluation results of unrolling (RS/6000 SP3, 1CPU)

while the performance for the other matrix sizes was about 1110 Mflop/s. This
implies that performance degradation, which is not observed with lower depths
of unrolling, occurred in the same matrix sizes with higher depths of loop un-
rolling. Therefore, when we want to determine the best depth of loop unrolling,
we have to take this phenomenon into account, as well as measure performance
with multiple matrix sizes.

Figure 3 shows the result with the unrolling depth of 2 in the innermost loop
on the SR8000/F1. Figure 4 shows the result on the RS/6000 SP3 (Power3, 375
MHz). As in the case of Figure 2, we found that the performances degrade for
some matrix sizes with both supercomputers. The performances of the RS/6000
SP3 are inferior to those of the SR8000/F1. This is because the amount of data
with the matrix sizes from 3000 to 4000 exceeds the amounts of L2 cache of the
RS/6000 SP3. The performances around the matrix sizes of 1000 on the RS/6000
SP3 achieve about 830 Mflop/s.
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4 Evaluating Performance Trends in Loop Unrolling

To quantitatively clarify the effectiveness of loop unrolling, the following three
steps are used. First, the indicator Byte/Flop is defined. For each loop, the
Byte/Flop means the required load and store data per one floating point oper-
ation. Second, the values of Byte/Flop for unrolled loops are calculated. When
a loop’s unrolling is (X-Y-Z), then the required load and store data is 8Byte ∗
(2X+2Y )∗Z, and the number of floating point operations is 4∗XY Z. Therefore,
the Byte/Flop is 4(X+Y )/XY . Using this calculation, the values of Byte/Flop
for each unrolled loop in section 3 are presented in Table 1. Third, using the
detailed measurements of section 3, the average performances from N = 3000 to
4000 are calculated.

The relationship between the Byte/Flop and the average performance for each
unrolled loop is presented in Figure 5. “SR-unroll1.d” consists of the points of
unrolling for (*-*-1), where *=1, 2, 3, 4, 5, and 6. “SR-unroll2.d” consists of
the points of unrolling for (*-*-2), where *=1, 2, 3, 4, 5, and 6. “SR-unroll4.d”
consists of one point of unrolling for (5-5-4). “SP3-unroll1.d” consists of the
points of unrolling for (*-*-1), where *=1, 2, 3, and 4. “SP3-unroll2.d” con-
sists of the points of unrolling for (2-2-2), (2-3-2), (3-2-2), and (3-3-2). Both
(2-3-2) and (3-2-2) are about 3.3 Byte/Flop, and the above is the data for
(2-3-2).

Table 1. Byte/Flop of each unrolled loop

Unrolling (6-6-1) (5-5-1) (4-4-1) (3-3-1) (2-3-2) (2-2-1) (1-1-1)
(6-6-2) (5-5-2) (4-4-2) (3-3-2) (3-2-2) (2-2-2) (1-1-2)

(5-5-4)
Byte/Flop 1.33333 1.6 2.0 2.6666 3.33333 4.0 8.0

Fig. 5. Relationship between Byte/Flop and average performance for each unrolled loop
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We can see from Figure 5 that a trend is revealed in which the average perfor-
mance declines as the Byte/Flop increases. Especially on the SR8000/F1, almost
linear performance degradation is confirmed except for the case of (6-6-2). Of
the eleven unrolled loops on the SR8000/F1, (5-5-4) is the best on average. Of
the eight unrolled loops on the RS/6000 SP3, (2-3-2) is the best on average. The
case of (6-6-2) on the SR8000/F1, and of (4-4-1), (3-3-1), (3-2-2), and (3-3-2)
on the RS/6000 SP3 show that a higher depth of loop unrolling at some point
causes a degradation of performance. This is probably due to a register spill.
The result of the trend clarified that the Byte/Flop is an effective means to pre-
dict the performance of unrolled loops, and that it is one possible factor for the
automatic tuning function. These results also show that obtaining an average of
measurements is important to describe the performances of the unrolled loops.

5 Conclusion and Future Work

To establish the automatic tuning function for eigensolvers, the quantitative
effectiveness of unrolling was discussed. The performances of various unrolled
loops were evaluated on the SR8000/F1 and the RS/6000 SP3 with every matrix
size from N = 3000 to 4000. From the evaluation, the following two results were
obtained.

First, the results showed that the performance degradations are found at
higher depths of unrolling, while degradation occurs in the same matrix size
with lower depths of unrolling. This suggests that the selection of unrolling with
pinpoint measurements can degrade performance.

Second, the results showed a connection between the Byte/Flop and the aver-
age performance for N=3000 to 4000. In particular, the result on the SR8000/F1
shows an almost linear trend, where the average performance degrades as the
Byte/Flop increases. This implies that the Byte/Flop is an effective means of
predicting the performance of unrolled loops, and that the Byte/Flop is a pos-
sible candidate for the automatic tuning function.

Our future work on the development of automatic tuning functions for eigen-
solvers primarily consists of two topics. The first is a stabilizing method to avoid
the performance degradations that occurred in this study, and to present per-
formance assurance for the loop unrolling tuning. The second is a function for
optimizing communication patterns, especially in the hybrid parallel architecture
consisting of distributed memory parallel and shared memory parallel.
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Abstract. In this paper we discuss the deployment of large scale nu-
merical applications on a Grid. Currently, Grid deployments have coarse-
grained and massively parallel nature and are suited for applications that
are not communication intensive. For our numerical applications, we min-
imize the communication needs by a good choice of data placement, in
particular by using persistent storage of data. We also introduce out-
of-core programming for the task farming paradigm in order to achieve
interesting degree of scalability. We discuss the performances of the bi-
section method to compute the eigenpair of a real symmetric tridiagonal
matrix and a block-based matrix-vector product. As experimental mid-
dleware we use the XtremWeb system in different configurations; a local
one and a WAN based platform with heterogeneous resources distributed
on two geographic sites: the university of Lille I and Paris-XI university
in Orsay.

1 Introduction

The availability of powerful computers and high-speed network technologies has
changed the way of using computers in the last decade. A number of scientific
applications that have traditionally performed on supercomputers or on cluster of
workstations with traditional tools will be running on a variety of heterogeneous
resources geographically distributed.

Grid computing platforms aim to distribute and share computing resources
for deploying large scale applications. Typically, they consist in a heterogeneous
collection of computational resources, the characteristics of each resource may
vary greatly, including processor speed, processor load, disk space, hardware con-
figurations, variance in network bandwidths, latencies, etc. Several realizations
have already been proposed, including the Boinc projects1, the Globus Toolkit2,
XtremWeb3 and so on. Their aim is to harness heterogeneous resources in some
collaborative way in order to share and increase the computing power. Grid
computing presents many major challenges, in particular, resources availability,
security, scheduling, data confidentiality, etc. We focus here on the effectiveness
1 http://boinc.ssl.berkeley.edu
2 http://www.globus.org
3 http://www.xtremweb.net
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to execute numerical applications using a Grid middleware such as XtremWeb.
Currently, this system needs a central authority. We also present a new program-
ming paradigm based on out-of-core technique to treat the memory constraints
on peers, which is a very restrictive factor, and to enhance scalability of distrib-
uted numerical applications.

This paper presents Grid implementations of a bisection method and a block-
based matrix-vector product. We present the experimental middleware in the
next section. In section 3, we present the tested numerical applications. The
section 4 shows and discuss the results. In section 5, we introduce the out-
of-core programming paradigm for numerical applications in global computing
environments. We conclude and present research perspectives in section 6.

2 Experimental Middleware

As an experimental platform, we used the XtremWeb system [2]. XtremWeb is
an experimental global computing project intended to distribute applications
over dynamic resources according to their availability and implements its own
security and fault tolerance policies.

XtremWeb manages tasks following the coordinator-worker paradigm. The
coordinator masters the tasks management process, especially results storage
such there is, currently, no true notions of tasks scheduling (tasks are scheduled
to workers according to their demand in FIFO mode). Workers are distributed
volunteer entities which use a part of their CPU time to compute tasks provided
by the coordinator. They are not under the control of the coordinator and are
volatile. Each action and all connections are then initiated by workers only (the
pull model). Every worker connection is registered by the coordinator, and it
requests task to compute accordingly to its own local policy. The workers down-
load task software and all expected objects (input files and arguments) in zipped
format, store them and start computing. When a task is completed, the workers
send back the result to the coordinator.

Several fault tolerance mechanisms are used in XtremWeb to handle resources
failures. The main purpose is to enable the system to restart properly after
any failure (workers and coordinator). The coordinator manages its tasks using
transactions and stores them in reliable media (disks) so that the full system in-
tegrity is preserved even if the coordinator shuts down for any reason. At starting
time, the coordinator reads the information stored on disk to set up its proper
state. The client submits tasks and the worker fetches tasks using transactions;
this ensures a consistent state when the coordinator restarts from fault and the
client/worker have not failed. Workers failures are detected by the alive signal,
so if this signal is not received after a time out, the coordinator considers the
worker as lost and reschedules the same task on another available worker. Also,
to avoid redundant task and result overwriting, a worker can be brought to stop
its current task if it has been disconnected for a long time. XtremWeb also en-
sures user authentication, workers integrity, application and results protection
and user execution logging. It mainly relies on three mechanisms:
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– a list of authorized users : after registration, the coordinator provides to each
user a key to be used for each subsequent connection. All communications
between the user and the coordinator are also encrypted using SSL.

– authentication of the coordinator by workers and clients and,
– sand-boxing system utility: if a malicious user succeeds on launching an

aggressive application, XtremWeb workers still protect their host by imple-
menting sand-boxing functionality. Workers run any task inside a sand-box
which is customizable, from memory usage to file system operations. This
can be disabled on secured systems.

3 Linear Algebra Applications Distributed on a Grid

In this section we describe the experimented applications. We consider in this
paper homogeneous data distribution among peers.

3.1 The Bisection Method

Let T be a real symmetric tridiagonal matrix of dimension N . Our goal is to
compute λ ∈ I (I is an interval of R) such that TU = λU , with U ∈ RN . The
interval of research can be the domain of Gerschgorin which contains all the
eigenvalues (see [3]). As a major hypothesis, we assume that each volunteer peer
should be able to store T in its main memory (to avoid any memory paging). The
principle of the bisection algorithm consists in sharing I into several subintervals
which are smaller and smaller until each eigenvalue is closely surrounded by
the low and the high ranges of an interval. Then, we compute the associated
eigenvectors with the inverse iteration method.

The task farming paradigm can be easily found here as follow; we split the
start interval in several subintervals, then, each volunteer peer is responsible
for computing the eigenvalues (and/or the associated eigenvectors) of a set of
subintervals instead of only one (otherwise it gives a poor efficiency). We also
focus on the strategy used to split the start interval. We must not share it into
subintervals of same length because it can lead to an unbalanced distribution of
work (when the eigenvalues are clustered). We had rather take into account the
distribution of the eigenvalues in order to split dynamically the start domain.
First of all, we choose a threshold which corresponds to the maximum number
of eigenvalues contained by a subinterval. Let us assume that we have already
computed a subinterval. On the one hand, if it has more eigenvalues than the
threshold, we split it into two equal subintervals and the same process is done on
both. On the other hand, if it has not too many eigenvalues, we keep it. We must
notice that a subinterval may contain no eigenvalue. In that case, we delete it.

3.2 The Block-Based Matrix-Vector Product

The matrix-vector product (MVP), Ax = b, is a simple but fundamental oper-
ation in matrix computing. It forms the core of many linear algebra iterative
methods. Historically, the MVP is often the primary operation around which
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Fig. 1. The two matrix-vector product versions

all supercomputers were benchmarked. We describe here two algorithms of the
block-based MVP. In the iterative methods, the matrix A remains unchanged,
this must enables us to fasten the data, we call that “persistent data storage”,
this is discussed in [1] and [4].
A is a matrix of dimensionN , x is a vector of dimensionN . In the first version,

rows of blocks of A are communicated horizontally with P vector blocks across
P 2 peers (blocks of size n1 × n1, n1 = N

P ). In the second version, P 2 blocks of
A of dimension n2×N (n2 = N

P 2 ) and the vector x are communicated vertically
across P 2 peers. Figure 1 shows these two versions. We also consider two ways for
the blocks transfer; firstly, all the matrix blocks are sent through the network.
Secondly, we simulate persistent storage of A to optimize data placement by
generating the matrix blocks on peers.

4 Performance Evaluation

The coordinator of the XtremWeb networks runs on a dedicated machine4 in
Lille. For the local configuration, Workers (128 PCs, largely non-dedicated, under
Linux) run on undergraduate teaching computers at the Polytech’Lille engineer
school. The WAN configuration uses the local configuration in Lille and 36 PCs
at the university of Paris-XI, also non-dedicated and under Linux. Table 1 gives a
description. All communications are forwarded by the coordinator, it initiates all
computations and manages dependencies. The coordinator initializes the runtime
environment, submits tasks, retrieves results and makes synchronizations.

For the bisection method, we use two matrix generation tools from Matrix
Market to build tridiagonal matrix; the Clement’s and Dorr’s generators5. The
matrices size is N = 10000. For both matrices, we choose a maximum threshold
of 500 eigenvalues per subintervals. About the Clement matrix, 10 sets made
of 3 subintervals are built and scheduled among volunteer peers. For the Dorr
matrix, 8 sets are made of 3 subintervals and the others are made of 2.

For the MVP, the dense matrix size is N = 30000 (double floating point). We
have experimented the product with various sizes of blocks. For the version 1,n1 =
4 http://193.48.57.140/XtremWeb/
5 http://math.nist.gov/MatrixMarket/
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Table 1. The XtremWeb platform

Number CPU Memory
At Lille

28 Pentium III (Katmai), 450MHz 128MB
28 Intel Celeron, 2.2GHz 512MB
23 Intel Celeron, 2.4GHz 512MB
15 AMD Duron, 750MHz 256MB
14 Celeron (Coppermine), 600MHz 128MB
8 Intel Celeron, 2GHz 512MB
8 Intel Celeron, 1.4GHz 256MB
4 Pentium 4, 2.4GHz 512MB

At Orsay
30 AMD Athlon(tm), 2.8GHz 1GB
6 AMD Athlon(tm), 1.8GHz 1GB

1500, 3000 and 3750. In the version 2, n2 = 300 (blocks size 300×30000). At each
execution, we introduced between 72 and 420 tasks into the XtremWeb network.

The computing times vary greatly since the differences in the characteristics
of each resource (peers and the network) and the availability of peers across
the XtremWeb platforms changes frequently. Indeed, considering the dynamic
nature of the Grid the results are nondeterministic. The average bandwidth used
is 9.14Mb/s in a local configuration and 6.22Mb/s between Lille and Orsay. The
average computing times are shown in tables 2 and 3.

For the bisection method, in table 2, we clearly see that the amount of work
is well balanced and, above all, that task farming is a simple way to reduce the
time of computations, for bisection and inverse iteration. In fact, let’s consider
the Dorr matrix, the average time for the computation of the eigenvalues of
a set is 18 seconds and we need about 148 seconds to compute the associated
eigenvectors. If 10 peers are free when the customer submits its request, all times
shown in the table occur in parallel whereas, in a sequential context, a common
peer works about 1660 seconds.

For the MVP, in table 3, the results show that the use of persistent storage
performs better than the standard version, which manages all communications,

Table 2. The bisection results

The Clement matrix: times picked up on the peers’ side (in seconds)
Id of sets 0 1 2 3 4 5 6 7 8 9

Number of couple (λ, U) 875 1031 1031 1031 1032 875 1031 1031 1031 1032
Computing eigenvalues 15 17 18 16 18 15 18 18 18 19
Computing eigenvector 98 121 133 131 128 98 125 123 116 126

The Dorr matrix: times picked up on the peers’ side (in seconds)
Id of sets 0 1 2 3 4 5 6 7 8 9

Number of couple (λ, U) 1096 1007 940 1154 1080 1080 1175 950 765 753
Computing eigenvalues 25 16 21 20 20 18 19 15 14 12
Computing eigenvector 230 131 140 180 160 146 144 129 113 103
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Table 3. The MVP results

blocks size With managing With persistent Number of
all communications storage peers required

In a LAN configuration
Version 1

1500 1072 s 663 s 400
3000 239 s 110 s 100
3750 726 s 94 s 64

Version 2
300×30000 240 s - 100

In a WAN configuration
Version 1

3000 436 s 283 s 100
3750 995 s 201 s 64

Version 2
300×30000 526 s - 100

by a factor of 1.5 to 7.7. In this case, efficient data placement is very important
factor to maximize performances. Also, the version 1 performs better than the
version 2 because we increase the size of communications without increasing the
number of computation associated. That means that the classical task farming
paradigm is not well adapted in this case and it is necessary to increase the
number of operations for each communication.

Efficient data placement is an important factor for numerical applications in
a Grid. This reduces the communication needs and gives an important benefit
to maximize application performance. This is relatively simple to set up because
each numerical application has a knowledge of its data locality and can perform
an efficient data placement. We also propose to use out-of-core technique on
peers (using explicit I/O disk accesses) to enhance applications scalability and
treat memory restrictions. We discuss that in the next section.

5 Out-of-Core Programming on a Grid Environment

Many large problems that could not be solved on the largest supercomputer
twenty years ago, can now be solved on a standard laptop computer. However,
data structure remains too large to fit in the main memory and must be stored
on disks. Out-of-core algorithms are designed to achieve acceptable performance
when data are stored on disks. They access data in large contiguous blocks
and reuse data that is stored in main memory several times. The ordering of
independent operations must be chosen so as to minimize I/O, so that all or
most of data in the main memory is used before it is evicted. We avoid then the
use of the trivial virtual memory paging which has poor performances due to
slow disk accesses. The I/O characteristics of peers can also be used to derive
the parameters for our algorithms.
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The MVP can be scheduled out-of-core efficiently using a very simple tech-
nique that we describe here. We denote the size of main memory by M . We
consider a p×N submatrix of A with p = (M −N)/(N + 1). The algorithm is
made up in N/p steps. At each step we perform the product of the submatrix
A(p×N) and the vector x, which gives the subvector b(p). In this schedule, the
words that are accessed in the inner iteration need to be read from disk only
once because all of them fit within main memory and are written back once.

5.1 Results

We executed this out-of-core product on a laptop computer (Pentium 4, 2.4
GHz and 512 MB), under Linux. The average computing time is 907 seconds
with p = 3000 (N = 30000). This result is more interesting than the results
of the product under XtremWeb with blocks size of 1500. This shows that it is
possible to solve much larger problems (theoretically multiplied by the number
of workers on the platform). The idea is then to use out-of-core technique on
peers to deal with their limited memory sizes and to increase the size of tasks
to compensate task scheduling and enhance scalability [1].

In these experiments, all communications are forwarded by the coordinator
which initiates all computations and manages dependencies. We tested these
programs in the LAN XtremWeb platform. We used the matrix-vector out-of-
core product shown below on peers to solve the MVP with the same size and
p = 1000 (i.e. block sizes 1000×30000, version 2). The average computing time is
39 seconds by using persistent data placement. This is the best result obtained for
the MVP of size 30000 on all considered configurations and versions. We increase
the size of the matrix A, N = 300000. For p = 1000, the average computing time
is 575 seconds. This is a very promising result since the traditional task farming
paradigm can’t achieve this degree of scalability. We can also expect that with
an efficient scheduler, the result would have been better.

Also, comparing these results with those obtained in section 4, we see that
the combination of explicit I/O disk accesses and persistent storage increase
the performances by a factor up to 6 (by using three times less peers). This is
a simple and efficient way to program numerical applications on Grid systems
based on a better exploitation of data locality, by choosing an adapted placement
of data and by redefining the algorithms using explicit I/O accesses.

6 Conclusion

In this work we proposed a performance evaluation for numerical applications on
a Grid platform. We have experimented the bisection method for real symmet-
ric tridiagonal matrices and the block-based matrix-vector product for full and
general matrices. We used the XtremWeb system for managing non-dedicated
resources. Our execution include a classical task farming and a new approach
using out-of-core programming and a scheduling strategy which uses persistent
data placement.
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We showed that persistent storage of data is a very important factor which
reduces the communication needs and then increase the computation/commu-
nication ratio. We also presented a Grid out-of-core implementation based on
explicit input/output disk accesses on peers. We feel that both persistent data
storage and an efficient memory management are of prime importance for any
distributed application running on a global Grid, and specially for numerical
applications. This enhances applications scalability and reaches a good level of
performance.
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Abstract. In the present paper, we propose a hybrid parallel method
for large sparse eigenvalue problems in a grid computing environment.
A moment-based method that finds several eigenvalues and their corre-
sponding eigenvectors in a given domain is used. This method is suitable
for master-worker type parallel programming models. In order to im-
prove the parallel efficiency of the method, we propose a hybrid imple-
mentation using a GridRPC system Ninf-G and MPI. We examined the
performance of the proposed method in an environment where several
PC clusters are used.

1 Introduction

Eigenvalue problems are a very important class of linear algebra problems. The
need for numerical solutions to these problems arises often in science and engi-
neering. We consider a parallel method for the generalized eigenvalue problem

Ax = λBx,

where A and B are large sparse matrices. Several methods for such eigen-
value problems are building sequences of subspaces that contain the desired
eigenvectors. Krylov subspace-based techniques are powerful tools for large-scale
eigenvalue problems [1, 2, 7, 8]. The relationships among Krylov subspace meth-
ods, the moment-matching approach and Padé approximation are shown in [2].

In the present paper, we consider a parallel method for finding several
eigenvalues and eigenvectors of a generalized eigenvalue problem in a grid en-
vironment. A moment-based method [10] to find all of the eigenvalues that lie
inside a given domain is used. In this method, a small matrix pencil that has
only the desired eigenvalues is derived by solving large sparse linear equations
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constructed from A and B. Because these equations can be solved independently,
we solve them on remote servers in parallel. In [11], a parallel implementation of
the method using a GridRPC system OmniRPC [12] is presented. This method
is suitable for master-worker programming models. Moreover, the method has a
good load balancing property.

In this method, matrix data are sent to each remote server, which causes a loss
in efficiency when a large number of servers are employed. In order to improve
the parallel efficiency of the method, we propose a hybrid implementation in
which MPI is used to send data and to control procedures in a PC cluster with
a high-speed network. We have implemented the method using Ninf-G [6] and
MPI. Ninf-G provides a simple programming interface based on standard Grid
protocols and the API for Grid computing and can support parallel execution
of MPI.

The performance of the proposed method on PC clusters was evaluated. As
a test problem, we used the matrices that arise in the calculation of molecular
orbitals. The results demonstrate that the proposed method is efficient in a grid
computing environment.

2 A Master-Worker Type Method

In this section, we describe a method for generalized eigenvalue problems pre-
sented in [10]. The proposed method finds several eigenvalues that are located
inside a given circle.

Let A,B ∈ Cn×n, and let λ1, . . . , λd (d ≤ n) be finite eigenvalues of the matrix
pencil A−λB. The pencil A−λB is referred to as regular if det(A−λB) is not
identically zero for λ ∈ C.

For nonzero vectors u,v ∈ Cn, we define

f(z) := uH(zB −A)−1v.

Let K be the maximum size of Jordan blocks in the canonical form of B. Then,
f(z) is represented as

f(z) =
d∑

j=1

νj

z − λj
+ g(z),

where νj ∈ C and g(z) is a polynomial of degree K − 1.
Let Γ be a circle with radius γ centered at ρ. Suppose that m distinct eigen-

values λ1, . . . , λm are located inside Γ . Define the complex moments

μk :=
1

2πi

∫
Γ

(z − γ)kf(z)dz, k = 0, 1, . . . . (1)

By approximating the integral of (1) via the N -point trapezoidal rule, we obtain
the following approximations for μk:

μk ≈ μ̂k :=
1
N

N−1∑
j=0

(ωj − γ)k+1f(ωj), k = 0, 1, . . . , (2)



440 T. Sakurai et al.

where
ωj := γ + ρe

2πi
N (j+1/2), j = 0, 1, . . . , N − 1.

Let the m×m Hankel matrices Ĥm and Ĥ<
m be Ĥm := [μ̂i+j−2]mi,j=1 and Ĥ<

m :=
[μ̂i+j−1]mi,j=1, and let ζ̂1, . . . , ζ̂m be the eigenvalues of the matrix pencil Ĥ<

m −
λĤm. Then, the approximate eigenvalues are obtained by λ̂j = γ+ζ̂j , 1 ≤ j ≤ m.
The influence of the quadrature error is considered in [5, 9].

Let Ŵm be a matrix of which the column vectors are eigenvectors of Ĥ<
m −

λĤm. The approximate vectors q̂1, . . . , q̂m for the eigenvectors q1, . . . , qm are
obtained by

[q̂1, . . . , q̂m] = [ŝ0, . . . , ŝm−1]Ŵm, (3)

where
yj = (ωjB −A)−1v, j = 0, 1, . . . , N − 1, (4)

and

ŝk :=
1
N

N−1∑
j=0

(ωj − γ)k+1yj , k = 0, 1, . . . . (5)

The approximate residues ν̂1, . . . , ν̂m are evaluated by

[ν̂1, . . . , ν̂m] = (μ̂0, . . . , μ̂m−1)Ŵm.

When the size of the Hankel matrices are larger than the exact number of eigen-
values in the circle, some of the approximate eigenvalues are located outside the
circle, or the corresponding residue ν̂j is small. The criteria to find appropriate
m were discussed in [3, 4] for the Hankel matrices. In the present paper, we se-
lect the approximate eigenvalues by checking their locations and residues. If the
residue satisfies the condition |ν̂j | < δ with small parameter δ, then we ignore
λ̂j as a ghost. The algorithm is shown in Figure 1.

Algorithm 1:
Input: u,v ∈ Cn, N , m, γ, ρ

Output: m′,λ̂1, . . . , λ̂m′ , q̂1, . . . , q̂m′

1. Set ωj ← γ + ρ exp(2πi(j + 1/2)/N), j = 0, . . . , N − 1
2. Solve (ωjB − A)yj = v for yj , j = 0, . . . , N − 1
3. Set f(ωj) ← uHyj , j = 0, . . . , N − 1
4. Compute μ̂k, k = 0, . . . , 2m − 1 by (2)
5. Compute the eigenvalues ζ̂1, . . . , ζ̂m of the pencil Ĥ<

m − λĤm

6. Compute q̂1, . . . , q̂m by (3)
7. Set λ̂j ← γ + ζ̂j , j = 1, . . . , m
8. Select the approximate eigenvalues by checking their locations and residues,

and set λ̂1, . . . , λ̂m′ , q̂1, . . . , q̂m′ .

Fig. 1. A moment-based method
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In order to evaluate the value of f(z) at z = ωj , j = 0, . . . , N − 1, we solve
the following systems of linear equations:

(ωjB −A)yj = v, j = 0, 1, . . . , N − 1, (6)

for yj , j = 0, . . . , N − 1. When matrices A and B are large and sparse, the
computational costs to solve the linear systems are dominant in the algorithm.
Since these linear systems are independent, they are solved on remote servers in
parallel.

The procedure used to solve N systems in Step 2 of Algorithm 1 is performed
on remote servers. Since A and B are common to each system of linear equations,
we send these data to each server at the first time. In order to solve another
equation on the same server, a scalar parameter ωj is sent. In this approach, we
do not need to exchange data between remote servers. Therefore, the presented
method is suitable for master-worker programming models.

3 A Hybrid Implementation

In this section we describe a hybrid implementation of the algorithm that is
applied to several circles. Let Nc be the number of circles, and let Γ (1), . . . , Γ (Nc)

be circles that include the desired eigenvalues. Let γ(l), ρ(l) be the center and
the radius of the lth circle, respectively. The equidistributed points on Γ (l) are
defined by

ω
(l)
j = γ(l) + ρ(l)e

2πi
N (j+1/2), j = 0, . . . , N − 1.

By applying Algorithm 1 for the lth circle, we obtain approximate eigenvalues
and corresponding eigenvectors(

λ̂
(l)
j , q̂

(l)
j

)
, j = 1, 2, . . . ,ml,

where ml is the number of approximate eigenvalues that are selected by checking
their locations and residues.

Since the process to find eigenvalues in a circle is independent from those of
other circles, we execute the method for these circles on remote servers by using
Ninf-G. For the lth circle, the linear systems

(ω(l)
j B −A)y(l)

j = v, j = 0, . . . , N − 1,

are solved. We employ MPI processes for the solution of these linear systems.
The hybrid algorithm using Ninf-G and MPI is shown in Figure 2.

In the hybrid algorithm, matrix data are sent from a client to a remote server
when a Ninf-G process is started. Each Ninf-G process employs a specified num-
ber of MPI processes, and matrix data are delivered to all processes. By this
approach, we can reduce the number of data transferred from a client to servers
via a wide area network compared with the case in which all remote servers
receive matrix data directly from a client.
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1. for l = 1, 2, . . . , Nc

Ninf-G process
2. for j = 0, 1, . . . , N − 1

MPI process

3. ω
(l)
j = γ(l) + ρ(l)e

2πi
N

(j+1/2)

4. Solve (ω(l)
j B − A)y(l)

j = v for y
(l)
j

5. Set f(ω(l)
j ) ← uHyj

end
6. Compute μ̂

(l)
k , k = 0, . . . , 2m − 1

7. Compute the eigenvalues ζ̂
(l)
1 , . . . , ζ̂

(l)
m

8. Compute q̂
(l)
1 , . . . , q̂m(l)

9. Set λ̂
(l)
j ← γ(l) + ζ̂

(l)
j , j = 1, . . . , m

10. Select the approximate eigenvalues
end

Fig. 2. A hybrid implementation using Ninf-G and MPI

The maximum number of Ninf-G processes is limited to the number of circles
Nc, and the maximum number of MPI processes is limited to N . Thus, the total
number of processes is limited to Nc ×N .

When A and B are real matrices, the relation f(z) = f(z) holds. Thus,
we evaluated N/2 function values f(ω0), . . . , f(ωN/2−1), and set the remaining
function values using f(ωN−1−j) = f(ωj). In this case, we solve N/2 linear
systems for each circle, and the maximum number of MPI processes is N/2.

4 Numerical Examples

In this section, we present a numerical example of the proposed method. In order
to evaluate the performance of the method for the situation in which several PC
clusters are employed via a wide area network, we regarded some parts of a large
PC cluster system as distributed PC clusters.

Experiments were performed on AIST F32 Super Cluster of National Institute
of Advanced Industrial Science and Technology. The node of the F32 cluster
system is Xeon 3.06-GHz/512-MB cache 2 CPU-SMD with 2-GB RAM/nodes.
The client machine was a Pentium 4 (3.0 GHz) with a memory of 2 GB, and it
was connected to servers via a 100 Base-TX switching hub, as shown in Figure 3.

Since each process solves a large-scale linear system of equations, the algo-
rithm has large granularity. In the hybrid algorithm, each MPI process commu-
nicates with other processes only in the same process group. Therefore, this test
environment represents a model case in which several distributed PC clusters
are used.

The test matrices were derived from computation of the molecular orbitals
of lysozyme (129 amino-acid residues, 1961 atoms) with 11077 basis functions.
Lysozyme is one of the most well-known proteins with respect to structure and
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AIST F32 Super Cluster

100Base-TX
Switching Hub

PC Cluster

PC Cluster

PC Cluster

PC Cluster

Client

Fig. 3. Test environment

reaction mechanisms. The primary function of lysozyme is bactericidal action by
removal of the cell wall. The structure of the lysozyme molecule has been deter-
mined experimentally, and we added counter-ions and water molecules around
the lysozyme molecule in order to simulate in vivo conditions. The size of A and
B was n = 11077, and the number of nonzero elements was 6169835. Both A
and B were real symmetric.

Since the matrix ωjB−A with complex ωj is complex symmetric, the COCG
method [13] with incomplete Cholesky factorization was used to solve the linear
systems. The stopping criterion for the relative residual was 10−8. Computation
was performed in double-precision arithmetic. The elements of u and v were
distributed randomly on the interval [0, 1] by a random number generator.

The intervals [−0.22,−0.16] and [0.16, 0.22] were covered by 32 circles. These
intervals include the energy levels of the highest occupied molecular orbitals
(HOMO) and the lowest unoccupied molecular orbitals (LUMO) which are key
factors in the amount of energy needed to add or remove electrons in a molecule.
The parameters were chosen as N = 32 and m = 12. We obtained 22 eigenvalues
and corresponding eigenvectors in these 32 circles.

We observed the wall-clock time in seconds with various combination of the
number of Ninf-G processes and MPI processes. The time required to load the
input matrices into the memory of the client and that required to start up
the Ninf-G and MPI processes were not included. The results are shown in
Table 1. The proposed method attains good performance with either four or eight
Ninf-G processes. When the number of Ninf-G processes exceeds eight, the

Table 1. Wall-clock times in seconds

# Ninf-G proc.
1 2 4 8 16 32

1 2875 1445 737 397 246 218
# MPI 2 1666 836 438 241 175 169
proc. 4 847 436 233 143 113 126

8 443 229 129 91 92 98
16 237 128 78 64 76
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efficiency decreased rapidly. The increase in the time required to send matrix
data to each PC cluster causes the efficiency loss.

Figure 4 shows the timing results for Ninf-G processes for the case in which
four Ninf-G processes were invoked. Each Ninf-G process executed 16 MPI
processes, and 64 processors were used. Figure 5 shows the timing results for
the case in which eight Ninf-G×8 MPI processes were invoked (64 processors).
The waiting time of the process before starting the computation increased as
the number of Ninf-G process increased.

Trns. Data
(Ninf-G)

Trns. Data
(MPI)

Calc.

0 20 40 60 80 Sec.

0

1

2

3

Fig. 4. Timing results for Ninf-G processes (Ninf-G:4, MPI:16, total:64)

0 20 40 60 80 Sec.
0
1
2
3
4
5
6
7

Trns. Data
(Ninf-G)

Trns. Data
(MPI)

Calc.

Fig. 5. Timing results for Ninf-G processes (Ninf-G:8, MPI:8, total:64)

5 Conclusions

In the present paper, we presented a hybrid algorithm to find eigenvalues and
eigenvectors of generalized eigenvalue problems using a moment-based method.
We implemented the method using a GridRPC system Ninf-G and MPI. The
performance of the hybrid code was examined for a model case in which several
PC clusters were employed from a client machine.

The obtained results demonstrate that the hybrid approach is efficient with
respect to avoiding the efficiency loss caused by the communication time to send
initial data. In the presented method, each linear system is solved on a single
processor. The use of the parallel solver for a linear system will improve the
scalability of the method.
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Abstract. To compute a few eigenpairs of a large sparse matrix we use
the hybrid Multiple Explicitly Restarted Arnoldi Method (MERAM).
This method is a technique based upon a multiple projection of ERAM
and accelerates its convergence. The MERAM updates the restarting
vector of an ERAM by taking the interesting eigen-information obtained
by the other ones into account. This method presents two main levels
of parallelism which are intra-ERAM and inter-ERAM processes. The
high level parallelism between ERAMs can be exploited by a network of
heterogeneous machines. In MERAM the communications inter ERAM
processes are totally asynchronous. The MERAM is fault tolerant and
well adapted to GRID-type environments. In this paper, we propose an
algorithm of MERAM for NetSolve global computing system. We point
out that this kind of systems and their necessary centralism of the com-
municating information impose to adapt the concerned algorithms. The
presented experiments show that a good acceleration of the convergence
compared to ERAM can be obtained. We show that the MERAM-like
hybrid methods are well suited for the GRID computing environments.

1 Introduction

The hybrid methods combine several different numerical methods or several dif-
ferently parameterized copies of the same method to solve efficiently some lin-
ear algebra problems [4, 3, 7]. The hybrid Multiple Explicitly Restarted Arnoldi
Method (MERAM) permits to compute a few eigenpairs of a large sparse non-
Hermitian matrix [2]. It makes use of several differently parameterized ERAM
for the benefit of the same application. In this paper we present an algorithm of
MERAM for NetSolve global computing system. Some particularities of NetSolve
and the systems like it imposing the adaptation of the concerned algorithms are
presented. We show that this is due to the necessary centralism of the commu-
nicating information in this kind of systems. We present then an adaptation of
MERAM for NetSolve and show that we can obtain a good acceleration of the
convergence with respect to the explicitly restarted Arnoldi method.

Section 2 describes the context of the used numerical algorithms. Section 3
introduces the asynchronous Multiple ERAM. We point out some characteristics
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of NetSolve-type systems to implement the asynchronous algorithm of MERAM
and an adaptation of this algorithm for NetSolve in section 4. An evaluation of
this algorithm by a set of test matrices coming from various application prob-
lems is presented in section 5. The concluding remarks in section 6 contain our
perspective on the problem.

2 General Purpose

Let A be a large non-Hermitian matrix of dimension n × n. We consider the
problem of finding a few eigenpairs (λ, u) of A :

Au = λu with λ ∈ C and u ∈ Cn. (1)

Let w1 = v/‖v‖2 be an initial guess, m be an integer with m$ n. A Krylov sub-
space method allows to project the problem (1) onto a m-dimensional subspace
IK = span(w1, Aw1, · · ·Am−1w1). The well-known Arnoldi process is a projec-
tion method which generates an orthogonal basis w1, · · · , wm of the Krylov sub-
space IK by using the Gram-Schmidt orthogonalization process. Let AR(input :
A,m, v; output : Hm,Wm) be such Arnoldi reduction. The m×m matrix Hm =
(hi,j) and the n×m matrix Wm = [w1, · · · , wm] issued from AR algorithm and
the matrix A satisfy the equation:

AWm = WmHm + fme
H
m (2)

where fm = hm+1,mwm+1 and em is the mth vector of the canonical basis of Cm.
The s desired Ritz values (with largest/smallest real part or largest/smallest
magnitude) Λm = (λ(m)

1 , · · · , λ(m)
s ) and their associate Ritz vectors Um = (u(m)

1 ,

· · · , u(m)
s ) = (Wmy

(m)
1 , · · · ,Wmy

(m)
s ) can be computed by a Basic Arnoldi Algo-

rithm1. Let BAA(input : A, s,m, v; output : rs, Λm, Um) be this Algorithm. If the
accuracy of the computed Ritz elements by BAA is not satisfactory the projec-
tion can be restarted onto a new IK. This new subspace can be defined with the
same subspace size and a new initial guess. The method is called the Explicitly
Restarted Arnoldi (ERAM). Starting with an initial vector v, it computes BAA.
If the convergence does not occur, then the starting vector is updated and a BAA
process is restarted until the accuracy of the approximated solution is satisfac-
tory (using appropriate methods on the computed Ritz vectors). This update is
designed to force the vector in the desired invariant subspace. This goal can be
reached by some polynomial restarting strategies proposed in [3] and discussed
in section 3.1. Let ERAM(input : A, s,m, v, tol; output : rs, Λm, Um) be an algo-
rithm of Explicitly Restarted Arnoldi Method with tol a tolerance value and g
a function which defines the stopping criterion of iterations. The function g can
be defined by g(rs) = ‖rs‖∞ or by g(rs) =

∑s
j=1 αjρj where αj are scalar values

and rs = (ρ1, · · · , ρs)t with ρi = ‖(A− λ(m)
i I)u(m)

i ‖2.
1 We suppose that the eigenvalues λ

(m)
i and their corresponding eigenvectors y

(m)
i of

Hm are re-indexed so that the first s Ritz pairs are the desired ones.
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3 Multiple Explicitly Restarted Arnoldi Method

The Multiple Explicitly Restarted Arnoldi Method is a technique based upon
an ERAM with multiple projection processes to accelerate its convergence. In
this method several differently parameterized ERAM co-operate to efficiently
compute a solution of a given eigen-problem. The MERAM allows to update
the restarting vector of an ERAM by taking the interesting eigen-information
obtained by the other ones into account. The ERAMs begin with several sub-
spaces spanned by a set of initial vectors and a set of subspace sizes. If the
convergence does not occur for any of them, then the new subspaces will be
defined with initial vectors updated by taking the solutions computed by all
the ERAM processes into account. Each of these differently sized subspaces is
defined with a new initial vector v. To overcome the storage dependent short-
coming of ERAM, a constraint on the subspace size of each ERAM is imposed.
More precisely, it has to belong to the discrete interval Im = [mmin,mmax].
The bounds mmin and mmax may be chosen in function of the available com-
putation and storage resources and have to fulfill mmin ≤ mmax $ n. Let
M = (m1, · · · ,m�) be a set of � subspace sizes with mi ∈ Im (1 ≤ i ≤ �),
m1 ≤ · · · ≤ m� and V � = [v1, · · · , v�] be the matrix of � starting vectors. Let
Send Eigen Info represents the task of sending results from an ERAM process
to all other ERAM processes, Receiv Eigen Info be the task of receiving results
from one or more ERAM processes by the current ERAM process and finally,
Rcv Eigen Info be a boolean variable that is true if the current ERAM process
has received results from the other ERAM processes. A parallel asynchronous
version of MERAM to compute s (s ≤ m1) desired Ritz elements of A is the
following:

Asynchronous MERAM Algorithm.

1. Start. Choose a starting matrix V � and a set of subspace sizes M =
(m1, · · · ,m�).

2. Iterate. For i = 1, · · · , � do in parallel (ERAM process):
– Computation process

(a) Compute a BAA(input : A, s,mi, v
i; output : ri

s, Λmi , Umi)
step.
(b) If g(ri

s) ≤ tol stop all processes.
(c) Update the initial guess with

if (Rcv Eigen Info) then hybrid restart strategy
else simple restart strategy

– Communication process
(d) Send Eigen Info
(e) Receiv Eigen Info

where ri
s is the vector of the residual norms at the ith iteration. All ERAM

processes defined in step 2 of the above algorithm are independent and can
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be run in parallel. Each of them is constituted by a computation part and a
communication part. The computation and the communication can be over-
lapped inside of an ERAM process. The updating of the initial vector vi can be
done by taking the most recent results of the ERAM processes into account. We
recall that, in the above MERAM algorithm, the � last results are necessarily
the results of the � ERAM processes.

The above algorithm is fault tolerant. A loss of an ERAM process during
MERAM execution does not interfere with its termination. It has a great poten-
tial for dynamic load balancing; the attribution of ERAM processes of MERAM
to the available resources can be done as a function of their subspace size at
run time. The heterogeneity of computing supports can be then an optimiza-
tion factor for this method [2]. Because of all these properties, this algorithm
is well suited to the GRID-type environments. In a such environment, the �
ERAM processes constituting a MERAM can be dedicated to � different servers.
Suppose that the ith ERAM process is dedicated to the server Si. This server
keeps the execution control of the ith ERAM process until the convergence which
occurs, in general, by the fastest server. The computation and communication
parts of the algorithm can be overlapped.

3.1 Restarting Strategies

To restart an iteration of ERAM with a vector preconditioning so that it has
to be forced in the desired invariant subspace a polynomial restarting strat-
egy can be used [3]. One appropriate possibility to define this polynomial is
to compute the restarting vector with a linear combination of s desired Ritz
vectors.

Let u(m)
k be the kth Ritz vector calculated at the current iteration. To compute

the starting vector for the next iteration, we propose to make use of the following
linear combination:

v =
s∑

k=1

lk(λ)uk
(m) (3)

where s coefficients lk(λ) are defined by: lk(λ) =
∏s

j=1
j �=k

( λ−λj
(m)

λk
(m)−λj

(m) ), with λ =

(λmin + λ̄ − λmin

n )/2 , λ̄ =
s
k=1 λk

(m)

s and λmin is the eigenvalue with the
smallest residual norm. In the experiments of the next section, we made use of
this strategy (i.e., equation (3)) to update the initial vector of ERAM as well
as the ones of the ERAM processes of MERAM. In the case of MERAM this
equation becomes

vi =
s∑

k=1

l
(best)
k (λ)u(best)

k (4)

where u(best)
k is “the best” kth eigenvector computed by the ERAM processes of

MERAM and l(best)
k is its associate coefficient. We suppose that u(mp)

j is “better”

than u(mq)
j if ρp

j ≤ ρq
j .
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4 Asynchronous MERAM on NetSolve Global
Computing System

NetSolve system is a Grid Middleware based on the concepts of Remote Procedure
Call (RPC) that allows users to access both hardware and software computa-
tional resources distributed across a network. NetSolve provides an environment
that monitors and manages computational resources and allocates the services
they provide to NetSolve enabled client programs. NetSolve uses a load-balancing
strategy to improve the use of the computational resources available. Three chief
components of NetSolve are clients, agents and servers. The semantics of a Net-
Solve client request are: 1/client contacts the agent for a list of capable servers,
2/ client contacts server and sends input parameters, 3/ server runs appropriate
service, 4/ server returns output parameters or error status to client.

There are many advantages to using a system like NetSolve which can provide
access to otherwise unavailable software/hardware. In cases where the software
is in hand, it can make the power of supercomputers accessible from low-end
machines like laptop computers. Furthermore, NetSolve adds heuristics that
attempt to and the most expeditious route to a problem’s solution set. Net-
Solve currently supports the C, FORTRAN, MATLAB, and Mathematica as
languages of implementation for client programs. To solve a problem using Net-
Solve, a problem description file (PDF) corresponding to the problem has to be
defined [6].

4.1 Asynchronous MERAM on NetSolve System

The servers of NetSolve system can not communicate directly to each other.
Consequently, contrarily to MERAM algorithm presented in the previous sec-
tion a server can’t keep the control of an ERAM process until the conver-
gence. Indeed, when we run the asynchronous MERAM algorithm on a
system which servers communicate directly, each server runs the steps 2.(a),
2.(b) and 2.(c) of an ERAM and communicates with the other servers by run-
ning the steps 2.(d) and 2.(e) of the algorithm. This can not be done on a
system such as NetSolve where a server can not send/receive directly its in-
formation to/from the other servers. To adapt the asynchronous MERAM al-
gorithm to NetSolve system a control process centralizing the information and
corresponding to a client component of NetSolve has to be defined. This process
has to request to the computation servers of the system to run the step 2.(a)
of ERAM processes of MERAM in RPC mode. The running of the step 2.(a) of
an ERAM occurs asynchronously with respect to the execution of the same
step of the other ERAMs as well as with the execution of the rest of the
client algorithm. Once the control process receives the results of an BAA step,
it tests the convergence by running the step 2.(b) of the algorithm. If the
convergence is not reached then it updates the initial guess with the avail-
able eigen-information on this control/client server. An adaptation of the asyn-
chronous Multiple Explicitly Restarted Arnoldi Method for NetSolve is the
following:
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MERAM-NS(input : A, s,M, V �, tol; output : rs, Λm, Um)

1. Start. Choose a starting matrix V � and a set of subspace sizes M =
(m1, · · · ,m�).

Let iti = 0 (for i = 1, �).
2. For i = 1, · · · , � do :

(a) Compute a BAA(input : A, s,mi, v
i; output : ri

s, Λmi , Umi) step
in RPC mode.

3. Iterate. For i = 1, · · · , � do :
– If (ready results) then iti = iti + 1

(e
′
) Receive results.

(b) If g(ri
s) ≤ tol stop all processes.

(c) Update the initial guess in function of the available eigen-
information.
(a) Compute a BAA(input : A, s,mi, v

i; output : ri
s, Λmi , Umi)

step in RPC mode.
– End if

4. End. it = max(it1, · · · , it�)

Where ready results is a boolean variable which is true if the outputs of the
current BAA algorithm are ready. In other words, if the server computing the ith

BAA in RPC mode is ready to send its outputs. We notice that in this implementa-
tion the step 2.(d) of the asynchronous MERAM algorithm is not necessary and
the step 2.(e) is replaced by 3.(e

′
) which consists to receive all eigen-information

on the control process. Instead, we notice that in each computation request in
RPC mode, the client program has to send all inputs to the computation server
which accepts this task. That means, in MERAM-NS algorithm, for each restart
(i.e., iteration) of every ERAM process, the client program has to send the
n-order matrix A, and an n-size initial vector to a computation server. This en-
genders an intense communication between the client and computation servers.
But this communication is overlapped by the running of the rest of the algo-
rithm. We can notice that when a computational server finishes the step 2.(a)
or 3.(a), it has to return s+ 2 n-size output vectors to the client process.

In asynchronous MERAM algorithm, at the end of an iteration each ERAM
sends s+ 2 n-size vectors to �− 1 other processes. That means, each ERAM has
to communicate (� − 1)× (s + 2)× n data to other processes. The reception of
s+ 2 n-size vectors by a process is not determinism and not quantifiable.

5 Numerical Experiments

The experiments presented in this section have been done on a NetSolve system
whose computation servers have been located in France (at the university of Ver-
sailles and the Institute of Technology of Vélizy sites) and in U.S.A. and intercon-
nected by Internet. We implemented ERAM and MERAM (i.e., MERAM-NS)
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algorithms using C and MATLAB for some real matrices on NetSolve system.
The client applications are written in MATLAB while the programs having to
run in RPC mode (i.e., ERAM processes) are written in C. The stopping criterion
is g(ri

s) = ‖ri
s‖∞ where ri

s = (ρi
1, · · · , ρi

s) and ρi
j is normalized by ρi

j = ρi
j/‖A‖F

for all j ∈ 1, · · · , s and i ∈ 1, · · · , �. The initial vector is v = zn = (1, · · · , 1)/
√
n

and the initial matrix is V � = [v1 = zn, · · · , v� = zn]. We search a number s = 2
or s = 5 of the eigenvalues with the largest magnitude. The used matrices are
af23560, mhd4800b, gre 1107, and west2021 which are taken from the matrix
market [1] Their number of non zero elements are 484256, 16160, 5664, and
7353 respectively. In our experiments, we run MERAM-NS with � = 3 ERAM
processes where the steps 2 and 3.(a) are computed in RPC nonblocking mode.
The efficiency of our algorithms on NetSolve are measured in terms of the num-
ber it of the restarts. The number of iterations of MERAM is the number of
iterations of the ERAM process which reaches convergence. It is generally the
ERAM process with the largest subspace size.

5.1 MERAM-NS Versus ERAM

We denote by MERAM(m1, · · · ,ml) a MERAM with subspaces sizesm1, · · · ,ml

and by ERAM(m) an ERAM with subspace size m. Table 1 presents the results
obtained with the ERAM and MERAM algorithms on NetSolve. It also presents
a comparison between the results obtained by these methods in term of the
number of restarts. The results of our experiments indicate that in term of the
number of the restarts, MERAM is considerably more efficient than ERAM.

Table 1. Comparison of ERAM(m) and ERAM(m1, · · · , m
)

ERAM MERAM
Matrix s � m it Res.Norms m1, . . . , m
 it Res. Norms

af23560.mtx 2 3 10 240 No converge 5, 7, 10 74 9.329017e-10
mhd4800b.mtx 2 3 10 41 8.127003e-10 5, 7, 10 6 4.016027e-09
mhd4800b.mtx 5 3 20 19 4.089292e-15 10, 15, 20 4 2.999647e-15
gre 1107.mtx 2 3 30 46 3.389087e-09 5, 10, 30 32 6.753314e-09
west2021.mtx 2 3 10 18 1.742610e-09 5, 7, 10 14 6.267924e-09

6 Conclusion

In order to improve the overall performance of Arnoldi type algorithm, we pro-
posed an adaptation of the multiple explicitly restarted Arnoldi method for
NetSolve system. We have seen that the multiple explicitly restarted Arnoldi
method accelerates the convergence of explicitly restarted Arnoldi method. The
numerical experiments have demonstrated that this variant of MERAM is often
much more efficient than ERAM. In addition, this concept may be used in some
Krylov subspace type method for the solution of large sparse non symmetric
eigenproblem.
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We have shown that the MERAM-type asynchronous algorithms are very well
adapted to the global computing systems such as NetSolve. Meanwhile, one of the
major problems remains the transfer of the matrix from the client server towards
the computation servers. Moreover, the classical evaluation of performances is no
more valid in this kind of systems. For example, the execution response time can
not be a good measure of performance for MERAM nor for a comparison between
MERAM and ERAM. This is due to the execution time which is dependent to
the Internet load, to the volatility and the transparency of the servers and to
the implementation of the ERAM on NetSolve which introduces some artificial
communications.

In order to have a rapid response time the use of a classical parallel super-
computer seems to be more interesting. But the supercomputers are not easily
accessible. Moreover, the use of a global computing system allows to take ad-
vantage of the otherwise unavailable software and/or hardware resources.
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Abstract. The computation of high-precision mathematical constants
in a combined cluster and grid environment is presented. Mathemati-
cal constants (e.g., π and e) are computed from their series expansions.
The binary splitting method recursively reduces the calculation of the
sum of the series by effectively splitting the problem into two halves and
performing the same calculation on each half. By using grid computing
for part of the binary splitting process, the supercomputer computation
time, which is very expensive, can be reduced. We implemented the inde-
pendent binary splitting process in a grid environment using a grid RPC
system called OmniRPC. We successfully achieved nearly linear speedup
for larger digits on an 8-node PC cluster used over a wide-area network.

1 Introduction

Many computations of mathematical constants (e.g., π and e) have been per-
formed with high precision [2, 9, 12, 1].

Brent presented algorithms for computing elementary functions [4]. In par-
ticular, Brent [4] and Salamin [13] independently discovered an approximation
algorithm based on elliptic integrals. This algorithm yields quadratic convergence
to π.

Borweins discovered a general technique for obtaining even higher-order con-
vergent algorithms for π [3]. Borweins’ quartically convergent algorithm is as
follows: Let a0 = 6− 4

√
2 and y0 =

√
2− 1. Iterate the following calculations:

yk+1 =
1− (1− y4

k)1/4

1 + (1− y4
k)1/4 ,

ak+1 = ak(1 + yk+1)4 − 22k+3yk+1(1 + yk+1 + y2
k+1).

Then, ak converges quartically to 1/π. Each iteration must be performed to
a level of numeric precision that is at least as high as that desired for the final
result. This algorithm requires O(logNM(N)) operations, where M(N) is the
number of operations for an N -digit multiplication.

A key operation in fast multiple-precision arithmetic is the multiplication,
which consumes a significant percentage of the total computation time. The
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multiple-precision multiplication of N -digit numbers requires O(N2) operations
by using an ordinary multiplication algorithm [11]. Karatsuba’s algorithm [10, 11]
is known to reduce the number of operations to O(N log2 3).

It is known that the multiple-precision multiplication of N -digit numbers
can be performed in O(N logN log logN) operations by using the Schönhage-
Strassen algorithm [16], which is based on the fast Fourier transform (FFT) [7].

Mathematical constants are computed from their series expansion, such as:

π = 16 arctan
1
5
− 4 arctan

1
239

, arctan
1
q

=
∞∑

k=0

(−1)k

(2k + 1)q2k+1 .

These series expansions have a computational complexity of O(N2) for com-
puting N digits of the series using a classical approach.

On the other hand, the binary splitting method offers an efficient way to
evaluate many series containing only rational numbers [5, 3, 9]. By using the
binary splitting method, π can be computed in O((logN)2M(N)) and e can be
computed in O(logNM(N)), where M(N) is the number of operations for an
N -digit multiplication.

The computation of π to more than 1.24 trillion decimal digits was performed
by using both the binary splitting method and the arctangent series on a Hitachi
SR8000/MPP parallel computer [1].

The BBP (Bailey-Borwein-Plouffe) formula computes the N -th hexadecimal
digit of a variety of mathematical constants (e.g., π and log 2) [2].

The BBP formula can be stated as follows:

π =
∞∑

i=0

1
16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
The BBP formula enables computation of a specific bit in π without com-

puting all the previous bits. PiHex was a distributed computing project which
calculated the quadrillionth bit of π by using a BBP-like formula and a worldwide
network of 1,734 PCs [12].

Although the BBP formula is suitable for distributed computing, it requires
O(N2 logN) operations to calculate N full-digits of π.

The Brent-Salamin algorithm and Borweins’ quartically convergent algorithm
require O(logNM(N)) operations, which is the least number of asymptotic
arithmetic operations possible for computing π. Since these algorithms require
N full-digits computation at each iteration, they are not suitable for distributed
computing.

Therefore, the binary splitting method is considerably better than both the
Brent-Salamin algorithm and Borweins’ quartically convergent algorithm, be-
cause no full-precision multiplication is involved.

In this paper, we present the computation of high-precision mathematical con-
stants in a combination of parallel and distributed computing environments. By
using grid computing for part of the binary splitting process, the supercomputer
computation time, which is very expensive, can be reduced.
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Section 2 describes the binary splitting method. Section 3 describes the par-
allelization of the binary splitting method. Section 4 presents the experimental
results. We provide some concluding remarks in Section 5.

2 Binary Splitting Method

Haible and Papanikolaou proposed fast multiprecision evaluation of a series of
rational numbers [9].

The general form of the linearly convergent series is given as follows:

S =
∞∑

k=0

ak

bk

k∏
j=0

pj

k∏
j=0

qj

where ak, bk, pj and qj are O(log k)-bit integers.
If bounds l ≤ k < n are given, the partial sum of S can be written as follows:

Sl,n−1 =
n−1∑
k=l

ak

bk

k∏
j=0

pj

k∏
j=0

qj

.

Then, we have

Pl,n−1 =
n−1∏
j=l

pj,

Ql,n−1 =
n−1∏
j=l

qj ,

Bl,n−1 =
n−1∏
j=l

bj,

Tl,n−1 = Bl,n−1Ql,n−1Sl,n−1.

For l ≤ m < n, we have

Pl,n−1 = Pl,m−1Pm,n−1,

Ql,n−1 = Ql,m−1Qm,n−1,

Bl,n−1 = Bl,m−1Bm,n−1,

Tl,n−1 = Bm,n−1Qm,n−1Tl,m−1 +Bl,m−1Pl,m−1Tm,n−1.
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Finally, we have

S0,n−1 =
T0,n−1

B0,n−1Q0,n−1
.

For exp(x) (where x = u/v is a rational number), ak = 1, bk = 1, p0 = q0 = 1,
and pk = u, qk = kv for k > 0. The bit complexity is O(logNM(N)) [9].

For rational |x| < 1, arctan(x) can be computed to ak = 1, bk = 2k+1, qk = 1,
p0 = x and pk = −x2 for k > 0. The bit complexity is O((logN)2M(N)) [9].

The binary splitting method for arctan series can be written as follows:

binsplit(l, n)
{

if (l == n) {
P(l,n) = 1;
Q(l,n) = (2 * l + 1) * (q * q);
R(l,n) = -(2 * l + 1);

} else {
m = floor((l + n) / 2);
binsplit(l, m);
binsplit(m, n);
P(l,n) = P(l,m) * Q(m,n) + R(l,m) * P(m,n);
Q(l,n) = Q(l,m) * Q(m,n);
R(l,n) = R(l,m) * R(m,n);

}
}

Then, we have the sum to n terms of arctan(1/q) = P0,n−1/Q0,n−1 with
binsplit(0,n-1). The above operations can be performed recursively. For
smaller digit multiplication (e.g., less than 1,000 decimal digits), an ordinary
O(N2) multiplication algorithm or Karatsuba’s O(N log2 3) algorithm may be
used. For larger digit multiplication (e.g., more than 1,000 decimal digits), FFT-
based multiplication may be used.

The binary splitting method recursively reduces the calculation of the sum
of the series by effectively splitting the problem into two halves and performing
the same calculation on each half. It requires O(logN) stages for evaluating the
sum of the series.

3 Parallelization of Binary Splitting Method

Haible and Papanikolaou pointed out that the binary splitting method is suitable
for parallel computation [9].

If p processors are available, the partial sum of the series can be performed
as follows:
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Processor 0 : S0,�n
p �−1

Processor 1 : S�n
p �,2�n

p �−1

...
Processor i : Si� n

p �,(i+1)� n
p �−1

...
Processor (p− 1) : S(p−1)�n

p �,n−1

The independent binary splitting process can be performed in a grid comput-
ing environment. For implementation, a thread-safe remote procedure call (RPC)
system, called OmniRPC [14], was used for the cluster and grid environments.

3.1 The OmniRPC System

OmniRPC [14] is a grid RPC system which allows seamless parallel programming
from a PC cluster to a grid environment. OmniRPC inherits its API and basic
architecture from Ninf [15]. A client and the remote computational hosts which
execute the remote procedures are connected via a network.

The OmniRPC system supports a local environment with “rsh,” a grid envi-
ronment with Globus [8], and remote hosts with “ssh.”

OmniRPC efficiently supports typical master/worker parallel grid applica-
tions such as parametric execution programs.

3.2 Parallel Implementation of Binary Splitting Method Using
OmniRPC

The client program which assigns a partial sum to the calculation node of a PC
cluster using RPC can be written as follows:

. . .
call OmniRPC_Init

. . .
do j=0,nproc-1

. . .
call OmniRPC_Call_Async(ireq(j),’binsplit*’, . . .)
. . .

end do
call OmniRPC_Wait_All(nproc,ireq)

. . .
call OmniRPC_Finalize

The OmniRPC APIs used above are described as follows:

– OmniRPC Init initializes the system and reads the registry files in the remote
hosts to make the database that associates the entry names of the remote
functions with remote executables.
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– OmniRPC Call Async makes a non-blocking remote procedure and returns
the handle for the request.

– OmniRPC Wait All blocks until the specified non-blocking request has been
completed.

– OmniRPC Finalize releases any resource being used by the OmniRPC
system.

For the first O(log(N/p)) stages, each partial sum of the series can be per-
formed completely independently on a distributed computing environment which
has p processors. Then, each partial sum of the series may be saved to files.

Finally, for the last O(log p) stages, parallel multiple-precision arithmetic [17]
should be done on distributed-memory parallel computers (e.g., clusters of PCs).

Since all stages can be performed on distributed-memory parallel computers,
O(logN) stages are needed. Thus, by using distributed computing for the sum
of the series, the computation time of the expensive parallel computers can be
reduced.

4 Computational Results

To evaluate the implemented parallel binary splitting method, we performed the
partial sum of the series in a grid computing environment. The decimal digit N
of π and the number of worker nodes p were varied. We averaged the elapsed
times obtained from 10 executions. It should be noted that the elapsed times
include the disk I/O time.

The specifications for the platforms used are shown in Table 1. The client node
and the worker nodes were connected through a 1Gbps wide-area network. For
the authentication system of OmniRPC, “ssh” was used. The built-in Round-
Robin scheduler of OmniRPC was used as the job scheduler.

All routines were written in Fortran. The Intel Fortran Compiler (version 8.1)
was used. The optimization option was specified as “-O3 -xW.”

We used the following Chudnovsky’s formula [6]:

1
π

= 12
∞∑

k=0

(−1)k(6k)!(13591409 + 545140134k)
(3k)!(k!)3 6403203k+3/2

Table 1. Specification of machines

Platform Client node Worker nodes
Number of Nodes 1 8

CPU Type Pentium4 3.2 GHz dual Xeon 2.4 GHz

L1 Cache
I-Cache: 12 Kuops
D-Cache: 16 KB

I-Cache: 12 Kuops
D-Cache: 8KB

L2 Cache 1MB Unified 512 KB Unified
Main Memory 1GB 1GB

OS Linux 2.4.20-8smp Linux 2.4.20-20.7smp
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Table 2. Performance of the parallel binary splitting method. The Time columns are
in seconds.

N
1 worker 2 workers 4 workers 8 workers

Time Speedup Time Speedup Time Speedup Time Speedup
220 6.34 1.00 3.59 1.77 2.05 3.09 1.45 4.37
221 15.80 1.00 8.24 1.92 4.46 3.54 2.69 5.87
222 38.29 1.00 19.37 1.98 10.16 3.77 5.55 6.90
223 90.73 1.00 45.51 1.99 23.31 3.89 12.23 7.42
224 208.15 1.00 104.24 2.00 53.96 3.86 27.84 7.48
225 476.28 1.00 238.45 2.00 121.83 3.91 63.04 7.56

Table 2 shows the averaged execution times of the parallel binary splitting
method. The column with theN heading shows the decimal digits. The next eight
columns contain the average elapsed time in seconds and the speedup ratio.

We can see that the speedup of the parallel binary splitting is nearly a linear
speedup for larger digits.

We found a load imbalance in the processing time of each partial sum. This
is because the number of digits of each partial sum is different.

5 Conclusion

In this paper, we proposed the computation of high-precision mathematical con-
stants in a combined cluster and grid environment.

We implemented an independent binary splitting process in a grid environ-
ment using the grid RPC system called OmniRPC. We succeeded in obtaining
a speedup of up to 7.56 times on an 8-node PC cluster.

Previous computations of high-precision π were performed on expensive (par-
allel) supercomputers.

But, by using grid computing for part of the binary splitting process, the
supercomputer computation time, which is very expensive, can be reduced. A
combined cluster and grid environment enables the computation of trillions of
digits of mathematical constants.
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1 Introduction

We investigate several ways to implement a financial algorithm on a Grid ar-
chitecture. The chosen algorithm is used to value an American stock option on
the maximum of several assets. Such an evaluation has been a standard case in
financial mathematics for the last years. These stock options become more and
more common but cannot be easily valuated: the complexity of the usual algo-
rithms grows exponentially with some parameters (number of assets involved,
number of exercise date). Algorithms based on simulation (Broadie and Glasser-
man, [2, 3]) often need prohibitive computational efforts. Fu and al. [4] show that
for a option on five assets, some methods do not terminate in less than ten hours
of computational time (tests made on a Sun Ultra5 in 2000), whereas a trader
in a financial institution doesn’t have more than a few minutes to deal with the
valuation of such an option. As a consequence, recent papers tend to explore
parametrization methods for the space state or the exercise frontier. Longstaff
and Schwartz ’s algorithm [8], proposed in 2001, belongs to this trend. How-
ever, results seems to be very sensitive to the parameters and the choice of basis
functions. Investigation on the loss of precision must be made.

The uninterrupted growth of the computational power potentially used by
traders and in particular the birth of grid technologies show us a new way to
implement such algorithms. Using parallelism and grid computing, we can aim
at obtaining fast and liable results through a better use of idle machines and
without sacrificing precision. To our knowledge, the stochastic mesh method (cf.
[1]) is the only one that was investigated from a point of view of computing
parallelism. Results presented there are promising but they were all obtained on
massively parallel machines, which are rarely used in financial institutions that
need these valuations.

So we have investigated these methods in the framework of Grid computing
standards: we have achieved parallelism for a valuation method and implemented
it with middleware such as the well-known Globus Toolkit ([9]), which allows

� This work was partially supported by an IBM Ph.D. Fellowship.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 462–469, 2006.
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a calculus to be well-distributed among a group of machines even if they differ
from each other as for the localization, the hardware or software used in them.

For this study we have chosen an algorithm presented in 2002 by Ibanez et Za-
patero [7]. In a first part, we briefly describe this method and justify our choice.
Then follows the description of three implementations based on the Globus
Toolkit middleware [9]. Our second part describes the implementations of three
possible Grid methods and show their respective advantages and drawbacks. We
finally make several performance tests and conclude our study.

2 Valuation of an American Option on the Maximum of
Several Assets

2.1 Theoretical Introduction

We consider the case of a financial stock market fitting Black & Scholes frame-
work. This market is composed of M assets, and their prices at time t are
St = (S1

t , . . . , S
M
t ). The assets dynamics can be written as follows:

dSt

St
= r dt+ σ dWt (1)

where Wt is a M -dimensional Brownian motion.
An American option with time of expiry T is a contract which can be activated

at any time t ∈ [0, T ] and then pays the exercise value I(t, St). In our example
of an option on a maximum of M assets, we have:

I(t, St) = max
i=1,...,M

(Si
t −K)+. (2)

Formally, the value Q(0, S0) of the option at time 0 is:

Q(0, S0) = max
τ

[I(τ, Sτ )] (3)

where τ is a stopping time. If we consider the case of a discrete time scale for
exercise dates {0 = t0 < t1 < . . . < tN = T }, then the option at time tn in the
state x has the following value:

Q(tn, x) = max
(
I(tn, x),E[Q(tn+1, Stn+1 |Stn = x]

)
(4)

For each date, states x in which both terms in the max function are equal are
points of the exercise frontier. Such a description of options of American type
leads immediately to a backward induction algorithm for the evaluation.

2.2 Evaluation Through the Computation of the Exercise Frontier

The algorithm chosen for our grid implementation has initially been presented in
[7], where a detailed explanation can be found. Following the backward induction
presented in section 2.1, pricing is done through the explicit determination of
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the exercise frontier of our American option: each asset is successively considered
to determine its own frontier which is function of the other assets. Fixed point
algorithm, Good Latice Points and Monte Carlo simulations are used.

Let us briefly describe its structure in the case of an option on M underlying
assets:

Step 1. Compute J Good Lattice points in dimension M − 1.
Step 2. For each asset, compute the exercise frontier for every J points knowing

its full expression for dates tn+1, . . . , T . This requires a fixed point search
through a Monte Carlo valuation at each iteration.

Step 3. For each asset, compute an approximation of the frontier thanks to a
polynomial regression.

Step 4. Repeat steps 2 and 3 for time tn = T − 1, . . . , 0.
Step 5. Knowing the frontier at each date, compute the option value through

a straightforward Monte Carlo simulation.

This algorithm seems to be well-adapted for an implementation on a grid
architecture. Firstly, given a time t, the computation of the frontier value at
one point is independent from the J − 1 other computations. Secondly, the final
Monte Carlo valuation is naturally adapted for a parallel implementation.

As a consequence, our implementation exports two types of computations to-
wards distant machines: one program calculating the frontier on a given point
(EvalPtFront) and one program of Monte Carlo simulation calculating the price
of the option with Np simulations given the complete frontier (EvalFin). Re-
maining calculus (generation of Good Lattice Points et polynomial regression)
remain conveniently on the local side.

3 Three Grid Implementations

Once the topology of the grid is known, any implementation of our algorithm
must successively transfer the executable towards the computing nodes, trans-
fer all data needed for the computation, run the computation and retrieve the
results. Our three implementations differ in the methods used to achieve these
goals. Table 1 summarizes the main points.

Table 1. Comparative table of the implementations. Though implementations 1 and 2
use the same version of the middleware, implementations 2 and 3 are closer and share
the “service” approach as well as the 1..n relationship for instantiation-invocation.

Implementation Provisioning Data Transfer Security Instantiation-Invocation
GT2.4 Basic Grid-FTP File transfer SSL 1..1
GT2.4 Service Grid-FTP Socket streams SSL 1..n
IGTv3 Web Grid Archive Web Services not tested 1..n
Service deployment protocols (SOAP)
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3.1 Scheduler Oriented Globus Toolkit 2.4 Implementation

This first implementation uses the Globus tools in the simplest way. One job
is one execution of one of our exported programs (see 2.2). Each program
<prog> needs data from an input file <prog>_in.txt and writes its output
in <prog>_out.txt. The first step is called provisioning and consists in trans-
ferring the executables towards the computation nodes. This is done using the
Globus command globus-url-copy, the client tool of the Grid FTP module.
This command is a wrapper for globus_gass_copy, which means we use the
“Global Access to Secondary Storage” (GASS) for the executable. Scheduling
is handled with scripts submitted to the command globus-job-run of the API
“Globus Resource Allocation Manager” (GRAM), and file transfer are handled
with the option -stagein et -stageout.

This first implementation is a basic use of Globus Toolkit 2.4: no modification
of the original code is necessary. Note that the instantiation-invocation relation
is unary: each data set needs a new instantiation of the executable to be treated1.

3.2 Service Oriented Globus Toolkit 2.4 Implementation with
Globus io API

We try here to have a service oriented approach within the same Globus Toolkit
2.4 framework. The provisioning step remains unchanged, while the data transfer
is enhanced. Our implementation doesn’t copy the input from the client machines
to the nodes and output files in the reverse sense. It makes benefits from the use
of sockets managed through the functions of the globus io API. This interface
is a simple Globus wrapper of the usual POSIX sockets API. Commands are
identical and written globus_io_tcp_XXX (accept, bind, connect, listen...). As a
consequence, our executables can be considered as daemons permanently waiting
for data sets to treat. Finally note that the instantiation-invocation relationship
is no more unary, since each executable is up with only one GRAM call and
then listen to the socket for successive data sets. As a consequence, we expect
the GRAM API overhead to be reduced.

3.3 Grid Service Oriented Globus Toolkit 3 — IBM GridToolBox
Implementation

In this implementation, we follow a grid service approach. The provisioning step
is the deployment of our services. Our original code is compiled as a library, Java
interfaces are compressed in GAR files (Grid Archive) and deployed with Globus
3 tools. Communications and invocations are handled through Web Services
SOAP protocols.

This Globus Toolkit 3 implementation needs deeper modifications of the origi-
nal codes. Besides the library of the original code and the Java interface, we need
a description of our service in WSDD (Web Services Deployment Descriptor),

1 The executable being cached, “instantiation” is to be understood as an API GRAM
call and not as the provisioning itself.
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a description of the interface in WSDL (Web Services Description Language)
and a Java Archive of all the Globus 3 stubs of our services. The Ant tool of
the Apache Software Foundation generates these files automatically (see [5] for
more details).

4 Performance Comparison

4.1 Known Results

We valuate an American option on a maximum of five assets. This is a stan-
dard choice to test our implementations, especially since the work of Broadie
and Glasserman [3]. We use exactly parameters proposed by [7]. Monte Carlo
simulations for the frontier computation use 5000 paths, final Monte Carlo uses
4.000.000 paths.

At the time of their publication, known results were obtained after several
hours of computation (about ten hours in November 2002 according to [7]).
Note that all our implementations return the expected result with the precision
announced by the authors of the method. This being checked, we will focus on
computation performances, keeping in mind that our reference is 911 seconds
for our local sequential implementation on a 2.8 GHz CPU.

4.2 Our Results

– Globus Toolkit 2.4 with file transfer
Our testbed consists in one pool of three hyperthreaded 2 bi-processors Xeon
2.8 GHz machines on site (IBM Montpellier, France) and another pool of five
500 MHz hyperthreaded CPUs in the United States (IBM Poughkeepsie,
USA).

Tests of this implementation show that gains are very small: when six
hyperthreaded on site processors are used, speedup is ... 2.47 ! Furthermore,
the use of the two complete pools simultaneously doesn’t improve the com-
putation time at all, on the contrary. This is perfectly understandable if we
consider network latency: this waiting time might be 30 seconds while the
first submitted jobs require a few tenth to a few tens of seconds. In these
conditions, it is obvious that distant CPUs won’t improve anything3.

2 Hyperthreading, also called simultaneous multithreading, is a technology for pro-
cessors microarchitecture allowing one CPU to treat simultaneously two streams of
instructions and as a consequence to be seen by the operating system as two distinct
processors, called logical processors. As many elements on the chipset are shared
by the different streams, performances are obviously not expected to be as good as
those obtained with two real processors.

3 In a very general case of distant pools, an optimal architecture seems to appear here:
the client scheduler should not communicate with distant machines, but should send
all data sets to a distant replica, closer to the computing nodes, and which would
redistribute the jobs at a lower time expense.
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Fig. 1. Speedups for GT2.4 I/O and IGTv3 implementations on 6 processors

– Globus Toolkit 2.4 with globus io API
We have the same testbed. As shown above, it is obvious that distant ma-
chines will not be useful. This implementation allows numerous successive
invocations of one computing instance. This is very efficient in bypassing
the GRAM overhead: using 6 hyperthreaded CPUs, speedup is 8.06 (5.12
without hyperthreading) (cf. figure 1). Computation time has fallen to 120
seconds and speedup is close to the one obtained with MPI. When consid-
ering hyperthreading, it even seems to be better.

– IBM Grid ToolBox — Globus Toolkit 3
Our testbed is in this case reduced to three 2 GHz bi-processors machines.
Results are given on figure 1. We observe a curious loss when using simulta-
neously two processors on the same machine. This slowing effect on SMP is
not understood for the moment.

4.3 Best Performances

Results are summarized on figure 2. As expected, the MPI implementation is our
reference value which cannot be “beaten” (without hyperthreading). Our first
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Fig. 2. Best results on 6 real processors. Remember that testbeds were different, so
these results are corrected values after CPU comparison (one unitary test job is sub-
mitted and measured on each CPU). They are not measured values.
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scheduler-based approach is not performant: the relationship 1..n for instanti-
ation-invocation leads to a huge GRAM overhead (waiting for each job status
might be long because of the network latency). The Service oriented approach
is much faster. When communication is handled by globus io socket streams,
results are optimal. When using web services protocols, performances are not so
good: SOAP standards and Java interfaces induce serialization and conversion
overhead which are certainly the cause of the loss observed.

4.4 Remarks on Dividing the Final Monte Carlo Valuation

During the first parallelized step, the chosen parameters lead to the dispatching
of 128 independent jobs and don’t allow us to make another partition of the
computational effort. So is this step perfectly parallelized if the grid has 128
processors or less. If more processors were available, we would choose to compute
extra random points of our exercise frontier rather than leaving computational
power unused.4

As for the second parallelized step, it is obvious that we have to divide our
final Monte Carlo in as many jobs as we have available processors. Such a divi-
sion optimize the computational time. If we have less jobs, some processors will
remain unused. If we have more jobs, we will inefficiently increase the amount
of communications, since CPUs will have to treat several jobs successively.
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Fig. 3. Occupation rate of three processors according to the number of jobs for a Monte
Carlo valuation. See 4.4.

We confirm this with a test on 3 processors on figure 3. Obvious results
appeared: three jobs for three processors is the best division, four jobs is the
worst one. The interesting fact for us is that the loss for a division in numerous
jobs may remain very low and seems to be important for 50 jobs or more only. As
a consequence, if one doesn’t know the exact number of available CPU on the grid
4 This remark applies only for the (academic) case of one valuation on a fully avail-

able grid of identical nodes. In the case of an implementation on a production site
(a financial institution), there is a natural parallelization in quantity: N traders re-
questing P valuations would launch N*P*128 jobs EvalPtfront at the same time. No
adaptation would be required.
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(which will always be the case on a grid), it is better to divide the computation
on a number of jobs larger than the expected number of CPUs. In our example,
computation will be made on a dozen of processors and we decide to divide our
final Monte Carlo of 4000000 simulations in 20 jobs of 20000 simulations each.

5 Conclusion

Finally, we showed that Monte Carlo algorithms for financial applications may be
easily adapted to a Grid architecture using standard middleware. Flexibility for
standard parallelization is shown to be efficient. Observed performances of “Ser-
vice oriented” implementations are very promising, as the time loss compared to
an optimized MPI program is limited. We also showed that “Web Services” stan-
dardisation may be too constraining in terms of high performance computing.
Finally, note that such speedups allow us to test deeply implemented algorithm
and parameters sensibility and obtain essential financial results.
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Abstract. We present a fast and highly parallel algorithm for pric-
ing CDD weather derivatives, which are financial products for hedging
weather risks due to higher-than average temperature in summer. To
find the price, we need to compute the expected value of its payoff,
namely, the CDD weather index. To this end, we derive a new recur-
rence formula to compute the probability density function of the CDD.
The formula consists of multiple convolutions of functions with a Gaus-
sian distribution and can be computed efficiently with the fast Gauss
transform. In addition, our algorithm has a large degree of parallelism
because each convolution can be computed independently. Numerical ex-
periments show that our method is more than 10 times faster than the
conventional Monte Carlo method when computing the prices of various
CDD derivatives on one processor. Moreover, parallel execution on a PC
cluster with 8 nodes attains up to six times speedup, allowing the pricing
of most of the derivatives to be completed in about 10 seconds.

1 Introduction

Most business activities are greatly affected by weather conditions, especially
temperature. For example, higher-than-average temperature in winter will result
in significant energy cost savings for department stores or railway companies, but
may decrease the revenue of electricity companies. Lower-than-average tempera-
ture in summer will reduce the cost of air-conditioning, but may adversely affect
the sales of leisure industry.

To manage these risks associated with weather, new financial instruments
called weather derivatives have been developed and are actively traded in the
market. Among them, the most popular variants are the CDD (Cooling Degree
Days) and HDD (Heating Degree Days) derivatives. The CDD derivative is a
derivative security whose payoff depends on the CDD, a weather index that
measures the extent to which the temperature in a specified period in summer is
higher than a reference temperature. Thus a company exposed to weather risks
due to higher-than-normal temperature in summer can buy a CDD derivative
to compensate for the possible loss. The HDD derivative is defined similarly and
enables the buyer to hedge against lower-than-average temperature in winter.
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c© Springer-Verlag Berlin Heidelberg 2006
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To find the rational price of this derivative, one needs to compute the expec-
tation value of the payoff under some stochastic time series model of the future
temperature [4, 6, 12]. This has traditionally been done using the Monte Carlo
method [5, 7], but, as it is well known, its convergence is quite slow. In fact,
computing the price of a weather derivative to 4-digit accuracy often requires
more than 108 sample paths and takes several minutes on a modern PC. So it is
not suitable for real-time pricing or pricing a portfolio consisting of thousands
of weather derivatives.

In this paper, we propose an alternative efficient algorithm for pricing CDD
weather derivatives [11]. Our strategy is similar to the one successfully adapted to
path-dependent options in [2, 3]; we consider the probability distribution function
of the CDD explicitly and derive a recursion formula to compute it. The formula
consists of multiple convolutions of functions with a Gaussian distribution and
can be computed efficiently using the fast Gauss transform [8]. The resulting
algorithm has proved much faster and more accurate than the Monte Carlo
method. In addition, it is quite easy to parallelize the algorithm.

This paper is structured as follows: in Section 2, we formulate the pricing
problem of CDD derivatives. Section 3 and 4 present our new algorithm based
on the fast Gauss transform and a parallelization strategy for it, respectively.
Numerical results that show the effectiveness of our approach are given in Section
5. Section 6 gives some conclusion.

2 Problem Formulation

We consider a weather derivative whose payoff depends on the daily temperatures
at a city during a given period of N days. Let the temperature on the n-th day
be denoted by Tn. Then the CDD weather index is defined as

CDD =
N∑

n=1

max(0, Tn − T̄ ), (1)

where T̄ is the prespecified reference temperature. The CDD weather derivative
is a derivative security whose payoff is given by

Pcall = k ·max(CDD −K, 0) (CDD call) or (2)
Pput = k ·max(K − CDD , 0) (CDD put), (3)

where k and K are constants called the tick value and the strike, respectively.
To find the price of this derivative, we need some stochastic model for predict-

ing {Tn}N
n=1. Many models have been proposed for this purpose so far [4, 6, 12].

In this paper, we use the Dischel D1 model [6], in which the daily temperature
is assumed to evolve the equation:

Tn = (1− β)Θn + βTn−1 + εn, (4)

where β is a constant, Θn is the temperature of the n-th day in an average year
(also a constant) and εn’s are a sequence of i.i.d. random variables that follow
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the normal distribution N(μ, σ2). Though it is a simple model, it can reproduce
the time series of daily temperatures fairly well and is widely used for pricing
weather derivatives.

The price Q of the CDD derivative is computed by taking the expectation
value of the payoff under the stochastic model (4) and adding to it some premium
e determined by the issuer. That is, for a CDD call,

Q = E[Pcall] + e. (5)

Our main task is to construct an algorithm for computing this expectation value
efficiently and accurately.

3 A New Pricing Algorithm Based on the Fast Gauss
Transform

3.1 The Basic Idea

To compute the expectation value in eq. (5), we first define the partial CDD on
the n-th day by

Cn =
n∑

i=1

max(0, Ti − T̄ ). (6)

The CDD is equal to CN by definition.
Let Pn(Tn|Tn−1) denote the conditional probability density function (pdf) of

Tn given the temperature of the (n− 1)-th day. Then from eq. (4) we have

Pn(Tn|Tn−1) =
1√
2πσ

exp
{
− (Tn − μn)2

2σ2

}
, (7)

where
μn = (1− β)Θn + βTn−1 + μ. (8)

We next consider the joint conditional pdf pn(Tn, Cn|Tn−1, Cn−1). Eq. (6) implies
that Cn = Cn−1 + (Tn − T̄ ) if Tn ≥ T̄ and Cn = Cn−1 otherwise. Hence,

(i) if Tn < T̄ ,

pn(Tn, Cn|Tn−1, Cn−1) = Pn(Tn|Tn−1)δ(Cn − Cn−1)

=
1√
2πσ

exp
{
− (Tn − μn)2

2σ2

}
δ(Cn − Cn−1), (9)

(ii) else if Tn ≥ T̄ ,

pn(Tn, Cn|Tn−1, Cn−1) = Pn(Tn|Tn−1)δ(Cn − (Cn−1 + (Tn − T̄ )))

=
1√
2πσ

exp
{
− (Tn − μn)2

2σ2

}
× δ(Cn − (Cn−1 + (Tn − T̄ ))). (10)
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Using eqs. (9) and (10), we can compute the joint pdf of Tn and Cn as follows:

(i) if Tn < T̄ ,

pn(Tn, Cn)

=
∫ +∞

−∞
dTn−1

∫ +∞

0
dCn−1 pn(Tn, Cn|Tn−1, Cn−1) pn−1(Tn−1, Cn−1)

=
∫ +∞

−∞
dTn−1

1√
2πσ

exp
{
− (Tn − μn)2

2σ2

}
× pn−1(Tn−1, Cn), (11)

(ii) else if Tn ≥ T̄ ,

pn(Tn, Cn)

=
∫ +∞

−∞
dTn−1

∫ +∞

0
dCn−1 pn(Tn, Cn|Tn−1, Cn−1) pn−1(Tn−1, Cn−1)

=
∫ +∞

−∞
dTn−1

1√
2πσ

exp
{
− (Tn − μn)2

2σ2

}
× pn−1(Tn−1, Cn − (Tn − T̄ )).

(12)

We use eqs. (11) and (12) as recurrence formulas to compute the joint pdf
pN (TN , CN ) from the initial joint pdf:

p1(T,C) =

{
δ(T − T1) δ(C) (T1 < T̄ ),
δ(T − T1) δ(C − (T1 − T̄ )) (T1 ≥ T̄ ).

(13)

Once pN (TN , CN ) has been obtained, we can compute the expectation value of
the payoff as

E[Pcall] =
∫ +∞

−∞
dTN

∫ +∞

0
dCN Pcall pN (TN , CN )

=
∫ +∞

−∞
dTN

∫ +∞

0
dCN k ·max(CN −K, 0) pN(TN , CN ). (14)

Thus we have established an algorithm that computes the price of a CDD deriva-
tive based on the recurrence formulas of the joint pdf of TN and CN .

3.2 Acceleration by the Fast Gauss Transform

To evaluate the integrals (11) and (12), we discretize T and C with step size h.
Let T i ≡ T̄ + ih and Cj ≡ jh and denote the joint pdf at the (i, j)-th grid point
on the n-th day by pi,j

n ≡ pn(T i, Cj). Then the discrete version of the recursion
formula (11) and (12) can be written as

pi,j
n =

{
p̃i,j

n (T1 < T̄ ),
p̃i,j−i

n (T1 ≥ T̄ ),
(15)

(−MT ≤ i ≤ j, 0 ≤ j ≤MC)
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and

p̃i,j
n =

MT∑
i′=−MT

wi′

√
2πσ

exp

{
− (T i − μi′

n)2

2σ2

}
pi′,j

n−1, (16)

(−MT ≤ i ≤MT , 0 ≤ j ≤MC)

where wi′
is the weight of the quadrature formula for the sample point T i′

and

μi′
n = (1− β)Θn + βT i′

+ μ. (17)

Note also that we assumed that the joint pdf can be neglected outside the area
of T̄ −MTh ≤ T ≤ T̄ +MTh and 0 ≤ C ≤ MCh, where MT and MC are some
positive integers.

For a fixed value of j, the direct computation of p̃i,j
n (i = −MT , . . . ,MT ) via

eq. (16) requires O(M2
T ) operations. However, noting that (16) has the form of

discrete convolution of a sequence with a Gaussian distribution, we can apply
the fast Gauss transform proposed by Greengard and Strain [8, 10, 1]. This will
reduce the cost of each convolution to O(MT ) and the total computational cost
at each time step to O(MTMC). This is the outline of our algorithm. Note that
the use of the fast Gauss transform has proved successful in the pricing of various
types of financial derivatives such as American options [2] and path dependent
options [3].

In practice, the initial condition (13) has a δ-function like singularity, so we
have to separate this part and integrate it analytically. The details are given
in our former paper [11], which details the sequential version of our algorithm.
With this modification, if MT ∼MC ∼M and the Simpson’s rule [9] is used as
the quadrature rule, it can be shown that our algorithm has a pricing error of
O(1/M2) [11]. Because the computational time is O(M2) in this case, it follows
that the error E decreases with the computational time τ as E = O(1/τ). In
contrast, for the MC method, the error decreases only as E = O(1/

√
τ ). Thus

we can expect that our algorithm is asymptotically faster and more accurate
than the MC method.

4 Parallelization

As it is clear from eq. (16), the computation of p̃i,j
n ’s for different values of

j can be done completely independently. We use this parallelism to execute
our algorithm on a distributed-memory parallel machine. More specifically, we
distribute the 2-dimensional arrays pi′,j

n−1 and p̃i,j
n among the processors using

block cyclic partitioning (with block size L) in the j-direction. For each time
step n, in the computation phase, each processor computes the convolution in
eq. (16) for the values of j allocated on it. In the communication phase, the
processors exchange the results of the computing phase according to eq. (15)
so that each processor can get the correct part of pi,j

n needed to perform the
computing phase at the next time step.



An Efficient and Easily Parallelizable Algorithm 475

When the number of processors is R, the computational work for each proces-
sor is O(MTMC/R), while the amount of data sent or received by each processor
is alsoO(MTMC/R). However, since the constant behind O in the former is fairly
larger than that in the latter, our algorithm is expected to achieve good speedup
unless the speed of data transfer is much slower than the speed of computation.

5 Numerical Results

We implemented our algorithm using the C language and MPI on a Linux PC
cluster and evaluated its performance. Each node of the cluster consists of a
533 MHz Alpha 21164A processor and 128 MB of memory and the nodes are
connected via 100-Base T network. We used GNU C++ compiler and MPICH.

As the target problems, we used CDD call derivatives with monitoring period
N = 5, 10 and 20 and T̄=24(C). The other parameters are as follows:

k = 1($/C), T0 = 24(C), β = 0.7763, μ = 0.0896 and σ = 2.3734. (18)

The values of β, μ and σ were obtained by fitting the model (4) to Tokyo’s
daily temperature by the least squares method [11]. The strike temperatures are
K = 10, 20 and 40(C) for the case of N = 5, 10 and 20, respectively.

5.1 Comparison with the Monte Carlo Method

First, we compared the execution time and accuracy of our method with that
of the Monte Carlo method. The results for N = 5, 10 and 20 are shown in
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Figures 1, 2 and 3, respectively. The numbers of sample paths for the MC method
and the values of MT for our method are also shown in the graph. MC is set to
2MT when N = 5 and 10 and to 4MT when N = 20, while h is set to 60/MT .
The vertical lines in the graph denote 95% confidence interval for the MC results.

It can be seen from the graph that the convergence of the proposed method is
much faster than the MC method. For example, to compute the price to 4-digit
accuracy, the MC method requires 107 to 108 sample paths and this leads to
computational time of more than 1000s when N = 10. In contrast, our method
can compute the price to this accuracy in about 16s in this case. Figures 1 and
3 show that the same level of speedup is achieved for N = 5 and 20. Thus we
can say that our algorithm outperforms the conventional MC method in speed
and accuracy when pricing CDD derivatives with 5 to 20 monitoring dates.

5.2 Parallel Speedup

Next we evaluated parallel speedup of our method when the number of processor
is varied from 1 to 8. The block size L is set to 10. The results for N = 10 and
20 when MT = 240 are shown in Fig. 4. As can be seen from the graph, our
method attains up to 6 times speedup on 8 processors, or parallel efficiency of
75%. As a result, it becomes possible to compute the price of a CDD derivative
with N = 20 in about 10s. This is fast enough for allowing our algorithm to be
used for real time pricing. Furthermore, the parallel efficiency could be improved
by overlapping the communication needed to distribute the 2-dimensional array
pi,j

n with the computation of eq. (16). We are now investigating such possibility.
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6 Conclusion

In this paper, we proposed a fast and highly parallel algorithm for pricing CDD
weather derivatives. To compute the expectation value of the payoff, our algo-
rithm uses a recursion formula consisting of multiple convolutions of functions
with a Gaussian distribution. These convolutions can be computed efficiently
using the fast Gauss transform. Moreover, parallelization is easy because each
convolution can be computed independently.

Numerical experiments show that our method is considerably faster and more
accurate than the conventional Monte Carlo method when pricing CDD weather
derivatives with 5 to 20 monitoring dates on a single processor. On a PC cluster
with 8 processors, our method attained up to 6 times speedup and computed
the price of a CDD derivative with 20 monitoring dates in about 10 seconds.
Thus our algorithm opens a way to applications that have been impractical due
to long computational time, such as real time pricing or pricing of a portfolio
consisting of thousands of weather derivatives.

Future work includes application to other types of weather derivatives and
enhancement of the parallel efficiency by various optimization techniques.
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Abstract. The EMAP (Eulerian Model for Air Pollution) model is used
to estimate the sulphur pollution over the Balkan region for 1995. A sub-
domain of the standard EMEP grid is chosen containing all 12 Balkan
countries. The computational grid in this domain has a space step of 25
km, twice finer than the EMEP grid. The meteorological input to EMAP
is the operational DWD “Europa-Model” product. This information is
processed in a special way as to obtain input information to the PBL
model YORDAN built in EMAP. The source input is the official sulphur
emission data. This information is processed further as to obtain 25x25
km data for both Large-Point and Area sources. The calculations are
made month by month having the last moment fields from the previous
month as initial conditions for the next month. The boundary condi-
tions are set to zero so the influence of the other European sources is
not accounted for in this study. According to the EMEP methodology
multiple runs are made setting every time the sources of various coun-
tries to zero. The impact of every Balkan country in sulphur pollution of
all other countries for 1995 is estimated and commented. The results of
calculation are compared with measurements.

Keywords: Air pollution, dispersion modelling, PBL- model, sulphur
dioxideblame matrix.

1 Introduction

The EMAP model is used to estimate the sulphur deposition over Southeast
Europe for 1995 due to sources from 12 countries: Albania (AL), Bosnia and
Herzegovina (BH), Bulgaria (BG), Croatia (HR), Greece (GR), Hungary (HU),
Moldavia (MO), Romania (RO), Slovenia (SL), Serbia and Montenegro (YU),
the FYR Macedonia (MK) and the bigger part from Turkey (TR). As only
sources from these countries are handled, the results can be considered as an
estimate of their impact on the acid pollution of the region as well as an estimate
of the reciprocal pollution.

� The present work is supported by the BULAIR project (EVK2-CT-2002-80024) un-
der FP5 and ACCENT Network of Excellence (GOCE-CT-2002-500337) under FP6.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 481–489, 2006.
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2 Short Description of the EMAP Model

EMAP [2, 4] is a simulation model that allows describing the dispersion of mul-
tiple pollutants. The processes of horizontal and vertical advection, horizontal
and vertical diffusion, dry deposition, wet removal, gravitational settling (aerosol
version) and the simplest chemical transformation (sulphur version) [12] are ac-
counted for in the model. Within EMAP, the semi-empirical diffusion-advection
equation for scalar quantities is treated. The governing equations are solved in
terrain-following coordinates. Non-equidistant grid spacing is settled in vertical
directions. The numerical solution is based on discretization applied on staggered
grids using the splitting approach. Conservative properties are fully preserved
within the discrete model equations. Advective terms are treated with the TRAP
scheme, which is a Bott-type one. Displaying the same simulation properties as
the Bott scheme (explicit, conservative, positive definite, transportability, lim-
ited numerical dispersion), the TRAP scheme proves to be several times faster
[5, 7]. The advective boundary conditions are zero at income flows and “open
boundary” - at outcome ones. Turbulent diffusion equations are digitized by
means of the simplest schemes — explicit in horizontal, and implicit in vertical
direction. The bottom boundary condition for the vertical diffusion equation is
the dry deposition flux, the top boundary condition is optionally “open bound-
ary” and “hard lid” type. The lateral boundary conditions for diffusion are “open
boundary” type. In the surface layer (SL), a parameterization is applied permit-
ting to have the first computational level at the top of SL. It provides a good
estimate for the roughness level concentration and accounts also for the action
of continuous sources on the earth surface [9]. A similarity theory based PBL
model [10] is built in the model producing 3D velocity and turbulence fields on
the base of minimum meteorological information — the wind and temperature at
geostrophic level and the surface temperature. The model is evaluated and vali-
dated during the ETEX-II intercalibration study - ranged 9th among 34 models
[8]. It is validated on the database of 1996 EMEP/MSC-E intercalibration of
heavy metal models [6].

3 Model Domain, Parameterisation and Input Data

The aim of this modeling is to estimate the sulphur pollution in the region
of Southeast Europe, taking a territory of 38x28 EMEP 50x50 km2 grid cells
with Bulgaria in the center (see figure 1). Every cell is divided to four 25x25 km2

cells. The chosen territory includes entirely all 12 countries of interest and partly
other territories. In the created versions of EMAP, a 5-layer vertical structure
is used. The first four layers have representative levels at 50, 200, 650 and 1450
m with layer boundaries 20-100, 100-375, 375-995, 995-1930 m. The 5th layer
accounts parametrically for the free atmosphere. The volume of this layer is so
big that the concentration tends to be zero there, although it can contain some
mass. Two kinds of input data are necessary for EMAP performance: sources
and meteorological data.
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Fig. 1. Nesting the model domain in the EMEP-domain

3.1 Emissions

The sources are determined through an emission inventory based on the CORI-
NAIR methodology [11]. They correspond to the official 50x50 km2 data reported
by the corresponding governmental authorities to EMEPs MSC-West and can
be downloaded from its web site (http://www.emep.int/). Additional redistri-
bution of these data is made over the finer grid of 25-km space resolution. The
emissions are provided in mass units per second. All sources are divided in two
classes: high sources (like high and very strength industrial stacks etc.) called
Large Point Sources (LPS) and area sources (AS) — the sum of all low and
diffusive sources in the given grid cell. As all LPS are supplied with high stacks,
the emission of these sources is prescribed to be released in layer 2, i.e., be-
tween 100 and 375 m.. In previous works [1] data concerning emissions obtained
through the EMEP inventarization scheme before 2000 have been used, where
the sources are divided only into two groups: AS and LPS. On the territory of
Turkey, for example, there were gaps both in the data for AS, and LPS. In this
paper the much more sophisticated present scheme of EMEP has been applied.
In it the sources are divided in 11 SNAP (Selected Nomenclature for reporting of
Air Pollutants) sectors and the data gaps are filled. Each sector is treated as AS
or LPS. The monthly emissions are obtained using the following dimensionless
annual variation coefficients, recommended by MSC-E. The distribution of the
AS and the LPS in the model domain is shown in Fig. 2 and Fig. 3.

3.2 Meteorological Data

An important advantage of the used model is that, due to the built in PBL
model, it utilizes only numerical analysis and forecast data from the world
weather centers, distributed via the Global Telecommunication System of the
World Meteorological consists of the sequence of analyzed U850, V850, T850 and
Tsurf fields and 6-hour forecast for precipitation from the standard 50x50 km2

output of the former “ Europa-Model ” of the German Met. Service (DWD). On
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Fig. 2. Distribution and strength (unit: μg(S)/s) of the area sources in the model
domain 10 % black: below 104, 20% black: 104 − −105; 30% black: 105 − −106; 40%
black: 106 − −107; 50% black 107 − −108, black over 108)

Fig. 3. Same as Fig. 2, but for the LPS

this base, the PBL model calculates U-, V-, W- and Kz− profiles at each grid
point. The roughness and the Coriolis parameter fields are pre-set additional
input to the PBL model. Orography height, surface type (sea-land mask) and
roughness height are to be provided for each grid location. Initial concentration
field is optionally introduced (spin-up fields).
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4 Calculation Results

Monthly runs with the above mentioned sources are performed. The output
consists of the following fields: monthly dry (DD), wet (WD) and total (TD)
depositions, monthly concentration mean in air (CA) and additionally, monthly
sum of the precipitation (CP). Then, it is calculated the annual total deposition
(Figure 4), the mean annual surface concentration in air (Figure 5) and the
mean concentration in the precipitation (Figure 6). All these pictures are quite
similar: The most polluted area is in Southeast Bulgaria, the place around the
most powerful source -the thermal power plant “Maritsa – Iztok”. In its vacinity
the total deposition reaches 18, 9g/m2, the concentration in air 9μg(S)/m3), and
the concentration in pracipitation 21,9 mg/l. In Table 1, the deposition budget
matrix for oxidised sulphur is presented. It is obtained after multiplication of the
total deposition field to array containing the distribution of the territory of each
country in the model domain. It shows the impact of each country to the sulphur
pollution of the other countries. The last three rows shows respectively the total
deposited quantity due to the sources from the country in the column header, the

Fig. 4. Total deposition (unit: mg(S)/m2) of oxidised sulphur in 1995

Fig. 5. Mean annual concentration in air (unit: μg(S)/m3) of oxidised sulphur in 1995



486 H. Chervenkov, D. Syrakov, and M. Prodanova

Fig. 6. Mean annual concentration in the precipitation (unit: μg(S)/l) of oxidised
sulphur in 1995

Table 1. Deposition budget matrix (unit 100 t). The diagonal elements show the
deposition quantity for each country due to its own sources.

emiter AL BG BH GR HR HU MK MO RO SL TR YU
receiver

AL 73.13 24.77 9.95 42.75 0.72 3.11 16.63 0.14 4.76 0.71 0.59 10.66
BG 9.67 2091.00 39.50 56.51 2.47 35.86 50.24 5.30 322.30 3.95 20.66 98.79
BH 4.69 15.46 551.90 7.22 23.87 47.80 3.31 0.15 14.76 14.98 0.20 81.92
GR 21.08 309.40 11.11 470.20 0.77 6.82 28.35 1.35 29.20 1.09 12.70 15.11
HR 1.58 9.97 126.00 3.73 71.27 50.45 1.40 0.10 7.80 40.56 0.14 36.03
HU 2.09 26.09 104.80 4.37 28.38 579.30 3.15 0.53 62.40 37.36 0.44 84.26
MK 21.27 81.53 6.64 72.76 0.41 4.07 85.09 0.22 8.34 0.49 0.97 13.79
MO 0.47 32.36 8.56 1.58 0.68 13.94 1.08 38.62 95.85 1.24 1.46 12.45
RO 8.88 434.40 208.60 22.35 15.64 324.10 20.54 32.27 1685.00 22.23 8.11 359.10
SL 0.21 1.76 9.60 0.86 15.25 13.18 0.20 0.04 2.30 76.55 0.02 5.75
TR 4.63 313.10 10.17 151.90 0.76 11.32 8.76 3.32 60.26 1.51 905.10 16.93
YU 31.17 176.30 301.10 38.73 13.06 100.80 51.49 0.92 93.58 11.44 1.53 568.30

tot. dep. 222.70 4503.0 1584.0 1397.0 224.60 2006.0 312.9 133.30 2907.0 323.6 1160.00 1487.0
tot. emitt. 720.00 14760.0 4800.0 5280.0 704.00 7049.6 1050.0 640.60 9120.0 1250.0 5461.66 4620.0

% 30.9 30.5 33.0 26.5 31.9 28.5 29.8 20.8 31.9 25.9 21.2 32.2

total emitted sulphur for this country and the percentage of deposited quantities
from the yearly emitted ones. The last value can be treated as the relative part
of the sulphur that remained in the domain. It can be noticed that the main part
of the sulphur pollution emitted by each country is deposited over the country
itself. It can be seen also that the percentage of the total deposited quantity is
between 20 % and 35 %, the rest goes out of the model domain. The minimum of
this value is for Moldova — the possible explanation is that this territory is close
to the east border of the model domain and the main tropospheric transport is
west east in these latitudes.

5 Comparison with Measurements

The Balkan Region has 22 EMEP measurement stations, but in 1995 sulphur
products in air and precipitation water were observed in only 11 of them
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Fig. 7. Position of the EMEP-stations in the model domain. The stations with mea-
surements of sulphur products are shown in grey.

Fig. 8. Observed versus calculated concentration in air (left)(unit: μg(S)/m3) and
concentration in precipitation (right)(unit: mg (S)/l) of sulphur

(Fig. 7). The data obtained from measurement station at an altitude of over
1300 m are inadequate for such comparisons. Mean monthly values of sulphur
concentration in air and precipitation are published (http://www.emep.int/).
These two parameters are compared to the results obtained for the correspond-
ing of each station gridcell through the above mentioned monthly runs. The
results are presented graphically in Fig. 8 and sumarized in Table 2.

The comparisons show that, generally, the model underestimates the val-
ues and the sulphur concentration in air and precipitation. This fact is more
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Table 2. Calculated versus observed sulphur parameter summary

parameter concentration in air concentration in precipitation
station # observed # in factor 2 % # observed # in factor 2 %

CS0005R 12 0 0.0 12 2 16.7
GR0001R 11 2 18.2 0
HR0002R 0 12 5 41.7
HU0002R 11 3 27.3 10 8 80.0
SK0004R 12 6 50.0 12 7 58.3
SK0005R 12 2 16.7 12 3 25.0
SK0006R 12 2 16.7 12 3 25.0
TR0001R 8 4 50.0 11 4 36.4

total 78 19 24.4 81 32 39.5

emphasized now, than by the comparisons of the model results. A probable ex-
planation is, again, the unaccounted flux of pollutant through the boundaries of
the domain, considering that the stations are situated relatively close to them.

It is also necessary to take into account the fact that we are currently com-
paring monthly mean values rather than annual means and annual values for
which the random errors are higher than the absolute value.

6 Conclusion

The paper shows that for long periods of time the part of sulphur pollution,
released in one, but deposed over other countries and territories in Southeast
Europe is significant. The obtained results are in good agreement with former
calculations in NIMH-BAS [1]. The comparison with officially published results
from the status report of EMEP/MSC-W [3] shows that the exchange of sulphur
pollution between these countries is estimated in the correct order of magnitude,
giving at the same time much more details in the time and space distribution
of deposed quantities. Based on the results in the last chapter, the author’s
conclusion is that the model produces a reasonable picture of the concentrations
and depositions in the 25-km grid for the sulphur components in the region of
Balkan region. The results of such calculations can be used in decision-making
in negotiating and contamination strategies development.
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Abstract. Numerical simulations of aerosols in the atmospheric bound-
ary can computationally be highly demanding since processes governing
the formation and dynamics of atmospheric particles are extremely com-
plex. It is necessary to apply reasonable simplifications to make the
computations tractable. This paper gives an outline of the approach
to the problem chosen for the EURAD model system. A special mod-
ule MADOC (Modal Aerosol Dynamics with Organic compounds and
Clouds) has been developed for aerosol simulations employing EURAD.
Annual runs for a region in Central Europe are shown and discussed with
regard to model content, performance and reliability.

1 Introduction

Atmospheric aerosols have gained increasing importance for the assessment of
air quality and climate forcing. There is increasing evidence that health effects
of fine particles may be of greater relevance than believed a decade or so ago.
As regards the impact of aerosols on climate change there is no doubt that they
play a crucial role for global temperature modifications though quantification
of the radiative forcing effect still seems to be partly controversial. This paper
is focusing on particulate matter in the lowest layers of the troposphere where
research of aerosols is mainly motivated through their impact on human health
and possible ecological effects. The complexity of particle composition, chemistry
and dynamics makes the theoretical and numerical treatment of particulate mat-
ter a demanding problem. Experimental work shows that there are still many
questions to be answered before the understanding of atmospheric aerosols has
come to a point that gaps of our knowledge and thus surprises for those who
dare to design complex aerosol transport models. In addition, large uncertain-
ties exist regarding sources of primary aerosol and secondary aerosol precursor
emissions exist. Yet despite ongoing experimental research there are strong rea-
sons to develop and apply such models in parallel with progressing laboratory
and field work. On the one hand, one of the most important facts is the need of
environmental planning and policy for more information on particulate matter,
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its distribution and changes of atmospheric load on which mitigation and adap-
tation strategies can be based. For instance, the EU directives for the control
of particulate matter with sizes equal to or less than 10 μm (PM10) require the
application aerosol and chemistry transport models for the analysis of the gen-
eral state of air quality in larger domains, i. e. states or countries, industrial
regions or cities. On the other hand, it is essential for comprehensive aerosol
research to study particles in an integral way in the atmosphere. Here simple
and complex models are serving as a convenient and indispensable tool.

Dealing with aerosol dynamics, chemistry and transport in full detail in
numerical models would lead to extremely demanding algorithms which could
not be treated on presently available computers. Evidently, simplifications and
parameterizations are needed which make the problem numerically tractable.
The way, computational demands are reduced to realistic size essentially de-
pends on the problem to be treated. In this study, we describe a module which
has been designed to simulate particulate matter below a given size. According
to the relevance for the EU directives usually 10 μm (PM10) is chosen, but other
aerosol sizes (e. g. PM2.5 or PM1.0) are applicable as well. The following sec-
tion contains a description of the aerosol module and gives an impression of the
simplifications needed for a computationally efficient algorithm allowing long-
term simulation as needed by environmental agencies. Then some applications
showing the potential as well as limitations of the chosen approach are presented
and discussed. The final section is devoted to conclusions about the ongoing and
future work on aerosol modelling in our group.

2 The Atmospheric Aerosol Module

The atmospheric particles may be grouped into three modes according to their
size. The fraction of finest particles makes up the Aitken mode (below about 0.1
μm). The largest particles are found in the coarse mode with large and giant
particles (above 1.0 μm). In between one has the accumulation mode (about 0.1-
1.0 μm). Numerical representation of these modes which are variable in space
and time require simplifying assumptions about the size distribution.

As regards standardised size distributions five principal approaches are found
in aerosol models [26] (1) Mono-disperse approximation: fixed particle sizes rep-
resent the modes. (2) Modal approximation: suitable distribution functions of
the individual modes are employed. (3) Sectional approximation: use of a larger
number of intervals with constant aerosol parameters. (4) Splines. (5) Dense
discrete values. The last method would be the most accurate but requires an
unaffordable amount of computer time.

The approach chosen in this study is the approximation of the size spectrum
by three log-normal distributions. This is realized in the Modal Aerosol Dynamics
Model for Europe (MADE [1, 2] which was originally developed for the EURAD
model system (EURAD: European Atmospheric Dispersion Model). Basic struc-
ture and content of EURAD have been described in various publications (e. g.
[5, 10, 12, 15]) so that it is only briefly characterized here. It is a hemispheric
to regional model system consisting of a meteorological model (MM5 [9]) and
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a chemical transport model (EURAD-CTM, based on RADM [3]) employing
the chemical gas phase mechanisms RADM2 [25], RACM [24] or RACM-MIM
[8, 14]. The latter mechanism has been applied to the simulations demonstrated
in Section 3. EURAD supports nested calculations of the distribution of air pol-
lutants [12] with horizontal resolution down to 1 km. Up to 23 layers are used
in the vertical extending from the Earth‘s surface up to the lower stratosphere.
Emissions are simulated by the EURAD Emission Model (EEM [18]).

The module MADE has been extended to include the estimation of secondary
organic aerosols (module SORGAM [22]) and aerosol/cloud interactions [7]. We
will refer to the extended module as MADOC (Modal Aerosol Dynamics with
Organic compounds and Clouds). It is connected to RACM-MIM [8] as chemical
mechanism for the treatment of gas phase chemistry.

The temporal change of particle number n (representing an ensemble average
in order to avoid the treatment of small, i. e. turbulent, fluctuations) is described
by equation (1):

∂n

∂t
=

1
2

∫ v

0
β(v̄, v − v̄)n(v̄)n(v − v̄)dv̄ −

∫ ∞

0
β(v̄, v)n(v̄)n(v)dv̄

− ∂v

∂I
−∇ · (un+ (

∂t

∂n
)diff − Fdep

(1)

(e. g. [21, 23]). Particles of different size and composition are interacting with
each other (coagulation, integral terms, where β is the rate of particle coagulation
and v the particle volume). Nucleation and particle growth through uptake or loss
of water vapour or other volatile substances (condensation/evaporation) is given
by I (droplet current). Changes due to emission, chemistry and cloud effects
including wash and rain out can be taken into account. Particles are transported
by wind ((u ensemble average of atmospheric motion) and turbulent diffusion
(second last right term) and may be lost to the ground by dry deposition due to
Brownian motion and sedimentation (last right term).

The log-normal distribution function has been chosen to represent the three
aerosol modes. Each mode contains three independent variables so that a dis-
tribution with three modes is characterized by a set of only 9 parameters, and
only 9 PDEs are needed for solving a system consisting of chemically identical
aerosols. If the width of the modes is predefined and constant as in the case
of usual MADOC applications, only six PDEs remain. This retains sufficient
complexity of the size distribution, but considerably reduces computational re-
quirements when compared to larger sectional approaches. The set of PDEs has
to be solved for each chemical mode separately.

It is assumed that coagulation can occur within both fine modes and that
nucleation only plays a role in the Aitken mode. Furthermore, these processes
and condensation are neglected for the coarse mode whereas sedimentation is
only taken into account for coarse particles. Like emission additional processes
modifying the aerosol can be treated by proper formulation. The process of
diffusion includes dry deposition as a lower boundary value. For the treatment
of secondary aerosol chemistry thermodynamic equilibrium has been assumed
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[1, 22]. Sulphate and organic particles may originate from the gas phase (gas-
to-particle conversion). The main source of inorganic secondary aerosols is the
formation of ammonium sulphate and ammonium nitrate particles:

H2SO4(g)→ H+ +HSO−
4 ↔ 2H+ + SO2−

4 (2)

NH3(g) +H+ ↔ NH+
4 (3)

HNO3(g)↔ H+ +NO−
3 (4)

NH3(g) +HNO3(g)↔ NH4NO3(s) (5)

SORGAM calculates anthropogenic (ASOA) and biogenic (BSOA) components
of the secondary organic aerosol. It parameterizes the transformation of reactive
organic gases (ROG) into products which have sufficiently low vapour pressure,
so that they can exist in the gas and liquid (aerosol) phase. The mechanism is
described by

ROG+X∗ →
∑

i

αxiCxi (6)

where αXi is a stoichiometric coefficient for the compound CXi which is gener-
ated by this reaction and exists in the gas phase (CXi,gas) and particle phase
(CXi,aer) under equilibrium conditions. X* stands for the OH radical, the nitrate
radical NO−

3 and ozone. The organic precursors ROG provided by CTM (with
RACM-MIM) and EEM for the module MADOC are grouped in four classes con-
taining aromatic compounds and higher alkanes and alkenes from anthropogenic
sources and two classes containing α-pinene and limonene from biogenic sources.
Four anthropogenic and four biogenic reaction products combined in the classes
ASOA and BSOA, respectively, are calculated. Finally, the module MADOC
provides size resolved concentrations of these products in addition to those of
secondary inorganic compounds (SO2−

4 , NO−
3 , NH

+
4 ), aerosol liquid water and

primary aerosol species (EC, OC, unidentified particulate matter).
As demonstrated in the following section nested simulations of hourly values

of PM10 and total suspended particle mass (TSP) have been performed for
several years with the aim to study the annual and seasonal variability as well
as future trends in Europe and some sub-domains, in particular the state of
Northrhine-Westphalia (NRW) in Germany [6, 16, 17]. Long-term nested aerosol
calculations are also carried out in the framework of daily air quality forecasts
with the EURAD model system [13] for Europe, Central Europe and NRW using
a reduced version of MADOC to keep the computational time in a reasonable
range required for operational use of EURAD.

3 Long-Term Aerosol Simulations: Selected Results and
Discussion

Selected model applications are presented in Figures 1 and 2. An example of
the distribution of individual aerosol components in the lowest model layer
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Fig. 1. Surface concentration (μg/m3) of aerosol components, October 2, 2002, 06
UTC. From left to right: PM10, anthropogenic secondary organic aerosol, biogenic
secondary organic aerosol [16, 17].

(40 m high) is shown in Fig. 1. A day in 2002 with anticyclonic weather condi-
tions and high aerosol load over Central Europe has been chosen for demonstra-
tion. Interesting details of particle distribution can be identified in such figures.
For instance, relatively large concentrations of secondary organic aerosol of bio-
genic origin (BSOA, right panel) are found in southern Scandinavia where strong
emissions of biogenic precursors are found. In contrast, anthropogenic secondary
aerosols (ASOA, middle panel) are highest in industrial regions and their vicin-
ity. Yet the contribution of both components to total aerosol mass remains small
and seldom reaches values near or above 10 %. The main contribution to total
PM10 (left) comes from ammonium, nitrate and sulphate as evident from the
respective panels in Fig. 1.

For model evaluation only PM10 and/or TSP observations are usually avail-
able. Comparison of the daily averages with calculated TSP or PM10 shows that
the gross variations of these parameters are met quite reasonably. Yet it is rare
that measurements of composition in such detail as given by the model are avail-

Fig. 2. Number of days with daily averages of PM10 above 50 μg/m3 in and around
NRW. Base case (left) is year 2002 with estimates of actual emissions of air pollutants.
2005 (middle) and 2010 (right) with predicted emission reduction [16].
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able even for shorter episodes, so that comprehensive evaluation of composition
simulations is not possible until now. This deficit constitutes an important chal-
lenge for future aerosol research since the study of health effects under realistic
atmospheric conditions depends on reliable information about the composition,
in particular, for lower size particles.

The 2002 run has been employed to estimate the possible reduction of aerosol
mass load in Europe due to decreasing emissions predicted for the years 2005
and 2010. Fig. 2 exhibits the number of days with daily PM10 averages above
50 μg/m3 in NRW. At present EU directives for air quality allow 35 days/year.
The calculations point to considerable improvements till 2010, but also show that
there will remain problem areas in industrialized regions. It should be noted that
the calculations show results for grid boxes of 5x5 km2. Street canyons in cities
which may suffer from heavy traffic can not be resolved by EURAD. Evidently,
the situation there may be much more problematic than can be demonstrated
by such grid box results.

4 Final Remarks

On the one hand, the model provides considerably more information about the
behaviour of the atmospheric aerosol than can be demonstrated in this short
paper. For instance, the calculated vertical distribution of aerosols is rarely
exploited. In the future this will possibly change when the role of aerosols for cli-
mate forcing will be studied with the help of detailed simulations. On the other
hand, despite its complexity the model is limited in its present form with regard
to the range of its application, e. g. in epidemiological and toxicological studies
of the effects of fine and ultra-fine particles. There are strong indications that
this fraction of atmospheric aerosol is particularly harmful to health [11, 19, 20].
Modifications of MADOC will be needed if the EURAD system will be applied
to this problem of aerosol research as planned for the future.

Comparison of several aerosol chemistry and transport models by Hass
et al. [10] has shown that the models provide reasonably similar results on larger
regional scales but that evaluation of simulation may be hampered by deficiencies
of available observations. Nevertheless, it is important to check the reliability and
validity of an atmospheric aerosol model continuously through comparison with
observations. The challenge is to get closer to the truth through skilful use of ef-
ficient evaluation procedures [4]. Results of the evaluation of EURAD/MADOC
may be found in Memmesheimer et al. [16].
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Abstract. In this contribution we show the implementation of a modi-
fied version of MM5-CMAQ (Hutzell W.T., 2002) for carrying on an air
quality impact analysis for installing an incinerator in the Basque Coun-
try Area (Spain). The modified CMAQ model (EPA USA, 2004) includes
Poly-Chlorinated Dibenzo-p-Dioxins and Dibenzo-Furans (dioxins and
furans). The model represents their cogeners as divided between gaseous
and aerosol forms that exchange mass based on theoretical coefficients
for gas to particle portioning. Modelled metals are included in CMAQ
as part of the non-reactive aerosol component. Metals modelled are: As,
Cd, Ni and Pb. In additional Benzo(a)pyrene (PAH) is also modelled.
The model is implemented in a cluster platform in order to be used as a
real-time air quality forecasting system by using the ON-OFF approach.
The emissions of the projected incinerator in the ON run are incorpo-
rated by using the height of the chimney, the prescribed exit gas velocity,
diameter of chimney and the limit emission values (worst scenario) pre-
scribed in the Directive/2000/76/CE. The OFF run is done by using
EMEP POP and PAH emission inventory. The system is mounted over
one mother domain of 400 x 400 km with 9 km spatial resolution and two
nesting levels: 100 km model domain with 3 km spatial resolution and
24 km with 1 km spatial resolution. All model domains have 23 vertical
layers. The highest level is located at 100 mb. The architecture domain
system is centered at the UTM coordinates assigned for the projected in-
cinerator. EPER EU industrial emissions (May, 2004) of the surrounding
large point industrial sources are used. Results are compared with the
target values included in the proposal for a Directive of the European
Parlament and of the Council (ENV 194 CODEC 439).

Keywords: Industrial air quality impact, MM5, CMAQ, air quality fore-
casts, software tools.
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1 Introduction

The advances in sensitivity of air quality models has allowed using much more
sophisticated model for evaluating the air quality impact expected for future
installations of industrial plants. In recent years, we have carried out several
studies to know the expected impact of combined cycle power plants and in-
cinerators. The use of more sophisticated models to determine the expected
impact on air concentrations due to the emissions of industrial plants is be-
coming more common and recommended. Our group has conducted several of
these studies in the last years by using last generation of mesoscale meteorolog-
ical and air quality models. In this contribution we will show results concerned
on a complementary studied carried out over the Basque Country Area (Txin-
gudi, Spain) to analuze the impact of projected emission on the surrounding
area for benzene, lead, nickel, cadmium, arsenic, benzo(a)pyrene and dioxins
and furans (PCDD/F). The Cadmium, Arsenic, Nickel and Benzo(a)pyrene are
expected to be limited in air concentrations by EU Directives in the next months.
The Lead and Benzene are already limited by EU Directives 1999/30/CE and
2000/69/CE.

The air quality impact of industrial plants has been a key issue on air quality
assessment and modelling since the 70’s. Nowadays, the increased capacity on
computer power and progress on air pollution science provide a powerful and re-
liable tool to measure the air quality impact on industrial emissions. In the last
decade a considerable effort to incorporate the industrial production processes
in an integrated environmental evaluation in on-line mode has been done. In a
parallel way, a considerable increase of citizen concern has been detected particu-
larly in those areas where important industrial point sources are present together
with highly populated areas (urban areas). This case is particularly sensitive for
refineries, waste city incinerators, etc.

In this contribution we will show the results of a preliminary modelling ex-
periment to build a so-called TEAP tool [3,4] (A tool to evaluate the air quality
impact of industrial emissions). This tool is designed to be used by the environ-
mental impact department at the industrial site. The tool provides a response
to air quality impact to industrial emissions in the form of surface patterns and
lineal time series for specific geographical locations into the model domain. The
model domain is designed in a way that the industrial source point is located
approximately in the center of the model domain. The model domain can be as
extense as wished but a specific nesting architecture should be designed for each
case together with balanced computer architecture.

In this contribution we will use the MM5-CMAQ modeling system. MM5-
CMAQ is a representative of the last generation of AQMS (third generation)
developed by EPA (USA) in 2000 [1]. The model uses a full modular structure
with the last advances on computer programming (FORTRAN-95). In essence
many of the features of MM5-CMAQ are similar to OPANA but the program-
ming and modularity is more advanced. MM5-CMAQ is not a limited area model
and it can run over large domains (even at global level although a CMAQ global
version is not existing yet). The model domains are obviously closely related to
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model forecast horizon so that the nesting capability (in a similar way that it
was done in OPANA) plays an essential role to have reliable simulations over
city and regional domains. Another representatives of third generation of AQMS
are CAMx (Environ Co., USA) and EURAD (European Ford Research Group
and university of Cologne (Germany )). MM5 is the well known Non-hydrostatic
Mesoscale Meteorological Model developed in the Pennsylvania State Univer-
sity and NCAR starting on 1983. The MM5 is today one of the most robust
and reliable meteorological models. In both cases and in all Eulerian models,
the input datasets are key elements to work down to have reliable and accu-
rate simulations. These datasets are: DEM (Digital elevation model), Land use
data (usually satellite data, AVHRR/NOAA, Landsat, Spot, etc.), Initial and
boundary meteorological conditions, initial and boundary air concentration pro-
files and finally, emission data sets. The emission datasets are usually the bottle
neck on this type of applications since the uncertainty involved is important.
In spite of this limitation, the TEAP tool extracts the most important benefits
from the relative difference between a simulation with full emission inventory
and a second simulation with an emission inventory without the industrial plant
to be studied.

2 Methodology

We have implemented the MM5-CMAQ modeling system in a nesting archi-
tecture. The MM5 Mesoscale Meteorological Model (PSU/NCAR) and the
Community Multiscale Air Quality Model (CMAQ) [1] from EPA (USA) (third
generation of air quality modelling systems) are used as mainframe platform.
The MM5 is built over a mother domain with 36 x 36 grid cells (81 km spa-
tial resolution) and 23 vertical levels. This makes a domain of 2916 x 2916
km. The nesting MM5 level 1 model domain is built over a 69 x 66 grid cells
(27 km spatial resolution) and 23 vertical levels, which makes a model do-
main of 1863 s 1782 km centered over the Iberian Peninsula. CMAQ model
domains are 30 x 30 grid cells for mother domain and 63 x 60 over the nest-
ing level 1 model domain. CMAQ mother domain lower left corner is located
at (-1215000 m, -1215000 m) at the reference locations (-3.5W, 40N) and the
first and second standard parallels (30N, 60N). The CMAQ nesting level 1
lower left corner is located at (-891000, -810000) with the same reference lo-
cations. The 9 km MM5 spatial resolution model domain has 54 x 54 grid
cells, the 3 km MM5 spatial resolution model domain has 33 x 39 grid cells
and finally the 1 km MM5 spatial resolution model domain has 30 x 30 grid
cells. Figure 1 shows the domain architecture used and implemented in this
specific case and Figure 2 shows the 3D view of the nesting level 3 ( 1 km
spatial resolution). The corresponding CMAQ model domains are: 48 x 48 km,
reference (-216000, -189000) in Lambert Conformal projection with 9 km spa-
tial resolution; 27 x 33 grid cells, reference (-45000, -54000) with 3 km spatial
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resolution and finally, 24 x 24 grid cells, reference (-12000, 12000) with 1 km spa-
tial resolution. All these Lambert coordinates are refered to the point (1,845W,
43,335N).

The projected incinerator is located in the center of this architecture design.
We conducted a full air quality impact assessment study during 2003 by using
periods of time corresponding to 120 hours per month along the 12 months
of 2002. The periods were selected in a way that the air pollution monitoring
data – from stations located in the model domain – values were compared with
the simulated values. So that we avoided explicitly the very polluted days and
the clear days since the objective was to evaluate the impact of the expected
emissions on average days. In this complementary simulation we have simulated
6 periods of 120 hours in 2003.

The emission database is obtained from the EMIMO model [2] – a new emis-
sion model for large domains based on global emission ineventories such as GEIA,
EMEP, EDGAR and the Digital Chart of the World. MM5-CMAQ is initiated
by using global data sets from MRF (NOAA/NCEP, USA) and mother, nest-
ing levels 1 and 2 provide the boundary conditions for running MM5-CMAQ
for nesting level 3 over the Madrid Community Area with 27 x 33 grid cells
(3 km ) which makes 81 x 99 km. The OPANA model runs over a domain of
80 x 100 km with UTM coordinates and using only EMIMA data sets. EMIMA
datasets are also used for MM5-CMAQ over nesting level 3. EMIMO data set
is used for mother and nesting levels 1 and 2 for MM5-CMAQ. We have per-
formed two simulations (MM5-CMAQ), one simulation with the industrial plant
emissions and the second one without the industrial plant emissions. EMIMO
model uses EMEP 2002 annual emission inventory data and EPER 2004 (point
industrial emissions). The CBM-IV chemical scheme has been used to simulate
all the additional pollutants except Benzene. Benzene has been simulated by us-
ing SAPRAC-99 chemical scheme. Dioxins and furans refer to compounds that
have two benzene rings linked by two or one atoms of oxygen. The model has
been designed by using the ON/OFF mode approach. This approach is based on
the full simulation without the emissions expected from the incinerator (OFF)
and substract the results from the ON scenario which is based on the simu-
lations obtained when added the emissions at the OFF scenario. A main goal
of the adapted model calculates not the concentration of one congener but the
I-TEQ from all congeners. Deposition is the primary interest because it provides
the main route into the food chain for dioxins and furans. I-TEQ equals a con-
gener’s International Toxicity Equivalency Factor (I-TEFi) multiplied by its air
concentration or deposition, Mi;

I-TEQ =
N∑

i=1
(I-TEFi)*Mi.

Nonzero values of I-TEFi determine the number of congeners, N, that need
to be modeled to calculate I-TEQ. I-TEFi measures health effects from a con-
gener relative to the most toxic congener, TCDD. The number, N, equals sev-
enteen. A balance emission and removal processes determine air concentrations
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Fig. 1. Mother and nesting levels on this experiment with TEAP tool (MM5-CMAQ)

Fig. 2. Nesting level 3 (1 km spatial resolution)
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Fig. 3. Spatial distribution of emission flux of the 17 toxic congeners of PCDD/Fs in
2001

and deposition from dioxin and furan emissions. Anthropogenic combustion is
believed the largest source. Waste incinerators, paper-pulp mill, chemical and
metal sinter plants have the largest emission rates for point sources (Clev-
erly et. al, 1997). A total of 7 dioxins and 10 furans have been simulated.
Metals (Cadmium, Arsenic, Lead and Nickel) are simulated as unspecified mate-
rial into CMAQ as part of the PM2.5 part of the coarse mode. CMAQ uses three
modes as suggested by Whitby (1978): 1) coarse particles; 2) Aitken particles
(smaller group, I-mode) and 3) accumulation particles or mode (smaller group,
j-mode). Primary emissions may also be distributed between I-mode and j-mode.
The two modes interact with each other through coagulation, each mode may
grow through condensation of gaseous precursors and each mode is subject to
wet and dry deposition. The smaller model may grow into the larger mode and
partially merge it. Figure 3 shows the emissions provided by EMEP for dioxins
and furans, [5] and treated with EMIMO for high spatial and temporal resolution
disagregation.

3 Results and Discussion

In Figure 4 we observe the YZ wind component and temperature in height (lay-
ers) (23 layers up to 100 mb not equally spaced) at 175500 m where O3 maximum
is produced. In Figure 5 we observe the temperature and surface wind speed for
the same domain and time showed in Figure 4. The complexity of the wind pat-
ters and strong gradient on wind direction in the area where the maximum is
produced (175500,-40500) is shown. The tool allows a full analysis of the max-
imum concentrations for each analyzed pollutant together with meteorological
conditions which were held on that time. The full analysis requires important
computer power to generate several of thousand of figures to illustrate the dif-
ferent impacts (relative and absolute) for the different pollutants.
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Fig. 4. Temperature (C) and YZ wind component (m/s)n at 17h00 GMT on July, 13,
2003 for the 9 km spatial resolution domain at X = 175500 m

Fig. 5. Surface temperature (C) and wind speed (m/s) at 17h00 GMT, July, 13, 2004
over the 9 km spatial resolution model domain
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4 Conclusions

The TEAP tool (based on the MM5-CMAQ modeling system) has been found
to be a reliable tool to evaluate the air quality impact of industrial plants – in
this case a waste incinerator.

The sensitivity analysis has shown that the system is capable to detect very
small fractions of changes in concentrations due to the emissions of the analyzed
industrial plant. The adapted CMAQ model for dioxins and furans (Hutzell
W.T., 2002) and the adaptation for metals and B[a]P done for this work has
been found to be an excellent tool to evaluate the impact of B[a]P, metals,
dioxins and furans.
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Abstract. Numerical solutions of the heat equation on the semi-infinite
interval in one dimension and on a strip in two dimensions with nonlinear
boundary conditions are investigated. At the space discretization with
respect to the variable on the semi-infinite interval, we use quasi-uniform
mesh with finite number of intervals. Convergence results are formulated.
Numerical experiments demonstrate the efficiency of the approximations.
The results are compared with those, obtained by the well known method
of artificial boundary conditions.

1 Introduction

Differential problems on unbounded domains require specific techniques for their
numerical treatment. When solving numerically a problem formulated on an un-
bounded domain, one typically truncates this domain, which necessitate setting
the artificial boundary conditions (ABCs) at the newly formed external bound-
ary. This method is often used in problems of acoustic, electro-dynamics, solid
and fluid mechanics [1,10,15,16]. For almost any problem formulated on an un-
bounded domain, there are many different ways of classing its counterpart. In
other words, the choice of the ABCs is never unique. But, very often the construc-
tion of ABCs is not easy [9,11,15,16]. Also, the minimal necessary requirement
of ABCs is to ensure the solvability of the truncated problem, which leads to ad-
ditional computational work. Therefore it is reasonable to be developed another
methods.

In this paper we derive second order approximations (with respect to space
variables), using quasi-uniform meshes (QUMs) for 1D and 2D problems with
dynamical or Neumann nonlinear boundary conditions on the bounded part
of domain boundary. The algorithm, we develop is effective also for blow-up
solutions, because it uses decreasing time step, corresponding to the growth of
the solution.

In the one-dimensional case, we consider the problem:

ut = auxx for x > 0, t > 0, (1)
c0ut − ux = f(u) for x = 0, t > 0, (2)
lim

x→∞
u(x, t) = u∞(t), (3)

u(x, 0) = u0(x) ≥ 0 for x > 0; −u′0(0) = f(u0(0)). (4)

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 509–517, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The function f(u) often is positive and tends to infinity as u → ∞. Thus,
in heat flow interpretation, the condition (2) is an absorption law [14], which
makes heat flow in the body (in the present paper the body is infinite), [2,14]. In
[2,4,7,8], existence and nonexistence in large time of solutions of such problems
are studied.

We also consider the two-dimensional problem

ut = a-u, (x, y, t) ∈ Ω = {0 < x < l, y > 0, 0 < t <∞}, (5)
u(0, y, t) = f1(y, t), u(l, y, t) = f2(y, t), y > 0, 0 < t <∞, (6)
c0ut − uy = f(u), y = 0; lim

y→∞
u(x, y, t) = u∞(y, t), 0 < x < l, 0 < t <∞,(7)

u(x, y, 0) = u0(x, y), y ≥ 0, 0 < x < l, (8)

where l, a and c0 are real numbers, f , f1 and f2 are given functions. This problem
in comparison with the one dimensional one is less studied.

The remainder part of this paper is organized as follows. In Section 2 we define
QUM and present some derivative approximations. Also, we derive second order
approximation with respect to x for problem (1)-(4) and formulate two theorems
for convergence. For blow-up solutions we use decreasing variable time step.
The numerical experiments, given in this section illustrate the efficiency of the
algorithm. The next section is devoted to the two-dimensional problem (5)-(8).
Finally, we give some conclusions.

2 The 1D Heat Problem (1)-(4)

In this section we will provide an O(τ +N−2) approximation to the solution of
the continuous problem (1)-(4).

2.1 Quasi-uniform Mesh and Space Discretization

Definition 1. [1] Let x(ξ), ξ ∈ [0, 1], x ∈ [a, b] is strong monotone sufficiently
smooth function. Then the mesh wN = {xi = x( i

N ), 0 ≤ i ≤ N} in [a, b] we call
quasi-uniform.

We shall implement to our problems the meshes [1]

x(ξ) = −cln(1− ξ), h0 = x1 − x0 �
c

N
, xN−1 = clnN, (9)

x(ξ) = cξ/(1− ξ)m, h0 =� c

N
, xN−1 � cNm, m > 0, (10)

where c > 0 is controlling parameter. The choice of c is a result from the fact
that the half of intervals are in domain with length ∼ c. The last interval of (9)
and (10), [xN−1, xN ], is infinite, but the point xN−1/2 is finite, because the non
integer nodes are given by xi+α = x( i+α

N ), |α| < 1. Therefore, QUM transforms
the infinite domain in to finite number of intervals and states the original
boundary condition directly on infinity.
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Fig. 1. Offset grid, QUM is (9), N = 12, c = 1, x0 falls halfway between x−1 and x1

We shall use the following derivative approximations

(
∂u

∂x
)i+1/2 ≈

ui+1 − ui

2(xi+3/4 − xi+1/4)
,

(
∂2u

∂x2 )i ≈
1

xi+1/2 − xi−1/2
[(
∂u

∂x
)i+1/2 − (

∂u

∂x
)i−1/2]. (11)

The formulas contain uN = u∞(t), but not xN = ∞. The truncation er-
rors are of order O(N−2). In order to obtain a second order approximation for
the nonlinear boundary condition (2), we use an offset grid, see Figure 1.The
point x−1, outside of the domain, is fictitious. Using (11), and the second order
approximation

(
∂u

∂x
)0 ≈

1
2
[(
∂u

∂x
)1/2 + (

∂u

∂x
)−1/2] (12)

(with residual term 1
N2 [xξξξ

6xξ
ux + xξξ

2 uxx + (xξ)2

6 uxxx] +O(N−4)), we obtain the
difference equation in the node x0 = 0. After an implementation of the above
derivative approximations (11),(12) in (1)-(4), we obtain the next ordinary dif-
ferential equations system:

ż0 =
2a
H1

0
[
z1 − z0
2H2

0
− f(z0)], (13)

żi =
a

H1
i

[
zi+1 − zi

2H2
i

− zi − zi−1

2H3
i

], i = 1, ..., N − 1 (14)

żN = u∞(t), (15)

where zi = z(xi) ≈ u(xi, t), H1
0 = 2x1/2, H1

i = xi+1/2 − xi−1/2, i = 1, ..., N − 1,
H2

i = xi+3/4 − xi+1/4, H3
i = xi−1/4 − xi−3/4, i = 0, ..., N .

In problem (1)-(4) a reaction term f(u) at the boundary is considered and
if for example f(u) = up, p > 1, then blow-up phenomena occurs in the sense
that there exist a finite time T , such that lim

t→T
‖u(., t)‖∞ = +∞ for convenient

initial data [2,4,6-8,12]. Then, the solution of the semidiscrete problem (13)-
(15) also blows-up in finite time Th. For numerical approximations of blow-up
problems on bounded domains we refer to [5,6,12,13], the survey [3] and the
references therein. In the frame of the present work we are not able to discuss
for our problems such interesting questions as convergence of T to Th, when
N →∞, asymptotic behavior of the semidiscrete numerical approximations, etc.
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A remarkable (and well known fact) is that the solutions of parabolic problems
with nonlinear boundary conditions develop blow-up regardless the smoothness
of the initial data u0, [2,4,6-8,12]. We assume that u ∈ C4,2((0,∞), (0,∞)) and
we shall call such solution regular.

Theorem 1. Let u be a regular solution of (1)-(4) and z is it’s numerical ap-
proximation given by (13)-(15). Then for ∀ 0 < τ < T there exists a constant
C, independent of N , such that

max
i

max
0≤t≤T−τ

|u(xi, t)− zi(t)| ≤ CN−2.

This theorem also covers the case of global existence of regular solution to
problem (1)-(4).

Theorem 2. Let T and Th be the blow up times for u and z respectively. Then
lim

N→∞
Th = T .

2.2 Time Discretization

We introduce a nonuniform mesh grid in time

t0 = 0, tn = tn−1 +-tn−1 =
n−1∑
k=0

-tn (-tk ≥ 0, k = 0, 1, ...).

The choice of the time step -tn in the system (13)-(15) depends on the growth
of the solution z, [3,13]. For the sake of simplicity, we take f(u) = up, p > 0.
The time increment -tn is chosen to be variable

-tn = τ ×min {1, H1
0 + 2ac0

2a ‖z‖p−1
∞(or2)

}, τ = max
0≤k≤n−1

-tk.

The full discretization of the problem (1)-(4), f(u) = up ≈ (zn)pzn+1, i =
1, ..., N − 1 is as follows:

[1 +
a-tn

H1
0 + 2ac0

(
1− 2(zn

0 )p−1H2
0

H2
0

)]zn+1
0 − a-tn

H2
0 (H1

0 + 2ac0)
zn+1
1 = zn

0 ,

− a-tn
2H1

i H
3
i

zn+1
i−1 + (1 +

a-tn
2H1

i

(
1
H2

i

+
1
H3

i

))zn+1
i − a-tn

2H1
i H

2
i

zn+1
i+1 = zn

i , (16)

zn+1
N = u∞(tn+1).

2.3 Computational Results

The aim of the numerical experiments is to show the convergence rate and to
compare the accuracy of the algorithms, using QUM and ABCs (Example 1);
also, to test the efficiency of both QUMs (9) and (10) (Example 2).
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A method of ABCs, is presented in [16] for one-dimensional parabolic equa-
tion defined in semi-infinite interval with Dirichlet boundary condition at the
left end. We developed this algorithm to the case of nonlinear (dynamical and
Neumann) boundary conditions for 1D and 2D problems. The details are given
in the submitted paper [11]. Here we draw the analogy between QUM method
(16) (QUMM) and the exact artificial boundary method, [11], using QUM for
computing the truncated problem (ABCQUMM). The approximation of ABC
we derive in the same manner as for (2). The examples are chosen such that
the construction of ABCs is possible in sense of [11,16], i.e. u∞ = 0 and supp
u0 <∞.

Example 1. The test problem is (1)-(4), where f(u) = u2+f̃(t), a = 1, u0(x) ≡ 0,
u∞ = 0, f̃(t) is chosen such that the exact solution is u(x, t) = erfc(x+2

2
√

t
),

erfc(x) = 2√
π

∞∫
x

e−λ2
dλ, f̃(t) is different for c0 = 0 and c0 = 1. Let denote

by EN
∞ (EN

∞ = ‖Ei‖c) and EN
2 the errors in corresponding discrete max and L2

norms, obtained using mesh with N+1 nodes. Instead of the standard error EN
2 ,

for method of QUM we use the estimate EN
2 = [12H

1
0 (E0)2 +

N−1∑
i=1

H1
i (Ei)2]1/2.

The ratio τN2 = 1 is fixed. The computations are performed up to time t = 1
with QUM (9). The convergence rate (CR) is valued by the quantities CR∞(2) =
log2[EN

∞(2)/E
2N
∞(2)].

Having exact solution, we compare the efficiency of the algorithms, impos-
ing the exact boundary condition in xN−1: u(xN−1, t) = erfc(xN−1+2

2
√

t
) on QUM

(DQUM). In Table 1 we give the results for the case of dynamical (c0 = 1)
boundary conditions. There is no essential difference with the case c0 = 0.
The computations confirm the efficiency of QUMM and it’s convergence or-
der 2. The approximation of ABC (ABCQUMM) uses the discrete values of
the artificial boundary from all previous time levels. That’s way, the accumu-
lation of round off error is possible. Nevertheless, ABCQUUMM is more stable
in time than QUMM. For example, at t=2: E24

∞ = 6.926715e− 4 for QUMM,
E24

∞ = 3.063709e− 4 for ABCQUMM and E24
∞ = 1.526854e− 4 for DQUM.

For f̃(t) ≡ 0 the solution blows-up in finite time, [8]. Numerical experiments
for such solutions are discussed in [11].

Table 1. Global errors in different norms, c0 = 1, QUM is (9)

QUMM ABCQUMM DQUM
N EN

∞ EN
2 EN

∞ EN
2 EN

∞ EN
2

12 3.683837e-4 3.523132e-4 3.687771e-4 3.79614902e-4 3.681274e-4 3.369317e-4
24 9.323924e-5 8.858261e-5 9.324177e-5 9.206816e-5 9.323728e-5 8.703128e-5
48 2.332366e-5 2.206979e-5 2.332367e-5 2.273758e-5 2.332365e-5 2.202332e-5
96 5.830883e-6 5.517726e-6 5.830883e-6 5.587760e-6 5.830883e-6 5.507968e-6
192 1.473248e-6 1.394342e-6 1.473248e-6 1.397895e-6 1.457999e-6 1.377982e-6
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Example 2. We use QUM (10) for solving the problem from Example 1. All
input datum are the same, except the mesh. We give the results in Table 2.The
efficiency of (9) and (10), m = 1 are close for this problem.

Table 2. Global errors in different norms and convergence rate, c0 = 1, QUM is (10)

m = 1 m = 2
N EN

∞ CR∞ EN
2 CR2 EN

∞ CR∞ EN
2 CR2

12 3.236310e-4 2.604571e-4 4.526466e-4 4.588175e-4
24 8.221002e-5 1.9770 6.501900e-5 2.0021 1.066523e-4 2.0855 1.165572e-4 1.9769
48 2.056667e-5 1.9990 1.627574e-5 1.9981 2.645880e-5 2.0111 2.909814e-5 2.0020
96 5.141504e-6 2.0000 4.069750e-6 1.9997 6.604643e-6 2.0022 7.273963e-6 2.0001
192 1.285694e-6 1.9996 1.017630e-6 1.9997 1.654158e-6 1.9974 1.817768e-6 2.0006

3 The 2D Heat Problem

In this section we construct second order (with respect to space variable) ap-
proximation of the differential problem (5)-(8) by QUMM.

3.1 Discretization of (5)-(8)

The mesh in x direction is classical: uniform grid with M + 1 nodes and mesh
step size k, while in y direction we use QUM (9) or (10) with N + 1 mesh
points, see Figure 2. As in the one-dimensional case, we use fictitious nodes:
M − 1 numbers, situated under the bottom boundary, h0 away. The elimination
is standard. Using (11) for ∂2u

∂y2 , central approximation for ∂2u
∂x2 and (12) for ∂u

∂y ,
we obtain the following semidiscretization of the problem (5)-(8):

z0j = f10j , zMj = f2Mj , j = 1, ..., N − 1, (17)
ziN = u∞(xi, t), i = 1, ...,M, (18)

żij =
a(zij+1 − zij)

2H2
jH

1
j

− a(zij − zij−1)
2H3

jH
1
j

+
a(zi+1j − 2zij + zi−1j)

k2 , (19)

żi0 =
aH1

0 [zi+1,0 − 2zi0 + zi−1,0]
(H1

0 + 2ac0)k2 +
2a

(H1
0 + 2ac0)

[
zi1 − zi0

2H2
0

+ f(zi0)
]
, (20)

i = 1, ...,M − 1, j = 1, ..., N − 1.

Now, zij = z(xi, yj) ≈ u(xi, yj, t) andHs
j , s = 1, 2, 3 are the same as in (13)-(15),

but x↔ y (i↔ j).
Results of convergence, analogical to Theorem 1,2, hold for the 2D problem.

Remark 1. The QUMM can be applied without difficulties to the cases of more
complicated boundary conditions. For example, if instead of u(0, y, t) = 0, we
have c1ut−ux = g(u), we will use M +N fictitious nodes to obtain second order
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Fig. 2. QUM (9), N=M=12, c = 1

Table 3. Global errors in different norms and CR, M = N , c0 = 1, QUM is (9)

N/CR EN
∞ EN

2

12 4.058624e-3 2.070943e-3
24 1.084095e-3 5.283785e-4
CR 1.9045 1.9706
48 2.731855e-4 1.326197e-4
CR 1.9885 1.9943
96 6.864776e-5 3.318021e-5
CR 1.9926 1.9989
192 1.713742e-5 8.283924e-6
CR 2.0020 2.0019

approximation. For approximation of the solution in the corner node x = 0,
y = 0 we use two fictitious nodes. Thus for i = 0 and j = 0, ..., N − 1 we have

ż00 =
2kaH1

0

kH1
0 + 2a(c1H1

0 + c0k)

[
z10 − z00

k2 +
g(z00)
k

+
z01 − z00
2H1

0H
2
0

+
f(z00)
H1

0

]
,

ż0j =
2a

k+2ac1

[
z1j−z0j

k
+g(z0j)

]
+

ak

H1
j (k+2ac1)

[
z0j+1−z0j

2H2
0

− z0j−z0j−1

2H3
0

]
.

Now, it’s very easy to obtain the full discretization in the case f(u) = up ≈
(zn)p−1zn+1, p > 1 (g(u) = uq ≈ (zn)q−1zn+1, q > 1) by substituting ż with
zn+1−zn

tn
and write all unknown values z on the n+ 1− th time level.

The time step in (17)-(19) is chosen as follows

-tn = τ ×min{1, H
2
0 (H1

0 + 2ac0)

a ‖z‖p−1
∞(or2)

}, τ = max
0≤k≤n−1

-tk.
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3.2 Computational Results

Example 3. The test problem is (5)-(8), f1(y, t) = erfc( y

2
√

t
), f2(y, t) = erfc( l+y

2
√

t
),

u∞ = 0 and instead of (7), we impose u(x, 0, t) = erfc( x
2
√

t
), l = 1, a = 0.5. The

exact solution is u(x, y, t) = erfc(x+y

2
√

t
). The results are in Table 3 ( L2 error is on

the analogy of 1D case), t = 0.1, u0 ≡ 0, τ = [min{k, min
0≤i≤N−1

hi}]2. Obviously,

the convergence rate is O(τ + k2 +N−2). There is no qualitative difference with
results, obtained by ABCQUMM.

4 Conclusions

In this paper we used the QUMM for solving 1D and 2D heat problems with non-
linear dynamical (c0 = 1 or c1 = 1) or Neumann (c0 = 0 or c1 = 0) boundary
conditions. We draw the analogy between two algorithms: QUMM and ABC-
QUMM. Both methods are with convergence order 2 in space and 1 in time
and could be applied efficiently for solving problems, defined on unbounded do-
mains. But it is easy to obtain higher order convergence rate, also with respect
to time variable, using for example Crank-Nickolson (including half nodes), [16]
or Rozenbrok-Vanner (two-step) schemes, see [1].

The efficiency of the QUMM is very close to those of the ABCQUMM. In-
disputably, the most important advantage of the QUMM is that the method is
easy applicable for a wide class of problems (including nonlinear problems).
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Abstract. Multimedia applications or real-time applications such as
audio and video on demand, teleconferencing and whiteboard sharing
require Quality of Service (QoS) guarantee assurance. QoS constraints,
namely required bandwidth, end-to-end delay and delay jitter are the
major parameters that need to be satisfied in order to have quality as-
surance in a dynamic multicast network.

In this paper we investigate the effect of the QoS constraints on mul-
ticast network applications and services during the processes of routing.
Lastly, we propose linear routing tree algorithms for required bandwidth,
end-to-end delay and delay jitter.

1 Introduction

1.1 Background

When Internet technology develops and grows, applications become more distrib-
uted and the need for group communication arises in the networks. This allows
nodes in the network to share information. However there is a need for efficient
and equally distributed QoS in the network during sessions, which can be pro-
vided within a multicast network that is responsible for multipoint information
delivery. Internet Protocol(IP) and Asynchronous Transfer Mode (ATM) sup-
port multipoint information delivery in scaling networks, since most multicast
networks use IP based services with support of User Datagram Protocol (UDP),
the best-effort multicast service [11, 12]. It was found out [12] that best-effort
multicast services do not support QoS guarantee such as message delivery, order-
ing, throughput and transmission delay. Transmission control protocol is reliable
compared to UDP in ensuring that the delivered data stream is sequential. How-
ever it lacks the multicast applications requirement which support multipoint in-
formation delivery, but supports only peer-to-peer connections providing almost
no support for latency control and uses only the go-back-n algorithm [11] for any
error occurrence and recovery which brings about misuse of network resources.
The receivers can also send information to the sender (source) giving an infor-
mation about the packets that have not been received or that are lost due to
error. After the information sent by the receiver has been verified and processed,
a proof of whether the packets were lost is done and also whether there is need

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 518–525, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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for a retransmission [11]. The previous research in multicast transport focused
on providing reliable and ordered delivery sequence to distributed systems or
groups [12]. Membership in these multicast groups is highly dynamic with group
members leaving without permission or explicit knowledge of other hosts, while
others join the groups. This changing of membership in the groups makes the
integrity of the data transmitted along the multicast network lack efficiency. In
case of many-to-many and one-to-many multicast and multimedia applications,
TCP/IP and ATM network services become more inadequate [15]. Multicast
protocols are important since they are used to bridge the gap between the de-
manding applications and the inadequate multicast networks. These protocols
are needed to provide ordering, reliability, group management, error recovery
and also to compensate bandwidth, latency receiver feedback rate and flow con-
trol requirements of multimedia applications [12]. Multimedia applications also
must deal with the scalability and heterogeneity problems usually found in the
distributed multimedia applications that use multicast technology in large-scale
network infrastructure. If the scalability problem is dealt with, it will help in
solving the QoS requirements for the dynamic multicast networks.

1.2 Overview

In Section 2 we formulate the problem statement; in Section 3 we discuss re-
lated work; in Section 4 we present the results and lastly in Section 5 we give
concluding remarks.

2 Problem

In this paper we consider multicast networks running distributed applications
and services that face a problem of QoS in scalable networks. This problem
impacts greatly on the efficiency of distributed applications and services in large-
scale networks. Multicast groups are dynamic and therefore the group members
have different QoS requirements for any scaling network. Therefore there is need
for an efficient routing tree algorithm that could improve data distribution in
scaling multicast networks.

3 Related Work

Many multicast routing protocols have been proposed. However the QoS require-
ments in the network for efficient routing have not been fully solved. There is
a need for more efficient routing algorithms for distributed multicast networks.
Jose [11] focused on how to provide a full reliable data transmission to a large
number of receivers, bandwidth saving and maintaining a suitable performance
in heterogeneous environment. For reliable data transfer all receivers get an error
free copy of the transmitted data. Here multicast flow control and congestion
control issues were not well discussed. Jasleen et al. [9] worked on the effect of
TCP on assigning higher priority to traffic requesting expected forwarding (EF)
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services in a differentiated services network. Here EF traffic occupied different
fractions of link bandwidth and is bursty at different time-scale. Work on eval-
uating the effect of assigning higher priority to EF traffic on TCP throughput
was left as an area that needed more research. Stefan et al. [14] proposed the
budget based network admission control (NAC) and categorized it into four ba-
sically distinct approaches depending on the complexity and efficiency. Here the
network size, connectivity and the internal structure of the network have a sig-
nificant impact on the resource efficiency. Vijay et al. [15] worked on the problem
of dealing with the great heterogeneity in QoS of wide area clients. It was found
out that it is important because longer transmission times lead to tying up of
kernel resources at the high-speed recipients. This limits the performance of the
high bandwidth recipients. However the work didn’t addressed how QoS and het-
erogeneity behave on the scaling multicast group. Alvarez et al. [1] describes the
new minimum λ-tree multicast protocol. The periodic activation of the protocol
allows maintaining a multicast tree that spans the group of users. In this proto-
col a specified QoS parameter λ along the route from the core to each member is
optimized. An algorithm was proposed which partitioned a set of recipients on
the basis of the available bandwidth. The algorithm separates transmission to
each set of recipients sharing a common QoS. Gregory [7] worked on the man-
agement of QoS at the application level. The work considered all the system
components involved in the application such as the communication network in
order to manage the QoS for distributed multimedia applications. Here the scal-
ability QoS management for the application involving a very large number of
members or users and working on possibly many servers was not addressed. Bin
Wang et al. [4] worked on the comprehensive overview of the existing multicast
routing algorithm, protocols and their QoS extensions. Classification of multicast
routing problems according to their optimization function and performance con-
straints was considered and also presented routing algorithms. Here a gap was
left on the QoS-driven multicast routing in large-scale, real network to provide
some insights into the trade off between the design complexity of QoS-driven
protocol and the resulting performance. Shigang et al. [13] present a scalable
QoS multicast Routing Protocol that shares the adaptive path-branching idea
of QoS Multicast Routing Protocol (QMRP), but it eliminates the temporary
use of per-group-per-join routing state. Jinquan et al. [10] propose a simpler
and more effective mechanism of QoS guaranteed multicast routing in which a
feasible multicast tree routing multiple QoS constraints can be constructed in a
distributed fashion using local states at the routers. Dean et al . [6] investigated
the problem of optimal resource allocation for end-to-end QoS requirements on
unicast paths and multicast trees. Their work considered a framework in which
resource allocation is based on local QoS requirements at each network link,
and associated with each link is a cost function that increases with the severity
of the QoS requirement. It addressed the problem of how to partition an end-
to-end QoS requirement into local requirements. Hung-Ying et al. [8] address
the problems of constructing both source-based and core-based many-to-many
multicast trees for applications with delay and delay jitter constraints. Here the
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source-destination delay bound and the inter-destination delay jitter bound are
used as the QoS requirement and formulate the delay and delay jitter constrained
Many-to-Many Multicast Tree problems. Dean et al. [5] solved the problems re-
lated to supporting unicast and multicast connections with QoS requirements.
They investigated the problem of optimal routing and resource allocation in the
context of performance dependent costs. Also considered was the “additive” QoS
constraints like the delay and general link costs. Ariel Orda et al. [2] proposed
the precomputation-based methods as an instrument to facilitate scalability, im-
prove response time, and reduce computation load on network elements. The key
idea was to effectively reduce the time needed to handle an event by performing
a certain amount of computations in advance, that is prior to the event’s arrival.
However the work did not consider the delays that may be encountered during
the event. Bin Wang et al. [3] study QoS routing for quorumcast, a generalized
form of multicast communication. Here the need of quorumcast communication
arises in a number of distributed applications such as distributed synchroniza-
tion and resource discovery, but little work has been done on routing quorumcast
messages with or without QoS constraints Stefan et al. [14] worked on the bud-
get based network admission control (NAC). Their work was categorized into
four basically distinct approaches depending on their complexity and efficiency.
Comparison was made on the resource utilization in different network scenarios.
It was found out that the network size; connectivity and the internal structure
of the network have a significant impact on the resource efficiency. The perfor-
mance of the NAC is limited by the topology while the other when offered large
enough load they can achieve a very high utilization.

4 Results

The network is represented by an undirected graph G(V,E) of V vertices and
E edges, where |V | represents the number of nodes while |E| represents the
number of edges. The communication links are denoted by set of E edges. We
consider that for every n nodes there are n− 1 links. The links are queued and
therefore the delay measure on the link l ∈ E is defined by dl and the delay
bound in the entire multicast tree is represented by Δ on any path in the tree.
We consider QoS constraints registered at any link or path by the group leader
at the router node. If the registered QoS are received by the source node from
the entire multicast tree, a depth first search (DFS) is done for each node in the
network. For every visited or searched node, the delay from the source to that
specific node vi.delay and ui.delay, for in this case called the current node, is
computed for the ith nodes vi and ui respectively. A node can be visited once or
more than once depending on its position in the multicast network. Calculations
of the delay bound Δ is made for every visited nodes to compare with the link
delays.

Following below are the proposed algorithms for end-to-end delay, required
bandwidth and delay jitter respectively.
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4.1 Algorithm 1: End-to-End Delay

We consider that given an undirected graph G(V,E) with a set of V vertices
and E edges, we find a path with an end-to-end delay measure dl that satisfies
the condition ∑

∀l∈E

dl ≤ Δ

and for which the delay functions ui.delay and vi.delay are minimum for the ith

nodes. Here Δ denotes the end-to-end delay bound.

Input: A graph G(V,E), number of nodes, a set of QoS constraints, delay
bound

Output: A path that satisfies the QoS requirement.
begin
for all vertices V do

ui.delay = ∞, vi.delay = ∞
end for
for all (ui, vi) ∈ V where i = 1 to n− 1 do

while l(ui, vi) ∈ E do
DFS(ui)

label (ui, vi) visited
if ui = visited and vi = visited

record ui.delay and vi.delay
elseif dl + ui.delay ≤ vi.delay and
dl + ui.delay ≤ Δ or
vi.delay > Δ then

dl + ui.delay < vi.delay
else discard the message

return a path with minimum delay
end for

In the above end-to-end delay algorithm each message sent along the link is
assigned a minimum and a maximum delay bound (duration) at which it should
arrive at the destination node in the multicast tree. If the message (packet)
exceeds the maximum duration then it is discarded or labeled as a nullified
message and therefore a retransmission is made along the same path.

4.2 Algorithm 2: Required Bandwidth

Here we also consider an undirected graph G(V,E) of V vertices and E edges,
we are interested in finding a path with maximum residue bandwidth, such that

cl − bl ≤ rb

where cl is the capacity of the link, bl is the link bandwidth and rb is the required
bandwidth.
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Input: A graph G(V,E), a set of QoS constraints, required link bandwidth (min,
max), capacity of the link.
Output: The best residue path.

begin
for all vertices V and edges E do
bl := 0, and cl :=∞

end for
for all (ui, vi) ∈ V where i = 1 to n− 1 do

while l(ui, vi) ∈ E do
visit ui and vi

if ui := labelvisited(), vi := labelvisited()
determine link l(ui, vi) ∈ E

find the capacity of the link l(ui, vi)
assign bandwidth to link l(ui, vi)

elseif the assigned bandwidth is min
and the capacity of the link is max
l(ui, vi):= residue path;

residue path := cl − bl
else stop

return residue path
end for

The algorithm above proposes a way in which we can choose a path with the
residue bandwidth which is labeled as the residue path. The algorithm stops if
the assigned bandwidth is greater than the capacity of the link.

4.3 Algorithm 3: Delay Jitter

For any given least delay path in an undirected graph G(V,E) of V vertices and
E edges

delay − jitter =
∑
∀l∈E

(delay − jitter)

Input: A graph G(V,E), number of nodes, source node vs, a set of QoS
constraints, delay bound, delay requirement.

Output: The link or path satisfies required QoS.
begin
for all (ui, vi) ∈ V where i = 1 to n− 1 do
ui.delay := ∞, vi.delay := ∞

end for
for all l(ui, vi) ∈ E do

if current node (ui, vi) is in the tree
DFS(ui)

label (ui, vi) visited or unvisited
compute ui.delay and vi.delay

compute ui.t and vi.t
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else if dl + ui.delay ≤ vi.delay then
vi.t ≤ vi.delay and vi.delay ≤ Δ
jitter := vi.t
else

node not in the tree
return jitter;

end for

4.4 Discussion of Results

The end-to-end delay algorithm is proposed in this paper. The algorithm iden-
tifies a path from the source to the destination node, which is in this case taken
as the current node. The delay measure of the link dl is calculated in the process
and also the delay of the packets from the source to the current ith nodes ui and
vi is calculated, that is ui.delay and vi.delay. The delay bound Δ for each path
from the source to the destination is known since the constraint is an additive
parameter. The algorithm finds a path with a link delay dl plus the delay to the
current node, vi.delay and ui.delay that does not exceed the delay bound Δ for
each link created in the tree and whose nodes are labeled as visited by the depth
first search (DFS).

In the residual bandwidth algorithm we focus on the maximum residue path
in the network where a given bandwidth is assigned to the link depending on
the capacity of the link. The residual bandwidth is either maximum or mini-
mum. We use the preorder tree traversal ( equivalent to DFS) to search all the
nodes, the searched nodes are labeled as visited. For all the visited i nodes a
determination of the link l(ui, vi) takes place and then the capacity of the link
is determined after which assignment of bandwidth on that link is done. Com-
parission of whether the assigned bandwidth on the link is not greater than the
capacity of the link is done and if its found that the link capacity is greater then
the residual bandwidth is computed else the algorithm stops. This process is for
all nodes in the multicast tree.

The delay jitter algorithm proposed finds a path with the least transmis-
sion time basing on the delay algorithm. We consider that after the nodes ui

and vi have under gone a search to show that they are in the tree, calcula-
tions for the link delay dl, the delay functions ui.delay and vi.delay are done.
The functions ui.t and vi.t which represents the time taken for the packets to
reach the current nodes ui and vi are compared each with the delay from the
source to the destination. If its found that ui.t is less than the function ui.delay;
then delay jitter is computed else the algorithm stops which implies that the
node is either not in the tree or has not yet fully joined the tree. We focus
on the inner for loop which determines the frequency of each line in the al-
gorithms proposed, during the process of execution. The complexity of all the
proposed algorithms is linear and given by ©(n) (a linear complexity) imply-
ing that the algorithms route data efficiently throughout a scaling multicast
network.
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5 Concluding Remarks

The QoS constraints, i.e. end-to-end delay, delay jitter and required bandwidth
have been discussed in relation to scalable networks. Routing tree algorithms for
end-to-end delay, delay jitter and required bandwidth have been proposed. All
the algorithms have a time complexity of ©(n) implying that they have a linear
complexity for a linear search throughout the network.
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Abstract. The purpose of this paper is to propose an optimistic up-
per surface design, by applying a wavy pattern, for the slider bearing
lubrication environment, without going beyond the geometric limits of
the complete flow volume. Continuity, momentum and energy equations
are handled simultaneously by interpreting the relation of lubricant mo-
tion and pressure distribution through a Transfer Matrix ; the tempera-
ture dependent character of viscosity is considered in the computations
with a convergence criterion of 0.01% for two consecutive temperature
distributions within the implemented iterative approach. Numerical in-
vestigations are carried with wave amplitude and wave number ranges of
0-200 μm and 5-105 respectively and the pumping pressures are 1.01-3.01
times the exit value. The computational results point out an optimum
upper surface design with a wave number range of 25-45, which not only
increases the load capacity but also decreases the power requirement.

1 Introduction

During recent years, the interest in computer modeling of thermo-hydrodynamic-
lubrication [9] has continuously increased, since the needs have expanded enor-
mously, including the requirements like increased capacity, lowered power
consumption and creative designs which will meet the necessities of the present
technology. As the behaviors of non-linear designs often demonstrate unexpected
output patterns, analysis on various sliding surface definitions is important in
predicting the system responses. Application of a wavy pattern to the flow sur-
faces is a new approach and complicates the numerical-lubrication simulations,
as the waviness is defined by 2 independent variables: the amplitude and the
wavelength.

Effects of surface waviness on the lubrication process have been handled nu-
merically in a few recent studies. Van Ostayen et al. [14] investigated the per-
formance of a hydro-support and determined significant variations in lubricant
flow rate by up to 60% due to the influence of random waviness. Honchi et al. [3]
applied a micro-waviness model to an air slider bearing, where the contact force
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records were of fluctuating type. Kwan and Post [5] proposed that the load value
of the aerostatic bearings increases with higher wave amplitude and decreases
with increased number of waves. Harsha et al. [2] developed a numerical model
that takes the sources of nonlinearities, such as surface waviness, into account
for ball bearing applications. Influence of waviness on cylindrical sliding element
was considered by Rasheed [11], who proposed a critical wave number range
of 1-9 for improved operating conditions. Mehenny and Taylor [8] also studied
journal bearings and found out that the maximum pressure increased with wave
number; however the power loss appeared not to be influenced. On the other
hand Ai et al. [1] showed that the lubricant film thickness decreased with wavi-
ness in journal bearings. The numerical model for journal bearing systems of
Liu et al. [7] did not converge efficiently for waviness amplitudes above 6 μm.
Roller bearings are studied by Sottomayor et al. [12] for various waviness ampli-
tude values and augmented friction coefficients are recorded at higher amplitude
cases.

Although the lubricant viscosity is highly dependent on flow temperature,
the recent studies on waviness, presented above, considered the viscosity to be
constant in the complete flow domain due to the complexity of the numerical
structure when both the surface definition and the viscous character are numer-
ically involved. However there have been many studies that focus on the effects
of temperature and lubricant properties on the performance of bearings. A lin-
early narrowing slider bearing, with heat conduction to the stationary lower sur-
face was investigated numerically by Kumar et al. [4]. Temperature dependency
of lubricant viscosity was handled by imposing the temperature distribution of
the previous solution set on the nodal viscosity values, until a convergence
of 0.05% was achieved, for each node, between two successive solutions. A similar
approach was used by Pandey and Ghosh [10] on both sliding and rolling con-
tacts. Their convergence criterion for temperature distribution was less sensitive
(0.1 %) and a unique viscosity value, which corresponds to the average lubri-
cant temperature, was used for the complete flow volume. On the other hand,
Yoo and Kim [15] took temperature dependent viscosity into consideration more
precisely with a convergence criterion of 0.001 %. But in this study, to decrease
the computation time, convergence was not applied to each temperature value
in the flow direction, but for the sum of the complete temperature set.

Optimization of slider bearing lubrication is also included in the scope of
numerical studies: As Lin [6] tried to get an optimum flow cavity for one-
dimensional porous curved slider bearing, Stokes and Symmons [13] performed
a multi-dimensional optimization on the plasto-hydrodynamic drawing of wires,
where the deformation process occurs in a stepped cavity filled with a viscous
fluid. The aim of the present optimization study is to generate a novel upper sur-
face design, with the implementation of waviness, without varying the volume
of the flow cavity, thus the physical limits of the complete lubrication struc-
ture. The proposed numerical approach first models the thermo-hydrodynamic
flow-environment by a transfer matrix and then the dependence of viscosity on
temperature and the so occurring variations in other flow properties are also
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determined by an iterative mechanism. To produce a complete overview, com-
putations are performed with 2 pumping pressures, for 6 amplitudes and 11
wavelengths. Performance optimization outputs are discussed through stream-
wise pressure and wall shear stress variations, and with load capacity and power
consumption data for various amplitude and wavelength cases.

2 Governing Equations and Computational Approach

Performance analysis of plane slider bearings covers the investigation of both
momentum and energy transfer in the flow volume, thus velocity (u), pressure
(P ) and temperature (T ) distributions are the primary concern of the fundamen-
tal theory. The outputs of the continuity, momentum and energy equations can
be the focused items of the work, but generally the results of the former in the
calculation order generates the input set for the following, which puts forth the si-
multaneous handling of the three equations. As the non-dimensional momentum
equation in -x direction (Eq. (1a)) interprets the relation of viscous shear stress
and the thermodynamic pressure, the Reynolds equation for 1-dimensional lubri-
cant flows of slider bearings is given by Eq. (1b). Lubricant viscosity is effective in
either of the flow and energy equations and the pressure and temperature terms
are non-dimensionalized as P ∗ = Ph2

ex/μV1L, T ∗ = Th2
exCpρ/μV1L ([4, 6]) re-

spectively, thus the Newtonian viscosity-temperature relation is characterised by
Vogel’s rule of Eq. (1c).

d2u∗

dy∗2
=
dP ∗

dx∗
d

dx∗
(h∗3

dP ∗

dx∗
) = 6(V ∗
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μ = ρke

b
T+ξ (1a−c)

The velocity profile (Eq. (2a)) can be obtained by imposing the boundary
conditions of y∗ = 0 → u∗ = 1 and y∗ = h

hex
= h∗ → u∗ = Vu

V1
= V ∗

u to Eq.
(1a) and integration of the velocity profile gives the volumetric flow rate (q∗x)
per unit width (Eq. (2b)).
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The streamwise pressure distribution (Eq. (3)) can be evaluated by integrating
the Reynolds equation (Eq. (1b)) twice, where the integration involves both
streamwise (-x) and pitchwise (-y) directions.
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∫ x∗
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The load-carrying capacity (W ∗) is obtained by the streamwise integration
of the film pressure (Eq. (4a)). The wall shear stress (τ∗), which is measure of
surface wear, and the pumping power (Ω∗), necessary to supply the lubrication
oil are defined by Eqs. (4b-c).

W ∗ =
∫ 1

0
P ∗dx∗ τ∗ = μ∗ du

∗

dy∗
|y∗

wall
Ω∗ = q∗xP

∗
in (4a−c)
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Fig. 1. Schematic layout of slider bearing with/without wavy structure at the upper
surface

To solve the continuity, momentum and energy equations in harmony, the
geometric domain of Fig. 1 is divided into 1000 sequential cells, where higher
numbers, in the early stages of the code development, appeared to increase only
the run times not the accuracy of the streamwise convergence. 2nd order finite
difference marching procedure, in the streamwise direction with a constant cell
width (Δx) of L/K, where for the sake of generality number of cells are denoted
by K, is applied for the simulation of 1-dimensional, incompressible lubricant
flow. Since the volumetric flow rate (q∗x) is constant in flow direction, equating
the derivative of Eq. (2b) to zero forms a system of K − 1 linear equations,
which completely represent the relation of geometric structure, static pressure
and velocity distributions. The new implementation is a simple sigma notation,
which consists of 2 coefficient matrices whose elements are mainly defined by
the groove geometry and the upper and lower surface velocities of the bearing.
As the nodes i = 1 and i = K + 1 represent the inlet and exit planes, the
explicit form of the K − 1 equations constitute the “Transfer Matrix” of the
system. Since left hand side is a banded matrix with a bandwidth of 3, Thomas
algorithm is used in the evaluation procedure, where the outputs are the scope
of continuity and Reynolds equations for nodes i = 2 to K.

In addition to the inlet conditions and surface velocities, results of the transfer
matrix, especially the volumetric flow rate and the streamwise pressure gradient
also participate as inputs when the temperature variation is under inspection.
Superimposing the finite difference logic into the energy equation (Eq. (5a)) and
rearranging the terms brings up a thermal relation within two consecutive nodes
in the mesh, which in return displays the lubricant temperature distribution in
the flow direction (Eq. (5b)).

q∗x
dT ∗

dx∗
= V ∗

u τ
∗
u+τ∗1−q∗x

dP ∗

dx∗
T ∗

i+1 = Δx∗[
V ∗

u τ
∗
u + τ∗1
q∗x

−dP
∗

dx∗
]i+T ∗

i (5a−b)

Evaluation of the temperature dependent nature of viscosity covers both the
traditional isotropic method and the present iterative transfer matrix approach,
where the classical solution generates the initial set of guesses for the first itera-
tion step. For the isotropic approach, lubricant viscosity is kept constant in the
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complete flow volume, being equal to the inlet value. In the first step of the itera-
tive method the temperature dependent nodal viscosity variation is calculated by
using the temperature distribution of the isotropic approach, together with the
viscosity parameters of k, b and ξ (Eq. (1c)). Solving the transfer matrix, with the
so obtained viscosity distribution, gives the initial temperature set of the iterative
method. Although the isotropic method consists of a single operation loop, the it-
erative approach continues until two consecutive temperature distributions are
not more than 0.01% distant at each node within the mesh, which may contribute
up to 15 successive runs. The applied convergence criterion (0.01%) is more sensi-
tive than that of Kumar et al. [4] and Pandey and Ghosh [10]. On the other hand,
although Yoo and Kim’s [13] criteria (0.001%) appears to be more precise, the
presentmethod differs from theirs by imposing the convergence on each nodal tem-
perature, not on the sum of the complete set. This application makes the stream-
wise temperature determinations more reliable, since K + 1 times more control
loops, for every iteration step, exist in the current approach.

3 Theoretical Model

The theoretical model involves the combined definitional necessities of both the
physical and the thermo-fluid structural information of the complete lubrication
environment. As the input data for the Reynolds and energy equations cover
knowledge on upper-lower surface velocities of the bearing, the lubricant type
and the inlet-exit boundary conditions. To generate a realistic overview, nec-
essary compounds are chosen from the available recent numerical studies. The
main sketch of the slider bearing is similar to that of Ostayen et al. [14] and
Kwan and Post [5], that is narrowing in linear style (Fig. 1). As in most of the
industrial applications, upper surface of the bearing is kept stationary (Vu = 0
m/s), which is also the case in the study of Honchi et al. [3]. On the other hand
lower surface velocity data appear in a wide range: such as 2.55-10.21 m/s of Liu
et al. [7] and 8.79 m/s of Ai et al. [1]; the current value is chosen as Vl = 5 m/s,
which is the mean value of the most frequent data. Bearing length is selected as
10 mm, being between the choices of Honchi et al. [3] (1.25 mm) and Ai et al.
[1] (14.5 mm). The most frequent slider bearing pad height and journal bearing
clearance values appear in the range of 1-0.0175 mm, like those of Lin [6] and
Liu et al. [7]. The inlet (hin) and exit heights (hex) are selected as 1 mm and
0.125 mm, resulting in a mean pad inclination (Θ) of 5◦ (Fig. 1). The analysis
is based on the fact that, unused lubricant is pumped in and emerges to atmo-
sphere, therefore inlet (Pin) and exit (Pex) oil pressure values are decided to be
101-301 kPa and 100 kPa respectively, which propose the Ψ = Pin/Pex cases of
1.01 & 3.01. Investigations are carried out with SAE 20 type lubricant that has
comparable viscosity values of Mehenny and Taylor’s [8] application, and with
the inlet temperature (Tin) of 20◦C, which is close to that of Sottomayor et al.
[12] (24◦C).

h(x) = hin − xtanΘ +
ϕ

2
[cos(2π

i

K + 1
λ)] (6)
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The upper surface of the bearing is defined, in a convenient way to fit the main
aim of the work, by Eq. (6), where the wave amplitude and the number of waves
are indicated by ϕ and λ respectively. The cosine curve is implemented to the
streamwise-structure with the relative position of nodes (i) by comparing with
the total meshing scale (K +1). To visualize the effects of ϕ and λ on the bearing
performance, wave amplitude data are rated in the range of 0-200 μm, covering
those of Harsha et al. [2], Rasheed [11] and Liu et al. [7]; the imposed number of
waves is kept within the limits of 5-105, including the most recurrent values of
literature (Honchi et al. [3], Kwan and Post [5] and Sottomayor et al. [12]).

4 Results and Discussion

Numerical experiments are performed with ϕ of 0-200 μm, λ values are in the
range of 5-105, the pumping pressures are 1.01-3.01 times (Ψ) the exit value, and
the results are displayed in non-dimensional form (∗) for the sake of generality.
Streamwise pressure variations, of slider bearings with λ of 5-45, are demon-
strated for ϕ of 40 & 200 μm in Figs. 2(a)-(b) respectively. In the upstream
sections of the cavity (x∗ < 0.4) neither λ nor ϕ have influence on the nodal
P ∗ values, however both λ and ϕ significantly influenced the lubricant pressure
towards downstream (x∗ > 0.6). On the other hand increasing either λ or ϕ
results in higher maximum pressure values within the flow volume, moreover the
effect of λ on P ∗ becomes more remarkable for higher ϕ cases (Fig. 2(b)); more-
over the location of maximum pressure shifts downstream as the wave number
is increased.

Shear stress (Eq. (4b)) is a measure of friction and possible wear on the flow
surfaces and streamwise variations are demonstrated in Fig. 3. For the ϕ of 40
μm, (Fig. 3(a)) λ has no influence on shear stress and the τ∗ values decreased
towards downstream up to the point of P ∗

max (x∗ ≈ 0.84); then followed by a
sharp increase where the pressure values are determined to decrease (Fig. 2(a)).
However as the amplitude is increased to 200 μm (Fig. 3(b)) the effect of λ

(a) (b)
(λ: =5, =15, =25, =35, =45)

Fig. 2. Streamwise pressure distribution for ϕ of (a) 40 μm and (b) 200 μm
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(a) (b)
(λ: =5, =15, =25, =35, =45)

Fig. 3. Streamwise shear stress distribution for ϕ of (a) 40 μm and (b) 200 μm

becomes more impressive in the flow direction, which is accompanied by fluc-
tuations in τ∗ values. As the strength of this structure increases towards the
cavity exit, they are determined to be independent of λ, where the peak values
of different λ cases are positioned at the identical locations. While the maximum
pressure values moved downstream (0.83 < x∗ < 0.95) with higher λ (Fig. 2(b)),
this varying character also sensed in τ∗ variations, where the most augmented
gap, among the extreme τ∗ values, extents to a value of ∼2.1 which interprets
the hydrodynamic instabilities in the wall neighborhood.

Showing parallelism with the P ∗ discussions, load (W ∗) values (Fig. 4) are di-
rectly affected with ϕ but the number of waves creates an exceptional impact,
where initially a sharp increase in W ∗ are recorded for the 5 < λ < 25 range,
thereafter the trend becomes asymptotic with negligible increase rates, among the
λ = 45 and λ = 105 cases, of 1% and 0.7% for Ψ = 1.01 (Fig. 4(a)) and Ψ = 3.01
(Fig. 4(b)) respectively. Additionally, W ∗ of the Ψ = 3.01 case are above that of
the Ψ = 1.01 investigation by 2.27 and 2.13 times for ϕ of 40 μm and 200 μm,
denoting the augmented effects of pumping pressure on W ∗ at lower ϕ. Moreover

(a) (b)
(ϕ(μm): =0, =40, =80, =120, =160, =160)

Fig. 4. Variation of load carrying capacity with λ for Ψ of (a) 1.01 and (b) 3.01
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(a) (b)
(ϕ(μm): =0, =40, =80, =120, =160, =160)

Fig. 5. Variation of input power requirement with λ for Ψ of (a) 1.01 and (b) 3.01

the influence of ϕ on W ∗ is higher in the lower pumping pressure case (Ψ = 1.01)
with ratio of W ∗

ϕ=200μm

W ∗
ϕ=0

= 1.21, whereas the same quantity is 1.13 for Ψ of 3.01.
Contrary to W ∗ results, as shown in Fig. 5, the power requirement (Ω∗) of

the system decreases with both ϕ and λ, however fluctuations are determined
with higher λ cases. These instabilities are limited to lower ϕ values for the
lower pumping pressure case of Ψ = 1.01 (Fig. 5(a)), however the Ω∗ outputs
of even the highest amplitude of ϕ = 200 μm do not converge to a unique
value at higher λ tasks in the project with Ψ of 3.01 (Fig. 5(b)). This record
implies that the application of waviness can produce continuous instabilities if
the demand in pumping pressure increases. Similar to W ∗ results, λ comes out
to be most influential on Ω∗ in the range of 5 − 25 and the lowest stable Ω∗

values are attained for λ of 25− 45, for the complete ϕ set. The power values of
the Ψ = 3.01 project are 4.25 and 3.50 times above those of the Ψ = 1.01 case
for ϕ of 40 μm and 200 μm respectively, indicating the augmented influence of
Ψ at lower wave amplitudes.

5 Conclusion

The application of Upper-Surface-Waviness to inclined slider bearings is mod-
eled numerically by taking the streamwise decay of lubricant viscosity also into
account. The cumulative output implies that the overall system performance of
inclined slider bearings can be improved, without going beyond the geometric
limits, by imposing a wavy character on the upper surface, which in return not
only increases the load carrying capacity but also decreases the power require-
ment. A close relationship is determined among the streamwise variations of
shear stress and lubricant pressure, moreover the surface wave number is found
out to become more influential on shear stress values for the designs with higher
wave amplitudes. The computational results point out an optimum upper sur-
face design with a wave number range of λ = 25− 45 for the pumping pressure
and wave amplitude intervals of Ψ = 1.01 − 3.01 and ϕ = 40 − 200 μm re-
spectively, where λ can be fixed for each system on the basis that ϕ and Ψ are
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determined. Moreover, waviness appeared to cause instabilities in the power
values for high pumping pressure applications and pumping pressure is deter-
mined to have higher influence on power requirement than the load capac-
ity, whereas the impact decreases in either design consideration at increased
amplitude values.

References

1. Ai, X., Cheng, H.S., Hua, D., Moteki, K., Aoyama, S.: A Finite Element Analysis
of Dynamically Loaded Journal Bearings in Mixed Lubrication. Tribology Trans.
41 (1998) 273–281

2. Harsha, S.P., Sandeep, K., Prakash, R.: The Effect of Speed of Balanced Rotor on
Nonlinear Vibrations Associated with Ball Bearings. Int. J. Mech. Sci. 45 (2003)
725–740

3. Honchi, M., Kohira, H., Matsumoto, M.: Numerical Simulation of Slider Dynamics
During Slider-Disk Contact. Tribology Int. 36 (2003) 235–240

4. Kumar, B.V.R, Rao, P.S., Sinha, P.: A Numerical Study of Performance of a Slider
Bearing with Heat Conduction to the Pad. Fin. Elem. Ana. Des. 37 (2001) 533–547

5. Kwan, Y.B.P., Post, J.B.: A Tolerancing Procedure for Inherently Compensated,
Rectangular Aerostatic Thrust Bearings. Tribology Int. 33 (2000) 581–585

6. Lin, J.R.: Optimal Design of One-Dimensional Porous Slider Bearings Using the
Brinkman Model. Tribology Int. 34 (2001) 57–64

7. Liu, W.K., Xiong, S., Guo, Y., Wang, Q.J., Wang, Y., Yang, Q., Vaidyanathan,
K.: Finite Element Method for Mixed Elastohydrodynamic Lubrication of Journal-
Bearing Systems. Int. J. Num. Meth. Eng. 60 (2004) 1759–1790

8. Mehenny, D.S., Taylor, C.M.: Influence of Cicumferential Waviness on Engine Bear-
ing Performance. Proc Instn Mech. Engrs Part C 214 (2000) 51–61

9. Ozalp, A.A., Ozel, S.A.: An Interactive Software Package for the Investigation
of Hydrodynamic-Slider Bearing-Lubrication. Comp. Appl. Eng. Educ. 11 (2003)
103–115

10. Pandey, R.K., Ghosh, M.K.: A Thermal Analysis of Traction in Elastohydrody-
namic Rolling/Sliding Line Contacts. Wear 216 (1998) 106–114

11. Rasheed, H.E.: Effect of Surface Waviness on the Hydrodynamic Lubrication of a
Plain Cylindrical Sliding Element Bearing. Wear 223 (1998) 1–6

12. Sottomayor, A., Campos, A., Seabra, J.: Traction Coefficient in a Roller-Inner Ring
EHD Contact in a Jet Engine Roller Bearing. Wear 209 (1997) 274–283

13. Stokes, M.R., Symmons, G.R.: Numerical Optimisation of the Plasto-Hydrody-
namic Drawing of Narrow Strips. J. Mat. Proc. Tech. 56 (1996) 733–742

14. van Ostayen, R.A.J., van Beek, A., Ros, M.: A Parametric Study of the Hydro-
Support. Tribology Int. 37 (2004) 617–625

15. Yoo, J.G., Kim, K.W.: Numerical Analysis of Grease Thermal Elastohydrodynamic
Lubrication Problems Using the Herschel-Bulkley Model. Tribology Int. 30 (1997)
401–408



A Genetic Algorithm for Scheduling of Jobs on
Lines of Press Machines

S. Ayse Ozalp

Department of Industrial Engineering, Uludag University,
16059 Gorukle Bursa, Turkey
ayseozalp@uludag.edu.tr

http://www20.uludag.edu.tr/~ayseozalp/

Abstract. This paper introduces a Genetic Algorithm (GA) based so-
lution technique for press machines scheduling problem of a car manufac-
turing factory. Firstly, the problem at hand, and the application of the
GA in terms of coding, chromosome evaluation, crossover and mutation
operators, are described in detail. After that, the GA is experimentally
evaluated through some test problems. As the objective of the problem
is the minimization of the completion time of the jobs, the GA based
solution is compared with the Longest Processing Time (LPT) rule, and
it is observed that the GA always produces better schedules than the
LPT rule in a reasonably short amount of CPU time.

1 Introduction

Production planning and scheduling activities affect the productivity of man-
ufacturing organizations. Effective usage of resources and on time delivery of
orders can only be achieved by good production plans and schedules. In gen-
eral, scheduling can be defined as allocating scarce resources (e.g., manpower,
machine, energy, etc.) over time to perform a set of tasks being parts of some
processes such as manufacturing, computation, etc. As scheduling plays an im-
portant role over the efficiency of manufacturing organizations, numerous re-
searches have been performed to solve this problem.

One of the earliest studies about scheduling of manufacturing processes is
[17] in which all kinds of scheduling problems were examined in detail, and a
classification for these problems were made. In [1, 2, 9, 10, 16, 17] computational
complexity of each class of scheduling problems were determined, and suitable
solution techniques for each problem class were discussed. It was shown that most
of the scheduling problems belong to NP-Complete problem class, and heuristics
should be employed for solving “hard” scheduling problems. Dispatching rules,
neighborhood search techniques, tabu search, simulated annealing, and genetic
algorithms are among the most popular heuristic based techniques.

Genetic Algorithms, powerful and broadly applicable search and optimization
techniques, were first introduced by Holland [8] in 1960s. The basic idea behind
the GA is to find a (sub)optimal solution by sampling the solution space that
has high probability of leading to a better solution. This technique imitates the
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natural selection process such that, in each generation, the fittest individuals
have a better chance to produce off-springs whereas; the worst individuals are
most likely to die. In general, a genetic algorithm consists of five basic steps
[11]: (a) a genetic representation of solutions to the problem, (b) a way to create
an initial population of solutions, (c) an evaluation function for rating solutions
according to their fitness, (d) genetic operators that alter the genetic composition
of solutions during reproduction, (e) a way to populate the next generation. The
implementation of each of these steps may differ from one problem situation to
other, which means that, genetic algorithms are customized according to the case
under study. In [11, 7] it was shown that the performance of genetic algorithms
in terms of the optimality of the solution found is highly dependent on the
realization of each of the above steps, and the values of the GA parameters, that
are number of solutions in the initial population (i.e., population size), number
of generations (i.e., termination criterion), and probability values for genetic
operators (i.e., crossover and mutation probabilities).

This study presents a GA based solution technique to find (sub)optimal sched-
ules of jobs on a car manufacturer’s press shop. Although scheduling of man-
ufacturing processes is a hot research topic, scheduling of press lines has not
taken much attention, and this study is the first one that applies GA to this
problem. One of the only two studies in the literature on press lines scheduling
problem belongs to Emel and Tasci [5] in which the press lines scheduling prob-
lem is solved by using a mixed integer programming model that is established in
order to fill in the rectangular time-machine frame with small rectangular time-
operation job elements without any overlap among elements. Emel and Tasci
[5] solved the mixed integer programming model by using LINDO, and found
optimal schedules for small sized press shops. As the size of the press shop (i.e.,
number of press lines, number of press machines in each line, and number of jobs
to be scheduled) increases, the number of variables and equations to be solved
also increases which makes mixed integer programming unsuitable for solution
of large problems. In the other study [13], dispatching rules (e.g., SPT, LPT,
EDD) based heuristic solution, which is applicable for all press shop sizes, is em-
ployed and it was shown that dispatching rules produce good schedules in terms
of press machine utilization in a short amount of time. In this study, after the
GA based solution technique for the press lines scheduling problem is described,
solution found by the GA is compared with those generated by LPT dispatching
rule in terms of optimality and CPU time required.

The organization of this paper is as follows: in the following section, the
press lines scheduling problem is introduced, in the third section, the GA based
solution for the problem is explained, experimental results are presented in the
fourth section, and finally, section five concludes this study.

2 Problem Description

The press shop of a car manufacturing company produces major car body parts
that are made of sheet steel by performing multiple and succeeding operations in
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Fig. 1. Layout for press lines and press machines

sheet metal forming press lines. Press machines have material-handling equip-
ment, and feeding/unloading devices to provide automated and synchronized
operations to improve productivity. Each press machine in the press shop is ca-
pable of producing any part of the car body by just making quick die changes.
Press machines are located to form a number of parallel lines as shown in
Fig. 1. According to Fig. 1, a press shop consists of m press lines, where a
line i contains ni press machines. A typical press line consists of 3 to 8 press
machines. These machines have identical capacity and speeds for synchronized
operation and interchangeability.

A job to be scheduled in this shop consists of a minimum of 2 and a maximum
of max1≤i≤m(ni) operations. Each operation requires a separate die to form the
sheet metal, and takes equal cycle time. Each job covers the production of a
car body part, and parts are produced in lots and use one press machine for
each operation, thus, press machines in a line are occupied simultaneously un-
til the job is completed. Here it is assumed that for each job to be scheduled;
the values of lot size, cycle time and setup time for machines are known in ad-
vance. Thus the processing time for a job is computed as processing time = (lot
size) ∗ (cycle time) + (total setup time). According to the sample data pro-
vided in Table 1, processing time for job 1 is (1400 ∗ 0.15) + 30 = 240 minutes.
In the press shop, each job can only be loaded to press machines by starting
from one of the both ends of a press line. For example job 1 in Table 1 can be
loaded to line 2 in two ways; either starting from Press 201, or from Press 2n2.
In the first case, the job occupies presses 201, 202, 203, and 204; in the second

Table 1. A set of jobs to be scheduled on press shop

Job Lot Oper. Cycle Setup
No Size No Time Time
1 1400 4 0.15 30
2 2500 3 0.23 14
3 1000 6 0.79 100
4 400 5 0.15 26
5 2500 2 0.23 10
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case press machines 2n2, 2n2 − 1, 2n2 − 2, and 2n2 − 3 are loaded until the job
becomes completed.

In a typical press shop, the resources are press machines, dies (to form sheet
metal), workers (to load-unload sheet metal to press machines), and safes (to
store formed metal) such that, the requirements of the jobs for these resources
are known in advance, and we assume that there are always enough amount
of these resources to process the jobs. In other words, there are no resource
constraints (other than press machines) in the press shop.

3 Genetic Algorithm-Based Solution

In this study, the press shop scheduling problem is modeled as “N jobs M non-
identical parallel machines scheduling problem” where M takes values between
m and 2m; and m is the number of press lines in the shop, and the objective of
the scheduling problem is the minimization of the total processing time of the
jobs (i.e., makespan Cmax). We modeled the problem as non-identical parallel
machines problem because each press line may contain different number of press
machines from other lines, and each job may have different number of operations
from other jobs in the shop.

According to [18], identical parallel machine scheduling problem for minimiz-
ing the makespan is an NP-hard problem, and in [14], it is proved that the press
lines scheduling problem, modeled as N jobs m to 2m non-identical parallel
machines problem, is NP-Complete, which makes the use of heuristic methods
inevitable. In [12, 3] GA-based solutions for scheduling identical parallel ma-
chines with single objective are described, in [4] on the other hand, two-stage
multi-population genetic algorithm is proposed to solve identical parallel ma-
chine scheduling problems with multiple objectives. Also, [15] employed GA to
schedule jobs with fuzzy processing times on parallel machines.

The GA used to solve the press lines scheduling problem consists of the fol-
lowing steps among which steps 3.3 to 3.7 are repeated by gen size (i.e., number
of generations) times, to find a (sub)optimal solution.

3.1 Coding

In the press lines scheduling problem with N jobs and m lines, a chromosome
consists of a randomly generated job sequence J = (j1, j2, ..., jN ) where ji (for
i = 1, 2, ..., N) is a randomly generated integer number between 1 and N that
represents the job number such that each ji is different from all the remaining
jobs in J .

3.2 Generation of Initial Population

The initial population consists of randomly generated pop size (i.e., number of
chromosomes in the population) chromosomes.
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3.3 Evaluation of a Population

For each chromosome in the population, jobs are loaded to the press lines in the
job order given in the chromosome, according to the algorithm presented in Fig.
2, and Cmax value for the chromosome is determined by taking the maximum of
the completion times of the jobs.

3.4 Reproduction

For the reproduction step, fitness-proportionate selection process [7] is employed
in which a biased roulette wheel divided into pop size slots, each with a size
proportional to the individual’s fitness, is spinned pop size times, and at each
time an individual is selected. In this selection process, a chromosome x is as-
signed a probability px as follows: Let fx be the fitness value of chromosome x,
such that fx = 1/Cmax where Cmax is determined according to the algorithm in
Fig. 2, then px is computed by dividing the fitness value of the chromosome x
to the sum of the fitness values of all the chromosomes in the population (Eq.
(1a)). After that, for each chromosome in the population, cumulative probabili-
ties (i.e., cx) are obtained by adding up the fitnesses of the preceding population
members (Eq. (1b)).

px =
fx∑pop size

i=1 fi

cx =
x∑

i=1

pi x = 1, 2, ..., pop size (1a− b)

Algorithm: Loading Jobs on Press Lines

Input: A sequence of jobs (i.e., a chromosome) to be scheduled J,
Number of press lines, and number of press machines on each line.

Output: Schedule, Cmax.

for each unscheduled job ji in the list J do
Get the number of operations of ji

for each press line in the shop do
i. Starting from the first line in the shop, find the

available press machines that the job can be loaded.
ii. if available lines exist,
load the job to the first available line.

iii. else if the number of empty press machines is less than
the operation number of the job ji

Find the first unscheduled job j from J that can
be loaded to the line, and Load the job j.

if all of the jobs are scheduled then,
output the schedule and the Cmax value.

Fig. 2. Algorithm for evaluating a chromosome by computing its Cmax value
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Finally, a random number r uniformly distributed in [0, 1] is drawn pop size
times and each time the ith chromosome is selected if ci−1 < r ≤ ci. When
0 ≤ r ≤ c1 the first chromosome is chosen.

3.5 Crossover

Crossover is a genetic operator that produces two children out of the parents. The
two parental chromosomes are selected randomly among the chromosomes that
are chosen at the reproduction step. A random number r uniformly distributed
in [0, 1] is drawn and compared with the crossover probability (i.e., p(C)) that
is determined beforehand, if r ≤ p(C), the parents are combined through the
crossover; otherwise no crossover is performed. In this study, one-point crossover
is used.

3.6 Mutation

Mutation operator performs local modification of the chromosomes. After the
crossover operation, the resulting chromosomes are subjected to the mutation
operation such that for each job (i.e., gene) in the chromosome, a random number
r from the interval [0, 1] is generated and compared with the predetermined
mutation probability (i.e., p(M)). If r ≤ p(M), the gene is mutated. In this
study, adjacent swap of the genes is employed as the mutation operator.

3.7 Determination of the New Generation

After the crossover and mutation operations, the resulting chromosomes are
evaluated according to step 3.3, and all the chromosomes that are in the new
and in the previous generations are sorted according to their Cmax value, and
the best pop size chromosomes are selected as the next generation. Therefore the
best chromosomes found in each generation are kept without changing through
the solution process (i.e., elitist strategy).

4 Experimental Results

The above genetic algorithm is used for minimizing the total processing time of
N jobs over the press lines where N takes values from 5 to 30, and the press shop
consists of 3 press lines such that the first and second lines contain 8, and the
third line has 5 press machines. The total processing time of the jobs takes values
between 56 to 896 minutes and the number of operations that the jobs require
changes between 2 to 8. The data used in the experiments are real data that
are obtained from the car manufacturer’s press shop. The GA is implemented in
Pascal language under Windows XP operating system, and the software is run
on a PC having a Pentium III 450 Mhz processor and 256 MByte main memory.

Due to the fact that the values of genetic algorithm parameters have important
role in the optimality of the results found, first of all, we tried to determine the
best values for crossover and mutation probabilities by running the algorithm
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Table 2. Minimum and average Cmax values for different p(C) and p(M) values

P(M) 0.1 0.2 0.3
P(C) Min Average Min Average Min Average
0.5 2713 2739 2711 2734 2720 2744
0.6 2711 2730 2718 2739 2714 2745
0.7 2713 2743 2720 2731 2713 2732
0.8 2712 2732 2720 2737 2710 2742
0.9 2705 2724 2709 2730 2708 2740

for 30 jobs with pop size = 20, gen size = 40, and crossover and mutation
probabilities take values from 0.1 to 0.9 with 0.1 step interval. At the end of this
experiment, we observed that as the crossover probability increases (p(C) ≥ 0.5)
and the mutation probability decreases (p(M) ≤ 0.3), the fitness of the chromo-
somes found also increases. We run the algorithm 10 times for each parameter
combinations that are given in Table 2, and reported the best and the average
Cmax values obtained for each combination. According to the Table 2, the best
values for p(C) and p(M) are 0.9 and 0.1, respectively.

In the second part of the experiment, we run the algorithm for 30 jobs with
fixed crossover and mutation probabilities (i.e., p(C) = 0.9 and p(M) = 0.1),
and we changed the values of pop size and gen size parameters. The results for
these experiments are presented in Table 3, in which variance is the deviation
of the average Cmax value from the best result found so far (i.e., Cmax = 2690),
improvement is the progress made by the new parameter settings according to the
previous parameter settings in the table, and time is the CPU time (in seconds)
required to run the algorithm with the given parameter values. According to
Table 3, in the cases for fixed crossover and mutation probabilities, as population
and generation sizes are grown from 20 to 100 and from 20 to 200 respectively, the
quality of the solution is determined to improve, however the processing time
of the algorithm is observed to rise from 0.73 sec to 30.9 sec. The processing
time, for the computations performed on the problem where pop size = 20 and
gen size = 40, is 1.37 sec, and the output deviates from the best solution found
so far by just 1.26%. Also, when the population size is large (i.e., pop size = 100),
increasing the generation size (from 100 to 200) improves the quality of the

Table 3. Cmax values, improvements of the results, and the CPU time (sec) for different
population and generation sizes

pop size gen size Min(Cmax) Ave(Cmax) Variance Improvement Time
20 20 2738 2770 0.0297 - 0.73
20 40 2705 2724 0.0126 0.0171 1.37
40 40 2703 2724 0.0126 0.0000 2.66
40 100 2695 2713 0.0085 0.0041 6.43
100 100 2691 2698 0.0030 0.0055 15.73
100 200 2690 2697 0.0026 0.0004 30.89
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Table 4. Performance of GA vs. LPT for varying number of jobs

GA LPT Improvement
N Min(Cmax) Time Cmax Time of GA
5 502 0.66 502 < 0.1 −
10 968 0.76 1020 < 0.1 5.1%
15 1048 0.83 1068 < 0.1 1.9%
20 1433 0.88 1603 < 0.1 11%
25 2096 0.99 2237 < 0.1 6.3%
30 2705 1.37 2818 < 0.1 4%

solution by just 0.4%, however the processing time of the algorithm doubles
(from 15.73 seconds to 30.89) seconds.

Finally, we run our genetic algorithm with fixed GA parameters (i.e., p(C) =
0.9, p(M) = 0.1, pop size = 20, and gen size = 40) but varying number of jobs,
and compared the results in terms of optimality of the solutions found, and the
CPU time required with the solutions of LPT dispatching rule which is used for
minimizing the total processing time [16, 6]. As presented in Table 4, GA always
produces better solutions for the problem at hand, and the CPU time required
for the GA is not too much (less than 1.37 seconds) with respect to that for
LPT.

The best solution found so far for scheduling of 30 jobs over the 3 press
lines has Cmax value which equals 2690 minutes, and this solution is obtained
when the crossover and mutation probabilities are 0.9 and 0.1, respectively, and
the population and generation sizes are set to 100 and 200, respectively. The
utilizations of the press lines 1, 2 and 3 for this solution are 95%, 91% and 84%,
respectively.

5 Conclusion

In this paper, press lines scheduling problem of a car manufacturing factory is
studied, and a genetic algorithm based solution is developed and implemented.
The genetic algorithm based solution technique generates good schedules in a
few seconds when suitable GA parameters are selected. As it is expected, the
GA always produces better schedules than LPT when the objective is the mini-
mization of the makespan.
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Abstract. This paper presents an improved Fictitious Domain formu-
lation for particle sedimentation using a global Lagrange multiplier. Al-
though the rigid body motion is enforced weakly similarly to the DLM
(Distributed Lagrange Multiplier) method of Glowinski et al. [2], there
are some essential differences between the two formulations. The present
formulation uses a Lagrange multiplier which is defined globally (as op-
posed to the locally defined multipliers in the DLM method) which makes
it computationally more efficient. The present formulation was derived
and discussed in detail in [1]. Here we discuss some improvements in the
formulation and show the results of a validation problem.

1 Introduction

There are two main classes of methods for direct simulations of multiphase flows.
The first type are methods which discretize the Navier-Stokes equations on a
fixed, Eulerian grid and move the particles in this grid. In case of rigid particles
Glowinski and his collaborators introduced a method for a weak imposition of
the rigid body motion via distributed Lagrange multipliers (see Glowinski et
al. [2, 3] and the references therein). The second type of methods uses moving
grids and usually requires remeshing and re-interpolation. Examples of such
techniques are the one developed by Hu [4] and Johnson and Tezduyar [5]. Each
approach has its merits and drawbacks. We choose the first approach because it
allows to solve the dynamic equations on fixed (usually structured) grids which
is very convenient for the eventual parallelization. As usual, the price paid for
this convenience is mostly in accuracy, although the second approach has its
accuracy problems too.

In the remainder of the paper we briefly discuss the fictitious domain for-
mulation with a global Lagrange multiplier and discuss some possibilities to
improve it. The method is also thoroughly validated on some sedimentation
problems.
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2 Fictitious Domain Formulation

Let us consider a bounded domain Ω1 with an external boundary Γ filled with a
Newtonian liquid of density ρ1 and viscosity μ1. Within this liquid we consider n
rigid particles occupying a domain Ω2 = ∪n

i=1Ω2,i and having densities ρ2,i, i =
1, . . . , n. Let us also denote the interface between Ω1 and Ω2 by Σ and the entire
domain filled with the fluid and the particles by Ω = Ω1 ∪Ω2. The equations of
motion of the fluid in Ω1 are the Navier-Stokes equations

ρ1
Dû1

Dt
= ∇ · σ̂1, ∇ · û1 = 0 in Ω1 (1)

where σ̂1 is the stress tensor defined by σ̂1 = p̂1δ + 2μ1D[û1] with p̂1 being the
pressure in the liquid phase, D[û1] = 0.5[∇û1 +(∇û1)T ] being the rate-of-strain
tensor, and δ being the Kronecker tensor. A variety of boundary conditions on Γ
can be considered but the different conditions do not change the fictitious domain
formulation and therefore here we assume homogeneous Dirichlet conditions. On
the internal boundary of Ω1, Σ, we presume a no slip condition for the velocity.
The equations of motion of a rigid particle are usually written in terms of the
velocity of its centroid Ui and its angular velocity ωi, i = 1, . . . , n

Mi
dUi

dt
= Mig + Fi (2)

Ii
dωi

dt
+ ωi × Iiωi = Ti (3)

where Mi is the particle mass, g is the gravity acceleration, Fi is the total hydro-
dynamic force acting on it, Ii is its tensor of inertia, and Ti is the hydrodynamic
torque about its centre of mass.

Diaz-Goano et al. [1] have shown that the momentum equation (1) can be
properly extended to the entire domain Ω after the introduction of a global
Lagrange multiplier λ, which is used to impose equations (2,3) inside Ω2. The
angular velocity of each particle can then be recovered from the no-slip bound-
ary condition on the particles boundaries using the Stokes theorem. In case
of spherical particles (Ii being an identity tensor), and if we denote the ex-
tension of û1 and p̂1 to the entire domain Ω by u1 and p1 correspondingly,
the resulting modified system of equations for computation of u1, Ui and
ωi reads

ρ1
Du1

Dt
= −∇p1 + μ1∇2u1 + αλ− μ1∇2λ, ∇ · u1 = 0 in Ω (4)

ΔMi
dUi

dt
= ΔMig −

∫
Ω2,i

αλdΩ − μ1

∫
∂Ω2,i

∂λ

∂n
ds, i = 1, . . . , n (5)

VΩiωi = 0.5
∫

Ω2,i

∇× (u1 −Ui)dΩ, i = 1, . . . , n (6)

Ui(t) + ωi(t)× (x −Xi(t)) = u1, in Ω2,i, i = 1, . . . , n (7)
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where VΩi is the volume of the i-th particle and ΔMi = (ρ2,i − ρ1)VΩi . The
angular velocity equation (6) can be generalized to non-spherical particles but
in this article we consider spherical particles only. This set of PDE’s can be dis-
cretized by means of any discretization technique. In the next section we discuss
its finite element discretization via an operator splitting technique.

3 Discretization

The PDE system above is first discretized in time by means of the following
splitting algorithm.

Substep 1 (advection).
At this substep we approximate the solution of

∂ũk

∂t
= (ũk · ∇)ũk, (8)

on the time interval (tk, tn+1) using the initial condition ũk(tk) = uk, k being
equal to n or n− 1. The physical meaning of this substep is that we advect the
solutions from time levels n, n − 1 to level n + 1. This advection subproblem
is resolved by the method of characteristics as described in [6]. This choice was
determined by the good stability properties of the method in comparison to most
other explicit methods.

The centre of mass of the i-th particle Xn+1
i is approximated with a predictor-

corrector procedure, the predictor Xp,n+1
i being given by

Xp,n+1
i = Xn−1

i + 2δtUn
i (9)

where δt is the time step. The corrector step is performed after the compu-
tation of the fluid and particles velocities at time level n + 1 and is given by
equation (15).

Substep 2 (diffusion).
If we set τ0 = 3/(2δt), τ1 = −2/δt, τ2 = 1/(2δt), then we compute the solution

on the next substep from the following Backward Euler discretization of the
momentum equation in (4).

ρ1τ0u∗
1 − μ1∇2u∗

1 = −ρ1(τ1ũn
1 − τ2ũn−1

1 )−∇pn, in Ω
u∗

1 = 0 on Γ
(10)

Note that Substeps 1 and 2 constitute a second order splitting scheme for an
advection-diffusion equation and therefore they give a consistent approximation
to the solution of (4). The so computed velocity, however, is not divergence free
since the pressure is only extrapolated from the previous time level. Therefore,
the stability of the scheme can be guaranteed only if the predicted velocity field
u∗

1 at level n + 1 is projected onto a solenoidal space on the next step of the
algorithm.
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Substep 3 (incompressibility).

τ0(u∗∗
1 − u∗

1) = −∇(pn+1
1 − pn

1 ) in Ω
∇ · u∗∗

1 = 0 in Ω
u∗∗

1 · n = 0 on Γ,
(11)

n being the outward normal to Γ .
Note that after completion of Substeps 1-3 we end up with a solution of (4)

with λ = 0 i.e. the so computed fluid velocity does not ”feel” the presence of
the rigid particles. In fact this can be considered as the zero-th iterate of an
iteration for imposition of the fact that the velocity field in the particle domain
Ω2, un+1

2 , corresponds to a rigid body i.e. un+1
2 = Un+1

i +ωn+1× (x−Xp,n+1
i ).

This iteration is described in the next substep.

Substep 4 (rigid body constraint).
Set the 0-th iterates for λn+1,un+1

1 , Un+1
i , ωn+1

i and un+1
2 as

λ0,n+1 = 0

u0,n+1
1 = u∗∗

1

τ0U
0,n+1
i = −τ1Un

i − τ2Un−1
i + g

VΩiω
0,n+1
i = 0.5

∫
Ωi

∇× u0,n+1
1 dΩ

u0,n+1
2 = U0,n+1

i + ω0,n+1 × (x−Xp,n+1
i ).

Let us denote the difference between two subsequent iterations for a quantity Q
by δQ i.e. δQk+1 = Qk+1 −Qk. Then the subsequent iterates are computed for
k ≥ 0 by⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 + ρ1
ρ2,i−ρ1

)(αI − μ1∇2)δλk+1,n+1

= −(ρ1τ0I − μ1∇2)(uk,n+1
1 − uk,n+1

2 ) in Ω2,i, i = 1, . . . , n
(1 + ρ1

ρ2,i−ρ1
)(αI − μ1∇2)δλk+1,n+1 = 0 in Ω1

δλk+1,n+1 = 0 on Γ,

(12)

{
(ρ1τ0I − μ1∇2)δuk+1,n+1

1 = (αI − μ1∇2)δλk+1,n+1 in Ω
δuk+1,n+1

1 = 0 on Γ
(13)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ΔMiτ0δU
k+1,n+1
i = − ρ2,i−ρ1

ρ2,i

∫
Ω2,i

α(uk,n+1
1 − uk,n+1

2 )dΩ

+μ1
ρ2,i−ρ1

ρ2,i

∫
∂Ω2,i

∂(uk,n+1
1 −uk,n+1

2 )
∂n ds i = 1, . . . , n

VΩiω
k+1,n+1
i = 0.5

∫
Ωi
∇× uk+1,n+1

1 dΩ i = 1, . . . , n
uk+1,n+1

2 = Uk+1,n+1
i + ωk+1,n+1

i × (x−Xp,n+1
i ) in Ω2,i i = 1, . . . , n

uk+1,n+1
2 = 0 in Ω1

(14)

where I is the identity operator. The iteration (12-14) is a Richardson iteration
for computation of λ and the imposition of the constraint (7) on the velocity
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Fig. 1. A cross section of the basic tetrahedral grid (left) and the boundary fitted grid
(right)

field inside the rigid particles (for more details see [1]). Note that this iteration
is somewhat different than the iteration suggested in [1] since the update of
δUk+1,n+1

i is performed using the difference (uk,n+1
1 − uk,n+1

2 ) directly rather
than the Lagrange multiplier increment δλk+1,n+1. The numerical experience
showed that this iteration provides much more accurate results for the validation
problems discussed below.

Upon convergence for some k = N we set un+1
1 = uN+1,n+1

1 , Un+1
i =

UN+1,n+1
i , ωn+1 = ωN+1,n+1, λn+1 = λN+1,n+1. Finally, the position of the

centre of mass of the particles is corrected according to

Xn+1
i = Xn

i + 0.5δt(Un+1
i + Un

i ). (15)

The equations (10-14) are further discretized in space by means of P2 − P1
tetrahedral elements. The computation of the integrals over Ω2,i involved in the
iteration above is not very straightforward since the finite element grid does not
fit in general the surfaces of the particles. In [1] we used a Gauss quadrature with
modified weights but the inaccuracy in the computation of the integrals leads
to relatively large oscillations in the angular velocity and relatively inaccurate
velocity of the centroids of the particles. Here we use an element subdivision
procedure which subdivides every tetrahedron which is intersected by a particle
boundary into tetrahedra so that the particle boundary is exactly fit by second
order element faces. Note that the subdivided grid is used only for the com-
putation of the integrals, and not for the discretization of the problem. So, we
can still employ structured grids and thus allow for an efficient parallelization
of the method. This advantage of the fictitious domain methods is probably the
main reason for their existence and should not be compromised. A cross section
of a 3D tetrahedral grid and the corresponding boundary-fit grid is shown in
Figure 1. As shown in the next section, this integration procedure greatly im-
proves the results for the angular velocity of the particle.

4 Numerical Examples

The first validation example considered here is for the sedimentation of a rigid
sphere towards a horizontal wall. This problem has only one characteristic spatial
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Fig. 2. The angular velocity of a settling particle with a body-fitted grid refinement
for integration (dashed line) and integration on the base grid (continuous line)

scale until the gap between the particle and the wall becomes very small. Then
a thin film between the particle and the wall is formed and unless the grid is
sufficiently refined there, we cannot expect to obtain good results in the vicinity
of the wall. Since such a refinement is unreasonably expensive we used a subgrid
modelling approach adopting the subgrid modelling force suggested in [7]. It has
the form

Fw = −6πrpU⊥μ1

(
rp

ĥ
− rp
h

)
, if ĥ < h

where rp is the radius of the particle, U⊥ is its velocity component perpendicular
to the wall, h is the grid size of the base grid, and ĥ is the gap between the wall
and the particle. In Figure 2 we show the results for the angular velocity of a
settling particle at Re = 1.5 (based on the particle diameter), with and without
surface fitting for the integral computations. Since at this Reynolds number the
flow is perfectly axisymmetric, the angular velocity should equal zero. Clearly,
the surface fitting greatly improves the results.

In the next figure we show a comparison with the experimental results of
[7] for the settling velocity and the particle’s centroid position for a variety of
Reynolds numbers using two different grids: a coarser grid containing 134139
nodes (with a grid spacing around the sphere’s path equal to 0.2) and a finer
grid of 467261 nodes (with a grid spacing around the sphere’s path of 0.1). The
dimensions of the container in the experiments are: depth 100 mm, width 100
mm, height 160 mm, and the diameter of the particle is 15 mm. The numerical
experiments were run in a dimensionless cavity 7 × 7 × 11 (with respect to the
particle diameter). Since in this simulation no lubrication force was used, the
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Fig. 3. Comparison of the vertical settling velocity of a particle with experimental
data: the symbols represent the experimental results for various Reynolds numbers Re,
the thick lines represent the corresponding numerical results on a course grid of 134139
nodes and the thin lines represent the corresponding numerical results on a finer grid
of 467261 nodes
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Fig. 4. Comparison with available experimental data of the velocity (left graph) and
particle path (right graph) of a settling particle at various Reynolds numbers, Re.
The symbols represent the experimental results, the lines represent the corresponding
numerical results on a course grid of 134139 nodes. The subgrid force is included.

particle does not come to a complete stop once it hits the bottom wall. Clearly,
the numerical results converge to the experimental data with the refinement of
the grid.
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In the next figure we show the same comparison but with the lubrication
force included (using the coarser grid only). The lubrication force influences
only the final stage of the particle trajectory. Both figures show a relatively
good agreement of our numerical results and the experimental data.

5 Conclusions

An improved version of the global Lagrange multiplier (GLM) fictitious domain
method of [1] is presented in this paper. The improvement comes from a slight
change in the iteration imposing the rigid body motion and the grid refinement
for computation of the integrals involved in the weak formulation of the problem.
The method is validated on two problems and the results of the first problem
are compared to available experimental data showing a good agreement.
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Abstract. Studying the unitary time evolution of strongly correlated
quantum systems is one of the most challenging theoretical and exper-
imental problems in physics. For an important class of one-dimensional
(1D) systems dynamical simulations have become possible since the ad-
vent of the time-evolving block decimation (TEBD) algorithm. We study
the computational properties of TEBD using the Bose-Hubbard model
(BHM) as a test-bed. We demonstrate its efficiency and verify its accu-
racy through comparisons with an exactly solvable small system and via
the convergence of one- and two-particle observables in a larger system.

1 Introduction

For many interesting and important quantum systems a description in terms of
weak effective interactions is not possible. Instead these systems possess strong
correlations which demand a description in terms of the full many-body quan-
tum problem. Typically strongly correlated systems are described by simplified
models, such as the Hubbard or Heisenberg Hamiltonians, which are believed
to capture some of their essential physics. The simplicity of these models has
allowed some insight to be gleaned by analytical approximations in certain lim-
its. However the absence of a dominant exactly solvable contribution over the
entire parameter range of these models has ultimately limited the applicability
and controlled reliability of conventional perturbative methods. For this reason
numerical techniques have become an essential tool in handling the inherent
complexity of strongly correlated systems.

The standard numerical methods are well represented by three main ap-
proaches; namely, exact diagonalization (ED), quantum Monte Carlo (QMC),
and density matrix renormalization group (DMRG) methods. In principle all
physical quantities can be accurately and directly determined via ED [9]. How-
ever this approach fundamentally suffers from an exponential scaling with the
number of quantum subsystems M composing the total system for both the
storage and computational speed for the dynamical evolution of an arbitrary
state. While the use of approximation schemes such as Lanczos iterations can
extent the usefulness of ED this intractable scaling ultimately limits it to very
small or restricted systems which are often not adequate to describe experimen-
tal situations. For this reason other techniques have been developed. Using QMC
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techniques [4] the ground state properties of a wide-ranging class of many-body
Hamiltonians can be efficiently evaluated for moderately sized systems in any
dimensions. One of the most attractive features of ground state QMC calcula-
tions is its efficient scaling, where the computational speed scales cubically in the
number of particles. Extensions of QMC to dynamical time evolution have been
proposed [11], however the numerical controllability and computational scaling
are still to be determined in detail. For 1D systems in particular, DMRG has en-
abled the low-energy equilibrium properties to be computed with unprecedented
precision [18, 12]. More recently DMRG has also been extended to yield accurate
low energy spectra [8] and to calculate the time evolution of 1D systems for short
times [1, 10].

In this paper we focus on the recently devised TEBD simulation algorithm.
Despite arising from studies of weakly entangled quantum computations [16], it
was quickly recognized that TEBD enables the dynamics of 1D systems with
nearest-neighbor interactions to be computed efficiently and accurately for long
times [17]. Its importance is broadened further by its close connections to ex-
tensions of DMRG, as highlighted by the demonstration that the scaling and
typical accuracy of TEBD are the same as those of DMRG [3]. Indeed many
of its novel features have now been incorporated with well established DMRG
techniques, such as good quantum numbers, state targeting and White’s ‘State
prediction’ method, resulting in new time-dependent DMRG methods [3, 19].
Very recently TEBD/DMRG has been extended to describe mixed state dynam-
ics of 1D systems opening up the possibility of simulating finite temperature
effects, decoherence and dissipation [20, 15].

Here we investigate the computational properties of the TEBD algorithm
using the 1D BHM as a test-bed. The importance of this model has increased
after recent experiments with ultracold atomic gases confined in an optical lattice
demonstrated its clean realization with tunable interaction parameters [7, 5, 13].
This has opened up the possibility of experimentally exploring coherent time-
dependent phenomena, and so there is an increasing need to simulate the time
evolution of the BHM in order to understand its novel properties [2], and its
possible applications to quantum computing [6]. Through comparisons with an
exact calculation of a small system we address the types of errors which arise in
TEBD. This allows suitable simulation parameters for the BHM to be identified
and these are verified by the convergence of one- and two-particle observables for
larger systems. Finally we confirm the efficient computational scaling of TEBD
by comparison to the actual performance of our implementation.

2 Time-Evolving Block Decimation

2.1 Decomposition of a State

Let us consider a 1D quantum system composed of a finite number M of sub-
systems (or sites) each described by a local n-dimensional Hilbert space and
basis |jm〉 with j ∈ {1, . . . , n} and m ∈ {1, . . . ,M}. An arbitrary state of this
system can then be written as |ψ〉 =

∑n
j1=1 · · ·

∑n
jM =1 cj1···jM |j1, . . . , jM 〉 in this
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Fig. 1. (a) The sequence of contiguous partitions of the system in which the SD are
computed. (b) A depiction of the Γ tensors associated to lattice sites and λ tensors
associated to a partition between those sites. (c) The two-blocks-two-sites configuration
used within TEBD for the application of a two-site unitary U to sites m and m + 1.

product basis requiring nM complex amplitudes cj1···jM . The TEBD algorithm is
based on approximating |ψ〉 via the matrix product ansatz in which the number
of parameters describing a state scales only linearly with M .

Suppose we cut the system into two contiguous parts after site m as Lm

composed of the first m sites and Rm composed of the last M −m sites. For any
state |ψ〉 a Schmidt decomposition (SD) can be performed with respects to this
splitting which renders the state in the form |ψ〉 =

∑χm

α=1 λ
[m]
α |Lm

α 〉 |Rm
α 〉, where

χm is the Schmidt rank of the SD, λ[m]
α are the Schmidt coefficients and |Lm

α 〉
and |Rm

α 〉 are the corresponding Schmidt states of the left and right subsystems
respectively. The Schmidt rank χm is then a useful measure of the entanglement
between the two subsystems Lm and Rm [16]. To begin the construction SDs
are performed for the sequence of contiguous partitions of the system after site
m ∈ {1, · · · ,M − 1}, as depicted in Fig. 1(a). The information contained within
λ

[m]
α and the states |Lm

α 〉 and |Rm
α 〉 from these SDs is then reformulated as set of

Γ and λ tensors [16] which are a matrix product decomposition (MPD) of the
state |ψ〉 in the fixed product basis [3], as

cj1···jM =
∑

α1,...,αM−1

Γ [1]j1
α1

λ[1]
α1
Γ [2]j2

α1α2
λ[2]

α2
· · ·λ[M−1]

αM−1
Γ [M ]jM

αM−1
, (1)

where αm is the Schmidt index of the m-th partition and sums from 1 to its
respective Schmidt rank χm. The set of Γ and λ tensors, depicted in Fig. 1(b)
together give a localized representation of all (M−1) SD such that every Schmidt
state can be readily reconstructed as∣∣Rm

αm

〉
=

∑
jm+1,...,jM

∑
αm+1,...,αM

Γ [m+1]jm+1
αmαm+1

λ[m+1]
αm+1

· · ·λ[M−1]
αM−1

Γ [M ]jM
αM−1

|jm+1, . . . , jM 〉 ,

∣∣Lm
αm

〉
=

∑
j1,...,jm

∑
α1,...,αm−1

Γ [1]j1
α1

λ[1]
α1
· · ·λ[m−1]

αm−1
Γ [m]jm

αm−1αm
|j1, . . . , jm〉 . (2)

Under the circumstances described the MPD in Eq. (1) is exact and so the num-
ber of parameters stored within the MPD can grow exponentially with the size
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of the system much like the amplitudes cj1···jM . However, if the maximum value
of any Schmidt rank χm is limited to a constant χ, rather than its formal maxi-
mum χmax which grows exponentially with M , then a restricted MPD (denoted
as χ-MPD) is obtained with a O(nMχ2) scaling in the number of parameters.
Quantum states which can be described exactly by a χ-MPD with χ$ χmax are
finitely correlated or weakly entangled. Some states, which cannot be described
exactly by any χ-MPD with χ < χmax, can nevertheless be well approximated
by one with χ$ χmax if their Schmidt coefficients λα decay rapidly enough with
the Schmidt index α [17].

2.2 Time Evolution

By dealing directly with the MPD of a state TEBD can implement two-site
unitaries on neighboring sites exactly [16]. To do so, for two sites m and m+ 1,
the MPD is rewritten in terms of a two-blocks-two-sites configuration involving
[1 · · ·m− 1][m m+ 1][m+ 2 · · ·M ], as in Fig. 1(c), such that the two sites are
expressed in the product basis as

|ψ〉 =
∑
l,r

∑
jm,jm+1

λ
[m−1]
l

(∑
αm

Γ
[m]jm

lαm
λ[m]

αm
Γ [m+1]jm+1

αmr

)
λ[m+1]

r |l〉 |jm〉 |jm+1〉 |r〉 ,

(3)

where |l〉 =
∣∣Lm−1

l

〉
and |r〉 =

∣∣Rm+1
r

〉
. It is at this point that the strong overlap

of TEBD with DMRG emerges since this representation is identical to that used
during a finite-system sweep in DMRG [19]. In this form any two-site operator
U expressed in the product bases of the pair of sites can be applied to yield

U |ψ〉 =
∑
l,r

∑
jm,jm+1

λ
[m−1]
l Θ l,r

jmjm+1
λ[m+1]

r |l〉 |jm〉 |jm+1〉 |r〉 . (4)

The application of U alters the Schmidt states of all subsystems in the (M − 1)
SDs which contain these sites. These changes are entirely captured by updating
the tensors Γ [m]jm

αm−1αmλ
[m]
αmΓ

[m+1]jm+1
αmαm+1 local to these sites [16]. To compute these

new tensors, and so return U |ψ〉 in Eq. (4) to a MPD, the density matrix of a
subsystem composed of one site and one block, such as Rm = [m+1][m+2 · · ·M ],
must be re-diagonalized to yield the new Schmidt coefficients λ[m]

αm and Schmidt
states

∣∣Rm
αm

〉
. This is the most computational intensive part of the update and its

scaling follows from standard diagonalization algorithms as O(n3χ3), given that
the dimensions of the Rm density matrix is (nχ)×(nχ) at most. Of the resulting
nχ Schmidt states

∣∣Rm
αm

〉
only χ states with the largest Schmidt coefficients

λ
[m]
αm are kept. The resulting Truncation error is proportional to the sum of the

discarded density matrix eigenvalues [17]. Since the Schmidt states |r〉 of Rm+1

are left unaltered Eq. (2) can be used to extract the Γ [m+1]jm+1
αmαm+1 from

∣∣Rm
αm

〉
. The

relation
〈
Rm

αm
|Uψ

〉
= λ

[m]
αm

∣∣Lm
αm

〉
then gives the corresponding left subsystem

Schmidt states from which Γ [m]jm
αm−1αm can be extracted in an identical way [16].
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Since the χ-MPD of U |ψ〉 can be computed efficiently for any two-site unitary
U our implementation of the TEBD algorithm computes the time evolution us-
ing a Suzuki-Trotter (ST) decomposition [14] of the propagator exp [−iH(t)δt].
Consider an 1D nearest-neighbor Hamiltonian H(t) =

∑M−1
m=1 Hm,m+1(t), where

Hm,m+1(t) are two-site terms. This type of Hamiltonian can be separated into
H(t) = F+G where F contains all terms with m odd, and G with m even. Given
that no terms within F involve the same sites they all commute amongst them-
selves enabling exp (−iFδt) to be computed exactly as a product of two-site uni-
taries exp (−iFδt) =

∏
n odd exp [−iHn,n+1(t)δt]. These unitaries can be applied

exactly with TEBD. The same is also true forG. The complications in computing
the time-evolution arise from the fact that F and G do not in general commute.
To overcome this we approximate exp[−i(F + G)δt] using a ST expansion. Ig-
noring their non-commutativity would constitute a 1-st order expansion in δt.
If we define s2(F,G, y) = exp (−iFy/2) exp (−iGy) exp (−iFy/2) then the 2-nd
order expansion follows when y = δt. For the numerical simulations performed
in this paper the 4-th order expansion [14] was used, which consists of a product
of five 2-nd order type terms exp [−i(F +G)δt] =

∏5
l=1 s2(F,G, qlδt) + O(δt5),

where the parameters ql are defined as q1 = q2 = q4 = q5 ≡ q = (4−41/3)−1 and
q3 = 1−4q. Thus to time evolve a state multiple applications of two-site unitaries
are required, each of which locally truncates the resulting state to a χ-MPD. For
sufficiently small δt this procedure will generate a good approximation to the
χ-MPD of the complete ST time-evolved state with the decimated Hilbert space
describing the state adapted to ‘follow’ the time evolution. For a p-th order ST
decomposition the error made in one time-step δt is O(δtp+1). Performing evolu-
tion to a given time τ requires τ/δt time-steps so the propagation of the Trotter
error is, at worst, bounded as O(δtpτ).

The usefulness of TEBD for studying strongly correlated systems is based
on a crucial observation that for sufficiently regular, but otherwise arbitrary,
1D nearest-neighbor Hamiltonians the ground state and low-lying excitations
have Schmidt coefficients λ[m]

α that decay (roughly) exponentially with α [17].
Consequently the subspace containing the low-energy dynamics of these systems
is accurately described by the class of weakly entangled states that TEBD can
efficiently time-evolve.

3 Bose-Hubbard Model Dynamics

3.1 The Physics

The BHM is one of the simplest toy-models in physics. It consists of a kinetic
energy term, with matrix element J , describing the hopping of particles from
one site to the next and an interaction term, with matrix element U , which
accounts for the repulsion or attraction of two particles occupying the same site.
Competition between these two terms results in a transition at temperature
T = 0 when U/2J ≈ 5.8 in 1D from the superfluid (SF) to the Mott insulator
(MI) phase. In terms of bosonic destruction (creation) bm (b†m) operators for a
site m the BHM for an M site system has the form (with � = 1)
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H(t) = −J(t)
M−1∑
m=1

(b†mbm+1 + h.c.) +
U(t)

2

M∑
m=1

b†mb
†
mbmbm. (5)

When U is sufficiently larger than J and small filling factors of the lattice are
used this system can be described by M sites each with Fock states |nm〉 where
the bosonic occupancy nm limited to n at most. For our considerations, which
were restricted to commensurately filled systems with N = M particles and box
boundary conditions in all cases, n = 4 was sufficient.

3.2 Analysis for a Small System

The two main sources of error within TEBD are (a) Trotter errors caused by
incorrect higher order terms in the ST expansion, and (b) Truncation errors
which can potentially occur and accumulate after every two-site unitary. To
investigate the accuracy of TEBD and how these two errors interplay we consider
a small BHM system with M = 7 where an exact numerical solution can be
readily found. Firstly, from the exact ground state in the SF regime, where
U/2J = 2, we find that λα for the SD of the system partitioned as [1 . . . 3][4 . . .7]
do indeed display, in Fig. 2(a), the (roughly) exponential decay with α required
for it to be accurately approximated by some χ-MPD. The ground state was then
computed with TEBD via imaginary time evolution for χ between 2 and 11. All
these states where then time evolved with U/2J being ramped from U/2J = 2
(SF regime) to U/2J = 20 (MI regime) and back again over a time t = 143 [J−1].
To draw a close connection to experiments [5] we consider this transition for 87Rb
atoms trapped in a λ = 826 [nm] optical lattice [7] where J−1 = 0.56 [ms] for
U/2J = 2 and t = 80 [ms], as shown in Fig. 2(b). In Fig. 2(c) the infidelity
ε(t) = 1 − |〈ψ̃(t)|ψ(t)〉|, between the exact |ψ̃(t)〉 and TEBD |ψ(t)〉 many-body
states, is shown over time. In the MI regime where the state of the system is
well approximated by a Fock state described exactly by a χ-MPD with χ = 1,
we find in Fig. 2(c) that ε for all χ simulations roughly converge to the same
accuracy determined by the Trotter error. The clear dependence of curves (i)
χ = 3 and (ii) χ = 5 on the profile of the time evolution indicates that their
errors are truncation dominated in SF regime. In contrast the curves (iii) χ = 9
and (iv) χ = 11 display no major dependence on the form of the dynamics.
This indicates that for δt = 0.01 [J−1] and χ > 9 the Trotter error dominates
at all times causing the growth of ε observed. Using χ = 9 we investigated the
dependence of ε(τ) on δt for the same evolution up to a time τ = 20 [ms] which
brings the system just above the transition indicated in Fig. 2(b). The results in
Fig. 2(d) have a sharp and significant increase in ε around a small region centered
on δt ≈ 0.45 [J−1], but otherwise fit a power law δtp with p > 4 expected for
the Trotter error. The peak is an expected numerical resonance caused by δt
entering a range of coincidence with a timescale associate to an excitation of the
system with energy 2/U ∼ 0.45 [J−1] during the ramping.

The efficiency of our TEBD implementation was confirmed by computing the
time evolution for τ = 20 [ms], firstly for a variety of system sizes M from 7
to 21, all with χ = 5, and secondly for a system with M = 7 for χ between
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Fig. 2. (a) The decay of λ2
α with α for the splitting [1 . . . 3][4 . . . 7]. (b) The time

profile of U/2J used. (c) The infidelity ε of the dynamical simulation performed with
(i) χ = 3, (ii) χ = 5, (iii) χ = 9, and (iv) χ = 11. (d) The scaling of ε with δt for
χ = 9. (e) The linear scaling of the computational time tc with the system size M . (f)
The cubic scaling of tc with χ.

3 and 11, as shown in Fig. 2(e) and Fig. 2(f) respectively. These confirm the
expected linear scaling with M and cubic scaling with χ.

3.3 Analysis for a Large System

To consider systems closer to those studied in experiments [5, 13] we applied
the last half of U/2J ramping in Fig. 2(b) on initial Fock states with N =
M = 49 particles and χ = 1, . . . , 11. This state has the advantage of being
represented exactly by all χ-MPD. Since an exact numerical solution is not
available we instead study the convergence of one- and two-particle observables
through the one-particle density matrix ρm,l = 〈b†mbl〉 and the average of the
site occupancy squared Πm = 〈b†mbmb†mbm〉. In Fig. 3(a) |ρm,l| for the final state
with χ = 11 is shown. To examine the accuracy of TEBD for larger systems
we computed the infidelity ζ(ρ, σ) = 1− tr(

√√
ρσ
√
ρ) between the one-particle

density matrices obtained for χ = 1, . . . , 10 and the χ = 11 state over the first
half of the ramping shown in Fig. 3(b). The inset Fig. 3(c) then shows ζ for the
final states for each χ demonstrating its near-exponential improvement with χ.
As the system is ramped to the SF regime phase coherence, indicated by off-
diagonal elements in |ρm,l|, is established. Since the initial Fock state used here
contains no phase coherence these must arise purely from quantum fluctuations
during the dynamics, making this a very stringent test of TEBDs ability to
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Fig. 3. (a) The final state |ρm,l| for χ = 11. (b) The density matrix infidelity ζ over
time for χ = 1 (top line) to χ = 10 (bottom line). (c) The final state ζ for each χ. (d)
In the same format as plot (b) the mean deviation η over time for χ. (e) The final state
η for each χ.

capture delicate properties of the time evolution. Similarly the mean deviation
ofΠm obtained from χ = 1, . . . , 10 states compared to the χ = 11 state is plotted
in Fig. 3(d) along with the inset Fig. 3(e) of the final deviations with χ. This
demonstrates the rapid convergence of this two-particle observable with χ. In
both cases χ = 9 identified from the small system yields accurate results for one-
and two-particle observables despite the possibility that the actual many-body
state has not yet reached a similar degree of convergence in its infidelity.

4 Conclusions

We have reviewed the TEBD algorithm and emphasized its importance for
studying strongly correlated 1D systems. Using a small BHM system we have
illustrated the interplay between the errors within TEBD and shown our imple-
mentation to be efficient. Finally we studied the convergence of one- and two-
particle observables for a larger system with χ and demonstrated that suitably
accurate simulation parameters follow from those of the smaller system.
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Abstract. In this paper, we investigate several data reduction schemes
to improve the computational efficiency in the multi reference configu-
ration interaction (MR-CI) method, one of the main quantum chemical
approaches for solving the electronic Schrödinger equation. The basic
idea is to take advantage of the often relatively low accuracy require-
ments on the solution of the resulting large eigenvalue problem, whose
dimension may reach several hundred millions or even more. We will dis-
cuss some approaches to reduce the amount of data to be accessed and
to be transferred within the Davidson subspace diagonalization method.
We also show experimental results achieved with the COLUMBUS code.

1 Introduction

Quantum chemical methods provide very important procedures for the com-
putation of molecular properties and for the computer simulations of chemi-
cal reactions which cannot be solved exactly. They are based on the electronic
Schrödinger equation; a complicated many-particle differential equation, which
cannot be solved analytically. Therefore, numerical approximations have to be
used. These are usually very involved, extremely time consuming and require
very large amounts of data flow.

In this paper, we focus on the multireference configuration interaction (MR-
CI ) approach [9]. It allows for accurate calculations of molecular systems based
on the original many-particle Schrödinger equation. The MR-CI method is es-
pecially important in “difficult” cases, e. g., for the calculation of dissociation
processes and electronically excited states.

A basis expansion of the many-particle wave function leads to an eigenvalue
problem of enormous size. Although the Hamiltonian matrixH of this eigenprob-
lem is very sparse, its dimension n can easily reach several hundred millions or
even billions. H tends to be diagonally dominant and usually very few eigenpairs
(or only a single one) need to be computed.

Given this setup, the Davidson method is a suitable approach for solving
problems of this type numerically. However, in contrast to the matrix H , the
subspace vectors and the Ritz vectors arising in this process are in general dense,
and not sparse. Due to their enormous dimension, simply storing and handling
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those vectors becomes a major performance bottleneck. This is especially severe
when solving the eigenproblem in parallel (which is required for large problems
of interest), because intensive memory accesses and transfer of huge amounts of
data leads to an often prohibitive communication overhead. The data reduction
approach developed in this paper will help to overcome these problems.

Related Work. In earlier work, Dachsel and Lischka [2] have developed first
ideas for a data compression approach in the Davidson subspace diagonaliza-
tion. They propose bitwise data reduction in the subspace vectors based on an
estimator for the resulting error. Their approach assumes diagonal dominance of
the matrix H . Alternative approaches based on fixed-point truncation schemes
have been developed by Harrison and Handy [4], Knowles [5], and Olson [8].

In this paper, we analyze and extend the approach of Dachsel and Lischka,
we compare it with various newly developed error estimators, and also discuss
aspects related to the implementation of such schemes. Moreover, based on nu-
merical experiments with the COLUMBUS code [6, 7], we also give some insight
into how much data reduction can be achieved in practical situations.

2 Multi Resolution Configuration Interaction

The stationary, nonrelativistic, clamped-nuclei, electronic Schrödinger equation
is given as

HΨ = EΨ

with the total Hamiltonian H =
∑

i hi +
∑

i<j gij + Vkk, where hi is the one-
electron operator for electron i containing the kinetic energy and Coulomb at-
traction, gij is the electron-electron repulsion term, Vkk is the nuclear repulsion
and Ψ is the many-electron wave function.

Expanding Ψ into a many-electron basis (configurations state functions {Φi})
and applying the Ritz variational principle leads to the matrix eigenproblem

Hc = Ec (1)

with symmetric H ∈ Rn×n, where n tends to be extremely large (several hun-
dred millions up to a billion). H is sparse, but it is prohibitively costly (in terms
of computation as well as in terms of storage requirements) to construct it ex-
plicitly (Hst = 〈Φs|H|Φt〉). Usually, the lowest eigenpair (or a few of the lowest
eigenpairs) of H need to be computed.

2.1 Davidson Subspace Diagonalization

Given the properties of the eigenproblem (1), Davidson’s method [3, 1] is a suit-
able approach for solving it. The basic structure of this method is shown in
Algorithm 1. Starting with an initial vector v0 or subspace V0, a basis for a
(small) subspace V is constructed, in which approximations (Ē, u) of the desired
eigenpairs (E, c) can be computed cheaply (r denotes the associated residual).
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Davidson [3] suggested to expand this basis in each iteration by the solution of
the correction equation shown in Algorithm 1. This procedure is very successful
for strongly diagonally dominant H .

Algorithm 1. Basic structure of Davidson subspace diagonalization
V = V0,W = HV0, v = v0
repeat

w = Hv, V = [V, v],W = [W,w]
H̄ = V �HV = V �W . . . projected matrix
[Ē, α] = eig(H̄, V �V ) . . . Ritz value and Ritz vector
u = V α, r = Hu− Ēu
solve

[
diag(H)− Ē

]
v = r for v . . . correction equation

reduce V,W if necessary
until |r| < tol
return Ē ≈ E, u ≈ c

2.2 Limitations

Davidson’s method requires the storage and retrieval of the n-dimensional vec-
tors spanning the subspaces V and W . Due to their size, these vectors are ei-
ther stored on external disk devices or—in particular for parallel calculations—
distributed over the memory of the individual nodes. Storage and retrieval of
such large amounts of data constitutes a serious communication bandwidth bot-
tleneck. Moreover, the subspace vectors and their memory requirements are the
origin of serious limitations in parallel calculations. Although I/O requirements
have been reduced significantly [10], the problem still remains. Therefore, reduc-
tion of the memory requirements for storage of the subspace vectors by means of
data reduction schemes as described in this paper will lead to substantial allevi-
ation of the bandwidth problem and, in parallel computations, will free memory
needed for the local computation of the matrix-vector product Hv.

3 Data Reduction

The basic idea investigated in this paper is the following: Based on an accuracy
tolerance τ determined by the user, reduce the amount of data to be stored for
the v and w vectors in Davidson’s method. The larger τ the more significant the
data reduction. This reduction of data to be stored obviously also corresponds
to a reduction of data accesses and transfers, which is especially important in
parallel calculations.

In order to guarantee satisfactory accuracy of the computed spectral infor-
mation of H , we develop error estimators and bounds for controlling the errors
in E and c due to suggested perturbations in v and w. The main focus in this
paper is on controlling the error in the energy E, analysis of the corresponding
error in c is the subject of ongoing work.
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3.1 Error Estimators and Bounds

One approach for deriving estimators of the effect of the data reduction on the
computed energy is to examine the difference ΔĒ := Ē − E. By definition,

ΔĒ =
u�Hu

u�u
− c�Hc

c�c
.

Neglecting third and higher order terms in the Taylor series expansion with
respect to u around c (u = c+Δu) leads to (first order terms are zero !)

ΔĒ ≈ Δu�(H − EI)Δu . (2)

From this relation, several estimators can be derived. In the following, we use
the notation e := (1, . . . , 1) and for a matrix A we define |A| by taking absolute
values elementwise, that is, |A|ij := |Aij |.

Dachsel and Lischka [2] have proceeded by replacing the unknown eigenvalue
E by the Ritz value Ē and the matrix H by its diagonal D in (2) which yields

ΔĒ ≈ EstDaLi := Δu�(D − ĒI)Δu =
∑

i

∑
j

(Di − ĒI)ΔuiΔuj

With an upper bound on the componentwise perturbation in the vector u,
|Δui| ≤ β, this leads to the bound

|ΔĒ| ≈ |EstDaLi| ≤ β2
∑

i

∣∣Di − ĒI
∣∣

Asking for ΔĒ < τ consequently corresponds to requiring

β <

√
τ

e�
∣∣D − ĒI∣∣ e . (3)

Alternatives. The estimator constructed in [2] relies on two approximations:
E is replaced by the Ritz value Ē in (2) (which may not always be appropriate
because this is precisely the error to be estimated), and H is replaced by its
diagonal D (which requires diagonally dominant H). Pursuing a more general
approach, we can rewrite (2) as

ΔĒ ≈ Δu�
(
H −

(
Ē −ΔĒ

)
I
)
Δu,

leading to the estimator EstH

ΔĒ ≈ EstH :=
Δu�(H − ĒI)Δu

1−Δu�Δu . (4)

In the following we assume that 1−Δu�Δu > 0 which implies |Δui| <
√

1/n.
With this additional constraint we derive analogously to before an upper bound
for the allowable componentwise perturbation in u:

β <

√
τ

e�
∣∣H − ĒI∣∣ e+ nτ

. (5)
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If the matrix H happens to be diagonally dominant (as it tends to be the case
in the MR-CI context), we can derive an estimator EstD by replacing H with
its diagonal D in (4), leading to the bound

β <

√
τ

e�
∣∣D − ĒI∣∣ e+ nτ

. (6)

Finally, we describe a fourth approach. Using the fact that due to the construc-
tion of the Davidson eigenvectors from a generalized eigenvalue problem ||u|| = 1,
we have

|ΔĒ| = |c�Hc− u�Hu| = |(u+Δu)�H(u+Δu)− u�Hu| . (7)

Based on (7) we require∣∣ΔĒ∣∣ = |Estq| :=
∣∣2Δu�Hu+Δu�HΔu

∣∣ < τ .

Analogously to before, this corresponds to requiring

β < −e
�|Hu|
e�|H |e +

√(
e�|Hu|
e�|H |e

)2

+
τ

e�|H |e . (8)

3.2 Implementation

Several aspects related to the efficient implementation of the concepts developed
so far deserve some more detailed discussion.

Evaluation of Bounds. For performance reasons, the Hamiltonian matrix H
is not constructed explicitly in the context of MR-CI calculations. For the same
reasons, we introduce some additional simplifications in order to reduce the
computational effort for evaluating the estimators and bounds derived before.

Our formulation of the bounds (3), (5), (6), and (8) is based on applying the
triangle inequality, which leads to expressions with sums of absolute values to
be evaluated in every iteration (because Ē changes). To further improve perfor-
mance, we approximate the sums of absolute values by the absolute value of the
sums in those bounds. Based on this simplification, we have to evaluate these
sums only once during the entire process, and information from the huge matrix
H only needs to be accessed once. This approximation tends to work well in our
context since we need to approximate the smallest eigenvalue(s) E of H . Due
to the fact that almost all diagonal entries Di of H tend to have the same sign
and due to the diagonal dominance of H ,

∑
i |Di − Ē| ≈ |

∑
i Di − Ē|.

Implementation of Data Reduction. The information about allowable per-
turbations in the u vectors contained in the bounds (3), (5), (6), and (8) can be
translated into bitwise reductions in the mantissas of the entries in the v and
w vectors as described in [2]. In this paper, we compare this approach with an
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elementwise data reduction strategy, where vector entries with absolute value
below a certain threshold (determined by the bounds) are eliminated, whereas
all entries above this threshold are stored with full precision.

The advantage of elementwise reduction is that it can be implemented more
easily and more efficiently, the disadvantage is that the data reduction achieved
is always lower than or at best equal to that of bitwise reduction. Experimental
evidence presented in Section 4 shows that the memory requirements with ele-
mentwise data reduction can actually be significantly higher than with bitwise
data reduction.

4 Experiments

In this section we present some experimental evidence that the amount of data
reduction achieved in practice is significant.

Test Case. We evaluated the effect of data reduction with the different estima-
tors and bounds (3), (5), (6), (8) for a “small” but representative test problem
of dimension n = 14558 computing the MR-CI energy and wave function for the
Ethylene molecule C2H4.

The calculations were performed with the COLUMBUS program system, a
collection of programs for high-level ab initio molecular electronic structure cal-
culations [6, 7]. Double precision accuracy, i. e., a mantissa length of 52 bits,
was used, the threshold for the stopping criterium for the Davidson subspace
method was set to tol = 10−4, and the tolerance τ for the data reduction was
set to τ = 10−8.

Convergence History. Fig. 1 illustrates that the artificial perturbations in-
troduced in the vectors v and w of Davidson’s method hardly influence its con-
vergence behavior. In our test case, only one additional iteration step is required
until convergence for all versions of data reduction. Moreover, it can be observed
that for the test case considered the various estimators and bounds hardly differ.

|ΔĒ|DaLi,D,H,q

|ΔĒ| no reduct.
|Δu|DaLi,D,H,q

|Δu| no reduct.
EstH

EstDaLi,D,q

Convergence History

Iteration
10987654321

10−8

10−6

10−4

10−2

1

102

Fig. 1. Convergence history of Davidson’s method with data reduction (based on var-
ious estimators and bounds) as well as without data reduction
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BW: DaLi,H,D
BW: q

EW: DaLi,D,H
EW: q

no reduction

Storage Requirements (accum.)

Iteration

[b
it

]

25%

50%

75%

100%

1086420

1.4 · 107

1.2 · 107

1.0 · 107

8.0 · 106

6.0 · 106

4.0 · 106

2.0 · 106

Fig. 2. Accumulative representation of the number of bits to be stored for different
variants of data reduction (elementwise “EW”, bitwise “BW”, various estimators and
bounds) as well as without data reduction

Storage Savings. In this example, we focus on achieving maximum storage
efficiency, which means that per vector only one additional compression factor,
representing the maximum difference between a vector entry and its value after
data reduction, is stored. The actual length of the mantisse of each vector entry
can then be calculated using this factor and the exponent of the entry. The
starting vector for the Davidson procedure is created by diagonalizing a reference
subspace. Most of the entries in this vector are zero. Therefore, this vector is
submitted to the data reduction process at the beginning of the calculation as
well.

Fig. 2 illustrates very high savings in storage requirements from bitwise data
reduction. In contrast, for this test case the benefits of elementwise data reduc-
tion are much smaller.

5 Conclusions

A data reduction strategy for reducing the data transfer during the solution of
the high dimensional eigenvalue problem arising in the MR-CI method for solv-
ing the electronic Schrödinger equation has been investigated. It is based on the
estimation of the error in the eigenvalues resulting from componentwise pertur-
bations in the subspace vectors. We have evaluated an earlier data compression
scheme introduced by Dachsel and Lischka [2] and compared it to new alterna-
tives based on new error estimators. Using the COLUMBUS program package,
the following observations could be made for a realistic test case: (i) the data
reduction achieved hardly depends on the specific error estimator used, (ii) with
bitwise data reduction, the amount of data to be handled can be reduced to
about one fourth, and (iii) for the test case considered, bitwise data reduction
is much more attractive than elementwise reduction.

Current and future research investigates how this data reduction is best trans-
lated into performance gains in terms of actual runtime reductions. First expe-
riences indicate that even for relatively fast communication, runtime reductions
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may be achieved if data reduction is beyond (roughly) 50% (even earlier for
slower communication). We need to point out that the potential benefits from
our technique presented here do not only come from reducing runtimes, but,
sometimes even more important, from making the solution of problems feasible
which could not be handled before due to storage restrictions. Nevertheless, we
will also investigate alternative (and more efficient) implementation strategies
beyond the elementwise and bitwise reduction discussed here.
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Abstract. We study the calculation of quasi-bound states (QBS) in
MOS inversion layers, which represent the major source of tunneling
electrons. The calculation of QBS is performed by the perfectly matched
layer (PML) method. Introducing a complex coordinate stretching en-
ables us to apply artifical absorbing layers at the boundaries. This allows
us to determine the QBS as the eigenvalues of a linear non-Hermitian
Hamiltonian where the QBS lifetimes are directly related to the imagi-
nary part of the eigenvalues. The PML formalism has been compared to
other established methods and it has proven to be as an elegant, numer-
ically stable, and efficient method to calculate QBS lifetimes.

1 Introduction

The continuous progress in the development of MOS field-effect transistors
within the last years goes hand in hand with down-scaling the device feature
size and therefore, they feature gate oxide thicknesses below two nanometers.
Thus, quantum mechanical tunneling has significant effects on the characteristics
of state-of-the-art electrical devices. The major source of tunneling electrons in
the inversion layers of MOS-structures is due to quasi-bound states (QBS) [4, 1].
Since QBS in the potential well have a finite lifetime, they give rise to a quantum
mechanical tunneling current out of the well into the oxide. The contribution of
the QBS to the tunneling current is given by

J2D =
kBTq
π�2

∑
i,ν

gνm‖
τν(Eν,i(mq))

ln
(

1 + exp
(
EF − Eν,i

kBT

))
(1)

where EF denotes the Fermi level, gν the valley degeneracy, m‖ the parallel mass,
mq the quantization masses, and τν(Eν,i) the lifetime of the quasi-bound state
Eν,i. For the calculation of direct tunneling in silicon MOS structures, assuming
[100] orientation, (1) have to be evaluated two times using gν = 2, m‖ = mt,
mq = ml, and gν = 4, m‖ =

√
mlmt, mq = mt.

Hence, the calculation of direct tunneling currents is based on the accurate
determination of the QBS. Several approaches have been established for the
calculation of the lifetime broadening of QBS but there are still no generally
accepted and efficient algorithms. Within this work, a semi-classical approxi-
mation as well as a method based on scanning the derivative of the reflection
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coefficient are compared with a new method based on the perfectly matched
layer formalism.

2 Calculation of Quasi-bound States

The potential well used for the further considerations was acquired from a self-
consistent quantum-mechanical Schrödinger-Poisson solver. The calculation has
been performed for an n-MOS structure with a poly gate doping of ND=1 ×
1018cm−3 and a substrate doping of NA=1 × 1017cm−3 at a gate bias of 1.5 V
resulting in a potential well as displayed in Fig. 1.

The calculation of tunneling currents is based on the accurate determination
of the QBS which are obtained from the time-independent effective mass Schrö-
dinger equation:

−�2

2
∇ ·

(
m̃−1∇Ψ(x)

)
+ V (x)Ψ(x) = EΨ(x) . (2)

Here, V (x) denotes the potential energy, and m̃−1 denotes the inverse effective
mass tensor. For the simulation of silicon within the effective mass approxima-
tion, two different quantization masses occur, and therefore (2) has to be solved
twice. Note that three different valley sorts occur, but for one-dimensional sim-
ulations two of them have the same quantization mass. Then, the QBS are
determined as the eigenstates of the Hamiltonian. The QBS lifetimes are di-
rectly related to the imaginary parts of the eigenvalues: τi = �/2Ei. Assuming
closed boundaries, we obtain a linear Hermitian eigenvalue problem. Some of the
eigenstates are displayed in Fig. 1. Since the wavefunction of a closed quantum
system does not carry current, open boundary conditions have to be applied for
an accurate description of tunneling electrons.

-20 0 20 40 60
Position   [nm]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

E
ne

rg
y 

  [
eV

]

-10 -5 0 5 10 15
-2

-1

0

1

2
J 

2d

Fig. 1. The potential well that arises at an
nMOS inversion layer and its eigenstates
assuming closed boundary conditions. The
inset displays the wavefunction of the first
QBS at a logarithmic scale.

0 20 40-0.5
0

0.5
1

1.5
2

E
ne

rg
y 

  [
eV

]

0 1 2 3
Position   [nm]

0

200

400

600

800

v cl
[k

m
 s

-1
]

0

0.1

0.2

E
ki

n [
eV

]

Classical Turning Points x
1
 x

2

E
kin

v
cl

Fig. 2. The energy level and the classical
turning points x1, x2 of the first eigenstate.
In the lower figure, the kinetic energy and
the velocity (assuming classical behavior of
the particles) are displayed.



574 M. Karner et al.

2.1 Semiclassical Approximation

However, it has been found that in practice the closed boundary eigenvalues are
close to the eigenvalues of the open system [4]. This allows us to take the closed
boundary eigenvalues, and determine a particle velocity [2] for each eigenstate
under the assumption of classical behavior of the particle as displayed in Fig. 2.
This implies that the electrons are bouncing between two classical turning points
x1 and x2. At the oxide, the electrons are partially reflected according the trans-
mission coefficient of the barrier. This gives rise to an exponential decay in time.
For the ith QBS, the classical velocity vcl,i and the QBS lifetimes τi follow

vcl,i(x) =

√
Ei − V (x)
m(x)

(3) τi =
1

TC(Ei)

∫ x2,i

x1,i

dx
vcl,i(x)

(4)

where the transmission coefficient TC(Ei) can be determined using the quantum
transmitting boundary method (QTBM) or a WKB approximation.

2.2 The QTB Method

A more rigorous way to determine the energetic position and the lifetime broad-
ening of the QBS is the quantum-transmitting boundary method (QTBM) [3]
where a scanning of the transmission coefficient yields the lifetimes. Since the
transmission coefficient is zero for half open system, it has been shown [5], that
the phase of the reflection coefficient φ(E), defined as RC(E) = exp(ıφ(E)), fol-
lows φ(E) ≈ c + 2arctan(Γ/2(E − Ei)) near to the resonances and therefore its
derivative has Lorentzian form

∂φ

∂E =
Γ

(E − Ei)
2 + Γ 2/4

. (5)
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This is shown in Fig. 4. However, for the energy barriers of MOS capacitors,
energy resolutions in the peV regime are necessary to accurately resolve the full-
width half maximum (FWHM) value, which is required to calculate the QBS
lifetime: τi = �/FWHMi .

2.3 The PML Method

Within this work, a novel method to determine QBS, proposed in [6] is applied,
using the perfectly matched layers formalism which is often used in electromag-
netic theory. The idea is to add non-physical absorbing layers at the boundary
of the simulation region (physical region). This procedure prevents reflection at
the boundary of the physical region.

The newly introduced artifical absorbing layers allow application of Dirich-
let boundary conditions, and the QBS are determined by the eigenvalues of
the non-Hermitian, but linear Hamiltonian of the system. Some of the resulting
eigenenergies and the corresponding wavefunctions are displayed in Fig. 5. The
absorbing property of the PML region is achieved by introducing stretched co-
ordinates in (2). The evaluation of the ∇ in one dimension yields:

x̃ =
∫ x

0
sx(τ) dτ (6)

∂

∂x̃
=

1
sx(x)

∂

∂x
(7)

Within the PML region, the stretching function sx(x) is given as sx(x) = 1+(α+
ıβ)xn, with α = 1, β = 1.4, and n = 2, while it is unity in the physical region
as displayed in Fig. 6. Assuming a constant potential V (z) within the PML
regions, the wavefunctions can be written as a plane wave Ψ(x) = Ψ0 exp(ık̃xx)
with the wave vector k̃x = kx/sx. Considering two points in the PML region x1,
x2 = x1 + dx the wave vector at the point x2 can be approximated as
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kx(x2) ≈
sx(x2)
sx(x1)

kx(x1) = (1 + (α+ ıβ) dx) . (8)

The parameter α scales the phase velocity of the plane wave, while β acts as a
damping parameter. Since this damping coefficient is greater than zero within
the absorbing region the envelope of the wavefunctions is pinned to zero as shown
in Fig. 6. These parameters, as well as the thickness of the absorbing layer can
be varied over a wide range with virtual no influence on the results.

However, using QTBM or assuming closed boundary conditions yields a su-
perposition of two moving plane waves in opposite directions. This can be seen
as an envelope of the resulting wavefunctions displayed in the insets of Fig. 1 and
Fig. 3. In contrast, using PML techniques yields no reflected wave into the well,
and therefore the wavefunction is a plane traveling wave with constant envelope
function as displayed in Fig. 5. The QBS, however, are reproduced correctly.

3 Results and Conclusions

Three methods for determining energetic positions and the lifetime broadening
of QBS have been presented. The results are compared in Table 1. For the
semiclassical method, it is still necessary to solve the closed system in order
to get the eigenenergies of the well. Using closed eigenvalues together with the
assumption of a classical velocity might result in inaccurate lifetimes. This is also
true for the QTBM method since good initial values are needed in order to find
the resonances. However, there is a perfect agreement with eigenvalues obtained
from PML techniques. The PML formalism yields the desired eigenvalues in a
natural way without any additional assumptions. Solving the eigenvalue problem
directly yields the energetic positions and the lifetime of the QBS. Although the
dimension of the system increases due to the additional points in the PML
region, the computational effort of the PML has shown to be lower compared to
QTBM as shown in Fig. 7. Thus, the PML formalism represents an efficient, and
numerically stable method to determine QBS which is appropriate for integration
in a device simulator for the investigation of direct tunneling phenomena.

Table 1. The resulting energy levels and lifetimes of the QBS for the semiclassical
approximation, QTB method, and PML technique

Classical Ereal [meV] τl [ns]
1 102.3 57.10
2 252.5 40.34
3 360.0 35.78

QTBM Ereal [meV] FWHM [eV] τl [ns]
1 102.3 1.245 × 10−6 52.8
2 252.5 1.428 × 10−6 46.0
3 365.9 1.735 × 10−6 37.9

PML Ereal [meV] Eimag [eV] τl [ns]
1 102.3 −6.14 × 10−7 53.5
2 252.5 −7.12 × 10−7 46.2
3 365.9 −8.83 × 10−7 37.2
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Abstract. Carbon nanotube field-effect transistors have been studied
in recent years as a potential alternative to CMOS devices, because of
the capability of ballistic transport. In order to account for the ballistic
transport we solved the coupled Poisson and Schrödinger equations for
the analysis of these devices. Conventionally the coupled Schrödinger-
Poisson equation is solved iteratively with appropriate numerical damp-
ing. Often convergence problems occur. In this work we show that this
problem is due to inappropriate energy discretization, and by using an
adaptive integration method the simulation time is reduced and most of
the simulations converge in a few iterations. Based on this approach we
investigated the static and dynamic behavior of carbon nanotube field
effect transistors.

1 Introduction

Exceptional electronic and mechanical properties together with nanoscale di-
ameter make carbon nanotubes (CNTs) a candidate for nanoscale field effect
transistors (FETs). While early devices have shown poor device characteristics,
high performance devices were achieved recently [17, 11, 5, 7, 14]. In short devices
(less than 100 nm) carrier transport through the device is nearly ballistic [5, 6].
As described in the next section the coupled Poisson and Schrödinger equation
system was solved to study the static response of CNTFETs. We show that by
using an adaptive integration method for calculating carrier concentration and
current density, simulations converge very fast while the results are very accu-
rate. Based on the Quasi Static Approximation (QSA) the dynamic response of
these devices is also investigated.

The contact between metal and CNT can be of Ohmic [6] or Schottky type
[1]. In this work we focus on Ohmic contact CNTFETs which theoretically [4]
and experimentally [5] show better performance than Schottky contact devices.
In a p-type device with ohmic contacts holes see no barrier while the barrier
height for electrons is Eg. By changing the gate voltage the transmission coeffi-
cient of holes through the device is modulated and as a result the total current
changes [6].

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 578–585, 2006.
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2 Approach

In this section the models which were used to study the static and dynamic
response of CNTFETs are explained. As it will be shown in the next section a
good agreement between simulation and experimental results is achieved.

2.1 Static Response

In order to account for the ballistic transport we solved the coupled Poisson and
Schrödinger equations for CNTFETs.

∂2V

∂ρ2 +
1
ρ

∂V

∂ρ
+
∂2V

∂z2 = −Q
ε

(1)

− �2

2m∗
∂2Ψn,p

s,d

∂z2 + (Un,p − E)Ψn,p
s,d = 0 (2)

We considered an azimuthal symmetric structure, in which the gate surrounds
the CNT, such that the Poisson equation (1) is restricted to two-dimensions.
In (1) V (ρ, z) is the electrostatic potential, and Q is the space charge density.

In the Schrödinger equation (2) the effective mass is assumed to be m∗ =
0.05m0 for both electrons and holes [19]. In (2) superscripts denote the type of
the carriers. Subscripts denote the contacts, where s stands for the source contact
and d for the drain contact. For example, Ψn

s is the wave function associated with
electrons that have been injected from the source contact, and Un is the potential
energy that is seen by electrons. The Schrödinger equation is just solved on the
surface of the tube, and is restricted to one-dimension because of azimuthal
symmetry.

The space charge density in (1) is calculated as:

Q =
q(p− n)δ(ρ− ρcnt)

2πρ
(3)

where q is the electron charge, and n and p are total electron and hole con-
centrations per unit length. In (3) δ/ρ is the Dirac delta function in cylindrical
coordinates, implying that carriers were taken into account by means of a sheet
charge distributed uniformly over the surface of the CNT [8].

Including the source and drain injection components, the total electron con-
centration in the CNT is calculated as:

n =
4
2π

∫
fs|Ψn

s |2dks +
4
2π

∫
fd|Ψn

d |2dkd

=
∫ √

2m∗

π�
√
Es

fs|Ψs|2dEs +
∫ √

2m∗

π�
√
Ed

fd|Ψd|2dEd (4)

where fs,d are equilibrium Fermi functions at the source and drain contacts.
All our calculations assume a CNT with 0.5 eV band gap [5]. The total hole
concentration in the CNT is calculated analogously.
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The Landauer-Büttiker formula [3] is used for calculating the current:

In,p =
4q
h

∫
[fn,p

s (E)− fn,p
d (E)]T n,p

c (E)dE (5)

where T n,p
c (E) are the transmission coefficients of electrons and holes, respec-

tively, through the device. The factor 4 in (4) and (5) stems from the twofold
band and twofold spin degeneracy.

Conventionally the coupled Schrödinger and Poisson equations are solved iter-
atively [20], by using an appropriate numerical damping factor α. At the (k+1)th

iteration the Schrödinger equation is solved using the electrostatic potential V k

from the last iteration and the new space charge density Qk+1 is calculated.
The Poisson equation is then solved by using Qk+1 and an intermediate new
electrostatic potential is calculated V k+1

int . Finally V k+1 is calculated as:

V k+1 = αV k+1
int + (1− α)V k (6)

where 0 < α < 1. Successive iteration continues until a convergence criterion is
satisfied. In this work an adaptive damping factor was used [10]. The damping
factor is initially set to α = 1. If the potential update |V k+1 − V k| increases
from one iteration to the next iteration or remains constant the damping factor
decreases by a constant factor. We used α = α × 0.8 as suggested by [10]. If
a high damping factor is initially selected the simulations may oscillate and
will not converge. Using a low damping factor will result in long simulation
time. We show that by appropriate evaluation of the carrier concentration this
problem can be avoided. The integration in (4) and (5) are calculated in an
energy interval [Emin, Emax]. In the simplest way the interval is divided into
equidistant steps. By using this method narrow resonances at some energies
may be missed or may not be evaluated correctly. In successive iterations as
the potential profile changes the position of the resonances will also change,
and it is possible that a resonance point locates very near to one of the energy
steps. In this case the carrier concentration suddenly changes and as a result the
simulation would oscillate and not converge. To avoid this problem the accuracy
of the integration should be independent of the location of resonances. By using
an adaptive integration method the integrations in (4) and (5) can be evaluated
with a desirable accuracy. Assume f is an integrable function, and [a, b] is the
interval of integration. To compute

I =
∫ b

a

f(x)dx (7)

adaptively I is calculated with two different integration methods, I1 and I2. If the
relative difference of the two approximations is less than a predefined tolerance
the integration is accepted, otherwise the interval [a,b] is divided into two equal
parts [a, c] and [c, b], where c = (a + b)/2, and the two respective integrals are
computed independently.
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Fig. 1. The comparison of CPU time demand on an IBM-RS6000 for the same iterative
simulation, but with different integration methods. The norm of the potential update
is considered as a measure of convergence. a) Shows the results for adaptive and non
adaptive integration. b) Show the result for adaptive integration with and without the
derivative of carrier concentration with respect to the electrostatic potential.

I =
∫ c

a

f(x)dx +
∫ b

c

f(x)dx (8)

The same procedure is performed for each of these integrals. The advantage of
this methods is that the steps are non-equidistant, so there are many points
around the resonances while in other regions there are few points. In this work
an adaptive Simpson quadrature [15] is used. In this method the two successive
Simpson approximates are calculated:

I1 =
h

6
(f(a) + 4f(c) + f(b)) (9)

I2 =
h

12
(f(a) + 4f(d) + 2f(c) + 4f(e) + f(b)) (10)

whered = (a+c)/2, and e = (c+b)/2. If |I1−I2| ≤ tol×|I2| the integration is evalu-
atedwithinone stepofRomberg extrapolation: I = I2+(I2−I1)/15 .Fig. 1-a shows
the CPU time demand on an IBM-RS6000 for the same iterative simulation using
adaptive integration and non-adaptive integration with 5 × 104 and 105 points.
Increasing the number of data points in the non adaptive method the simulation
becomes more stable. Using adaptive integration method, only 9× 102 points are
required and most of the simulations can start with a high damping factor (α = 1)
and no or few oscillations occur. Therefore a high damping factor is used for all the
iterations and as a result simulations converge very fast. It is also possible to make
the simulations more stable by providing the derivate of carrier concentration with
respect to the electrostatic potential for the Poisson solver [12, 2]. In general there
is no exact form for this term, but ∂n/∂φ ≈ q ∂n/∂EF can be considered as a good
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approximation [12]. As shown in Fig. 1-b by including the derivate of carrier con-
centration with respect to the electrostatic potential, the stability of simulations
increases and the simulation time decreases.

2.2 Dynamic Response

To study the dynamic behavior of CNTFETs, the QSA was used. Generally
in this method device capacitances are given by the derivatives of the various
charges with respect to the terminal voltages:

Cij = χij
∂Qi

∂Vj

∣∣∣∣∣
Vk 	=j=0

(11)

where the indices i, j, k represent terminals (gate, source or drain), and χij = −1
for i �= j and χij = +1 for i = j. The differentiation of these expressions is
performed numerically over steady state charges [18]. This method is widely used
for the analysis of conventional semiconductor devices, where the charge in the
semiconductor device is partitioned into two parts indicating the contribution of
the source and drain contacts [18, 13]. For example, the gate-source capacitance
is calculated by

Csg =
∂Qse

∂Vgs
+
∂Qst

∂Vgs
= Cse + Csq (12)

where Qse is total charge on the source contact and Qst is the total charge on the
tube injected from the source contact. As shown in (12) the total gate-source ca-
pacitance is split into two components, the first term indicates the electrostatic
gate-source capacitance and the second term is usually referred to as quantum ca-
pacitance [9]. Therefore the capacitancematrix has a rank of 3, anddue to quantum
capacitances the matrix is not symmetric (Cij �= Cji). In this work we assumed
that only the gate voltage changes, whereas the voltages of the other terminals are
kept constant. Therefore, the capacitance matrix simplifies to three components,
and an equivalent circuit as shown in Fig. 2 is achieved [16]. In Fig. 2, gm is the dif-
ferential transconductance calculated by gm = ∂Ids/∂Vgs Based on the equivalent
circuit in Fig. 2, the cutoff frequency of the device can be derived as

fT =
gm

2πCsg

√
1 + 2Cdg

Csg

(13)

Gate

Source Drain

dgCCsg

g   vm  gs

Fig. 2. Simplified equivalent circuit model for the dynamic response of CNTFETs. The
model is based on the assumption that only the gate voltage changes.
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3 Simulation Results

We consider a p-type ohmic device, where holes see no barrier while the barrier
height for electrons is Eg. For a fair comparison with experimental results, we
used the same material and geometrical parameters as reported in [5]. As shown
in Fig. 3, there is a good agreement between simulation and experimental results
despite the fact that the cylindrical structure is only an approximation of the
real device structure.

The dynamic response of these devices has been also investigated. Fig. 4
shows the electrostatic and quantum capacitances associated with the source
and drain contacts. It is clearly seen that the quantum capacitances unlike
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Fig. 3. The comparison of simulation and experimental results. Material and geometri-
cal parameters are reported in [5]. a) Transfer characteristics. b) Output characteristics.
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Fig. 4. Electrostatic and quantum capacitances associated with the a) Source contact,
and b) Drain contact. Electrostatic capacitances dominate at low gate biases.
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the electrostatic capacitances depends on the bias voltages. At low gate
voltages electrostatic capacitances dominates the quantum capacitances. To in-
vestigate the ultimate frequency limit of this device the differential transcon-
ductance of this device is shown in Fig. 5, and based on (13) the cut-off
frequency is shown in Fig. 6. The cut-off frequency of the device can be improved
by decreasing the parasitic capacitances, which can be achieved by increasing
the source and drain spacers. However the ultimate limit will be the quantum
capacitances.

4 Conclusion

We showed that by using an adaptive integration method the iterative solu-
tion of the coupled Poisson and Schrödinger equation system will converge
very fast and in most of the simulations no damping is required. This method
was used to study the dynamic and static behavior of CNTFETs. Good agree-
ment between simulation and experimental results indicates the validity of the
models. This methodology can be well applied for the optimization of the
CNTFETs.
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Abstract. We present a numerical method which allows to efficiently
calculate quantum transport through phase-coherent scattering struc-
tures, so-called “quantum billiards”. Our approach consists of an exten-
sion of the commonly used Recursive Green’s Function Method (RGM),
which proceeds by a discretization of the scattering geometry on a lattice
with nearest-neighbour coupling. We show that the efficiency of the RGM
can be enhanced considerably by choosing symmetry-adapted grids re-
flecting the shape of the billiard. Combining modules with different grid
structure to assemble the entire scattering geometry allows to treat the
quantum scattering problem of a large class of systems very efficiently.
We will illustrate the computational challenges involved in the calcu-
lations and present results that have been obtained with our method.

1 Introduction

A major aim in ballistic transport theory is to simulate and stimulate experi-
ments in the field of phase-coherent scattering through nano-scaled semiconduc-
tor devices [7, 4]. However, even for two-dimensional quantum dots (“quantum
billiards”) the numerical solution of the Schrödinger equation in an effective one-
electron approximation has remained a computational challenge. This is partly
due to the fact that many of the most interesting phenomena occur in parameter
regimes which are difficult to handle from a computational point of view: (1) In
the “semi-classical regime” of high Fermi energy EF the de Broglie-wavelength
of the electrons, λD = 2π/

√
2EF , is much smaller than the linear dimensions of

the scattering device, λD $ D. To properly describe the continuum limit of the
transport process, a large number of basis functions is necessary [14]. Eventu-
ally this requirement renders all available methods computationally unfeasible
or numerically instable. (2) In the “quantum-Hall regime” of very high magnetic
fields the magnetic length, lB =

√
c/B (in atomic units), is considerably smaller

than the system dimensions, lB $ D. Methods based on the expansion in plane
or spherical waves become invalid since diamagnetic contributions are generally
neglected [14]. Methods employing a discretization on a grid do not allow the
flux per unit cell to exceed a critical value and are therefore limited in the range
of magnetic fields accessible [4, 2]. In this article we discuss a modification of
the widely used Recursive Green’s Function Method (RGM) [4] and illustrate
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how this modular extension of the RGM can bypass several of the limitations of
conventional techniques.

2 Method

We consider a two-dimensional scattering geometry (“billiard”) to which two
semi-infinite waveguides (“leads”) of width d are attached in different orien-
tations. A constant flux of electrons is injected at the Fermi energy EF =
�2k2

F /(2meff) through one of the waveguides and can leave the cavity through ei-
ther the entrance or the exit lead. We assume inelastic scattering processes to be
absent, such that the electronic motion throughout the device region is ballistic
and therefore determined by the shape of the billiard. The potential surface inside
the boundary of the dot is allowed to have different shapes (flat, soft wall profile
or disordered) and is infinitely high outside. Atomic units (� = |e| = meff = 1)
will be used, unless explicitly stated otherwise.

Our starting point is the standard recursive Green’s function method (RGM).
This approach is widely used in various fields of computational physics and
consists in a discretization of the scattering geometry on a Cartesian grid. Setting
up a tight-binding (tb) Hamiltonian on this grid,

Ĥtb =
∑

i

εi | i 〉〈 i |+
∑
i,j

Vi,j | i 〉〈 j | , (1)

the hopping potentialsVi,j and the site energies εi are chosen such that the equation
Ĥtb|ψm〉 = Em|ψm〉 converges towards the continuum one-particle Schrödinger
equation, [−Δ/2 +V (x, y)]|ψm〉 = Em|ψm〉 , in the limit of high grid density. The
hopping potentials are non-zero only for nearest-neighbour coupling of grid-points
(with spacing Δx ,Δy) and result directly from a three-point difference approxi-
mation of the kinetic energy term in the free-particle Hamiltonian [4],

εi =
1

Δx2 +
1
Δy2 , V x

i,i±1 =
−1

2Δx2 , V y
j,j±1 =

−1
2Δy2 . (2)

With the help of the eigenvectors |ψm〉 and the eigenvalues Em of the Hamil-
tonian Ĥtb the Green’s functions of one-dimensional tb strips are calculated,

G±(x,x′, E) = lim
ε→0

∑
m

〈x|ψm〉〈ψm|x′〉
E ± iε− Em

. (3)

The different signs (±) denote the retarded and advanced Green’s functions,
respectively. The disconnected transverse tb-strips incorporate the boundary
conditions at the top and the bottom (see Fig. 1a) as accurately as possible.
The Green’s functions of the strips are connected one at a time through recursive
solutions of a matrix Dyson equation,

G = G0 +G0 V G , (4)
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where V is the hopping potential between the strips, G0 and G denote the re-
tarded Green’s function matrices of the disconnected and the connected tb strips,
respectively. The complete scattering structure can thus be assembled from the
individual strips much like knotting a carpet. Note that in this procedure the
number of transverse strips is equal to the number of recursions (each involv-
ing at least one matrix inversion). For very high electron energies EF , the large
number of strips required to simulate the continuum eventually renders trans-
port calculations impractical. This is in part because of the very large size of the
matrices which have to be inverted in the strip-by-strip recursion process.

The remedy which we have proposed [8, 9] to overcome such difficulties goes
back to Sols et al. [11] and consists of an extension of the RGM. Starting point
is the observation that the efficiency of the “conventional” discretization em-
ployed in the RGM can be increased considerably by taking the symmetry of
the scattering problem into account. More specifically, if the two-dimensional
nonseparable open quantum dot can be built up from simpler separable sub-
structures (“modules”), one gains significantly in computational speed by calcu-
lating the Green’s functions for each of these modules separately. We solve the
tight-binding Schrödinger equation, Ĥtb|ψm〉 = Em|ψm〉, now for one module
at a time. Employing symmetry-adapted tight-binding grids leads to the sepa-
rability of the eigenfunctions |ψm〉 for the modules and allows to determine the
Green’s function for an entire module [according to Eq. (3)] fast and virtually
exactly. For joining modules with each other we employ the technique of the
RGM where the coupling between Green’s functions is facilitated in terms of the
corresponding hopping matrix elements of the tight-binding Hamiltonian. By
solving one Dyson equation at each junction between the modules, the complete
scattering structure can be assembled much like a jigsaw puzzle. In Fig. 1b we
illustrate how the discretization of the circle billiard within the framework of
this modular recursive Green’s function method (MRGM) [8, 9] proceeds.

Note that, quite in contrast to the conventional RGM, the number of recur-
sions (i.e., of matrix inversions) needed to obtain the Green’s function of the
total scattering problem is given by the number of separate modules required to
build up the scattering structure. This number is independent of the de Broglie
wavelength. The latter enters only in terms of the size of the matrices involved
in the fixed number of recursions. Furthermore, for solving the transport prob-
lem, the module Green’s functions have to be evaluated only on the subset of
grid points which are coupled to grid points on neighbouring modules. Another
advantage of the MRGM comes into play when solving the scattering problem
at different Fermi energies EF , since for all values of EF the eigenvalue problem
Eq. (1) has to be solved only once for each module. This is because the eigenvec-
tors |Em〉 and the eigenenergies Em are independent of EF . As a consequence of
these advantages it is possible to incorporate a very high number of grid points
in the calculations, which is the prerequisite to access the “semiclassical” as well
as the “quantum Hall” regime. On the negative side, the most severe restriction
of the MRGM is its restricted applicability to those scattering structures which
can be assembled from separable modules. This includes random and soft-wall
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Fig. 1. (Color) Discretization of the circular billiard with leads employing (a) the con-
ventional RGM and (b) the MRGM. (c)-(d) Features of the discretization with the
MRGM (see text for details). (e) Hard wall vs. soft wall profile. (f) Bulk and sur-
face disorder potentials. (g) Density of localized wavefunctions |ψ(x, y)|2 in a regular
vs. chaotic billiard. (h) Density of scattering wavefunctions in the high magnetic field
vs. high energy limit. (i) “Trapped” trajectory in a soft wall billiard with a mixed classi-
cal phase space and the density of the corresponding quantum wavefunction. (j) Three
bound electron-hole wavefunction densities in a square billiard with superconducting
lead (“Andreev billiard”).
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potentials as long as they preserve the separability of each module. For problems
which do not allow for a decomposition into modules, other variants of standard
lattice Green’s function methods could be employed [6, 15].

Once the Green’s function G(x,x′, E) for the total scattering geometry is
determined, the scattering wave functions can be obtained by projecting this
Green’s function onto the transverse states χn(y) = (2/d)1/2 sin(nπy/d) in the
entrance lead,

ψm(x, EF ) = i
√
kx,m

∫ d/2

−d/2
dy′ G(x,x′, EF )χm(y′) . (5)

The amplitudes tnm for transmission from the entrance lead mode m to exit lead
mode n can be calculated by projecting the scattering wavefunction ψm(x, EF )
onto the transverse wavefunction in the exit lead χn(yi),

tnm(EF ) =−i
√
kx,nkx,m

∫ d/2

−d/2
dy

∫ d/2

−d/2
dy′ χ∗

n(y)G(x,x′, EF )χm(y′) , (6)

where kx,n denotes the corresponding longitudinal wave numbers, kx,n = [k2
F −

(nπ/d)2]1/2. The indices n,m ∈ [1, . . . ,M ], with M denoting the total number of
open channels in the leads. The wave numbers kx,n are real for nπ/d < kF (open
channels). For nπ/d > kF (closed channels), kx,n is purely imaginary. According
to the Landauer formula [4], the total conductance g through the quantum dot
is given by

g =
1
π

M∑
m,n=1

|tnm|2 =
1
π
T tot , (7)

which is an experimental observable in semiconductor devices.

3 Special Features and Sample Results

3.1 Joining Modules of Different Symmetry

To investigate quantum billiards which feature chaotic classical dynamics it be-
comes necessary to turn to cavity geometries which are different from the purely
separable cases. A prototypical example in this context is the stadium billiard
(see e.g. Fig. 1h and [12]), for which two half-circular and one rectangular mod-
ule are joined with each other. Using the MRGM we are confronted with the
problem of how to properly connect the Cartesian grid of the rectangle with the
polar grid structure of the half-circles without violating the Hermiticity of the
tight-binding Hamiltonian at the junctions. To overcome this problem we insert
additional link modules between the rectangle and the half-circles (see Fig. 1c).
These link modules are essentially one-dimensional strips the site energies of
which contain contributions from both adjacent grid structures [8].

In Fig. 1g we present two scattering wavefunctions for the circle and the
stadium, respectively [9]. Note how the two wavefunctions in Fig. 1g are both
localized along a typical classical trajectory in the respective cavity.
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3.2 Magnetic Field

The MRGM allows to incorporate a magnetic field B oriented perpendicular to
the 2D scattering geometry. The field enters the tb Hamiltonian of Eq. (1) by
means of a Peierls phase factor [4, 2], with which the field-free hopping potential
Vi,j is multiplied: Vi,j → Vi,j × exp[i/c

∫
A(x)dx] . The vector potential A(r)

satisfies ∇×A(r) = B. The Peierls phase will, of course, in most cases destroy
the separability of the eigenfunctions of Ĥtb in the modules. The resulting dif-
ficulties can be, in part, circumvented by exploiting the gauge freedom of the
vector potential, i.e., A → A′ = A + ∇λ , where λ(r) is a scalar function. By
an appropriate choice of λ the wavefunction may remain separable on a given
symmetry-adapted grid. Note, however, that even in the seemingly simple case of
a rectangular module separability is destroyed by the magnetic field, no matter
which gauge is chosen. The separability can however be restored by imposing
periodic boundary conditions on two opposing sides of the rectangle. Topologi-
cally, this corresponds to folding the rectangle to the surface of a cylinder. The
Green’s function for the rectangle is finally obtained from the cylinder Green’s
function by a Dyson equation which is used here in “reversed” mode, i.e. for
disconnecting tb grids (see Fig. 1d) [9].

The top part of Fig. 1h shows a stadium wavefunction in the very high mag-
netic field limit [9]. The magnetic field leads to the emergence of so-called “edge
states” which creep along the boundary of the billiard [4]. The bottom part
of Fig. 1h displays a field-free stadium wavefunction (in the high energy limit)
which explores the entire cavity area.

3.3 Soft Potential Walls

Most theoretical investigations on quantum billiards focus on the two limiting
cases of systems with either purely chaotic or purely regular classical dynamics
[12]. However, neither of these cases is generic. For the semiconductor quantum
dots that are realized in the experiment [4] a classical phase space structure with
mixed regions of chaotic and regular motion is expected. This is due to the fact
that the boundaries of such devices are typically not hard walls (as assumed
in most theoretical investigations) but feature soft wall profiles [4] for which
such a ”mixed” phase space is characteristic. Soft walls can be incorporated in
the MRGM, as long as their potential profiles do not violate the separability
condition within a given module. In Fig. 1e we show an example of how this
requirement can be fulfilled in the particular case of a half-stadium geometry
(left part: hard wall case, right part: soft walls). Classical simulations reveal
that the half-stadium with smooth boundaries indeed features a phase space
within which regular and chaotic motion coexists. Characteristic for such “mixed
systems” are very long trajectories that get “trapped” in the vicinity of regular
islands of motion [12]. A typical example for such a trajectory is depicted in the
top part of Fig. 1i. The quantum scattering wavefunction which corresponds to
this orbit is shown right below [13].



592 S. Rotter et al.

3.4 Bulk and Surface Disorder

For many fundamental quantum transport phenomena the presence of disorder
is essential and determines whether transport will be ballistic, diffusive or en-
tirely suppressed by localization [4]. Whereas the (mostly unwanted) disorder is
naturally present in the experiment, it is not straightforward to simulate disorder
numerically. Bulk disorder can be viewed as random variations of the potential
landscape through which the electron is transported. Within the framework of
the MRGM the inclusion of such non-separable potential variations is not ob-
vious, since separability is required in each of the modules. A way to overcome
this difficulty is depicted in the top inset of Fig. 1f, where we decompose the
cavity region into two square modules for each of which we choose a separable
random potential V (x, y) = V1(x)+V2(y). In order to destroy the unwanted sep-
arability, we combine two identical modules, however, rotated by 180◦ relative to
each other [1]. The case of surface disorder can be treated by compiling a large
number of rectangular modules of variable height (see bottom part of Fig. 1f).
In this context the amount of spatial variation of the transverse module widths
represents the strength of the disorder.

Since diffusion and localization in transport occur on very extended spatial
scales, it is necessary to build up disorder regions of large length. For this pur-
pose we employ an approach which allows to “exponentiate” the iteration process
[10]: in the first step of the Dyson iteration we join individual rectangular mod-
ules with each other and employ the resulting combination of modules as the
building block for the next step of the iteration. Repeating this procedure in
each step of the iteration process, we manage to increase the size of the dis-
ordered region exponentially — with only a linear increase of computational
time [3].

3.5 Andreev Billiards

The interface between a normal-conducting (N), ballistic quantum dot and a su-
perconductor (S) gives rise to the coherent scattering of electrons into holes. This
phenomenon is generally known as Andreev reflection. A N-S hybrid structure
consisting of a superconducting lead attached to a normal cavity (see Fig. 1j)
is commonly called an Andreev billiard. Such billiard systems attracted much
attention recently, especially because of the unusual property that the classi-
cal dynamics in these systems features continuous families of periodic orbits,
consisting of mutually retracing electron-hole trajectories. To learn more about
the classical-to-quantum correspondence of Andreev billiards it is instructive to
study the bound states in these billiards and the form of their wavefunctions.
As shown in Fig. 1j, such wavefunctions indeed feature an electron and a hole
part that (in most cases) closely resemble each other — in analogy to the clas-
sical picture of retracing electron-hole orbits. To obtain these quantum results
numerically, we calculated the scattering states for the billiard with a normal
conducting lead and entangled them in a linear superposition to construct the
Andreev states [5]. Work on a more versatile approach is in progress which fea-
tures coupled electron and hole tight-binding lattices explicitly.
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4 Summary

We have given an overview of the modular recursive Green’s function method
(MRGM), which allows to calculate ballistic transport through quantum billiards
efficiently. Key feature of the MRGM is the decomposition of billiard geometries
into separable substructures (“modules”) which are joined by recursive solu-
tions of a Dyson equation. Several technical aspects of the method, as well as
computational challenges and a few illustrative results have been presented.
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Abstract. A quantum kinetic equation approach is adopted in order to
incorporate quantum effects such as collisional broadening due to finite
lifetime of single particle states, and collisional retardation due to finite
collision time. A quantum correction to the semiclassical electron distri-
bution function is obtained using an asymptotic expansion for the quan-
tum electron-phonon collision operator in its weak formulation. Based on
this expansion, the evolution of a highly peaked, nonequilibrium distri-
bution function in Si and Ge is analyzed. It is shown that in Ge and Si,
where the electron-phonon interaction is weak, the quantum correction
due to the finite collision time leads to an extra broadening of new repli-
cas of the initial distribution function. As the observation time exceeds
the collision duration, the quantum correction starts to diminish and the
semiclassical solution for a particular replica is recovered.

1 Introduction

The semiclassical Boltzmann transport equation is successfully used for trans-
port description and modeling in conventional semiconductor devices since the
early development of semiconductor technology. A particular advantage of the
Boltzmann equation is that it can be solved by a Markov-chain Monte Carlo
algorithm which opens an immediate opportunity for direct transport process
simulation. In the standard Monte-Carlo algorithm the carriers are moving on
classical trajectories between the two consecutive collisions. Classical trajecto-
ries are characterized by the well defined values of coordinates r and momenta
p which are related through the classical equations of motion. The scattering
events are considered to be isolated from each other and instantaneous in both
time and space. Locality of scattering events in time and space is one of the
main assumptions underlying the semiclassical transport description based on
the Boltzmann equation and should be re-evaluated in case of emerging quan-
tum effects. Indeed, due to the quantum uncertainty principle a carrier may not
have the well defined coordinate and momentum simultaneously. Therefore, the
particle motion on the trajectory between collisions may not be described classi-
cally if the device dimension is comparable to the carrier de-Broglie wavelength.
Similar, the scattering events may not be considered as local events in phase
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space. Locality of scattering in time may also be questioned. Due to the energy-
time uncertainty, the energy conservation during scattering is justified only when
the collision duration is large. This limit is usually referred to as the limit of a
completed collision leading to the famous Fermi golden rule. When the duration
of scattering is finite and the scattering may not be considered completed at
an observation time moment t, the particle state at this moment t depends on
the history of states the particle has assumed at all times t

′
< t, leading to the

memory effect. This effect is in clear contradiction to the Markovian nature of
the semiclassical Boltzmann equation and may not be described by the classical
transport picture.

Going beyond the semiclassical approach in transport description becomes in-
creasingly relevant. Indeed, with the 90 nm technology node being commercially
implemented, the physical transistor gate length is already in the range of 45
nm. According to the International Technology Roadmap for Semiconductors,
for the 32 nm technology node the physical gate length will be in the range of 10
nm, where quantum effects are expected to play a dominant role in determining
the transport through the device.

Several advanced computational techniques for including the quantum ef-
fects were proposed recently. The method based on the Nonequilibrium Green’s
function formalism treats the quantum effects in the most complete and con-
sistent way. However, due to its completeness, this method is rather complex
and computationally costly [1]. Another approach is based on the solution of
the Schrödinger equation using the modal analysis for an arbitrary 2D geome-
try (QDAME) [4]. Scattering can be included in this method by a Pauli master
equation, and testing was successful for the resonant tunneling diode. Neverthe-
less, the QDAME applications to double-gate MOSFETs were so far limited to
ballistic coherent regime [4].

An alternative method to address the quantum effects is the Wigner function
approach [11]. Similar to the classical distribution function, the Wigner func-
tion depends on position and momentum simultaneously. Another attractive
feature of the Wigner function approach is that it allows to include all scatter-
ing processes in the device via the Boltzmann scattering integral. It brings a
unique opportunity to treat classical collisions on equal footing with the quan-
tum scattering described by the quantum collision operator [3]. The question
however rises as to whether the use of the classical Boltzmann scattering oper-
ator in the Wigner equation is justified. It is well known that the semiclassical
transport theory based on the Boltzmann equation neglects several quantum
mechanical effects such as collisional broadening due to the finite lifetime of sin-
gle particle states, collisional retardation due to the finite collision duration, and
intra-collisional field effects [10]. To answer this question, we shall begin from a
complete quantum description of carrier scattering. The Levinson equation [5]
which describes an interaction of a single electron with an equilibrium phonon
bath represents a convenient starting point.

In this paper we analyze a quantum correction to the semiclassical scatter-
ing operator which is based on a recently obtained asymptotic expansion of
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Levinson’s scattering operator [9]. This method allows calculating a correction
to the distribution function simultaneously with solving of the Boltzmann equa-
tion, which is the advantage as compared to the previously used techniques.
An application of the algorithm to describe the transient processes in Si and
Ge is investigated in details for the case of electron-phonon interaction. Tak-
ing a highly nonequilibrium initial distribution function which is sharply peaked
around a certain energy as example, it is shown that for Si and especially for
Ge the method adequately describes the quantum correction to the distribution
function due to the finite collision time.

2 Basic Equations

A suitable quantum kinetic equation for the Wigner function describing the
interaction of a single electron with an equilibrium phonon bath has been pro-
posed by Levinson [5]. In case of vanishing electric field and spatially uniform
semiconductor the Levinson equation has the following form:

∂f

∂t
=

∫ t

0
dt′

∫
dp′[S(p, p′, t− t′)f(p′, t′)− S(p′, p, t− t′)f(p, t′)]. (1)

Here, p denotes the momentum and p = |p| is its absolute value. The kernel
S(p, p′, t) corresponding to an electron-optical phonon scattering is taken in the
form

S(p, p′, t) =
2V F 2n

(2π�)3

{
cos

[
t

�
(E(p) − E(p′)− �ω)

]
+
n+ 1
n

cos
[
t

�
(E(p)− E(p′) + �ω)

]}
, (2)

where �F denotes the electron-phonon interaction matrix element, �ω the pho-
non energy, V the normalization volume, n = (exp(β�ω) − 1)−1 is the phonon
occupation number corresponding to the temperature kBT = 1/β, and E(p)
is the single particle energy. Due to an explicit time dependence of the kernel
(2), the Levinson equation can fully describe the effects caused by the finiteness
of the collision time. Numerical integration of the equation by Monte Carlo
methods is, however, quite involved and can be performed for short evolution
times only, due to fast growth of variances with time [2]. Our goal is to develop
an approximate scheme which is computationally sound and less expensive. The
path we would like to explore is based on the assumption of weak electron-phonon
interaction. This assumption allows one to obtain an asymptotic expansion of
the scattering operator (2) in powers of the dimensionless interaction constant.
The principal term of this expansion reproduces the semiclassical Boltzmann
scattering integral. The second term in the series describes the correction to the
Boltzmann scattering integral due to the finite collision time. To derive it, we
rewrite (1) in scaled variables, introduced in [9]. Measuring electron energies E
in units of optical phonon energy ε = E/(�ω) and introducing the new variable
t̃ = t/t0 , where t0 = (λω)−1, the resulting equation takes the form [9]:
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∂f

∂t̃
=

∫ t/λ

0
dτ

∫
dερ(ε′)[s(ε, ε′, τ)f(ε′, t̃− λτ) − s(ε, ε′, τ)f(ε, t̃− λτ)], (3)

s(ε, ε′, τ) =
∑

ν=±1

aν cos(τ(ε− ε′ + ν)), a−1 =
n

n+ 1
, a1 = 1,

where ρ(ε) = 4π
√

2ε is the density of states, corresponding to the parabolic dis-
persion E = p2/(2m). The dimensionless electron-phonon interaction constant
λ is given by

λ =
2V F 2n

(2π)3

√
m3

�3ω
. (4)

In the limit of small λ corresponding to weak interaction the time scale t0 be-
comes much larger than the period of lattice vibrations. Considering an asymp-
totic behavior of the collision operator in the left-hand side of (3) for small λ
when t̃/λ# 1, the Levinson equation becomes [9]:

∂tf = Θ0[f ] + λΘ1[∂tf ] + o(λ), (5)

where Θ0[f ] represents the Boltzmann scattering integral,

Θ0[f ](p, t) =
∑

ν=±1

πaν

∫
dε′ρ(ε′)[δ(ε− ε′ + ν)f(ε′, t)− δ(ε′ − ε+ ν)f(ε, t)] (6)

For the sake of brevity we omit the tilde and use the notation t for the scaled
variable t̃ here and below, unless it is specified otherwise.

The correction scattering operator Θ1[∂tf ] formulated in a weak sense can be
written as [9]∫

dερ(ε)Θ1[∂tf ](φ(ε) =
∑

ν=±1

aν

∫
dε

∫
dε′ ln |ε′ − ε+ ν|

× ∂

∂ε′
∂

∂ε

{
ρ(ε′)ρ(ε)

∂f(ε′, t)
∂t

(φ(ε)− φ(ε′))
}
, (7)

where φ(ε) is a smooth test function. The weak formulation of the collision oper-
ator Θ1 conserves mass locally since (7) is explicitely equal to zero for constant
test functions.

In contrast to the the Boltzmann scattering integral being a functional of
the distribution function, the correction scattering operator (7) depends on its
time derivative ∂tf(ε′, t). The time derivative is a consequence of memory effects
present in the original Levinson equation. Expression (7) shows that the correc-
tion term Θ1[∂tf ] also depends on the values of the distribution function outside
of the constant energy shell defined by the Fermi golden rule (6). These off-
shell contributions are caused to the finiteness of the collision time and therefore
provide the quantum mechanical correction to the Fermi golden rule.
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3 Multiple Trajectories Monte Carlo Method

Equation (5) with scattering operatorsΘ0[f ] and Θ1[∂tf ], defined by (6) and (7),
respectively, represents our starting point. We formally solve the equation (5)
for f(ε, t) using an iteration technique. We are looking for a solution of the form
f(ε, t) = f0(ε, t)+λf1(ε, t), where f1(ε, t) is a correction term to the semiclassical
solution f0(ε, t). The substitution into (5) allows to reduce the problem of finding
an inverse of the operator (I − λΘ1)[∂tf ], which is hardly treatable with Monte
Carlo technique, to a simpler problem of computing the effect of the scattering
operator Θ1 acting on the first time derivative ∂tf0(ε, t). Thus we arrive to the
system of two coupled Boltzmann equations for f0 and for the correction f1:

∂tf0 = Q0[f0], ∂tf1 = Q0[f1] +Q1[∂tf0],

with the initial conditions f0(ε, 0) = φ0(ε) and f1(ε, 0) = 0.
To obtain a forward Monte Carlo algorithm, we are following the standard

procedure [7] writing the equations in integral form for an adjoint function gj(ε, t)
defined in such a way that the average (A, fj) ≡

∫∞
0 dt

∫
dε ρ(ε)A(ε, t)fj(ε, t) of

an observable A(ε, t) can be expressed as

(A, fj) ≡
∫ ∞

0
dt′

∫
dε′ ρ(ε′)f (0)

j (ε′, t′)gj(ε′, t′), j = 0, 1, (8)

where the source-terms are defined as f (0)
1 (ε, t)=

∫ t

0 dt
′e−κ0(ε)(t−t′)Q1[∂tf0](ε, t′),

f
(0)
0 (ε, t) = e−κ0(ε)tφ0(ε).

It can be shown [7] that the function gj(ε′, t) must satisfy the adjoint equation

gj(ε′, t′) =
∫ ∞

0
dt

∫
dερ(ε) K(ε, t, ε′, t′)gj(ε, t) +A(ε′, t′), j = 0, 1, (9)

with the free term given by the observable A(ε′, t). The kernel K in (9) is defined
asK(ε, t, ε′, t′) = H(t′)H(t−t′)e−κ0(ε)(t−t′)S0(ε, ε′), where κ0(ε) is the total out-
scattering rate: κ0(ε) = 4π2 ∑

ν=±1 aν

√
2(ε− ν)H(ε− ν).

It is important that neither the kernel nor the source term in (9) depend on
j, so the index j can be omitted. Therefore, the sets of trajectories necessary
to calculate f0 and f1 are similar. Different statistical averages are obtained by
different terms f (0)

j in the inner product (8).
The solution of (9) is found through corresponding Neumann series. The for-

ward Monte Carlo method is used to evaluate the series numerically. The al-
gorithm is designed to compute f0 together with its time derivative ∂f0/∂t. It
allows to solve both equations for f0 and f1 simultaneously providing better
computational scaling at large time compared to previously used techniques.

4 Results

We now apply the method developed to practically relevant semiconductors. In
Si and Ge the constant of electron interaction with nonpolar optical phonons is
expressed as [8]:
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Fig. 1. Distribution f0(ε, t) with the quantum correction term λf1(ε, t) added in Ge
at the time instances t1 = 2 × 10−13 s, t2 = 4 × 10−13 s, t3 = 6 × 10−13 s

F 2 =
�2(DtK)2

2V ρ0�ω
, (10)

leading to the dimensionless constant of electron-phonon interaction μ = λπρ(ε),
which for ε = 1 is equal to μ ≈ 0.055. An even smaller value of the constant
μ ≈ 0.02 is found in Ge. Because the values of the electron-phonon interaction
constant in Si and Ge are comparable, results of simulations in Si and Ge are
similar. Below we consider in details the case of Ge.

Simulation results of initial evolution of highly nonequilibrium distribution
with the quantum correction taken into account are shown in Fig. 1. The ap-
pearance of additional replicas is clearly seen at energies which are multiples
of the phonon energy, at first in the proximity of the initial energy distribu-
tion. With time passing the solutions propagate away from the initial energy ε0
gradually creating more remote replicas. This is accompanied by an amplitude
decrease of the initial peak. In contrast to zero-temperature results [6], our sim-
ulations were done at room temperature T=300 K. This leads to the possibility
of phonon absorption which results in the creation of additional replicas with
energies higher than the initial energy ε0. However, the amplitude of these repli-
cas is much smaller compared to those at energies lower than ε0, reflecting the
fact that phonon absorptions by nonequilibrium electrons is less probable than
phonon emission.

In order to show the differences between the behavior with and without quan-
tum corrections, a snapshot at time step t = 6 × 10−13 s is shown in Fig. 2.
One can clearly see the additional broadening of more remote replicas when the
quantum correction is taken into account in contrast to the classical solution.
This is the result of scattering outside of an energy shell determined by the Fermi
golden rule energy conserved delta-function, which is allowed due to the finiteness
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Fig. 2. Comparison of the semiclassical Boltzmann distribution f0(ε, t) and the distri-
bution f0(ε, t) together with the quantum correction term λf1(ε, t) added in Ge at the
time t = 6 × 10−13 s. Additional broadening of remote replicas is due to the finiteness
of the collision time.

of the collision time until the collision is complete. Similar collisional peak broad-
ening was reported previously while solving the Levinson equation directly [6].
At the same time, neighboring replicas are becoming almost indistinguishable
from those determined solely by the Fermi golden rule. This clearly shows that
the quantum correction decreases at large time. In order to explain such a behav-
ior, we note that the neighboring replicas correspond to emission (absorption)
of only a single phonon. After some time, there will be almost no electrons left
which did not emit (absorb) a phonon. For all electrons which emitted or ab-
sorbed a phonon, the collision process may be considered as completed, and the
Fermi golden rule enforced energy conservation delta function is recovered. It
is therefore expected that differences between the solutions with and without
corrections will disappear, starting from replicas close to the initial peak.

5 Conclusion

Based on the asymptotic expansion of the Levinson equation, the quantum cor-
rection to the classical distribution function due to the finite collision time is
analyzed. The Monte Carlo algorithm is developed in order to solve the Boltz-
mann equation simultaneously with the equation for the quantum correction.
For the electron phonon interaction the method is also applied to calculate the
quantum corrections in Si and Ge, where the electron phonon interaction is
weaker than in GaAs. It is shown that for a highly nonequilibrium initial distri-
bution peaked around a certain energy, the quantum correction leads to an extra
broadening of replicas of the initial distribution peak appearing at frequencies



Quantum Correction to the Semiclassical Electron-Phonon Scattering 601

shifted by a multiple of the phonon frequency. At the same time the quantum
correction disappears for longer times when the limit of completed collision is
recovered.
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Efficient Solution of the Schrödinger-Poisson
Equations in Semiconductor Device Simulations

Alex Trellakis, Till Andlauer, and Peter Vogl

Walter-Schottky Institute, TU München, D-85748 Garching, Germany

Abstract. This paper reviews the numerical issues arising in the sim-
ulation of electronic states in highly confined semiconductor structures
like quantum dots. For these systems, the main challenge lies in the
efficient and accurate solution of the self-consistent one-band and multi-
band Schrödinger-Poisson equations. After a brief introduction of the
physical background, we first demonstrate that unphysical solutions of
the Schrödinger equation due to the presence of material boundaries can
be avoided by combining a suitable ordering of the differential operators
with a robust discretization method like box discretization. Next, we dis-
cuss algorithms for the efficient solution of the resulting sparse matrix
problems even on small computers. Finally, we introduce a predictor-
corrector-type approach for the stabilizing the outer iteration loop that
is needed to obtain a self-consistent solution of both Schrödinger’s and
Poisson’s equation.

1 Physical Background

1.1 Introduction

Due to the rapid progress in semiconductor technology, the dimensions of elec-
tronic devices are approaching the nanometer scale. At this scale, electronic
properties will be increasingly dominated by quantum effects, until at some point
these effects become essential for device operation. For instance, the electronic
states in highly confined semiconductor structures like quantum dots are entirely
controlled by quantum mechanical size quantization, which can be exploited for
entirely new device designs like quantum well or quantum dot lasers. At the same
time, the physical equations that describe these quantum systems are much too
complex to be solved analytically and efficient numerical solution methods need
to be used instead. For this reason, we review in this paper the numerical is-
sues arising in the simulation of electronic states in confined quantum systems,
with focus on the efficient solution of the self-consistent Schrödinger-Poisson
equations.

1.2 The k·p (Schrödinger) Equations

Since these quantum structures are about one to two orders of magnitude larger
than a single lattice constant (which is about 0.5 nm), atomistic models like

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 602–609, 2006.
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empirical tight binding theory or empirical pseudopotential methods are numer-
ically not feasible and a continuum model with carefully tuned material parame-
ters needs to be used. Such a continuum model is provided by the k·p-equations
in the envelope function approximation [2, 5, 10].

In this model, we describe the electrons in the conduction band by an one-
band k·p-equation which is called the effective-mass approximation. Here, the
electron wave functions ψe

n (x) obey the Schrödinger equation

Ee
n ψe

n (x) = Ĥeff ψe
n (x) (1)

with the effective mass Hamiltonian

Ĥeff =
1
2
p̂ ·

(
1
m∗ p̂

)
+ EC (x̂) + V̂xc (x̂) p̂ =

�
i
∇ (2)

where Ee
n is the energy of wave function ψe

n (x), EC (x) the conduction band
edge, and Vxc (x) the exchange-correlation potential in the local density approx-
imation. Finally, m∗ is a 3 × 3-tensor describing the effective electron mass in
the semiconductor.

For holes in the valence bands, the effective-mass approximation is usually not
accurate enough anymore, and a multi-band approach treating the three main
valence bands simultaneously is needed. Since each of the three valence bands
has two spin components, we need here the 6-band k·p-equation

Eh
n ψh

n (x) = Ĥ6×6 ψ
h
n (x) (3)

where ψh
n (x) is a 6-component hole wave function, and Ĥ6×6 a Hermitian 6× 6-

matrix operator

Ĥ6×6 =
(
Ĥ3×3 0

0 Ĥ3×3

)
+ Ĥ6×6

so (4)

Here, Ĥ6×6
so is a momentum independent complex matrix that describes the spin-

orbit interaction, and Ĥ3×3 a 3×3-matrix that for a Zincblende crystal structure
oriented along the coordinate axes has the form [9](

Ĥ3×3

)
ij

=
[
EV (x̂) + V̂xc (x̂)

]
δij +

1
2m0

p̂2δij +
N

�2 p̂ip̂j

+
L−N −M

�2 p̂2
i δij +

M

�2 p̂2δij (5)

where EV (x) is the valence band edge, m0 the vacuum mass of the electron, and
L,M, and N the Dresselhaus parameters for the semiconductor [5].

Since the focus of our simulations are closed systems, we use homogeneous
Dirichlet conditions (ψ ≡ 0) for all resulting Schrödinger equations. But note
that the energies and wave functions of bound states in a confining potential
are only weakly affected by their boundary conditions, as long as the simulation
region in which Schrödinger’s equation is solved is large enough.
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1.3 Carrier Densities and the Poisson Equation

In thermal equilibrium, the electron and hole densities n (x) and p (x) are cal-
culated from the quantum states {En, ψn} as [15]

n (x) = 2
∑

n

|ψe
n (x)|2 F

(
Ee

n − EF

kBT

)
(6)

p (x) = 2
∑

n

∣∣ψh
n (x)

∣∣2 F (
EF − Eh

n

kBT

)
(7)

where kB is the Boltzmann constant, T the temperature of the system, and F (E)
a suitable distribution function. This F (E) is in three dimensions equal to the
Fermi function

F (E) =
1

1 + exp (E)
(8)

while in one and two dimensions F (E) is proportional to the complete Fermi-
Dirac integrals F0 (−E) and F−1/2 (−E). Furthermore, in addition to these car-
rier densities there may also be space charges

N+
D (x) = N+

D [EC (x̂)] N−
A (x) = N−

A [EV (x̂)] (9)

present due to doping with electron donors (N+
D ) and acceptors (N−

A ).
All these charge densities add up to a total charge

ρ (x) = e
[
p (x)− n (x) +N+

D (x) −N−
A (x)

]
(10)

which then results through Poisson’s equation

∇ · [ε (x)∇φ (x)] = −ρ (x) (11)

into an electric potential φ (x) that warps the band edges EC and EV as

EC (x) −→ EC [φ] (x) = EC (x)− eφ (x) (12)
EV (x) −→ EV [φ] (x) = EV (x)− eφ (x) (13)

As consequence, the charge density ρ becomes potential dependent and the Pois-
son equation (11) nonlinear in φ

∇ · (ε∇φ) = −e
(
p− n+N+

D [φ]−N−
A [φ]

)
(14)

Note that the carrier densities n and p depend here indirectly on φ, since the
band edges EC [φ] and EV [φ] enter the Hamiltonian, which of course makes
also all wave functions and energies potential dependent. As a consequence,
the nonlinear Poisson equation (14) and the Schrödinger equations become a
coupled system of differential equations for which we need to find a self-consistent
solution.
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1.4 Operator Ordering and Symmetrization

An important issue we have ignored so far is that the material parameters in
(2) and (5) are position dependent in heterostructures. This is a major prob-
lem since both Hamiltonians are strictly speaking only valid for a homogeneous
semiconductor with slowly varying band edges EC (x) and EV (x). Some numer-
ical experimentation now shows that even in the presence of material induced
discontinuities in the band edges these Hamiltonians still deliver physically rea-
sonable results. This empirical observation can also be partially justified using
Burt’s exact envelope function theory [3, 4].

Unfortunately, variations inm∗ and L,M,N are much more problematic, since
here we need also to define the operator ordering between these material param-
eters and the momentum operator p̂. While it is clear that any symmetrization
procedure used must yield a Hermitian Hamiltonian

H (x̂, p̂) = H (x̂, p̂)† (15)

this requirement is not sufficient for uniquely defining H (x̂, p̂). Furthermore, a
poorly chosen H (x̂, p̂) will result in wave functions that become unphysical at
material interfaces and lead to highly incorrect solutions [7].

For the effective mass approximation (2), we can use in analogy to Poisson’s
equation (11) the Hamiltonian [11]

Heff (x̂, p̂) =
1
2
p̂ ·

[
1

m∗ (x̂)
p̂
]

+ EC (x̂) + V̂xc (x̂) (16)

where compared to (2) we have just replaced the effective mass m∗ by the opera-
tor m∗ (x̂). This Hamiltonian is flux conserving and leads to wave functions that
are continuous at material interfaces and smooth everywhere else. Since most
alternative Hamiltonians do not share these properties [11], Hamiltonian (16) is
widely used in quantum simulations.

For the 6-band k·p-Hamiltonian (4-5) finding a suitable symmetrization is
more difficult since Ĥ6×6 as 6× 6-matrix requires only(

Ĥ6×6

)†

ij
=

(
Ĥ6×6

)
ji

(17)

in order to become Hermitian. Here, one can show that starting again from Burt’s
exact envelope function theory a suitable 6-band k·p-Hamiltonian Ĥ6×6 (x̂, p̂)
can be constructed using the rather complicated operators [7, 8]

[H3×3 (x̂, p̂)]ij =
[
EV (x̂) + V̂xc (x̂)

]
δij +

1
2m0

p̂2δij + p̂i
N (x̂)

�2 p̂j

+ p̂i

[
L (x̂)−N (x̂)−M (x̂)

�2

]
p̂iδij + p̂ ·

[
M (x̂)

�2 p̂
]
δij

− p̂i
M (x̂)

�2 p̂j + p̂j
M (x̂)

�2 p̂i (18)

where the two last terms vanish in a bulk semiconductor. The resulting Hamil-
tonian H6×6 (x̂, p̂) is again flux conserving and yields wave functions that are
continuous at material interfaces and smooth everywhere else.
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2 Numerical Issues

2.1 Discretization

Both the Poisson equation and the Schrödinger equations are discretized using
box integration on a nonuniform tensor product grid. Such a grid can be seen
as the tensor product of D nonuniform one-dimensional grids {xi} along each
coordinate axis, where D is the dimension of the simulation domain. Such tensor
grids have the advantage that no complicate meshing algorithm is required, and
the discretization can be easily and efficiently implemented. In our implemen-
tation, the user provides the desired density of grid lines at selected locations
along the coordinate axes. The resulting tensor product grid is then calculated
by interpolating these line densities.

For the box integration finite difference method [14–page 184], we cover the
simulation domain with N non-overlapping rectangular boxes, where each box
is centered on a grid node. We then integrate our differential equations over each
box volume Ω to obtain an integral equation which can then be discretized. For
instance, the Poisson equation (14) becomes after integration over Ω∫

∂Ω

n(x) · [ε(x)∇φ(x)] = −
∫

Ω

ρ(x) (19)

which after discretization then yields the familiar three, five, or seven-point sten-
cils for φ.

Compared to standard finite differences, box integration has the advantage
that discontinuities in a material parameter A are naturally taken into account
for second order differential operators ∂̂iA (x̂) ∂̂j , since this method is in first
order flux conservative due to the Gauss theorem. This makes box integration
a natural choice for discretizing the Poisson equation (14) and the Schrödinger
equations resulting from (16) and (18).

After the discretization, all operators ∂̂iA (x̂) ∂̂j in these equations become
banded sparse matrices. Such matrices can be easily stored and manipulated
using banded storage schemes that store only the non-zero diagonals. In specific,
the Schrödinger equation belonging to the Hamiltonians (16) or (18) becomes
after discretization a generalized symmetric matrix eigenvalue problem of the
form

Hψn = EnDψn Dij = δijVol (Ωi) (20)

with D being a diagonal matrix containing the volumes of the box regions Ωi

on the main diagonal. Similarly, the Poisson equation (14) as a boundary value
problem yields a linear system, if we ignore the dependence of the charge density
ρ (φ) on the potential φ for now.

2.2 Solving the Nonlinear Poisson Equation

At this point, solving each of the two differential equations offers its own set of
challenges. For solving the nonlinear Poisson equation (14)

f (φ) ≡ ∇ · (ε∇φ) + ρ(φ) = 0 (21)
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we can immediately use Newton-Raphson iteration with inexact line search as

φ̃k (λ) ≡ φk − λ [(Dφf) (φk)]−1 · f (φk) (22)

φk+1 ≡ φ̃k (λ) with
∥∥∥f (

φ̃k (λ)
)∥∥∥ ≡ min λ = 1,

1
2
,
1
4
,
1
8
, . . . (23)

in order to find a solution of the nonlinear problem (experience shows that local
minima in ‖f (φ)‖ or multiple solutions do not occur for nanostructures).

We also note that, except for the extra diagonal term Dφρ, the Jacobian
matrix in (22)

(Dφf) (φ) = ∇̂ · (ε∇̂) + (Dφρ) (φ) (24)

is identical to the Poisson operator ∇̂ · (ε∇̂). Since ∇̂ · (ε∇̂) is positive definite
and Dφρ is positive for all physical ρ(φ), the Jacobian Dφρ must be positive
definite as well. Therefore, we can employ the preconditioned conjugate gradient
method [12–chapter 6] for solving the linear system in (22). As preconditioner we
use here the very fast fill-in free Dupont-Kendall-Rachford method [6] in order
to achieve rapid convergence of the conjugate gradient iteration.

2.3 Solving the Schrödinger Equations

Solving the matrix eigenvalue systems resulting from the discretization of the
Schrödinger equations is computationally much more demanding. Especially the
6-band k·p-Hamiltonian (18) results here into extremely large sparse matrices
that prohibit the use of standard diagonalization routines. Luckily enough, all
distribution functions F (E) that are used in calculating the electron and hole
densities (6) and (7) fall off exponentially as

F (E) ∝ exp (−E) , E # 0. (25)

For this reason, only relatively few quantum states at the lower end of the energy
spectrum are needed to calculate the densities, which allows us to use highly
efficient iterative eigenvalue methods like the Lanczos or Arnoldi iteration [12].

One software package that implements such iteration methods for both real
and complex matrices is ARPACK [1]. In the authors’ experience, ARPACK
appears quite reliable and moderately fast for the matrices that occur in the
simulation of quantum structures. However, ARPACK is still not fast enough for
the huge system matrices that arise in three-dimensional quantum simulations
and an additional preconditioner is needed.

Such a preconditioner can be easily obtained by utilizing the Chebyshev poly-
nomials Tn (x) for a spectral transformation. Here we use that if the Hermitian
matrix Ĥ has the spectrum {En}, the matrix T (Ĥ) must have the spectrum
{T (En)}. Since the polynomials Tn (x) increase very rapidly for |x| > 1, we can
use these Tn (x) to make the desired eigenvalues at the lower end of the spec-
trum very large, which accelerates the convergence of the Arnoldi iteration in
ARPACK tremendously.
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As a quick test for this preconditioned ARPACK code, we solve the eigenvalue
problem for test matrices obtained by discretizing an one-band problem (16). For
these matrices, we get for a 3 GHz PC and 15-th order Chebyshev polynomials
as solution times

grid size # states CPU time
50 × 50 × 50 30 17 s
50 × 50 × 50 200 357 s

100 × 100 × 100 30 269 s

This test shows that memory exhaustion now surpasses excessive CPU time
as the main concern for quantum simulations.

2.4 Solution of the Coupled System

As the last step, we need to tackle the self-consistent solution of the coupled
nonlinear Poisson and Schrödinger equations. Here, a simple iteration does not
converge due to the strong coupling between the equations. Similarly, under-
relaxation stabilizes the outer iteration only very poorly, and we still observe
strong charge oscillations from one iteration step to the next that interfere with
convergence [13].

This situation can be much improved by partially decoupling both partial
differential equations using a predictor-corrector-type approach. In order to do
this, we replace the exact carrier densities n (x) and p (x) from (6) and (7) by
the φ-dependent predictors [13]

ñ [φ] (x) = 2
∑
n

|ψe
n (x)|2 F

(
Ee

n − EF + e [φ (x)− φprev (x)]
kBT

)
(26)

p̃ [φ] (x) = 2
∑
n

∣∣ψh
n (x)

∣∣2 F (
EF − Eh

n − e [φ (x)− φprev (x)]
kBT

)
(27)

where φprev is the electrostatic potential from the previous outer iteration step.
These predictors for the quantum densities n and p are then used in the nonlinear
Poisson equation

∇ · (ε∇φ) = −e
(
p̃ [φ]− ñ [φ] +N+

D [φ]−N−
A [φ]

)
(28)

in order to determine the new potential φ (x). Using this φ (x) we update the
band edges EC (x) and EV (x) in the Hamiltonians (16) and (18), and solve the
respective Schrödinger equations for a new set of energies and wave functions.

Obviously, once the iteration has converged we have φ = φprev and therefore
with n = ñ [φ] and p = p̃ [φ] also the correct densities. The numerical experiment
then shows [13] that this approach leads to rapid convergence with the residuals
in the quantum densities n and p decreasing by about one order of magnitude.
No further steps are necessary to ensure convergence [13].
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Abstract. The mixed finite element method for the biharmonic eigen-
value problem using linear or bilinear finite elements is considered. The
paper is based on approach described by the same authors in [1], where
polynomials of degree n, n ≥ 2, were used. The case of linear finite el-
ements was studied by Ishihara in [5], where an error estimate of rate
O(h

1
2 ) for the eigenvalues and the eigenfunctions was established. Us-

ing postprocessing we derive an improved convergence rate for the ap-
proximate eigenvalues, namely O(h). This result is confirmed by model
numerical experiments.

1 Introduction

We consider the biharmonic eigenvalue problem (related to eigenmodes of bend-
ing of homogeneous isotropic plates):

Δ2u(x) ≡ ∂4u

∂x4
1

+ 2
∂4u

∂x2
1∂x

2
2

+
∂4u

∂x4
2

= λu(x), x ∈ Ω, (1)

with homogeneous Dirichlet boundary conditions

u(x) = 0 and
∂u

∂ν
(x) = 0, x ∈ Γ. (2)

Here Ω is a bounded two-dimensional domain with boundary Γ , Δ is the Laplace
operator, and ∂

∂ν denotes differentiation in the normal direction to Γ .
In mixed form (1) is rewritten as a system of two equations of second order

(see, e.g. [2, 3]) subject to the boundary conditions (2):

−Δu = σ, −Δσ = λu. (3)

The eigenvalue problem (3) has infinitely many solutions (λi, (σi, ui)) with
σi = −Δui, i = 1, 2, . . . so that if (λ, (σ, u)) is an eigenpair of (3), then (λ, u)

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 613–620, 2006.
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is an eigenpair of (1), (2) and σ = −Δu (see, e.g. [2]). The advantage of this
formulation is that for its finite element approximation one can use C0-elements.

In [1] a new post-processing procedure for improving the convergence rate of
mixed finite element approximations of biharmonic eigenvalue problem (1) has
been introduced and studied. The analysis was done for polynomials of degree
n ≥ 2 and thus leaving the case of linear finite elements (i. e. n = 1) open
for investigation. Linear elements were used for mixed biharmonic problems in
[5, 6, 7]. The aim of this paper is to extend the technique from [1] to the case of
linear finite elements.

Let Hk(Ω), k = 0, 1, . . ., be Sobolev space with a norm denoted by ‖ · ‖k,Ω

(see, e.g. [4]). As usual for k = 0 we have the standard L2(Ω) space with a norm
denoted by ‖ · ‖0,Ω. The space Hk

0 (Ω) is the closure in the Hk−norm of the set
of all infinitely smooth functions with compact support in Ω.

The weak form of (3) is obtained by multiplying the first equation of (3) by
ψ ∈ H1(Ω), the second equation by v ∈ H1

0 (Ω), and integrating by parts over
Ω. Thus, we get the integral identities:∫

Ω

∇σ · ∇v dx = λ

∫
Ω

uv dx,

∫
Ω

∇u · ∇ψ dx =
∫

Ω

σψ dx, (4)

which are well defined for u ∈ H1
0 (Ω) and σ ∈ H1(Ω). The finite element dis-

cretization studied here is based on the weak mixed form (4). Following Babuška
and Osborn [2] we recast it in an abstract form. This form involves the real
Hilbert spaces V, Σ and H with inner products and norms (·, ·)V , ‖ · ‖V , (·, ·)Σ ,
‖ · ‖Σ, (·, ·)H and ‖ · ‖H , respectively, and the bilinear forms a(·, ·) and b(·, ·),
defined on H ×H and Σ × V , respectively. We assume that:

1. V ⊂ H and Σ ⊂ H ;
2. the forms a(·, ·) and b(·, ·) are continuous, i.e.

b(ψ, v) ≤ C1‖ψ‖Σ‖v‖V , ∀ψ ∈ Σ, ∀v ∈ V,

a(σ, ψ) ≤ C2‖σ‖H‖ψ‖H , ∀ψ, σ ∈ H ;

3. a(·, ·) is symmetric, a(σ, σ) > 0, ∀0 �= σ ∈ H , and

sup
ψ∈Σ

|b(ψ, u)| > 0, ∀ 0 �= u ∈ V.

We identify H = L2(Ω), Σ = H1(Ω), V = H1
0 (Ω),

b(σ, v) =
∫

Ω

∇σ · ∇v dx and a(σ, ψ) =
∫

Ω

σψ dx,

and check easily that the above assumptions are satisfied. Then the weak form
of (4) reads as follows (see [2], p. 752): find (σ, u) ∈ Σ × V , (σ, u) �= (0, 0) and
λ ∈ R such that

−a(σ, ψ) + b(ψ, u) + b(σ, v) = λa(u, v), ∀(ψ, v) ∈ Σ × V. (5)
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If (λ; (σ, u)) is an eigenpair of (5) then (λ;u) is an eigenpair of (1), (2) and
σ = −Δu. The problem (5) has infinitely many real eigenvalues (see [2])

0 < λ1 ≤ λ2 ≤ . . .↗∞

with corresponding eigenfunctions (σi, ui) and σi = −Δui, i = 1, 2, . . ..
Now we consider the finite element approximation of problem (5). For sim-

plicity we assume that Ω is a polygonal domain. Let τh be a partition of Ω
into triangular and/or rectangular finite elements depending on a small positive
parameter h, the largest size (diameter) of the finite elements. We also assume
that τh is regular and quasi-uniform (see, Ciarlet [4], Miyoshi [8]). Associated
with the triangulation τh we introduce the finite element spaces Vh ⊂ V and
Σh ⊂ Σ of continuous piecewise linear/bilinear polynomials.

The approximate eigenpairs (λh; (σh, uh)) of (5) are solutions of the mixed
finite element problem: find (σh, uh) ∈ Σh × Vh and λh ∈ R such that

−a(σh, ψ) + b(ψ, uh) + b(σh, v) = λha(uh, v), ∀(ψ, v) ∈ Σh × Vh. (6)

For the latter problem, Ishihara [5] proved the following convergence rate for
the eigenvalues and eigenfunctions:

|λ− λh| ≤ Cλ2h
1
2 , (7)

‖u− uh‖0,Ω ≤ Ch
1
2 . (8)

Remark 1. Buckling of a plate under pure compression (see, e.g. [6])

Δ2u = −λΔu, in Ω, u =
∂u

∂ν
= 0, on Γ

could be studied by the mixed finite element method in the same manner.

The paper is organized as follows. In Section 2 we introduce the main ingredients
of the proposed postprocessing method, Theorem 1 that establishes the relevance
of the source problem and Theorem 2 that gives a practical way to use the source
problem for more accurate recovery of the eigenvalues. Further, in Section 3
we formulate our postprocessing algorithm and in Section 4 we present some
numerical experiments.

2 Main Result

Our aim is to present an inexpensive postprocessing procedure which will lead to
a better accuracy of the mixed finite element eigenvalues. An important ingredi-
ent of this procedure is the corresponding source problem: for a given f ∈ L2(Ω)
find (τ, w) ∈ Σ × V such that

−a(τ, ψ) + b(ψ,w) + b(τ, v) = a(f, v) ∀(ψ, v) ∈ Σ × V. (9)
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The solution (τ, w) of this problem defines two-component solution operators:

S : L2(Ω) → Σ, Sf = τ, T : L2(Ω) → V, T f = w.

Then the solution (λ; (σ, u)) of the eigenvalue problem (5) satisfies the follow-
ing relations: σ = λSu and u = λTu.

The corresponding finite element approximation of (9) is: find (τh, wh) ∈
Σh × Vh such that

−a(τh, ψ) + b(ψ,wh) + b(τh, v) = a(f, v) ∀(ψ, v) ∈ Σh × Vh. (10)

Similarly, the finite element solution (τh, wh) ∈ Σh × Vh defines the discrete
component solution operators

Sh : L2(Ω) → Σh, Shf = τh, Th : L2(Ω) → Vh, Thf = wh.

Miyoshi [7] has proved that the mixed finite element approximation (τh, wh)
of (τ, w) (defined by (9)) satisfies the following error estimate:

‖w − wh‖1,Ω + ‖τ − τh‖0,Ω ≤ Ch
1
2 ‖f‖0,Ω. (11)

Regarding (9) and (10) the following results have been established in [1, 2]:

1. If f ∈ L2(Ω) then

−a(Sf, ψ) + b(ψ, Tf) + b(Sf, v) = a(f, v), ∀(ψ, v) ∈ Σ × V,

−a(Shf, ψ) + b(ψ, Thf) + b(Shf, v) = a(f, v), ∀(ψ, v) ∈ Σh × Vh,

i.e., (Shf, Thf) is the “Ritz projection” of (Sf, T f) on the finite element
space Σh × Vh.

2. The solution operators T and Th are compact and ‖T − Th‖ → 0 as h→ 0.
3. T and Th are symmetric in the inner product defined by the bilinear form
a(·, ·), i.e. a(u, T v) = a(Tu, v) and a(u, Thv) = a(Thu, v).

4. λ is an eigenvalue of (5) if and only if λ−1 is an eigenvalue of T . Similarly,
λh is an eigenvalue of (6) if and only if λ−1

h is an eigenvalue of Th.

Now we shall present the basic ideas and ingredients of our postprocessing
technique. Assume that a finite element solution (λh; (σh, uh)) of (6) is already
found. Then, we consider the elliptic problem (10) with a right-hand side uh and
solution (τ̃ , w̃):

−a(τ̃ , ψ) + b(ψ, w̃) + b(τ̃ , v) = a(uh, v) ∀(ψ, v) ∈ Σ × V. (12)

Obviously the solution of this problem could be written as (τ̃ , w̃) = (Suh, Tuh).
Denote by

λ̃ = a(uh, Tuh)−1 = a(uh, w̃)−1. (13)
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Theorem 1. Let the finite element subspace Σh×Vh ⊂ Σ×V contain piecewise
linear polynomials, (λ; (σ, u)) be a solution of (5), and (λh; (σh, uh)) be its finite
element approximation obtained from (6). If the eigenfunctions u and uh are
normalized by ‖u‖0,Ω = ‖uh‖0,Ω = 1, then

|λ− λ̃| ≤ Ch. (14)

Proof. Using the symmetry of the operator T as well as the normalization
a(u, u) = a(uh, uh) = 1 we easily get

1
λ
− 1

λ̃
= a(u, Tu)− a(uh, Tuh)

= a(u, Tu)− a(uh, Tuh) + a(u− uh, T (u− uh))− a(u− uh, T (u− uh))

= 2a(u, Tu)− 2a(uh, Tu)− a(u− uh, T (u− uh))

=
1
λ
a(u− uh, u− uh)− a(u− uh, T (u− uh)).

Since a(u− uh, T (u− uh)) ≤ ‖T ‖ ‖u− uh‖20,Ω, we obtain

|λ− λ̃| ≤ λλ̃

(
1
λ

+ ‖T ‖
)
‖u− uh‖20,Ω ≤ C‖u− uh‖20,Ω

and estimate (8) proves the theorem.

Next we consider the question how to find an appropriate approximation to λ̃.
We introduce additional finite element spaces Σ̃h × Ṽh such that Σh × Vh ⊂
Σ̃h × Ṽh ⊂ Σ × V , which contain continuous piecewise quadratic polynomials.
Next we solve for (τ̃h, w̃h) ∈ Σ̃h × Ṽh such that

−a(τ̃h, ψ) + b(ψ, w̃h) + b(τ̃h, v) = a(uh, v), ∀(ψ, v) ∈ Σ̃h × Ṽh, (15)

and define
λ̃−1

h = a(uh, w̃h). (16)

Obviously, the following orthogonality condition holds

−a(τ̃h − τ̃ , ψ) + b(ψ, w̃h − w̃) + b(τ̃h − τ̃ , v) = 0, ∀(ψ, v) ∈ Σ̃h × Ṽh. (17)

In the theorem below we show that λ̃h is a better approximation to λ.

Theorem 2. Let the conditions of Theorem 1 hold and λ̃h be determined by
(16), where (τ̃h, w̃h) ∈ Σ̃h×Ṽh is the solution of (15). Then the following estimate
is valid:

|λ̃− λ̃h| ≤ Ch. (18)
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Proof. By the definition of λ̃ and λ̃h and using (17) we get

1

λ̃
− 1

λ̃h

= a(uh, w̃)− a(uh, w̃h)

= a(uh, w̃) + a(uh, w̃h)− 2a(uh, w̃h)

= 2b(τ̃ − τ̃h, w̃ − w̃h)− a(τ̃ − τ̃h, τ̃ − τ̃h).

Then
| 1
λ̃
− 1

λ̃h

| ≤ 2|b(τ̃ − τ̃h, w̃ − w̃h)|+ |a(τ̃ − τ̃h, τ̃ − τ̃h)|

≤ 2‖τ̃ − τ̃h‖1,Ω‖w̃ − w̃h‖1,Ω + ‖τ̃ − τ̃h‖20,Ω.

Since the right-hand side uh of (12) belongs to H1(Ω) then the regularity of the
solution w̃ is at least H3(Ω). Note that according to the estimate (10) piecewise
linear finite elements are not applicable for the equation (15). The estimate (18)
follows from the standard estimate for ‖τ̃−τ̃h‖1,Ω, ‖w̃−w̃h‖1,Ω, and ‖τ̃−τ̃h‖20,Ω

while using quadratic finite elements.

Finally, an immediate consequence of (14) and (18) is

|λ− λ̃h| ≤ |λ− λ̃|+ |λ̃− λ̃h| ≤ Ch.

Remark 2. Another possible choice for Σ̃h × Ṽh is discussed and studied in [1].
This choice is based on the idea of Xu and Zhou [10] of two-grid approximations
of the eigenvalues of elliptic problems. Namely, Σ̃h and Ṽh are spaces of piecewise
linear functions defined on a mesh τ̃h that has characteristic size h2.

3 Algorithm

Following the results from the presented above two theorems we propose an
inexpensive algorithm for computing the eigenvalues of biharmonic boundary
value problems with an improved accuracy:

(i) Find an approximate eigenpair (λh; (σh, uh)) from the mixed problem (6)
with a(uh, uh) = 1 using linear/bilinear finite elements;

(ii) Find the solution (τ̃h, w̃h) ∈ Σ̃h × Ṽh of the problem (15);
(iii) Define λ̃h = a(uh, w̃h)−1; this is the postprocessed eigenvalue that ac-

cording to Theorem 2 is a better approximation of λ.

4 Numerical Examples

4.1 Example 1

Consider a model problem of a long thin bar of length l with unit flexural rigidity
and density, which is simply supported at its endpoints. The natural frequencies
of the bar are determined by the eigenvalues of the problem:

uIV = λu, in (0, l), u(0) = uII(0) = u(l) = uII(l) = 0.

When l = π, the exact eigenvalues are λj = j4, j = 1, 2, . . ..
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Table 1. The eigenvalues computed by the mixed finite element method

N λ1,h λ2,h λ3,h λ4,h

32 1.001607542 16.10310555 82.17866457 262.6585415
64 1.000401668 16.02572067 81.29324023 257.6671733

128 1.000100403 16.00642668 81.07322345 256.4473224
256 1.000025100 16.00160645 81.01829971 256.1044307

Table 2. The eigenvalues obtained after applying the postprocessing algorithm

N λ1,h λ2,h λ3,h λ4,h

32 1.000000387 16.00009942 81.00255901 256.025916
64 1.000000024 16.00000620 81.00015906 256.003286

128 1.000000002 16.00000039 81.00001002 256.004112
256 1.000000000 16.00000002 81.00000062 256.000130

The numerical results for the first four eigenvalues computed by the stan-
dard finite element method with N linear elements are given in Table 1. This
example shows higher than predicted by the theory of [5, 6, 7] convergence rate.
Further, in Table 2 we present the results of the same four eigenvalues computed
by our postprocessing method. Note that the accuracy of our computations is
substantially higher than those of standard finite element method.

4.2 Example 2

To illustrate our theoretical results we report numerical results for two-dimen-
sional biharmonic eigenvalue problem. Let Ω be a square domain:

Ω : − π

2
< xi <

π

2
, i = 1, 2.

Table 3. Comparison between the eigenvalues computed by the mixed finite element
method (FEM) and those obtained after applying the postprocessing algorithm (PP)

h λ1 λ2 λ3 λ4

π/5 FEM 17.1341 76.5380 95.4773 219.9627
PP 13.9849 69.5796 70.5793 155.4328

π/6 FEM 16.0015 71.0237 82.9916 194.2231
PP 13.7453 65.6851 66.2851 144.1984

π/7 FEM 15.0288 66.9950 76.0354 177.7987
PP 13.6111 63.2219 63.5193 136.1713

π/8 FEM 14.7871 63.9766 66.8246 161.4620
PP 13.4731 59.8513 59.8587 128.8196

bounds:
lower 13.2820 55.2400 55.2400 120.0070
upper 13.3842 56.5610 56.5610 124.0740
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Consider the following model problem:

Δ2u = λu in Ω,

u =
∂u

∂ν
= 0 on ∂Ω.

The exact eigenvalues for this problem are not known. So, we use their lower
and upper bounds obtained by Weinstein and Stenges [9] (see also Ishihara [3]).

In Table 3 the results from our numerical experiments for the first four eigen-
values are given.

5 Comments and Conclusion

Comparing the results proved in the previous sections as well as the numerical
results for the eigenvalues of the mixed variant of the biharmonic eigenvalue
problem with so-called “optimal” case (see [5]), we may conclude that:

– The global postprocessing method presented and studied here gives an effec-
tive and accurate algorithm for calculating the biharmonic eigenvalues using
the lowest order (linear or bilinear) finite elements;

– The presented above postprocessing analysis can be directly extended to
more general fourth-order eigenvalue problems, namely to buckling problems
and other boundary conditions.

References

1. Andreev, A.B., Lazarov, R.D., Racheva, M.R.: Postprocessing and higher order
convergence of mixed finite element approximations of biharmonic eigenvalue prob-
lems. J. Comput. Appl. Math., 182 (2) (2005) 333–349.

2. Babuška, I., Osborn, J.: Eigenvalue Problems. In Handbook of Numerical Analysis
Vol. II (Eds. P. G. Lions and Ciarlet P.G.) Finite Element Methods (Part 1) North-
Holland, Amsterdam (1991) 641–787

3. Canuto, C.: Eigenvalue approximation by mixed methods. RAIRO Anal. Numer.
R3, 12 (1978) 27–50

4. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland
Amsterdam New York Oxford (1978)

5. Ishihara, K.: A mixed finite element method for the biharmonic eigenvalue problem
of plate bending. Publ. Res. Institute of Mathematical Sciences, Kyoto University,
14 (1978) 399–414

6. Ishihara, K.: On the mixed finite element approximation for the buckling of plates.
Numer. Math. 33 (1979) 195–210

7. Miyoshi, T.: A finite element method for the solution of fourth-order partial dif-
ferential equations. Kumamoto J.Sci. (Mathematics) 9 (1973) 87–116

8. Miyoshi, T.: A mixed finite element method for the solution of the von Karman
equations. Numer. Math. 26 (1976) 255–269

9. Weinstein, A., W. Stenger: Methods of intermediate problems for eigenvalues, the-
ory and applications. Academic Press, 1972

10. Xu, J., A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math.
Comp. 70 (2001) 17–25



Computation of Some Unsteady Flows over
Porous Semi-infinite Flat Surface

Nataliya Atanasova and Iliya Brayanov

Department of Applied Mathematics and Informatics,
University of Rousse “A. Kanchev”, Studentska str. 8,

7017 Rousse, Bulgaria
natanasova@ru.acad.bg, brayanov@ru.acad.bg

Abstract. Finite difference solutions of an one-dimensional unsteady
convection-diffusion problem on semi-infinite interval is considered. An
artificial boundary is introduced to make the computational domain fi-
nite. On the artificial boundary an exact boundary condition is applied
to reduce the original problem to an initial-boundary value problem. A
finite difference scheme is derived by the method of reduction of order. It
is proved that the finite difference scheme is convergent in energy norm
of order 2 in space and order 3/2 in time. Numerical experiments confirm
the theoretical results and show the efficiency of the constructed scheme.

1 Introduction

Let us consider the boundary-layer flow of an electrically conducting incompress-
ible fluid over a continuously moving flat surface. The boundary-layer equation
for the flow field has the following form, see [8]

∂u

∂t
−D∂

2u

∂x2 − ν
∂u

∂x
= f(x, t), (x, t) ∈ Ω = (−1,∞)× (0,∞), (1)

u(x, 0) = φ(x), −1 ≤ x <∞, (2)
u(−1, t) = ψ(t), 0 ≤ t <∞, (3)
u→ 0, when x→∞, (4)

whereD = R−1
0 , R0 is the suction Reynolds number and ν is the suction velocity.

The functions f(x, t), φ(x) and ψ(t) are sufficiently smooth and satisfy ψ(0) =
φ(−1). The support of f(x, t) is in the domain Ω̄0 = [−1, 0] × [0,∞) and the
support of ψ(x) is in the interval [−1, 0].

Many application problems can be modeled by parabolic equations in un-
bounded domains, such as the heat transfer problems, fluid dynamics problems,
see [7] for example, and recently various option pricing problems in the financial
mathematics. For standard finite difference or finite element methods, that solve
problems on unbounded domain, an artificial boundary must be introduced to
make the computational domain finite. Then on the artificial boundary appro-
priate boundary condition is needed for accurate numerical computation. For
parabolic problems, in [1, 2] is proposed an exact boundary condition to reduce

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 621–628, 2006.
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the original problem to an initial-boundary value problem on a finite compu-
tational domain. Theoretical analysis for the numerical method of parabolic-
reaction diffusion problem is given in [9]. In this paper we analyze this method
for parabolic convection-diffusion problem.

For computing the numerical solution of problem (1)-(4) we introduce an
artificial boundary Γ0 = {x = 0} × [0,∞). Then the domain Ω̄ is divided into a
bounded part Ω̄0 and an unbounded part Ω̄e = [0,∞)× [0,∞). We first consider
the restriction of the solution on the domain Ωe. Then using techniques from [9]
we obtain

∂u

∂x
(0, t)− μ̃u(0, t) = − eλ̃t

√
Dπ

∫ t

0

∂
∂λ

(
u(0, λ)e−λ̃λ

)
√
t− λ

dλ, (5)

where μ̃ = −ν/2D and λ̃ = −ν2/4D.
Thus we reduce the problem (1)-(4) to the problem (P0): (1)-(3), (5) on the

bounded domain Ω̄0.

2 Numerical Approximation

In the finite domain Ω̄0 we shall construct a mesh ω = ωτ × ωh, that is uniform
with respect to the time variable and possibly nonuniform with respect to the
space variable.

ωτ = {tj, tj = tj−1 + τ, j = 1, 2, . . . , t0 = 0},
ω̄h = {xi, xi = xi−1 + hi, i = 1, 2, . . . , N, x0 = −1, xN = 0}.

Let wj
i = w(xi, tj) be a grid function of the discrete argument (xi, tj) ∈ ω̄.

We shall use further the following notations

ĥi =
hi + hi+1

2
, wj

i−1/2 =
wj

i + wj
i−1

2
, δxw

j
i−1/2 =

wj
i − w

j
i−1

hi
,

δo
x
wj

i =
wj

i+1 − w
j
i−1

2ĥi

, δx̂w
j
i =

wj
i+1 − w

j
i

ĥi

, δ2xw
j
i =

δxw
j
i+1/2 − δxw

j
i−1/2

ĥi

,

w
j−1/2
i =

wj
i + wj−1

i

2
, δtw

j−1/2
i =

wj
i − w

j−1
i

τ
, ‖wj‖A =

√√√√ N∑
i=1

hi(w
j
i−1/2)

2,

‖δxwj‖ =

√√√√ N∑
i=1

hi(δxw
j
i−1/2)

2, ‖wj‖∞ = max
0≤i≤N

|wj
i |.

The following lemma will be used in the derivation of the difference scheme,
see [9].

Lemma 1. Suppose f(t) ∈ C2[0, tj ]. Then∣∣∣∣∣
∫ tj

0

f ′(t)dt√
tj−t

−
j∑

k=1

f(tk)−f(tk−1)
τ

∫ tk

tk−1

dt√
tj−t

∣∣∣∣∣ ≤ 10
√

2−11
6

max
0≤t≤tj

|f ′′(t)|τ3/2.
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2.1 Derivation of the Finite Difference Scheme

The difference scheme will be derived by the method of reduction of order.
This method is introduced first by Sun [5, 6] for solution of some high-order
partial differential equations. It has been proved there, that it is unconditionally
stable, has a second order approximation both in space and time, that makes
it preferable to implicit Euler and Crank-Nicolson based methods. The similar
idea is used here to construct our difference scheme. First, we introduce a new
variable: v = ∂u/∂x. Then the problem (P0) is equivalent to

∂u

∂t
−D∂v

∂x
− νv = f(x, t), (x, t) ∈ Ω0, (6)

v − ∂u

∂x
= 0, (x, t) ∈ Ω0, (7)

u(x, 0) = φ(x), −1 ≤ x ≤ 0, (8)
u(−1, t) = ψ(t), 0 ≤ t <∞, (9)

v(0, t)− μ̃u(0, t) = − eλ̃t

√
Dπ

∫ t

0

∂
∂λ

(
u(0, λ)e−λ̃λ

)
√
t− λ

dλ, 0 ≤ t <∞. (10)

Define the grid functions:

U j
i = u(xi, tj), V

j
i = v(xi, tj), 0 ≤ i ≤ N, j ≥ 0.

Using Lemma 1 and noticing U0
N = 0, it follows from (10) that for all j =

1, 2, 3, . . . , we have

V j
N − μ̃U

j
N = − eλ̃tj

√
Dπ

j∑
k=1

∫ tk

tk−1

∂
∂λ

(
u(0, λ)e−λ̃λ

)
√
tk − λ

dλ

= − 2√
Dπ

[
a0U

j
N −

j−1∑
k=1

(aj−k−1 − aj−k)Uk
Ne

λ̃τ(j−k)

]
+O(τ3/2),

where

aj =
1√

tj+1 +
√
tj

=
1√

τ(
√
j + 1 +

√
j)
, j = 0, 1, 2, . . . . (11)

Thus we obtain the following approximation of problem (6)-(10)

δtU
j−1/2
i−1/2 −DδxV

j−1/2
i−1/2 − νV

j−1/2
i−1/2 = f

j−1/2
i−1/2 , 1 ≤ i ≤ N, j ≥ 1, (12)

V
j−1/2
i−1/2 − δxU

j−1/2
i−1/2 = 0, 1 ≤ i ≤ N, j ≥ 1, (13)

U0
i = φ(xi), 0 ≤ i ≤ N, (14)

U j
0 = ψ(tj), j ≥ 1, (15)

V
j−1/2
N − μ̃U j−1/2

N = − 2√
Dπ

[
a0U

j−1/2
N −

−
j−1∑
k=1

(aj−k−1 − aj−k)Uk−1/2
N eλ̃τ(j−k)

]
, j ≥ 1. (16)
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Using similar arguments as in [9] we can show that (12)-(16) is equivalent to
the following scheme (P h

1 ) :

αiδtU
j−1/2
i+1/2 + βiδtU

j−1/2
i−1 −Dδ2xU

j−1/2
i − ν

(
αiδxU

j−1/2
i+1/2 + βiδxU

j−1/2
i−1/2

)
= αif

j−1/2
i+1/2 + βif

j−1/2
i−1/2 , 1 ≤ i ≤ N, j ≥ 1, (17)

U0
i = φ(xi), 0 ≤ i ≤ N, (18)

U j
0 = ψ(tj), j ≥ 1, (19)

δtU
j−1/2
N−1/2 +

(
2D
hN

− ν
)
δxU

j−1/2
N−1/2 +

(
4
√
D

hN
√
π
− 2Dμ̃

hN

)
U

j−1/2
N −

− 4
√
D

hN
√
π

j−1∑
k=1

(aj−k−1 − aj−k)Uk−1/2
N eλ̃τ(j−k) = f

j−1/2
N−1/2, j ≥ 1,(20)

where αi = hi+1

2ĥi
, βi = hi

2ĥi
.

2.2 Analysis of the Difference Scheme

In order to analyze the convergence of difference scheme (P h
1 ) we need the fol-

lowing lemma.

Lemma 2. For any F = {F0, F1, F2, . . . }, we have

j∑
l=1

[
a0Fle

−λ̃tl −
l−1∑
k=1

(al−k−1 − al−k)Fke
−λ̃tk

]
Fle

λ̃tl

≥ eλ̃tj

2
√

2tj

j∑
l=1

F 2
l , j = 1, 2, 3, . . . ,

where am is defined in (11).

The following theorem proves the convergence in energy norm of the derived
difference scheme.

Theorem 1. Let U j
i and uj

i , {0 ≤ i ≤ N, 0 ≤ j ≤ J = T/τ} be respectively the
solution of the difference scheme (P h

1 ) and the continuous problem (P0) then for
all j = 0, 1, 2, . . . J hold the estimates

‖uj − U j‖2A +
τD

2

j∑
l=1

‖δx(ul−1/2 − U l−1/2)‖2 ≤ C
(
N−2 + τ3/2

)2
, (21)

‖uj − U j‖2A +
τD

2

j∑
l=1

‖ul−1/2 − U l−1/2‖2∞ ≤ C
(
N−2 + τ3/2

)2
. (22)
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Proof. Due to equivalency of problems (17)-(20) and (12)-(16), it is sufficient
to consider the second one. Let U j

i , V
j
i and uj

i , v
j
i , {0 ≤ i ≤ N, 0 ≤ j ≤ J}

be respectively the solution of difference scheme (12)-(16) and the continuous
problem (6)-(10). Let ũj

i = U j
i − uj

i , ṽ
j
i = V j

i − vj
i . Using the Taylor expansion

we have

δtũ
j−1/2
i−1/2 −Dδxṽ

j−1/2
i−1/2 − νṽ

j−1/2
i−1/2 = P

j−1/2
i−1/2 , 1 ≤ i ≤ N, j ≥ 1, (23)

ṽ
j−1/2
i−1/2 − δxũ

j−1/2
i−1/2 = Q

j−1/2
i−1/2 , 1 ≤ i ≤ N, 0 ≤ j ≤ J, (24)

ũ0
i = 0, 0 ≤ i ≤ N, (25)
ũj

0 = 0, 0 ≤ j ≤ J, (26)

ṽ
j−1/2
N − μ̃ũj−1/2

N +
2√
Dπ

[
a0ũ

j−1/2
N −

j−1∑
k=1

(aj−k−1 − aj−k)ũk−1/2
N eλ̃τ(j−k)

]
= Sj−1/2, 0 ≤ j ≤ J, (27)

where

P
j−1/2
i−1/2 = O(τ2 + h2

i ), Q
j−1/2
i−1/2 = O(τ2 + h2

i ), S
j−1/2 = O

(
τ3/2

)
, (28)

1 ≤ i ≤ N, j ≥ 1.

Multiplying (23) by 2hiũ
j−1/2
i−1/2 , (24) by 2Dhiṽ

j−1/2
i−1/2 , summing over i = 1, . . . , N ,

and taking into account (25)-(27), and Lemma 2, similarly to [9], we get the
following a priory estimates

1
τ

(
‖ũj‖2A − ‖ũj−1‖2A

)
+
D

2
‖δxũj−1‖2A ≤

4
D
‖P j−1/2‖2A +

7D2 + 8ν
2D

‖Qj−1/2‖2A

+2Dũj−1/2
N Sj−1/2 − 4√

Dπ

[
a0ũ

j−1/2
N −

j−1∑
k=1

(aj−k−1 − aj−k)ũk−1/2
N eλ̃τ(j−k)

]
.

Multiplying the above inequality by τ , summing up for j, then noticing (25) and
using Lemma 2, we have

‖ũj‖2A +
τD

2

j∑
l=1

‖δxũj−1/2‖2 ≤

τ

j∑
l=1

(
4
D
‖P l−1/2‖2 +

7D2 + 8ν
2D

‖Ql−1/2‖2 +
√
Dπ√

2eλ̃tj

(
Sl−1/2

)2
)
. (29)

Now using (28),(29) we obtain (21). The estimate (22) follows from (21) and the
discrete Sobolev inequality ‖uj−1/2‖2∞ ≤ ‖δxuj−1/2‖2. ��
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2.3 Second Order Discretization in Space Combined with
Crank-Nicolson Scheme

We can use the Crank-Nicolson discretization to obtain scheme that preserves
O(τ3/2) order of convergence in time. To get second order approximation in
space we shall use the monotone Samarskii scheme, see [4]

δtU
j−1/2
i −δx̂

(
DκiδxU

j−1/2
i−1/2

)
−νδx̂U j−1/2

i−1 = f
j−1/2
i , 1 ≤ i ≤ N−1, j ≥ 1, (30)

where
κi = (1 +Ri)−1, Ri = hiν/(2D),

and central difference scheme

δtU
j−1/2
i −Dδ2xU

j−1/2
i − νδo

x
U

j−1/2
i = f

j−1/2
i , 1 ≤ i ≤ N − 1, j ≥ 1. (31)

Using Lemma 1 at x = 0 we obtain the discretization

δtU
j−1/2
N +

(
2D
hN

− ν
)
δxU

j−1/2
N−1/2 +

(
4
√
D

hN
√
π
− 2Dμ̃

hN

)
U

j−1/2
N

− 4
√
D

hN
√
π

j−1∑
k=1

(aj−k−1 − aj−k)Uk−1/2
N eλ̃τ(j−k) = f

j−1/2
N , j ≥ 1.(32)

We denote by (P h
2 ) the approximation: (18),(19),(30),(32), and by (P h

3 ) the
approximation: (18),(19),(31),(32). The scheme (P h

2 ) is monotone when ν ≤
2D/hN . It can be shown that both schemes preserve O

(
τ3/2 +N−2

)
order of

convergence. For problems with large diffusion coefficient D the schemes (P h
1 )

and (P h
3 ) generally give higher accuracy compare to the monotone Samarskii

scheme (P h
2 ). For convection-dominated problems, the schemes (P h

1 ) and (P h
3 )

produce an oscillations on uniform meshes and the monotone scheme (Ph
2 ) is

preferable, but if special meshes are used with condensed near to boundary
layers, then the schemes (P h

1 ) and (P h
3 ) could also be applied (see [3] for analysis

of central difference scheme on layer adapted meshes).

3 Numerical Results

In order to demonstrate the effectiveness of the finite difference method using
the artificial boundary conditions we consider the following problem

∂u

∂t
− ∂2u

∂x2 −
∂u

∂x
= 0, (x, t) ∈ Ω, u(x, 0) = 0, −1 ≤ x <∞,

u(−1, t) = exp
(
− t

4

)
erfc

(
1

2
√
t

)
, 0 ≤ t <∞; u→ 0 whenx→∞,

where erfc(x) = 2√
π

∫ ∞
x e−λ2

dλ. We know that the exact solution of the above

problem is u(x, t) = exp (−(2(1 + x) + t)/4) erfc
(
(x+ 2)/(2

√
t)
)
.
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Table 1. Error of the solution in maximum norm, h = τ

Scheme\N N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
P h

1 3.14e-3 7.54e-4 2.51e-4 5.42e-5 1.35e-5 5.08e-6 1.87e-6 6.83e-7
ρN 2.06 1.59 2.21 2.01 1.41 1.44 1.46 -
P h

2 3.75e-3 7.83e-4 2.64e-4 5.79e-5 1.62e-5 5.76e-6 2.05e-6 7.27e-7
ρN 2.26 1.57 2.19 1.84 1.49 1.49 1.49 -
P h

3 3.72e-3 7.82e-4 2.64e-4 5.78e-5 1.59e-5 5.70e-6 2.03e-6 7.23e-7
ρN 2.25 1.57 2.19 1.86 1.48 1.49 1.49 -

Table 2. Error of the solution in energy norm, h = τ

Scheme\N N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
P h

1 1.78e-3 3.20e-4 8.58e-5 2.15e-5 5.39e-6 2.21e-6 8.64e-7 3.27e-7
ρN 2.47 1.90 1.99 2.00 1.28 1.36 1.40 -
P h

2 2.12e-3 3.55e-4 9.69e-5 2.40e-5 7.84e-6 2.84e-6 1.02e-6 3.66e-7
ρN 2.58 1.87 2.01 1.61 1.47 1.47 1.48 -
P h

3 2.10e-3 3.54e-4 9.66e-5 2.40e-5 7.07e-5 2.65e-6 9.75e-7 3.55e-7
ρN 2.57 1.87 2.01 1.76 1.42 1.44 1.46 -

Tables 1 and 2 presents the global error correspondingly in maximum and
energy norm when h = τ , i.e. M = N . For large N we observe O(h3/2) order of
convergence in each norm. The convergence rate is taken to be

ρN = log2 (‖EN‖/‖E2N‖) ,

where ‖EN‖ is the error norm for the corresponding value of N . The results
for the scheme (P h

1 ) are slightly better than the ones for the schemes (P h
2 ) and

(P h
3 ). Table 3 presents the global energy norm and maximum norms for fixed

small τ = 0.00005 and final time T = 0.1. The results in the table confirmed
the second order of convergence with respect to the space variable. Thus the
numerical results confirm the theoretical ones and show the effectiveness of the
constructed scheme.

Table 3. Error of the solution in energy norm, τ = 0.00005

Scheme\N N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
P h

1 2.52e-4 6.39e-5 1.60e-5 4.01e-6 1.00e-6 2.51e-7 6.25e-8 1.55e-8
ρN 1.98 1.99 2.00 2.00 2.00 2.00 2.01 -
P h

2 9.61e-5 2.55e-5 6.48e-6 1.63e-6 4.07e-7 1.02e-7 2.57e-8 6.58e-9
ρN 1.91 1.98 1.99 2.00 2.00 1.99 1.96 -
P h

3 8.75e-5 2.31e-5 5.86e-6 1.47e-6 3.68e-7 9.22e-8 2.32e-8 5.98e-9
ρN 1.92 1.98 1.99 2.00 2.00 1.99 1.96 -
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4 Conclusions

An exact artificial boundary condition is applied to reduce the unbounded do-
main problem into a finite domain problem. The method of reduction of order
is used to derive a difference scheme for the reduced problem. It is proved that
the difference scheme is unconditionally stable in energy norm and convergent
with second order of convergence in space and 3/2 order of convergence in time.
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Abstract. The inexact primal-dual interior point method which is dis-
cussed in this paper chooses a new iterate along an approximation to the
Newton direction. The method is the Kojima, Megiddo, and Mizuno glob-
ally convergent infeasible interior point algorithm. The inexact variation
is shown to have the same convergence properties accepting a residue in
both the primal and dual Newton step equation also for feasible iterates.

1 Introduction

For the standard primal-dual linear programming problem the optimality con-
ditions are the Karush-Kuhn-Tucker (KKT) conditions:

F (x, y, z) ≡

⎛⎝ Ax− b
AT y + z − c

XZe

⎞⎠ = 0, x ≥ 0, z ≥ 0, (1)

where A is an m-by-n matrix of full rank m, b an m-vector, c an n-vector,z an
n-vector, X = diag(x), Z = diag(z) and e is the vector of all ones in "n.

Bellavia [1] proved global convergence of an inexact interior point method.
Ito, Kelly, and Sachs [7] and Ito [6] discuss an inexact primal-dual interior point
iteration for linear programs in functional spaces. Mizuno and Jarre [9] proved
global and polynomial-time convergence of an infeasible interior point algorithm
using inexact computation. Portugal et al. [11] presented a truncated primal-
infeasible dual-feasible interior point algorithm for linear programming. Portugal
et al. [10] presented a truncated primal-infeasible dual-feasible interior point
algorithm for solving monotone linear complementarity problems. The methods
suggested in [7, 10, 11] have a major drawback of remaining primal-feasible once
they become primal-feasible.

Throughout this paper we use the following notation: For any vector x, xk

denotes x at the k-th (interior point) iteration. Similary for any matrix X or
real number η, Xk and ηk denotes X and η at the k-th iteration. We have
adopted the notation (u, v, w) = (uT , vT , wT )T , so for any vectors x ∈ "n, y ∈
"m, (x, y) ∈ "m+n.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 629–637, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



630 V. Baryamureeba and T. Steihaug

2 Inexact Computation

The perturbed KKT conditions for (1) with a positive μ is the nonlinear system

Fμ(x, y, z) ≡

⎛⎝ Ax− b
AT y + z − c
XZe− μe

⎞⎠ = 0, x ≥ 0, z ≥ 0. (2)

The parameter μ is referred to as the μ-complementarity parameter. Newton’s
method defines the equation of directional change (the Newton step equation)

F ′
μk(xk, yk, zk)

⎛⎝Δxk

Δyk

Δzk

⎞⎠ = −Fμk(xk, yk, zk). (3)

If the linear system of equation is solved approximately, then equation (3) has
a residual error rk given by

F ′
μk(xk, yk, zk)

⎛⎝Δxk

Δyk

Δzk

⎞⎠ = −Fμk(xk, yk, zk) + rk. (4)

The residual will be partioned into the primal infeasibility r̄k, dual infeasibility
r̂k, and deviation in complementarity r̃k, rk = (r̄k, r̂k, r̃k). Since F ′ = F ′

μ and
Fμ = F − μk (0, 0, e) an inexact Newton step of (4) is an approximate solution
of the Newton step equation derived from (1)

F ′(xk, yk, zk)

⎛⎝Δxk

Δyk

Δzk

⎞⎠ = −F (xk, yk, zk) + rk
g , where rk

g = μk

⎛⎝0
0
e

⎞⎠ + rk. (5)

For the centering parameter β1, typical choice of the μ-complementarity param-
eter at iteration k is μk = β1

(xk)T zk

n , where β1 ∈ [0, 1]. Bellavia [1] observed

that ‖F (xk, yk, zk)‖2 ≥ (xk)T zk

√
n

. If ‖rk‖2 ≤ ηk(xk)T zk then

‖rk
g‖2 ≤ μk√n+‖rk‖2 ≤

(xk)T zk

√
n

(
β1 + ηk√n

)
≤

(
β1 + ηk√n

)
‖F (xk, yk, zk)‖2.

Hence the sequence {β1+ηk
√
n} can be regarded as a forcing sequence of inexact

Newton methods [3] applied to the nonlinear system (1). Let

‖rk‖2 ≤ ηk(xk)T zk for ηk < (1 − β1)/
√
n. (6)

Since (6) is overly restrictive, we will later show that solving the linear system
(4) with an accuracy ‖rk‖1 ≤ ηk (xk)T zk for 0 ≤ ηk < 1 − β1 will be suffi-
cient to achieve convergence. Bellavia [1] establishes global convergence results
for an inexact interior point method by interpreting it as an inexact Newton
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method using the global inexact Newton method of Eisenstat and Walker [4].
The convergence theory and implementation [1, 2] is based on solving the inexact
Newton equation (5) with a forcing sequence where ηk < (1 − β1)/

√
n. In this

paper, we prove global convergence results based on the reduced linear systems
(the augmented systems or the normal equations), and we bound the residual
rk = (r̄k, r̂k, 0) by

‖rk‖ ≤ ηk(xk)T zk for 0 ≤ ηk < 1 (7)

for suitable choices of the input parameters of the algorithm. The norm ‖ · ‖ can
be any lp norm or any norm in appropriate spaces that satisfies

max{‖r̄k‖, ‖r̂k‖} ≤ ‖(r̄k, r̂k)‖. (8)

It is evident that termination criterion (6) may be more demanding to satisfy than
termination criterion (7). To simplify the notation, we follow [7] and introduce the
residuals ξk = b − Axk and ζk = c − AT yk − zk. Let Gk be defined by Gk =
(Zk)−1

Xk. Eliminating Δzk in (3) leads to an indefinite augmented system[
O A

AT −(Gk)−1

](
Δyk

Δxk

)
=

(
ξk

zk + ζk − (Xk)−1
μke

)
, and (9)

Δzk = (Xk)
−1

(μke− ZkΔxk)− zk. (10)

An inexact solution of (9) satisfies[
O A

AT −(Gk)−1

](
Δyk

Δxk

)
=

(
ξk

zk + ζk − (Xk)−1
μke

)
+

(
r̄k

r̂k

)
. (11)

After computing (Δyk, Δxk) Δzk can be found from (10). The approximate
step (Δyk, Δxk, Δzk) is thus an inexact Newton step of (4) with rk = (r̄k, r̂k, 0).
Eliminating Δxk from (9) gives the normal equations

AGkATΔyk = AGk(zk − (Xk)
−1
μke+ ζk) + ξk. (12)

An approximate solution of (12) satisfies

AGkATΔyk = AGk(zk − (Xk)
−1
μke+ ζk) + ξk + r̄k. (13)

After computing Δyk then Δxk and Δzk are computed from

Δxk = −Gk(c−AT (yk +Δyk)− μk(Xk)
−1
e) (14)

Δzk = (Xk)
−1

(μke− ZkΔxk)− zk. (15)

Satisfying the termination criterion used in [6, 7, 10, 11] for the iterative lin-
ear system solver is computationally expensive once the iterates become almost
primal feasible or primal-dual feasible. Freund, Jarre and Mizuno [5] suggest to
control the errors

‖r̄k‖ ≤ εkp and ‖r̂k‖ ≤ εkd (16)
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which may avoid the problem with exact solution when the iterates are feasible.
The variables εkp and εkd are updated at every iteration k, but are not known
a priori.These variables go to zero faster than ‖ξk‖ and ‖ζk‖ respectively and
thus requiring high accuracy close to a solution. Mizuno and Jarre [9] control the
error ‖(r̄k, r̂k)‖ using a semi norm. This norm is not computable, but accuracy
requirement is shown to be slightly weaker than the relative error with respect
to the right hand side in a modified linear system. This system requires a QR
factorization of the matrix A and the accuracy requirement is thus not suitable
for computation.

3 The Kojima-Megiddo-Mizuno Algorithm

The algorithm we discuss in this paper is a variant of the infeasible primal-dual
interior point algorithm by Kojima, Megiddo, and Mizuno [8]. For any given
accuracy ε > 0 required for the total complementarity, any tolerance εp > 0 for
the primal feasibility, any tolerance εd > 0 for the dual feasibility define

N = {(x, y, z) ∈ Q :
xjzj ≥ γxT z/n for j = 1, 2, . . . , n, (17)
xT z ≥ γp‖Ax− b‖ or ‖Ax− b‖ ≤ εp, (18)
xT z ≥ γd‖AT y + z − c‖ or ‖AT y + z − c‖ ≤ εd} (19)

where Q = {(x, y, z) ∈ "n+m+n : x > 0, z > 0}. The constants 0 < γ < 1,
γp > 0, γd > 0 will in a weak sense depend on the starting point, but will be
chosen so that the neighborhood N is as large as possible. Further, let ω∗ be
any large number and ε∗ = min{ε, γpεp, γdεd}. Then the neighborhood [8]

N ∗ = {(x, y, z) ∈ N : ε∗ ≤ xT zk ≤ ω∗} (20)

is a compact set. We will show that either (xk, yk, zk) ∈ N ∗ or satisfies the
termination criteria

(xk)
T
zk ≤ ε, ‖Axk − b‖ ≤ εp and ‖AT yk + zk − c‖ ≤ εd (21)

or
(xk)T zk > ω∗ (22)

after a finite number of steps. We choose any initial point (x1, y1, z1) ∈ Q and
parameters γ, γp, γd and ω∗ so that (x1, y1, z1) ∈ N and (x1)T z1 ≤ ω∗. Let
0 < β1 < β2 < β3 < 1. We state the algorithm below:

Algorithm 1. Inexact Infeasible Primal-Dual Algorithm

Step 1. Set k = 1. Assume (x1, y1, z1) ∈ N such that (x1)T
z1 ≤ ω∗.

Step 2. If (21) or (22) is satisfied then terminate.
Step 3. Let μk = β1(xk)T

zk/n.
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Step 4. Compute the inexact solution (Δxk, Δyk, Δzk) of (3).
Step 5. Let 0 < ᾱk < 1 such that

(xk, yk, zk) + α(Δxk, Δyk, Δzk) ∈ N (23)

(xk + αΔxk)T (zk + αΔzk) ≤ (1− α(1 − β2))(xk)
T
zk, (24)

hold for every α ∈ (0, ᾱk].
Step 6. Choose a primal step length αk

p ∈ [ᾱk, 1], a dual step length αk
d ∈ [ᾱk, 1]

and a new iterate

(xk+1, yk+1, zk+1) = (xk + αk
p Δx

k, yk + αk
d Δy

k, zk + αk
d Δz

k) (25)

such that

(xk+1, yk+1, zk+1) ∈ N , (26)

(xk+1)
T
zk+1 ≤ (1− ᾱk(1− β3))(xk)

T
zk. (27)

Step 7. Increase k by 1. Go to Step 2.

In this algorithm we take relatively short steps when the search directions are
computed to a relatively low accuracy. In Section 4 we will show the existence
of an ᾱk > 0 for all k as long as (21) is not satisfied.

4 Convergence

For (xk, yk, zk) ∈ N the following inequalities will be used in the discussion of
the algorithm.

(xk)
T
zk ≥ γp‖Axk − b‖ or ‖Axk − b‖ ≤ εp (28)

(xk)
T
zk ≥ γd‖AT yk + zk − c‖ or ‖AT yk + zk − c‖ ≤ εd (29)

(xk)
T
Δzk + (Δxk)

T
zk = −(1− β1)(xk)

T
zk (30)

xk
iΔz

k
i +Δxk

i z
k
i = β1(xk)

T
zk/n− xk

i z
k
i (31)

Let 0 ≤ ηmax < min
{

β1

max{γp, γd}
, 1

}
. (32)

The neighborhood N is made large by making γp and γd small which implies
that in most cases ηmax < 1. The inexact Newton direction (Δxk, Δyk, Δzk)
computed in (11) and (10) satisfies⎡⎣A 0 0

0 AT I
Zk 0 Xk

⎤⎦⎛⎝Δxk

Δyk

Δzk

⎞⎠ =

⎛⎝ b−Axk

c−AT yk − zk

μke−XkZke

⎞⎠ +

⎛⎝ r̄k

r̂k

0

⎞⎠ (33)
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where the residual satsifies

‖(r̄k, r̂k)‖ ≤ ηk (xk)
T
zk for 0 ≤ ηk ≤ ηmax. (34)

Note that ηk(xk)T
zk = ηk n

β1
μk. The coefficient matrix F ′

μ on the left hand side
of (33) is nonsingular and continuous for (x, y, z) ∈ N ∗ defined in (20). Since
‖(r̄k, r̂k)‖ in (34) is bounded for (xk, yk, zk) ∈ N ∗ and ηk ≤ ηmax the inexact
Newton direction (Δxk, Δyk, Δzk) determined in (33) of equations is well defined
(in the sence that for a given residual solution of (33) is unique) and is bounded
over the compact set N ∗. Hence there exists a positive constant τ such that
the inexact Newton direction (Δxk, Δyk, Δzk) from (33) computed at Step 4 of
every interior point iteration satisfies the inequalities

|Δxk
i Δz

k
i − γ(Δxk)

T
Δzk/n| ≤ τ and |(Δxk)

T
Δzk| ≤ τ. (35)

We will now show that for an inexact Newton direction from Step 4 in Algo-
rithm 1 we can find 0 < ᾱk < 1 so that the conditions (23) and (24) in Step 5
are satisfied. It will be shown that for a given N ∗ there exists a 0 < α∗ so that
α∗ ≤ ᾱk. Let ξ(α) and ζ(α) be defined by

ξ(α) ≡ b−A(xk + αΔxk) = ξk − αAΔxk (36)
ζ(α) ≡ c−AT (yk + αΔyk)− zk = ζk − α(ATΔyk +Δzk). (37)

For Δyk and Δxk given by (11), and Δzk by (10) it follows from (33) that the
expressions for ξ(α) and ζ(α) simplify to

ξ(α) = (1− α)ξk − αr̄k (38)
ζ(α) = (1− α)ζk − αr̂k. (39)

Define the real-valued functions fi, i = 1, 2, . . . , n, gp, gd, and h as follows:

fi(α) = (xk
i + αΔxk

i )(zk
i + αΔzk

i )− γ(xk + αΔxk)T (zk + αΔzk)/n
gp(α) = (xk + αΔxk)T (zk + αΔzk)− γp‖ξ(α)‖
gd(α) = (xk + αΔxk)T (zk + αΔzk)− γd‖ζ(α)‖
h(α) = (1− α(1 − β2))(xk)

T
zk − (xk + αΔxk)T (zk + αΔzk).

Consider Step 5 in the Inexact Infeasible Primal-Dual Algorithm. From the def-
inition of the neighborhood N condition (23) is equivalent to: fi(α) ≥ 0 (i =
1, 2, . . . , n); gp(α) ≥ 0 or‖ξ(α)‖ ≤ εp; gd(α) ≥ 0 or ‖ζ(α)‖ ≤ εd for 0 < α ≤ ᾱk.
Similarly, (24) is equivalent to h(α) ≥ 0 for 0 < α ≤ ᾱk.

Consider the function gp and the simplified expression for ξ in (38). Then

gp(α) ≥ αβ1(xk)T zk + α2(Δxk)TΔzk − γpα‖r̄k‖ (40)

using (18), and (30). By (34) and the property of the norm (8)

‖r̄k‖ ≤ ‖(r̄k, r̂k)‖ ≤ ηk (xk)T zk, (41)
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gp(α) ≥ α (β1 − ηmax γp) (xk)T zk + α2(Δxk)TΔzk. for ηk ≤ ηmax

For (xk, yk, zk) ∈ N ∗ and (35) (xk)T zk ≥ ε∗ and (Δxk)TΔzk ≥ −τ

gp(α) ≥ α [(β1 − ηmax γp) ε∗ − ατ ]

Hence if 0 ≤ α ≤ (β1−ηmax γp)ε∗

τ and gp(0) ≥ then gp(α) ≥ 0. Consider gp(0) < 0.
By definition of gp this is equivalent to γp‖Axk − b‖ > (xk)T zk and from (38)

‖A(xk + αΔxk)− b‖ ≤ (1− α(1 − β1))‖Axk − b‖ ≤ ‖Axk − b‖

for the choice of ηk in (32). From the definition ofN and Step 5 of Algorithm 1 we
know the iterate (xk, yk, zk) generated satisfies (xk, yk, zk) ∈ N for all k. Thus
gp(0) < 0 implies that ‖Axk−b‖ ≤ εp. From (42) it follows that ‖A(xk +αΔxk)−
b‖ ≤ εp if gp(0) < 0 for α ≤ 1. Similarly, ‖r̄k‖ ≤ ‖(r̄k, r̂k)‖ ≤ ηk(xk)kzk and

gd(α) ≥ α(β1 − ηmaxγd)(xk)T zk + α2(Δxk)TΔzk ≥ α [(β1 − ηmaxγd)ε∗ − ατ ] .

Hence, if 0 ≤ α ≤ (β1−ηmaxγd)ε∗

τ , and gd(0) ≥ 0 then gd(α) ≥ 0. Next consider

fi(α) ≥ β1(1− γ)(ε∗/n)α− τα2 = α[β1(1− γ)(ε∗/n)− τα]. (42)

Inequality (42) follows from application of (30), (31) and (35) on the expression
for fi(α) above. Finally, consider

h(α) = α(β2 − β1)(xk)
T
zk + α2(Δxk)

T
Δzk ≥ α[(β2 − β1)ε∗ − ατ ]. (43)

The inequality for h(α) (43) follows from application of (30) and (35) on h(α)
above.

Let ηmax be given by (32), γ̄ = max{γp, γd} and define

α∗ = min
{

1,
(β1 − ηmax γ̄)ε∗

τ
,
β1(1− γ)ε∗

nτ
,
(β2 − β1)ε∗

τ

}
. (44)

For α∗ defined in (44) we observe that

fi(α) ≥ 0 (i = 1, 2, . . . , n)

gp(α) ≥ 0 if gp(0) = (xk)
T
zk − γp‖Axk − b‖ ≥ 0

‖A(xk + αΔxk)− b‖ ≤ εp if gp(0) < 0 (45)

gd(α) ≥ 0 if gd(0) = (xk)
T
zk − γd‖AT yk + zk − c‖ ≥ 0

‖AT (yk + αΔyk) + (zk + αΔzk)− c‖ ≤ εd if gd(0) < 0 (46)
h(α) ≥ 0

hold for every α ∈ [0, α∗]. Next that ηk γd < β1 for ηk ≤ ηmax and ηmax defined
by (32). By a similar argument as for (45), observation (46) follows.
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Thus, we have shown that there exists an α∗ > 0 such that ᾱk ≥ α∗ in
Algorithm 1 for pt all k. By the construction of the real-valued functions
fi(i = 1, . . . , n), gp, gd, and h, this is equivalent to saying that (23) and (24)
hold for every α ∈ (0, α∗]. Consider Step 6 in the Algorithm 1. Condition
(26) and (27) are satisfied for a common primal and dual step length αk

p =
αk

p = ᾱk and since β2 < β3 (27) is satisfied with strict inequality. Further,
note that the right hand side of (27) is constant with respect to αk

p and αk
d .

Theorem 1. Define ψk = max
{
‖Axk − b‖, ‖ATyk + zk − c‖, (xk)T zk

}
. Let the

norm of the residual (r̄k, r̂k) in (11) satisfy ‖(r̄k, r̂k)‖ ≤ ηk(xk)T zk, for 0 ≤ ηk ≤
ηmax where ηmax satisfy 32. Then there exist α̃ ∈ (0, 1) so that

ψk+1 ≤ (1− α̃ψk) (47)

where α̃ = α∗(1−max {β3, ηmax}) and α∗ is given by (44).

Theorem 1 implies that ‖ξk‖ → 0, ‖ζk‖ → 0 and (xk+1)T zk+1 → 0 as k → ∞.
This contradicts assumption (20), i.e. (xk)T zk ≥ ε∗ for all k. Thus as k → ∞
there exists a k after which the algorithm generates a point (xk+1, yk+1, zk+1)
which is either an approximate optimal solution (xk+1, yk+1, zk+1) satisfying
(21) or satisfies (22). Therefore Algorithm 1 is globally convergent.

It follows from Theorem 1 that the sequences {ψk}, {(xk)T zk} and {max{
‖Axk − b‖, ‖ATyk + zk − c‖

}}
are q−linearly convergent. For u ∈ "n, v ∈ "n

and w ∈ "n then ‖|(u, v, w)‖| = max{‖u‖, ‖v‖, ‖w‖1} is a norm in u ∈ "m+n+n.
Theorem 1 shows that for the function F in (1) the KKT condition inequality
(47) is equivalent to ‖|F (xk+1, yk+1, zk+1)‖| ≤ (1− ᾱ)‖|F (xk, yk, zk)‖|. Classical
stopping criterion [5] includes ‖Axk−b‖

max{1,‖b‖} + ‖AT yk+zk−c‖
max{1,‖c‖} + (xk)T zk

max{1,‖b‖c‖} ≤ ε.
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Abstract. We propose a new parallel domain decomposition algo-
rithm to solve symmetric linear systems of equations derived from the
discretization of PDEs on general unstructured grids of triangles or
tetrahedra. The algorithm is based on a single-level Schwarz alternating
procedure and a modified conjugate gradient solver. A single layer of
overlap has been adopted in order to simplify the data-structure and
minimize the overhead. This approach makes the global convergence rate
to vary slightly with the number of domains and the algorithm becomes
highly scalable. The algorithm has been implemented in Fortran 90
using MPI and hence portable to different architectures. Numerical ex-
periments have been carried out on a SunFire 15K parallel computer
and there have been shown superlinear performance in some cases.

1 Introduction

Domain decomposition methods refer to divide-and-conquer techniques to solve
partial differential equations by iteratively solving subproblems defined on
smaller subdomains. The earliest known iterative domain decomposition tech-
nique was proposed by H. A. Schwarz in 1870 to prove the existence of harmonic
functions on irregular regions which are the union of overlapping subregions.
Variants of Schwarz’s method were later studied by several authors (see Chan
et al. [2] for a survey). Domain decomposition methods have the capability of
providing numerical solvers which are portable, efficient and highly parallelis-
able. An overview of the methods, their implementation, analysis and relation
to multigrid methods may be found in the book by Smith et al. [12].

The convergence rate and, therefore, the overall parallel efficiency of single-
level Additive Schwarz (AS) methods are often dependent on subdomain gran-
ularity. The number of iterations required for convergence tends to increase as
the number of subdomains increases. The reason lies in the fact that the only
means for communicating information between subdomains is through the over-
lap region.

A two-level method which employs a global coarse mesh solver to provide
global communication is often used. For structured meshes, a grid hierarchy is
naturally available. However, for an unstructured mesh the coarse grid may not
be easy to find [3]. Thus, a procedure is needed that generates this grid, as well
as the associated interpolation and restriction operators. Moreover, the amount

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 638–645, 2006.
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of memory required to store a second, even coarser grid, is a disadvantage. Unlike
recursive multilevel methods, a two-level Schwarz method may require too high
resolution on the coarse grid, which makes it less scalable overall. Parallelizing
the coarse grid solver is ultimately necessary for high performance [9].

The algorithm proposed in this paper is based on the additive form of a single-
level Schwarz alternating procedure and a modified conjugate gradient (CG)
solver. Preconditioned conjugate gradient methods are usually very efficient,
albeit not always highly parallelisable. Their parallelism is mainly limited by
the sequential component of the preconditioner. Schwarz methods are highly
parallelisable and depend on a rapid local convergence to be effective. The main
difficulty to use CG as the local solver on a Schwarz method is the perturbation
on the right-hand-side of each subdomain system at each cycle, i.e. a new problem
has to be solved at each iteration, slowing the local and, therefore, the overall
convergence.

This paper is concerned mainly about a modified CG that computes each
search direction from the previous one, except on the first cycle, even when the
right-hand-side has been perturbed. We illustrate our algorithm with the Poisson
equation since it is of wide application interest and is particularly demanding of
parallel algorithms because the equations are especially simple.

2 Conjugate Gradient Method

The method of conjugate gradient, first introduced by Hestenes and Stiefel [7],
is often the method of choice to solve systems of linear equations

Ax = b (1)

where A is an n × n symmetric positive definite (SPD) sparse matrix. CG is
remarkably fast when compared to other methods like steepest descent, does
not require the specification of any parameters and, in the absence of round-off
errors, will provide the solution in at most n steps.

The method may be described as Algorithm 1. For details about the derivation
and convergence analysis see for instance [7, 6, 11] and [1]. The formula for β in
Algorithm 1 is the well-known Fletcher-Reeves one [5]; for alternates β see for
instance [10] and [4].

Algorithm 1. Conjugate Gradient
1: r0 = b − Ax0

2: p0 = r0

3: for i=0,1,... do
4: αi = (ri, ri)/(Api, pi)
5: xi+1 = xi + αipi

6: ri+1 = ri − αiApi

7: βi = (ri+1, ri+1)/(ri, ri)
8: pi+1 = ri+1 + βipi

9: end for
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3 Additive Schwarz Method

To obtain high parallelism, we use a Schwarz method which allocates one subdo-
main to each processor. We consider a single-level overlapping additive Schwarz
method on matching grids. The method consists of partitioning the domain Ω
into p overlapping subdomains Ωi and approximate the solution by solving a
sequence of boundary value problems in each subdomain.

3.1 Mesh Partitioning

The mesh has to be decomposed into p non-overlapping subdomains Ωi so that
the number of nodes assigned to each subdomain is almost the same and the
number of adjacent elements assigned to different processor is minimized. The
goals of the first and second conditions are, respectively, to balance the compu-
tation among processors and minimize communication. An overlap is introduced
algebraically by enlarging these subsets to contain the vertices within one edge
from the original subset. Note that even the initial domain partitioning is vertex-
based; the final partitioning is element-based and overlapped.

Let us define ∂Ω as the boundary of the domain and Γi as the artificial
boundary of each subdomain, i.e. the part of the boundary of Ωi that is interior
to Ω. If a node of Ωi is on Γi it is called a halo-node, otherwise, it is called a
local-node. Edges may have two local-nodes, one local- and one halo-node, or
two halo-nodes. They are called local-, halo- and remote-edges, respectively.

3.2 Data Partitioning

The matrix A of (1) is row-wise partitioned, i.e. only element edges whose first
node is local are kept. Assuming that n is the number of nodes of the mesh, p is
the number of subdomains and ni is the number of local nodes per subdomain,
each subdomain is represented by an ni × n matrix

Ai = [Hi,1 · · · Hi,i−1 Li Hi,i+1 · · · Hi,p],

where Li is the matrix of local-edges and Hi,j , for j = 1, . . . , p and j �= i,
are matrices of halo-edges from neighbour j. If j is not a neighbour of i then
Hi,j = 0. Note that each subdomain has all columns of A and there are no
replicated data. Vectors contain only the elements corresponding to local-nodes,
i.e. they are of size ni.

3.3 Algorithm Description

The overall system is written as

A =

⎡⎢⎢⎢⎣
A1
A2
...

Ap

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
L1 H1,2 · · · H1,p

H2,1 L2 · · · H2,p

...
...

. . .
...

Hp,1 Hp,2 · · · Lp

⎤⎥⎥⎥⎦ x =

⎡⎢⎢⎢⎣
x1
x2
...

xp

⎤⎥⎥⎥⎦ b =

⎡⎢⎢⎢⎣
b1
b2
...

bp

⎤⎥⎥⎥⎦
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Letting

Ĥi =
[
Hi,1 · · · Hi,i−1 0 Hi,i+1 · · · Hi,p

]
, x̂i =

p⋃
j=1
j 	=i

xj

and defining halo-nodes as Dirichlet-type boundary nodes, the problem to be
solved at each subdomain may be written as⎡⎢⎣ Li Ĥi

0 I

⎤⎥⎦
⎡⎢⎣ xi

x̂i

⎤⎥⎦ =

⎡⎢⎣ bi

x̂i

⎤⎥⎦ =⇒ Lixi + Ĥix̂i = bi

Assuming that x̂i is known we can write:

Lixi = bi − Ĥix̂i (2)

= bi −
[
Hi,1 · · · Hi,i−1 0 Hi,i+1 · · · Hi,p

] [
x1 x2 · · · xp

]T

= bi −
p∑

j=1
j 	=i

Hi,j xj (3)

The solution is obtained by iteratively solving

Lix
(k)
i = bi − Ĥix̂

(k−1)
i (4)

where Li, Ĥi and bi are constant, and x̂
(k−1)
i is updated at each cycle by data

exchange with the neighbours.

4 Distributive Conjugate Gradient Additive-Schwarz

Consider the solution of Equation (4) in one subdomain. For simplicity, the
subdomain subscripts were dropped and Equation (4) is written in a general
form as

Lx = b− Ĥx̂ (5)

Initially, the artificial boundary nodes are set to zero, i.e. Lx = b is approximated.
After x̂ has been updated the first time, a problem with a perturbed right-hand-
side has to be solved. Note that solving each subdomain problem accurately does
not necessarily mean that the overall solution is accurate.

The algorithm proposed in this paper, updates x̂ at each iteration, i. e. the
right-hand-side changes at each step. To solve (5) by using one iteration of a con-
jugate gradient method per step, a technique that uses previous information has
to be adopted, otherwise, only steepest descent iterations would be performed,
which degrade the convergence rate.

In the so-called additive Schwarz with distributive conjugate gradient (DCG-
AS) procedure, at each step k, the initial approximate solution x, residual
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r and search direction p are set as the previous ones. Either r and p are updated
accordingly to the previous x̂ before performing the iteration. The residual is
updated such that

r(k+1) = b− Ĥx̂(k+1) − Lx(k+1)

Given p̃(k) the search direction computed before the perturbation, the updated
search direction p is taken as an orthogonal vector of p̃ projected onto r:

p(k) = p̃(k) −
(
r(k+1), p̃(k)

)(
r(k+1), r(k+1)

) r(k+1)

This leads to Algorithm 2.
This approach makes p(k) conjugate to p(k+1) but does not guarantee any

other orthogonality. However, it improves the convergence rate quite signifi-
cantly if compared to the steepest descent method. For a given accuracy, the
additive Schwarz procedure with DCG as a subdomain solver achieves an over-
all convergence rate comparable to the CG method, as reported on Section 5.

Algorithm 2. Distributive Conjugate Gradient Additive-Schwarz
1: r0 = b − Lx0

2: p0 = r0

3: x̂0 = 0
4: for i=0,1,... do
5: αi = (ri, ri)/(Lpi, pi)
6: xi+1 = xi + αipi

7: ri+1 = ri − αiLpi

8: Update x̂i+1

9: ri+1 = ri+1 − Ĥ(x̂i+1 − x̂i)
10: pi = pi − (ri+1, pi)/(ri+1, ri+1)ri+1

11: βi = −(ri+1, Lpi)/(pi, Lpi)
12: pi+1 = ri+1 + βipi

13: end for

5 Numerical Results

In this section we present experimental results obtained with our parallel imple-
mentation of DCG-AS, using as test problems the linear systems derived from
a finite element discretization (Galerkin scheme) of the Poisson equation on un-
structured grids of triangles or tetrahedra. The test problems are stated as:

Problem 2D: ∇2φ = −2π2 sin(πx) sin(πy) in Ω
φ = 0 on ∂Ω
Ω = { ( x, y ) ∈ R2 : −1 < x, y < 1 }

Problem 3D: ∇2φ = 12c(x2 + y2 + z2)2c−1 + 4c(2c− 1)(x2 + y2 + z2)2c in Ω
φ = (x2 + y2 + z2)2c on ∂Ω
Ω = { ( x, y, z ) ∈ R3 : 0 < x, z < 20 , 0 < y < 120 }

where c is a scalar.
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The algorithm has been implemented in Fortran 90 using MPI, making it
portable to different architectures. The numerical experiments have been carried
out on a SunFire 15K parallel computer and the meshes were partitioned using
Metis [8].

Figure 1 shows the convergence rate of Problem 2D solved by CG (1 proces-
sor), DCG-AS (2 and 4 processors) and SD-AS (2 processors), which is basically
DCG-AS, except that p is always equals to r, i.e., a steepest descent iteration
is performed at each step. It shows that DCG-AS converges much faster then
SD-AS. Figure 2 shows the 2-norm of the perturbation on the right-hand-side
at each step for the same problem in 2 subdomains. We note that it is almost
monotonic and similar on both subdomains. Similar behaviour has been observed
on more subdomains.

Table 1 shows the number of iterations, the run time (in seconds), the speed-
up and the efficiency of Problem 3D obtained by our sequential and parallel
implementation. The results presented show that the parallelization of the
method led to a good overall performance. One can also notice that the speed-up
is even superlinear in some cases. This is mainly due to the minimized amount
of communication and data transfer scheme adopted.

A parallel implementation of CG can be as efficient as, or more efficient than,
DCG-AS for a small number of processors. However, the efficiency of a parallel

Table 1. Efficiency of Problem 3D for n=294,518 and n=581,027

Procs n=294,518 n=581,027
Iters Run-time Speed-up Efficiency Iters Run-time Speed-up Efficiency

1 380 146.0 - - 534 501.4 - -
2 561 118.4 1.23 0.62 734 357.1 1.40 0.70
4 575 59.6 2.45 0.61 881 241.4 2.08 0.52
8 514 19.2 7.60 0.95 709 116.5 4.30 0.54
16 454 6.0 24.33 1.52 691 48.2 10.40 0.65
32 752 3.9 37.44 1.17 659 9.4 53.34 1.67
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implementation of CG decreases faster than the efficiency of DCG-AS as the
number of processors increases. On machines with slower relative communication
speeds (such as PC clusters) our minimal communication scheme will perform
far better.

6 Final Remarks

We have presented a new parallel algorithm, based on an additive Schwarz pro-
cedure with a conjugate gradient solver, for solving fairly general symmetric
systems of linear equations. To date, the performance obtained with our actual
implementations in Fortran90 and MPI has been shown good scalability for
most of the problems.

Techniques to minimize the variation in the rate of convergence as the number
of subdomains increase are under investigation and are expected to improve the
overall performance. Preconditioning methods for the local solver and the use
of DCG-AS as a preconditioner are also under development. Furthermore, we
intend to adapt the procedure for the Bi-CGSTAB method that will allow other
PDE problems to be considered.
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Abstract. New results concerning a recently introduced parallel pre-
conditioner for the solution of large nonconforming FE linear systems
are presented. The studied algorithm is based on the modified incomplete
Cholesky factorization MIC(0) applied to a locally constructed approx-
imation of the original stiffness matrix. The overlapping of communica-
tions and computations is possible due to a suitable reordering of the
computations applied in the MPI code. The obtained improvement of
the real performance is illustrated by numerical tests on a Beowulf-type
Linux cluster and on a Sun Fire symmetric multiprocessor.

1 Introduction

The nonconforming finite elements and the parallel algorithms are two advanced
computational mathematics topics which have provoked a lot of publications
during the last decades. This work is focused on the case where a second order
elliptic boundary value problem is discretized by rotated bilinear nonconforming
finite elements on quadrilaterals. The considered elements are firstly proposed
in [5] as a cheapest stable Finite Element (FE) approximation of the Stokes
problem.

Parallel preconditioned conjugate gradient (PCG) solver for the related ellip-
tic FE system was recently introduced in [1]. Our aim is to improve the perfor-
mance of its Message Passing Interface (MPI) implementation. The included pre-
conditioner is based on the modified incomplete Cholesky factorization MIC(0)
applied to a locally constructed approximation of the original stiffness matrix.
The properties of the whole method have been analyzed already in [2], where
also numerical results obtained on two Beowulf-type Linux clusters are compared
with theoretically derived estimates of the execution times.

The structure of the paper is as follows. The needed background of the bilinear
nonconforming FE discretization, the essence of MIC(0) and the preconditioning
strategy, are given in Section 2. The parallel implementation of the resulting
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PCG algorithm is described in Section 3, where a suitable reordering of the
computations is applied in the MPI code. This approach allows the usage of
nonblocking send and receive operations, i.e. overlapping of communications and
computations. The achieved improvement of the real performance is illustrated
in Section 4 by numerical tests on a Beowulf-type Linux cluster and on a Sun
Fire symmetric multiprocessor.

2 Preliminaries

We start the exposition in this section with formulation of the problem and its
discretization. Further, we give the essence of MIC(0). It is shown in the end,
how the well parallelizable structure of the resulting preconditioner is obtained.

Nonconforming FE discretization. We consider the isotropic two-dimen-
sional elliptic problem associated with the bilinear form

ah(uh, vh) =
∑
e∈ωh

∫
e

a(e)
2∑

i=1

∂uh

∂xi

∂vh

∂xi
dx . (1)

Here, ωh is a decomposition of the computational domain Ω into convex quadri-
laterals denoted by e. The coefficient a(e) is a constant on each e ∈ ωh defined
as an averaged value of the varying coefficient of the original boundary value
problem.

The finite element space Vh corresponding to ωh is obtained using the rotated
bilinear nonconforming finite elements, as proposed in [5]. The reference element
E is the unit square with sides Γj , j = 1, . . . , 4, parallel to coordinate axes,
and nodes j = 1, . . . , 4 which are the mid-points of the sides. Mid-point and
integral mid-value interpolation operators are implemented in the definition of
the nodal basis functions ϕi ∈ Sp, Sp = span{1, x1, x2, x

2
1 − x2

2}. This leads to
two alternative constructions of Vh, referred as Algorithm MP and Algorithm
MV respectively. The nodal interpolation conditions ϕi(j) = δij , i, j = 1, . . . , 4
are used in MP, where δij is the Kronecker symbol. The conditions for MV are

1
|Γj |

∫
Γj
ϕi dx = δij , i, j = 1, . . . , 4.

The standard finite element procedure continues with computation of the
element stiffness matrices Ae = {αij}4i,j , e ∈ ωh. It follows the isoparamet-
ric technique using the reference element E basis functions. The assembling of
Ae, e ∈ ωh leads to the linear system of equations

Ax = b . (2)

The stiffness matrix A = {aij}N
i,j=1 is sparse, symmetric and positive definite,

with at most seven nonzero elements per row. Its structure is one and the same
for MP and MV and hence the preconditioning strategy does not depend on the
type of the nodal basis functions.

The essence of the Modified Incomplete Cholesky (MIC(0)) factorization
of sparse matrices is given below. Some more details may be found in [3, 4].
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Let us rewrite the real symmetric N ×N matrix A as a sum of its diagonal
(D), strictly lower (−L̃) and upper (−L̃)t triangular parts

A = D − L̃− L̃t . (3)

Then we consider the approximate factorization of A with the following form

CMIC(0)(A) = (X − L̃)X−1(X − L̃)t , (4)

where X = diag(x1, · · · , xN ) is a diagonal matrix determined by the condition
of equal rowsums CMIC(0)e = Ae, e = (1, · · · , 1)t ∈ RN .

We say that the factorization (4) of A is a stable MIC(0) factorization if
X>0 and thus CMIC(0)(A) is positive definite. Concerning the stability of MIC(0)
factorization, the following theorem holds.

Theorem 1. Let A = {aij} be a symmetric real N×N matrix and A = D−L̃−L̃t

be the splitting (3) of A. Let us also assume that

L̃ ≥ 0 , Ae ≥ 0 , Ae + L̃te > 0 , e = (1, . . . , 1)t ∈ RN ,

i.e., A is a weakly diagonally dominant matrix with nonpositive off-diagonal
entries and that A + L̃t = D − L̃ is strictly diagonally dominant. Then the
relation

xi = aii −
i−1∑
k=1

aik

xk

N∑
j=k+1

akj

gives only positive values and the diagonal matrix X = diag(x1, · · · , xN ) defines
a stable MIC(0) factorization of A.

Preconditioning strategy. Here, we briefly present the approach proposed
in [1]. We use the PCG method with a preconditioner based on the MIC(0)
factorization of sparse matrices. For construction of the preconditioner, two steps
are performed.

At first, a local modification with a diagonal compensation is applied to the
stiffness matrix A. Its geometrical sense is the following. Each node P of the
mesh is connected with the nodes from two neighbouring quadrilateral elements,
as shown in Fig. 1 (a). Two of the links are ”cut” (see Fig. 1 (b)) to introduce the
locally modified element stiffness matrices. The resulting global matrix B allows
for a stable MIC(0) factorization.

At the second step, MIC(0) factorization of B is performed, i.e. the precondi-
tioner for A is C = CMIC(0)(B). It has a specific well parallelizable block structure
preserving the robustness of the pointwise incomplete factorization.

P P

(a) (b)

Fig. 1. The connectivity pattern
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Fig. 2. The structure of the matrix A (a) and the locally modified matrix B (b)

The steps needed to solve a system with a preconditioner C are based on
recursive computations and therefore the resulting PCG algorithm is inherently
sequential. The locally constructed approximation B of the original stiffness
matrix A is introduced to allow a possibility of parallel implementation.

The structures of the matrices A and B are shown in Fig. 2. They correspond
to a problem in a square domain, discretized by a rectangular n1×n2 mesh with
vertical node numbering. Then N = n1(2n2 + 1) + n2 denotes the number of
degrees of freedom.

A condition number model analysis of B−1A can be found in [1]. It is shown
there that: a) the matrices A and B are spectrally equivalent; b) the conditions
for a stable MIC(0) factorization hold for B; and c) the PCG convergence rates
of the preconditioners CMIC(0)(B) and CMIC(0)(A) are very similar preserving the
robustness of the pointwise incomplete factorization. The diagonal blocks of the
matrix B allow a parallel implementation of the resulting PCG algorithm.

3 Parallel PCG Solver

At the beginning of this section, we review briefly the algorithm and its parallel
properties. The exposition at this stage is based on the theoretical and experi-
mental results in [1, 2]. Further, we focus our attention on the question, How to
improve the performance of the considered parallel algorithm?”. Therefore we
introduce a proper reordering of the computations and communications.

Data distribution, computations and communications. Let us have Np

processors denoted by P0, P1, . . . , PNp−1. The domain is partitioned into Np

horizontal strips with an approximately equal number of elements. This leads to
a division of each of the block rows of the matrices A and B into strips with an
almost equal number of equations. All the vectors are distributed in the same
way. Each Pi deals with the data from its strip and the computations are equally
distributed among the processors. The communication of concurrent processes
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during one parallel PCG iteration is required for the inner products, for the
matrix-vector multiplication and for the preconditioning. The data transfers for
the inner products are global, in the rest two cases they are local. To compute
Av, not more than 3 numbers per block row should be transferred between a
pair Pi, Pi+1 or Pi, Pi−1 of neighbours. Since all the required data are computed
at the previous iteration step, the components could be combined and exchanged
at four communication stages. To solve the system with the preconditioner C,
not more than 4 numbers per block equation have to be transferred between the
same pairs of processors. Now, the data cannot be combined and one number is
exchanged at each of the needed 4n1 communication stages per pair of processors.

We have to point out that the blocks on the diagonal of B are diagonal and
each processor contains a strip from each of the block equations, not one strip
from the whole system. There is still recursion but it is for blocks and each block
is handled in parallel.

The following theoretical estimate of the execution time for one iteration is
derived in [2]:

T it
Np

= T it
a + T it

com ≈ 34
n1(2n2 + 1) + n2

Np
.ta + 8n1.ts + 14n1.tw .

Here, ta is the average unit time to perform one arithmetic operation by one
processor, ts is the start-up time for communication, tw is the incremental time
necessary to send a word between two neighbouring processors. The crucial part
of the needed communications is local and the performance of the algorithm
weakly depends on the number of processors and the parallel architecture. The
coefficients in front of ts and tw depend on the problem size. This is the reason
why the performance depends substantially on the ratio between ts, tw and ta.

A comparative analysis of the achieved performance and the real distribution
of computation and communication times is made in [2] using two Beowulf-
type Linux clusters – Thea and Parmac. It is experimentally shown there that:
1) the speed-up and efficiency coefficients are approximately one and the same
for the variants MP and MV of the nodal basis functions (see Section 2); 2) the
computation time decreases almost two times when the number of processors
is increased twice; 3) the communication time does not depend on the number
of processors; 4) the communications for the preconditioning is the most time
consuming part.

Overlapping of computations and communications. How to reduce the
influence of the communication time for distributed memory machines with large
ratios ts

ta
and ts

tw
? We reorder the computations in the forward and backward

recurrence to solve the system with preconditioner as described below. This
allows us to use nonblocking send and receive operations of MPI and to overlap
computations with communications.

To apply the preconditioner CMIC(0)(B)w ≡ (X − L̃)X−1(X − L̃)tw = v (see
(3), (4)), one has to perform the following three steps: 1) find y from Ly = v,
where L = X − L̃; 2) compute z := Xy; and 3) find w from Ltw = z. Data
transfers between neighbouring processors (see below and [2] for details) are
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Fig. 3. The scheme of communications and computations for the solution of Ly = v.
Note that Np = 3, n1 = n2 = 9.

needed at steps 1) and 3), while no communication is required at step 2). The
important advantage of the matrixB is that all of its diagonal blocks are diagonal
and hence the same holds for L.

The structure of two successive block rows (2j and 2j + 1) of L and their
distribution among the processors is presented in Fig. 3. The system Ly = v is
solved by a standard forward recurrence. The block L11 is diagonal, divided into
Np strips – one per each processor. So L11y1 = v1 is solved in parallel without
any data transfers. Then we have to determine y2 from L21y1 + L22y2 = v2.
The component y1 is computed at the previous step but each processor has a
strip of y1. The block L21 is two-diagonal and hence the processor Pi has to
send one component of y1 to Pi+1 and to receive another one from Pi−1. These
data are multiplied by entries denoted by • in Fig. 3, i.e. they participate only in
the computation of the first element of ṽ2 = v2 − L21y1 in each Pi. So each Pi

calculates the first entry of ṽ2 at the end and the communication is overlapped
with the computation of the rest components. Then L22y2 = v2 − L21y1 is
handled concurrently without any other communications. After that, L32y2 +
L33y3 = v3 has to be solved. Again, one component of y2 is transferred, but
now to processor Pi−1. It participates in the last element of ṽ3 in each Pi and
it is determined after the communication, overlapped with computation of the
remaining entries, is completed. The procedure continues till the last block of y
is computed. The third step is handled in similar way as the first step, applying
the standard backward recurrence.

4 Numerical Tests

We compare in this section the performance of the parallel algorithm and the
related C/MPI codes with and without overlapping of communications and com-
putations on two parallel architectures. Namely, new results on a Beowulf-type
Linux cluster referred as Thea and on a Sun Fire symmetric multiprocessor re-
ferred as Simba are presented.
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Table 1. Algorithm MP

Thea Simba
no overlap overlap no overlap overlap

Np
n

iter
cpu SNp ENp cpu SNp ENp cpu SNp ENp cpu SNp ENp

1 9.16 9.21 16.36 16.36
2 256 9.55 0.96 0.48 8.10 1.14 0.57 7.97 2.05 1.03 7.71 2.12 1.06
4 71 11.51 0.80 0.20 7.41 1.24 0.31 3.39 4.83 1.21 3.20 5.11 1.28
8 11.20 0.82 0.10 6.47 1.37 0.17 2.48 6.60 0.82 2.43 6.73 0.84
16 3.24 5.05 0.32 2.88 5.68 0.36
1 54.11 54.22 108.11 108.07
2 512 41.91 1.29 0.65 33.88 1.60 0.80 54.57 1.98 0.99 53.46 2.02 1.01
4 104 41.35 1.31 0.33 24.97 2.17 0.54 29.06 3.72 0.93 29.13 3.71 0.93
8 36.47 1.48 0.19 20.65 2.63 0.33 15.38 7.03 0.88 14.86 7.27 0.91
16 11.10 9.77 0.61 9.84 10.98 0.69
1 286.91 287.51 646.95 647.40
2 1024 212.41 1.35 0.68 192.32 1.49 0.75 325.05 1.99 1.00 323.91 2.00 1.00
4 148 155.52 1.84 0.46 107.49 2.67 0.67 170.77 3.79 0.95 167.87 3.86 0.96
8 125.01 2.30 0.29 71.09 4.04 0.51 88.85 7.28 0.91 86.49 7.49 0.94
16 52.37 12.35 0.77 51.95 12.46 0.78

Thea is located at the Institute of Geonics, Academy of Sciences of the Czech
Republic, and consists of eight computing nodes plus, a file server and one inter-
active node. Each of the nodes is equipped by a single AMD Athlon processor
at 1.4GHz frequency and 1.5GB of memory. The nodes are interconnected via
two standard FastEthernet networks.

Simba is located at the Department of Information Technology, Uppsala Uni-
versity, Sweden. It has 36 UltraSPARC III+ processors at 900MHz frequency
and 36GB of shared memory. The system is configured as a separate domain of
a Sun Fire 15000 server based on the Sun Fireplane interconnect architecture
with very fast data transfers up to 9.6GB/s of the peak performance.

We consider a model Poisson equation in a unit square with homogeneous
Dirichlet boundary conditions. The partitioning of the domain is uniform where
n1 = n2 = n. The size of the discrete problem isN = n1(2n2+1)+n2 = 2n(n+1).
The relative stopping criterion (C−1rnit , rnit)/(C−1r0, r0) < ε is used in the PCG
algorithm, where ri stands for the residual at the i-th iteration step, ( · , · ) is
the Euclidean inner product, and ε = 10−6.

The obtained values of speed-up and efficiency for the parallel algorithm re-
lated to the variant MP (see Section 2) of the nodal basis functions are col-
lected in Table 1. The number Np of the processors is given in the first column.
There are two numbers in each box of the second field – the number of ele-
ments n in each direction and the related number of iterations for that size
of the discrete problem. The remaining columns are in two groups with simi-
lar structure – one per each computer introduced above. Each group has again
two subgroups for the cases of nonoverlapping (no overlap) and overlapping
(overlap) of computations and communications. The measured execution time
in seconds is given in the first field of each subgroup. The rest two fields present
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the speed-up SNp = T1/TNp and the efficiency ENp = SNp/Np. The execu-
tion time TNp is the best one obtained from 10 runs of the code on a given
machine.

Let us see the results obtained on Thea cluster. We observe that: 1) for a
given number of processors, the speed-up and respectively the efficiency grow
up for larger size of the problem; 2) the speed-up and the efficiency without
overlapping are far away from the upper bounds SNp ≤ Np, ENp ≤ 1; 3) there
is a significant improvement of SNp and ENp in the case with overlapping.

In contrast, the efficiency coefficients with and without overlapping on Simba
are close to each other. They are larger in general than the highest ones obtained
on Thea. The reason for this behaviour is hidden in the system parameters
ta, ts, tw. Comparing T1 on both machines, we observe that the computation
times on Simba are larger than those on Thea. At the same time, communications
are faster on Simba since, e.g. for n = 512, T4 and T8 without overlapping on
Simba are smaller than the corresponding values on Thea. The performance
is also influenced by the nonuniform memory access. The superlinear speed-
ups on Simba for relatively small problems are due to the size of the cache
memory.

As expected, the results confirm that the performance of our code strongly
depends on the system’s parameters.

5 Concluding Remarks

The recently introduced scalable parallel MIC(0) preconditioner is studied in
the paper. Its real performance for distributed memory machines is improved by
overlapping of communications and computations.

Our future plans include a development and analysis of theoretical estimates
of the parallel execution times for overlapping of each local communication with
computations. Modifications of the code for shared memory machines with the
aid of OpenMP as well as the generalization of the considered algorithm into 3D
case and its implementation for linear elasticity problems are also among our
interests.
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Abstract. A new parallel algorithm for signal processing and a
parallel systolic architecture of a robust Constant False Alarm Rate
(CFAR) processor with post-detection integration and adaptive censor-
ing (RACPI) is presented in the paper. This detector is effective in
conditions of flow from strong impulse interference. The ACPI CFAR
processor uses sorting and censoring algorithms. We offer the sorting al-
gorithm to be realized on the basis of the odd-even transposition sort
method. We propose the censoring algorithm to be used for obtaining of
the noise level estimation and for estimation of the impulse interference
parameters. These parameters are needed for automatically choosing the
scale factor, which keeps the false alarm rate constant. The real-time
implementation of this detection algorithm requires large computational
resources because of the great volume and high speed of the incoming
data. The time consumption of the sorting and censoring procedures is
also very high and therefore the practical realization is difficult. For all
these reasons, we choose systolic architectures in the considered case for
being more effective than conventional multiprocessor architectures. The
computational losses of the systolic architecture are estimated in terms
of the number of the processor elements, the computational time and the
speed-up needed for real-time implementation.

1 Introduction

The problem of detecting known signals in impulse interference with unknown
parameters is common in sensor systems. Modern search radars, for example,
often employ an adaptive detection threshold to maintain a constant false alarm
rate (CFAR). There are a lot of methods for increasing the efficiency of CFAR
processors in case of non-stationary and non-homogeneous interference. One of
these methods, suggested by Rohling in [14], includes the use of ordered statistics
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for estimating the interference level in the reference window. Another approach
for estimating the interference level, proposed by Himonas in [7], is used in this
paper. Later, Himonas suggests this method to be used for censoring of ran-
domly arriving interference impulses from the reference window, when the test
cell contains no impulse interference [6]. Behar offers in [2] an adaptive censoring
PI CFAR detector in the presence of Poisson distribution pulse jamming. She
considers more complex and more general situation than the one studied in [7, 6],
in which the two-dimensional reference window and the test cells are corrupted
by randomly arriving impulse interference and the model of the appearance of
pulse jamming is more general. Censoring of the randomly arriving interference
impulses both, in the test resolution cells and the reference cells, is used. Gar-
vanov proposes in [5] a new modification of the parallel algorithm presented in
[2]. This algorithm works successfully in the presence of total interference (ther-
mal noise plus pulse jamming) that is binomially distributed according to the
compound exponential law [1], with unknown average repetition frequency and
magnitude.

When the probability for the appearance of impulse interference is high, the
censoring algorithm, proposed in [6], is unsatisfactory [5, 4, 3]. In such a case the
ACPI CFAR processor does not keep constant the false alarm probability, as it is
in [6]. Similarly to Garvanov and Lazarov [4, 11, 12], we suggest the scale factor
to be corrected automatically if there is any change in the estimation of impulse
interference parameters. The scale factor is chosen automatically from a matrix
of preliminary calculated values for different impulse interference parameters.

The systolic architectures of some CFAR algorithms based on ordered statis-
tics filters are studied by Hwang in [9, 8, 13, 10]. These architectures are con-
structed by means of the sample-oriented approach, which maintains the window
in sorted order in an array of processors and updates the ranks based on the
sample values of arriving and departing data. The sample-oriented approach is a
computationally more efficient technique, which takes advantage of the evaluated
ranks in the current window for the evaluation of the ranks in the next window.

In contrast to Hwang, who used the known criteria for choosing of the noise
level estimate from ordered statistics, we studied an adaptive censoring robust
algorithm. In our case, the sample-oriented approach is not suitable.

In our work, the RACPI CFAR algorithm is proposed as parallel algorithm in
which the sorting is realized on the basis of the odd-even transposition method.

The best matching between the statistical algorithm and the suggested new
systolic architecture requires the using of all reference window cells in the censor-
ing of the impulse interference. Therefore, we suggest a two-dimensional sorting
algorithm in the reference array to be used. There are several sorting algorithms
that can be implemented for such purposes, e.g. LS3 sort, 4 way mergesort,
rotatesort, etc. However, we use a 2D odd-even transposition sort algorithm,
because it is simple and easy for implementation. Unfortunately, this sorting
method is quite slow. Nevertheless, it sorts the reference array in a snake-like or-
der and this sorting direction is very suitable for further processing. The using of
all reference window cells allows the censoring algorithm to separate the impulse
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interference from the “clean” cells and therefore the best possible noise level es-
timations and estimations of the impulse interference parameters are obtained.
This is the reason for achieving of the most effective useful signal detection.

The suggested statistical algorithm for a RACPI CFAR detector is in fact a
further development of the results achieved in [2, 5]. The proposed new systolic
architecture allows its calculating structure to follow closely the statistical algo-
rithm, which leads to increased quality of detection and keeping constant false
alarm probability. This new algorithm is compared to the similar algorithms,
presented in [2, 5] as they all solve the same problem, for the number of the
calculating steps and the number of PE elements used. The new algorithm is
not compared to algorithms proposed by other authors, because they are differ-
ent and do not refer to the same task. There are systolic structures of sorting
algorithms for different types of CFAR detectors. However, the most suitable for
comparison in our case are the algorithms presented in [2, 5].

2 Robust Adaptive Censoring Post-detection Integration
CFAR Processor

The RACPI CFAR processor is effective in conditions of flow from strong impulse
interference. This algorithm consists of the following steps:

The elements of the reference window x = (x1, x2, ...xNL) and the test
resolution cells x0l = (x01, x02, ...x0L) are rank-ordered according to increas-
ing magnitude. Each of the such ranked elements is compared to the adaptive
threshold, according to the following rule:

x
(1)
i+1 ≥ sx

i T
x
i , i = 1, ..., NL− 1; x

(1)
0j+1 ≥ sx0

j T x0
j , j = 1, ..., L− 1 (1)

where sx
i =

i∑
p=1

x
(1)
p and sx0

j =
j∑

p=1
x

(1)
0p . The scale factors T x

i and T x0
j are de-

termined in accordance with the given level of probability of false censoring as
in [6]:

P cen
fa =

(
NL
i

)
1

(1 + T x
i (NL− i))i

; P cen
fa =

(
L
j

)
1

(1 + T x0
j (L− j))j

(2)

The recursive procedure is stopped when the condition (1) becomes true. In
this way, the reference and the test resolution cells are divided into two parts.
The first part contains the “clean” elements, i.e. without interference. The noise
level estimate V and the summed signal q0 are the statistical medians of the
“clean” elements from reference and test resolution cells [15]. We suggest the
parameters of the interference to be estimated by using the second part of the
reference window. The estimate of the average interference-to-noise ratio rj and
the probability for the appearance of impulse interference e, can be calculated
as follows.

By using the estimates of the impulse interference parameters, the RACPI
CFAR processor chooses automatically the scale factor TRACPI from a matrix
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of preliminary calculated values. The target is detected according to the follow-
ing rule. {

H1 : if q0 ≥ HD = TRACPIV
H0 : if q0 < HD = TRACPIV

(3)

where H1 is the hypothesis that the test resolution cells contain the echoes from
the target and H0 is the hypothesis that the test resolution cells contain the
receiver noise only.

3 Parallel Architecture of a RACPI CFAR Processor

The new systolic parallel architecture of a robust CFAR processor with adaptive
censoring and non-coherent integration is presented on Fig.1. The computational
blocks for sorting of vectors are denoted as S1 and S2. The sorting algorithm for
the test cells is realized on the basis of the well-known odd-even transposition
sort method. The elements of the reference window are sorted with a 2D odd-
even transposition sort method. In this algorithm, the elements are compared
not only with their right and left neighbours, but also with their upper and lower
neighbours. The sorting direction in the array is snake-like.

The systolic architectures of sorting computational blocks S1 and S2 are
shown on Fig.2 and Fig.3.

The systolic architecture of the censoring algorithm is realized as a parallel
algorithm by means of blocks B1, B2, B3, processor elements PE6 (for reference
cells) and B01, B02, B03 (for test cells). The blocks B1 and B01 consist of the
processor elements PE3. These blocks form the adaptive censoring thresholds.
The blocks B2 and B02 compare the censoring threshold with the sorted cells
from the memories M1 and M01. These blocks consist of the processor elements
PE4. The blocks B3 and B03 consist of the processor elements PE5, and they

Fig. 1. Systolic architecture of a RACPI CFAR processor
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Fig. 2. Systolic architecture of the sort-
ing algorithm S1

Fig. 3. Systolic architecture of the sort-
ing algorithm S2

are used for the obtaining of k∗ and l∗. By using the processor elements PE7,
PE8, PE9 and PE11, the RACPI CFAR processor obtains the estimates V , q0
and the parameters of impulse interference (e and rj). Through the medium
of the processor element PE10 and the estimates of the impulse interference
parameters, the RACPI CFAR processor chooses automatically the scale factor
TRACPI from memory of preliminary calculated values.

The analysis of the architecture shows that eleven types of processor elements
are needed for the realization of a RACPI CFAR processor. The logical opera-
tions of the processor elements are shown in the following Table.

Processor The logical operation
elements of the processor elements
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in
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4 Estimation of the Systolic Architecture Parameters

The computational measures of the processor, calculated for each stage of signal
processing, are as follows:

1. Sorting of vectors:
In contrast to [2, 5], we use a 2D odd-even transposition sort method in the
reference window. The sorting direction in the array is snake-like. This method
is slow, but the sorting direction is very suitable for further processing.
Number of elements PE1 = D[N(L− 1)+L(N − 1)]; PE2 = D(2N + 2L)+ 2L;
Number of steps: T1 = 4D, where D = N , if N ≥ L or D = L, if N < L.

2. Censoring of vectors:
The censoring algorithm is realized as a parallel algorithm and in comparison
with [2, 5]:
Number of elements PE3 = LN + L; PE4 = LN + L; PE5 = N + 1; PE6 = 1
Number of steps T2 = 4.

3. Parameter estimation and scale factor TRACPI formation:
In contrast to [2, 5], the noise level estimate is obtained after the censoring pro-
cedure. We estimate the impulse interference parameters as well in this paper.
We suggest the scale factor to be chosen automatically from a matrix with pre-
liminary calculated values.
Number of elements PE7 = 1; PE8 = 1; PE9 = 2; PE10 = 1
Number of steps T3 = 2.

4. Comparison:
Number of elements PE4 = 1; PE11 = 1. Number of steps T4 = 1.
Consequently, the computational measures of the systolic architecture are as
follows: Total number of processor elements.

NPE =
{

(3L+N)(N + 1) + L(2N2 + L) + 9, if N ≥ L
L(N + 1)(2L+ 3) +N + 9, if N < L

(4)

Total number of computational steps.

T0 =
{

4N + 7, if N ≥ L
4L+ 7, if N < L

(5)

The number of processor elements and computational steps of the API CFAR
processor proposed in [2] are:

N
(1)
PE = LN(5N − 1)/2 + L(3L+ 1) + 1; T

(1)
0 =

{
2N + L+ 1, if N ≥ L
3L+ 1, if N < L

(6)

A similar systolic architecture of the API CFAR processor is offered in [5], but
the detection probability of the new algorithm is better. The number of processor
elements and computational steps of the API CFAR processor proposed in [5]
are:

N2
PE = (3N2L+ 6L2 + L+ 4)/2; T

(2)
0 =

{
2(N + L) + 1, if N ≥ L
4L+ 1, if N < L

(7)
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Fig. 4. Speed up of the computational pro-
cess of RACPI CFAR algorithm toward al-
gorithms in [2, 5]

Fig. 5. The ratio between the number of
processor elements in the RACPI CFAR
algorithm and the algorithms in [2, 5]

The speed-up of the computational process of the systolic structure for a RACPI
CFAR processor is obtained as:

Kup = T
(∗)
0 /T0 (8)

The speed-up of the computational process and the ratio between the number of
processor elements in the RACPI CFAR algorithm and the algorithms in [2, 5],
are shown on Fig.4 and Fig.5. The proposed systolic architecture for a RACPI
CFAR processor contains more processor elements compared to the architectures
presented in [2, 5], and the number of the computational steps is commensurable
with the ones in [2, 5]. However, the new algorithm is continuously sorting all
reference cells in the reference window and therefore better estimations of the
noise level and the impulse interference parameters are achieved. The censoring
algorithm is more effective. Due to that the detection probability of the proposed
new RACPI CFAR algorithm is better.

5 Conclusions

A new parallel algorithm of a RACPI CFAR processor for target detection is
proposed in this paper. The approach is similar to the parallel algorithms of the
CFAR processors from [2, 5]. In contrast to the algorithms presented in [2, 5],
the new algorithm is robust towards the changes of the impulse interference
parameters.

By using a 2D odd-even transposition sort method in the reference cells, the
sorting direction in the array is snake-like. In such cases the censoring algorithm
uses all reference cells in the reference window. The described approach leads
to the better performance of the RACPI CFAR processor compared to the ones
proposed in [4, 5].

We propose the adaptive censoring algorithm to be realized as a parallel
systolic architecture that reduces the computational time. We also suggest a



662 I. Garvanov, C. Kabakchiev, and P. Daskalov

censoring algorithm to be used for estimation of the impulse interference pa-
rameters. The proposed systolic architecture for a RACPI CFAR detector may
be successfully applied for target detection in existing radar and communication
networks by using pulse train signals.
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Abstract. In this paper a new cyclic matrix representation of the
Sobolev norms Ha, a ∈ (−1, 0) are presented. The matrix-vector
multiplication by these matrices requires only O (N · log(N)) arithmetic
operations, where N is the number of unknowns. The application of the
new H−1/2 norm representation as Schur complement preconditioning
matrix requires only matrix-vector multiplication. The efficiency of the
construction to elliptic problems has been verified by numerical tests.

1 Introduction

The Schur complement preconditioners play a determining role in the precon-
ditioned conjugate gradient (PCG) algorithm based on fictitious domain and
domain decomposition methods for elliptic problems [2, 4, 13, 15, 16]. Recently
we have developed several simple and efficient cyclic Schur complement precon-
ditioning matrix constructions [7, 8, 9]. The matrix constructions are based on
the cyclic matrix representations of the Sobolev norm H1/2. They can be ap-
plied to the preconditioning of frictional contact problems and can be combined
with the multilevel techniques [10, 11, 12]. Their application as Schur comple-
ment preconditioning matrix, however, requires an approximate inverse matrix
computation. This is a disadvantage of the constructions.

In this paper new cyclic matrix representations Ga of the Sobolev norms Ha,
a ∈ (−1, 0) are presented. The matrices have simple explicit form and can be
used in the non cyclic case as well. The matrix–vector multiplication by these
matrices can be computed by a very simple algorithm. The cost of this algorithm
is O (N · log(N)) arithmetic operations for general, where N is the number of
unknowns.

The application of the new matrix construction G−1/2 as Schur complement
preconditioning matrix requires only matrix-vector multiplication. The matrix
G−1/2 has the same computational complexity as the widely used BPX [13, 16]
and H-matrix [1, 5, 6] type hierarchical preconditioning matrices, but its struc-
ture is much simpler. The preconditioning effect of G−1/2 to elliptic problems
has been verified by numerical tests.
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2 The New Ha, a ∈ (−1, 0) Norm Representations

Introducing the notation

C = C(c0, c1, . . . , cn−1, cn, cn−1, . . . , c1) =

⎛⎜⎜⎜⎜⎝
c0 c1 c2 . . . c1
c1 c0 c1 . . . c2
c2 c1 c0 . . . c3
. . . . . . . . . . . . . . .
c1 c2 c3 . . . c0

⎞⎟⎟⎟⎟⎠ ∈ IRN×N ,

(1)
the piecewise linear finite element approximation of the H1 Sobolev semi norm
on the boundary ∂Ω of the unit circle Ω can be represented by the matrix

K = N · C(k0, k1, . . . , kn−1, kn, kn−1, . . . , k1), ki =

⎧⎨⎩2 if i = 0
−1 if i = 1
0 otherwise,

(2)

where N is the number of unknowns and n = [N/2].
The matrix representations of the Ha, a ∈ (−1, 1) Sobolev semi norms are

defined by the formula
N−1+a ·Ka, (3)

and for the eigenvalues of these matrices the estimations

λN−1+a·Ka,0 = 0,
1
10
· i

2a

N
< λN−1+a·Ka,i < 10 · i

2a

N
, (i = 1, . . . , n) (4)

hold [2].
Our matrix representations of the Ha, a ∈ (−1, 0) Sobolev norms are

Ga = N−1+2a · C(g0, g1, . . . , gn−1, gn, gn−1, . . . , g1), (5)

where

gi =

⎧⎪⎪⎨⎪⎪⎩
∑m

l=1 2(−2a−1)l if i = 0,∑m
l=j 2(−2a−1)l − 2(−2a−1)j ·

(
i+1
2j − 1

)
if 2j − 1 ≤ i < 2j+1 − 1
and 1 ≤ j < m,

0 otherwise,

with 2m−1 < N/2 ≤ 2m.
Since the symmetric cyclic matrices have a common eigenvector system [14],

the spectral equivalence of the matrices Ga with the matrices N−1+a ·Ka, a ∈
(−1, 0), in the N = 2n = 2m+1 special case, follows from the next theorem.

Theorem 1. If N = 2n = 2m+1 and m ≥ 3 then

1
32
·
(
2a+1 − 1

)
· i

2a

N
< λGa,i < 14 · 1

1− 2a
· i

2a

N
, (i = 0, 1, . . . , n), (6)

where the eigenvalues of Ga are of the form

λGa,i = N−1+2a ·
(
g0 + 2 ·

2m−1∑
k=1

cos

(
ikπ

2m

)
gk + (−1)i g2m

)
.
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This theorem can be extended for general N in a straightforward way, but it
involves a large amount of calculations.

Let us introduce the notations

I0 = g0 + 2 ·
2m−1∑
k=1

gk + g2m , I1 = g0 + 2 ·
2m−1∑
k=1

gk · cos
(
kπ

2m

)
− g2m , (7)

I2i = g0 + 2 ·
2m+1−i−1∑

k=1

gk · cos
(

2ikπ

2m

)
+ g2m+1−i , (1 ≤ i ≤ m− 2) , (8)

I2m−1 = g0 + 2 ·
2m−1−1∑

k=1

g2k · (−1)k + g2m , (9)

I2m = g0 + 2 ·
2m−1∑
k=1

gk · (−1)k + g2m , (10)

J2i = g2m+1−i + g2m + 2 ·
2m−1∑

k=2m+1−i+1

gk · cos
(

kπ

2m−i

)
, (2 ≤ i ≤ m− 2) , (11)

and

K2i = g2m−2m+1−i − g2m + 2 ·
2m+1−i−1∑

k=1

g2m−2m+1−i+k · cos
(

kπ

2m+1−i

)
, (12)

(1 ≤ i ≤ m− 1) .

The proof of Theorem 1 is based on the following estimations of these
quantities.

Lemma 1. If N = 2n = 2m+1 and m ≥ 3 then the following estimations hold.

a) 1
4 · 2m < I0 <

2
1−2a · 2m,

1
16 ·

(
2a+1 − 1

)
· 2(−2a)(m−i) < I2i < 16

3 ·
1

1−2a · 2(−2a)(m−i),

(i = 0, . . . ,m) ,

b) 0 < J2i < 2(−2a)(m−i), (i = 2, . . .m− 2) ,

c) 0 < K2i < 2 · 2(−2a)(m−i), (i = 1, . . . ,m− 1) .

(13)

Proof. a) We prove the most complex case only, i.e. when 1 ≤ i ≤ m−2. The form

I2i = g0 − 2 · g2m−i + g2m+1−i

+2 ·
∑2m−1−i−1

k=1 (gk − g2m−i−k − g2m−i+k + g2m+1−i−k) · cos
(

kπ
2m−i

)
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of I2i is applied. Then the following estimations hold

I2i > g0 − 2 · g2m−i + g2m+1−i

+2 ·
∑2m−2−i−1

k=1 (gk − g2m−i−k − g2m−i+k + g2m+1−i−k) · cos
(

π
4

)
>

∑2m−2−i−1
k=0 (gk − g2m−i−k − g2m−i+k + g2m+1−i−k)

=
∑2m−2−i−1

k=0 (gk − g2m−i−1+2m−i−2+k)
−

∑2m−2−i−1
k=0 (g2m−i+k − g2m−i+2m−1−i+2m−2−i+k)

>
∑2m−2−i−1

k=0 (g2m−2−i−1 − g2m−i−1)
−

∑2m−2−i−1
k=0 (g2m−i+k − g2m−i+2m−1−i+2m−2−i+k)

= 1
4

( 1
2(−2a−1) + 1

2(−2a−1)2 − 3
4

)
2(−2a)(m−i) > 1

16

(
2a+1 − 1

)
2(−2a)(m−i)

and

I2i < g0 − g2m−i + 2 ·
∑2m−1−i−1

k=1 (gk − g2m−i−k)
< 2 ·

∑2m−1−i−1
k=0 (gk − g2m−i−1) < 2 ·

∑m−2−i
k=0 2k (g2k−1 − g2m−i−1)

= 2 ·
∑m−2−i

k=0 2k ·
(∑m−i−1

l=k 2(−2a−1)l
)

= 2 ·
∑m−1−i

k=0 2k ·
(∑m−i−1

l=k 2(−2a−1)l
)

< 2 ·
∑m−1−i

k=0 2(−2a−1)k
(∑k

l=0 2l
)

= 4 ·
∑m−1−i

k=0 2−2a < 16
3 ·

1
1−2a · 2(−2a)(m−i).

b) Since for arbitrary linear function a · x+ b the identity

2j∑
l=0

(
a ·

(
lπ

j

)
+ b

)
· cos

(
lπ

j

)
= 0

holds, we obtain by the piecewise linearity of the matrix entries gi that

J2i =
∑m−1

k=m+1−i (g2k+1 − g̃2k+1) =
∑m−1

k=m+1−i

(
−2(−2a−2)(k+1) + 2(−2a−2)k

)
= 2(−2a−2)(m+1−i) − 2(−2a−2)m,

where

g̃2k+1 =
m∑

l=k

2(−2a−1)l − 2(−2a−2)k.

Consequently J2i > 0 and J2i < 2(−2a)(m−i).
c) The form

K2i = g2m−2m+1−i − g2m + 2 ·
2m−i−1∑

k=1

(g2m−2m+1−i+k − g2m−k) · cos
(

kπ

2m+1−i

)
,

of K2i is applied. Then the lower estimation is K2i > 0. The piecewise linearity
of the construction implies

K2i < 2 ·
∑2m−i−1

k=0 (g2m−2m+1−i+k − g2m−k)
= 2 ·

∑2m−i−1
k=0 (g2m−2m+1−i − g2m−2m−i)

= 22m+1−2i · 2(−2a−2)(m−1) < 2 · 2(−2a)(m−i).



On the Non Hierarchical Matrix Representation 667

Proof (Theorem 1.). When the index of an eigenvalue is zero or a power of two,
the estimations follow from the identities

λGa,i = N−1+2a · Ii,
(
i = 0, 1, 2, 2m−1, 2m

)
,

λGa,2i = N−1+2a · (I2i + J2i) , (i = 2, . . . ,m− 2)

and from the estimations of Lemma 1. If the index of an eigenvalue is between
two powers of two then it can be estimated as

λGa,2i+1 < λGa,j < λGa,2i +N−1+2a ·K2i ,(
j = 2i + 1, . . . , 2i+1 − 1

)
, (i = 1, . . . ,m− 1) ,

where the member K2i is used for estimating the last half cosine period in the
odd j cases.

Remark 1. The Ha, a ∈ (−1, 0) norm representations can be used in the non
cyclic case as well. For example the calculation of an Ha semi norm of a vector
xΓ , which is defined on Γ ⊂ ∂Ω, can be performed by computing the Ha norm
of the vector x∂Ω = [x̃Γ , 0∂Ω\Γ ] applying the matrix Ga, where x̃Γ = xΓ −

k
i=1 xΓ,i

k · [1, 1, . . . , 1].

3 Multiplication by the Matrices Ga, a ∈ (−1, 0)

When a matrix Ga is multiplied by a vector x, a linear segment

(g2j−1, . . . , gk, . . . , g2j+1−2) = (14)(
a, . . . , a− b ·

(
k + 1

2j
− 1

)
, . . . , a− b ·

(
2j+1 − 1

2j
− 1

))
Ga is multiplied by the segments

(x2j−1+k−1, . . . , x2j+1−2+k−1) , (k = 1, . . . , N) (15)

of x, where k is the row index and xj = xj−N if j > N .

The products pk :=
∑2j+1−2

i=2j−1 gi · xi+k can be calculated by the following
algorithm.

Let

p1 :=
∑2j+1−2

i=2j−1 gi · xi, s1 :=
∑2j+1−2

i=2j xi,
and from k := 2 to N let

pk := pk−1 −
(
a− b ·

(
1− 1

2j

))
· x2j+1+k−2 + a · x2j+k−2 − b

2j · sk−1,
sk := sk−1 + x2j+1+k−2 − x2j+k−1.

(16)

The computational cost of this algorithm is O(N) arithmetical operations.
Since there are O(log(N)) linear matrix segments, the total computational cost
of a complete matrix-vector product computation is O(N · log(N)) arithmetic
operations for general N .
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4 Numerical Experiments

We have chosen the weak form of the following simple Neumann problem as a
model problem: For f ∈ L2(Ω) find u ∈ H1(Ω) such that∫

Ω

(
2∑

i=1

∂iu∂iv + uv

)
=

∫
Ω

fv, ∀v ∈ H1(Ω). (17)

We solve this problem by the finite element method using equidistant triangu-
lation with a grid size h and piecewise linear approximation. Let Vh(Ω) be the
space of continuous piecewise linear functions defined on the given triangulation
of Ω. Vh(∂Ω) will denote the restrictions of Vh(Ω) to the boundary ∂Ω of Ω.

The approximation problem in Vh(Ω) is the following. Find uh ∈ Vh(Ω) such
that ∫

Ω

(
2∑

i=1

∂iuh∂ivh + uhvh

)
=

∫
Ω

fvh, ∀vh ∈ Vh(Ω). (18)

This approximation problem immediately leads to a system of linear algebraic
equations

Auh = fh, (19)

where

(Auh, vh)RM =
∫

Ω

(
2∑

i=1

∂iuh∂ivh + uhvh

)
, (fh, vh)RM =

∫
Ω

fvh,

for all vh ∈ Vh(Ω). M denotes the number of grid points of the triangulation of
Ω. The matrix of this linear system is symmetric, positive definite and so it has
a unique solution [3].

In the usual nodal basis Φ = {φ1, . . . , φMΩ , φMΩ+1, . . . , φMΩ+M∂Ω
} the linear

system can be rewritten in the block form(
AΩ,Ω AΩ,∂Ω

A∂Ω,Ω A∂Ω,∂Ω

)(
uΩ

u∂Ω

)
=

(
fΩ

f∂Ω

)
, (20)

where the indices “Ω” and “∂Ω” denote the nodes belonging to the interior of
Ω and to the boundary ∂Ω of Ω, respectively.

The Schur complement part of A is

SC = A∂Ω,∂Ω −A∂Ω,ΩA
−1
Ω,ΩAΩ,∂Ω. (21)

In the remainig part of this section we present some numerical results which
show the effect of the optimal Schur complement preconditioner matrix G−1/2.

The shape of the investigated test domains can be seen in Figure 1 and 2. The
corresponding numerical results are reported in Table 1 and 2. The calculation
of the matrix condition numbers was made by using MATLAB.

From our test results we can conclude that the new matrix G−1/2 is an effi-
cient preconditioning matrix. The advantage of this matrix construction is that
it does not require a hierarchical level of discretization and the matrix–vector
multiplication by this matrix can be computed by a very simple algorithm.
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Fig. 1. A Uniform Discretization of the Unit Square

Fig. 2. A Uniform Discretization of the Lake Balaton

Table 1. The Conditional Numbers in the Unit Square Case

h SC G−1/2 · SC

1/4 27.43 3.27
1/8 77.43 3.92
1/16 179.87 4.35
1/32 417.67 4.72
1/64 732.12 4.90
1/128 1448.56 5.08
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Table 2. The Conditional Numbers in the Lake Balaton Case

h SC G−1/2 · SC

1/44 195.43 19.27
1/88 396.67 20.92
1/176 811.87 21.35
1/352 1625.53 22.12
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Abstract. The paper deals with a finite element solution of transient
thermoelasticity problems. For each time step the system of linear alge-
braic equations is solved using a parallel solver based on the
overlapping domain decomposition method. The time steps are chosen
adaptively. The results of numerical tests on a large benchmark problem
are presented.

1 Introduction

In this paper, we consider the thermoelasticity problem which is not fully cou-
pled. The deformations are slow and do not influence temperature fields and
we can compute them only in predefined time points as a post-processing to
the solution of the heat equations. Thus the problem can be divided in two
parts. Firtsly, the temperature distribution is determined by the solution of the
nonstacionary heat equation, secondly, at given time points the linear elastic-
ity problem is solved. The numerical solution of both problems leads to the
repeated solution of large systems of linear equations and our aim is to find
efficient and parallelizable iterative solution methods. For elasticity problems,
we got an experience with the Schwarz methods. In this case, both theory and
experiments showed good efficiency of two-level Schwarz methods (see [1]). For
the evolution heat equations, the theory indicates (see [4]) that even one-level
Schwarz methods could be efficient. We shall investigate this fact as well as
some other aspects of the numerical solution by numerical tests on a large
geotechnical problem arising from the assessment of nuclear waste repositories,
see [2].

2 Thermoelasticity

The thermoelasticity problem is concerned with finding the temperature τ =
τ(x, t) and the displacement u = u(x, t),

τ : Ω × (0, T )→ R, u : Ω × (0, T ) → R3

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 671–678, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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that fulfill the following equations

κρ
∂τ

∂t
= k

∑
i

∂2τ

∂xi
2 +Q(t) in Ω × (0, T ) , (1)

−
∑

j

∂σij

∂xj
= fi (i = 1, . . . , d) in Ω × (0, T ) , (2)

σij =
∑
kl

cijkl [εkl(u)− αkl(τ − τ0)] in Ω × (0, T ) , (3)

εkl(u) =
1
2

(
∂uk

∂xl
+
∂ul

∂xk

)
in Ω × (0, T ), (4)

together with the corresponding boundary and initial conditions.
The finite element method is based on a weak formulation of the heat con-

duction problem, which can be written after application of Green’s theorem as
follows:
find τ = τ(x, t), (x, t) ∈ Ω × (0, T ), τ(., t) ∈ VD such that the following
equations hold:

(κρ τ̇ , v)0 + a(t, τ, v) = b(t, v) ∀v ∈ V0, t ∈ (0, T ), (5)
(τ(x, 0), v)0 = (τ0, v)0 ∀v ∈ V0. (6)

In these equations

V0 =
{
v ∈ H1(Ω) : v = 0 on Γ0

}
,

VD =
{
v ∈ H1(Ω) : v = τ̂ on Γ0

}
,

where ( , )0 is the scalar product in the space of square-integrable functions
L2(Ω), H1(Ω) ⊂ L2(Ω) is the Sobolev space of functions having first weak
derivatives in the space L2(Ω). For a, b there holds

a(t, τ, v) =
∫
Ω

∑
ij

kij
∂τ

∂xj

∂v

∂xi
dx+

∫
Γ2

Hτvds , (7)

b(t, v) =
∫
Ω

Q(t)vdx −
∫
Γ1

qvds+
∫
Γ2

Hτ̂outvds . (8)

3 Time Discretization

We find τ = τ(x, t), (x, t) ∈ Ω × (0, T ), τ(·, t) ∈ VD such, that (5), (6) hold. We
transfer the problem to the FEM formulation. Consider the space V0,h = span
{ϕ} ⊂ V0. We find

τh(x, t) = τ̂(x, t) +
∑

i

τi(t)ϕi(x), (9)
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where τ̂ (x, t) acquires the prescribed values on Γ0. In our case we use the function
τ̂ (x, t) = τ0(x), which represents the initial condition for the non-stationary
problem. Substituting (9) into the equation (5), for the determination of the
coefficient vector τ = [τi] we receive the system of linear differential equations

Mhτ̇ (t) +Ah(t)τ (t) = bh(t) ∀t ∈ (0, T ),
1
κρ
Mhτ (0) = 0, (10)

where

Mh = [(κρϕi, ϕj)0] ,
Ah(t) = [a(t, ϕi, ϕj)] , (11)
bh(t) = [b(t, ϕi)− a(t, τ̂ , ϕi)].

We divide the interval < 0, T >, 0 = t0 < t1 < ... < tp = T,Δi = ti − ti−1. We
find values τ j

i = τ i(tj). Using the time discretization we obtain

Mh
1
Δj

(τ j − τ j−1) + θAh(tj)τ j + (1− θ)Ah(tj−1)τ j−1 = ϕj ,

τ0 = 0, (12)

where θ ∈< 0, 1 >,ϕj = θbh(tj) + (1− θ)bh(tj−1). In each time step we have to
solve the system

[Mh +ΔjθAh(tj)]τ j = [Mh − (1 − θ)ΔjAh(tj−1)]τ j−1 +Δjϕj . (13)

For θ = 0 we obtain the so-called explicit Euler scheme, for θ = 1 we obtain the
backward Euler (BE) scheme, θ = 0.5 gives the Crank-Nicholson(CN) scheme.
In our case we will use the BE scheme. Because the matrix Ah is not time
dependent, we can write Ah(tj) = Ah. Then the system (13) is replaced by

[Mh +ΔjAh]τ j = Mhτ
j−1 +Δjϕj , (14)

where Δjϕj = Δjbh(tj). If we substitute

τ j = τ j−1 +Δτ j

into (14), we obtain the system of equations for the increment of temperature

[Mh +ΔjAh]Δτ j = Δj(ϕj −Ahτ
j−1). (15)

To optimize the computation we use the adaptive choice of time-step. The BE
method allows to use the adaptive time stepping scheme based on a local com-
parison of the BE and CN steps (see [2]). Let τ j is the solution of the system
(13) for θ = 1. If this solution is considered as the initial approximation for the
solution of system (13) for θ = 0.5 (CN scheme) by the simple Richardson’s
method, τ j

1 = τ j
0 + r, where τ j

0 = τ j ,

rj = (Mh + 0.5ΔjAh)τ j − (Mh − 0.5ΔjAh)τ j−1 − 0.5bh(tj)− 0.5bh(tj−1), (16)
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then the first iteration τ j
1 of the Richardson’s method presents an approximation

of the solution τ j
CN of the system (13) for θ = 0.5. Thus the time steps can be

controlled with the aid of the ratio η = ‖τj−τj
CN‖

‖τj‖ = ‖rj‖
‖τj‖ according to the fol-

lowing algorithm ( k = 1, 2, ... denotes the adaptive changes, τ j,k corresponding
solutions of system (13)):

for k = 1, 2, ... until stop do
solve system (13) → τ j,k, compute rj,k a ηk

if ηk < εmin then 2Δj → Δj

if ηk > εmax then Δj/2→ Δj

if ηk ∈< εmin, εmax > or ηk < εmin & ηk−1 > εmax then
Δj+1 = Δj , τ

j = τ j,k, stop
if ηk > εmax & ηk−1 < εmin then

Δj+1 = Δj/2, τ j = τ j,k−1, stop
end

4 The Solution of Linear Equations

For the solution of the linear system BhΔτ
j = (Mh + ΔjAh)Δτ j = fj (15)

we shall use the preconditioned CG method. In the sequential code, the pre-
conditioning is given by the incomplete factorization, in the parallel codes the
preconditioning is given by the additive Schwarz method. In the case of Schwarz
method the domain is divided into m subdomains Ωk (in our case the domain
is divided only in vertical direction), nonoverlaping subdomains Ωk are then ex-
tended to domains Ω′

k in such a way that overlaping between the subdomains
are given by two or more layers of elements. If B′

kk are the FE matrices cor-
responding to problems on Ω′

k, I ′k and R′
k = (I ′k)T are the interpolation and

restriction matrices, respectively, then introduced matrices B′
kk = R′

kBI
′
k allow

to define one-level additive Schwarz preconditioner G,

g = Gr =
m∑

k=1

I ′kB
′
kk

−1
R′

kr.

If the Schwarz method is used for elliptic problems, the efficiency of the precon-
ditioner decreases with the increasing number of subproblems and it is necessary
to use in the preconditioner the coarse mesh solution. For the parabolic problems
it is proved in [4] that under the assumption that Δj/H

2 is reasonably bounded,
the algorithms remain numerically scalable even if the coarse mesh space is elim-
inated. Here Δj is in order of the time stepsize and H is the diameter of the
largest subdomain.

The system matrix Bh is composed from two matrices, the matrix Mh which
is not M-matrix (all matrix elements are positive for linear FE basis functions)
and the matrix ΔjAh which is M-matrix in many practical situations, e.g., if the
heat flow is isotropic and the inner angles of tetrahedra do not exceed π/2. For
small values of Δj the matrix Mh +ΔjAh is not M-matrix and the incomplete
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factorization fails for preconditioning. But it is possible to apply the incomplete
factorization to the matrix ML

h +ΔjAh, where ML
h is the lumped matrix to the

matrix Mh, which means that its diagonal has diagonal elements equal to the
sum of the elements on the corresponding row.

5 Numerical Tests

The numerical tests were realized on the KBS-3 benchmark problem which rep-
resents a model of prototype nuclear waste repository located at Äspö in Sweden
[3]. A 3D model is shown in Figure 1. The computational domain has dimensions
200 × 200 × 100 m. The model is discretized by linear tetrahedral FE with 15
088 320 tetrahedra, 2 586 465 DOF for heat equations and 7 759 395 DOF for
elasticity computations. The time interval is selected to be 50 years, the adaptive
time stepping begins with the step of 0.0001 year. Fore more details see [2].

Fig. 1. The model problem KBS-3

The parallel computations were performed on the IBM xSeries 455 computer
(symmetric multiprocessor (SMP), 8 processors) with Intel Itanium2 1.3 GHz
64bit Processor and the PC cluster THEA with 8 AMD Athlon 1.4 GHz, 1.28
GB RAM computer nodes, the sequential computations were performed on the
IBM xSeries 455 computer. The parallel programming uses OpenMP and MPI
paradigms on SMP computer and MPI paradigm on the PC cluster.
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a) Preconditioning by incomplete factorization
We shall start with numerical investigation of the solution of linear system aris-
ing in each time step of the discretization of heat transfer problem. In Table 1,
we present test results concerning the solution of system (15) with the precondi-
tioning given by the MIC(0) incomplete factorization of both the original matrix
and the lumped matrix, respectively, in dependence of the time step size. The
results for diagonal preconditioning are also presented. The system is solved with
the accuracy 10−6 for one time step, the initial zero guess is used. The tests used
the sequential code. We can see that the condition number decreases with the
decrease of Δt. The numbers of PCG iterations for both the original matrix and
lumped matrix, respectively, are the same for Δt > 1. For small Δt the incom-
plete factorization of the original matrix cannot be used as a preconditioner.

The heading row of Table 1 contains the given values of tested time steps.
The numbers of PCG iterations for diagonal preconditioning (DP) are presented
in the second row. The third row corresponds to the incomplete factorization of
the origin matrix (IF). The results for incomplete factorization of the lumped
matrix are in the fourth row (IF + L).

b) Additive Schwarz preconditioner
To enable parallel computing, we shall test now the use of one-level additive
Schwarz method. Moreover, the local problems are solved inexactly by using
incomplete factorization. Table 2 presents the results of computations for vari-
ous values of Δt and various number of processors. The system is solved with
the accuracy 10−6, the initial zero guess is used. The number of subproblems
coresponds to the number of used processors.

Table 3 shows the effect of parallel computing on two parallel computers
described earlier. The speedup (spd) is determined from CPU time for 1 PCG
iteration.

Table 1. The numbers of PCG iterations for various types of preconditioning (one
time step, zero initial guess)

Δt 0.0001 0.001 0.01 0.1 1 10 100 1000
DP 11 20 46 91 154 324 802 1339
IF - - - - 300 61 110 194

IF+L 12 12 17 27 40 61 110 194

Table 2. The dependence of the numbers of PCG iterations on the time step size and
the numbers of subdomains (processors)

#P \ Δt 0.0001 0.001 0.01 0.1 1.0 10.0 100.0 1000.0
1 12 12 17 27 40 61 110 194
2 14 14 17 27 40 65 134 223
4 13 13 17 27 40 65 140 240
8 15 17 21 27 40 71 162 282
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Table 3. The solution (one time step Δt = 1) using various parallel platforms

1 processor 2 processors 4 processors 8 processors
it CPU spd it CPU spd it CPU spd it CPU spd

SMP, OpenMP 40 98s - 40 52s 1.88 40 28s 3.50
SMP, MPI 39 115s - 40 60s 1.95 40 31s 3.76

cluster, MPI 39 133s - 40 71s 1.91 40 37s 3.66 40 22s 5.94

Table 4. The accuracy of the solution vector for various values of parameters
εmin, εmax, nt

< εmin, εmax >, nt CPU t. PCG it time st. ‖τ − τex‖l2/‖τ |l2 ‖τ − τex‖0

< 0.001, 0.01 >, 5 542s 664 47 1.16 % 0.658
< 0.001, 0, 01 >, 10 626s 759 70 0.95 % 0.539
< 0.001, 0.01 >, 20 718s 836 112 0.91 % 0.515
< 0.0001, 0.001 >, 5 806s 967 115 0.48% 0.269
< 0.0001, 0.001 >, 10 867s 998 135 0.46 % 0.262
< 0.0001, 0.001 >, 20 947s 1104 176 0.29 % 0.166
< 0.0001, 0.001 >, 50 1188s 1299 296 0.13 % 0.076

c) Solution of the full nonstacionary problem
In the previous paragraph, we investigated solution in one time step. Now, we
shall consider the whole sequence of time steps. In this, the system (15) is solved
with accuracy 0.01 and with the initial guess taken from the previous time step.
The adaptive choice of the time step sizeΔt is done . The time steps are controlled
according to the algorithm shown in section 3. The decision about changing ofΔt
depends on input parameters εmin, εmax. The test for adaptivity is done after each
nt time steps (nt is input parameter). In Table 4 we present the results of solu-
tion for various values of parameters εmin, εmax, nt. The solution vector is com-
pared with “exact” solution vector τex (the solution for εmin = 0.00001, εmax =
0.0001, nt = 100). The system (15) is solved with accuracy 0.001), the adaptive
time step is starting with Δt = 0.0001. We can see that the presented relative er-
rors (the fifth column) depend only slightly on parameter nt. If we accept that for
practical problems the relative errors close to one percent are suitable we can use
input parameters εmin = 0.001, εmax = 0.01, nt = 5. The test were performed on
the IBM xSeries 455 computer (OpenMP) using four processors.

d) The solution of the elasticity problem
The displacements and stresses are determined at given time points and represent
a post-processing for the heat conduction problem. The parallel computation of
the system with 7759395 unknowns was done on the cluster Thea. The presented
results (see Table 5) show that the usage of coarse grid makes the preconditioner
more effective.

The determination of the displacements and stresses was done for four time
points: 1, 10, 20, 50 years. The whole CPU time including the solution of non-
stacionary heat problem was about 2400 seconds.
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Table 5. The results of the parallel solution of the elasticity problem

without coarse grid with coarse grid
n.proc. it CPU CPU/it it CPU CPU/it

2 560 4747s 8.46s 208 1836s 8.77s
4 606 2733s 4.5s 201 939s 4.64s
7 651 1798s 2.76s 206 620s 2.99s

6 Conclusion

In the paper, the solution of the thermoelasticity problem is described. The
parallel computing with the adaptive time step size shows to be very efficient
for the solution of large practical problems.
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Abstract. The CGM is studied for nonsymmetric elliptic problems with
mixed boundary conditions. The mesh independence of the convergence
is in focus when symmetric part preconditioning is applied to the FEM
discretizations of the BVP. Computations in 2 dimensions are presented
to illustrate and complete the theoretical results.
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1 Introduction

The conjugate gradient method is a widespread way of solving large nonsym-
metric linear algebraic systems arising from discretized elliptic problems, see the
book [3] where a comprehensive summary is given on the convergence of the
CGM. When for elliptic problems the discretization parameter tends to 0, the
convergence estimates deteriorate under refinement, i.e., the number of iterations
for prescribed accuracy tends to ∞. The remedy is suitable preconditioning [3],
which sometimes relies on Hilbert space theory [15, 24]. Moreover, it has been
shown in [15] that the preconditioned CGM can be competitive with multigrid
methods.

This paper studies symmetric part preconditioning, which means using the
symmetric part

S = (A + AT )/2

as preconditioner for the system matrix A. It has been proved an efficient tool
in this respect. It has been introduced and analysed in [13, 24], see also [2, 25],
and efficiently applied to nonsymmetric elliptic problems (convection-diffusion
equations). Linear convergence results for such PCG methods are included in the
rigorously described framework of equivalent operators in Hilbert space [15, 21],
which provides mesh independence of the estimates for the discretized problems.
The CGM in Hilbert space has been studied in [7, 8]: superlinear convergence has
been proved in Hilbert space and, based on this, mesh independence of the su-
perlinear estimate has been derived for the discretized problems. The mentioned
papers consider PDEs with Dirichlet boundary conditions.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 679–686, 2006.
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In this paper we consider an elliptic convection-diffusion equation with mixed
boundary conditions: {

Lu ≡ −Δu+ b · ∇u+ αu = g

u|ΓD
= 0, ∂u

∂ν + βu|ΓN
= 0.

(1)

satisfying the following conditions (Assumptions BVP):

(i) Ω ⊂ Rd is a bounded piecewise C1 domain; ΓD, ΓN are disjoint open mea-
surable subparts of ∂Ω such that ∂Ω = ΓD ∪ ΓN ;

(ii) b ∈ C1(Ω)d, α ∈ L∞(Ω), β ∈ L∞(ΓN ) and α, β ≥ 0;
(iii) we have the coercivity properties α̂ := α − 1

2 divb ≥ 0 in Ω and β̂ :=
β + 1

2 (b · ν) ≥ 0 on ΓN ;
(iv) g ∈ L2(Ω);
(v) either ΓD �= ∅, or α̂ or β̂ is not constant zero.

When one tries to consider mixed boundary value problems in the operator
setting, care must be taken with the boundary conditions in the preconditioning
operator, as turns out from the analysis in [21]. The presence of mixed boundary
conditions raises certain difficulties as well when the symmetric part precondi-
tioning is studied, hence the latter requires a more general weak approach, see
in the recent paper [19].

The goal of this paper is to confirm and complete the theoretical results
with numerical experiments. We first provide a brief summary of the theoretical
results, mainly relying on [19]. Then several tables are given about the numerical
experiments: the feasibility of the algorithm in [19] is illustrated, then similar
numerical results are obtained for analogous cases of preconditioning that the
theory does not yet cover.

2 Symmetric Part Preconditioning

2.1 Preconditioning and Boundary Conditions

Let us consider the complex Hilbert space H = L2(Ω) with the usual inner
product and define the operator L:

Lu ≡ −Δu+ b · ∇u + αu

with the domain

D(L) := D ≡ {u ∈ H2(Ω) : u|ΓD
= 0, ∂u

∂ν + βu|ΓN
= 0}, (2)

which is dense in L2(Ω).

〈u, v〉L :=
∫

Ω

(
∇u · ∇v + (b · ∇u)v + αuv

)
dx+

∫
ΓN

βuv dσ (u, v ∈ D(L))

(3)
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One can easily construct the weak symmetric part of L, see [19], which is the
following bilinear form:

〈u, v〉S :=
1
2
(
〈Lu, v〉L2 + 〈u, Lv〉L2

)
=

=
∫

Ω

(
∇u · ∇v +

(
α− 1

2
divb

)
uv

)
dx+

∫
ΓN

(
β +

1
2
(b · ν)

)
uv dσ =

=
∫

Ω

(∇u · ∇v + α̂uv) dx+
∫

ΓN

β̂uv dσ (u, v ∈ D(L)), (4)

and the energy space HS - which has been defined as the completion of D under
the inner product 〈·, ·〉S - is

HS = H1
D(Ω) := {u ∈ H1(Ω) : u|ΓD

= 0} . (5)

The operator QS : HS → HS has the form

〈QSu, v〉S =
1
2

(∫
Ω

(b · ∇u)v dx−
∫

Ω

u(b · ∇v) dx
)
. (6)

2.2 Finite Element Discretization

Now we consider finite element discretizations of problem (1). Let HS be defined
as in (5) and let Vh = span{ϕ1, . . . , ϕn} ⊂ HS be a given FEM subspace.
The FEM solution uh ∈ Vh of equation (1) in Vh is uh =

∑n
j=1 cjϕj , where

c = (c1, . . . , cn) ∈ Cn is the solution of the n× n system

Lhc = g (7)

where

(Lh)i,j =
∫

Ω

(
∇ϕi · ∇ϕj + (b · ∇ϕi)ϕj + αϕiϕj

)
dx+

∫
ΓN

βϕiϕj dσ

and gj = ∫Ω gϕj .
Let Sh and Qh be the symmetric and antisymmetric parts of Lh, i.e., Sh =

1
2 (Lh + L∗

h), Qh = Lh − Sh. Then using (3) and (4),(
Sh

)
i,j

=
∫

Ω

(∇ϕi · ∇ϕj + α̂ϕiϕj) dx+
∫

ΓN

β̂ϕiϕj dσ = 〈ϕi, ϕj〉S

Using the symmetric part Sh as preconditioner, system (7) is replaced by

S−1
h Lhc = (Ih + S−1

h Qh)c = S−1
h g. (8)

Theorem 1. Let problem (1) satisfy Assumptions BVP. Then

k∑
m=1

∣∣λm(S−1
h Qh)

∣∣ ≤ k∑
m=1

|λm(QS)| (k = 1, . . . , n), (9)

where λm(QS) (m = 1, . . . ,∞) are the ordered eigenvalues of the operator QS.

The proof for Theorem 1 can be found in [19], for Theorem 2 see the book [3].
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2.3 The Preconditioned Conjugate Gradient Method

The generalized conjugate gradient, least square (GCG-LS) method is defined
in [2]. Two versions are discussed: the full version which uses all previous search
directions, whereas the truncated version uses only s+ 1 previous search direc-
tions (denoted by GCG-LS(s)), where s is a nonnegative integer. Similar versions
have been constructed for the GMRES method , see [23]. The conjugate gradient
method for symmetric positive definite systems has been formulated in a Hilbert
space H [14, 17]. Similarly, the generalized CG methods can be formulated in H .
The PCG algorithm for our problem reads as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) Let u0 ∈ Vh be arbitrary, and let

r0 ∈ Vh be the solution of problem

〈r0, v〉S = 〈u0, v〉L − 〈g, v〉L2 (∀v ∈ Vh);

d0 = −r0;

for any k ∈ N : when uk, dk, rk are obtained, let

(b1) pk ∈ Vh be the solution of problem

〈pk, v〉S = 〈dk, v〉L (∀v ∈ Vh);

γk = ‖pk‖2S , αk = − 1
γk
〈pk, rk〉S ;

(b2) uk+1 = uk + αkdk;

(b3) rk+1 = rk + αkpk;

(b4) βk = 1
γk
〈rk+1, pk〉L;

(b5) dk+1 = −rk+1 + βkdk.

(10)

Theorem 2. Let problem (1) satisfy Assumptions BVP. Then the precondi-
tioned CG algorithm (10) yields(

‖ek‖Sh

‖e0‖Sh

)1/k

≤ 2
k

k∑
i=1

∣∣λi(QS)
∣∣ (k ∈ N) (11)

where ek = uk − uh is the error vector, λm(QS) (m = 1, . . . ,∞) are the ordered
eigenvalues of the operator QS, and hence the sequence on the right-hand side is
independent of the subspace Vh.

Remark 1. The sequence on the right-hand side tends to 0 and taking the nu-
merical errors into consideration remains bounded.

3 Numerical Illustration

The main goal of this paper is to confirm and complete the previously cited
theoretical results with numerical experiments. The following numerical exper-
iments are the first steps in the way that leads to numerical results and proofs
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for superlinear convergence considering inequality (11). The aim of this paper
is the numerical verification of a reduction of Theorem 2 as it is indicated in
Remark 1.

On the one hand, the feasibility of the algorithm in [19] is illustrated. More-
over, similar numerical results are obtained when not the symmetric part of the
operator L but another symmetric elliptic operator is used as preconditioner.
The theory does not cover this case but the numerical results show much similar
behaviour.

3.1 The Test Problem

Our test problem is the following elliptic convection-diffusion equation with two
possible boundary conditions (a) and (b):⎧⎪⎪⎨⎪⎪⎩

Lu ≡ −Δu+ ∂u
∂x + αu = g

(a) u|ΓD
= 0.

(b) u|ΓD
= 0, ∂u

∂ν |ΓN
= 0.

(12)

This special modell problem satisfies the suitable conditions:

(i) Ω ⊂ R2 is the unit square, Ω = [0, 1] × [0, 1]; ΓD, ΓN are disjoint open
measurable subparts of ∂Ω such that ∂Ω = ΓD ∪ΓN ; in this case we have
(a) ΓD = ∂Ω and (b) ΓD = {(x, y): (x, y) ∈ ∂Ω, x = 0 or x = 1}.

(ii) (1, 0) = b ∈ C1(Ω)2, α ∈ L∞(Ω), 0 = β ∈ L∞(ΓN ), α, β ≥ 0;
(iii) we have the coercivity properties α̂ := α − 1

2 divb = α ≥ 0 in Ω and
β̂ := β + 1

2 (b · ν) = β = 0 ≥ 0 on ΓN ;
(iv) g ∈ L2(Ω);
(v) ΓD �= ∅.

3.2 Experiments

Numerous experiments have been performed in connection with the test problem.
First of all, the mesh independence of the convergence has been investigated in
two cases. In the first set of experiments the equation (12) has been considered
with boundary conditions (a), and the second part of Table 1 shows the results
for the mixed problem (b). Our goal is to study the (‖ek‖Sh

)/(‖e0‖Sh
) quotient,

their values appear in the last four columns of the tables.

Experiment 1. Let α = 1 in the operator L and in the preconditioning oper-
ator S as well. Exact integrations have been used in the algorithm (10) at the
computation of the right-hand side of the first finite element subroutine.

Analysing the results, the mesh independence is recognisable and the type
of the boundary condition has no effect to the rate of convergence just slows
down a bit the scale of decrease between two steps; four iterations are enough
to reach the 10−4 accuracy in both cases. In a real-life problem to determine the
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Table 1. Boundary conditions (a) and (b), exact integration

1/h 1st iteration 2nd iteration 3rd iteration 4th iteration
32 0.0790 0.0049 0.0003 0.0001
64 0.0792 0.0049 0.0003 0.0000

128 0.0792 0.0050 0.0003 0.0000
256 0.0792 0.0050 0.0003 0.0000

32 0.1029 0.0089 0.0008 0.0001
64 0.1031 0.0089 0.0007 0.0001

128 0.1031 0.0089 0.0007 0.0000
256 0.1031 0.0089 0.0007 0.0000

Table 2. Dirichlet boundary conditions (a), trapezoid rule

1/h 1st iteration 2nd iteration 3rd iteration 4th iteration
32 0.0790 0.0049 0.0009 0.0008
64 0.0792 0.0049 0.0004 0.0002

128 0.0792 0.0049 0.0003 0.0001
256 0.0792 0.0050 0.0003 0.0000

exact integrals is often impossible, therefore we tried to apply a simple numerical
method (2 dimensonal trapezoid rule), and the result is nearly the same, the rate
of the reduction is similar to the previous ones, but the order of the numerical
integration has small but noticeable effect.

Experiment 2. Let α = 1 in L and α = 0 in S, so S is not the symmetric part
of the operator L. The numerical result shows that the algorithm works with this
modification (Table 3). This change can be useful in practice, the computation of
the stiffness matrix and αk, γk become more simple. Moreover, the same result
is shown (Table 4), when the value of α has been transposed, i. e. α = 0 in L
and α = 1 is S.

Experiment 3. As it is mentioned before, care must be taken with the boundary
conditions of the preconditioning operator (see [21]). The last task is to prove
the importance of the proper boundary conditions of S with respect to the given
operator L. Let us consider equation (12) with boundary conditions (b). Let S
be the symmetric part of L, but with the different boundary conditions (a).

Table 3. Dirichlet boundary conditions (a), L: α = 1, S: α = 0

1/h 1st iteration 2nd iteration 3rd iteration 4th iteration
32 0.0780 0.0049 0.0003 0.0002
64 0.0782 0.0050 0.0003 0.0001

128 0.0782 0.0050 0.0003 0.0000
256 0.0782 0.0050 0.0003 0.0000
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Table 4. Dirichlet boundary conditions (a), L: α = 0, S: α = 1

1/h 1st iteration 2nd iteration 3rd iteration 4th iteration
32 0.0831 0.0053 0.0003 0.0002
64 0.0833 0.0054 0.0003 0.0000

128 0.0833 0.0054 0.0003 0.0000
256 0.0833 0.0054 0.0003 0.0000

Table 5. Mixed boundary conditions in L, Dirichlet b. c. in S

1/h 1st iteration 2nd iteration 3rd iteration 4th iteration
32 0.1356 0.0771 0.0763 0.0762
64 0.1359 0.0773 0.0764 0.0764

128 0.1360 0.0773 0.0765 0.0765
256 0.1360 0.0774 0.0765 0.0765

The result in table 5 shows that the algorithm does not work in this case, as
theoretical results predicted.
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Abstract. The main goal of this paper is to generalize the results, ob-
tained in [1] to the case of quasi-linear ordinary differential equations
of the second order with the third kind boundary conditions. It is a
continuation of the paper series in which we have obtained weight a pri-
ori estimates of accuracy for difference schemes for linear parabolic type
equations in one-dimensional [2] and two-dimensional [3] cases, quasi-
linear parabolic type equations [4] and quasi-linear elliptic equations with
conditions of the first kind [5]. In this paper it is shown that on approach-
ing to the left or right boundary of the domain the rate of convergence
of solution or it’s first derivative, correspondingly, increases. The second
accuracy order difference scheme of the special form has been used for
this purpose.

The paper is completed by numerical experiment, which results con-
firm theoretical statements.

1 A Priori Weight Estimates of the Difference Schemes
Taking into Account Boundary Effect

Let us consider the following boundary value problem with the third kind con-
dition in the left boundary point of the interval [0, 1] and Dirichlet condition in
the right boundary point

s′′ (x) = −g (x, s (x)) , x ∈ (0, 1)
s′ (0)− αs (0) = μ1, s (1) = μ2

α > 0.

Let us make some transformations. One can make the following change of
function s (x) = ϕ (x) u (x), then obtain the following boundary conditions

ϕ (0)u′ (0) + [ϕ′ (0)− αϕ (0)]u (0) = μ1

Let us look for function ϕ (x) such that equality

ϕ′ (0)− αϕ (0) = 0 (1)

is satisfied.
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It is obvious, that it can be taken in the following form:

ϕ (x) = αx + 1

As a result we obtain the following problem:

u′′ (x) = −f (x, u (x)) , x ∈ (0, 1)
u′ (0) = μ1, u (1) = μ̃2,

(2)

where f (x, u (x)) = g (x, (αx+ 1)u (x)) , μ̃2 = μ2
1+α .

So, one can see that there exists such change of variables that it is possible
to pass from the third kind condition to Neumann condition. So, further we
will consider only the problem (2), where function f (x, u(x)) satisfies Lipschitz
condition

|f (x, u)− f (x, v)| ≤ L |u− v| , u, v ∈ R, x ∈ [0, 1] . (3)

Let us rewrite the problem (2)-(3) in the form of the boundary value problem
for the system of the differential equations of the first order⎧⎨⎩

u′1 (x) = u2 (x) ,
u′2 (x) = −f (x, u1 (x)) ,
u2 (0) = μ1, u1 (1) = μ̃2.

(4)

We introduce the following grid for the approximation of this problem by a
difference scheme:

ωh =
{
x = ih, i = 1, N − 1, h = 1/N

}
We assign the problem (4) to the difference scheme on the grid ωh⎧⎨⎩y1,x (x)− y2 (x) = −h

2 f (x, y1 (x)) ,
y2,x (x) = −f

(
x+ h

2 , y
+
1 (x)

)
, x ∈ ω−

h

y2 (0) = μ1, y1 (1) = μ̃2

where ω−
h = ωh + {0}, y+

i = 1
2 (yi (x) + yi (x+ h)) , i = 1, 2 , functions yi (x) are

a grid approximation of the corresponding functions ui (x) , i = 1, 2.
We introduce error functions for determination of the weight a priori accuracy

estimates of the difference scheme

z1 (x) = y1 (x)− u1 (x) , z2 (x) = y2 (x)− u2 (x)

For these functions we obtain the following difference scheme:⎧⎨⎩z1,x (x)− z2 (x) = −u1,x (x) + u2 (x)− h
2 f (x, y1 (x)) ,

z2,x (x) = −u2,x (x)− f
(
x+ h

2 , y
+
1 (x)

)
,

z2 (0) = 0, z1 (1) = 0.
(5)
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We separate the local truncation errors for each equation in (5). At first let
us consider the first equation. One can obtain the following equality:

z1,x (x)− z2 (x) = −u1,x (x) + u2 (x) − h

2
f (x, y1 (x)) =

= ψ1 (x) +
h

2
[f (x, u1 (x))− f (x, y1 (x))] ,

where ψ1 (x) is a local truncation error of the first equation of the system:

ψ1 (x) = u′1 (x)− u1 (x+ h)− u1 (x)
h

− h

2
f (x, u1 (x)) =

= u′1 (x) − 1
h

{[
u1 (x) + hu′1 (x) +

h2

2
u′′1 (x) +

h3

6
u′′′1 (x̃)

]
− u1 (x)

}
+
h

2
u′′1 (x) = −h

2

6
u′′′1 (x̃) , x̃ ∈ (x, x + h) .

Now we pass to the second equation of the system

z2,x (x) = −u2,x (x)− f
(
x+

h

2
, y+

1 (x)
)

=

= ψ2 (x) +
[
f

(
x+

h

2
, u+

1 (x)
)
− f

(
x+

h

2
, y+

1 (x)
)]

,

where ψ2 is a local truncation error of the second equation in the system

ψ2 (x) = u′2

(
x+

h

2

)
− u2 (x+ h)− u2 (x)

h
+

+f
(
x+

h

2
, u1

(
x+

h

2

))
− f

(
x+

h

2
, u+

1 (x)
)
.

The following estimate

|ψ2 (x)| ≤
∣∣∣∣u′2 (x+

h

2

)
− 1
h

{[
u2

(
x+

h

2

)
+
h

2
u′2

(
x+

h

2

)
+

+
h2

8
u′′2

(
x+

h

2

)
+ +

h3

24
u′′′2 (x̃)

]
− u2 (x)

}∣∣∣∣+
+L

∣∣∣∣u1

(
x+

h

2

)
− u1 (x+ h) + u1 (x)

2

∣∣∣∣ =
∣∣∣∣u′2 (x+

h

2

)
−

− 1
h

{[
u2

(
x+

h

2

)
+
h

2
u′2

(
x+

h

2

)
+
h2

8
u′′2

(
x+

h

2

)
+
h3

24
u′′′2 (x̃)

]
−

−
[
u2

(
x+

h

2

)
− h

2
u′2

(
x+

h

2

)
+
h2

8
u′′2

(
x+

h

2

)
− h3

24
u′′′2 (x̃)

]}∣∣∣∣+
+L

∣∣∣∣u1

(
x+

h

2

)
− 1

2

{[
u1

(
x+

h

2

)
+
h

2
u′1

(
x+

h

2

)
+
h2

8
u′′1 (x̃)

]
+

+
[
u1

(
x+

h

2

)
− h

2
u′1 (x̃) +

h2

8
u′′1 (x̃)

]∣∣∣∣ =
∣∣∣∣h2

12
u′′′1 (x̃)

∣∣∣∣ + L

∣∣∣∣h2

8
u′′1 (x̃)

∣∣∣∣
holds true, where x̃ ∈ [x, x+ h].
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Thus it is possible to see that both local truncation errors have the second
order of approximation when solution of the problem (4) is such that ui (x) ∈
C3 [0, 1] , i = 1, 2.

Therefore, difference scheme (5) can be written down in the following form:⎧⎨⎩ z1,x (x)− z2 (x) = ψ1 (x) + h
2 [f (x, u1 (x))− f (x, y1 (x))] ,

z2,x (x) = ψ2 (x) + f
(
x+ h

2 , u
+
1 (x)

)
− f

(
x+ h

2 , y
+
1 (x)

)
z2 (0) = 0, z1 (1) = 0.

(6)

Form the second equation of the system (6) we obtain

x−h∑
ξ=0

z2 (ξ + h)− z2 (ξ)
h

h =
x−h∑
ξ=0

hψ2 (ξ)+

+
x−h∑
ξ=0

h

[
f

(
ξ +

h

2
, u+

1 (ξ)
)
− f

(
ξ +

h

2
, y+

1 (ξ)
)]
,

whence we have

|z2 (x)| ≤ x ‖ψ2‖0,∞,ωh
+ L

x−h∑
ξ=0

h
∣∣z+

1 (ξ)
∣∣. (7)

Let us consider the first equality from (6)

1−h∑
ξ=x

hz1,ξ (ξ) =
1−h∑
ξ=x

hz2 (ξ)+

+
1−h∑
ξ=x

hψ1 (x) +
h

2

1−h∑
ξ=x

h [f (x, u1 (x))− f (x, y1 (x))];

(8)

Let condition (
1 +

h

2

)
L < 1 (9)

be satisfied.
Then, taking into account (7), we have inequality

|z1 (x)| ≤ ‖ψ2‖0,∞,ωh

1−h∑
ξ=x

hξ +
1−h∑
ξ=x

hL

ξ−h∑
η=0

h
∣∣z+

1 (η)
∣∣ + (1− x) ‖ψ1‖0,∞,ωh

+

+
h

2
L

1−h∑
ξ=x

h |z1 (x)| ≤ (1− x)
(
‖ψ1‖0,∞,ωh

+ ‖ψ2‖0,∞,ωh

)
+

+ ‖z1‖0,∞,ωh

⎛⎝L 1−h∑
ξ=x

h

ξ−h∑
η=0

h+
h

2
L

1−h∑
ξ=x

h

⎞⎠ ≤

≤ (1− x)
(
‖ψ1‖0,∞,ωh

+ ‖ψ2‖0,∞,ωh
+ L

(
1 +

h

2

)
‖z1‖0,∞,ωh

)
.
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Whence it is possible to obtain the following inequality:∥∥∥∥z1 (x)
1− x

∥∥∥∥
0,∞,ωh

≤ ‖ψ1‖0,∞,ωh
+ ‖ψ2‖0,∞,ωh

+ L

(
1 +

h

2

)∥∥∥∥z1 (x)
1− x

∥∥∥∥
0,∞,ωh

,

which yields the estimate∥∥∥∥z1 (x)
1− x

∥∥∥∥
0,∞,ωh

≤ 1
1− L

(
1 + h

2

) (
‖ψ1‖0,∞,ωh

+ ‖ψ2‖0,∞,ωh

)
,

where ‖y‖0,∞,ωh
= max

x∈ωh

|y (x)|.
Let us now return to the estimate of the function z2 (x). We have∥∥∥∥z2 (x)

x

∥∥∥∥
0,∞,ωh

≤ ‖ψ2‖0,∞,ωh
+ L

∥∥∥∥z1 (x)
1− x

∥∥∥∥
0,∞,ωh

≤

≤ ‖ψ2‖0,∞,ωh
+

L

1− L
(
1 + h

2

) (
‖ψ1‖0,∞,ωh

+ ‖ψ2‖0,∞,ωh

)
.

The following statement holds true:

Theorem 1. Let the solution of the problem (2), (3) belongs to the class
C(4) [0, 1]. Then, when condition (9) is fulfilled, the following weight estimates∥∥∥∥u (x)− y1 (x)

1− x

∥∥∥∥
0,∞,ωh

≤ Ch2,∥∥∥∥u′ (x)− y2 (x)
x

∥∥∥∥
0,∞,ωh

≤ Ch2,

hold true, where C is constant, independent of h.

Thus, one can see that on approaching to the boundary from the right, rate
of convergence of the solution’s first derivative increases and approaching to the
domain boundary from the left rate of convergence of the solution itself increases.
These rates of convergence are of the O(h2) order.

2 Numerical Experiment

Example 1. We are looking for the solution of the problem

u′′ (x) = − 1
2 (1 + u2 (x))

+ 12x2 +
1

2 (1 + x8)
u′ (0) = 0, u (1) = 1

(10)

The exact solution of this problem is u (x) = x4. Computations where held by
means of Maple 9. Results of computations are shown in the table. Some graphics
of the investigated values for the case N = 8 are presented below.
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Table 1. Computation results

N err1 p1 err2 p2 err3 p3 err4 p4

4 0.127 0.237 0.441e-1 0.545e-1
8 0.351e-1 1.8544 0.673e-1 1.8204 0.118e-1 1.8943 0.150e-1 1.8611
16 0.919e-2 1.9364 0.177e-1 1.9212 0.303e-2 1.9694 0.386e-2 1.9574
32 0.234e-2 1.9708 0.455e-2 1.9635 0.762e-3 1.9927 0.973e-3 1.9884
64 0.592e-3 1.9861 0.115e-2 1.9825 0.190e-3 1.9986 0.243e-3 1.9969
128 0.148e-3 1.9932 0.290e-3 1.9913 0.476e-4 1.9999 0.610e-4 1.9992

For the practical estimation of the rate of convergence we consider the follow-
ing quantities

err1 = ‖z1 (x)‖0,∞,ωh
, err2 =

∥∥∥∥ z1 (x)
(1− x)

∥∥∥∥
0,∞,ωh

,

err3 = ‖z2 (x)‖0,∞,ωh
, err4 =

∥∥∥∥z2 (x)
x

∥∥∥∥
0,∞,ωh

,

p1 = log2

‖z1 (x)‖0,∞,ωh

‖z1 (x)‖0,∞,ωh/2
, p2 = log2

∥∥∥ z1(x)
(1−x)

∥∥∥
0,∞,ωh∥∥∥ z1(x)

(1−x)

∥∥∥
0,∞,ωh/2

,

p3 = log2

‖z2 (x)‖0,∞,ωh

‖z2 (x)‖0,∞,ωh/2
, p4 = log2

∥∥∥ z2(x)
x

∥∥∥
0,∞,ωh∥∥∥ z2(x)

x

∥∥∥
0,∞,ωh/2

.

Thus, it is possible to see that numerical computations confirm theoretical
results.
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Abstract. In this contribution we extend our previous results on the
structured total least squares problem to the case of weighted cost func-
tions. It is shown that the computational complexity of the proposed
algorithm is preserved linear in the sample size when the weight matrix
is banded with bandwidth that is independent of the sample size.

1 Introduction

The total least squares (TLS) method (Golub and Van Loan, [1], Van Huffel and
Vandewalle, [2])

min
ΔA,ΔB,X

∥∥[ΔA ΔB
]∥∥2

F subject to (A−ΔA)X = B −ΔB , (1)

is a solution technique for an overdetermined system of equations AX ≈ B,
A ∈ IRm×n, B ∈ IRm×d. It is a natural generalization of the least squares
approximation method when the data in both A and B is perturbed. The method
has been generalized in two directions:

– weighted total least squares

min
ΔA,ΔB,X

∥∥[ΔA ΔB
]∥∥2

W
subject to (A−ΔA)X = B −ΔB , (2)

where ‖ΔC‖2W := vec�(ΔC�)Wvec(ΔC�), W > 0, and
– structured total least squares (STLS)

min
ΔA,ΔB,X

∥∥[ΔA ΔB
]∥∥2

F subject to (A−ΔA)X = B −ΔB and[
ΔA ΔB

]
has the same structure as

[
A B

]
.

(3)

While the basic TLS problem allows for an analytic solution in terms of the
singular value decomposition of the data matrix C :=

[
A B

]
, the weighted and

structured TLS problems are solved numerically via local optimization methods.
In (Markovsky, Van Huffel, Pintelon[4]) we show that under a general assump-

tion (see Assumption 1) about the structure, the cost function and first derivative
of the STLS problem can be evaluated in O(m) floating point operations (flops).
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This allows for efficient computational algorithms based on standard methods for
local optimization. Via a similar approach, see (Markovsky et al., [5]), the weighted
TLS problem can be solved efficiently when the weight matrixW is block-diagonal
with blocks of size n+ d.

In this paper, we extend our earlier results on the STLS problem by accounting
for weighted cost function. Thus the weighted TLS problem becomes a special
case of the considered weighted STLS problem when the data matrix is unstruc-
tured. In Sect. 2 we review the results of (Markovsky, Van Huffel, Pintelon [4]).
Section 3 presents the necessary modifications for the weighted STLS problem
and Sect. 4 discusses the implementation of the algorithm.

2 Review of Results for the STLS Problem

Let S : IRnp → IRm×(n+d) be an injective function. A matrix C ∈ IRm×(n+d)

is said to be S-structured if C ∈ image(S). The vector p for which C = S(p)
is called the parameter vector of the structured matrix C. Respectively, IRnp is
called the parameter space of the structure S. The aim of the STLS problem
is to perturb as little as possible a given parameter vector p by a vector Δp,
so that the perturbed structured matrix S(p+Δp) becomes rank deficient with
rank at most n.

Problem 1 (STLS). Given a data vector p ∈ IRnp , a structure specification S :
IRnp → IRm×(n+d), and a rank specification n, solve the optimization problem

X̂ = arg min
X,Δp

‖Δp‖22 subject to S(p−Δp)
[
X
−Id

]
= 0 . (4)

Let
[
A B

]
:= S(p). Problem 1 makes precise the STLS problem formulation (3)

from the introduction. In what follows, we often use the notation

Xext :=
[
X
−I

]
.

The STLS problem is said to be affine structured if the function S is affine, i.e.,

S(p) = S0 +
np∑
i=1

Sipi, for all p ∈ IRnp and for some Si, i = 1, . . . , np . (5)

In an affine STLS problem, the constraint S(p −Δp)Xext = 0 is bilinear in the
decision variables X and Δp.

Lemma 1. Let S : IRnp → IRm×(n+d) be an affine function. Then

S(p−Δp)Xext = 0 ⇐⇒ G(X)Δp = r(X) ,

where

G(X) :=
[
vec

(
(S1Xext)�

)
· · · vec

(
(SnpXext)�

)]
∈ IRmd×np , (6)

and
r(X) := vec

((
S(p)Xext

)�)
∈ IRmd .
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Using Lemma 1, we rewrite the affine STLS problem as follows

min
X

(
min
Δp
‖Δp‖22 subject to G(X)Δp = r(X)

)
. (7)

The inner minimization problem has an analytic solution, which allows to derive
an equivalent optimization problem.

Theorem 1 (Equivalent optimization problem for affine STLS). Assum-
ing that np ≥ md, the affine STLS problem (7) is equivalent to

min
X

f(X) where f(X) := r�(X)Γ †(X)r(X) and Γ (X) := G(X)G�(X) .

The significance of Theorem 1 is that the constraint and the decision variable Δp
in problem (7) are eliminated. Typically the number of elements nd in X is much
smaller than the number of elements np in the correctionΔp. Thus the reduction
in the complexity is significant.

The equivalent optimization problem (1) is a nonlinear least squares prob-
lem, so that classical optimization methods can be used for its solution. The
optimization methods require a cost function and first derivative evaluation.
In order to evaluate the cost function f for a given value of the argument X ,
we need to form the weight matrix Γ (X) and to solve the system of equations
Γ (X)y(X) = r(X). This straightforward implementation requires O(m3) flops.
For large m (the applications that we aim at) this computational complexity
becomes prohibitive.

It turns out, however, that for a special case of affine structures S, the weight
matrix Γ (X) has a block-Toeplitz and block-banded structure, which can be
exploited for efficient cost function and first derivative evaluations.

Assumption 1 (Flexible structure specification). The structure specifi-
cation S : IRnp → IRm×(n+d) is such that for all p ∈ IRnp , the data matrix
S(p) =: C =:

[
A B

]
is of the type

S(p) =
[
C1 · · · Cq

]
, where Cl, for l = 1, . . . , q, is block-Toeplitz,

block-Hankel, unstructured, or exact and all block-Toeplitz/Hankel

structured blocks Cl have equal row dimension K of the blocks.

Assumption 1 says that S(p) is composed of blocks, each one of which is block-
Toeplitz, block-Hankel, unstructured, or exact. A block Cl that is exact is not
modified in the solution Ĉ := S(p − Δp), i.e., Ĉl = Cl. Assumption 1 is the
essential structural assumption that we impose on the STLS problem. It is fairly
general and covers many applications.

We use the notation nl for the number of block columns of the block Cl. For
unstructured and exact blocks nl := 1.

Theorem 2 (Structure of the weight matrix Γ ). Consider the equivalent
optimization problem (1) from Theorem 1. If in addition to the assumptions of
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Theorem 1, the structure S is such that Assumption 1 holds, then the weight
matrix Γ (X) has the block-Toeplitz and block-banded structure,

Γ (X) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ0 Γ
�
1 · · · Γ�

s 0

Γ1
. . . . . . . . . . . .

...
. . . . . . . . . . . . Γ�

s

Γs
. . . . . . . . . . . .

...
. . . . . . . . . . . . Γ�

1
0 Γs · · · Γ1 Γ0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ IRmd×md , (8)

where Γk ∈ IRdK×dK, for k = 0, 1, . . . , s, and s = maxl=1,...,q(nl − 1).

3 Modifications for the Weighted STLS Problem

Next we consider the generalization of the STLS problem where the cost function
is weighted.

Problem 2 (Weighted STLS). Given a data vector p ∈ IRnp , a positive definite
weight matrix W ∈ IRnp×np , a structure specification S : IRnp → IRm×(n+d),
and a rank specification n, solve the optimization problem

X̂w = arg min
X,Δp

Δp�WΔp subject to S(p−Δp)
[
X
−Id

]
= 0 . (9)

The counterpart of Theorem 1 for the case at hand is the following one.

Theorem 3 (Equivalent optimization problem for weighted STLS).
Assuming that np ≥ md, the affine weighted STLS problem (9) is equivalent to

min
X

fw(X) where fw(X) := r�(X)Γ †
w(X)r(X)

and Γw(X) := G(X)W−1G�(X) . (10)

Proof. The equivalent optimization problem in Theorem 1 is obtained by solving
a least squares problem. In the weighted STLS case, we solve the weighted least
squares problem

min
Δp

Δp�WΔp subject to G(X)Δp = r(X) .

The optimal parameter correction as a function of X is

Δpw(X) = W−1G�(X)
(
G(X)W−1G�(X)

)†
r(X) ,

so that

fw(X) = Δp�w(X)WΔpw(X) = r�(X)
(
G(X)W−1G�(X)︸ ︷︷ ︸

Γw

)†
r(X) . ��
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In general neither the block-Toeplitz nor the block-banded properties of Γ =
GG� are present in Γw = GW−1G�. In the rest of this section, we show that in
certain special cases these properties are preserved.

Assumption 2 (Block-diagonal weight matrix). Consider the flexible
structure specification of Assumption 1, let the blocks Cl, l = 1, . . . , q be para-
meterized by parameter vectors pl ∈ IRnp,l , and assume without loss of generality
that p = col(p1, . . . , pq). The weight matrix W is assumed to be block-diagonal

W = blk diag(W 1, . . . ,W q), where W l ∈ IRnp,l×np,l .

Assumption 2 forbids cross-weighting among the parameters of the blocks
C1, . . . , Cq. Under Assumption 2 the effect of Cl on Γw is independent from
those of the other blocks. Thus the problem of determining the structure of Γw,
resulting from the flexible structure specification of C decouples into three in-
dependent problems: what is the structure of Γw, resulting from respectively an
unstructured matrix C, a block-Hankel matrix C, and a block-Toeplitz matrix C.

In what follows “i-block-Toeplitz matrix” stands for block-Toeplitz matrix
with i× i block size and “s-block-banded matrix” stands for a block-symmetric
and block-banded matrix with upper/lower block-bandwidth i. Let V := W−1

and Vi := W−1
i .

Proposition 1. Let G be defined as in (6) and let Assumptions 1 and 2 hold.
If all blocks V l corresponding to unstructured blocks Cl are (n + d)K-block-
Toeplitz and all blocks V l corresponding to block-Toeplitz/Hankel blocks Cl are
dK-block-Toeplitz, Γw = GV G� is dK-block-Toeplitz.

Proof. See the Appendix. ��
For a particular type of weight matrices, the block-Toeplitz structure of Γ is
preserved. More important, however, is the implication of the following propo-
sition.

Proposition 2. Let G be defined as in (6) and let Assumptions 1 and 2 hold.
If W is p-block-banded, then Γw = GV G� is (s + p)-block-banded, where s is
given in Theorem 2.

Proof. See the Appendix. ��
For block-banded weight matrixW , the block-banded structure of Γ is preserved,
however, the block-bandwidth is increased by the block-bandwidth of W . In the
following section, the block-banded structure of Γ (and Γw) is utilized for O(m)
cost function and first derivative evaluation.

Summary: We have established the following special cases:

V block-Toeplitz =⇒Γw block-Toeplitz (generally not block-banded),
V l p-block-banded=⇒Γw (s+ p)-block-banded (generally not block-Toeplitz),
W block-diagonal =⇒Γw s-block-banded (generally not block-Toeplitz).

The case W block-diagonal, i.e., W l = blk diag(W l
1, . . . ,W

l
m), for l = 1, . . . , q,

covers most applications of interest and will be considered in the next section.
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4 Algorithm for Solving Weighted STLS Problem

In [3] we have proposed an algorithm for solving the STLS problem (4) with the
flexible structure specification of Assumption 1. The structure of S(·) is specified
by the integer K, the number of rows in a block of a block-Toeplitz/Hankel
structured block Cl, and the array S ∈ ({T, H, U, E} × IN× IN)q that describes
the structure of the blocks {Cl}q

l=1. The lth element Sl of the array S specifies
the block Cl by giving its type Sl(1), the number of columns nl = Sl(2), and (if
Cl is block-Hankel or block-Toeplitz) the column dimension tl = Sl(3) of a block
in Cl. Therefore, the input data for the STLS problem is the data matrix S(p)
(alternatively the parameter vector p) and the structure specification K and S.

It is shown that the blocks Γk of Γ are quadratic functions of X

Γk(X) = (IK ⊗X�
ext)Sk(IK ⊗X�

ext)
� , k = 0, 1, . . . , s , (11)

where the matrices Sk ∈ IRK(n+d)×K(n+d) depend on the structure S. The first
step of the algorithm is to translate the structure specification S to the set of
matrices Sk, k = 0, 1, . . . , s. Then for a given X , the Γk matrices can be formed,
which specifies the Γ matrix.

For cost function evaluation, the structured system of equations Γ (X)y(X) =
r(X) is solved and the product f(X) = r�(X)y(X) is computed. Efficiency is
achieved by exploiting the structure of Γ in solving the system of equations.
Moreover, as shown in [3], the first derivative f ′(X) can also be evaluated
from y(X) with O(m) extra computations. The resulting solution method is
outlined in Algorithm 1.

Algorithm 1. Algorithm for solving the STLS problem
Input: structure specification K, S and matrices A and B, such that A B = S(p).
1: Form the matrices {Sk}.
2: Compute the TLS solution Xini of AX ≈ B.
3: Execute a standard optimization algorithm, e.g., the BFGS quasi-Newton

method, for the minimization of f0 over X with initial approximation Xini and
with efficient cost function and first derivative evaluation.

Output: X̂ the approximation found by the optimization algorithm upon
convergence.

The changes for the case of weighted STLS problem are only in (11). Now
the matrix Γ is replaced by Γw, which is no longer block-Toeplitz but is s-block-
banded with block-elements

Γij(X) = (IK ⊗X�
ext)Sij(IK ⊗X�

ext)
� , (12)

where

Sij :=

⎧⎪⎨⎪⎩
blk diag(V 1

i , . . . , V
q
i )Si−j if 0 ≤ i− j ≤ s

S�
ji if − s ≤ i− j < 0

0 otherwise
.
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For an exact block Cl, with some abuse of notation, we define W l
i = 0 for all i.

(Our previous definition of W l is an empty matrix since pl = 0 in this case.)

5 Conclusions

We have extended the theory of Markovsky, Van Huffel, Pintelon ([4]) for the
case of weighted STLS problems. The main question of interest is what proper-
ties of the Γ matrix in the equivalent optimization problem are preserved when
the cost function is weighted. Block-Toeplitz inverse weight matrix V , results
in corresponding Γw matrix that is also block-Toeplitz. More important for fast
computational methods, however, is the fact that block-banded weight matrixW
with block-bandwidth p leads to increase of the block-bandwidth of Γ with p.
In particular W block-diagonal, results in Γw block-banded with the same band-
width as Γ . This observation was used for efficient solution of weighted STLS
problems.
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A Proof of Propositions 1 and 2

The G matrix, see (6), has the following structure G =
[
G1 · · · Gq

]
, where Gl ∈

IRmd×pl depends only on the structure of Cl (see Lemma 3.2 of [4]). For an
unstructured block Cl,

Gl = Im ⊗X�
ext,l , (13)

where Xext =: col(Xext,1, . . . , Xext,q), Xext,l ∈ IRnl×d and ⊗ is the Kronecker
product. For a block-Toeplitz block Cl,

Gl =

⎡⎢⎢⎢⎢⎣
X1 X2 · · · Xnl

0 · · · 0

0 X1 X2 · · · Xnl

. . .
...

...
. . . . . . . . . . . . 0

0 · · · 0 X1 X2 · · · Xnl

⎤⎥⎥⎥⎥⎦ , (14)

where Xk := IK ⊗Xext,k, and for a block-Hankel block Cl,

Gl =

⎡⎢⎢⎢⎢⎣
Xnl

Xnl−1 · · · X1 0 · · · 0

0 Xnl
Xnl−1 · · · X1

. . .
...

...
. . . . . . . . . . . . 0

0 · · · 0 Xnl
Xnl−1 · · · X1

⎤⎥⎥⎥⎥⎦ . (15)

Due to Assumption 2, we have

Γw = GV G� =
q∑

l=1

GlV l(Gl)�︸ ︷︷ ︸
Γ l

w

, (16)

so that we need to consider the three independent problems: structure of Γ l
w for

respectively unstructured, block-Toeplitz, and block-Hankel block Cl. The state-
ments of Propositions 1 and 2 are now easy to see by substituting respectively
(13), (14), and (15) in (16) and doing the matrix products.
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