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Abstract. We provide a finite axiomatisation for a class of functional
dependencies for XML data that are defined in the context of a sim-
ple XML tree model reflecting the permitted parent-child relationships
together with their frequencies.

1 Introduction

The question of how to represent and efficiently manage complex application
data is one of the major challenges database research faces today. XML (the Ex-
tensible Markup Language) has gained popularity as a standard for exchanging
data on the web. The flexibility of XML and its wide acceptance as a standard
make it also a good choice for modelling heterogenous and highly structured
data from various application domains. As a consequence, XML databases (in
the form of data-centric XML documents) have attracted a great deal of interest.

As for the relational data model (RDM), integrity constraints are needed to
capture more of the semantics of the data stored in an XML database. Several
types of integrity constraints have been studied in the context of XML, with a
focus on various key constraints, functional dependencies, inclusion constraints,
and path constraints. For relational databases, functional dependencies have
been vital in the investigation of how to design “good” database schemas to
avoid or minimise problems relating to data redundancy and data inconsistency.
The same problems can be shown to exist in poorly designed XML databases.
Not surprisingly, functional dependencies for XML (often referred to as XFDs)
have recently gained much attention.

An important problem involving XFDs is that of logical implication, i.e., de-
ciding whether a new XFD holds, given a set of existing XFDs. This is important
for minimising the cost of checking that a database satisfies a set of XFDs, and
may also be helpful when XFDs are propagated to view definitions. One ap-
proach to solve this problem is to develop a sound and complete set of inference
rules for generating symbolic proofs of logical implication.

For the RDM, the implication problem for functional dependencies is decid-
able in linear time, and the Armstrong system of inference rules is sound and
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complete. For XML the story is more complicated. Before studying XFDs and
actually using them in database design, they have to be formally defined. In the
literature [3, 4, 9-11, 13, 18-20, 17, 21, 22], several generalisations of functional
dependencies to XML have been proposed, and they do not always reflect the
same kind of dependencies in an XML database. The difficulty with XML data
is that its nested structure is more complex than the rigid structure of relational
data, and thus may well observe a larger variety of data dependencies.

In this paper we use an approach that considers XFDs in the context of a
simple tree model: XFDs are defined over a schema tree that reflects the per-
mitted parent-child relationships, and apply to the almost-copies of the schema
tree that can be found in an XML data tree under inspection. XML schema
trees capture information on the frequency of parent-child relationships, that is,
they show whether a child is optional or required, and whether it is unique or
may occur multiple times. This approach to XFDs has been suggested in [10],
and comes close to the approach taken in [3, 4] where XFDs are defined on the
basis of paths evolving from the root element in an XML document. This idea
goes back to earlier studies of functional dependencies in semantic and object-
oriented data models [15, 23]. It should be noted that XFDs may well interact in
a non-trivial way with chosen specifications (like DTDs) as demonstrated, e.g.,
in [2, 4].

This paper is organised as follows. In Section 2, we provide preliminary notions
like XML schema trees and data trees. In Section 3, we present an example that
illustrates our approach, while we formally define XFDs in Section 4. In Section
5, we assemble sound inference rules, which are then shown to be complete in
Section 6. In Section 7, we extend our investigation to account for ID-attributes
that are widely used in XML databases. Finally, Section 8 gives an overview of
related work and discusses similarities and differences.

2 Preliminary Notations

We start with reviewing basic features of a simple XML tree model. Within this
paper, all graphs considered are directed, without parallel arcs and finite unless
stated otherwise. For every graph G, let VG denote its set of vertices and AG its
set of arcs. A rooted graph is a graph G with one distinguished vertex rG, called
the root of G, such that there is a directed path from rG to every other vertex in
VG. A rooted tree is a rooted graph T without any (non-directed) cycles. A graph
G is empty if AG is empty. Specifically, G is an empty rooted graph if it consists of
a single vertex rG. For every vertex v, let SuccG(v) denote its (possibly empty)
set of successors, called children, in G. A non-isolated vertex without children is
a leaf of G. Let LG denote the set of all leaves of G.

Definition 1. Given a vertex v ∈ VG and a subset W ⊆ LG of leaves, a v-
subgraph of G is the graph union of all directed walks from v to some w ∈ W .
A v-walk of G is a directed walk from v to a single leaf w of G. Every v-walk or
v-subgraph of a rooted tree is again a rooted tree.
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Fig. 1. An XML tree showing the names and kinds of vertices

Let ENames and ANames be fixed sets of element names and attribute names,
respectively. Also let the symbols E, A and S reflect whether a vertex represents
an element, attribute or text data respectively.

Definition 2. An XML graph is a rooted graph G together with the mappings
name : VG → ENames ∪ ANames and kind : VG → {E, A, S} assigning every
vertex its name and kind, respectively. If G is a rooted tree, then we speak of an
XML tree.

In this paper, all XML trees are assumed to be unordered trees. Let V E
G , V A

G and
V S

G consist of all vertices in VG of kind E, A and S, respectively. We suppose
that in an XML graph, vertices of kind A and S are always leaves and conversely
all leaves are either of kind A or S, that is, LG = V A

G ∪ V S
G . Thus, within this

paper, we do not consider empty elements unless G is empty.

Definition 3. Let G′ and G be two XML graphs, and consider a mapping
φ : VG′ → VG. φ is said to be kind-preserving if the image of a vertex is of the
same kind as the vertex itself, that is, kind(v′) = kind(φ(v′)) for all v′ ∈ VG′ .
Further, φ is name-preserving if the image of a vertex carries the same name as
the vertex itself, that is, name(v′) = name(φ(v′)) for all v′ ∈ VG′ . The mapping
φ is a homomorphism between G′ and G if all of the following conditions hold:

1. the root of G′ is mapped to the root of G, that is, φ(rG′ ) = rG

2. every arc of G′ is mapped to an arc of G, that is, (u′, v′) ∈ AG′ implies
(φ(u′), φ(v′)) ∈ AG

3. φ is kind-preserving and name-preserving.

Definition 4. A homomorphism φ : VG′ → VG is an isomorphism if φ is bijec-
tive and φ−1 is a homomorphism. Whenever such an isomorphism exists, G′ is
said to be isomorphic to G, denoted by G′ ∼= G. We also call G′ a copy of G.

Definition 5. A subgraph H ′ of G′ is a copy of a subgraph H of G if the
restriction of φ : VG′ → VG to H ′ and H is an isomorphism between H ′ and H.
An rG′-subgraph H ′ of G′ is a subcopy of G if it is a copy of some rG-subgraph H
of G. A maximal subcopy of G is a subcopy of G which is not an rG-subgraph of
any other subcopy of G. A maximal subcopy of G is called an almost-copy of G.
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It should be noted that all copies of G in G′ are almost-copies of G, but not
vice versa. Also we can observe that a homomorphism φ : VG′ → VG is not an
isomorphism whenever G′ contains more than one copy of G or no copy (but
possibly many almost-copies) of G.

Definition 6. An XML schema graph is an XML graph G together with a
mapping freq : AG → {?, 1, +, ∗} assigning every arc its frequency. Every arc
a = (v, w) where w is of kind A has frequency freq(a) =? or 1. Every arc
a = (v, w) where kind(v) = E and kind(w) = S has frequency freq(a) = 1. Fur-
ther, we assume no vertex in VG has two successors with the same name and
the same kind. If G is more specifically an XML tree, then we speak of an XML
schema tree.

We use “f -arc” to refer to an arc of frequency f and “f/g-arc” to refer to an arc
of frequency f or g. For example, a ?-arc refers to an arc of frequency ?, while a
*/+-arc refers to an arc of frequency * or +. For an XML schema graph G, let
G≤1 be the graph union of all ?/1-arcs in AG, and G≥1 be the graph union of
all 1/+-arcs in AG. Note that G≤1 and G≥1 may not be rG-subgraphs of G.

Definition 7. An XML data tree is an XML tree T ′ together with an evaluation
val : LT ′ → STRING assigning every leaf v a (possibly empty) string val(v).

Definition 8. Let G be an XML schema graph. An XML data tree T ′ is com-
patible with G, denoted by T ′ � G, if there is a homomorphism φ : VT ′ → VG be-
tween T ′ and G such that for each vertex v′ of T ′ and each arc a = (φ(v′), w) of
G, the number of arcs a′ = (v′, w′

i) mapped to a is at most 1 if freq(a) =?, exactly
1 if freq(a) = 1, at least 1 if freq(a) = +, and arbitrarily many if freq(a) = ∗.
Due to the definition of a schema graph, this homomorphism is unique if it exists.

An XML schema graph may be developed by a database designer similar to a
(rather simple) database schema, or it can be derived from other specifications
(such as DTDs or XSDs). Alternatively, an XML schema graph may also be
derived from an XML document itself, cf. [10]. At this point a short remark is
called for. Given an XML data tree T ′, there is usually more than just a single
XML schema graph G such that T ′ is compatible with G. For example, G may
well be extended by adjoining new vertices and arcs, or by (partially) unfolding
it. Recall that, in our definition of an XML schema graph, we did neither claim
the vertices of kind E to have mutually distinct names, nor those of kind A. It
is well-known that every rooted graph G may be uniquely transformed into a
rooted tree TG by completely unfolding it, cf. [8].

Let T ′
1 be any almost-copy of T in an XML data tree T ′ � T . It is possible

that T ′
1 does not contain a copy of some rT -walk which contains an ?-arc or *-arc.

Note that this flexibility is one of the desirable features of XML to adequately
represent heterogenous data. We say that T ′

1 is missing a copy of an rT -walk C
of T if T ′

1 does not contain a copy of C, otherwise T ′
1 is said to be not missing a

copy of C. Similarly the data tree T ′ is said to be missing a copy of C if it does
not contain a copy of C, and not missing a copy of C otherwise.
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For two rG-subgraphs X and Y of some graph G, we may use X ⊆ Y to
denote that X is an rG-subgraph of Y in G, and more specifically X ∈ Y to
denote that X is an rG-walk of Y in G.

Next we briefly discuss operators to construct new trees from given ones. Let G
be an XML graph, and X, Y be subgraphs of G. The union of X and Y , denoted
by X ∪ Y , is the restriction of the graph union of X and Y to its maximal rG-
subgraph of G. For convenience, we sometimes omit the union symbol and write
XY instead of X ∪ Y . The intersection of X and Y , denoted by X ∩ Y , is the
union of all rG-walks that belong to both X and Y . The difference between X
and Y , denoted by X − Y , is the union of all rG-walks belonging to X but not
to Y . In particular, X ∩ Y and X − Y are rG-subgraphs of G.

The intersection operator is associative but the union and difference operators
are not associative. The union and intersection operators are commutative but
the difference operator is not. In the absence of parentheses, we suppose that
the union and intersection operators bind tighter than the difference operator.
For example, by X ∪ Y − Z we mean (X ∪ Y ) − Z.

Let G′ and G be two XML graphs, and φ : VG′ → VG be a homomorphism
between them. Given an rG-subgraph H in G, the projection of G′ to the sub-
graph H in G, denoted by G′|H , is the union of all the subcopies of H in G′.
The projection G′|H is an rG′ -subgraph of G′.

3 A Motivating Example

Our example describes information stored about a product development com-
pany and its employees. The company has one head quarter office contactable by
postal mail or phone. Furthermore, the company operates various departments
and has multiple branches.

In our example here, we use attributes rather than text elements purely to
end up with more compact XML graphs. Of course, each attribute in an XML
graph G with name n may alternatively be modelled by a vertex v of kind E
with name n and a child w ∈ SuccG(v) of kind S and name n. Here, we are not
concerned with the question of whether some information are better modelled
as an attribute or text element.
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Fig. 2. The XML schema tree PD
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For the ease of presentation, we have chosen examples where the leaf names
are unique. In this paper, we may therefore refer to an rG-walk to some leaf
carrying the name “B” simply as [[B ]], e.g., [[ brPhone ]]. Further, we may refer
to an rG-subgraph X by listing the names of all leaves in X separated by white
spaces, e.g., [[ brName brPhone ]].

4 Functional Dependencies for XML

Two isomorphic XML data trees T ′ and T are said to be value-equal, denoted
by T ′ = T , if the isomorphism φ : VT ′ → VT between T ′ and T is evaluation-
preserving, that is, val(φ(v′)) = val(v′) holds for every v′ ∈ LT ′ . We are now
ready to present our definition of functional dependencies for XML.

Definition 9. Given an XML schema graph T , a functional dependency (or
XFD for short) on T is an expression X → Y where X and Y are non-empty
rT -subgraphs in T . Let T ′ be an XML data tree which is compatible with T
and let φ : VT ′ → VT be the unique homomorphism between T ′ and T . Then T ′

satisfies the XFD X → Y , written as |=T ′ X → Y , if and only if for any two
almost-copies T ′

1 and T ′
2 of T in T ′ the projections T ′

1|Y and T ′
2|Y are value-

equal whenever the projections T ′
1|X and T ′

2|X are value-equal and copies of X,
i.e., T ′

1 |Y = T ′
2 |Y whenever T ′

1 |X = T ′
2 |X ∼= X.

Example 10. Suppose each department of our product development company
is located at a single branch. Branches have unique phone numbers and are
located in unique locations. Employees are assigned unique employee IDs. We
use the following XFDs to model the PD company information:

(PD XFD1) [[ brName ]] → [[ brLocation ]]
(PD XFD2) [[ brName ]] → [[ brPhone ]]
(PD XFD3) [[ brLocation ]] → [[ brName ]]
(PD XFD4) [[ deptName ]] → [[ brName ]]
(PD XFD5) [[ empID ]] → [[ empName ]]

E
branch

E
employee

A

empName

A

deptName

E
company

A

empID
“100” “Elli Zabeth” “pet toys”

A

brName
“P.N.”
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A
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E
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A
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E
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A
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“(06) 350

9457”

Fig. 3. An XML data tree PD
′ compatible with PD
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The XML data tree PD
′ in Figure 3 contains four almost-copies of PD, two of

which are shown in Figure 4. The two remaining almost-copies can be obtained
as follows:

P ′
3 = P ′

1|[[ empID deptName ]] ∪ P ′
2|[[ brName brPhone ]]

P ′
4 = P ′

2|[[ empID empName deptName ]] ∪ P ′
1|[[ brName brPhone ]]

The almost-copies P ′
1 and P ′

2 contain value-equal copies of [[brName ]], but they
differ in their copies of [[brPhone ]]. Therefore PD

′ does not satisfy PD XFD2.
Moreover, PD

′ does not satisfy PD XFD5 since P ′
1 and P ′

2 contain value-equal
copies of [[ empID ]], but only P ′

2 is not missing a copy of [[ empName ]].
On the other hand, PD XFD3 is trivially satisfied because PD

′ is missing a
copy of [[ brLocation ]]. P ′

1 and P ′
2 contain value-equal copies of [[ brName ]] and

are both missing a copy of [[ brLocation ]]. Since P ′
3, P

′
4 are constructed from P ′

1
and P ′

2, it is easy to see that any two almost-copies of PD in PD
′ have a value-

equal copy of [[ brName ]] and are missing a copy of [[ brLocation ]]. Hence PD
′

satisfies PD XFD1. Both P ′
1 and P ′

2 contain value-equal copies of [[deptName ]]
and [[ brName ]]. Again, we have that any two almost-copies of PD in PD

′

will contain P ′
1|[[ deptName brName ]] or P ′

2|[[ deptName brName ]]. Therefore any two
almost-copies of PD in PD

′ will contain value-equal copies of [[deptName ]] and
[[ brName ]], so that PD XFD4 is satisfied. �	

As for the RDM, we say that an XML data tree T ′ satisfies a given set Σ of
XFDs, denoted by |=T ′ Σ, if T ′ satisfies each XFD in Σ. Satisfaction of a given
set of XFDs by an XML data tree usually implies the satisfaction of other XFDs.
The notions of implication and derivability (with respect to a rule system R)
are defined analogously to similar notions in the RDM.

Let Σ be a set of XFDs and X → Y a single XFD. If X → Y is satisfied
in every XML data tree which satisfies Σ, then Σ implies X → Y , written as
Σ |= X → Y . The semantic closure of Σ, denoted by Σ∗, is the set of all XFDs
which are implied by Σ, that is, Σ∗ = {X → Y | Σ |= X → Y }.

Given a rule system R, we call an XFD X → Y derivable from Σ by R, de-
noted by Σ 
R X → Y , if there is a finite sequence of XFDs, whose last element
is X → Y , such that each XFD in the sequence is in Σ or can be obtained from
Σ by applying one of the inference rules in R to a finite number of previous



166 S. Hartmann and T. Trinh

XFDs in the sequence. The syntactic closure of Σ with respect to the rule system
R, denoted Σ+

R, is the set of all XFDs which are derivable from Σ by means
of inference rules in R, that is, Σ+

R = {X → Y | Σ 
R X → Y }. Whenever the
rule system is clearly understood, we may omit R.

An inference rule is called sound if for any given set Σ of XFDs, every XFD
which may be derived from Σ due to that rule is also implied by Σ. A rule
system R is sound if all inference rules in R are sound. In other words, R is
sound if every XFD which is derivable from Σ by R is also implied by Σ (i.e.
Σ+

R ⊆ Σ∗). A rule system is said to be complete if it is possible to derive every
XFD which is implied by Σ (i.e. Σ∗ ⊆ Σ+

R).

5 Sound Inference Rules

In this section, we assemble sound inference rules that yield a sound and complete
rule system as we will demonstrate later on.

Lemma 11. Let T be an XML schema tree, and let X, Y, W, Z be rT -subgraphs
of T . The following inference rules for XFDs are sound:

(union rule)
X → Y, X → Z

X → Y ∪ Z
(reflexivity axiom)

X → Y
Y is an rT -subgraph of X

(subtree rule)
X → Y

X → Z
Z is an rT -subgraph of Y

(supertree rule)
W → Y

X → Y
W is an rT -subgraph of X

For an XML schema tree T , let RT denote the union of all rT -walks of T≤1.

Lemma 12. Let T be an XML schema tree, and let X be an rT -subgraph of T .
The following inference rule is sound for XFDs:

(root axiom)
X → RT

Surprisingly, the transitivity rule from the RDM does not hold for XML in the
presence of frequencies. Consider the XFDs X → Y and Y → Z defined on some
XML schema tree T . For an XML data tree T ′ � T , if any two almost-copies of
T are missing a copy of some rT -walk of Y , then T ′ trivially satisfies Y → Z.
Therefore it would be possible for two almost-copies to be not value-equal on Z
while being value-equal on and not missing a copy of X , that is, X → Z can be
violated.

However we can define a restricted form of the transitivity rule which is sound
for the derivation of XFDs. The main idea behind such an inference rule is to
use frequencies to ensure that two almost-copies are not missing a copy of every
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rT -walk of the middle term Y whenever they are not missing a copy of every rT -
walk of X or Z. The notion of Y being X, Z-compliant in the following definition
accomplishes this.

Definition 13. Let X, Y, Z be rT -subgraphs in an XML schema tree T . We say
Y is X, Z-compliant if and only if Y ⊆ (X ∪ C) ∪ T≥1 for each rT -walk C of Z.

Example 14. In the XML schema tree PD in Figure 2, it is easy to see
that [[ brName ]] ⊆ ([[ deptName ]] ∪ [[ brLocation ]]) ∪ PD≥1 holds, that is,
[[ brName ]] is [[deptName ]],[[ brLocation ]]-compliant. �	

Lemma 15. Let T be an XML schema tree, and let X, Y, Z be rT -subgraphs of
T . The following inference rule is sound for XFDs:

(restricted-transitivity rule)
X → Y, Y → Z

X → Z
Y is X, Z-compliant

Example 16. Recall the XML schema tree PD in Figure 2 and all XFDs
specified in Example 10. There are two rPD-walks in PD≤1, yielding
RPD = [[ address phone ]]. Using the root axiom we derive XFDs like
[[ empID ]] → [[ address phone ]] (let this be denoted by PD XFD6) and
[[ empName brName ]] → [[ address phone ]].

The supertree rule enables us to derive from PD XFD6 the XFD
[[ empID empName brName ]] → [[ address phone ]]. Applying the subtree
rule to PD XFD6 gives us the XFDs [[ empID ]] → [[ address ]] and
[[ empID ]] → [[ phone ]]. Using the reflexivity axiom, we can derive the XFD
[[ empID empName brName ]] → [[ empID empName ]]. From PD XFD1
and PD XFD2 and an application of the union rule we obtain the XFD
[[ brName ]] → [[ brLocation brPhone ]].

Since [[ brName ]] is [[ deptName ]],[[ brLocation ]]-compliant, an application
of the restricted-transitivity rule to PD XFD4 and PD XFD1 yields the XFD
[[ deptName ]] → [[ brLocation ]]. �	

Next, we define the notion of a unit of some rT -walk which is needed for the
final inference rule presented in this section.

Definition 17. Let B be an rT -walk of some XML schema tree T . The unit of
B, denoted by UB, is the union of all rT -walks sharing some */+-arc with B.

We continue with some useful observations about the unit of an rT -walk. For
one, it is the case that UC = UB for any rT -walk C ∈ UB. Furthermore, in any
data tree T ′ � T , every almost-copy of T − UB together with any almost-copy
of UB form an almost-copy of T in T ′. In particular, for any two almost-copies
T ′

1, T
′
2 of T in T ′, it is the case that T ′

1 |T−UB ∪ T ′
2 |UB and T ′

2 |T−UB ∪ T ′
1 |UB

are also almost-copies of T in T ′. The mix-and-match approach is only possible
because T ′

2 |UB shares with T ′
1 |T−UB exactly those arcs (and vertices) which

T ′
2 |UB shares with T ′

2 |T−UB , and likewise T ′
1 |UB shares with T ′

2 |T−UB exactly
those arcs which T ′

1 |UB shares with T ′
1 |T−UB .
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Lemma 18. Let T be an XML schema tree, let X be an rT -subgraph of T , and
let B an rT -walk of T . The following inference rule is sound for XFDs:

(noname rule)

(
(X ∪ B) ∪ T≥1 − UB

)
∪ X → B

X → B

Example 19. The noname rule allows us to derive XFDs which have
not been derivable using the other derivation rules only, e.g., the new
XFD [[ empName ]]→[[ brName ]] for our example above. To see this,
we first find ([[ empName ]] ∪ [[ brName ]]) ∪ PD≥1 as the rPD-subgraph
[[empID empName deptName brName]] of PD, and the unit U[[ brName ]] as the
rPD-subgraph [[ brName brLocation brPhone ]]. This amounts to the premise of
the noname rule being the XFD [[ empID empName deptName ]]→[[ brName ]],
which can be derived from [[ deptName ]]→[[ brName ]] (that is, PD XFD4) by
means of the supertree rule. �	

6 A Sound and Complete Rule System

In this section, we observe that the inference rules assembled above form a
complete rule system for XFDs in the presence of frequencies. Let the F-rule
system consist of the following inference rules: reflexivity axiom, root axiom,
subtree rule, supertree rule, union rule, restricted-transitivity rule and noname
rule.

We take the usual approach to verifying completeness. Consider an XML
schema tree T and a set Σ of XFDs on T . If X → Y cannot be derived from Σ
by means of the inference rules, then we show that there is an XML data tree
T ′ � T such that |=T ′ Σ but �|=T ′ X → Y . Because of the union rule, this means
that there is some rT -walk B ∈ Y such that X → B is not derivable from Σ
and T ′ does not satisfy X → B. Therefore T ′ must contain two almost-copies
T ′

1, T
′
2 of T such that T ′

1 |X = T ′
2 |X ∼= X and T ′

1 |B �= T ′
2 |B. In the sequel, we will

outline a general construction for such a counterexample data tree T ′.
Without frequencies, we can construct a counterexample data tree from the

arc-disjoint union of exactly two copies T ′
a, T ′

b of X ∪ B that are value-equal only
on X . Particularly, T ′

a, T ′
b are both missing a copy of every rT -walk not in X ∪ B.

In the presence of frequencies, however, we face the additional complication that
at least one almost-copy of T in T ′ must contain a copy of (X ∪ B) ∪ T≥1. This
means, in addition to X ∪ B, we also need to determine whether or not T ′

1 and
T ′

2 should be value-equal on any of the remaining rT -walks in (X ∪ B) ∪ T≥1,
keeping in mind that T ′ must still satisfy Σ.

We first define the analogous of the closure of a set of attributes in the RDM.

Definition 20. Let T be an XML schema tree, X be an rT -subgraph, and Σ be
a set of XFDs on T . Further let R be a rule system. The pre-closure X+

R of X
with respect to Σ and R is the following rT -subgraph of T :

X+
R =

⋃
{Y | X → Y ∈ Σ+

R}
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As pointed out above, we need two almost-copies T ′
1, T

′
2 of T such that

T ′
1 |X = T ′

2 |X ∼= X and T ′
1 |B �= T ′

2 |B. To ensure |=T ′ Σ we must further guar-
antee that T ′

1 |X+
F

= T ′
2 |X+

F
. For that, the two almost-copies of T must not be

missing value-equal copies of X+
F ∩ ((X ∪ B) ∪ T≥1). A peculiar situation is en-

countered: there may be XFDs that are not implied by Σ (and hence not deriv-
able by the F -rule system), but need to be non-trivially satisfied in this situa-
tion because at least one of T ′

1, T
′
2 is not missing a copy of (X ∪ B) ∪ T≥1. The

restricted-transitivity rule yields (X+
F )+F ⊇ X+

F , but X+
F will in general not be a

closure as its counterpart attribute closure in the RDM.

Example 21. Our previous observation is illustrated by the XML schema
tree S in Figure 5(a) and the set Σ of XFDs defined on S. We find
that [[U ]] �⊆ ([[ X ]] ∪ [[ D ]]) ∪ S≥1, that is, [[ U ]] is not [[ X ]], [[ D ]]-compliant.
Therefore, we cannot use the restricted-transitivity rule to derive [[X ]] → [[ D ]].
In fact, the F -rule does not allow us to derive [[X ]] → [[ D ]]. If an XML data tree
compatible with S should satisfy Σ and violate [[X ]] → [[ D ]] it must simply
be missing a copy of [[U ]], see Figure 5(b).

However, if an XML data tree compatible with S is not missing a copy of [[ B ]],
then it will not be missing a copy of [[ U ]] either. Consider the data tree S′′ in Fig-
ure 5(c). It contains exactly two almost-copies of S, which we denote by S′

1, S
′
2.

Since |=S′′ Σ, we have |=S′′ [[ X ]] → [[ U ]] and |=S′′ [[U ]] → [[ D ]]. It follows
from |=S′′ [[ X ]] → [[ U ]] and S′

1 |[[ X ]]= S′
2 |[[ X ]]

∼= [[ X ]] that S′
1 |[[ U ]]= S′

2 |[[ U ]].
Moreover, since [[ U ]] ∈ ([[ X ]] ∪ [[ B ]]) ∪ S′′

≥1, neither of S′
1, S

′
2 is missing a

copy of [[ U ]]. This means we have S′
1 |[[ U ]]= S′

2 |[[ U ]]
∼= [[ U ]], and hence

S′
1 |[[ D ]]= S′

2 |[[ D ]] due to |=S′′ [[ U ]] → [[ D ]]. �	

Consequently, it is insufficient to stop after having considered only X+
F . Since

T ′
1, T

′
2 are value-equal on and not missing a copy of X+

F ∩ ((X ∪ B) ∪ T≥1),
it follows from |=T ′ Σ that T ′

1, T
′
2 must be value-equal on and not

missing a copy of (X+
F ∩ ((X ∪ B) ∪ T≥1))+F ∩ ((X ∪ B) ∪ T≥1). This then
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1
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A E

A A
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1 ?
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(a) XML schema
tree S. Let Σ =
{[[ X ]]→ [[ U ]],
[[ U ]]→ [[ D ]]} be a
set of XFDs on S.
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(b) XML data
tree S′ � S with
|=S′ Σ showing
[[ X ]] → [[ D ]]
can be violated.
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(c) XML data tree S′′ � S
with |=S′′ Σ, where S′′ is
not missing a copy of [[ B ]].
It is not possible that
�|=S′′ [[ X ]] → [[ D ]].

Fig. 5. XML schema tree and data trees illustrating that there can be an XFD which
is not derivable but which is satisfied whenever there occur copies of certain rS-walks
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means that T ′
1, T

′
2 must be value-equal on and not missing a copy of

((X+
F ∩ ((X ∪ B) ∪ T≥1))+F ∩ ((X ∪ B) ∪ T≥1))+F ∩ ((X ∪ B) ∪ T≥1), and so on.

In the process, we obtain a sequence of pre-closures restricted to (X ∪ B) ∪ T≥1.
Eventually there is some fix-point Xn since XML schema trees are finite so that
there are only finitely many rT -walks in (X ∪ B) ∪ T≥1. In summary, T ′

1, T
′
2 must

be value-equal on and not missing a copy of the rT -subgraph Xn in order for
|=T ′ Σ.

This outlines our general approach for constructing a counterexample data
tree, though the actual proof of completeness uses some additional con-
siderations. Recall that T ′

1 |T−UB ∪ T ′
2 |UB and T ′

2 |T−UB ∪ T ′
1 |UB are possibly

further almost-copies of T in T ′. In particular, if T ′
1 |T−UB �= T ′

2 |T−UB and
T ′

1 |UB �= T ′
2 |UB then there are at least four almost-copies of T in T ′. To

simplify the discussion it is desirable to have only two almost-copies of T
in the counterexample data tree under construction. To ensure this, we can
force T ′ to contain only one copy of T |T−UB ∩ ((X ∪ B) ∪ T≥1). Actually,
T |T−UB ∩ ((X ∪ B) ∪ T≥1) equals (X ∪ B) ∪ T≥1 − UB. Therefore, we want to
have T ′

1 |(X∪B)∪T≥1−UB
= T ′

2 |(X∪B)∪T≥1−UB
.

However, there might be some rT -walk in (X ∪ B) ∪ T≥1 − UB that
is not in the rT -subgraph Xn introduced above. This is rectified by
actually computing the sequence of restricted pre-closures starting with
X0 = ((X ∪ B) ∪ T≥1 − UB) ∪ X rather than just X . The noname rule guaran-
tees that each restricted pre-closure in the sequence remains unaffected except
for the additional rT -subgraph X0 − X .

Example 22. We demonstrate the approach described thus far with
an example. Consider the XML schema tree Q shown in Figure 6.
(Note that we left out some vertex names in Q for convenience.) Let
Σ = {[[ DB ]] → [[ C ]], [[ X ]] → [[ B ]]} be a set of XFDs given on Q. It is easy
to check that [[ XF ]] → [[ W ]] is not derivable from Σ by the F -rule system.

Suppose we want to construct a counterexample data tree Q′ � Q such that
|=Q′ Σ but �|=Q′ [[ XF ]] → [[ W ]]. The rQ-subgraph ([[XF ]] ∪ [[ W ]]) ∪ Q≥1 is
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Fig. 6. An XML schema tree Q
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Fig. 7. Two almost-copies Q′
1, Q

′
2 of the XML schema tree Q

the schema tree Q without the rQ-walk [[ E ]]. Thus, each restricted pre-closure
must not contain [[ E ]]. The sequence of restricted pre-closures is as follows:

[[ XF ]]0 =
(
([[ XF ]] ∪ [[ W ]]) ∪ Q≥1 − U[[ W ]]

)
∪ [[ XF ]]

= ([[ XFABCDW ]] − [[ ABCFW ]]) ∪ [[ XF ]]
= [[ XD ]] ∪ [[ XF ]] = [[ XFD ]]

[[ XF ]]1 = ([[ XFD ]])+F ∩
(
([[ XF ]] ∪ [[ W ]]) ∪ Q≥1

)
= [[ XFDB ]]

[[ XF ]]2 = ([[ XFDB ]])+F ∩
(
([[ XF ]] ∪ [[ W ]]) ∪ Q≥1

)
= [[ XFDBC ]]

= [[ XF ]]3 = [[ XF ]]4 = . . .

Therefore, Q′ should contain two almost-copies Q′
1, Q

′
2 of Q which are value-

equal on and not missing a copy of the rQ-subgraph [[XFDBC ]]. Two such
almost-copies of Q are depicted in Figure 7. �	

As discussed above, we construct T ′ in general by taking the union of two copies
of (X ∪ B) ∪ T≥1 that are value-equal only on Xn. Of course, T ′ should be com-
patible with T and thus conform to the frequencies specified on T . Consequently,
in T ′ the two copies may need to share certain arcs or even copies of entire rT -
walks of T . We next provide a notion for describing that two almost-copies of
some schema tree T share the same copy of some rT -walk of T in a compatible
data tree T ′.

Definition 23. Let T be an XML schema tree. Two almost-copies T ′
1, T

′
2 of T

in an XML data tree T ′ � T are said to coincide on an rT -walk B of T if and
only if T ′

1 |B and T ′
2 |B are graph unions of exactly the same set of arcs in T ′.

Two almost-copies of T coincide on an rT -subgraph Y of T if and only if they
coincide on each rT -walk of Y .

Example 24. Recall the XML data tree PD
′ in Figure 3 containing almost-

copies P ′
1 to P ′

4 of PD, cf. Figure 4. P ′
1 and P ′

3 coincide on the rPD-subgraph
[[ empID deptName ]] but do not coincide on any other rPD-walk. �	

The following amalgamation operator allows us to specify how two almost-copies
of an XML schema tree can be combined to construct an XML data tree.
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Definition 25. Let T be an XML schema tree, T ′
a, T ′

b be two almost-copies of T ,
and X be an rT -subgraph of T . The amalgamation of T ′

a and T ′
b on X, denoted

T ′
a 
[ X ] T

′
b, is the XML data tree obtained by taking the graph union of T ′

a and
T ′

b in such a way that T ′
a and T ′

b coincide on X, and T ′
a and T ′

b only share all
arcs in their projections to X ∪ T≤1.

As mentioned before, we construct the counterexample data tree by amalga-
mating two copies T ′

a, T ′
b of (X ∪ B) ∪ T≥1 that are value-equal only on Xn.

By construction, both T ′
a, T ′

b are almost-copies of T in T ′. Recall, however,
that T ′

a|(X∪B)∪T≥1−UB
∪ T ′

b|UB and T ′
b|(X∪B)∪T≥1−UB

∪ T ′
a|UB are possibly fur-

ther almost-copies of T in an XML data tree containing T ′
a and T ′

b. From
X0 = ((X ∪ B) ∪ T≥1 − UB) ∪ X ⊆ Xn we know that T ′

a and T ′
b are value-equal

on (X ∪ B) ∪ T≥1 − UB. In order for the constructed data tree T ′ to contain
only two almost-copies of T (namely T ′

a and T ′
b), we require that T ′

a and T ′
b are

amalgamated on (X ∪B)∪T≥1 − UB. The resulting XML data tree T ′ is in fact
the desired counterexample data tree we are looking for.

As a consequence, we conclude the completeness of the F -rule system.

Theorem 26. The F-rule system is sound and complete for XFDs in the pres-
ence of frequencies.

Example 27. Let us continue with Example 22. To construct a counterexample
data tree Q′ � Q such that |=Q′ Σ but �|=Q′ [[ XF ]] → [[ W ]], we use two copies
Q′

a, Q′
b of ([[ XF ]] ∪ [[ W ]]) ∪ Q≥1 = [[ XFABCDW ]] that are value-equal on

the rQ-subgraph [[ XFDBC ]]. Incidentally, these can be the two almost-copies
Q′

1, Q
′
2 of Q shown in Figure 7.

From Example 22, we have that ([[XF ]] ∪ [[ W ]]) ∪ Q≥1 − U[[ W ]] = [[ XD ]].
As suggested, we amalgamate Q′

a and Q′
b on [[XD ]]. The resulting XML data

tree Q′
a 
[ [[ XD ]] ] Q

′
b, denoted Q′ for short, is shown in Figure 8. Note that

Q′ contains only the two almost-copies Q′
1, Q

′
2 of Q. Though we have left out

the names of some vertices for convenience, the homomorphism between Q′ and
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Fig. 8. The XML data tree Q′ = Q′
a �[ XD ] Q

′
b where Q′ � Q. Here Q′

a and Q′
b corre-

spond to the almost-copies Q′
1 and Q′

2 in Figure 7.
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Q is the name-preserving mapping which maps every vertex from Q′ to the
vertex carrying the same name in Q. By examining the frequencies given on
Q in Figure 6, it can easily be verified that Q′ � Q. Thus Q′ is the desired
counterexample data tree. �	

7 The Impact of Identifiers

Elements in an XML document can be identified using ID-attributes. The val-
ues of ID-attributes have to be unique throughout the document. This fea-
ture is borrowed from object-oriented data models [15, 23] and is supported,
e.g., by DTDs. (XSDs also support ID-attributes, but provide further oppor-
tunities to declare unique values, too.) In this section, we discuss XFDs in
the presence of XML schema trees where attributes may be declared as ID-
attributes. We first revise some earlier definitions to account for the presence of
ID-attributes.

We use “I” to differentiate an ID-attribute from an ordinary attribute. The
kind assignment is thus extended to kind : VG → {E, A, I, S}. The possible fre-
quencies for an arc a = (v, w) where kind(w) = I is the same as for kind(w) = A,
that is, freq(a) =? or 1. Furthermore, we call an rT -walk to some ID-attribute
an identifier. Let V I

G consist of all vertices in VG of kind I. Leaves are now
vertices of kind A, I or S, that is, LG = V A

G ∪ V S
G ∪ V I

G. It is not necessary
to modify the definitions of XML data tree and equivalence of XML data
trees.

Values assigned to ID-attributes need to be unique in an XML data tree T ′,
that is, for every leaf v ∈ V I

T ′ of the data tree T ′ there does not exist any other
leaf u ∈ LT ′ such that val(v) = val(u). We refer to this as the unique identifier
value constraint. Now, the revised version of Definition 8 [compatible] simply
requires that T ′ also satisfies the unique identifier value constraint.

It is easy to see that all inference rules which are sound in the presence of
frequencies are also sound in the presence of frequencies and identifiers. However,
a few more inference rules are required to obtain a sound and complete rule
system again. The first new rule stems from the uniqueness of values taken by
ID-attributes. For an rT -subgraph X , let XID be the union of all identifiers in
X , that is, the rT -subgraph of X whose leaves are just the leaves of kind I of X .

Lemma 28. Let T be an XML schema graph, and X be an rT -subgraph of T
with XID being non-empty. The following inference rule is sound for XFDs:

(identifier axiom)
XID → XID ∪ T≤1

If we allow the left hand side of an XFD to be an empty rT -subgraph, then we
can rewrite the root axiom from Lemma 12 such that the identifier axiom is a
straightforward generalisation of the rewritten root axiom.

We next extend the notion of a unit of some rT -walk to account for the
presence of identifiers. This will then provide us a generalisation of the noname
rule from Lemma 18.
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Definition 29. Let X be an rT -subgraph, and B be an rT -walk of an XML
schema graph T . The unit of B relative to X, denoted by UX

B , is the union of
all rT -walks sharing some */+-arc a with B where a is not an arc of XID.

Analogous to UB, for any rT -walk C ∈ UX
B , we find that UX

C = UX
B . It remains to

check whether for any two almost-copies T ′
1, T

′
2 of T in an XML data tree T ′�T ,

it is still true that T ′
1 |T−UX

B
∪ T ′

2 |UX
B

and T ′
2 |T−UX

B
∪ T ′

1 |UX
B

are almost-copies
of T in T ′.

If XID is empty, that is, there is no identifier in X , then UX
B = UB. Obviously

in this case, T ′
1 |T−UX

B
∪ T ′

2 |UX
B

and T ′
2 |T−UX

B
∪ T ′

1 |UX
B

are almost-copies of T
from the observation we made before. Suppose instead that XID is non-empty.
The above observation is not true unless an additional condition is satisfied. Let
I ∈ XID be an identifier which shares with each rT -walk of UB − UX

B the last
*/+-arc which that rT -walk shares with UX

B . For any two almost-copies T ′
1, T

′
2

of T such that T ′
1 |I = T ′

2 |I ∼= I, we can then observe that T ′
1 |T−UX

B
∪ T ′

2 |UX
B

and
T ′

2 |T−UX
B

∪ T ′
1 |UX

B
are also almost-copies of T . Similar to previously, this mix-

and-match is possible because the unique identifier value constraint guarantees
that T ′

2 |UX
B

shares with T ′
1 |T−UX

B
exactly those arcs (and vertices) which T ′

2 |UX
B

shares with T ′
2 |T−UX

B
, while T ′

1 |UX
B

shares with T ′
2 |T−UX

B
exactly those arcs

which T ′
1 |UX

B
shares with T ′

1 |T−UX
B

.

Lemma 30. Let T be an XML schema graph, X be an rT -subgraph of T , and
B be an rT -walk of T . The following inference rule is sound for XFDs:

(generalised noname rule)

(
(X ∪ B) ∪ T≥1 − UX

B

)
∪ X → B

X → B

Note that, if XID is a empty, the generalised noname rule reduces to the noname
rule from Lemma 18.

We may finally record the main result of this paper.

Theorem 31. The I-rule system consisting of the reflexivity axiom, root axiom,
subtree rule, supertree rule, union rule, restricted-transitivity rule, identifier ax-
iom and generalised noname rule is sound and complete for XFDs in the presence
of frequencies and identifiers.

8 Discussion

In this section, we assemble some remarks on related work, and point out simi-
larities and differences.

8.1 Relational FDs in the Presence of Null Values

The observation that the transitivity rule is no longer sound for XML corre-
sponds to a similar observation for relational databases in the presence of miss-
ing information, cf. Lien [12], who also provides an axiomatisation for functional
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dependencies in relational databases with null values. Later Atzeni and Morfuni
[6] generalised this axiomatisation to functional dependencies in the presence
of null values (NFDs) and existence constraints (ECs) over flat relations. An
existence constraint is an expression of the form e : X 
 Y which is satisfied by
a relation if each tuple t which is X-total (i.e. t[X ] does not contain any null
values) is also Y -total. Like frequencies, ECs offer a means to control the pres-
ence of missing values. In particular, ECs are required for defining a restricted
form of the transitivity rule which is sound in the presence of null values. ECs
may express some, but not all, frequencies and conversely frequencies may ex-
press some, but not all, ECs. It should be noted that the Atzeni-Morfuni rule
system contains additional inference rules for the derivation of ECs which are
not required for frequencies. More importantly, the F -rule system contains two
additional inference rules to the Atzeni-Morfuni rule system, namely the root
axiom and the noname rule, which arise from the nested structure of XML data.

8.2 XML Schema Trees and DTDs

The currently most popular approach towards functional dependencies for XML
is due to Arenas and Libkin [3, 4], who define XFDs in the presence of a DTD. In
practice, XML documents do not always possess a DTD, but may be developed
either from scratch or using some other specification (such as an XSD). There-
fore, we use schema graphs rather than DTDs for the definition of functional
dependencies. However, if a DTD is available it may be used to derive an XML
schema tree, cf. [9].

It should be noted that DTDs and XML schema graphs differ in their expres-
siveness. DTDs use regular expressions to specify the element type definition
associated with a particular element name, that is, the permitted combinations
of names for the children of an element of that name. In our approach, we do not
consider disjunctions. If a DTD contains a disjunctive expression, we first try
to rewrite it without using disjunction. For example, (A|B|C)∗ may be rewrit-
ten (A∗, B∗, C∗). Otherwise, we treat the disjunction as a sequential expression
with each element name in the disjunction being assigned a frequency of * or
?. For example, if (A|B|C+) is a regular expression in a given DTD, then this
is treated as (A?, B?, C∗). This is similar to the idea of simplifying a DTD [14],
and to considering simple regular expressions [4]. Recent empirical studies show
that the vast majority of DTDs do not contain disjunctive expressions [7]. A
regular expression s is simple if there is a non-disjunctive regular expression s′

such that every word w in the language represented by s is a permutation of a
word in the language represented by s′, and vice versa. In [4], a DTD is called
simple if it contains only simple regular expressions as element type definitions.

Secondly, regular expressions in DTDs may be recursive and thus give rise
to an XML schema graph with cycles, or alternatively, a rational XML schema
tree. In this paper, we restrict ourselves to finite schema trees which in turn
correspond to a finite number of unfoldings of the recursive expression, cf. [10].
In [4], a DTD is called non-recursive if it contains no recursive regular expressions
as element type definitions.
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Thirdly, XML schema trees may contain different vertices with the same name,
but different sets of children. DTDs do not allow element type definitions asso-
ciated with a particular element name to be overwritten. This is a feature that
XML schema trees share with tree automata, XSDs and Relax NG specifications
of XML data. For a discussion, see [7].

8.3 XFDs Studied by Arenas and Libkin

For their definition of XFDs, Arenas and Libkin [3, 4] introduce the notion of
a “tree tuple”, where a tree tuple is a finite partial evaluation of the paths in
the underlying DTD. An XFD which consists of a set of paths on the left hand
side and a single path on the right hand side is said to be satisfied if whenever
two tree tuples agree on the paths on the left hand side of an XFD they must
also agree on the path on the right hand side of the XFD. Note that XFDs in
[3, 4] may contain paths that end in an internal vertex, rather than in a leaf.
In our approach, identifier-attributes are used instead to refer to a particular
vertex. This is more in line with the original intentions of XML and provides
more flexibility: identifier-attributes are specified if desired, but not compulsory.

If an XML schema tree T is obtained from a DTD, the almost-copies of T in
an XML data tree T ′ conforming to T are just the tree representations of the
maximal tree tuples over the DTD that are subsumed by T ′. As a consequence
of Theorem 26, we find that the I-rule system is sound and complete for XFDs
in the presence of a simple non-recursive DTD. While Arenas and Libkin do
not give inference rules for their XFDs, they show that XFDs in the presence
of a DTD cannot be finitely axiomatised. The proof given in [4] suggests that
the usage of non-simple disjunctive expressions in DTDs causes XFDs not to
be finitely axiomatisable. This is one reason for considering XFDs over XML
schema trees without disjunctions. Furthermore, [4] also shows the implication
problem for XFDs in the presence of a simple non-recursive DTD to be solvable
in quadratic time. Note that finite axiomatisability is a stronger property than
the existence of an algorithm as the former implies the latter but not the other
way around [1].

8.4 XFDs Studied by Vincent and Liu

More recently, Vincent and Liu (partly together with co-authors) studied another
kind of functional dependencies for XML [13, 18, 19, 20, 17, 21]. Their definition of
XFDs (called strong XFDs) does not assume a DTD, but does also not consider
frequencies. A major distinguishing feature of the approach taken by Vincent
and Liu is the concept of strong satisfaction, cf. [5]. Similar to relations with
null values, they suggest to think of an XML tree with missing information as
representing a collection of “complete” XML trees with non-missing information.
An XML data tree then strongly satisfies an XFD if every possible completion
satisfies the XFD. Translated into our approach, an XML data tree containing
at least one almost-copy which is not a copy of the given XML schema tree
is regarded as being incomplete. That is, Vincent and Liu use the “unknown”
interpretation (values exist but not currently known) for information deemed to
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be missing. We remark that the “no information” interpretation is more general
than the “unknown” interpretation as it also includes the “does not exist” in-
terpretation (values do not exist). Due to the flexibility of XML data modelling,
we argue that there is good reason for using the “no information” or “does not
exist” interpretation of missing information, as done by our approach, and also
by Arenas and Libkin [3, 4].

Vincent and Liu [19] provide a system of sound inference rules for strong XFDs
which, however, is only proven to be complete for strong XFDs with a single path
on the left hand side (called unary XFDs). Due to the different interpretation
of null values, their system of inference rules looks quite different from ours,
and also from the Armstrong rule system for the RDM. We also emphasise that
the transitivity rule is sound for strong XFDs, but not sound for XFDs in our
approach.

Finally, Liu, Vincent and Liu [13] also studied XFDs that use only paths end-
ing in leaves (called primary XFDs) which is similar to our approach to XFDs,
but without frequencies and identifiers. This paper does not address axiomati-
sation, but is focussed on the design of XML documents.

8.5 Further Approaches to XFDs

There is a number of further works that discuss functional dependencies for
XML. Lee, Ling and Low [11] study XFDs for designing XML databases that
are similar to the approach of Arenas and Libkin [3, 4], but they do not give
a precise definition of XFDs. More recently, Wang and Topor [22] have defined
XFDs that may use upward paths and are thus more expressive than other
approaches, but do not address axiomatisation.

In [9, 10] we discuss several variations of XFDs in the presence of XML schema
graphs. In particular, we introduce XFDs whose definition uses pre-images of v-
subgraphs instead of almost-copies, and motivate their application by a number
of examples. Moreover, we suggest to investigate axiomatisations for XFDs in
the presence of XML schema graphs.

9 Conclusion

In this paper, we studied XFDs that are defined in the presence of an XML
schema tree. An XFD is satisfied by an XML data tree if whenever two almost-
copies of the schema tree coincide and are complete on the left hand side of
the XFD then they must also coincide on the right hand side of the XFD. Our
approach is similar to the approach by Arenas and Libkin [3, 4], but uses XML
schema trees. This allows us to provide a sound and complete system of inference
rules that may be used to solve the implication problem for the class of XFDs
under discussion. Further, we extended our result to XFDs defined on XML
schema trees that may contain ID-attributes. It should be mentioned, that our
axiomatisation may be used to conclude a normal form for XML data that avoids
redundancies caused by this class of XFDs, cf. [16].
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