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Preface

This volume contains the papers presented at the 4th International Symposium
on Foundations of Information and Knowledge Systems (FoIKS 2006), which
was held at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of
Sciences, Budapest, Hungary, from February 14 to 17, 2006.

FoIKS is a biennial event with a focus on the theoretical foundations of
information and knowledge systems. The goal is to bring together researchers
working on the theoretical foundations of information and knowledge systems,
as well as to attract researchers working in mathematical fields such as discrete
mathematics, combinatorics, logics and finite model theory who are interested
in applying their theories to research on database and knowledge base theory.

FoIKS took up the tradition of the conference series Mathematical Funda-
mentals of Database Systems (MFDBS), which enabled East-West collaboration
in the field of database theory. The first FoIKS symposium was held in Burg,
Spreewald (Germany) in 2000, the second FoIKS symposium was held in Salzau
Castle (Germany) in 2002, and the third FoIKS symposium was held in Vienna
(Austria) in 2004. Former MFDBS conferences were held in Dresden (Germany)
in 1987, Visegrád (Hungary) in 1989 and in Rostock (Germany) in 1991. Pro-
ceedings of these previous MFDBS and FoIKS events were published by Springer
as volumes 305, 364, 495, 1762, 2284, and 2942 of the LNCS series, respectively.

The FoIKS symposium is intended to be a forum for intensive discussions. For
this reason the time slots for long and short contributions are 50 and 30 minutes,
respectively, followed by 20 and 10 minutes for discussions, respectively. Each
such discussion is led by the author of another paper, who is asked in advance
to prepare a focused set of questions and points for further elaboration.

The FoIKS 2006 call for papers solicited contributions dealing with the foun-
dational aspects of information and knowledge systems, including the following
topics:

– Mathematical Foundations: discrete methods, Boolean functions, finite
model theory

– Database Design: formal models, dependency theory, schema translations,
desirable properties

– Query Languages: expressiveness, computational and descriptive complex-
ity, query languages for advanced data models, classifications of computable
queries

– Semi-structured Databases and WWW: models of Web databases, querying
semi-structured databases, Web transactions and negotiations

– Security in Data and Knowledge Bases: cryptography, steganography, infor-
mation hiding

– Integrity and Constraint Management: verification, validation, and enforce-
ment of consistency, triggers
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– Information Integration: heterogeneous data, views, schema dominance and
equivalence

– Database and Knowledge Base Dynamics: models of transactions, models of
interaction, updates, consistency preservation, concurrency control

– Intelligent Agents: multi-agent systems, autonomous agents, foundations of
software agents, cooperative agents

– Logics in Databases and AI: non-classical logics, spatial and temporal logics,
probabilistic logics, deontic logic, logic programming

– Knowledge Representation: planning, description logics, knowledge and be-
lief, belief revision and update, non-monotonic formalisms, uncertainty

– Reasoning Techniques: theorem proving, abduction, induction, constraint
satisfaction, common-sense reasoning, probabilistic reasoning, reasoning
about actions

The Program Committee received 54 submissions. Each paper was carefully
reviewed by at least two experienced referees, and most of the papers were re-
viewed by three referees. Fourteen papers were chosen for long presentations and
three papers for short presentations. This volume contains polished versions of
these papers with respect to the comments made in the reviews. The best pa-
pers will be selected for further extension and publishing in a special issue of the
journal Annals of Mathematics and Artificial Intelligence.

We would like to thank everyone involved with FoIKS 2006 for their contri-
bution to the success of the symposium.

Jürgen Dix
Stephen J. Hegner
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The Semijoin Algebra

Jan Van den Bussche

Universiteit Hasselt, Agoralaan D,
B-3590 Diepenbeek, Belgium

jan.vandenbussche@uhasselt.be

Abstract. When we replace, in the classical relational algebra, the join
operator by the semijoin operator, we obtain what we call the semijoin
algebra. We will show that, when only equi-joins are used, the semijoin
algebra is equivalent with the guarded fragment of first-order logic, and
thus it inherits many of the nice properties of the latter logic. When
more general theta-joins are used, however, we move outside the realm
of guarded logics, and we will show how the notion of guarded bisim-
ilarity can be extended accordingly. Last but not least, we show how
the semijoin algebra can be used as a tool to investigate the complexity
of queries expressed in the relational algebra, where we are mainly in-
terested in whether or not a relational algebra expression for the query
needs to produce intermediate results of nonlinear size. For example, we
will show that the division operation cannot be expressed by a linear
relational algebra expression.

This talk is a survey of work done in collaboration with Dirk Leinders,
Jerzy Tyszkiewicz, and Maarten Marx.

References

1. D. Leinders, M. Marx, J. Tyszkiewicz and J. Van den Bussche. The semijoin algebra
and the guarded fragment. Journal of Logic, Language and Information, 14:331–343,
2005.

2. D. Leinders and J. Van den Bussche. On the complexity of division and set joins in
the relational algebra. Proceedings 24th ACM Symposium on Principles of Database
Systems, pages 76–83. ACM Press, 2005.

3. D. Leinders, J. Tyszkiewicz and J. Van den Bussche. On the expressive power of
semijoin queries. Information Processing Letters, 91:93–98, 2004.

J. Dix and S.J. Hegner (Eds.): FoIKS 2006, LNCS 3861, p. 1, 2006.
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Equational Constraint Solving Via a Restricted
Form of Universal Quantification

Javier Álvez� and Paqui Lucio

Dpto. de Lenguajes y Sistemas Informáticos, UPV-EHU, Paseo Manuel de
Lardizabal, 1, 20080-San Sebastián, Spain

{jibalgij, jiplucap}@si.ehu.es

Abstract. In this paper, we present a syntactic method for solving first-
order equational constraints over term algebras. The presented method
exploits a novel notion of quasi-solved form that we call answer. By allow-
ing a restricted form of universal quantification, answers provide a more
compact way to represent solutions than the purely existential solved
forms found in the literature. Answers have been carefully designed to
make satisfiability test feasible and also to allow for boolean operations,
while maintaining expressiveness and user-friendliness. We present de-
tailed algorithms for (1) satisfiability checking and for performing the
boolean operations of (2) negation of one answer and (3) conjunction
of n answers. Based on these three basic operations, our solver turns
any equational constraint into a disjunction of answers. We have imple-
mented a prototype that is available on the web.

Keywords: equality, constraint satisfaction, solver, term algebra,
answer.

1 Introduction

An equational constraint is an arbitrary first-order formula built over a signature
Σ of function symbols and equality as unique predicate symbol. Equational con-
straints are interpreted over term algebras. An equational solving method takes as
input an equational constraint and produces the set of all its solutions or, more
precisely, some particular representation of it. Syntactic methods are rewriting
processes that transform the input constraint into an equivalent disjunction of
constraints, in the so-called solved form, which represents its solutions. In par-
ticular, those solutions serve to decide whether the input constraint is satisfiable
or not.

On one hand, equational constraint solving is an very important tool in many
areas of automated deduction. The integration of efficient equational solvers in
theorem provers has been a challenging problem, important for many practical
applications. Equational constraints can be used for restricting the set of ground

� Corresponding author.

J. Dix and S.J. Hegner (Eds.): FoIKS 2006, LNCS 3861, pp. 2–21, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Equational Constraint Solving Via a Restricted Form 3

instances in order to define more eficient resolution mechanism (cf. [6]). In auto-
mated model building, equational constraints play a crucial role for model rep-
resentation (e.g. [5, 11]). On the other hand, equational constraint solving may
be applied for several purposes in the areas of functional/logic programming and
databases. Therein, many problems related to semantics and implementation is-
sues can be reduce to equational constraint solving problems. Some well known
examples include the problems of answering negative goals, decidindg whether
a case-definition is complete, evaluating a boolean conjunctive query on a re-
lational database, etc. Besides, equational constraint solving have been found
useful in other areas such as formal verification tools, computational linguistic,
machine learning, program transformation, etc.

It is well known that the free equality theory1, originally introduced by Mal-
cev in [15], is non-elementary (see [10, 21]). Besides, the inherent complexity of
the satisfiability problem of equational problems (i.e. where the quantifier pre-
fix is of the form ∀∗∃∗) for finite signature is studied in [19]. The most well
known algorithms for equational solving [9, 14, 15] and later extensions to richer
theories (see [20]) are based on quantifier elimination with solved forms that
combine equations and disequations. Negation should be allowed since, for ex-
ample, the constraint ∀v( x �= f(v, v) ) cannot be finitely represented without
negation (disequations). As opposed to negation, universal quantification can be
dropped from any equational formula by the well-known quantifier elimination
technique. As a consequence, most solved form notions (see [8] for a survey) are
boolean combinations of certain kind of existential formulas whose satisfiability
test is trivial even in the case of finite signature. However, in exchange for the
simplicity of the test, the solver must remove all universal quantifiers. This of-
ten requires application of the so-called2 Explosion Rule ([9]) that we recall in
Fig. 1, that implies substitution of a formula by a disjunction of as many for-
mulas as there are function symbols in the finite signature Σ. A more compact

(Exp) ∀y( ϕ ) �−→ f∈Σ ∃z∀y( ϕ ∧ w = f(z) )

if there exists an equation x = t or a disequation x �= t such that

some yi ∈ y occurs in t, z are fresh and Σ is finite

Fig. 1. The Explosion Rule (Exp)

representation of solutions reduces the blow up of the number of disjuncts along
the quantifier elimination process, which in turn improves the method. At the
same time, the basic operations for managing this more expressive notion must
not be expensive. We propose a notion of quasi-solved form, called answer, that
allows a restricted form of universal quantification, which is enough to avoid the
1 Also called the theory of term algebra and Clark’s equational theory.
2 That is, the Weak Domain Closure Axiom in the nomenclature of [14].



4 J. Álvez and P. Lucio

above rule (Exp) and offers a more compact representation of solutions. Answers
have been carefully designed to make satisfiability test feasible and also to allow
for boolean operations (of negation and conjunction), while retaining expressive-
ness and user-friendliness. The idea of gaining efficiency via restricted forms of
universal quantification has been already proposed in [18] and in [16].

A very preliminary version of this work was presented as [1]. We have imple-
mented (in Prolog) a prototype of the general constraint solver. It is available
at ˜http://www.sc.ehu.es/jiwlucap/equality constraints.html.

Outline of the paper. In the next section, we recall some useful definitions and
denotational conventions. Section 3 is devoted to the details of the notion of
answer and some examples. In Section 4, we introduce the answer satisfiabil-
ity test with some illustrative examples. In Section 5, we show how the two
other basic operations on answers —conjunction and negation— can be effi-
ciently performed. Besides, we make use of these basic operations (together with
the quantifier elimination technique) to provide a solving method for general
equational constraints. We give a summarizing example in Section 6. Finally, we
present some concluding remarks and briefly discuss some related work.

2 Definitions and Notation

Let us fix a denumerable set of variables X. Given a (finite or infinite) signature
Σ, a Σ-term is a variable from X, or a constant, or a function symbol of arity
n applied to n terms. A term is ground if it contains no variable symbols. T (Σ)
stands for the algebra of all ground Σ-terms or Herbrand universe, whereas
T (Σ,X) is used to denote the set of all Σ-terms. We denote by V ar(t) the set
of all variables occurring in t and t(v) denotes that V ar(t) ⊆ v. A term is linear
if it contains no variable repetitions. A bar is used to denote tuples of objects.
Subscripts are used to denote the components of a tuple and superscripts are
used to enumerate tuples. For example, xj denotes a component of x, whereas
x1, . . . , xj, . . . , xm is a tuple enumeration and xj

i is a component of the tuple
xj . Concatenation of tuples is denoted by the infix operator ·, i.e. x ·y repre-
sents the concatenation of x and y. When convenient, we treat a tuple as the
set of its components. A Σ-equation is t1 = t2, where t1 and t2 are Σ-terms,
whereas t1 �= t2 is a Σ-disequation (that is also written as ¬(t1 = t2)). By a
collapsing equation (or disequation) we mean that at least one of its terms is a
variable. We abbreviate collapsing Σ-equation by Σ-CoEq, and Σ-UCD stands
for universally quantified collapsing Σ-disequation. We abbreviate

∧
i ti = si by

t = s and
∨

i ti �= si by t �= s. To avoid confusion, we use the symbol ≡ for the
metalanguage equality.

A Σ-substitution σ ≡ {x1 ← t1, . . . xn ← tn} is a mapping from a finite set
of variables x, called domain(σ), into T (Σ,X). It is assumed that σ behaves
as the identity for the variables outside domain(σ). A substitution σ is called a
Σ-assignment if σ(xi) ∈ T (Σ) for all xi ∈ domain(σ). We intentionally confuse
the above substitution σ with the conjunction of equations

∧
i xi = ti. The

(possibly ground) term σ(t) (also denoted tσ) is called an (ground) instance of the
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term t. The most general unifier of a set of terms {s1, . . . , sm}, denoted mgu(s),
is an idempotent substitution σ such that σ(si) ≡ σ(sj) for all 1 ≤ i, j ≤ m and
for any other substitution θ with the same property, θ ≡ σ′ ·σ holds for some
substitution σ′. For tuples, mgu(s1, . . . , sm) is an abbreviation of σ1·. . .·σn where
σi ≡ mgu(s1

i , . . . , s
m
i ) for all 1 ≤ i ≤ n. The most general common instance of

two terms t and s, denoted by mgi(t, s), is the term whose set of ground instances
is the intersection of both sets of ground instances (for t and s), and it can be
computed using a unification algorithm.

An equational constraint is a first-order Σ-formula built over Σ-equations (as
atoms) using the classical connectives and quantifiers. Atoms include the logical
constants True and False. Equational constraints are interpreted in the term al-
gebra T (Σ). A Σ-assignment σ satisfies a Σ-equation t1 = t2 iff t1σ ≡ t2σ. The
logical constants, connectives and quantifiers are interpreted as usual. A solu-
tion of an equational constraint is a Σ-assignment that satisfies the constraint.
Constraint equivalence means the coincidence of the set of solutions. We make
no distinction between a set of constraints {ϕ1, . . . , ϕk} and the conjunction
ϕ1 ∧ . . . ∧ ϕk. We abbreviate ∀x1 . . .∀xn (resp. ∃x1 . . . ∃xn) by ∀x (resp. ∃x).

3 The Notion of Answer

In this section, we present the notion of answer and give some illustrative exam-
ples. The following definition also introduces some notational conventions.

Definition 1. Let x be a k-tuple of pairwise distinct variables. A Σ-answer for x
is either a logical constant (True or False) or a formula of the form ∃w( a(x,w) ),
where a(x,w) is a conjunction of Σ-CoEqs and Σ-UCDs of the form:

x1 = t1 ∧ . . . ∧ xk = tk ∧
n∧

i=1

mi∧

j=1

∀v( wi �= sij(w, v) ) (1)

such that the n-tuple w ≡ V ar(t1, . . . , tk) is disjoint from x, every term sij(w, v)
neither contains the variable wi nor is a single universal variable in v, and
n,m1, . . . ,mn ≥ 0. �

Remark 1. We abbreviate the equational part of (1) by x = t(w). Any equation
xj = wi such that wi does not occur in the rest of the answer can be left out.
The scope of each universal quantifier is restricted to one single disequation,
although a universal variable can occur repeatedly in a disequation. �

The following examples show that answers provide a compact and explanatory
description of the sets of solutions that they represent.

Example 1. Let Σ ≡ {a/0, g/1, f/2}. Consider the following Σ-answer:

∃w1∃w2( x = f(w1, w2) ∧ ∀v1( w1 �= (v1) ) ∧ ∀v2( w2 �= f(w1, v2) ) ). (2)

By application of the rule (Exp) for eliminating v1 and v2, the answer (2) is
equivalent to the disjunction of the following six existential constraints:
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1. x = f(a, a)
2. ∃z1( x = f(a, g(z1)) )
3. ∃z1∃z2( x = f(a, f(z1, z2)) ∧ z1 �= a )
4. ∃z1∃z2( x = f(f(z1, z2), a) )
5. ∃z1∃z2∃z3( x = f(f(z1, z2), g(z3)) )
6. ∃z1∃z2∃z3∃z4( x = f(f(z1, z2), f(z3, z4)) ∧ z3 �= f(z1, z2) ) �

Example 2. The following equational constraint of signature Σ≡{a/0, g/1, f/2}:

∃w1∃w2∀y1∀y2( f(f(w1, a), f(w2, x2)) �= f(f(y1, a), f(y2, y2)) ∧
f(g(y2), x1) �= f(x2, f(y1, y1)) )

is equivalent to the disjunction of the following two answers:3

∃w2( x2 = w2 ∧ ∀v( w2 �= g(v) ) ) (3)
∃w1( x1 = w1 ∧ ∀v( w1 �= f(v, v) ) ) (4)

It is easy to see that the equational part of any answer is always satisfiable.
In fact, it is an idempotent substitution. Besides, with infinitely many function
symbols, one can always find an assignment that satisfies a given finite conjunc-
tion of UCDs. Therefore, answers are always satisfiable for infinite signatures. On
the contrary, if Σ is finite, the disequational part of an answer is not necessarily
satisfiable in T (Σ). As a consequence, we say that an answer is a quasi-solved
form.

4 The Satisfiability Test

In this section, we introduce an algorithm for deciding answer satisfiability w.r.t.
a finite signature. Notice that, for finite Σ, the set T (Σ) can be finite or infinite.
The test works for both. We also give some examples of satisfiability and discuss
about efficiency. In the case of finite signature Σ, as explained above, an answer
is satisfiable iff its disequational part is. Hence, we shall concentrate in the
disequational part of the tested answer. A Σ-answer ∃w( a(x,w) ) is satisfiable
in T (Σ) iff there is at least one Σ-assignment with domain w that satisfies the
conjunction of UCDs inside a(x,w).

Example 3. Each of the two following conjunctions of Σ-UCDs is (individually)
unsatisfiable in T (Σ) (for Σ ≡ {a/0, g/1, f/2}):

1. w �= a ∧ ∀v( w �= g(v) ) ∧ ∀v1∀v2( w �= f(v1, v2) )

2. w �= a ∧ w �= g(a) ∧ ∀v( w �= g(g(v)) ) ∧
∀v1∀v2( w �= g(f(v1, v2)) ) ∧ ∀v1∀v2( w �= f(v1, v2) ) �

3 As said in Remark 1, we have left out x1 = w1 in (3) and x2 = w2 in (4).
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The satisfiability of a conjunction of UCDs on a variable wi could be tested using
the algorithm introduced in [13] for deciding whether an implicit representation
of terms can be explicitely (finitely) represented. In [13], an implicit represen-
tation is an expresion t/t1 ∨ . . . ∨ tn that represents those ground instances of
t that are not instances of any ti for 1 ≤ i ≤ n. Actually, we could transform
any set

S ≡ {∀v( wi �= sij(w, v) ) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}

of UCDs into an equivalent4 set of inequalities on the involved tuple w, using a
fresh function symbol c as tuple constructor and fresh variables u, as follows:

Tup(S) ≡ { ∀v∀u( c(w) �= c(wσij) ) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi, (5)
σij ≡ θij ∪ {wi ← sijθij} where θij ≡ {wk ← uk|1 ≤ k �= i ≤ mj}}.

Then, by treating the tuple constructor c as just another function symbol (ex-
cept for the explosion rule), the algorithm uncover of [13] could be invoked, as
uncover(c(w), c(w)σ11, . . . , c(w)σnmn), in order to decide if there exists an ex-
plicit representation of the implicit representation c(w)\c(w)σ11∨. . .∨c(w)σnmn .
The algorithm uncover refines such implicit representations to explicit ones (if
it is possible), by applying the explosion rule only to linear5 terms. For example,
being the signature {a/0, b/0, f/2}, the implicit representation

c(v1, a) \ c(a, a) ∨ c(b, v2)

can be explicitly represented by {c(f(u1, u2), a)}, whereas c(v1, v2) \ c(v3, v3)
cannot be explicitly represented.

Our answer satisfiability test exploits the same idea but, for efficiency, it
does not exhaustively obtain the set of all possible elements represented by
the tuple of variables c(w), as the call uncover(c(w), c(w)σ11, . . . , c(w)σnmn)
does. Instead, it works by value elimination in two steps. Each step takes into
account a different (syntactic) subclass of UCDs. Moreover, we use a slightly
simplified version of uncover (see Figure 2) since term linearity is an invariant
condition in our uncover runs. Figure 3 outlines our answer satisfiability test
for a finite signature Σ. We denote by Ext(wi) —namely, the extension of wi—
the collection of all ground terms that wi could take as value. As in [13], we use
fresh variables for finitely representing infinite variable extensions. For instance,
{v} represents the whole T (Σ)’s universe (for any Σ) and {f(v1, a), f(b, v2)} an
infinite subset when Σ contains {a, b, f}. The basic idea is that a UCD disallows
some values in Ext(wi). The first step treats the UCDs ∀v( wi �= sij(v) ) without
existential variables (that is, V ar(sij) ∩w ≡ ∅) and without repetitions in their
universal variables v. Roughly speaking, this is the only subclass of UCDs that
can transform an infinite variable extension —described by a collection of linear
terms— into a finite one. After the first iteration in Step 1 (see Fig. 3), the
extension of each wi can either be empty, or non-empty finite, or infinite. Notice

4 This well known equivalence corresponds to the rule U2 in [9].
5 In [13], linear terms are called unrestricted terms.
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partition(t, θ) is // u stands for a fresh tuple of variables of the adequate size
if θ is a renaming then return ∅
else select {z ← f(s1, . . . sh)} ∈ θ

let σ′ ≡ {z ← f(u)} and σi ≡ {ui ← si} for 1 ≤ i ≤ h
return g∈Σ,g �=f t{z ← g(u)} ∪ partition(tσ′, θ \ σ ∪ {σi|1 ≤ i ≤ h})

uncover(t, tθ1, . . . , tθn) is
let {s1, . . . , sk} ≡ partition(t, θ1)
let σij ≡ mgi(si, tθj) for each (i, j) ∈ {1, . . . , k} × {2, . . . , n}
return k

r=1 uncover(sr, srσr2, . . . , srσrn)

Fig. 2. Simplified Version of uncover ([13])

that Ext(wi) represents an infinite set of terms if and only if it contains (at
least) one non-ground term. Then, the input answer is unsatisfiable if some
Ext(wi) ≡ ∅. On the contrary, the answer is satisfiable if every Ext(wi) is
infinite. This first step is very often enough to decide the satisfiability of the
input answer.

Example 4. The above answers (2), (3) and (4) are decided to be satisfiable at
the first step since both Ext(w1) and Ext(w2) remain infinite. For (2) and (3),
the test takes into account the first UCD (the only one in (3)). For (4), no UCD
satisfies the condition, hence the test decides at once. �

Example 5. Both constraints in Example 3 are unsatisfiable. This is decided in
the first step since Ext(w) becomes empty. �

At the end of the first step, if no Ext(wi) is empty and at least one Ext(wi)
is finite, the test requires a second step. The second step looks whether there
exists (at least) one assignment σ with domain wfin ≡ {wi|Ext(wi) is finite}
that satisfies only the subclass FinUCD of the remaining UCDs such that all
their existential variables are contained in wfin. We denote by Ext(wfin) the
cartesian product of all Ext(wi) such that wi ∈ wfin.

Example 6. Let Σ ≡ {a/0, g/1, f/2}. Suppose that S is a set of UCDs formed
by ∀v1( w1 �= g(v1) ), ∀v1∀v2( w1 �= f(v1, v2) ) and a large finite set S0 of UCDs
of the form ∀v( wi �= f(wj , v) ) where i, j > 1 and i �= j. At the first step, only
the two first UCDs are considered to yield Ext(w1) ≡ {a}, whereas Ext(wi) is
infinite for all i > 1. At the second step, FinUCD becomes empty. Hence, S is
satisfiable. Notice that the exhaustive computation of uncover over the whole
tuple of variables could be much more expensive depending on the size of S0. �

Theorem 1. The satisfiability test of Figure 3 terminates for any input (S, Σ).
Besides, it returns “satisfiable” if there exists a Σ-assignment that satisfies the
set S. Otherwise, it returns “unsatisfiable”.

Proof. It is based on the results of [13]. See the appendix. �
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// input: S ≡ {∀v( wi �= sij(w, v) ) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}
// Σ ≡ {f1\a1, . . . , fk\ak} (finite signature)

step 1: for i ∈ {1, . . . , n} do

let {t1, . . . tki} ≡ {sij | 1 ≤ j ≤ mi, V ar(sij) ∩ w ≡ ∅ and each
vh ∈ v occurs at most once in sij}

if ki = 0 then Ext(wi) := {u} for fresh u
else Ext(wi) := uncover(wi, t1, . . . , tki)

when some Ext(wi) ≡ ∅ exit with unsatisfiable

let wfin be the tuple of all wi ∈ w such that Ext(wi) is finite

if wfin ≡ ∅ then exit with satisfiable
else go to step 2

step 2: let FinUCD ≡ {∀v( wi �= sij(w, v) ) ∈ S | wi ∈ wfin, V ar(sij) \ v ⊆ wfin}
if FinUCD ≡ ∅ then exit with satisfiable
else let {σ1, . . . , σm} be the set of substitutions such that

Tup(FinUCD) ≡ {∀v∀u( w �= wσi ) | 1 ≤ i ≤ m} (see (6))

C :=
⋃

t∈Ext(wfin)
uncover(t, tσ1, . . . , tσm)

if C �≡ ∅ then exit with satisfiable
else exit with unsatisfiable

Fig. 3. Answer Satisfiability Test

The introduced satisfiability test has a poor worst case performance. Actually,
answer satisfiability is an NP-complete problem (see [19]). However, the test
performs efficiently in practice because of several structural reasons that can be
summed up as follows. In general, answers having expensive computations in
both steps are unlikely. If the input answer contains a lot of UCDs to be treated
in the first step, the extension of some variable usually becomes empty and the
test stops. However, where few UCDs are treated at the first step, it is usual
that most extensions remain infinite and, therefore, the second step becomes
unnecessary or very cheap.6 On the contrary, the worst case occurs when every
wi has a large finite extension, but every possible assignment violates some UCD.
The combination of both properties requires a lot of UCDs to be expressed.7

5 Operations on Answers and Equational Solving

In this section, we present a method for transforming any equational constraint
into a disjunction of answers. This solving method uses, besides the satisfiability
test, two boolean operations on answers —conjunction and negation— which
will also be presented. For general equational solving, we use the classical quan-
tifier elimination technique. However, we keep the matrix as a disjunction of
6 Remember that the second step only checks the UCDs such that all their existential

variables have a finite extension (according to the first step).
7 Since the first-order language of the free equality cannot express very “deep” prop-

erties of terms.
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satisfiable answers on the prefix variables, instead of a quantifier-free CNF (or
DNF) formula. That is, at every step we have a formula of the form:

Q1u
1 . . .Qmum(

k∨

j=1

∃w( aj(u1 · . . . · um, w) ) )

where each Qi ∈ {∀, ∃} and each aj(u1 · . . . · um, w) is a satisfiable answer on
u1 · . . . ·um. Then, if the last block Qm is ∃, it is easily eliminated by erasing from
each aj all the equations on um. Then, we also remove every UCD containing at
least one wk which does not occur in the equational part.8 It is worthwhile to
notice that the satisfiability of each aj(u1 · . . . · um, w) guarantees that both the
eliminated and the remaining part of the treated answer are satisfiable. In fact,
the answer is equivalent to (∃umϕ1)∧ϕ2, where (∃umϕ1) is the eliminated part
and ϕ2 the remaining one. If Qm ≡ ∀, double negation is applied:

Q1u
1 . . . Qm−1u

m−1¬∃um¬(
k∨

j=1

∃w( aj(u1 · . . . · um, w) )
︸ ︷︷ ︸

ψj

). (6)

Suppose a procedure P exists that transforms the negation of a disjunction of
answers (on some variables) into a disjunction of answers (on the same variables).
Then, using P , the inner formula ¬

∨k
j=1 ψj is transformed into a disjunction of

answers. After that, ∃um is easily eliminated as above. Finally, the procedure P
is again applied and the original innermost block ∀um is already eliminated. We
implement the procedure P as follows, using two boolean operations on answers:

¬
k∨

j=1

ψj �−→
k∧

j=1

¬ψj �−→(1)
k∧

j=1

mj∨

r=1

ϕjr �−→
m∨

r=1

kr∧

j=1

βjr �−→(2)
m∨

r=1

nr∨

h=1

γhr

(1) The negation of an answer ψj yields a disjunction
∨mj

r=1 ϕjr of answers.
(2) The conjunction

∧kr

j=1 βjr of answers yields a disjunction
∨nr

h=1 γhr of an-
swers.

(UD) ¬∃v[x = t(w, v1) ∧ ϕ] �−→ ∀v1[x �= t(w, v1)] ∨ ∃v1[x = t(w, v1) ∧ ∀v2¬ϕ]

where v1 ≡ V ar(t) ∩ v and v2 ≡ v\v1

Fig. 4. Auxiliary Transformation Rule (UD)

Moreover, both boolean operations preserve the variables for which source and
target answers are obtained. In the next two subsections, we give the successive
steps that constitute each transformation. It is easy to see that each step preserves
equivalence. For that, we use the auxiliary transformation rule (UD) of Fig. 4.
8 It has just disappeared with the previously eliminated equations.
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Proposition 1. The transformation rule (UD) of Figure 4 is correct.

Proof. See the appendix. �

5.1 Negation of One Answer

Now, we show how to transform the negation of an answer for x into an equivalent
disjunction of answers for x. First, we apply the transformation rule (UD):

¬∃w[ x = t(w) ∧
n∧

i=1

mi∧

j=1

∀v( wi �= sij(w, v) ) ] �−→(UD)

¬∃w[ x = t(w) ] ∨ ∃w[ x = t(w) ∧
n∨

i=1

mi∨

j=1

∃v( wi = sij(w, v) ) ].

By the rule (UD), the first disjunct ¬∃w( x = t(w) ) is transformed into:

∀w1[ x1 �= t1(w1) ] ∨ ∃w1[ x1 = t1(w1) ∧ ∀w2( x2 �= t2(w1 · w2) ) ] ∨ . . . ∨
∃w1 . . .∃wn−1[ x1 = t1(w1 · . . . · wn−1) ∧ . . . ∧ xn−1 = tn−1(w1 · . . . · wn−1)

∧ ∀wn( xn �= tn(w1 · . . . · wn) ) ] (7)

Then, we replace the variables xi in the disequations by new variables w′
i, adding

the corresponding equation xi = w′
i. The result is already a disjunction of an-

swers for x. For the second disjunct, we first lift the internal disjunctions:

n∨

i=1

mi∨

j=1

∃w[ x = t(w) ∧ ∃v( wi = sij(w, v) ) ]

and then substitute each sij(w, v) for wi in t(w):

n∨

i=1

mi∨

j=1

∃w∃v( x = t(w){wi ← sij(w, v)} ).

5.2 Conjunction of k Answers

Using unification, we transform a conjunction of k answers for x:

k∧

i=1

∃wi[ x = t
i(wi) ∧

n∧

h=1

mh∧

j=1

∀v( wi
h �= si

hj(w
i, v) ) ]

into an equivalent disjunction of answers for x. If the mgu(t1(w1), . . . , tk(wk))
does not exist, the disjunction is equivalent to False. Otherwise, we get a substi-
tution σ that is used for joining the equational parts as follows:

∃w1 . . . ∃wk[ x = σ(t1(w1)) ∧
n∧

h=1

mh∧

j=1

∀v( σ(wi
h) �= σ(si

hj(w
i, v)) ) ].
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Now, letting w ≡ w1 · . . . · wk we have a constraint of the form:

∃w[ x = t′(w) ∧
n∧

h=1

mh∧

j=1

¬∃v( th(w) = rhj(w, v) ) ].

Let σhj ≡ mgu(th(w), rhj(w, v)). If σhj does not exist, ¬∃v( th(w) = rhj(w, v) )
is equivalent to True. Otherwise, since σhj is an idempotent substitution, each
answer ¬∃v( σhj ) can be transformed into a disjunction

∨nhj

k=1 ∃z( ak(w, z) ) of
answers for w by (UD) as we show in Subsect. 5.1 (see (7)). Hence, the constraint
has the form:

∃w[ x = t′(w) ∧
n∧

h=1

mh∧

j=1

nhj∨

k=1

∃z( ak(w, z) ) ]. (8)

Finally, we apply distribution and (recursively) conjunction of answers for w:

∃w[ x = t′(w) ∧
m∨

r=1

∃z( br(w, z) ) ].

Then, we lift the internal disjunction and substitute the equational part of each
answer br(w, z) in t′(w).

Notice that, the only blow-up (in the number of answers) could be produced
in the transformation of (8), by the distribution and conjuntion of answers.
However, in practice, the blow-up is often non-significant. This is due to the fact
that the above

∨nhj

k=1 ∃z(ak(w, z)) are obtained by using the rule (UD). Since the
rule (UD) yields mutually excluding constraints, many internal conjunctions of
answers for w are reduced to False at once.

6 A Complete Example

In this section, we demonstrate the application of our solving method to the
following equational constraint on x1, x2, x3 (free variables):

∀y1∃w1∀y2( f(x1, g(y2)) �= f(f(w1, x2), a) ∧ w1 �= f(y1, y1) ∧
∃w2∀y3( f(x2, a) �= f(g(y3), w1) ) ∧
∀y4∀y5( f(x1, x2) �= f(g(x3), f(y4, y5)) ) )

First, after a preliminary treatment, we obtain the following disjunction of an-
swers for x1, x2, x3, y1, w1 (as matrix) prefixed by ∀y1∃w1:

∀y1∃w1( ∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧w1 = z5 ∧
z5 �= f(z4, z4) ∧ ∀y4∀y5( z2 �= f(y4, y5) ) ∧ ∀y2( z2 �= g(y2) ) ) ∨

∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧w1 = z5 ∧
z5 �= f(z4, z4) ∧ z1 �= g(z3) ∧ ∀y3( z2 �= g(y3) ) ) ∨

∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧w1 = z5 ∧
z5 �= f(z4, z4) ∧ ∀y4∀y5( z2 �= f(y4, y5) ) ∧ z5 �= a ) ∨

∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧w1 = z5 ∧
z5 �= f(z4, z4) ∧ z1 �= g(z3) ∧ z5 �= a ) ).
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Notice that the prefix is shorter (than the prefix of the prenex-DNF form) be-
cause answers allow universal quantification.

Now, quantifier elimination is successively applied until the prefix is erased.
The innermost block ∃w1 is easily eliminated by removing the CoEq w1 = z5 and
all the UCDs involving z5. Thus, we have a disjunction of answers for x1, x2, x3, y1
prefixed by ∀y1 which, by double negation, is equivalent to:

¬∃y1( ¬∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧ ∀y4∀y5( z2 �= f(y4, y5) ) ∧
∀y2( z2 �= g(y2) ) ) ∧

¬∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧ z1 �= g(z3) ∧
∀y3( z2 �= g(y3) ) ) ∧

¬∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧ ∀y4∀y5( z2 �= f(y4, y5) ) ) ∧
¬∃z( x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧ z1 �= g(z3) ) ).

Then, each of the four negated answers for the variables x1, x2, x3, y1 produces
a disjunction of answers for the same variables, as follows:

¬∃y1( [ ∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∨
∃z(x1 = z1 ∧ x2 = g(z2) ∧ x3 = z3 ∧ y1 = z4) ] ∧

[ ∃z(x1 = g(z1) ∧ x2 = z2 ∧ x3 = z1 ∧ y1 = z4) ∨
∃z(x1 = z1 ∧ x2 = g(z2) ∧ x3 = z3 ∧ y1 = z4) ] ∧

[ ∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ] ∧
[ ∃z(x1 = g(z1) ∧ x2 = z2 ∧ x3 = z1 ∧ y1 = z3) ] )

By distributing conjunction over disjunction, we obtain the following disjunction
of conjunctions of answers:

¬∃y1( [ ∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = g(z1) ∧ x2 = z2 ∧ x3 = z1 ∧ y1 = z4) ∧
∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = g(z1) ∧ x2 = z2 ∧ x3 = z1 ∧ y1 = z3) ] ∨

[ ∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = z1 ∧ x2 = g(z2) ∧ x3 = z3 ∧ y1 = z4) ∧
∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = g(z1) ∧ x2 = z2 ∧ x3 = z1 ∧ y1 = z3) ] ∨

[ ∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = z1 ∧ x2 = g(z2) ∧ x3 = z3 ∧ y1 = z4) ∧
∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = g(z1) ∧ x2 = z2 ∧ x3 = z1 ∧ y1 = z3) ] ∨

[ ∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = z1 ∧ x2 = g(z2) ∧ x3 = z3 ∧ y1 = z4) ∧
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∃z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ y1 = z5) ∧
∃z(x1 = g(z1) ∧ x2 = z2 ∧ x3 = z1 ∧ y1 = z3) ] ).

It is easy to see that, in the latter three conjunctions of answers, the variable
x2 makes impossible the unification that is required to perform a conjunction of
answers. Hence, the three conjunctions are transformed to False at once. Whereas
the first conjunction yields the following satisfiable answer for x · y1:

¬∃y1( ∃z( x1 = g(z1) ∧ x2 = f(z2, z3) ∧ x3 = z1 ∧ y1 = z4 ) ).

Then, the block ∃y1 and the equation y1 = z4 can be eliminated. Finally, the
negation of the resulting answer for x, that is:

¬∃z( x1 = g(z1) ∧ x2 = f(z2, z3) ∧ x3 = z1 )

yields the following disjunction of two answers for x:

∃w( x1 = w4 ∧ x2 = f(w2, w3) ∧ x3 = w1 ∧ w4 �= g(w1) ) ∨
∃w( x1 = w2 ∧ x2 = w3 ∧ x3 = w1 ∧ ∀v1∀v2( w3 �= f(v1, v2) ) ).

7 Conclusions and Related Work

The notion of answer provides a sufficiently compact representation of solutions
while retaining user-friendliness and efficient performance of basic operations.
In particular, we give detailed algorithms for answer satisfiability checking (for
finite signature), negation of one answer and conjunction of several answers.
This combination of features makes answers a suitable notion of (quasi-)solved
form for achieving a good trade-off between time and space efficiency in theorem
proving methods for logics with equality. Answers are particularly suitable for
methods that require some equality constraint notation more expressive than
substitutions. We have shown how the quantifier elimination method takes ad-
vantage of using answers in this sense, given a new method for general equality
constraint solving. This method applies to both finite and infinite signatures.
The only difference is that satisfiability checking is not needed in the latter case.

Answer is an intermediate notion between purely existential solved forms of,
for example, [14, 9] and substitutions with exceptions of [4]. Answers allow a kind
of restricted universal quantification which, besides being more expressive, al-
lows one to confine the role of the explosion rule to the satisfiability test. In
this process, since universal quantifiers are not eliminated, we never blow up
the tested answer via the explosion rule. Explosion is only implicitly used (in
the satisfiability test) for computing the indispensable variable extensions. The
methods presented in [14] and [9] are both based in quantifier elimination with
explicit usage of the explosion rule, although they use two different notions of
solved form. The method of [14], for finite signatures, is based on using the explo-
sion rule to perform the conjunction of boolean combinations of basic formulas.
For instance, ∃w( x = w )∧¬∃u( x = f(g(f(u, u)), u) ) is solved by explosion of
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the first conjunct and then by unification. This operation produces a (signature-
dependent) number of existential disjuncts. For example, if the signature also
contains the constant a, it yields x = a,∃w(x = f(a, w)), ∃w(x = f(g(a), w)), . . ..
Our method yields a (signature-independent) disjunction of answers, that is
∃w( x = w ∧ ∀u( w �= f(g(f(u, u)), u) ) ) for the just above example. Similarly,
the proposal of [9], which has been implemented by N. Peltier (see [16, 17]), uses
explosion to eliminate all the universal quantifiers. Explosion increases the num-
ber of disjuncts in a ratio proportional to the signature. Besides, this blow up
interacts with the “CNF-to-DNF” transformation. We cannot avoid the latter
blow up, but we benefit from the smaller number of conjuncts. As a consequence,
our solutions are always (except for very simple examples) shorter and computa-
tionally simpler than the ones given by the system in [17]. Actually, to improve
this system, a (very different from ours) restricted form of universal quantifica-
tion is proposed in [16]. This new solved form allows to replace explicit explosion
with the so-called binary explosion, which is signature-independent and yields a
binary blow up of the formula. Unfortunately, this improvement has not been
yet incorporated to [17].

The closest work to our own can be found in [4], where two notions of solved
form are provided. They are called substitutions with exceptions (SwEs for short)
and constrained substitution. Both involve universal quantification and require
a satisfiability test in the case of finite signature. However, there are significant
differences, the most important one being that universal quantification is more
restricted in answers than in both solved forms of [4]. The following discussion is
applicable to both notions of solved form, even though in the sequel we will only
mention SwEs. With respect to answers, SwEs provide a more compact represen-
tation of solutions, but the basic operations for handling them, in particular the
satisfiability test, become intricate. More precisely, a SwE is an expression of the
form σ0[x,w0] − {σ1[x,w1], . . . , σk[x,wk]} where σ[z, y] denotes a substitution
on domain z such that y ≡ V ar(σ(z)). A SwE of the above form is interpreted
as the equality constraint ∃w0( σ0 ∧∀w1( ¬σ1 )∧ . . .∧∀wk( ¬σk ) ). Notice that
each ¬σi is a disjunction of disequations. For example, the following SwE:

{x1 ← f(a, w1), x2 ← g(w1), x3 ← f(w2, w1)}
−{ {x1 ← f(a, y), x2 ← f(a, y), x3 ← g(y)},
{x1 ← f(a, g(y1)), x2 ← g(y2) ← x3, f(y3, v)} }

corresponds to the equality constraint:

∃w1∃w2( x1 = f(a, w1) ∧ x2 = g(w1) ∧ x3 = f(w2, w1) ∧ (9)
∀y( x1 �= f(a, y) ∨ x2 �= f(a, y) ∨ x3 �= g(y) ) ∧
∀y1∀y2∀y3∀v( x1 �= f(a, g(y1)) ∨ x2 �= g(y2) ∨ x3 �= f(y3, v) ) )

In answers, universal quantification is restricted to affect one disequation, in-
stead of a disjunction of disequations. Since universal quantification does not
distribute over disjunction, this is not a minor difference, especially when testing
satisfiability. Actually, [4] introduces a method for solving a system of equations
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and disequations with the proviso that a satisfiability test is given. There, it is
shown that, for testing satisfiability, it is not enough to check that a substitution
is an instance of another. Instead, it is necessary to check whether each instance
of the former is an instance of the latter substitution that, in general, requires an
infinite number of checks. The solving method that we introduce here provides
an easy way for transforming any SwE into a (possibly empty, if unsatisfiable)
disjunction of satisfiable answers. For example, our constraint solver transforms
the above SwE, really the equality constraint (9), into the following answer:

∃w1∃w2( x3 = f(w2, w1) ∧ x2 = g(w1) ∧ x1 = f(a, w1) ∧ ∀v1( w1 �= g(v1) ) )

Two other notions of solved form that allow for restricted forms of universal
quantification were introduced in [18, 19] and [7].

The approach of [18, 19] is more interested in complexity results and in efficient
checking of the satisfiability of equational problems than in computing their
solutions. In [18, 19], the set of solutions of an equational problem is expressed
by a restricted form of ∃∗∀∗-CNF (called PFE-form), whereas our disjunction of
answers is a ∃∗∀∗-DNF formula. In order to illustrate that point, we borrow from
[18, 19] the following ∃∗∀∗-CNF equational constraint (where z and y stands for
z1, z2, z3, z4 and y1, y2, y3, y4):

∃z∀y[ ( f(z1, g(z2)) = f(y1, z3) ∨ g(y1) = z3 ∨ f(a, y2) = f(z2, g(y4)) (10)
∨f(g(y2), z1) �= f(y3, g(y1)) ∨ g(z3) �= z2 ) ∧

( f(y1, a) = f(g(z2), a) ∨ f(g(z4), y1) �= f(z2, a) ∨ g(y1) �= g(g(y3)) ) ∧
( f(g(z2), z1) = f(g(y1), y1) ∨ g(y2) = y3 ∨ f(a, y4) = f(z2, g(y2))

∨f(f(a, y3), g(y2)) �= f(z1, y4) ∨ g(z2) �= g(f(a, z3)) ∨ z4 �= y1 ) ]

In [18, 19], these equational constraints are tranformed (in polinomial time) into
the so-called PFE-form. The PFE-form of the (10) is:

∃z[ ∃u1∃u2( [ z1 = g(u1) ∧ z2 = g(z3) ∧ g(u1) = z3 ] ∨
∀y1∀v[ z1 �= g(y1) ∨ z2 �= g(v) ∨ z3 �= v ] ) ∧

( [ z1 = f(a, z3) ∧ z2 = f(a, z3) ∧ f(g(f(a, z3)), f(a, u2)) = f(g(z4), z4) ] ∨
[ z1 = f(a, u2) ∧ z2 = f(a, z3) ∧ f(a, g(a)) = f(z2, g(a)) ] ∨

∀y3∀v( z1 �= f(a, y3) ∨ z2 �= f(a, v) ∨ z3 �= v) ) ]

The satisfiability of PFE-forms can be checked by a non-deterministic algorithm
([18, 19]) in polinomial-time. Our solver proceeds in a very different way. In
particular, we obtain answers for constraints with free variables. For the above
∃∗∀∗-CNF constraint (10), our solver first tranforms the inner ∀∗-CNF into the
disjunction of the following ten answers for z (for easier reading, each wi is
considered to be existentially quantified):

1. z1 = f(a, w3) ∧ z2 = w1 ∧ z3 = w2 ∧ ∀v1( w3 �= g(v1) ) ∧ w1 �= f(a, w2)
2. z1 = w4 ∧ z2 = w5 ∧ z3 = w6 ∧ ∀v2( w4 �= g(v2) ) ∧ ∀v3( w4 �= f(a, v3) )
3. z1 = f(a, g(w9)) ∧ z2 = w7 ∧ z3 = w8 ∧ w7 �= f(a, w8)
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4. z1 = w10 ∧ z2 = w10 ∧ z3 = w11 ∧ z4 = w10 ∧ ∀v4( w10 �= g(v4) )
5. z1 = g(w14) ∧ z2 = w12 ∧ z3 = w13 ∧ ∀v5( w12 �= g(v5) )
6. z1 = g(w15) ∧ z2 = g(g(w15)) ∧ z3 = g(w15)
7. z1 = g(w16) ∧ z2 = g(w16) ∧ z3 = w17 ∧ z4 = g(w16) ∧ ∀v6( w16 �= g(v6) )
∧ w17 �= w16

8. z1 = g(w20) ∧ z2 = g(w18) ∧ z3 = w19 ∧ ∀v7( w18 �= g(v7) ) ∧ w19 �= w18
9. z1 = g(g(w22))∧ z2 = g(g(w22))∧ z3 = w21 ∧ z4 = g(g(w22))∧w21 �= g(w22)

10. z1 = g(w25) ∧ z2 = g(g(w24)) ∧ z3 = w23 ∧ w23 �= g(w24)

Then, the existencial closure (by ∃z∃w) of the disjunction of the above ten
answers is easily reduced to True by checking that each answer is satisfiable.

The main goal of [7] is the efficient decidability of equational formulas with a
long prefix of quantifiers, focusing on infinite signatures. Because of this focus,
they do not deal with the satisfiability test. Besides, the notion of solved-form
of [7] allows unrestricted nesting of negation and quantification.

We believe that answers could be helpful for development and improvement
of resolution- and instance-based methods. On the one hand, for example, the
resolution-based method presented in [6] can be easily adapted to deal with an-
swers instead of ∃∗∀∗-constraints. Moreover, all the ∃∗∀∗-constraints used in the
several examples of [6] are really answers. With such adjustment, the interesting
method of [6] could benefit from compactness (in particular, avoiding explosion
rule) and superior performance of basic operations. On the other hand, it seems
worth investigating the usefulness of answers for the area of growing interest of
instance-based methods. See [2] for a recent and good summary and for references.
In conclusion, we offer some pointers to future developments and applications of
the notion of answer to the latter area. First, in [12](Sec. 4), it is pointed out
that, for redundancy elimination, “it might be useful to employ elaborate con-
straint notations such as the ones proposed in [6]” and answers seem to be even
better suited for that goal. Second, the notion of context used in [3] could be
represented by atoms constrained by (disjunction of) answers. Then, negation
and conjunction of answers would become basic for building context unifiers and
the satisfiability test becomes essential for guiding the procedure.
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Appendix

In this section, we give the proofs of Theorem 1 and Proposition 1. In the former
proof, we make use of some results of [13]. In order to make this paper self-
contained, let us recall them using our terminology.

We consider a fixed term t such that V ar(t) ≡ x and a fixed collection of
substitutions θ1, . . . , θn such that domain(θj) ≡ x for every 1 ≤ j ≤ n.
PROPOSITION 4.6. ([13] ) If each c(x)θi is not a linear term, then there
does not exists a finite set of terms equivalent to t/tθ1 ∨ . . . ∨ tθn. �
PROPOSITION 4.8. ([13] ) If each c(x)θi is a linear term, then there exists
a finite set of terms equivalent to t/tθ1 ∨ . . . ∨ tθn. �
THEOREM 4.1. ([13] ) The algorithm uncover can be used to find an
equivalent finite set of terms for t/tθ1∨ . . .∨ tθn if one exists. Otherwise,
uncover will terminate with an implicit representation. �

Our proof of Theorem 1 is based on the following two lemmas:

Lemma 1. Let t be a term such that V ar(t) ≡ x and θ1, . . . , θn be a collection
of substitutions such that domain(θj) ≡ x and xiθj is linear for every 1 ≤ j ≤ n.
uncover(t, tθ1, . . . , tθn) always terminates and yields a (possibly empty) finite set
of linear terms that is equivalent to t/tθ1 ∨ . . . ∨ tθn.

Proof. It is a direct consequence of Proposition 4.8 and Theorem 4.1 in [13]. �

Lemma 2. Let w0 ·w1 a disjoint partition of a given tuple w, σ an assignment
with domain w0 and Ext(w1) an extension of w1 that is infinite for every w1

j .
Let S0 be a set of UCDs on w of the form ∀v( wi �= sij(w, v) ) that satisfies the
following two properties:

(P1) V ar(sij) ∩w �≡ ∅ or some vk appears more than once in sij

(P2) ({wi} ∪ V ar(sij)) ∩ w1 �≡ ∅.

If every term in Ext(w1) is linear, then σ can be extended to an assignment σ′

with domain w that satisfies:

σ ∧ S0 ∧
∧

w1
j∈w1

∨

t∈Ext(w1
j )

(w1
j = t).

Proof. Since σ(w0
i ) is a ground term ti ∈ T (Σ) for each wi ∈ w0, we can

substitute ti for w0
i in S0. Then, we obtain a finite set S of universal disequations

on w1 that is trivially equivalent to σ ∧ S0. Besides, by construction, S consists
universal disequations of the following three types:

(T1) ∀v( w1
k �= s(v) ) where at least one vk occurs repeatedly in s

(T2) ∀v( w1
k �= s(w1, v) )

(T3) ∀v( t �= s(w1, v) ) where t is a ground term and V ar(s) ∩ w1 �≡ ∅
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and σ′ should extend σ to w (hence, to w1) while satisfying:

S ∧
∧

w1
j∈w1

∨

t∈Ext(w1
j )

(w1
j = t). (11)

Since each Ext(w1
i ) is described by a collection of linear terms, a finite con-

junction of universal disequations of type (T1) is not able to turn Ext(w1
i ) up

into a finite extension (this follows from Proposition 4.6 in [13]). Besides, each
disequation of type (T2) and (T3) involves at least one existential variable with
infinite extension. Hence, the finite number of universal disequations of these
two types cannot disallow the infinite possible assignments. Therefore, there are
infinitely many σ′ that satisfies (11). �

Now, we can prove our result:

Theorem 1. The satisfiability test of Figure 3 terminates for any input (S, Σ).
Besides, it returns “satisfiable” if there exists a Σ-assignment that satisfies the
set S. Otherwise, it returns “unsatisfiable”.

Proof. By Lemma 1, the satisfiability test terminates and, moreover, every term
in each Ext(wi) is linear along the whole process. There are four possible exit
points:

1. If some Ext(wi) becomes empty, by Lemma 1, there is not possible assign-
ment with domain wi that satisfies the subset of S considered at the first
step. Hence, there is not assignment for w that satisfies S.

2. If wfin becomes empty at the end of the first step, then, by Lemma 2, the
empty assignment (with empty domain) can be extended to an assignment
σ′ with domain w that satisfies S. Notice that the set of UCDs that satisfies
(P1) and (P2) of Lemma 2 are exactly S minus the UCDs considered at the
first step.

3. If the second step returns “satisfiable”, on the basis of Lemma 1, C contains
the finite collection of all possible assignments to wfin that satisfies the
subset of UCDs involved by the two steps. Therefore, by Lemma 2, each of
these possible assignments σ with domain wfin can be extended to w for
satisfying the whole set S.

4. If the second step returns “unsatisfiable” after checking a subset S0 of UCDs,
by Lemma 1, S0 is unsatisfiable and, hence, S is unsatisfiable too. �

Now, we prove the following result:

Proposition 1. The transformation rule (UD) of Figure 4 is correct.

Proof. (UD) can be obtained by successive applications of the rule (ud0):

¬∃v[ x = t(w, v1) ∧ ϕ ] �−→ ¬∃v1[ x = t(w, v1) ] ∨ ∃v1[ x = t(w, v1) ∧ ¬∃v2( ϕ ) ]

where v1 ≡ V ar(t) ∩ v and v2 ≡ v\v1. It suffices to note that the constraint:

¬∃v11[ x1 = t1(w, v11) ] ∨ ∃v11[ x1 = t1(w, v11) ∧ ¬∃v12( x2 = t2(w, v12) ) ]
∨ . . . ∨ ∃v11 . . .∃v1(n−1)[ x1 = t1(w, v11) ∧ . . . ∧ xn−1 = tn−1(w, v1(n−1))

∧ ¬∃v1n( xn = tn(w, v1n) ) ] (12)
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is equivalent to ¬∃v1[ x = t(w, v1) ] where v1 ≡ v11 · . . . · v1n. Hence, it only
remains to show that the rule (ud0) is correct. By conjunction (and distribution)
of ¬∃v[ x = t(w, v)∧ϕ ] with the tautology ¬∃u( x = t(w, u) )∨∃u( x = t(w, u) ),
we obtain two disjuncts. The first disjunct is trivially equivalent to the formula
¬∃v1( x = t(w, v1) ). The second one ∃u( x = t(w, u) ) ∧ ¬∃v[ x = t(w, v) ∧ ϕ ]
is equivalent to:

∃u∀v1[ x = t(w, u) ∧ (x �= t(w, v1) ∨ ¬∃v2( ϕ ) ) ]

where the quantifier ∀v1 has been lifted to the prefix. By distribution and sim-
plification, it yields ∃u∀v1[ u �= v1 ∨ (x = t(w, u) ∧ ¬∃( v2ϕ ) ) ]. Then, by the
well known rule (U2):

(U2) ∀y( P ∧ (yi �= t ∨R) ) �→ ∀y( P ∧R{yi ← t} )

(see, for example, [9]) the constraint is equivalent to:

∃u[ x = t(w, u) ∧ ¬∃v2( ϕ{v1 ← u} ) ].

This constraint coincides with the second disjunct in the right-hand side of (ud0)
except for v1, which has been renamed u. �
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Abstract. This paper presents a semantic foundation of temporal conceptual
models used to design temporal information systems. We consider a modeling
language able to express both timestamping and evolution constraints. We con-
duct a deeper investigation on evolution constraints, eventually devising a model-
theoretic semantics for a full-fledged model with both timestamping and evolu-
tion constraints. The proposed formalization is meant both to clarify the meaning
of the various temporal constructors appeared in the literature and to give a rigor-
ous definition to notions like satisfiability, subsumption and logical implication.
Furthermore, we also show how to express temporal constraints using a subset
of first-order temporal logic, i.e., DLRUS , the description logic DLR extended
with the temporal operators Since and Until. We show how DLRUS is able to
capture the various modeling constraints in a succinct way and to perform auto-
mated reasoning on temporal conceptual models.

1 Introduction

This paper is a contribution to improve modeling of temporal data, building on state of
the art know-how developed by the conceptual data modeling community. Analyses of
many proposals for temporal models (aiming in particular at helping designing temporal
databases) and a summary of results achieved in the area can be found in two good
surveys [15, 21]. The main temporal modeling features that we focus on in this paper
can be summarized as:

– Timestamping. The data model should obviously distinguish between temporal
and atemporal modeling constructors. This is usually realized by temporal mark-
ing of classes, relationships and attributes. In the database, these markings trans-
late into a timestamping mechanism, i.e., attaching lifecycle information to classes
and relationship instances, and time-varying values to attributes. In this work we
consider just validity time (rather than transaction time [20, 27]), thus lifecycle
information expresses when an object or a tuple belongs to a class or a relation-
ship, respectively. Time-varying attributes store values together with when
they hold.
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– Evolution Constraints. They apply both to classes (status and transition con-
straints) and relationships (generation and cross-time constraints). Status Classes
constraints [11] rule the permissible evolution of an object as member of a class
along its lifespan. For example, an object that is an active member of a class may
become an inactive member of the same class. Transition constraints [16] rule ob-
ject migration, i.e., the possibility for an object to change its class membership
from one class to another. For example, an object in the Student class may later
migrate to become an object of the Faculty class. Complementary aspects of evo-
lution are modeled through Generation Relationships [17] which describe the fact
that objects in a class are generated by other objects in another (possibly the same)
class. For example, in a company database, splitting of a department translates into
the fact that the original department generates two (or more) new departments. Ob-
jects participating to Cross-Time Relationships [23] may not coexist at the time the
relationship is asserted. For example, the grandfather-of relationship can involve a
dead grandfather with a leaving grandchild.

This paper presents a semantic foundation for temporal data models, as a possible
response to concerns stating: “[..] it is only by considering those conceptual models
as a mathematical object with a formal definition and semantics that they can become
useful tools for the design of databases schema and applications [..]” [12].

We present a deeper investigation on evolution constraints, eventually devising a
model-theoretic semantics for a full-fledged conceptual model with both timestamp-
ing and evolution constraints. While timestamping aspects have been extensively dis-
cussed [3, 4, 10, 14, 22, 26], a clear formalization of evolution constraints is still miss-
ing, despite the fact that in the literature such constraints have been advocated as useful
for modeling the behavior of temporal objects [4, 25, 17, 16, 23, 26, 24].

The formalization proposed here builds on previous efforts to formalize temporal
conceptual models. Namely, we rely on a previous work to define the ERV T model [4],
a temporal Extended Entity-Relationship (EER) model—i.e., the standard ER modeling
language enriched with ISA links, disjoint and covering constraints, and full cardinal-
ity constraints—equipped with both a linear and a graphical syntax and based on a
model-theoretic semantics. ERV T captures timestamping constructors along with tran-
sition constraints. This work extends ERV T with status classes, generation relation-
ships and cross-time relationships. Another closely related work is the one of Finger
and McBrien [12]. They propose a model-theoretic formalization for the ERT model,
an EER model with timestamping but just cross-time relationships (called H-marked
relationships by the authors and introduced in a previous paper by McBrien, Seltveit
and Wrangler [23]). Our proposal modifies the semantics of cross-time relationships as
presented in [12] to comply with a crucial modeling requirement, i.e snapshot reducibil-
ity [22].

The advantage of associating a set-theoretic semantics to a language is not only to
clarify the meaning of the language’s constructors but also to give a semantic definition
to relevant modeling notions. In our case, given an interpretation function to assign a
set-theoretic semantics to the (temporal) modeling constructors, we are able to give a
rigorous definition of the notions of: schema satisfiability when a schema admits a non
empty interpretation which guarantees that the constraints expressed by the schema are
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not contradictory (similarly we define the notions of class and relationships satisfiabil-
ity); subsumption between classes (relationships) when the interpretations of a class (re-
lationships) is a subset of the interpretation of another class (relationship) which allows
to check new ISA links; logical implication when a (temporal) constraint is implicitly
true in the current schema thus deriving new constraints. In particular, in this paper we
stress both the formalization of a constructor and the set of logical implications associ-
ated to such formalization. The obtained logical implications are generally in agreement
with those mentioned in the literature on temporal conceptual models. Thus, each con-
structor’s formalization (together with its associated logical implications) can be seen
as a set of precise rules on the allowed behavior of objects, in particular regarding their
evolution in time. Even if we do not address specific implementation issues, these rules
can be turned into explicit integrity constraints in the form of trigger rules to be added
to the schema specified by the database designer, thus enabling to check the validity of
user actions involving object evolution. Since the rules are the result of a formal char-
acterization we solve what is in our opinion a serious weakness of existing modeling
approaches, i.e., without a rigorous foundation there is no guarantee that the proposed
model leads to a sound system.

Finally, as a byproduct of the semantic formalization, we also show how (tempo-
ral) modeling constraints can be equivalently expressed by using a subset of first-order
temporal logic, i.e., the temporal description logic DLRUS [5]. DLRUS is a combi-
nation of the expressive and decidable description logicDLR (a description logic with
n-ary relationships) with the linear temporal logic with temporal operators Since (S)
and Until (U) which can be used in front of both concepts and relations. The choice
of extending DLR is motivated by its ability to give a logical reconstruction and an
extension of representational tools such as object-oriented and conceptual data models,
frame-based and web ontology languages [7, 8, 9, 19]. In this paper, we use DLRUS
both to capture the (temporal) modeling constructors in a succinct way, and to use rea-
soning techniques to check satisfiability, subsumption and logical implication. We show
howDLRUS axioms capture the above mentioned rules associated with each construc-
tor’s formal semantics while logical implications between DLRUS axioms is a way to
derive new rules. Even if full DLRUS is undecidable this paper addresses interesting
subsets of DLRUS where reasoning becomes a decidable problem.

The paper is organized as follows. Sections 2 and 4 recall the characteristics of the
DLRUS description logic and the ERV T temporal data model on which we build our
proposal. Section 3 shows the modeling requirements that lead us in elaborating the
rigorous definition of our evolution framework. Section 5 discusses the evolution con-
straints we address while Section 6 provides a formal characterization for them together
with a set of logical implications and the correspondent DLRUS axioms. Section 7
shows that reasoning on the full-fledged temporal setting is undecidable but provides
useful scenarios where reasoning becomes decidable. Section 8 concludes the paper.

2 The Temporal Description Logic

The temporal description logic DLRUS [5] combines the propositional temporal logic
with Since and Until and the (non-temporal) description logicDLR [7].DLRUS can be
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I(v)
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(⊕R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t+1)}
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Fig. 1. Syntax and semantics of DLRUS

regarded as a rather expressive fragment of the first-order temporal logic L{since, until}

(cf. [10, 18]).
The basic syntactical types ofDLRUS are classes (i.e., unary predicates, also known

as concepts) and n-ary relations of arity ≥ 2. Starting from a set of atomic classes (de-
noted by CN ), a set of atomic relations (denoted by RN ), and a set of role symbols (de-
noted by U ) we hereinafter define inductively (complex) class and relation expressions
as is shown in the upper part of Figure 1, where the binary constructors (�,,U ,S) are
applied to relations of the same arity, i, j, k, n are natural numbers, i ≤ n, and j does
not exceed the arity of R.

The non-temporal fragment of DLRUS coincides with DLR. For both class and re-
lation expressions all the Boolean constructors are available. The selection expression
Ui/n : C denotes an n-ary relation whose argument named Ui (i ≤ n) is of type C; if
it is clear from the context, we omit n and write (Ui : C). The projection expression
∃≶k[Uj ]R is a generalisation with cardinalities of the projection operator over the argu-
ment named Uj of the relation R; the plain classical projection is ∃≥1[Uj ]R. It is also
possible to use the pure argument position version of the model by replacing role sym-



26 A. Artale, C. Parent, and S. Spaccapietra

bols Ui with the corresponding position numbers i. To show the expressive power of
DLRUS we refer to the next Sections where DLRUS is used to capture various forms
of temporal constraints.

The model-theoretic semantics of DLRUS assumes a flow of time T = 〈Tp, <〉,
where Tp is a set of time points (or chronons) and < a binary precedence relation on
Tp, is assumed to be isomorphic to 〈Z, <〉. The language of DLRUS is interpreted in
temporal models over T , which are triples of the form I .= 〈T , ΔI , ·I(t)〉, where ΔI is
non-empty set of objects (the domain of I) and ·I(t) an interpretation function such that,
for every t ∈ T (in the following the notation t ∈ T is used as a shortcut for t ∈ Tp),
every class C, and every n-ary relation R, we have CI(t) ⊆ ΔI and RI(t) ⊆ (ΔI)n.
The semantics of class and relation expressions is defined in the lower part of Fig. 1,
where (u, v) = {w ∈ T | u < w < v}. For classes, the temporal operators �+ (some
time in the future),⊕ (at the next moment), and their past counterparts can be defined
via U and S: �+C ≡ � U C, ⊕C ≡ ⊥ U C, etc. The operators �+ (always in the
future) and �− (always in the past) are the duals of �+ (some time in the future) and
�− (some time in the past), respectively, i.e., �+C ≡ ¬�+¬C and �−C ≡ ¬�−¬C,
for both classes and relations. The operators �∗ (at some moment) and its dual �∗ (at
all moments) can be defined for both classes and relations as �∗C ≡ C �+C �−C
and �∗C ≡ C � �+C � �−C, respectively.

A knowledge base is a finite set Σ of DLRUS axioms of the form C1 � C2 and
R1 � R2, with R1 and R2 being relations of the same arity. An interpretation I sat-
isfies C1 � C2 (R1 � R2) if and only if the interpretation of C1 (R1) is included in
the interpretation of C2 (R2) at all time, i.e. CI(t)

1 ⊆ C
I(t)
2 (RI(t)

1 ⊆ R
I(t)
2 ), for all

t ∈ T . Various reasoning services can be defined in DLRUS . A knowledge base, Σ,
is satisfiable if there is an interpretation that satisfies all the axioms in Σ (in symbols,
I |= Σ). A class C (or relation R) is satisfiable if there is I such that CI(t) �= ∅
(respectively, RI(t) �= ∅), for some time point t. A knowledge base, Σ, logically im-
plies an axiom, C1 � C2, and write Σ |= C1 � C2, if we have I |= C1 � C2
whenever I |= Σ. In this latter case, the concept C1 is said to be subsumed by the
concept C2 in the knowledge base Σ. A concept C is satisfiable, given a knowledge
base Σ, if there exists a model I of Σ such that CI(t) �= ∅ for some t ∈ T , i.e.
Σ �|= C � ⊥.

While DLR knowledge bases are fully able to capture atemporal EER schemas [7,
8]—i.e., given an EER schema there is an equi-satisfiable DLR knowledge base—in
the following Sections we show how DLRUS knowledge bases can capture temporal
EER schemas with both timestamping and evolution constraints.

3 Modeling Requirements

This Section briefly illustrates the requirements that are frequently advocated in the
literature on temporal data models.

– Orthogonality. Temporal constructors should be specified separately and indepen-
dently for classes, relationships, and attributes. Depending on application require-
ments, the temporal support must be decided by the designer.
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– Upward Compatibility. This term denotes the capability of preserving the nontem-
poral semantics of conventional (legacy) conceptual schemas when embedded into
temporal schemas.

– Snapshot Reducibility. Snapshots of the database described by a temporal schema
are the same as the database described by the same schema, where all temporal
constructors are eliminated and the schema is interpreted atemporally. Indeed, this
property specifies that we should be able to fully rebuild a temporal database by
starting from the single snapshots.

Orthogonality affects mainly timestamping [25] and ERV T already satisfies this
principle by introducing temporal marks that could be used to specify the temporal
behavior of classes, relationships, and attributes in an independent way.

Upward compatibility and snapshot reducibility [22] are strictly related. Considered
together, they allow to preserve the meaning of atemporal constructors. In particular,
the meaning of classical constructors must be preserved in such a way that a designer
could either use them to model classical databases, or when used in a genuine temporal
setting their meaning must be preserved at each instant of time.

These requirements are not so obvious when dealing with evolving objects. In par-
ticular, snapshot reducibility is hard to preserve when dealing with both generation and
cross-time relationships where involved object may not coexist. The formalization car-
ried out in this paper provides a data model able to respect these requirements also in
presence of evolving objects.

4 The Temporal Conceptual Model ERV T

In this Section, the temporal EER model ERV T [3, 4] is briefly introduced. ERV T sup-
ports timestamping for classes, attributes, and relationships. ERV T is equipped with
both a linear and a graphical syntax along with a model-theoretic semantics as a tem-
poral extension of the EER semantics [9].

An ERV T schema is a tuple: Σ = (L, REL, ATT, CARD, ISA, DISJ, COVER, S, T,
KEY), such that: L is a finite alphabet partitioned into the sets: C (class symbols), A
(attribute symbols), R (relationship symbols), U (role symbols), and D (domain sym-
bols). ATT is a function that maps a class symbol in C to an A-labeled tuple over D,
ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉. REL is a function that maps a relationship symbol
inR to an U-labeled tuple over C, REL(R) = 〈U1 : C1, . . . , Uk : Ck〉, and k is the arity
of R. CARD is a function C×R×U �→ N×(N∪{∞}) denoting cardinality constraints.
We denote with CMIN(C,R,U) and CMAX(C,R,U) the first and second component of
CARD. In Figure 2, CARD(TopManager, Manages, man) = (1, 1). ISA is a binary rela-
tionship ISA ⊆ (C×C)∪(R×R). ISA between relationships is restricted to relationships
with the same arity. ISA is visualized with a directed arrow, e.g. Manager ISAEmployee
in Figure 2. DISJ, COVER are binary relations over 2C × C, describing disjointness and
covering partitions, respectively. DISJ is visualized with a circled “d” and COVER with
a double directed arrow, e.g. Department, InterestGroup are both disjoint and they
cover OrganizationalUnit. The set C is partitioned into: a set CS of Snapshot classes
(the S-marked classes in Figure 2), a set CM of Mixed classes (the unmarked classes
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Fig. 2. The company ERV T diagram

in Figure 2), and a set CT of Temporary classes (the T-marked classes in Figure 2). A
similar partition applies to the setR. S, T are binary relations over C×A containing, re-
spectively, the snapshot and temporary attributes of a class (see S, T marked attributes
in Figure 2). KEY is a function that maps class symbols in C to their key attributes,
KEY(E) = A. Keys are visualized as underlined attributes.

The model-theoretic semantics associated with the ERV T modeling language adopts
the snapshot1 representation of abstract temporal databases and temporal conceptual
models [10]. Following this paradigm, the flow of time T = 〈Tp, <〉, where Tp is a set
of time points (or chronons) and < is a binary precedence relation on Tp, is assumed
to be isomorphic to either 〈Z, <〉 or 〈N, <〉. Thus, standard relational databases can
be regarded as the result of mapping a temporal database from time points in T to
atemporal constructors, with the same interpretation of constants and the same domain.

Definition 1 (ERV T Semantics). Let Σ be an ERV T schema. A temporal database
state for the schema Σ is a tupleB = (T , ΔB∪ΔB

D, ·B(t)), such that: ΔB is a nonempty
set disjoint from ΔB

D; ΔB
D =

⋃
Di∈D ΔB

Di
is the set of basic domain values used in the

schema Σ; and ·B(t) is a function that for each t ∈ T maps:

– every domain symbol Di into a set DB(t)
i = ΔB

Di
.

– Every class C to a set CB(t) ⊆ ΔB .
– Every relationship R to a set RB(t) of U-labeled tuples over ΔB—i.e., let R be an n-

ary relationship connecting the classes C1, . . . , Cn, REL(R) = 〈U1 : C1, . . . , Un :
Cn〉, then, r ∈ RB(t) → (r = 〈U1 : o1, . . . , Un : on〉 ∧ ∀i ∈ {1, . . . , n}.oi ∈
C
B(t)
i ). We adopt the convention: 〈U1 : o1, . . . , Un : on〉 ≡ 〈o1, . . . , on〉, when

U-labels are clear from the context.
– Every attribute A to a set AB(t) ⊆ ΔB ×ΔB

D .

B is said a legal temporal database state if it satisfies all of the constraints expressed in
the schema (see [4] for full details).

1 The snapshot model represents the same class of temporal databases as the timestamp
model [21, 22] defined by adding temporal attributes to a relation [10].
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Given such a set-theoretic semantics we are able to rigorously define some relevant
modeling notions such as satisfiability, subsumption and derivation of new constraints
by means of logical implication.

Definition 2. Let Σ be a schema, C ∈ C a class, and R ∈ R a relationship. The
following modeling notions can be defined:

1. C (R) is satisfiable if there exists a legal temporal database state B for Σ such that
CB(t) �= ∅ (RB(t) �= ∅), for some t ∈ T ;

2. Σ is satisfiable if there exists a legal temporal database state B for Σ that satisfies
at least one class in Σ (B is said a model for Σ);

3. C1 (R1) is subsumed by C2 (R2) in Σ if every legal temporal database state for Σ
is also a legal temporal database state for C1 ISA C2 (R1 ISA R2);

4. A schema Σ′ is logically implied by a schema Σ over the same signature if every
legal temporal database state for Σ is also a legal temporal database state for Σ′.

In the following Subsection we will show how temporal database states, B, support
defining the semantics of timestamping.

4.1 Timestamping

ERV T is able to distinguish between snapshot constructors—i.e. constructors which
bear no explicit specification of a given lifespan [20], which we convey by as-
suming a global lifespan (see Section 6.1) associated to each of their instances—
temporary constructors—i.e. each of their instances has a limited lifespan—or mixed
constructors—i.e. their instances can have either a global or a temporary existence. In
the following, a class, relationship or attribute is called temporal if it is either temporary
or mixed. The two temporal marks, S (snapshot) and T (temporary), introduced at the
conceptual level, capture such temporal behavior. The semantics of timestamping can
now be defined as follows (we illustrate timestamping just for classes; similar ideas are
used in ERV T to associate timestamping to both relationships and attributes):

o∈CB(t) → ∀t′∈T .o∈CB(t′) Snapshot Class
o∈CB(t) → ∃t′ �= t.o �∈CB(t′) Temporary Class

The two cases are captured by the followingDLRUS axioms, respectively:

C � (�+C) � (�−C) Snapshot Class
C � (�+¬C)  (�−¬C) Temporary Class

The distinction between snapshot, temporary and mixed constructors has been adop-
ted in ERV T to avoid overloading the meaning of un-marked constructors. Indeed, the
classical distinction between temporal (using a temporal mark) and atemporal (leav-
ing the constructor un-marked) constructors may be ambiguous in the meaning of un-
marked constructors. In this classical setting, un-marking is used to model both truly
atemporal constructors (i.e., snapshot classes whose instances lifespan is always equal
to the whole database lifespan), as well as legacy constructors (for upward compatibil-
ity) where the constructor is not marked as temporal because the original data model
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Fig. 3. The company diagram with deductions on timestamps

did not support the temporal dimension. The problem is that, due to the interaction be-
tween the various components of a temporal model, un-marked constructors can even
purposely represent temporary constructors. As an example, think of an ISA involving
a temporary entity (as superclass) and an un-marked entity (as a subclass). Since a de-
signer cannot forecast all the possible interactions between the (temporal) constraints
of a given conceptual schema, this ultimately means that in the classical approach atem-
porality cannot be guaranteed and this is true even for the upward compatibility.
ERV T explicitly introduces a snapshot mark to force both atemporality and upward

compatibility. As logical implication is formally defined in ERV T (see Definition 2),
missing specifications can be inferred and in particular a set of logical implications hold
in the case of timestamping. For instance, in Figure 2, as Manager is temporary both
AreaManager and TopManager are temporary, too. Because OrganizationalUnit
is snapshot and partitioned into two sub-classes, Department which is snapshot and
InterestGroup, the latter should be snapshot, too. As the temporary class
TopManager participates in the relationships Manages, then the latter must be tempo-
rary, too (see [4] for an exhaustive list of deductions involving timestamps). The result
of these deductions is given in Figure 3. Note that, when mapping ERV T into a rela-
tional schema both temporary and un-marked constructors are mapped into a relation
with added timestamp attributes, while snapshot constructors do not need any additional
time attribute (for full details on the ERV T relational mapping see [1]).

5 Evolution Constraints

Evolution constraints are intended to help in modeling the temporal behavior of an
object. This section briefly recalls the basic concepts that have been proposed in the
literature to deal with evolution, and their impact on the resulting conceptual language.

Status [25, 11] is a notion associated to temporal classes to describe the evolving
status of membership of each object in the class. In a generic temporal setting, objects
can be suspended and later resumed in their membership. Four different statuses can be
specified, together with precise transitions between them:
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– Scheduled. An object is scheduled if its existence within the class is known but its
membership in the class will only become effective some time later. For example,
a new project is approved but will not start until a later date. Each scheduled object
will eventually become an active object.

– Active. The status of an object is active if the object is a full member of the class.
For example, a currently ongoing project is an active member, at time now, of the
Project class.

– Suspended. This status qualifies objects that exist as members of the class, but
are to be seen as temporarily inactive members of the class. Being inactive means
that the object cannot undergo some operations, e.g., it is not allowed to modify
the values of its properties (see [11] for more details). For example, an employee
taking a temporary leave of absence can be considered as a suspended employee.
A suspended object was in the past an active one.

– Disabled. It is used to model expired objects in a class. A disabled object was in
the past a member of the class. It can never again become a non-disabled member
of that class (e.g., an expired project cannot be reactivated).

Transitions [16, 25] have been introduced to model the phenomenon called object
migration. A transition records objects migrating from a source class to a target class.
At the schema level, it expresses that the instances of the source class may migrate into
the target class. Two types of transitions have been considered: dynamic evolution, when
objects cease to be instances of the source class, and dynamic extension, otherwise. For
example considering the company schema (Figure 3), if we want to record data about
the promotion of area managers into top managers we can specify a dynamic evolution
from the class AreaManager to the class TopManager. We can also record the fact that
a mere employee becomes a manager by defining a dynamic extension from the class
Employee to the class Manager (see Figure 5).

Generation relationships [25, 17, 24] express that (sets of) objects in a target class
may be generated from (sets of) objects in a source class. While transitions involve ob-
ject instances bearing the same oid, object instances linked by generation relationships
necessarily bear different oids. Depending whether the source objects are preserved (as
member of the source class) or disabled, we distinguish between a production and a
transformation, respectively. Cardinality constraints can be added to specify the car-
dinality of sets involved in a generation. For example (see Figures 3,6), if we want to
record the fact that (a group of) managers propose a new project a production relation-
ship between Manager and Project can be introduced. Let us now assume that the
structure of the departments of the company is dynamic, e.g., some departments may
either merge or split and be replaced by others, and that it is useful to record these
changes. One way would be to define a transformation relationship linking (a set of)
existing departments to (a set of) new departments.

Cross-Time relationships [26, 23, 25] describe relationships between objects that do
not coexist at the same time and possibly not at the time the relationship is asserted.
There are many examples of these relationships (see Figure 7). Consider, for example,
a relationship “biography” between an author and a famous person already dead, or the
relationship “grandparent” that holds even if the grandparent passed away before the
grandchild was born or the grandchild is not yet born. Still, considering the company
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schema (Figure 3), the relationship Works-for can be changed to cross-time whenever
one wants to assign an employee to a project before its official launching, or if some
employee keeps on working on a project after its official closure.

6 Formalizing Evolving Objects

The proposed formalization is based on a model-theoretic semantics and a correspon-
dent set of axioms expressed using the temporal description logic DLRUS . This will
give us both a formal characterization of the temporal conceptual modeling construc-
tors, and the possibility to use the reasoning capabilities ofDLRUS to check satisfiabil-
ity, subsumption and logical implications over temporal schemas. The model-theoretic
semantics we illustrate here for the various evolution constraints is an extension of the
one developed for the model ERV T , introduced in Section 4. The validity of the pro-
posed formalization is justified by providing a set of logical implications which are in
agreement with the derivations mentioned in the literature on temporal data modeling.

6.1 Status Classes

The evolution in the membership of an object to a temporal class is reflected in the
changing values of the status of the object in the class. This evolution obeys some rules
that give rise to a set of constraints. This Subsection formally capture these constraints.

Let C be a temporal (i.e., temporary or mixed) class. We capture status transition
of membership in C by associating to C the following status classes: Scheduled-C,
Suspended-C, Disabled-C. In particular, status classes are represented by the hierar-
chy of Figure 4 (where C may also be mixed) that classifies C instances according to
their actual status. To preserve upward compatibility we do not explicitly introduce an
active class, but assume by default that the name of the class itself denotes the set of
active objects. i.e., Active-C ≡ C. We can assume that the status classes are created
automatically by the system each time a class is declared temporal. Thus, designers and
users are not forced neither to introduce nor to manipulate status classes. They only
have to be aware of the different statuses in the lifecycle of an object. Note that, since
membership of objects into snapshot classes is global, i.e. objects are always active, the
notion of status classes does not apply to snapshot classes.

To capture the intended meaning of status classes, we define ad-hoc constraints and
then prove that such constraints capture their evolving behavior as described in the
literature [25, 11]. First of all, disjointness and ISA constraints between statuses of a
class C can be described as illustrated in Figure 4, where Top is supposed to be snapshot
and represents the universe of discourse (i.e., TopB(t) ≡ ΔB). Other than hierarchical
constraints, the intended semantics of status classes induces the following rules that are
related to their temporal behavior:

(EXISTS) Existence persists until Disabled.
o ∈ Exists-CB(t) → ∀t′ > t.(o ∈ Exists-CB(t′) ∨ o ∈ Disabled-CB(t′))

(DISAB1) Disabled persists.
o ∈ Disabled-CB(t) → ∀t′ > t.o ∈ Disabled-CB(t′)

(DISAB2) Disabled was Active in the past.
o ∈ Disabled-CB(t) → ∃t′ < t.o ∈ CB(t′)
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(SUSP) Suspended was Active in the past.
o ∈ Suspended-CB(t) → ∃t′ < t.o ∈ CB(t′)

(SCH1) Scheduled will eventually become Active.
o ∈ Scheduled-CB(t) → ∃t′ > t.o ∈ CB(t′)

(SCH2) Scheduled can never follow Active.
o ∈ CB(t) → ∀t′ > t.o �∈ Scheduled-CB(t′)

DLRUS axioms are able to fully capture the hierarchical constraints of Figure 4 (see [4]
for more details). Moreover, the above semantic equations are captured by the following
DLRUS axioms:

(EXISTS) Exists-C � �+(Exists-C  Disabled-C)
(DISAB1) Disabled-C � �+Disabled-C
(DISAB2) Disabled-C � �−C
(SUSP) Suspended-C � �−C
(SCH1) Scheduled-C � �+C
(SCH2) C � �+¬Scheduled-C

As a consequence of the above formalization, scheduled and disabled status classes
can be true only over a single interval, while active and suspended can hold at set of
intervals (i.e., an object can move many times back and forth from active to suspended
status and viceversa). In particular, the following set of new rules can be derived.

Proposition 1 (Status Classes: Logical Implications). The following logical implica-
tions hold given the above formalization of status classes:

(SCH3) Scheduled persists until active: Scheduled-C � Scheduled-C U C.
Together with axiom (SCH2), we can conclude that Scheduled-C is true just on a
single interval.

(SCH4) Scheduled cannot evolve directly to Disabled: Scheduled-C �⊕¬Disbled-C.
(DISAB3) Disabled was active but it will never become active anymore:

Disabled-C � �−(C � �+¬C).
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In the following we show the adequacy of the semantics associated to status classes
to describe: a) the behavior of temporal classes involved in ISA relationships; b) the
notions of lifespan, birth and death of an object; c) the object migration between classes;
d) the relationships that involve objects existing at different times (both generation and
cross-time relationships).

Isa vs. status. When an ISA relationship is specified between two temporal classes, say
B ISA A, then the following constraints must hold between the respective status classes:

(ISA1) Objects active in B must be active in A. B � A
(ISA2) Objects suspended in B must be either suspended or active in A.

Suspended-B � Suspended-A  A
(ISA3) Objects disabled in B must be either disabled, suspended or active in A.

Disabled-B � Disabled-A  Suspended-A  A
(ISA4) Objects scheduled in B cannot be disabled in A.

Scheduled-B � ¬Disabled-A
(ISA5) Objects disabled in A, and active in B in the past, must be disabled in B.

Disabled-A ��−B � Disabled-B

The formalization of status classes provided above is not sufficient to guarantee prop-
erties (ISA1-5)2. We need to further assume that the system behaves under the temporal
ISA assumption: Each time an ISA between two temporal classes holds (B ISA A), then
an ISA between the respective existence status classes (Exists-B ISA Exists-A) is au-
tomatically added by the system. Now, we are able to prove that points (ISA1-5) above
are entailed by the semantics associated to status classes under the temporal ISA as-
sumption.

Proposition 2 (Status Classes Vs. ISA: Logical Implications). Let A,B be two tem-
poral classes such that B ISAA, then properties (ISA1-5) are valid logical implications.

(ISA1) Obviously true since B ISA A holds, and both A,B are considered active.
(ISA2) Let o ∈ Suspended-BB(t0), since Suspended-B ISA Exists-B, and (by tem-

poral ISA assumption) Exists-B ISA Exists-A, then, o ∈ Exists-AB(t0). On the
other hand, by (SUSP), ∃t1 < t0.o ∈ BB(t1), and then, o ∈ AB(t1). Then, by
(SCH2), o �∈ Scheduled-AB(t0). Thus, due to the disjoint covering constraint be-
tween active and suspended classes, either o ∈ AB(t0) or o ∈ Suspended-AB(t0).

(ISA3) Let o ∈ Disabled-BB(t0), then, by (DISAB2), ∃t1 < t0.o ∈ BB(t1). By B ISAA
and A ISA Exists-A, then, o ∈ Exists-AB(t1). By (EXISTS) and the disjointness
between existing and disabled classes, there are only two possibilities at point in
time t0 > t1:
1. o ∈ Exists-AB(t0),and thus,by (SCH2), o ∈ AB(t0) or o ∈ Suspended-AB(t0);

or
2. o ∈ Disabled-AB(t0).

(ISA4) Let o ∈ Scheduled-BB(t0), then, by (SCH1), ∃t1 > t0.o ∈ BB(t1), and by
B ISA A, o ∈ AB(t1). Thus, by (DISAB1) and the disjointness between active and
disabled states, o �∈ Disabled-AB(t0).

2 We let the reader check that points 2 and 5 are not necessarily true.
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(ISA5) Let o ∈ Disabled-AB(t0) and o ∈ BB(t1) for some t1 < t0, then, o ∈
Exists-BB(t1). By (EXISTS) and the disjointness between existing and disabled
classes, there are only two possibilities at time t0 > t1: either o ∈ Exists-BB(t0)

or o ∈ Disabled-BB(t0). By absurd, let o ∈ Exists-BB(t0), then by tempo-
ral ISA assumption, o ∈ Exists-AB(t0), which contradicts the assumption that
o ∈ Disabled-AB(t0).

Lifespan. Here we define the lifespan of objects belonging to a temporal class, to-
gether with other related notions. In particular, we define EXISTENCEC , LIFESPANC ,
ACTIVEC , BEGINC , BIRTHC and DEATHC as functions depending on the object mem-
bership to the status classes associated to a temporal class C.

The existence time of an object describes the temporal instants where the object
is either a scheduled, active or suspended member of a given class. More formally,
EXISTENCESPANC : ΔB → 2T , such that:

EXISTENCESPANC(o) = {t ∈ T | o ∈ Exists-CB(t)}

The lifespan of an object describes the temporal instants where the object is an active or
suspended member of a given class (thus, LIFESPANC(o) ⊆ EXISTENCESPANC(o)).
More formally, LIFESPANC : ΔB → 2T , such that:

LIFESPANC(o) = {t ∈ T | o ∈ CB(t) ∪ Suspended-CB(t)}

The activespan of an object describes the temporal instants where the object is an active
member of a given class (thus, ACTIVESPANC(o) ⊆ LIFESPANC(o)). More formally,
ACTIVESPANC : ΔB → 2T , such that:

ACTIVESPANC(o) = {t ∈ T | o ∈ CB(t)}

The functions BEGINC and DEATHC associate to an object the first and the last appear-
ance, respectively, of the object as a member of a given class, while BIRTHC denotes
the first appearance as an active object of that class. More formally, BEGINC , BIRTHC ,
DEATHC : ΔB → T , such that:

BEGINC(o) = min(EXISTENCESPANC(o))
BIRTHC(o) = min(ACTIVESPANC(o)) ≡ min(LIFESPANC(o))
DEATHC(o) = max(LIFESPANC(o))

We could still speak of existencespan, lifespan or activespan for snapshot classes,
but in this case EXISTENCESPANC(o) ≡ LIFESPANC(o) ≡ ACTIVESPANC(o) ≡ T .

6.2 Transition

Dynamic transitions between classes model the notion of object migration from a source
to a target class. Two notions of dynamic transitions between classes are considered in
the literature [25, 16]: dynamic evolution, when an object ceases to be an instance of
a source class, and dynamic extension, when an object is still allowed to belong to the
source. Concerning the graphical representation, as illustrated in Figure 5, we use a
dashed arrow pointing to the target class and labeled with either DEX or DEV denoting
dynamic extension and evolution, respectively.
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Fig. 5. Transitions employee-to-manager and area-to-top manager

In a temporal setting, objects can obviously change their membership class. Spec-
ifying a transition between two classes means that: a. We want to keep track of such
migration; b. Not necessarily all the objects in the source or in the target participate
in the migration; c. When the source class is a temporal class, migration involves only
objects active or suspended. Thus, neither disabled nor scheduled objects can take part
in a transition.

In the following, we present a formalization that satisfies the above requirements.
Formalizing dynamic transitions as relationships would result in binary relationships
linking the same object that migrates from the source to the target class. Rather than
defining a relationship type with an equality constraint on the identity of the linked
objects, we represent transitions by introducing a new class denoted by either DEXC1,C2

or DEVC1,C2 for dynamic extension and evolution, respectively. More formally, in case
of a dynamic extension between classes C1, C2 the following semantic equation holds:

o ∈ DEX
B(t)
C1,C2

→ (o ∈ (Suspended-C1B(t) ∪ C1B(t)) ∧ o �∈ C2B(t) ∧ o ∈ C
B(t+1)
2 )

And the equivalentDLRUS axiom is:

(DEX) DEXC1,C2 � (Suspended-C1  C1) � ¬C2 �⊕C2

In case of a dynamic evolution between classes C1, C2 the source object cannot remain
active in the source class. Thus, the following semantic equation holds:

o ∈ DEV
B(t)
C1,C2

→ (o ∈ (Suspended-C1B(t) ∪ C1B(t)) ∧ o �∈ C2B(t) ∧
o ∈ C

B(t+1)
2 ∧ o �∈ C

B(t+1)
1 )

And the equivalentDLRUS axiom is:

(DEV) DEVC1,C2 � (Suspended-C1  C1) � ¬C2 �⊕ (C2 � ¬C1)

Please note that, in case C1 is a snapshot class, then, Exists-C1 ≡ C1. Finally, we
formalize the case where the source (C1) and/or the target (C2) totally participate in
a dynamic extension (at schema level we add mandatory cardinality constraints on
DEX/DEV links):
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o∈C
B(t)
1 → ∃t′ > t.o∈DEX

B(t′)
C1,C2

Source Total Transition

o∈C
B(t)
2 → ∃t′ < t.o∈DEX

B(t′)
C1,C2

Target Total Transition

The above cases are captured by the followingDLRUS axioms, respectively:

(STT) C1 � �+DEXC1,C2 Source Total Transition
(TTT) C2 � �−DEXC1,C2 Target Total Transition

In a similar way we deal with dynamic evolution constraints.

Proposition 3 (Transition: Logical Implications). The following logical implications
hold as a consequence of the transition semantics:

1. The classes DEXC1,C2 and DEVC1,C2 are temporary classes; actually, they hold at
single time points.
DEXC1,C2 � ⊕¬ DEXC1,C2 � �¬DEXC1,C2 (similar for DEVC1,C2)

Indeed, let o ∈ DEX
B(t)
C1,C2

, then o �∈ C
B(t)
2 and o ∈ C

B(t+1)
2 , thus o �∈ DEX

B(t+1)
C1,C2

and o �∈ DEX
B(t−1)
C1,C2

. Note that, the time t such that o ∈ DEX
B(t)
C1,C2

records when the
transition event happens. Similar considerations apply for DEVC1,C2 .

2. Objects in the classes DEXC1,C2 and DEVC1,C2 cannot be disabled as C2.
DEXC1,C2 � ¬Disabled-C2 (similar for DEVC1,C2)
Indeed, since DEXC1,C2 � ⊕C2, i.e. objects in DEXC1,C2 are active in C2 starting
from the next point in time, then by property (DISAB3), DEXC1,C2�¬Disabled-C2.
The same holds for DEVC1,C2 .

3. The target class C2 cannot be snapshot (it becomes temporary in case of TTT con-
straints).
DEXC1,C2 � �∗[C2 � (�+¬C2 �−¬C2)]
Indeed, from (DEX), DEXC1,C2 � ¬C2 �⊕ C2 (the same holds for DEVC1,C2).

4. As a consequence of dynamic evolution, the source class, C1, cannot be snapshot
(and it becomes temporary in case of STT constraints).
DEVC1,C2 � �∗[C1 � (�+¬C1 �−¬C1)]
Indeed, an object evolving from C1 to C2 ceases to be a member of C1.

5. Dynamic evolution cannot involve a class and one of its sub-classes.
C2 � C1 |= DEVC1,C2 � ⊥
Indeed, from (DEV), DEVC1,C2 � ⊕ (C2 � ¬C1) which contradicts C2 � C1.

6. Dynamic extension between disjoint classes logically implies Dynamic evolution.
{DEXC1,C2 , C1 � ¬C2} |= DEVC1,C2

6.3 Generation Relationships

Generation relationships [25, 17] represent processes that lead to the emergence of new
instances starting from a set of instances. Two distinct generation relationships have
been introduced: production, when the source objects survive the generation process;
transformation, when all the instances involved in the process are consumed. At the
conceptual level we introduce two marks associated to a relationship: GP for production
and GT for transformation relationships, and an arrow points to the target class (see
Figure 6).
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Fig. 6. Production and transformation generation relationships

We model generation as binary relationships connecting a source class to a target
one: REL(R) = 〈source : C1, target : Scheduled-C2〉. The semantics of production
relationships, R, is described by the following equation:

〈o1, o2〉 ∈ RB(t) → (o1 ∈ C
B(t)
1 ∧ o2 ∈ Scheduled-C2B(t) ∧ o2 ∈ C

B(t+1)
2 )

Thus, objects active in the source class produce objects active in the target class at the
next point in time. Notice that, the use of status classes allow us to preserve snapshot
reducibility. Indeed, for each pair of objects, 〈o1, o2〉, belonging to a generation rela-
tionships o1 is active in the source while o2 is scheduled in the target. The DLRUS
axiom capturing the production semantics is:

(PROD) R � source : C1 � target : (Scheduled-C2 �⊕C2)

The case of transformation is captured by the following semantic equation:

〈o1, o2〉 ∈ RB(t) → (o1 ∈ C
B(t)
1 ∧ o1 ∈ Disabled-C1B(t+1) ∧

o2 ∈ Scheduled-C2B(t) ∧ o2 ∈ C
B(t+1)
2 )

Thus, objects active in the source generate objects active in the target at the next point
in time while the source objects cease to exist as member of the source. The DLRUS
axiom capturing the transformation semantics is:

(TRANS) R � source : (C1�⊕ Disabled-C1)�target : (Scheduled-C2�⊕C2)

Proposition 4 (Generation: Logical Implications). The following logical implica-
tions hold as a consequence of the generation semantics:

1. A generation relationship, R, is temporary; actually, it is instantaneous.
R � �+¬R � �−¬R
Indeed, let 〈o1, o2〉 ∈ RB(t), then, since o2 �∈ Scheduled-CB(t+1)

2 , then 〈o1, o2〉 �∈
RB(t+1). Since, o2 �∈ C

B(t)
2 , then 〈o1, o2〉 �∈ RB(t−1).

2. The target class, C2, cannot be snapshot (it becomes temporary if total participa-
tion is specified).
R � target :�∗[C2 � (�+¬C2 �−¬C2)]
Indeed, let 〈o1, o2〉 ∈ RB(t), then, o2 �∈ C

B(t)
2 and o2 ∈ C

B(t+1)
2 .

3. The target class, C2, cannot be disabled.
R � target :¬Disabled-C2
Indeed, let 〈o1, o2〉 ∈ RB(t), then, o2 ∈ C

B(t+1)
2 . Thus o2 �∈ Disabled-CB(t)

2 .
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4. If R is a transformation relationship, then, C1 cannot be snapshot (it becomes
temporary if total participation is specified).
R � source :�∗[C1 � (�+¬C1 �−¬C1)]
Indeed, C1 will be disabled at the next point in time.

Note that, the Department class which is both the source and target of a transforma-
tion relationship (Figure 6) cannot longer be snapshot (as was in Figure 3) and it must
be changed to temporary (as a consequence of this new timestamp, InterestGroup is
a genuine mixed class).

6.4 Cross-Time Relationships

Cross-time relationships relate objects that are members of the participating classes at
different times. The conceptual model MADS [25] allows for synchronization relation-
ships to specify temporal constraints (Allen temporal relations) between the lifespan of
linked objects. Historical marks are used in the ERT model [23] to express a relation-
ship between objects not existing at the same time (both past and future historical marks
are introduced).

This Section formalizes cross-time relationships with the aim of preserving the snap-
shot reducibility of the resulting model. Let us consider a concrete example. Let “bi-
ography” be a cross-time relationship linking the author of a biography with a famous
person no more in existence. Snapshot reducibility says that if there is an instance (say,
bio = 〈Tulard, Napoleon〉) of the Biography relationship at time t0 (in particular,
Tulard wrote a bio on Napoleon in 1984), then, the projection of Biography at time t0
(1984 in our example) must contain the pair 〈Tulard, Napoleon〉. Now, while Tulard
is a member of the class Author in 1984, we cannot say that Napoleon is member of
the class Person in 1984. Our formalization of cross-time relationships proposes the
use of status classes to preserve snapshot reducibility. The biography example can be
solved by asserting that Napoleon is a member of the Disabled-Person class in 1984.

At the conceptual level, we mark with P,=,F (standing for Past, Now and Future,
respectively) the links of cross-time relationships. Furthermore, we allow for the com-
pound marks 〈P,=〉, 〈F,=〉 and 〈P,=,F〉, while just specifying = doesn’t add any con-
straint (see Figure 7). Assuming that R is a cross-time relationship between classes
C1, C2, then, the semantics of marking the C1 link is:

〈o1, o2〉 ∈ RB(t) → o1 ∈ Disabled-C1B(t) Strictly Past 〈P〉
〈o1, o2〉 ∈ RB(t) → o1 ∈ (C1  Disabled-C1)B(t) Past 〈P,=〉
〈o1, o2〉 ∈ RB(t) → o1 ∈ Scheduled-C1B(t) Strictly Future 〈F〉
〈o1, o2〉 ∈ RB(t) → o1 ∈ (C1  Scheduled-C1)B(t) Future 〈F,=〉
〈o1, o2〉 ∈ RB(t) → o1 ∈ (C1  Scheduled-C1  Disabled-C1)B(t) Full-Cross 〈P,=,F〉

The correspondingDLRUS axioms are:

R � U1 : Disabled-C1 Strictly Past 〈P〉
R � U1 : (C1  Disabled-C1) Past 〈P,=〉
R � U1 : Scheduled-C1� Strictly Future 〈F〉
R � U1 : (C1  Scheduled-C1) Future 〈F,=〉
R � U1 : (C1  Scheduled-C1  Disabled-C1) Full-Cross 〈P,=,F〉
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Fig. 7. Cross-Time Relationships

Proposition 5 (Cross-Time: Logical Implications). The following logical implica-
tions hold as a consequence of the cross-time semantics (apart from point 1., we assume
that C1 (C2) participates as either strict past or strict future):

1. If a relationship, R, is snapshot then historical marks reduce to the = mark (i.e., R
is not a genuine cross-time relationships).
See next point.

2. A cross-time relationship, R, is temporary (R � �+¬R �−¬R).
Let assume that C1 participates as strict past. Thus, if 〈o1, o2〉 ∈ RB(t), then o1 ∈
Disabled-CB(t)

1 and, by (DISAB2), ∃t1<t s.t. o1∈C
B(t1)
1 . Then 〈o1, o2〉 �∈RB(t1).

3. C1 (C2) cannot be snapshot (is temporary if total participation is specified).
R � U1 :�∗[C1 � (�+¬C1 �−¬C1)]
Let assume that C1 participates as strict past. Thus, if 〈o1, o2〉 ∈ RB(t), then, o1 ∈
Disabled-CB(t)

1 . Then, o1 �∈ C
B(t)
1 while, by (DISAB2), ∃t1 < t s.t. o1 ∈ C

B(t1)
1 .

7 Complexity of Reasoning on Temporal Models

As this paper shows, the temporal description logic DLRUS is able to fully capture
temporal schemas with both timestamping and evolution constraints. Reasoning over
DLRUS knowledge bases, i.e., checking satisfiability, subsumption and logical impli-
cations, turns out to be undecidable [5]. The main reason for this is the possibility to
postulate that a binary relation does not vary in time. Note that, showing that temporal
schemas can be mapped into DLRUS axioms does not necessarily imply that reason-
ing over temporal schemas is an undecidable problem. Unfortunately, [2] shows that the
undecidable Halting Problem can be encoded as the problem of class satisfiability w.r.t.
a temporal schema with both timestamping and evolution constraints.

On the other hand, the fragment,DLR−
US , of DLRUS deprived of the ability to talk

about temporal persistence of n-ary relations, for n ≥ 2, is decidable. Indeed, reason-
ing in DLR−

US is an EXPTIME-complete problem [5]. This result gives us an useful
scenario where reasoning over temporal schemas becomes decidable. In particular, if
we forbid timestamping for relationships (i.e., relationships are just unmarked) reason-
ing on temporal models with both concept timestamping and full evolution constraints
can be reduced to reasoning over DLR−

US . The problem of reasoning in this setting
is complete for EXPTIME since the EXPTIME-complete problem of reasoning with
ALC knowledge bases can be captured by such schemas [6].
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It is an open problem whether reasoning is still decidable by regaining timestamp-
ing for relationships (and maintaining timestamping for classes) but dropping evolution
constraints. We have a strong feeling that this represents a decidable scenario since it is
possible to encode temporal schemas without evolution constraints by using a combina-
tion between the description logic DLR and the epistemic modal logic S5. Decidabil-
ity results have been proved for the sub-logic ALCS5 [13]. But, it is an open problem
whether this result still holds for the more complex logicDLRS5.

8 Conclusions

In this paper we proposed a formalization of the various modeling constructors that sup-
port the design of temporal DBMS with particular attention to evolution constraints. The
formalization, based on a model-theoretic semantics, has been developed with the aim
to preserve three fundamental modeling requirements: Orthogonality, Upward Compat-
ibility and Snapshot Reducibility. The introduction of status classes, which describe
the evolution in the membership of an object to a temporal class, allowed us to main-
tain snapshot reducibility when characterizing both generations and cross-time rela-
tionships. The formal semantics clarified the meaning of the language’s constructors
but it also gave a rigorous definition to relevant modeling notions like: satisfiability
of schemas, classes and relationships; subsumption for both classes and relationships;
logical implication. Furthermore, for each constructor we presented its formalization
together with the set of logical implications associated to such formalization.

Finally, we have been able to show how temporal schemas can be equivalently ex-
pressed using a subset of first-order temporal logic, i.e., DLRUS , the description logic
DLR extended with the temporal operators Since and Until. Overall, we obtained
a temporal conceptual model that preserves well established modeling requirements,
equipped with a model-theoretic semantics where each constructor can be seen as a set
of precise rules, and with the possibility to perform automated reasoning by mapping
temporal schemas (without timestamping on relationships) into temporal description
logic knowledge bases.
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Abstract. Controlled query evaluation for logic-oriented information systems
provides a model for the dynamic enforcement of confidentiality policies even
if users are able to reason about a priori knowledge and the answers to previ-
ous queries. Previous foundational work simply assumes that the control mech-
anism can solve the arising entailment problems (no matter how complex they
may be), and deals only with closed queries. In this paper, we overcome these
limitations by refining the abstract model for appropriately represented relational
databases. We identify a relational submodel where all instances share a fixed
infinite Herbrand domain but have finite base relations, and we require finite and
domain-independent query results. Then, via suitable syntactic restrictions on the
policy and query languages, each entailment problem occurring in the framework
can be equivalently expressed as a universal validity problem within the Bernays-
Schönfinkel class, whose (known) decidability in the classical setting is extended
to our framework. For both refusal and lying, we design and verify evaluation
methods for open queries, exploiting controlled query evaluation of appropriate
sequences of closed queries, which include answer completeness tests.

Keywords: Controlled query evaluation, Confidentiality, Refusal, Lying, Com-
plete information system, Relational database, Open query, First-order logic, Safe
query, Domain-independent query, Implication problem, Finite model theory,
Bernays-Schönfinkel class, Guarded fragment, Completeness test.

1 Introduction and Survey

Controlled query evaluation for logic-oriented information systems provides a model
for the dynamic enforcement of confidentiality policies even if users are able to rea-
son about a priori knowledge and the answers to previous queries. Known foundational
work [23, 10, 4, 5, 6, 7] has been based on a simple but powerful model-theoretic ap-
proach to information systems. This approach considers an instance of an information
system as a interpretation in the sense of logic, a query as a sentence, and the ordinary
answer as the truth value of the query w.r.t. the instance. Thus, in practical terms, only
closed queries (with yes/no-answers) for complete information systems (which could
always return the correct answer) are investigated. However, many practical informa-
tion systems, like relational database systems, allow open queries as well. The control
mechanism maintains a user log containing the sentences that represent the a priori
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knowledge of each user (or user class) and the answers to previous queries. Whenever
a new query is submitted, the control mechanism has to solve one or more implication
problems where the sentences of the user log, some sentences related to the query, and
some sentences specified in a confidentiality policy are involved. However, the impli-
cation problem is decidable only for appropriately restricted logics.

This paper exhibits a refinement of controlled query evaluation where open queries
are handled in addition to closed queries, and where the implication problems are
decidable. This refinement is based on the relational database model under the as-
sumption that all instances share a fixed infinite Herbrand domain (an abstraction of
standard data types). This assumption makes the treatment of negative information
subtle, since we have to deal with implicit infinite complements of finite, explicitly
represented positive information. Accordingly, we can only reconstruct a relational
submodel by using a fragment of first order logic. It turns out, that the well-known
Bernays-Schönfinkel class provides an appropriate fragment for all our goals. In the
rest of the introduction we will further explain the problem and our proposed solu-
tion by considering some examples and explaining the basic results on controlled query
evaluation.

1.1 Queries

Assume that we have a binary relation scheme HasDisease, say with attributes Person
and Disease, and that Pete,Tom,Lisa, ... and cancer,brokenarm,cough, aids... are con-
stants. Then for instance a user can ask whether “Person Tom is suffering from the dis-
ease brokenarm” by submitting the sentence HasDisease(Tom,brokenarm) as a closed
query. Subsequently he could additionally inquire whether “Person Pete is suffering
from any of the diseases cancer or aids” by evaluating the sentence
HasDisease(Pete,cancer) or HasDisease(Pete,aids). Afterwards the user might ask
for more precise information submitting the sentence HasDisease(Pete,cancer). How-
ever, if the user is interested in learning “Which persons x are suffering from the disease
cancer”, then he would like to use the formula HasDisease(x,cancer) which is an open
query with a free (occurence of the) variable x.

1.2 Potential Secrets, Lies, and Refusals

Within the model of controlled query evaluation, confidentiality requirements have been
fully formalized, and effective methods for controlling sequences of closed queries have
been developed that provably preserve confidentiality. These methods distort correct
answers, if necessary, either uniformly by using only lies or only refusals, or by a com-
bination thereof, following in each case a “last minute distortion” strategy.

In terms of our example, suppose that a security administrator wants to ensure that
the information system never reveals that “Person Pete suffers from the disease cancer”
nor that “Person Pete suffers from the disease aids”, even if such a fact is actually doc-
umented to be true. In the formal approach, this requirement can be declared as a con-
fidentiality policy instance of form pot sec = {HasDisease(Pete,cancer),HasDisease
(Pete,aids)}, where the sentences HasDisease(Pete,cancer) and HasDisease(Pete,
aids) are called “potential secrets”. This terminology indicates that if a corresponding
fact is true (say, “Person Pete is suffering from the disease cancer”), then it is treated
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as a secret that the system has to protect; otherwise, if the fact is actually false, it is not
necessary to prevent the user from believing the negation of the potential secret. Now,
if the user submits the sequence of the three queries given above, then the first one, the
sentence HasDisease(Tom,brokenarm), can be correctly answered, while the second
one, the sentence HasDisease(Pete,cancer) or HasDisease(Pete,aids), and the third
one, the sentence HasDisease(Pete,cancer), might be subject to distortion. The exact
behaviour of controlled query evaluation depends on the distortion method and on a fur-
ther assumption about the user’s awareness of the confidentiality policy instance. The
conservative awareness assumption is that the user knows which sentences the system
is trying to protect as potential secrets.

According to [5, 7], under this awareness assumption the distortion method using
lies has to pretend that both HasDisease(Pete,cancer) or HasDisease(Pete,aids) and
HasDisease(Pete,cancer) are false, even if the sentence HasDisease(Pete,cancer) is
actually true w.r.t. to the information system instance. In that case the returned answers
are “lies”. Note that the first distortion arises with the second query which is weaker
than any of the declared potential secrets. However, it has been shown that when us-
ing lies the disjunction of all potential secrets must always be protected too. Under the
same conservative awareness assumption, the results of [5, 7] show that the distortion
method using refusals can return the correct answer for the second query, but has to
refuse the third query, independent of whether HasDisease(Pete,cancer) is actually
true or false w.r.t. to the information system instance. Note that the refusal also hap-
pens in the latter case which per se is considered harmless. A combined method [6, 7],
employs lies as long as possible and only then refuses, thereby enjoying the advan-
tages of both methods. More details about controlled query evaluation of closed queries
and the formal model underlying the previous and the present work are summarized in
Section 3.

1.3 Open Queries

An open query is a formula which has at least one free occurence of a variable. Ba-
sically, the answer to such a query consists of the set of ground substitutions of the
variables that make the query formula true with respect to the interpretation represented
by the stored information system instance. Assuming as usual that the information sys-
tem instance represents an Herbrand-like interpretation, i.e., its domain is taken from
the underlying vocabulary of the logic that comprises a recursive set of constants, the
ordinary evaluation of an open query of form Φ(x1, ...,xn) with free variables x1, ...,xn

can be simply simulated by a sequence of closed queries, each of which results from
substituting the variables by constants from the vocabulary, thereby exhausting all pos-
sibilities. For example, the simple open query HasDisease(x,cancer) could be explored
by a sequence of closed queries which starts as follows:

〈HasDisease(Pete,cancer),HasDisease(Tom,cancer),HasDisease(Lisa,cancer), ...〉.
In doing so, we have to distinguish what is assumed about the set of constants. Each

assumption might demand a different logic, in particular with respect to the class of
interpretations considered for the formal definition of “implication”. In the next subsec-
tions we introduce three reasonable options, the third of which will be seleted for the
rest of this paper.
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1.4 Fixed Finite Relevant Domain: A Special Case of Interest

The first option assumes a fixed finite relevant domain, used for any instance of the
information system according to a public declaration, and thus known to both the con-
trol mechanism and the user. This assumption might be of some interest for special
situations, mostly suitable for small and dedicated applications.

Under this option, the full relational model can be reduced to propositional logic
where all pertinent decision problems are decidable. More details of the reduction
and of the treatment of open queries will be presented in a full version of this
paper.

1.5 Varying Finite Domains: A Discarded Case

The second option assumes a fixed infinite set of constants, again publicly declared in
the schema, from which any instance of the information system selects a finite subset as
its actual domain. We argue that this option is not appropriate for the task of controlled
query evaluation. The main problem is the need of distinguishing whether a ground
atom that is not listed in a stored relation or a query answer is false or just undefined
(because it contains a constant that does not belong to the actual domain). Note that if
the answer specified which atoms are false and which undefined, then the actual domain
might be disclosed, which may lead to undesirable inferences.

1.6 Fixed Infinite Herbrand Domain: A Promising Generic Approach

Finally, the third option assumes a fixed infinite set of constants, again publicly de-
clared in the schema, that any instance of the information system uniformly takes as its
infinite domain. We adopt this option for the rest of this paper, since we consider it as
most promising for a generic approach to make controlled query evaluation practically
applicable for relational databases. First, the case of undefined truth values for ground
atoms cannot occur. Second, we are not faced with combinatorial effects due to the
finiteness of a domain. Third, for most applications there are no convincing reasons to
restrict the usable constants to a finite subset in a specific way.

This option together with the requirement positive information is finite do neither
readily fit the classical model theory of first-order logic, nor the more recently elab-
orated finite model theory. However, under suitable restrictions we can cast the fol-
lowing classical result into the favored framework: The Bernays-Schönfinkel class of
formulas, which have a prenex normal form with prefix of form ∀∗∃∗, has a decidable
universal validity problem, both for general universal validity and for finite universal
validity. The restrictions apply to the sentences the control mechanism must consider,
i.e., sentences that (1) are in the user log, (2) related to queries, or (3) related to the
confidentiality policy. If all pertinent sentences have a prenex normal form with pre-
fix ∀∗ or ∃∗, then any implicational relationship Φ |=DB Ψ between two of them is
equivalent to the universal validity of the sentence ¬Φ ∨Ψ which is in the Bernays-
Schönfinkel class. This restriction still allows to deal with queries of the positive ex-
istential relational calculus, semantic constraints like functional dependencies or join
dependencies, and, as we will indicate below, completeness tests needed to evaluate
open queries.
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The details of the logical reconstruction of the sketched relational submodel are pre-
sented in Section 2, together with a more general insight which is considered to be
important beyond the special application for controlled query evaluation:

– We prove a strong sufficient condition that for a fragment of first-order logic clas-
sical implication, finite implication, and implication w.r.t. to the class of interpreta-
tion adopted for controlled query evaluation all coincide, and are decidable.

1.7 Terminating Open Query Evaluation Under a Fixed Infinite Herbrand
Domain

Given the logical setting of a fixed infinite Herbrand domain, we can refine the evalu-
ation of an open query by means of a sequence of closed queries, ranging over all pos-
sible substitutions with constants from the domain. Clearly, we need to terminate after
trying a finite number of such substitutions. Therefore, we restrict the queries to safe
and domain-independent ones [1, 17]. Safe queries ensure finite query results. Domain-
independent queries return the same finite result for each reasonable actual domain of
the stored information system instance, including its finite active domain. Fortunately,
all queries of the positive existential relational calculus are domain-independent.

Additionally, we have to effectively recognize when the final query result has been
completely enumerated and no further substitutions have to be considered. We can
achieve this requirement by a simple completeness test. Basically, this test just asks
whether all further substitutions will make the query formula false. Using the syntac-
tical material of the previously considered substitutions, we can easily construct a cor-
responding closed query, i.e., a sentence of the logic. Moreover, this sentence fits the
imposed restrictions for ensuring the decidability of implications.

Completeness tests must be controlled like any other query in order to avoid harm-
ful inferences from the communicated answers. This issue is investigated in depth in
Section 4:

– We identify the simulation of an open query by a terminating finite sequence of
closed queries suitable to be transferred to controlled query evaluation.

– We complement the “last minute distortion” strategy enforcing confidentiality by a
“first chance distortion” strategy for terminating the simulation of open queries.

– We present controlled query evaluation methods for open queries based on lying
and on refusal, respectively, and prove these methods to be secure for all sequences
of queries whether they are closed or open.

2 A Relational Submodel with a Fixed Infinite Herbrand Domain
2.1 Logic Approach

Our previous work on controlled query evaluation [4, 5, 6, 7], has been based on a
generic logic-oriented, model-theoretic approach to information systems, in most cases
leaving open the choice of a concrete logic. In this paper we follow the previous work-
but adopt first-order predicate logic with equality, using it as a foundation for the re-
lational data model, in particular for the relational calculus as query language, see for
instance [1, 17].
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A complete information system maintains a schema and an instance. The schema DS
captures the vocabulary of the logic, here comprising a denumerably infinite set dom
of constants and a finite set of predicate names (relation names). An instance db is a
Herbrand interpretation which interprets the vocabulary of the logic, here the predicate
names, assuming that the constants are denoting themselves (see e.g. [22, 21]). Concern-
ing the domain, we take dom as a fixed infinite Herbrand domain. Furthermore, we only
consider instances db that can be represented by finite stored relations, containing—as
usual—the tuples that satisfy the corresponding predicate.

2.2 The Decidability Result

In this subsection, we formally define the notions introduced above, and we present
the decidability result announced in the introductory Section 1. For the sake of conve-
nience, we always identify an information system instance db with an interpretation I,
seen as a semantic concept of formal logic. As usual, we write I,σ |= ϕ to state that
formula ϕ is true in I when its free variables are interpreted according to the substitu-
tion σ . We denote by σ [x/v] the substitution that agrees with σ on all y �= x and maps
x on v. When the evaluation of ϕ does not depend on σ (e.g., when ϕ is a sentence) we
write I |= ϕ .

Let dom = {c1,c2, . . . ,ci, . . .} be a fixed infinite set (|dom| = ℵ0). In the following
we consider function-free first-order languages L where the set of constants can be any
finite subset of dom. Denote by dom(I) the domain of an interpretation I, and denote
by sI the interpretation of (predicate or constant) symbol s in I.

Definition 2.1. An interpretation I for L is a DB-interpretation (or DB-instance) iff
the following conditions hold:

1. dom(I) = dom,
2. pI is finite for all predicate symbols p in L ,
3. cI

i = ci for all constant symbols ci in L .

We study implication or entailment w.r.t. three different classes of interpretations:

Γ |=DB ϕ iff for all DB-interpretations I : I |= Γ implies I |= ϕ ;

Γ |= f in ϕ iff for all finite interpretations I : I |= Γ implies I |= ϕ ; and

Γ |=gen ϕ iff for all interpretations I : I |= Γ implies I |= ϕ .

Definition 2.2. The active domain of an interpretation I w.r.t. a formula ϕ , denoted by
activeϕ(I), is the set of all d ∈ dom(I) occurring in some tuple of pI, for some predicate
p in L , plus all cI such that c is a constant in ϕ . In symbols:

activeϕ(I) = {d | there exist d1, . . . ,dn, i < n,〈d1, . . . ,di,d,di+2, . . . ,dn〉 ∈ pI}
∪{cI | c ∈ const(ϕ)} ,
where const(ϕ) is the set of constants occurring in ϕ .

Definition 2.3. Let Outϕ(x) be a formula stating that x does not belong to the active
domain w.r.t. ϕ , e.g.,
∀y1 . . .∀ym.

∧
p
∧

1≤k<arity(p)¬p(y1, . . . ,yk,x,yk+2, . . . ,yarity(p))∧
∧

c∈const(ϕ)¬x = c ,
where m is the maximal arity of the predicates p.
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Definition 2.4. A first-order formula ϕ has nominal equality iff for all equalities t = u
occurring in ϕ , t is a variable and u is a constant. We also say that ϕ is a nominal
equality formula.

In order to prepare the main results of this section, we first state three lemmas. The
proofs of these lemmas are by structural induction and suppose w.l.o.g. that only the
minimal complete set of connectives ¬,∨ and ∃ is employed.

Lemma 2.1. Let ϕ be a nominal equality formula and let I be an interpretation. For
all c̄ ∈ dom(I) \ activeϕ(I), all substitutions σ , and all variables v such that σ(v) �∈
activeϕ(I): I,σ |= ϕ iff I,σ [v/c̄] |= ϕ .

Proof. Base case: ϕ is an atom. First assume ϕ is not an equality. If v does not exists or
v is not free in ϕ , then the lemma trivially holds. Otherwise, by definition of activeϕ (I),
I,σ �|= ϕ and I,σ [v/c̄] �|= ϕ . Now assume ϕ is an equality. Since ϕ has nominal equality,
ϕ is x = c j, for some variable x and some constant c j. As in the previous case, if v does
not exists or v is not free in ϕ , then the lemma trivially holds. Otherwise, note that c̄ �= cI

j

because cI
j ∈ activeϕ(I) by definition. Then I,σ �|= ϕ and I,σ [v/c̄] �|= ϕ .

Induction step: The induction cases for ¬,∨ follow immediately from the induction
hypothesis. Now suppose ϕ is ∃x.ψ . If x = v then the lemma holds trivially. Otherwise,
I,σ |= ϕ iff for some d, I,σ [x/d] |= ψ . By induction hypothesis, this is equivalent to

I,σ [x/d][v/c̄] |= ψ . (1)

Since σ [x/d][v/c̄] = σ [v/c̄][x/d], we have that (1) is equivalent to I,σ [v/c̄] |= ϕ . �

Lemma 2.2. Let ϕ be a nominal equality formula and let I be a DB-interpretation. For
all c̄ ∈ dom(I)\activeϕ (I) and all substitutions σ : I,σ |= ϕ iff J,τ |= ϕ , where J is the
restriction of I to activeϕ(I)∪{c̄}, and

τ(x) =
{

σ(x) if σ(x) ∈ activeϕ(I),
c̄ otherwise .

Proof. Base case: ϕ is an atom. First assume ϕ is not an equality, and its free variables
are x1, . . . ,xn . If all σ(xi) are in activeϕ(I), then τ(xi) = σ(xi) (1 ≤ i ≤ n), and the
lemma trivially holds. If some σ(xi) is not in activeϕ(I), then τ(xi) = c̄ �∈ activeϕ(J).
Then I,σ �|= ϕ and J,τ �|= ϕ . Now assume ϕ is an equality. Since ϕ has nominal equality,
ϕ is x = c j, for some variable x and some constant c j. As in the previous case, if all σ(xi)
are in activeϕ (I), then τ(xi) = σ(xi), and the lemma holds trivially. If some σ(xi) is not
in activeϕ(I), then τ(xi) = c̄ �∈ activeϕ(I). Note that c̄ �= c j because c j ∈ activeϕ (I).
Then I,σ �|= ϕ and J,τ �|= ϕ .

Induction step: The induction cases for ¬,∨ follow immediately from the induction
hypothesis. Now suppose ϕ is ∃x.ψ . If I,σ |= ϕ then for some ck, I,σ [x/ck] |= ψ . By
induction hypothesis, it follows that J,τ[x/c′] |= ψ , where

c′ =
{

ck if ck ∈ activeϕ(I),
c̄ otherwise .

Therefore J,τ |= ϕ . Conversely, if J,τ |= ϕ , then there exists ck ∈ activeϕ (I)∪{c̄} such
that J,τ[x/ck] |= ψ . By induction hypothesis, I,σ [x/ck] |= ψ , and hence I,σ |= ϕ . �
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Lemma 2.3. Let ϕ be a nominal equality formula and let J be a finite interpretation
such that J |= ∃x.Outϕ(x). Let f : dom(J)→ dom be any total, injective function such
that for all ci ∈ const(ϕ), f (cJ

i ) = ci. Let I be the DB-interpretation such that for all
predicates p, pI = {〈 f (d1), . . . , f (dn)〉 | 〈d1, . . . ,dn〉 ∈ pJ}. Then for all substitutions σ :
J,σ |= ϕ iff I,( f ◦σ) |= ϕ , where ( f ◦σ)(x) = f (σ(x)).

Proof. Base case: ϕ is an atom. The claim is an immediate consequence of the defini-
tions of I and f .

Induction step: The induction cases for ¬ and ∨ are immediate from the induction
hypothesis. Now assume that ϕ is ∃y.ψ . If J,σ |= ∃y.ψ , then there exists d ∈ dom(J)
such that J,σ [y/d] |= ψ . Note that f ◦ (σ [y/d]) = ( f ◦σ)[y/ f (d)]. Therefore, by induc-
tion hypothesis, I,( f ◦σ)[y/ f (d)] |= ψ , and hence I,( f ◦σ) |= ϕ .

Conversely, suppose that J,σ �|= ∃y.ψ . Then for all d ∈ dom(J), we have J,σ [y/d] �|=
ψ . It follows by induction hypothesis that

for all d ∈ dom(J), I,( f ◦σ)[y/ f (d)] �|= ψ . (2)

In order to complete the proof, it suffices to show that there is no ck ∈ dom outside the
range of f such that I,( f ◦σ)[y/ck] |= ψ . Suppose such a ck exists. Then, by Lemma 2.1,
I,( f ◦σ)[y/c̄] |= ψ , for all c̄ ∈ dom \ activeϕ(I). One such c̄ must belong to the range
of f , because J satisfies ∃x.Outϕ(x). This contradicts (2). �

Definition 2.5. For all formulae ϕ , let UNAϕ (the unique name assumption for ϕ) be
the following sentence:

∧
{ci �= c j | {ci,c j} ∈ const(ϕ) and i < j} .

Theorem 2.1. For all nominal equality formulae ϕ , the following are equivalent:

1. ϕ is satisfied by a DB-interpretation I;
2. ϕ is satisfied by a finite model J of ∃x.Outϕ(x) and UNAϕ .

Proof. Assume that statement 1 holds. Note that activeϕ (I) is finite. By Lemma 2.2,
there exists a finite restriction J of I satisfying ϕ , and such that dom(J) = activeϕ(I)∪
{c̄} where c̄ �∈ activeϕ (I) = activeϕ (J). This implies that J satisfies ∃x.Outϕ (x). More-
over, J satisfies UNAϕ because J is a restriction of I and I is a DB-interpretation. This
proves that statement 1 implies statement 2.

Now assume that statement 2 holds. Let f be any function satisfying the assump-
tions of Lemma 2.3. Note that such an f exists because J satisfies UNAϕ . Then, by
Lemma 2.3, ϕ is satisfied by a DB-interpretation I, i.e. statement 1 holds. �

In the following let ¬L = {¬ϕ | ϕ ∈L }.

Theorem 2.2. Let L be a fragment of first-order logic with nominal equality, closed
under ∨, enjoying the finite model property, and capable of expressing ¬∃x.Outϕ(x)
and ¬UNAϕ (up to logical equivalence) for all L -formulae ϕ . Then the restrictions to
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¬L ×L of the entailment relations |=gen, |=DB and |= f in are all decidable. Moreover,
for all ψ ∈ ¬L and all ϕ ∈L , the following are equivalent:

1. ψ |=DB ϕ;
2. ψ ∧∃x.Outϕ (x)∧UNAϕ |=gen ϕ;
3. ψ ∧∃x.Outϕ (x)∧UNAϕ |= f in ϕ .

Proof. Since L enjoys the finite model property, relations |=gen and |= f in are equivalent
and decidable over ¬L ×L . Morever, by Theorem 2.1, ψ |=DB ϕ is equivalent to ψ ∧
∃x.Outϕ(x)∧UNAϕ |= f in ϕ , provided that¬ψ and ϕ are in L , and that¬∃x.Outϕ(x) and
¬UNAϕ can be expressed in L . As a consequence, statements 1, 2, and 3 are mutually
equivalent. The decidability of |=DB over ¬L ×L follows from this equivalence. �
The above theorem applies in particular to the nominal equality subset of a fragment
derived from the Bernays-Schönfinkel class and of the guarded fragment. It applies also
to many description logics, including ALCIO with boolean role operators. Applying
the theorem for the Bernays-Schönfinkel class, we can still use the formulas for the
following items:

– a positive or a negative answer to a closed query of the positive existential calcu-
lus that allows to express conjunction, disjunction, and existential quantification
(equivalent to conjunctive queries with union, see [1], Thm. 5.4.10);

– a potential secret, expressed by the same kind of formulas,
– a semantic constraint declared as a full dependency, in particular a functional de-

pendency or a join dependency;
– arbitrary conjunctions and disjunctions of the items described before.

3 Formal Model for Controlled Query Evaluation

3.1 Ordinary Query Evaluation

We treat two kinds of queries, closed and open ones. A closed query is a sentence in the
restricted language. Given a DB-interpretation db (stored as a DB-instance with implicit
domain) and a suitable sentence Φ (issued as a closed query), Φ is either true (valid)
or false in db, or in other words, the interpretation is either a model of the sentence,
denoted by db |= Φ , or not. When a user issues a closed query Φ against the schema
DS, the (ordinary) query evaluation eval∗(Φ) determines the pertinent case w.r.t. the
current DB-instance db, or equivalently either Φ or its negation:

eval∗(Φ) : DS→℘{Φ,¬Φ} with
eval∗(Φ)(db) := if db |= Φ then {Φ} else {¬Φ}1 .

(3)

An open query is a formula in the restricted language that contains at least one (oc-
curence of a) free variable. Given a DB-interpretation db (stored as a DB-instance)
and formula Φ(x1, ...,xn) with free variables x1, ...,xn (issued as an open query), for

1 In the rest of the paper, by abuse of notations we will often identify the singleton sets with
their respective single elements.
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each substitution of x1, ...,xn by constants c1, ...,cn of the implicit domain, the resulting
sentence Φ(c1, ...,cn) is either true (valid) or false in db. When a user issues an open
query Φ(x1, ...,xn) against the schema DS, conceptually the (ordinary) query evaluation
eval∗(Φ(x1, ...,xn)) determines for all possible substitutions the pertinent case w.r.t. the
current DB-instance db and includes the result in the final output:

eval∗(Φ(x1, ...,xn)) : DS→℘{Ψ |Ψ is sentence in the logic} with
eval∗(Φ(x1, ...,xn))(db) :=
{ Φ(c1, ...,cn) | c1, ...,cn ∈ dom and db |= Φ(c1, ...,cn)} ∪
{¬Φ(c1, ...,cn) | c1, ...,cn ∈ dom and db �|= Φ(c1, ...,cn)} .

(4)

3.2 Generalized Controlled Query Evaluation

Controlled query evaluation consists of two steps. First, the correct answer is judged
by some censor and then, depending on the output of the censor, some modificator is
applied. For a visualization, refer to Table 1. In order to assist the censor, the system
maintains a user log, denoted by log, which represents the explicit part of the user’s
assumed knowledge. Formally, log is declared to be a set of sentences. The log is meant
to contain all the sentences that the user is assumed to hold true in the DB-instance,
in particular publicly known semantic constraints. Additionally, the log records the
sentences returned as answers to previous queries.

The censor bases its decisions on a confidentiality policy instance that is declared
as a set pot sec of sentences pot sec = {Ψ1, . . . ,Ψk}, formulated in the restricted lan-
guage, where each sentence is called a potential secret. A potential secret Ψ specifies
the following (refer to [5, 7] for further motivation): A user, knowing only the apriori
knowledge log0 and the answers returned so far (i.e. the current value of log), should not
be able to exclude that ¬Ψ is true in the actual DB-instance, or speaking otherwise, this
case should be possible for him. In this paper, we assume that the actual confidentiality
policy instance pot sec is known to the user.

Formally we will describe an approach to (generalized) controlled query evalua-
tion by a family of (possibly) partial functions gen con eval(Q, log0), each of which
has two parameters: a (possibly infinite) sequence of closed and open queries Q =
〈Φ1(x1,1, . . . ,x1,n1), . . . ,Φi(xi,1, . . . ,xi,ni), . . .〉, and an initial user log log0. The inputs
to any such function are “admissible” pairs (db, pot sec) where db is a DB-instance,
and pot sec is an instance of the confidentiality policy. The admissibility of an argu-
ment pair (db, pot sec) is determined by some formal precondition associated with the
function. The function returns an answer sequence to the user, and updates the user log
as a side effect.

The response to a query Φ(c1, ...,cn) might state that the censor required to refuse
to answer. We will denote this event by putting the string mumΦ(c1,...,cn) into the answer.
However, the system does not need to remember the refused parts of the answer (which
are implicitly handled by condition (a) in the definition of confidentiality below).

Summarizing in symbols,

gen con eval(Q, log0)(db,pot sec) = 〈(ans1, log1),(ans2, log2), . . . ,(ansi, logi), . . .〉 ,
where the side effect on the user log, including discarding refusals, is described by
logi := logi−1∪ mum removal(ansi) .
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Table 1. Architecture of generalized controlled query evaluation

Finally, a censor is formally described by a function with arguments of the form
(Ψ , log,db,pot sec), where Ψ is a sentence, i.e a closed query or a candidate sen-
tence to be put into the answer of an open query. The censor returns a value of the
set {pass,lie,refuse} for indicating the required action of the modificator.

Controlled query evaluation aims at preserving the potential secrets under all cir-
cumstances. This requirement is formally captured as follows.

Definition 3.1. Let gen con eval(Q, log0) describe a specific (generalized) controlled
query evaluation with precond as associated precondition for “admissible” arguments,
and pot sec be a “known2” policy instance.

gen con eval(Q, log0) is defined to preserve confidentiality with respect to pot sec
iff
for all finite prefixes Q′ of Q, for all DB-instances db1 of the information system such
that (db1,pot sec) satisfies precond, and for all Ψ ∈ pot sec,
there exists a DB-instance db2 such that (db2,pot sec) also satisfies precond and such
that the following properties hold:

(a) [same answers]
gen con eval(Q′, log0)(db1,pot sec) = gen con eval(Q′, log0)(db2,pot sec) ;

(b) [false potential secrets] eval∗(Ψ )(db2) = ¬Ψ .
More generally, gen con eval(Q, log0) is defined to preserve confidentiality iff it pre-

serves confidentiality with respect to all “admissible” policy instances.
2 This awareness assumption is formalized by fixing pot sec in part 1 of Definition 3.1 (whereas

the supposedly unknown DB-instance is varying).
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Table 2. Enforcement methods of lying and refusal, censors, and preconditions of controlled
query evaluation of closed queries under known potential secrets

enforcement informal question formal definition of
method to be decided censor and precondition

uniform lying
[10], [5–section 4]

adding the correct answer harmful
w.r.t. the disjunction of all potential
secrets?

censorps,known,L:
log∪ eval∗(Φ)(db) |=DB pot sec disj
with pot sec disj :=

∨
Ψ∈pot secΨ ;

preconditionps,known,L:
log0 �|=DB pot sec disj

uniform refusal
[5–section 3]

adding the correct or false answer
harmful w.r.t. any potential secret?

censorps,known,R:
(existsΨ ∈ pot sec)
[ log∪ eval∗(Φ)(db) |=DB Ψ or
log∪¬eval∗(Φ)(db) |=DB Ψ ] ;

preconditionps,known,R:
db |= log0 and
(for all Ψ ∈ pot sec) [ log0 �|=DB Ψ ]

Some assumptions are implicit in the definition: (i) the user may know the algorithm
of the controlled evaluation function, (ii) the user is rational, i.e., he derives nothing
besides what is implied by his knowledge and the behavior of the database.

3.3 Known Results on Closed Queries

Some known foundational work on controlled query evaluation of closed queries under
known potential secrets is summarized in Table 2. For more details the reader is referred
to the original presentations and the surveys given in [7]. In order to exploit the known
confidentiality claims, we have to verify that the corresponding proofs remain valid for
the settings we opt for in this paper. Basically, in these proofs we only use the follow-
ing properties of “logical implication”: transitivity, upwards monotonicity in the first
argument, downwards monotonicity in the second argument, and a basic consistency
lemma. This lemma says the following: If both Φ ∪{ϕ} |=DB Ψ and Φ ∪{¬ϕ} |=DB Ψ ,
then Φ |=DB Ψ . All these properties hold indeed for the adopted setting.

4 Open Queries Under Fixed Infinite Domain

4.1 Simulating Correct Query Evaluation

We can easily simulate the correct evaluation of an open query (i.e., without any con-
fidentiality check) by a finite sequence of closed queries, as explained in the following.
Let us suppose, that the query formula looks like Φ(x), where the x is a free variable3

3 For the sake of simplicity, we present all results assuming just one variable. The more general
case of n variables can be treated analogously.
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which ranges over the infinite set of constants dom taken as fixed domain. The ordinary
query evaluation basically returns all substitutions of x with an element of dom that
make the formula Φ(x) true in the stored DB-instance, more specifically the ground for-
mulas resulting from such substitutions. The simulation can effectively proceed roughly
as follows:

– Select an enumeration sequence of dom, and start the enumeration.
– In round j, for the currently enumerated substitution c j of x, submit the correspond-

ing closed query Φ(c j). If the answer is no then continue. Otherwise, output Φ(c j)
and either exit or continue according to a completeness test.

– The completeness test consists in asking whether all further substitutions will make
the formula false. Using the syntactic material of the previous substitutions, we can
easily construct such a closed query, denoted by Complete(Φ(x), j). This sentence
says: “For all x: if x is different from the substitutions c1, . . . ,c j considered so far,
then ¬Φ(x)”.

– On exit, as a closed-world statement, output Complete(Φ(x), j) together with the
ground formulas ¬Φ(ck) (k ≤ j) corresponding to negative answers.

By our assumptions, for a nonempty query result4 this simulation is guaranteed to
exit immediately after having enumerated all substitutions that actually make the query
formula true.

4.2 A Running Example

We will use the following items for a running example, or appropriate variants of it:

– Vocabulary: We have just one relation name P for a stored base relation and the set
of constants dom = {c1,c2,c3, ...}.

– DB-instance: The base relation contains just one tuple, representing that P(c1) is
true and all other sentences P(ci) for i �= 1 are false, i.e.,
db = {P(c1),¬P(c2),¬P(c3),¬P(c4), ...}.

– Open query: The user wants to know the state of the base relation, i.e., he submits
the open query P(x).

– Known confidentiality policy instance: We declare two potential secrets, namely the
elements of pot sec = {P(c1),¬P(c3)}.

– Initial user log: We suppose the semantic constraint that the base relation is non-
empty, i.e., that log0 = {(∃x)P(x)}.

Example 4.1. For correct query evalution, the simulation given above immediately ex-
its in round 1, after having output P(c1) together with Complete(P(x),1) as appropriate
closed world statement.

For any secure controlled query evalution, we can already make the following obser-
vations. Knowing a priori the semantic constraint, the user expects at least one positive
output. Moreover, being aware of the policy instance, the user expects to never see the
sentence P(c1) in the positive part of the answer, as well as to never see the sentence
¬P(c3) captured by the closed world statement.

4 In order to deal with an empty query result, we just have to add an initial completeness test in
a preparing round 0.
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4.3 Lying Method

We base our design of a lying method on the following features:

– We reuse the lying censor for closed queries under known potential secrets [5, 7].
This censor guarantees the invariant log �|=DB pot sec disj, where pot sec disj :=∨

Ψ∈pot secΨ , just by checking this condition after tentatively adding the correct
answer to the log.

– We use a fixed enumeration of the set dom of constants. This enumeration is sup-
posed to be known to the user.

– Though we are going to submit some completeness sentencesComplete(Φ(x), j) as
closed queries to the censor, as a fundamental design decision, we never explicitly
return a lied completeness sentence. Any other sentence can be distorted, but if a
completeness sentence is explicitly returned in the last round of controlled query
evaluation of an open query, then it should always be correct! Speaking otherwise:
we block this statement for lying in order to exit from the infinite enumeration of
the constants in a convincing way.

– However, before stopping the enumeration, we implicitly suggest statements of the
form ¬Complete(Φ(x), j). These suggestions can be lies.

– Simultanously blocking the final completeness sentence for lying and requiring to
exit the enumeration after finitely many rounds has a price: We possibly have to
distort other closed queries as some kind of “exit (enabling) lies”.

– These distortions reasonably follow a “first chance distortion” strategy.

We now propose a lying method for controlled query evalution of an open query
Φ(x) applied to a DB-instance db and a known policy instance pot sec:

1. Phase 1: [enumerate the domain up to round k such that
ck is the last constant that makes the open query Φ(x) true5 ]

(a) Let k := Min{i |Complete(Φ(x), i) is true in db};
(b) for j := 1 .. k:

treat Φ(c j) as closed query, i.e.,
if log∪ eval∗(Φ(c j)(db)) �|=DB pot sec disj
then [correct answer] add eval∗(Φ(c j))(db) to the answer set and to the log
else [lied answer] add ¬eval∗(Φ(c j))(db) to the answer set and to the log

2. Phase 2: [determine an “enumeration excess” for exiting: if needed, we further
enumerate the domain beyond the last element belonging to the correct answer, in
order to find suitable lies (those with the empty “literal sign”, see below) for exiting
with a true completeness statement.]
if (log∪{Complete(Φ(x),k)}) �|=DB pot sec disj
then

(a) determine l ≤ k such that
Φ(cl),¬Φ(cl+1), . . . ,¬Φ(ck) has been returned;
[ Φ(cl) is the last positive answer.]

5 For an empty query result, we set k := 0 in (a), and we skip (b).
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(b) remove ¬Φ(cl+1), . . . ,¬Φ(ck) from the answer set and from the log;
(c) add {Complete(Φ(x), l)} to the answer set and to the log;
(d) exit

else

(a) determine a nonempty “enumeration excess”, defined by
k + 1,k + 2, . . . , l with k < l and
“literal signs” ¬k+1,¬k+2, . . . ,¬l−1 being either “¬” or empty
such that
(log∪{¬k+1Φ(ck+1),¬k+2Φ(ck+2), . . . ,Φ(cl)}∪{Complete(Φ(x), l)})
�|=DB pot sec disj;

(b) add {¬k+1Φ(ck+1),¬k+2Φ(ck+2), . . . ,Φ(cl)}∪{Complete(Φ(x), l)}
to the answer set and to the log;
[Note that the last element Φ(cl) is a lie.]

(c) exit.

Theorem 4.1. The lying method for controlled query evaluation of open queries always
terminates, i.e., in Phase 2 an “enumeration excess” is always guaranteed to exist.

Proof. (Sketch) Let logk denote the result of Phase 1. If logk ∪{Complete(Φ(x),k)}
�|=DB pot sec disj, then we have an empty “enumeration excess”.

Otherwise, since logk satisfies the invariant and by the basic consistency lemma,

logk ∪{¬Complete(Φ(x),k)} �|=DB pot sec disj . (5)

Hence there exists a witness DB-instance dbenum−ex for (5), i.e.,

(1) dbenum−ex |= logk ∪{¬Complete(Φ(x),k)} and
(2) not dbenum−ex |= pot sec disj.

According to the first property, there exists l ≥ k + 1 with dbenum−ex |= Φ(cl). Con-
sider a maximal such l, which exists according to the definition of DB-instances. Then
the “enumeration excess” can be built from

{eval∗(Φ(ck+1))(dbenum−ex), ...,eval∗(Φ(cl))(dbenum−ex)} . �

Theorem 4.2. The lying method for controlled query evaluation of open queries,
adding any enumeration excess, preserves confidentiality.

Proof. (Sketch) By construction, the “final log” does not imply the disjunction of all
potential secrets. Take any DB-instance db2 such that

(1) db2 |= “final log” and
(2) not db2 |= Ψ , for all Ψ ∈ pot sec.

db2 produces the same result as the original db, thereby generating an empty “enu-
meration excess”:

For db2, Phase 1 runs until round l, as determined by Phase 2 for the original db.
Then, (in Phase 2 for db2) only the statement Complete(Φ(x), l) is added. �
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The theorems on termination and preservation of confidentiality indicate that a se-
curity administrator has some options to direct the distortions that may be necessary
for securely returning a correct completeness sentence. As an example, the adminis-
trator might try to keep the enumeration excess minimal. Another example might be
that the administrator prefers a specific “witness DB-instance” to construct an enumer-
ations excess, say for blocking or pushing some closed sentences on his discretion, or
for efficiency reasons.

Example 4.2. For our running example, we get pot sec disj = P(c1)∨¬P(c3) and k = 1.
In round 1, we find in Phase 1 that log0∪ eval∗(P(c1))(db)⊇{P(c1)} |=DB pot sec disj,
and thus the lie {¬{P(c1)} is added to the answer set and the log, i.e., log1 = {(∃x)P(x),
¬P(c1)}. Concerning Phase 2, we can make two observations. First, Complete(P(x),1)
|=DB ¬P(c3) and thus also Complete(P(x),1) |=DB pot sec disj. Second, log1 ∪
{Complete(P(x),1)} would be equivalent to {(∃x)P(x),(∀x)¬P(x)} and thus incon-
sistent. Each of the observations alone already show the need for determining an enu-
meration excess. A minimal enumeration excess extends to the next two rounds 2 and
3, yielding {¬P(c2),P(c3),Complete(P(x),3)}. Then the final answer set is {¬{P(c1),
¬P(c2),P(c3),Complete(P(x),3)}.

4.4 Refusal Method

We base our design of a refusal method on the following features:

– We reuse the refusal censor for closed queries under known potential secrets [5, 7].
This censor guarantees the invariant log �|=DB Ψ , for all Ψ ∈ pot sec, by checking
the following condition for the query Φ:
for all Ψ ∈ pot sec : log∪{Φ} �|=DB Ψ and log∪{¬Φ} �|=DB Ψ .

– We use a fixed enumeration of the set dom of constants. This enumeration is sup-
posed to be known to the user.

– We return explicit answers up to some round k in the enumeration and, if possible,
additionally a correct completeness sentence Complete(Φ(x),k).

– In each considered round j, we submit also the completeness sentence
Complete(Φ(x), j) as a closed query to the censor. There might be two cases.
The good case is that the censor allows to return the truth value of the completeness
sentence, and accordingly we do so. If the completeness sentence is true, then we
exit; otherwise we continue the enumeration with j + 1.
The bad case is that the censor forbids to return the truth value of the completeness
sentence. Then we refuse on the completeness sentence and immediately exit.

– The immediate exit in the bad case is justified by the observation that for one of
the two possible reasons for refusal all further closed queries would be refused,
too.

We now propose a refusal method for controlled query evalution of an open query
Φ(x) applied to a DB-instance db and a known policy instance pot sec:
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1. j := 1;
2. loop [enumerate the domain: in each round, submit first the current closed query

and then the current completeness sentence to the censor]
[submit the current closed query Φ(c j) to the censor]
if for all Ψ ∈ pot sec : log∪{Φ(c j)} �|=DB Ψ and log∪{¬Φ(c j)} �|=DB Ψ
then [correct answer] add eval∗(Φ(c j))(db) to the answer set and to the log
else [refused answer] add mumΦ(c j) to the answer set;

[submit the current completeness sentence to the censor]
if for all Ψ ∈ pot sec:

log∪{Complete(Φ(x), j)} �|=DB Ψ and log∪{¬Complete(Φ(x), j)} �|=DB Ψ
then

if Complete(Φ(x), j) is true in db
then

(i) add {Complete(Φ(x), j)} to the answer set and to the log;
(ii) exit

else [if Complete(Φ(x), j) is false in db]
(i) add {¬Complete(Φ(x), j)} to the answer set and to the log ;
(ii) j := j + 1 [continue the enumeration]

else
(i) add {mumComplete(Φ , j)} to the answer set;
(ii) exit

endloop.

The method always terminates by construction.

Theorem 4.3. The refusal method for controlled query evaluation of open queries pre-
serves confidentiality.

Proof. (Sketch) Consider any Ψ ∈ pot sec. By construction, the “final log” does not
imply Ψ . Take any DB-instance db2 such that

(1) db2 |= “final log” and
(2) db2 |= ¬Ψ .

We claim that db2 produces the same result as the original db. The proof is by in-
duction on the enumeration. Initially, the algorithm is started for db and db2 with the
same log0. For step j, by induction hypothesis, the current log is the same for db and
db2. Thus, the instance independent refusal censor treats both the current closed query
Φ(c j) and the current completeness statement Complete(Φ(x), j) for db and db2 the
same. So we are left with checking the situation that the censor allows to return the truth
value of the completeness statement.

Case 1: Complete(Φ(x), j) is true in db. Then this statement is added to the log of
db, and thus the statement is true in db2, according to the construction of db2.

Case 2: Complete(Φ(x), j) is false in db. Then ¬Complete(Φ(x), j) is added to the
log of db, and thus the latter statement is true in db2, according to the construction of
db2. Hence Complete(Φ(x), j) is false in db2. �
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Example 4.3. For our running example, in round 1 we find first that log0 ∪
eval∗(P(c1))(db) ⊇ {P(c1)} |=DB P(c1), and thus the refusal mumP(c1) is added to the
answer set. Then we find that Complete(P(x),1) |=DB ¬P(c3) and thus the refusal
mumComplete(P(x),1) is added to the answer set, and an immediate exit results.

More generally, we observe that the method always immediately exists if we have a
negative potential secret ¬P(c j) with 1 < j, since Complete(P(x),1) |=DB ¬P(c j).

Example 4.4. If we had a variant of the running example with only pot sec = {P(c1)},
then also mumP(c1) and mumComplete(P(x),1) would be returned. The latter claim holds since
{(∃x)P(x),Complete(P(x),1)} |=DB P(c1). Again, an immediate exit occurs.

Example 4.5. Consider now another variant with the base relation containing P(c1) and
also P(c3), i.e., db = {P(c1),¬P(c2),P(c3),¬P(c4), ...} and pot sec = {P(c3)}. In the
first two rounds, the correct answers P(c1) and ¬P(c2) are returned. In round 3, the re-
fusal mumP(c3) is due. Since {(∃x)P(x),P(c1),¬Complete(P(x),1),¬P(c2),¬Complete
(P(x),2), Complete(P(x),3)} |=DB P(c3), the refusal mumComplete(P(x),3) is returned, and
the method exits.

A first partial justification for the immediate exit on a refused completeness statement
can be based on the following observation: If the refusal method exits with a refusal on
the current completeness statement due to detecting that

log∪{¬Complete(Φ(x), j)} |=DB Ψ , for some Ψ ∈ pot sec ,

then all further (suppressed) considerations of closed query instances would result in
refusals.

The method illustrated above follows the heuristics for refusals that proved to be
necessary in the old framework to preserve confidentiality. So far, we do not have a full
analysis of the variant in which the algorithm exits only when

log∪{Complete(Φ(x), j)} |=DB Ψ , for some Ψ ∈ pot sec .

5 Conclusions, Further Research, and Related Work

Assuming an abstract logic-oriented setting, previous conceptual work has demon-
strated how sequences of closed queries can be evaluated in a controlled way such
that the sentences of a specified confidentiality policy instance can be kept secret. This
paper identifies a concrete and practically relevant relational submodel, where all DB-
instances share a fixed infinite Herbrand domain, and proves that for an interesting class
of fragments of first-order logic, reasoning with DB-instances is equivalent both to clas-
sical entailment and to finite model reasoning. Consequently, we obtain a fairly general
extension of standard decidability results to the class of DB-interpretations, that in this
paper’s examples is applied to the Bernays-Schönfinkel fragment.

As a further contribution, the paper shows how the controlled evaluation approaches
based on lies and refusals can be extended to open queries. For an open query, a user
always expects a finite query answer together with a completeness sentence as a closed
world statement. However, such a completeness sentence might violate the confiden-
tiality policy. The solutions we proposed can be roughly summarized as follows. For



Controlled Query Evaluation with Open Queries 61

uniform lying, we can always return a correct and confidentiality preserving complete-
ness sentence (that may be left implicit in real implementations). For uniform refusal, in
order to preserve confidentiality we might be forced to abort the evaluation and refuse
the completeness sentence. For example, this unfortunate behavior occurs if the policy
instance requires to protect negative facts. There are various topics for further research,
including the following ones.

Combined method for open queries: Our attempts to extend the combined control
method to open queries along the lines studied in this paper failed so far. This is the
second time we find difficulties in extending the combined method, see [7].

The sequence problem: The behavior of controlled query evaluation depends on the
order in which closed queries are evaluated. This feature stems from the “last minute
distortion” strategy. As a consequence, the answers to an open query are not uniquely
determined by the DB-instance, from the point of view of a user who does not know
the actual enumeration sequence. However, for our reasoning about security, we have
assumed a fixed enumeration, made public and thus known by the (adversary) user.

A generic alternative enforcement method: Our methods aim at considering com-
pleteness sentences as late as possible, in order to avoid early blocking of answer gen-
eration. As an alternative, at the price of cooperativeness, we might employ a simple
generic method that examines an appropriately determined completeness sentence right
at the beginning and only subsequently uses any of the methods for closed queries to
inspect the ordinary query result.

Alternative policy models: We adopted the model of “known potential secrets”. We
would like to extend our results to the alternative variants, discussed and surveyed in
[7], thereby investigating the “naive reduction” of secrecies to potential secrets, and the
impact of weakening the awareness assumption into “unknown policy instance”.

Incomplete information systems: The foundational work has been extended to deal
with incomplete information systems as well, where a valid response to a query mightbe
“query answer unknown” [8, 9]. The third alternative for correct answers demands a
proof-theoretic approach, but provides additional flexibility for distortions. We would
like to exploit the relational setting of this paper for queries to incomplete informations.

Less restricted relational submodels: The model adopted in Section 2 defines the
needed restrictions of first-order logic in terms of prefixes of prenex normal forms. Our
decidability result also applies to recent work on “guarded fragments” [19, 3] and thus
suggests a way to achieve stronger expressiveness.

Foundation of inference control: Controlled query evaluation is part of a larger re-
search field, known as inference control, see [18] for a recent introduction. Major con-
tributions deal with relational databases, e.g. [11, 12, 13, 14, 15, 24, 25]. Unfortunately,
there is no obvious and agreed model to systematically compare the relative achieve-
ments. We suggest to exploit the model outlined in Section 2 for this purpose.
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Abstract. We present here a formal foundation for an iterative and in-
cremental approach to constructing and evaluating preference queries.
Our main focus is on query modification: a query transformation ap-
proach which works by revising the preference relation in the query. We
provide a detailed analysis of the cases where the order-theoretic proper-
ties of the preference relation are preserved by the revision. We consider
a number of different revision operators: union, prioritized and Pareto
composition. We also formulate algebraic laws that enable incremental
evaluation of preference queries.

1 Introduction

The notion of preference is common in various contexts involving decision or
choice. Classical utility theory [10] views preferences as binary relations. This
view has recently been adopted in database research [7, 8, 20, 22], where pref-
erence relations are used in formulating preference queries. In AI, various ap-
proaches to compact specification of preferences have been explored [6]. The
semantics underlying such approaches typically relies on preference relations be-
tween worlds.

Preferences can be embedded into database query languages in several differ-
ent ways. First, [7, 8, 20, 22] propose to introduce a special operator “find all the
most preferred tuples according to a given preference relation.” This operator is
called winnow in [7, 8]. A special case of winnow is called skyline [5] and has
been recently extensively studied [25, 3]. Second, [1, 17] assume that preference
relations are defined using numeric utility functions and queries return tuples or-
dered by the values of a supplied utility function. It is well-known that numeric
utility functions cannot represent all strict partial orders [10], not even those
that occur in database applications in a natural way [8]. For example, utility
functions cannot capture skylines. Also, ordered relations go beyond the clas-
sical relational model of data. The evaluation and optimization of queries over
such relations requires significant changes to relational query processors and op-
timizers [18]. On the other hand, winnow can be seamlessly combined with any
relational operators.
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We adopt here the first approach, based on winnow, within the preference
query framework of [8] (a similar model was described in [20]). In this framework,
preference relations between tuples are defined by first-order logical formulas.

Example 1. Consider the relation Car(Make, Y ear) and the following prefer-
ence relation !C1 between Car tuples:

within each make, prefer a more recent car,

which can be defined as follows:

(m, y) !C1 (m′, y′) ≡ m = m′ ∧ y > y′.

The winnow operator ωC1 returns for every make the most recent car available.
Consider the instance r1 of Car in Figure 1a. The set of tuples ωC1(r1) is shown
in Figure 1b.

Make Year
t1 VW 2002
t2 VW 1997
t3 Kia 1997

(a)

Make Year
t1 VW 2002
t3 Kia 1997

(b)

Fig. 1. (a) The Car relation; (b) Winnow result

In this paper, we focus on preference queries of the form ω�(R), consisting of a
single occurrence of winnow. Here ! is a preference relation (typically defined by
a formula), and R is a database relation. The relation R represents the space of
possible choices. We also briefly discuss how our results can be applied to more
general preference queries.

Past work on preference queries has made the assumption that preferences
are static. However, this assumption is often not satisfied. User preferences
change, sometimes as a direct consequence of evaluating a preference query.
Therefore, we view preference querying as a dynamic, iterative process. The
user submits a query and inspects the result. The result may be satisfactory,
in which case the querying process terminates. Or, the result may be too large
or too small, contain unexpected answers, or fail to contain expected answers.
If the user is not satisfied with the query result, she has several further
options:

Modify and resubmit the query. This is appropriate if the user decides to refine
or change her preferences. For example, the user may have started with a partial
or vague concept of her preferences [26]. We consider here query modification
consisting of revising the preference relation !, although, of course, more general
transformations may also be envisioned.

Update the database. This is appropriate if the user discovers that there are more
(or fewer) possible choices than originally envisioned. For example, in comparison
shopping the user may have discovered a new source of relevant data.
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In this context we pursue the following research challenges:

Defining a repertoire of suitable preference relation revisions. In this work, we
consider revisions obtained by composing the original preference relation with a
new preference relation, and transitively closing the result (to guarantee tran-
sitivity). We study different composition operators: union, and prioritized and
Pareto composition. Those operators represent several basic ways of combining
preferences and have already been incorporated into preference query languages
[8, 20]. The operators reflect different user attitudes towards preference conflicts.
(A conflict is, intuitively, a situation in which two preference relations order
the same pair of tuples differently.) Union ignores conflicts (and thus such con-
flicts need to be prevented if we want to obtain a preference relation which is a
strict partial order). Prioritized composition resolves preference conflicts by con-
sistently giving priority to one of the preference relations. Pareto composition
resolves conflicts in a symmetric way. We emphasize that revision is done using
composition because we want the revised preference relation to be uniquely de-
fined in the same first-order language as the original preference relation. Clearly,
the revision repertoire that we study in this paper does not exhaust all mean-
ingful scenarios. One can also imagine approaches where axiomatic properties of
preference revisions are studied, as in belief revision [13].

Identifying essential properties of preference revisions. We claim that revisions
should preserve the order-theoretic properties of the original preference relations.
For example, if we start with a preference relation which is a strict partial or-
der, the revised relation should also have those properties. This motivates, among
others, transitively closing preference relations to guarantee transitivity. Preserv-
ing order-theoretic properties of preference relations is particularly important in
view of the iterative construction of preference queries where the output of a
revision can serve as the input to another one. We study both necessary and suf-
ficient conditions on the original and revising preference relations that yield the
preservation of their order-theoretic properties. Necessary conditions are con-
nected with the absence of preference conflicts. However, such conditions are
typically not sufficient and stronger assumptions about the preference relations
need to be made. Somewhat surprisingly, a special class of strict partial orders,
interval orders, plays an important role in this context. The conditional preser-
vation results we establish in this paper supplement those in [8, 20] and may be
used in other contexts where preference relations are composed, for example in
the implementation of preference query languages. Another desirable property
of revisions is minimality in some well-defined sense. We define minimality in
terms of symmetric difference of preference relations but there are clearly other
possibilities.

Incremental evaluation of preference queries. At each point of the interaction
with the user, the results of evaluating previous versions of the given prefer-
ence query are available. Therefore, they can be used to make the evaluation of
the current query more efficient. For both the preference revision and database
update scenarios, we formulate algebraic laws that validate new query evalua-
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tion plans that use materialized results of past query evaluations. The laws use
order-theoretic properties of preference relations in an essential way.

Example 2. Consider Example 1. Seeing the result of the query ωC1(r1), a user
may realize that the preference relation !C1 is not quite what she had in mind.
The result of the query may contain some unexpected or unwanted tuples, for
example t3. Thus the preference relation needs to be modified, for example by
revising it with the following preference relation !C2 :

(m, y) !C2 (m′, y′) ≡ m = ′′VW′′ ∧m′ �= ′′VW′′ ∧ y = y′.

As there are no conflicts between !C1 and !C2 , the user chooses union as the
composition operator. However, to guarantee transitivity of the resulting prefer-
ence relation, !C1 ∪ !C2 has to be transitively closed. So the revised relation is
!C∗≡ TC(!C1 ∪ !C2). (The explicit definition of !C∗ is given in Example 6.)
The tuple t3 is now dominated by t2 (i.e., t2 !C∗ t3) and will not be returned
to the user.

The plan of the paper is as follows. In Section 2, we define the basic notions.
In Section 3, we introduce preference revision. In Section 4, we discuss query
modification and the preservation by revisions of order-theoretic properties of
preference relations. In Section 5, we discuss incremental evaluation of preference
queries in the context of query modification and database updates. In Section 6,
we consider finite restrictions of preference relations. We briefly discuss related
work in Section 7 and conclude in Section 8. Some proofs are outlined. The
remaining results can be proved by exhaustive case analysis.

2 Basic Notions

We are working in the context of the relational model of data. Relation schemas
consist of finite sets of attributes. For concreteness, we consider two infinite,
countable domains: D (uninterpreted constants, for readability shown as strings)
and Q (rational numbers), but our results, except where explicitly indicated,
hold also for finite domains. We assume that database instances are finite sets
of tuples. Additionally, we have the standard built-in predicates.

2.1 Preference Relations

We adopt here the framework of [8].

Definition 1. Given a relation schema R(A1 · · ·Ak) such that Ui, 1 ≤ i ≤ k,
is the domain (either D or Q) of the attribute Ai, a relation ! is a preference
relation over R if it is a subset of (U1 × · · · × Uk)× (U1 × · · · × Uk).

Although we assume that database instances are finite, in the presence of infinite
domains preference relations can be infinite.

Typical properties of a preference relation ! include [10]:
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– irreflexivity: ∀x. x �! x;
– transitivity: ∀x, y, z. (x ! y ∧ y ! z)⇒ x ! z;
– negative transitivity: ∀x, y, z. (x �! y ∧ y �! z)⇒ x �! z;
– connectivity: ∀x, y. x ! y ∨ y ! x ∨ x = y;
– strict partial order (SPO) if ! is irreflexive and transitive;
– interval order (IO) [11] if ! is an SPO and satisfies the condition

∀x, y, z, w. (x ! y ∧ z ! w) ⇒ (x ! w ∨ z ! y);

– weak order (WO) if ! is a negatively transitive SPO;
– total order if ! is a connected SPO.

Every total order is a WO; every WO is an IO.

Definition 2. A preference formula (pf) C(t1, t2) is a first-order formula defin-
ing a preference relation !C in the standard sense, namely

t1 !C t2 iff C(t1, t2).

An intrinsic preference formula (ipf) is a preference formula that uses only built-
in predicates.

By using the notation !C for a preference relation, we assume that there is an
underlying pf C. Occasionally, we will limit our attention to ipfs consisting of the
following two kinds of atomic formulas (assuming we have two kinds of variables:
D-variables and Q-variables):

– equality constraints: x = y, x �= y, x = c, or x �= c, where x and y are
D-variables, and c is an uninterpreted constant;

– rational-order constraints: xλy or xλc, where λ ∈ {=, �=, <,>,≤,≥}, x and
y are Q-variables, and c is a rational number.

An ipf all of whose atomic formulas are equality (resp. rational-order) con-
straints will be called an equality (resp. rational-order) ipf. If both equality and
rational-order constraints are allowed in a formula, the formula will be called
equality/rational-order. Clearly, ipfs are a special case of general constraints
[23, 19], and define fixed, although possibly infinite, relations.

Proposition 1. Satisfiability of quantifier-free equality/rational-order formulas
is in NP.

Proof. Satisfiability of conjunctions of atomic equality/rational-order constraints
can be checked in linear time [15]. In an arbitrary quantifier-free equality/
rational-order formula negation can be eliminated. Then in every disjunction
one needs to nondeterministically select one disjunct, ultimately obtaining a
conjunction of atomic constraints.

Proposition 1 implies that all the properties that can be polynomially reduced to
validity of equality/rational-order formulas, for example all the order-theoretic
properties listed above, can be decided in co-NP.
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Every preference relation ! generates an indifference relation ∼: two tuples
t1 and t2 are indifferent (t1 ∼ t2) if neither is preferred to the other one, i.e.,
t1 �! t2 and t2 �! t1. We denote by ∼C the indifference relation generated by !C .

Composite preference relations are defined from simpler ones using logical con-
nectives. We focus on the following basic ways of composing preference relations
over the same schema:

– union: t1 (!1 ∪ !2) t2 iff t1 !1 t2 ∨ t1 !2 t2;
– prioritized composition: t1 (!1 �!2) t2 iff t1 !1 t2 ∨ (t2 �!1 t1 ∧ t1 !2 t2);
– Pareto composition:

t1 (!1 ⊗!2) t2 iff (t1 !1 t2 ∧ t2 �!2 t1) ∨ (t1 !2 t2 ∧ t2 �!1 t1).

We will use the above composition operators to construct revisions of given
preference relations. We also consider transitive closure:

Definition 3. The transitive closure of a preference relation ! over a relation
schema R is a preference relation TC(!) over R defined as:

(t1, t2) ∈ TC(!) iff t1 !n t2 for some n > 0,

where:
t1 !1 t2 ≡ t1 ! t2
t1 !n+1 t2 ≡ ∃t3. t1 ! t3 ∧ t3 !n t2.

Clearly, in general Definition 3 leads to infinite formulas. However, in the cases
that we consider in this paper the preference relation !C∗ will in fact be defined
by a finite formula.

Proposition 2. Transitive closure of every preference relation defined by an
equality/rational-order ipf is an ipf of at most exponential size, which can be
computed in exponential time.

Proof. This is because transitive closure can be expressed in Datalog and the
evaluation of Datalog programs over equality and rational-order constraints ter-
minates in exponential time (combined complexity) [19].

In the cases mentioned above, the transitive closure of a given preference relation
is a relation definable in the signature of the preference formula. But clearly
transitive closure itself, unlike union and prioritized or Pareto composition, is
not a first-order definable operator.

2.2 Winnow

We define now an algebraic operator that picks from a given relation the set of
the most preferred tuples, according to a given preference relation.

Definition 4. [8] If R is a relation schema and ! a preference relation over R,
then the winnow operator is written as ω�(R), and for every instance r of R:

ω�(r) = {t ∈ r | ¬∃t′ ∈ r. t′ ! t}.
If a preference relation is defined using a pf C, we write simply ωC instead of
ω�C . A preference query is a relational algebra query containing at least one
occurrence of the winnow operator.
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3 Preference Revisions

The basic setting is as follows: We have an original preference relation ! and
revise it with a revising preference relation !0 to obtain a revised preference
relation !′. We also call !′ a revision of !. We assume that !, !0, and !′ are
preference relations over the same schema, and that all of them satisfy at least
the properties of SPOs.

In our setting, a revision is obtained by composing ! with !0 using union,
prioritized or Pareto composition, and transitively closing the result (if necessary
to obtain transitivity). However, we formulate some properties, like minimality
or compatibility, in more general terms.

To define minimality, we order revisions using the symmetric difference ($).

Definition 5. Assume !1 and !2 are two revisions of a preference relation
! with a preference relation !0. We say that !1 is closer than !2 to ! if
!1$! ⊂ !2$!.

For finite domains and SPOs, the closeness order defined above concides with
the order based on the partial-order distance [4] of the revision to the original
relation !.

To further describe the behavior of revisions, we define several kinds of pref-
erence conflicts. The intuition here is to characterize those conflicts that, when
eliminated by prioritized or Pareto composition, reappear if the resulting pref-
erence relation is closed by transitivity.

Definition 6. A 0-conflict between a preference relation ! and a preference
relation !0 is a pair (t1, t2) such that t1 !0 t2 and t2 ! t1. A 1-conflict between
! and !0 is a pair (t1, t2) such that t1 !0 t2 and there exist s1, . . . sk, k ≥ 1,
such that t2 ! s1 ! · · · ! sk ! t1 and t1 �!0 sk �!0 · · · �!0 s1 �!0 t2. A 2-conflict
between ! and !0 is a pair (t1, t2) such that there exist s1, . . . , sk, k ≥ 1 and
w1, . . . , wm, m ≥ 1, such that t2 ! s1 ! · · · ! sk ! t1, t1 �!0 sk �!0 · · · �!0 s1 �!0
t2, t1 !0 w1 !0 · · · !0 wm ! t2, and t2 �! wm �! · · · �! w1 �! t1.

A 1-conflict is a 0-conflict if ! is an SPO, but not necessarily vice versa. A
2-conflict is a 1-conflict if !0 is an SPO. The different kinds of conflicts are
pictured in Figures 2 and 3 (!̄ denotes the complement of !).

Example 3. If !0= {(a, b)} and != {(b, a)}, then (a, b) is a 0-conflict which is
not a 1-conflict. If we add (b, c) and (c, a) to !, then the conflict becomes a
1-conflict (s1 = c). If we further add (c, b) or (a, c) to !0, then the conflict is
not a 1-conflict anymore. On the other hand, if we add (a, d) and (d, b) to !0
instead, then we obtain a 2-conflict.

We assume here that the preference relations ! and !0 are SPOs. If !′=
TC(!∪!0), then for every 0-conflict between ! and !0, we still obviously
have t1 !′ t2 and t2 !′ t1. Therefore, we say that the union does not resolve
any conflicts. On the other hand, if !′= TC(!0 �!), then for each 0-conflict
(t1, t2), t1 !0 �! t2 and ¬(t2 !0 �! t1). In the case of 1-conflicts, we get again
t1 !′ t2 and t2 !′ t1. But in the case where a 0-conflict is not a 1-conflict, we get
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t1 t2

�0

≺

(a)

t1 t2

sk s1

. . .

�0

≺, �̄0 ≺, �̄0

(b)

Fig. 2. (a) 0-conflict; (b) 1-conflict

t1 t2

w1 wm

. . .

sk s1

. . .

�0, ≺̄ �0, ≺̄

≺, �̄0 ≺, �̄0

Fig. 3. 2-conflict

only t1 !′ t2. Thus we say that prioritized composition resolves those 0-conflicts
that are not 1-conflicts. Finally, if !′= TC(!⊗!0), then for each 1-conflict
(t1, t2), ¬(t1 !⊗!0 t2) and ¬(t2 !⊗!0 t1). We get t1 !′ t2 and t2 !′ t1 if the
conflict is a 2-conflict, but if it is not, we obtain only t2 !′ t1. Thus we say
that Pareto composition resolves those 1-conflicts that are not 2-conflicts.

We now characterize those combinations of ! and !0 that avoid different
kinds of conflicts.

Definition 7. A preference relation ! is i-compatible(i = 0, 1, 2) with a pref-
erence relation !0 if there are no i-conflicts between ! and !0.

0- and 2- compatibility are symmetric. 1-compatibility is not necessarily sym-
metric. For SPOs, 0-compatibility implies 1-compatibility and 1-compatibility
implies 2-compatibility. Examples 1 and 2 show a pair of 0-compatible relations.
0-compatibility of ! and !0 does not require the acyclicity of ! ∪ !0 or that
one of the following hold: ! ⊆ !0, !0 ⊆ !, or ! ∩ !0 = ∅.

Propositions 1 and 2 imply that all the variants of compatibility defined above
are decidable for equality/rational order ipfs. For example, 1-compatibility is
expressed by the condition !−1

0 ∩TC(!−!−1
0 ) = ∅ where !−1

0 is the inverse
of the preference relation !0.

0-compatibility of ! and !0 is a necessary condition for TC(!∪!0) to be
irreflexive, and thus an SPO. Similar considerations apply to TC(!0 �!) and 1-
compatibility, and TC(!⊗!0) and 2-compatibility. In the next section, we will
see that those conditions are not sufficient: further restrictions on the preference
relations will be introduced.

We conclude by noting that in the absence of conflicts all three notions of
preference composition coincide.

Lemma 1. For every 0-compatible preference relations ! and !0:

!0 ∪ ! = !0 �! = !0 ⊗!
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4 Query Modification

In this section, we study preference query modification. A given preference query
ω�(R) is transformed to the query ω�′(R) where !′ is obtained by composing
the original preference relation ! with the revising preference relation !0, and
transitively closing the result. (The last step is clearly unnecessary if the obtained
preference relation is already transitive.) We want !′ to satisfy the same order-
theoretic properties as ! and !0, and to be minimally different from !. To
achieve those goals, we impose additional conditions on ! and !0.

For every θ ∈ {∪,�,⊗}, we consider the order-theoretic properties of the pref-
erence relation !′ = !0 θ !, or !′ = TC(!0 θ !) if !0 θ ! is not guaranteed
to be transitive. To ensure that this preference relation is an SPO, only irreflex-
ivity has to be guaranteed; for weak orders one has also to establish negative
transitivity.

4.1 Strict Partial Orders

SPOs have several important properties from the user’s point of view, and thus
their preservation is desirable. For instance, all the preference relations defined in
[20] and in the language Preference SQL [22] are SPOs. Moreover, if ! is an SPO,
then the winnow ω�(r) is nonempty if (a finite) r is nonempty. The fundamental
algorithms for computing winnow require that the preference relation be an
SPO [8]. Also, in that case incremental evaluation of preference queries becomes
possible (Proposition 4 and Theorem 7).

Theorem 1. For every 0-compatible preference relations ! and !0 such that
one is an interval order (IO) and the other an SPO, the preference relation
TC(!0 θ !), where θ ∈ {∪,�,⊗}, is an SPO. Additionally, if the IO is a WO,
then TC(!0 θ !) =!0 θ !.

Proof. By Lemma 1, 0-compatibility implies that !0 ∪ ! = !0 � ! = !0 ⊗ !.
Thus, WLOG we consider only union. Assume !0 is an IO. If TC(! ∪!0) is not
irreflexive, then ! ∪!0 has a cycle. Consider such cycle of minimum length. It
consists of edges that are alternately labeled !0 (only) and ! (only). (Otherwise
the cycle can be shortened). If there is more than one non-consecutive !0-edge
in the cycle, then !0 being an IO implies that the cycle can be shortened. So the
cycle consists of two edges: t1 !0 t2 and t2 ! t1. But this is a 0-conflict violating
0-compatibility of ! and !0.

It is easy to see that there is no preference relation which is an SPO, contains
! ∪ !0, and is closer to ! than TC(! ∪!0).

As can be seen from the above proof, the fact that one of the preference
relations is an interval order makes it possible to eliminate those paths (and
thus also cycles) in TC(! ∪!0) that interleave ! and !0 more than once. In
this way acyclicity reduces to the lack of 0-conflicts.

It seems that the interval order (IO) requirement in Theorem 1 cannot be
weakened without needing to strengthen the remaining assumptions. If neither
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x1 = w2

y1 = x2

z1 = y2

w1 = z2

� �
0

≺≺
0

Fig. 4. A cycle for 0-compatible relations that are not IOs

of ! and !0 is an IO, then we can find such elements x1, y1, z1, w1, x2, y2, z2, w2
that x1 ! y1, z1 ! w1, x1 �! w1, z1 �! y1, x2 !0 y2, z2 !0 w2, x2 �!0 w2, and
z2 �!0 y2. If we choose y1 = x2, z1 = y2, w1 = z2, and x1 = w2, then we get a
cycle in ! ∪ !0. Note that in this case ! and !0 are still 0-compatible. Also,
there is no SPO preference relation which contains ! ∪ !0 because each such
relation has to contain TC(!∪!0). This situation is pictured in Figure 4.

Example 4. Consider again the preference relation !C1 :

(m, y) !C1 (m′, y′) ≡ m = m′ ∧ y > y′.

Suppose that the new preference information is captured as !C3 which is an IO
but not a WO:

(m, y) !C3 (m′, y′) ≡ m = ′′VW′′ ∧ y = 1999∧m′ = ′′Kia′′ ∧ y′ = 1999.

Then TC(!C1 ∪!C3), which properly contains !C1∪!C3 , is defined as the SPO
!C4 :

(m, y) !C4 (m′, y′) ≡ m = m′ ∧ y > y′∨
m = ′′VW′′ ∧ y ≥ 1999∧m′ = ′′Kia′′ ∧ y′ ≤ 1999.

For dealing with prioritized composition, 0-compatibility can be replaced by a less
restrictive condition, 1-compatibility, because prioritized composition already
provides a way of resolving some conflicts.

Theorem 2. For every preference relations ! and !0 such that !0 is an IO, !
is an SPO and ! is 1-compatible with !0, the preference relation TC(!0 �!)
is an SPO.

Proof. We assume that TC(!0 �!) is not irreflexive and consider a cycle of
minimum length in !0 � !. If the cycle has two non-consecutive edges labeled
(not necessarily exclusively) by !0, then it can be shortened, because !0 is an
IO. The cycle has to consist of an edge t1 !0 t2 and a sequence of edges (labeled
only by !): t2 ! t3, . . . , tn−1 ! tn, tn ! t1 such that n > 2 and t1 �!0 tn �!0
. . . �!0 t3 �!0 t2. (We cannot shorten sequences of consecutive !-edges because
! is not necessarily preserved in !0 � !.) Thus (t1, t2) is a 1-conflict violating
1-compatibility of ! with !0.
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Clearly, there is no SPO preference relation which contains !0 �!, and is closer
to ! than TC(!0 �!). Violating any of the conditions of Theorem 2 may lead
to a situation in which no SPO preference relation which contains !0 �! exists.

If !0 is a WO, the requirement of 1-compatibility and the computation of
transitive closure are unnecessary.

Theorem 3. For every preference relations !0 and ! such that !0 is a WO
and ! an SPO, the preference relation !0 �! is an SPO.

Let’s turn now to Pareto composition. There does not seem to be any simple way
to weaken the assumptions in Theorem 1 using the notion of 2-compatibility.
Assuming that !, !0, or even both are IOs does not sufficiently restrict the
possible interleavings of ! and !0 in TC(!0 ⊗!) because neither of those two
preference relations is guaranteed to be preserved in TC(!0 ⊗!). However, we
can establish a weaker version of Theorem 3.

Theorem 4. For every preference relations !0 and ! such that both are WOs,
the preference relation !0 ⊗! is an SPO.

Proposition 2 implies that for all preference relations defined using equality/-
rational-order ipfs, the computation of the preference relations TC(! ∪!0),
TC(!0 � !) and TC(!⊗!0) terminates. The computation of transitive closure
is done in a completely database-independent way.

Example 5. Consider Examples 1 and 4. We can infer that

t1 = (′′VW′′, 2002) !C4 (′′Kia′′, 1997) = t3,

because (′′VW′′, 2002) !C1 (′′VW′′, 1999), (′′VW′′, 1999) !C3 (′′Kia′′, 1999),
and (′′Kia′′, 1999) !C1 (′′Kia′′, 1997). Note that the tuples (′′VW′′, 1999) and
(′′Kia′′, 1999) are not in the database.

If the conditions of Theorems 1 and 2 do not apply, Proposition 2 implies that
for equality/rational order ipfs the computation of TC(!∪!0), TC(!0 � !)
and TC(!⊗!0) yields some finite ipf C(t1, t2). Thus the irreflexivity of the
resulting preference relation reduces to the unsatisfiability of C(t, t), which by
Proposition 1 is a decidable problem for equality/rational order ipfs. Of course,
the relation, being a transitive closure, is already transitive.

Example 6. Consider Examples 1 and 2. Neither of the preference relations !C1

and !C2 is an interval order. Therefore, the results established earlier in this
section do not apply. The preference relation !C∗= TC(!C1 ∪ !C2) is defined
as follows (this definition is obtained using Constraint Datalog computation):

(m, y) !C∗ (m′, y′) ≡ m = m′ ∧ y > y′ ∨ m = ′′VW′′ ∧m′ �= ′′VW′′ ∧ y ≥ y′

The preference relation !C∗ is irreflexive (this can be effectively checked). It
also properly contains !C1∪!C2 , because t1 !C∗ t3 but t1 �!C1 t3 and t1 �!C2 t3.
The query ωC∗(Car) evaluated in the instance r1 (Figure 1) returns only the
tuple t1.
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4.2 Weak Orders

Weak orders are practically important because they capture the situation where
the domain can be decomposed into layers such that the layers are totally or-
dered and all the elements in one layer are mutually indifferent. This is the
case, for example, if the preference relation can be represented using a nu-
meric utility function. If the preference relation is a WO, a particularly ef-
ficient (essentially single pass) algorithm for computing winnow is applic-
able [9].

We will see that for weak orders the transitive closure computation is unnec-
essary and minimal revisions are directly definable in terms of the preference
relations involved.

Theorem 5. For every 0-compatible WO preference relations ! and !0, the
preference relations ! ∪!0 and !⊗!0 are WO.

For prioritized composition, we can relax the 0-compatibility assumption. This
immediately follows from the fact that WOs are closed with respect to prioritized
composition [8].

Proposition 3. For every WO preference relations ! and !0, the preference
relation !0 �! is a WO.

A basic notion in utility theory is that of representability of preference relations
using numeric utility functions:

Definition 8. A real-valued function u over a schema R represents a preference
relation ! over R iff

∀t1, t2 [t1 ! t2 iff u(t1) > u(t2)].

Such a preference relation is called utility-based.

Being a WO is a necessary condition for the existence of a numeric representation
for a preference relation. However, it is not sufficient for uncountable orders [10].
It is natural to ask whether the existence of numeric representations for the
preference relations ! and !0 implies the existence of such a representation
for the preference relation !′= (!0 θ !) where θ ∈ {∪,�,⊗}. This is indeed
the case.

Theorem 6. Assume that ! and !0 are WO preference relations such that

1. ! and !0 are 0-compatible,
2. ! can be represented using a real-valued function u,
3. !0 can be represented using a real-valued function u0.

Then !′=!0 θ !, where θ ∈ {∪,�,⊗}, is a WO preference relation that can
be represented using any real-valued function u′ such that for all x, u′(x) =
a · u(x) + b · u0(x) + c where a and b are arbitrary positive real numbers.

Proof. By case analysis. The assumption of 0-compatibility is essential.
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Surprisingly, 0-compatibility requirement cannot in general be replaced by 1-
compatibility if we replace ∪ by � in Theorem 6. This follows from the fact that
the lexicographic composition of one-dimensional standard orders over R is not
representable using a utility function [10]. Thus, preservation of representability
is possible only under 0-compatibility, in which case !0∪! = !0 �! = !0⊗!.
(Lemma 1). (The results [10] indicate that for countable domains considered in
this paper, the prioritized composition of WOs, being a WO, is representable
using a utility function. However, that utility function is not definable in terms
of the utility functions representing the given orders.)

We conclude this section by showing a general scenario in which the union of
WOs occurs in a natural way. Assume that we have a numeric utility function u
representing a (WO) preference relation!. The indifference relation ∼ generated
by ! is defined as:

x ∼ y ≡ u(x) = u(y).

Suppose that the user discovers that ∼ is too coarse and needs to be further
refined. This may occur, for example, when x and y are tuples and the function
u takes into account only some of their components. Another function u0 may
be defined to take into account other components of x and y (such components
are called hidden attributes [26]). The revising preference relation !0 is now:

x !0 y ≡ u(x) = u(y) ∧ u0(x) > u0(y).

It is easy to see that !0 is an SPO 0-compatible with ! but not necessarily a
WO. Therefore, by Theorem 1 the preference relation ! ∪!0 is an SPO.

5 Incremental Evaluation

5.1 Query Modification

We show here how the already computed result of the original preference query
can be reused to make the evaluation of the modified query more efficient. We
will use the following result.

Proposition 4. [8] If !1 and !2 are preference relations over a relation schema
R and !1⊆!2, then for all instances r of R:

– ω�2(r) ⊆ ω�1(r);
– ω�2(ω�1(r)) = ω�2(r) if !1 and !2 are SPOs.

Consider the scenario in which we iteratively modify a given preference query by
revising the preference relation using only union in such a way that the revised
preference relation is an SPO (for example, if the assumptions of Theorem 1
are satisfied). We obtain a sequence of preference relations !1, . . . ,!n such that
!1⊆ · · · ⊆!n.

In this scenario, the sequence of query results is:

r0 = r, r1 = ω�1(r), r2 = ω�2(r), . . . , rn = ω�n(r).
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Proposition 4 implies that the sequence r0, r1, . . . , rn is decreasing:

r0 ⊇ r1 ⊇ · · · ⊇ rn

and that it can be computed incrementally:

r1 = ω�1(r0), r2 = ω�2(r1), . . . , rn = ω�n(rn−1).

To compute ri, there is no need to look at the tuples in r − ri−1, nor to
recompute winnow from scratch. The sets of tuples r1, . . . , rn are likely to have
much smaller cardinality than r0 = r.

It is easy to see that the above comments apply to all cases where the revised
preference relation is a superset of the original preference relation. Unfortunately,
this is not the case for revisions that use prioritized or Pareto composition.
However, given a specific pair of preference relations ! and !0, one can still
effectively check whether TC(!0 �!) or TC(!0 ⊗!) contains ! if the validity
of preference formulas is decidable, as is the case for equality/rational-order
formulas (Proposition 1).

5.2 Database Update

In the previous section we studied query modification: the query is modified,
while the database remains unchanged. Here we reverse the situation: the query
remains the same and the database is updated.

We consider first updates that are insertions of sets of tuples. For a database
relation r, we denote by Δ+r the set of inserted tuples. We show how the previous
result of a given preference query can be reused to make the evaluation of the
same query in an updated database more efficient.

We first establish the following result.

Theorem 7. For every preference relation ! over R which is an SPO and every
instance r of R:

ω�(r ∪Δ+r) = ω�(ω�(r) ∪Δ+r).

Consider now the scenario in which we have a preference relation !, which is an
SPO, and a sequence of relations

r0 = r, r1 = r0 ∪Δ+r0, r2 = r1 ∪Δ+r1, . . . , rn = rn−1 ∪Δ+rn−1.

Theorem 7 shows that

ω�(r1) = ω�(ω�(r0) ∪Δ+r0)
ω�(r2) = ω�(ω�(r1) ∪Δ+r1)
. . .
ω�(rn) = ω�(ω�(rn−1) ∪Δ+rn−1).

Therefore, each subsequent evaluation of winnow can reuse the result of the
previous one. This is advantageous because winnow returns a subset of the given
relation and this subset is often much smaller than the relation itself.
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Clearly, the algebraic law, stated in Theorem 7, can be used together with
other, well-known laws of relational algebra and the laws specific to preference
queries [8, 21] to produce a variety of rewritings of a given preference query.
To see how a more complex preference query can be handled, let’s consider the
query consisting of winnow and selection, ω�(σα(R)). We have

ω�(σα(r ∪Δ+r)) = ω�(σα(r) ∪ σα(Δ+r)) = ω�(ω�(σα(r)) ∪ σα(Δ+r))

for every instance r of R. Here again, one can use the previous result of the
query, ω�(σα(r)), to make its current evaluation more efficient. Other operators
that distribute through union, for example projection and join, can be handled
in the same way.

Next, we consider updates that are deletions of sets of tuples. For a database
relation r, we denote by Δ−r the set of deleted tuples.

Theorem 8. For every preference relation ! over R and every instance r of R:

ω�(r) −Δ−r ⊆ ω�(r −Δ−r).

Theorem 8 gives an incremental way to compute an approximation of winnow
from below. It seems that in the case of deletion there cannot be an exact law
along the lines of Theorem 7. This is because the deletion of some tuples from
the original database may promote some originally dominated (and discarded)
tuples into the result of winnow over the updated database.

Example 7. Consider the following preference relation != {(a, b1), . . . , (a, bn)}
and the database r = {a, b1, . . . , bn}. Then ω�(r) = {a} but ω�(r − {a}) =
{b1, . . . , bn}.

6 Finite Restrictions of Preference Relations

It is natural to consider restrictions of preference relations to given database
instances [27]. If r is an instance of a relation schema R and ! is a preference
relation over R, then [!]r = ! ∩ r × r is also a preference relation over R and
ω[�]r (r) = ω�(r).

The advantage of using [!]r instead of ! comes from the fact that the former
depends on the database contents and can have stronger properties than the
latter. For example, [!]r may be an SPO (or a WO), while ! is not. (Clearly,
[!]r inherits all the order-theoretic properties of !, studied in the present paper.)
Similarly, [!]r may be i-compatible with [!0]r, while ! is not i-compatible with
!0. On the other hand,!makes more elaborate use of the preference information
than [!]r and does not require adaptation if the input database changes.

Example 8. Let != {(a, b)}, !0= {(b, c)}, r = {a, c}. Thus ω�(r) = ω[�]r (r) =
{a, c}. Consider revision using union, as in Theorem 1. The revised preference
relation !1= TC(!∪!0) = {(a, b), (b, c), (a, c)}. On the other hand, [!]r =
[!0]r = ∅. Thus the revised preference relation !2= TC([!]r ∪ [!0]r) = ∅. After
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the revision, ω�1(r) = {a} and ω�2 = {a, c}. So in the latter case revision has no
impact on preference. We also note that [TC(! ∪!0)]r �= TC([!]r ∪ [!0]r), and
thus the correspondence between the unrestricted and the restricted preference
relations no longer holds after the revision.

A related issue is that of non-intrinsic preference relations. Such relations are
defined using formulas that refer not only to built-in predicates.

Example 9. The following preference relation is not intrinsic:

x !Pref y ≡ Pref(x, y)

where Pref is a database relation. One can think of such a relation as repre-
senting stored preferences.

Revising non-intrinsic preference relations looks problematic. First, it is typically
not possible to establish the simplest order-theoretic properties of such relations.
For instance, in Example 9 it is not possible to determine the irreflexivity or
transitivity of !Pref on the basis of its definition. Whether such properties are
satisfied depends on the contents of the database relation Pref . Second, the
transitive closure of a non-intrinsic preference relation may fail to be expressed
as a finite formula. Again, Example 9 can be used to illustrate this point. The
above problems disappear, however, if we consider [!]r instead of !.

7 Related Work

[16] presents a general framework for modeling change in preferences. Preferences
are represented syntactically using sets of ground preference formulas, and their
semantics is captured using sets of preference relations. Thanks to the syntactic
representation preference revision is treated similarly, though not identically, to
belief revision [13], and some axiomatic properties of preference revisions are
identified. The result of a revision is supposed to be minimally different from
the original preference relation (using a notion of minimality based on symmet-
ric difference) and satisfy some additional background postulates, for example
specific order axioms. [16] does not address the issue of constructing or defining
revised relations, nor does it study the properties of specific classes of prefer-
ence relations. On the other hand, [16] discusses also preference contraction, and
domain expansion and shrinking.

In our opinion, there are several fundamental differences between belief and
preference revision. In belief revision, propositional theories are revised with
propositional formulas, yielding new theories. In preference revision, binary pref-
erence relations are revised with other preference relations, yielding new pref-
erence relations. Preference relations are single, finitely representable (though
possibly infinite) first-order structures, satisfying order axioms. Belief revision
focuses on axiomatic properties of belief revision operators and various notions
of revision minimality. Preference revision focuses on axiomatic, order-theoretic
properties of revised preference relations and the definability of such relations
(though still taking revision minimality into account).
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[28] considers revising a ranking (a WO) of a finite set of product profiles
with new information, and shows that a new ranking, satisfying the AGM belief
revision postulates [13], can be computed in a simple way. [26] formulates various
scenarios of preference revision and does not contain any formal framework. [29]
studies revision and contraction of finite WO preference relations by single pairs
t1 !0 t2. [12] describes minimal change revision of rational preference relations
between propositional formulas.

Two different approaches to preference queries have been pursued in the liter-
ature: qualitative and quantitative. In the qualitative approach, preferences are
specified using binary preference relations [24, 14, 7, 8, 20, 22]. In the quantitative
utility-based approach, preferences are represented using numeric utility func-
tions [1, 17], as shown in Section 4. The qualitative approach is strictly more
general than the quantitative one, since one can define preference relations in
terms of utility functions. However, only WO preference relations can be rep-
resented by numeric utility functions [10]. Preferences that are not WOs are
common in database applications, c.f., Example 1.

Example 10. There is no utility function that captures the preference relation
described in Example 1. Since there is no preference defined between t1 and t3
or t2 and t3, the score of t3 should be equal to the scores of both t1 and t2. But
this implies that the scores of t1 and t2 are equal which is not possible since t1
is preferred over t2.

This lack of expressiveness of the quantitative approach is well known in utility
theory [10].

In the earlier work on preference queries [8, 20], one can find positive and
negative results about closure of different classes of orders, including SPOs and
WOs, under various composition operators. The results in the present paper
are, however, new. Restricting the relations ! and !0 (for example, assuming
the interval order property and compatibility) and applying transitive closure
where necessary make it possible to come up with positive counterparts of the
negative results in [8]. For example, [8] shows that SPOs and WOs are in general
not closed w.r.t. union, which should be contrasted with Theorems 1 and 5. In
[20], Pareto and prioritized composition are defined somewhat differently from
the present paper. The operators combine two preference relations, each defined
over some database relation. The resulting preference relation is defined over the
Cartesian product of the database relations. So such operators are not useful in
the context of revision of preference relations. On the other hand, the careful
design of the language guarantees that every preference relation that can be
defined is an SPO.

Probably the most thoroughly studied class of qualitative preference queries
is the class of skyline queries. A skyline query partitions all the attributes of a
relation into DIFF, MAX, and MIN attributes. Only tuples with identical values
of all DIFF attributes are comparable; among those, MAX attribute values are
maximized and MIN values are minimized. The query in Example 1 is a very
simple skyline query [5], with Make as a DIFF and Year as a MAX attribute.
Without DIFF attributes, a skyline is a special case of n-ary Pareto composition.
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Algorithms for evaluating qualitative preference queries are described in [8,
27], and for evaluating skyline queries, in [5, 25, 3]. [2] describes how to im-
plement preference queries that use Pareto compositions of utility-based pref-
erence relations. In Preference SQL [22] general preference queries are imple-
mented by a translation to SQL. [17] describes how materialized results of
utility-based preference queries can be used to answer other queries of the
same kind.

8 Conclusions and Future Work

We have presented a formal foundation for an iterative and incremental approach
to constructing ans evaluating preference queries. Our main focus is on query
modification, a query transformation approach which works by revising the pref-
erence relation in the query. We have provided a detailed analysis of the cases
where the order-theoretic properties of the preference relation are preserved by
the revision. We considered a number of different revision operators: union, pri-
oritized and Pareto composition. We have also formulated algebraic laws that
enable incremental evaluation of preference queries.

Future work includes the integration of our results with standard query opti-
mization techniques, both rewriting- and cost-based. Semantic query optimiza-
tion techniques for preference queries [9] can also be applied in this context.
Another possible direction could lead to the design of a revision language in
which richer classes of preference revisions can be specified.

One should also consider possible courses of action if the original preference
relation ! and !0 lack the property of compatibility, for example if ! and !0
are not 0-compatible in the case of revision by union. Then the target of the
revision is an SPO which is the closest to the preference relation ! ∪ !0. Such
an SPO will not be unique. Moreover, it is not clear how to obtain ipfs defining
the revisions. Similarly, one could study contraction of preference relations. The
need for contraction arises, for example, when a user realizes that the result of
a preference query does not contain some expected tuples.
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22. W. Kießling and G. Köstler. Preference SQL - Design, Implementation, Experience.
In International Conference on Very Large Data Bases (VLDB), pages 990–1001,
2002.

23. G. Kuper, L. Libkin, and J. Paredaens, editors. Constraint Databases. Springer-
Verlag, 2000.

24. M. Lacroix and P. Lavency. Preferences: Putting More Knowledge Into Queries.
In International Conference on Very Large Data Bases (VLDB), pages 217–225,
1987.

25. D. Papadias, Y. Tao, G. Fu, and B. Seeger:. An Optimal and Progressive Algorithm
for Skyline Queries. In ACM SIGMOD International Conference on Management
of Data, pages 467–478, 2003.



82 J. Chomicki

26. P. Pu, B. Faltings, and M. Torrens. User-Involved Preference Elicitation. In IJCAI
Workshop on Configuration, 2003.

27. R. Torlone and P. Ciaccia. Which Are My Preferred Items? In Workshop on
Recommendation and Personalization in E-Commerce, May 2002.

28. Mary-Anne Williams. Belief Revision via Database Update. In International In-
telligent Information Systems Conference, 1997.

29. S. T. C. Wong. Preference-Based Decision Making for Cooperative Knowledge-
Based Systems. ACM Transactions on Information Systems, 12(4):407–435, 1994.



On the Number of Independent
Functional Dependencies�

János Demetrovics1, Gyula O.H. Katona2, Dezső Miklós2,
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Abstract. We will investigate the following question: what can be the
maximum number of independent functional dependencies in a data-
base of n attributes, that is the maximum cardinality of a system of
dependencies which which do not follow from the Armstrong axioms
and none of them can be derived from the remaining ones using the
Armstrong axioms. An easy and for long time believed to be the best
construction is the following: take the maximum possible number of sub-
sets of the attributes such that none of them contains the other one
(by the wellknown theorem of Sperner [8] their number is n

n/2 ) and
let them all determine all the further values. However, we will show
by a specific construction that it is possible to give more than n

n/2

independent dependencies (the construction will give (1 + 1
n2 ) n

n/2 of
them) and — on the other hand — the upper bound is 2n − 1, which is
roughly

√
n n

n/2 .

1 Introduction

Results obtained during database design and development are evaluated on
two main criteria: completeness of and unambiguity of specification. Complete-
ness requires that all constraints that must be specified are found. Unambi-
guity is necessary in order to provide a reasoning system. Both criteria have
found their theoretical and pragmatical solution for most of the known classes
of constraints. Completeness is, however, restricted by the human ability to
survey large constraint sets and to understand all possible interactions among
constraints.
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Many database theory and application problems (e.g., data search optimiza-
tion, database design) are substantially defined by the complexity of a data-
base, i.e., the size of key, functional dependency, and minimal key systems.
Most of the known algorithms, e.g., for normalization, use the set of all min-
imal keys or non-redundant sets of dependencies. Therefore, they are dependent
on the cardinality of these sets. The maintenance complexity of a database de-
pends on how many integrity constraints are under consideration. Therefore,
if the cardinality of constraint sets is large, then maintenance becomes infeasi-
ble. (Two-tuple constraints such as functional dependencies require O(m2) two-
tuple comparisons for relations with m elements.) Furthermore, they indicate
whether algorithms are of interest for practical purposes, since the complex-
ity of most known algorithms is measured by the input length. For instance,
algorithms for constructing a minimal key are bound by the maximal num-
ber of minimal keys. The problem of deciding whether there is a minimal key
with at most k attributes is NP-complete. The problem of deciding whether two
sets of functional dependencies are equivalent is polynomial in the size of the
two sets.

Therefore, the database design process may only be complete if all integrity
constraints that cannot be derived by those that have already been specified
have been specified. Such completeness is not harmful as long as constraint
sets are small. The number of constraints may however be exponential in the
number of attributes [2]. Therefore, specification of the complete set of functional
dependencies may be a task that is infeasible. This problem is closely related
to another well-known combinatoric problem presented by Janos Demetrovics
during MFDBS’87 [9] and that is still only partially solved:

Problem 1. How big the number of independent functional dependencies of an
n-ary relation schema can be?

Let R be a relational database model, and X denote the set of attributes. We
say that (for two subsets of attributes A and B) A→ B, that is, B functionally
depends on A, if in the database R the values of the attributes in A uniquely
determine the values of the attributes in B. In case a some functional dependen-
cies F given, the closure of F , usually denoted by F+, is the set of all functional
dependencies that may be logically derived from F . E.g., F may be considered
the obvious and important functional dependencies (like mother’s name and ad-
dress uniquely determine the name of a person) and then the closure, F+ is the
set of all dependencies that can be deduced from F .

The set of rules that are used to derive all functional dependencies implied by
F were determined by Armstrong in 1974 and are called the Armstrong axioms.
These rules are easily seen to be necessary and all other natural rules can be
derived from them. They are the following:

– reflexivity rule if A is a set of attributes and B a subset of it, then A→ B.
– augmentation rule If A → B holds and C is an arbitrary set of attributes,

then A ∪ C → B ∪C holds as well.
– transitivity rule If A→ B and B → C hold, then A→ C holds as well.
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Let us mention here, that though there are further natural rules of the de-
pendencies, the above set is complete, that is F+ can always be derived from F
using only the above three axioms. For example, union rule, that is, the natural
fact that A → B and A → C imply A → B ∪ C can be derived by augmenting
A → C by A (A → A ∪ C), augmenting A → B by C (A ∪ C → B ∪ C) and
using transitivity for the resulting rules: A→ A ∪ C → B ∪ C.

In this paper we will investigate the maximum possible number of inde-
pendent functional dependencies of a database of n attributes. That is, the
maximum of F , where it is a system of independent, non-trivial dependen-
cies (A → B where B ⊂ A are not in F) and no element of F can be log-
ically derived from the other elements of F . In this case we will call F
independent.

Introduce the following useful notations: [n] = {1, 2, . . . , n}. The family of all
k-element subsets of [n] is

(
[n]
k

)
.

For the sake of simplicity we will denote the ith attribute by i.
It is clear that A → C and B → C can not be in F for a pair of sub-

sets A ⊂ B since then B → C would be logically obtained by another given
dependency (A → C), reflexivity (A ⊂ B implies B → A) and transitivity
(B → A → C implies B → C). On the other hand, it is easy to see if we
have a system of independent subsets of the attributes (that is, none of them
containing the other one) and assume that all of them imply the whole set of
attributes, this system of dependencies will be independent. This leads to the
natural construction of a large set of independent dependencies by taking the
maximum number of incomparable subsets of attributes, which is by Sperner’s
theorem [8] equal to

(
n

�n/2	
)

and let the whole set of attributes depend on all
of them. This would give a set of dependencies of cardinality

(
n

�n/2	
)
. On the

other hand, it is easy to see that if F only consists of dependencies A→ B with
|A| = k for a given constant k and for every such an A ⊂ X there is at most one
element of F of the form A → B, then F is independent (a more detailed ver-
sion of this argument will be given in the proof of Lemma 4). That is, the above
construction will give an independent set of dependencies and a lower bound
of

(
n

�n/2	
)
.

However, as it will be shown by the construction of the next section, this is
not the best possible bound, we can enlarge it. Still the best known lower bound
is of the magnitude of

(
n

�n/2	
)

(smaller than c
(

n
�n/2	

)
for any constant c > 1,

while the best upper bound proven in the following section is 2n − 1, which is
roughly

√
n
(

n
n/2

)
. Finally, the last section of the paper will contain concluding

remarks, including the answer to the following question:

Problem 2. Is the maximum number of functional dependencies the same as
the maximum number of minimal keys?

More complexity results are discussed and proven in [5, 7, 10] or in [1, 2, 3, 6].
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2 Lower Estimate: A Construction

Theorem 1. If n is an odd prime number then one can construct
(

1 +
1
n2 + o

(
1
n2

))(
n

'n
2 (

)

independent functional dependencies on an n-element set of attributes.

The proof will consist of a sequence of lemmas. We will also use the following
proposition:

Proposition 1. (see [11]) Assign to a functional dependency A→ B the set of
2n − 2|B| Boolean vectors a= (a1, ..., an) of the form:

ai =

⎧
⎨

⎩

1 , if i ∈ A
0 or 1 , if i ∈ (B \A) but not all entries = 0
0 or 1 , otherwise.

Then, a set of functional dependencies implies another functional dependency if
and only if the Boolean vectors of the implied functional dependency are con-
tained in the union of the sets of Boolean vectors of the given functional depen-
dencies.

Lemma 2. If n is an odd prime number, one can find 1
n2

(
n

n+3
2

)
subsets V1, V2, . . .

of size n+3
2 in the set [n] = {1, 2, . . . n} in such a way that |Vi∩Vj | < n−1

2 holds.

Proof. The method of the paper [4] is used. Consider the subsets
{x1, x2, . . . , xn+3

2
} of integers satisfying 1 ≤ xi �= xj ≤ n for i �= j and the

equations
x1 + x2 + · · ·+ xn+3

2
≡ a (mod n), (1)

x1x2 · · · · · xn+3
2
≡ b (mod n) (2)

for some fixed integers a and b.
Suppose that two of them, say V1 and V2 have an intersection of size n−1

2 . We
may assume, without loss of generality, that the first two elements are different,
that is V1 = {x1, x2, . . . , xn+3

2
} and V2 = {x′1, x′2, . . . , xn+3

2
}. (1) and (2) imply

x1 + x2 ≡ x′1 + x′2 and x1x2 ≡ x′1x
′
2 (mod n). Since the set {1, 2, . . . n} consti-

tutes a field modn if n is prime, this system of equations has a unique solution,
that is x1 = x′1, x2 = x′2; the two sets are the same: V1 = V2. This contradiction
proves that our sets cannot have n−1

2 common elements.
The total number of subsets of size n+3

2 is
(

n
n+3

2

)
.
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Each of these sets give some a and b in (1) and (2), respectively. That is, the
family of all n+3

2 -element sets can be divided into n2 classes. One of these has a
size at least

1
n2

(
n

n+3
2

)
. �

We will need the notion of the shadow of a family A ⊂
( [n]

n+1
2

)
. It will be den-

oted by

σ(A) = {B : |B| = n− 1
2

, ∃A ∈ A : B ⊂ A}.

A pair {U1, U2} Ui ∈
( [n]

n+1
2

)
is called good if |U1∩U2| = n−1

2 holds. The family

P ⊂
( [n]

n+1
2

)
is a chain if P = P1 ∪ . . . ∪ Pl where the Pi’s are good pairs and

σ(Pi) ∩ σ(Pj) = ∅ for i �= j. The weight w(P) of this chain is l.

Lemma 3. There is a chain P ⊂
( [n]

n+1
2

)
chain with weight at least

|P| = 1
n2

(
n

n+3
2

)
.

Proof. Start with the family V = {V1, V2, . . .} ensured by Lemma 2. In each Vi

choose two different n+1
2 -element subsets Ui1 and Ui2. It is easy to see that this

pair of subsets is good. Also, these pairs form a chain. The number of the pairs
in the chain can be obtained from Lemma 2. �

Lemma 4. If P ⊂
( [n]

n+1
2

)
is a chain then the following set of functional depen-

dencies is independent:

A→ B, where |A| = n− 1
2

, |B| = n + 1
2

, A ⊂ B ∈ P , (3)

A→ A′, where |A| = n− 1
2

, A �∈ σ(P)

and A′ is arbitrarily chosen so that A ⊂ A′, |A′| = n + 1
2

. (4)

(Note that in (3) we have all dependencies A→ B given by the conditions, while
in (4) for every remaining A we choose only one (exactly one) A′ satisfying the
conditions.)

Proof. We will use Proposition 1 for the proof. According to rules (3) and (4),
for every A ⊂ X with |A| = n−1

2 there are either one (B) or two (B1 and B2)
subsets of X of size n+1

2 with A→ B or A→ Bi, always A ⊂ B, Bi. In the first
case consider one of the Boolean vector a corresponding to A→ B:

ai =

⎧
⎨

⎩

1 , if i ∈ A
0 , if i ∈ (B \A)
0 , otherwise.
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This vector has exactly n−1
2 1 entries, and from the definition in Proposition 1 it

is also clear that all Boolean vectors corresponding to all functional dependencies
given by (3) and (4) have at least n−1

2 1 entries. Therefore, the Boolean vector
a may correspond to any other dependency A′ → B′ only with A′ = A, which is
not the case now, the dependency A→ B may not be deduced from the others.

If we have both A → B1 and A → B2, consider one of the Boolean vector a
corresponding to A→ B2:

ai =

⎧
⎪⎪⎨

⎪⎪⎩

1 , if i ∈ A
0 , if i ∈ (B2 \A)
1 , if i ∈ (B1 \A)
0 , otherwise.

In this case a has n+1
2 1 entries and still all Boolean vectors corresponding to all

other given functional dependencies have at least n−1
2 0 entries. Therefore, if a

Boolean vector corresponding to a given functional dependency A′ → B′ is equal
a, the obligatory n−1

2 1 entries must form a subset of the n+1
2 0 entries of a, or,

in other words, A′ must be a subset of B1, an n+1
2 element set. However, by the

construction according to (3), for all subsets C of B1 of size n−1
2 we have C → B1.

Since B1 is larger than C only by one element, all the corresponding Boolean
vectors must have entries 1 at the positions corresponding to C and entry 0
at the only position corresponding to B1 \ C (this entry could be literally 0 or
1, but not all of them 1, but since it is alone, it means it should be 0). This,
by Proposition 1, implies that A → B2 may not be deduced from the set of
remaining given Boolean vectors. �
Alternative proof. One can prove Lemma 4 without the use of Proposition 1,
simply from the Amstrong axioms, as it follows.

Again, we will show that none of the dependencies given in the lemma can be
deduced from the other ones.

Now we start with the case when the dependency A → B1 has a pair A →
B2(B1 �= B2) in our system. This can happen only in case of (3): A→ B1 where
P = {B1, B2}, B1 = A ∪ {b1}, B2 = A ∪ {b2}. We want to verify that A → B1
cannot be deduced from the other ones.

Observe that none of the other ones, X → Y satisfy both X ⊆ B2 and Y �⊆ B2.
In other words

either X �⊆ B2 or Y ⊆ B2 (5)

holds for every dependency given by (3) and (4), different from A→ B1. Let us
see that this property is preserved by the Armstrong axioms.

It is trivial in the case of the reflexivity rule, since it gives X → Y only when
Y ⊆ X therefore X ⊆ B2 implies Y ⊆ B2.

Consider the augmentation rule. Suppose that X → Y satisfies (5) and U is an
arbitrary set. If X �⊆ B2 then the same holds for X ∪U , that is X ∪U �⊆ B2. On
the other hand, if X ⊆ B2 then Y ⊆ B2. If U ⊆ B2 also holds then Y ∪U ⊆ B2,
if however U �⊆ B2 then X ∪U �⊆ B2. The dependency X ∪U → Y ∪U obtained
by the augmentation rule also satisfies (5) in all of these cases.
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Finally, suppose that X → Y and Y → Z both satisfy (5). We have to show
the same for X → Z. If X �⊆ B2 then we are done. Suppose X ⊆ B2 and Y ⊆ B2.
Then Z ⊆ B2, must hold, as desired.

Since A → B1 does not have property (5), it cannot be deduced from the
other dependencies.

Consider now the case when the distinguished dependency A → B1 has no
pair A → B2(B1 �= B2) in our system. This can happen both for (3) and (4).
The the proof is similar to the case above. No other dependency X → Y satisfies
X ⊆ A, Y �⊆ A, that is (5) holds for them if B2 is replaced by A. �
Remark. One may think that a better construction can be made if we allow
three sets B1, B2, B3 of size n+1

2 with pairwise intersections |B1 ∩ B2| = |B2 ∩
B3| = n−1

2 where no other intersections (of these three and other sets Bi(3 < i) of
this size) are that big, and A→ Bi holds for every subset A of Bi. Unfortunately
we found a counter-example for n > 5.

Let B1 = {1, . . . , n+1
2 }, B2 = {2, . . . , n+3

2 }, B3 = {3, . . . , n+5
2 }, B4 = {1, . . . ,

n−3
2 , n+3

2 , n+5
2 }. It is easy to see that |B1 ∩ B2| = |B2 ∩ B3| = n−1

2 , but |B1 ∩
B3|, |B1 ∩B4|, |B2 ∩B4|, |B3 ∩B4| are all smaller.

Introduce the notations A1 = {2, . . . , n+1
2 }, A2 = {3, . . . , n+3

2 }, A3 = {2, 3,
. . . , n−3

2 , n+3
2 , n+5

2 }. The the following chain of functional dependencies is obvi-
ous: A1 → B2 → A2 → B3 → B2 ∪ B3 → A3 → B4 → {1}. Hence we have
A1 → B1 without using it.

Proof of Theorem 1. Use Lemma 4 with the chain found in Lemma 3. It is
easy to see that there is at least one A→ C for every 'n

2 ( = n−1
2 -element subset

A and the weight of the chain gives the number of those A being the left-hand
side of exactly two dependencies. This gives the number of dependencies:

(
n

'n
2 (

)
+

1
n2

(
n

n+3
2

)
=

(
1 +

1
n2 + o

(
1
n2

))(
n

'n
2 (

)
. �

3 Upper Estimate

Theorem 5. For every n an upper bound for the maximum number of indepen-
dent functional dependencies on an n-element set of attributes is 2n − 1.

Proof. Let F be a set of independent functional dependencies on the set of
attributes X . First, replace each dependency A → B in F by A → A ∪ B,
obtaining F ′. We claim that F ′ is independent as well. It simply comes from
the fact that by the reflexivity and augmentation axioms the two dependencies
A → B and A → A ∪ B are equivalent. Also, |F| = |F ′|, since the images
of dependencies in F will be different in F ′. Assume, on the contrary, that
A → A ∪ B is equal to A → A ∪ C for A → B and A → C in F . But then
A ∪ B = A ∪ C, C ⊂ A ∪ B and therefore A → B implies A → A ∪ B implies
A→ C, a contradiction.

We may therefore consider only set of independent dependencies where for all
(A→ B) ∈ F we have A ⊂ B. Take now the following graph G: let the vertices
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of the graph be all the 2n subsets of the n attributes and for A, B ⊂ X the
edge (A,B) will be present in the G iff A toB or B → A is in F . We claim that
this graph may not contain a cycle, therefore it is a forest, that is it has at most
2n − 1 edges, or dependencies.

Assume, on the contrary, that A1, A2, A3, . . . , An = A1 is a cycle in G, that
is for all i = 1, . . . n− 1 the edge (Ai, Ai+1 is present in G, meaning that either
Ai → Ai+1 or Ai+1 → Ai is in F . Note that for every i = 1, . . . n − 1 we have
Ai+1 → Ai since either this dependency is in F or in case of (Ai → Ai+1) ∈ F , we
have that Ai ⊂ Ai+1, yielding Ai+1 → Ai by reflexivity. Take now an i such that
Ai → Ai+1 (if we have no such a dependency, take the “reverse” of the cycle,
An, An−1, . . . , A1 = An). This can be obtained from the other dependencies
present in F by the transitivity chain Ai → Ai−1 → · · ·A1 = An → An−1 →
· · · → Ai+2 → Ai+1, contradicting the independency of the rules in F . �
We have an alternative proof using Proposition 1 as well.

4 Remarks, Conclusions

The main contribution of the paper is the improvement of upper and lower
bounds for independent sets of functional dependencies and, thus, contributing
to the solution of Problem 1.

1. The lower and upper estimates seem to be very far from each other. However,
if the lower estimate is written in the form

c
2n

√
n

(using the Stirling formula) then one can see that the “difference” is only a
factor

√
n what is negligable in comparison to 2n. The logarithms of the lower

and upper estimates are n− 1
2 logn and n.

However we strongly believe that truth is between
(

1 +
α

n
+ o

(
1
n

))(
n

'n
2 (

)

and

(β + o(1))
(

n

'n
2 (

)
,

where 0 < α and β ≤ 2.
2. Theorem 1 is stated only for odd prime numbers. The assumption in Lemma 2
is only technical, we strongly believe that its statement is true for other integers,
too. (Perhaps with a constant less than 1 over the n2.) We did not really try to
prove this, since the truth in Theorem 1 is more, anyway. What do we obtain
from Lemma 2 if it is applied for the largest prime less than n? It is known from
number theory that there is a prime p satisfying n − n5/8 < p ≤ n. This will
lead to an estimate where 1

n2 is replaced by

1
n22n5/8 .
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This is much weaker than the result for primes, but it is still more than the
number of functional dependencies in the trivial construction.
3. One may have the feeling that keys are the real interesting objects in a
dependency system. That is, the solution of any extremal problem must be a set
of keys. Our theorems show that this is not the case.

More precisely, suppose that only keys are considered in our problem, that
is the maximum number of independent keys is to be determined. If this set of
keys is {Ai → X} (1 ≤ i ≤ m), then Ai �⊂ Aj must be satisfied, and therefore
by Sperner’s theorem m ≤

(
n

�n/2	
)
. In this case the largest set of dependencies

(keys) is provided by the keys A→ X , where A ∈
( [n]
�n

2 	
)
.

Theorem 1 shows that the restriction to consideration of key systems during
database design and development is an essential restriction. Systems of functional
dependencies must be considered in parallel. Therefore, we derived a negative
answer to Problem 2.
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Abstract. We study the effect of simultaneously bounding the maxi-
mal arity of the higher-order variables and the alternation of quantifiers
in higher-order logics, as to their expressive power on finite structures
(or relational databases). Let AAi(r, m) be the class of (i + 1)-th order
logic formulae where all quantifiers are grouped together at the beginning
of the formulae, forming m alternating blocks of consecutive existential
and universal quantifiers, and such that the maximal arity of the higher-
order variables is bounded by r. Note that, the order of the quantifiers
in the prefix may be mixed. We show that, for every i ≥ 1, the result-
ing AAi(r, m) hierarchy of formulae of (i + 1)-th order logic is proper.
From the perspective of database query languages this means that, for
every i ≥ 2, if we simultaneously increase the arity of the quantified
relation variables by one and the number of alternating blocks of quan-
tifiers by four in the fragment of higher-order relational calculus of order
i, AAi−1, then we can express more queries. This extends a result by
J. A. Makowsky and Y. B. Pnueli who proved that the same hierarchy
in second-order logic is proper. In both cases the strategy used to prove
the results consists in considering formulae which, represented as finite
structures, satisfy themselves. As the well known diagonalization argu-
ment applies here, this gives rise, for each order i and for each level of the
AAi(r,m) hierarchy of arity and alternation, to a class of formulae which
is not definable in that level, but which is definable in a higher level of
the same hierarchy. We then use a similar argument to prove that the
classes of Σi

m ∪ Πi
m formulae in which the higher-order variables of all

orders up to i+1 have maximal arity at most r, also induce a proper hi-
erarchy in each higher-order logic of order i ≥ 3. It is not known whether
the correspondent hierarchy in second-order is proper.

1 Introduction

The study of the expressive power of different syntactically defined fragments of
logics built as extensions of first-order, has received important attention through-
out the development of finite model theory. A fundamental underlying question
to this regard is: which kind of syntactic restrictions have impact on the ex-
pressive power of such logics over finite structures?, or equivalently: when can
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we really express more queries over relational databases? The answers to these
questions are in many cases related to important open problems in complexity
theory. An example of this can be found in the well known characterization of
the polynomial hierarchy in terms of prenex fragments of second-order logic.

Recall that the levels of the polynomial hierarchy are defined inductively:
Σp

1 = NP , and Σp
m+1 = NPΣp

m . Also recall that Σ1
m is the class of second-order

sentences in prenex normal form in which each second-order quantifier precedes
all first-order quantifiers and the second order quantifiers are arranged into at
most m alternating blocks with the first block being existential. A well known
result of Stokmeyer [Sto76] established that, for each k ≥ 1, Σ1

m captures Σp
m.

Thus, asking whether increasing the number of alternating blocks of quantifiers
in the Σ1

m hierarchy allows us to express more queries, is equivalent to asking
whether the polynomial hierarchy is proper. By proper we mean that for every
layer in Σ1

m there is another layer which properly includes the former.
In second-order logic, a considerable amount of effort was devoted to the

study of hierarchies defined in terms of alternations of quantifiers. In this line
of work important results have been obtained for monadic second-order logic.
Thomas [Tho82] showed that over word models monadic second-order collapses
to monadic Σ1

1 . Otto [Ott95] showed that the number of existential quanti-
fiers in monadic Σ1

1 induces a strict hierarchy as to expressive power. That
is, each layer in the hierarchy is properly included in the next one. Consid-
ering colored grids as underlying models, a compression of existential monadic
second-order prefixes to a single existential quantifier was obtained in [Mat98]. In
[MST02] it was shown that over finite graphs, the monadic Σ1

m-formulae induce a
strict hierarchy.

In many extensions of first-order logic, the maximum arity of the relation
variables occurring in a formula was shown to be of a great relevance. The
fragments allowing only formulae of a bounded arity in its relation variables
form a natural hierarchy inside such logics, and the obvious question to be asked
is whether this hierarchy is strict. An affirmative answer to this question for
various extensions of first-order logic by fixed-point operators and transitive
closure operators has been given by Grohe in [Gro93, Gro96]. In [Hel89, Hel92],
Hella studied the notion of arity on first-order logic extended with Lindström
quantifiers. In [GH96], a double arity hierarchy theorem for transitive closure
logic was proven. However, in monadic second order logic it is still open whether
the arity hierarchy in Σ1

1 is strict over vocabularies of a fixed arity. The most
important result obtained here is Ajtai’s theorem [Ajt83] which implies that the
arity hierarchy in Σ1

1 is strict over vocabularies of arbitrary arity.
In the study of the full hierarchy Σ1

m, Makowsky and Pnueli followed a differ-
ent approach in [MP96]. They investigated the expressive power of second-order
logic over finite relational structures when limitations in the arity of the second-
order variables and in the number of alternations of both first-order and second-
order quantifiers, are simultaneously imposed, and they proved the existence
of a proper hierarchy of arity and alternation in second-order logic. Roughly
speaking, the method used to prove such result consisted in considering the set
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AUTOSAT (F ) of formulae of a given logic F which, encoded as finite struc-
tures, satisfy themselves. As the well known diagonalization argument applies
here, when F is a level of the hierarchy of arity and alternation, it follows that
AUTOSAT (F ) is not definable in F , but is definable in a higher level of the
same hierarchy.

In the present article, aiming to gain a better understanding on the kind of
syntactic restrictions which are relevant as to the expressive power of different
fragments of higher-order logics over finite structures, we study the effect of
simultaneously bounding the maximal arity of the higher-order variables and
the alternation of quantifiers in formulae of higher-order logics. Let AAi(r,m)
be the class of (i + 1)-th order logic formulae where all quantifiers of whichever
order are grouped together at the beginning of the formulae, forming up to m
alternating blocks of consecutive existential and universal quantifiers, and such
that the maximal arity of the higher-order order variables is bounded by r. Note
that, the order of the quantifiers in the prefix may be mixed.

We show that, for every i ≥ 1, the resulting AAi(r,m) hierarchy is proper.
We get our results by roughly adapting the strategy of Makowsky and Pnueli to
each higher-order logic of order i ≥ 2. From the perspective of database query
languages this means that, for every i ≥ 2, if we simultaneously increase the
arity of the quantified relation variables by one and the number of alternating
blocks of quantifiers by four in the fragment of higher-order relational calculus
of order i, AAi−1, then we can express more queries.

It is note worthy that in [HT03] it is shown that the correspondence between
the polynomial hierarchy and the classes of prenex second-order formulae Σ1

m,
can be extended to higher orders. Let Σi

m be the class of (i + 1)-th order logic
formulae in prenex normal form in which the quantifiers of order i+1 are arranged
into m alternating blocks, starting with an existential block (Πi

m is defined
dually). In that article the exact correspondence between the non deterministic
exponential time hierarchy and the different fragments of higher-order logics Σi

m

was proven. As with the hierarchy Σ1
m, it is open whether the hierarchies Σi

m

are proper.
We also study a variation of the AAi hierarchies, the HAAi hierarchies, where

the alternations are counted as in Σi
m and Πi

m. Let HAAi(r,m) be the class of
Σi

m ∪Πi
m formulae in which the higher-order variables of all orders up to i + 1

have maximal arity at most r. We prove that, for each i ≥ 2, the HAAi(r,m)
hierarchy is proper. Note that the corresponding version of this hierarchy for
second-order logic, HAA1(r,m), was not studied in [MP96] regarding the proper-
ness of the hierarchy. It was used there (denoted as SAA(r,m)) to prove that,
for every r,m ≥ 1, AUTOSAT (SAA(r,m)) is PSpace-complete. So, it is not
known whether the HAA1(r,m) hierarchy is proper. The difference between the
HAAi and the AAi hierarchies is that in the HAAi hierarchies the quantifiers
of order i + 1 precede all other quantifiers in the formulae and only the alter-
nations of quantifiers of order i + 1 are considered, while in the AAi hierarchies
the quantifiers of order i + 1 do not necessarily precede all other quantifiers and
all alternations of quantifiers of whichever order are considered.
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The article is organized as follows. In Section 2 we fix the notation and briefly
comment on finite models, databases and logics as query languages. In Section 3
we define the syntax and semantics of the higher-order logics considered in this
work. We emphasize the definition of higher-order logics as formal languages
over a finite alphabet. This plays an important role in the encoding of formulae
as finite structures which we use in Section 4, where we prove our main result
on the properness of the AAi hierarchies. In Subsection 4.1 we fix an encod-
ing for the formulae of finite-order logic as relational structures, and we define
the sets WFF (F ), AUTOSAT (F ) and DIAG(F ) of structures encoding well
formed formulae in F , self-satisfying formulae in F , and well formed formulae
in the complement of AUTOSAT (F ) with respect to WFF (F ), respectively,
for a given logic F . In Subsection 4.2 we study the descriptive complexity of
WFF (F ) for different fragments of higher-order logics. Then, we move to Sub-
section 4.3 where we use a diagonalization argument to give a lower bound for
the definability of AUTOSAT (F ) for different fragments of higher-order logics.
In Subsection 4.4 we give a tight upper bound for the definability of the classes
AUTOSAT (F ), with F being the different levels of the AAi hierarchies. Finally,
in Subsection 4.5 we present our main result which is a direct consequence of
the lower and upper bounds proved in Subsections 4.3 and 4.4. In Section 5 we
prove the properness of the HAAi hierarchies for i ≥ 2, i.e., we prove that the
hierarchies of Σi

m∪Πi
m formulae in which the higher-order variables of all orders

up to i + 1 have maximal arity at most r are proper for i ≥ 2. We conclude the
article with Section 6 where we examine the concept of finite model truth defini-
tions introduced by M. Mostowski [Mos01,Mos03], and comment on its relation
to our work.

2 Preliminaries

As usual ([EF99, AHV94]), we regard a relational database schema, as a relational
vocabulary, and a database instance or simply database as a finite structure of the
corresponding vocabulary. If I is a database or finite structure of some schema
σ, we denote its domain as I. If R is a relation symbol in σ of arity r, for some
r ≥ 1, we denote as RI the (second-order) relation of arity r which interprets
the relation symbol R in I, with the usual notion of interpretation. We denote
as Bσ the class of finite σ-structures, or databases of schema σ.

In this paper, we consider total queries only. Let σ be a schema, let r ≥ 1,
and let R be a relation symbol of arity r. A computable query of arity r and
schema σ ([CH80]), is a total recursive function q : Bσ → B〈R〉 which preserves
isomorphisms such that for every database I of schema σ, dom(q(I)) ⊆ I). A
Boolean query is a 0-ary query. We use the notion of a logic in a general sense. A
formal definition would only complicate the presentation and is unnecessary for
our work. As usual in finite model theory, we regard a logic as a language, that is,
as a set of formulas (see [EF99]). We only consider vocabularies which are purely
relational, and for simplicity we do not allow constant symbols. If L is a logic and
σ a relational vocabulary, we denote by L[σ] the set of L-formulae over σ. We
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consider finite structures only. Consequently, the notion of satisfaction, denoted
as |=, is related to only finite structures. By ϕ(x1, . . . , xr) we denote a formula of
some logic whose free variables are exactly {x1, . . . , xr}. If ϕ(x1, . . . , xr) ∈ L[σ],
I ∈ Bσ, ār = (a1, . . . , ar) is a r-tuple over I, let I |= ϕ(x1, . . . , xr)[a1, . . . , ar]
denote that ϕ is TRUE, when interpreted by I, under a valuation v where for
1 ≤ i ≤ r v(xi) = ai. Then we consider the set of all such valuations as follows:

ϕI = {(a1, . . . , ar) : a1, . . . , ar ∈ I ∧ I |= ϕ(x1, . . . , xr)[a1, . . . , ar]}

That is, ϕI is the relation defined by ϕ in the structure I, and its arity is given by
the number of free variables in ϕ. Formally, we say that a formula ϕ(x1, . . . , xr)
of signature σ, expresses a query q of schema σ, if for every database I of schema
σ, is q(I) = ϕI. Similarly, a sentence ϕ expresses a Boolean query q if for every
database I of schema σ, is q(I) = 1 iff I |= ϕ. For ϕ ∈ L[σ] we denote by Mod(ϕ)
the class of finite σ-structures I such that I |= ϕ. A class of finite σ-structures
C is definable by a L-sentence if C = Mod(ϕ) for some ϕ ∈ L[σ]. If L and L′
are logics, then L ⊆ L′ denotes that L′ is at least as expressive as L, i.e., all
classes of models definable by an L-sentence are also definable by an L′-sentence.
L = L′ holds if L ⊆ L′ and L′ ⊆ L. L ⊂ L′ holds if L ⊆ L′ and L �= L′.

3 Finite-Order Logic

Finite-order logic is an extension of first-order logic which allows to quantify
over higher-order relations. We define here its syntax and semantics following
the account in [Lei94]. We emphasize the fact that the set of formulae of finite-
order logic can be viewed as a set of strings over a finite alphabet, i.e., as a
formal language. This plays an important role in the encoding of formulae as
finite structures which we define in Section 4.1.

Definition 1. We define the set of types, as the set typ of strings over the
alphabet {ι, (, ), , } inductively generated by:

– ι ∈ typ;
– if τ1, . . . , τr ∈ typ (r ≥ 1), then (τ1, . . . , τr) ∈ typ;
– nothing else belongs to typ.

If τ1 = · · · = τr = ι, then (τ1, . . . , τr) is denoted by ιr. The set of types can be
naturally stratified into orders which are inductively defined, as follows:

– order(ι) = 1
– order((τ1 , . . . , τr)) = 1 + max({order(τ1), . . . , order(τr)})

For τ = (τ1, . . . , τr), r is the arity of the type τ . We associate a non-negative
integer, the maximal-arity (ma), with each type, as follows:

– ma(ι) = 0
– ma((τ1, . . . , τr)) = max({r,ma(τ1), . . . ,ma(τr)})
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Clearly, if order(τ) = 2, then the maximal-arity of τ coincides with its arity.
We denote typ(i, r) the subset of types of order ≤ i and maximal-arity ≤ r. Note
that, each subset typ(i, r) contains a finite amount of different types.

The intended interpretation is that objects of type ι are individuals, i.e., elements
of the universe of a given model, whereas objects of type (τ1, . . . , τr) are r-ary
relations, i.e., sets of r-tuples of objects of types τ1, . . . , τr, respectively.

Definition 2. Given a set U , the set Uτ of objects of type τ over U is def-
ined by

Uι = U ; U(τ1,...,τr) = P(Uτ1 × · · · × Uτr)

Over a relational vocabulary σ, each formula of finite-order logic is a string of
symbols taken from the alphabet

A = {¬,∨,∧, ∃, ∀, (, ),=, x,X, |, ι, , } ∪ σ (1)

The words that belong to the language {x|n : n > 0} are called individual vari-
ables, while the words that belong to the language {Xτ |n : τ ∈ typ\{ι} and n >
0} are called higher-order variables. We call the higher-order variables of the
form Xτ |n, for i = order(τ) and r = ma(τ), i-th order variables of maximal-
arity r. To simplify the notation we denote strings of the form |n, n > 0, as
subscripts, e.g., writing x3 for x|||. In addition, we write the types of the higher-
order variables as superscripts, e.g., writing X

(ι)
2 for X(ι)||. Sometimes, we omit

the superscript when we denote second-order variables (i.e., variables of type ιr,
for some r ≥ 1) if their arity is clear from the context. We use V τ to denote
any variable of type τ . So, if τ = ι then V τ stands for an individual variable,
otherwise V τ stands for a higher-order variable of type τ .

Definition 3. We define the set of well formed formulae (wff) of finite-order
logic over a relational vocabulary σ (here we do not allow constant symbols), as
follows:

i. If v1 and v2 are individual variables, then v1 = v2 is a wff.
ii. If R is a relation symbol in σ of arity r ≥ 1, and v1, . . . , vr are individual

variables, then R(v1, . . . , vr) is a wff.
iii. If V τ is a higher-order variable with τ = (τ1, . . . , τr), then V τ (V τ1

1 , . . . , V τr
r )

is a wff.
iv. If ϕ is a wff, then (¬ϕ) is a wff.
v. If ϕ and ψ are wff, then (ϕ ∨ ψ) and (ϕ ∧ ψ) are wff.
vi. If ϕ is a wff and v is an individual variable, then ∃v(ϕ) and ∀v(ϕ) are wff.
vii. If ϕ is a wff and V τ is a higher-order variable, then ∃V τ (ϕ) and ∀V τ (ϕ)

are wff.
viii. Nothing else is a wff.

The atomic formulae are the ones introduced by clauses (i) to (iii). The free
occurrence of a variable (either an individual variable or a higher-order variable)
in a formula of finite-order logic is defined in the obvious way. Thus, the set
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free(ϕ) of free variables of a formula ϕ is the set of both individual and higher-
order variables whose occurrence in ϕ is not under the scope of a quantifier which
binds them.

The semantics of formulae of finite-order logic is similar to the semantics of
formulae of second-order logic, except that a valuation over a structure with
universe U maps higher-order variables of type τ to objects in Uτ .

Definition 4. Let σ be a relational vocabulary. A valuation val on a σ-structure
I with domain I, is a function which assigns to each individual variable an
element in I and to each higher-order variable V τ , for some type τ �= ι, an
object in Iτ . Let val0, val1 be two valuations on a σ-structure I, we say that val0
and val1 are V τ -equivalent if they coincide in every variable of whichever type,
with the possible exception of variable V τ . We also use the notion of equivalence
w.r.t. sets of variables.

Let I be a σ-structure, and let val be a valuation on I. The notion of satis-
faction in finite-order logic extends the notion of satisfaction in first-order with
the following rules:

i. I, val |= V (τ1,...,τr)(V τ1
1 , . . . , V τr

r ) iff (val(V τ1
1 ), . . . , val(V τr

r )) ∈ val(V τ ).
ii. I, val |= ∃V τ (ϕ) where V τ is a higher-order variable and ϕ is a well formed

formula, iff there is a valuation val′, which is V τ -equivalent to val, such
that I, val′ |= ϕ.

iii. I, val |= ∀V τ (ϕ) where V τ is a higher-order variable and ϕ is a well formed
formula, iff for every valuation val′, which is V τ -equivalent to val, I,
val′ |= ϕ.

The restriction of finite-order logic to formulae whose variables are all of order
≤ i, for some i ≥ 1, is called i-th order logic and is denoted by HOi. Note that,
for i = 1 this is first-order logic (FO), and for i = 2 this is second-order logic
(SO). The logics of order i ≥ 2 are known as higher-order logics (HO).

As in many other extensions of first-order logic, in second-order logic we can
naturally associate a non-negative integer, the arity, with each formula. Usually,
the arity of a formula of second-order logic is defined as the biggest arity of
a second-order variable occurring in that formula. Taking a similar approach,
we define the maximal-arity of a HOi formula, i ≥ 2, as the biggest maximal-
arity of any higher-order variable occurring in that formula. For r ≥ 1, the
restriction of HOi to formulae of maximal-arity ≤ r forms the fragment HOi,r

of HOi. Clearly, for second-order logic the maximal-arity of a formula coincides
with its arity. Note that, if a variable V τ occurs in some HOi,r formulae, then
τ ∈ typ(i, r).

An easy induction using renaming of variables and equivalences such as
¬∃V τ (ϕ) ≡ ∀V τ (¬ϕ) and (φ ∨ ∀V τ (ψ)) ≡ ∀V τ (φ ∨ ψ) if V τ is not free in
φ, shows that each HOi formula is logically equivalent to an HOi formula in
prenex normal form, i.e., to a formula of the form Q1V1 . . . QnVn(ϕ), where
Q1, . . . , Qn ∈ {∀, ∃}, and where V1, . . . , Vn are variables of order ≤ i and ϕ is
a quantifier-free HOi formula. Moreover, for every i ≥ 2, each HOi formula
is logically equivalent to one in prenex normal form in which the quantifiers
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of order i precede all the remaining quantifiers in the prefix (see [HT03] for a
detailed proof of this fact). Such normal form is known as generalized Skolem
normal form, or GSNF . The formulae of finite-order logic which are in GSNF
comprise well known hierarchies whose levels are denoted Σi

m and Πi
m. The class

Σi
m consists of those HOi+1 formulae in GSNF in which the quantifiers of order

i+1 are arranged into at most m alternating blocks, starting with an existential
block. Πi

m is defined dually. Clearly, every HOi+1 formula is equivalent to a Σi
m

formula for some m, and also to a Πi
m formula.

4 Arity-Alternation Hierarchies in Higher-Order Logics

We define next for each order i ≥ 2 a hierarchy in HOi defined in terms of both,
alternation of quantification and maximal-arity of the higher-order variables.

Definition 5. (AAi hierarchies). For i, r,m ≥ 1,

i. AAΣi(r,m) is the restriction of HOi+1,r to prenex formulae with at most
m alternating blocks of quantifiers, starting with an existential block. That
is, AAΣi(r,m) is the class of formulae ϕ ∈ HOi+1,r of the form

∃ V1 ∀ V2 . . . Qm Vm (ψ)

where ψ is a quantifier-free HOi+1,r formula, Qm is either ∃ if m is odd
or ∀ if m is even, and for 1 ≤ j ≤ m, each variable in the vector Vj is a
variable of order ≤ i + 1 and maximal-arity ≤ r.

ii. AAΠi(r,m) is defined in the same way as AAΣi(r,m), but now we require
that the first block consists of universal quantifiers.

iii. AAi(r,m) = AAΣi(r,m) ∪AAΠi(r,m).

Note that, the formulae in the AAi hierarchies are in prenex normal form,
but not necessarily in GSNF . Thus, the quantifiers applied to the variables
of the highest order do not necessarily precede all the remaining quantifiers in
the prefix, as it is the case in the Σi

m hierarchies. Furthermore, in the AAi

hierarchies we count every alternation of quantifiers in the prefix, independently
of the order of the variables to which the quantifiers are applied to, while in
the Σi

m hierarchies the only alternation counted are those corresponding to the
quantifiers applied to the variables of the highest order.

Makowsky and Pnueli showed that the AA1 hierarchy imposes a proper hier-
archy in second-order logic.

Theorem 1 ([MP96]). For every r,m ≥ 1 there are Boolean queries not ex-
pressible in AA1(r,m) but expressible in AA1(r + c(r),m + 4), where c(r) = 1
for r > 1 and c(r) = 2 for r = 1.

They proved this result by introducing the set AUTOSAT (F ) of formulae in
a given logic F which satisfy themselves, in certain encoding of the formulae
as structures. Following a similar strategy, we show that, for every i ≥ 2, the
analogous AAi hierarchy imposes a proper hierarchy in HOi+1.
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4.1 Encoding Well Formed Formulae into Relational Structures

Using word models (see [EF99]), it is easy to see that every formula of finite-
order logic over a given relational vocabulary σ can be viewed as a finite relational
structure of the following vocabulary.

π(σ) = {<,R¬, R∨, R∧, R∃, R∀, R(, R), R=, Rx, RX , R|, Rι, R,} ∪ {Ra : a ∈ σ}

Example 1. If σ = {E} is the vocabulary of graphs and ϕ is the sentence
∃X(ι)

1 (∃x2(X
(ι)
1 (x2) ∨ E(x2, x2))), which using our notation for the variables

corresponds to ∃X(ι)|(∃x||(X(ι)|(x||) ∨ E(x||, x||))), then the following π(σ)-
structure I encodes ϕ.

I = 〈I,<I, RI
¬, R

I
∨, R

I
∧, R

I
∃, R

I
∀, R

I
( , R

I
), R

I
=, RI

x, R
I
X , RI

| , R
I
ι , R

I
, , R

I
E〉

where <I is a linear order on I, |I| = length(ϕ), and for each Ra ∈ π(σ), RI
a

contains the positions in ϕ carrying an a,

RI
a = {b ∈ I : for some j (1 ≤ j ≤ |I|), a is the j-th symbol in ϕ, and

b is the j-th element in the order <I}

Moreover, instead of having a different vocabulary π(σ) depending on the vo-
cabulary σ of the formulae which we want to encode as relational structures, we
can have a vocabulary ρ rich enough to describe formulae of finite-order logic for
any arbitrary vocabulary σ. That is, we can fix a vocabulary ρ such that every
formula of finite-order logic of whichever vocabulary σ can be viewed as a finite
ρ-structure. This can be done as follows. Let ρ be the vocabulary

{<,R¬, R∨, R∧, R∃, R∀, R(, R), Rx, RX , R|, Rι, R,, RP }

We first identify every formula ϕ of finite-order logic over an arbitrary vocabulary
σ, with a formula ϕ′ over the vocabulary σ′ = {P |i : 1 ≤ i ≤ |σ|+ 1}, where, for
a predefined bijective function f from σ ∪ {=} to σ′, ϕ′ is the formula obtained
by replacing in ϕ each occurrence of a relation symbol R ∈ σ ∪ {=} by the
word f(R) ∈ σ′. We then identify every formula ϕ with the ρ-structure Iϕ′

corresponding to the word model for ϕ′.
Note that, following the previous schema, even the formulae of finite-order

logic over ρ can be viewed as finite ρ-structures. This motivates the following
important definition.

Definition 6. Let F be a set of formulae of finite-order logic of vocabulary ρ,
let ρ′ = {P |i : 1 ≤ i ≤ 15} and let f be the following bijective function form
ρ ∪ {=} to ρ′.

{< �→ P1,= �→ P2, R¬ �→ P3, R∨ �→ P4, . . . , Rι �→ P13, R, �→ P14, RP �→ P15}

where, for 1 ≤ i ≤ 15, Pi denotes a string of the form P |i. For every formula
ϕ of finite-order logic over ρ, let ϕ′ be the formula obtained by replacing in ϕ
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each occurrence of a relation symbol R ∈ ρ ∪ {=} by the word f(R) ∈ ρ′. We
identify every formula ϕ with the ρ-structure Iϕ′ , where the cardinality of I is the
length of ϕ′, <Iϕ′ is a linear order on I, and for each Ra ∈ ρ, R

Iϕ′
a corresponds

to the positions in ϕ′ carrying an a, i.e., we identify ϕ with the word model
for ϕ′.

– We denote by WFF (F ) the set of finite ρ-structures Iϕ′ such that ϕ ∈
F .

– We denote by AUTOSAT (F ) the set of finite ρ-structures Iϕ′ such that
ϕ ∈ F and Iϕ′ |= ϕ.

– We define DIAG(F ) = WFF (F ) \AUTOSAT (F ).

Let’s see some concrete examples of finite ρ-structures in WFF (F ), AUTO-
SAT (F ) and DIAG(F ).

Example 2. Let Iϕ′ be the ρ-structure corresponding to the word model for
ϕ′ ≡ ∃x|(∃x||(P |(x|, x||))) which encodes the formula ϕ ≡ ∃x1(∃x2(< (x1, x2)).
It follows that Iϕ′ belongs to WFF (FO[ρ]), as ϕ is a wff in FO[ρ]. It also fol-
lows that Iϕ′ belongs to AUTOSAT (FO[ρ]), as Iϕ′ |= ϕ. On the other hand,
the ρ-structure Iψ′ corresponding to the word model for ψ′ ≡ (¬ϕ′), also be-
longs to WFF (FO[ρ]), as the formula ψ ≡ (¬ϕ) encoded by Iψ′ is a wff in
FO[ρ], but clearly Iψ′ is not in AUTOSAT (FO[ρ]). This means that Iψ′ is in
DIAG(FO[ρ]). Finally, the Iα′ structure corresponding to the word model for
α′ ≡ xP ||| is not in WFF (FO[ρ]), and therefore neither is in AUTOSAT (FO[ρ])
nor in DIAG(FO[ρ]), as the formula α ≡ xR¬ encoded by Iα′ is not a well
formed formulae in FO[ρ].

Note that, for i, r,m ≥ 1 and F = AAi(r,m), the sets WFF (F ), DIAG(F ) and
AUTOSAT (F ) are not empty.

4.2 Recognizing Well Formed Formulae

We consider now the complexity of recognizing well formed formulae of finite-
order logic.

An old result by Büchi [Buc60] states that a language is regular iff it can be
defined in monadic second-order logic by a Σ1

1 sentence. In Büchi’s characteriza-
tion there is a block of existential quantifiers with unary second-order variables
and first-order variables, followed by a block of first-order universal quantifiers,
followed in turn by a first-order formula which is quantifier free. So, we have the
following fact.

Fact 1. Every regular language L is definable in AAΣ1(1, 2).

Furthermore, the following result implies that for each context-free grammar G
with set of terminal symbols T there is a AAΣ1(3, 3) formula ϕG of vocabulary
π(T ) = {<} ∪ {Ra : a ∈ T } such that

Mod(ϕG) = {I ∈ Bπ(T ) : I is a word model for some v ∈ L(G)}
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Proposition 1 ([MP96]). Every context-free language L is definable in AA-
Σ1(3, 3).

It is not difficult to see that, for i, r,m ≥ 1 and a relational vocabulary σ, the
set of wff of AAi(r,m) over σ is a context-free language. The following example
illustrates this fact by showing a context-free grammar for one of these sets of
formulae.

Example 3. Let G = (N,T, P,S) be a context-free grammar where N = {S, F,
BΣ , BΠ , V, A, I} is the set of nonterminal symbols, T = {¬,∨,∧, ∃, ∀, (, ),=
, x,X, |, ι, R, , } is the set of terminal symbols, S is the start symbol, and P is
the following set of productions:

S → F “quantifier-free formula F”

S → BΣF ∪ BΣBΠF ∪ BΣBΠBΣF “zero, one or two alternations of quantifiers,
starting with an existential block”

S → BΠF ∪ BΠBΣF ∪ BΠBΣBΠF “zero, one or two alternations of quantifiers,
starting with an universal block”

BΣ → ∃V ∪ ∃VBΣ “block of existential quantifiers”

BΠ → ∀V ∪ ∀VBΠ “block of universal quantifiers”

F → A ∪ (F∨F) ∪ (F∧F) ∪ (¬F) “atomic formula or compound formula”

V→ xI ∪ X(ι)I ∪ X((ι))I “a variable is a first-order variable x or a higher-order
variable Xτ , where τ ∈ typ(3, 1) \ {ι}, plus an index”

A → xI = xI “atomic formula of the form v1 = v2”

A → R(xI) “atomic formula of the form R(v)”

A → X(ι)I(xI) ∪ X((ι))I(X(ι)I) “atomic formulae of the form V τ (V τ1
1 , . . . , V τr

r )
where τ = (τ1, . . . , τr) ∈ typ(3, 1) \ {ι}”
I → | ∪ |I “index”

The language L(G) generated by G is precisely the set of wff of AA2(1, 3)
over σ = {R}, where R is a unary relation symbol.

The following proposition is a consequence of the previous observations.

Proposition 2. For i, r,m ≥ 1, the notion of wff of AAi(r,m), is not definable
in AAΣ1(1, 1) but is definable in AAΣ1(3, 3).

Proof. (Sketch). Given that, for i, r,m ≥ 1 and a relational vocabulary σ, the set
of wff of AAi(r,m) over σ is a context-free language, and that, by Proposition 1,
every context free language is definable in AAΣ1(3, 3), we can conclude that the
notion of wff of AAi(r,m) is definable in AAΣ1(3, 3).

To prove that the notion of wff of AAi(r,m) is not definable in AAΣ1(1, 1),
let’s assume that, for some relational vocabulary σ and some i, r,m ≥ 1, the set
of wff of AAi(r,m) over σ is definable in AAΣ1(1, 1). Since monadic Σ1

1 includes
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AAΣ1(1, 1), it follows that, by Büchi’s characterization of regular languages, the
set of wff over σ for such fragment AAi(r,m) is regular. But it is straightforward
to show, by using the pumping lemma for regular languages (see [HU79]), that
for every i, r,m ≥ 1, AAi(r,m)[σ] is non-regular. This contradicts the assump-
tion that the set of wff of some fragment AAi(r,m) is definable in AAΣ1(1, 1),
completing the proof. �

The next fact follows from the previous proposition by observing that, for i, r,
m ≥ 1, each set of formulae {ϕ′ : ϕ ∈ AAi(r,m)[ρ]} is context-free.

Fact 2. For i, r,m ≥ 1, the set WFF (AAi(r,m)[ρ]), i.e., the set of finite ρ-
structures Iϕ′ such that ϕ ∈ AAi(r,m)[ρ], is not definable in AAΣ1(1, 1)[ρ], but
is definable in AAΣ1(3, 3)[ρ].

4.3 A Lower Bound for the Definability of AUTOSAT

We show in this section that, for every i ≥ 1, r ≥ 3 and m ≥ 4, there are Boolean
queries not expressible in AAi(r,m). In particular, we show that, for every i ≥ 1,
r ≥ 3 and m ≥ 4, AUTOSAT (AAi(r,m)[ρ]) is not definable in AAi(r,m)[ρ]. But
we have to prove first that its complement DIAG(AAi(r,m)[ρ]) is not definable
in AAi(r,m)[ρ].

Proposition 3. For i, r,m ≥ 1 and F = AAi(r,m)[ρ], DIAG(F ) is not defin-
able in F .

Proof. Towards a contradiction, let’s assume that DIAG(F ) is definable in F .
Then there is a sentence ψD ∈ F such that Mod(ψD) = DIAG(F ). From the
definition of DIAG(F ) and from our assumption, it follows that for an arbitrary
ρ-structure Iϕ′ which encodes a formula ϕ ∈ F , Iϕ′ �|= ϕ iff Iϕ′ |= ψD. On the
other hand, there is a finite ρ-structure Iψ′

D
which encodes the sentence ψD. But

then Iψ′
D
�|= ψD iff Iψ′

D
|= ψD, which is a contradiction. �

Proposition 4. For i ≥ 1, r ≥ 3, m ≥ 4 and F = AAi(r,m)[ρ], AUTOSAT (F )
is not definable in F .

Proof. Let’s assume that AUTOSAT (F ) is definable in F , i.e., that there is a
sentence ψA ∈ F such that Mod(ψA) = AUTOSAT (F ). We know by Fact 2
that there is a sentence ψW in AAΣ1(3, 3)[ρ], and therefore in F , such that
Mod(ψW ) = WFF (F ). But then, there is a sentence ϕ which is in prenex normal
form and which is logically equivalent to ψW ∧¬ψA. Furthermore, as ψW has at
most three alternating blocks of quantifiers and ψA has at most m alternating
blocks of quantifiers, there is a sentence ψD with at most m alternations which
is equivalent to ϕ. It follows that ψD ∈ F and Mod(ψD) = DIAG(F ) which
contradicts Proposition 3 and the assumption that AUTOSAT (F ) is definable
in F . �

Remark 1. In [MP96] it is suggested that the previous proposition is true for
every level of the AA1 hierarchy of second-order logic, i.e., for every r,m ≥ 1,
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though no proof is given there. Unfortunately, it does not seem possible to prove
that, using the diagonalization argument which we employed here and which was
outlined in the article of Makowsky and Pnueli. The major problem is that by
Fact 2 we cannot define WFF (F ) in AAΣ1(1, 1). Furthermore, as we know that
WFF (F ) is definable in AA1(3, 3), but we do not know whether WFF (F ) is
definable in AA1(2, 3), we need r ≥ 3. Finally, as the set of formulae in each level
of the AA1(r,m) hierarchy is closed under negation, but not under conjunction,
we need m ≥ 4. Note that the fact that each level of the AAi hierarchies is closed
under negation seems to be not enough, since WFF (F ) ⊂ Bρ. That is, there are
structures of signature ρ which do not encode a formula from F .

We can summarize the classes of formulae for which AUTOSAT (F ) is not de-
finable in F , as follows.

Proposition 5. Let F be a class of formulae of finite-order logic whose syn-
tax is context free. If AA1(3, 4) ⊆ F and F is closed under negation, then
AUTOSAT (F [ρ]) is not definable in F [ρ].

4.4 An Upper Bound for the Definability of AUTOSAT

We give in this subsection a tight upper bound for the definability of AUTO-
SAT (AAi(r,m)[ρ]) for i, r,m ≥ 1. In order to do that, we break down the task
into several subtasks. For each subtask we define a series of predicates and prove
some lemmas regarding the complexity of defining such predicates. Then, using
these lemmas we prove the required result.

Given that for each HOi,r fragment, and thus for each layer of the AAi hi-
erarchies, both the order and the maximal-arity of the variables are bounded,
we assume, for the sake of simplicity, a vocabulary ρ with a different relation
symbol for each different type of higher-order variable, i.e.,

ρ = {<,R¬, R∨, R∧, R∃, R∀, R(, R), Rx, R|, R,, RP } ∪ {RXτ : τ ∈ typ(i, r) \ {ι}}

Note that strictly speaking, ρ should be denoted as ρi,r, since it depends of i
and r. However, to simplify the notation, we use simply ρ.

We identify every formula ϕ ∈ HOi,r[ρ] with a formula ϕ′ over the vocabulary
ρ′ = {P |i : 1 ≤ i ≤ 12+|typ(i, r)|}, where ϕ′ is the formula obtained by replacing
in ϕ each occurrence of a relation symbol R ∈ ρ ∪ {=} by the word f(R) ∈ ρ′,
for the following bijective function f from ρ to ρ′,

{< �→ P1,= �→ P2, R¬ �→ P3, . . . , RP �→ P13} ∪ {RXτj �→ P13+j : τj is

the j-th type in the lexicographical order of typ(i, r) \ {ι}}.
As before, we encode each formula ϕ using the ρ-structure Iϕ′ which corre-

sponds to the word model for ϕ′.
From now on, we call a word model of vocabulary ρ, simply a word, and if

Ra(x) for some unary relation symbol Ra ∈ ρ, we say that the symbol in position
x of the word is a.
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Definition 7. For each τ ∈ typ(i, r),

i. V ARτ (x) is a predicate indicating that the symbol in position x of a word
is a symbol of a variable of type τ ;

ii. INDEXτ (x, y1, y2) is a predicate indicating that the symbol in position x
is a symbol of a variable of type τ , and the symbols in positions y1 to y2
encode its index;

iii. SAMEτ (x1, x2) is a predicate indicating that the symbols in positions x1
and x2 are symbols of variables of type τ , and they have the same index
(that is, they refer to the same variable).

Lemma 1. The predicates V ARτ (x), INDEXτ (x, y1, y2), and SAMEτ (x1, x2)
can be expressed by formulae in Σ0

0 , Σ0
2 , and AAΣ1(2, 3), respectively.

Proof. V ARτ (x) is simply RXτ (x) where RXτ is the relation symbol in ρ used
to denote variables of type τ .

For INDEXτ (x, y1, y2), we write

V ARτ (x) ∧ ∀z
(
(y1 < z ∧ z < y2)→ R|(z)

)

“x is a symbol of a variable of type τ and
every symbol z between y1 and y2 is “|”” ∧
R|(y1) ∧R|(y2)
“the symbols in positions y1 and y2 are both “|”” ∧
∀z¬(x < z ∧ z < y1)
“y1 is the successor of x” ∧

∃z
(
y2 < z ∧ ∀z2¬(y2 < z2 ∧ z2 < z) ∧ ¬R|(z)

)

“z is the successor of y2 and the symbol in position z is not “|””

Clearly, there is a formula in Σ0
2 which is equivalent to the previous one.

For SAMEτ (x1, x2), we write

∃y1y2y3y4F
(
INDEXτ(x1, y1, y2) ∧ INDEXτ(x2, y3, y4)∧

“F is a bijective function from the
range y1 − y2 to the range y3 − y4”

)

It is not difficult to see that there is formula in AAΣ1(2, 3) which is equivalent
to the previous one. �

We want now to encode valuations for the different variables in a formula. Given a
ρ-structure Iϕ′ which encodes a formula ϕ ∈ AAi(r,m)[ρ], and given a valuation
v on Iϕ′ , for each type τ ∈ typ(i + 1, r) the values assigned by v to all variables
Xτ of type τ = (τ1, . . . , τk) which appear in ϕ are encoded by an object (relation)
Rτ ′ ∈ Iτ ′ of type τ ′ = (ι, τ1, . . . , τk). First-order variables, i.e., variables of type
ι, are a special case since the values assigned by v to the first-order variables
which appear in ϕ are encoded by a binary relation R ∈ Iι2 of type ι2, with the
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additional restriction that each element corresponding to a first-order variable
is related to exactly one element. We use V to denote a vector which contains a
different variable V (ι,τ1,...,τk) for each type (τ1, . . . , τk) ∈ typ(i + 1, r) \ {ι}, plus
a second-order variable F of arity 2. Such vector V has exactly |typ(i + 1, r)|
different variables which we use to encode valuations for the fragment AAi(r,m).

Definition 8.

i. V ALτ (V τ ′
) are predicates indicating that the object in Iτ ′ assigned to the

variable V τ ′
of type τ ′, encodes a valuation for all variables of type τ in the

formula.
ii. V AL(V ) is a predicate indicating that the objects assigned to the variables

which appear in the vector V , encode a valuation for all variables occurring
in the formula. Note that, V AL as well as the content of the vector V depend
of the order i and the maximal arity r that we are considering.

iii. ASSIGNSτ (V τ ′
, Y τ , x) are predicates indicating that the object in Iτ as-

signed to the variable Y τ is the object assigned by the valuation encoded by
V τ ′

to the variable of type τ in position x of the formula.

Lemma 2. For τ = (τ1, . . . , τk), τ �= ι, V ALτ (V τ ′
) can be expressed by a for-

mula in AAΠj−1(k + 1, 3), where j = order(τ). V ALι(F ) can be expressed by a
formula in AAΠ1(2, 3). For a given order i and maximal arity r, V AL(V ) can
be expressed by a formula in AAΠi(r + 1, 3).

For τ = (τ1, . . . , τk), τ �= ι, ASSIGNSτ (V τ ′
, Y τ , x) can be expressed by a

formula in AAΠj−1(k + 1, 1), where j = order(τ). ASSIGNSι(F, y, x) can be
expressed by a Σ1

0 formula of arity 2.

Proof. For V ALι(F ), we say that F encodes a valuation for all first-order vari-
ables in the formula.

∀x1x2y
(
¬SAMEι(x1, x2) ∨ (F (x1, y)↔ F (x2, y))

)

“If a first-order variable occurs more than once, then F
assigns the same set of values to each occurrence” ∧
∀x1∃x2

(
V ARι(x1)→ F (x1, x2)

)

“F assigns at least one value to each first-order variable” ∧
∀x1x2x3

(
F (x1, x2) ∧ F (x1, x3) → x2 = x3

)

“F assigns at most one value to each first-order variable”

For V ALτ (V τ ′
), where τ = (τ1, . . . τk), we say that V τ ′

, τ ′ = (ι, τ1, . . . , τk),
encodes a valuation for all higher-order variables of type τ in the formula.

∀x1x2X
τ1
1 . . . Xτk

k

(
¬SAMEτ (x1, x2)∨

(
V τ ′

(x1, X
τ1
1 , . . . , Xτk

k ) ↔ V τ ′
(x2, X

τ1
1 , . . . , Xτk

k )
))

“V τ ′
assigns the same object in Iτ to each occurrence of

a same higher-order variable of type τ in the formula”
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For a given order i and maximal arity r, V AL(V ) is written as the conjunction
of the |typ(i + 1, r)| formulae for V ALτ , i.e,

∧

(τ1,...,τk)∈typ(i+1,r)\{ι}

(
V AL(τ1,...,τk)(V (ι,τ1,...,τk))

)
∧ V ALι(F )

For ASSIGNSι(F, y, x), we say that F assigns y to the first-order variable in
position x if F (x, y).

For ASSIGNSτ (V τ ′
, Y τ , x), where τ = (τ1, . . . , τk) and τ ′ = (ι, τ1, . . . , τk), the

corresponding formula is as follows.

∀Zτ1
1 . . . Zτk

k

(
V (ι,τ1,...,τk)(x, Zτ1

1 . . . Zτk

k ) ↔ Y τ (Zτ1
1 . . . Zτk

k )
)

“V (ι,τ1,...,τk) assigns Y τ to x” �

Definition 9.

i. WFF (x1, x2) is a predicate indicating that the symbols in positions x1 to x2
form a well formed sub-formula.

ii. For 3 ≤ j ≤ 12 + |typ(i, r)|, ATOMPj (x1, x2) is a predicate indicating that
the symbols in positions x1 to x2 form an atomic sub-formula of the form
P |j(x). Note that, P |j is a word in ρ′ which corresponds to a unary relation
symbol in ρ.

iii. For 1 ≤ j ≤ 2, ATOMPj(x1, x2) is a predicate indicating that the symbols in
positions x1 to x2 form an atomic sub-formula of the form P |j(x, y). Recall
that P | and P || are the words in ρ′ which correspond to the binary relation
symbols < and =, respectively.

iv. For every τ ∈ typ(i, r) \ {ι}, ATOMXτ (x1, x2) is a predicate indicating that
the symbols in positions x1 to x2 form an atomic sub-formula of the form
V τ (V τ1

1 , . . . , V τk

k ), where τ = (τ1, . . . , τk).
v. For every τ ∈ typ(i, r) \ {ι}, POSτ

j (x1, x2) is a predicate indicating that the
symbol in position x1 is a variable of type τ = (τ1, . . . , τk), k ≥ j, and the
symbol in position x2 is the variable V τj in the j-th position of it.

vi. NOT (x1, x2) is a predicate indicating that the symbols in positions x1 to x2
form a sub-formula of the form (¬ϕ).

vii. OR(x1, x2, x3) is a predicate indicating that the symbols in positions x1 to
x3 form a sub-formula of the form (ϕ1 ∨ ϕ2) with x2 the position of the ∨
symbol.

viii. AND(x1, x2, x3) is a predicate indicating that the symbols in positions x1 to
x3 form a sub-formula of the form (ϕ1 ∧ ϕ2) with x2 the position of the ∧
symbol.

Lemma 3. The predicates in Definition 9 can be expressed by formulae in AA-
Σ1(3, 3).

Proof. It follows from Proposition 1 and the fact that each predicate in Defini-
tion 9 defines in each model a language which is context-free. �
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Definition 10.

i. ATOMSAT (V , x1, x2) is a predicate indicating that the symbols in positions
x1 to x2 form an atomic sub-formula, which is satisfied by the valuation
encoded by V for a structure which is the whole formula.

ii. QFREESAT (V , x1, x2) is a predicate indicating that the symbols in positions
x1 to x2 form a quantifier-free well formed sub-formula, which is satisfied by
the valuation encoded by V for a structure which is the whole formula.

Lemma 4. Let c(r) = 1 for r > 1 and c(r) = 2 for r = 1. It follows that
ATOMSAT (V , x1, x2) can be expressed by a formula in AAΣi(r+ c(r), 4) while
QFREESAT (V , x1, x2) can be expressed by a formula in AAΣi(r + c(r), 4).

Proof. For ATOMSAT (V , x1, x2) we have different cases depending on the kind
of atom we are considering. If the atom is a formula of the form P |j(x), where
f(Ra) = P |j for Ra a unary relation symbol in ρ, we write

ATOMPj (x1, x2) ∧ V AL(V )∧
∃yp

(
Rx(p) ∧ x1 < p ∧ p < x2 ∧Ra(y) ∧ASSIGNSι(F, y, p)

)

If the atom is a formula of the form P |(x, y), we write
ATOMP1(x1, x2) ∧ V AL(V )∧
∃y1y2p1p2

(
Rx(p1) ∧Rx(p2) ∧ x1 < p1 ∧ p1 < p2 ∧ p2 < x2∧

y1 < y2 ∧ASSIGNSι(F, y1, p1) ∧ASSIGNSι(F, y2, p2)
)

If the atom is a formula of the form P ||(x, y), we just replace y1 < y2 by y1 = y2
and ATOMP1(x1, x2) by ATOMP2(x1, x2) in the previous formula.

And, if the atom is a formula of the form V τ (V τ1
1 , . . . , V τk

k ), τ = (τ1, . . . , τk), we
write

ATOMXτ (x1, x2) ∧ V AL(V )∧
∃Y τ1

1 . . . Y τk

k p1 . . . pk

(
V (ι,τ1,...,τk)(x1, Y

τ1
1 , . . . , Y τk

k )∧

POSτ
1 (x1, p1) ∧ . . . ∧ POSτ

k (x1, pk)∧

ASSIGNSτ1(V τ ′
1 , Y τ1

1 , p1) ∧ . . . ∧ASSIGNSτk(V τ ′
k , Y τk

k , pk)
)

For QFREESAT (V , x1, x2) we use a second-order variable X and say that, if
a tuple (a, b) is in X , then the symbols in positions a to b form a quantifier free
sub-formula which is satisfied by the valuation encoded by V for a structure
which is the whole formula.
∃X

(
X(x1, x2) ∧ ∀y1y1

(
X(y1, y2)→

(
ATOMSAT (V , y1, y2)∨

(
NOT (y1, y2) ∧ ¬X(y1 + 2, y2 − 1)

)
∨

(
∃y

(
OR(y1, y, y2) ∧ (X(y1 + 1, y − 1) ∨X(y + 1, y2 − 1))

))
∨

(
∃y

(
AND(y1, y, y2) ∧ (X(y1 + 1, y− 1) ∧X(y + 1, y2 − 1))

)) )))
�
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Definition 11.

i. ∃BLOCK(x1, x2, x3) is a predicate indicating that the symbols in positions
x1 to x2 form an existential quantification of some variables and the symbols
in positions x2 + 1 to x3 form a well formed sub-formula.

ii. ∀BLOCK(x1, x2, x3) is a predicate indicating that the symbols in positions
x1 to x2 form an universal quantification of some variables and the symbols
in positions x2 + 1 to x3 form a well formed sub-formula.

iii. V EQUIV (V 1, V 2, x1, x2) is a predicate indicating that V AL(V 1), V AL(V 2)
and that V 1 is S-equivalent to V 2, with S being the set of variables appearing
in the positions x1 to x2 of the formula.

Lemma 5. ∃BLOCK(x1, x2, x3) and ∀BLOCK(x1, x2, x3) can be expressed by
formulae in AAΣ1(3, 3) while V EQUIV (V 1, V 2, x1, x2) can be expressed by a
formula in AAi(r + 1, 4).

Proof. ∃BLOCK(x1, x2, x3) and ∀BLOCK(x1, x2, x3) are context free.

For V EQUIV (V 1, V 2, x1, x2), we write

V AL(V 1) ∧ V AL(V 2)∧
∧

τ∈typ(i+1,r)

(
∀y

(
V ARτ (y) ∧ ¬∃z

(
x1 < z ∧ z < x2 ∧ SAMEτ (y, z)

)

“if the variable in position y is a variable of type τ
which does not appear in the range x1 − x2” →

∀Zτ
(
ASSIGNSτ (V τ ′

1 , Zτ , y)↔ ASSIGNSτ (V τ ′
2 , Zτ , y)

)))

“the valuations encoded by V 1 and V 2 assign the
same object from Iτ to the variable in position y” �

Definition 12.

i. ∃BLOCKSATm(V , x1, x2) is a predicate indicating that V encodes a valu-
ation and the symbols in positions x1 to x2 form a formula with no more
than m alternating blocks of quantifiers, starting with an existential quanti-
fier, which is satisfied by V .

ii. ∀BLOCKSATm(V , x1, x2) is a predicate indicating that V encodes a valu-
ation and the symbols in positions x1 to x2 form a formula with no more
than m alternating blocks of quantifiers, starting with a universal quantifier,
which is satisfied by V .

Lemma 6. Let c(r) = 1 for r > 1 and c(r) = 2 for r = 1. It follows that
∃BLOCKSATm(V , x1, x2) and ∀BLOCKSATm(V , x1, x2) can be expressed by
formulae in AAi(r + c(r),m + 4).

Proof. We use induction on the number of blocks of quantifiers m. For m = 0,
∃BLOCKSAT0(V , x1, x2) and ∀BLOCKSAT0(V , x1, x2) are simply QFREE-
SAT (V , x1, x2). For m > 0, we say that ∃BLOCKSATm(V , x1, x2), if

∃V 1x
(
∃BLOCK(x1, x, x2)∧
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V EQUIV (V 1, V , x1, x) ∧ ∀BLOCKSATm−1(V 1, x + 1, x2)
)

And we say that ∀BLOCKSATm(V , x1, x2), if

∃x∀V 1
(
∀BLOCK(x1, x, x2)∧

V EQUIV (V 1, V , x1, x) ∧ ∃BLOCKSATm−1(V 1, x + 1, x2)
)

�

Finally, the upper bound for the definability of AUTOSAT (AAi(r,m)[ρ]) is as
follows.

Proposition 6. For i, r,m ≥ 1, the class AUTOSAT (AAi(r,m)[ρ]) is definable
in AAi(r + c(r),m + 4)[ρ] where c(r) = 1 for r > 1 and c(r) = 2 for r = 1.

Proof. We have to show that, for every i, r,m ≥ 1, there is a sentence ψA ∈
AAi(r + c(r),m + 4)[ρ] where c(r) = 1 for r > 1 and c(r) = 2 for r = 1, such
that Mod(ψA) = AUTOSAT (AAi(r,m)[ρ]). The required formulae are simply
disjunctions of the BLOCKSAT formulae above.

∃V x1x2

(
∀z(¬(z < x1)) ∧ ∀z(¬(x2 < z))

“x1 and x2 are the first and the last element in
the ordering <, respectively” ∧

(
∃BLOCKSAT0(V , x1, x2) ∨ . . . ∨ ∃BLOCKSATm(V , x1, x2)∨

∀BLOCKSAT0(V , x1, x2)∨ . . .∨∀BLOCKSATm(V , x1, x2)
))

�

4.5 Main Result

Our main result stating the properness of the AAi hierarchies follows from Propo-
sitions 4 and 6.

Theorem 2. For every i ≥ 1, r ≥ 3 and m ≥ 4, there are Boolean queries not
expressible in AAi(r,m) but expressible in AAi(r + 1,m + 4).

Due to the fact that we ask r ≥ 3 and m ≥ 4, it could seem at first sight that
for the AA1 hierarchy of second-order logic our result is less satisfactory than
the result of Makowsky and Pnueli. However, this does not seem to be the case
as we already explained in Remark 1.

5 The HAAi Hierarchies

We define next a new kind of alternation-arity hierarchies in which the only
alternations bounded are those corresponding to the quantifiers of the highest
order.

Definition 13. (HAAi hierarchies) Let i, r,m ≥ 1,

i. HAAΣi(r,m) is the class of Σi
m formulae in which the higher-order vari-

ables of all orders up to i + 1 have maximal-arity at most r.
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ii. HAAΠ i(r,m) is the class of Πi
m formulae in which the higher-order vari-

ables of all orders up to i + 1 have maximal-arity at most r.
iii. HAAi(r,m) = HAAΣi(r,m) ∪HAAΠ i(r,m).

Note that because of (iii), for every i ≥ 1, the HAAi(r,m) hierarchy is also
closed under negation.

Regarding the relation between the AAi hierarchies and the HAAi hierar-
chies, it can be easily observed from the proof of Lemma 1 in [HT03] that,
for every i, r,m ≥ 1, HAAi(r,m) ⊇ AAi(r,m). It is a trivial task to adapt
that proof to show that, for every formula ϕ ∈ AAi(r,m), there is a for-
mula ϕ′ in GSNF which is equivalent to ϕ, has the same maximal-arity as
ϕ and does not have more than m alternating blocks of quantifiers of order
i + 1.

We show next that, for i ≥ 2, each HAAi(r,m) hierarchy is proper.

Theorem 3. For every i ≥ 2, r ≥ 3 and m ≥ 1, there are Boolean queries not
expressible in HAAi(r,m) but expressible in HAAi(max(r + 1, i + 2),m + 1).

Proof. (Sketch). Clearly, for every i ≥ 2, r ≥ 3 and m ≥ 1, HAAi(r,m) ⊇
AA1(3, 4). Furthermore, HAAi(r,m) is a context free language. For instance,
it is not difficult to modify the context free grammar for AA2(1, 3) in Exam-
ple 3 to obtain a context free grammar for HAA2(1, 3). We just need to add
the productions V1 → X((ι))I, V2 → xI ∪ X(ι)I, and F → ∃V2(F) ∪ ∀V2(F),
and replace the productions with nonterminals BΣ and BΠ in the left hand
side by the productions BΣ → ∃V1 ∪ ∃V1BΣ and BΠ → ∀V1 ∪ ∀V1BΠ , re-
spectively. Thus, given that the set of formulae in HAAi(r,m) is also closed
under negation, it follows from Proposition 5 that, for i ≥ 2, r ≥ 3 and m ≥ 1,
AUTOSAT (HAAi(r,m)[ρ]) is not definable in HAAi(r,m)[ρ].

It remains to prove that, for every i ≥ 2, r ≥ 3 and m ≥ 1, AUTOSAT (HA-
Ai(r,m)[ρ]) is definable in HAAi(max(r + 1, i + 2),m + 1)[ρ]. We show next
how the proof of Proposition 6 can be adapted to obtain, for every i ≥ 2,
r,m ≥ 1, a sentence ψa ∈ HAAi(max(r+1, i+2),m+1)[ρ] such that Mod(ψa) =
AUTOSAT (HAAi(r,m)[ρ]).

The predicates used in Subsection 4.4 which are related to the identification
of variables (Definition 7), the encoding of valuations (Definition 8), the identi-
fication of well formed sub-formulae (Definition 9) and the notion of satisfaction
of quantifier free sub-formulae (Definition 10), remain the same.

Given the different way in which the quantifiers are arranged in the HAAi

hierarchies, it follows that the predicates that need to be adapted are only those
which have to deal with quantified formulae.

First, we need to modify Definition 11. The predicates ∃BLOCK(x1, x2, x3)
and ∀BLOCK(x1, x2, x3) apply now only to blocks of variables of order at most
i, i.e., they hold only if the quantified variables in positions x1 to x2 are all of or-
der ≤ i. We also need to define ∃BLOCKi(x1, x2, x3) and ∀BLOCKi(x1, x2, x3)
in order to identify blocks of quantifiers of order i+1. All these predicates can be
expressed by formulae in HAAΣ1(3, 1), since they all define in each model a lan-
guage which is context free, and in the proof of Propositions 1 given in [MP96],
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the corresponding formula has a block of existentially quantified second-order
variables of arity 3, followed by a first-order part.

The most delicate part of the proof is the redefinition of the predicates
∃BLOCKSATm(V , x1, x2) and ∀BLOCKSATm(V , x1, x2). The main difference
with the previous case is that now these predicates hold only if the formula in
positions x1 to x2 is a formula with no more than m alternating blocks of quan-
tifiers of order i + 1, but with an arbitrary number of alternating blocks of
quantifiers of order ≤ i, which is satisfied by the valuation encoded by V . Recall
that V is a vector which contains a different variable V (ι,τ1,...,τk) for each type
(τ1, . . . , τk) ∈ typ(i + 1, r) \ {ι}, plus a second-order variable F of arity 2. Re-
call also that V has exactly |typ(i + 1, r)| different variables. We use induction
on the number m of alternating blocks of quantifiers of order i + 1. For m = 0,
∃BLOCKSAT0(V , x1, x2) and ∀BLOCKSAT0(V , x1, x2) say that V = V 1∪V 2
encodes a valuation, the variables which appear in V 1 encode the sub-valuation
for the variables of order i + 1, the variables which appear in V 2 encode the
sub-valuation for the variables of order ≤ i, and the symbols in positions x1 to
x2 form a HOi,r prenex formula which is satisfied by V . Note that, we use here
a variable X of order i + 1 and arity |typ(i, r)|+ 2 and state that X (V

′
2, y1, y2)

if the symbols in positions y1 to y2 form a HOi,r formula (possibly with free
variables of order i + 1) which is satisfied by V 1 ∪ V

′
2.

∃X
(
X (V 2, x1, x2)∧∀V

′
2y1y2

(
X (V

′
2, y1, y2)→

(
QFREESAT (V 1 ∪V

′
2, y1, y2)∨

∃zV ′′
2
(
∃BLOCK(y1, z, y2) ∧ V EQUIV (V

′′
2 , V

′
2, y1, z) ∧ X (V

′′
2 , z + 1, y2)

)
∨

∃z∀V ′′
2
(
∀BLOCK(y1, z, y2)∧V EQUIV (V

′′
2 , V

′
2, y1, z)∧X (V

′′
2 , z+1, y2)

))))

For m > 0, ∃BLOCKSATm(V , x1, x2) and ∀BLOCKSATm(V , x1, x2) are writ-
ten exactly as in the proof of Lemma 6, but replacing ∃BLOCK(x1, x2, x3) and
∀BLOCK(x1, x2, x3) with ∃BLOCKi(x1, x2, x3) and ∀BLOCKi(x1,
x2, x3), respectively.

Since we only consider here the alternating blocks of quantifiers of order i+1,
the reader can easily check that the predicates ∃BLOCKSATm(V , x1, x2) and
∀BLOCKSATm(V , x1, x2) can be expressed by formulae in HAAi(|typ(i, r)| +
2,m + 1).

We can get a tighter upper bound than |typ(i, r)|+2, since the arity of X can
be significantly decreased if we encode the valuations for the variables of order
≤ i differently. Note that, we can encode the valuations for all variables of order 2
and arity between 1 and r by using only one variable V ιr+1

rather than a different
variable for each different arity as we did in the proof of Lemma 2. For the case of
a second-order variable X of arity k < r, we simply use the sub-tuples formed by
the elements in positions 1 to k+1 of the r+1-tuples in V ιr+1

which correspond
to the relation assigned to X and disregard the elements in positions k + 2 to
r + 1. For variables of order ≥ 3 we can use a similar encoding. Thus we can
encode a valuation for all variables of order ≤ i by using i variables of arity r+1
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and in consequence a variable X of arity i+2 instead of one of arity |typ(i, r)|+2.
It follows that ∃BLOCKSATm(V , x1, x2) and ∀BLOCKSATm(V , x1, x2) can
be expressed by formulae in HAAi(i+ 2,m+ 1) if r + 1 < i+ 2 and by formulae
in HAAi(r + 1,m + 1) otherwise.

Finally, the required formulae are simply disjunctions of the 2m BLOCK-
SAT formulae above. �
It seems that this result does not apply to the HAA1 hierarchy of second-order.
The main obstacle is that the valuation for first-order variables is encoded into
a second-order variable. Thus the variable X in the proof must be of order at
least 3.

6 The Concept of Finite Model Truth Definitions

A method which has been frequently used in classical model theory to compare
the expressive power of logics, is Tarski’s method of truth definitions [Tar33].
In particular, this method has been successfully used in higher-order logics (see
[Lei94]). In finite model theory, Tarski’s method has first been explored by M.
Mostowski in [Mos01, Mos03]. He introduced the notion of finite model truth def-
initions (FM-truth, from now on) and proved a finite version of Tarski’s theorem
on undefinability of truth. Roughly, he proved that no natural class of formulae
can define FM-truth for itself over sufficiently large finite models which have a
suitable amount of arithmetical structure so that Gödelization can be carried
out. It is our understanding that the concept of natural classes of formulae used
by M. Mostowski, can be defined as follows.

We say that L is a natural class of formulae if, for any vocabulary σ, (i) the
set of L[σ] formulae as well as the notion of satisfaction on finite σ-structures are
decidable, and (ii) for each ϕ ∈ L[σ], if ψ is obtained from a first-order formula
α ∈ FO[σ] by single substitution of ϕ in the place of a predicate in α, then ψ is
equivalent to a formula in L[σ].

FM-truth definitions can be used, as in the classical case, to compare the ex-
pressive power of logics. The strategy consists in showing that a class of formulae
L′ which is known to be at least as expressive as a given natural class of formulae
L, additionally defines FM-truth for L. If that is the case, then we have shown –
using the “method of FM-truth definitions” – that L′ is strictly more expressive
than L.

Clearly, the method of FM-truth definitions is somehow related to our work,
since it can be used to establish the existence of proper hierarchies of formulae in
higher-order logics by using a diagonalization argument. We discuss this relation
in more detail in [FT05]. However, it is important to mention here that, the AAi

hierarchies cannot be proven using FM-truth definitions. This is so, because the
formulae in the levels of the AAi hierarchies are not natural classes of formulae,
since they are not closed under first-order quantification.

Quite recently, in [Kol04] the notion of FM-truth definition was further dis-
cussed and compared with Vardi’s concept of combined complexity [Var82], not-
ing an important difference: the possibility of defining FM-truth for a logic L
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does not depend on the syntax of L, as long as it is decidable. Furthermore, for
each i,m ≥ 1, a characterization of the logics for which the Σi

m class defines FM-
truth, was given. In [Kol04b], FM-truth definitions were used to give a sufficient
condition for the Σ1

1 arity hierarchy to be proper over finite structures.
In contrast with the AAi hierarchies, the layers of the HAAi hierarchies are

natural classes of formulae. Thus, for every i, r,m ≥ 1, it follows that HAAi(r,m)
does not define FM-truth for itself. We are currently investigating whether the
characterization of the logics for which the Σ1

m class defines FM-truth which
appeared in [Kol04], can help us to study whether the HAA1(r,m) hierarchy is
a proper hierarchy in second-order logic.
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Abstract. An extension of abduction is investigated where explanations for
bunches of observations may be jointly computed by sets of interacting agents.
At one hand, agents are allowed to partially contribute to the reasoning task, so
that joint explanations can be singled out even if each agent does not have enough
knowledge for carrying out abduction on its own. At the other hand, agents main-
tain their autonomy in choosing explanations, each one being equipped with a
weighting function reflecting its perception about the reliability of set of hy-
potheses. Given that different agents may have different and possibly contrast-
ing preferences, some reasonable notions of agents’ agreement are introduced,
and their computational properties are thoroughly studied. As an example appli-
cation of the framework discussed in the paper, it is shown how to handle data
management issues in Peer-to-Peer systems and, specifically, how to provide a
repair-based semantics to inconsistent ones.

1 Introduction

Abduction is a well-known form of reasoning aiming at identifying the causes which
some perceived observations can be explained according to. Formally, a logical theory
T , a set O of observations, and a set H of hypotheses are given, and a subset S of H is
looked for that merged with T entails O (short: T ∪ S |= O). The set S is said to be an
explanation forO, and it is usually required to satisfy some additional conditions, such
as consistency with T and minimality.

Abduction was first studied by Pierce [1]. Since then, it was recognized as an impor-
tant principle for common-sense reasoning, as a powerful mechanism for hypothetical
reasoning in presence of incomplete information, and as a solid framework for mod-
elling practical applications. Abduction has been deeply investigated in logic program-
ming too (cf. [2]). In this context, the most influential definition is due to Kakas and
Mancarella [3], but several other approaches have also been proposed both from proof
and model-theoretic perspectives (e.g., [4, 5, 6, 7, 8]).

In this paper, we consider a generalization of the basic abductive framework to the
setting where several autonomous agents interact with each other and jointly find expla-
nations for a bunch of observations at hand. In particular, we investigate some founda-
tional issues, by studying how an abduction problem can be solved through this kind of
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“distributed” intelligence and how agents’ reasoning mechanisms are to be modified in
this novel scenario. Two key ingredients are at the basis of the proposed formalization,
which are discussed below.

Firstly, agents are assumed to act in cooperative manner. This means that each agent
is allowed to partially contribute to the whole explanation, i.e., to explain a proper
subset of all the observations only, so that the solution of the abductive problem is the
result of the merging of the individual explanations. This is particularly useful whenever
each agent does not have enough knowledge for explaining all the observations by itself
and coordination with other agents is required. Moreover, cooperation also means that
while finding an individual explanation, each agent focuses on those hypotheses which
have also been selected by some other agents. This leads to justifications which are
more likely to be trustable, since the matching of partial individual explanations may
be taken in favor of believing in their correctness (in the spirit, e.g., of [9]). These kinds
of explanation are called joint explanations in the following.

Secondly, agents are assumed to have their own preferences about each possible
individual explanation. Therefore, the problem of finding joint explanations is not triv-
ialized to a standard abduction problem with a theory encompassing all the agents’
individual theories. Rather, each agent is also equipped with a weighting function as-
signing a quantitative preference (i.e., an integer) to each set S of hypotheses, in order
to reflect its perception about the reliability of S. Possibly, different agents have differ-
ent contrasting preferences on the way the explanation should be carried out. Hence,
those explanations on which all the agents agree are eventually selected as solutions to
the abductive problem.

It is important to point out that, in the light of the observation above, our framework
may be abstractly seen as a generalization of abduction with penalization [10, 11, 12]
to multiagent systems, where a kind of multi-objective optimization has to be done.
And, in fact, our choice is to pursue a game-theoretic approach to formally define the
agreement semantics and suitable notions of optimality in explanations finding. In this
respect, our investigation precisely faces one line of research which has been left open in
[13], asking for suitable frameworks applying ideas from multi-criteria decision theory
to solve conflicts among abductive agents.

In a nutshell, the main aim of the paper is to define and to subsequently investigate
the intrinsic difficulty of suitable agreement semantics for the problem of computing
joint explanations. In more details:

� In Section 3, we introduce a logic-programming framework for modelling joint ex-
planations. Actually, we first define a basic setting, and we then enrich it by allowing
agents to express preferences on the hypotheses. Given some possibly contrasting pref-
erences, we introduce several notions of agreement among agents whose inspiration is
mainly game-theoretic. For instance, we define conditions for a joint explanation to be
preferred, pareto, stable, or safe.

� In Section 4, as an example application for the notion of joint explanations, we show
how to handle data management issues in Peer-to-Peer (P2P) systems. In particular, we
evidence that important aspects such as peers’ autonomy and selfish interests, which
have been only marginally modelled in previous approaches, may be elegantly taken
into account while resolving conflicts in the data (violations to integrity constraints



118 G. Greco

which make the system inconsistent). The proposed abductive repair approach to pro-
vide semantics for inconsistent P2P system is of particular interest in Data Integration
contexts, and may be viewed as a generalization of [14], which has firstly proposed
the use of abduction to repair inconsistent databases.

� The computational complexity of some important reasoning problems related to joint
explanations is thoroughly investigated in Section 5. In particular, we consider two dif-
ferent settings, namely agent and combined complexity. The former is meant to capture
the difficulty lying in the agents’ interactions, since agents’ theories are assumed to be
fixed, whereas the latter accounts for the complexity of both agents’ interactions and
theories.

� Finally, Section 6 accounts for the discussion of relevant related works and of some
concluding remarks about possible directions for further research.

2 Preliminaries

In this section, abductive agents are formalized in a very simple framework by means of
stratified logic programs where classical negation is not allowed. Indeed, having agents
equipped with such limited reasoning capabilities makes it easy to identify the salient
features of our distributed scenario and to precisely characterize how the cost of solving
an abduction problem is affected by agents’ interactions. Studying joint explanations for
more powerful agents is left as subject for further research.

Logic Programs. We assume the existence of alphabets of constants, variables and
predicate symbols. A term is a constant or a variable. An atom is of the form p(t1, ..., tk)
where p is a k-ary predicate symbol and t1, ..., tk are terms; the atom is ground if all
its terms are constants; the atom is propositional if k = 0 (then, parenthesis are omitted
in the notation). A rule r is a clause of the form: a← b1, · · · , bh, not c1, · · · , not cn.,
where h, n ≥ 0, and a, b1, · · · , bh, c1, · · · , cn are atoms. The atom a is the head of
r, while the conjunction b1, . . . , bh, not c1, · · · , not cn is the body of r. A rule with
k = n = 0 is a fact (then, the arrow is omitted in the notation).

A logic program P is a finite set of rules. P is propositional (resp., ground) if all the
atoms in it are propositional (resp., ground).P is stratified, if there is an assignment s(·)
of integers to the predicate symbols in P , such that for each clause r in P the following
holds: if p is the atom in the head of r and q (resp. not q) occurs in r, then s(p) ≥ s(q)
(resp. s(p) > s(q)).

Let P be a stratified program. The model-theoretic semantics assigns to program P
its unique stable model. It is well known that this model can be computed in polynomial
time, in the case P is ground/propositional. Let W be a set of facts. Then, program P
entailsW , denoted by P |= W , ifW is contained in the stable model of P .

Abduction in Logic Programming. Let O be a finite set of facts called observations.
An abductive agent A is a pair 〈T (A), H(A)〉, where T (A) is a stratified logic program
encodingA’s view of the world, and H(A) is a finite set of facts denoting the hypotheses
that A may use to explain facts in O. An A-explanation for O is a set S ⊆ H(A) such
that T (A) ∪ S |= O. The following example, which will be exploited several times
throughout the paper, introduces an abductive agent and shows an example explanation.
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Example 1. Suppose that John (short: J) notices a friend of him, Frank, that is standing
alone just outside a restaurant, and that is elegantly attired. John thinks that Frank is
alone because he is waiting either for his girlfriend or for his brother; however, the fact
that he is elegant makes the first hypothesis more reliable, in his opinion.

John’s observations can be modelled by means of the factsO = {alone, elegant},
whereas his mental state can be encoded by means of the pair 〈T (J), H(J)〉, where
H(J) = {wait for girlfriend, wait for brother} and T (J) is the program:

alone← wait for girlfriend.
alone← wait for brother.
elegant← wait for girlfriend.

Sets {wait for girlfriend} and {wait for girlfriend, wait for brother}
are the only J-explanations for O. In particular, the former seems to be a good
candidate for explaining O, because of its minimality. Notice also that the fact
wait for girlfriend necessarily occurs in any explanation. �

3 Modelling Joint Explanations

In this section, we introduce the problem of finding joint explanations to observations
perceived by sets of agents. Actually, we first formalize the basic framework which is
eventually enriched by considering agents’ preferences in finding explanations.

3.1 Basic Framework

An abductive scenario S is a pair 〈A,O〉, whereA = 〈A1, ..., An〉 is a collection of ab-
ductive agents and O is a set of observations. Each agent Ai perceives the observations
inO and tries to exploit its own theory T (Ai) and its own hypotheses H(Ai) to explain
them. Moreover, Ai may also collaborate with all other agents by benefiting from their
explanations. Next, we make it clear what we mean for “collaborating” in finding an
explanation, by focusing on two different aspects:

• We assume that agents are allowed to partially contribute to the whole explana-
tion, i.e., each of them may possibly find an explanation for a proper subset of O,
provided that each fact in O is explained at least by one agent.

• We assume that agents wish to focus on those hypotheses on which they can find
some agreement with the other agents. In particular, if two agents, say A and B,
have overlapping hypotheses, i.e., H(A) ∩H(B) �= ∅, then their explanations, say
SA and SB , must be such that: a fact in H(A) ∩ H(B) is in SA if and only if it
is in SB as well. This requirement leads to justifications which are more likely to
be trustable, since the matching of partial individual explanations may be taken in
favor of believing in their correctness.

The following definition formalizes the concepts introduced so far.

Definition 1 (Joint explanation). Let 〈A,O〉 be an abductive scenario, with A =
〈A1, ..., An〉. A tuple 〈S1, ..., Sn〉 is an A-joint explanation (short: joint explanation)
forO if the following conditions hold:
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(1) ((Si \ Sj) ∪ (Sj \ Si)) ∩ (H(Ai) ∩H(Aj)) = ∅, for each i, j ∈ {1, ..., n};
(2) Si ⊆ H(Ai), for each i ∈ {1, ..., n};
(3) there are sets O1, ..., On such that:

– T (Ai) ∪ Si |= Oi, for each i ∈ {1..n}, and
⋃n

i=1 Oi ⊇ O. �

Example 1 (contd.) Assume that Mark (short: M ) and Bob (short: B), which are
friends of Frank too, join John. Actually, Mark knows that Frank has participated to
an important working-meeting this morning, so that his elegance may be well jus-
tified. Moreover, he guesses that John has still to meet some other colleagues now.
Then, Mark’s mental state is formalized by the pair 〈T (M), H(M)〉, where H(M) =
{meeting, wait for collegues} and T (H) is the program

alone← wait for collegues. elegant← meeting.

However, Bob knows that Frank is going to meet his brother and, therefore, notic-
ing him alone is not a surprise. Moreover, he has no justification for his elegance.
Then, Bob’s mental state is formalized by the pair 〈T (B), H(B)〉, where H(B) =
{wait for brother} and T (B) is the program alone← wait for brother.

According to our framework, the three friends constitute an abductive scenario, say
〈〈J,M,B〉, {alone, elegant}〉, having the following joint explanations:

S1 = 〈{wait for brother}, {meeting}, {wait for brother}〉,
S2 = 〈{wait for brother}, {meeting, wait for collegues}, {wait for brother}〉,
S3 = 〈{wait for brother, wait for girlfriend}, {meeting}, {wait for brother}〉,
S4 = 〈{wait for brother, wait for girlfriend}, {wait for collegues}, {wait for brother}〉,
S5 = 〈{wait for brother, wait for girlfriend}, {meeting, wait for collegues}, {wait for brother}〉.

Notice that John is now forced to exploit the fact wait for brother, in order to find
an agreement with Bob; however, he is no longer required to make use of the hypothesis
wait for girlfriend, since Frank’s elegance may be explained by Mark (by the fact
meeting). �

Before leaving this section, it is relevant to note that in Definition 1, to keep things
simple, we do not considered scenarios where agents do not manifest (i.e., communi-
cate to the other agents) their own hypotheses. However, this has been done without
loosing in generality. Indeed, such scenarios can be coped with by a simple syntactic
expedient. As an example, assume that agent Ai does not manifest to the other agents
whether an hypothesis, say h ∈ H(Ai), is part of its explanation. Then, to model this
scenario while keeping Definition 1 fixed, it is sufficient to replace (in both H(Ai) and
T (Ai)) the hypothesis h by a fresh hypothesis, say hhidden, which does not occur in
any set of the form H(Aj), with j �= i. Then, all the other agents cannot access this
hypothesis, which therefore does not influence their decisions, while the semantics of
the pair 〈T (Ai), H(Ai)〉 is preserved.

3.2 Individual Preferences and Agreements in Joint Explanations

In several practical situations, agents have preferences in finding explanations. We
now take care of these preferences by equipping each agent A with a polynomially-
computable weighting function γA assigning an integer to each possible subset of
H(A): The lower the number associated to a set of hypotheses S, the less trustable S.
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Actually, having such weighting functions specified for each possible set of hypothe-
ses may be often unrealistic. In practice, one may assume that functions are partially
specified over a certain set S̄ of hypotheses, so that a default weight is associated to
hypotheses not in S̄. Alternatively, one may define a function γi

A assigning weights to
individual hypotheses, so that γA(S) =

∑
s∈S γi

A(S).
We point out that while several approaches have already considered the notion of

preference in multi-agent systems applications (e.g., [15, 16, 17]), few efforts have been
paid in dealing with contrasting agents’ preferences and in providing reasonable agree-
ment semantics; this is precisely the aim of this section.

Example 1 (contd.) In our running example, assume that John’s preferences are formal-
ized through the weighting function γJ such that: γJ ({wait for girlfriend}) = 3,
γJ({wait for girlfriend, wait for brother}) = 1, γJ ({wait for brother}) =
2. Intuitively, John prefers minimum sized explanations and, subordinately, he is in-
clined to assume that Frank is waiting for his girlfriend.

Moreover, the function associated to Mark is such that: γM ({meeting}) = 3,
γM ({meeting, wait for collegues}) = 2 and γM ({wait for collegues}) = 1.
The function reflects that he knows that Frank had a meeting in the morning.

Finally, Bob has one hypothesis and, we let γB({wait for brother}) = 1. �
Given the preferences expressed by the agents, we may be interested in singling out
those explanations on which agents are likely to find an agreement. Clearly enough, if
all the agents assign the maximum value of their weighting functions to the same ex-
planation, say h, then h will be the most desirable joint explanation for the observations
at hand. However, agents have contrasting preferences in general and, therefore, defin-
ing a criteria for selecting some kinds of preferred explanation poses some semantics
problems. Our solution approach is to exploit some standard game-theoretic arguments,
which are aimed at characterizing preferred explanations as the most “rational” out-
comes for agents’ interactions. The basic observation is that agents are rational entities
for they seek to select an explanation which gives the outcome they most prefer, given
what they expect the other agents do. As an example, assume that agents A2, A3, ..., An

have already find an agreement on the explanation 〈S2, S3, ..., Sn〉; then, agent A1 will
rationally selects in the sets of all its individual explanations the one getting the max-
imum value for its weighting function, while still agreeing on the shared hypotheses
with the other agents (cf. condition (1) in Definition 1). Since all the agents apply this
form of reasoning, the following definition may be singled out.

Definition 2. Let 〈A,O〉 be an abductive scenario, with A = 〈A1, ..., An〉. A joint
explanation 〈S1, ..., Sn〉 for O is preferred if there exists no other joint explanation
〈S′1, ..., S′n〉 and no agent Ai such that: (1) γAi(S′i) > γAi(Si), and (2) S′j = Sj , for
each j �= i with i, j ∈ {1, ..., n}. �

Thus, the idea is to consider explanations which agents cannot individually “deviate”
from, by selecting a more trustable set of hypotheses. Close to this approach is the
framework of [18], where the semantics of multi-agent systems is provided in terms of
a stable set of actions for different agents, where a set is stable if assuming an oracle
that could feed each of the agents with all the other actions in the outcome, then agents’
decision would be what the set envisages.
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It is relevant to note that the assumption of rational behavior for the agents exploited
in the definition above is also traditionally used in game theory, by leading to the defi-
nition of the solution concept of Nash equilibrium in non-cooperative games1.

In particular, in Definition 2, one may view the set of hypotheses (individual expla-
nations) as the possible actions for each agent and the weights assigned to them as the
payoffs. Yet, there are some important conceptual differences here. Indeed, in classical
game theory players are allowed to arbitrary chose a strategy (provided it is rational)
in a fixed set of possible actions to be performed; however, in Definition 2, preferred
explanations (i.e., the outcomes of the abductive problem) must satisfy the additional
requirement of being joint explanations, which imposes a kind of coordination among
agents and constraints the actions that can be eventually chosen. Therefore, the ex-
ploitation of some game-theoretic arguments is on a more technical level, for defining
the way in which agents’ individual preferences are to be maximized.

Example 1 (contd.) Consider the joint explanations S3 and S5. They are not preferred
since John gets an incentive in selecting S1 and S2, respectively, without affecting the
choices of the other two friends. Similarly, S4 and S2 are not preferred, since Mark
prefers S3 and S1 to them, respectively. Therefore, it is easy to see that S1 is the only
preferred explanations. �

We next consider a more sophisticated notion of agreement which is based upon a suit-
able stability criterion. Indeed, according to Definition 2, it is sufficient that any agent
does not have an incentive for deviating from a given joint explanation for this expla-
nation being considered preferred. However, in some situations, agents may coordinate
which each other and exchange their beliefs and intensions, thereby forming coalitions
which may influence the process of finding preferred joint explanations. To take care
of these situations, in the following definition we look for joint explanations for which
there is no set of agents that can “deviate” from, by jointly selecting some more trustable
set of hypotheses. This is a quite strong property that makes the agents’ agreement sta-
ble and the explanations very reliable.

Definition 3. Let 〈A,O〉 be an abductive scenario, with A = 〈A1, ..., An〉. A joint
explanation 〈S1, ..., Sn〉 for O is stable if there exists no other joint explanation
〈S′1, ..., S′n〉 and set of agents K ⊆ {A1, ...An} such that: (1) γAi(S′i) > γAi(Si),
for each Ai ∈ K, and (2) S′j = Sj , for each Aj �∈ K.

Moreover, 〈S1, ..., Sn〉 is pareto if there exists no other joint explanation 〈S′1, ..., S′n〉
such that (1) holds for K = {A1, ...An}. �

Intuitively, pareto explanations are immune against deviations by the whole set of agents
only, whereas stable explanation are immune against deviations by any subset of the
agents. Notice, for instance, that in our running example S1 is both a pareto and a stable
explanation.

Example 2. Consider a slight modification of our running example, in which Bob has
also wait for girlfriend as hypothesis explaining why Frank is elegant. Assume,

1 And, in fact, one of the complexity results in Section 5 establishes a formal correspondence
between the two settings.
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also, that γB({wait for girlfriend}) = 2, γB({wait for brother}) = 1, and
γB({wait for girlfriend, wait for brother}) = 1. Then, the modified abduc-
tive scenario has some more joint explanations; among them, consider the following:

S6 = 〈{wait for girlfriend}, {wait for collegues}, {wait for girlfriend}〉,
S7 = 〈{wait for girlfriend}, {meeting}, {wait for girlfriend}〉,
S8 = 〈{wait for girlfriend}, {meeting, wait for collegues}, {wait for girlfriend}〉,

It is easy to see that S7 is a preferred explanation, while S6 and S8 are not, since
Mark prefers the explanation just containing the fact meeting. Therefore, the pareto
explanations are S1 and S7. However, S7 is the only stable explanations. Indeed,
John and Bob may jointly deviate from S1 to S7, because they trust more in the fact
wait for girlfriend. �

Competitive Agents. We conclude the description of the framework for finding joint
explanations, by considering the case of competitive agents which are interested in se-
lecting the explanations they prefer, no matter of the possibility of finding an agreement
with the other agents. These agents may be viewed as “isolated”, for they do not observe
any explanations of the other agents. Accordingly, the explanations which are possible
to be singled out are said to be “safe”, precisely because they are not influenced by
agents’ interactions.

Definition 4. Let 〈A,O〉 be an abductive scenario, with A = 〈A1, ..., An〉, and let
〈S1, ..., Sn〉 be a joint explanation forO. Then, 〈S1, ..., Sn〉 is safe if (1) T (Ai)∪Si |=
O, for each i ∈ {1, ..., n}; (2) � ∃Ai ∈ {A1, ..., An}, S′i ⊆ H(Ai) s.t. T (Ai)∪ S′i |= O,
and γAi(S

′
i) > γAi(Si). �

Example 1 (contd.) It is easy to see that there are no safe explanations in our running
example. Indeed, Bob cannot explain alone the whole set {alone, elegant}, thereby
violating condition (1) in Definition 4. Actually, condition (2) in the same definition is
also violated in both the five joint explanations. Indeed, in a competitive setting, John
finds convenient to assume the hypothesis {wait for girlfriend}, no matter of the
fact that he will not find an agreement with Bob. �

3.3 Relationship Among the Notions

After that different notions of agreements have been introduced, it is natural to investi-
gate how they are related with each other. Clearly enough, preferred, pareto, stable, and
safe explanations are by definition joint explanations. Also, it is easy to see that the no-
tion of stable explanation entails both the notions of pareto and preferred explanations.
As far as existence of explanations is concerned, the existence of joint explanations does
not guarantee the existence of any safe explanation. For instance, an abductive scenario
where each agent does not have enough information to explain the whole set of obser-
vations does not admit, by definition, any safe explanation but may well admit some
other kinds of joint explanation. Similarly, there are scenarios where joint explanations
exist none of which is stable. This is not the case for preferred and pareto explanations,
which are guaranteed to exist as soon as a joint explanation exists.
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Proposition 1. Let 〈A,O〉 be an abductive scenario, with A = 〈A1, ..., An〉. The fol-
lowing statements are equivalent: (a) There exists a joint explanation for O; (b) There
exists a preferred explanation for O; (c) There exists a pareto explanation for O.

Proof. The implications (c) ⇒ (a) and (b) ⇒ (a) trivially follow from definitions of
explanations. Then, we have to show that (a)⇒ (b) and (a)⇒ (c) hold as well.

Let 〈S1, ..., Sn〉 be a joint explanation. We define a succession of joint explanations
originating in 〈S1, ..., Sn〉 and converging to a preferred one. To this aim, let T be a
map from joint explanations to joint explanations such that:

– T(〈S1, ..., Sn〉) = 〈S1, ..., Sn〉, if 〈S1, ..., Sn〉 is a preferred explanation, and
– T(〈S1, ..., Sn〉) = 〈S′1, ..., S′n〉, if 〈S1, ..., Sn〉 is not preferred and 〈S′1, ..., S′n〉 is

the joint explanation satisfying conditions (1) and (2) in Definition 2.
Notice that T(〈S1, ..., Sn〉) is either a preferred explanation or a joint explanation in
which an agent may strictly increase the value of its weighting function w.r.t. the
one assumed in 〈S1, ..., Sn〉. Therefore, the succession 〈S1, ..., Sn〉, T(〈S1, ..., Sn〉),
T(T(〈S1, ..., Sn〉)),... must converge to a joint explanation in which no agent can sat-
isfy condition (1) in Definition 2. This proves that (a) ⇒ (b) holds.

Finally, we show that (a) ⇒ (c) holds. Indeed, let 〈S1, ..., Sn〉 be a joint explanation
such that there is an agent, say Ai, for which the value γAi(Si) is the maximum over
all the possible joint explanations. Then, by Definition 3, 〈S1, ..., Sn〉 is pareto. �

4 Data Integration in P2P Systems

In this section, we exploit the framework for computing joint explanations to provide
semantics for Peer-to-Peer (P2P) data management systems. We recall here that P2P
systems are networks of autonomous peers representing the natural evolution of clas-
sical data integration systems and mediators (e.g., [19-22, 14]). They have, in fact, re-
cently emerged as an effective architecture for decentralized data sharing, integration,
and querying (e.g., [23-27]).

A key issue in P2P systems is that data stored in different autonomous peers may
be mutually inconsistent, i.e., it may violate some integrity constraints issued over peer
schemas to enhance their expressiveness. To remedy this problem, one can handle the
inconsistency by suitably “repairing” the retrieved data. However, in order to be effec-
tive, the repair approach should consider the peculiarities of P2P systems and, particu-
larly, the following two aspects:

– Peers are distributed and autonomous entities, that may interact in complicated
ways before agreeing with other peers on the way the repair should be carried
out. Therefore, the integration should be modelled by means of a ‘decentralized’
framework, where decisions are shared among peers.

– In practical applications, peers have often an a-priori knowledge about the reliabil-
ity of the sources that, in turn, determines their criteria for computing repairs. E.g.,
peers will rarely delete tuples coming from highly reliable sources, and will try to
solve conflicts by updating the less reliable sources only.
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Despite the wide interest in this field, few approaches in the literature considered the
issue of modelling the autonomy of the peers in choosing a repair for the system. Simi-
larly, very few efforts have been paid for enriching P2P systems with peers’ preferences
(e.g., [26] considering trust relationships among peers), even though this is widely rec-
ognized to be a crucial aspect of P2P systems (cf. [27]).

We next show that the framework for computing joint explanations can be used to
face these problems, by providing a surprisingly natural repair semantics for P2P sys-
tems. This is an important contribution of its own, witnessing some practical relevance
of the notions discussed in the paper. We believe that the proposed formalization may
stimulate other logic-based approaches to model P2P systems.

4.1 P2P Systems in a Nutshell

P2P systems offer transparent access to the data stored at each peer p, by means of the
global schema equipped with p for modelling its domain of interest; moreover, pair of
peers with the same domain of interest are interconnected by means of schema mapping
rules. Formally, a P2P system P is a tuple 〈P,G,N ,M〉, where P is a non-empty set
of distinct peers and G,N andM are functions. In particular, for each peer p ∈ P ,

– G(p) = 〈Ψp, Σp〉 is the peer schema, where Ψp is a set of predicate symbols dis-
tinguished for each peer, i.e., Ψp ∩ Ψq = ∅ for each p �= q, and Σp is a stratified
logic program defining the set of integrity constraints. Each constraint is a rule of
the form badp ← Body, where Body is any conjunction of literals defined over the
predicates in Ψp, and badp is a distinguished predicate whose derivation entails the
violation of some constraints.2

– N is the neighborhood function providing a set of peers Neigh(p) ⊆ P −{p} con-
taining the peers (called neighbors) who are potentially interested in information
stored by p;

– M(p) is a stratified logic program defining the set of peer mapping assertions of
p. Actually, rules inM(p) are partitioned into setsMq(p), for each q ∈ Neigh(p),
so that each assertion in Mq(p) is a logic rule whose head predicate is taken from
the schema G(q) and whose body predicates are taken from the schema G(p). The
intended meaning of mapping assertions is to provide a means for exchanging data
among peers, and in fact, evaluating the assertions inM(p) is the way p exploits to
publish its private information.

Example 3. Let Po = 〈P o,Go,N o,Mo〉 be a P2P system, where P o consists of three
peers p1, p2 and p3, such thatN o(p1) = {p3},N o(p2) = {p3} and N o(p3) = ∅.

Figure 1 summarizes the structure of the system Po, and reports for each peer, its
global schema, and its mapping assertions. Notice the integrity constraints on p3 stating
that a professor cannot be a student. �

A global database forP is a functionB associating to each peer p a database instance
B(p) for G(p) = 〈Ψp, Σp〉, i.e., a set of facts (also tuples) whose predicate symbols are

2 We model universally quantified constraints, such as Keys, Functional Dependencies, and Ex-
clusion Dependencies. Dealing with existentially quantified constraints can be done by tech-
niques in [29].
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Fig. 1. The P2P system Po in Example 3

in Ψp. We say that B satisfies P if for each peer p, (1) B(p) ∪ Σp �|= badp, and (2) the
stable model of

⋃
q∈N (p)(Mp(q)∪B(q)) is contained in B(p). Intuitively,B satisfies P

if there are no violations of integrity constraints, and if the mappings correctly evaluate
the tuples that are ‘retrieved’ from the neighbors.

Example 3 (contd.) Consider the global database Bo for the system Po such that:
Bo(p1) = {economy(Albert, Bill)}, Bo(p2)={math(John, Mary),math(Mary, Tom)}
and Bo(p3) = {student(Mary, ComputerScience)}.

Then, Bo does not satisfy Po, because of the violation of the mapping assertions;
indeed, according to the mappings reported in Figure 1, Bo(p3) must contain the tu-
ples course(Albert, Bill) (imported from p1), course(John, Mary), course(Mary, Tom)
(imported from p2), beside the tuple student(Mary, ComputerScience) (already in p3).

By the way, if we assume that all the above tuples are materialized in Bo(p3), we yet
have that Bo does not satisfy Po, because of the violation of the integrity constraints
over p3, since Mary will result to be both a student and a professor. �

4.2 An Abductive Approach to Repair P2P Systems

Given that a P2P system may be not satisfied by a global database, a “repair” for the
P2P system has to be computed [26, 27]. Roughly speaking, repairs may be viewed
as insertions or deletions of tuples at the peers that are able to lead the system to a
consistent state. We next propose an abductive approach to repair P2P systems based
on joint explanations.

Let P = 〈P,G,N ,M〉 be a P2P system, with P = {p1, ..., pn}, and B be a global
database for P . The abductive scenario S(P ,B) associated to P and B is the tuple
〈A(P ,B),O(P ,B)〉, where A(P ,B) = {p1, ..., pn} and O(P ,B) = {okp1 , ..., okpn},
s.t. for each agent pi ∈ A(P):

• H(pi) = H1(pi) ∪H2(pi) ∪H3(pi), where
−H1(pi) = {+r(t),−r(t) | r is a predicate in B(pi) ∧ t is a tuple of constants}

−H2(pi) = {re(t) | r is a predicate in B(pj) ∩ Mpj (pi), pi �= pj ∧ t is a tuple of constants}

−H3(pi) = {re(t) | r is a predicate in B(pi) ∩ Mpi(pj), pi �= pj ∧ t is a tuple of constants}

• T (pi) is the union ofM(pi) ∪Σp ∪ { okpi ← not badpi .} with the rules:
r1 : rD(t). ∀r(t) ∈ B(pi)

r2 : r(t) ← +r(t).
r3 : r(t) ← re(t).
r4 : r(t) ← rD(t), not − r(t).
r5 : badpi ← r(t),−r(t).

∀r occurring in B(pi)

r6 : badpi ← r(t), not re(t).
r7 : badpi ← re(t), not r(t). ∀r occurring in pj∈Neigh(pi)

Mpj
(pi)
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We next informally describe the meaning of this abductive scenario. Let us start by
commenting the notation. For each predicate symbol r belonging to the global schema
of the peer pi, the fact +r(t) (resp.,−r(t)) indicates that the tuple r(t) has been added
to (resp., deleted from)B(pi); the fact r(t) indicates that the tuple r(t) is actually stored
in the database associated to pi after the repair is performed; moreover, the fact re(t)
denotes that the tuple r(t) is exchanged (either imported or exported) with some other
peer. Finally, rD(t) denotes that r(t) occurs in B(pi), before the updates are performed.

As for the hypotheses in H(pi), we distinguished three different sets. H1(pi) is such
that its subsets (in the case where a given tuple is not added and deleted at the same
time) are in one-to-one correspondence with all the possible repairs for the database
B(pi).

Then, H2(pi) contains the data that pi exports to his neighbors (indeed, r is in this
case a predicate symbol in the database of some of pi’s neighbors), while the set H3(pi)
contains the data that pi imports from other peers.

In order to get an intuition about the need of the last two sets of hypotheses, consider
two peers pi and pj such that pj ∈ Neigh(pi), and let rpj be a predicate symbol in
the schema of B(pj). Clearly, facts of the form repj(t) occur both in the set H2(pi) and
in the set H3(pj). Therefore, in order to satisfy condition (1) in Definition 1, any joint
explanation for 〈A(P ,B),O(P ,B)〉must be a set of “consistent” exchanges, i.e., tuples
exported by pi to pj must coincide with the tuples imported by pj from pi. Importantly,
this is the only information shared by pairs of peers; in particular, each peer may be
completely unaware of the content of the databases stored at his neighbors. This feature
fits the basic assumptions in P2P systems, where the mappings represent the only way
for getting data from peers.

Let us now discuss the intended meaning of agent’s theory T (pi). We distinguished
three sets of rules, namely {r1}, {r2, ..., r5}, and {r6, r7}. Rule r1 is used to store into
facts over the predicate symbol rD all the data contained in B(pi) before any update
is performed. As for the second set, rules r2, r3 and r4 simply compute the value of
the modified database (after updates and data exchanges). In particular, the modified
database will contain: (i) all the tuples added to B(pi) (rule r2); (ii) all the tuples im-
ported by peer pi (rules r3); and (iii) all the tuples that are in B(pi) and have been not
deleted in the repair (rule r4). Moreover, rule r5 entails badpi if and only if a given tuple
deleted in the repair while occurring in the database after the updates are performed. Fi-
nally, rules r6 and r7 are used to check whether the facts exported by pi to his neighbors
(facts over the predicate symbol re) actually coincide with those computed throughout
the mapping assertions inM(pi). If this is not the case, then badpi is entailed.

To conclude the description of the encoding, recall that the rules in Σp entail, by
definition, badpi if and only if there is some constraint violation. Therefore, by sum-
ming up all the above considerations, okpi is true in the model of T (pi) if and only if
a database instance for G(pi) has been computed which satisfies all the mapping asser-
tions. Then, if okpi is entailed for each peer pi, the hypotheses at hand encode a model
for the system.

Formally, let S = 〈S1, ..., Sn〉 be a joint explanation for O(P ,B). We denote by
BS the global database such that, for each peer pi ∈ P , BS(pi) = {r(t) | r(t) ∈
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Si ∧ r is a predicate symbol in B(pi)}. Then, the following theorem shows that joint
explanations represent, in fact, an elegant way for assigning semantics to P2P systems.

Theorem 1. Let P = 〈P,G,N ,M〉 be a P2P system, let B be a global database for P ,
and let S(P ,B) = 〈A(P ,B),O(P ,B)〉 be the associated abductive scenario. Then:

– if S is a joint explanation for O(P ,B), then BS satisfies P;
– if B′ satisfies P , then there is a joint explanation S forO(P ,B) such that B′ = BS .

In the light of the theorem above, BS is said to be a repair for P w.r.t. B.

Example 3 (contd.) Let S(Po,Bo) = 〈〈A(p1), A(p2), A(p3)〉, {okp1 , okp2 , okp3}〉 be
the scenario associated toPo andBo. Then, we can single out several joint explanations.

In particular, denote by So
1 the joint explanation which is carried out by deleting the

tuple math(Mary,Tom) from p2 and the tuple student(Mary,ComputerScience)
from p3, and by propagating to p3 the tuples course(Albert ,Bill) and
course(John,Mary) from p1 and p2, respectively. Moreover, let us denote by
So

2 the joint explanation which is carried out by deleting math(John,Mary) from
p2, and propagating course(Albert ,Bill) and course(Mary,Tom) from p1 and p2,
respectively. Then, it is easy to see that both BSo

1
and BSo

2
satisfy Po. �

Importantly, we can further exploit our framework to single out repairs that enjoy some
nice properties. In particular, peers’ preferences can be trivially dealt with by equipping
peers with weighting functions and by considering the kinds of more sophisticated no-
tion of explanations we have investigated in the paper. This is relevant, for instance, to
avoid repairs where all the tuples are deleted.

In this respect, a very common scenario occurs when each agent p is equipped with
the function γp(S) = −|{+r(t) ∈ Sp}∪{−r(t) ∈ Sp}|. In this case, agents are giving
preference to those repairs requiring the minimum number of updates to the original
global database. We leave to the careful reader the task of checking that given these
functions, So

1 and So
2 in the example above are the only preferred joint explanations,

while So
2 is the only pareto joint explanation.

Clearly, more complex functions may be used to model peers’ assumptions about
reliability of other sources, e.g., stating to prefer tuples coming from some given peer.
In all the cases, the semantics for the interactions can be chosen among those proposed
in the previous section, according to the application needs. For instance, one can define
the notion of preferred repair as the one where no peer gets an incentive to deviate from
by selecting a different repair. As a further example application, we refer the interested
reader to [28], where competitive peers are considered and a notion of agreement is
proposed which basically relies on the concept of safe explanation.

5 Reasoning with Joint Explanations

After that the framework for computing joint explanations has been introduced and
discussed, we turn to the investigation of the computational complexity of some ba-
sic reasoning tasks emerging in this scenario. This study can help in shedding some
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lights into the difficulty of finding joint explanations and is a necessary step for devel-
oping effective algorithms for their computation. So, assume that an abductive scenario
〈A,O〉, with A = 〈A1, ..., An〉, is given, and consider the following problems (which
generalize classical problems in standard abduction):

– Consistency: Does there exist an explanation forO?
– Checking: Given a tuple 〈S1, ..., Sn〉, is 〈S1, ..., Sn〉 an explanation for O?
– Relevance: Given a hypothesis h and an agent Ai, is there an explanation
〈S1, ..., Sn〉 such that h is in Si?

– Necessity: Given a hypothesis h and an agent Ai, is the case that for each expla-
nation 〈S1, ..., Sn〉, h is in Si?

Specifically, we shall study the complexity of the problems above for all the kinds of
explanation (joint, preferred, pareto, stable, and safe) formalized in Section 3, where
agents’ theories are assumed to be ground (or, equivalently, propositional) programs.

5.1 Complexity Settings and Overview of Complexity Results

In order to make the analysis rigorous, we first discuss the parameters of interest in our
studies. Indeed, in a scenario involving several agents, we can single out two different
sources of complexity: the number of agents which are required to agree on finding an
explanation, and the size of the agents’s theories and hypotheses. Clearly enough, if we
deal with a fixed number of agents, i.e., if agents are not part of the input problem, then
all the reasoning tasks can be easily reduced to the problem of abductive reasoning with
penalization in the context of one agent only [11] (details omitted here).

Therefore, we assume that the number of agents is not fixed so that two kinds of com-
plexity setting may be explored, that are: (1) Agent Complexity, i.e., the complexity of
solving the reasoning problems by fixing, for each agent, its theory and set of hypothe-
ses, and (2) Combined Complexity, i.e., the complexity measured by assuming that both
the number of players, their theories and hypotheses are not a-priori fixed. Notice that
the former setting is meant to capture the difficulty lying in the agents’ interactions,
whereas the latter accounts for both the intricacy of the interactions and the complexity
of individual abductions. In particular, the agent complexity setting provides an use-
ful bound on the cost of communication required in practical implementations. Indeed,
an NP-hardness result in this setting entails that it is unlikely to exists a coordinating
algorithm requiring a polynomial number of messages exchanges only. Conversely, a
polynomial time result in the agent complexity would suggest the existence of some
efficient algorithms finding joint explanations in a decentralized fashion.

A summary of all the complexity (completeness) results for the two settings is re-
ported in Figure 2. All the programs are assumed to be propositional/ground – as usual,
results for non-grounds programs are one exponential higher.

The figure shows that problems have complexities lying at the first and second level
of the polynomial hierarchy. Moreover, the results for the agent complexity are a lower
bound for the combined complexity case. It is evident that the more stringent condi-
tions imposed by the notions of pareto and stable explanations came at a high computa-
tional cost. Moreover, in both the two settings, Relevance and Necessity are always
in complementary complexity classes, and Consistency provides lower bounds for
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problem joint preferred pareto stable safe

Consistency NP NP NP ΣP
2 NP

Checking P P co-NP co-NP P
Relevance NP NP ΣP

2 ΣP
2 NP

Necessity co-NP co-NP ΠP
2 ΠP

2 co-NP

problem joint preferred pareto stable safe

Consistency NP NP NP ΣP
2 PNP

Checking P co-NP co-NP co-NP co-NP
Relevance NP ΣP

2 ΣP
2 ΣP

2 PNP

Necessity co-NP ΠP
2 ΠP

2 ΠP
2 PNP

(a) (b)

Fig. 2. Summary of Complexity Results: (a) Agent Complexity; (b) Combined Complexity

Relevance. Actually, the complexity of Consistency and Relevance coincides for
most of the considered notions but for the intriguing cases of pareto (both in (a) and
(b)), and preferred explanations (in (b) only).

Interestingly, by turning from the agent complexity to the combined complexity, the
notions of preferred and safe explanations are those evidencing some more structural
differences. In fact, problems for safe explanations becomes in (b) complete for the
polynomial time closure of the class NP, i.e., for PNP; moreover, for preferred expla-
nations we get completeness results for the second level of the polynomial hierarchy.

5.2 Proofs of Complexity Results

In this section, we provide some selected proofs for the results in Figure 2, that are
representative of the techniques exploited in our investigation. In particular, due to space
constraints, we focus on the Consistency problem only.

Theorem 2. Consistency is NP-complete for joint, preferred and pareto explana-
tions. (Agent Complexity)

Proof (Sketch). Membership. To decide the existence of joint, preferred and pareto ex-
planations it suffices to certify the existence of a joint explanation, after Proposition 1.
This latter task is feasible in NP: guess a tuple 〈S1, ..., Sn〉 and verify in polynomial
time that all the conditions in Definition 1 hold. In particular, in order to verify that
condition (3) holds, we can simply compute the stable model for each program of the
form T (Ai) ∪ Si and let Oi contain all the observations in this model.

Hardness. We establish the NP-hardness for joint explanations by exploiting a nice
connection between the problem of computing joint explanations and the problem of
computing (pure) Nash equilibria in graphical games.

A graphical game G is a tuple 〈P,Neigh ,Act , U〉, where P is a non-empty set
of distinct players and Neigh : P −→ 2P is a function such that for each p ∈ P ,
Neigh(p) ⊆ P − {p} contains all neighbors of p, Act is a function returning for
each player p a set of possible actions Act(p), and U associates a utility function
up : Act(p) ×j∈Neigh(p) Act(j) → * to each player p. For a player p, pa denotes
her choice to play the action a ∈ Act(p). Each possible pa is called a strategy for p, and
the set of all strategies for p is denoted by St(p). A global strategy x is a set containing
exactly one strategy for players in P .

A (pure) Nash equilibrium for G is a global strategy x such that for every player
p ∈ P , � ∃pa ∈ St(p) such that up(x) < up(x−p[pa]), where up(x) denote the output
of up on the projection of x to the domain of up, and x−p[pa] is the global strategy
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obtained by replacing p’s individual strategy in x by pa. The problem of deciding the
existence of pure Nash equilibria in graphical games has been proven to be NP-hard in
[30], even if each player has three neighbors at most.

Given a game G = 〈P,Neigh ,Act , U〉with P = {p1, ..., pn}, we build an abductive
scenario S(G) = 〈A(G),O(G)〉 such that: (i) O(G) = {okpi | pi ∈ P}; (ii) A(G) =
{A1, ..., An} where, for each agent Ai, H(Ai) = {Hpja | pj ∈ (Neigh(pi)∪{pi}), a ∈
St(pj)}, and T (Ai) consists of the program:

pia ← Hpn1a1 , ..., Hp
nk
ak . where {pn1 , ..., pnk} = Neigh(p) ∧ ∀pnj , aj ∈ St(pnj ) ∧ a ∈ St(pi)∧

upi({pi
a, pni

a1 , ..., p
nk
ak }) = maxs∈St(pi)({pi

s, p
ni
a1 , ..., p

nk
ak });

bad ← not pia, Hp
i
a. ∀a ∈ St(pi);

oneSelectedpj ← Hpja. ∀a ∈ St(pj) ∧ pj ∈ (Neigh(pi) ∪ {pi});
twoSelected ← Hpja, Hp

j
b. ∀a, b ∈ St(pj) s.t. a �= b ∧ pj ∈ (Neigh(pi) ∪ {pi});

okpi ← not bad, oneSelectedpi , not twoSelected,
oneSelectedpn1 , ..., oneSelectedpnk .

Let x be a global strategy for G. We denote by e(x) the tuple 〈e1(x), ..., en(x)〉 such
that, for each i ∈ {1, ..., n}, it holds that: ei(x) =

⋃
pj∈(Neigh(pi)∪{pi}){p

j
a | pj

a ∈ x}.
Then, it is not difficult to check that x is a Nash equilibrium ⇔ e(x) is a joint

explanation for O(G), and the NP-hardness of Consistency for joint explanations
follows. Hardness for the other kinds of explanation derives from Proposition 1. �

Theorem 3. Consistency is PNP-complete for safe explanations. (Combined Com-
plexity)

Proof (Sketch). Membership. The problem can be solved by processing agents in a
sequential manner. For each agent p, we can find the maximum value of the associated
function γp by means of a binary search, in which at each step we guess in NP an
hypothesis and verify in polynomial time that condition (1) in Definition 4 holds.

After having collected the maximum values for all the agents, we conclude with a
final guess to get a tuple of individual explanations, and a subsequent check that actually
each agent p gets precisely this maximum value for γp.

Hardness. Let Φ be a boolean formula in conjunctive normal form Φ = C1∧. . .∧Cm

over the variables X1, . . . , Xn. Assume an ordering over the variables, say Xi ≺ Xj iff
i < j, and recall that the problem of deciding whether Xn is true in the lexicographical
maximum (w.r.t. ≺) satisfying assignment is PNP-complete [31].

We build an abductive scenario 〈A(Φ),O(Φ)〉 such that: O(Φ) = {satj | j ∈
{1, ...,m}}, and A(Φ) = {A,E}. In particular, H(A) = {HXi | Xi occurs in Φ}, and
T (A) consists of the following rules (for 1 ≤ j ≤ m):

satj ← σ(tj,1).
satj ← σ(tj,2).
satj ← σ(tj,3).

⎫
⎬

⎭ where cj = tj,1 ∨ tj,2 ∨ tj,3, and

where σ is the following mapping: σ(t) =
{
HXi , if t = Xi, 1 ≤ i ≤ n
not HXi , if t = ¬Xi, 1 ≤ i ≤ n.
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Finally, let H(E) be the set {HXn}, T (E) be the program satj ← HXn. 1 ≤ j ≤ m, and
assume that γA(S) =

∑n
i=1 2n−iδ(HXi), where δ(HXi) = 1 iff HXi is in the explanation

S and δ(HXi) = 0 otherwise. Moreover, let γE({HXn}) = 1 and γE({}) = 0.
Then, it is easy to see that the existence of a safe explanation entails that Xn is true

in the lexicographical maximum satisfying assignment. Moreover, if there is no safe
explanation, then Xn is not true in the lexicographical maximum satisfying assignment
(either the formula is not satisfiable or Xn is false). �

5.3 Data Complexity for P2P Systems

After that the intrinsic complexity of the problem of computing joint explanations has
been characterized (for general abductive scenarios), it is natural to ask whether fo-
cusing on the specific scenarios associated to P2P systems by means of the approach
described in Section 4 makes the problem any easier. The first crucial observation is
that, by Theorem 1, computing a repair BS for a P2P system P w.r.t. a global database
B is at most hard as computing a joint explanation for a suitable abductive scenario
S(P ,B). Moreover, the construction of S(P ,B) is such that if the global schema of
each peer P is not considered to be part of the input problem (i.e., the standard data
complexity setting is considered), then the size of S(P ,B), where all the agents’ theo-
ries are grounded, turns out to be polynomial in the size of B; therefore, membership
results in Figure 2.(b) apply — the result holds even if the global schema is part of the
input problem, but arities of the predicates are bounded by a fixed constant.

Actually, we claim that hardness results in Figure 2.(b) hold as well. In-
deed, it is not difficult to associate in polynomial time a P2P system P [S̄]
and a global database B[S̄] to any abductive scenario S̄ (where agents’ theories
are propositional) such that joint explanations for S̄ coincide with joint explana-
tions for S(P [S̄],B[S̄]) and such that S(P [S̄],B[S̄]) can be built in polynomial
time. Basically, agents in S̄ may be associated with peers in P [S̄]; hypotheses
and atoms in S̄ may be associated with (propositional) facts in B[S̄]; mappings
for P [S̄] may be defined to propagate the hypotheses shared by pairs of agents
only; and integrity constraints may be used to enforce the evaluation of the in-
dividual theories and the entailment of the observations. Since B[S̄] stores propo-
sitional facts only, agents’ theories in S(P [S̄],B[S̄]) are propositional, and the
size of S(P [S̄],B[S̄]) is polynomial in the size of B[S̄] and, hence, in the size
of S̄.

6 Discussions and Conclusion

We have considered a generalization of the basic abductive framework to a scenario
where several autonomous agents interact with each other, and where agents’ knowl-
edge is formalized by means of stratified logic programs. A complete picture of the
computational complexity of the framework has been presented: It turned out that the
main reasoning problems are confined in the first two levels of the polynomial hier-
archy. The complexity results are particular interesting in the light of the exploitation
of joint explanations to provide semantics for integrating data in P2P systems. Indeed,
even though the proposed setting is quite rich and expressive in taking into account
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both peers’ autonomy and preferences, it is well-behaved under a computational point
of view, since even very simple integration tasks (in a single data integration system)
are known to be complete for the same classes.

It is worthwhile noting that abduction has already played a central role in the design
of multi-agent systems, e.g., to provide semantics for information exchange [32], to
model agent communication [33], to define mechanisms for agent negotiation based on
dialogue [34] (just to cite a few applications). Our perspective here was quite different.
Indeed, we investigated some foundational problems related to a scenario where several
autonomous agents jointly contribute to find explanations to a bunch of observations.

Important contributions in this direction have been already appeared in the literature.
In particular, [35] investigated how to coordinate the abductive reasoning of multiple
agents, by developing an architecture (ALIAS) where several coordination patterns can
be chosen; in ALIAS, the agent behavior is expressed in the LAILA language [36],
which allows the agents, e.g., to specify whether they desire to find explanations for a
given goal either in a collaborative or in a competitive way. In both cases, agents are
assumed to share the same set of hypotheses and to independently look for individual
sets of hypotheses explaining the same set of observations: In the collaborative sce-
nario, agents simply merge their individual explanations provided these are consistent
with each other, whereas in the competitive scenario, one individual solution wins the
competition and is eventually selected.

In this paper, we extended the above framework by removing some of its simplifying
assumptions and introducing the notion of joint explanation. First of all, we did not re-
quire the existence of a unique centralized knowledge base containing the set of all the
hypotheses for the agents and, more importantly, we allowed each agent to partially con-
tribute to the whole explanation, i.e., to explain a proper subset of all the observations
only. This is particularly useful whenever each agent does not have enough knowledge
for explaining all the observations by itself and coordination with other agents is re-
quired. It is worthwhile noting that while computing joint explanations, agents are not
mutually independent and solutions to abductive problems can in general be obtained
neither by testing for consistency of individual solutions nor by just selecting a repre-
sentative one.

Closest to our setting is perhaps [37], where diagnostic agents that need to reach a
common diagnosis have been considered. Diagnosis is carried out in a completely de-
centralized fashion, so that each agent is responsible for monitoring part of the system.
Then, a consensus component provides algorithms to achieve a consensus among agents
if their diagnosis results differ, which are based on the comparison of the individual di-
agnosis and on a majority voting protocol. Clearly enough, while our approach shares
with [37] the idea of exploiting a distributed abductive process, the proposed solutions
strongly differ. Indeed, rather than being based on voting mechanisms, joint explana-
tions emerge as kind of compromise between the various individual explanations. In
this respect, our solution approach may be seen as a generalization to the abductive
framework of the basic approach proposed in [9]. Indeed, [9] firstly introduced a se-
mantics for defining compromises among agents, where rather than joining the theories
and considering the model of this single program, the computation of the joint fixpoints
for the separate theories is advocated.
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However, besides the focus on abductive problems, our approach significantly ex-
tends [9] also in the investigation of those scenarios where agents assign possible con-
trasting preferences to set of hypotheses, and where some kinds of desirable explanation
has to be computed. A related approach to allow agents to express preferences in their
abductive reasoning has been proposed by [13], which mentioned as possible line of
further research the possibility of exploiting ideas from multi-criteria decision theory
to solve conflicts among agents. This is precisely the way pursed in this paper. And,
as a result, our setting turned out to be a generalization of abduction with penalization
(see, e.g., [10, 38, 11]) to multiple and competitive agents, where the semantics for the
multi-objective optimization is given in terms of some game-theoretic arguments.

We believe that our investigation paves the way for further (more comprehensive)
logic-based formalizations and for effective implementations. Indeed, an avenue of fur-
ther research may lead to enrich the proposed setting by further kinds of preferences
criteria, by replacing or complementing the weighting functions proposed in this paper.
In this respect, it may be investigated whether current approaches for qualitatively han-
dling preferences (in multi-agents systems), e.g., [41-45], may be adapted to cope with
our distributed abductive scenario — notably, for some approaches (cf. [44, 45]), the
ability of modelling strategic interactions in games has been already investigated.

Another avenue of further research is to investigate whether answer set engines (e.g.,
Smodels [39] and DLV [40]) may be used to support joint explanations and, more gen-
erally, agreements for selfish interested agents. Moreover, techniques for approximate
abductive reasoning (e.g., [12]) might also be explored.

Acknowledgments. The author thanks the anonymous referees for their useful com-
ments and suggestions.
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Abstract. The Nested List Normal Form is proposed as a syntactic
normal form for semantically well-designed database schemata obtained
from any arbitrary finite nesting of records and lists. The Nested List
Normal Form is defined in terms of functional and multivalued depen-
dencies, independent from any specific data model, and generalises the
well-known Fourth Normal Form from relational databases in order to
capture more application domains.

1 Introduction

An important issue associated with the use of any databases is the correct struc-
ture or design of data to be used. Several criteria, referred to as normal forms,
have been proposed as conditions for database schemata that a database design
should satisfy to ensure an absence of processing difficulties with the database.
These normal forms give a database designer unambiguous guidelines in deciding
which databases are good in the quest to avoid bad designs that have redun-
dancy problems and update anomalies. Such normal forms have already been
introduced in [12] by Codd himself. In general, they are dependent on the type
of integrity constraints or rules which apply to data items within the database.
Important classes of integrity constraints are functional dependencies (FDs) [12]
and Multivalued dependencies (MVDs) [14]. FDs and MVDs cause difficulties
such as redundancy in the representation of data and update anomalies. The
Boyce-Codd normal form (BCNF) was proposed to overcome these difficulties
with FDs [13], and Fagin introduced the Fourth Normal form (4NF) to deal with
the more general class of FDs and MVDs [14]. Later on, after the notions of re-
dundancy and update anomaly had been clarified and formalised, it was shown
that BCNF (4NF) precisely captures those relation schemata that are free from
redundancies and update anomalies in terms of FDs (FDs and MVDs) [7, 15, 35].
Normalisation has been studied in the context of other data models as well. There
are several normal form proposals for the nested relational data model, and a
detailed comparison can be found in [30]. Recently, the issue of normalisation
has been revived in the context of XML [2, 3, 36, 37]. XNF is defined in terms
of FDs that are based on a path-like notion in DTDs and do not enjoy a finite
� Sebastian Link was supported by Marsden Funding, Royal Society of New Zealand.
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ground axiomatisation [2]. In [3] techniques from information theory are used
to provide justifications for several normal forms and normalisation algorithms.
MVDs have also been introduced into the context of XML and an extension of
4NF has been proposed [37]. Apart from [18, 31], who consider set equality in
the nested relational data model, all previous approaches to defining constraints
in advanced data formats do not consider equality on complex objects such as
lists, sets or multisets, and are therefore unable to express important semantic
information that occurs in many applications.

Several researchers have remarked that classical database design problems
need to be revisited in new data formats [3, 32, 34, 35]. Biskup [8, 9] has listed two
particular challenges for database design theory: finding a unifying framework
and extending achievements to deal with advanced database features such as
complex object types. We propose to classify data models according to the type
constructors they support. Thus, the relational data model can be captured
by a single application of the record type, arbitrary nesting of record and set
constructor covers aggregation and grouping which are fundamental to many
semantic data models as well as the nested relational data model [1, 24]. The
Entity-Relationship Model and its extensions require record, set and (disjoint)
union constructor [11, 33]. A minimal set of type constructors supported by any
object-oriented data model includes records, lists, sets and multisets (bags) [5].
Genomic sequence data models call for support of records, lists and sets [28].
Finally, XML requires at least record (concatenation), list (Kleene Closure),
union (optionality), and reference constructor [10].

In this paper we study database design in the presence of record and list
constructor with respect to functional and multivalued dependencies. It is our
goal to achieve an adequate extension of 4NF from relational databases, and
to actually demonstrate what this extension achieves in terms of characterising
the absence of adequate extensions of the notions of redundancies and update
anomalies. Our studies will be based on an abstract data model that defines a
database schema as an arbitrarily nested attribute where nesting applies record
and list constructor. It is our intention not to focus on any specific data model
in order to place emphasis on the type constructors themselves. Dependencies
are defined in terms of subschemata of the underlying database schema. This
approach provides a mathematically well-founded framework that is sufficiently
flexible and powerful to study design problems for different classes of constraints.
The fact that the set of all subschemata of some fixed database schema carries
the structure of a Brouwerian algebra turns out to precisely accommodate the
needs of multivalued dependencies.

Throughout the article we will apply the theory to an example from image
processing that we introduce now. Digital halftoning plays a key role in almost
every discipline that involves printing and displaying. All newspapers, magazines,
and books are printed with digital halftoning. One method to perform digital
halftoning is error diffusion [16, 25, 26]: once a pixel has been quantised, thus
introducing some error, this error should affect the quantisation of the pixels in
the region of its neighbours. Digital halftoning is an application of the matrix
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rounding problem [4]. The problem is to convert a continuous-tone image into
a binary one that looks similar. The input matrix A represents a digital (gray)
image, where aij represents the brightness level of the (i, j)-pixel in the n × n
pixel grid. Typically, n is between 256 and 4096, and aij is an integral multiple
of 1

256 : this means that we use 256 brightness levels. If we want to send an image
using fax or print it out by a dot or ink-jet printer, brightness levels available
are limited. Instead, we replace the input matrix A by an integral matrix B
so that each pixel uses only two brightness levels. Here, it is important that B
looks similar to A; in other words, B should be an approximation of A. In this
sense, an approximation of input matrix A is a {0,1}-matrix B that minimises

the distance

∣∣∣∣∣
∑

(i,j)∈R

ai,j −
∑

(i,j)∈R

bi,j

∣∣∣∣∣ for all R ∈ R. In this formulae R denotes

the set of regions of neighbors, for instance the set of all pairs of indices that
denote 2 × 1, 1 × 2 and 2 × 2 submatrices. A region has therefore one of the
following forms

a b
c d

a b
a
b

,

and can be represented as a list of either two or four elements. The regions
may have all different kinds of shapes in practice. In order to make the example
more illustrative, we assume from now on that the input matrix has entries in
{0, 1

2 , 1}, i.e., uses three brightness levels. Input regions can be best approximated
by a number of different output regions. All inputs with overall brightness 1

2
and length two, i.e. [0, 1

2 ] or [12 , 0], could be mapped to any of [0,1], [1,0] or
[0,0], each of which has distance 1

2 . In this sense, the set of input sequences
({[0, 1

2 ], [12 , 0]}) is determined by the overall brightness of the input sequences
(1
2 ) and the length of the input sequence (2), independently of the set of output

sequences ({[0, 1], [1, 0], [0, 0]}). This is true for any inputs and outputs, e.g.,
all inputs with overall brightness 3

2 and length four such as [0, 0, 1, 1
2 ] can be

mapped to any of [0,0,0,1], [0,0,1,0], [0,1,0,0], [1,0,0,0], [0,0,1,1], [0,1,0,1], [1,0,0,1],
[0,1,1,0], [1,0,1,0], [1,1,0,0].

Consider a database which stores input and output sequences together with
the overall brightness of the input sequence. It is then desirable to find a {0,1}-
matrix B that has for every of the possible regions of input matrix A a corre-
sponding output region that are stored together as an entry in the database. The

input matrix A =
(

0 0
1
2

1
2

)
has for instance the approximation B =

(
0 0
0 1

)
.

Every 2× 2 matrix has five input sequences and the mappings that produce B
from A are as follows: [0, 0] �→ [0, 0], [12 ,

1
2 ] �→ [0, 1], [0, 1

2 ] �→ [0, 0] (left column),
[0, 1

2 ] �→ [0, 1] (right column) and [0, 0, 1
2 ,

1
2 ] �→ [0, 0, 0, 1].

The matrix
(

0 1
0 0

)
, however, is not an approximation of A as the sequence

[12 ,
1
2 ] should not be mapped to [0, 0].
Constraints that a database designer may choose to specify for this application

are the following:



140 S. Hartmann and S. Link

1. The length of the input sequence determines the length of the output se-
quence, and vice versa.

2. The overall brightness and length of the input sequence together determine
the set of all input sequences independently from the set of the output se-
quences.

The example illustrates a typical scenario where list equality occurs in a
constraint specification. We will formalise all parts of this example during the
course of the paper, and see whether the suggested design is appropriate with
respect to the constraints specified.

2 A Summary of Previous Work

2.1 The Complex-Value Data Model

This section introduces a data model based on the nesting of attributes and sub-
typing. It may be used to provide a framework for the study of type constructors
such as records, lists, sets, multisets, unions and references. This article, how-
ever, focuses on records and lists. In terms of XML the reader may notice that
we deal with a slightly extended fragment of DTDs in which only concatenation
and Kleene closure are allowed. However, the expressiveness of our constraints
is different from previous approaches as we are particularly interested in list
equality.

We start with the definition of flat attributes and values for them. A universe
is a finite set U together with domains (, i.e., sets of values) dom(A) for all A ∈ U .
The elements of U are called flat attributes. Flat attributes will be denoted by
upper-case characters from the start of the alphabet such as A,B,C etc.

In the following we will use a set L of labels, and assume that the symbol λ
is neither a flat attribute nor a label, i.e., λ /∈ U ∪ L. Moreover, flat attributes
are not labels and vice versa, i.e., U ∩ L = ∅.

Database schemata in our data model will be given in form of nested at-
tributes. Let U be a universe and L a set of labels. The set NA(U ,L) of nested
attributes over U and L is the smallest set satisfying the following conditions:
λ ∈ NA(U ,L), U ⊆ NA(U ,L), for L ∈ L and N1, . . . , Nk ∈ NA(U ,L) with
k ≥ 1 we have L(N1, . . . , Nk) ∈ NA(U ,L), for L ∈ L and N ∈ NA(U ,L) we
have L[N ] ∈ NA(U ,L). We call λ null attribute, L(N1, . . . , Nk) record-valued
attribute and L[N ] list-valued attribute. We will use upper-case letters from the
middle of the alphabet such as N,M, etc. to refer to nested attributes. From now
on, we assume that a set U of attribute names, and a set L of labels is fixed,
and write NA instead of NA(U ,L). We may use the nested attribute

Halftoning(Brightness,Input[Level],Output[Bit])

as a database schema for instances of the digital halftoning database described
in the introduction. Labels are Halftoning, Input and Output, and flat
attribute names are Brightness, Level and Bit. The domain of the flat attribute
Level is {0, 1

2 , 1} and the domain of the flat attribute Bit is {0, 1}.
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In general, we can extend the mapping dom from flat attributes to nested at-
tributes, i.e., we define a set dom(N) of values for every nested attribute N ∈
NA. For a nested attribute N ∈ NA we define the domain dom(N) as follows:
dom(λ) = {ok}, dom(L(N1, . . . , Nk)) = {(v1, . . . , vk) | vi ∈ dom(Ni) for i =
1, . . . , k}, i.e., the set of all k-tuples (v1, . . . , vk) with vi ∈ dom(Ni) for all
i = 1, . . . , k, and dom(L[N ]) = {[v1, . . . , vn] | vi ∈ dom(N) for i = 1, . . . , n},
i.e., the set of all finite lists with elements in dom(N). The empty list is denoted
by [ ]. For instance, the domain of Input[λ] is the set of all finite lists consisting
of elements ok, i.e., {[ ], [ok], [ok, ok], . . .}. The nested attribute Input[λ] there-
fore still tells us how long the lists over Input[Level] are. The value ok can be
interpreted as the null value “some information exists, but is currently omitted”.

The replacement of attributes by the null attribute λ decreases the amount of
information modelled. This fact allows one to introduce an order between nested
attributes. The subattribute relation ≤ on the set of nested attributes NA over
U and L is defined by the following rules, and the following rules only: N ≤ N ,
λ ≤ A for all flat attributes A ∈ U , λ ≤ N for all list-valued attributes N ,
L(N1, . . . , Nk) ≤ L(M1, . . . ,Mk) whenever Ni ≤ Mi for all i = 1, . . . , k, and
L[N ] ≤ L[M ] whenever N ≤M . For N,M we say that M is a subattribute of N
if and only if M ≤ N holds. We write M �≤ N if M is not a subattribute of N ,
and M < N in case M ≤ N and M �= N .

Lemma 1 ([22]). The subattribute relation is a partial order on nested at-
tributes. �

Informally, M is a subattribute of N if and only if M comprises at most as much
information as N does. The informal description of the subattribute relation is
formally documented by the existence of a projection function πN

M : dom(N) →
dom(M) in case M ≤ N holds. For M ≤ N the projection function πN

M :
dom(N) → dom(M) is defined as follows:

– if N = M , then πN
M = iddom(N) is the identity on dom(N),

– if M = λ, then πN
λ : dom(N) → {ok} is the constant function that maps

every v ∈ dom(N) to ok,
– if N = L(N1, . . . , Nk) and M = L(M1, . . . ,Mk), then πN

M = πN1
M1
×· · ·×πNk

Mk

which maps every tuple (v1, . . . , vk) ∈ dom(N) to (πN1
M1

(v1), . . . , πNk

Mk
(vk)) ∈

dom(M), and
– if N = L[N ′] and M = L[M ′], then πN

M : dom(N) → dom(M) maps every
list [v1, . . . , vn] ∈ dom(N) to the list [πN ′

M ′ (v1), . . . , πN ′
M ′(vn)] ∈ dom(M).

The set Sub(N) of subattributes of N is Sub(N) = {M |M ≤ N}. Note that
Sub(N) is always finite. Lemma 1 shows that the restriction of ≤ to Sub(N)
is a partial order on Sub(N). We study the algebraic structure of Sub(N). A
Brouwerian algebra [29] is a lattice (L,�,,�, .−, 1) with top element 1 and a
binary operation .− which satisfies a .−b � c iff a � bc for all c ∈ L. In this case,
the operation .− is called the pseudo-difference. The Brouwerian complement ¬a
of a ∈ L is then defined by ¬a = 1 .−a. A Brouwerian algebra is also called a co-
Heyting algebra or a dual Heyting algebra. The system of all closed subsets of a
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topological space is a well-known Brouwerian algebra, see [29]. The join XN Y ,
meet X�NY and pseudo-difference X .−NY of X and Y in Sub(N) are completely
determined by the subattribute order ≤. We use Y C

N = N .−Y to denote the
Brouwerian complement of Y in Sub(N). The following theorem generalises the
fact that (P(R),⊆,∪,∩,−, ∅, R) is a Boolean algebra for a relation schema R.

Theorem 1 ([22]). (Sub(N),≤,N ,�N , .−N , N) forms a Brouwerian algebra
for every N ∈ NA. �

In order to simplify notation, occurrences of λ in a record-valued attribute
are usually omitted if this does not cause any ambiguities. That is, the subat-
tribute L(M1, . . . ,Mk) ≤ L(N1, . . . , Nk) is abbreviated by L(Mi1 , . . . ,Mil

) where
{Mi1 , . . . ,Mil

} = {Mj : Mj �= λNj and 1 ≤ j ≤ k} and i1 < · · · < il. If
Mj = λNj for all j = 1, . . . , k, then we use λ instead of L(M1, . . . ,Mk). The subat-
tribute Halftoning(λ,Input[λ],λ) is abbreviated by Halftoning(Input[λ]).
However, the subattribute L(A, λ) of L(A,A) cannot be abbreviated by L(A)
since this may also refer to L(λ,A). If the context allows, we omit the index N
from the operations N ,�N , .−N , (·)CN and from λN . The Brouwerian algebra for
Halftoning(Brightness,Input[Level],Output[Bit]) is illustrated in Figure 1.

Fig. 1. Brouwerian algebra of Halftoning(Brightness,Input[Level],Output[Bit])

Fundamental to lists is the following fact: if πN
X (t1) = πN

X (t2) and πN
Y (t1) =

πN
Y (t2), then also πN

X�Y (t1) = πN
X�Y (t2) for any t1, t2 ∈ dom(N) [22]. This sug-

gests to focus on join-irreducible elements of (Sub(N),≤,,�, λN ). Recall that an
element a of a lattice with bottom element 0 is called join-irreducible if and only
if a �= 0 and if a = b  c holds for any elements b and c, then a = b or a = c. Let
B(N) denote the set of join-irreducible elements of (Sub(N),≤,,�, .−, N), and
BM(N) the maximal elements of B(N) with respect to ≤. The join-irreducibles of
Halftoning(Brightness,Input[Level],Output[Bit]) are circled in Figure 1.

2.2 An Axiomatisation for FDs and MVDs

In this section we repeat previous definitions and results [20, 22].The data model
allows us to introduce a natural extension of the notion of FDs and MVDs from
the relational data model.

A functional dependency (FD) on the nested attribute N is an expression
of the form X → Y where X,Y ∈ Sub(N). A set r ⊆ dom(N) satisfies the
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functional dependency X → Y on N , denoted by |=r X → Y , if and only if
πN

Y (t1) = πN
Y (t2) whenever πN

X (t1) = πN
X (t2) for any t1, t2 ∈ r holds. A mul-

tivalued dependency (MVD) on N is an expression of the form X � Y where
X,Y ∈ Sub(N). A set r ⊆ dom(N) satisfies the multivalued dependency X � Y
on N if and only if for all values t1, t2 ∈ r with πN

X (t1) = πN
X (t2) there is a value

t ∈ r with πN
X�Y (t) = πN

X�Y (t1) and πN
X�Y C (t) = πN

X�Y C (t2).
The constraints on Halftoning(Brightness,Input[Level],Output[Bit]), in-

formally described in the introduction, can now be formalised (using abbrevia-
tions) as:

Halftoning(Input[λ]) → Halftoning(Output[λ]),
Halftoning(Output[λ]) → Halftoning(Input[λ]), and

Halftoning(Brightness,Input[λ]) � Halftoning(Input[Level]).

Fagin proves [14] that relational MVDs “provide a necessary and sufficient con-
dition for a relation to be decomposable into two of its projections without loss
of information (in the sense that the original relation is guaranteed to be the join
of the two projections).” Let N ∈ NA and X,Y ∈ Sub(N). Let r1 ⊆ dom(X)
and r2 ⊆ dom(Y ). Then r1 �� r2 = {t ∈ dom(X  Y ) | there are t1 ∈ r1, t2 ∈
r2 with πX�Y

X (t) = t1 and πX�Y
Y (t) = t2} is called the generalised join r1 �� r2

of r1 and r2. The projection πX(r) of r ⊆ dom(N) on X ∈ Sub(N) is defined
as {πN

X (t) | t ∈ r}.

Theorem 2 ([22]). Let N ∈ NA, and r ⊆ dom(N). Then is X � Y satisfied
by r if and only if r = πX�Y (r) �� πX�Y C (r). If r satisfies the FD X → Y , then
r = πX�Y (r) �� πX�Y C(r). �

The notions of implication (|=) and derivability (-R) with respect to a set R of in-
ference rules for a class C of dependencies can be defined analogously to the notions
in relational databases [1–pp. 164-168]. Note that finite and unrestricted implica-
tion coincide for functional and multivalued dependencies, even in the presence of
lists [22]. The notions of soundness and completeness for a set R of inference rules
carry over as well. A dependency σ on some nested attribute N is called trivial if
and only if |=r σ for every r ⊆ dom(N). An FD X → Y on N is trivial iff Y ≤ X
holds, and an MVD X � Y on N is trivial iff Y ≤ X or X  Y = N holds. Note
that XY = N iff Y C ≤ X . A complete set of inference rules is said to be minimal
if and only if none of its rules can be omitted without losing completeness.

Theorem 3 ([20, 22]). The following inference rules

X → Y
Y ≤ X

X → Y

X → X  Y

X → Y, Y → Z

X → Z
(reflexivity axiom) (extension rule) (transitivity rule)

X → Y

X � Y

X � Y, Y → Z

X → (Z .−Y )
X � Y

X → Y � Y C

(implication rule) (mixed pseudo-transitivity rule) (mixed meet rule)

X � Y, Y � Z

X � (Z .−Y )
X � Y

X � Y C
X � Y,X � Z

X � (Y  Z)
(pseudo-transitivity rule) (Brouwerian complement rule) (multivalued join rule)
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are minimal, sound and complete for the implication of FDs and MVDs in the
presence of records and lists. �

Keys play a central role in the retrieval of information because they provide a
method by which an element of a database may be identified.

Definition 1. Let N ∈ NA be a nested attribute and Σ a set of FDs and MVDs
on N . A subattribute X ∈ Sub(N) is called a superkey for N with respect to Σ
if and only if Σ |= X → N holds. In case there is not any proper subattribute
X ′ < X which is also a superkey for N with respect to Σ, we call X a minimal
key for N with respect to Σ. �

X ∈ Sub(N) is a superkey if and only if X → N ∈ Σ+ by Theorem 3. If
|=r Σ for some r ⊆ dom(N) and X is a superkey for N , then t1 = t2 whenever
πN

X (t1) = πN
X (t2) for any t1, t2 ∈ r. Furthermore, X is a superkey for N if and

only if X+ = N where X+ =
⊔
{Z | X → Z ∈ Σ+}. An FD X → N ∈ Σ∗ is

called a key dependency on N with respect to Σ if and only if X is a minimal
key for N with respect to Σ. The set of all key dependencies is denoted by Σkey.

3 The Nested List Normal Form

In this section we will investigate normalisation issues in the presence of records
and lists in terms of FDs and MVDs. This will extend previous work in which
only FDs have been considered [21].

3.1 Three Notions of Redundancy

In relational databases the definition of redundancy is based on viewing FDs and
MVDs not only as integrity constraints on a relation, but also as representing
the fundamental units of information for retrieving and updating the data in
a relation. This interpretation of the semantics of the information stored in a
relation was implicit in the original study of normalisation by Codd [12], and
has since been used in many aspects of database theory. A relation schema is
defined to be redundant with respect to a given set of FDs and MVDs if there
exists a relation over the schema which satisfies all these FDs and MVDs and
which has at least two tuples which are identical on a fact. If we formalise this
notion of redundancy [6] in the framework of nested attributes, then we obtain
the following definition. A nested attribute N is redundant with respect to a
set Σ of FDs and MVDs on N if and only if there is some r ⊆ dom(N) with
|=r Σ and there are some t1, t2 ∈ r with t1 �= t2 and πN

X�Y (t1) = πN
X�Y (t2)

for some X → Y ∈ Σ or some X � Y ∈ Σ which is not trivial. Intuitively,
this notion of redundancy seems to make perfect sense. Take a look at the
FD Halftoning(Input[λ]) → Halftoning(Output[λ]). This is a non-trivial
FD. The elements (1

2 , [0,
1
2 ], [0, 0]) and (1, [0, 1], [0, 1]) coincide on Halfton-

ing(Input[λ],Output[λ]), i.e., the FD causes some redundancy according to the
definition above. This example shows that our current definition of redundancy
is not really appropriate anymore. That is, the FD Halftoning(Input[λ]) →
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Halftoning(Output[Bit]) is not satisfied by the two elements above and, con-
sequently, redundancy would need to be defined in terms of the non-maximal
join-irreducible Halftoning(Output[λ]). This, however, appears to be impos-
sible as the information in Halftoning(Output[λ]) will always be contained
in Halftoning(Output[Bit]). The point here is that the information in a non-
maximal join-irreducible Y cannot be separated from the information in any
maximal join-irreducible Z with Y ≤ Z. We will see further evidence for this in
Section 4. This motivates the following definition.

Definition 2. Let N ∈ NA be a nested attribute and Σ a set of FDs and MVDs
on N . Let Σinev ⊆ Σ+ denote the union of all X → Y ∈ Σ+ where Y ≤ X or
Y ∈ B(N) − BM(N) holds, and all X � Y ∈ Σ+ where Y ≤ X or Y C ≤ X
or Y ∈ B(N) − BM(N) holds. The FDs (MVDs) of the closure Σ+

inev of Σinev
under inference with respect to the inference rules from Theorem 3 are called
inevitable FDs (MVDs) on N with respect to Σ. �

The following lemma characterises inevitable dependencies which are derivable
from a given set of FDs and MVDs.

Lemma 2. Let N ∈ NA, Σ a set of FDs and MVDs on N . If X → Y ∈ Σ+,
then X → Y ∈ Σ+

inev if and only if Y CC ≤ X. If X � Y ∈ Σ+, then X � Y ∈
Σ+

inev if and only if Y CC ≤ X or Y C ≤ X.

Proof (Sketch). In order to show that X → Y ∈ Σ+
inev implies Y CC ≤ X , and

that X � Y ∈ Σ+
inev implies Y CC ≤ X or Y C ≤ X , one can proceed by induction

on the inference length using the inference rules from Theorem 3. The remaining
direction is a matter of applying some of these inference rules as well. �

Thus, trivial FDs and MVDs are always inevitable on N with respect to any Σ,
but not vice versa. We are now prepared to define a better notion of redundancy
for nested attributes in terms of FDs and MVDs.

Definition 3. Let Σ be a set of FDs and MVDs on the nested attribute N . We
call N type-1 redundant with respect to Σ if and only if there is some r ⊆ dom(N)
with |=r Σ and there are some distinct t1, t2 ∈ r with πN

X�Y (t1) = πN
X�Y (t2) for

some FD X → Y ∈ Σ that is not inevitable on N with respect to Σ or some
MVD X � Y ∈ Σ that is not inevitable on N with respect to Σ . �

Definition 3 allows the set of facts to be the subattributes in all the FDs and
MVDs which are not inevitable in a user-supplied set of dependencies Σ. How-
ever, one may also recognise the symmetrical nature of MVDs and so allow the
subattributes in any MVD that can be derived from any MVD in Σ and succes-
sive applications of the Brouwerian-complement rule to also be a fact. Finally,
the last possibility is to include inferred dependencies and allow subattributes in
any FD or MVD that is not inevitable and implied by Σ to be a fact. Intuitively,
one would expect that the notion of redundancy is independent of which of these
facts is chosen but in general this is not the case, and the proof is by no means
immediate. Let Σ′ denote the smallest set with the following properties: Σ ⊆ Σ′

and X � Y C ∈ Σ′ whenever X � Y ∈ Σ′.
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Definition 4. Let N be a nested attribute and Σ a set of FDs and MVDs
on N . We call N type-2(3) redundant with respect to Σ if and only if there
is some r ⊆ dom(N) with |=r Σ and there are some distinct t1, t2 ∈ r with
πN

X�Y (t1) = πN
X�Y (t2) for some FD X → Y ∈ Σ′(Σ+) which is not inevitable on

N with respect to Σ or some MVD X � Y ∈ Σ′(Σ+) which is not inevitable
on N with respect to Σ. �

Let N = L(A,B,C) and Σ = {L(A) � L(B), L(B) → L(A,C)}. The only
minimal key is L(B). From L(A) � L(B) and the Brouwerian-complement rule
follows that L(A) � L(A,C) is in Σ′ and therefore also in Σ+. The instance r =
{(a, b1, c), (a, b2, c)} with distinct b1, b2 ∈ dom(B) satisfies Σ and the projections
of both elements on L(A,C) are identical. It follows that N is type-2 and type-
3 redundant with respect to Σ. However, N is not type-1 redundant as every
dependency in Σ contains the subattribute L(B) and no instance over N can
have duplicates on a dependency in Σ.

3.2 The Proposal

Fourth normal form (4NF,[14]) has been introduced as an extension of Boyce-
Codd normal form (BCNF) and has been intensely studied. A relation schema
R is in 4NF with respect to a set Σ of FDs and MVDs defined on R if and only
if every X � Y ∈ Σ∗ is trivial or X is a superkey for R with respect to Σ.

Definition 5. Let Σ be a set of FDs and MVDs on the nested attribute N . We
say that N is in Nested List Normal Form (NLNF) with respect to Σ if and
only if every X � Y ∈ Σ+ is an inevitable dependency on N with respect to Σ
or X is a superkey for N with respect to Σ. �

Note that NLNF generalises 4NF from relational databases. In fact, every in-
evitable dependency on the record-valued attribute R(A1, . . . , An) must be triv-
ial since the join-irreducibles of R(A1, . . . , An) form an anti-chain with respect
to ≤.

One may define N to be in Nested List Fourth Normal Form (NL4NF) with
respect to Σ if and only if every X � Y ∈ Σ+ is a trivial dependency on N with
respect to Σ or X is a superkey for N with respect to Σ. In this case, NL4NF
also extends 4NF from relational databases and implies NLNF as every trivial
dependency is also inevitable. However, NLNF is strictly weaker than NL4NF
as there are, in general, inevitable dependencies which are not trivial. NLNF for
FDs and MVDs subsumes the NLNF for FDs only [21].

Halftoning(Brightness,Input[Level],Output[Bit]) is not in NLNF with re-
spect to the set Σ of dependencies previously specified. The MVD Halfton-
ing(Brightness,Input[λ]) � Halftoning(Input[Level]) is neither inevitable
nor is Halftoning(Brightness,Input[λ]) a superkey with respect to Σ.

3.3 Characterising NLNF

Given some nested attribute N and some set Σ of FDs and MVDs on N , how
can we verify that N is in NLNF? By Definition 5 one needs to inspect every
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X � Y derivable from Σ, i.e., every X � Y in Σ+ must be inevitable or X
must be a superkey. However, an inspection of every dependency in Σ suffices.

Theorem 4. Let Σ be a set of FDs and MVDs on the nested attribute N . N is
in NLNF with respect to Σ if and only if for every X → Y ∈ Σ or X � Y ∈ Σ
which is not inevitable on N with respect to Σ, the left-hand side X is a superkey
for N with respect to Σ.

Proof (Sketch). One can show the following result using the inference rules from
Theorem 3. For any X � W or X →W in Σ+ which is not inevitable on N with
respect to Σ, there is some X ′ � Y or X ′ → Y in Σ with X ′ ≤ X 

⊔
{Z �ZC |

X � Z ∈ Σ+} which is not inevitable on N with respect to Σ.
Suppose N is not in NLNF with respect to Σ. Then there is some X � Y ∈

Σ+ which is not inevitable and where X is not a superkey for N with respect to
Σ. The result above shows that there is some X ′ → Y ′ or X ′ � Y ′ in Σ which
is not inevitable and where X ′ ≤ X 

⊔
{Z � ZC | X � Z ∈ Σ+} holds. The

mixed meet rule guarantees that X ′ ≤ X+ and therefore X → X ′ ∈ Σ+. Since
X is not a superkey for N with respect Σ, neither can X ′ be.

The remaining direction is a consequence of Σ ⊆ Σ+ and the implication
rule. �

We will now give another characterisation of NLNF. The result extends a clas-
sical result for relational databases [15]. In order to verify whether an instance
over N in NLNF satisfies all dependencies it is sufficient to verify that all key
dependencies and all inevitable dependencies are satisfied. Unlike the relational
case where it is enough to look at all key dependencies for a relation schema in
4NF, one still needs to deal with all inevitable dependencies that are not trivial
when a nested attribute in NLNF is given.

Theorem 5. Let N be a nested attribute and Σ a set of FDs and MVDs on
N . N is in NLNF with respect to Σ if and only if every r ⊆ dom(N) with
|=r Σkey ∪Σ+

inev implies |=r Σ.

Proof (Sketch). It is not difficult to see that the existence of some r ⊆ dom(N)
with |=r Σkey ∪Σ+

inev and �|=r Σ implies the violation of the NLNF condition.
Suppose N is not in NLNF with respect to Σ. Let X � Y ∈ Σ+ be not

inevitable and X not be a superkey for N with respect to Σ. One can show that
there is some r ⊆ dom(N) with |=r Σkey ∪Σ+

inev and �|=r Σ. In fact, one defines
X+

inev =
⊔
{Z | X → Z ∈ Σ+

inev} and chooses r ⊆ dom(N) with r = {t, t′} such
that

πN
W (t) = πN

W (t′) if and only if W ≤ X+
inev.

Note that such t, t′ can always be constructed [22, Lemma 3.2]. �

3.4 Type-2 and Type-3 Redundancy

We have seen that Halftoning(Brightness,Input[Level],Output[Bit]) is not
in NLNF. So far, this means only that the schema does not satisfy a syntactic
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condition with respect to the given set of dependencies. In this section we show
the equivalence of NLNF to several semantic design desiderata. This will reveal
what NLNF actually achieves.

The first semantic justification of Nested List Normal Form is that a nested
attribute N is in NLNF with respect to a given set Σ of FDs and MVDs precisely
if N is not type-3 redundant with respect to Σ.

Theorem 6. Let Σ be a set of FDs and MVDs on the nested attribute N . Then
is N in NLNF with respect to Σ if and only if N is not type-3 redundant with
respect to Σ.

Proof (Sketch). It is not difficult too see that type-3 redundancy implies the
violation of the NLNF condition. Suppose N is not type-3 redundant with respect
to Σ, and X � Y ∈ Σ+ is not inevitable with respect to Σ. We sketch that X
is a superkey for N with respect to Σ. As N is not type-3 redundant we have
t1 = t2 for all t1, t2 ∈ r ⊆ dom(N) with |=r Σ and πN

X�Y (t1) = πN
X�Y (t2). It

follows that X  Y is a superkey for N with respect to Σ. One can show that
X → Y C ∈ Σ+, and X → Y C is not inevitable with respect to Σ. It follows
that X  Y C is a superkey for N with respect to Σ. Otherwise it is possible to
construct some r ⊆ dom(N), | r |≥ 2 with |=r Σ and for all distinct t1, t2 ∈ r
we have πN

X�Y C(t1) = πN
X�Y C (t2) contradicting the fact that N is not type-3

redundant with respect to Σ. Consequently, X is a superkey for N with respect
to Σ. �

The two notions of type-2 and type-3 redundancy coincide.

Theorem 7. Let Σ be a set of FDs and MVDs on the nested attribute N . Then
is N type-2 redundant with respect to Σ if and only if N is type-3 redundant
with respect to Σ.

Proof (Sketch). Type-2 redundancy implies type-3 redundancy as Σ′ ⊆ Σ+. We
sketch that if N is not type-2 redundant, then it is also not type-3 redundant.
If X � Y or X → Y ∈ Σ′ is not inevitable, then one can show that X  Y is a
superkey for N with respect to Σ. Consider every dependency in Σ′ that is not
inevitable with respect to Σ:

– for an FD X → Y we infer that X must be a superkey for N with respect
to Σ,

– for an MVD X � Y we also have X � Y C ∈ Σ′. Consequently, both X Y
and X  Y C are superkeys for N with respect to Σ, and one can show that
both X → Y C , X → Y CC ∈ Σ+. That gives X → N ∈ Σ+, i.e., X is a
superkey for N with respect to Σ.

Since Σ ⊆ Σ′ holds, the left-hand side of every dependency in Σ which is not
inevitable with respect to Σ is a superkey for N . Theorem 4 shows that N is in
NLNF with respect to Σ and we conclude that N is not type-3 redundant with
respect to Σ by Theorem 6. �
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It follows that the notion of type-2 redundancy is invariant under different choices
of equivalent sets of FDs and MVDs.

Corollary 1. Let N ∈ NA, and Σ and Θ two equivalent sets of FDs and MVDs
on N . Then N is type-2 redundant with respect to Σ if and only if N is type-2
redundant with respect to Θ. �

3.5 Type-1 Redundancy

Unlike type-2 and type-3 redundancy, type-1 redundancy does depend on the
choice of equivalent sets of dependencies. We will now characterise type-1 re-
dundancy syntactically.

Theorem 8. Let Σ be a set of FDs and MVDs on the nested attribute N . Then
the following conditions are equivalent:

1. N is not type-1 redundant with respect to Σ,
2. for every X � Y and X → Y in Σ which is not inevitable on N with respect

to Σ the subattribute X  Y is a superkey for N with respect to Σ, and
3. for every X � Y and X → Y in Σ which is not inevitable on N with respect

to Σ we have X → Y C ∈ Σ+. �

Let N = L(A,B,C), Σ = {L(A) � L(B), L(B)→ L(A,C)}, and Θ = {L(A) �
L(C), L(B)→ L(A,C)}. L(B) is the only minimal key with respect to Σ and Θ,
and Σ and Θ are equivalent sets of FDs and MVDs. N is not type-1 redundant
with respect to Σ since every X � Y and every X → Y in Σ satisfies L(B) ≤
X  Y . However, N is type-1 redundant with respect to Θ since A  C is not a
superkey on N with respect to Σ.

3.6 Pure MVDs

We will now provide a sufficient condition under which the different types of
redundancies are equivalent. Let Σ be a set of FDs and MVDs defined on the
nested attribute N . An MVD X � Y ∈ Σ is called pure if and only if nei-
ther X → Y nor X → Y C are in Σ+. Pure MVDs are not inevitable on N
with respect to Σ. The set Σ is called pure if and only if every MVD in Σ is
pure.

Pure MVDs reflect pure multivalued information and can therefore not be
captured by FDs. A set Σ of MVDs and FDs contains at least one pure MVD if
and only if Σ is not equivalent to a set of FDs.

Theorem 9. If N ∈ NA and Σ is a pure set of FDs and MVDs on N , then N
is type-1 redundant if and only if N is type-3 redundant. �

Corollary 2. Let N ∈ NA, and Σ be a pure set of FDs and MVDs on N . If N
is type-1 redundant with respect to Σ, then is N type-1 redundant with respect
to any set Θ of FDs and MVDs on N that is equivalent to Σ. �
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3.7 Value Redundancy

The previously introduced notions of redundancy have one major deficiency in
common. They all depend on the syntactic structure of FDs and MVDs mak-
ing it difficult to further generalise those notions to other types of dependencies
or adapting those definitions to other data models. In relational databases the
notion of value redundancy has been introduced to overcome those deficiencies
[35]. The occurrence of some flat attribute value in some flat relation is redun-
dant if it can be derived from other data values in that relation and the set of
dependencies which apply to that relation. A relation schema R is redundant if
there exists a legal R-relation which contains an occurrence of a flat attribute
value such that any change to this occurrence results in the violation of at least
one dependency.

Care must be taken when this notion of value-redundancy is generalised to
the presence of lists. Consider for instance the list-valued nested attribute Out-
put[Bit] together with the element [0, 1, 1, 1] which has projection [ok, ok, ok, ok]
on the subattribute Output[λ]. Then, the value occurrence [ok, ok, ok, ok] can-
not be changed without affecting the list [0, 1, 1, 1]. On the other hand, arbitrary
changes to [0, 1, 1, 1] may also affect the projection [ok, ok, ok, ok]. An alteration
of the number of the elements in [0, 1, 1, 1], e.g. removing the last two elements
results in [0, 1], and also results in a different projection, [ok, ok] in this case.

In general, changes to the value πN
Y (t) on a join-irreducible Y will cause a

change of values πN
Z (t) on any join-irreducible Z with Y ≤ Z. It is therefore

advisable to consider only value occurrences πN
M (t) on maximal join-irreducibles

M ∈ BM(N). Thus, the role that flat attributes played in the definition of value
redundancy in relational databases, is now taken by maximal join-irreducibles in
the context of lists. Moreover, we will not consider arbitrary changes to πN

M (t),
but only those which do not cause any changes to πN

W (t) for all W < M . We call
the replacement of some data value πN

M (t) by m ∈ dom(M) admissible if and
only if πN

W (t) = πM
W (m) for all W < M .

Definition 6. Let N ∈ NA, M ∈ BM(N), Σ a set of dependencies on N ,
r ⊆ dom(N) and t ∈ r. The data value occurrence πN

M (t) is redundant if and
only if for every admissible replacement of πN

M (t) by a value m with πN
M (t) �= m

that results in the modified instance r′ ⊆ dom(N) we have �|=r′ Σ. �

The last definition extends the notion of value-redundancy from the relational
case [35]. In the presence of records only, the join-irreducibles form an anti-chain
with respect to Σ and, consequently, every join-irreducible is maximal and all
replacements are admissible. Consider the following legal snapshot of 6 tuples

(1
2 , [0,

1
2 ], [0, 0]), (1

2 , [0,
1
2 ], [0, 1]), (1

2 , [0,
1
2 ], [1, 0])

(1
2 , [

1
2 , 0], [0, 0]), (1

2 , [
1
2 , 0], [0, 1]), (1

2 , [
1
2 , 0], [1, 0])

over Halftoning(Brightness,Input[Level],Output[Bit]). The admissible re-
placements of [0, 0] are [0, 1], [1, 0], [1, 1]. The data value occurrence of any of
these 6 tuples projected on Halftoning(Input[Level]) is redundant as every
admissible replacement of such an occurrence leads to a violation of the MVD
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Halftoning(Brightness,Input[λ]) � Halftoning(Input[Level]).

The same applies to the data value occurrences of any tuple projected on
Halftoning(Output[Bit]).

The nested attribute N is in Value Redundancy Free Normal Form (VRFNF)
with respect to a set Σ of dependencies defined on N if and only if there does
not exist r ⊆ dom(N) with |=r Σ which contains a data value occurrence that
is redundant.

Theorem 10. Let Σ be a set of FDs and MVDs on the nested attribute N . Then
N is in VRFNF with respect to Σ if and only if N is in NLNF with respect to Σ.

Proof (Sketch). We sketch first that if N is not in VRFNF with respect to
Σ, then N is also not in NLNF with respect to Σ. If N is not in VRFNF with
respect to Σ, then there is some r ⊆ dom(N), some t ∈ r and some M ∈ BM(N)
such that every admissible replacement of πN

M (t) results in a modified instance
violating Σ. That is, if πN

M (t) is changed to a value m′ such that m′ /∈ πM (r) =
{πN

M (s) : s ∈ r}, resulting in the new element t′ and the modified instance
r′ = (r − {t}) ∪ {t′}, then �|=r′ Σ. One can now show that a violation of some
FD or MVD in Σ by r′ implies a violation of the NLNF condition. We omit the
details.

If N is not in NLNF with respect to Σ, then there is some X � Y ∈ Σ+

which is not inevitable on N with respect to Σ and where X is not a superkey for
N with respect to Σ. In the following let DepB(X) denote the dependency basis
of X with respect to Σ [22]. Let DepB(X) = {W0,1, . . . ,W0,m,W1, . . . ,Wk}
with W0,i ≤ X+ and Wj �≤ X+ for i = 1, . . . ,m and j = 1, . . . , k. Since X is
not a superkey for N with respect to Σ, there is some Wj ∈ DepB(X) with
Wj �≤ X+ < N . One can show that there is some r = {t, t′} ⊆ dom(N) with
|=r Σ and πN

W (t) = πN
W (t′) iff W ≤ X+ 

⊔
{Wn : n �= j}. Suppose there is some

M ∈ BM(N) with M �≤ X , but M ≤ X+. Then πN
M (t) and πN

M (t′) are both
redundant: changing one of these values results in a violation of X → X+ ∈ Σ+

which is not inevitable on N with respect to Σ.
Alternatively, (X+)CC ≤ X . Assume there is only one Wj ∈ DepB(X) with

Wj �≤ X+. X � Y ∈ Σ+ implies that Y is the join over some elements of
DepB(X) and as X � Y ∈ Σ+ is not inevitable on N with respect to Σ we
have Y CC �≤ X . This leaves us with Wj ≤ Y and thus N = X Wj ≤ X Y , i.e.,
N = XY . This, however, is a contradiction since X � Y ∈ Σ+ is not inevitable
on N with respect to Σ. We therefore have two distinct Wi,Wj ∈ DepB(X).
Consequently, for all M ∈ BM(N) with M ≤Wi (at least one such M exists) the
values πN

M (t) and πN
M (t′) are redundant since changing any one of these values

results in the violation of X � Wi ∈ Σ+. Therefore, N is not in VRFNF with
respect to Σ. �

Since NLNF for FDs and MVDs reduces to NLNF for FDs if only FDs are
present, Theorem 10 shows that NLNF for FDs is the exact condition required
to avoid value redundancy when only FDs are present. This extends previous
results [21] where value redundancy had not been considered at all.
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It also follows that value redundancy is equivalent to type-2 and type-3 re-
dundancy, and equivalent to type-1, type-2 and type-3 redundancy whenever Σ
is a pure set of FDs and MVDs.

3.8 Strong Update Anomalies

In the relational model of data a relation schema in 4NF does not have any
update anomalies. This is another justification why relation schemata should be
in 4NF [35]. The next example reveals a surprising fact. Consider

Halftoning(Brightness,Input[λ],Output[Bit])

which is in NLNF with respect to the FD

Halftoning(Input[λ]) → Halftoning(Output[λ])

and therefore free of any form of redundancies. Say a simple database consists
of the single element (1

2 , [ok, ok], [0, 1]) and the element (1
2 , [ok, ok], [0, 0, 0, 0])

happens to be inserted. Then all key dependencies are trivially satisfied by the
new relation, but the FD

Halftoning(Input[λ]) → Halftoning(Output[λ])

is violated. This example shows that, in general, the absence of redundancy for
a nested attribute does not imply the absence of insertion anomalies. There-
fore, it cannot be expected that nested attributes in NLNF do not have update
anomalies. We define, however, strong update anomalies in the context of nested
attributes. The main difference to the relational case is that updated relations
which define any strong anomaly do not only satisfy all key dependencies on the
nested attribute, but also all inevitable dependencies.

Definition 7. Let Σ be a set of FDs and MVDs on the nested attribute N .

1. We say that N has a strong insertion anomaly with respect to Σ if and
only if there is some r ⊆ dom(N) with |=r Σ and some t /∈ r with |=r∪{t}
Σkey ∪Σ+

inev, but �|=r∪{t} Σ.
2. We say that N has a strong deletion anomaly with respect to Σ if and

only if there is some r ⊆ dom(N) with |=r Σ and some t ∈ r with |=r−{t}
Σkey ∪Σ+

inev, but �|=r−{t} Σ.
3. We say that N has a strong replacement anomaly

– of type 1 with respect to Σ if and only if there is some r ⊆ dom(N) with
|=r Σ and some t ∈ r and t′ ∈ dom(N) with πN

K (t) = πN
K (t′) for some

minimal key K on N and |=r−{t}∪{t′} Σkey ∪ Σ+
inev and �|=r−{t}∪{t′} Σ

hold.
– of type 2 with respect to Σ if and only if there is some r ⊆ dom(N)

with |=r Σ and some t ∈ r and t′ ∈ dom(N) with πN
K (t) = πN

K (t′) for
some distinguished minimal key K on N and |=r−{t}∪{t′} Σkey ∪ Σ+

inev
and �|=r−{t}∪{t′} Σ hold.
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– of type 3 with respect to Σ if and only if there is some r ⊆ dom(N)
with |=r Σ and some t ∈ r and t′ ∈ dom(N) with πN

K (t) = πN
K (t′) for all

minimal keys K on N and |=r−{t}∪{t′} Σkey ∪ Σ+
inev and �|=r−{t}∪{t′} Σ

hold. �
If updates only alter values on maximal join-irreducibles and keep values on non-
maximal join-irreducibles fixed, then only key dependencies need to be checked.
Otherwise, one also needs to check all inevitable dependencies that are not trivial.
The next theorem generalises a well-known result from relational databases [15].

Theorem 11. Let Σ be a set of FDs and MVDs on the nested attribute N .
Then is N in NLNF with respect to Σ if and only if N does not have any strong
insertion anomaly with respect to Σ. �
While it is relatively easy to see that a nested attribute in NLNF does not have
any strong update anomalies, the absence of a strong update anomaly does not
necessarily imply NLNF. For strong deletion anomalies we obtain the following
result.

Theorem 12. Let Σ be a set of FDs and MVDs on the nested attribute N . N
does not have any strong deletion anomaly with respect to Σ if and only if Σ is
equivalent to a set of FDs.

Proof (Sketch). If Σ is equivalent to a set ΣF of FDs, then no deletion anomaly
with respect to ΣF can occur. Since strong deletion anomalies are invariant under
different choices of covers, it follows that no deletion anomaly with respect to Σ
can occur. Hence, N does not have any strong deletion anomaly with respect to Σ.

If N is not equivalent to a set of FDs one can show that there is some pure
MVD X � Y in Σ. Then there is some r ⊆ dom(N) with |=r Σ and four distinct
elements t1, t2, t3, t4 ∈ r with πN

X (t1) = πN
X (t2) = πN

X (t3) = πN
X (t4), πN

W1
(t1) =

πN
W1

(t3), πN
W1

(t2) = πN
W1

(t4), πN
W2

(t1) = πN
W2

(t4) and πN
W2

(t2) = πN
W2

(t3) such
that W1,W2 ∈ DepB(X) are distinct and Wi �≤ X+ for i = 1, 2. However, r has
a deletion anomaly since deleting any of the four elements from r results in a
violation of X � Wi ∈ Σ+ which is not inevitable on N with respect to Σ and
where X is not a superkey for N with respect to Σ. Consequently, there is some
X ′ � Y ′ in Σ which is not inevitable and where X ′ ≤ X 

⊔
{Z � ZC | X �

Z ∈ Σ+} holds. The mixed meet rule guarantees that X ′ ≤ X+ and therefore
X → X ′ ∈ Σ+. Since X is not a superkey for N with respect to Σ, neither can
X ′ be. �
It is the subject of future research to study the relationship between the various
forms of strong replacement anomalies and NLNF. We conjecture that the results
for strong replacement anomalies will be similar to those established for 4NF and
key-based (fact-based) replacement anomalies in case of relational databases [35].

4 NLNF Decomposition

So far we have proposed the Nested List Normal Form as a desirable normal form
that we aim to achieve in a database. We now tackle the problem of how to obtain
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NLNF. Theorem 2 indicates that an extension of the relational decomposition
approach [12, 17] can be applied to NLNF. Given some nested attribute N and
a set Σ of FDs and MVDs defined on N , the decomposition approach aims
at finding a set of subattributes of N each of which is in NLNF with respect
to the corresponding set of all implied FDs and MVDs on that subattribute.
Moreover, any instance of N that satisfies Σ is the generalised natural join of
all its projections on the subattributes, i.e., every valid database on N can be
decomposed without loss of information.

Definition 8. Let N ∈ NA, N1, . . . , Nk ∈ Sub(N), and Σ a set of FDs and
MVDs defined on N . The set {N1, . . . , Nk} is called a lossless join decomposition
of N with respect to Σ if and only if N =

⊔
{N1, . . . , Nk} and r = πN1(r) ��

· · · �� πNk
(r) holds for all r ⊆ dom(N) with |=r Σ. The set {N1, . . . , Nk} is a

lossless NLNF (NL4NF) decomposition of N with respect to Σ if and only if
{N1, . . . , Nk} is a lossless join decomposition of N with respect to Σ and Ni is
in NLNF (NL4NF) with respect to πNi(Σ+) for every i = 1, . . . , k, and where
πM (Σ) = {X → Y ∈ Σ | X  Y ≤M} ∪ {X � Y �M ∈ Σ | X ≤M}. �

We will now show that it is possible to obtain a lossless NLNF decomposi-
tion for any given nested attribute N and any given set of FDs and MVDs
on N . Whenever an MVD in the current state of the output schema vio-
lates NLNF, the decomposition algorithm removes the cause for this viola-
tion of NLNF by replacing the offending parent subattribute by two of its
proper child subattributes which can be joined losslessly to reconstruct their
parent.

Algorithm 1 (Lossless NLNF decomposition)

Input: N ∈ NA, set Σ of FDs and MVDs on N

Output: set S = {(N1, Σ1), . . . , (Nk, Σk)} where Σi is set of FDs and
MVDs on Ni ∈ Sub(N) and {N1, . . . , Nk} is lossless NLNF decomposition
of N with respect to Σ

Method:

VAR X,Y,N1, N2 ∈ Sub(N)
DECOMPOSE(N ,Σ)
(1) BEGIN
(2) IF N in NLNF wrt Σ, THEN S := {(N,Σ)};
(3) ELSE
(4) LET X � Y ∈ Σ be not inevitable on N wrt Σ and Σ �|= X → N ;
(5) N1 := X  Y ;
(6) N2 := X  Y C ;
(7) S := DECOMPOSE(N1, πN1(Σ+))∪DECOMPOSE(N2, πN2(Σ+));
(8) ENDIF;
(9) RETURN(S);
(10) END; �
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Theorem 13. Algorithm 1 is correct. �

For relational databases it is well-known that any relation schema with any set
of FDs and MVDs defined on it, can be decomposed into subschemata that are
all in 4NF with respect to the projected sets of FDs and MVDs. In the presence
of lists, however, the situation is different. The next result is further evidence
that a simple extension of 4NF to NL4NF is too strong.

Theorem 14. There are nested attributes N and sets Σ of FDs and MVDs on
N for which no lossless NL4NF-decomposition exists.

Proof. Let N = L[A] and Σ = {λ � L[λ]}. The MVD is not trivial and λ
is not a superkey for N with respect to Σ. Consequently, N is not in NL4NF
with respect to Σ. However, any decomposition of L[A] must contain the nested
attribute L[A] itself. Therefore, no lossless NL4NF decomposition of L[A] with
respect to Σ exists. �

Algorithm 1 generalises the well-known 4NF decomposition algorithm for re-
lational databases, see for instance [27–p.270]. It follows that the NLNF de-
composition algorithm causes at least as many computational problems as its
relational counterpart (,e.g. running time and dependency-preservation). How-
ever, the problems do not become harder in the presence of lists. Due to lack of
space we cannot go into further details. The 4NF-decomposition from [17] may
indicate how to improve the NLNF decomposition according to its running time.

We continue the example from digital halftoning. The MVD

Halftoning(Brightness,Input[λ]) � Halftoning(Input[Level])

is neither inevitable nor is Halftoning(Brightness,Input[λ]) a superkey. A first
decomposition yields

N1=Halftoning(Brightness,Input[Level],λ) and
N ′

2=Halftoning(Brightness,Input[λ],Output[Bit]).

The nested attribute N1 is in NLNF with respect to πN1(Σ). The attribute N ′
2

carries the inevitable FD Halftoning(Input[λ])→Halftoning(Output[λ]),
and the FD Halftoning(Output[λ]) → Halftoning(Input[λ]) which is not
inevitable on N ′

2. A further decomposition of N ′
2 gives

Halftoning(Brightness,Input[Level])

Halftoning(Brightness,Output[Bit])

Halftoning(Brightness,Input[Level],Output[Bit])

λ λ

λHalftoning(Brightness,Input[   ],Output[Bit])

Halftoning(Input[   ],Output[   ])

Fig. 2. Decomposition Tree for the Halftoning Example
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N2=Halftoning(Brightness,λ,Output[Bit]) and
N3=Halftoning(λ,Input[λ],Output[λ])

which are in NLNF with respect to πN2(Σ) and πN3(Σ), respectively.
Since Halftoning(Brightness,Input[Level],Output[Bit]) is not in NLNF

with respect to Σ, and Σ is pure, the schema is redundant in every sense of
notions that have been provided here. It also means that the schema carries
strong insertion and deletion anomalies. The decomposition approach suggests
to store the information in three separate schemata N1, N2 and N3 which are all
in NLNF with respect to the projected sets of FDs and MVDs.

5 Related and Future Work

We have proposed a suitable extension of 4NF from relational databases to the
presence of lists. The results demonstrate that 4NF together with all its beautiful
semantic properties can be generalised to arbitrary finite nesting of records and
lists (slightly extended framework of DTDs in which only concatenation and
Kleene closure are allowed). In particular, NLNF was semantically justified in
several ways by showing the equivalence to the absence of appropriate extensions
of different notions of redundancy and insertion anomalies. The data model has
put emphasis on the record and list constructor, but will be extended to other
data constructors in the future. The feature of lists to model order makes it
possible to focus on join-irreducible subattributes and makes it possible to extend
well-known results allowing to capture new application domains. Since set and
multiset constructor neglect the order of their elements an extension of these
results will be challenging.

The minimal axiomatisation from Theorem 3 follows directly from previous
work [20, 22]. The complete set of inference rules is used in several proof argu-
ments. NLNF for FDs themselves has been studied previously [21]. While [3]
define information-theoretic measures to address the problem of well-designed
data in data formats different from the relational data model (such as XML)
we have offered an algebraic approach to database design which classifies data
models according to the data type constructors supported.

Unlike our work, none of the XML FDs and MVDs [2, 37] take list equality
into consideration. We believe that list equality is natural and common in real
applications and should be included in defining data dependencies. An alter-
native way to define object equality in the context of XML can be based on
homomorphisms in XML graphs [19, 23]. Notably both [18, 31] have considered
set equality in their definitions of FDs in the nested relational data model.
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Abstract. We provide a finite axiomatisation for a class of functional
dependencies for XML data that are defined in the context of a sim-
ple XML tree model reflecting the permitted parent-child relationships
together with their frequencies.

1 Introduction

The question of how to represent and efficiently manage complex application
data is one of the major challenges database research faces today. XML (the Ex-
tensible Markup Language) has gained popularity as a standard for exchanging
data on the web. The flexibility of XML and its wide acceptance as a standard
make it also a good choice for modelling heterogenous and highly structured
data from various application domains. As a consequence, XML databases (in
the form of data-centric XML documents) have attracted a great deal of interest.

As for the relational data model (RDM), integrity constraints are needed to
capture more of the semantics of the data stored in an XML database. Several
types of integrity constraints have been studied in the context of XML, with a
focus on various key constraints, functional dependencies, inclusion constraints,
and path constraints. For relational databases, functional dependencies have
been vital in the investigation of how to design “good” database schemas to
avoid or minimise problems relating to data redundancy and data inconsistency.
The same problems can be shown to exist in poorly designed XML databases.
Not surprisingly, functional dependencies for XML (often referred to as XFDs)
have recently gained much attention.

An important problem involving XFDs is that of logical implication, i.e., de-
ciding whether a new XFD holds, given a set of existing XFDs. This is important
for minimising the cost of checking that a database satisfies a set of XFDs, and
may also be helpful when XFDs are propagated to view definitions. One ap-
proach to solve this problem is to develop a sound and complete set of inference
rules for generating symbolic proofs of logical implication.

For the RDM, the implication problem for functional dependencies is decid-
able in linear time, and the Armstrong system of inference rules is sound and
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complete. For XML the story is more complicated. Before studying XFDs and
actually using them in database design, they have to be formally defined. In the
literature [3, 4, 9-11, 13, 18-20, 17, 21, 22], several generalisations of functional
dependencies to XML have been proposed, and they do not always reflect the
same kind of dependencies in an XML database. The difficulty with XML data
is that its nested structure is more complex than the rigid structure of relational
data, and thus may well observe a larger variety of data dependencies.

In this paper we use an approach that considers XFDs in the context of a
simple tree model: XFDs are defined over a schema tree that reflects the per-
mitted parent-child relationships, and apply to the almost-copies of the schema
tree that can be found in an XML data tree under inspection. XML schema
trees capture information on the frequency of parent-child relationships, that is,
they show whether a child is optional or required, and whether it is unique or
may occur multiple times. This approach to XFDs has been suggested in [10],
and comes close to the approach taken in [3, 4] where XFDs are defined on the
basis of paths evolving from the root element in an XML document. This idea
goes back to earlier studies of functional dependencies in semantic and object-
oriented data models [15, 23]. It should be noted that XFDs may well interact in
a non-trivial way with chosen specifications (like DTDs) as demonstrated, e.g.,
in [2, 4].

This paper is organised as follows. In Section 2, we provide preliminary notions
like XML schema trees and data trees. In Section 3, we present an example that
illustrates our approach, while we formally define XFDs in Section 4. In Section
5, we assemble sound inference rules, which are then shown to be complete in
Section 6. In Section 7, we extend our investigation to account for ID-attributes
that are widely used in XML databases. Finally, Section 8 gives an overview of
related work and discusses similarities and differences.

2 Preliminary Notations

We start with reviewing basic features of a simple XML tree model. Within this
paper, all graphs considered are directed, without parallel arcs and finite unless
stated otherwise. For every graph G, let VG denote its set of vertices and AG its
set of arcs. A rooted graph is a graph G with one distinguished vertex rG, called
the root of G, such that there is a directed path from rG to every other vertex in
VG. A rooted tree is a rooted graph T without any (non-directed) cycles. A graph
G is empty if AG is empty. Specifically, G is an empty rooted graph if it consists of
a single vertex rG. For every vertex v, let SuccG(v) denote its (possibly empty)
set of successors, called children, in G. A non-isolated vertex without children is
a leaf of G. Let LG denote the set of all leaves of G.

Definition 1. Given a vertex v ∈ VG and a subset W ⊆ LG of leaves, a v-
subgraph of G is the graph union of all directed walks from v to some w ∈W .
A v-walk of G is a directed walk from v to a single leaf w of G. Every v-walk or
v-subgraph of a rooted tree is again a rooted tree.
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Fig. 1. An XML tree showing the names and kinds of vertices

Let ENames and ANames be fixed sets of element names and attribute names,
respectively. Also let the symbols E,A and S reflect whether a vertex represents
an element, attribute or text data respectively.

Definition 2. An XML graph is a rooted graph G together with the mappings
name : VG → ENames ∪ANames and kind : VG → {E,A, S} assigning every
vertex its name and kind, respectively. If G is a rooted tree, then we speak of an
XML tree.

In this paper, all XML trees are assumed to be unordered trees. Let V E
G , V A

G and
V S

G consist of all vertices in VG of kind E, A and S, respectively. We suppose
that in an XML graph, vertices of kind A and S are always leaves and conversely
all leaves are either of kind A or S, that is, LG = V A

G ∪ V S
G . Thus, within this

paper, we do not consider empty elements unless G is empty.

Definition 3. Let G′ and G be two XML graphs, and consider a mapping
φ : VG′ → VG. φ is said to be kind-preserving if the image of a vertex is of the
same kind as the vertex itself, that is, kind(v′) = kind(φ(v′)) for all v′ ∈ VG′ .
Further, φ is name-preserving if the image of a vertex carries the same name as
the vertex itself, that is, name(v′) = name(φ(v′)) for all v′ ∈ VG′ . The mapping
φ is a homomorphism between G′ and G if all of the following conditions hold:

1. the root of G′ is mapped to the root of G, that is, φ(rG′ ) = rG

2. every arc of G′ is mapped to an arc of G, that is, (u′, v′) ∈ AG′ implies
(φ(u′), φ(v′)) ∈ AG

3. φ is kind-preserving and name-preserving.

Definition 4. A homomorphism φ : VG′ → VG is an isomorphism if φ is bijec-
tive and φ−1 is a homomorphism. Whenever such an isomorphism exists, G′ is
said to be isomorphic to G, denoted by G′ ∼= G. We also call G′ a copy of G.

Definition 5. A subgraph H ′ of G′ is a copy of a subgraph H of G if the
restriction of φ : VG′ → VG to H ′ and H is an isomorphism between H ′ and H.
An rG′-subgraph H ′ of G′ is a subcopy of G if it is a copy of some rG-subgraph H
of G. A maximal subcopy of G is a subcopy of G which is not an rG-subgraph of
any other subcopy of G. A maximal subcopy of G is called an almost-copy of G.
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It should be noted that all copies of G in G′ are almost-copies of G, but not
vice versa. Also we can observe that a homomorphism φ : VG′ → VG is not an
isomorphism whenever G′ contains more than one copy of G or no copy (but
possibly many almost-copies) of G.

Definition 6. An XML schema graph is an XML graph G together with a
mapping freq : AG → {?, 1,+, ∗} assigning every arc its frequency. Every arc
a = (v, w) where w is of kind A has frequency freq(a) =? or 1. Every arc
a = (v, w) where kind(v) = E and kind(w) = S has frequency freq(a) = 1. Fur-
ther, we assume no vertex in VG has two successors with the same name and
the same kind. If G is more specifically an XML tree, then we speak of an XML
schema tree.

We use “f -arc” to refer to an arc of frequency f and “f/g-arc” to refer to an arc
of frequency f or g. For example, a ?-arc refers to an arc of frequency ?, while a
*/+-arc refers to an arc of frequency * or +. For an XML schema graph G, let
G≤1 be the graph union of all ?/1-arcs in AG, and G≥1 be the graph union of
all 1/+-arcs in AG. Note that G≤1 and G≥1 may not be rG-subgraphs of G.

Definition 7. An XML data tree is an XML tree T ′ together with an evaluation
val : LT ′ → STRING assigning every leaf v a (possibly empty) string val(v).

Definition 8. Let G be an XML schema graph. An XML data tree T ′ is com-
patible with G, denoted by T ′ � G, if there is a homomorphism φ : VT ′ → VG be-
tween T ′ and G such that for each vertex v′ of T ′ and each arc a = (φ(v′), w) of
G, the number of arcs a′ = (v′, w′

i) mapped to a is at most 1 if freq(a) =?, exactly
1 if freq(a) = 1, at least 1 if freq(a) = +, and arbitrarily many if freq(a) = ∗.
Due to the definition of a schema graph, this homomorphism is unique if it exists.

An XML schema graph may be developed by a database designer similar to a
(rather simple) database schema, or it can be derived from other specifications
(such as DTDs or XSDs). Alternatively, an XML schema graph may also be
derived from an XML document itself, cf. [10]. At this point a short remark is
called for. Given an XML data tree T ′, there is usually more than just a single
XML schema graph G such that T ′ is compatible with G. For example, G may
well be extended by adjoining new vertices and arcs, or by (partially) unfolding
it. Recall that, in our definition of an XML schema graph, we did neither claim
the vertices of kind E to have mutually distinct names, nor those of kind A. It
is well-known that every rooted graph G may be uniquely transformed into a
rooted tree TG by completely unfolding it, cf. [8].

Let T ′
1 be any almost-copy of T in an XML data tree T ′ � T . It is possible

that T ′
1 does not contain a copy of some rT -walk which contains an ?-arc or *-arc.

Note that this flexibility is one of the desirable features of XML to adequately
represent heterogenous data. We say that T ′

1 is missing a copy of an rT -walk C
of T if T ′

1 does not contain a copy of C, otherwise T ′
1 is said to be not missing a

copy of C. Similarly the data tree T ′ is said to be missing a copy of C if it does
not contain a copy of C, and not missing a copy of C otherwise.
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For two rG-subgraphs X and Y of some graph G, we may use X ⊆ Y to
denote that X is an rG-subgraph of Y in G, and more specifically X ∈ Y to
denote that X is an rG-walk of Y in G.

Next we briefly discuss operators to construct new trees from given ones. Let G
be an XML graph, and X,Y be subgraphs of G. The union of X and Y , denoted
by X ∪ Y , is the restriction of the graph union of X and Y to its maximal rG-
subgraph of G. For convenience, we sometimes omit the union symbol and write
XY instead of X ∪ Y . The intersection of X and Y , denoted by X ∩ Y , is the
union of all rG-walks that belong to both X and Y . The difference between X
and Y , denoted by X − Y , is the union of all rG-walks belonging to X but not
to Y . In particular, X ∩ Y and X − Y are rG-subgraphs of G.

The intersection operator is associative but the union and difference operators
are not associative. The union and intersection operators are commutative but
the difference operator is not. In the absence of parentheses, we suppose that
the union and intersection operators bind tighter than the difference operator.
For example, by X ∪ Y − Z we mean (X ∪ Y )− Z.

Let G′ and G be two XML graphs, and φ : VG′ → VG be a homomorphism
between them. Given an rG-subgraph H in G, the projection of G′ to the sub-
graph H in G, denoted by G′|H , is the union of all the subcopies of H in G′.
The projection G′|H is an rG′ -subgraph of G′.

3 A Motivating Example

Our example describes information stored about a product development com-
pany and its employees. The company has one head quarter office contactable by
postal mail or phone. Furthermore, the company operates various departments
and has multiple branches.

In our example here, we use attributes rather than text elements purely to
end up with more compact XML graphs. Of course, each attribute in an XML
graph G with name n may alternatively be modelled by a vertex v of kind E
with name n and a child w ∈ SuccG(v) of kind S and name n. Here, we are not
concerned with the question of whether some information are better modelled
as an attribute or text element.

Fig. 2. The XML schema tree PD



164 S. Hartmann and T. Trinh

For the ease of presentation, we have chosen examples where the leaf names
are unique. In this paper, we may therefore refer to an rG-walk to some leaf
carrying the name “B” simply as [[B ]], e.g., [[ brPhone ]]. Further, we may refer
to an rG-subgraph X by listing the names of all leaves in X separated by white
spaces, e.g., [[ brName brPhone ]].

4 Functional Dependencies for XML

Two isomorphic XML data trees T ′ and T are said to be value-equal, denoted
by T ′ = T , if the isomorphism φ : VT ′ → VT between T ′ and T is evaluation-
preserving, that is, val(φ(v′)) = val(v′) holds for every v′ ∈ LT ′ . We are now
ready to present our definition of functional dependencies for XML.

Definition 9. Given an XML schema graph T , a functional dependency (or
XFD for short) on T is an expression X → Y where X and Y are non-empty
rT -subgraphs in T . Let T ′ be an XML data tree which is compatible with T
and let φ : VT ′ → VT be the unique homomorphism between T ′ and T . Then T ′

satisfies the XFD X → Y , written as |=T ′ X → Y , if and only if for any two
almost-copies T ′

1 and T ′
2 of T in T ′ the projections T ′

1|Y and T ′
2|Y are value-

equal whenever the projections T ′
1|X and T ′

2|X are value-equal and copies of X,
i.e., T ′

1 |Y = T ′
2 |Y whenever T ′

1 |X = T ′
2 |X ∼= X.

Example 10. Suppose each department of our product development company
is located at a single branch. Branches have unique phone numbers and are
located in unique locations. Employees are assigned unique employee IDs. We
use the following XFDs to model the PD company information:

(PD XFD1) [[ brName ]] → [[ brLocation ]]
(PD XFD2) [[ brName ]] → [[ brPhone ]]
(PD XFD3) [[ brLocation ]]→ [[ brName ]]
(PD XFD4) [[ deptName ]] → [[ brName ]]
(PD XFD5) [[ empID ]] → [[ empName ]]

Fig. 3. An XML data tree PD′ compatible with PD
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Fig. 4. Two of the four almost-copies of PD contained in PD′

The XML data tree PD′ in Figure 3 contains four almost-copies of PD, two of
which are shown in Figure 4. The two remaining almost-copies can be obtained
as follows:

P ′
3 = P ′

1|[[ empID deptName ]] ∪ P ′
2|[[ brName brPhone ]]

P ′
4 = P ′

2|[[ empID empName deptName ]] ∪ P ′
1|[[ brName brPhone ]]

The almost-copies P ′
1 and P ′

2 contain value-equal copies of [[brName ]], but they
differ in their copies of [[brPhone ]]. Therefore PD′ does not satisfy PD XFD2.
Moreover, PD′ does not satisfy PD XFD5 since P ′

1 and P ′
2 contain value-equal

copies of [[ empID ]], but only P ′
2 is not missing a copy of [[ empName ]].

On the other hand, PD XFD3 is trivially satisfied because PD′ is missing a
copy of [[ brLocation ]]. P ′

1 and P ′
2 contain value-equal copies of [[ brName ]] and

are both missing a copy of [[ brLocation ]]. Since P ′
3, P

′
4 are constructed from P ′

1
and P ′

2, it is easy to see that any two almost-copies of PD in PD′ have a value-
equal copy of [[ brName ]] and are missing a copy of [[ brLocation ]]. Hence PD′

satisfies PD XFD1. Both P ′
1 and P ′

2 contain value-equal copies of [[deptName ]]
and [[ brName ]]. Again, we have that any two almost-copies of PD in PD′

will contain P ′
1|[[ deptName brName ]] or P ′

2|[[ deptName brName ]]. Therefore any two
almost-copies of PD in PD′ will contain value-equal copies of [[deptName ]] and
[[ brName ]], so that PD XFD4 is satisfied. �

As for the RDM, we say that an XML data tree T ′ satisfies a given set Σ of
XFDs, denoted by |=T ′ Σ, if T ′ satisfies each XFD in Σ. Satisfaction of a given
set of XFDs by an XML data tree usually implies the satisfaction of other XFDs.
The notions of implication and derivability (with respect to a rule system R)
are defined analogously to similar notions in the RDM.

Let Σ be a set of XFDs and X → Y a single XFD. If X → Y is satisfied
in every XML data tree which satisfies Σ, then Σ implies X → Y , written as
Σ |= X → Y . The semantic closure of Σ, denoted by Σ∗, is the set of all XFDs
which are implied by Σ, that is, Σ∗ = {X → Y | Σ |= X → Y }.

Given a rule system R, we call an XFD X → Y derivable from Σ by R, de-
noted by Σ -R X → Y , if there is a finite sequence of XFDs, whose last element
is X → Y , such that each XFD in the sequence is in Σ or can be obtained from
Σ by applying one of the inference rules in R to a finite number of previous
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XFDs in the sequence. The syntactic closure of Σ with respect to the rule system
R, denoted Σ+

R, is the set of all XFDs which are derivable from Σ by means
of inference rules in R, that is, Σ+

R = {X → Y | Σ -R X → Y }. Whenever the
rule system is clearly understood, we may omit R.

An inference rule is called sound if for any given set Σ of XFDs, every XFD
which may be derived from Σ due to that rule is also implied by Σ. A rule
system R is sound if all inference rules in R are sound. In other words, R is
sound if every XFD which is derivable from Σ by R is also implied by Σ (i.e.
Σ+
R ⊆ Σ∗). A rule system is said to be complete if it is possible to derive every

XFD which is implied by Σ (i.e. Σ∗ ⊆ Σ+
R).

5 Sound Inference Rules

In this section, we assemble sound inference rules that yield a sound and complete
rule system as we will demonstrate later on.

Lemma 11. Let T be an XML schema tree, and let X,Y,W,Z be rT -subgraphs
of T . The following inference rules for XFDs are sound:

(union rule)
X → Y,X → Z

X → Y ∪ Z
(reflexivity axiom)

X → Y
Y is an rT -subgraph of X

(subtree rule)
X → Y

X → Z
Z is an rT -subgraph of Y

(supertree rule)
W → Y

X → Y
W is an rT -subgraph of X

For an XML schema tree T , let RT denote the union of all rT -walks of T≤1.

Lemma 12. Let T be an XML schema tree, and let X be an rT -subgraph of T .
The following inference rule is sound for XFDs:

(root axiom)
X → RT

Surprisingly, the transitivity rule from the RDM does not hold for XML in the
presence of frequencies. Consider the XFDs X → Y and Y → Z defined on some
XML schema tree T . For an XML data tree T ′ � T , if any two almost-copies of
T are missing a copy of some rT -walk of Y , then T ′ trivially satisfies Y → Z.
Therefore it would be possible for two almost-copies to be not value-equal on Z
while being value-equal on and not missing a copy of X , that is, X → Z can be
violated.

However we can define a restricted form of the transitivity rule which is sound
for the derivation of XFDs. The main idea behind such an inference rule is to
use frequencies to ensure that two almost-copies are not missing a copy of every
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rT -walk of the middle term Y whenever they are not missing a copy of every rT -
walk of X or Z. The notion of Y being X,Z-compliant in the following definition
accomplishes this.

Definition 13. Let X,Y, Z be rT -subgraphs in an XML schema tree T . We say
Y is X,Z-compliant if and only if Y ⊆ (X ∪ C) ∪ T≥1 for each rT -walk C of Z.

Example 14. In the XML schema tree PD in Figure 2, it is easy to see
that [[ brName ]] ⊆ ([[ deptName ]] ∪ [[ brLocation ]]) ∪ PD≥1 holds, that is,
[[ brName ]] is [[deptName ]],[[ brLocation ]]-compliant. �

Lemma 15. Let T be an XML schema tree, and let X,Y, Z be rT -subgraphs of
T . The following inference rule is sound for XFDs:

(restricted-transitivity rule)
X → Y, Y → Z

X → Z
Y is X,Z-compliant

Example 16. Recall the XML schema tree PD in Figure 2 and all XFDs
specified in Example 10. There are two rPD-walks in PD≤1, yielding
RPD = [[ address phone ]]. Using the root axiom we derive XFDs like
[[ empID ]] → [[ address phone ]] (let this be denoted by PD XFD6) and
[[ empName brName ]] → [[ address phone ]].

The supertree rule enables us to derive from PD XFD6 the XFD
[[ empID empName brName ]] → [[ address phone ]]. Applying the subtree
rule to PD XFD6 gives us the XFDs [[ empID ]] → [[ address ]] and
[[ empID ]] → [[ phone ]]. Using the reflexivity axiom, we can derive the XFD
[[ empID empName brName ]] → [[ empID empName ]]. From PD XFD1
and PD XFD2 and an application of the union rule we obtain the XFD
[[ brName ]]→ [[ brLocation brPhone ]].

Since [[ brName ]] is [[ deptName ]],[[ brLocation ]]-compliant, an application
of the restricted-transitivity rule to PD XFD4 and PD XFD1 yields the XFD
[[ deptName ]] → [[ brLocation ]]. �

Next, we define the notion of a unit of some rT -walk which is needed for the
final inference rule presented in this section.

Definition 17. Let B be an rT -walk of some XML schema tree T . The unit of
B, denoted by UB, is the union of all rT -walks sharing some */+-arc with B.

We continue with some useful observations about the unit of an rT -walk. For
one, it is the case that UC = UB for any rT -walk C ∈ UB. Furthermore, in any
data tree T ′ � T , every almost-copy of T − UB together with any almost-copy
of UB form an almost-copy of T in T ′. In particular, for any two almost-copies
T ′

1, T
′
2 of T in T ′, it is the case that T ′

1 |T−UB ∪ T ′
2 |UB and T ′

2 |T−UB ∪ T ′
1 |UB

are also almost-copies of T in T ′. The mix-and-match approach is only possible
because T ′

2 |UB shares with T ′
1 |T−UB exactly those arcs (and vertices) which

T ′
2 |UB shares with T ′

2 |T−UB , and likewise T ′
1 |UB shares with T ′

2 |T−UB exactly
those arcs which T ′

1 |UB shares with T ′
1 |T−UB .
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Lemma 18. Let T be an XML schema tree, let X be an rT -subgraph of T , and
let B an rT -walk of T . The following inference rule is sound for XFDs:

(noname rule)

(
(X ∪B) ∪ T≥1 − UB

)
∪X → B

X → B

Example 19. The noname rule allows us to derive XFDs which have
not been derivable using the other derivation rules only, e.g., the new
XFD [[ empName ]]→[[ brName ]] for our example above. To see this,
we first find ([[ empName ]] ∪ [[ brName ]]) ∪ PD≥1 as the rPD-subgraph
[[empID empName deptName brName]] of PD, and the unit U[[ brName ]] as the
rPD-subgraph [[ brName brLocation brPhone ]]. This amounts to the premise of
the noname rule being the XFD [[ empID empName deptName ]]→[[ brName ]],
which can be derived from [[ deptName ]]→[[ brName ]] (that is, PD XFD4) by
means of the supertree rule. �

6 A Sound and Complete Rule System

In this section, we observe that the inference rules assembled above form a
complete rule system for XFDs in the presence of frequencies. Let the F-rule
system consist of the following inference rules: reflexivity axiom, root axiom,
subtree rule, supertree rule, union rule, restricted-transitivity rule and noname
rule.

We take the usual approach to verifying completeness. Consider an XML
schema tree T and a set Σ of XFDs on T . If X → Y cannot be derived from Σ
by means of the inference rules, then we show that there is an XML data tree
T ′ � T such that |=T ′ Σ but �|=T ′ X → Y . Because of the union rule, this means
that there is some rT -walk B ∈ Y such that X → B is not derivable from Σ
and T ′ does not satisfy X → B. Therefore T ′ must contain two almost-copies
T ′

1, T
′
2 of T such that T ′

1 |X = T ′
2 |X ∼= X and T ′

1 |B �= T ′
2 |B. In the sequel, we will

outline a general construction for such a counterexample data tree T ′.
Without frequencies, we can construct a counterexample data tree from the

arc-disjoint union of exactly two copies T ′
a, T

′
b of X ∪B that are value-equal only

on X . Particularly, T ′
a, T

′
b are both missing a copy of every rT -walk not in X ∪B.

In the presence of frequencies, however, we face the additional complication that
at least one almost-copy of T in T ′ must contain a copy of (X ∪B) ∪ T≥1. This
means, in addition to X ∪B, we also need to determine whether or not T ′

1 and
T ′

2 should be value-equal on any of the remaining rT -walks in (X ∪B) ∪ T≥1,
keeping in mind that T ′ must still satisfy Σ.

We first define the analogous of the closure of a set of attributes in the RDM.

Definition 20. Let T be an XML schema tree, X be an rT -subgraph, and Σ be
a set of XFDs on T . Further let R be a rule system. The pre-closure X+

R of X
with respect to Σ and R is the following rT -subgraph of T :

X+
R =

⋃
{Y | X → Y ∈ Σ+

R}
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As pointed out above, we need two almost-copies T ′
1, T

′
2 of T such that

T ′
1 |X = T ′

2 |X ∼= X and T ′
1 |B �= T ′

2 |B. To ensure |=T ′ Σ we must further guar-
antee that T ′

1 |X+
F

= T ′
2 |X+

F
. For that, the two almost-copies of T must not be

missing value-equal copies of X+
F ∩ ((X ∪B) ∪ T≥1). A peculiar situation is en-

countered: there may be XFDs that are not implied by Σ (and hence not deriv-
able by the F -rule system), but need to be non-trivially satisfied in this situa-
tion because at least one of T ′

1, T
′
2 is not missing a copy of (X ∪B) ∪ T≥1. The

restricted-transitivity rule yields (X+
F )+F ⊇ X+

F , but X+
F will in general not be a

closure as its counterpart attribute closure in the RDM.

Example 21. Our previous observation is illustrated by the XML schema
tree S in Figure 5(a) and the set Σ of XFDs defined on S. We find
that [[U ]] �⊆ ([[X ]] ∪ [[D ]]) ∪ S≥1, that is, [[U ]] is not [[X ]], [[D ]]-compliant.
Therefore, we cannot use the restricted-transitivity rule to derive [[X ]] → [[D ]].
In fact, the F -rule does not allow us to derive [[X ]]→ [[D ]]. If an XML data tree
compatible with S should satisfy Σ and violate [[X ]]→ [[D ]] it must simply
be missing a copy of [[U ]], see Figure 5(b).

However, if an XML data tree compatible with S is not missing a copy of [[B ]],
then it will not be missing a copy of [[U ]] either. Consider the data tree S′′ in Fig-
ure 5(c). It contains exactly two almost-copies of S, which we denote by S′1, S

′
2.

Since |=S′′ Σ, we have |=S′′ [[X ]]→ [[U ]] and |=S′′ [[U ]]→ [[D ]]. It follows
from |=S′′ [[X ]]→ [[U ]] and S′1 |[[ X ]]= S′2 |[[ X ]]

∼= [[X ]] that S′1 |[[ U ]]= S′2 |[[ U ]].
Moreover, since [[U ]] ∈ ([[X ]] ∪ [[B ]]) ∪ S′′≥1, neither of S′1, S

′
2 is missing a

copy of [[U ]]. This means we have S′1 |[[ U ]]= S′2 |[[ U ]]
∼= [[U ]], and hence

S′1 |[[ D ]]= S′2 |[[ D ]] due to |=S′′ [[U ]]→ [[D ]]. �

Consequently, it is insufficient to stop after having considered only X+
F . Since

T ′
1, T

′
2 are value-equal on and not missing a copy of X+

F ∩ ((X ∪B) ∪ T≥1),
it follows from |=T ′ Σ that T ′

1, T
′
2 must be value-equal on and not

missing a copy of (X+
F ∩ ((X ∪B) ∪ T≥1))+F ∩ ((X ∪B) ∪ T≥1). This then

(a) XML schema
tree S. Let Σ =
{[[ X ]]→ [[ U ]],
[[ U ]]→ [[ D ]]} be a
set of XFDs on S.

(b) XML data
tree S′ � S with
|=S′ Σ showing
[[ X ]] → [[ D ]]
can be violated.

(c) XML data tree S′′ � S
with |=S′′ Σ, where S′′ is
not missing a copy of [[ B ]].
It is not possible that
�|=S′′ [[ X ]] → [[ D ]].

Fig. 5. XML schema tree and data trees illustrating that there can be an XFD which
is not derivable but which is satisfied whenever there occur copies of certain rS-walks
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means that T ′
1, T

′
2 must be value-equal on and not missing a copy of

((X+
F ∩ ((X ∪B) ∪ T≥1))+F ∩ ((X ∪B) ∪ T≥1))+F ∩ ((X ∪B) ∪ T≥1), and so on.

In the process, we obtain a sequence of pre-closures restricted to (X ∪B) ∪ T≥1.
Eventually there is some fix-point Xn since XML schema trees are finite so that
there are only finitely many rT -walks in (X ∪B) ∪ T≥1. In summary, T ′

1, T
′
2 must

be value-equal on and not missing a copy of the rT -subgraph Xn in order for
|=T ′ Σ.

This outlines our general approach for constructing a counterexample data
tree, though the actual proof of completeness uses some additional con-
siderations. Recall that T ′

1 |T−UB ∪ T ′
2 |UB and T ′

2 |T−UB ∪ T ′
1 |UB are possibly

further almost-copies of T in T ′. In particular, if T ′
1 |T−UB �= T ′

2 |T−UB and
T ′

1 |UB �= T ′
2 |UB then there are at least four almost-copies of T in T ′. To

simplify the discussion it is desirable to have only two almost-copies of T
in the counterexample data tree under construction. To ensure this, we can
force T ′ to contain only one copy of T |T−UB ∩ ((X ∪B) ∪ T≥1). Actually,
T |T−UB ∩ ((X ∪B) ∪ T≥1) equals (X ∪B) ∪ T≥1 − UB. Therefore, we want to
have T ′

1 |(X∪B)∪T≥1−UB
= T ′

2 |(X∪B)∪T≥1−UB
.

However, there might be some rT -walk in (X ∪B) ∪ T≥1 − UB that
is not in the rT -subgraph Xn introduced above. This is rectified by
actually computing the sequence of restricted pre-closures starting with
X0 = ((X ∪B) ∪ T≥1 − UB) ∪X rather than just X . The noname rule guaran-
tees that each restricted pre-closure in the sequence remains unaffected except
for the additional rT -subgraph X0 −X .

Example 22. We demonstrate the approach described thus far with
an example. Consider the XML schema tree Q shown in Figure 6.
(Note that we left out some vertex names in Q for convenience.) Let
Σ = {[[DB ]]→ [[C ]], [[X ]]→ [[B ]]} be a set of XFDs given on Q. It is easy
to check that [[XF ]]→ [[W ]] is not derivable from Σ by the F -rule system.

Suppose we want to construct a counterexample data tree Q′ � Q such that
|=Q′ Σ but �|=Q′ [[XF ]]→ [[W ]]. The rQ-subgraph ([[XF ]] ∪ [[W ]]) ∪Q≥1 is

Fig. 6. An XML schema tree Q
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Fig. 7. Two almost-copies Q′
1, Q

′
2 of the XML schema tree Q

the schema tree Q without the rQ-walk [[E ]]. Thus, each restricted pre-closure
must not contain [[E ]]. The sequence of restricted pre-closures is as follows:

[[XF ]]0 =
(
([[XF ]] ∪ [[W ]]) ∪Q≥1 − U[[ W ]]

)
∪ [[XF ]]

= ([[XFABCDW ]]− [[ABCFW ]]) ∪ [[XF ]]
= [[XD ]] ∪ [[XF ]] = [[XFD ]]

[[XF ]]1 = ([[XFD ]])+F ∩
(
([[XF ]] ∪ [[W ]]) ∪Q≥1

)
= [[XFDB ]]

[[XF ]]2 = ([[XFDB ]])+F ∩
(
([[XF ]] ∪ [[W ]]) ∪Q≥1

)
= [[XFDBC ]]

= [[XF ]]3 = [[XF ]]4 = . . .

Therefore, Q′ should contain two almost-copies Q′
1, Q

′
2 of Q which are value-

equal on and not missing a copy of the rQ-subgraph [[XFDBC ]]. Two such
almost-copies of Q are depicted in Figure 7. �

As discussed above, we construct T ′ in general by taking the union of two copies
of (X ∪B) ∪ T≥1 that are value-equal only on Xn. Of course, T ′ should be com-
patible with T and thus conform to the frequencies specified on T . Consequently,
in T ′ the two copies may need to share certain arcs or even copies of entire rT -
walks of T . We next provide a notion for describing that two almost-copies of
some schema tree T share the same copy of some rT -walk of T in a compatible
data tree T ′.

Definition 23. Let T be an XML schema tree. Two almost-copies T ′
1, T

′
2 of T

in an XML data tree T ′ � T are said to coincide on an rT -walk B of T if and
only if T ′

1 |B and T ′
2 |B are graph unions of exactly the same set of arcs in T ′.

Two almost-copies of T coincide on an rT -subgraph Y of T if and only if they
coincide on each rT -walk of Y .

Example 24. Recall the XML data tree PD′ in Figure 3 containing almost-
copies P ′

1 to P ′
4 of PD, cf. Figure 4. P ′

1 and P ′
3 coincide on the rPD-subgraph

[[ empID deptName ]] but do not coincide on any other rPD-walk. �

The following amalgamation operator allows us to specify how two almost-copies
of an XML schema tree can be combined to construct an XML data tree.
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Definition 25. Let T be an XML schema tree, T ′
a, T

′
b be two almost-copies of T ,

and X be an rT -subgraph of T . The amalgamation of T ′
a and T ′

b on X, denoted
T ′

a.[ X ] T
′
b, is the XML data tree obtained by taking the graph union of T ′

a and
T ′

b in such a way that T ′
a and T ′

b coincide on X, and T ′
a and T ′

b only share all
arcs in their projections to X ∪ T≤1.

As mentioned before, we construct the counterexample data tree by amalga-
mating two copies T ′

a, T
′
b of (X ∪B) ∪ T≥1 that are value-equal only on Xn.

By construction, both T ′
a, T

′
b are almost-copies of T in T ′. Recall, however,

that T ′
a|(X∪B)∪T≥1−UB

∪ T ′
b|UB and T ′

b|(X∪B)∪T≥1−UB
∪ T ′

a|UB are possibly fur-
ther almost-copies of T in an XML data tree containing T ′

a and T ′
b. From

X0 = ((X ∪B) ∪ T≥1 − UB) ∪X ⊆ Xn we know that T ′
a and T ′

b are value-equal
on (X ∪B) ∪ T≥1 − UB. In order for the constructed data tree T ′ to contain
only two almost-copies of T (namely T ′

a and T ′
b), we require that T ′

a and T ′
b are

amalgamated on (X ∪B)∪T≥1−UB. The resulting XML data tree T ′ is in fact
the desired counterexample data tree we are looking for.

As a consequence, we conclude the completeness of the F -rule system.

Theorem 26. The F-rule system is sound and complete for XFDs in the pres-
ence of frequencies.

Example 27. Let us continue with Example 22. To construct a counterexample
data tree Q′ � Q such that |=Q′ Σ but �|=Q′ [[XF ]]→ [[W ]], we use two copies
Q′

a, Q
′
b of ([[XF ]] ∪ [[W ]]) ∪Q≥1 = [[XFABCDW ]] that are value-equal on

the rQ-subgraph [[XFDBC ]]. Incidentally, these can be the two almost-copies
Q′

1, Q
′
2 of Q shown in Figure 7.

From Example 22, we have that ([[XF ]]∪ [[W ]])∪Q≥1−U[[ W ]] = [[XD ]].
As suggested, we amalgamate Q′

a and Q′
b on [[XD ]]. The resulting XML data

tree Q′
a.[ [[ XD ]] ] Q

′
b, denoted Q′ for short, is shown in Figure 8. Note that

Q′ contains only the two almost-copies Q′
1, Q

′
2 of Q. Though we have left out

the names of some vertices for convenience, the homomorphism between Q′ and

Fig. 8. The XML data tree Q′ = Q′
a �[ XD ] Q

′
b where Q′ � Q. Here Q′

a and Q′
b corre-

spond to the almost-copies Q′
1 and Q′

2 in Figure 7.
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Q is the name-preserving mapping which maps every vertex from Q′ to the
vertex carrying the same name in Q. By examining the frequencies given on
Q in Figure 6, it can easily be verified that Q′ � Q. Thus Q′ is the desired
counterexample data tree. �

7 The Impact of Identifiers

Elements in an XML document can be identified using ID-attributes. The val-
ues of ID-attributes have to be unique throughout the document. This fea-
ture is borrowed from object-oriented data models [15, 23] and is supported,
e.g., by DTDs. (XSDs also support ID-attributes, but provide further oppor-
tunities to declare unique values, too.) In this section, we discuss XFDs in
the presence of XML schema trees where attributes may be declared as ID-
attributes. We first revise some earlier definitions to account for the presence of
ID-attributes.

We use “I” to differentiate an ID-attribute from an ordinary attribute. The
kind assignment is thus extended to kind : VG → {E,A, I, S}. The possible fre-
quencies for an arc a = (v, w) where kind(w) = I is the same as for kind(w) = A,
that is, freq(a) =? or 1. Furthermore, we call an rT -walk to some ID-attribute
an identifier. Let V I

G consist of all vertices in VG of kind I. Leaves are now
vertices of kind A, I or S, that is, LG = V A

G ∪ V S
G ∪ V I

G. It is not necessary
to modify the definitions of XML data tree and equivalence of XML data
trees.

Values assigned to ID-attributes need to be unique in an XML data tree T ′,
that is, for every leaf v ∈ V I

T ′ of the data tree T ′ there does not exist any other
leaf u ∈ LT ′ such that val(v) = val(u). We refer to this as the unique identifier
value constraint. Now, the revised version of Definition 8 [compatible] simply
requires that T ′ also satisfies the unique identifier value constraint.

It is easy to see that all inference rules which are sound in the presence of
frequencies are also sound in the presence of frequencies and identifiers. However,
a few more inference rules are required to obtain a sound and complete rule
system again. The first new rule stems from the uniqueness of values taken by
ID-attributes. For an rT -subgraph X , let XID be the union of all identifiers in
X , that is, the rT -subgraph of X whose leaves are just the leaves of kind I of X .

Lemma 28. Let T be an XML schema graph, and X be an rT -subgraph of T
with XID being non-empty. The following inference rule is sound for XFDs:

(identifier axiom)
XID → XID ∪ T≤1

If we allow the left hand side of an XFD to be an empty rT -subgraph, then we
can rewrite the root axiom from Lemma 12 such that the identifier axiom is a
straightforward generalisation of the rewritten root axiom.

We next extend the notion of a unit of some rT -walk to account for the
presence of identifiers. This will then provide us a generalisation of the noname
rule from Lemma 18.
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Definition 29. Let X be an rT -subgraph, and B be an rT -walk of an XML
schema graph T . The unit of B relative to X, denoted by UX

B , is the union of
all rT -walks sharing some */+-arc a with B where a is not an arc of XID.

Analogous to UB, for any rT -walk C ∈ UX
B , we find that UX

C = UX
B . It remains to

check whether for any two almost-copies T ′
1, T

′
2 of T in an XML data tree T ′�T ,

it is still true that T ′
1 |T−UX

B
∪ T ′

2 |UX
B

and T ′
2 |T−UX

B
∪ T ′

1 |UX
B

are almost-copies
of T in T ′.

If XID is empty, that is, there is no identifier in X , then UX
B = UB. Obviously

in this case, T ′
1 |T−UX

B
∪ T ′

2 |UX
B

and T ′
2 |T−UX

B
∪ T ′

1 |UX
B

are almost-copies of T
from the observation we made before. Suppose instead that XID is non-empty.
The above observation is not true unless an additional condition is satisfied. Let
I ∈ XID be an identifier which shares with each rT -walk of UB − UX

B the last
*/+-arc which that rT -walk shares with UX

B . For any two almost-copies T ′
1, T

′
2

of T such that T ′
1 |I = T ′

2 |I ∼= I, we can then observe that T ′
1 |T−UX

B
∪ T ′

2 |UX
B

and
T ′

2 |T−UX
B
∪ T ′

1 |UX
B

are also almost-copies of T . Similar to previously, this mix-
and-match is possible because the unique identifier value constraint guarantees
that T ′

2 |UX
B

shares with T ′
1 |T−UX

B
exactly those arcs (and vertices) which T ′

2 |UX
B

shares with T ′
2 |T−UX

B
, while T ′

1 |UX
B

shares with T ′
2 |T−UX

B
exactly those arcs

which T ′
1 |UX

B
shares with T ′

1 |T−UX
B

.

Lemma 30. Let T be an XML schema graph, X be an rT -subgraph of T , and
B be an rT -walk of T . The following inference rule is sound for XFDs:

(generalised noname rule)

(
(X ∪B) ∪ T≥1 − UX

B

)
∪X → B

X → B

Note that, if XID is a empty, the generalised noname rule reduces to the noname
rule from Lemma 18.

We may finally record the main result of this paper.

Theorem 31. The I-rule system consisting of the reflexivity axiom, root axiom,
subtree rule, supertree rule, union rule, restricted-transitivity rule, identifier ax-
iom and generalised noname rule is sound and complete for XFDs in the presence
of frequencies and identifiers.

8 Discussion

In this section, we assemble some remarks on related work, and point out simi-
larities and differences.

8.1 Relational FDs in the Presence of Null Values

The observation that the transitivity rule is no longer sound for XML corre-
sponds to a similar observation for relational databases in the presence of miss-
ing information, cf. Lien [12], who also provides an axiomatisation for functional
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dependencies in relational databases with null values. Later Atzeni and Morfuni
[6] generalised this axiomatisation to functional dependencies in the presence
of null values (NFDs) and existence constraints (ECs) over flat relations. An
existence constraint is an expression of the form e : X - Y which is satisfied by
a relation if each tuple t which is X-total (i.e. t[X ] does not contain any null
values) is also Y -total. Like frequencies, ECs offer a means to control the pres-
ence of missing values. In particular, ECs are required for defining a restricted
form of the transitivity rule which is sound in the presence of null values. ECs
may express some, but not all, frequencies and conversely frequencies may ex-
press some, but not all, ECs. It should be noted that the Atzeni-Morfuni rule
system contains additional inference rules for the derivation of ECs which are
not required for frequencies. More importantly, the F -rule system contains two
additional inference rules to the Atzeni-Morfuni rule system, namely the root
axiom and the noname rule, which arise from the nested structure of XML data.

8.2 XML Schema Trees and DTDs

The currently most popular approach towards functional dependencies for XML
is due to Arenas and Libkin [3, 4], who define XFDs in the presence of a DTD. In
practice, XML documents do not always possess a DTD, but may be developed
either from scratch or using some other specification (such as an XSD). There-
fore, we use schema graphs rather than DTDs for the definition of functional
dependencies. However, if a DTD is available it may be used to derive an XML
schema tree, cf. [9].

It should be noted that DTDs and XML schema graphs differ in their expres-
siveness. DTDs use regular expressions to specify the element type definition
associated with a particular element name, that is, the permitted combinations
of names for the children of an element of that name. In our approach, we do not
consider disjunctions. If a DTD contains a disjunctive expression, we first try
to rewrite it without using disjunction. For example, (A|B|C)∗ may be rewrit-
ten (A∗, B∗, C∗). Otherwise, we treat the disjunction as a sequential expression
with each element name in the disjunction being assigned a frequency of * or
?. For example, if (A|B|C+) is a regular expression in a given DTD, then this
is treated as (A?, B?, C∗). This is similar to the idea of simplifying a DTD [14],
and to considering simple regular expressions [4]. Recent empirical studies show
that the vast majority of DTDs do not contain disjunctive expressions [7]. A
regular expression s is simple if there is a non-disjunctive regular expression s′

such that every word w in the language represented by s is a permutation of a
word in the language represented by s′, and vice versa. In [4], a DTD is called
simple if it contains only simple regular expressions as element type definitions.

Secondly, regular expressions in DTDs may be recursive and thus give rise
to an XML schema graph with cycles, or alternatively, a rational XML schema
tree. In this paper, we restrict ourselves to finite schema trees which in turn
correspond to a finite number of unfoldings of the recursive expression, cf. [10].
In [4], a DTD is called non-recursive if it contains no recursive regular expressions
as element type definitions.
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Thirdly, XML schema trees may contain different vertices with the same name,
but different sets of children. DTDs do not allow element type definitions asso-
ciated with a particular element name to be overwritten. This is a feature that
XML schema trees share with tree automata, XSDs and Relax NG specifications
of XML data. For a discussion, see [7].

8.3 XFDs Studied by Arenas and Libkin

For their definition of XFDs, Arenas and Libkin [3, 4] introduce the notion of
a “tree tuple”, where a tree tuple is a finite partial evaluation of the paths in
the underlying DTD. An XFD which consists of a set of paths on the left hand
side and a single path on the right hand side is said to be satisfied if whenever
two tree tuples agree on the paths on the left hand side of an XFD they must
also agree on the path on the right hand side of the XFD. Note that XFDs in
[3, 4] may contain paths that end in an internal vertex, rather than in a leaf.
In our approach, identifier-attributes are used instead to refer to a particular
vertex. This is more in line with the original intentions of XML and provides
more flexibility: identifier-attributes are specified if desired, but not compulsory.

If an XML schema tree T is obtained from a DTD, the almost-copies of T in
an XML data tree T ′ conforming to T are just the tree representations of the
maximal tree tuples over the DTD that are subsumed by T ′. As a consequence
of Theorem 26, we find that the I-rule system is sound and complete for XFDs
in the presence of a simple non-recursive DTD. While Arenas and Libkin do
not give inference rules for their XFDs, they show that XFDs in the presence
of a DTD cannot be finitely axiomatised. The proof given in [4] suggests that
the usage of non-simple disjunctive expressions in DTDs causes XFDs not to
be finitely axiomatisable. This is one reason for considering XFDs over XML
schema trees without disjunctions. Furthermore, [4] also shows the implication
problem for XFDs in the presence of a simple non-recursive DTD to be solvable
in quadratic time. Note that finite axiomatisability is a stronger property than
the existence of an algorithm as the former implies the latter but not the other
way around [1].

8.4 XFDs Studied by Vincent and Liu

More recently, Vincent and Liu (partly together with co-authors) studied another
kind of functional dependencies for XML [13, 18, 19, 20, 17, 21]. Their definition of
XFDs (called strong XFDs) does not assume a DTD, but does also not consider
frequencies. A major distinguishing feature of the approach taken by Vincent
and Liu is the concept of strong satisfaction, cf. [5]. Similar to relations with
null values, they suggest to think of an XML tree with missing information as
representing a collection of “complete” XML trees with non-missing information.
An XML data tree then strongly satisfies an XFD if every possible completion
satisfies the XFD. Translated into our approach, an XML data tree containing
at least one almost-copy which is not a copy of the given XML schema tree
is regarded as being incomplete. That is, Vincent and Liu use the “unknown”
interpretation (values exist but not currently known) for information deemed to
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be missing. We remark that the “no information” interpretation is more general
than the “unknown” interpretation as it also includes the “does not exist” in-
terpretation (values do not exist). Due to the flexibility of XML data modelling,
we argue that there is good reason for using the “no information” or “does not
exist” interpretation of missing information, as done by our approach, and also
by Arenas and Libkin [3, 4].

Vincent and Liu [19] provide a system of sound inference rules for strong XFDs
which, however, is only proven to be complete for strong XFDs with a single path
on the left hand side (called unary XFDs). Due to the different interpretation
of null values, their system of inference rules looks quite different from ours,
and also from the Armstrong rule system for the RDM. We also emphasise that
the transitivity rule is sound for strong XFDs, but not sound for XFDs in our
approach.

Finally, Liu, Vincent and Liu [13] also studied XFDs that use only paths end-
ing in leaves (called primary XFDs) which is similar to our approach to XFDs,
but without frequencies and identifiers. This paper does not address axiomati-
sation, but is focussed on the design of XML documents.

8.5 Further Approaches to XFDs

There is a number of further works that discuss functional dependencies for
XML. Lee, Ling and Low [11] study XFDs for designing XML databases that
are similar to the approach of Arenas and Libkin [3, 4], but they do not give
a precise definition of XFDs. More recently, Wang and Topor [22] have defined
XFDs that may use upward paths and are thus more expressive than other
approaches, but do not address axiomatisation.

In [9, 10] we discuss several variations of XFDs in the presence of XML schema
graphs. In particular, we introduce XFDs whose definition uses pre-images of v-
subgraphs instead of almost-copies, and motivate their application by a number
of examples. Moreover, we suggest to investigate axiomatisations for XFDs in
the presence of XML schema graphs.

9 Conclusion

In this paper, we studied XFDs that are defined in the presence of an XML
schema tree. An XFD is satisfied by an XML data tree if whenever two almost-
copies of the schema tree coincide and are complete on the left hand side of
the XFD then they must also coincide on the right hand side of the XFD. Our
approach is similar to the approach by Arenas and Libkin [3, 4], but uses XML
schema trees. This allows us to provide a sound and complete system of inference
rules that may be used to solve the implication problem for the class of XFDs
under discussion. Further, we extended our result to XFDs defined on XML
schema trees that may contain ID-attributes. It should be mentioned, that our
axiomatisation may be used to conclude a normal form for XML data that avoids
redundancies caused by this class of XFDs, cf. [16].
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Abstract. We extend the open answer set semantics for programs with gener-
alized literals. Such extended programs (EPs) have interesting properties, e.g.
the ability to express infinity axioms - EPs that have but infinite answer sets.
However, reasoning under the open answer set semantics, in particular satisfia-
bility checking of a predicate w.r.t. a program, is already undecidable for pro-
grams without generalized literals. In order to regain decidability, we restrict the
syntax of EPs such that both rules and generalized literals are guarded. Via a
translation to guarded fixed point logic (μGF), in which satisfiability checking
is 2-EXPTIME-complete, we deduce 2-EXPTIME-completeness of satisfiability
checking in such guarded EPs (GEPs). Bound GEPs are restricted GEPs with
EXPTIME-complete satisfiability checking, but still sufficiently expressive to op-
timally simulate computation tree logic (CTL). We translate Datalog LITE pro-
grams to GEPs, establishing equivalence of GEPs under an open answer set se-
mantics, alternation-free μGF, and Datalog LITE. Finally, we discuss ω-restricted
logic programs under an open answer set semantics.

1 Introduction

In closed answer set programming (ASP) [6], a program consisting of a rule p(X ) ←
not q(X ) and a fact q(a) is grounded with the program’s constant a, yielding p(a) ←
not q(a) and q(a). This program has one answer set {q(a)} such that one concludes
that the predicate p is not satisfiable, i.e. there is no answer set of the program that
contains a literal with predicate p. Adding more constants to the program could make
p satisfiable, e.g., in the absence of a deducible q(b), one has p(b). However, in the
context of conceptual modeling, such as designing database schema constraints, this
implicit dependence on constants in the program in order to reach sensible conclusions,
i.e. the closedness of reasoning, is infeasible. One wants to be able to test satisfiability
of a predicate p in a schema independent of any associated data.

For answer set programming, this problem was solved in [7], where k-belief sets
are the answer sets of a program that is extended with k extra constants. We extended
this idea, e.g. in [13], by allowing for arbitrary, thus possibly infinite, universes. Open
answer sets are pairs (U,M) with M an answer set of the program grounded with U .
The above program has an open answer set ({x, a}, {q(a), p(x)}) where p is satisfiable.
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In this paper, we extend programs with generalized literals, resulting in extended
programs (EPs). A generalized literal is a first-order formula of the form ∀Y · φ ⇒ ψ
where Y is a sequence of variables, φ is a finite boolean formula and ψ is an atom.
Intuitively, such a generalized literal is true in an open interpretation (U,M) if for all
substitutions [Y | y], y in U , such that φ[Y | y] is true in M , ψ[Y | y] is true
in M .

Generalized literals ∀Y · φ ⇒ ψ, with φ an atom instead of a boolean formula,
were introduced in Datalog1 with the language Datalog LITE [8]: stratified Datalog
with generalized literals, where rules are monadic or guarded, and under an appro-
priate extension of the least fixed point semantics. In open answer set programming
(OASP), we define a reduct that removes the generalized literals. E.g., a rule r : ok ←
∀X · critical(X ) ⇒ work(X ) expresses that a system is OK if all critical devices are
functioning: the GLi-reduct (generalized literal reduct) of such a rule for an open in-
terpretation ({x0, . . .},M) where M contains critical(xi ) for even i, contains a rule
r′ : ok ← work(x0 ),work(x2 ), . . ., indicating that the system is OK if the critical
devices x0, x2, . . . are working. The GLi-reduct does not contain generalized literals
and one can apply the normal answer set semantics, modified to take into account the
infinite body.

Just like it is not feasible to introduce all relevant constants in a program to ensure
correct conceptual reasoning, it is not feasible, not even possible, to write knowledge
directly as in r′ for it has an infinite body. Furthermore, even in the presence of a finite
universe, generalized literals allow for a more robust representation of knowledge than
would be possible without them. E.g., with critical devices y1 and y2, a rule s : ok ←
work(y1 ),work(y2 ) does the job as good as r (and in fact s is the GLi-reduct of r), but
adding new critical devices, implies revisiting s and replacing it by a rule that reflects
the updated situation. Not only is this cumbersome, it may well be impossible as s
contains no explicit reference to critical devices, and the knowledge engineer may not
have a clue as to which rules to modify.

Characteristic about (O)ASP is its treatment of negation as failure (naf): one guesses
an interpretation for a program, removes naf by computing the GL-reduct, calculates
the iterated fixed point of this reduct, and checks whether this fixed point equals the
initial interpretation. In [14], these external manipulations, i.e. not expressible in the
language of programs itself, were compiled into fixed point logic (FPL) [11], i.e. into
an extension of first-order logic with fixed point formulas. We will show how to modify
the FPL translation to take into account generalized literals.

Satisfiability checking w.r.t. arbitrary EPs, even without generalized literals, under
the open answer set semantics is undecidable (e.g. the domino problem can be reduced
to it), and satisfiability checking in FPL is as well, as it is an extension of the unde-
cidable first-order logic. Thus, with the FPL translation, we have a mapping from one
undecidable framework into another undecidable framework. This is interesting in its
own right, as it provides a characterization of an answer set semantics in FPL. But more
interesting, is the deployment of the translation in order to identify decidable subclasses
of EPs: if the FPL translation of a class of EPs falls into a decidable fragment of FPL,
this class of EPs is decidable.

1 The extension of logic programming syntax with first-order formulas dates back to [17].



Guarded Open Answer Set Programming with Generalized Literals 181

Guarded fixed point logic (μGF) [11] is such a decidable fragment of FPL that is able
to express fixed point formulas. It restricts the use of quantified variables by demanding
that they are guarded by an atom. We restrict EPs, resulting in guarded EPs (GEPs),
such that all variables in a rule appear in an atom in the positive body and all generalized
literals are guarded, where a generalized literal is guarded, basically, if it can be written
as a guarded formula in μGF. The FPL translation of GEPs then falls into the μGF
fragment, yielding a 2-EXPTIME upper complexity bound for satisfiability checking.
Together with the 2-EXPTIME-completeness of guarded programs without generalized
literals from [14], this establishes 2-EXPTIME-completeness for satisfiability checking
w.r.t. GEPs. As a consequence, adding generalized literals to a guarded program does
not increase the complexity of reasoning. We further illustrate the expressiveness of
(bound) GEPs by simulating reasoning in computational tree logic (CTL) [4], a logic
for expressing temporal knowledge.

Finally, we reduce Datalog LITE reasoning, without monadic rules, to reasoning with
GEPs. In particular, we prove a generalization of the well-known result from [6] that
the unique answer set of a stratified program coincides with its least fixed point model:
for a universe U , the unique open answer set (U,M) of a stratified Datalog program
with generalized literals is identical2 to its least fixed point model with input structure
id(U), the identity relation on U . Furthermore, the Datalog LITE simulation, together
with the reduction of GEPs to alternation-free3 μGF, as well as the equivalence of
alternation-free μGF and Datalog LITE [8], lead to the conclusion that alternation-free
μGF, Datalog LITE, and OASP with GEPs, are equivalent, i.e. their satisfiability check-
ing problems can be polynomially reduced to one another.

GEPs are just as expressive as Datalog LITE, however, from a knowledge represen-
tation viewpoint, GEPs allow for a compact expression of circular knowledge. E.g., the
omni-present construction with rules a(X ) ← not b(X ) and b(X ) ← not a(X ) is not
stratified and cannot be (directly) expressed in Datalog LITE. The reduction to Datalog
LITE does indicate that negation as failure under the (open) answer set semantics is not
that special regarding expressiveness, but can be regarded as convenient semantic sugar.

The remainder of the paper is organized as follows. After extending the open answer
set semantics to support generalized literals in Section 2, we give the FPL translation
in Section 3. Section 4 defines GEPs, proves a 2-EXPTIME complexity upper bound for
satisfiability checking, and concludes with a CTL simulation. Section 5 describes a sim-
ulation of Datalog LITE, without monadic rules, yielding equivalence of alternation-free
μGF, Datalog LITE, and GEPs. Section 6 describes the relationship withω-restricted pro-
grams. Section 7 contains conclusions and directions for further research. Due to space
restrictions, proofs and further related work have been omitted; the former can be found
in http://tinf2.vub.ac.be/ sheymans/tech/goasp-gl.ps.gz, for the latter we refer to [14] and
the references therein.

2 Open Answer Set Programming with Generalized Literals

A term t is a constant or a variable, where the former is denoted with a, b, . . . and the
latter with X,Y, . . . A k-ary atom is of the form p(t) for a sequence of terms t =

2 Modulo equality atoms, which are implicit in OASP, but explicit in Datalog LITE.
3 μGF without nested fixed point variables in alternating least and greatest fixed point formulas.
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t1, . . . , tk, 0 ≤ k < ω4, and a k-ary predicate symbol p. A literal is an atom p(t)
or a naf-atom not p(t) for an atom p(t).5 The positive part of a set of literals α is
α+ = {p(t) | p(t) ∈ α} and the negative part of α is α− = {p(t) | not p(t) ∈ α},
i.e. the positive part of a set of literals are the atoms, the negative part are the naf-atoms
without the not symbol. We assume the existence of binary predicates = and �=, where
t = s is considered as an atom and t �= s as not t = s. E.g. for α = {X �= Y, Y = Z},
we have α+ = {Y = Z} and α− = {X = Y }. A regular atom is an atom that is not
an equality atom. For a set X of atoms, not X = {not l | l ∈ X}.

A generalized literal is a first-order formula of the form ∀Y · φ ⇒ ψ, where φ is
a finite boolean formula of atoms (i.e. using ¬, ∨, and ∧) and ψ is an atom; we call φ
the antecedent and ψ the consequent. We refer to literals and generalized literals as ex-
tended literals. For a set of extended literals α, αx ≡ {l | l generalized literal in α}, the
set of generalized literals in α. We extend α+ and α− for extended literals as follows:
α+ = (α\αx)+ and α− = (α\αx)−; thus α = α+ ∪ not α− ∪ αx.

An extended program (EP) is a countable set of rules α← β, where α is a finite set
of literals, |α+| ≤ 1, β is a countable6 set of extended literals, and ∀t, s · t = s �∈ α+,
i.e. α contains at most one positive atom, and this atom cannot be an equality atom. The
set α is the head of the rule and represents a disjunction7 of literals, while β is called
the body and represents a conjunction of extended literals. If α = ∅, the rule is called a
constraint. Free rules are rules of the form q(t) ∨ not q(t) ← for a tuple t of terms;
they enable a choice for the inclusion of atoms. We call a predicate p free if there is
a free rule p(t) ∨ not p(t) ← . Literals are ground if they do not contain variables,
generalized literals are ground if they do not contain free variables, and rules and EPs
are ground if all extended literals in it are ground.

For an EP P , let cts(P ) be the constants in P , and preds(P ) its predicates. For a
(generalized) literal l, we define vars(l) as the (free) variables in l. For a rule r, we
define vars(r) ≡ ∪{vars(l) | l extended literal in r}. Let BP be the set of regular
ground atoms that can be formed from an EP P . An interpretation I of P is then any
subset of BP . For a ground regular atom p(t), we write I |= p(t) if p(t) ∈ I; for
an equality atom p(t) ≡ t = s, we have I |= p(t) if s and t are equal terms. We have
I |= not p(t) if I �|= p(t). We further extend this, by induction, for any boolean formula
of ground atoms. For such ground boolean formulas φ and ψ, we have I |= φ ∧ ψ iff
I |= φ and I |= ψ, I |= φ ∨ ψ iff I |= φ or I |= ψ, and I |= ¬φ iff I �|= φ. For a
set of ground literals X , we have I |= X iff I |= x for every x ∈ X . A ground rule
r : α ← β, not containing generalized literals, is satisfied w.r.t. I , denoted I |= r, if
I |= l for some l ∈ α whenever I |= β, i.e. r is applied whenever it is applicable. A
ground constraint ← β is satisfied w.r.t. I if I �|= β. For a ground program P without

4 We thus allow for 0-ary predicates, i.e. propositions.
5 We have no classical negation ¬, however, programs with ¬ can be reduced to programs with-

out it, see e.g. [16]. To be precise, we should then refer to stable models instead of answer
sets.

6 Thus the rules may have an infinite body.
7 The condition |α+| ≤ 1 ensures that the GL-reduct is non-disjunctive. This allows for the

definition of an immediate consequence operator, on which we rely in our proofs to make
the correspondence with FPL. In the presence of positive disjunction, the currently defined
operator does not suffice and it is not clear whether this can be fixed (and how).
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not and without generalized literals, an interpretation I of P is a model of P if I satisfies
every rule in P ; it is an answer set of P if I is subset minimal, i.e. there is no model I ′

of P with I ′ ⊂ I . For ground EPs P containing not but still without generalized literals,
the GL-reduct [6] w.r.t. I is defined as P I , where P I contains α+ ← β+ for α← β in
P if I |= not β− and I |= α−. I is an answer set of a ground P without generalized
literals if I is an answer set of P I .

Example 1. Take the program P with rules p(a) ← not q(a) and q(a) ← not p(a).
Then P has 4 interpretations ∅, {p(a)}, {q(a)}, and {p(a), q(a)}. The GL-reduct of P
w.r.t. ∅ is {p(a) ←; q(a) ←} which has {p(a), q(a)} as its minimal model, and thus
∅ is not an answer set. The GL-reduct of P w.r.t. {p(a), q(a)} is ∅ which has ∅ as its
minimal model, and thus {p(a), q(a)} is not an answer set. The GL-reduct of P w.r.t.
{p(a)} is {p(a)←} which has {p(a)} as its minimal model, making {p(a)} an answer
set. Similarly, one can deduce that {q(a)} is an answer set.

A universe U for an EP P is a non-empty countable superset of the constants in P :
cts(P ) ⊆ U . Let BU

P be the set of regular ground atoms that can be formed from an
EP P and the terms in a universe U for P . An open interpretation of an EP P is a pair
(U, I) where U is a universe for P and I is any subset of BU

P .
For ground EPs P the GLi-reduct P x(U,I) w.r.t. an open interpretation (U, I) re-

moves the generalized literals from the program: P x(U,I) contains the rules8

α← β\βx,
⋃

∀Y ·φ⇒ψ∈βx
{ψ[Y |y] | y ⊆ U , I |= φ[Y |y]} , (1)

for α ← β in P . Intuitively, a generalized literal ∀Y · φ ⇒ ψ is replaced by those
ψ[Y |y] for which φ[Y |y] is true, such that9, e.g., p(a) ← [∀X · q(X ) ⇒ r(X )] means
that in order to deduce p(a) one needs to deduce r(x) for all x where q(x) holds. If
only q(x1) and q(x2) hold, then the GLi-reduct contains p(a) ← r(x1 ), r(x2 ). With
an infinite universe and a condition φ that holds for an infinite number of elements in
the universe, one can thus have a rule with an infinite body in the GLi-reduct. An open
interpretation (U, I) is an open answer set of a ground P if I is an answer set of P x(U,I).

We call PU the ground EP obtained from an EP P by substituting every (free) vari-
able in a rule in P by every element in U . In the following, an EP is assumed to be a
finite set of rules; infinite EPs only appear as byproducts of grounding a finite program
with an infinite universe, or, by taking the GLi-reduct w.r.t. an infinite universe. An open
answer set of P is an open interpretation (U,M) of P with (U,M) an open answer set
of PU . An n-ary predicate p in P is satisfiable if there is an open answer set (U,M)
of P and a x ∈ Un such that p(x) ∈ M . We assume, basically for technical reasons
(see Example 4), that when satisfiability checking a predicate p, p is always non-free,
i.e. there are no free rules with p in the head. Note that satisfiability checking of a free
n-ary predicate p w.r.t. P can always be linearly reduced to satisfiability checking of a
new non-free n-ary predicate p′ w.r.t. P ∪ {p′(X)← p(X)}.

8 We denote the substitution of Y = Y1, . . . , Yd with y = y1, . . . , yd in an expression (be it an
atom, set of atoms, boolean formula, or rule) X as X[Y |y]. If the substitution is clear from
the context we write X[].

9 We put square brackets around generalized literals for clarity.
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Example 2. Take an EP P

p(X ) ← [∀Y · q(Y )⇒ r(Y )] r(X )← q(X )
q(X ) ∨ not q(X ) ←

and an open interpretation ({x, y}, {p(x), r(x), q(x), p(y)}). Intuitively, the first rule
says that p(X) holds if for every Y where q(Y ) holds, r(Y ) holds (thus p(X) also
holds if q(Y ) does not hold for any Y ). The GLi-reduct of P{x,y} is

p(x ) ← r(x ) p(y) ← r(x )
r(x )← q(x ) r(y) ← q(y)
q(x ) ←

which has exactly {p(x), r(x), q(x), p(y)} as its minimal model such that the open
interpretation ({x, y}, {p(x), r(x), q(x), p(y)}) is indeed an open answer set.

There are EPs, not containing (in)equality atoms, for which predicates are only satisfi-
able by infinite open answer sets.

Example 3. Take the program P , the open answer set variant of the classical infinity
axiom in guarded fixed point logic from [11]:

r1 : q(X ) ← f (X ,Y )
r2 : ← f (X ,Y ),not q(Y )
r3 : ← f (X ,Y ),not well(Y )
r4 : well(Y ) ← q(Y ), [∀X · f (X ,Y )⇒ well(X )]
r5 : f (X ,Y ) ∨ not f (X ,Y ) ←

In order to satisfy q with some x, one needs to apply r1, which enforces an f -successor
y. The second rule ensures that also for this y an f -successor must exist, etc. The
third rule makes sure that every f -successor is on a well-founded f -chain. The well-
foundedness itself is defined by r4 which says that y is on a well-founded chain of
elements where q holds if all f -predecessors of y satisfy the same property.

For example, take an infinite open answer set (U,M) with U = {x0, x1, . . .} and
M = {q(x0),well(x0 ), f(x0, x1), q(x1),well(x1 ), f(x1, x2), . . .}). PU contains the
following grounding of r4:

r0
4 : well(x0 ) ← q(x0 ), [∀X · f (X , x0 )⇒ well(X )]

r1
4 : well(x1 ) ← q(x1 ), [∀X · f (X , x1 )⇒ well(X )]

...

Since, for r0
4 , there is no f(y, x0) in M , the body of the corresponding rule in the GLi-

reduct w.r.t. (U,M) contains only q(x0). For r1
4 , we have that f(x0, x1) ∈M such that

we include well(x0 ) in the body:

well(x0 )← q(x0 )
well(x1 )← q(x1 ),well(x0 )

...

Thus, (U,M) is an open answer set of the EP, satisfying q.
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Moreover, no finite open answer set can satisfy q. First, note that an open answer set
(U,M) of P cannot contain loops, i.e. {f(x0, x1), . . . , f(xn, x0)} ⊆M is not possible.
Assume the contrary. By rule r3, we need well(x0 ) ∈ M . However, the GLi-reduct of
PU contains rules:

well(x0 ) ← q(x0 ),well(xn), . . .
well(xn) ← q(xn),well(xn−1 ), . . .

...
well(x1 ) ← q(x1 ),well(x0 ), . . .

such that well(x0 ) cannot be in any open answer set: we have a circular dependency
and cannot use these rules to motivate well(x0 ), i.e. well(x0 ) is unfounded. Thus an
open answer set cannot contain loops.

Assume that q is satisfied in an open answer set (U,M) with q(x0) ∈ M . Then, by
rule r1, we need some X such that f(x0, X) ∈ M . Since M cannot contain loops X
must be different from x0 and we need some new x1. By rule r2, q(x1) ∈M , such that
by rule r1, we again need an X such that f(x1, X). Using x0 or x1 for X results in a
loop, such that we need a new x2. This process continues infinitely, such that there are
only infinite open answer sets that make q satisfiable w.r.t. P .

3 Open Answer Set Programming with EPs Via Fixed Point Logic

We assume first-order logic (FOL) interpretations have the same form as open interpre-
tations: a pair (U,M) corresponds with the FOL interpretation M over the domain U .
Furthermore, we consider FOL with equality such that equality is always interpreted as
the identity relation over U .

We define Fixed Point Logic (FPL) along the lines of [11], i.e. as an extension of
first-order logic, where formulas may additionally be fixed point formulas of the form

[LFP WX.ψ(W,X)](X) or [GFP WX.ψ(W,X)](X) , (2)

where W is an n-ary predicate variable, X is an n-ary sequence of distinct variables,
ψ(W,X) is a formula with all free variables contained in X and W appears only posi-
tively in ψ(W,X).

For an interpretation (U,M) and a valuation χ of the free predicate variables, except
W , in ψ, we define the operator ψ(U,M),χ : 2Un → 2Un

on sets S of n-ary tuples

ψ(U,M),χ(S) ≡ {x ∈ Un | (U,M), χ ∪ {W → S} |= ψ(W,x)} , (3)

where χ ∪ {W → S} is the valuation χ extended such that W is assigned to S. If
ψ(W,X) contains only the predicate variable W , we often omit the valuation χ and
write just ψ(U,M). By definition, W appears only positively in ψ such that ψ(U,M),χ is
monotonic on sets of n-ary U -tuples and thus has a least and greatest fixed point, which
we denote by LFP(ψ(U,M),χ) and GFP(ψ(U,M),χ) respectively. Finally, we have that

(U,M), χ |= [LFP WX.ψ(W,X)](x) ⇐⇒ x ∈ LFP(ψ(U,M),χ) , (4)
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and similarly for greatest fixed point formulas. As in [8], we call an FPL sentence (i.e. an
FPL formula without free variables) alternation-free if it does not contain subformulas
ψ ≡ [LFP TX.ϕ](X) and θ ≡ [GFP SY .η](Y ) such that T occurs in η and θ is
a subformula of ϕ, or S occurs in ϕ and ψ is a subformula of η. We can eliminate
greatest fixed point formulas from a formula, by the equivalence: [GFP WX.ψ] ≡
¬[LFP WX.¬ψ[W |¬W ]], where ¬ψ[W |¬W ] is ¬ψ with W replaced by ¬W . If we
thus remove greatest fixed point predicates, and if negations appear only in front of
atoms or least fixed point formulas, then a formula is alternation-free iff no fixed point
variable W appears in the scope of a negation.

First, we rewrite an arbitrary EP as an EP containing only one designated predicate
p and (in)equality; this makes sure that when calculating a fixed point of the predicate
variable p, it constitutes a fixed point of the whole program. We assume without loss
of generality that the set of constants and the set of predicates in an EP are disjoint and
that each predicate q has one associated arity, e.g. q(x) and q(x, y) are not allowed. An
EP P is a p-EP if p is the only predicate in P different from the (in)equality predicate.
In [14], we showed how to rewrite any program P (without generalized literals) as an
equivalent p-program Pp. We adapt that transformation to cope with generalized literals
as well. For an EP P , let in(Y ) ≡ ∪{Y �= a | a ∈ preds(P ) ∪ {0}}, i.e. a set of
inequalities between the variable Y and the predicates in P as well as a new constant 0.
For a sequence of variables Y , we have in(Y ) ≡ ∪Y ∈Y in(Y ). For a set of extended
literals α, we construct αp in two stages:

1. replace every regular m-ary atom q(t) appearing in α (either in atoms, naf-atoms,
or generalized literals) by p(t,0, q) where p has arity n, with n the maximum of
the arities of predicates in P augmented by 1, 0 a sequence of new constants 0 of
length n−m−1, and q a new constant with the same name as the original predicate,

2. in the set thus obtained, replace every generalized literal ∀Y · φ ⇒ ψ by ∀Y ·
φ ∧

∧
in(Y ) ⇒ ψ, where Y �= t in in(Y ) stands for ¬(Y = t) (we defined

generalized literals in function of boolean formulas of atoms).

The p-EP Pp is the program P with all non-free rules r : α← β replaced by rp : αp ←
βp , in(X) where vars(r) = X . Note that P and Pp have the same free rules.

Example 4. Let P be the EP:

q(X ) ← [∀Y · r(Y ) ⇒ f (X ,Y )]
r(a) ←

f (X ,Y ) ∨ not f (X ,Y ) ←

Then q is satisfiable ({a, x}, {f(x, a), r(a), q(x)}). The p-EP Pp is

p(X , 0 , q) ← [∀Y · p(Y , 0 , r) ∧
∧

in(Y )⇒ p(X ,Y , f )], in(X )
p(a, 0 , r) ←

p(X ,Y , f ) ∨ not p(X ,Y , f ) ←

where in(X ) = {X �= f,X �= q,X �= r,X �= 0}. The corresponding open answer set
for this program is ({a, x, f, r, q, 0}, {p(x, a, f), p(a, 0, r), p(x, 0, q)}). Note that the
free rule in Pp may introduce unwanted literals p(q, x, f), i.e. where X is grounded
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with a predicate q from P . Those unwanted literals will, however, never make non-free
rules applicable since the latter have X �= q in the body, and hence the assumption that
we only check satisfiability of non-free predicates.

Proposition 1. Let P be an EP and q a predicate in P . q is satisfiable w.r.t. P iff there
is an open answer set (U ′,M ′) of the p-EP Pp with p(x,0, q) ∈M ′.

Note that the size of Pp is polynomial in the size of P .
In [3], a similar motivation drives the reduction of Horn clauses to clauses consist-

ing of only one defined predicate. Their encoding does not introduce new constants to
identify old predicates and depends entirely on the use of (in)equality.

As was shown in [14], we can reduce a p-program P (without generalized literals) to
an equivalent FPL formula. We extend this translation for EPs, i.e. we take into account
generalized literals. The completion comp(P ) of an EP P consists of formulas that
demand that different constants in P are interpreted as different elements:

a �= b (5)

for every pair of different constants a and b in P , and where a �= b ≡ ¬(a = b).
comp(P ) contains formulas ensuring the existence of at least one element in the domain
of an interpretation:

∃X · true (6)

Besides these technical requirements matching FOL interpretations with open interpre-
tations, comp(P ) contains the formulas in fix(P ) = sat(P ) ∪ gl(P ) ∪ gli(P ) ∪
fpf(P ), which can be intuitively categorized as follows: sat(P ) ensures that a model
of fix(P ) satisfies all rules in P , gl(P ) is an auxiliary component defining atoms that
indicate when a rule in P belongs to the GL-reduct, gli(P ) indicates when the an-
tecedent of generalized literals are true, and finally fpf(P ) ensures that every model of
fix(P ) is a minimal model of the GL-reduct of the GLi-reduct of P ; it uses the atoms
defined in gl(P ) to select, for the calculation of the fixed point, only those rules in P
that are in the GL-reduct of the GLi-reduct of P ; the atoms defined in gli(P ) ensure
that the generalized literals are interpreted correctly.

We interpret a naf-atom not a in a FOL formula as the literal ¬a. Moreover, we
assume that, if a set X is empty,

∧
X = true and

∨
X = false. In the following, we

assume that the arity of p, the only predicate in a p-EP is n.

Definition 1. Let P be a p-EP. The fixed point translation of P is fix(P ) ≡ sat(P )∪
gli(P ) ∪ gl(P ) ∪ fpf(P ), where

1. sat(P ) contains formulas

∀Y ·
∧

β ⇒
∨

α (7)

for rules r : α← β ∈ P with vars(r) = Y ,
2. gl(P ) contains the formulas

∀Y · r(Y )⇔
∧

α− ∧
∧
¬β− (8)

for rules r : α← β ∈ P 10 with vars(r) = Y ,

10 We assume that rules are uniquely named.
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3. gli(P ) contains the formulas

∀Z · g(Z)⇔ φ (9)

for generalized literals g : ∀Y · φ⇒ ψ ∈ P 11 where φ contains the variables Z,
4. fpf(P ) contains the formula

∀X · p(X)⇒ [LFP W X.φ(W ,X)](X) (10)

with
φ(W,X) ≡W (X) ∨

∨

r:p(t)∨α←β∈P

E(r) (11)

and

E(r) ≡ ∃Y ·X1 = t1 ∧ . . . ∧Xn = tn ∧
∧

β+[p |W ] ∧
∧

γ ∧ r(Y ) (12)

where X = X1, . . . , Xn are n new variables, vars(r) = Y , W is a new (second-
order) variable, β+[p |W ] is β+ with p replaced by W , and γ is βx with

– every generalized literal g : ∀Y · φ ⇒ ψ replaced by ∀Y · g(Z) ⇒ ψ, Z the
variables of φ, and, subsequently,

– every p replaced by W .

The completion is comp(P ) ≡ fix(P )∪{a �= b | a, b different in cts(P )}∪{∃X·true}.
The predicate W appears only positively in φ(W,X) such that the fixed point formula
in (10) is well-defined. Note that the predicate p is replaced by the fixed point variable
W in E(r) except in the antecedents of generalized literals, which were replaced by
g-atoms, and the negative part of r, which were replaced by r-atoms, thus respectively
encoding the GLi-reduct and the GL-reduct.

Example 5. We rewrite the program from Example 3 as the p-EP P .

r1 : p(X , 0 , q) ← p(X ,Y , f ), in(X ), in(Y )
r2 : ← p(X ,Y , f ),not p(Y , 0 , q), in(X ), in(Y )
r3 : ← p(X ,Y , f ),not p(Y , 0 ,well), in(X ), in(Y )
r4 : p(Y , 0 ,well) ← p(Y , 0 , q), in(Y ),

[∀X · p(X,Y, f) ∧
∧

in(X)⇒ p(X, 0, well)]
r5 : p(X ,Y , f ) ∨ not p(X ,Y , f ) ←

where in(X ) and in(Y ) are shorthand for the inequalities with the new constants.
sat(P ) consists of the sentences

– ∀X,Y · p(X,Y, f) ∧
∧

in(X) ∧
∧

in(Y )⇒ p(X, 0, q),
– ∀X,Y · p(X,Y, f) ∧ ¬p(Y, 0, q) ∧

∧
in(X) ∧

∧
in(Y )⇒ false,

– ∀X,Y · p(X,Y, f) ∧ ¬p(Y, 0,well) ∧
∧

in(X) ∧
∧

in(Y )⇒ false, and
– ∀Y · p(Y, 0, q) ∧

∧
in(Y ) ∧ (∀X · p(X,Y, f) ∧

∧
in(X)⇒ p(X, 0,well))

⇒ p(Y, 0,well),
– ∀X,Y · true ⇒ p(X,Y, f) ∨ ¬p(X,Y, f).

11 We assume that generalized literals are named.
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gl(P ) contains the sentences

– ∀X,Y · r1 (X ,Y )⇔ in(X ) ∧ in(Y ),
– ∀X,Y · r2 (X ,Y )⇔ ¬p(Y , 0 , q) ∧ in(X ) ∧ in(Y ),
– ∀X,Y · r3 (X ,Y )⇔ ¬p(Y , 0 ,well ) ∧ in(X ) ∧ in(Y ),
– ∀Y · r4 (Y )⇔ in(Y ), and
– ∀X,Y · r5 (X ,Y )⇔ p(X ,Y , f ).

gli(P ) contains the sentence ∀X,Y ·g(X ,Y )⇔ p(X ,Y , f ) ∧
∧

in(X ), and fpf(P )
is constructed with

– E(r1) ≡ ∃X,Y ·X1 = X ∧X2 = 0 ∧X3 = q ∧W (X,Y, f) ∧ r1(X,Y ),
– E(r4) ≡ ∃Y ·X1 = Y ∧X2 = 0 ∧X3 = well ∧W (Y, 0, q)∧

(∀X · g(X,Y )⇒W (X, 0,well)) ∧ r4(Y ).
– E(r5) ≡ ∃X,Y ·X1 = X ∧X2 = Y ∧X3 = f ∧ r5(X,Y ).

Take an infinite FOL interpretation (U,M) with U = {q, f,well , 0, x0, x1, . . .} and12

M = {p(x0, 0, q), p(x0 , 0 ,well), p(x0, x1, f),
p(x1, 0, q), p(x1 , 0 ,well), p(x1, x2, f), . . .

r1(x0, x0), r1(x0, x1), . . . , r1(x1, x0), . . . , r4(x0), r4(x1), . . .
r5(x0, x1), r5(x1, x2), . . . , g(x0, x1), g(x1, x2), . . .}) .

sat(P ), gl(P ), and gli(P ) are satisfied. We check that fpf(P ) is satisfied by M . We
first construct the fixed point of φ(U,M) where φ(W,X1, X2, X3) ≡W (X1, X2, X3)∨
E(r1) ∨E(r4) ∨ E(r5) as in [9], i.e. in stages starting from W 0 = ∅. We have that

– W 1 = φ(U,M)(W 0) = {(x0, x1, f), (x1, x2, f), . . .}, where the (xi, xi+1, f) are
introduced by E(r5),

– W 2 = φ(U,M)(W 1) = W1 ∪ {(x0, 0, q), (x1, 0, q), . . .}, where the (xi, 0, q) are
introduced by E(r1),

– W 3 = φ(U,M)(W 2) = W2 ∪ {(x0, 0,well)}, where (x0, 0,well) is introduced by
E(r4),

– W 4 = φ(U,M)(W 3) = W3 ∪ {(x1, 0,well)},
– . . .

The least fixed point LFP(φ(U,M)) is then ∪α<ωWα [9]. The sentence fpf(P ) is then
satisfied since every p-literal in M is also in this least fixed point. (U,M) is thus a
model of comp(P ), and it corresponds to an open answer set of P .

Proposition 2. Let P be a p-EP. Then, (U,M) is an open answer set of P iff (U,M ∪
R ∪ G) is a model of comp(P ), where R ≡ {r(y) | r[Y | y] : α[] ← β[] ∈ PU ,M |=
α[]− ∪ not β[]−, vars(r) = Y }, i.e. the atoms corresponding to rules for which the
GLi-reduct version will be in the GL-reduct, and G ≡ {g(z) | g : ∀Y · φ ⇒ ψ ∈
P, vars(φ) = Z,M |= φ[Z | z]}, i.e. the atoms corresponding to true antecedents of
generalized literals in P .

12 We interpret the constants in comp(P ) by universe elements of the same name.
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Using Propositions 1 and 2, we can reduce satisfiability checking in OASP to satisfiabil-
ity checking in FPL. Moreover, since comp(P ) contains only one fixed point predicate,
the translation falls in the alternation-free fragment of FPL. If the number of constants
in a program P is c, then the number of formulas a �= b is 1

2c(c − 1); since the rest of
comp(P ) is linear in P , this yields a quadratic bound for the size of comp(P ).

Theorem 1. Let P be an EP and q an n-ary predicate in P . q is satisfiable w.r.t. P iff
∃X · p(X,0, q) ∧

∧
comp(Pp) is satisfiable. Moreover, this reduction is polynomial.

4 Open Answer Set Programming with Guarded Extended
Programs

We repeat the definitions of the guarded fragment [2] of first-order logic as in [11]: The
guarded fragment GF of first-order logic is defined inductively as follows:

(1) Every relational atomic formula belongs to GF.
(2) GF is closed under propositional connectives ¬, ∧, ∨,⇒, and⇔.
(3) If X , Y are tuples of variables, α(X,Y ) is an atomic formula, and ψ(X ,Y ) is a

formula in GF such that free(ψ) ⊆ free(α) = X ∪ Y , then the formulas

∃Y · α(X ,Y ) ∧ ψ(X ,Y )
∀Y · α(X ,Y ) ⇒ ψ(X,Y )

belong to GF, (where free(ψ) are the free variables of ψ). α(X,Y ) is the guard of
the formula.

The guarded fixed point logic μGF is GF extended with fixed point formulas (2) where
ψ(W,X) is a formula such that W does not appear in guards.

Definition 2. A generalized literal ∀Y · φ ⇒ ψ is guarded if φ is of the form γ ∧ φ′

with γ an atom, and vars(Y ) ∪ vars(φ′) ∪ vars(ψ) ⊆ vars(γ); we call γ the guard
of the generalized literal. A rule r : α ← β is guarded if every generalized literal in r
is guarded, and there is an atom γb ∈ β+ such that vars(r) ⊆ vars(γb); we call γb a
body guard of r. It is fully guarded if it is guarded and there is a γh ⊆ α− such that
vars(r) ⊆ vars(γh); γh is called a head guard of r.

An EP P is a (fully) guarded EP ((F)GEP) if every non-free rule in P is (fully)
guarded.

Example 6. Reconsider the EP from Example 3. r1, r2, and r3 are guarded with guard
f(X,Y ). The generalized literal in r4 is guarded by f(X,Y ), and r4 itself is guarded
by q(Y ). Note that r5 does not influence the guardedness as it is a free rule.

Every fully guarded EP is guarded. Vice versa, we can transform every guarded EP into
an equivalent fully guarded one.

Example 7. Take the guarded EP consisting of the rules r1 and r5 from Example 3.
We rewrite r1 as the fully guarded rule q(X ) ∨ not f (X ,Y ) ← f (X ,Y ), i.e. take the
body guard and write it negated in the head, where it serves as head guard. Intuitively,
rules in the original EP where the body guard cannot be satisfied are removed in the
GL-reduct of the new EP; if the body guard is true then the GL-reduct removes the
head guard from the head. The effect is in both cases the same.
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For a GEP P , P f is P with the non-free rules α ← β replaced by α ∪ not γb ← β
for the body guard γb of α ← β. For a GEP P , we have that P f is a FGEP, where the
head guard of each non-free rule is equal to the body guard. Moreover, the size of P f is
linear in the size of P .

Proposition 3. Let P be a GEP. An open interpretation (U,M) of P is an open answer
set of P iff (U,M) is an open answer set of P f .

We have that the construction of a p-EP retains the guardedness properties.

Proposition 4. Let P be an EP. Then, P is a (F)GEP iff Pp is a (F)GEP.

For a fully guarded p-EP P , we can rewrite comp(P ) as the equivalent μGF formulas
gcomp(P ). For a guarded generalized literal ξ ≡ ∀Y · φ ⇒ ψ, define ξg = ∀Y · γ ⇒
ψ ∨ ¬φ′, where, since the generalized literal is guarded, φ = γ ∧ φ′, and vars(Y ) ∪
vars(φ′) ∪ vars(ψ) ⊆ vars(γ), making formula ξg a guarded formula. The extension
of this operator for sets (or boolean formulas) of generalized literals is as usual.

gcomp(P ) is comp(P ) with the following modifications.

– Formula ∃X · true is replaced by

∃X ·X = X , (13)

such that it is guarded by X = X .
– Formula (7) is removed if r : α← β is free or otherwise replaced by

∀Y · γb ⇒
∨

α ∨
∨
¬(β+\{γb}) ∨

∨
β− ∨

∨
¬(βx)g , (14)

where γb is a body guard of r, thus we have logically rewritten the formula such
that it is guarded. If r is a free rule of the form q(t) ∨ not q(t) ← we have
∀Y · true ⇒ q(t) ∨ ¬q(t) which is always true and can thus be removed from
comp(P ).

– Formula (8) is replaced by the formulas

∀Y · r(Y )⇒
∧

α− ∧
∧
¬β− (15)

and
∀Y · γh ⇒ r(Y ) ∨

∨
β− ∨

∨
¬(α−\{γh}) , (16)

where γh is a head guard of α← β. We thus rewrite an equivalence as two implica-
tions where the first implication is guarded by r(Y ) and the second one is guarded
by the head guard of the rule - hence the need for a fully guarded program, instead
of just a guarded one.

– Formula (9) is replaced by the formulas

∀Z · g(Z)⇒ φ (17)

and
∀Z · γ ⇒ g(Z) ∨ ¬φ′ (18)

where φ = γ ∧ ψ by the guardedness of the generalized literal ∀Y · φ ⇒ ψ.
We thus rewrite an equivalence as two implications where the first one is guarded
by g(Z) (vars(φ) = Z by definition of g), and the second one is guarded by γ
(vars(g(Z) ∨ ¬φ′) = vars(Z) = vars(γ)).
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– For every E(r) in (10), replace E(r) by

E′(r) ≡
∧

ti �∈Y

Xi = ti ∧ ∃Z · (
∧

β+[p|W ] ∧
∧

γ ∧ r(Y ))[ti ∈ Y |Xi] , (19)

with Z = Y \ {ti | ti ∈ Y }, i.e. move all Xi = ti where ti is constant out
of the scope of the quantifier, and remove the others by substituting each ti in∧

β+[p|W ]∧
∧

γ∧r(Y ) by Xi. This rewriting makes sure that every (free) variable
in the quantified part of E′(R) is guarded by r(Y )[ti ∈ Y |Xi].

Example 8. The rule r : p(X ) ∨ not p(X ) ← p(X ), [∀Y · p(Y ) ∧ p(b) ⇒ p(a)]
constitutes a fully guarded p-EP P . The generalized literal is guarded by p(Y ) and
the rule by head and body guard p(X). sat(P ) contains the formula ∀X ·p(X)∧ (∀Y ·
p(Y )∧p(b) ⇒ p(a))⇒ p(X)∨¬p(X), gl(P ) consists of ∀X ·r(X ) ⇔ p(X ), gli(P )
is the formula ∀Y · g(Y )⇔ p(Y ) ∧ p(b) and E(r) ≡ ∃X ·X1 = X ∧W (X)∧ (∀Y ·
g(Y ) ⇒W (a)) ∧ r(X).

gcomp(P ) consists then of the corresponding guarded formulas:

– ∀X · p(X)⇒ p(X) ∨ ¬p(X) ∨ ¬(∀Y · p(Y ) ⇒ p(a) ∨ ¬p(b)),
– ∀X · r(X ) ⇒ p(X ),
– ∀X · p(X ) ⇒ r(X ),
– ∀Y · g(Y ) ⇒ p(Y ) ∧ p(b),
– ∀Y · p(Y ) ⇒ g(Y ) ∨ ¬p(b), and
– E′(r) ≡W (X1) ∧ (∀Y · g(Y )⇒W (a)) ∧ r(X1).

As gcomp(P ) is basically a linear logical rewriting of comp(P ), they are equivalent.
Moreover,

∧
gcomp(P ) is an alternation-free μGF formula.

Proposition 5. Let P be a fully guarded p-EP. (U,M) is a model of comp(P ) iff (U,M)
is a model of gcomp(P ).

Proposition 6. Let P be a fully guarded p-EP. Then,
∧
gcomp(P ) is an alternation-free

μGF formula.

For a GEP P , we have that P f is a FGEP. By Proposition 4, we have that (P f)p is a
fully guarded p-EP, thus the formula gcomp((P f)p) is defined. By Proposition 3, q is
satisfiable w.r.t. P iff q is satisfiable w.r.t. P f . By Theorem 1, we have that q is satisfiable
w.r.t. P f iff ∃X ·p(X,0, q)∧

∧
comp((P f)p) is satisfiable. Finally, Proposition 5 yields

that q is satisfiable w.r.t. P iff ∃X · p(X ,0, q) ∧
∧
gcomp((P f)p) is satisfiable.

The polynomial reduction in Theorem 1 is the worst reduction used, thus yielding
the upper bound for the overall reduction.

Theorem 2. Let P be a GEP and q an n-ary predicate in P . q is satisfiable w.r.t. P iff
∃X ·p(X,0, q)∧

∧
gcomp((P f)p) is satisfiable. Moreover, this reduction is polynomial.

For a GEP P , we have, by Proposition 6, that
∧
gcomp((P f)p) is an alternation-free

μGF formula such that ∃X · p(X,0, q) ∧
∧
gcomp((P f)p) is a μGF sentence.

Corollary 1. Satisfiability checking w.r.t. GEPs can be polynomially reduced to satis-
fiability checking of alternation-free μGF-formulas.
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Since satisfiability checking of μGF formulas is 2-EXPTIME-complete (Proposition
[1.1] in [11]), satisfiability checking w.r.t. GEPs is, by Corollary 1, in 2-EXPTIME.

Corollary 2. Satisfiability checking w.r.t. GEPs is in 2-EXPTIME.

Thus, adding generalized literals to guarded programs does not come at the cost of in-
creased complexity of reasoning, as also for guarded programs without generalized lit-
erals, reasoning is in 2-EXPTIME [14]. In [14], we established 2-EXPTIME-completeness
for satisfiability checking w.r.t. guarded programs (without generalized literals). Since
every guarded program is a GEP, 2-EXPTIME-hardness w.r.t. GEPs follows.

Theorem 3. Satisfiability checking w.r.t. GEPs is 2-EXPTIME-complete.

To conclude this section, we illustrate the use of open answer set programming with
GEPs as a general purpose knowledge representation formalism by simulating satisfia-
bility checking of computation tree logic (CTL) [4, 5] formulas. Let AP be the finite set
of available proposition symbols. Computation tree logic (CTL) formulas are defined
as follows13: every proposition symbol P ∈ AP is a formula, if p and q are formulas,
so are p∧ q and ¬p, if p and q are formulas, then EGp, E(p U q), and EXp are formulas.
The semantics of a CTL formula is given by (temporal) structures. A structure K is a
tuple (S,R,L) with S a countable set of states, R ⊆ S × S a total relation on S, i.e.
∀s ∈ S · ∃t ∈ S · (s, t) ∈ R, and L : S → 2AP a function labeling states with propo-
sitions. Intuitively, R indicates the permitted transitions between states and L indicates
which propositions are true at certain states.

A path π in K is an infinite sequence of states (s0, s1, . . .) such that (si−1, si) ∈ R
for each i > 0. For a path π = (s0, s1, . . .), we denote the element si with πi. For a
structure K = (S,R,L), a state s ∈ S, and a formula p, we inductively define when K
is a model of p at s, denoted K, s |= p:

– K, s |= P iff P ∈ L(s) for P ∈ AP ,
– K, s |= ¬p iff not K, s |= p.
– K, s |= p ∧ q iff K, s |= p and K, s |= q,
– K, s |= EGp iff there exists a path π in K with π0 = s and ∀k ≥ 0 ·K,πk |= p,
– K, s |= E(p U q) iff there exists a path π in K with π0 = s and ∃k ≥ 0 · (K,πk |=

q ∧ ∀j < k ·K,πj |= p),
– K, s |= EXp iff there is a (s, t) ∈ R and K, t |= p.

The expression K, s |= EGp can be read as “there is some path from s along which p
holds Globally (everywhere)”,K, s |= EXp as “there is some neXt state where p holds”,
and K, s |= E(p U q) as “there is some path from s along which p holds Until q holds
(and q eventually holds)”. A structure K = (S,R,L) satisfies a CTL formula p if there
is a state s ∈ S such that K, s |= p; we also call K a model of p. A CTL formula p is
satisfiable iff there is a model of p.

For a CTL formula p, let clos(p) be the closure of p: the set of subformulas of p. We
construct a GEP G ∪Dp consisting of a generating part G and a defining part Dp. The

13 In order to make the treatment as simple as possible, we do not include formulas involving the
path quantifier A. However, as indicated in [15], the defined constructs are adequate, i.e. every
CTL formula can be rewritten using only those, while preserving satisfiability.
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guarded program G contains free rules (g1) for every proposition P ∈ AP , free rules
(g2) allowing for state transitions, and rules (g3) that ensure that the transition relation
is total:

[P ](S ) ∨ not [P ](S )← (g1)

next(S ,N ) ∨ not next(S ,N )← (g2)

succ(S )← next(S ,N ) ← S = S ,not succ(S ) (g3)

where [P ] is the predicate corresponding to the proposition P . The S = S is necessary
merely for having guarded rules; note that any rule containing only one (free) variable
can be made guarded by adding such an equality.

The GEP Dp introduces for every non-propositional CTL formula in clos(p) the
following rules (we write [q] for the predicate corresponding to the CTL formula q ∈
clos(p)); as noted before we tacitly assume that rules containing only one (free) variable
S are guarded by S = S:

[¬q](S ) ← not [q](S ) (d1)

[q ∧ r ](S ) ← [q](S ), [r ](S ) (d2)

[EGq](S ) ← not [AF¬q](S ) (d1
3)

[AF¬q](S ) ← not [q](S ) (d2
3)

[AF¬q](S ) ← ∀N · next(S ,N )⇒ [AF¬q](N ) (d3
3)

[E(q U r)](S ) ← [r ](S ) (d4)

[E(q U r)](S ) ← [q](S ),next(S ,N ), [E(q U r)](N ) (d5)

[EXq](S ) ← next(S ,N ), [q](N ) (d6)

The rules (d{1,2,6}) are direct translations of the CTL semantics.
Rules (d2

3) and (d3
3) ensure that if [AF¬q](s) holds, then on all paths from s we

eventually reach a state where q does not hold. In particular this is true if q does not
hold in the current state (d2

3), or if it holds for all successors (d3
3); minimality of open

answer sets ensures that after a finite time a state where q does not hold is reached. Rule
(d1

3) then defines [EGq] as the negation of [AF¬q].
Rules (d4) and (d5) are in accordance with the characterization E(q U r) ≡ r ∨ (q ∧

EXE(q U r)) [4], and make implicit use of the minimality of answer sets to eventually
ensure realization of r.

Theorem 4. Let p be a CTL formula. p is satisfiable iff [p] is satisfiable w.r.t. the GEP
G ∪Dp.

Since CTL satisfiability checking is EXPTIME-complete [4] and satisfiability checking
w.r.t. GEPs is 2-EXPTIME-complete (Theorem 3), the reduction from CTL to GEPs
does not seem to be optimal. However, we can show that the particular GEP G ∪Dp is
a bound GEP for which reasoning is indeed EXPTIME-complete and thus optimal.

Define the width of a formula ψ as the maximal number of free variables in its
subformulas [10]. We define bound programs by looking at their first order form and
the arity of its predicates.
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Definition 3. Let P be an EP. Then, P is bound if every formula in sat(P ) is of
bounded width and the predicates in P have a bounded arity.

For a CTL formula p, one has that G ∪Dp is a bound GEP. Indeed, every subformula
of formulas in sat(G ∪ Dp) contains at most 2 free variables and the maximum arity
of the predicates is 2 as well.

Let P be a bound GEP. We have that (P f)p is bound and one can check that ∃X ·
p(X,0, q) ∧

∧
gcomp((P f)p) is of bounded width.

Using Theorem 2, one can reduce satisfiability checking of a bound GEP to satisfi-
ability of a μGF-formula with bounded width. The latter can be done in EXPTIME by
Theorem 1.2 in [11], such that satisfiability checking w.r.t. bound GEPs is in EXPTIME.

The EXPTIME-hardness follows from Theorem 4 and the EXPTIME-hardness of CTL
satisfiability checking [4].

Theorem 5. Satisfiability checking w.r.t. bound GEPs is EXPTIME-complete.

5 Equivalence with Datalog LITE

We define Datalog LITE as in [8]. A Datalog rule is a rule α ← β where α = {a} for
some atom a and β does not contain generalized literals. A basic Datalog program is
a finite set of Datalog rules such that no head predicate appears in negative bodies of
rules. Predicates that appear only in the body of rules are extensional or input predi-
cates. Note that equality is, by the definition of rules, never a head predicate and thus
always extensional. The semantics of a basic Datalog program P , given a relational
input structure U defined over extensional predicates of P 14, is given by the unique
(subset) minimal model whose restriction to the extensional predicates yields U . We
refer to [1] for more details.

For a query (P, q), where P is a basic Datalog program and q is a n-ary predicate, we
write a ∈ (P, q)(U) if the minimal model M of ΣP with input U contains q(a), where
ΣP are the first-order clauses corresponding to P , see [1]. We call (P, q) satisfiable if
there exists a U and an a such that a ∈ (P, q)(U).

A program P is a stratified Datalog program if it can be written as a union of basic
Datalog programs (P1, . . . , Pn), so-called strata, such that each of the head predicates
in P is a head predicate in exactly one stratum Pi. Furthermore, if a head predicate in Pi

is an extensional predicate in Pj , then i < j. This definition entails that head predicates
in the positive body of rules are head predicates in the same or a lower stratum, and head
predicates in the negative body are head predicates in a lower stratum. The semantics
of stratified Datalog programs is defined stratum per stratum, starting from the lowest
stratum and defining the extensional predicates on the way up. For an input structure U
and a stratified program P = (P1, . . . , Pn), define as in [1]:

U0 ≡ U
Ui ≡ Ui−1 ∪ Pi(Ui−1|edb(Pi))

14 We assume that an input structure always defines equality, and that it does so as the identity
relation.



196 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

where Si ≡ Pi(Ui−1|edb(Pi)) is the minimal model of ΣPi among those models of
ΣPi whose restriction to the extensional predicates of Pi is equal to Ui−1|edb(Pi). The
least fixed point model of P is per definition Un.

A Datalog LITE generalized literal is a generalized literal ∀Y · a ⇒ b where a
and b are atoms and vars(b) ⊆ vars(a). Note that Datalog LITE generalized literals
∀Y · a ⇒ b can be replaced by the equivalent ∀Z · a ⇒ b where Z ≡ Y \{Y |
Y �∈ vars(a)}, i.e. with the variables that are not present in the formula a⇒ b removed
from the quantifier. After such a rewriting, Datalog LITE generalized literals are guarded
according to Definition 2.

A Datalog LITE program is a stratified Datalog program, possibly containing Dat-
alog LITE generalized literals in the positive body, where each rule is monadic or
guarded. A rule is monadic if each of its (generalized) literals contains only one (free)
variable; it is guarded if there exists an atom in the positive body that contains all vari-
ables (free variables in the case of generalized literals) of the rule. The definition of
stratified is adapted for generalized literals: for a ∀Y ·a ⇒ b in the body of a rule where
the underlying predicate of a is a head predicate, this head predicate must be a head
predicate in a lower stratum (i.e. a is treated as a naf-atom) and a head predicate underly-
ing b must be in the same or a lower stratum (i.e. b is treated as an atom). The semantics
can be adapted accordingly since a is completely defined in a lower stratum, as in [8]:
every generalized literal ∀Y · a ⇒ b is instantiated (for any x grounding the free vari-
ables X in the generalized literal) by

∧
{b[X | x][Y | y] | a[X | x][Y | y] is true},

which is well-defined since a is defined in a lower stratum than the rule where the
generalized literal appears.

For stratified Datalog programs, least fixed point models with as input the identity
relation on a universe U coincide with open answer sets with universe U .

Proposition 7. Let P = (P1, . . . , Pn) be a stratified Datalog program, possibly with
generalized literals, U a universe for P , and l a literal. For the least fixed point model
Un of P with input U = {id(U)}, we have Un |= l iff there exists an open answer set
(U,M) of P such that M |= l.

Moreover, for any open answer set (U,M) of P , we have that M = Un\id(U).

From Proposition 7, we obtain a generalization of Corollary 2 in [6] (If Π is stratified,
then its unique stable model is identical to its fixed point model.) for stratified programs
with generalized literals and an open answer set semantics.

Corollary 3. Let P be a stratified Datalog program, possibly with generalized literals,
and U a universe for P . The unique open answer set (U,M) of P is identical to its
least fixed point model (minus the equality atoms) with input structure id(U).

We generalize Proposition 7, to take into account arbitrary input structures U . For a
stratified Datalog program P , possibly with generalized literals, define FP ≡ {q(X)∨
not q(X)←| q extensional (but not =) in P}.

Proposition 8. Let P = (P1, . . . , Pn) be a stratified Datalog program, possibly with
generalized literals, and l a literal. There exists an input structure U for P with least
fixed point model Un such that Un |= l iff there exists an open answer set (U,M) of
P ∪ FP such that M |= l.
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The set of free rules FP ensures a free choice for extensional predicates, a behavior that
corresponds to the free choice of an input structure for a Datalog program P . Note that
P ∪ FP is not a Datalog program anymore, due to the presence of naf in the heads of
FP .

Define a Datalog LITEM program as a Datalog LITE program where all rules are
guarded. As we will see below this is not a restriction. As FP contains only free rules,
P ∪ FP is a GEP if P is a Datalog LITEM program. Furthermore, the size of the GEP
P ∪ FP is linear in the size of P .

Proposition 9. Let P be a Datalog LITEM program. Then, P ∪ FP is a GEP whose
size is linear in the size of P .

By Propositions 8 and 9, satisfiability checking of Datalog LITEM queries can be re-
duced to satisfiability checking w.r.t. GEPs.

Theorem 6. Let (P, q) be a Datalog LITEM query. Then, (P, q) is satisfiable iff q is
satisfiable w.r.t. P ∪ FP . Moreover, this reduction is linear.

With a similar reasoning as in [14], one can show that the opposite direction holds
as well. In [8], Theorem 8.5., a Datalog LITEM query (πϕ, qϕ) was defined for an
alternation-free μGF sentence ϕ such that (U,M) |= ϕ iff (πϕ, qϕ)(M ∪ id(U))
evaluates to true, where the latter means that qϕ is in the least fixed point model of
(πϕ, qϕ)(M ∪ id(U)). For the formal details of this reduction, we refer to [8]. Satisfia-
bility checking w.r.t. GEPs can then be polynomially reduced to satisfiability checking
in Datalog LITEM. Indeed, by Theorem 2, we have that q is satisfiable w.r.t. a GEP P
iff ϕ ≡ ∃X · p(X,0, q) ∧ gcomp((P f)p) is satisfiable. Since ϕ is an alternation-free
μGF sentence, we have that ϕ is satisfiable iff (πϕ, qϕ) is satisfiable. By Theorem 2, the
translation of P to ϕ is polynomial in the size of P and the query (πϕ, qϕ) is quadratic
in ϕ [8], resulting in a polynomial reduction.

Theorem 7. Let P be a GEP, q an n-ary predicate in P and ϕ the μGF sentence
∃X · p(X,0, q) ∧ gcomp((P f)p). q is satisfiable w.r.t. P iff (πϕ, qϕ) is satisfiable.
Moreover, this reduction is polynomial.

Theorems 6 and 7 lead to the conclusion that Datalog LITEM and open ASP with GEPs
are equivalent (i.e. satisfiability checking in either one of the formalisms can be poly-
nomially reduced to satisfiability checking in the other). Furthermore, since Datalog
LITEM, Datalog LITE, and alternation-free μGF are equivalent as well [8], we have the
following concluding result.

Theorem 8. Datalog LITE, alternation-free μGF, and open ASP with GEPs are equiv-
alent.

6 ω-Restricted Logic Programs

A class of logic programs with function symbols are the ω-restricted programs from
[19]. The Herbrand Universe of ω-restricted programs is possibly infinite (in the pres-
ence of function symbols), however, answer sets are guaranteed to be finite, exactly by
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the structure of ω-restricted programs. Informally, an ω-restricted program consists of
a stratified part and a part that cannot be stratified (the ω-stratum), where every rule
is such that every variable in a rule is “guarded” by an atom of which the predicate is
defined in a strictly lower stratum. The answer sets of ω-restricted programs can then
be computed by instantiating the strata from the bottom up. We refer to [19] for precise
definitions.

We extend the definition of universe for programs that contain function symbols. A
universe U for a program P is a non-empty countable superset of the Herbrand Universe
HP of P . Thus, a universe U is equal to HP ∪X for some countable X ; as usual, we
call the elements from U \HP anonymous.

For ω-restricted programs, the open answer set semantics coincides with the normal
answer set semantics.

Theorem 9. Let P be an ω-restricted program and U a universe for P . (U,M) is an
open answer set of P iff M is an answer set of P .

Since checking whether there exists an answer set of an ω-restricted program is in gen-
eral 2-NEXPTIME-complete [19], we have, with Theorem 9, 2-NEXPTIME-completeness
for consistency checking under the open answer set semantics for ω-restricted pro-
grams, where consistency checking involves checking whether there exists an open
answer set of a program.

Theorem 10. Consistency checking w.r.t. ω-restricted programs is 2-NEXPTIME-
complete.

Furthermore, since reasoning with ω-restricted programs is implemented in the SMOD-
ELS reasoner [18], Theorem 9 implies an implementation of the open answer set se-
mantics for ω-restricted programs as well.

In [20], ω-restricted programs allow for cardinality constraints and conditional lit-
erals. Conditional literals have the form X.L : A where X is a set of variables, A is an
atom (the condition) and L is an atom or a naf-atom. Intuitively, conditional literals cor-
respond to generalized literals ∀X · A ⇒ L, i.e., the defined reducts add instantiations
of L to the body if the corresponding instantiation of A is true. However, conditional
literals appear only in cardinality constraints Card(b,S )15 where S is a set of literals
(possibly conditional), such that a for all effect such as with generalized literals cannot
be obtained with conditional literals.

Take, for example, the rule q ← [∀X · b(X)⇒ a(X)] and a universe U = {x1, x2}
with an interpretation containing b(x1) and b(x2). The reduct will contain a rule q ←
a(x1), a(x2) such that, effectively, q holds only if a holds everywhere where b holds.
The equivalent rule rewritten with a conditional literal would be something like q ←
Card(n, {X.a(X) : b(X)}), resulting in a rule q ← Card(n, {a(x1), a(x2)}). In order
to have the for all effect, we have that n must be 2. However, we cannot know this n in
advance, making it impossible to express a for all restriction.

Further note that consistent ω-restricted programs (with cardinality constraints and
conditional literals) always have finite answer sets, which makes a reduction from GEPs
(in which infinity axioms can be expressed) to ω-restricted programs non-trivial.

15 Card(b,S) is true if at least b elements from S are true.
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7 Conclusions and Directions for Further Research

We defined GEPs, guarded programs with generalized literals, under an open answer
set semantics, and showed 2-EXPTIME-completeness of satisfiability checking by a re-
duction to μGF. Furthermore, we translated Datalog LITEM programs to GEPs, and
generalized the result that the unique answer set of a stratified program is identical to
its least fixed point.

We plan to extend GEPs to loosely guarded EPs, where a guard may be a set of
atoms; a reduction to the loosely guarded fixed point logic should then provide for de-
cidability. More liberal generalized literals, with the consequent a conjunction of atoms
and naf-atoms instead of just an atom, does not affect the definition of the GLi-reduct,
but the FPL translation requires modification to ensure no fixed point variable appears
negatively.

We plan to look into the correspondence with Datalog and use decidability results
for Datalog satisfiability checking, as, e.g., in [12], to search for decidable fragments
under an open answer set semantics.

Although adding generalized literals to guarded programs does not increase the com-
plexity of reasoning, it does seem to increase expressivity: one can, for example, express
infinity axioms. Given the close relation with Datalog LITE and the fact that Datalog
LITE without generalized literals cannot express well-founded statements, it seems un-
likely that guarded programs without generalized literals can express infinity axioms;
this is subject to further research.

We only considered generalized literals in the positive body. If the antecedents in
generalized literals are atoms, it seems intuitive to allow also generalized literals in the
negative body. E.g., take a rule α ← β, not [∀X · b(X) ⇒ a(X)]; it seems natural
to treat not [∀X · b(X) ⇒ a(X)] as ∃X · b(X) ∧ ¬a(X) such that the rule becomes
α ← β, b(X), not a(X). A rule like [∀X · b(X)⇒ a(X)] ∨ α ← β is more involved
and it seems that the generalized literal can only be intuitively removed by a modified
GLi-reduct.

We established the equivalence of open ASP with GEPs, alternation-free μGF, and
Datalog LITE. Intuitively, Datalog LITE is not expressive enough to simulate normal
μGF since such μGF formulas could contain negated fixed point variables, which would
result in a non-stratified program when translating to Datalog LITE [8]. Open ASP with
GEPs does not seem to be sufficiently expressive either: fixed point predicates would
need to appear under negation as failure, however, the GL-reduct removes naf-literals,
such that, intuitively, there is no real recursion through naf-literals. Note that it is un-
likely (but still open) whether alternation-free μGF and normal μGF are equivalent, i.e.,
whether the alternation hierarchy can always be collapsed.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2. J. Van Benthem. Dynamic Bits and Pieces. In ILLC research report. University of Amster-

dam, 1997.
3. A. K. Chandra and D. Harel. Horn Clauses and the Fixpoint Query Hierarchy. In Proc. of

PODS ’82, pages 158–163. ACM Press, 1982.



200 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

4. E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, pages 995–1072. Elsevier Science Publishers B.V., 1990.

5. E. A. Emerson and E. M. Clarke. Using Branching Time Temporal Logic to Synthesize
Synchronization Skeletons. Sciene of Computer Programming, 2(3):241–266, 1982.

6. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In Proc.
of ICLP’88, pages 1070–1080, Cambridge, Massachusetts, 1988. MIT Press.

7. M. Gelfond and H. Przymusinska. Reasoning in Open Domains. In Logic Programming and
Non-Monotonic Reasoning, pages 397–413. MIT Press, 1993.
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Abstract. It is claimed in [45] that first-order theorem provers are not
efficient for reasoning with ontologies based on description logics com-
pared to specialised description logic reasoners. However, the develop-
ment of more expressive ontology languages requires the use of theorem
provers able to reason with full first-order logic and even its extensions.
So far, theorem provers have extensively been used for running experi-
ments over TPTP containing mainly problems with relatively small ax-
iomatisations. A question arises whether such theorem provers can be
used to reason in real time with large axiomatisations used in expres-
sive ontologies such as SUMO. In this paper we answer this question
affirmatively by showing that a carefully engineered theorem prover can
answer queries to ontologies having over 15,000 first-order axioms with
equality. Ontologies used in our experiments are based on the language
KIF, whose expressive power goes far beyond the description logic based
languages currently used in the Semantic Web.

State-of-the-art theorem provers for first-order logic (FOL) are highly sophisti-
cated and efficient programs. Moreover, they are very flexible tools and can be
tuned to a number of applications. For example, Vampire [35] provides a large
collection of parameters that can be used to give better performance for various
classes of applications. In addition, Vampire implements a number of literal se-
lection functions and internally contains a library for defining such functions in
a simple way; this makes it possible to simulate various proof-search algorithms
and even provide decision procedures for decidable classes of first-order logic
(see, e.g., [23]).

However, there was a common belief that provers like Vampire cannot di-
rectly be used for efficient reasoning with very large ontologies using expressive
languages such as KIF [14] for two reasons. Firstly, these provers are optimised
for reasoning with relatively small axiomatisations. Secondly, they do not sup-
port some extensions of FOL required in KIF.

In this paper we describe an adaptation of Vampire to support reasoning for
expressive ontology languages and present experimental results which show that
it can be used for efficient reasoning with large ontologies using extensions of
the first-order language.
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This paper is structured as follows. In Section 1 we briefly overview expres-
sive languages for ontologies, including the language KIF, and FO provers. In
Section 2 we describe the adaptation of Vampire for reasoning with large ontolo-
gies. For our experiments we selected ontologies implemented in KIF since they
offer a high degree of sophistication compared to ontologies using Description
Logic (DL) based languages, and there are publicly available KIF-based ontolo-
gies containing thousands of FO formulas with equality. However, our adaptation
is quite general, and could be used for other expressive ontology languages.

Note that there is no way to compare Vampire with description logic provers
on these ontologies, since their subsets corresponding to description logic lan-
guages and hardly interesting and not representative.

Section 3 contains a summary and a description of future work. Finally, in
the appendix we demonstrate the efficiency and advanced features of Vampire
by showing two (out of a large number of) inconsistency proofs found by it in
SUMO and a terrorism ontology.

1 Introduction

Expressive Languages for Ontologies. Ontologies play a major role in the
Semantic Web where they are widely used in, e.g., bio-informatics, medical ter-
minologies and other knowledge management applications [5, 44, 47, 41, 34, 40].
They are also of increasing importance in the Grid, where they may be used, e.g.,
to support semantic based discovery, execution and monitoring of Grid services
[9, 46, 11].

State of the art ontology languages, such as DAML+OIL [48] and OWL [3],
are based on expressive description logics (DLs). This establishes a firm for-
mal foundation for the language, e.g., by providing well-defined semantics and a
broad understanding of the computational properties of key inference problems;
it also allows applications to exploit the reasoning services provided by highly
optimised DL reasoners such as FaCT and Racer [19, 15, 13]. It is widely recog-
nised, however, that the expressive power of such languages is inadequate in some
applications, and in particular applications related to the discovery and compo-
sition of Web and Grid services. This has led to efforts to develop languages
based on more expressive logics up to and including full first-order predicate
logic [17, 38, 6, 4].

Motivation. The availability of efficient reasoners has proved to be important
in both the design and deployment of ontologies. Designing ontologies is an ex-
tremely complex task, and modern ontology design tools typically use reasoners
to support the ontologist by highlighting inconsistencies in the design and allow-
ing them to compare their intuitions about implicit subsumption relationships
between classes with those computed by the reasoner [2, 31]. This kind of rea-
soning support is, for example, provided by both OilEd and the ProtégéOWL
plugin, tools which are increasingly used for ontology development in e-Science.
Applications of ontologies typically involve querying, and this again means us-
ing a reasoner, e.g., to determine when an individual (or a tuple of individuals)
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satisfies a query expression, or to retrieve all individuals (or tuples) satisfying a
given query [22, 10]. For example, a biologist may want to answer queries about
gene product data annotated with terms from the Gene Ontology, with a rea-
soner being used to determine which gene products are instances of complex
descriptions that also use terms from the ontology [16].

The known decidability of key reasoning problems (such as satisfiability, sub-
sumption and instance retrieval), and the availability of efficient reasoners based
on highly optimised tableau decision procedures, were crucial factors in motivat-
ing the DL based design of DAML+OIL and OWL [19, 20]. Decidability comes,
however, at a cost in terms of restricted expressive power. In particular, while
such languages are generally equipped with a relatively rich set of constructors
for use with classes (unary predicates), they only provide a very limited set of
constructors for use with properties (binary predicates). These limitations can
be onerous in some applications, in particular those where aggregation plays a
prominent role. For example, in complex physically structured domains such as
biology and medicine it is often important to describe structures that are exactly
equivalent to the aggregation of their parts, and to have properties of the com-
ponent parts transfer to the whole (a femur with a fractured shaft is a fractured
femur) [32]. The importance of this kind of knowledge can be gauged from the
fact that it can invariably be expressed in ontology languages designed specifi-
cally for medicine, even those that are otherwise relatively weak [33, 40]; various
“work-arounds” have also been described for use with ontology languages that
cannot express this kind of knowledge directly [37].

Similarly, in grid and web services applications, it may be necessary to de-
scribe composite processes in terms of their component parts, and to express
relationships between the properties of the various components and those of
the composite process. For example, in a sequential composition of processes
it may be useful to express a relationship between the inputs and outputs of
the composite and those of the first and last component respectively, as well as
relationships between the outputs and inputs of successive components [44].

These limitations can be overcome to some extent by extending the DL lan-
guage with a so-called role-box [21], but in order to maintain decidability it is
necessary to impose severe restrictions on what can be expressed. For example,
this framework would not allow the expression of simple family relationships
such as the fact that “uncle” is equivalent to the composition of “parent” and
“brother”.

In addition to these problems with domain ontologies, many richly axioma-
tised foundational ontologies, such as SUMO1 and DOLCE [29], are based on
full FOL with relations of arbitrary arity, and even on extensions of FOL using
relations with variable arities. This makes it impossible for DL based tools to
exploit these foundational ontologies in order to structure or validate domain
ontologies, and to improve interoperability between ontologies.

A recognition of the limitations of DL based ontology languages, in particu-
lar in web services applications, has led to proposals to extend them with, e.g.,

1 See http://suo.ieee.org/
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Horn-clause axioms [17, 18], or even axioms supporting arbitrary use of first order
quantification [6, 4, 38]. These extended languages are based on larger fragments
(than the DL fragment) of FOL, and may even be equivalent to full FOL; as a
consequence, computing class consistency and subsumption is no longer decid-
able in general.

The utility of such languages, and the applications that use them, will crucially
depend on the provision of reasoning support: there is little point in building
complex models of web services without any means of manipulating or querying
them.

First-Order Theorem Provers. First-order theorem provers have tradition-
ally been used for the same purpose as DL-based ontology reasoners: providing
reasoning services. They have a long history: indeed, some first-order theorem
provers had already been implemented in the 1960s. There are, however, many
important differences between FO provers and DL reasoners which explain why
FO provers have not yet achieved widespread use in the Semantic Web.

FO provers deal with an undecidable logic. They are highly optimised for
general-purpose reasoning, and are especially optimised for reasoning with equal-
ity. For example, they can often find very complex combinatorial proofs of identi-
ties in algebras. FO provers are based on a highly advanced theory of saturation
algorithms with redundancy. This theory is very flexible—for example, com-
pleteness theorems in it have been proven for inference systems using arbitrary
literal selection functions that can simulate various proof-search strategies, such
as bottom-up or top-down reasoning.

Recently, there have been papers showing how FO provers can be used to
reason in theories with a rich definitional structure [8, 12]. Experiments into
their use for classifying DL-based ontologies, using a naive translation of DL
formulas into first-order formulas, have also shown encouraging results [45].

Nonetheless, [45] also shows that on DL-based ontologies using simple lan-
guages DL reasoners are much faster than a straightforwardly used FO prover.
However, the use of DL reasoners for more expressive languages faces a num-
ber of obstacles. For example, different languages need different reasoning al-
gorithms, and an efficient implementation of a new inference algorithm may
require the re-implementation of data structures supporting efficient inference
procedures. In contrast, FO provers use a well-established uniform inference
mechanism with thoroughly investigated implementation techniques and data
structures (see, e.g., [39, 35, 36]); tuning them for new applications usually re-
quires only implementation of new preprocessing algorithms, and finding the
best settings for a wide range of already available parameters.

Traditionally, FO provers have been used for proving theorems in mathe-
matics, and for software and hardware verification. For these applications the
axiomatisation is normally relatively small, and also has a small number of func-
tion and predicate symbols. In contrast, ontologies may contain a very large
number of axioms and predicate symbols. Moreover, axiomatisations of differ-
ent theories in FOL offer a great variety of different constructs, while ontologies
typically contain many similarly-structured “definitions”.
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The experimental results in [49] show that the inverse method (a non-tableau
method based on a saturation algorithm) can be implemented just as efficiently
as tableau-based DL provers. The implementation reported in this paper required
less than one second to answer queries to the SUMO ontology, which contains
about 5,000 first-order axioms with equality. Moreover, it took only a few seconds
to to find a large number of non-trivial inconsistencies in various versions of
SUMO and in an even larger terrorism ontology.

The KIF Language. KIF is a language for expressing knowledge that contains
full first-order logic, and extends it with several features. First, it supports some
datatypes, for example real numbers, and evaluable functions on these datatypes.
Second, it can use arbitrary terms, including variables, as function and predicate
symbols. Third, it has row variables which range over sequences of terms of
arbitrary finite lengths. As a consequence, KIF allows for functions and relations
of variable arities. The semantics of KIF is described in [14].

Support for datatypes seems to be crucial for many applications, and there
are numerous proposals to include datatypes in Semantic Web languages. Full
support of datatypes in first-order logic is impossible: having a datatype of in-
tegers with simple operations on it means that one can express arithmetic, and
therefore there is no hope for the automation of reasoning in first-order logic
with datatypes.

The second feature of KIF—variables as function and predicate symbols—is
not well-understood. Indeed, it was believed that one could translate this feature
in first-order logic by adding a (meta) predicate holds , and replacing formulas
like x(t) by holds(x, t), but [25] have shown that this is not so.

Concerning row variables, [14] note that they are not first-order, but their full
expressive power should be further investigated. The following theorem shows
that one can express arithmetic in first-order logic with row variables.

Theorem 1. There exists a polynomial-time translation τ of arithmetic into
predicate logic with row variables such that for every sentence F or arithmetic, F
holds in the standard model of arithmetic if and only if τ(F ) is valid in predicate
logic with row variables.

This theorem shows that there is no hope for the automation of reasoning in
first-order with arbitrary row variables; in particular, the set of theorems of
first-order logic with row variables is not recursively enumerable.

2 Adapting Vampire for Large Ontologies

Query Answering. Query answering requires retrieving individuals which sat-
isfy a given formula. That is, given a query Q(x̄) with free variables x̄, one has
to find (all, or a given number of) vectors of terms t̄ such that Q(t̄) is a logical
consequence of formulas in the ontology. To implement query answering, one
needs to modify inference algorithms to return individuals satisfying the query.
To implement it efficiently against large knowledge bases, one has to, in addition,
be able to answer a sequence of queries without reloading the ontology.
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Query answering requires retrieving individuals which satisfy a given formula.
For example, one can ask the following query to find all individuals who published
a paper at FoIKS

has_paper(X,’FoIKS’)

To implement query answering, one needs to modify inference algorithms to
return individuals satisfying the formula.

Returning Individuals. Database systems perform query answering but not the-
orem proving. DL reasoners were originally designed for theorem proving, but
some of them can now perform restricted forms of query answering as well. For
FO provers, query answering is not very different from theorem proving and
can be implemented essentially at no extra cost. The standard way of providing
query answering is via an answer predicate. For example, for the above query
with one variable X we introduce a unary answer predicate answer, replace the
query by the formula

has_paper(X,’FoIKS’) -> answer(X)

and run a standard saturation algorithm with one difference: instead of searching
for a derivation of the empty clause (to signal that a refutation is found) we
search for derivations of clauses whose only predicate symbol is answer. For
example, if one derives

answer(’Andrei’),

then ’Andrei’ is an answer to the query. Answer predicates are a very powerful
mechanism. They can be used for finding multiple answers, disjunctive answers,
or general answers with variables. For example, a derivation of

answer(’Andrei’) \/ answer(’Ian’),

means that either ’Andrei’ or ’Ian’ satisfy the query (but there may be not
enough information for a definite answer). Likewise, having derived answer(Y),
where Y is a variable, means that every object satisfies the query (which may
signal that something is wrong with the ontology or with the query).

Answer predicates are implemented in a number of theorem provers, including
Vampire, Otter [28] and Gandalf [43]. For Vampire, one can also specify that
only definite answers should be considered. To implement definite answers, Vam-
pire replaces any clause a(s1, . . . , sn) ∨ a(t1, . . . , tn) ∨C, where a is the answer
predicate, by the clause s1 �= t1 ∨ . . .∨ sn �= tn ∨ a(t1, . . . , tn)∨C. Completeness
of resolution with answer predicates was studied in [42].

Answering Sequences of Queries. One essential difference between theorem
provers and query answering systems is that the former are normally invoked to
solve a single problem. If another problem has to be solved, the theorem prover
has to be called again. The cost of activating a query answering system working
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<!-- load the terrorism ontology -->
<kb_load kb="terrorism" syntax="kif"

file="SemWeb/terrorism.kif" />

<!-- answer the following query to the terrorism ontology -->
<query max_answers="10" time_limit="5">
(instance ?X ?Y)

</query>

<!-- load SUMO and disable the terrorism ontology -->
<kb_load kb="sumo" syntax="kif"

file="SemWeb/sumo139.kif" />
<kb_status kb="terrorism" enabled="no" />

<!-- answer the following query to SUMO -->
<query max_answers="10" time_limit="5">
(instance ?X ?Y)

</query>

<!-- enable the terrorism ontology -->
<kb_status kb="terrorism" enabled="yes" />

<!-- answer the same query using formulas from both SUMO
and the terrorism ontology -->
<query max_answers="10" time_limit="5">
(instance ?X ?Y)

</query>

<!-- assert two new facts about the instance relation -->
<assert syntax="kif">
(instance a b)
(instance b c)

</assert>

<!-- answer the same query using formulas from SUMO,
the terrorism ontology and newly asserted facts -->

<query max_answers="10" time_limit="5">
(instance ?X ?Y)

</query>

Fig. 1. Pre-compiled Knowledge Bases

with a large ontology may be prohibitive. For example, Vampire implements
sophisticated preprocessing algorithms for first-order formulas, and the collec-
tion of clauses obtained from them can be further processed for simplifications.
It is better to have a system which can answer a sequence of queries to an on-
tology or collection of ontologies without restarts. Vampire solves this problem
by implementing pre-compiled knowledge bases.
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Figure 1 shows a part of Vampire’s bag file2 that uses pre-compiled knowledge
bases in Vampire. The command kb_load reads an ontology or a knowledge
base from a file and compiles it. This is done by preprocessing formulas in the
ontology, converting them to CNF, and applying various simplification rules to
the CNF. The resulting set of clauses is then stored internally, along with some
information that allows one to quickly retrieve only a part of the ontology that is
relevant to a particular query. The command kb_status can be used to enable or
disable loaded ontologies (disabled ontologies are not used for query answering
but remain stored and pre-compiled). The formulas in the enabled knowledge
bases can be used for query answering. Answering some queries may require
information from several knowledge bases. As far as we know, Vampire is the
only first-order prover implementing pre-compiled knowledge bases.

Goal-Oriented Proof-Search for Query Answering. When answering queries to
large ontologies, it is of paramount importance that query answering be goal-
oriented. One can use the modern theory of resolution (see [1]) to make resolution
proof-search goal-oriented. For example, one can use literal selection functions
and term orderings that prefer literals and terms coming from the goal. Another
possibility is to use the set-of-support strategy, in which inferences involving only
clauses not derived from the query are prohibited. The use of the set of support
strategy together with selection functions is incomplete, so we used the following
modification of this strategy: we select all literals in clauses not derived from the
query. Experimental results have shown that this variant of the set-of-support
strategy works very well: a typical query response time for queries to SUMO
falls within one second.

We believe that in future one can improve goal-oriented proof search by also
providing relevance filters, which will allow one to focus on a small part of the
ontology. This seems to be especially promising for ontologies, in which the ma-
jority of knowledge is represented as definitions of predicates. Such a filtering
technique proved indispensable in the use of theorem provers for classifying on-
tologies based on the subsumption relation (see [45]).

Consistency Checking. For DL-based ontologies, consistency (of the ontology
as a whole) is usually not an issue. For ontologies and knowledge bases using ex-
pressive languages, such as FOL, consistency may be a problem. Such ontologies
may be created by people using the same symbols with a different meaning, peo-
ple who do not know logic well, or people who understand the ontology domain
differently. Our experiments with several versions of SUMO [30] have shown that
all of them had numerous axioms creating inconsistency. Two examples (one of
them for a terrorism ontology) are given in the appendix.

Checking consistency of ontologies is a more difficult problem than query an-
swering. For query answering one can focus on the query and formulas derived
from it. For consistency-checking, there is no query to focus on. Consistency
checking in Vampire was implemented by a standard saturation algorithm. How-

2 A bag file may contain any kind of information for Vampire, including commands,
options, and queries.
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ever it turned out that the standard options used for theorem proving did not
perform well for large ontologies. (This may be one of the reasons for the rel-
atively slow performance of Vampire reported in [45].) By turning off some
simplification rules (backward subsumption, backward demodulation, forward
subsumption resolution) and fine-tuning some other options, we were able to
increase the speed by a factor of 12.

Beyond First-Order Logic. Even relatively simple extensions of both DLs
and FOL can be very difficult to implement or even lead to theories for which
no complete algorithms exist. For example, it is not hard to achieve the full
expressive power of arithmetic by adding integers as a datatype and using this
datatype in an unrestricted way. Nonetheless, extensions of first-order logic may
turn out to be crucial for applications, and in this case one has to find a com-
promise between the expressive power of such extensions and the possibility of
implementing them efficiently on top of existing implementations. In this section
we describe a light-weight implementation in Vampire of some features taking
the system beyond first-order logic. We illustrate the utility of such extensions
by showing inconsistency proofs for ontologies using these features.

Support for Datatypes. Theorem provers are not able to deal with datatypes
(such as integers and strings) other than via complex axiomatisations that would
severely degrade performance. Typical ontologies, particularly in web services
applications, will contain many datatypes and data values recording knowledge
about names, addresses, prices and so on. Full support of these datatypes in
a prover is impossible since first-order logic with datatypes is not recursively
enumerable. However, a limited form of reasoning with datatypes can be imple-
mented.

Vampire supports three datatypes: integers, real numbers and strings. It can
understand constants of these datatypes occurring in the input ontology, for
example it knows that 1 is an integer constant and “one” is a string constant. It
also implements a number of built-in functions and relations on these datatypes,
such as comparison operators on numeric datatypes or concatenation of strings.
Vampire can evaluate simple expressions. For example, it can evaluate 2+3 < 6
to true. It cannot do more complex reasoning tasks with the datatypes, for
example, it cannot to derive a contradiction from the facts c < 2 and 3 < c, but
will be able derive a contradiction from them if the input contains the transitivity
axiom for <.

Moreover, Vampire has a mechanism that allows one to define new func-
tions and relations on the datatypes using recursive definitions, so in a way it
contains a small functional programming language inside. Such definitions can
be implemented using pre-oriented equalities and pre-selected literals. The abil-
ity to define new functions and relations on datatypes can become standard in
future expressive ontology languages.

Since there is no standard convention on the names for built-in functions
and relations on datatypes, Vampire also provides an interface for mapping the
input ontology names to the internal names for these functions and relations.
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Meta-Predicates. It is non-trivial to implement variables and functions as pred-
icate symbols, as there is no proof theory for this feature of KIF. If Vampire
finds such variables in the input, it transforms the input using the predicate
symbol holds , as mentioned in Section 1, and the function symbol apply . This
style of reasoning is incomplete, since Vampire does not implement reflection,
that is, the rule replacing holds(r , t1 , . . . , tn) by r(t1, . . . , tn) or vice versa. Even
the current lightweight implementation using holds was strong enough to answer
some queries related to transitive relations axiomatised by

transitive(u)↔ ∀x∀y∀z(u(x, y) ∧ u(y, z)→ u(x, z))
and to discover inconsistencies in SUMO, see the appendix.

Row Variables. Theorem 1 implies the impossibility of reasoning with row vari-
ables. If all row variables are bound by essentially universal quantifiers (that is,
positively occurring universal or negatively occurring existential ones), then the
set of provable formulas is still recursively enumerable but one has to implement
reasoning modulo associativity, see [14]. Implementing reasoning modulo asso-
ciativity is very difficult, for example, two terms may have an infinite number of
minimal unifiers modulo associativity. It is pointed out in [14] that one can use
a weaker class of formulas with row variables in which a row variable may occur
only as the last argument. In this case it is enough to implement only sequence
variables [26].

However, one can note that the main use of row variables in SUMO is for
relations or relatively small arities. For this reason, Vampire only substitutes
for row variable sequences of variables of a bounded length. The default upper
bound on the length is 2 but it can be changed by the user.

If the input contains row variables, Vampire does the following:

1. Reject formulas that contain row variables bound by essentially existential
quantifiers;

2. Substitute every remaining row variable @ by sequences or ordinary vari-
ables x1, . . . , xi, such that i ranges over 0, . . . , n where n is the upper bound
specified by the user. This rule is called row variable expansion.

Appendix A gives an example involving reasoning with row variables. The latest
version of SUMO contains only two formulas rejected by Vampire.

Other Issues

Proof Output. It is important that an answer to a query comes with an expla-
nation. Likewise, when inconsistency is discovered, one needs an explanation to
find a source of inconsistency. One can also require that the answers provided
by an ontology reasoner could be checked by a proof checker. To this end, one
needs a system able to produce proofs. Most of the currently available theorem
provers produce a proof in some form. Vampire can produce proofs in several
formats, including XML. Our experiments on checking consistency of SUMO
have shown that the proof should be understandable by humans. Indeed, when
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an inconsistency is discovered, one should find the axioms that cause inconsis-
tency and repair the ontology to remove all sources of inconsistency. We have
found that the proof format in which each inference is displayed separately is
easier to read and understand. Moreover, an ASCII proof is not very readable,
so we included an option to output proofs in LATEX. Both proofs in the appendix
have been generated by Vampire automatically and slightly edited to fit in the
paper size.

The output proof format of Vampire is still far from perfect. We believe that
further research should be done to improve presentation of complex computer-
generated proofs in a human-friendly form.

We are currently working on producing proofs checkable in O(n log n) time.
These proofs will be more detailed than the human-readable proofs but the abil-
ity to check proofs by using a proof-checker is indispensable both in debugging
the theorem prover, the use of the prover for safety-critical applications and
automatic analysis of proofs.

3 Future Work

The techniques we have described greatly improve the performance of Vampire
when answering queries to and checking the consistency of ontologies. Like other
resolution theorem provers, however, it is not very effective at proving satisfi-
ability, and hence at proving non-subsumption. This is a problem if Vampire
is to be used for general purpose ontology reasoning: in typical ontologies, for
example, most classes are satisfiable and most pairs of concepts are not in a
subsumption relationship.

Future work will, therefore, include investigations of a number of strategies
for addressing this problem. Firstly, we will investigate improved literal selec-
tion strategies (that exploit the structure of ontology axioms) to improve the
performance of Vampire on satisfiable problems. Secondly, we will investigate
the enhancement of existing model building methods (see, e.g., [24, 27, 7]), which
are designed to prove satisfiability in FOL. The idea here is to use similar tech-
niques to those we have already successfully employed in Vampire, in particular
using relevance filters to reduce the effective size of the ontology and exploit-
ing the special structure of ontology axioms (in this case to try to minimise
the problem of exponential explosion in model size). Finally, for suitable un-
decidable extensions of DLs (e.g., the proposed SWRL Horn-clause extension
to OWL [17, 18]), we will investigate the development of model building algo-
rithms based on existing tableaux decision procedures for DLs. Such an algo-
rithm would still be sound for satisfiability (i.e., it would only succeed in build-
ing a model if the problem is satisfiable), but it will no longer be guaranteed to
terminate.

We believe that a combination of some or all of these satisfiability testing
techniques with a suitably optimised resolution prover (such as Vampire) will
be able to solve the vast majority of problems encountered when reasoning with
ontologies.
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A Appendix

In this appendix we give two inconsistency proofs found by Vampire. Each of the
proofs is explained in a separate section. We have not changed the formulation
of the problems but do not present them in the KIF syntax. The proofs were
produced using the LATEX output facility of Vampire. We had to edit them
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slightly to fit in the paper size. We also renamed several functions and relations in
SUMO for a better readability using the renaming feature provided by Vampire.
For example, we write x : y instead of instance(x, y). A proof consists of a
sequence of inferences. Each inference infers a formula, called the conclusion of
an inference from zero or more formulas, called the premises of the inference. All
formulas occurring in the proof are numbered. Each inference is annotated by
the numbers of the premises, the number of conclusion, and inference rules used
in the inference. For example, the annotation of last inference in the first proof
means that formula 9 was obtained from formulas 1,2 and 8 using the resolution
and forward subsumption resolution inference rules. The symbol � denotes the
empty clause, which is logically equivalent to contradiction.

We have many examples of inconsistency proofs found by Vampire in the
latest versions of SUMO and the ontology of terrorism from the Sumo Web page
http://ontology.teknowledge.com. A typical proof occupies at least two pages,
so we cannot give them here in detail.

We give a very brief account of one (very short) proof of inconsistency of the
ontology of terrorism. This ontology has about 18,000 first-order axioms. This
example illustrates why most (if not all) of the previous provers would not be
able to find this inconsistency. Although the proof is relatively short, Vampire
generates over 60,000 formulas to find it.

Essentially, the proof is based on three axioms in the ontology. Two of the
axioms are facts asserting information about the number of victims of two Hamas
attacks. The problem with the axiomatisation of these attacks comes from the
fact that they were given the same name.

victimDeathCount(HAMAS -KnifeAttack -25 -Jun-92 , 0);
victimDeathCount(HAMAS -KnifeAttack -25 -Jun-92 , 2).

These two axioms look contradictory, but they do not contradict each other in
FOL. However, the ontology also contains the following axiom

victimDeathCount(x0, x3) ⊃
x3 = CardinalityFn(KappaFn(x4, and(patient(x0, x4),

holdsDuring(ImmediateFutureFn(x0),
attribute(x4,Dead))))).

This axiom looks quite complex, nonetheless it is easy to see that it implies
that in the relation victimDeathCount the second argument is a function of the
first argument. This and the two facts given above imply that 0 = 2. Since
Vampire knows simple arithmetic, it immediately derives contradiction. The
proof is found in 1.7 seconds on a computer with a 1GHz Intel processor and
2GB of RAM.

The proof is neither long nor very sophisticated. However, to find it one has to
apply the equality rule paramodulation to rather complex terms used in the last
formula. This would make it very difficult if possible at all to find it for a prover
not having efficient built-in equality reasoning or a prover using a translation of
logic with equality into logic without equality. In addition, knowledge of simple
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arithmetic is needed to derive contradiction from 0 = 2, and as far as we know
the most efficient FO provers do not have built-in arithmetic in any form.

We have a large collection of proofs of inconsistency of several versions of
SUMO found by Vampire; some of them, if translated into human proofs, use
very refined argument, for example showing problems with a careless use in
SUMO of row variables and relations of arbitrary arity. We are planning to
analyse these proofs in a separate paper.

A Proof of Inconsistency of SUMO. Here we give a proof demonstrating
inconsistency of the Suggested Upper Merger Ontology version of July 2004.
This proof is generated by the auto-mode of Vampire in 34.5 seconds. Vam-
pire can also find the inconsistency proof in 3 seconds with a time limit of 4
seconds.3 Using the optimal settings for ontology reasoning Vampire can prove
inconsistency in 2.7 seconds, and also in 0.7 second with a time limit of 1 second.
If incomplete strategies are used, the proof can be found in 0.2 seconds. Note
that consistency checking is much harder than query answering, since there is
no goal to focus on, so a theorem prover must perform a brute force non-goal-
oriented search from the initial set of about 5,000 FO formulas with equality.
This proof derives contradiction from a formula containing a row variable and
uses the row variable expansion rule. A row variables occurs, for example, in the
atomic subformula holds(x,@1, w) of input formula 5.

The proof is written in a rather condensed form. For example, the CNF trans-
formation rule in the proof consists of a number of smaller steps, including
skolemisation introducing the skolem function σ.

Proof.

[1, input]

ListFn : TotalValuedRelation

[2, input]

ListFn : VariableArityRelation

[3, input]

x : VariableArityRelation ⊃ ¬(∃y)valence(x, y)

[3→ 4, cnf transformation]
x : VariableArityRelation ⊃ ¬(∃y)valence(x, y)
¬valence(x, y) ∨ ¬x : VariableArityRelation

[5, input]
x : TotalValuedRelation ≡
(∃y)(x : Relation ∧ valence(x, y)∧

( (∀z∀u∀v)(z < y ∧ domain(x, z, v)∧u=nth(ListFn(@1), z) ⊃ u : v) ⊃
(∃w)holds (x,@1, w)))

3 Vampire may work much faster when a time limit is given, for details see [36].
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[5→ 6, row variable expansion]

x : TotalValuedRelation ≡
(∃y)(x : Relation ∧ valence(x, y)∧

( (∀z∀u∀v)(z < y ∧ domain(x, z, v)∧u=nth(ListFn(@1), z)⊃u : v)⊃
(∃w)holds (x,@1, w)))

x : TotalValuedRelation ≡
(∃y)(x : Relation ∧ valence(x, y)∧

( (∀z∀u∀v)(z < y ∧ domain(x, z, v) ∧ u=nth(ListFn(w), z)⊃u : v)⊃
(∃x6)holds(x,w, x6)))

[6→ 7, cnf transformation]

x : TotalValuedRelation ≡
(∃y)(x : Relation ∧ valence(x, y)∧

( (∀z∀u∀v)(z < y ∧ domain(x, z, v) ∧ u=nth(ListFn(w), z)⊃u : v)⊃
(∃x6)holds(x,w, x6)))

valence(y, σ(x, y)) ∨ ¬y : TotalValuedRelation

[4, 7→ 8, resolution]

¬valence(x, y) ∨ ¬x : VariableArityRelation
valence(y, σ(x, y)) ∨ ¬y : TotalValuedRelation

¬y : VariableArityRelation ∨ ¬y : TotalValuedRelation

[1, 2, 8→ 9, resolution, forward subsumption resolution]

ListFn : TotalValuedRelation
ListFn : VariableArityRelation

¬y : VariableArityRelation ∨ ¬y : TotalValuedRelation
�

A Proof of Inconsistency of the Terrorism Ontology. Here we give a
proof of inconsistency of the ontology of terrorism from the Sumo Web page
http://ontology.teknowledge.com. This ontology has about 18,000 first-order
axioms. The proof is rather short but requires knowledge of the datatype of
integers. Namely, at the last inference step it uses the fact 0 �= 2. In addition,
the proof uses built-in equality reasoning. The proof is found in 7 seconds using
the standard mode and in 1.7 seconds using the optimal settings for ontology
reasoning. Note that the proof uses applications of equality to large terms, so it
is unlikely to be found quickly by a prover without built-in equality reasoning.

Proof.

[1, input]

victimDeathCount(x, y) ⊃
y = CardinalityFn(KappaFn(z, and(patient(x, z),

holdsDuring( ImmediateFutureFn(x),
attribute(z,Dead)))))
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[1→ 2, cnf transformation]
victimDeathCount(x, y) ⊃
y = CardinalityFn(KappaFn(z, and(patient(x, z),

holdsDuring( ImmediateFutureFn(x),
attribute(z,Dead)))))

y = CardinalityFn(KappaFn(x, and(patient(z, x),
holdsDuring( ImmediateFutureFn(z),

attribute(x,Dead))))) ∨
¬victimDeathCount(z, y)

[3, input]
victimDeathCount(HAMAS-KnifeAttack-25 -Jun-92 , 0)

[2, 3→ 4, resolution]
y = CardinalityFn(KappaFn(x, and(patient(z, x),

holdsDuring( ImmediateFutureFn(z),
attribute(x,Dead))))) ∨

¬victimDeathCount(z, y)
victimDeathCount(HAMAS-KnifeAttack-25 -Jun-92 , 0)

CardinalityFn(KappaFn(y, and(patient(HAMAS-KnifeAttack-25 -Jun-92 , y),
holdsDuring( ImmediateFutureFn(HAMAS-KnifeAttack-25 -Jun-92 ),

attribute(y,Dead))))) = 0

[5, input]

victimDeathCount(HAMAS-KnifeAttack-25 -Jun-92 , 2)

[4, 2, 5→ 6, resolution, forward demodulation, evaluation]
CardinalityFn(KappaFn(y, and(patient(HAMAS-KnifeAttack-25 -Jun-92 , y),

holdsDuring( ImmediateFutureFn(HAMAS-KnifeAttack-25 -Jun-92 ),
attribute(y,Dead))))) = 0

y = CardinalityFn(KappaFn(x, and(patient(z, x),
holdsDuring( ImmediateFutureFn(z),

attribute(x,Dead))))) ∨
¬victimDeathCount(z, y)

victimDeathCount(HAMAS-KnifeAttack-25 -Jun-92 , 2)
�
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Abstract. Automatic debugging of UML class diagrams helps in the vi-
sual specification of software systems because users cannot detect errors
in logical inconsistency easily. This paper focuses on tractable consistency
checking of UML class diagrams. We accurately identify inconsistencies
in these diagrams by translating them into first-order predicate logic
generalized by counting quantifiers and classify their expressivities by
eliminating some components. For class diagrams of different expressive
powers, we introduce optimized algorithms that compute their respective
consistencies in P, NP, PSPACE, or EXPTIME with respect to the size
of a class diagram. In particular, for two cases in which class diagrams
contain (i) disjointness constraints and overwriting/multiple inheritances
and (ii) these components along with completeness constraints, the re-
striction of attribute value types decreases the complexities from EXP-
TIME to P and PSPACE. Additionally, we confirm the existence of a
meaningful restriction of class diagrams that prevents any logical incon-
sistency.

1 Introduction

The Unified Modeling Language (UML) [11, 6] is a standard modeling language;
it is used as a visual tool for designing software systems. However, visualized
descriptions make it difficult to determine consistency in formal semantics. In
order to design UML diagrams, designers check not only for syntax errors but
also for logical inconsistency, which may be present implicitly in the diagrams.
Automatic detection of errors is very helpful for designers; for example, it enables
them to revise erroneous parts of UML diagrams by determining inconsistent
classes or attributes. Moreover, in order to confirm the accuracy of debugging
(soundness, completeness, and termination), a consistency checking algorithm
should be developed computationally and theoretically.

Class diagrams, which are a type of UML diagrams, are employed to model
concepts in static views. The consistency of class diagrams has been investigated
as follows. Evans [5] attempted a rigorous description of UML class diagrams by
using the Object Constraint Language (OCL) and treated UML reasoning. Beck-
ert, Keller, and Schmitt [1] defined a translation of UML class diagrams with
OCL into first-order predicate logic. Further, Tsiolakis and Ehrig [13] analyzed
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the consistency of UML class and sequence diagrams by using attributed graph
grammars. The OCL and other approaches provide rigorous semantics and logi-
cal reasoning on UML class diagrams; however, they do not theoretically analyze
the worst-case complexity of consistency checking. On the other hand, a number
of object-oriented models and their consistency [10, 12] have been considered for
developing software systems, but the models do not characterize the components
of UML class diagrams; for example, the semantics of attribute multiplicities is
not supported.

Berardi, Calvanese, and De Giacomo presented the correspondence between
UML class diagrams and description logics (DLs), which enables us to utilize
DL-based systems for reasoning on UML class diagrams [2]. In fact, Franconi
and Ng implemented the concept modeling system ICOM [7] using DLs. The
cyclic expressions of class diagrams are represented by general axioms for DLs.
For example, a class diagram is cyclic if a class C has an attribute and the type
of the attribute value is defined by the same class. However, it is well known that
reasoning on general axioms of the necessary DLs is exponential time hard [3].
Therefore, consistency checking of the class diagrams in DLs requires exponential
time in the worst case.

In order to reduce the complexity, we consider restricted UML class diagrams
obtained by deleting some components. A meaningful restriction of class di-
agrams is expected to avoid intractable reasoning, thus facilitating automatic
debugging. This solution provides us with not only tractable consistency check-
ing but also a sound family of class diagrams (i.e., its consistency is theoretically
guaranteed without checking).

The aim of this paper is to present optimized algorithms for testing the con-
sistency of restricted UML class diagrams, which are designed to be suitable for
class diagrams of different expressive powers. The algorithms detect the logical
inconsistency of class diagram formulation in first-order predicate logic gener-
alized by counting quantifiers [9]. Although past approaches employ reasoning
algorithms of DL and OCL, we develop consistency checking algorithms specif-
ically for UML class diagrams. Our algorithms deal directly with the structure
of UML class diagrams; hence, they enable the following:

– Easy recognition of the inconsistency triggers in the diagram structure, such
as combinations of disjointness/completeness constraints, attribute multi-
plicities, and overwriting/multiple inheritances, and

– Refinement of the algorithms when the expressivity is changed by the pres-
ence of the inconsistency triggers.

The inconsistency triggers captured by the diagram structure are used to re-
strict some relevant class diagram components in order to derive a classification
of UML class diagrams. Since we can theoretically prove that there arises no
inconsistency of eliminated components, the algorithms will become simplified
and optimized for their respective expressivity.

The contributions of this paper are as follows:

1. Inconsistency triggers: We accurately identify the inconsistency triggers that
cause logical inconsistency among classes, attributes, and associations.
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2. Expressivity: We classify the expressivity of UML class diagrams by deleting
and adding certain inconsistency triggers.

3. Algorithms and complexities: We develop several consistency checking algo-
rithms for class diagrams of different expressive powers and demonstrate that
they compute the consistency of those class diagrams in P, NP, PSPACE, or
EXPTIME with respect to the size of a class diagram.

4. Tractable consistency checking in the optimized algorithms: When the at-
tribute value types are defined with restrictions in class diagrams, con-
sistency checking is respectively computable in P and PSPACE for two
cases in which the diagrams contain (i) disjointness constraints and over-
writing/multiple inheritances and (ii) these components with completeness
constraints.

5. Consistent class diagrams: We demonstrate that every class diagram is con-
sistent if the expressivity is restricted by deleting disjointness constraints
and overwriting/multiple inheritances (but allowing attributes multiplicities
and simple inheritances). Thus, we need not test the consistency of such less
expressive class diagrams (D−0 and D−com).

There are two main advantages with regard to the results of this study. First,
the optimized algorithms support efficient reasoning for various expressive pow-
ers of class diagrams. In contrast, the DL formalisms do not provide optimized
algorithms for the restricted UML class diagrams because general axioms of DLs
require exponential time even if DLs are restricted [3]. Therefore, the classifica-
tion of DLs does not fit into the classification of UML class diagrams1. Second,
a meaningful restriction of UML class diagrams is analyzed. We confirm the ex-
istence of restricted class diagrams that permit attribute multiplicities but that
cause no logical inconsistency.

2 Class Diagrams in FOPL with Counting Quantifiers

We define a translation of UML class diagrams into first-order predicate logic
generalized by counting quantifiers. The reasons for encoding into first-order
predicate logic with counting quantifiers are as follows. First, the semantics of
UML class diagrams should be defined by encoding them in a logical language
because consistency checking is based on the semantics of encoded formulas. In
other words, no consistency checking algorithm can operate on original diagrams
without formal semantics. Second, variables and quantifiers in first-order logic
lead to an explicit formulation that is useful to restrict/classify the expressive
powers. In contrast, DL encoding [2] conceals the quantification of variables in
expressions.

The alphabet of UML class diagrams consists of a set of class names, a set
of attribute names, a set of operation names, a set of association names, and a
set of datatype names. Let C,C′, Ci be class names, a, a′ attribute names, f, f ′

1 Note that reasoning on general axioms becomes exponential hard even if the small DL
AL contains no disjunction, qualified existential restriction, and number restriction.
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Fig. 1. Components of UML class diagrams

operation names, A,A′ association names, and t, t′, ti datatype names. Let type
T be either a class or a datatype. The leftmost figure in Fig.1 represents a class
C with an attribute a[i..j] : T , a 0-ary operation f() : T , and an n-ary operation
f(T1, . . . , Tn) : T , where [i..j] is the attribute multiplicity and T and T1, . . . , Tn

are types. Any class C can be expressed as the unary predicate C in first-order
logic. Let F1 and F2 be first-order formulas. We denote the implication form
F1 → F2 as the universal closure ∀x1 · · · ∀xn.(F1 → F2) where x1, . . . , xn are all
the free variables occurring in F1 → F2. Let F (x) denote a formula F in which
the free variable x occurs. The counting quantifier formula ∃≥ix.F (x) implies
that at least i elements x satisfy F (x), while the counting quantifier formula
∃≤ix.F (x) implies that at most i elements x satisfy F (x). The value type T and
multiplicity [i..j] of the attribute a in the class C are specified by the following
implication forms:

(1) C(x) → (a(x, y) → T (y)) and C(x) → ∃≥iz.a(x, z) ∧ ∃≤jz.a(x, z)

where a is a binary predicate and T is a unary predicate. Moreover, the 0-ary
operation f() : T of the class C is specified by the following implication forms:

(2) C(x) → (f(x, y) → T (y)) and C(x) → ∃≤1z.f(x, z)

where f is a binary predicate and T is a unary predicate. The n-ary operation
f(T1, . . . , Tn) : T of the class C is specified by the following implication forms:

(3) C(x) → (f(x, y1, . . . , yn, z)→ T1(y1) ∧ · · · ∧ Tn(yn) ∧ T (z))
C(x) → ∃≤1z.f(x, y1, . . . , yn, z)

where f is an n + 2-ary predicate and each Ti, T are unary predicates.
We next formalize associations A that imply connections among classes C1,

. . . , Cn (as in (4) and (6) of Fig.1). A binary association A between two classes
C1 and C2 and the multiplicities ml..mu and nl..nu are specified by the forms:

(4) A(x1, x2)→ C1(x1) ∧C2(x2)
C1(x) → ∃≥nl

x2.A(x, x2) ∧ ∃≤nux2.A(x, x2)
C2(x) → ∃≥ml

x1.A(x1, x) ∧ ∃≤mux1.A(x1, x)
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where A is a binary predicate and C1, C2 are unary predicates. In addition to the
formulas, if an association is represented by a class, then the association class
CA is specified by supplementing the implication forms below:

(5) A(x1, x2)→ (r0(x1, x2, z)→ CA(z))
A(x1, x2)→ ∃=1z.r0(x1, x2, z) and ∃≤1z.(r0(x1, x2, z) ∧ CA(z))

where CA is a unary predicate and r0 is a ternary predicate. By extending the
formulation of a binary association, the n-ary association A among classes C1,
. . . , Cn and their multiplicities “m(1,l)..m(1,u)”, . . . , “m(n,l)..m(n,u)” (as shown
in (6) of Fig.1) are specified by the following implication forms:

(6) A(x1, . . . , xn) → C1(x1) ∧ · · · ∧ Cn(xn)
Ck(x) → ∃≥m(1,l)x1· · ·∃≥m(k−1,l)xk−1∃≥m(k+1,l)xk+1· · ·∃≥m(n,l)xn.A(x1, . . ., xn)[xk/x]
Ck(x) → ∃≤m(1,u)x1· · ·∃≤m(k−1,u)xk−1∃≤m(k+1,u)xk+1· · ·∃≤m(n,u)xn.A(x1, . . ., xn)[xk/x]

where A is an n-ary predicate and [xk/x] is a substitution of xk with x. In
addition, the association class CA is specified by adding the implication forms
below:

(7) A(x1, . . . , xn) → (r0(x1, . . . , xn, z)→ CA(z))
A(x1, . . . , xn)→∃=1z.r0(x1, . . . , xn, z) and ∃≤1z.(r0(x1, . . . , xn, z)∧CA(z))

where CA is a unary predicate and r0 is an n + 1-ary predicate. Furthermore,
we treat association generalization (not discussed in [2]) such that the binary
association A′ between classes C′

1 and C′
2 generalizes the binary association A

between classes C1 and C2 (as in (8) of Fig.1). More universally, the generaliza-
tion between n-ary associations A and A′ is specified by the following implication
forms:

(8)’ A(x1, . . . , xn) → A′(x1, . . . , xn) and C1(x) → C′
1(x), . . . , Cn(x) → C′

n(x)

where A,A′ are n-ary predicates and each Ci, C′
j are unary predicates.

We consider class hierarchies and disjointness/completeness constraints of the
classes in hierarchies, as shown in (9), (10), and (11) of Fig.1. A class hierarchy
(a class C generalizes classes C1, . . . , Cn) is specified by the implication forms
below:

(9) C1(x) → C(x), . . . , Cn(x) → C(x)

where C and C1, . . . , Cn are unary predicates. The completeness constraint be-
tween class C and classes C1, . . . , Cn and the disjointness constraint among
classes C1, . . . , Cn are respectively specified by the implication forms:

(10)C(x)→ C1(x) ∨ · · · ∨Cn(x)
(11)Ci(x) → ¬Ci+1(x) ∧ · · · ∧ ¬Cn(x) for all i ∈ {1, . . . , n− 1}

where C and C1, . . . , Cn are unary predicates.
Let D be a UML class diagram. G(D) is called the translation of D and

denotes the set of implication forms obtained by the encoding of D in first-order
predicate logic with counting quantifiers (using (1)–(11)).
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3 Inconsistencies in Class Diagrams

In this section, we analyze inconsistencies among classes, attributes, and asso-
ciations in UML class diagrams. We first define the syntax errors of duplicate
names and irrelevant attribute value types as follows.

Duplicate name errors/attribute value type errors. A UML class diagram
D contains a duplicate name error if (i) two classes C1 and C2 appear and C1
and C2 have the same class name, (ii) two associations A1 and A2 appear and
A1 and A2 have the same association name, or (iii) two attributes a1 and a2
appear in a class C and a1 and a2 have the same attribute name. Moreover,
if two classes have the same name’s attributes a : T1 and a : T2, such that T1
is a class and T2 is a datatype, then the class diagram contains an attribute
value type error. Obviously, the checking of these syntax errors in a UML class
diagram can be computed in linear time.

We elaborate three inconsistency triggers for the UML class diagrams. The
reflexive and transitive closure of → over classes and associations are denoted
by →∗ such that (i) C(x) →∗ C(x), (ii) A(x1, . . . , xn) →∗ A(x1, . . . , xn), (iii) if
C(x) → F (x), or C(x) →∗ C′(x) and C′(x) →∗ F (x), then C(x) →∗ F (x), and
(iv) if A(x1, . . . , xn) → F (x1, . . . , xn), or A(x1, . . . , xn) →∗ A′(x1, . . . , xn) and
A′(x1, . . . , xn) →∗ F (x1, . . . , xn), then A(x1, . . . , xn) →∗ F (x1, . . . , xn), where
F (x) and F (x1, . . . , xn) are any formulas including the free variables.

Inconsistency trigger 1 (generalization and disjointness). The first in-
consistency trigger is caused by a combination of generalization and a disjoint-
ness constraint. A class diagram has an inconsistency trigger if it contains the
formulas C(x) →∗Ck(x) and C(x) →∗¬C1(x) ∧ · · · ∧ ¬Cn(x) where 1 ≤ k ≤ n.

Ck

Ck

{disjoint}

CnC1

C C

As shown in the above figure, this inconsistency appears when a class C has a
superclass Ck but the classes C and Ck are defined as disjoint to each other in
the constraint of a class hierarchy.

Inconsistency trigger 2 (overwriting/multiple inheritance). The second
inconsistency trigger is caused by one of the following situations:

1. (a) conflict between value types T1 and T2 when they appear in attributes
a : T1 and a : T2 of the same name, or (b) conflict between multiplicities [i..j]
and [i′..j′] when they appear in multiplicities a : T1 and a : T2 of attributes
with the same names.
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2. conflict between multiplicities when they appear in association and super-
associations.

More formally, a class diagram has an inconsistency trigger if it contains a group
of the following formulas:

1. C2(x) →∗C1(x), or C(x) →∗C1(x) and C(x) →∗C2(x), together with
(a) Attribute value types: C1(x) → (a(x, y) → T1(y)) and C2(x) →

(a(x, y) → T2(y)) where T1 and T2 are disjoint2, or
(b) Attribute multiplicities: C1(x) → ∃≥iz.a(x, z) ∧ ∃≤jz.a(x, z) and

C2(x) → ∃≥i′z.a(x, z) ∧ ∃≤j′z.a(x, z) where i > j′.

2. Association multiplicities: A(x1, . . . , xn) → A′(x1, . . . , xn) with
Ck(x) → ∃≥m(1,l)x1 · · · ∃≥m(k−1,l)xk−1 ∃≥m(k+1,l)xk+1 · · · ∃≥m(n,l)xn.A(x1,
. . . , xn)[xk/x] and C′

k(x′) → ∃≤m′
(1,u)

x′1 · · · ∃≤m′
(k−1,u)

x′k−1 ∃≤m′
(k+1,u)

x′k+1

· · · ∃≤m′
(n,u)

x′n. A′(x′1, . . . , x′n)[x′k/x
′] where m(i,l) > m′

(i,u).

C1

C

C2

a : T2[i
′..j′]a : T1[i..j]

C1

C2

a : T2[i
′..j′]

(i) Overwriting

inheritance a : T1[i..j]

(ii) Multiple

inheritance

This figure explains that (i) a class C2 with an attribute a : T2[i′..j′] inherits
the same name’s attribute a : T1[i..j] from a superclass C1 and (ii) a class C
inherits the two attributes a : T1[i..j] and a : T2[i′..j′] of the same name from
superclasses C1 and C2. The former is called overwriting inheritance; the lat-
ter, multiple inheritance. In these cases, if the attribute value types T1 and
T2 are disjoint or if the multiplicities [i..j] and [i′..j′] conflict with each other,
then the attributes are determined to be inconsistent. For example, the mul-
tiplicities [1..5] and [10..∗] cannot simultaneously hold for the same name’s
attributes.

Inconsistency trigger 3 (completeness and disjointness). A disjointness
constraint combined with a completeness constraint can yield the third incon-
sistency trigger. A class diagram has an inconsistency trigger if it contains the
formulas C(x) →∗ C1(x) ∨ · · · ∨ Cn(x) and C(x) →∗ ¬C′

1(x) ∧ · · · ∧ ¬C′
m(x),

where {C1, . . . , Cn} ⊆ {C′
1, . . . , C

′
m}. This inconsistency appears when classes

C and C1, . . . , Cn satisfy the completeness constraint in a class hierarchy and
classes C and C′

1, . . . , C
′
m satisfy the disjointness constraint in another class

2 Types T1 and T2 are disjoint if they are classes C1 and C2 such that C1(x) →∗ ¬C2 ∈
G(D) or if they are datatypes t1 and t2 such that t1 ∩ t2 = ∅.
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hierarchy. Intuitively, any instance of class C must be an instance of one of the
classes C1, . . . , Cn, but each instance of class C cannot be an instance of classes
C′

1, . . . , C
′
m. Hence, this situation is contradictory.

The third inconsistency trigger may be more complicated when the number
of completeness and disjointness constraints that occur in a class diagram is
increased. In other words, disjunctive expressions raised by many completeness
constraints expand the search space of finding inconsistency. Let us define the
relation C(x) →+C1(x)∨· · ·∨Cn(x) as follows: (i) if C(x) →∗C1(x)∨· · ·∨Cn(x),
then C(x) →+ C1(x) ∨ · · · ∨Cn(x), and (ii) if C(x) →+C1(x) ∨ · · · ∨ Cn(x) and
C1(x) →+DC1(x), . . . , Cn(x) →+DCn(x), then C(x) →+ DC1(x)∨· · ·∨DCn(x)
where each DCi denotes C′

1(x) ∨ · · · ∨ C′
m(x) as disjunctive classes. A class

diagram has an inconsistency trigger if it contains the formulas C(x) →+ C1(x)∨
· · · ∨ Cn(x) and for each i ∈ {1, . . . , n}, C(x) →∗¬C(i,1)(x) ∧ · · · ∧ ¬C(i,mi)(x),
where Ci is one of the classes C(i,1), . . . , C(i,mi). For example, the following figure
illustrates that two completeness constraints are complicatedly inconsistent with
respect to a disjointness constraint.

{disjoint}

C1

{complete}

C

Ck

{complete}

Ck+l

Cn

C

C1 Cn

The three inconsistency triggers describe all the logical inconsistencies in UML
class diagrams if they contain association generalization but not roles. In the next
section, we will design a complete consistency checking algorithm for finding
those inconsistency triggers.

We define a formal model of UML class diagrams using the semantics of FOPL
with counting quantifiers. An interpretation I is an ordered pair (U, I) of the
universe U and an interpretation function I for a first-order language.

Definition 1 (UML Class Diagram Models). Let I = (U, I) be an inter-
pretation. The interpretation I is a model of a UML class diagram D (called a
UML-model of D) if

1. I(C) �= ∅ for every class C in D and
2. I satisfies G(D) where G(D) is the translation of D.
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The first condition indicates that every class is a non-empty class (i.e., an in-
stance of the class exists) and the second condition implies that I is a first-order
model of the class diagram formulation G(D). A UML class diagram D is con-
sistent if it has a UML-model.

Furthermore, the following class diagram is invalid because the association
class CA cannot be used for two different binary associations between classes C1
and C2 and between classes C1 and C3.

C1 CA

C2

C3

Instead of CA, we describe a ternary association or two association classes. It
appears that the EXPTIME-hardness in [2] relies on such expressions. This is
because when we reduce (EXPTIME-hard) concept satisfiability in ALC KBs to
class consistency in a UML class diagram, the ALC KB {C1 � ∃PA.C2, C1 �
∃PA.C3} is encoded into an invalid association class. This condition is important
in order to avoid the EXPTIME-hardness and therefore to derive the complexity
results in Section 5. This implies that the consistency checking of some restricted
UML class diagram groups is computable in P and PSPACE.

4 Consistency Checking

This section presents a consistency checking algorithm for a set of implica-
tion forms Γ0 (corresponding to the UML class diagram formulation G(D)).
It consists of two sub-algorithms Cons and Assoc: Cons checks the consistency
of a class in Γ0 and Assoc tests the consistency of association generalization
in Γ0.

4.1 Algorithm for Testing Consistency

We decompose an implication form set Γ0 in order to apply our consistency
checking algorithm to it. Let Γ0 be a set of implication forms, C be a class, and
Fi(x) be any formula including a free variable x. Γ is a decomposed set of Γ0 if
the following conditions hold: (i) Γ0 ⊆ Γ , (ii) if C(x) → F1(x)∧ · · · ∧Fn(x) ∈ Γ ,
then C(x) → F1(x) ∈ Γ, . . . , C(x) → Fn(x) ∈ Γ , and (iii) if C(x) → F1(x) ∨
· · · ∨ Fn(x) ∈ Γ , then C(x) → Fi(x) ∈ Γ for some i ∈ {1, . . . , n}. We denote
Σ(Γ0) as the family of decomposed sets of Γ0.

We denote cls(Γ0) as the set of classes, att(Γ0) as the set of attributes, and
asc(Γ0) as the set of associations that occur in the implication form set Γ0.

Definition 2. The following operations will be embedded as subroutines in the
consistency checking algorithm:
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1. H(C, Γ ) = {C′ | C(x) →∗C′(x) ∈ Γ} ∪ {¬C′ | C(x) →∗¬C′(x) ∈ Γ}.
2. E(δ, a, Γ ) =

⋃
C∈δ E(C, a, Γ ) where E(C, a, Γ ) = {C′ | C(x) →∗ (a(x, y) →

C′(y)) ∈ Γ and C(x) →∗ ∃≥iz.a(x, z) ∈ Γ} with i ≥ 1.
3. N(δ, a, Γ ) =

⋃
C∈δ N(C, a, Γ ) where N(C, a, Γ ) = {≥ i | C(x) →∗ ∃≥iz.a(x,

z) ∈ Γ} ∪ {≤ j | C(x) →∗∃≤jz.a(x, z) ∈ Γ}.
4. μ0(δ, Γ ) = {C} if for all C′ ∈ μ(δ, Γ ), C 1 C′ and C ∈ μ(δ, Γ ) where

μ(δ, Γ ) = {C ∈ δ | δ ⊆ H(C, Γ )} and 1 is a linear order over cls(Γ0).

The operation H(C, Γ ) denotes the set of superclasses C′ of C and disjoint
classes ¬C′ of C in Γ . The operation E(δ, a, Γ ) gathers the set of value types T
of attribute a in Γ such that each value type T is of classes in δ. Further, the
operation N(δ, a, Γ ) gathers the set of multiplicities ≥ i and ≤ j of attribute a
in Γ such that each of these multiplicities is of classes in δ. The operation μ(δ, Γ )
returns a set {C1, . . . , Cn} of classes in δ such that the superclasses of each Ci

(in Γ ) subsume all the classes in δ. The operation μ0(δ, Γ ) returns the singleton
set {C} of a class in μ(δ, Γ ) such that C is the least class in μ(δ, Γ ) over 1. The
consistency checking algorithm Cons is described as follows.

Algorithm Cons
input set of classes δ, family of sets of classes Δ, set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
begin

for Γ ∈ Σ(Γ0) do
S = C∈δ H(C,Γ ); fΓ = 0;
if {C, ¬C} �⊆ S and {t1, . . . , tn} �⊆ S s.t. t1 ∩ · · · ∩ tn = ∅ then fΓ = 1;

for a ∈ att(Γ0) do
if i > j s.t. {≥ i, ≤ j} ⊆ N(δ, a, Γ ) then fΓ = 0;
else δa = E(δ, a, Γ );

if δa �= ∅ and δa, μ0(δa, Γ ) �⊆ Δ then fΓ = Cons(δa, Δ ∪ {δ}, Γ0);
esle

rof
fi
if fΓ = 1 then return 1;

rof
return 0;

end;

In order to decide the consistency of the input implication form set Γ0, we execute
the algorithm Cons({C}, ∅, Γ0) for every class C ∈ cls(Γ0). If C is consistent in
Γ0, it returns 1, else 0 is returned. At the first step of the algorithm, a decomposed
set Γ of Γ0 (in Σ(Γ0)) is selected, which is one of all the disjunctive branches with
respect to the completeness constraints in Γ0. Subsequently, for each Γ ∈ Σ(Γ0),
the following three phases are performed.

(1) For the selected Γ , the algorithm checks whether all the superclasses of
classes in δ = {C} (obtained from S =

⋃
C∈δ H(C, Γ )) are disjoint to each other.

Intuitively, it sets a dummy instance of class C and then, the dummy instance is
regarded as an instance of the superclasses C′ of C and of the disjoint classes ¬C′

of C along the implication forms C(x) →∗C′(x) and C(x) →∗¬C′(x) in Γ . If an
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inconsistent pair Ci and ¬Ci possesses the dummy instance, then δ is determined
to be inconsistent in Γ . For example, {C} is inconsistent in Γ1 = {C(x)→ C1(x),
C1(x) → C2(x), C(x) → ¬C2(x)} since the inconsistent pair C2 and ¬C2 must
have the dummy instance of the class C, i.e., H(C, Γ1) = {C,C1, C2,¬C2}.

(2) If phase (1) finds no inconsistency in Γ , the algorithm next checks the
multiplicities of all the attributes a ∈ att(Γ0). The multiplicities of the same
attribute name a are obtained by N(δ, a, Γ ); therefore, when N(δ, a, Γ ) con-
tains {≥ i,≤ j} with i > j, these multiplicities are inconsistent. Intuitively,
similar to phase (1), the algorithm checks whether superclasses involve conflict-
ing multiplicities along the implication form C(x) →∗ C′(x) in Γ . For example,
{C} is inconsistent in Γ2 = {C(x) → ∃≥10z. a(x, z), C(x) → C1(x), C1(x) →
∃≤5z.a(x, z)} since the counting quantifiers ∃≥10 and ∃≤5 cannot simultaneously
hold when N({C}, a, Γ2) = {≥ 10,≤ 5}.

(3) Next, the disjointness of attribute value types is checked. Along the im-
plication form C(x) →∗ C′(x) in Γ , the algorithm gathers all the value types of
the same name’s attributes, obtained by δa = E(δ, a, Γ ) for each a ∈ att(Γ0).
For example, Γ3 = {C(x) → C1(x), C(x) → C2(x), C1(x) → (a(x, y) → C3(y)),
C2(x) → (a(x, y) → C4(y))} derives δa = {C3, C4} by E({C}, a, Γ3) since su-
perclasses C1 and C2 of C have the attributes a : C3 and a : C4. In other words,
each value of attribute a is typed by C3 and C4. Hence, the algorithm needs to
check the consistency of δa = {C3, C4}. In order to accomplish this, it recursively
calls Cons(δa, Δ∪{{C}}, Γ0), where δa is consistent if 1 is returned. The second
argument Δ ∪ {{C}} prevents infinite looping by storing sets of classes where
each set is already checked in the caller processes.

In order to find a consistent decomposed set Γ in the disjunctive branches of
Σ(Γ0), if the three phases (1), (2), and (3) do not detect any inconsistency in Γ ,
then the algorithm sets the flag fΓ = 1, else it sets fΓ = 0. Thus, the flag fΓ = 1
indicates that {C} is consistent in the input Γ0, i.e., Cons({C}, ∅, Γ0) = 1.

In addition to the algorithm Cons, the consistency checking of multiplicities
over association generalization is processed by the following algorithm Assoc.
If Γ0 does not cause any inconsistency with respect to associations, Assoc(Γ0)
returns 1, which is computable in polynomial time.

Algorithm Assoc
input set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
begin

for A ∈ asc(Γ0) and k ∈ {1, . . . , n} s.t. arity(A) = n do
if iv > jv s.t. {(≥ i1, . . . , ≥ ik−1, ≥ ik+1, . . . , ≥ in),

(≤ j1, . . . , ≤ jk−1, ≤ jk+1, . . . , ≤ jn)} ⊆ Nk(H(A,Γ0), Γ0) then return 0;
rof
return 1;

end;

As defined below, the operations H(A,Γ0) and Nk(α, Γ0) respectively return
the set of super-associations A′ of A and the set of n− 1-tuples of multiplicities
of n-ary associations A in α along the implication forms Ck(x) → ∃≥i1x1 · · ·
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∃≥ik−1xk−1 ∃≥ik+1xk+1 · · · ∃≥inxn.A(x1, . . . , xn)[xk/x] and Ck(x) → ∃≤j1x1
· · · ∃≤jk−1xk−1 ∃≤jk+1xk+1 · · · ∃≤jnxn.A(x1, . . . , xn)[xk/x], respectively.

Definition 3. The operations H(A,Γ0) and Nk(α, Γ0) are defined as follows:

1. H(A,Γ0) = {A′ | A(x1, . . . , xn) →∗A′(x1, . . . , xn) ∈ Γ0}.
2. Nk(α, Γ0) =

⋃
A∈α Nk(A,Γ0) where Nk(A,Γ0) = {(≥ i1, . . . ,≥ ik−1,≥ ik+1,

. . . , ≥ in) | Ck(x) → ∃≥i1x1 · · · ∃≥ik−1xk−1 ∃≥ik+1xk+1 · · · ∃≥inxn.A(x1,

. . . , xn)[xk/x] ∈ Γ0} ∪ {(≤ j1, . . . , ≤ jk−1, ≤ jk+1, . . . , ≤ jn) | Ck(x) →
∃≤j1x1 · · · ∃≤jk−1xk−1 ∃≤jk+1xk+1 · · · ∃≤jnxn.A(x1, . . . , xn)[xk/x] ∈ Γ0}.

4.2 Soundness, Completeness, and Termination

We sketch a proof of the completeness for the algorithms Cons and Assoc.
Assume that Cons({C}, ∅, G(D)) for all C ∈ cls(G(D)) and Assoc(G(D)) are
called. We construct an implication tree of (C,G(D)) that expresses the con-
sistency checking proof of C in G(D). If Cons({C}, ∅,G(D)) = 1, there ex-
ists a non-closed implication tree of (C,G(D)). In order to prove the existence
of a UML-model of D, a canonical interpretation is constructed by consistent
subtrees of the non-closed implication trees of (C1,G(D)), . . . , (Cn,G(D)) (with
cls(G(D)) = {C1, . . . , Cn}) and by Assoc(G(D)) = 1. This proves that D is
consistent.

Corresponding to calling Cons(δ0, ∅, Γ0), we define an implication tree of a
class set δ0 that expresses the consistency checking proof of δ0.

Definition 4. Let Γ0 be a set of implication forms and let δ0 ⊆ cls(Γ0). An
implication tree of (δ0, Γ0) is a finite and minimal tree such that (i) the root is
a node labeled with δ0, (ii) each non-leaf node is labeled with a non-empty set of
classes, (iii) each leaf is labeled with 0, 1, or w, (iv) each edge is labeled with Γ
or (Γ, a) where Γ ∈ Σ(Γ0) and a ∈ att(Γ0), and (v) for each node labeled with
δ and each Γ ∈ Σ(Γ0), if

⋃
C∈δ H(C, Γ ) contains {C,¬C} or {t1, . . . , tn} with

t1 ∩ · · · ∩ tn = ∅, then there is a child of δ labeled with 0 and the edge of the
nodes δ and 0 is labeled with Γ , and otherwise:

– if att(Γ0) = ∅, then there is a child of δ labeled with 1 and the edge of the
nodes δ and 1 is labeled with Γ , and

– for all a ∈ att(Γ0), the following conditions hold:
1. if i > j such that {≥ i,≤ j} ∈ N(δ, a, Γ ), then there is a child of δ

labeled with 0 and the edge of the nodes δ and 0 is labeled with (Γ, a),
2. if E(δ, a, Γ ) = ∅, then there is a child of δ labeled with 1 and the edge of

the nodes δ and 1 is labeled with (Γ, a),
3. if there is an ancestor labeled with E(δ, a, Γ ) or μ0(E(δ, a, Γ ), Γ ), then

there is a child of δ labeled with w and the edge of the nodes δ and w is
labeled with (Γ, a), and

4. otherwise, there is a child of δ labeled with E(δ, a, Γ ) and the edge of the
nodes δ and E(δ, a, Γ ) is labeled with (Γ, a).
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Let T be an implication tree of (δ0, Γ0). A node d in T is closed if (i) d is labeled
with 0 or if (ii) d is labeled with δ and for every Γ ∈ Σ(Γ0), there is an edge
(d, d′) labeled with Γ or (Γ, a) such that d′ is closed. An implication tree of
(δ0, Γ0) is closed if the root is closed; it is non-closed otherwise. A forest of Γ0 is
a set of implication trees of ({C1}, Γ0), . . . , ({Cn}, Γ0) such that cls(Γ0) = {C1,
. . . , Cn}. A forest S of Γ0 is closed if there exists a closed implication tree T
in S. The following lemma states the correspondence between the consistency
checking for every C ∈ cls(Γ0) and the existence of a non-closed forest of Γ0.

Lemma 1. Let Γ0 be a set of implication forms. For every class C ∈ cls(Γ0),
Cons({C}, ∅, Γ0) = 1 if and only if there is a non-closed forest of Γ0.

We define a consistent subtree T ′ of a non-closed implication tree T such that
T ′ is constructed by non-closed nodes in T .

Definition 5 (Consistent Subtree). Let T be a non-closed implication tree
of ({C0}, Γ0) and d0 be the root where Γ0 is a set of implication forms and
C0 ∈ cls(Γ0). A tree T ′ is a consistent subtree of T if (i) T ′ is a subtree of T ,
(ii) every node in T ′ is not closed, and (iii) every non-leaf node has m children
of all the attributes a1, . . . , am ∈ att(Γ0) where each child is labeled with 1, w,
or a set of classes and each edge of the non-leaf node and its child is labeled with
(Γ, ai).

We show the correspondence between the consistency of an implication form
set Γ0 and the existence of a non-closed forest of Γ0. We extend the first-order
language by adding the new constants d̄ for all the elements d ∈ U such that
each new constant is interpreted by itself, i.e., I(d̄) = d. In addition, we define
the following operations:

1. projn
k (x1, . . . , xn) = xk where 1 ≤ k ≤ n.

2. Max≥(X) = (Max(X1), . . . ,Max(Xn)) where X is a set of n-tuples and for
each v ∈ {1, . . . , n}, Xv = { projn

v (i1, . . . , in) | (≥ i1, . . . ,≥ in) ∈ X}.
3. AC(A,Γ ) = (C1, . . . , Cn) if A(x1, . . . , xn)→ C1(x1) ∧ · · · ∧ Cn(xn) ∈ Γ .

A canonical interpretation of an implication form set Γ0 is constructed by
consistent subtrees of the non-closed implication trees in a forest of Γ0, that is
used to prove the completeness of the algorithm Cons. A class C is consistent
in Γ if there exists a non-closed implication tree of ({C}, Γ0) such that the root
labeled with {C} has a non-closed child node labeled with Γ or (Γ, a).

Definition 6 (Canonical Interpretation). Let Γ0 be a set of implication
forms such that Assoc(Γ0) = 1 and let S = {T1, . . . , Tn} be a non-closed for-
est of Γ0. For every Ti ∈ S, there is a consistent subtree T ′i of Ti, and we set
S′ = {T ′1 , . . . , T ′n} as the set of consistent subtrees of T1, . . . , Tn in S. An canon-
ical interpretation of Γ0 is a pair I = (U, I) such that U0 = {d | d is a non-leaf
node in T ′1 ∪ · · · ∪ T ′n}, each e0, ej, e(v,w) are new individuals, and the following
conditions hold:

1. U =U0 ∪
⋃

d∈T ′
1∪···∪T

′
n

a∈att(Γ0)

Ud,a ∪
⋃

d∈T ′
1∪···∪T

′
n

A∈asc(Γ0)

Ud,A and I(x)=I0(x) ∪
⋃

d∈T ′
1∪···∪T

′
n

a∈att(Γ0)

Id,a(x) ∪
⋃

d∈T ′
1∪···∪T

′
n

A∈asc(Γ0)

Id,A(x).
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2. For each Γ ∈ Σ(Γ0),

– d ∈ I0(C) iff a non-leaf node d is labeled with δ where C ∈
⋃

C′∈δ H(C′, Γ ),
and

– (d, d′) ∈ I0(a) iff (i) d′ is a non-leaf node and (d, d′) is an edge labeled with
(Γ, a), or (ii) a node d has a child labeled with w, there is a witness d0 of d,
and (d0, d

′) is an edge labeled with (Γ, a).

3. For each edge (d, d′) labeled with (Γ, a) such that the node d is labeled with δ
and Max≥(N(δ, a, Γ )) = k,

– Ud,a = {e1, . . . , ek−1},
– (d, e1), . . . , (d, ek−1) ∈ Id,a(a) iff (d, d′) ∈ I0(a),
– e1, . . . , ek−1 ∈ Id,a(C) iff d′ ∈ I0(C), and
– (e1, d

′′), . . . , (ek−1, d
′′) ∈ Id,a(a′) iff (d′, d′′) ∈ I0(a′).

4. For all nodes d ∈ I0(Ck) such that AC(A,Γ0) = (C1, . . . , Ck, . . . , Cn) and
Max≥(Nk(H(A, Γ0), Γ0)) = (i1, . . . , ik−1, ik+1, . . . , in),

– Ud,A = {e0} ∪
⋃

v∈{1,...,n}\{k}{e(v,1), . . . , e(v,iv)},
– for all (w1, . . . , wk−1, wk+1, . . . , wn) ∈ Nn such that 1 ≤ wv ≤ iv, (e(1,w1),

. . . , e(k−1,wk−1), d, e(k+1,wk+1), . . . , e(n,wn))∈Id,A(A) and e(1,w1) ∈ Id,A(C1),

. . . , e(k−1,wk−1)∈Id,A(Ck−1), e(k+1,wk+1)∈Id,A(Ck+1), . . . , e(n,wn)∈Id,A(Cn),
– e(v,w) ∈ Id,A(C′) for all C′ ∈ H(Cv, Γ

′) iff e(v,w) ∈ Id,A(Cv) and Cv is
consistent in Γ ′,

– (u1, . . . , un) ∈ Id,A(A′) for all A′ ∈ H(A,Γ0) iff (u1, . . . , un) ∈ Id,A(A)3,
– (e(v,w), d

′′) ∈ Id,A(a) and e(v,w) ∈ Id,A(Cv) iff (d′, d′′) ∈ I0(a) and d′ ∈
I0(Cv), and

– for all (w1, . . . , wk−1, wk+1, . . . , wn) ∈ Nn such that 1 ≤ wv ≤ iv, and
(e(1,w1), . . . , e(k−1,wk−1), e, e(k+1,wk+1), . . . , e(n,wn)) ∈ Id,A(A) iff e ∈ I(Ck)
where e is e0, ej, or e(x,y).

5. For all A ∈ asc(Γ0),

– (u1, . . . , un, e0) ∈ Id,A(r0) and e0 ∈ Id,A(CA) iff (u1, . . . , un) ∈ Id,A(A),
– e0 ∈ Id,A(C) for all C ∈ H(CA, Γ ′) iff e0 ∈ Id,A(CA) and Cv is consistent in

Γ ′, and
– (e0, d

′′) ∈ Id,A(a) and e0 ∈ Id,A(CA) iff (d′, d′′) ∈ I0(a) and d′ ∈ I0(CA).

Lemma 2. Let Γ0 be a set of implication forms. There exists an interpretation
I such that for every C0 ∈ cls(Γ0), I |= ∃x.C0(x) if and only if (i) there exists
a non-closed forest of Γ0 and (ii) Assoc(Γ0) = 1.

The correctness for the algorithms Cons and Assoc is obtained as follows:

Theorem 1 (Soundness and Completeness). Let D be a UML class di-
agram with association generalization and without roles, and let G(D) be the
translation of D into a set of implication forms. D is consistent if and only if
Cons({C}, ∅,G(D)) = 1 for all C ∈ cls(G(D)) and Assoc(G(D)) = 1.
3 Note that d, d′, d′′, d0 are nodes, e0, ej , e(v,w) are new constants, and u, uj are nodes

or new constants.
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Theorem 2 (Termination). The consistency checking algorithm Cons termi-
nates.

5 Algorithms and Complexities for Various Expressivities

The proposed consistency checking algorithm terminates; however, Cons still
exhibits a double-exponential complexity in the worst case (and Assoc exhibits
polynomial time complexity). In this section, we will present optimized consis-
tency checking algorithms for class diagrams of different expressive powers.

5.1 Restriction of Inconsistency Triggers

We denote the set of UML class diagrams with association generalization and
without roles as D−ful. By deleting certain inconsistency triggers, we classify UML
class diagrams that are less expressive than D−ful. The least set D−0 of class dia-
grams is obtained by deleting disjointness/completeness constraints and over-
writing/multiple inheritances. We define D−dis, D−com, and D−inh as extensions
of D−0 by adding disjointness constraints, completeness constraints, and over-
writing/multiple inheritances, respectively. We denote D−dis+com, D−dis+inh, and
D−inh+com as the unions of D−dis and D−com, D−dis and D−inh, and D−inh and D−com,
respectively. In order to design algorithms suitable for these expressivities, we
divide the class diagrams into the five groups, as shown in Fig.2.

D−dis+com

D−dis D−com

D−0

D−ful

D−com+inhD−dis+inh

D−inh

Group 5

Group 1

Group 4

Group 3

Group 2

Fig. 2. Classification of UML class diagrams

The least expressive Group 1 is the set of class diagrams obtained by delet-
ing disjointness constraints and overwriting/multiple inheritances (but allowing
attribute multiplicities). Groups 2 and 3 prohibit C1(x) ∨ · · · ∨ Cm(x) as dis-
junctive classes by deleting completeness constraints, and furthermore, Group
2 contains no overwriting/multiple inheritances. Group 4 is restricted by elimi-
nating overwriting/multiple inheritances (but allowing disjointness constraints,
completeness constraints, and attribute multiplicities).
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C2

C1

C3

a : C

C4

a : C ′

a : C ′′

Fig. 3. Attribute value types in overwriting/multiple inheritances

5.2 Restriction of Attribute Value Types

Apart from the restriction of inconsistency triggers, we naturally restrict at-
tribute value types in the overwriting/multiple inheritances. Consider the class
hierarchy in Fig.3. Class C1 with attribute a : C inherits attributes a : C′ and
a : C′′ from superclasses C2 and C4. In this case, if the value type C is a subclass
of all the other value types C′ and C′′ of the same name’s attributes in the class
hierarchy, then the consistency checking of the value types C, C′, and C′′ can
be guaranteed by the consistency checking of only the value type C.

Let C ∈ cls(Γ0) and Γ ∈ Σ(Γ0). The value types of attributes in class C
are said to be restrictedly defined in Γ when if the superclasses C1, . . . , Cn of C
(i.e., H(C, Γ ) = {C1, . . . , Cn}) have the same name’s attributes and the value
types are classes C′

1, . . . , C
′
m, then a value type C′

i is a subclass of the other
value types {C′

1, . . . , C
′
m}\{C′

i} (i.e.,{C′
1, . . . , C

′
m} ⊆ H(C′

i, Γ )). Every attribute
value type is restrictedly defined if the value types of attributes in any class C
∈ cls(Γ0) are restrictedly defined in any Γ ∈ Σ(Γ0). For example, as shown in
Fig.3, the value types C, C′, and C′′ of attribute a in class C1 are restrictedly
defined in Γ1 = {C1(x) → C2(x), C1(x) → C3(x), C3(x) → C4(x), C1(x) →
(a(x, y) → C(y)), C2(x) → (a(x, y) → C′(y)), C4(x) → (a(x, y) → C′′(y)), . . .}
if {C,C′, C′′} ⊆ H(C0, Γ1), where C0 is C, C′, or C′′.

5.3 Optimized Algorithms

We show that Group 1 does not cause any inconsistency and we devise con-
sistency checking algorithms suitable for Groups 2–5. The following algorithm
Cons1 computes the consistency of class diagrams in D−dis+inh, D−inh, and D−dis

if we call Cons1({C0}, ∅, Γ0) for every class C0 ∈ cls(Γ0). Let X be a set and Y
be a family of sets. Then, we define ADD(X,Y ) = {Xi ∈ Y | Xi �⊂ X} ∪ {X}
such that X is added to Y and all Xi ⊂ X are removed from Y . Since D−dis+inh,
D−inh, and D−dis do not contain any completeness constraints, there is a unique
decomposed set of Γ0, namely, Σ(Γ0) = {Γ}. Instead of recursive calls, Cons1
performs looping of consistency checking for each element of variable P that
stores unchecked sets of classes.



Consistency Checking Algorithms for Restricted UML Class Diagrams 235

Algorithm Cons1 for D−
dis+inh, D−

inh, and D−
dis

input set of classes δ, family of sets of classes Δ, set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
begin

P = {δ}; G = Δ;
while P �= ∅ do

δ ∈ P ; P = P − {δ}; Γ ∈ Σ(Γ0); S = C∈δ H(C,Γ );
if {C, ¬C} ⊆ S or {t1, . . . , tn} ⊆ S s.t. t1 ∩ · · · ∩ tn = ∅ then return 0;
else G = ADD(δ, G);

for a ∈ att(Γ0) do
if i > j s.t. {≥ i, ≤ j} ⊆ N(δ, a, Γ ) then return 0;
else δa = E(δ, a, Γ );

if δa �= ∅ and δa, μ0(δa, Γ ) �⊆ δ′ for all δ′ ∈ G then
if μ(δa, Γ ) �= ∅ then δa = μ0(δa, Γ );
P = ADD(δa, P );

fi
esle

rof
esle

elihw
return 1;

end;

The algorithm Cons2 is simply designed for testing the consistency of an input
class C0 in every Γ ∈ Σ(Γ0), where the multiplicities of attributes in C0 are
checked but the disjointness of its attribute value types are not. This is because
D−dis+com involves no overwriting/multiple inheritances, i.e., each attribute value
is uniquely typed and if type T is a class (in cls(Γ0)), the consistency of T can be
checked in another call Cons2(T, Γ0). This algorithm computes the consistency
of D−dis+com if Cons2(C0, Γ0) is called for every class C0 ∈ cls(Γ0).

Algorithm Cons2 for D−
dis+com

input class C0, set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
begin

for Γ ∈ Σ(Γ0) do
S = H(C0, Γ );
if {C, ¬C} �⊆ S and {t1, . . . , tn} �⊆ S s.t. t1 ∩ · · · ∩ tn = ∅ then

for a ∈ att(Γ0) do
if i > j s.t. {≥ i, ≤ j} ⊆ N(C0, a, Γ ) then return 0;

return 1;
fi

rof
return 0;

end;

It should be noted that the algorithm Cons requires double exponential time
in the worst case. We develop the optimized algorithm Cons3 as the single
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exponential version by skipping the sets of classes that are already checked as
consistent or inconsistent in any former routine (but Cons limits the skipping to
the set Δ stored in the caller processes). It computes the consistency of D−com+inh

and D−ful if we call Cons3({C0}, ∅, Γ0) for every class C0 ∈ cls(Γ0).

Algorithm Cons3 for D−
com+inh and D−

ful

input set of classes δ, family of sets of classes Δ, set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
global variables G = ∅, NG = ∅
begin

for Γ ∈ Σ(Γ0) s.t. (δ, Γ ) �∈ NG do
S = C∈δ H(C,Γ ); fΓ = 0;
if {C, ¬C} �⊆ S and {t1, . . . , tn} �⊆ S s.t. t1 ∩ · · · ∩ tn = ∅ then fΓ = 1;

for a ∈ att(Γ0) do
if i > j s.t. {≥ i, ≤ j} ⊆ N(δ, a, Γ ) then fΓ = 0;
else δa = E(δ, a, Γ );

if δa �= ∅ and δa, μ0(δa, Γ ) �⊆ δ′ for all δ′ ∈ Δ ∪ G then
if μ(δa, Γ ) �= ∅ then δa = μ0(δa, Γ );
fΓ = Cons3(δa, Δ, Γ0);

fi
esle

rof
fi
if fΓ = 1 then G = ADD(δ, G); return 1;
else NG = ADD((δ, Γ ), NG);

rof
return 0;

end;

The optimization method of using good and no good variables G and NG
is based on the EXPTIME tableau algorithm in [4]. In Cons1 and Cons3, the
good variable G = {δ1, . . . , δn} contains sets of classes such that each set δi is
consistent in a decomposed set of Γ0 (in Σ(Γ0)). In Cons3, the no good variable
NG contains pairs of a set δ of classes and a decomposed set Γ of Γ0 such that
δ is inconsistent in Γ . Each element in NG exactly indicates the inconsistency
of δ in the set Γ by storing the pair (δ, Γ ), so that it is never checked again. In
addition to this method, we consider that further elements can be skipped by
the condition “δa, μ0(δa, Γ ) �⊆ δ′ for all δ′ ∈ Δ ∪ G.” This implies that Cons1
and Cons3 skip the consistency checking of the target set δa if a superset δ′ of
either δa or μ0(δa, a, Γ ) is already checked in former processes (i.e., δ′ ∈ Δ∪G).
With regard to the skipping condition, the following lemma guarantees that if
μ(δ, Γ ) �= ∅, then all the classes C1, . . . , Cn in δ and the sole class C in μ0(δ, Γ )
(= {C}) have the same superclasses. In other words, the consistency checking
of δ can be replaced with the consistency checking of μ0(δ, Γ ). Therefore, the
computational steps can be decreased by skipping the target set δa since this set
can be replaced by an already checked superset of the singleton μ0(δa, a, Γ ).
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Lemma 3. Let Γ0 be a set of implication forms and let Γ ∈ Σ(Γ0). For all δ ⊆
cls(Γ0) and a∈att(Γ0), if μ(δ, Γ ) �= ∅, then

⋃
C∈δ H(C, Γ )=

⋃
C∈μ0(δ,Γ ) H(C, Γ ),

N(δ, a, Γ ) = N(μ0(δ, Γ ), a, Γ ), and E(δ, a, Γ ) = E(μ0(δ, Γ ), a, Γ ).

We adjust the algorithm Cons3 to class diagrams in which every attribute value
type is restrictedly defined. The algorithm Cons4 is shown below; as indicated by
the underlined text, this algorithm is improved by only storing sets of classes in
NG (similar to G). The restriction of value types leads to μ(δa, Γ ) �= ∅; therefore,
the size of NG is limited to a set of singletons of classes. In other words, Cons4
can be adjusted to decrease the space complexity (i.e., NG) to polynomial space
by using the property of Lemma 3. Unfortunately, this adjustment does not yield
a single exponential algorithm if attribute value types are unrestrictedly defined.
Hence, we need both Cons3 and Cons4 for the case where attribute value types
are restrictedly defined or not.

Algorithm Cons4 for D−
com+inh and D−

ful

input set of classes δ, family of sets of classes Δ, set of implication forms Γ0

output 1 (consistent) or 0 (inconsistent)
global variables G = ∅, NG = ∅
begin

for Γ ∈ Σ(Γ0) do
S = C∈δ H(C,Γ ); fΓ = 0;
if {C, ¬C} �⊆ S and {t1, . . . , tn} �⊆ S s.t. t1 ∩ · · · ∩ tn = ∅ then fΓ = 1;

for a ∈ att(Γ0) do
if i > j s.t. {≥ i, ≤ j} ⊆ N(δ, a, Γ ) then fΓ = 0;
else δa = E(δ, a, Γ );

if δa �= ∅ and δa, μ0(δa, Γ ) �⊆ δ′ for all δ′ ∈ Δ ∪ G then
if μ(δa, Γ ) �= ∅ then δa = μ0(δa, Γ );
if δa ∈ NG then fΓ = 0;
else fΓ = Cons4(δa, Δ, Γ0);

fi
esle

rof
fi
if fΓ = 1 then G = ADD(δ, G); return 1;

rof
NG = ADD(δ, NG); return 0;

end;

Without losing the completeness of consistency checking (see Appendix in
[8]), these algorithms have the following computational properties for each class
diagram group (as shown in Table 1). We believe that the complexity classes 0,
P, NP, and PSPACE less than EXPTIME are suitable for us to implement the al-
gorithms for different expressive powers of class diagram groups. For all the class
diagram groups, complexity1 in Table 1 arranges the complexities of algorithms
Cons1, Cons2, and Cons3 with respect to the size of a class diagram. Every class
diagram in D−0 and D−com is consistent; therefore, the complexity is zero (i.e., we
do not need to check consistency). Cons1 computes the consistency of D−dis in
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Table 1. Upper-bound complexities of algorithms for testing consistency

UML group complexity1 algorithm complexity2 algorithm
D−

0 0 0
D−

com 0 0
D−

dis P Cons1 P Cons1
D−

inh EXPTIME P
D−

dis+inh EXPTIME P
D−

dis+com NP Cons2 NP Cons2
D−

com+inh EXPTIME Cons3 PSPACE Cons4
D−

ful EXPTIME PSPACE

P (polynomial time) and that of D−inh and D−dis+inh in EXPTIME (exponential
time). Cons2 computes the consistency of D−dis+com in NP (non-deterministic
polynomial time), and Cons3 computes the consistency of D−com+inh and D−ful in
EXPTIME.

Moreover, complexity2 in Table 1 shows the complexities of the algorithms
Cons1, Cons2, and Cons4 for the case in which every attribute value type
is restrictedly defined. In particular, Cons1 computes the consistency of D−inh

and D−dis+inh in P, and Cons4 computes the consistency of D−com+inh and D−ful

in PSPACE (polynomial space). Therefore, by Lemma 3 and by the skip-
ping method of consistency checking, the complexities of Cons1 and Cons4
are respectively reduced from EXPTIME to P and PSPACE. Due to spatial
constraints, detailed proofs of the lemmas and theorems have been omitted
(see [8]).

6 Conclusion

We introduced the restriction of UML class diagrams based on

(i) inconsistency triggers (disjointness constraints, completeness constraints,
and overwriting/multiple inheritances) and

(ii) attribute value types defined with restrictions in overwriting/multiple inher-
itances.

Inconsistency triggers are employed to classify the expressivity of class diagrams,
and their combination with the attribute value types results in tractable consis-
tency checking of the restricted class diagrams. First, we presented a complete
algorithm for testing the consistency of class diagrams including any inconsis-
tency triggers. Second, the algorithm was suitably refined in order to develop
optimized algorithms for different expressive powers of class diagrams obtained
by deleting some inconsistency triggers. Our algorithms were easily modified de-
pending on the presence of diagram components. The algorithms clarified that
every class diagram in D−0 and D−com must have a UML-model (i.e., consistency
is guaranteed) and when every attribute value type is restrictedly defined, the
complexities of class diagrams in D−inh and D−dis+inh and in D−com+inh and D−ful
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are essentially decreased from EXPTIME to P and PSPACE, respectively. Re-
stricted/classified UML class diagrams and their optimized algorithms are new
results; however, the translation into first-order logic is similar to and based on
the study of [1, 2].

Our future research is concerned with the complexity in terms of the depth of
class hierarchies and the average-case complexity for consistency checking. Fur-
thermore, an experimental evaluation should be performed in order to ascertain
the applicability of optimized consistency algorithms.
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Abstract. Some new and improved results on the minimum representa-
tion problem for key systems will be presented. By improving a lemma of
the second author we obtain better or new results on badly representable
key systems, such as showing the most badly representable key system
known, namely of size

2n(1−c·log log n/ log n),

where n is the number of attributes. We also make an observation on a
theorem of J. Demetrovics, Z. Füredi and the first author and give some
new well representable key systems as well.
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1 Introduction

Consider a relation name R in the relational database model. Let Ω(R) be a
finite set, its elements are called the attributes of R. If |Ω| = n we say that
the arity of R is n. The relation name and the set of attributes together are
called the relation schema and denoted by R[Ω]. Suppose, that there is given a
(countably) infinite set dom. An n-tuple over the relation schema R[Ω] is a total
mapping u from Ω to dom. A relation instance over a relation schema R[Ω] is
a (possibly empty) finite (multi)set I of n-tuples over Ω.

The value of the n-tuple u on an attribute A is denoted by u(A). If X ⊆ Ω
then πX(u) is an |X |-tuple v over X , such that v(A) = u(A) for all A ∈ X . A
relation instance I over R[Ω] satisfies K→Ω, denoted by I � K→Ω, if for each
pair u and v of tuples in I, πK(u)=πK(v) implies πΩ\K(u)=πΩ\K(v). K→Ω is
a key dependency where K ⊆ Ω is called a key. (Less formally, K ⊆ Ω is a key,
if the values in K of an n-tuple determine the whole n-tuple.)
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A key is called minimal key, if it does not contain any other key as a proper
subset. Since the set of keys and minimal keys determine each other (each subset
of the attributes that contain a key is also a key), it is natural to investigate the
system of minimal keys, which usually contains fewer members, smaller in size.
Keys can be widely applied in database management, see [1].

A family F of subsets of a finite set is called a Sperner system, if for F1, F2 ∈ F
the property F1 �⊆ F2 holds. The system of minimal keys is clearly a non-empty
Sperner system. For a Sperner system K let us introduce the notation

I(K) = {I|I � K→Ω if and only if ∃K ′,K ′ ⊆ K,K ′ ∈ K}.

We call an element of I(K) a representation of K. The following basic theorem
of W.W. Armstrong and J. Demetrovics states, that for every non-empty Sperner
system, there is always a representation of it, i.e., there exists a relation, in which
the system of minimal keys is exactly the given family of sets.

Theorem 1.1. [2, 4] If K is non-empty, then I(K) �= ∅.

In view of Theorem 1.1 it is natural to ask for the minimum size of a relation,
that represents a given system of keys. Formally let s(K) = min{|I|

∣∣ I ∈ I(K)}
denote this minimum.

Suppose, that little a priori information is known about the structure of a
given database instance. If a theorem ensures the validity of an inequality among
the parameters of a database and we have information on the actual values of
a part of these parameters then a statement may be deduced for the rest of the
parameters of the given instance. In our case, we have a theorem for the following
three parameters: number of attributes, system of minimal keys (this is not a
number!) and the size of the relation. So if the size of the instance is less than the
size of this minimal sample database, then the system of minimal keys can not be
this one, our hypothesis on the system of keys can be rejected. This argument is
trying to justify the investigation of the quantity s(K). The goal of the present
paper is to extend our knowledge on the minimum representation problem of
key systems. In addition to its importance they usually raise interesting and
sometimes challenging mathematical problems.

Let us start with presenting some earlier results on minimum representation.
A ⊆ Ω is an antikey if it is not a key. An antikey is called a maximal antikey,

if other antikeys do not include it. If K is the system of minimal keys, denote the
system of maximal antikeys by K−1. There is a strong connection between s(K)
and |K−1|, namely the magnitude of s(K) is between |K−1| and its square root.

Theorem 1.2. [5] If K �= ∅ is a Sperner system, then the following two inequal-
ities hold,

|K−1| ≤
(
s(K)

2

)
and s(K) ≤ 1 + |K−1|. (1)

Informally, we say that a Sperner system K is well/badly representable if s(K) is
close to the lower/upper bound of Theorem 1.2. It is easy to see, that a minimal
representation have the following two basic properties.
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Proposition 1.1. Suppose, that I ∈ I(K), |I| = s(K) is a minimal representa-
tion of the Sperner system K, then the following properties hold,

(i) for every A ∈ K−1 there exist two tuples, u and v in I, such that πA(u) =
πA(v),

(ii) there are no two different tuples u and v in I, such that πK(u) = πK(v)
holds for some K ∈ K.

Let us mention two results from the 1980’s.Kn
k denotes the family of all k-element

subsets of the n-element Ω.

Theorem 1.3. [5] 2 ≤ k < n ⇒ ∃c1 = c1(k), c2 = c2(k)

c1n
(k−1)/2 < s(Kn

k ) < c2n
(k−1)/2.

Theorem 1.4. [8] n > n0(k), k ≥ 1 ⇒ ∃c3 = c3(k), c4 = c4(k)

c3n
(2k+1)/3 < s(Kn

n−k) < c4n
k,

1
12

n2 < s(Kn
n−2) <

1
2
n2.

It has been proved in [7] that there is a Sperner system K such that

s(K) >
1
n2

(
n

'n
2 (

)
.

Its proof is, however probabilistic. It does not give a construction. No constructed
Sperner system K exists in the literature with exponential s(K). We will show
such a construction in section 3. More precisely, s(K) will have an exponent
nearly n. The method of proving a lower estimate on s(K) is the same as that of
[11]. The method was based on a lemma on labelled (by subsets) trees. Section
2 improves the statement of this lemma, giving a sharp estimate replacing the
estimate of [11]. This improvement makes us able to prove the exponential lower
estimate.

In section 4 we return to Theorem 1.3. First (subsection 4.1) the upper esti-
mate is improved (it becomes independent of k). Subsection 4 is a small observa-
tion showing that the method of [5] can be used to prove a good upper estimate
for other (non-uniform) Ks. In section 5 we summarize the related questions to
be done.

2 An Extremal Problem on Labelled Directed Trees
Revisited: A Tool for Deriving Results on Badly
Representable Key Systems

A tree F is called a directed tree, if there is a direction on the edges, so that
a vertex v0 (root) has only out-neighbours, and an arbitrary vertex v �=v0 has a
uniquely determined in-neighbour n(v). N(v) denotes the out-neighbourhood of
v. The set of the leaves of a tree F is denoted by �(F ). Let U be a (finite) set.
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A tree F = F (U) is called labelled, if a subset A(v) of U is associated with each
vertex v of F .

For fixed integers k ≥ 1, � ≥ 2 and U = {1, 2, ...,m} consider the family
of labelled directed trees F (m)

k,� , for which the vertices of each tree F ∈ F (m)
k,�

are labelled as follows. The label of the root v0 of F is A(v0) = U . For an
arbitrary vertex v of F there is a disjoint partition N(v) =

⋃�
i=1 Ni(v) of its

out-neighbourhood satisfying the following properties.

A(v) ⊆ A(n(v)) (v �=v0), (2)
|A(v)| ≥ k + 1, (3)

w1, w2 ∈ Ni(v) ⇒ A(w1) ∩A(w2) = ∅ (1 ≤ i ≤ �), (4)
w1 ∈ Ni(v), w2 ∈ Nj(v)⇒ |A(w1) ∩A(w2)| ≤ k (1 ≤ i < j ≤ �). (5)

Introduce the notation Tk,�(m) = max{|�(F )|
∣∣F ∈ F (m)

k,l }. If k = 1, we simply

write F (m)
� for F (m)

k,� and T�(m) for Tk,�(m).
Throughout the rest of the paper we write simply log for log2. We have for

F� the following:

Theorem 2.1.
T2(m) ≤ 1

2
m logm. (6)

and equality holds if and only if m is a power of 2.

Theorem 2.2.
T�(m) = Θ�(m logα m) (7)

for � ≥ 3. Where α = α(�) = log �.

In [11], the magnitude of Tk,� was determined.

2.1 Case � = 2

We will use the concept of entropy [3] in the proof. Entropy is a measure of a
random variable X :

H(X) = −
∑

i

pi log pi, (8)

where Prob(X = i) = pi. It is known, that

H((X,Y )) ≤ H(X) + H(Y ). (9)

The proof is by induction on m. (6) holds for m = 2. Suppose that the
statement holds for every integer smaller than m.

Let F ∈ F (m)
2 be a tree with |�(F )| = T (m). Furthermore let N(v0) =

{v1, . . . , vs, w1, . . . , wt}, N1(v0) = {v1, . . . , vs}, N2(v0) = {w1, . . . , wt}. Let us
use the short notations Ai = A(vi), ai = |Ai|, (1 ≤ i ≤ s), Bi = A(wi),
bi = |Bi|, (1 ≤ i ≤ t). The subtree of F of root vi (wj) is denoted by Fi (Fs+j),
1 ≤ i ≤ s (1 ≤ j ≤ t).
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By the induction hypothesis

T (ai) ≤
1
2
ai log ai, (1 ≤ i ≤ s), and T (bi) ≤

1
2
bi log bi, (1 ≤ i ≤ t)

holds. So it is enough to prove that
s∑

i=1

ai log ai +
t∑

i=1

bi log bi ≤ m logm, (10)

since then

T (m) = |�(F )| =
s+t∑

i=1

|�(Fi)| ≤
s∑

i=1

T (ai) +
t∑

i=1

T (bi)

≤
s∑

i=1

1
2
ai log ai +

t∑

i=1

1
2
bi log bi ≤

1
2
m logm.

Let s1 = m−
∑s

i=1 ai and s′ = s + s1. Add s1 disjoint sets As+1, . . . , As′ of
cardinality 1, such that {1, 2, . . . ,m} =

⋃s′

i=1 Ai. We define t1, t′ and the sets
Bt+1, . . . , Bt′ analogously. The sets Ai (1 ≤ i ≤ s′) and Bj (1 ≤ j ≤ t′) have the
following properties:

{Ai, 1 ≤ i ≤ s′} is a partition of {1, 2, . . . ,m}, (11)
{Bj , 1 ≤ j ≤ t′} is a partition of {1, 2, . . . ,m}, (12)

|Ai ∩Bj | ≤ 1, 1 ≤ i ≤ s′, 1 ≤ j ≤ t′. (13)

Let ΩX = {1, 2, . . . ,m} be the event space of the random variable X . Further-
more, let X(ω) = ω, ω ∈ ΩX and Prob(X = ω) = 1/m. Let us define another two
random variables, Y (X ∈ Ai) = i, 1 ≤ i ≤ s′ and Z(X ∈ Bj) = j, 1 ≤ j ≤ t′.
Then

Prob(Y = i) =
ai

m
(1 ≤ i ≤ s′) and Prob(Z = j) =

bj

m
(1 ≤ j ≤ t′).

The random variables Y and Z are well defined by (11) and (12). Furthermore,
by (13) we get

Prob((Y, Z) = (i, j)) =
{

Prob(X = k) = 1/m if Ai ∩Bj = {k},
0 if Ai ∩Bj = ∅.

So we have for the entropies of Y, Z and (Y, Z):

H(Y ) =
s′∑

i=1

ai

m
log

m

ai
, H(Z) =

t′∑

j=1

bj

m
log

m

bj
,

H((Y, Z)) = −
s′∑

i=1

t′∑

j=1

Prob((Y, Z)=(i, j)) log Prob((Y, Z)=(i, j)) =

m∑

i=1

1
m

logm = logm.
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Therefore, by (9) we get

logm ≤
s′∑

i=1

ai

m
log

m

ai
+

t′∑

j=1

bj

m
log

m

bj
,

which is equivalent to (10).

2.2 Case � ≥ 3

To prove Theorem 2.2 we need somewhat more counting. We could not find a
straightforward way to generalize the concept of entropy for this case, altough the
main idea (see equation (16)) of the proof comes from the proof of the case � = 2.

In this section we will use the following notations. If u = (u1, . . . , ut) for
some t, then let Pi(u) =

∑t
j=1 ui

j and σ2(u) =
∑

1≤i<j≤t uiuj. Let A(u) =
(
∑t

j=1 uj)/t and G(u) = (
∏t

j=1 uj)1/t denote the arithmetic and geometric
mean, respectively. We will use the notations A2(u) = A(σ2(u)) and G2(u) =
G(σ2(u)) as well.

Lower estimation of T�(m). Let Hq
� , (� ≤ q) be a partial affine plane of order

q, i.e., a set of �q lines on q2 points, such that the lines form � parallel classes
and lines from different parallel classes intersect in 1.

Suppose, that we have for m square

T�(
√

m) ≥ C� ·
√

m logα√m, (14)

and let F ∈ F (
√

m)
� be a tree with |�(F )| = T�(

√
m). Suppose furthermore, that

there exists a partial affine plane, H
√

m
� .

Let T ∈ F (m)
� be the following tree. The root has �

√
m out-neighbours. Each

of them are labelled by one of the �
√

m members of the partial affine plane,
H
√

m
� . These out-neighbours are roots of one copy of F each. Then

T�(m) ≥ |�(T )| = �
√

m|�(F )| ≥ �
√

m(C�

√
m logα√m) = C� ·m logα m.

It is known, that there exist a partial affine plane of order q with � parallel
classes if and only if there exist � pairwise orthogonal latin squares of order q.

There are only partial results known about the existence of pairwise orthogo-
nal latin squares, [10]. Of course, partial affine planes exist if affine planes exist,
i.e., for prime powers.

The statement follows from the fact that prime powers occur densly, see (39).

Upper estimation of T�(m). Let � ≥ 3 arbitrary. We prove by induction on
m. We have to prove, that

T�(m) ≤ cm logα m (15)

holds for some c = c(�) to be chosen later.
For small m (15) is true if c is large enough. Suppose that the statement is

true for every integer smaller than m.
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Let F ∈ F (m)
� be a tree with |�(F )| = T (m). Let N(v0) = {v1, . . . , vt}. The

number of the leaves can be maximal only if for the subtrees Fi of F of root
vi, |�(Fi)| = T (mi) holds, where mi = |A(vi)|. Furthermore let us introduce the
short notation Nj = Nj(v0), 1 ≤ j ≤ �.

Case A. ∃1 ≤ j ≤ t, such that mj ≥ m/ log1/2 m.
We need the following observation:

Proposition 2.1. T�(m) ≤ T�(m− 1) + m− 1.

Proof. Induction on m. The statement is true for m = 1. Suppose that the
statement is true for every integer smaller than m. Let F ∈ F (m)

� be a tree
with |�(F )| = T (m). Let N(v0) = {v1, . . . , vt}. The number of the leaves can be
maximal only if for the subtrees Fi of F of root vi, |�(Fi)| = T (mi) holds, where
mi = |A(vi)|. Let m′

i = |A(vi)\{m}|. Consider the following tree F ′ ∈ F (m−1)
� .

Let N(v′0) ⊆ {v′1, . . . , v′t}, v′i ∈ N(v′0) ⇔ m′
i ≥ 2. A(v′i) = A(vi)\{m}. The

subtree F ′
i of F ′ of root v′i is a tree with |�(F ′

i )| = m′
i. Then

T (m) =
t∑

i=1

T (mi) =
t∑

i=1

T (m′
i) +

t∑

i=1

(T (mi)− T (m′
i)) = |�(F ′)|+

∑

m∈A(vi)

(T (mi)−T (mi−1)) ≤ T (m−1)+
∑

m∈A(vi)

(mi−1) ≤ T (m−1)+m−1.

The last inequality holds by (5), the previous one by the induction hypothesis.
�

Let mj = βm. It is enough to prove, that
∑t

i=1 T (mi) ≤ cm logα m.

t∑

i=1

T (mi) = T (mj) + T (m−mj) +
∑

i�=j:A(vi)∩A(vj) �=∅
(T (mi)− T (mi − 1)) ≤

cβm logα βm + c(1−β)m logα(1−β)m + �(m−mj) = cm logα m+
cβm(logα βm− logα m) + c(1−β)m(logα(1−β)m− logα m) + �(1−β)m ≤

cm logα m− 2
cαβ(1−β)m

ln 2
logα−1 m + �(1−β)m ≤ cm logα m+

(1− β)m(�− 2αc

ln 2
log1/20 m) ≤ cm logα m,

if log1/20 m > (� ln 2)/(2αc), which is true for every m if c is large enough. We
have used only (4)-(5) (at the first inequality), Proposition 2.1, and the fact that
the function x �→ logα x is concave.

Case B. ∀1 ≤ j ≤ t, mj < m/ log1/2 m.
Let us introduce the notation N ′

j = Nj ∪ {u(h)
j : 1 ≤ h ≤ m, � ∃vi ∈ Nj : h ∈

A(vi)}. Let A(u(h)
j ) = {h}, mi = A(w) for w ∈ N ′

j. Then the following notation

is well defined. Let m
(h)
j = |A(w)|, where w ∈ N ′

j, h ∈ A(w).
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We will prove that the following inequality holds for every 1 ≤ h ≤ m and
m > M(�):

logα m−
�∑

i=1

logα m
(h)
i ≥ α

ln 2
logα−1 m(1−

∑
1≤j<k≤� m

(h)
j m

(h)
k(

�
2

)
m

). (16)

Using this inequality we get for m > M :

m logα m−
�∑

j=1

∑

i:i∈N ′
j

mi logα mi =
m∑

h=1

(logα m−
�∑

j=1

logα m
(h)
j ) ≥

m∑

h=1

α

ln 2
logα−1 m(1−

∑
1≤j<k≤� m

(h)
j m

(h)
k(

�
2

)
m

) =

α logα−1 m

(ln 2)
(

�
2

)
m

m∑

h=1

∑

1≤j<k≤�

(m−m
(h)
j m

(h)
k ) =

α logα−1 m

(ln 2)
(

�
2

)
m

∑

1≤j<k≤�

m∑

h=1

(m−m
(h)
j m

(h)
k ) ≥

α logα−1 m

(ln 2)
(

�
2

)
m

∑

1≤j<k≤�

(m2 − (
∑

w∈N ′
j

|A(w)|)(
∑

w∈N ′
k

|A(w)|)) = 0.

From this, (15) straightforwardly follows in Case B, as well. So, we only have to
prove, that inequality (16) holds in the case when m is large enough and none of
the mjs are too large. Let us fix h, we will omit the upper index of m(h)

j in the rest
of the proof, so from now on, we suppose, that 1 ≤ mj ≤ m/ log1/2 m (1 ≤ j ≤ �)
holds.

Case B.1. ∀1 ≤ i ≤ � : mi ≤
√

m log5 m.
Case B.1.1. ∀1 ≤ j ≤ � : mj =

√
m + δj , |δj | ≥ (1/3)

√
m.

Proposition 2.2.

(logα)(i)(x) =
i∑

k=1

C
(i)
k

1
lnk 2

α!
(α − k)!

x−k logα−k x (17)

and the constants C
(i)
k ∈ Z have the following properties:

(i) C
(i)
k = −(i− 1)C(i−1)

k + C
(i−1)
k−1 ,

(ii) C
(i)
1 = (−1)i−1(i− 1)!,

(iii) |C(i)
k | ≤ i!

k!2
i

Proof. Easy induction on i. �
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Proposition 2.3.
∞∑

k=0

|
(
α

k

)
| <∞ (18)

holds for α > 1.

Proof.

∞∑

k=0

|
(
α

k

)
| =

�α�−1∑

k=0

|
(
α

k

)
|+

∞∑

i=1

(i+1)�α�−1∑

i�α�
|
(
α

k

)
| ≤

�α�−1∑

k=0

|
(
α

k

)
|+

∞∑

i=1

2α3 1
(i�α�
�α�

) ≤
�α�−1∑

k=0

|
(
α

k

)
|+2α3

∞∑

i=1

1
iα

<∞. �

Let a2(α) =
∑∞

k=2 |
(
α
k

)
|, and amax(α) = max∞k=0 |

(
α
k

)
|. Note, that amax(α) ≤ �

and a2(α) ≤ � + 2α + 2.
Let δ = (δ1, δ2, . . . , δ�). Then we have to prove the following inequality:

logα m−
�∑

i=1

logα(
√

m + δi) ≥ −
α

ln 2
(logα−1 m)(

2P1(δ)
�
√

m
+

σ2(δ)(
�
2

)
m

). (19)

If δ is small enough we know, that

logα(x + δ) =
∞∑

i=0

(logα)(i)(x)δi

i!
(20)

holds, so using (17) we get for every 1 ≤ j ≤ �

logα(
√

m + δj) = logα√m +
α

ln 2
logα−1√m√

m
δj −

α

ln 2
logα−1√m

(
√

m)2
δ2
j +

α(α− 1)
ln2 2

logα−2√m

(
√

m)2
δ2
j +

∞∑

i=3

δi
j

i!(
√

m)i

i∑

k=1

α!
(α− k)!

C
(i)
k

lnk 2
logα−k√m.

Using Proposition 2.2 we get

|
∞∑

i=3

δi
j

i!(
√

m)i

i∑

k=2

α!
(α− k)!

C
(i)
k

lnk 2
logα−k√m| ≤

∞∑

i=3

|δj |i

i!(
√

m)i lni 2

i∑

k=2

|
(
α

k

)
|k! lni−k 2|C(i)

k | logα−k√m ≤
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∞∑

i=3

|δj |i

i!(
√

m)i lni 2
amax(α)i!2i 1

1− ln 2
logα−2√m =

1
1− ln 2

amax(α) logα−2√m

∞∑

i=3

(
2|δj |√
m ln 2

)i <

2100amax(α)(
|δj |√
m

)3 logα−2√m.

Using Proposition 2.2 and substituting into (19) we get that it is enough to
prove the following inequality:

α

ln 2
logα−1√m(

P 2
1 (δ) + (2�− 3)P2(δ)

(2�− 2)m
−

∞∑

i=3

(−1)i−1

i

Pi(δ)
(
√

m)i
−

1
log
√

m
(
P2(δ)
m

α− 1
ln 2

+ 2100amax(α)
P3(δ+)
(
√

m)3
)) ≥ 0, (21)

where δ+ = (|δ1|, |δ2|, . . . , |δ�|). The LHS of the previous inequality can be un-
derestimated by

α

ln 2
logα−1√m(

P 2
1 (δ) + (2�− 3)P2(δ+)

(2�− 2)m
− 1

3
P3(δ+)
(
√

m)3
−

1
log
√

m
(
P2(δ+)

m

α− 1
ln 2

+ 2100amax(α)
P3(δ+)
(
√

m)3
)) ≥ α

ln 2
logα−1√m(

P 2
1 (δ)

(2�− 2)m
+

P2(δ+)
m

(
2�− 3
2�− 2

− 1
9
− 1

log
√

m
(
α− 1
ln 2

+ 700amax(α)))), (22)

which is nonnegative if m > �522200�−5. (We used in the last estimation that
|δi| < (1/3)

√
m, 1 ≤ i ≤ �.)

Case B.1.2. ∃1 ≤ j ≤ � : |mj −
√

m| > (1/3)
√

m.

Proposition 2.4. Let u = (u1, u2, . . . , u�), � ≥ 3, ui > 0, 1 ≤ i ≤ �, u� �∈
[2/3, 4/3]. Then there exist a constant C(�) > 0, such that the following inequality
holds.

A2(u)− 1− lnG2(u) ≥ C(�).

Proof. The LHS of (24) is nonnegative, since A2(u) ≥ G2(u) holds by the arith-
metic-geometric inequality and G2(u) − 1 ≥ lnG2(u) is true as well due to the
fact x−1 ≥ lnx, x > 0. In both inequalities equality can hold for infinitely many
u’s under the conditions of the lemma, but the statement says that equality
cannot hold simultaneously.

First, suppose that |G2(u) − 1| ≥ 1/10. In this case, G2(u)− 1 − lnG2(u) ≥
min{0.1− ln 1.1,−0.1− ln 0.9} > 1/214.
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So we can assume, that |G2(u) − 1| < 1/10. Let u∗ = (u1, u2, . . . , u�−1) and
u′ = (u1, u2, . . . , u�−1, v), v(�= u�) > 0 to be chosen later. So we have

A2(u)−G2(u) = (u� − v)
2
�
A(u∗) + A2(u′)−G2(u) ≥ (u� − v)

2
�
G(u∗)+

G2(u′)−G2(u) = (u� − v)(
2
�
G(u∗)− u

2/�
� − v

2/�
�

u� − v
G(u∗)

2(�−1)
� ) ≥

(u� − v)G(u∗)
2
�
(1− v2/�−1G(u∗)

�−2
� ) =

u
1− 1

�−1
� (1− v

u�
)G(u)

�
�−1

2
�
(1 −

(G(u∗)
v

) �−2
� ), (23)

in the first inequality we used the arithmetic-geometric inequality twice, while
in the second ineqality the fact that x �→ x2/� is a concave function.

If u� > 4/3, then G(u∗) < G(u) =
√

G2(u), so if we choose v = 1.2, we have
a lower estimate of 1/(37�) for the RHS of (23) (minimizing the product term
by term).

On the other hand, if u� < 2/3, then G(u∗) > G(u) =
√

G2(u), so if we
choose v = 0.8, we get a lower estimate of 1/(72�).

So the statement holds if we choose

C(�) = 1/(72�). (24)

�

Let ai = ui
√

m, ui ≤ log5 m, 1 ≤ i ≤ �, u� �∈ [2/3, 4/3]. So in this case (16)
has the following form:

logα m−
�∑

i=1

logα(ui

√
m) ≥ α

ln 2
logα−1 m(1−

∑
1≤j<k≤� ujuk(

�
2

) ). (25)

By the generalized binomial theorem we have

(log ui + log
√

m)α =
∞∑

j=0

(
α

j

)
(logj ui)(logα−j √m) ≥

logα√m + α(log ui) logα−1√m + (�− α− 1)(log2 ui) logα−2√m, (26)

using the fact, that � = 2α =
∑∞

j=0

(
α
j

)
. If m is large enough (by some counting

it can be checked that logm > 1012�6 is sufficient) the following inequality holds,

log2 ui <
α

144(ln 2)�2
log
√

m. (27)

Substituting (27) into (26), and (26) into (25) we get the following inequality
to prove after simplifications,

−2
�
(

�∑

i=1

lnui)−
�− α− 1

72�2
≥ 1−

∑
1≤j<k≤� ujuk(

�
2

) .
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Let u = (u1, u2, . . . , u�), then we can write the previous inequality in the
following form,

A2(u)− 1− lnG2(u) ≥ �− α− 1
72�2

,

which is true by Proposition 2.4 (more precisely, by (24)).

Case B.2. ∃1 ≤ i ≤ � : mi >
√

m log5 m.
Case B.2.1. ∃i �= j mimj ≥ m log2 m

In this case we have

RHS(16) ≤ α

ln 2
logα−1(1 − log2 m(

�
2

) ) (28)

and
LHS(16) ≥ −(�− 1) logα m, (29)

so by (28) and (29), (16) holds if m is large enough. (Say, logm > (3�3 ln 2)/(4α)
is a good choice.)

Case B.2.2. ∀i �= j mimj < m log2 m
We would like to minimize the LHS of (16), for such mis satisfying the con-

ditions
√

m log5 m ≤ m1 ≤ m/ log1/2 m and m1mi ≤ m log2 m(2 ≤ i ≤ �). (*)

The value of the LHS of (16) will not increase if we replace all mis by
(m log2 m)/m1. So

min
(∗)

LHS(16) ≥ min{
√

m log5 m ≤ x ≤ m/ log1/2 m
∣∣

logα m− logα x− (�− 1) logα m log2 m

x
}.

Let f(x) = logα m− logα x− (�−1) logα(m log2 m/x). This function is mono-
tonically decreasing for x > (�−1)1/(2(α−1))√m logm, consider the derivative of
f(x), which is smaller than the lower bound for m1 if m > 2. So the minimum
is achieved when x = m/ log1/2 m.

Substituting into (16) we get

min
(∗)

LHS(16) ≥ α

2
logα−1 m log logm− a2(α)

4
logα−2 m log2 logm−

(�− 1)
(

5
2

)α

logα logm ≥ (α/8) logα−1 m log logm. (30)

In the first inequality we used the generalized binomial theorem. The second
inequality holds if m is large enough. Say, m > max{2((�+2α+2)/α)2 , �2104}. On
the other hand,

RHS(16) ≤ α

ln 2
logα−1 m. (31)

If m > 23100 then (16) holds by (30) and (31). �
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Remark 2.1. (16) holds for m > M , where

M = max{ � ln 2
2α

, �522200�−5, 21012�6 , 2(3�3 ln 2)/(4α), 3, 2((�+2α+2)/α)2 , �2104
, 23100},

so the constant in Theorem 2.2 is at most
(
M

2

)
< 22·1012�6 .

�

3 Construction of a Badly Representable Key System

In [7], it was shown that there exist badly representable Sperner systems, namely
of size

s(K) >
1
n2

(
n⌊
n
2

⌋
)
. (32)

The proof of this theorem is not constructive. L. Rónyai’s observation is that
the number of Sperner families that can be represented by a matrix of at most
r rows is quite limited, and so r should be at least as big as in (32) to get a
representation even for all antichains at the middle level of the Boolean lattice.
In the following, we show an explicit badly representable Sperner system close
to the middle level, no worse is known up to now.

Remember, that if K is a Sperner system, K−1 denotes the set of maximal
elements, that are not contained in any element of K. Kn

k denotes the complete
k-uniform hypergraph and K +L is the disjoint union of the hypergraphs K and
L on the union of the vertices.

Theorem 3.1. [11] Let n = n1 + n2 + . . . + nt, ni ≤ N(1 ≤ i ≤ t). Let
Kn = Kn1

k +Kn2
k + . . . +Knt

k . Then

|K−1
n | ≤ T�(s(Kn)) (33)

holds for � =
(

N
k−1

)
.

Proof (For details, see [11]). Suppose, that Kn is represented by a relation I of
size s(Kn). We can recursively construct a labelled directed tree, F ∈ F (s(Kn))

�

having the property, that there is an injection from K−1
n to the leaves of F .

A maximal antikey contains exactly k − 1 elements from each clique, so there
are

(
ni

k−1

)
possibilities for the intersection of a maximal antikey and the ith

clique. The key observation is that if A1 and A2 are two maximal antikeys
and Ai

j = Aj ∩ V (Kni

k ), (j = 1, 2), then there is no u and v satisfying both
πAi

1
(u) = πAi

1
(v) and πAi

2
(u) = πAi

2
(v). (By Proposition 1.1 we know, that a

representation of a Sperner family K should contain two rows, for each A ∈ K−1,
that are equal in A, but should not contain two rows that are equal in an element
of K.)
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The labels of the vertices of the tree are subsets of I. Let the label of the root
be I, the whole relation. The out-neighborhood of the root can be devided into(

n1
k−1

)
classes, each corresponding to a (k − 1)-subset of V (Kn1

k ). For a (k − 1)-
subset S consider πS(u) for all u ∈ I. By the equality of πS(u)’s we get a partition
of I. For each element of the partition of size at least two, add a new vertex to
the tree, and label it by its elements. By the above remark labels of vertices
from the same class are disjoint, while labels of vertices from distinct class can
intersect in at most one.

We can continue building up the tree the similar way. The only difference is
that instead of considering subsets of I we consider subsets of the label of the
actual vertex. It is easy to see, that we get a tree of F (s(Kn))

� , and by Proposition
1.1 the above mentioned correspondence is really an injection.

Corollary 3.1. There exists a sequence of Sperner systems Kn, such that

s(Kn) > 2n(1−(26/3) log log n/ log n) (34)

holds for n large enough.

Proof. We would like to apply Theorem 3.1, let ni = s − 1 or ni = s, 1 ≤ i ≤
2n/s3. So our task remains to choose s and k. Let k = g(n)+1 and s = 2g(n)+1,
g(n) to be chosen later.

log |K−1
n | ≥ n

s
log

(
s− 1
k − 1

)
>

n

2g(n)
log

22g(n)

2
√

2g(n)
≥ n(1− 1

3
log g(n)
g(n)

),

if g(n) ≥ 29. So by Theorem 2.2 and Theorem 3.1,

n(1− 1
3

log g(n)
g(n)

) < logC(22g(n)) + log s(Kn) + 2g(n) log log s(Kn). (35)

where C(x) = 22·1012x6
.

2g(n) log log s(Kn) <
log g(n)
6g(n)

log s(Kn) (36)

holds if, say, g(n) < n1/4/7 (using only, that s(Kn) > 2n/4, n is large enough).
On the other hand,

logC(22g(n)) <
log g(n)
6g(n)

log s(Kn), (37)

if g(n) ≤ logn/13− 4. By (35)-(37), we get

log s(Kn) > n(1 − 1
3

log g(n)
g(n)

)/(1 +
1
3

log g(n)
g(n)

) > n(1 − 2
3

log g(n)
g(n)

) (38)

By (38), the statement holds if we choose g(n) = 'logn/13( − 4. �
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4 Well Representable Key Systems

4.1 Improving the Upper Bound on Complete k-Uniform Key
Systems

In Theorem 1.3 c2(k) depends on k exponentially. We can replace this by a
constant 2.

Theorem 4.1.
s(Kn

k ) < 2n(k−1)/2 + o(n(k−1)/2).

Proof (For details, see [5]). Let p be a prime. The original proof defines polyno-
mials of degree at most k over the finite field GF(p). It’s coefficients are chosen
from a d ifference set D. D is called a difference set, if D−D =GF(p), i.e., each
element of GF(p) can be written as a difference of two elements from D. The
jth coordinate of the ith vector of the representing relation instance I is Pi(j)
over GF(p), where Pi is the ith polynomial. The size of a difference set is about
2
√

p. Our first observation is one can take 2 classes of polynomials. One of the
classes contains polynomials of degree k− 1 coefficients from D1 (except for the
coefficient of xk−1, which is 1). The other one contains polynomials of degree
k − 2 and coefficients from D2.

One can choose D1 and D2 so, that each of them have size around
√

p and
each element of GF(p) is of the form d1 − d2, where di ∈ Di(i = 1, 2). Let
D1 = {0, 2√p3, . . . , (2√p3 − 1)2√p3}, D2 = {0, 1, . . . , 2√p3}.

One can easily check, that the constructed instance represents Kp
k. Two tuples

can not have k equal coordinates. That would mean that the difference of the
corresponding polynomials have k roots, but it is a polynomial of degree at most
k − 1. On the other hand, the polynomial

w(x) = (x− t1)(x − t2) · · · (x− tk−1) = xk−1 + ak−2x
k−2 + . . . + a1x + a0

can be written as a difference of two polynomials that correspond to tuples for
arbitrary different t1, . . . , tk−1. Each ai can be written as a differnce of d1,i ∈ D1
and d2,i ∈ D2. Then w(x) is the difference of the polynomials

zj(x) = (2− j)xk−1 + dj,k−2x
k−2 + . . . + dj,1x + dj,0 (j = 1, 2).

If n < p, then π{1,2,...,n}(I) is an appropriate representation of Kn
k .

Instead of Chebyshev’s theorem (Bertrand’s postulate) on the density of
primes (between n and 2n there is a prime) the statement follows from a theorem
of Luo and Yao [9], stating that for the nth prime pn

pn+1 − pn 4 p6/11+ε
n (39)

holds for any ε > 0. �

This improvement shows that complete k-uniform key systems are well rep-
resentable, even if k = f(n) slightly tends to infinity.
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4.2 New Well Representable Key Systems

We can use the idea of Theorem 1.3 to prove well representability for key systems,
that differ in not too many elements from Kn

k .
First, let us consider the case when the key system K contains one element

{(t1, . . . , tk−1)} of size k − 1 and all k element subsets but its supersets. One
can construct sets D

(c)
1 and D

(c)
2 , such that D

(c)
1 −D

(c)
2 = GF(p)\{c}, for each

c ∈ GF (p). Let P (x) = (x−t1)(x−t2) · · · (x−tk−1) = xk−1+ck−2x
k−2+ . . .+c0.

Then the polynomials will be:

xk−1 + d
(k−2)
1 xk−2 + d1,k−3x

k−3 + . . . + d1,0,

xk−1 + d1,k−2x
k−2 + d

(k−3)
1 xk−3 + . . . + d1,0, . . . ,

xk−1 + d1,k−2x
k−2 + d1,k−3x

k−3 + . . . + d
(0)
1 ,

d
(k−2)
2 xk−2 + d2,k−3x

k−3 + . . . + d2,0,

d2,k−2x
k−2 + d

(k−3)
2 xk−3 + . . . + d2,0, . . . ,

d2,k−2x
k−2 + d2,k−3x

k−3 + . . . + d
(0)
2 ,

where d
(t)
i ∈ D

(ct)
i , (i = 1, 2; 0 ≤ t ≤ k − 2), di,j ∈ Di(i = 1, 2) (see Theorem

4.1). So we get each (k− 1)-degree polynomial, except for P (x). The size of this
relation is about 2(k − 1)p(k−1)/2.

Based on the idea above one can construct a good representation for a key
system having o(n1/4) elements of cardinality k−1 and containing all k element
sets but their supersets. Let ∇(A) = {B|B ⊇ A, |B| = |A| + 1} and ∇(A) =⋃

A∈A∇(A).

Theorem 4.2. Let Kn = An ∪ Bn be a Sperner system, such that An ⊆ Kn
k−1,

∇(An) ∪ Bn = Kn
k , and |An| = o(n1/4). Then

s(Kn) ≤ 2(k − 1)n(k−1)/2 + o(n(k−1)/2). (40)

Proof. It follows from the conditions, that K ⊆ Kn
k−1 ∪ Kn

k and K−1 ⊆ Kn
k−2 ∪

Kn
k−1. Let An = {(t(1)1 , . . . , t

(1)
k−1), . . . , (t

(m)
1 , . . . , t

(m)
k−1)} and p > n. For 1 ≤ r ≤ m

let us consider the polynomial

wr(x) = (x− t
(r)
1 )(x− t

(r)
2 ) · · · (x− t

(r)
k−1) = xk−1 + c

(r)
k−2x

k−2 + . . .+ c
(r)
1 x + c

(r)
0 .

For each 0 ≤ h ≤ k − 2 let Jh
1 = [ah

1 , b
h
1 ], Jh

2 = [ah
2 , b

h
2 ], . . . , Jh

mh
= [ah

mh
, bh

mh
]

(mh ≤ m) be the (possibly 1-length) intervals of (the cyclically ordered) GF(p),
such that {ah

1 , . . . , a
h
mh
} = {c(1)h , . . . , c

(m)
h } and {bh

1 , . . . , b
h
mh
} = {c(1)h − 1, . . . ,

c
(m)
h − 1}. So ah

1 ≤ bh
1 = ah

2 − 1, . . . , ah
mh
≤ bh

mh
= ah

1 − 1. Let lhi = bh
i − ah

i + 1
be the length of Jh

i .
Let Rh

t = {1 ≤ i ≤ mh | p1/2t

< lhi ≤ p1/2t−1} and rt = 'p1/2t( (t =
1, 2, . . . , 2log p3). Let Dh

t =
⋃

i∈Rh
t
{ah

i + rt, a
h
i + 2rt, . . . , '(lhi − 1)/rt(rt, b

h
i } and

Et = {0, 1, 2, . . . , rt − 1}. Furthermore let D = {0, r1, 2r1, . . . , r
2
1 , } and E = E1.
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We construct a representation In of Kn. We give p-tuples of three types. The
coordinates of the tuples triples of form (Pi(j), h, t). For each h and t we take
all polynomials Pi over GF(p) of the form

Pi(x) = xk−1 + dk−2x
k−2 + . . . + d1x + d0,

where dh ∈ Dh
t and di ∈ D (0 ≤ i ≤ k − 2, i �= h).

Tuples of the second type have coordinates of a triple (Qi(j), h, t), too. For
each h and t we take all polynomials Qi over GF(p) of the form

Qi(x) = ek−2x
k−2 + . . . + e1x + e0,

where eh ∈ Eh
t and ei ∈ E (0 ≤ i ≤ k − 2, i �= h).

Tuples of the third type have coordinates of the form (P (j), i), two polynomi-
als for each i, where i corresponds to a (k − 1)-tuple of coefficients,
(ck−2, ck−3, . . . c0). All coordinates are a coefficient of some wr(x), 1 ≤ r ≤ m,
while the polynomial z(x) = xk−1 + ck−2x

k−2 + . . . + c0 is not among these
polynomials. Choose the two polynomials so, that their difference is z(x). (E.g,
z(x) and the 0 polynomial.)

We get In by deleting the last p−n coordinates of the tuples of the constructed
relation. There are no two tuples of In having the same value in k coordinates
(polynomials of degree k − 1 can not have k common roots). It is also easy to
check that there are no two tuples having the same coordinates in A, |A| = k−1
if and only if A �∈ An.

There are p(k−1)/2 + o(p(k−1)/2) tuples of type (Pi(j), h, 1) and (Qi(j), h, 1).
The number of (Pi(j), h, 2) and (Qi(j), h, 2) type tuples are at most
mp1/4p(k−2)/2 = o(p(k−1)/2). Similarly, there is no more than mp1/8p(k−2)/2 =
o(p(4k−5)/8) tuples of type (Pi(j), h, t) and (Qi(j), h, t) (t ≥ 3). Finally, the num-
ber of the tuples of type (P (j), i) is at most mk−1 = o(p(k−1)/4).

The statement follows from (39).

5 Further Research

It remains an open problem to determine the exact value of T�(m). Even in the
case of � = 2 for general m.

The above improvements on the labelled directed tree lemma (Theorem 2.1
and Theorem 2.2) opens a new dimension of the minimum representation prob-
lem. Is the log factor needed? If yes/no, what is the exact constant?

Example 5.1. Let Cn = {{1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}} be the cycle. We
know from [11]

|C−1
n | ≤ T2(s(Cn))

So by (1) and we have for n ≥ 5

2|C−1
n |

log |C−1
n |

≤ s(Cn) ≤ |C−1
n |+ 1. (41)
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Note, that in this case the upper bound cannot be the truth. One can construct
an instance in which the rowpairs (see Lemma 1.1) having a non-trivial density,
proving say 0.99|C−1

n | for n large enough. �

Improvements similar to (41) can be obtained for the problems considered in
[11], maximizing s(K) over K’s from a special class, such as e.g, for all graph.

Theorem 5.1. Let Gn denote the set of all graph on n vertices.

1
21015 ·

3n/3

nlog 3 ≤ max
G∈Gn

s(G) ≤ 3n/3 + 1. (42)

It still remains open to show a key system, that is as badly representable as the
Demetrovics-Gyepesi probabilistic estimate.
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Abstract. The implication of multivalued dependencies (MVDs) in
relational databases has originally been defined in the context of some
fixed finite universe. While axiomatisability and implication problem
have been intensely studied with respect to this notion, almost no re-
search has been devoted towards the alternative notion of implication in
which the underlying universe of attributes is left undetermined.

Based on a set of common inference rules we reveal all axiomatisa-
tions in undetermined universes, and all axiomatisations in fixed uni-
verses that indicate the role of the complementation rule as a means of
database normalisation. This characterises the expressiveness of several
incomplete sets of inference rules. We also establish relationships between
axiomatisations in fixed and undetermined universes, and study the time
complexity of the implication problem in undetermined universes.

1 Introduction

Relational databases still form the core of most database management systems,
even after more than three decades following their introduction in [12]. The
relational model organises data into a collection of relations. These structures
permit the storage of inconsistent data, inconsistent in a semantic sense. Since
this is not acceptable additional assertions, called dependencies, are formulated
that every database is compelled to obey. There are many different classes of
dependencies which can be utilised for improving the representation of the target
database [17, 33, 36].

Multivalued dependencies (MVDs) [14, 16, 41] are an important class of depen-
dencies. A relation exhibits an MVD precisely when it is decomposable without
loss of information [16]. This property is fundamental to relational database de-
sign, in particular 4NF [16], and a lot of research has been devoted to studying
the behaviour of these dependencies. Recently, extensions of multivalued depen-
dencies have been found very useful for various design problems in advanced data
models such as the nested relational data model [18], the Entity-Relationship
model [34], data models that support nested lists [23, 24] and XML [37, 38].
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The classical notion of an MVD [16] is dependent on the underlying uni-
verse R. This dependence is reflected syntactically by the R-complementation
rule which is part of the axiomatisation of MVDs, see for instance [6]. The
complementation rule is special in the sense that it is the only inference rule
which is dependent on R. Further research on this fact has lead to an al-
ternative notion of semantic implication in which the underlying universe is
left undetermined [11]. In the same paper Biskup shows that this notion can
be captured syntactically by a sound and complete set of inference rules, de-
noted by S0. If RS0 results from adding the R-complementation rule to S0,
then RS0 is R-sound and R-complete for the R-implication of MVDs. In fact,
every inference of an MVD by RS0 can be turned into an inference of the
same MVD in which the R-complementation rule is applied at most once, and
if it is applied, then in the last step of the inference (RS0 is said to be R-
complementary). This indicates that the R-complementation rule simply reflects
a part of the decomposition process, and does not necessarily infer semantically
meaningful consequences. Interestingly, research has not been continued in this
direction but focused on the original notion of R-implication. Since research on
MVDs seems to experience a recent revival in the context of other data models
[18, 34, 23, 24, 37, 38] it seems desirable to further extend the knowledge on re-
lational MVDs. An advancement of such knowledge may simplify the quest of
finding suitable and comprehensible extensions of MVDs to currently popular
data models.

In this paper we will further study the alternative notion of implication of an
MVD as suggested in [11]. First, we will identify all minimal complete subsets
of a set SU of eight common sound inference rules for MVDs. Minimality refers
to the fact that none of the rules can be omitted without losing completeness.
Essentially, it turns out that apart from the set S0 there are two other subsets of
SU that are also minimal. It is further shown that a sound set of inference rules
is complete if and only if for all relation schemata R that set extended by the R-
complementation rule is both R-complete and R-complementary. Subsequently,
the time-complexity of the corresponding implication problem is studied. Herein,
the classical notion of a dependency basis of an attribute set with respect to a set
of MVDs can be rephrased in the context of undetermined universes. It turns out
that the “traditional” dependency basis of X with respect to Σ deviates from
the dependency basis of X with respect to Σ in undetermined universes by at
most one set. This set, however, can be described by the notion of the Σ-scope
of an attribute set X , which is the union of all those attribute sets Y such that
X � Y is implied by Σ. The Σ-scope itself can be computed in time linear
in the total number of attributes that occur in Σ. The computation is similar
to computing the closure of an attribute set with respect to a set of functional
dependencies [5]. The problems studied in this paper are not just of theoretical
interest. In practice one does not necessarily want to generate all consequences of
a given set of MVDs but only some of them. Such a task can be accomplished by
using incomplete sets of inference rules. However, it is then essential to explore
the power of such incomplete sets.
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The paper is structured as follows. Section 2 summarises notions from the
relational model of data. Section 3 identifies all minimal axiomatisations in SU

for the implication of MVDs in undetermined universes. A rather general result
is proven in Section 5 which shows an equivalence between axiomatisations of
MVDs in fixed universes and those in undetermined ones. Finally, the implication
problem of MVDs in undetermined universes is studied in Section 6. The paper
concludes with some open problems in Section 7.

2 Multivalued Dependencies in Relational Databases

Let A = {A1, A2, . . .} be a (countably) infinite set of attributes. A relation
schema is a finite set R = {A1, . . . , An} of distinct symbols, called attributes,
which represent column names of a relation. Each attribute Ai of a relation
schema is associated an infinite domain dom(Ai) which represents the set of
possible values that can occur in the column named Ai. If X and Y are sets of
attributes, then we may write XY for X ∪ Y . If X = {A1, . . . , Am}, then we
may write A1 · · ·Am for X . In particular, we may write simply A to represent
the singleton {A}. A tuple over R = {A1, . . . , An} (R-tuple or simply tuple,

if R is understood) is a function t : R →
n⋃

i=1
dom(Ai) with t(Ai) ∈ dom(Ai)

for i = 1, . . . , n. For X ⊆ R let t[X ] denote the restriction of the tuple t over
R on X , and dom(X) =

∏
A∈X dom(A) the Cartesian product of the domains

of attributes in X . A relation r over R is a finite set of tuples over R. The
relation schema R is also called the domain Dom(r) of the relation r over R. Let
r[X ] = {t[X ] | t ∈ r} denote the projection of the relation r over R on X ⊆ R.
For X,Y ⊆ R, r1 ⊆ dom(X) and r2 ⊆ dom(Y ) let r1 �� r2 = {t ∈ dom(XY ) |
∃t1 ∈ r1, t2 ∈ r2 with t[X ] = t1[X ] and t[Y ] = t2[Y ]} denote the natural join of
r1 and r2. Note that the 0-ary relation {()} is the projection r[∅] of r on ∅ as
well as left and right identity of the natural join operator.

2.1 MVDs in Fixed Universes

Functional dependencies (FDs) between sets of attributes have always played a
central role in the study of relational databases [12, 13, 5, 7, 8], and seem to be
central for the study of database design in other data models as well [1, 21, 27,
24, 32, 39, 40]. The notion of a functional dependency is well-understood and the
semantic interaction between these dependencies has been syntactically captured
by Armstrong’s well-known axioms [2, 3]. A functional dependency (FD) [13] on
the relation schema R is an expression X → Y where X,Y ⊆ R. A relation r
over R satisfies the FD X → Y , denoted by |=r X → Y , if and only if every
pair of tuples in r that agrees on each of the attributes in X also agrees on
the attributes in Y . That is, |=r X → Y if and only if t1[Y ] = t2[Y ] whenever
t1[X ] = t2[X ] holds for any t1, t2 ∈ r.

FDs are incapable of modelling many important properties that database
users have in mind. Multivalued dependencies (MVDs) provide a more general
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notion and offer a response to the shortcomings of FDs. A multivalued depen-
dency (MVD) [14, 16, 41] on R is an expression X � Y where X,Y ⊆ R. A
relation r over R satisfies the MVD X � Y , denoted by |=r X � Y , if and only
if for all t1, t2 ∈ r with t1[X ] = t2[X ] there is some t ∈ r with t[XY ] = t1[XY ]
and t[X(R − Y )] = t2[X(R − Y )]. Informally, the relation r satisfies X � Y
when the value on X determines the set of values on Y independently from the
set of values on R − Y . This actually suggests that the relation schema R is
overloaded in the sense that it carries two independent facts XY and X(R−Y ).
More precisely, it is shown in [16] that MVDs “provide a necessary and sufficient
condition for a relation to be decomposable into two of its projections without
loss of information (in the sense that the original relation is guaranteed to be
the join of the two projections)”. This means that |=r X � Y if and only if
r = r[XY ] �� r[X(R− Y )]. This characteristic of MVDs is fundamental to rela-
tional database design and 4NF [16]. A lot of research has therefore been devoted
to studying the behaviour of these dependencies.

For the design of a relational database schema dependencies are normally
specified as semantic constraints on the relations which are intended to be in-
stances of the schema. During the design process one usually needs to determine
further dependencies which are logically implied by the given ones. In order to
emphasise the dependence of implication from the underlying relation schema R
we refer to R-implication.

Definition 2.1. Let R be a relation schema, and let Σ = {X1 � Y1, . . . , Xk �

Yk} and X � Y be MVDs on R, i.e., X ∪ Y ∪
k⋃

i=1
(Xi ∪ Yi) ⊆ R. Then Σ R-

implies X � Y if and only if each relation r over R that satisfies all MVDs in
Σ also satisfies X � Y . �
In order to determine all logical consequences of a set of MVDs one can use the
following set of inference rules for the R-implication of multivalued dependen-
cies [6]. Note that we use the natural complementation rule [10] instead of the
complementation rule that was originally proposed [6].

X � Y
Y ⊆ X

X � Y

XU � Y V
V ⊆ U

X � Y, Y � Z

X � Z − Y
(reflexivity, R) (augmentation, A) (pseudo-transitivity, T )

X � Y

X � R− Y
(R-complementation, CR)

X � Y,X � Z

X � Y Z

X � Y,X � Z

X � Z − Y

X � Y,X � Z

X � Y ∩ Z
(union, U) (difference, D) (intersection, I)

Beeri et al. [6] prove that this set of inference rules is both R-sound and
R-complete for the R-implication of MVDs, for each relation schema R. Let
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Σ ∪ {σ} be a set of MVDs on the relation schema R. Let Σ -S σ denote the
inference of σ from a set Σ of dependencies with respect to the set S of inference
rules. Let Σ+

S = {σ | Σ -S σ} denote the syntactic hull of Σ under inference
using only rules from S. The set RS is called R-sound for the R-implication
of MVDs if and only if for every set Σ of MVDs on the relation schema R
we have Σ+

RS ⊆ Σ∗
R = {σ | Σ R-implies σ}. The set RS is called R-complete

for the R-implication of MVDs if and only if for every set Σ of MVDs on R
we have Σ∗

R ⊆ Σ+
RS. Furthermore, the set RS is called complete (sound) for

the R-implication of MVDs if and only if it is R-complete (R-sound) for the
R-implication of MVDs for all relation schemata R.

An interesting question is now whether all the rules of a certain set of inference
rules are really necessary to capture the R-implication of MVDs for every relation
schema R. More precisely, an inference rule * is said to be R-independent from
the set RS if and only if there is some set Σ ∪ {σ} of MVDs on the relation
schema R such that σ /∈ Σ+

RS, but σ ∈ Σ+
RS∪{�}. Moreover, an inference rule *

is said to be independent from RS if and only if there is some relation schema
R such that * is R-independent from RS. A complete set RS is called minimal
for the R-implication of MVDs if and only if every inference rule * ∈ RS is
independent from RS − {*}. This means that no proper subset of RS is still
complete. It was shown by Mendelzon [29] that RM = 〈R, CR, T 〉 forms such
a minimal set for the R-implication of MVDs. The R-complementation rule
CR plays a special role as it is the only rule which depends on the underlying
relation schema R. In the same paper, Mendelzon further motivates the study of
the independence of inference rules and comments in more detail on the special
role of the R-complementation rule.

2.2 MVDs in Undetermined Universes

Consider the classical example [16] in which the MVD Employee � Child is
specified, i.e., the set of children is completely determined by an employee, inde-
pendently from the rest of the information in any schema. If the relation schema
R consists of the attributes Employee, Child and Salary, then we may infer the
MVD Employee � Salary by means of the complementation rule. However, if
the underlying relation schema R consists of the four attributes Employee, Child,
Salary and Year, then the MVD Employee � Salary is no longer R-implied. Note
the fundamental difference of the MVDs

Employee � Child and Employee � Salary.

The first MVD has been specified to establish the relationship of employees and
their children as a fact due to a set-valued correspondence. The second MVD
does not necessarily correspond to any semantic information, but simply results
from the context in which Employee and Child are considered. If the context
changes, the MVD disappears.

It may therefore be argued that consequences which are dependent on the
underlying relation schema are in fact no consequences. This implies, however,
that the notion of R-implication is not suitable.
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Biskup introduced the following notion of implication [11]. An MVD is a
syntactic expression X � Y with X,Y ⊆ A. The MVD X � Y is satisfied
by some relation r if and only if X ∪ Y ⊆ Dom(r) and r = r[XY ] �� r[X ∪
(Dom(r) − Y )].

Definition 2.2. The set Σ = {X1 � Y1, . . . , Xk � Yk} of MVDs implies the

single MVD X � Y if and only if for each relation r with X∪Y ∪
k⋃

i=1
(Xi∪Yi) ⊆

Dom(r) the MVD X � Y is satisfied by r whenever r already satisfies all MVDs
in Σ. �

In this definition, the underlying relation schema is left undetermined. The only

requirement is that the MVDs must apply to the relations. IfX∪Y ∪
k⋃

i=1
(Xi∪Yi) ⊆

R, then it follows immediately that Σ = {X1 � Y1, . . . , Xk � Yk} R-implies
X � Y whenever Σ implies X � Y . The converse, however, isfalse [11].

A set S of inference rules is called sound for the implication of MVDs if and
only if for every finite set Σ of MVDs we have Σ+

S ⊆ Σ∗ = {σ | Σ implies σ}.
The set S is called complete for the implication of MVDs if and only if for
every finite set Σ of MVDs we have Σ∗ ⊆ Σ+

S. An inference rule * is said to
be independent from the set S if and only if there is some finite set Σ ∪ {σ}
of MVDs such that σ /∈ Σ+

S, but σ ∈ Σ+
S∪{�}. A complete set S of inference

rules is called minimal if and only if every inference rule * in S is independent
from S − {*}. This means that no proper subset of S is still complete for the
implication of MVDs.

While the singletons R,A, T ,U ,D, I are all sound, the R-complementation
rule and R-axiom are R-sound, but not sound [11]. In fact, the main result of
[11] shows that the following set B0 (denoted by S0 in [11]) of inference rules

∅ � ∅
X � Y

XU � Y V
V ⊆ U

X � Y, Y � Z

X � Z − Y
(empty-set-axiom,R∅) (A) (T )

X � Y, Y � Z

X � Y Z

X � Y,W � Z

X � Y ∩ Z
Y ∩W = ∅

(additive transitivity, T ∗) (subset, S)

is sound and complete for the implication of MVDs. The major proof argu-
ment shows that every inference of an MVD X � Y using the set RB0 =
{R∅,A, T , T ∗,S, CR} can be turned into an inference of X � Y which applies
the R-complementation rule CR at most once, and if it is applied, then it is
applied in the last step (a set of inference rules with this property is said to be
R-complementary). This shows that

X � Y ∈ Σ+
RB0

iff X � Y ∈ Σ+
B0

or X � (R− Y ) ∈ Σ+
B0

(2.1)

where Σ = {X1 � Y1, . . . , Xk � Yk} and X ∪ Y ∪
k⋃

i=1
(Xi ∪ Yi) ⊆ R.
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3 Minimal Axiomatisations in Undetermined Universes

In this section, all minimal complete subsets of

SU = {R,S,A, T , T ∗,U ,D, I}

will be revealed. We will start with some independence proofs. These proofs
have been checked using simple GNU Pascal programs (which offer good set
arithmetic) which compute the closure Σ+

S of a set Σ of MVDs under some set
S of inference rules (neglecting trivial MVDs).

Lemma 3.1. Let S = {S,A, T , T ∗,U ,D, I}. The reflexivity axiom R is inde-
pendent from S.

Proof. R is the only axiom. If Σ = ∅ and σ = ∅ � ∅, then σ /∈ Σ+
S, but

σ ∈ Σ+
S∪{R}. �

The subset rule S is independent from {R,A, T , T ∗,U ,D, I}. This strengthens
the result of Biskup who has shown [11–Theorem 2] that the subset rule is
independent from {R∅,A, T , T ∗}.

Lemma 3.2. Let S = {R,A, T , T ∗,U ,D, I}. The subset rule S is independent
from S.

Proof (Sketch). Let Σ = {A � BC,D � CD}, and σ = A � C. Since σ /∈ Σ+
S,

but σ ∈ Σ+
S∪{S} we have found witnesses Σ and σ for the independence of S

from S. �

Lemma 3.1 and 3.2 show that any complete subset of SU must include both
reflexivity axiom R and subset rule S. The following result has been proven in
[22, Lemma 2].

Lemma 3.3. The augmentation rule A is derivable from {R, T ,U}. �

Lemma 3.4. The additive transitivity rule T ∗ is derivable from the pseudo-
transitivity rule T and the union rule U .

Proof.
X � Y Y � Z

T : X � Z − Y X � Y

U : X � Y ∪ Z

This concludes the proof. �

Recall that B0 = 〈R∅,A, T , T ∗,S〉 is complete. Applying Lemma 3.3 and 3.4 to
B0 result in the first new complete set.

Theorem 3.1. The set L1 = 〈R,S, T ,U〉, consisting of reflexivity axiom, sub-
set rule, pseudo-transitivity rule and union rule, is sound and complete for the
implication of MVDs.
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Proof. It suffices to show that the empty-set-axiom R∅, augmentation rule A
and additive transitivity rule T ∗ are derivable from L1. R∅ is a very weak form
of the reflexivity axiomR. Lemma 3.3 and 3.4 show that A and T ∗ are derivable
from L1 as well. This concludes the proof. �

Lemma 3.5. The pseudo-transitivity rule T can be derived from the additive
pseudo-transitivity rule T ∗ and the difference rule D.

Proof. Recall that (Y ∪ Z)− Y = Z − Y .

X � Y Y � Z

X � Y T ∗ : X � Y ∪ Z

D : X � (Y ∪ Z)− Y︸ ︷︷ ︸
=Z−Y

This concludes the proof. �

Lemma 3.6. The union rule U is derivable from the reflexivity axiom R, the
additive pseudo-transitivity rule T ∗ and the difference rule D.

Proof. Note that Y Z = XY Z − (X − Y Z).

R : X � X X � Y R : XY � X X � Z
T ∗ : X � XY T ∗ : XY � XZ

T ∗ : X � XY Z R : X � (X − (Y Z))
D : X � XY Z − (X − (Y Z))︸ ︷︷ ︸

=Y Z

This concludes the proof. �

The next theorem shows that one can achieve completeness without using the
pseudo-transitivity rule nor the union rule.

Theorem 3.2. The set L2 = 〈R,S, T ∗,D〉, consisting of reflexivity axiom, sub-
set rule, additive pseudo-transitivity rule and difference rule, is sound and com-
plete for the implication of MVDs.

Proof. The completeness of L2 follows from Theorem 3.1, Lemma 3.5 and
Lemma 3.6. �

We will now show that L1, L2 and B = 〈R,S,A, T , T ∗〉 are the only minimal
complete subsets of SU .

Lemma 3.7. Let S = {R,S, T , T ∗, I}. The union rule U is independent
from S.

Proof (Sketch). Let Σ = {AB � BC,AB � CD} and σ = AB � BCD. Since
σ /∈ Σ+

S, but σ ∈ Σ+
S∪{U} we have found witnesses Σ and σ for the independence

of U from S. �
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For the next lemma note that L2 = 〈R,S, T ∗,D〉 is complete, i.e., the pseudo-
transitivity rule T is derivable from any of its supersets, in particular.

Lemma 3.8.

1. The pseudo-transitivity rule T is independent from S1 = {R,S,A, T ∗,U , I}.
2. The pseudo-transitivity rule T is independent from S2 = {R,S,A,U ,D, I}.

Proof (Sketch). For the first statement let Σ = {A � B,B � C} and σ = A �
C. Since σ /∈ Σ+

S1
, but σ ∈ Σ+

S1∪{T } we have found witnesses Σ and σ for the
independence of T from S1.

For the second statement let Σ = {A � B,B � C} and σ = A � C.
Since σ /∈ Σ+

S2
, but σ ∈ Σ+

S2∪{T } we have found witnesses Σ and σ for the
independence of T from S2. �

Lemma 3.9. Let S = {R,S,A, T ,D, I}. The additive transitivity rule T ∗ is
independent from S.

Proof (Sketch). Let Σ = {A � B,B � C} and σ = A � BC. Since σ /∈ Σ+
S,

but σ ∈ Σ+
S∪{T ∗} we have found witnesses Σ and σ for the independence of T ∗

from S. �

Theorem 3.3. The only minimal, sound and complete subsets of SU for the
implication of MVDs are B, L1 and L2.

Proof (Sketch). Lemma 3.1 and 3.2 show that R and S must be part of any
complete subset of SU . For a complete subset S ⊆ SU every inference rule in
SU − S must be derivable from S. We consider every subset S of SU that
includes at least R and S. If S is not a superset of B, L1 or L2, then at least
one of Lemma 3.7 or 3.8 or 3.9 shows that there is some inference rule in SU−S
that is independent from S, i.e., S cannot be complete.

It follows from Theorems 3.1 and 3.2 as well as [11] that B, L1 and L2 are
complete. The minimality of all three sets follows from the fact that no proper
subset of B, or L1 or L2, respectively, is still complete. �

4 Weakening Reflexivity

Although the set B = 〈R,S,A, T , T ∗〉 is minimal, the reflexivity axiom R can
be replaced by the much weaker empty-set-axiom R∅ resulting in the complete
set B0. This is because R is derivable from R∅ and A.

Instead of using the reflexivity axiomR within L1 we may also use the empty-

set-axiom R∅ together with the membership-axiom M which is
X � A

A ∈ X .

Theorem 4.1. The set L3 = 〈R∅,M,S, T ,U〉, consisting of empty-set-axiom,
membership-axiom, subset rule, pseudo-transitivity rule and union rule, is sound
and complete for the implication of MVDs.
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Proof. We show that the reflexivity axiom R is derivable from {R∅,M, T ,U}.
If X = ∅, then the only instance of the reflexivity axiom is the empty-set-axiom
R∅. We may therefore assume that X �= ∅. We proceed by induction on the
number n of attributes in Y . If n = 0, then we obtain the following inference:

M : X � A
A∈X M : A � A

A∈{A}

T : X � ∅
.

Suppose Y = {A1, . . . , An, An+1}. Note that {A1, . . . , An} ⊆ X and An+1 ∈ X
as Y ⊆ X . We then have the following inference

Rhypothesis : X � {A1, . . . , An}
{A1,...,An}⊆X M : X � An+1

An+1∈X

U : X � Y
.

This completes the proof. �

We may also replace R in L2 by R∅ and M.

Theorem 4.2. The set L4 = 〈R∅,M, T ∗,D,U ,S〉, which consists of empty-
set-axiom, membership axiom, additive pseudo-transitivity rule, difference rule,
union rule, and subset rule, is sound and complete for the implication of MVDs.

Proof. Theorem 3.1 and Lemma 3.5 show that 〈R,S, T ∗,D,U〉 is complete.
The proof of Theorem 4.1 shows then that R can be replaced by R∅ and M still
maintaining completeness. However, while the union rule U is derivable from
{R, T ∗,D}, it is independent from S = {R∅,M, T ∗,D,S}. Namely, let Σ = ∅
and σ = AB � AB. Since σ /∈ Σ+

S, but σ ∈ Σ+
S∪{U} we have found witnesses Σ

and σ for the independence of U from S. �

5 Axiomatisations for Fixed Universes

Let S be a set of inference rules that is sound for the implication of MVDs. Let
RS denote the set S ∪ {CR} which is therefore sound for R-implication. The
set RL1 is complete for the R-implication of MVDs which follows immediately
from the completeness of RM [29]. In fact, something much stronger holds. We
call a set RS complementary iff it is R-complementary for the R-implication of
MVDs for all relation schemata R.

Theorem 5.1. Let S be a sound set of inference rules for the implication of
MVDs. The set S is complete for the implication of MVDs if and only if the set
RS = S∪{CR} is complete and complementary for the R-implication of MVDs.

Proof. We show first that if S is complete for the implication of MVDs, then
for each relation schema R the set RS = S ∪ {CR} is both R-complete and
R-complementary for the R-implication of MVDs.

Let R be arbitrary. We know that RB0 is R-complete, i.e., Σ∗
R ⊆ Σ+

RB0
.

Moreover, S and B0 are both sound and complete, i.e., Σ+
B0

= Σ∗ = Σ+
S. Let
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X,Y ⊆ R and X � Y ∈ Σ∗
R. Since RB0 is R-complete it follows that X � Y ∈

Σ+
RB0

. Equation (2.1) shows that X � Y ∈ Σ+
B0

or X � (R−Y ) ∈ Σ+
B0

holds.
Since Σ+

B0
= Σ+

S this is equivalent to X � Y ∈ Σ+
S or X � (R − Y ) ∈ Σ+

S.
However, Y = R − (R − Y ) and therefore X � Y ∈ Σ+

RS. This shows that
Σ∗

R ⊆ Σ+
RS, i.e., RS is R-complete. Moreover, Σ+

RS = Σ+
RB0

and equation (2.1)
implies that

X � Y ∈ Σ+
RS if and only if X � Y ∈ Σ+

S or X � (R− Y ) ∈ Σ+
S

whenever X,Y ⊆ R and Σ is a set of MVDs on R. That is, every inference
of an MVD X � Y using RS can be turned into an inference of X � Y in
which the R-complementation rule is applied at most once, and if it is applied,
then as the last rule of the inference. Since R was arbitrary the set RS is R-
complete and R-complementary. That is, RS is complete and complementary
for the R-implication of MVDs.

It remains to show that S is complete for the implication of MVDs whenever
for all relation schemata R the set RS = S ∪ {CR} is both R-complete and R-
complementary for the R-implication of MVDs. We need to show that Σ∗ ⊆ Σ+

S

holds for every finite set Σ of MVDs. Let Σ = {X1 � Y1, . . . , Xk � Yk}

and X � Y ∈ Σ∗ = Σ+
B0

. Let T := X ∪ Y ∪
k⋃

i=1
(Xi ∪ Yi) and R be some

relation schema such that T is properly contained in R, i.e., T ⊂ R. Fact 1 in
[11] shows that X � Y ∈ Σ∗

R. The R-completeness of RS implies further that
X � Y ∈ Σ+

RS. Since RS is also R-complementary we must have X � Y ∈ Σ+
S

or X � (R − Y ) ∈ Σ+
S. Assume that X � (R − Y ) ∈ Σ+

S. The soundness of
S implies that X � (R − Y ) ∈ Σ∗ = Σ+

B0
. Furthermore, the derivability of

the union rule from B0 implies that X � R ∈ Σ+
B0

. However, we obtain the
contradiction R ⊆ T ⊂ R by Lemma 5 of [11]. Consequently, X � Y ∈ Σ+

S

must hold, and this shows the completeness of S. �

Corollary 5.1. The sets RL1, RL2, RL3, RL4 are sound, complete and comple-
mentary for the R-implication of MVDs. �

If S is a minimal, sound and complete set of inference rules for the implication
of MVDs, then it is not necessarily true that the set RS is minimal for the
R-implication of MVDs. In fact, the next theorem indicates that complete and
complementary sets RS may not be minimal.

Theorem 5.2. The complete sets RB, RL1, RL2, RL3, and RL4 are not min-
imal for the R-implication of MVDs.

Proof (Sketch). RB and RL1 are not minimal as S is derivable from {CR,A, T }
according to [11, Theorem 1]. RL2 is not minimal since A is derivable from
{R, T ∗,D}. RL3 is not minimal since S is derivable from {CR,R∅,M, T ,U}.
RL4 is not minimal since D is derivable from {CR,U}. �

In particular, in order to make the minimal set RM also complementary one
may add the subset rule S and the union rule U in order to obtain RL1.
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Corollary 5.2. Let S be a sound set of inference rules for the implication of
MVDs. The set S is minimal and complete for the implication of MVDs if
and only if the set RS is complete and complementary for the R-implication of
MVDs, and there is no inference rule * ∈ S such that R(S− {*}) is still both
complete and complementary for the R-implication of MVDs. �

The last corollary helps us finding all subsets of RSU that are complete and
complementary for the R-implication of MVDs. The next lemma is an extension
of [29, Lemma 1].

Lemma 5.1. The R-complementation rule CR is independent from SU .

Proof (Sketch). Let R = A, Σ = ∅ and σ = ∅ � A. Since σ /∈ Σ+
SU

, but
σ ∈ Σ+

SU∪{CR} we have found witnesses R, Σ and σ for the independence of CR

from SU . �

The next corollary is a consequence of Theorem 3.3, Corollary 5.2 and
Lemma 5.1.

Corollary 5.3. There are no proper subsets of RB, RL1 and RL2 which are
both complete and complementary for the R-implication of MVDs. �

6 The Implication Problem

The R-implication problem for MVDs is to decide whether an arbitrary set Σ
of MVDs R-implies a single MVD σ in the sense of Definition 2.1. This problem
has been well-studied [4, 15, 19, 20, 25, 26, 30, 31, 35]. The fundamental notion is
that of a dependency basis for an attribute set X ⊆ R with respect to a set
Σ of MVDs [4]. Given some set Σ = {X1 � Y1, . . . , Xk � Yk} of MVDs

with
k⋃

i=1
(Xi ∪ Yi) ⊆ R the set DepR(X) = {Y | X � Y ∈ Σ+

RB0
} consists

of all those attribute sets Y ⊆ R such that X � Y is derivable from Σ us-
ing some R-sound and R-complete set of inference rules for the R-implication
of MVDs, in this case RB0. The structure (DepR(X),⊆,∪,∩,−, ∅, R) is a fi-
nite Boolean powerset algebra due to the derivability of union, intersection and
difference rule from RB0. Recall that an element a ∈ P of a poset (P,�, 0)
with least element 0 is called an atom of (P,�, 0) [9] if and only if every ele-
ment b ∈ P with b � a satisfies b = 0 or b = a. (P,�, 0) is called atomic if
and only if for every element b ∈ P with b �= 0 there is an atom a ∈ P with
a � b. In particular, every finite Boolean algebra is atomic. The set DepBR(X)
of all atoms of (DepR(X),⊆, ∅) is called the dependency basis of X with respect
to Σ.

We will now study the implication problem for MVDs. The problem is to
decide whether an arbitrary finite set Σ of MVDs implies a single MVD σ in the
sense of Definition 2.2. Therefore, the following definition introduces the notion
of a dependency basis for undetermined universes.



270 S. Link

Definition 6.1. Let Σ = {X1 � Y1, . . . , Xk � Yk} be a set of MVDs, and
X ⊆ A some attribute set. Let DepU (X) = {Y | X � Y ∈ Σ+

B0
} be the set

of all attribute sets Y such that X � Y is derivable from Σ using B0. The
dependency basis DepBU (X) of X with respect to Σ is the set of all atoms of
(DepU (X),⊆, ∅). �

Note that DepU (X) is invariant under different choices of sound and complete
sets of inference rules for the implication of MVDs. More precisely, if S1 and S2
are two different sound and complete sets of inference rules for the implication
of MVDs, then {Y | X � Y ∈ Σ+

S1
} = {Y | X � Y ∈ Σ+

S2
}. We will now

introduce the notion of the Σ-scope for an attribute set X .

Definition 6.2. Let Σ be a finite set of MVDs and X ⊆ A some set of at-
tributes. The set XS =

⋃
DepU (X) is called the scope of X with respect to Σ

(or short Σ-scope of X). �

If Σ = {X1 � Y1, . . . , Xk � Yk}, then XS ⊆ Rmin := X∪
k⋃

i=1
(Xi∪Yi) according

to [11, Lemma 5]. It follows immediately that XS ∈ DepU (X) since the union
rule is derivable from any complete set of inference rules for the implication
of MVDs. Moreover, if Y ∈ DepU (X), then Y ⊆ XS, i.e., XS is the maximal
element of DepU (X) with respect to ⊆.

In fact, union, intersection and difference rule are all derivable from any com-
plete set of inference rules. Therefore, (DepU (X),⊆,∪,∩,−, ∅, XS) is again a
finite Boolean algebra, with top-element XS. The existence and uniqueness of
DepBU (X) follow from the fact that every finite Boolean algebra is atomic.

The notion of a dependency basis gains its importance from the fact that
X � Y is logically R-implied by Σ if and only if Y is the union of some sets
of DepBR(X) [4]. In order to solve the R-implication problem, it is therefore
sufficient to find an algorithm for computing the dependency basis. The following
theorem shows that the same is true for DepBU (X), i.e., for implication in
undetermined universes.

Theorem 6.1. Let Σ be a finite set of MVDs. Then X � Y ∈ Σ+
B0

if and only
if Y =

⋃
Y for some Y ⊆ DepBU (X).

Proof. If X � Y ∈ Σ+
B0

, then Y ∈ DepU (X). That means Y =
⋃
Y for some

Y ⊆ DepBU (X) since DepBU (X) consists of all atoms of (DepU (X),⊆, ∅).
Vice versa, if Y =

⋃
Y for some Y ⊆ DepBU (X), then Y ∈ DepU (X) accord-

ing to the derivability of the union rule from B0. It follows that X � Y ∈ Σ+
B0

holds. �

Considerable effort has been devoted to finding fast algorithms that compute
DepBR(X) given X and given Σ, see for instance [4, 15, 19, 20, 25, 26, 30, 31, 35].
Currently, the best upper bound for solving Σ |= X � Y is O((1+min{s, log p})·
n) from [19] where s denotes the number of dependencies in Σ, p the number of
sets in DepBR(X) that have non-empty intersection with Y and n denotes the
total number of occurrences of attributes in Σ.
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We will show now that an extension of any algorithm that computes
DepBR(X) for any R with Rmin ⊆ R can be used to compute DepBU (X).
The followin theorem shows that DepBU (X) and DepBR(X) deviate in at most
one element, namely R −XS . Intuitively, that makes perfect sense since XS is
⊆-maximal among the attribute sets Y with X � Y ∈ Σ+

B0
and, given that

XS ⊂ R, the R-complement R−XS of XS is an atom of (DepR(X),⊆, ∅).

Theorem 6.2. Let Σ be a finite set of MVDs, X ⊆ A some attribute set, and
R some relation schema with Rmin ⊆ R. Then

DepBU (X) =
{

DepBR(X) , if XS = R
DepBR(X)− {R−XS} , if XS ⊂ R

.

Proof. Let XS = R, i.e., in particular XS = Rmin. We show that DepU (X) =
DepR(X) holds.

For Y ∈ DepU (X) follows X � Y ∈ Σ+
B0

and therefore also X � Y ∈ Σ+
RB0

since Y ⊆ XS ⊆ R. This, however, means that Y ∈ DepR(X).
If Y ∈ DepR(X), then X � Y ∈ Σ+

RB0
. Consequently, X � Y ∈ Σ+

B0
or

X � (R − Y ) ∈ Σ+
B0

by equation (2.1). Since XS = R we have in the latter
case that X � (XS −Y ) ∈ Σ+

B0
. According to the derivability of the union rule

from B0 we have X � XS ∈ Σ+
B0

, and due to the derivability of the difference
rule from B0 we also know that X � (XS − (XS − Y )) ∈ Σ+

B0
holds. Since,

(XS − (XS − Y )) = Y , it follows that Y ∈ DepU (X). Therefore, DepU (X) =
DepR(X) holds indeed and this shows that DepBU (X) = DepBR(X) whenever
XS = R.

Let now be XS ⊂ R, i.e., R − XS �= ∅. We show first that R − XS ∈
DepBR(X). First, XS ∈ DepR(X) by derivability of the union rule from RB0.
Then R −XS ∈ DepR(X) by application of the R-complementation rule from
RB0. Suppose there is some Y ∈ DepR(X) with Y ⊆ (R−XS). We know again
by equation (2.1) that Y ∈ DepU (X) or (R− Y ) ∈ DepU (X) holds. In the first
case we have Y ⊆ XS and therefore Y ⊆ XS ∩ (R − XS), i.e., Y = ∅. In the
latter case we have (R − Y ) ⊆ XS , i.e., (R − XS) ⊆ Y , i.e., Y = (R − XS).
We have shown that every Y ∈ DepR(X) with Y ⊆ (R − XS) satisfies Y = ∅
or Y = R − XS . That means R − XS is an atom of (DepR(X),⊆, ∅), i.e.,
R−XS ∈ DepBR(X).

We show now that DepBU (X) ⊆ DepBR(X). If Y ∈ DepBU (X), then X �
Y ∈ Σ+

B0
in particular. Consequently, X � Y ∈ Σ+

RB0
. Suppose there is some

Z with ∅ �= Z ⊂ Y and X � Z ∈ Σ+
RB0

. Then either X � Z ∈ Σ+
B0

which
contradicts the assumption that Y is an atom of (DepU (X),⊆, ∅), or X �
(R − Z) ∈ Σ+

B0
. Consequently, R− Z ⊆ XS and since R− Y ⊆ R − Z we have

R−Y ⊆ XS , too. However, from Y ⊆ XS follows then that Y ∪ (R−Y ) ⊆ XS ,
i.e., R = XS , a contradiction to our assumption. Therefore, Y ∈ DepBR(X). So
far, we have shown that DepBU (X) ∪ {R−XS} ⊆ DepBR(X).

As R−XS /∈ DepBU (X), it remains to show that DepBR(X) ⊆ DepBU (X)∪
{R−XS} holds as well. Let Y be some atom of (DepR(X),⊆, ∅). In particular,
Y ∈ DepU (X) or (R − XS) ⊆ Y . In the first case, Y must also be an atom
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of DepU (X) since DepU (X) ⊆ DepR(X). In the second case assume that Y �=
R−XS. Then we have R−XS �= ∅ and R−XS ⊂ Y . However, X � (R−XS) ∈
Σ+

RB0
since X � XS ∈ Σ+

B0
and the R-complementation rule is in RB0. This

contradicts our assumption that Y is an atom of DepR(X). Hence, Y = R−XS .
We have therefore shown that every atom of DepR(X) is either an atom of
DepU (X) or equals R−XS . �

The following example illustrates Theorem 6.2.

Example 6.1. Suppose Σ = {A � BC} and the underlying relation schema
R = {A,B,C,D,E}. The Boolean algebra of right-hand sides Y of those MVDs
A � Y which are R-implied by Σ is illustrated in Figure 1. The dependency
basis DepBR(A) = {A,BC,DE} consists of the atoms of the algebra. Since
AS = ABC we obtain DepBU (A) = {A,BC} and the Boolean algebra of right-
hand sides Y of those MVDs A � Y which are implied by Σ is printed boldly
in Figure 1. �

ABCDE

ABC ADE BCDE

A BC DE

∅
Fig. 1. Dependency Basis in fixed and undetermined Universe

Theorem 6.2 provides us with a strategy for computing the dependency basis
DepBU (X) of X with respect to Σ = {X1 � Y1, . . . , Xk � Yk}. In fact, one
may use any algorithm for computing DepBRmin(X) with respect to Σ. Having
computed the Σ-scope XS of X , one removes Rmin−XS from DepBRmin(X) if
and only if XS ⊂ Rmin. Therefore, it remains to compute the Σ-scope XS .

Recall from [5] the notion of a closure X =
⋃
{Y | X → Y ∈ Σ+} of an

attribute set X with respect to a set Σ of functional dependencies. In order to
compute X all FDs Y → Z ∈ Σ are inspected, and whenever Y ⊆ X, then X
is replaced by X ∪ Z. This process is repeated until no further attributes have
been added to X after inspecting all FD in Σ. The correctness of this algorithm
is due to the soundness of the following inference rule: if Y → Z ∈ Σ+ and
Y ⊆ X , then X → X ∪ Z ∈ Σ+.

The definition of X is very similar to that of the Σ-scope XS. In fact, if
Y � Z ∈ Σ+ and Y ⊆ X , then we also have X � X ∪Y ∈ Σ+ according to the
soundness of the reflexivity rule, additive transitivity rule and union rule. The
idea is therefore to compute the Σ-scope XS of X by employing essentially the
linear-time algorithm from [5] for computing the closure of X with respect to a
set of FDs.
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Algorithm 1 (Dependency Basis)
Input: Σ = {X1 � Y1, . . . , Xk � Yk}, and a set X of attributes

Output: DepBU(X) with respect to Σ

Method:

VAR Rmin, X
S
new, XS

old, X
S
alg: Set of attributes; MVDList : List of MVDs;

(1) Rmin := X ∪
k⋃

i=1
(Xi ∪ Yi);

(2) Use the Algorithm in [19] to compute DepBRmin(X);
(3) XS

new := X ;
(4) MVDList := List of MVDs in Σ;
(5) REPEAT
(6) XS

old := XS
new;

(7) Remove all attributes in XS
new from the LHS of all MVDs in MVDList ;

(8) FOR all MVDs ∅ � Y in MVDList LET XS
new := XS

new ∪ Y ;
(9) UNTIL XS

new = XS
old;

(10) XS
alg := XS

new;
(11) IF XS

alg = Rmin THEN RETURN(DepBRmin(X))
(12) ELSE RETURN(DepBRmin(X)− {Rmin −XS}); �

The next theorem verifies essentially the correctness of Algorithm 1 in computing
the Σ-closure XS of X (i.e. the part between line (4) and line (10)).

Theorem 6.3. Algorithm 1 computes DepBU (X) with respect to Σ in time
O((1 + min{s, log p̄}) · n) where s denotes the number of dependencies in Σ, p̄
the number of sets in DepBU (X) and n denotes the total number of occurrences
of attributes in Σ.

Proof. If we show that the part between line (4) and line (10) of Algorithm 1
computes indeed the scope of X with respect to Σ, i.e. XS

alg = XS, then the
correctness of Algorithm 1 follows from the correctness of the algorithm in [19]
and Theorem 6.2.

In order to show that XS
alg = XS we prove first that X � XS

alg ∈ Σ+, i.e.,
XS

alg ⊆ XS holds. We proceed by induction on the number j of runs through
the REPEAT loop between line (5) and (9). If j = 0, then XS

new = X and
X � X ∈ Σ+ by reflexivity. For j > 0 we assume that X � XS

new ∈ Σ+ for
XS

new after the jth run through the REPEAT loop. Suppose there is some MVD
Z � Y ∈ Σ such that Z −XS

new = ∅, i.e., Z ⊆ XS
new (otherwise there is nothing

to show). By derivability of the augmentation rule we infer XS
new � Y ∈ Σ+.

An application of the additive transitivity rule shows that X � XS
new ∪ Y ∈

Σ+. Therefore, X � XS
new ∈ Σ+ holds also after the j + 1st run through the

REPEAT loop.
It remains to show that XS ⊆ XS

alg. Consider the chain Σ = Σ0 ⊂ Σ1 ⊂
· · · ⊂ Σk = Σ+ where Σi+1 is generated from Σi by an application of a single
inference rule from, say, the complete set L1. We show by induction on i that
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if U � V ∈ Σi and U ⊆ XS
alg, then also V ⊆ XS

alg. (6.2)

For i = k it follows that if U � V ∈ Σ+ and U ⊆ XS
alg, then also V ⊆ XS

alg.
The proof concludes for U = X and V = XS since X � XS ∈ Σ+ by the
derivability of the union rule. It remains to show (6.2). For i = 0 we have
U � V ∈ Σ and U ⊆ XS

alg means that U ⊆ XS
new at some point in time. This

implies that ∅ � V occurs in the MVDList after line (7). Consequently, after
line (8) we have V ⊆ XS

new ⊆ XS
alg as well. If i > 0, then Σi+1 − Σi contains

exactly one U � V . There is nothing to show for the MVDs in Σi (hypoth-
esis). Thus, it suffices to consider U � V , and we distinguish between 4 diff-
erent cases.

1. If U � V results from an application of the reflexivity axiom, then V ⊆ U ⊆
XS

alg.
2. If U � V results from an application of the subset rule, then U � Z, Y �

W ∈ Σi with Z ∩ Y = ∅ and V = Z ∩ W . From U ⊆ XS
alg follows

Z ⊆ XS
alg since U � Z ∈ Σi. However, that means V = Z ∩ W ⊆ Z ⊆

XS
alg.

3. If U � V results from an application of the pseudo-transitivity rule, then
U � W,W � Z ∈ Σi and V = Z −W . From U ⊆ XS

alg follows W ⊆ XS
alg

since U � W ∈ Σi. Consequently, W ⊆ XS
alg implies Z ⊆ XS

alg since
W � Z ∈ Σi. That means, V = Z −W ⊆ Z ⊆ XS

alg.
4. If U � V results from an application of the union rule, then U � W,U �

Z ∈ Σi and V = W ∪Z. From U ⊆ XS
alg follows W,Z ⊆ XS

alg. Consequently,
V = W ∪ Z ⊆ XS

alg.

The time complexity of Algorithm 1 is essentially the time complexity of the
algorithm in [19]. The code between line (4) and (10) to compute the Σ-scope
of X can be implemented in time O(n), see [5]. Therefore, the time-complexity
is O((1 + min{s, log p̄}) · n).

�

Example 6.2. Consider a classical example [4]. Let Σ = {AB � DEFG,CGJ �
ADHI}, and suppose we want to compute DepBU ({A,C,G, J}) with respect
to Σ. We obtain Rmin = {A,B,C,D,E, F,G,H, I, J} and

DepBRmin({A,C,G, J}) = {{A}, {C}, {G}, {J}, {D}, {H, I}, {B,E, F}} [4].

The Σ-scope of {A,C,G, J} is {A,C,G, J}S = {A,C,D,G, I,H, J}. Therefore,
{A,C,G, J}S ⊂ Rmin and Rmin − {A,C,G, J}S = {B,E, F}. That is,

DepBU ({A,C,G, J}) = {{A}, {C}, {G}, {J}, {D}, {H, I}}

and the MVD ACGJ � BDEF which is Rmin-implied by Σ is not implied
by Σ. �

Theorem 6.4. Let Σ be a finite set of MVDs. The MVD X � Y is implied by
Σ if and only if Y ⊆ XS and X � Y is Rmin-implied by Σ.
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Proof. If X � Y is implied by Σ, then Y is the union of some subset of
DepBU (X) ⊆ DepBRmin(X). Consequently, Y ⊆ XS and X � Y is Rmin-
implied by Σ.

If X � Y is Rmin-implied by Σ, then Y is the union of some subset of
DepBRmin(X). If Rmin = XS, then DepBRmin(X) = DepBU (X) by Theorem
6.2 and X � Y is also implied by Σ according to Theorem 6.1. Otherwise
XS ⊂ Rmin. Since Y ⊆ XS holds as well, we have Y ∩(Rmin−XS) = ∅, i.e., Y is
in fact the union of some subset of DepBRmin(X)−{Rmin−XS} = DepBU (X).
That means, X � Y is implied by Σ according to Theorem 6.1. �

Corollary 6.1. The implication problem Σ |= X � Y can be decided in time
O((1 + min{s, log p}) · n) where s denotes the number of dependencies in Σ, p
the number of sets in DepBU (X) that have non-empty intersection with Y and
n denotes the total number of occurrences of attributes in Σ.

Proof. This follows from the time bound in [19], Theorem 6.3 and Theorem 6.1.
It can be decided in time O(n) whether Y ⊆ XS holds. If Y �⊆ XS , then X � Y
is not implied by Σ. Otherwise, we can decide in time O((1 + min{s, log p}) · n)
whether Y is the union of some subset of DepBU (X). Note that there is at most
one more element in DepBRmin(X) than in DepBU (X), namely Rmin − XS .
However, Y and Rmin −XS are disjoint since Y ⊆ XS. �

If there is a linear-time algorithm for computing the dependency basis in a fixed
universe, then Algorithm 1 also provides a linear-time algorithm for computing
the dependency basis in undetermined universes. Vice versa, if there is a linear-
time algorithm for computing the dependency basis in undetermined universes,
then Theorem 6.2 shows that the dependency basis can also be computed in
linear time in a fixed universe.

7 Open Problems

The paper concludes by listing some open problems.

1. Are there any complete sets (not a subset of SU ) in which the subset rule
S does not occur?

2. Lien studies MVDs in the presence of null values [28], but only in fixed
universes. Clarify the role of the R-complementation rule in this context and
investigate MVDs in the presence of null values in undetermined universes!

3. Consider MVDs in undetermined universes together with FDs. What are
minimal complete sets for the implication of FDs and MVDs in undetermined
universes?

4. In [29], Mendelzon identifies all minimal subsets of {R,A, T ,U ,D, I, CR}.
Do the same for {R-axiom,R,R∅,A, T ,U ,D, I, T ∗,S, CR}!

5. Are there any minimal sets of inference rules that are also complementary?
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Abstract. The user of an information system rarely knows exactly what
he is looking for, but once shown a piece of information he can quickly tell
whether it is what he needs. Query tuning is the process of searching for
the query that best approximates the information need of the user. Typi-
cally, navigation and querying are two completely separate processes, and
the user usually has to switch often from one to the other–a painstaking
process producing a frustrating experience. In this paper, we propose an
approach to query tuning that integrates navigation and querying into
a single process, thus leading to a more flexible and more user friendly
method of query tuning. The proposed approach is based on formal con-
cept analysis, and models the directory of an information source as a for-
mal context in which the underlying concept lattice serves for navigation
and the attributes of the formal context serve for query formulation. In
order to support the user in coping with a possibly overwhelming number
of alternative query tunings, preferences are introduced.

1 Introduction

The work reported in this paper originates in the following basic observation:
the user of an information system rarely knows exactly what he is looking for,
but once shown a piece of information he can quickly tell whether it is what he
needs.

Query tuning is the process of searching for the query that best approxi-
mates the information need of the user. We note that, finding the query that
best expresses a given information need is important not only for retrieving the
information satisfying the current need, but also in order to name and store the
query for use at some later time (without having to re-invent it over and over).

In advanced information systems, query tuning proceeds in two steps: (a)
the user navigates the information space until he finds a subspace of interest
and (b) in that subspace, the user issues a query. If the answer to the query is
satisfactory then the session terminates, otherwise a new navigation step begins.

J. Dix and S.J. Hegner (Eds.): FoIKS 2006, LNCS 3861, pp. 278–293, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Preference-Based Query Tuning Through Refinement/Enlargement 279

However, navigation and querying are two completely separate processes, and
the user usually has to switch often from one to the other -a painstaking process
usually producing a frustrating experience.

In this paper, we propose an approach to query tuning that interleaves, or
integrates navigation and querying into a single process, thus leading to a more
flexible and more user friendly method of query tuning.

The proposed approach is based on Formal Concept Analysis (FCA, from now
on), and models the directory of an information source (IS, for short) as a formal
context in which the objects represent documents and the attributes represent
indexing terms [16]. As a result, the concepts of the underlying concept lattice
represent meaningful classes of documents, in the sense that all documents in
a class share the same set of indexing terms. Therefore, we propose to use the
concept lattice as the basic navigation tool.

We assume the user queries to be Boolean combinations of indexing terms,
and more specifically conjunctions of indexing terms. Indeed, the objective of
this paper is not to propose a new, more powerful query language but, rather,
use an existing (simple) language in order to illustrate our approach to query
tuning.

Our approach is user-controlled, and proceeds as a sequence of refine/enlarge
commands until a user-approved query is obtained. More precisely, query tuning
in our approach proceeds roughly as follows:

– Query mode. The user formulates a query to the IS and receives an answer;
if the answer is satisfactory then the session terminates and the issued query
is considered tuned, otherwise the user can issue a Refine or an Enlarge
command.

– Refine. A Refine command returns all maximal concepts (from the concept
lattice) that refine the user query, in the sense that their extent is strictly
included in the answer to the user query; then the user can decide to either
return to query mode and query one or more of those concepts, or terminate.

– Enlarge. An Enlarge command returns all minimal concepts (from the con-
cept lattice) that subsume the user query, in the sense that their extent
strictly includes the answer to the user query; then the user can decide to
either return to query mode and query one or more of those concepts, or
terminate.

In what follows, we firstly relate our work to existing results; then we introduce
the IS model (Section 3) and recall the basic notions needed from formal con-
cept analysis (Section 4). Our query tuning approach is presented in Section 5
and illustrated through a running example. The preference-based ordering of
query tunings is given in Section 6. Finally, we offer some concluding remarks in
Section 7.

2 Related Work

The use of FCA in information system is not new. The structuring of informa-
tion that FCA supports has inspired work on browsing [13, 3], clustering [4], and
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ranking [6, 15]. A basic drawback of these approaches is that they require the
computation of the whole concept lattice, whose size may be exponential in that
of the context, as it will be argued below. An integrated approach to brows-
ing and querying that uses only part of the lattice, and thus can be computed
efficiently, is presented in [5].

Preferences, on the other hand, are enjoying a vast popularity, due to their
ability of capturing user requirements. In general, preferences can be captured
either quantitatively, or qualitatively as formulas inducing orderings [9, 14]. Our
approach subscribes to the latter view.

Our approach extends efficient, FCA-based query tuning by considering qual-
itatively expressed preferences.

3 Information Sources

Given the foundational nature of our work, we deliberately adopt a simple model
of an information source, close in spirit to that of a digital library, (or DL for
short). Essentially, a DL serves a network of providers willing to share their
documents with other providers and/or consumers (hereafter, collectively called
“users”). Each document resides at the local repository of its provider, so all
providers’ repositories, collectively, can be seen as a distributed repository of
documents spread over the network. The DL system acts as a mediator, support-
ing transparent access to all sharable documents by the library users. Existing
DL systems are consistent with this view [7, 8].

Two of the basic services supported by the library are document registration
and querying.

3.1 Document Registration

When a provider wishes to make a document sharable over the network of users
he must register it at the library. To do so he must provide two items to the
library:

– the document identifier
– the document description

We assume that the document identifier is a global identifier, such as a URI, or
just the URL where the document can be accessed, (however, for convenience of
notation, we use integers as document identifiers in our examples). As for the
document description, we consider only content description and we assume that
such a description is given by selecting a set of terms from a controlled vocab-
ulary. For example, the document description {QuickSort, Java} would indicate
that the document in question is about the quick sort algorithm and Java.

Therefore, to register a document, its provider submits to the library an iden-
tifier i and a set of terms D. We assume that registration of the document by the
library is done by storing a pair (i, t) in the library repository, for each term t in
D. In our previous example, if i is the document identifier, the library will store
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two pairs: (i,QuickSort) and (i, Java). The set of all such pairs (i, t) is what we
call the library directory, or simply directory (the well known Open Directory [2]
is an example of such a directory). Clearly the directory is a binary relation be-
tween document identifiers and terms, i.e. a formal context in the sense defined
in the next section.

3.2 Querying

Library users access the library in search of documents of interest, either to
use them directly (e.g., as learning objects) or to reuse them as components in
new documents that they intend to compose. Search for documents of interest
is done by issuing queries to the library management system, and the library
management system uses its directory to return the identifiers (i.e., the URIs)
of all documents satisfying the query.

The query language that we use is a simple language in which a query is just
a Boolean combination of terms:

q ::= t | q1 ∧ q2 | q1 ∨ q2 | q1 ∧ ¬q2 | (q)

where t is any term.
The answer to a query q is defined recursively as follows:

if q is a term then ans(q) = {i | (i, q) is in the directory}
else begin

if q is q1 ∧ q2 then ans(q) = ans(q1) ∩ ans(q2)
if q is q1 ∨ q2 then ans(q) = ans(q1) ∪ ans(q2)
if q is q1 ∧ ¬q2 then ans(q) = ans(q1) \ ans(q2)
end

In other words, to answer a query, the underlying digital library management
system simply replaces each term appearing in the query by its extension from
the directory, and performs the set theoretic operations corresponding to the
Boolean connectives.

The reader familiar with logic will have recognized documents as individuals,
terms as unary predicate symbols and the library directory as an interpretation
of the resulting logic language; in other words, the presence of a pair (i, t) in
the library directory means that the individual i is in the interpretation of term
t. Query answering can then be seen as based on the notion of satisfaction: an
individual i is returned in response to a query q just in case i is in the extension
of q (in the current interpretation).

4 Formal Concept Analysis

Formal concept analysis (hereafter FCA for short) is a mathematical tool for the
analysis of data based on lattice theory [11, 10, 12, 1].

Let O be a set of objects and A a set of attributes. A formal context, or
simply context over O and A is a triple (O,A, C), where C ⊆ O×A, is a binary



282 N. Spyratos and C. Meghini

A B C D E F

1 x x x x
2 x x
3 x x x x
4 x x x x x
5 x x x x

Fig. 1. A Formal Context

relation between O and A, called the incidence of the formal context. Figure 1
shows a formal context in tabular form, in which objects correspond to rows and
attributes correspond to columns. The pair (o, a) is in C (that is, object o has
attribute a) if and only if there is a x in the position defined by the row of object
o and the column of attribute a.

Let i and e be respectively the functions intension and extension as they are
normally used in information systems, that is:

for all o ∈ O, i(o) = {a ∈ A | (o, a) ∈ C}
for all a ∈ A, e(a) = {o ∈ O | (o, a) ∈ C}.

In Figure 1, the intension of an object o consists of all attributes marked with a
x in the row of o; the extension of an attribute a consists of all objects marked
with a x in the column of a. Now define:

for all O ⊆ O, ϕ(O) =
⋂
{i(o) | o ∈ O}

for all A ⊆ A, ψ(A) =
⋂
{e(a) | a ∈ A}.

Apair (O,A), O ⊆ O andA ⊆ A, is a formal concept of the context (O,A, C) if and
only if O = ψ(A) and A = ϕ(O). O is called the extent and A the intent of concept
(O,A). In the formal context shown in Figure 1, ({1, 3, 4}, {C,D}) is a concept,
while ({1, 3}, {A,D}) is not. The computation of ϕ for a given set of objects O
requires the intersection of |O| sets, thus it requiresO(|O|·|A|2) time. Analogously,
the computation of ψ for a given set of attributes A requires O(|A| · |O|2) time.
These are both upper bounds that can be reduced by adopting simple optimization
techniques, such as ordering. In addition, they are worst case measures.

The concepts of a given context are naturally ordered by the subconcept-
superconcept relation defined by:

(O1, A1) ≤ (O2, A2) iff O1 ⊆ O2(iff A2 ⊆ A1)

This relation induces a lattice on the set of all concepts of a context. For example,
the concept lattice induced by the context of Figure 1 is presented in Figure 2.

There is an easy way to “read” the extent and intent of every concept from
the lattice. To this end, we define two functions γ and μ, mapping respectively
objects and attributes into concepts, as follows:
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γ(o) = (ψ(ϕ({o})), ϕ({o})) for all o ∈ O
μ(a) = (ψ({a}), ϕ(ψ({a}))) for all a ∈ A.

It is easy to see that γ(o) and μ(a) are indeed concepts. In addition, (o, a) ∈ C
is equivalent to γ(o) ≤ μ(a). The functions γ and μ are represented in Figure 2
by labeling the node corresponding to the concept γ(o) with o as a subscript,
and the node corresponding to concept μ(a) with a as a superscript. Finally, it
can be proved that for any concept c = (Oc, Ac), we have:

Oc = {o ∈ O | γ(o) ≤ c}
Ac = {a ∈ A | c ≤ μ(a)}.

Thus, the extent of a concept c is given by the objects that label the concepts
lower than c in the concept lattice. For example, the extent of the concept
labelled by A, that is μ(A), is {1, 3, 5}. Analogously, the intent of c is given by
the attributes that label concepts higher than c in the lattice, just {A} for μ(A).
It follows that

μ(A) = ({1, 3, 5}, {A}).

By the same token, it can be verified that

γ(3) = ({3}, {A,C,D, F}).

Notice that this reading is consistent with the reading of class hierarchies in
object-oriented languages. In such hierarchies, objects are inherited “upward”,
i.e. by the classes that are more general than the classes where they belong,
while attributes are inherited “downward”, i.e. by the classes that are more
special than the classes that define them.

It is easy to see the following:

1. O1 ⊆ O2 implies ϕ(O1) ⊇ ϕ(O2); A1 ⊆ A2 implies ψ(A1) ⊇ ψ(A2); O ⊆
ψ ◦ ϕ(O); and A ⊆ ϕ ◦ ψ(A); hence, ϕ and ψ form a Galois connection
between the powerset of O, P(O), and that of A, P(A).

2. O⊆ψ◦ϕ(O); O1⊆O2 implies ψ◦ϕ(O1) ⊆ ψ◦ϕ(O2); and ψ◦ϕ(ψ◦ϕ(O))=O.

The above 3 properties of ψ ◦ ϕ tell us that ψ ◦ ϕ is a closure operator on
P(O), and similarly ϕ ◦ ψ is a closure operator on P(A).

Since closure systems may be exponentially large in the size of their domain,
a concept lattice may have an exponential number of concepts in the size of the
underlying context. For this reason, any approach that requires the computation
of the whole concept lattice is bound to be intractable, in general. On the other
hand, our approach only requires the computation of small portions of the lattice,
namely that consisting of single concepts and their lower or upper neighbors.
This guarantees the tractability of the involved operations, as it will be argued
in due course.



284 N. Spyratos and C. Meghini

3 5 1 4

2

B

E

D

C

FA

Fig. 2. A concept lattice

4.1 Digital Libraries and FCA

We are now in a position to make precise the relationship between DLs and FCA.
The directory D of a DL can be seen as a formal context, defined as follows:

– The objects of the formal context are the identifiers of the documents regis-
tered in D; we call the set of all such identifiers the domain of D, and denote
it by dom(D).

– The attributes of the formal context are the terms which appear in at least
one document description; we call the set of all such identifiers the range of
D, and denote it by ran(D).

– The incidence of the formal context is just D, the DL directory.

So, corresponding to the DL directory D we have the formal context (dom(D),
ran(D), D). Each concept of this context may be understood as a class of doc-
uments. The extent of the concept gives the instances of the class, while its
intent gives the attributes (terms) defining the class. By definition of concept,
the extent is the largest set of documents having the attributes in the intent and,
dually, the intent is the largest set of attributes shared by the documents in the
extent. This is compliant with the notion of class as it stems from object-oriented
information modelling, thus it is a merit of FCA to offer a mathematically well-
founded and intuitively appealing criterion to model information.

In addition, unlike the traditional approach in which classes are manually
derived in the design of the information system, here classes are automatically
derived solely on the base of the available information. In this way, they do not
run the risk of becoming a straightjacket: they are a perfect fit for the underly-
ing information at any point of the system lifetime, since their definition evolves
with the evolving of the information. This is very valuable in the context of DLs,
for which the identification of classes is more difficult than in a traditional infor-
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mation system, due to the complexity and the heterogeneity of the documents,
and to the multiplicity of their usage.

Our work is a first exploitation of the notion of formal concept in DLs, hinging
on a basic link between concepts and conjunctive queries. Indeed, the intent of
each concept in the context (dom(D), ran(D), D) is actually the most specific
conjunctive query whose answer is the extent of that concept. In our example,
on Figure 1 it can be verified that the queries: (C ∧F ), (D∧F ) and (C ∧D∧F )
are the ones (and the only ones) having the set of documents {3, 4} as an answer.
The most specific of these queries is (C ∧D ∧ F ) and in fact ({3, 4}, {C,D, F})
is a formal concept.

Conversely, any answer to a conjunctive query is the extent of some concept.
For example, the set of documents {1, 2, 3} is not the extent of a concept and in
fact no conjunctive query can produce it as an answer.

It follows that, by navigating the concept lattice, the user can be guided to the
best result he can obtain with a conjunctive query. These facts and observations
lie at the heart of our query tuning approach that we present in the next section.

5 Query Tuning

During user interaction with the digital library, query tuning is obtained by
using four commands: Query, Terminate, Refine and Enlarge. In this section we
define each of these commands separately and illustrate them in our running
example. We recall that we restrict our attention to conjunctive queries only.

5.1 Query

The user issues a query to the system. The system returns the answer, obtained
by evaluating ψ(A) where A is the set of terms in the query. In fact:

ans(
∧

A) =
⋂
{ans(a) | a ∈ A} (by definition of ans on conjunctions)

=
⋂
{{o ∈ O | (o, a) ∈ C} | a ∈ A} (by definition of ans on terms)

=
⋂
{e(a) | a ∈ A} (by definition of e)

= ψ(A) (by definition of ψ).

The system also shows to the user the most precise (i.e.the most specific) query
that can be used to obtain the same result; this query is the conjunction of
all terms in ϕ(ψ(A)). In other words, upon evaluating a query

∧
A the system

“places” itself on the concept (ψ(A), ϕ(ψ(A))), which becomes the current con-
cept. This placement can be obtained using a polynomial amount of time, since it
requires the computation of ψ on the set of terms making up the query, followed
by a computation of ϕ on the result.

In our example, let us assume the user poses a query consisting of a single
term, say D. In response, the system returns the answer ψ(D) = {1, 3, 4} and
shows the query C∧D, since ϕ(ψ(D)) = {C,D}. The current concept is therefore
μ(D) in Figure 2.
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5.2 Terminate

The user is satisfied by the answer and issues a Terminate command. The system
switches to next-query mode; otherwise, the user performs one of the two actions
described next.

5.3 Refine

The user judges the answer to be too rich, e.g. the cardinality of the answer set is
too big or, upon inspection, there are too many irrelevant answers in the answer
set; and issues a Refine command. The system then computes and returns to the
user the following pair of information items, for each concept max whose extent
Omax is a maximal subset of the current answer:

1. The intent Amax
2. The objects in the current answer lying outside Omax .

Let us explain further these two items that are returned to the user. Any con-
cept like max above is a maximal sub-concept of the current concept, or, in other
words, a lower neighbor of the current concept in the concept lattice. By defi-
nition, the intent of such a concept is a superset of the current concept intent.
The system computes each such concept max and shows its intent to the user,
by simply presenting him the additional terms of the intent with respect to the
current concept intent. This computation can be done in polynomial time with
respect to the size of the context. Let us see how in our example.

Let us assume that the current answer is {1, 3, 4}, and that the user considers
this answer to be too large, so he executes a Refine. To compute the terms to
be shown to the user, the system looks at a smaller context, consisting of the
objects in the extent of the current concept, and of the attributes outside the
intent of the current concept. The context we are looking at is:

A B E F

1 x x
3 x x
4 x x x

In order to achieve maximality, we select the terms which have maximal exten-
sion in this context; these are A, E and F. Each of these terms t must be shown
to the user, since it leads to a maximal sub-concept of the current concept,
given by:

(ψ(Ac ∪ {t}), ϕ(ψ(Ac ∪ {t})))
where Ac is the intent of the current concept. In our example, we recall that
the current concept is μ(D) = ({1, 3, 4}, {C,D}). Then, term A leads to concept
({1, 3}, {A,C,D}), term E leads to concept ({1, 4}, {C,D,E}), term F leads to
concept ({3, 4}, {C,D, F}). All these concepts are maximal sub-concepts of the
current concept; as a consequence, each has a larger intent, which means that
its associated query is a refinement of the query originally posed by the user.
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Fig. 3. The maximal sub-concepts of the current concept

Figure 3 shows the 3 maximal sub-concepts (green) of the current concept (light
blue) in the concept lattice; next to each one, the additional term is shown.

The second item shown to the user is the set of objects in the extent of the
current concept lying outside Omax . Intuitively, these are the objects that will
be “lost” by selecting the corresponding refinement. For instance, along with the
term F, the user is shown the object set {1} containing the answers which will
no longer be answers if the query is refined by adding the term F to it.

The complete answer that the user gets in response to a Refine in our example
is reported in Table 1. For convenience, the Table also shows the refined query
and the concept corresponding to each solution.

Table 1. Result of a Refine

Option Added
Terms

Lost
Objects

Refined Query Concept

1 {A} {4} A ∧ C ∧ D ({1, 3}, {A, C, D})
2 {E} {3} C ∧ D ∧ E ({1, 4}, {C, D, E})
3 {F} {1} C ∧ D ∧ F ({3, 4}, {C, D, F})

Upon deciding whether to accept a proposed refinement, the user can figure
out the attributes he gains by inspecting the added terms, or the answers he
looses by inspecting the lost objects. If the user does decide to move, then the
concept corresponding to the selected solution becomes the current concept, and
a new interaction cycle begins (by querying, refining and enlarging).

Notice that if no maximal sub-concept exists (i.e. the current concept is the
least concept of the lattice), then the system returns empty and, subsequently,
the user may issue an Enlarge command (see below) or try a new query.
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5.4 Enlarge

The user judges the answer to be too poor (e.g., the cardinality of the answer
set is too small, possibly zero), and issues an Enlarge command. The system
then computes and returns to the user the following pair of information items,
for each concept min whose extent Omin is a minimal superset of the current
answer (in a symmetric manner as in the case of Refine):

1. The intent Amin .
2. The objects in Omin which lay outside the extent of the current context.

Each such concept min is a minimal super-concept of the current concept,
or an upper neighbor. The set of all such concepts min can be computed in
polynomial time in an analogous way to the maximal sub-concepts. Let us again
see how in our example.

Let us assume that the user refines the initial query by selecting option 1 in
Table 1, thus making ({1, 3}, {A,C,D}) the current concept, and that he then
asks to enlarge this set. To compute the objects leading to a minimal super-
concept of the current concept, we look at a smaller context, consisting of just
the attributes in the intent of the current context and of the objects outside the
extent of the current context. That is:

A C D

2 x
4 x x
5 x

From this context we select the objects with maximal intention, that is 4 and 5.
Each of these objects o leads to a minimal super-concept of the current concept,
given by:

(ψ(ϕ(Oc ∪ {o})), ϕ(Oc ∪ {o}))

where Oc is the extent of the current concept. In our example, object 4 leads
back to concept ({1, 3, 4}, {C,D}) while object 5 leads to concept ({1, 3, 5}, {A}),
which are all minimal super-concepts of the current concept. Figure 4 shows the
2 minimal super-concepts (red) of the current concept (light blue) in the concept
lattice; next to each one, the additional term is shown. Notice that the query
associated to each such concepts is a relaxation of the query associated to the
current concept.

The complete answer that the user gets in response to an Enlarge in our
example is reported in Table 2. For each option, the Table shows the terms
that are lost in the query enlargement, the added objects, the enlarged query
and the corresponding concept. Upon deciding whether to accept a proposed
enlargement, the user can figure out the attributes he looses or the answers he
gains. If the user does decide to move, then the concept corresponding to the
selected option becomes the current concept, and a new interaction cycle begins
(by querying, refining and enlarging).
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Fig. 4. The minimal super-concepts of the current concept

Table 2. Result of an Enlarge

Option Lost
Terms

Added
Objects

Enlarged Query Concept

1 A 4 C ∧ D ({1, 3, 4}, {C, D})
2 C, D 5 A ({1, 3, 5}, {A})

Notice that if no minimal super-concept exists (i.e. the current concept is the
greatest concept of the lattice), then the system returns empty and, subsequently,
the user may issue a Refine command or try a new query.

6 Introducing Preferences

Preferences are a way of capturing user specific requirements in the usage of a
DL. As the amount of information in a DL and the number of its users may grow
very rapidly, capturing user preferences may be a very valuable tool to make the
DL usable.

We will model the preferences of a given user u, as a partial order Pu (simply
P when there is no ambiguity) over the terms employed for content description.
If terms a and b are in the P relation, i.e. (a, b) ∈ P, we say that a is preferred
over b (by user u).

P may be derived in several ways, for instance by having the user declare
preferences, or by mining them from user actions, or both. In addition, while
reflexivity and transitivity seem reasonable properties for a preference relation,
there is strong evidence that antisymmetry is not so. However, we have assumed
it because it is a well-known mathematical fact that a partial order can be
uniquely derived from a pre-order by considering term equivalence. We will do
this below for term set, thus for the time being suffice it to say that there is no
loss in generality by considering P to be a partial order.



290 N. Spyratos and C. Meghini

6.1 Using Preferences in Query Refining

Upon performing a query refinement, the user is confronted with the set of
the maximal sub-concepts of the current concept, the intents of which give the
alternative query refinements, as illustrated in Table 1. Let us call this latter
set Aref . Now, in a realistic setting Aref may contain dozens of concept intents,
making it hard for the user to merely inspect the result of a Refine, let alone to
select an alternative. Preferences may help solving this problem. They can be
used to partition the set Aref into blocks of equally preferred concept intents,
which are shown to the user in decreasing order of preference. In this way, the
output is divided into more consumable portions, and is offered to the user in a
sensible way. In order to achieve this goal, we need to determine: (a) a partial
order between concepts based on preferences; and (b) a way to use this order for
defining a suitable partition of Aref .

As for the former goal, it is natural to consider a concept (A,B) preferred over
a concept (A′, B′) based on a criterion involving the intents B and B′, which are
sets of terms and can therefore directly reflect preferences. Since no two concepts
can have the same intents, any order defined on intents can be understood also
as an order defined on concepts. Moreover, since the set of concept intents is a
subset of P(A), any partial order defined on the latter carries over the former
by inheritance. It follows that goal (a) above amounts to define a partial order
between term sets.

Given two term sets B,B′ ⊆ A, B is said to be preferred over B′, written as
B 1 B′, if for all terms b ∈ B there exists a term b′ ∈ B′ such that (b, b′) ∈ P.
It is not difficult to see that 1 is a pre-order on P(A) : both its reflexivity and
transitivity are implied by those of P. Antisymmetry does not hold for 1: it
suffices to consider the term sets {a, b} and {a, b, c} such that (c, b) is in P.

Let us define two term sets B and B′ preferentially equivalent, written B ≡ B′,
if B 1 B′ and B′ 1 B. Now ≡ is an equivalence relation on P(A), whose induced
equivalence classes we denote as [B], i.e. [B] = {X ⊆ A | X ≡ B}. 1 can be
extended to the so defined equivalence classes as follows:

[B] 1 [B′] iff B 1 B′.

As it can be verified,1 is a partial order on equivalence classes. Thus by replacing
the notion of term set with that of class of equivalent term sets we have a partial
order on term sets, and have so accomplished goal (a) above. Let us resume
the example on refinement developed in Section 5.3, whose result is shown in
Table 1. In this example, we have

Aref = {{A,C,D}, {C,D,E}, {C,D, F}}.

Assuming that the Hasse diagram of P includes only the pairs (A,E) and (A,F ),
the only comparable classes amongst those relevant to Aref are:

[{A,C,D}] 1 [{C,D,E}] and
[{A,C,D}] 1 [{C,D, F}].
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In order to accomplish goal (b), below we describe how the set Aref of concept
intents resulting from a Refine is partitioned, leaving aside for simplicity the
other information returned to the user. The partition in question is given by the
sets A1, A2, . . . , defined as (k ≥ 1):

Ak = min
�

Sk

where Sk consists of the elements of Aref which have not yet been inserted in
any block, and is given by (k ≥ 1):

S1 = Aref

Sk+1 = Sk \Ak

Thus, A1 consists of the minimal elements of Aref , A2 of the minimal elements
of Aref after the removal of the minimal elements, and so on.

In our example:

S1 = {{A,C,D}, {C,D,E}, {C,D, F}}
A1 = {{A,C,D}}
S2 = {{C,D,E}, {C,D, F}}
A2 = {{C,D,E}, {C,D, F}}
Si = Ai = ∅ for i ≥ 3.

Accordingly, the user is first shown the first row of Table 1 and then the second
and third ones.

Formally, it can be shown that, for any set of term sets Aref and partial
ordering on A, the following hold:

1. there exists m ≥ 1 such that for all j ≥ m, Sj = Aj = ∅.
2. {Aj | 1 ≤ j < m} is a partition of Aref .
3. for all pairs of term sets B,B′ ∈ Aref such that [B] 1 [B′] and [B] �= [B′],

there exist i, j such that B ∈ Ai, B′ ∈ Aj and i < j.

The first statement can be made more precise by proving that m actually equals
the length of the longest path in the graph (G,1

∣∣
G

), where G = {[B] | B ∈ Aref }.
We conclude by observing that the ordering criterion defined above preserves

the tractability of the original method. Indeed, the computation of each element
of the sequence A1, . . . , Am requires a polynomial amount of time in the size of
the Hasse diagram of P, Aref and A. Since also the length m of the sequence, as
just argued, is polynomially bound by the size of Aref , we have the polynomial
time complexity of the method.

6.2 Using Preferences in Query Enlargement

The result of an Enlarge is (see Table 2) the set of the minimal super-concepts
of the current concept, the intents of which represent enlargements of the un-
derlying query. Evidently, also in this case the size of this set, hence the amount
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of information to be displayed to the user may be overwhelming, and ordering
can result in a significant benefit. To this end, the same method described in the
previous section can be applied.

7 Concluding Remarks

We have seen an approach to query tuning that combines navigation and query-
ing into a single process thus providing a more flexible and more user friendly
interaction between the users and the information system.

In the traditional approach, the interaction proceeds by repeating the follow-
ing two steps (in some order): (1) Query and Terminate, or (2) Navigate. In
our approach, the interaction proceeds by repeating the following three steps
(in some order) before terminating: (1) Query, (2) Refine, or (3) Enlarge. Here,
Refine and Enlarge represent navigation steps that might be interleaved with
the Query step and might be repeated several times before termination, e.g.,
Query-Enlarge-Query-Refine-Query-Enlarge- . . . -Terminate.

In order to support the user in selecting, or even just in examining, the pos-
sibly many alternative query tunings, we have used preferences. The adopted
preferential relation is very liberal, thus resulting into a pre-ordering rather
than into a partial ordering as customary for preferences. This problem had
been circumvented by considering the ordering induced on equivalence classes.

All the involved problems have been shown to be computationally tractable.

Acknowledgements. The authors gratefully acknowledge the DELOS Network
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2.10 “Modeling of User Preferences in Digital Libraries” of JPA2.
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Abstract. Practical applications often need to rank multi-variate records by as-
signing various priorities to different attributes. Consider a relation that stores
students’ grades on two courses: database and algorithm. Student performance is
evaluated by an “overall score” calculated as w1 ·gdb+w2 ·galg , where w1, w2 are
two input “weights”, and gdb (galg) is the student grade on database (algorithm).
A “top-k ranked query” retrieves the k students with the best scores according to
specific w1 and w2.

We focus on top-k queries whose k is bounded by a constant c, and present
solutions that guarantee low worst-case query cost by using provably the min-
imum space. The core of our methods is a novel concept, “minimum cov-
ering subset”, which contains only the necessary data for ensuring correct
answers for all queries. Any 2D ranked search, for example, can be processed
in O(logB(m/B)+ c/B) I/Os using O(m/B) space, where m is the size of the
minimum covering subset, and B the disk page capacity. Similar results are also
derived for higher dimensionalities and approximate ranked retrieval.

1 Introduction

Practical applications often need to rank multi-variate records by assigning various
priorities to different attributes. Consider a relation that stores students’ grades on
two courses: database and algorithm. Student performance is evaluated by an “over-
all score” calculated as w1 · gdb + w2 · galg , where w1, w2 are two input “weights”,
and gdb (galg) is the student’s grade on database (algorithm). A common operation
is to retrieve the best k students according to specific weights. For example, a top-k
search with w1 = 1 and w2 = 0 returns students with the highest database grades,
while a query with w1 = w2 = 0.5 selects students by the sum of their grades on the
two courses. In this paper, we consider supporting ranked queries with low worst-case
overhead for all user-defined weights.

1.1 Problem Statements

Consider a d-dimensional space, where each axis has a domain [0,∞). A weight vector
w = {w[1], w[2], ..., w[d]} specifies a positive weight w[i] on each dimension 1 ≤ i ≤
d. Given such a vector w, the score of a point p in the data space equals

∑d
i=1(w[i]·p[i]),

where p[i] is the coordinate of p on the i-th axis (1 ≤ i ≤ d).

J. Dix and S.J. Hegner (Eds.): FoIKS 2006, LNCS 3861, pp. 294–312, 2006.
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Problem 1. Let D be a set of d-dimensional points. Given a weight vector w, a top-k
ranked query returns the k points from D with the highest scores. Let c be a constant
(by far) smaller than the cardinality of D. The goal is to minimize the worst-case cost
of processing any top-k query with k ≤ c.

The motivation behind introducing the constant c is that a typical query in practice aims
at finding only the “best-few” objects [11], e.g., the 10 best students from the whole
university with a huge student population.

Many applications accept approximate answers with low (bounded) error, especially
if computing such results requires less (time and space) overhead than the precise ones.
Hence, we also consider a novel variation of ranked retrieval, called “top-(k,K) search”.
For example, a top-(1,10) query reports a single point whose score is at most the 10-th
largest in the dataset D. Hence, the query result is not unique, since it can be any of
the objects whose scores are the 1st, 2nd, ..., 10th highest in D. However, the quality of
the result is guaranteed — in the worst case, the retrieved point is the “10-th best” in
D. Similarly, a legal outcome of a top-(3,10) query may consist of any 3 points in the
top-10 set, and therefore, the number of permissible results equals (103 ). We are ready
to define the second problem tackled in this paper.

Problem 2. A top-(k,K) ranked query specifies a weight vector w, and two integers k,
K with k ≤ K . The query result includes any k objects in the top-K set for w. Let c
and C be two constants (by far) smaller than the dataset cardinality, and c ≤ C. The
goal is to minimize the worst-case cost of any top-(k,C) query with k ≤ c.

1.2 Previous Results

While Problem 1 has received considerable attention [10][4][5][7][8][9][11] in the data-
base literature, the previous approaches mostly rely on heuristics which have poor
worst-case performance. In particular, they require accessing the entire database to an-
swer a single query [10][4][5][7], or consume space several times the dataset size [8][9].

The only exception is due to Tsaparas et al [11]. They propose an index that occupies
O(c2 · s/B) space and answers a 2D ranked query in O(logB(s/B) + logB(c) + c/B)
I/Os, where c is as defined in Problem 1, s is the size of the “c-skyline” of the dataset,
and B is the disk page capacity. Specifically, a c-skyline consists of the objects that are
not dominated by c other objects (an object p dominates another p′ if the coordinates of
p are larger on all dimensions). In the dataset of Figure 1, a 1-skyline contains p2, p3,
p7, p4, p5. Point p1, for example, is not in the skyline because it is dominated by p3.

The solutions of [11] are not applicable to higher dimensionalities. To the best of our
knowledge, no previous results on Problem 2 exist.

1.3 Our Results

Any method that correctly solves Problem 1 must store a minimum covering subset,
which is the result union of all the possible (an infinite number of) ranked queries with
k ≤ c. For example, in Figure 1, as clarified later the minimum covering subset for
c = 1 contains p2, p3, p4, p5 — the top-1 object for any weight vector must be captured
in this subset. Note that, the subset is smaller than the 1-skyline which, as mentioned
earlier, also includes p7 and p6.
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Fig. 1. An example

We propose polynomial-time algorithms for extracting minimum covering subsets
in arbitrary dimensionalities. Notice that the discovery of such a subset immediately
improves the worst-case behavior of any previous approaches. In particular, instead of
applying a technique on the original dataset, we can deploy it on the minimum subset
directly. Hence, any ranked query can be processed without considering other data not
in the subset.

As a second step, we pre-process them into appropriate structures for performing
ranked retrieval effectively. Specifically, any 2D ranked query can be answered in
O(logB (m/B) + c/B) I/Os using O(m/B) space, where m is the size of the min-
imum covering subset. These bounds significantly improve those of [11]. For higher
dimensionalities, a query can be solved in O(m/B) I/Os by storing O(m/B) infor-
mation. Note that our methods in both scenarios require asymptotically the smallest
amount O(m/B) of space.

For Problem 2, there also exists a corresponding “minimum subset” containing the
necessary data for ensuring correct results for all queries. If this subset has size m,
we develop an index that occupies O(m′/B) space, and processes an approximate 2D
ranked query in O(logB(m′/B)+c/B) I/Os, where m′ is bounded by (lnm+1)·m. In
higher-dimensional space, a query can be answered in O(m′/B) I/Os with O(m′/B)
space.

The rest of the paper is organized as follows. Section 2 elaborates the definition of
minimum covering subsets, and Section 3 discusses their computation in arbitrary di-
mensionality. Section 4 explains an “incremental” approach for deriving minimum cov-
ering subsets. Section 5 presents an index structure that optimizes exact ranked search,
while Section 6 discusses approximate retrieval. Section 7 concludes the paper with
directions for future work.

2 Minimum Covering Subsets

Let D⊆ be a subset of D. We say that D⊆ covers an exact top-k query if D⊆ contains
all the k points in its result. Given a constant c, D⊆ is a c-covering subset if it
covers all possible top-k queries whose k is at most c. For instance, a “1-covering
subset” includes the results of all top-1 queries, regardless of their weight vectors,
while a “3-covering subset” covers all top-1, top-2, and top-3 queries. Among all the
c-covering subsets, the one with the smallest size is called the minimum c-covering
subset, represented as minD⊆.
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As an example, consider a 1D datasetD with 10 records {1, 2, ..., 10}. Accordingly, a
weight vector contains a single number w. A top-k query reports the k tuples p ∈ D that
maximize w ·p. Clearly, the result simply consists of the k largest numbers inD. Indeed,
when the dimensionality equals 1, all top-k queries with the same k produce identical
results, independent of w. Therefore, for any integer c, the minimum c-covering subset
minD⊆ includes the c largest tuples. For instance, for c = 1, minD⊆ = {10}, and for
c = 2, minD⊆ = {10, 9}, etc. Note that {10, 9} is also a 1-covering subset, but not a
minimal one.

The importance of minD⊆ lies in the fact that it can replace the original datasetD to
correctly answer any top-k query, as long as the parameter k is not larger than c. This re-
placement significantly reduces the space consumption because, even if the cardinality
of D is huge, minD⊆ may contain only a small number of points. Furthermore, notice
that minD⊆ must be stored by any technique that aims at providing correct results to
all top-k queries. Hence, the size of minD⊆ corresponds to the lower bound for the
space consumption of ranked retrieval.

As stated in Problem 2, a top-(k,K) query returns k points in the top-K set for w. As
mentioned in Section 1.1, the result is not unique — since any k objects in the top-K
set forms a “legal” result, the number of possible results equals (K

k ). Given a subsetD⊆
of the dataset D, we say that D⊆ covers a top-(k,K) query, if there exist k points in
D⊆ that constitute one of the (K

k ) legal results. We define the (c,C)-covering subset to
be a subset of D that covers all top-(k,K) queries with k ≤ c and K = C. The (c,C)-
covering subset with the smallest size is the minimum (c,C)-covering subset minD∗⊆,
where the asterisk differentiates it from the notation minD⊆ of a minimum c-covering
subset.

We illustrate these concepts using again a 1D dataset D storing data 1, 2, ..., 10. A
possible minimum (1,5)-covering subset of D can involve a single tuple {6}. Indeed,
for any top-(1,5) query, the tuple 6 is always a legal result since it is in the top-5 set. In
fact, a minimum (1,5)-covering subset can involve any single record chosen from {6,
7, 8, 9, 10}. Similarly, a minimum (3,5)-covering subset can be {6, 7, 8}, or in general,
any subset of {6, 7, 8, 9, 10} with 3 elements.

The minimum (c,C)-covering subset minD∗⊆ can substitute the original database D
to support top-(k,C) ranked search whose parameter k is at most c. Next, we discuss
the computation of minimum c-covering subsets, while (c,C)-covering subsets are the
topic of Section 6.

3 Finding Minimum C-Covering Subsets

In this section, we analyze extracting the minimum c-covering subset in arbitrary di-
mensionality. Section 3.1 first presents some fundamental results, based on which Sec-
tion 3.2 elaborates the concrete algorithms.

3.1 Basic Results

Lemma 1. Let D be a set of multi-dimensional points, andD⊆ be a subset of D. If D⊆
covers all top-c queries on D, then it also covers all top-k queries, for any 1 ≤ k ≤ c.
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The lemma has an important corollary:

Corollary 1. The minimum c-covering subset minD⊆ of D is the union of the results
of all (exact) top-c queries.

Hence, the computation of minD⊆ would be simple if we were able to execute an in-
finite number of top-c queries with all possible weight vectors w. In the sequel, we
present polynomial-time approaches based on several inherent connections between
minD⊆ and the “positive convex hull” PCH of dataset D. To formally define PCH,
let us formulate a set D′, which contains all the objects from D, together with d + 1
“dummy” points. The first one is the origin of the data space, and there is also a dummy
point on each dimension, whose coordinate on this dimension equals the maximum co-
ordinate of the points in D on this axis, and 0 on the others. All the d + 1 dummy
records must appear in the convex hull of D′. The positive convex hull PCH of the
original dataset D includes the non-dummy points in the convex hull of D′.

Figure 1 illustrates an example whereDcontains 8 pointsp1,p2, ...,p8. The augmented
dataset D′ involves 3 dummy points represented as white dots. The convex hull of D′
contains all the dummy points, together withp2,p3,p4, andp5. Hence, the positive convex
hull PCH of D consists of p2, p3, p4, and p5. Clearly, the time needed to compute the
PCH of any datasetD is bounded by the cost of obtaining a complete convex hull ofD.

It is known [4] that the result of any top-1 query on D can be found in the PCH of
D, namely:

Lemma 2. The minimum 1-covering subset of D is the positive convex hull of D.

It is natural to wonder whether this lemma can be trivially extended to capture minimum
c-covering subsets for arbitrary c. Specifically, should the minimum 2-covering subset
of D be the union of PCH(D) and PCH(D − PCH(D))? That is, can we obtain the
minimum 2-covering subset by combining the minimum 1-covering subset, and the
positive convex hull of the remaining data of D after excluding the points in PCH(D)
(this corresponds to the Onion technique in [4])? Unfortunately, the answer is negative.
For example, in Figure 1, PCH(D) equals {p2, p3, p4, p5}. After removing PCH(D),
the positive convex hull of the remaining objects consists of p1, p7, p6. However, as
clarified in the next section, the minimum 2-covering subset of D has the same content
as the minimum 1-covering subset.

3.2 Algorithm for Arbitrary Dimensionality

We prove a reduction that transforms the problem of discovering minimum c-covering
subsets minD⊆ to finding positive convex hulls. As a result, minD⊆ can be obtained
using any existing algorithm [3] for computing convex hulls. Given a value c and
dataset D, we represent the minimum c-covering subset as minD⊆(c,D). According
to Lemma 2, minD⊆(1,D) is equivalent to PCH(D).

Theorem 1. For any c ≥ 2, a minimum c-covering subset can be computed in a recur-
sive manner:

minD⊆(c,D) = PCH(D)
⋃

⎛

⎝
⋃

∀p∈PCH(D)

minD⊆(c− 1,D − {p})

⎞

⎠ (1)
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Algorithm find-minD (c, D)
1. if c = 1
2. return PCH(D) //using any convex-hull method
3. else
4. S = PCH(D)
5. for each point p ∈ PCH(D)
6. S = S∪ find-minD (c − 1, D − {p})
7. return S

Fig. 2. Finding minD⊆(c, D) in any dimensionality

Based on Theorem 1, Figure 2 describes the algorithm find-minD for retrieving
minD⊆(c,D) in any dimensionality. We illustrate the idea of find-minD by using it
to find the minimum-2-covering subset on the dataset D in Figure 1. First, find-minD
invokes the selected convex-hull algorithm to extract PCH(D) = {p2, p3, p4, p5}, i.e.,
the content of minD⊆(1,D). All the points in this set must belong to minD⊆(2,D).
To find the other objects in minD⊆(2,D), find-minD removes a point, say p2, from
D, and computes the PCH of the remaining data. The result of this computation is
PCH(D − {p2}) = {p3, p4, p5}. Next, minD⊆(2,D) is updated to the union of its
current content and PCH(D − {p2}), which incurs no change to minD⊆(2,D). Find-
minD performs the above operations with respect to every other point p3, p4, and p5
of PCH(D) in turn. Namely, for each i = 3, 4, 5, it obtains PCH(D − {pi}), and
updates minD⊆(2,D) by union-ing it with PCH(D − {pi}). It can be easily verified
that no modification to minD⊆(2,D) happens, leaving the final result minD⊆(2,D) =
{p2, p3, p4, p5}, that is, same as PCH(D).

Note that find-minD needs to compute the positive convex hull PCH of several dif-
ferent datasets. For example, in our earlier example of computing minD⊆(2,D) in
Figure 1, we calculated the PCH of D, and D − {pi} for each integer i in the range
2 ≤ i ≤ 5. Hence, we have:

Theorem 2. Let α be the highest cost of eachPCH computation in find-minD (line 4),
and β be the maximum number of PCH points retrieved in each execution of line 4.
Then, the cost of find-minD is O(α · βc−1).

The factor α in Theorem 2 corresponds to the efficiency of the algorithm used by find-
minD to compute PCH.

Thus, a direct corollary of the theorem is:

Corollary 2. The execution time of find-minD is worse than that of the deployed algo-
rithm for computing convex hulls by at most a polynomial factor βc−1.

Notice that β is O(|D|) (the database cardinality) in the worst case. This happens in the
very rare case where almost all the points in D belong to the positive convex hull. For
practical datasets, β is fairly small. For instance, for uniform data, β is at the order of
(ln |D|)d−1/(d−1)! [2], where d is the dimensionality of the dataset. For anti-correlated
data (where most points lie around the major diagonal of the data space), β is expected
to be a constant. In this case, find-minD is asymptotically as fast as computing the
convex hull.
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4 Incremental Computation of minD⊆

Before computing the minimum c-covering subset minD⊆, the algorithm in Figure 2
requires that the value of c should be known in advance. In the sequel, we present an al-
ternative method that obtains the minD⊆ in a faster “incremental” manner. Specifically,
it first finds the minimum 1-covering subset, which is used to discover the 2-covering
subset, then the 3-covering, and so on. Our discussion focuses on 2D space in this sec-
tion, while the extension to higher dimensionalities is presented Section 5.2.

4.1 Slope Space and Its Decomposition

Given a 2D weight vector w = {w[1], w[2]}, we refer to w[2]
w[1] as the weight slope λ.

Clearly, λ ranges in the slope space [0,∞). The following lemma is proved in [11]:

Lemma 3. For an arbitrary integer k, top-k queries with the same weight slope λ re-
turn identical results. In particular, if we project each data point onto a ray shot from
the origin with slope λ, the query result consists of the k objects whose projected points
are the farthest from the origin.

For example, the top-k objects produced by a query with weight vector {10, 20} are
the same as those reported by a query with weight vector {1, 2}— both queries have a
weight slope 2. Figure 3 shows a dataset that contains 3 data points p1, p2, and p3. Ray l
has a slope 2, and the projection of point pi onto l is p′i for each integer i ∈ [1, 3]. Since
p′1 (p′2) is the farthest (2nd farthest) from the origin among the 3 projections, object p1
(p2) has the highest (2nd highest) score for the weight slope 2.

In the sequel we characterize a top-k query by the value of k and its weight slope λ.
By Corollary 1, minD⊆(c,D) corresponds to the union of the results of top-c queries
for all λ ∈ [0,∞). Imagine that we slowly increase λ from 0, and meanwhile contin-
uously monitor the corresponding top-c set. Since the size of minD⊆(c,D) is finite,
there can be only a finite number of top-c changes as λ travels from 0 to∞. Therefore,
we can decompose the slope space [0,∞) into a set of disjoint intervals such that the
results are identical for those queries whose weight slopes are in the same interval.

We call the setHD of intervals thus obtained the top-c homogeneous decomposition
of the slope space. The size of HD equals the total number of times the top-c objects
incur a “change” as λ grows from 0 to ∞. A change here means that a data point is

p1

p2

p3

y

xslope 2

p1'p2'

p3'

l

Fig. 3. Deciding score relationship from projections on l
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removed from the current top-c set, and another point is added. Note that, no change is
generated if only the scores of the existing top-c points switch their relative order. For
instance, assume that the top-2 result for the current λ contains p1, p2, and the score of
p1 is higher. As λ increases to some value, the score of p2 becomes larger, but p1, p2
still have the 2 largest scores among all the data points. This is not counted as a result
change.

4.2 Computing Top-1 Homogeneous Decomposition

Let I = [I�, I ) be an interval in HD, where I� (I ) is the starting (ending) slope
of I . For any weight slope in [I�, I ), the top-c set is the same, and is represented as
I.S. To compute the top-1 homogeneous decomposition, we first obtain the minimum
1-covering subset minD⊆(1,D) (i.e., the positive convex hull PCH of D). Assume,
without loss of generality, that the PCH contains m points p1, p2, ..., pm sorted in
descending order of their x-coordinates, where m is the size of PCH. By the definition
of the PCH, if we start from p1 and walk on the hull boundary (passing vertices p2,
..., pm in this order), we will make a left turn every time a vertex is encountered. This
implies that the slopes of hull edges monotonically decrease in the order that we walk
through them. Figure 4 shows an example where the PCH contains 4 points p1, ..., p4.
The slope of edge p1p2 is larger than that of p2p3 (note that both slopes are negative),
which in turn is greater than the slope of p3p4.

Let us shoot a ray li from the origin of the data space, vertically to the hull boundary
pipi+1 for each i ∈ [1,m − 1]. The slopes of the m − 1 rays l1, l2, ..., lm−1 must
increase monotonically. For example, in Figure 4 where m = 3, we obtain 3 rays l1, l2,
and l3. Since the edge p1p2 has a larger slope than p2p3, the slope of l1 is smaller than
that of l2. This can be verified easily with the fact that the product of the slopes of two
mutually orthogonal lines equals −1. Similarly, l2 has a smaller slope than l3.

Lemma 4. Assume that the positive convex hull of D contains m points p1, p2, ..., pm,
sorted in descending order of their x-coordinates. Let i be any integer in the range
[1,m − 1], and x be the slope of the ray shot from the origin perpendicular to the
segment connecting pi and pi+1. Then, pi has a larger score than pi+1 for any weight
slope in [0, x), while pi+1 has a higher score for any weight slope in (x,∞).

For example, let λ1 be the slope of l1 in Figure 4. The score of p1 is larger than that of
p2 (for any weight slope) in the range [0, λ1), while p2 has a greater score than p1 in
(λ1,∞). Similarly, if the slope of l2 is λ2, the score of p2 is larger than that of p3 for
any weight slope smaller than λ2, while p3 has a higher score for slopes larger than λ2.
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Based on Lemma 4, the top-1 homogeneous decomposition HD can be decided as
follows. Given PCH = {p1, ..., pm} and m − 1 rays l1, ..., lm−1 as described earlier,
the first interval I1 in HD is [I1�, I1 ), where I1� = 0, and I1 equals the slope of l1.
The second interval I2 starts at I1 , and terminates at the slope of ray l2, and so on.
The last interval Im starts at the slope of Im−1, and ends at∞. The top-1 object for all
weight slopes in interval Ii (1 ≤ i ≤ m) is point pi, i.e., Ii.S = {pi}.

Lemma 5. Assume that the positive convex hull of D contains m points p1, p2, ...,
pm, sorted in descending order of their x-coordinates. θ1, θ2 are two arbitrary weight
slopes, and θ1 < θ2. Let pi (pj) be the top-1 object for slope θ1 (θ2). Then, the union of
top-1 objects for all weight slopes in [θ1, θ2] equals {pi, pi+1, ..., pj}.

For example, let θ1 (θ2) be the slope of the ray l′1 (l′2) in Figure 4. Point p1 (p3) is
the object that has the largest score at θ1 (θ2). Then, for any weight slope in the range
[θ1, θ2], the top-1 object must be found in the set {p1, p2, p3}.

4.3 Computing Top-k Homogeneous Decomposition

The subsequent analysis shows that the top-(k+1) homogeneous decomposition
HD(k + 1,D) can be derived efficiently from the top-k counterpartHD(k,D).

Tail Sets. Consider an arbitrary interval I = [I�, I ) ∈ HD(k,D). I.S contains k
points (inD) with the highest scores for any weight slope in [I�, I ). To deriveHD(k+
1,D), we need to decide the union of the top-(k + 1) objects produced by all weight
slopes in [I�, I ). Let (D − I.S) be the set of points in D after excluding those in
I.S. We define p′� (p′ ) to be the object in (D − I.S) that has the largest score for the
weight slope I� (I ). By Lemma 2, both p′� and p′ appear on the positive convex hull
of (D− I.S). Then, the tail set I.TS of I contains the vertices of this hull between (but
including) p′� and p′ .

Figure 5a shows an example where the black dots represent the data points in D.
Assume an interval I ∈ HD(k,D) whose starting value I� (ending value I ) equals the
slope of ray l� (l ). Objects p1, p2, ..., pk are in the top-k set I.S for all weight slopes in
[I�, I ) (p3, ..., pk−1 are omitted from the figure). Point p′� (p′ ) is the object that has the
highest score at weight slope I� (I ) among the data in (D − I.S). Objects p′�, p′2, p′3,
p′ are the vertices between p′� and p′ on the positive convex hull of (D− I.S); hence,
they constitute the tail set I.TS of I . According to the following lemma, the result of
any top-(k+1) query with weight slope in [I�, I ) must be included in the union of I.S
and {p′�, p′2, p′3, p′ }.

Lemma 6. Let I be an arbitrary interval in the top-k homogeneous decomposition
HD(k,D). The union of the top-(k+1) objects for weight slopes in [I�, I ) equals I.S∪
I.TS, where I.S is the top-k set in [I�, I ), and I.TS the tail set of I .

An important step in extracting the tail set of I is to identify points p′� and p′ , which
are the top-1 objects in (D − I.S) at slopes I� and I , respectively. Both points can be
efficiently obtained as follows. First, we sort all the intervals in the top-k homogeneous
decompositionHD(k,D) in ascending order of their starting slopes. To decide p′� (p′ ),
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(a) Obtaining minD⊆(k, D) (b) Obtaining HD(k, D)

Fig. 5. The tail set and its application

we check whether I is the first (last) interval in the sorted list. If the answer is positive,
p′� (p′ ) corresponds to the point in D with the (k+1)-st largest x- (y-) coordinate. Oth-
erwise, we take the interval I ′ that ranks just before (after) I in the sorted list. By the
definition of HD(k,D) (see Section 4.1), I ′.S involves one object that is not in I.S,
i.e., the top-k result change at the boundary between I and I ′. Then, p′� (p′ ) is set to
this object. Figure 6 shows the formal procedures of computing the tail set.

After computing the tail sets of all intervals in HD(k,D), we can obtain the mini-
mum (k+1)-covering subset of the dataset D immediately:

Theorem 3. Given the top-k homogeneous decomposition HD(k,D), the minimum
(k+1)-covering subset can be decided as:

minD⊆(k + 1, D) =
I∈HD(k,D)

I.S ∪ I.TS (2)

Computing HD(k + 1,D). Next we clarify the derivation of HD(k + 1,D) from the
tail sets of the intervals in HD(k,D). Before presenting the detailed algorithm, we
first discuss the general idea using a concrete example in Figure 5b, which is based on
Figure 5a. As mentioned earlier, I = [I�, I ) is an interval inHD(k,D), where I� (I )
equals the slope of ray l� (l ). The tail set I.TS consists of points p′1, p′2, ..., p′4, sorted
in descending order of their x-coordinates (note that p′1 and p′4 are equivalent to p′� and
p′ in Figure 5a, respectively). For each segment p′ip

′
i+1 (1 ≤ i ≤ 3), we shoot a ray li

from the origin perpendicularly to it. The slope of λi of li must be larger than I� and
but smaller than I (note that l lies between l� and l ). The 3 numbers λ1, λ2, and λ3
divide [I�, I ) into 4 pieces with different top-(k+1) results. To facilitate illustration,
let us denote λ0 = I� and λ4 = I . Then, for i ∈ [0, 3], the top-(k+1) set contains p′i
and the objects in I.S at any weight slope in [λi, λi+1). Recall that I.S = {p1, ..., pk}
is the top-k result at any weight slope in I .

Formally, given an interval I ∈ HD(k,D), the algorithm break-interval in Figure 7
divides I into a set HD(I) of disjoint pieces. Each interval I ′ ∈ HD(I) is associated
with a set I ′.S that is the top-(k+1) result for any weight slope in I ′. In order to obtain
HD(k+1,D), we execute break-interval for every interval I ∈ HD(k,D), after which
HD(k + 1,D) corresponds to the union of allHD(I) produced.

There is one minor detail worth mentioning. As will be shown in an example, the
HD(k + 1,D) thus decided may contain multiple intervals I whose associated top-
(k+1) sets I.S are the same. These intervals should be combined into a single one
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Algorithm tail-set (I , HD(k, D))
/* I is an interval in HD(k, D), whose intervals have been sorted
by their starting values */
1. if I� = 0 //I is the first interval in HD(k, D)
2. p′

� = the point in D with the (k+1)-st highest x-coordinate
3. else
4. I ′ = the interval that ranks before I in HD(k, D)
5. p′

� = I ′.S − I.S
6. if I� = ∞ //I is the last interval in HD(k, D)
7. p′

� = the point in D with the (k+1)-st highest y-coordinate
8. else
9. I ′ = the interval that ranks after I in HD(k, D)
10. p′

� = I ′.S − I.S
11. I.TS = the set of vertices between (including) p′

� and p′
� on

the convex hull of D − I.S

Fig. 6. Algorithm for computing the tail set

Algorithm break-interval (I , I.S, I.TS)
/* I is an interval in HD(k, D); I.S is the top-k set at any
weight slope in I ; I.TS is the tail set of I */
1. θlast = I�; HD(I) = ∅; m = number of points in I.TS
2. sort the points in I.TS in descending order of their

x-coordinates; let the sorted order be {p′
1, p′

2, ..., p′
m}

3. for i = 1 to m − 1
4. shoot a ray from the origin perpendicularly to the

segment connecting p′
i and p′

i+1

5. λ = the slope of the ray
6. create an interval Ii = [Ii�, Ii�) with Ii� = θlast,

Ii� = λ, and Ii.S = p′
i ∪ I.S

7. HD(I) = HD(I) ∪ {Ii} , and θlast = λ
8. add to HD(I) Im = [θlast, I�) with Im.S = p′

m ∪ I.S
9. return HD(I)

Fig. 7. Algorithm for breaking an interval in HD(k, D) into ones in HD(k + 1, D)

which spans all their respective slope ranges. This duplicate-removal process, as well
as the overall algorithm for computingHD(k + 1,D) is shown in Figure 8.

An Example. Consider Figure 9, where p1 and p2 are the vertices on the positive
convex hull of a dataset D. Hence, they constitute the minimum 1-covering subset
minD⊆(1,D). Let λ1 be the slope of ray l1, which passes the origin and is vertical
to segment p1p2. The top-1 homogeneous decomposition HD(1,D) contains two in-
tervals I1 = [0, λ1) and I2 = [λ1,∞). The top-1 object (for any weight slope) in I1 is
I1.S = {p1}, and that in I2 is I2.S = {p2}.

Next we compute minD⊆(2,D) and HD(2,D), by considering each interval of
HD(1,D) in turn. For the first interval I1 = [0, λ1), its tail set I1.TS consists of points
p4 and p1. Accordingly, the algorithm break-interval in Figure 7 divides I1 into two
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Algorithm ho-decomp (HD(k, D))
1. minD⊆(k + 1, D) = ∅; HD(k + 1, D) = ∅
2. assume that HD(k, D) contains m intervals I1, ..., Im

sorted in ascending order of their starting values
3. for i = 1 to m
4. I.TS = tail-set (Ii, HD(k, D))
5. minD⊆(k + 1, D)∪ = I.S ∪ I.TS
6. HD(k + 1, D)∪ = break-interval (I , I.S, I.TS)
7. HD(k + 1, D) = remove-duplicate (HD(k + 1, D))
8. return HD(k + 1, D)
Algorithm remove-duplicate (HD(k + 1, D))
//assume that HD(k + 1, D) contains m′ intervals I ′

1, ..., I ′
m′

1. δHD− = δHD+ = ∅
2. sort all intervals in HD(k + 1, D) in ascending order

of their starting slopes;
3. i = 1
4. while i ≤ m − 1
5. j = the largest integer s.t. I ′

i.S = I ′
i+1.S = ... = I ′

j .S
6. add I ′

i , I ′
i+1, ..., I ′

j into δHD−
7. create a new interval I = ∪j

x=iI
′
x with I.S = I ′

i.S
8. i = j + 1
9. HD(k + 1, D) = HD(k + 1, D) − (δHD−) ∪ (δHD+)

Fig. 8. Algorithm for computing HD(k + 1, D)
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Fig. 9. Illustration of the algorithm in Figure 8

intervals I ′1 = [0, λ2) and I ′2 = [λ2, λ1), where λ2 is the slope of ray l2 perpendicular
to segment p1p4. The top-2 result in I ′1 (I ′2) is I ′1.S = {p2, p4} (I ′2.S = {p2, p1}). Let
HD(I1) be the set {I ′1, I ′2}.

Similarly, we examine the second interval I2 = [λ1,∞) of HD(1,D). Its tail set
I2.TS includes objects p2, p3. Break-interval divides I2 at the slope λ3 of ray l3 or-
thogonal to segment p2p3. Specifically, I2 is broken into HD(I2) = {I ′3, I ′4}, where
I ′3 = [λ1, λ3) and I ′4 = [λ3,∞). The top-2 result in I ′3 is I ′3.S = {p2, p1}, and that in
I ′4 is I ′4.S = {p3, p1}.

Theorem 3 shows that the minimum 2-covering subset involves all the data in
Figure 9, which equals the union of I1.S, I1.TS, I2.TS and I2.TS. Furthermore,
by merging HD(I1) and HD(I2), we obtain a top-2 homogeneous decomposition
HD(2,D) with 4 intervals I ′1, ..., I ′4. The top-2 results in I ′2 and I ′3, however, are both
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{p2, p1}. Therefore, algorithm remove-duplicate in Figure 8 combines these two in-
tervals into one I ′5 = I ′2 ∪ I ′3 = [λ2, λ3), with I ′5.S = {p2, p1}. Therefore, the final
HD(2,D) involves only 3 elements: I ′1, I ′5, and I ′3.

4.4 Analysis

The subsequent discussion aims at bounding (i) the size of the top-c homogeneous
decompositionHD(c,D), and (ii) the time of computingHD(c,D). We have:

Theorem 4. The number of intervals in the top-c homogeneous decomposition
HD(c,D) is asymptotically the same as the number of points in the corresponding
minimum c-covering subset minD⊆(c,D).

Now we analyze the cost of computing top-c homogeneous decompositions.

Theorem 5. Let α be the time of computing the convex hull of D, and αi the highest
cost of computing the tail set of an interval in HD(i,D) (2 ≤ i ≤ c). HD(c,D) and
minD⊆(c,D) can be computed in O(α+

∑c
i=2(αi · |minD⊆(i− 1,D)|)) time, where

|minD ⊆(i− 1,D)| is the number of objects in minD⊆(i− 1,D).

Factor αi (1 ≤ i ≤ c) depends on the concrete convex-hull algorithm for calculating
the tail set. The theorem indicates that minD⊆(c,D) can be computed in shorter time
in the 2D space than the algorithm presented in Section 3 (which applies to any dimen-
sionality). To better illustrate this, we utilize the fact that |minD⊆(i,D)| is bounded by
|minD⊆(c,D)| for any i < c, which results in:

Corollary 3. The 2D minimum c-covering subset can be computed in O(α + αmax ·
|minD⊆(c− 1,D)| · (c− 1)) time, where αmax equals the maximum of α2, α3, ..., αc

defined in Theorem 5.

5 Ranked Indexes

Once the minimum c-covering subset minD⊆(c,D) has been discovered, we can cor-
rectly answer any top-k query, with arbitrary weight slope and k ≤ c, by performing
O(m/B) I/Os, where m is the number of points in minD⊆(c,D), and B is the size of
a disk page. Although being relatively straightforward, this method constitutes the first
solution for ranked retrieval in any dimensionality that does not require examining the
entire dataset in the worst case.

In the next section, we show how to pre-process minD⊆(c,D) to further reduce
query cost in the 2D space. In Section 5.2, we present pessimistic results that explain
why a similar approach is not feasible for dimensionalities d ≥ 3.

5.1 A 2D Solution

As an obvious approach, we could extract the top-c homogeneous decomposition
HD(c,D). Assume that it contains m intervals I1, I2, ..., Im, sorted in ascending order
of their starting values I1�, ... , Im�, which are indexed by a B-tree. The B-tree entry for
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Fig. 10. Indexing the top-c homog. decomp.

each Ii� (1 ≤ i ≤ m) is associated with a pointer to a sequence of O(c/B) pages, stor-
ing the c objects in Ii.S. Given a top-k query with weight slope λ, we first locate the leaf
entry Ii− in the B-tree that is the largest among all the leaf entries smaller than λ. (i.e.,
λ falls in the corresponding interval Ii). This requires O(logB m) I/Os. Following the
pointer stored with Ii−, we retrieve Ii.S (using O(c/B) I/Os), and report the k records
in Ii.S with the highest scores at λ. The total query cost is O(logB m + c/B) I/Os.

The space consumption of this approach is O(c ·m/B) pages. We present an alter-
native solution that achieves the same query time but with only O(m/B) space. Recall
that for two consecutive intervals Ii and Ii+1, Ii.S differs from Ii+1.S by exactly one
point. Motivated by this, we store I.S in a compact way as illustrated in Figure 10. For
the first interval I1, c/B pages are used to record the c objects of I1.S in the same way
as the previous method. For the next c − 1 intervals Ii (2 ≤ i ≤ c), we do not mate-
rialize the full Ii.S. Instead, we keep only the difference between Ii.S and Ii−1.S in
the (B-tree) leaf entry Ii using O(1) space. The above process is repeated for the next
c intervals Ic+1, Ic+2, ..., I2c. Specifically, we write to the disk the complete Ic+1.S.
For Ii with c + 2 ≤ i ≤ 2c, only the O(1) result changes (between Ii.S and Ii−1.S)
are kept. Then, a similar process is performed for still the next c intervals, and so on.
Since O(c/B) space is allocated for every c intervals, the total space consumption is
O(m

c · c/B) = O(m/B) pages.
Given a top-k query with weight slope λ, we first identify the largest leaf entry Ii�

smaller than λ in the same way as in the previous solution. First, we scan, at the leaf
level, the preceding leaf entries I(i−1)�, I(i−2)�, ... (in this order), until finding the first
entry Ii′� (i′ ≤ i) whose Ii′�.S is completely stored. Then, we create a copy S of Ii′�.S
in the memory, and re-visit the leaf entries (that were just scanned) in a reverse order:
I(i′+1)�, I(i′+2)�, ..., Ii�. At each Ij� for i′+1 ≤ j ≤ i, we update S to the top-c result
Ij .S (of any weight slope) in interval Ij by applying the O(1) result changes recorded
in Ij�. Hence, when we arrive at Ii�, the content of S becomes Ii.S, from which the k
records with the highest scores at the query slope λ are returned. Since we need to trace
(from Ii� to Ii′�) at most O(c) leaf entries (by accessing O(c/B) pages), the query cost
is bounded by O(logB m + c/B) I/Os.

By Theorem 4, the size m ofHD(c,D) is asymptotically the same as the number of
points in minD⊆(c,D). Therefore, we have:

Theorem 6. Given a constant c, we can pre-process a 2D dataset D into a structure
that consumes O(m/B) space, and answers any top-k query with k ≤ c in O(logB

(m/B) + c/B) I/Os, where m is the size of the minimum c-covering subset.

Evidently, the 2D ranked index presented earlier consumes the smallest amount of
space, since any solution that ensures correct answers for all ranked queries must store
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at least minD⊆(c,D). In practice the disk page size B is usually fairly large (a typical
value is 4k bytes), and is asymptotically comparable to c (i.e., c = O(B)). In this case,
the query performance of our solution becomes logB(m/B).

5.2 Discussion on Higher Dimensionalities

The technique in the previous section can be extended to dimensionality d > 2 for
achieving logarithmic query cost. Such an extension, however, turns out to be purely of
theoretical interests because it requires expensive space consumption for large c (and
hence violates our goal of using the minimum space to support ranked retrieval). In the
sequel, we discuss this in the 3D space, since the analysis for even higher dimensional-
ities is similar.

Given a 3D weight vector w = {w[1], w[2], w[3]}, we define its slope vector λ as a
2D vector {w[1]

w[3] ,
w[2]
w[3]}. Hence, λ can be regarded as a point in a 2D slope space, where

both axes have domain [0,∞). Similar to Lemma 3, two weight vectors with the same
slope vector have identical top-k sets (for any k). Therefore, in the sequel, we represent
a top-k query equivalently using k and its slope vector λ.

Lemma 7. Given two 3D points p1 and p2, let pl be a function of 2D slope vector
λ = {λ[1], λ[2]}:

pl(λ) =
2∑

i=1

(λ[i] · (p1[i]− p2[i])) + (p1[3]− p2[3]) (3)

Then, p1 has a higher score than p2 for all slope vectors λ in a half-plane pl(λ) > 0,
while the score of p2 is higher in pl(λ) < 0. The scores of the two points are identical
for λ on the line pl(λ) = 0.

Given the c-covering minimum subset minD⊆ of a 3D dataset D, the slope space can
be divided into a set of disjoint regions, such that the top-c sets for all slope vectors in
a region are the same. Following the terminology in Section 4, we call such a division
a top-c homogeneous decomposition, and denote it as HD(c,D). In the sequel, we
first analyze the top-1 homogeneous decompositionHD(1,D), and then generalize the
discussion to top-c.

Let minD⊆ contain m points p1, p2, ..., pm. To compute HD(1,D), for each pi

(1 ≤ i ≤ m), we obtain m − 1 half-planes in the form of pl(λ) > 0 by defining pl
as in equation 3 using pi and every other point in minD⊆. Then, the intersection of
these m−1 half-planes includes all the slope vectors for which pi has the highest score
among all points in the original datasetD. We refer to this intersection area as the valid
region of pi. Observe that the m valid regions of all objects in minD⊆ are disjoint and
cover the entire slope space. Since each region is bounded by at most m edges, the total
complexity of all regions equals O(m2).

Therefore, a 3D top-1 search is reduced to a 2D point-location problem. Specifically,
we first obtain the 2D slope vector λ of the query, and identify the valid region that
contains λ. Then, the point associated with the region is the query result. Using an
efficient point-location structure [1], we can answer a top-1 query in O(logB(m/B))
I/Os using O(m2/B) space.
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The problem with this technique is that the space consumption is no longer minimum
(i.e., size m of minD⊆). The situation is even worse for top-c queries with c > 1. In
this case, we can generalize the above derivation and prove that any top-c query in the
3D space can be answered in O(c · logB(m/B)) I/Os using O(mc+1/B) space, where
m is the size of the minimum c-covering subset minD⊆. As c increases, the space
consumption may become prohibitive, rendering this solution impractical. In this case,
a better method is to answer a query by simply scanning minD⊆ without using any
structure, as mentioned at the beginning of Section 5.

6 Approximate Ranked Retrieval

In this section, we consider approximate ranked queries formulated in Problem 2.
Specifically, given a weight vector w, a top-(k,K) query returns k objects among the K
data points with the highest scores for w. Section 6.1 first elaborates the characteristics
of (c,C)-covering subsets, based on which Section 6.2 discusses their computation in
2D space. Section 6.3 presents query processing algorithms for all dimensionalities.

6.1 Properties of (c,C)-Covering Subsets

As discussed in Section 4.1, in the 2D space, the relative order of objects’ scores is
determined by the slope of the corresponding weight vector. Hence, we will characterize
a top-(k,K) query using three values: k, K , and the weight slope. Recall that a (c,C)-
covering subset covers any top-(k,C) query with k ≤ c. Specifically, for any value k
and weight slope λ, the subset always contains c objects in the top-C set at λ. Among all
these subsets, the smallest one is called the minimum (c,C)-covering subset, represented
as minD∗⊆(c, C,D).

It is easy to see that the minimum C-covering subset minD⊆ (C,D) (see the previ-
ous sections) is a (c,C)-covering subset. In fact, for each weight slope λ, minD⊆(C,D)
includes the corresponding top-C set. Hence, a top-(k,C) query with slope λ can be an-
swered by returning any k points in the top-C set. The following lemma reveals the
relationship between minD⊆(C,D) and minD∗⊆(c, C,D).

Lemma 8. minD∗⊆(c, C,D) ⊆ minD⊆(C,D).

The lemma motivates a strategy for computing minD∗⊆(c, C,D). Specifically, we first
retrieve minD⊆(C,D), and then eliminate the points of minD⊆(C,D) that are not
needed for top-(c,C) processing. The remaining data constitute minD∗⊆(c, C,D). In
order to identify the objects necessary for top-(c,C) queries, we resort to an interesting
connection between (c,C)-covering subsets and the top-C homogeneous decomposition
HD(C,D), illustrated below.

Assume thatHD(C,D) contains m intervals I1, I2, ..., Im. Each Ii = [Ii�, Ii ), for
1 ≤ i ≤ m, is associated with a set Ii.S consisting of the C objects having the highest
scores at any weight slope in [Ii�, Ii ). Therefore, any c points in Ii.S form a legal
result for a top-(c,C) query whose weight slope falls in [Ii�, Ii ).

For each object p ∈ minD⊆(C,D), we construct a legal set p.LS, containing the
intervals of HD(C,D) whose top-C sets involve p. For example, consider Figure 9
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where, as discussed at the end of Section 4.3, minD⊆(2,D) involves all the points
shown in the figure.HD(2,D) includes three intervals I1 = [0, λ2), I2 = [λ2, λ3), and
I3 = [λ3,∞), where λ2 (λ3) is the slope of ray l2 (l3). The top-2 set I1.S of I1 equals
{p2, p4}, while I2.S = {p2, p1}, and I3.S = {p3, p1}. Hence, the legal set p1.LS of p1
contains intervals I2 and I3 since their top-2 sets include p1. Similarly, p2.LS = {I1,
I2}, p3.LS = {I3}, and p4.LS = {I1}.

Lemma 9. Let D⊆ be a subset of minD⊆(C,D), and also a (c,C)-covering subset.
Then, each interval inHD(C,D) is included in the legal sets of at least c points in D⊆.

In Figure 9, for instance, {p1} is not a (1,2)-covering subset since interval I3, which
is in HD(2,D), does not belong to p1.LS. Set {p1, p2}, on the other hand, is a (1,2)-
covering subset because each interval in HD(2,D) is in the legal set of either p1 or
p2 — I1 is in p2.LS, while I2 and I3 belong to p1.LS. Similarly, {p2, p3} is also a
(1,2)-covering subset.

6.2 Computing (c,C)-Covering Subsets

Lemmas 8 and 9 indicate that finding the minimum (c,C)-covering subset is equivalent
to extracting the smallest number of points from minD⊆(C,D), such that each interval
inHD(C,D) is included in the legal sets of at least c retrieved points. This is an instance
of the minimum set cover problem which, unfortunately, is NP-hard [6].

We provide a greedy solution which computes a (c,C)-covering subset, whose car-
dinality is larger than the minimum size by only a small factor. The pseudo-code of the
algorithm, called find-cCsub, is presented in Figure 11, which assumes that the legal
sets of all points in minD⊆(C,D) have been obtained. Find-cCsub maintains a setD⊆,
which is empty at the beginning of the algorithm, and becomes the produced (c,C)-
covering subset at termination. For each interval I in HD(c,D), we keep a counter
I.cnt, which equals the number of points in the currentD⊆ whose legal sets include I .
The counter is set to 0 initially.

Find-cCsub executes in iterations. In each iteration, it identifies the point p in
minD⊆(C,D) with the largest legal set p.LS, and incorporates p into D⊆. For each
interval I in P.LS, the counter I.cnt is increased by 1, reflecting the fact that a point
whose legal set includes I has been newly added to D⊆. Once I.cnt reaches c, I is
removed from the legal set of every point in minD⊆(C,D) — it does not need to be
considered in the remaining execution. Finally, the object p inserted to D⊆ in this itera-
tion is eliminated from minD⊆(C,D). The algorithm terminates if the legal sets of all
remaining data in minD⊆(C,D) are empty. Otherwise, it performs another iteration.

Theorem 7. The size of the subset returned by the algorithm in Figure 11 is at most
(ln γ + 1) times larger than that of the minimum (c,C)-covering subset, where γ is the
maximum cardinality of the legal sets of the points in minD⊆(C,D).

Note that γ = |HD(C,D)| in the worst case, when the legal set of an object
in minD⊆(C,D) contains all the intervals in HD(C,D). Since |HD(C,D)| =
O(|minD⊆(C,D)|) (Theorem 4), the size of the subset produced by find-cCsub
is larger than that of the minimum (c,C)-covering subset by a factor of at most
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Algorithm find-cCsub (c, minD⊆(C, D), HD(C, D))
/* the legal set of every point in minD⊆(C, D) has been
computed */
1. D⊆ = ∅; I.cnt = 0 for each interval I ∈ HD(C, D)
2. while (a point in minD⊆(C, D) has a non-empty legal set)
3. p = point in minD⊆(C, D) with the largest legal set
4. D⊆ = D⊆ ∪ {p}
5. for each interval I in the legal set p.LS
6. I.cnt = I.cnt + 1
7. if I.cnt = c then remove I from the legal set of

every point in minD⊆(C, D)
8. minD⊆(C, D) = minD⊆(C, D) − {p}
9. return D⊆

Fig. 11. Finding a (c,C)-covering subset

ln |minD⊆(C,D)| + 1. In practice, we expect γ to be much smaller than |HD(C,D)|,
and as a result, the subset obtained by find-cCsub has a cardinality close to the theoret-
ically minimum value.

Theorem 8. The algorithm in Figure 11 finishes O(m2) time, where m is the number
of points in minD⊆(C,D).

6.3 Query Processing

Let D⊆ be a (c,C)-covering subset computed by the method in Figure 11. Given a top-
(k,C) query (k ≤ c) with weight slope λ, we simply return the k points inD⊆ having the
highest scores at λ. Due to the properties of (c,C)-covering subsets, these k objects are
guaranteed to be a legal result. The query performance can be optimized using exactly
the same techniques as in Section 4, by replacing the original dataset D with D⊆. All
the bounds on the execution cost and space consumption in Section 4 are still valid.

The above analysis applies to dimensionality 2. For higher-dimensional space, we
can compute the minimum c-covering subset minD⊆(c,D) using the algorithm in Fig-
ure 2. Note that minD⊆(c,D) is a (c,C)-covering subset, and hence, can be deployed to
substitute the original dataset D to support top-(k,C) queries (k ≤ c). This leads to an
approach that solves any such query in O(|minD⊆(c,D)| /B) I/Os. It is important to
note that we computed (c,C)-covering subset in the 2D space based on minD⊆(C,D)
(note the capitalized C), as is required by Lemma 8.

7 Conclusions

This paper introduced the concept of “minimum covering subset”, which is the smallest
subset of the database that must be stored by any ranked-retrieval algorithms to ensure
correct results for all queries. For 2D space, we developed a technique that consumes
O(m/B) space and solves any top-k query in O(logB(m/B) + c/B) I/Os, where c is
the upper bound of k, m the size of the minimum c-covering subset, and B the disk
page capacity. For higher dimensionality, our approach requires O(m/B) space and
query time.
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As a second step, we provided the first solutions for approximate ranked retrieval
that do not require inspecting the entire database in the worst case. In the 2D scenario,
our method occupies O(m′/B) space and solves a top-(k,C) query with k ≤ c in
O(logB(m′/B)+c/B) where m′ is larger than the size of the minimum (c,C)-covering
subset by a small bounded factor. For higher dimensionality, we showed that a top-(k,C)
(k ≤ c) query can be answered in O(m/B) I/Os and space, where m is the size of the
minimum c-covering subset.

This work lays down a foundation for continued investigation of ranked queries.
A promising direction for future work is to study faster algorithms for computing the
minimum covering subsets, utilizing the properties presented earlier. Another interest-
ing problem is the dynamic maintenance of minimum subsets at the presence of data
updates. Specialized approaches may be developed to explore the tradeoff between up-
date efficiency and the space overhead.
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Abstract. Clustering is an important tool to explore the hidden struc-
ture of large databases. There are several algorithms based on different
approaches (hierarchical, partitional, density-based, model-based, etc.).
Most of these algorithms have some discrepancies, e.g. they are not able
to detect clusters with convex shapes, the number of the clusters should
be a priori known, they suffer from numerical problems, like sensitive-
ness to the initialization, etc. In this paper we introduce a new cluster-
ing algorithm based on the sinergistic combination of the hierarchial and
graph theoretic minimal spanning tree based clustering and the parti-
tional Gaussian mixture model-based clustering algorithms. The aim of
this hybridization is to increase the robustness and consistency of the
clustering results and to decrease the number of the heuristically de-
fined parameters of these algorithms to decrease the influence of the
user on the clustering results. As the examples used for the illustration
of the operation of the new algorithm will show, the proposed algorithm
can detect clusters from data with arbitrary shape and does not suffer
from the numerical problems of the Gaussian mixture based clustering
algorithms.

1 Introduction

Nowadays the amount of data doubles almost every year. Hence, there is an
urgent need for a new generation of computational techniques and tools to assist
humans in extracting useful information (knowledge) from the rapidly growing
volume of data. Data mining is one of the most useful methods for exploring large
datasets. Clustering is one of the most commonly used methods for discovering
the hidden structure of the considered dataset. The aim of cluster analysis is to
partition a set of N objects in c clusters such that objects within clusters should
be similar to each other and objects in different clusters should be dissimilar from
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each other. Clustering can be used to quantize the available data, to extract a
set of cluster prototypes for the compact representation of the dataset, to select
the relevant features, to segment the dataset into homogenous subsets, and to
initialize regression and classification models. Therefore, clustering is a widely
applied technique, e.g. clustering methods have been applied in DNA analysis
[4, 24], in medical diagnosis [6], on astronomical data [3, 23], in web applications
[7, 16], etc.

Clustering, as an unsupervised learning is mainly carried out on the basis
of the data structure itself, so the influence of the user should be minimal on
the results of the clustering. However, due to the huge variety of problems and
data, it is a difficult challenge to find a general and powerful method that is
quite robust and that does not require the fine-tuning of the user. The large
variety of clustering problems resulted in several algorithms that are based on
various approaches (hierarchical, partitional, density-based, graph-based, model-
based, etc.). Most of these algorithms have some discrepancies. For example the
basic partitional methods are not able to detect convex clusters; when using
hierarchical methods the number of the clusters should be a priori known, and
they are not efficient enough for large datasets; while linkage-based methods
often suffer from the chaining effect. Partitional clustering algorithms obtain a
single partition of the data instead of a complex clustering structure, such as
the dendrogram produced by a hierarchical technique. Partitional methods have
advantages in applications involving large datasets for which the construction
of a dendrogram is computationally prohibitive. Furthermore, the clusters are
represented by easily interpretable cluster prototypes, that is a significant benefit
when clustering is used to extract interesting information from data.

A problem accompanying the use of a partitional algorithm is that the number
of the desired clusters should be given in advance. A seminal paper [9] provides
guidance on this key design decision. The partitional techniques usually produce
clusters by optimizing a criterion function defined either locally (on a subset
of the patterns) or globally (defined over all of the patterns). Combinatorial
search of the set of possible labelings for an optimum value of a criterion is
clearly computationally prohibitive. In practice, the algorithms are typically run
multiple times with different starting states, and the best configuration obtained
from these runs is used as the output clustering.

A common limitation of partitional clustering algorithms based on a fixed
distance norm, like k-means or fuzzy c-means clustering, is that such a norm
induces a fixed topological structure and forces the objective function to prefer
clusters of spherical shape even if it is not present. Generally, different cluster
shapes (orientations, volumes) are required for the different clusters (partitions),
but there is no guideline as to how to choose them a priori. The norm-inducing
matrix of the cluster prototypes can be adapted by using estimates of the data
covariance, and can be used to estimate the statistical dependence of the data
in each cluster. The Gaussian mixture based fuzzy maximum likelihood estima-
tion algorithm (Gath–Geva algorithm (GG) [12]) is based on such an adaptive
distance measure, it can adapt the distance norm to the underlying distribu-
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tion of the data which is reflected in the different sizes of the clusters, hence
it is able to detect clusters with different orientation and volume (see the Ap-
pendix of the paper for the description of the algorithm). The mixture resolving
approach to cluster analysis has been addressed in a number of ways. The un-
derlying assumption is that the patterns to be clustered are drawn from one
of several distributions, and the goal is to identify the parameters of each and
(perhaps) their number. Most of the work in this area has assumed that the in-
dividual components of the mixture density are Gaussians, and in this case the
parameters of the individual Gaussians are to be estimated by the procedure.
Traditional approaches to this problem involve obtaining (iteratively) a maxi-
mum likelihood estimate of the parameter vectors of the component densities
[17]. More recently, the Expectation Maximization (EM) algorithm (a general
purpose maximum likelihood algorithm [8] for missing-data problems) has been
applied to the problem of parameter estimation. A recent book [19] provides an
accessible description of the technique. In the EM framework, the parameters of
the component densities are unknown, as are the mixing parameters, and these
are estimated from the patterns. The EM procedure begins with an initial esti-
mate of the parameter vector and iteratively rescores the patterns against the
mixture density produced by the parameter vector. The rescored patterns are
then used to update the parameter estimates. In a clustering context, the scores
of the patterns (which essentially measure their likelihood of being drawn from
particular components of the mixture) can be viewed as hints at the class of
the pattern. Those patterns, placed (by their scores) in a particular component,
would therefore be viewed as belonging to the same cluster. A hard clustering
algorithm allocates each pattern to a single cluster during its operation and in its
output. A fuzzy clustering method assigns degrees of membership in several clus-
ters to each input pattern. The fuzzy maximum likelihood estimates clustering
algorithm employs a distance norm based on the fuzzy maximum likelihood esti-
mates, proposed by Bezdek and Dunn. Unfortunately the GG algorithm is very
sensitive to initialization, hence often it cannot be directly applied to the data.

Contrary, clustering algorithms based on linkage approach are able to detect
clusters of various shapes and sizes, they can work with multivariate data, and
they do not require initialization. There are several methods for detecting clusters
by linking data patterns to each other. The hierarchical clustering approaches
are related to graph-theoretic clustering. Single-link clusters are subgraphs of the
minimum spanning tree of the data [15] which are also the connected components
[14]. Complete-link clusters are maximal complete subgraphs, and are related
to the node colorability of graphs [2]. The maximal complete subgraph was
considered the strictest definition of a cluster in [1, 22]. One of the best-known
graph-based divisive clustering algorithm is based on the construction of the
minimal spanning tree (MST) of the objects [3, 11, 13, 20, 24]. The elimination
of any edge from the MST we get subtrees which correspond to clusters.

Figure 1 depicts the minimal spanning tree obtained from 75 two-dimensional
points distributed into three clusters. The objects belonging to different clusters
are marked with different dot notations. Clustering methods using a minimal
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Fig. 1. Example of a minimal spanning tree

spanning tree take advantages of the MST. For example building the minimal
spanning tree of a dataset does not need any a priori information about the
underlying data. Moreover, as the MST ignores many possible connections be-
tween the data patterns, the cost of clustering can be decreased. However the use
of minimal spanning trees in clustering algorithms also raises some interesting
questions. How can we determine the edges at which the best cluster separa-
tions might be made? For finding the best clusters, when should we stop our
algorithm?

In this paper we propose a synergistic hybridization of the MST and GG
clustering algorithms that can automatically handle these questions. In the fol-
lowing, in Section 2, this new algorithm will be described. Section 3. contains
application examples based on synthetic and real life datasets to illustrate the
usefulness of the proposed method. Section 4. concludes the paper.

2 Clustering Based on Minimal Spanning Tree

2.1 Generation and Partition of the Minimal Spanning Tree

Using a minimal spanning tree for clustering was initially proposed by Zahn
[25]. A minimal spanning tree is a weighted connected graph, where the sum of
the weights is minimal. A graph G is a pair (V,E), where V is a finite set of
the elements, called vertices, and E is a collection of unordered pairs of V . An
element of E, called edge, is ei,j = (vi, vj), where vi, vj ∈ V . In a weighted graph
a weight function w is defined, which function determines a weight wi,j for each
edge ei,j . The complete graph KN on a set of N vertices is the graph that has

all the
(

N
2

)
possible edges. Creating the minimal spanning tree means, that
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we are searching the G′ = (V,E′), the connected subgraph of G, where E′ ⊂ E
and the cost is minimum. The cost is computed in the following way:

∑

e∈E′
w(e) (1)

where w(e) denotes the weight of the edge e ∈ E. In a graph G, where the
number of the vertices is N , MST has exactly N − 1 edges.

A minimal spanning tree can be efficiently computed in O(N2) time using
either Prim’s [21] or Kruskal’s [18] algorithm. Prim’s algorithm starts with an
arbitrary vertex as the root of a partial tree. In each step of the algorithm the
partial tree grows by iteratively adding an unconnected vertex to it using the
lowest cost edge, until no unconnected vertex remains. Kruskal’s algorithm be-
gins with the connection of the two nearest objects. In each step the nearest
objects placed in different trees are connected. So the Kruskal’s algorithm itera-
tively merges two trees (or a tree with a single object) in the current forest into
a new tree. The algorithm continues until a single tree remains only, connecting
all points.

A minimal spanning tree can be used in clustering in the following way:
let V = {x1,x2, ...,xN} be a set of the data with N distinct objects which
we want to distribute in different clusters. xi denotes the i-th object, which
consists n measured variables, grouped into an n-dimensional column vector
xi = [x1,i, x2,i, ..., xn,i]T , xi ∈ Rn. Let di,j = d(xi,xj) be the distance defined
between any xi and xj . This distance can be computed in different ways (e.g.
Euclidean distance, Manhattan distance, Mahalanobis distance, mutual neigh-
bour distance, etc.). The drawback of the direct use of the Euclidean metrics
is the tendency of the largest-scaled features to dominate the others. To avoid
the greater influence of some features of the objects an initialization step is rec-
ommended. As a solution for this problem we suggest the normalization of the
continuous features to a common range or variance. So in the graph G = (V,E)
V represents the objects and the function w defined over the edges e ∈ E repre-
senting the distances between the data points (wi,j = di,j).

Removing edges from the MST leads to a collection of connected subgraphs
of G, which can be considered as clusters. Using MST for clustering we are
interested in finding the edges, which elimination lead to the best clustering
result. Such edges is called inconsistent edges.

Clustering by minimal spanning tree can be viewed as a hierarchical clus-
tering algorithm which follows the divisive approach. Using this method firstly
we construct a linked structure of the objects, and then the clusters are recur-
sively divided into subclusters. The major steps of the clustering methods using
a minimal spanning tree are the following:

– Step 1. Construct the minimal spanning tree so that the edges weights are
the distances between the data points.

– Step 2. Remove the inconsistent edges to get a set of connected components
(clusters).

– Step 3. Repeat Step 2 until a terminating criterion is not satisfied.
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Elimination of k edges from a minimal spanning tree results in k + 1 discon-
nected subtrees. In the simplest recursive theories k = 1. Denote δ the length
of the deleted edge, and let V1, V2 be the sets of the points in the resulting two
clusters. In the set of clusters we can state that there are no pairs of points
(x1,x2), x1 ∈ V1, x2 ∈ V2 such that d(x1,x2) < δ . There are several ways
to define the distance between two disconnected groups of individual objects
(minimum distance, maximum distance, average distance, distance of centroids,
etc.). Defining the separation between V1 and V2, we have the result that the
separation is at least δ.

In the case of clustering using MST firstly a minimal spanning tree of all
the nodes is given. Thus initially only one cluster is available. In the second
phase we must choose the edge or the edges which will be removed. The major
advantage of clustering based on a minimal spanning tree appears in this step.
Because the MST has only N − 1 edges, we can choose the inconsistent edge

(or edges) by revising only N − 1 values, instead of checking the
(

N
2

)
possible

connections between all of the objects. The identification of the inconsistent
edges causes problems in the MST clustering algorithms. There exist numerous
ways to divide clusters successively, but there is not a suitable choice for all
cases. In special cases the second step is not executed recursively. In these cases
a global parameter is used, which determines the edges to be removed from the
MST. When the second step of the algorithm is repeated, we must determine
a terminating criterion, when the running of the algorithm is finished, and the
current trees can be seen as clusters. Determination of the terminating criterion
is also a difficult challenge. The methods which use recursive cutting define some
possible terminating criteria.

In the next subsection we will overview some well-known cutting conditions
and terminating criteria, then we introduce our suggestions for using the minimal
spanning tree for clustering with new cutting criteria.

2.2 Conditions for Cutting the Minimal Spanning Tree

Criterion-1 : The simplest way to delete edges from the minimal spanning tree
is based on the distance between the vertices. By deleting the longest edge in
each iteration step we get a nested sequence of subgraphs. As other hierarchical
methods, this approach also requires a terminating condition. Several ways are
known to stop the algorithms, for example the user can define the number of
clusters, or we can give a threshold value on the length also.

Similarly to Zahn [25] we suggest a global threshold value δ, which considers
the distribution of the data in the feature space. In [25] this threshold (δ) is
based on the average weight (distances) of the MST :

δ = λ
1

N − 1

∑

e∈E′
w(e) (2)

where λ is a user defined parameter.
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Of course, λ can be defined in several manner. E.g. it can be derived from a
physical model. Let us consider the data points in the features space as planets
in space. When each data point has the same meaning for the clustering, we
can suppose, that the planets representing the data points has equal mass. As
planets in space, the objects in the feature space affect each other. Using this
theory we can calculate a threshold index. This index, called attraction threshold
(Tat) is calculated in the following way:

Tat =
1
2

√√√√ N(N − 1)
∑N

i=1
∑N

j=i+1
1

d(xi,xj)2
(3)

where N is the number of the objects, xi, xj are two objects, and d(x1,x2) defines
the distance between the objects calculated with using Euclidean metric. The
attraction threshold means a global parameter, which takes into consideration
the placement of all objects in the normalized features space. In our approach
we suppose if the inequality

d(xi,xj) > Tat (4)

holds, then the objects xi and xj belong to different clusters. The attraction
threshold can be seen as a cutting criterion in the minimal spanning tree. In this
case we must delete all of the edges whose weight is greater than the attraction
threshold. So our approach is a linkage based clustering method with the use of
MST. In the basic form our approach is not a hierarchical clustering method. The
Criterion-1at can be considered as an improvement of Criterion-1, by which the
influence of the user is eliminated. For the calculation of the Tat it is needed to
compute the distance between all pairs of objects. The computation cost is not
increased, because the construction of minimal spanning tree also needs these
values. So the previously computed values stored in a matrix can be used for
calculating Tat.

Long edges of the MST need not be associated with cluster separation. For
a unimodal density, even with compact support, some of the longest edges of
the MST will connect the outlying points in the low density region to the ’main
body’ of data. Hence, this first criteria can also be used to detect outliers.

Criterion-2 : Zahn [25] proposed also an idea to detect the hidden separations in
the data. Zahn’s suggestion is based on the distance of the separated subtrees.
He suggested, that an edge is inconsistent if its length is at least f times as long
as the average of the length of nearby edges. The input parameter f must be
adjusted by the user. To determine which edges are ‘nearby’ is another question.
It can be determined by the user, or we can say, that point xi is nearby point
of xj if point xi is connected to the point xj by a path in a minimal spanning
tree containing k or fewer edges. This method has the advantage of determining
clusters which have different distances separating one another. Another use of the
MST based clustering based on this criterion is to find dense clusters embedded
in a sparse set of points. All that has to be done is to remove all edges longer
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than some predetermined length in order to extract clusters which are closer
than the specified length to each other. If the length is chosen accordingly, the
dense clusters are extracted from a sparse set of points easily. The drawback of
this method is that the influence of the user is significant at the selection of the
f and k parameters.

Several clustering methods based on linkage approach suffer from some dis-
crepancies. In these cases the clusters are provided by merging or splitting of the
objects or clusters using a distance defined between them. Occurrence of a data
chain between two clusters can cause that these methods can not separate these
clusters. This also happens with the basic MST clustering algorithm. To solve
the chaining problem we suggest a new complementary condition for cutting the
minimal spanning tree.

Criterion-3 : In another approaches the separation is specified with the goodness
of the obtained partitions. Cluster validity refers to the problem whether a given
partition fits to the data all. The clustering algorithm always tries to find the best
fit for a fixed number of clusters and the parameterized cluster shapes. However
this does not mean that even the best fit is meaningful at all. Either the number
of clusters might be wrong or the cluster shapes might not correspond to the
groups in the data, if the data can be grouped in a meaningful way at all. Two
main approaches to determining the appropriate number of clusters in data can
be distinguished:

– Starting with a sufficiently large number of clusters, and successively re-
ducing this number by merging clusters that are similar (compatible) with
respect to some predefined criteria. This approach is called compatible cluster
merging.

– Clustering data for different values of c, and using validity measures to assess
the goodness of the obtained partitions. This can be done in two ways:
• The first approach defines a validity function which evaluates a complete

partition. An upper bound for the number of clusters must be estimated
(cmax), and the algorithms have to be run with each c ∈ {2, 3, . . . , cmax}.
For each partition, the validity function provides a value such that the
results of the analysis can be compared indirectly.

• The second approach consists of the definition of a validity function that
evaluates individual clusters of a cluster partition. Again, cmax has to be
estimated and the cluster analysis has to be carried out for cmax. The re-
sulting clusters are compared to each other on the basis of the validity func-
tion. Similar clusters are collected in one cluster, very bad clusters are elim-
inated, so the number of clusters is reduced. The procedure canbe repeated
until there are clusters that not satisfy the predefined criterion.

Different scalar validity measures have been proposed in the literature, but
none of them is perfect on its own. For example partition index [5] is the ratio
of the sum of compactness and separation of the clusters. Separation index [5]
uses a minimum distance separation for partition validity. Dunn’s index [10] is
originally proposed to be used at the identification of compact and well separated
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clusters. The problems of the Dunn index are: i) its considerable time complexity,
ii) its sensitivity to the presence of noise in datasets. Three indices, are proposed
in the literature that are more robust to the presence of noise. They are known as
Dunn-like indices since they are based on Dunn index. One of the three indices
uses for the definition the concepts MST. Let ci be a cluster and the complete
graph Gi whose vertices correspond to the vectors of ci. The weight w(e) of an
edge e of this graph equals the distance between its two end points, x, y. Let
eMST

i be the edge with the maximum weight. Then the diameter of the cluster
ci is defined as the weight of eMST

i . With the use of this notation the Dunn-like
index based on the concept of the MST is given by equation:

Dnc = min
i=1,...,nc

{
min

j=i+1,...,nc

(
d(ci, cj)

maxk=1,...,nc diam (ck)

)}
(5)

where d(ci, cj) is the dissimilarity function between two clusters ci and cj defined
as minx∈ci,y∈cj d(x,y), and diam(c) is the diameter of a cluster, which may be
considered as a measure of clusters dispersion. The diameter of a cluster ci can
be defined as follows: maxx,y∈ci d(x,y). nc denotes the number of clusters. The
number of clusters at which Dnc takes its maximum value indicates the number
of clusters in the underlying data.

Varma and Simon [24] used the Fukuyama-Sugeno clustering measure for
deleting different edges from the MST. Denote S the sample index set, and let
S1, S2 be partitions of S. Nk denotes the number of the objects for each Sk. The
Fukuyama-Sugeno clustering measure is defined in the following way:

FS(S) =
2∑

k=1

Nk∑

j=1

[‖xk
j − vk‖2 − ‖vk − v|2] (6)

where v denotes the global mean of all objects, vk denotes the mean of the
objects in Sk. The symbol xk

j refers to the j-th object in the cluster Sk. If the
value of FS(S) is small, it indicates tight clusters with large separations between
them. Varma and Simon found, that the Fukuyama-Sugeno measure gives the
best performance in a dataset with a large number of noisy features.

In this paper the second approach of the automatic determination of the
number of clusters is followed. A validity function that evaluates the individual
clusters of a cluster partition has been used. Since the clusters of the MST will be
approximated by multivariate Gaussians, the fuzzy hyper volume validity index
is applied. Let Fj the fuzzy covariance matrix of the j-th cluster defined as

Fj =

N∑
i=1

(μij)m (xi − vj) (xi − vj)
T

N∑
i=1

(μij)m

, (7)

where μij denotes the degree of membership of the xi in cluster cj . The symbol
m is the fuzzifier parameter of the fuzzy clustering algorithm and indicates the
fuzzyness of clustering result. The fuzzy hyper volume of i-th cluster is given by
the equation
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Vi =
√

det (Fi) (8)

The total fuzzy hyper volume is given by the equation

HV =
c∑

i=1

Vi (9)

The det(Fi) represents the volume of the clusters (ellipsoids). The resulting clus-
ters can be compared to each other on the basis of their volume. Very bad clusters
with large volumes can be further partitioned, so the number of clusters can be
recursively increased. The procedure can be repeated until there are bad clusters.

2.3 Hybrid MST-GG Clustering Algorithm

The previous subsections presented the main building blocks of the proposed hy-
brid clustering algorithm. In the following the whole algorithm will be described.

The proposed algorithm (called Hybrid MST-GG algorithm) is based on the
construction of the minimal spanning tree of the objects and uses the fuzzy hyper
volume validity measure. Additionally, by the use of the Gath-Geva algorithm
the Gaussian mixture representation of the refined outcome is permitted also.

In the initialization step the creation of the minimal spanning tree of the
considered objects is required. This structure will be partitioned based on the
following approaches: (i) classical use of the MST in the clustering algorithm, (ii)
the application of the fuzzy hyper volume validity measure to eliminate edges
from the MST. The proposed Hybrid MST-GG algorithm iterative builds the
possible clusters. In each iteration step a binary split is performed. The use
of the cutting criteria results in a hierarchical tree, in which the nodes denote
partitions of the objects. To refine the partitions evolved in the previous step,
firstly the calculation of the volumes of the obtained clusters is needed. In each
iteration step the cluster (a leave of the binary tree) having the largest hyper
volume is selected for the cutting. For the elimination of edges from the MST
firstly the cutting conditions Criterion-1 and Criterion-2 are applied, which were
previously introduced. The use of the classical MST-based clustering method
detects well separated clusters, but does not solve the typical problem of the
graph-based clustering algorithms (chaining affect). To dissolve this discrepancy
we apply the fuzzy hyper volume measure. If the cutting of the partition having
the largest hyper volume can not executed based on Criterion-1 or Criterion-2,
then the cut is performed based on the measure of the total fuzzy hyper volume.
If this partition has N objects, we must check up N − 1 possibilities. Each of
the N − 1 possibilities results in a binary splitting, hereby the objects placed in
the cluster with the largest hyper volume are distributed into two subclusters.
We must choose the binary splitting which results in the least total fuzzy hyper
volume. The whole process is carried out until a termination criterion is satisfied
(e.g. the predefined number of clusters, or the minimal number of the objects of
the partitions is reached).

The application of this hybrid cutting criterion can be seen as a divisive hier-
archical method. Figure 2 demonstrates a possible result after applying the two
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different cutting methods on the MST. The partitions marked by the continu-
ous dark line are resulted by the applying of the classical MST-based clustering
method, and the partitions having gray dotted notations are arising from the
application of the fuzzy hyper volume criterion.

When the compact parametric representation of the result of the clustering
is needed, a Gaussian mixture model based clustering can be performed, where
the number of the Gaussians is equal to the termination nodes, and the itera-
tive algorithm is initialized based on the partition obtained at the previous step.
This approach is really fruitful, since it is well known that the Gath-Geva algo-
rithm is sensitive to the initialization of the partitions. The previously obtained
clusters give an appropriate starting-point for the GG algorithm. Hereby the
iterative application of the Gath-Geva algorithm results in a good and compact
representation of the clusters.

Algorithm 2.1 (Hybrid MST-GG Clustering Algorithm)

Step 0 Create the minimal spanning tree of the objects.

Repeat Iteration
Step 1 Node selection. Select the node (i.e., sub-cluster) with the largest

hyper volume Vi from the so-far formed hierarchical tree. Perform a
cutting on this node based on the following criteria.

Step 2 Binary Splitting. If the cluster having the largest hyper volume
can not be cut by Criterion-1 or Criterion-2, then use Criterion-3 for
the splitting. All of the edges of the selected sub-MST is cut. With each
cut a binary split of the objects is formed. If the current node includes
Ni objects then Ni − 1 such splits are formed. The two sub-clusters,
formed by the binary split, plus the clusters formed so far (excluding
the current node) compose the potential partition. The hyper volume
(HV ) of all formed Ni− 1 potential partitions are computed. The one
that exhibits the lowest HV is selected as the best partition of the
objects in the current node.

Until Termination criterion. Following a depth-first tree-growing process,
steps 1, 2 and 3a-b are iteratively performed. The final outcome is a hier-
archical clustering tree, where the termination nodes are the final clusters.
Special parameters control the generalization level of the hierarchical clus-
tering tree (e.g., minimum number of objects in each sub-cluster).

Step 3 When the compact parametric representation of the result of the clus-
tering is needed, a Gaussian mixture model based clustering is performed,
where the number of the Gaussians is equal to the termination nodes, and
the iterative algorithm is initialized based on the partition obtained at the
previous step.
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P0

P1 P2

P11 P12 P21 P22

P111 P112 P221 P222

Fig. 2. A possible binary tree given by the proposed MST-GG algorithm

3 Application Examples

In this section we present the results obtained on the clustering of some tailored
data and well-known data sets.

3.1 Handling the Chaining Effect

The first example is intended to illustrate that the proposed cluster volume
based splitting extension of the basic MST based clustering algorithm is able to
handle (avoid) the chaining phenomena of the classical single linkage scheme.
As Figure 3 illustrates, for this toy example the classical MST based algorithm
detects only two clusters.

With the use of the volume-based partitioning criterion, the first cluster has
been split (Figure 1).

This short example illustrates the main benefit of the incorporation of the
cluster validity based criterion into the classical MST based clustering algorithm.
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Fig. 3. Clusters obtained by the classical MST based algorithm
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In the following it will be shown how the resulting nonparametric clusters can
be approximated by mixture of Gaussians, and how this approach is beneficial
for the initialization of these iterative partitional algorithms.

3.2 Handling the Convex Shapes of Clusters - Effect of the
Initialization

Let us consider a more complex clustering problem with convex shape of clusters.
As Figure 4 shows, the proposed MST based clustering algorithm is able to
detect properly cluster of this data. The partitioning of the clusters has not
been stopped at the detection of the well separated clusters (Criterion-1 and
Criterion-2), but the resulting clusters have been further split to get clusters
with small volumes, (Criterion-3).

The main benefit of the resulted partitioning is that it can be easily approxi-
mated by mixture of multivariate Gaussians (ellipsoids). This approximation is
useful since the obtained Gaussians give a compact and parametric descriptions
of the clusters, and the result of the clustering is soft (fuzzy).

Figure 5 shows the results of the clustering we obtained after performing the
iteration steps of the Gaussian mixtures based EM algorithm given in the Ap-
pendix. In this figure the dots represent the data points and the ’o’ markers are
the cluster centers. The membership values are also shown, since the curves rep-
resent the isosurfaces of the membership values that are inversely proportional to
the distances. As can be seen, the clusters provide an excellent description of the
distribution of the data. The clusters with complex shape are approximated by
a set of ellipsoids. It is interesting to note, that this clustering step only slightly
modifies the placement of the clusters.

In order to demonstrate the effectiveness of the proposed initialization scheme,
Figure 6 illustrates the result of the Gaussian mixture based clustering, where
the clustering was initialized by the classical fuzzy c-means algorithm. As can
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Fig. 4. Top: Minimal spanning tree created by the proposed MST-GG algorithm
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Fig. 5. Result of the proposed MST-GG algorithm after performing the Gaussian mix-
ture based clustering
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Fig. 6. Result of the GG algorithm initialized from the fuzzy c-means algorithm

be seen, this widely applied approach failed to find the proper clustering of the
data set, only a sub-optimal solution has been found.

3.3 Application to Real Life Data: Classification of Iris Flowers

The previous example showed that it is possible to obtain a properly clustered
representation by the proposed mapping algorithm. However, the real advantage
of the algorithm was not shown. This will be done by the following real cluster-
ing problem, the clustering of the well known Iris data, coming from the UCI
Repository of Machine Learning Databases (http://www.ics.uci.edu).

The Iris data set contains measurements on three classes of Iris flowers. The
data set was made by measurements of sepal length and width and petal length
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Fig. 7. Two Dimensional Plot of the Minimal Spanning Tree of the Iris Data

and width for a collection of 150 irises. The problem is to distinguish the three
different types (Iris setosa, Iris versicolor and Iris virginica). These data have
been analyzed many times to illustrate various methods.

The MST clustering based on Criterion-1 and Criterion-2 detects only two
clusters. In this case the third cluster is formed only after the application of the
cluster volume-based splitting criterion (Criterion-3), see Figure 7. The resulting
three clusters correspond to the three classes of the Iris flowers. At the analysis of
the distribution of the classes in the clusters, we found only 3 misclassification
errors. The mixture of Gaussians density model is able to approximate this
cluster arrangement. The resulting fuzzy clustering (Step 3) can be converted
to a hard clustering by assigning each pattern to the cluster with the largest
measure of membership. After this fine-tuning clustering step, we found only 5
misclassifications. This means 96.67% classification correctness, that is a quite
good result for this classification problem.

4 Conclusions

A divisive clustering method begins with all patterns in a single cluster and per-
forms splitting until a stopping criterion is met. The best-known graph-theoretic
divisive clustering algorithm is based on construction of the minimal spanning
tree (MST) of the data [25], and then deleting the MST edges with the largest
lengths to generate clusters. In this paper, we presented a new splitting criterion
to improve the performance of this clustering algorithm. The algorithm is based
on the calculation of the hyper volume of the clusters that are approximated by
a multivariate Gaussian functions. The result of this clustering can be effectively
used for the initialization of Gaussian mixture model based clustering algorithms.
The approach is demonstrated by some tailored data and by the well-known
iris benchmark classification problem. The results showed the advantages of the



328 A. Vathy-Fogarassy, A. Kiss, and J. Abonyi

hybridization of the hierarchial graph-theoretic and partitional model based clus-
tering algorithm. The chaining effect of the MST and the sensitivity to the ini-
tialization of the Gath-Geva clustering algorithms have been properly handled,
and the resulting clusters are easily interpretable with the compact parametric
description of the multivariate Gaussian clusters (fuzzy covariance matrices).
The proposed MST-GG algorithm has been implemented in MATLAB, and it is
downloadable from the website of the authors: www.fmt.veim.hu/softcomp.
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Appendix: Gath-Geva Clustering Algorithm

The fuzzy maximum likelihood estimates clustering algorithm employs a distance
norm based on the fuzzy maximum likelihood estimates, proposed by Bezdek and
Dunn:

D2
ik(xk,vi) =

√
det(Fi)
αi

exp
(

1
2

(
xk − v(l)

i

)T

F−1
i

(
xk − v(l)

i

))
(10)

Note that, contrary to the Gustaffson-Kessel (GK) algorithm, this distance norm
involves an exponential term and thus decreases faster than the inner-product
norm. Fi denotes the fuzzy covariance matrix of the i-th cluster, given by the
equation (7). The reason for using this m exponent is to enable to generalize
this expression. The αi is the prior probability of selecting cluster i, given by:

αi =
1
N

N∑

k=1

μik. (11)
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The membership degrees μik are interpreted as the posterior probabilities of se-
lecting the i-th cluster given the data point xk. Gath and Geva reported that the
fuzzy maximum likelihood estimates clustering algorithm is able to detect clus-
ters of varying shapes, sizes and densities. This is because the cluster covariance
matrix is used in conjunction with an ”exponential” distance, and the clusters
are not constrained in volume. However, this algorithm is less robust in the sense
that it needs a good initialization, since due to the exponential distance norm, it
converges to a near local optimum. The minimum of the cost function is sought
by the alternating optimization (AO) method (Gath-Geva clustering algorithm).

Algorithm 4.1 (Gath-Geva algorithm)
Given a set of data X specify c, choose a weighting exponent m > 1 and a
termination tolerance ε > 0. Initialize the partition matrix.

Repeat for l = 1, 2, . . .

Step 1 Calculate the cluster centers: v(l)
i =

N

k=1
(μ(l−1)

ik )mxk

N

k=1
(μ(l−1)

ik
)m

, 1 ≤ i ≤ c

Step 2 Compute the distance measure D2
ik.

The distance to the prototype is calculated based the fuzzy covariance ma-
trices of the cluster

F(l)
i =

N∑
k=1

(μ(l−1)
ik )m

(
xk − v(l)

i

)(
xk − v(l)

i

)T

N∑
k=1

(μ(l−1)
ik )m

, 1 ≤ i ≤ c (12)

The distance function is chosen as

D2
ik(xk,vi) =

(2π)(
n
2 )√det(Fi)

αi
exp

(
1
2

(
xk − v(l)

i

)T

F−1
i

(
xk − v(l)

i

))

(13)
with the a priori probability αi = 1

N

∑N
k=1 μik

Step 3 Update the partition matrix

μ
(l)
ik =

1
∑c

j=1 (Dik (xk,vi) /Djk (xk,vj))
2/(m−1) , 1 ≤ i ≤ c, 1 ≤ k ≤ N

(14)
until ||U(l) −U(l−1)|| < ε.
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