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Abstract. While traditionally the environment considered by an autonomous
mechatronic systems only consists of the measurable, surrounding physical
world, today advanced mechatronic systems also include the context established
by the information technology. This trend makes mechatronic systems possible
which consist of cooperating agents which optimize and reconfigure the system
behavior by adjusting their local behavior and cooperation structure to better
serve their current goals depending on the experienced mechanical and informa-
tion environment. The MECHATRONIC UML approach enables the component-
wise development of such self-optimizing mechatronic systems by providing a
notion for hybrid components and support for modular verification of the safe
online-reconfiguration. In this paper, we present an extension to the formerly pre-
sented solution which overcomes the restriction that only purely reactive behavior
with restricted time constraints can be verified. We present how model check-
ing can be employed to also verify the safe modular reconfiguration for systems
which include components with complex time constraints and proactive behavior.

1 Introduction

To realize advanced mechatronic systems such as intelligent cooperating vehicles, the
engineers from the different disciplines mechanical engineering, electrical engineer-
ing, and software engineering have to cooperate successfully. The development of
such systems becomes even more challenging, if the mechatronic systems should be
able to adjust their behavior and structure at run-time (cf. self-adaptation and self-
optimization [1]).

The environment of autonomous mechatronic subsystems today no longer consists
only of the physical world. In addition, the context built by the interconnection of the
system via information technology such as local bus systems or wireless networking
technology has to be taken into account. Therefore, today more flexible mechatronic
systems are developed which require complex online reconfiguration schemes for the
control algorithms which can effect not only a single component but whole hierarchies
of connected components.
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The MECHATRONIC UML approach provides an approach for the component-
wise development of such complex self-optimizing mechatronic systems. It supports
a component notion and the specification of required online reconfiguration activi-
ties which go across multiple levels of a component hierarchy [2]. Therefore, online-
reconfiguration can be employed also on the higher levels of the system control but
also across the boundaries traditionally given by the involved disciplines. The MECHA-
TRONIC UML approach also supports model checking techniques for real-time process-
ing at the higher levels. It addresses the scalability problem of these techniques by sup-
porting a compositional proceeding for modeling and compositional verification of the
real-time software when using the UML 2.0 component model and the corresponding
definition of ports and connectors as well as patterns [3].

In [2], an approach to combine such a compositional approach with techniques to
ensure the proper modular reconfiguration has been presented which require a rather
restricted purely reactive behavior and rather restricted local timing constraints for the
subordinated components. More complex timing constraints including clock invariants
which enforce certain reconfiguration sequences or proactive behavior in the sense
that the subordinated component autonomously decides that a reconfiguration is re-
quired is currently not supported. In this paper, we present how the verification of the
safe reconfiguration can be accomplished with model checking to also cover these two
cases.

The paper proceeds with an informal introduction on modeling with the MECHA-
TRONIC UML approach by means of an example given in Section 2 and some remarks
on the current tool support. To point to the limitations of the existing approach the ex-
ample is extended with proactive behavior and non complex timing constraints which
effect the reconfiguration. The concepts and first evaluation results for verifying the
safe reconfiguration follow in Section 4. We close the paper with a discussion of related
work (Section 5) and a final conclusion including an outlook on planned future work in
Section 6.

2 Modeling and Current Tool Support

In this section, we introduce our MECHATRONIC UML approach focusing on modeling
with hybrid components (cf. [2]). Furthermore, we present our current tool support for
modeling and verification of hybrid systems.

To outline our approach, we employ an example which stems from the RailCab1 re-
search project at the University of Paderborn. Autonomous shuttles are developed which
operate individually and make independent and decentralized operational decisions.

The shuttle’s active suspension system and its optimization is one example for a
complex mechatronic system whose control software we design in the following. The
schema of the relevant physical model of our example is shown in Figure 1(a).

The suspension module is based on air springs which are damped actively by the
displacement of their bases and three vertical hydraulic cylinders which move the bases
of the air springs via an intermediate frame – the suspension frame. The vital task of
the system is to provide the passengers a high comfort and to guarantee safety when

1 http://www-nbp.upb.de/en/index.html
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Fig. 1. 1(a) Scheme of the suspension module / 1(b) Monitor and its environment

controlling the shuttle’s car body. In order to achieve this goal, multiple feedback con-
trollers are used with different capabilities in matters of safety and comfort [4].

We focus on 3 controllers which provide the shuttle different comfort: The Refer-
ence controller provides sophisticated comfort by referring to a trajectory describing
the required motion of the coach body in order to compensate the current track’s un-
evenness, slopes, etc. To guarantee stability, all sensors have to deliver correct values. In
case of e.g. incorrect values the less comfortable Absolute controller has to be applied,
which requires only the vertical acceleration as input. If this sensor fails, our Robust
controller, which provides the lowest comfort, but requires just standard inputs to guar-
antee stability, has to be applied. We have to distinguish between two different cases:
atomic switching and cross fading. In the case of atomic switching, the change takes
place between two computation steps. If the operating points of the controllers are not
identical, it will be necessary to cross-fade between the two controllers.

The architecture of the suspension module is depicted in Figure 1(b). The Monitor
component coordinates its embedded components BC, Sensor, and Storage. Further, it
communicates via the MonitorRegistration pattern with the Registry. If Registry sends
the information about the upcoming track section to Monitor, the Monitor stores it in the
Storage component. Sensor provides the signals. To model the hierarchical embedding
of the BC component into the Monitor component, aggregation for UML 2.0 components
is used. The non-hierarchical link of the Monitor component to the Registry component
is described by two ports (as defined in the UML 2.0 as unfilled boxes) and a connector.

To additionally model the quasi-continuous aspects of the model in form of com-
munication via continuous signals, we extend the UML by continuous ports, depicted
by framed triangles whose orientation indicates the direction of the signal flow. The
behavior of the hybrid component is specified by means of an extension of UML State
Machines called hybrid reconfiguration charts. We employ Real-Time Statecharts [5]
to describe required real-time behavior and we describe the continuous behavior by em-
bedding appropriate basic quasi-continuous block configurations (cf. the BC component
behavior in Figure 2(a)).

While a common hybrid automaton specification requires always the same input and
output signals for every location, the required controller logic with its specific required
input and provided output signals is specified within each state of a hybrid reconfig-
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Fig. 2. Behavior description of the BodyControl (2(a)) and the interface state chart (2(b))

uration chart (cf. Figure 2(a)). The continuous ports that are required in each of the
three interfaces are filled black, the ones that are only used in a subset of the states
are filled white. In our notion of hybrid reconfiguration charts, we introduce additional
fading-transitions, which are visualized by thick arrows, while atomic switches have the
shape of regular arrows. Parameters of a transition are: A source- and a target-location,
a guard and an event trigger, information on whether or not it is an atomic switch, and,
in the latter case, a fading strategy (ffade) and the required fading duration interval
d = [dlow, dup] specifying the minimum and maximum duration of fading.

For embedding or connecting a hybrid component, we do not need all details of the
component realization, but only enough information about its externally observable be-
havior such that compatibility can be analyzed. In Figure 2(b) the related interface state
chart of the BC component is displayed. The interface state chart abstracts from the con-
tinuous behavior, it still contains the information about the input-output dependencies
and permits us to abstract from all internal variables and internal signals.

Therefor, we present in the following a concept for the behavioral embedding of the
subcomponents within the hybrid reconfiguration charts of a component, which permits
to check consistency w.r.t. reconfiguration at a purely syntactical level.

The behavioral embedding of subcomponents is realized by assigning a configura-
tion of aggregated subcomponents (not only quasi-continuous blocks) to each state of
a hybrid reconfiguration chart by means of UML instance diagrams (see Figure 3). A
switch between the states of the monitor chart then implies a switch between states of
the interface state charts of the embedded components.

The behavior of the Monitor component is specified by a hybrid reconfiguration chart
(cf. Figure 3). We have assigned the BC component in the appropriate state to each state
of the upper orthogonal state of the chart. E.g., the BC component instance in state
Reference has been (via a visual embedding) assigned to the location AllAvailable of
the monitor where sensors zref as well as z̈abs are available. The communication with
the Registry is described in the lower orthogonal state of Figure 3 (cf. [2]). The upper
orthogonal state consists of the states RefAvailable and AllAvailable which represents
whether the required reference curve is available for the current track. The upper state
is synchronized by the lower one.

For the outlined MECHATRONIC UML approach there exists tool support. Espe-
cially two specific verification tasks for the resulting systems are supported. At first
the real-time coordination of the distributed software, which is modeled with UML 2.0
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Fig. 3. Behavioral embedding in the Monitor realization

components and connectors is verified using a compositional model checking approach
based on verified coordination patterns [3]. Secondly, a restricted subset of the outlined
hierarchical component structures for modeling of discrete and continuous control be-
havior is checked for the consistent reconfiguration and proper real-time synchroniza-
tion w.r.t reconfiguration [2]. In addition, the second approach can be embedded into
the first one.

The current results enable the systematic development of complex mechatronic sys-
tems with safe online-reconfiguration, as in the current practice of mechatronic systems
the strict hierarchical approach with strict top-down command order is standard. How-
ever, a number of limitations result which seem to unduly restrict the design space for
more advanced modular designs of mechatronic systems in the future.

3 Complex and Proactive Behavior

One severe restriction is that in interface state charts only the duration of transitions
can be specified but not their time-triggered execution. Examples where an extension
to more general time constraints in the interface state chart seem beneficial are, for
example, restrictions on the frequency of mode switches. In our example, the engineer
could more easily ensure the stability of the underlying system if the interface state
chart restricted that after a switch from state Reference to state Absolute a certain time
threshold should elapse before the BC component permits to switch back to the more
comfortable Reference state.

Another limitation is the strict top-down command order. While the processing of
the sensor error already indicates that we have to consider errors of the subcomponents,
the current form of interface state charts does not permit to encode a required reaction
time or switching of the mode within the interface. Thus, whether a required reaction
of the embedding component results or not is currently not included in the interface.
Therefore, besides only emitting warnings, error reports, or wishes to the embedding
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component, true proactive behavior in the interface state charts seems favorable such
that when sending an error report the interface state chart can also initiate that within
a given time frame the current state has to be left. As example for proactive behav-
ior, consider the case that BC component detects that the operation with the reference
data results in unexpected problems and wants to report this to the embedding Monitor
component, the BC component may in addition specify in the interface state chart that
therefore the reference mode has to be left within a given deadline to ensure that the
observed behavior is not critical.

We can characterize these cases where more expressive notion of interface automa-
ton are required as follows: An interface automaton M is complex if it is not simple but
still deterministic. An interface automaton M is proactive if it autonomously decides
that a reconfiguration is required which results in a non-deterministic behavior.

In Section 2, the suspension module was introduced and thereon the control software
was modeled. One characteristic of the control software was the top-down command or-
der. It was not possible for the BC component to influence the Monitor component via
direct events. E.g. if any error occurs when the BC component is in the Reference state,
the BC component has to switch to the Robust state and has to inform the superordi-
nate Monitor component to react in an adequate way. Furthermore, we want to avoid
perpetual uncontrolled switching between Absolute and Reference.
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Fig. 4. Behavior description of the BC component (4(a)) and Sensor component (4(b))

In Figure 4(a), the redesigned BC component is depicted. The behavior of the for-
mer BC component is extended by proactive behavior. When the BC component is in
the Reference state, the component is now able to decide autonomously to switch to
the Robust state. Due to non-urgent transitions (dashed line), non-determinism is in-
troduced. This is modeled as follows: While staying in the Reference state, the body
control sends a message switchToRobust to the superordinate Monitor component. This
done, the BC component pauses in a Timeout state. If the timeout is reached, the BC
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component switches to Robust. To control the switching between Absolute and Refer-
ence, a timer t is introduced. Everytime the Reference state is entered from the Absolute
state, a clock t is set to zero. To avoid an immediate return back to Absolute, a guard,
representing a threshold, t>=threshold, is added to the transition. All other incoming
transitions to the Reference state get an additional assignment t:=threshold, thus the
threshold is “omitted”. In Figure 4(b) the interface state chart of the sensor component,
consisting of two states, on and off, is depicted.
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Fig. 5. Behavioral embedding in the Monitor realization

Similar to Figure 3, the behavior of the Monitor component is depicted in Figure 5.
In addition to the old Monitor component, we have to take into account the proactive
and timing behavior of the subordinated components. Since the body control now sends
the switchToRobust message, the monitor component has to consume this message.

4 Checking Complex and Proactive Subcomponents

To adjust our modular reasoning approach to the extensions outlined in the last section,
we have to provide checks for refinement and correct embedding which support the
introduced more expressive interface automata.

4.1 Checking Refinement

Complex and proactive components do not result in a simple interface state chart and
thus the checking procedure for ensuring that the interface state chart corresponds to
the component behavior is not applicable.

In [6], an approach for checking the employed notion of refinement (M �RT M I )
has been presented which requires that M I is deterministic. If the interface state chart
M I is complex but not proactive, we can thus employ this approach. For a deterministic
M I we have to derive a corresponding test automaton M I

t as described in [6] and then
check M‖M I

t for time stopping deadlocks.
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If, however, the interface state chart M I is proactive and thus not deterministic, we
have to look for alternatives, as we cannot derive a deterministic timed automaton for
each non-deterministic one (cf. [7]). Analyzing the limitation of the approach outlined
in [6], we can conclude that the branching within the on-the-fly traversed cross-product
simply requires that a unique mapping to a state in the refined model exists which is
guaranteed in [6] by the deterministic character of M I .

We propose to exploit the mapping map : LI
p → L between the passive states of

the interface automaton and related states in the underlying realization to achieve a
feasible solution for this case. For a mapping map which assigns to each realization
state exactly one state of the interface automaton and thus map−1 is a function and
we write l′ = map−1(l)) and the case that no two transitions with the same source
location, label, and target location exist, we can build syntactically the cross-product
M ′ = M I ×map M .

We can then simply check whether a time stopping deadlock or a bad state can be
reached in M ′ and conclude that refinement holds if no such violation has been detected.
A more detailed and technical description of the mapping can be found in [8] and will
be omitted here.

To verify if the hybrid reconfiguration automaton of the BC component is a correct
refinement of the BC component interface state chart, we have to built a timed automata
model as explained above. We use the model checker UPPAAL [9] for the verification
and check the constraints, formulated in TCTL, A[] not deadlock and E<> BodyCon-
trol.Error ensuring the correct refinement. The verification took about 1.21 seconds and
at maximum about 8032 KB were allocated by the verifier2.

4.2 Checking the Embedding

To realize the dynamic checking for the prove of correct reconfiguration behavior, the
hybrid reconfiguration chart and the interface state chart have to be transformed to an
appropriate model which can be handled by a model checker. In [10], transformation
rules from Real-Time Statecharts to timed automata were introduced. In the following,
we reuse and extend theses transformation rules.

In hybrid reconfiguration charts, component instances are embedded in locations.
During the transformation, the instances are omitted because the associated interface
state charts are also transformed. Due to this fact, for the transformation of locations,
we can apply the same ones as for Real-Time Statecharts.

In addition to the locations, the transitions have to be transformed. In contrast to
Real-Time Statecharts, a transition is associated with a fading function. Since the fad-
ing function does not affect the real-time behavior, it is omitted, too. Hence the same
transformation as for Real-Time Statecharts is used. As mentioned before, the inter-
face state charts of the embedded component instances have to be transformed. It has
to be guaranteed that the embedded component instance leaves an internal location iff
the superordinate component leaves a location. For example, when the monitor com-
ponent leaves the location NoneAvailable, the embedded component instance BC has to
leave the internal location Robust. To achieve this behavior, we use the synchroniza-
tion semantics from the timed automata model. The superordinate component has the

2 The verification was done on a Pentium 4, 2.4 GHz, 1 GB memory, OS Linux Redhat.
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Fig. 6. Synchronization between Monitor, Sensor, and BodyControl
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Fig. 7. Timed Automaton of the Monitor state chart

meaning of a sender (!), whereas the embedded component instances have the meaning
of a receiver (?). In the case of more than one embedded component instance, we use
a chain of committed locations (cf. [9]) for synchronization. In Figure 6, an example is
depicted.

For the evaluation, we use the real-time model checker UPPAAL [9]. As an example
the transformed timed automata of the interface state chart of the of the Monitor com-
ponent is depicted in Figure 7. For clarity, we do not depict the timed automaton of the
Sensor (the transformation is rather trivial). For the verification the automata are exe-
cuted in parallel. We check the property A[] not deadlock. As result of the verification,
we get that the system is deadlock free. In particular, this means we have a correct em-
bedding of all components. The verification took about 0.31 seconds and at maximum
about 2092 KB were allocated by the verifier.
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5 Related Work

The de facto industry standard for modeling of mechatronic systems with hybrid behav-
ior is MATLAB/Simulink and Stateflow3. Formal verification of MATLAB/Simulink
and Stateflow models of moderate size can be accomplished by automatically trans-
forming them to hybrid automata (cf. [11]).

Besides MATLAB/Simulink and Stateflow, there are also a number of approaches,
like Charon [12], Masaccio [13], HyCharts & HyRoom [14], and Hybrid I/O Automata
[15], which address the problem of modeling complex systems by some form of hybrid
state charts. Some of them support hierarchy and parallelism as well as a notion of
component and some of them even support formal verification.

All existing approaches fail in providing a component concept which supports a
dynamic interface which enables to decompose systems with online reconfiguration
into multiple hybrid state charts. Thus, a usually not feasible check of the whole system
is required to ensure that a system with complex reconfiguration such as the presented
example is correct w.r.t. the reconfiguration and real-time behavior.

Another consequence is that in these approaches the control engineering know-how
for the continuous control and the software engineering know-how for the real-time
coordination have to be specified both within a single hybrid component and thus a
tight cooperation between engineers from different camps is required. In our approach,
in contrast, an interface between the control engineering specific details and the more
software engineering oriented distributed real-time processing is possible which support
more realistic loosely coupled development processes.

Available compositional reasoning approaches for hybrid systems [16, 17, 18] re-
quire high manual effort of inventing auxiliary properties to enable a full verification
to decide whether the described reconfiguration is consistent. The presented approach
in contrast will ensure consistency by means of a syntactical check or modular model
checking of the separate components and their interfaces.

We employ in our approach the algorithm for checking the refinement relation be-
tween timed automata as proposed in [6]. As outlined in the paper, for proactive and
thus non-deterministic interface automata this approach is not applicable.

In [19], an algorithm for checking the existence of a simulation relation to investigate
the opportunities of refinement checking for Cottbus Timed Automata is developed. The
approach is restricted to simulation and closed timed automata with integer semantics,
while we require a stronger form of refinement (ready simulation).

6 Conclusion and Future Work

Within this paper, we presented an incremental improvement of our modular verifica-
tion approach for checking that the online-reconfiguration of MECHATRONIC UML
models is safe. In our earlier proposal [2], severe restrictions to the expressiveness of
the supported component interface are employed to ensure that efficient checks can be
used which do not have to consider the whole state space. In this paper, we present
support for more expressive interfaces which include complex timing constraints and

3 http://www.mathworks.com
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proactive behavior employing model checking. The underlying concepts are outlined
and formally defined. In addition, first experimental results are reported.

While modeling of hybrid systems with the MECHATRONIC UML approach is
already supported by the FUJABA Real-Time Tool Suite4, the described refinement
checks and the check for the correct embedding are currently under development.

In future work, we plan to further improve and extend our approach w.r.t. modeling
and verification such that the full hybrid behavior of the components is covered. On
particular next step is to apply the general checking procedure for simulation as pre-
sented in [19] for checking our notion of refinement by generalizing our extension of
the automata presented in Section 4.1 (cf. [8]).
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