
Automated Analysis of Natural Language Properties
for UML Models�

Sascha Konrad and Betty H.C. Cheng��

Software Engineering and Network Systems Laboratory,
Department of Computer Science and Engineering,

Michigan State University, 3115 Engineering Building,
East Lansing, Michigan 48824 USA

{konradsa, chengb}@cse.msu.edu

Abstract. It is well known that errors introduced early in the development pro-
cess are commonly the most expensive to correct. The increasingly popular
model-driven architecture (MDA) exacerbates this problem by propagating these
errors automatically to design and code. This paper describes a round trip en-
gineering process that supports the specification of a UML model using CASE
tools, the analysis of specified natural language properties, and the subsequent
model refinement to eliminate errors uncovered during the analysis. This process
has been implemented in SPIDER, a tool suite that enables developers to specify
and analyze a UML model with respect to behavioral properties specified in terms
of natural language.

1 Introduction

Errors introduced early in the development process are known to have significantly
higher correction costs [1]. To worsen this problem, in the increasingly popular
model-driven architecture (MDA) [2], platform-independent models are transformed
to platform-specific models via transformation techniques. As such, these errors are di-
rectly propagated to the platform-specific models and may also be propagated to code,
thereby motivating their detection in the platform-independent models. Validating UML
models according to metrics and design guidelines can be an effective means to catch
structural errors [3, 4], but generally not behavioral modeling errors. Several tools for
the behavioral analysis of UML models have been developed, where a user typically
specifies properties in terms of formal specification languages. However, these formal
specification languages often have a complex syntax and semantics and are, therefore,
rarely used in practice. To ease the use of formal specification languages, we have de-
veloped a customizable process for specifying properties of formal system models in
terms of natural language and formally analyzing these properties using various formal
analysis tools [5].

� This work has been supported in part by NSF grants EIA-0000433, EIA-0130724, CDA-
9700732, CCR-9901017, Department of the Navy, Office of Naval Research under Grant No.
N00014-01-1-0744, Eaton Corporation, Siemens Corporate Research, and in cooperation with
Siemens Automotive, Detroit Diesel Corporation, and General Dynamics Land Systems.

�� Corresponding author.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 48–57, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Automated Analysis of Natural Language Properties for UML Models 49

Several other tools exists to support the design and validation of system models.
Commercial tools commonly offer validation and/or animation capabilities, such as
Rhapsody [6] and Rational XDE [7]. In general, these tools aid in uncovering struc-
tural errors, but are not designed for the analysis of behavioral properties of a system
model. Other tools have been developed for the formal analysis of system models spec-
ified in terms of UML, such as vUML [8], Hugo [9], and Fujaba [10]. However, these
tools have still not gained a widespread use in industry. One main reason is the need to
use complex specification logics and/or formal analysis tools. Consequently, only users
with an advanced knowledge in formal methods are inclined to use these tools for the
specification and analysis of their system models.

In this paper, we present three main contributions: First, we developed a process for
specifying and analyzing formal properties, where the objective is to make the formal
nature of the specification and analysis process transparent to the user. As such, property
templates based on specification patterns developed by Dwyer et al. [11] can be spec-
ified in natural language and used to analyze the system model. We implemented this
process in SPIDER (Specification Pattern Instantiation and Derivation EnviRonment),
and we show how SPIDER can be used in combination with a previously developed
UML formalization framework, termed Hydra [12], for the analysis of UML models.
Second, to facilitate the specification process, we provide support for instantiating the
natural language property templates with information that is automatically extracted
from the formal system model under consideration. Third, the process is customizable
for different domain-specific natural language vocabularies and specification styles,
specification pattern systems, and analysis tools.

In this work, we show how our process can be used to specify and analyze natu-
ral language properties of UML models. More specifically, our round trip engineer-
ing process is configured to read UML 1.4 [13] models1 specified in terms of XMI
1.1 [15] and generate the formal specification language Promela for the model checker
Spin [16]. Natural language properties are derived using a grammar [17] that sup-
ports the specification patterns by Dwyer et al. [11]. Our grammar supports the natural
language representation of these specification patterns. In this paper, the grammar is
used to specify linear-time temporal logic (LTL) properties [18], the property descrip-
tion language of the Spin model checker. The grammar can be customized according
to vocabulary and specification style of a domain. For example, the vocabulary and
natural language specification style to capture a cause-effect property for the embed-
ded systems domain may be different from that used for a web service application.
As such, the mappings from the structured natural language grammar to the specifi-
cation patterns should reflect the appropriate intent. In addition, the semantic UML
mapping rules of Hydra can be customized and adapted to other domains [12]. In this
paper, we use a semantic interpretation considered to be suitable for the embedded
systems domain. Our approach does not require the user to know the specific syntax
and semantics of the formal specification language used or the details of the analy-
sis procedures of the targeted formal analysis tool. An analysis process can be auto-
matically executed and the analysis results are displayed to the user in a form easy to
comprehend.

1 CASE tool support for the recently finalized UML 2.0 [14] is still limited.

50 S. Konrad and B.H.C. Cheng

Overall, we introduce a customizable process that combines the completeness of a
pattern system for specifying properties of UML models with the accessibility of a natu-
ral language representation, and present a prototype implementation termed SPIDER. To
validate our approach, we have applied the process and tools to several examples from
industry, including an electronically controlled steering system and an adaptive light
control system. The remainder of the paper is organized as follows. Section 2 describes
our process and the main components of SPIDER in more detail. Section 3 examines
related work. Finally, Section 4 gives concluding remarks and discusses future work.

2 Specification and Analysis

This section introduces our specification and analysis process and also overviews major
SPIDER elements. Figure 1 contains a UML activity diagram overviewing the process,
where the first two steps of the process are initialization steps and can be performed
in any order. The shaded swimlane indicates this portion of the process performed by
an administrator for domain customization purposes. The process is illustrated with a
running example, the formal specification of the natural language property:

Whenever process() of the Processor has been called, then eventually the Proces-
sor returns to the Idle state.

(1) Configuring the Process and Deriving a Property
In the first initialization step, a specification pattern system has to be created. A spec-
ification pattern system is a collection of properties, specified in terms of one or more
formal specification languages. Each property is also specified in terms of natural lan-
guage with an accompanying natural language grammar. In SPIDER, the Pattern System
Manager (shaded portion of Figure 1) is used to create and associate formal proper-
ties to their natural language representations, or a previously created pattern system can
be loaded. For this paper, the specification pattern system consists of formal proper-
ties from the specification patterns by Dwyer et al. [11] and a corresponding natural
language grammar [17]. The specification pattern system contains several patterns ap-
plicable to software properties specified in different formalisms, such as LTL [18], com-
putational tree logic (CTL) [19], graphical interval logic (GIL) [20], and quantified
regular expressions (QRE) [21]. Specification patterns are categorized into two ma-
jor groups: occurrence patterns and order patterns. Occurrence patterns are concerned
with the occurrence of single states/events during the execution of a program, such as
existence and absence of certain states/events. Order patterns, on the other hand, are
concerned with the relative order of multiple occurrences of states/events during the ex-
ecution of a program, such as precedence or response relations between states/events.
The specification patterns have been found sufficient to specify most commonly
occurring properties [11]. However, while the pattern system is largely reusable, the
structured natural language grammar may have to be adapted to accommodate the spec-
ification style of a specific domain.

Automated Analysis of Natural Language Properties for UML Models 51

Pa
tte

rn
 S

ys
te

m
 M

an
ag

er
Pr

op
er

ty
 D

er
iv

er

U
se

r c
re

at
es

st

ru
ct

ur
ed

 N
L

gr
am

m
ar

U
se

r c
re

at
es

fo
rm

al

sp
ec

ifi
ca

tio
ns

U
se

r d
er

iv
es

 N
L

pr
op

er
ty

 u
si

ng

st
ru

ct
ur

ed

la
ng

ua
ge

gr

am
m

ar

Pr
op

er
ty

In

st
an

tia
to

r

U
M

L
M

od
el

In

te
rp

re
te

r
U

M
L

M
od

el

A
na

ly
ze

r

Ex
tr

ac
t m

od
el

-
sp

ec
ifi

c
in

fo
rm

at
io

n

U
se

r
in

st
an

tia
te

s
N

L
pr

op
er

ty

M
ap

 N
L

pr
op

er
ty

an

d
U

M
L

m
od

el

to
 fo

rm
al

re

pr
es

en
ta

tio
ns

D
is

pl
ay

 a
na

ly
si

s
re

su
lts

[N
L

sp
ec

ifi
ca

tio
n

co
nf

ig
ur

at
io

n
do

es
 n

ot
 e

xi
st

]

[N
L

sp
ec

ifi
ca

tio
n

co
nf

ig
ur

at
io

n
ex

is
ts

] Lo
ad

 e
xi

st
in

g
N

L
sp

ec
ifi

ca
tio

n
co

nf
ig

ur
at

io
n

U
se

r c
or

re
ct

s
U

M
L

m
od

el

U
se

r c
re

at
es

 N
L-

fo
rm

al

sp
ec

ifi
ca

tio
n

m
ap

pi
ng

s

Pe
rf

or
m

pr

op
er

ty
-b

as
ed

sl

ic
in

g

A
na

ly
ze

 fo
rm

al

m
od

el

C
A

SE
 T

oo
l

U
se

r c
re

at
es

U

M
L

m
od

el

Va
lid

at
e

U
M

L
m

od
el

[v
al

id
at

io
n

un
co

ve
re

d
no

 e
rr

or
s]

A
B

A
B

[p
ro

pe
rty

 h
ol

ds
, m

or
e

pr
op

er
tie

s
to

 c
he

ck
]

Fo
rm

al
 A

na
ly

si
s

To
ol

 C
on

ne
ct

or

[p
ro

pe
rty

 h
ol

ds
, n

o
m

or
e

pr
op

er
tie

s
to

 c
he

ck
]

[v
al

id
at

io
n

un
co

ve
re

d
er

ro
rs

]

Vi
su

al
iz

e
vi

ol
at

io
n [v

io
la

tio
n

fo
un

d]

F
ig

.1
.U

M
L

ac
tiv

it
y

di
ag

ra
m

ov
er

vi
ew

in
g

ou
r

sp
ec

ifi
ca

ti
on

an
d

an
al

ys
is

pr
oc

es
s

52 S. Konrad and B.H.C. Cheng

The Pattern System Manager is intended to be used by domain experts and formal
methods experts as an administrative tool that configures SPIDER according to a spec-
ification pattern system. It aids in the construction and management of specification
pattern systems with their associated structured natural language grammars. Structured
natural language grammars are captured in Extended Backus-Naur Form (EBNF) and
internally translated into a BNF representation. For grammar rules containing choices,
additional descriptors are included. These descriptors comprise two parts: an abbrevi-
ated name of the choice and a textual explanation of each choice. This information is
used in the derivation process to provide guidance and feedback to the user when mak-
ing a choice in the derivation process. The Pattern System Manager is also used by the
formal methods experts to create the mappings between the sentences generated from
the natural language grammar and elements from the specification pattern system.

After the process has been instantiated with a natural language grammar and map-
pings to a specification pattern system, the property to be analyzed is derived. In SPI-
DER, the Property Deriver is used to guide the user in a stepwise fashion in con-
structing a structured natural language property template for capturing the property.
Non-terminals are highlighted in the template that is being derived, and the user re-
solves these non-terminals with applicable production rules. The Property Deriver as-
sists the user in making specification choices by offering descriptive information about
each choice. Each time the user highlights a particular choice, the Property Deriver
highlights corresponding descriptors. In addition, the Property Deriver gives a preview
of selecting a particular choice for the natural language property template being derived.

For our running example, the user needs to perform three choices during the deriva-
tion process. At first, the user needs to decide what the scope of the property is. For
simplicity, we assume a global scope is selected for the property. In the next step, the
user needs to choose whether the property belongs to the occurrence or order category.
Since the property involves multiple occurrences, the order category is chosen. Finally,
the user needs to select the appropriate specification pattern. The property describes
a cause-effect relation, since the occurrence of a cause (process() being called) is ex-
pected to have a certain effect (the Processor returning to state Idle). Therefore, the
Response Specification Pattern [11] is chosen. Finally, we obtain the following natural
language specification template:

Globally, it is always the case that if P holds, then S eventually holds.

After the natural language template is derived, the first step ends at the connector A
in Figure 1.

(2) Creating the UML Model
In the second initialization step, a UML model is created using a CASE tool. To in-
clude the model in our process instantiation, the model is exchanged with SPIDER using
XMI [15]. Figure 2 shows an example UML class Processor with an associated state
diagram capturing the behavior of the class. Initially, the model is validated by Hydra
using static analysis techniques [22]. The model validation encompasses several checks
for intra- and inter-diagram validity, such as checks for well-formedness of names and
expressions, missing initial states, states without incoming or outgoing transitions, and

Automated Analysis of Natural Language Properties for UML Models 53

Processor

process():void

x: int

(a) Class Diagram

Idle Process

[]/x:=x+1

x:=0

process()[]/

(b) State Diagram

Fig. 2. Example UML model

undeclared variables, signals, or types. If errors are found during the validation that pre-
vent a formally specified model from being generated from the UML diagrams, then the
user is prompted to correct these errors before proceeding. After the model passes the
validation checks, the UML Model Interpreter automatically extracts information about
model elements from the UML model, such as the names of classes, variables, signals,
and states. For example, for the UML diagram in Figure 2, the UML Model Interpreter
extracts the following information for class Processor:

Variable name(s): x
Signal name(s): process
State name(s): Idle, Process

The UML Model Interpreter is part of the Formal Analysis Tool Connector that is
used to connect SPIDER with UML tools and the Spin model checker. In general, the
tool connector enables SPIDER to extract information from a system model, create for-
mal specifications of properties in a form suitable for a particular formal analysis tool,
execute the verification of a property, and analyze the output generated by a verifica-
tion run of the formal analysis tool. SPIDER allows additional Formal Analysis Tool
Connector components to be plugged in. Therefore, making it extensible to numerous
analysis tools beyond the ones explicitly mentioned in this paper. After the information
has been extracted from the UML system model, the second step ends at the connectorB
in Figure 1.

(3) Instantiating the Property
After the previous two steps have reached connectors A and B, the information ex-
tracted by the UML Model Interpreter is then used by the Property Instantiator to in-
stantiate the structured natural language template with boolean propositions containing
model-specific elements. In addition to specifying boolean expressions on variable val-
ues of UML classes, two other predicates are supported in the boolean propositions:
(1) A call(...) predicate to specify that an signal of a class is called and (2) an
enter(...) predicate to specify that a class enters a specific state.

In order to instantiate the property template for our running example, we need
to replace P and S with appropriate boolean propositions generated from the in-
formation extracted from the system model in the previous step. The cause P

54 S. Konrad and B.H.C. Cheng

needs to describe that “process() of the Processor has been called” and is there-
fore replaced by call(Processor.process()). The effect S needs to cap-
ture that “the Processor returns to the Idle state”, and is therefore replaced by
enter(Processor:Idle). Finally, we obtain the following instantiated natural
language property:

Globally, it is always the case that if call(Processor.process()) holds,
then enter(Processor:Idle) eventually holds.

(4) Analyzing the Property
After the instantiation step is completed, the model can be analyzed for adherence to
the specified property. In SPIDER, the UML Model Analyzer, which is also part of the
Formal Analysis Tool Connector, maps the instantiated natural language template to
the corresponding specification pattern instances, namely LTL formulae [18] for the
Spin model checker [16]. In order to enable the analysis of the property in our running
example, the above instantiated natural language property is mapped to the following
LTL formula:

�(call(Processor.process()) → ♦(enter(Processor:Idle)))

In order to reduce the cost of model checking, we perform an automated abstraction
of the formal model before executing the analysis. The UML Model Analyzer performs
a property-based slicing on the formal system model, where it invokes the slicing al-
gorithm provided by Spin2 and removes constructs identified as redundant. After the
slicing is complete, SPIDER invokes the Spin model checker and performs the analysis.

(5) Displaying Analysis Results
After the model checking has completed, the UML Model Analyzer provides analysis
results back to the Property Instantiator, which are then visually presented to the user
using a traffic light icon. Red indicates that the property was violated and a counter
example is returned; Green indicates that the property holds for the selected model; and
Yellow indicates that problems occurred during the analysis process that prohibited the
successful verification of the property. Example problems include exceeding the avail-
able system memory for storing the states of the model during an exhaustive state space
exploration. If a violation of a property is found, then the user can visualize the execu-
tion that lead to the violation, correct the model, and repeat the analysis. Finally, when
the property holds on the selected model, the user can analyze additional properties or
exit from the tool and the analysis process.

3 Related Work

Several tools have been developed for the formal analysis of system models specified
in terms of UML, such as vUML [8], HUGO[/RT] [23], and Fujaba [10]. In addition,

2 The slicing algorithm of Spin is sound and complete with respect to any property specifiable
in terms of LTL [16].

Automated Analysis of Natural Language Properties for UML Models 55

some commercial tools commonly offer validation and/or animation capabilities, such
as Rhapsody [6] and Rational XDE [7]. While these tools also have similar purposes
when compared to SPIDER configured with Hydra, they do not offer support for the
specification of properties in terms of natural language. On the other hand, numerous
approaches [5] construct formal specifications in different forms (such as temporal log-
ics, OO-based representations, Prolog specifications), from natural language to support
a variety of tasks, ranging from completeness and consistency checking to formal val-
idation and verification. While these approaches allow the use of moderately restricted
natural language (a completely unrestricted language is considered undesirable for prac-
tical and technical reasons [24]), this type of extraction is a more ambitious goal than
our approach using syntax-guided derivation and model-based instantiation, since it re-
quires advanced natural language processing approaches and techniques to deal with
imprecision and ambiguities inherent to natural language specifications. In summary,
none of these approaches combines the completeness of a pattern system, the support
for real-time properties, amenability for formal validation and verification with a wide
variety of formal validation and verification tools, and the accessibility of a natural
language representation in any natural language subset for which a context-free, non-
circular grammar can be constructed.

Several other projects have investigated how to make specification patterns more ac-
cessible via more informal representations. Smith et al. developed Propel [25], where
they extended the specification patterns by Dwyer et al. [11] to address important and
subtle aspects about a property, such as what happens in a cause-effect relation if the
cause recurs before the effect has occurred. These extended specification patterns are
specified in terms of finite-state automata instead of temporal logic formulae, and nat-
ural language templates help a specifier to precisely capture a property in natural lan-
guage. In contrast to our approach, they focus on capturing subtle properties of individ-
ual specification patterns, rather than applying the specification patterns to the analysis
of UML models. Mondragon et al. developed a tool called Prospec [26] for the spec-
ification of properties based on Dwyer et al.’s specification patterns. The tool offers
assistance in the specification process and extends the specification pattern system by
Dwyer et al. with compositional patterns. Differing from our tool suite, they do not
include support for natural language representations.

4 Conclusions

We have presented a configurable process for UML model analysis implemented in the
SPIDER toolkit. We expect several benefits to be gained from using SPIDER. First, users
less experienced in the specification of formal properties are able to create formally-
analyzable natural language representations of properties for their UML models. Feed-
back from industrial collaborators has indicated that this specification style is preferred
over formal specification languages. Second, SPIDER is extensible to the use of sev-
eral formal analysis tools by offering the ability to plug in additional Formal Analysis
Tool Connector components. Therefore, a wide variety of formal analysis tools can be
used to analyze the behavioral properties. Currently, SPIDER supports the Spin model
checker [16] for UML models and support for additional formal analysis tools is being
developed.

56 S. Konrad and B.H.C. Cheng

Third, SPIDER provides a single environment for specification construction and anal-
ysis. The tool suite enables a user to automatically analyze a system model and vi-
sualize the analysis results. Currently, our tool is targeted at the novice specifier, as
evidenced by the step-by-step guidance during the derivation process and making the
formal specification language transparent to the user. We acknowledge that the step-
wise, specification-facilitating features, while helpful for the novice user, might be too
constraining for users with advanced knowledge in formal specification and analysis.
This problem is commonly encountered in syntax-directed editing approaches [27] and
we are investigating techniques to mitigate these problems, such as the use of multiple
views and different levels of assistance for the derivation and instantiation tasks.

Future work will investigate how to incorporate previously developed real-time ex-
tensions to our formalization framework [28] and specification patterns [17]. This work
will also examine how to best visualize the analysis results. Finally, we are continuing
to work with industrial collaborators to obtain feedback on the usability of SPIDER.

References

1. Lutz, R.R.: Targeting safety-related errors during software requirements analysis. In: SIG-
SOFT’93 Symposium on the Foundations of Software Engineering. (1993)

2. Object Management Group: Model driven architecture. http://www.omg.org/mda/
(2005)

3. Berenbach, B.: The evaluation of large, complex UML analysis and design models. In:
Proceedings of the 26th International Conference on Software Engineering (ICSE’04), IEEE
Computer Society (2004) 232–241

4. Cheng, B.H.C., Stephenson, R., Berenbach, B.: Lessons learned from metrics-based auto-
mated analysis of industrial UML models (an experience report). In: Proceedings of the
ACM/IEEE 8th International Conference on Model Driven Engineering Languages and Sys-
tems, Montego Bay, Jamaica (2005) 324–338

5. Konrad, S., Cheng, B.H.C.: Facilitating the construction of specification pattern-based prop-
erties. In: Proceedings of the IEEE International Requirements Engineering Conference
(RE05), Paris, France (2005)

6. I-logix: Rhapsody (2005) http://www.ilogix.com/rhapsody/rhapsody.cfm.
7. IBM: Rational Rose XDE Developer (2005) http://www-306.ibm.com/software/

awdtools/developer/rosexde/.
8. Lilius, J., Paltor, I.P.: vUML: A tool for verifying UML models. In: Proceedings of the 14th

IEEE International Conference on Automated Software Engineering (ASE99), Washington,
DC, USA, IEEE Computer Society (1999)

9. Schäfer, T., Knapp, A., Merz, S.: Model checking UML state machines and collaborations.
Electronic Notes in Theoretical Computer Science 55(3) (2001)

10. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: Proceedings of the 22nd
International Conference on Software Engineering, New York, NY, USA, ACM Press (2000)
742–745

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: Proceedings of the 21st International Conference on Software Engineering,
IEEE Computer Society Press (1999) 411–420

12. McUmber, W.E., Cheng, B.H.C.: A general framework for formalizing UML with formal
languages. In: Proceedings of the IEEE International Conference on Software Engineering
(ICSE01), Toronto, Canada (2001)

http://www.omg.org/mda/
http://www.ilogix.com/rhapsody/rhapsody.cfm
http://www-306.ibm.com/software/awdtools/developer/rosexde/
http://www-306.ibm.com/software/awdtools/developer/rosexde/

Automated Analysis of Natural Language Properties for UML Models 57

13. Object Management Group: UML Specifications, Version 1.4 (2002) http://www.omg.
org/cgi-bin/doc?formal/04-07-02.

14. Object Management Group: UML 2.0 Superstructure Specification (2004)
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02.

15. Object Management Group: OMG-XML metadata interchange (XMI) specification, v1.1
(2000) http://www.omg.org/cgi-bin/doc?formal/00-11-02.

16. Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Addison-Wesley,
Reading, Massachusetts (2004)

17. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Proceedings of the Interna-
tional Conference on Software Engineering (ICSE05), St Louis, MO, USA (2005)

18. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems. Springer-
Verlag New York, Inc. (1992)

19. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Languages
and Systems (2) (1986) 244–263

20. Ramakrishna, Y.S., Melliar-Smith, P.M., Moser, L.E., Dillon, L.K., Kutty, G.: Interval logics
and their decision procedures: Part I + II. Theoretical Computer Science 166;170(1-2) (1996)
1–47;1–46

21. Olender, K.M., Osterweil, L.J.: Cecil: A sequencing constraint language for automatic static
analysis generation. IEEE Transactions on Software Engineering 16(3) (1990) 268–280

22. Campbell, L.A., Cheng, B.H.C., McUmber, W.E., Stirewalt, R.E.K.: Automatically detecting
and visualizing errors in UML diagrams. Requirements Engineering Journal 7(4) (2002)
246–287

23. Knapp, A., Merz, S., Rauh, C.: Model checking timed UML state machines and collabora-
tions. In Damm, W., Olderog, E.R., eds.: 7th International Symposium on Formal Techniques
in Real-Time and Fault Tolerant Systems (FTRTFT 2002). Volume 2469 of Lecture Notes in
Computer Science., Oldenburg, Germany, Springer-Verlag (2002) 395–414

24. R. Nelken, N. Francez: Automatic translation of natural-language system specifications into
temporal logic. In Rajeev Alur, Thomas A. Henzinger, eds.: Proceedings of the Eighth Inter-
national Conference on Computer Aided Verification CAV. Volume 1102., New Brunswick,
NJ, USA, Springer Verlag (1996) 360–371

25. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Propel: An approach supporting
property elucidation. In: Proceedings of the 24th International Conference on Software En-
gineering, ACM Press (2002) 11–21

26. Mondragon, O., Gates, A.Q.: Supporting elicitation and specification of software properties
through patterns and composite propositions. International Journal on Software Engineering
and Knowledge Engineering 14(1) (2004) 21–41

27. Khwaja, A.A., Urban, J.E.: Syntax-directed editing environments: Issues and features. In:
SAC ’93: Proceedings of the 1993 ACM/SIGAPP Symposium on Applied Computing, ACM
Press (1993) 230–237

28. Konrad, S., Campbell, L.A., Cheng, B.H.C.: Automated analysis of timing information in
UML diagrams. In: Proceedings of the Nineteenth IEEE International Conference on Auto-
mated Software Engineering (ASE04), Linz, Austria (2004) 350–353 (Poster summary).

http://www.omg.org/cgi-bin/doc?formal/04-07-02
http://www.omg.org/cgi-bin/doc?formal/04-07-02
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02
http://www.omg.org/cgi-bin/doc?formal/00-11-02

	Introduction
	Specification and Analysis
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

