
Bridging Grammarware and Modelware

Manuel Wimmer and Gerhard Kramler

Business Informatics Group, Vienna University of Technology, Austria
lastname@big.tuwien.ac.at

Abstract. In Software Engineering many text-based languages and sup-
porting tools are used, forming the grammarware technical space. Cur-
rently model driven engineering is the new emerging paradigm for soft-
ware engineering, which uses modelling languages and tools, forming the
modelware technical space. Transition to the new technical space and
interoperability between these two technical spaces is needed in many
development scenarios. Building a bridge between these two technical
spaces is a tedious task, that has to be repeated for each language to
be transformed. Therefore, we propose a generic bridge between gram-
marware and modelware technical spaces, that can generate a specific
bridge based on the EBNF of a given language semi-automatically. The
generation comprises of two steps, (1) automatic generation of meta-
model corresponding to the EBNF and (2) annotations to provide the
additional semantics not captured by the EBNF. The generated bridge is
capable of bi-directional transformations between sentences (programs)
and corresponding models and can be used in re-engineering applications
and for integration of text-based and model-based tools.

1 Indroduction

The term technical spaces was introduced in [7] and with it the demand for
bridges between several technical spaces. Manual bridging of technical spaces is a
error prone and recurring task, typically relevant in model driven engineering but
also in other software engineering disciplines, e.g., the migration from relational
databases to XML based documents. Therefore a need for tools arises, which
support and automate interoperability between technical spaces.

A bridge between grammarware and modelware is useful in many software
development tasks. Not only forward engineering but also reverse engineering
of existing software systems is a suitable field of application. Regarding the
latter the Object Management Group (OMG) is working on model-based reverse
engineering and software modernization. For that purpose a special work group
for Architecture-Driven Modernization (ADM, [9]) has been initiated. The main
target of ADM is to rebuild existing applications, e.g, legacy systems, as models
and then perform refactorings or transform them to new target architectures. A
bridge between grammarware and modelware can act as a basic infrastructure
tool to support various ADM tasks.

Bridging two technical spaces involves several tasks, such as processing the
artifacts in the source technical space and transforming them into new artifacts,

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 159–168, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



160 M. Wimmer and G. Kramler

that can be processed by tools from the target technical space. Currently trans-
formation definitions are placed at the M2 level, e.g., between Java grammar and
UML class diagram metamodel. This approach has a huge drawback, because
for each pair of languages exactly one bridge must be defined. For another pair
a different bridge has to be developed. Generally speaking for technical space
1, which has n languages, and technical space 2, which has m languages, n ∗ m
bridges are needed. Considering the huge amount of languages in the grammar-
ware, bridging at the M2 level is not a satisfying solution. In modelware there
are not existing as many languages as in grammarware existing, but it seems
that many Domain Specific Modeling Languages [3] will be developed in the
near future. The exploding number of language combinations between these two
spaces requires a more generic approach, which allows to generate bridges for all
language combinations in the same way automatically.

In this paper we propose a generic mechanism for the semi-automatic gen-
eration of a specific bridge between grammarware and modelware based on the
EBNF of a given language. EBNF [13] [4] is the most used metalanguage for
defining programming languages in the grammarware. However other forms of
metalanguages [6] are common, and sometimes there are no formal grammar de-
finitions available at all. It is important to note that our work does not address
these problems - for more information see [5]. In the modelware our mecha-
nism is based on MOF [8], which is the main standard for defining metamodels.
The first step in the proposed process is the production of a metamodel and a
transformation program for transforming programs into models. The resulting
metamodels and models have some drawbacks, because of the genericity of the
transformation rules. In order to eliminate these unintentional properties, we
introduce a second step - the optimization of metamodels and models. Some op-
timization steps can be done automatically - we call this process condensation -
but some optimizations have to be done semi-automatically by user-annotations.
This optimization process is called customization. With manual annotations it
is possible to add semantics to the metamodels that are not captured by the
original grammars.

The rest of the paper uses Mini-Java [11] as an running example and is struc-
tured as follows. Section 2 provides an overview of the framework architecture.
Section 3 presents details of the parsing process and the raw meta model. Fur-
thermore mappings between EBNF and MOF concepts are discussed. In section
4 details about the optimization steps in the condensation process are shown.
Section 5 represents the main features of the customization process, in particular
the manual annotations. Section 6 gives an overview of the related work and how
it differs from this work. Finally, section 7 draws some conclusions and outlines
future work regarding implementation and application.

2 Overview of the Framework Architecture

Our proposed framework exploits the fact, that grammarware and modelware
have metalanguages. The main idea is to find correspondences between EBNF
and MOF concepts and to use these correspondences for defining bridges.



Bridging Grammarware and Modelware 161

Fig. 1. Framework Overview

Figure 1 shows the main idea by a correspondence relation in the M3 layer
between EBNF and MOF. EBNF is a reflexive language, i.e., EBNF can be de-
scribed in EBNF. We utilize this property for constructing an attributed gram-
mar, which defines a grammar for EBNF and implements the correspondences
between EBNF and MOF as transformation rules. A compiler-compiler takes
the attributed grammar as input and generates a parser called Grammar Parser
(GP). On the one hand the GP converts grammars defined in EBNF into Raw
Metamodels and on the other hand it generates a parser for programs, which are
conform to the processed grammar. This parser is called Program Parser (PP).
Via the PP programs can be transformed in a Raw Models. The Raw Metamodel
and the Raw Model are expressed in XML Metadata Interchange (XMI [10]),
thus they can be processed by modelware tools. The grammar parser and the
program parser act as the main bridging technologies between grammarware and
modelware. It is important to note, that both parsers are automatically gener-
ated from grammars and from the correspondences between EBNF and MOF.

Once the Raw Metamodel and the Raw Model are created, we have reached
the modelware technical space. However the Raw Metamodel and the Raw Model
can grow very big in terms of number of classes. To eliminate this drawback, some
transformation rules for optimization are introduced, which can be automatically
executed by model transformation engines. The optimization rules are applied
to the Raw Metamodel and the outcome of this transformation is called Con-
densation Metamodel. Not only the metamodel has to be optimized, but also the
model has to be adjusted in such a way that it is conform to the Condensation
metamodel. This adjustment is defined by a Change Model, which includes all
required information to rebuild the Raw Model as a Condensation Model.

Furthermore our approach provides a mechanism to add additional semantics
to the metamodel that cannot be expressed in EBNF. These additional semantics



162 M. Wimmer and G. Kramler

are attached to the Condensation Metamodel by manual annotations. In par-
ticular, this annotations cover aspects like Identification/References semantics,
data types and improved readability. The annotated Condensation Metamodel
is automatically transformed into a Customized Metamodel. Again, the changes
in the metamodel layer must be propagated to the model layer. For this task
we introduce a second Change Model. The Change Model covers all user-defined
modifications and propagates them to the condensation model, which is finally
transformed into a Customized Model.

The main reason why the optimizations are done in the modelware and not in
the grammarware is that the framework is aligned to be used by model engineers.
Apart from that two further reasons have influenced our design decision: (1) the
optimization rules require potentially complete parse trees, which are available
by the Raw (Meta)models. (2) MOF, in contrast to EBNF, has an inherent
annotation mechanism, therefore we decided not to directly annotate the EBNF
grammars.

3 Parsing and Raw (Meta)model

The main target of the parsing process is to transform the textual definitions
of the grammarware into a format, that can be processed by model engineer-
ing tools. The first step is parsing the grammar of a given language. For our
framework we decided to use EBNF as metalanguage, because it is the most
used metalanguage to define grammars. In order to process each EBNF gram-
mar identical, the syntax of the grammars must conform to the standardized
EBNF syntax [4]. The Grammar Parser for processing the EBNF grammars can
be generated by a compiler-compiler and an attributed grammar. The attributed
grammar contains the structure and the concepts of EBNF, as well as method
calls for the transformation of EBNF concepts to MOF concepts.

For the transformation of EBNF concepts into MOF concepts, the correspon-
dences between these two metalanguages have to be clarified. This has been done
in previous work - see [1], where relations between EBNF and MOF concepts
are discussed. Based on this work, we constructed a complete set of transforma-
tion rules, which are summarized in the following. The transformation rules are
organized along the major EBNF concepts, i.e., production rule, non-terminal,
terminal, sequence, repetition, optional and alternative.

Rule 1: Represent every left hand side of a production rule as a class. The
elements of the right hand side are represented as classes as defined by the
following rules and are connected to the left hand side class by a containment
association. An exceptional case is the first production rule of the grammar.
In this case the LHS class is additionally marked with the �start symbol�
stereotype.

Rule 2: Represent every non-terminal as a class, which is called like the non-
terminal name plus REF and is marked with a �reference� stereotype. The
class is connected to the corresponding left hand side class of the non-terminal
by an association.



Bridging Grammarware and Modelware 163

Rule 3: Represent every terminal as a class named as T plus a consecutive
number and marked with the stereotype �terminal�. The value of the terminal
is represented as the value of the literal property.

Rule 4: Represent a sequence as an anonymous class called SEQ plus a consecu-
tive number and marked with �sequence� stereotype. The classes representing
the sequence are attached to the anonymous class by a containment association.
The associations are assigned with an �ordered� stereotype and a key/value
pair indicating the position of the element in the sequence.

Rule 5: Represent every repetition by an anonymous class called REP plus a
consecutive number and marked with a �repetition� stereotype. The anony-
mous class has a one-to-many association with the class representing the repeated
element. Note, that it is important to tag the association end with multiplic-
ity many as ordered. This constraint is required to rebuild the linear order of
EBNF.

Rule 6: Represent every option by an anonymous class called OPT plus a con-
secutive number and marked with a �option� stereotype. The anonymous
class has a zero-to-one association with the class representing the optional ele-
ment.

Rule 7: Represents every alternative as a subclass of an anonymous class called
ALT plus a consecutive number. The anonymous class is marked with an
�alternative� stereotype and is defined as an abstract class.

Mappings for the grouping concept can be ignored in the transformation
process, because a group can be directly transformed in a sequence element
or in an alternative element. Furthermore there is no need for a special transfor-
mation rule for recursive definitions, because this rule can be constructed from
the combination of rule 2 and 7.

The Grammar Parser implements the listed transformation rules and is there-
fore able to generate a Raw Metamodel expressed in XMI from a grammar ex-
pressed in EBNF. Not only a Raw Metamodel is produced by the Grammar
Parser, but also a Program Parser is derived from the correspondences at M3
level and the generated Raw Metamodel. The Program Parser creates a corre-
sponding model representation in XMI - called Raw Model - from textual-based
programs.

4 Condensation

The generated Raw Metamodels and Raw Models have some unintentional prop-
erties. The generic transformation rules, explained in chapter 3, let the design
size of the models grow immoderate, because lots of anonymous classes were
introduced. To eliminate this drawback, transformation rules for optimization
of the Raw Metamodel and of the Raw Model are established, which can be ex-
ecuted by model transformation engines automatically. The optimization rules



164 M. Wimmer and G. Kramler

have to derive (1) a optimized Metamodel - called Condensation Metamodel -
from the Raw Metamodel and (2) a Change Model, which includes all necessary
informations to rebuild a Condensation Model from a Raw Model. From the
combination of Condensation Metamodel and Change Model it is possible to
rebuild a model from a Raw Model, so that it is conform to the Condensation
Metamodel. The Change Model is included in the Condensation Metamodel as
special marked annotations.

The optimization of the Raw Metamodel starts with the upper class in the
class hierarchy - the class marked with �start symbol�. From this class the
optimization rules are executed in depth-first order, because the containment
hierarchy of the Raw Metamodel corresponds to the tree strucutre of the EBNF
grammar and therefore can be processed like a tree. When an optimization rule
matches for a given class, the children of this class must be checked, whether
optimization rules can be applied on them. This has to be done recursively
until a child class is found on the path, for which no optimization rules can be
applied. Then all optimization rules are performed on the path in reverse order,
until the class with the original match is reached. From this class the depth-first
optimization is continued. It is important that the changes in the child classes
are reflected in the optimization of the upper classes, because this makes it
possible to execute the optimization in one step and no temporary metamodels
are needed. In the following the optimization rule 1 for the Raw Metamodel is
shortly quoted. The complete description of rule 2 (optimization of sequences),
3 (optimization of terminal classes) and 4 (optimization of alternatives) may be
found in [12].

Rule1: Deletion of anonymous classes for options and repetitions, where pre-
condition 1 holds. The child class in the containment hierarchy takes the place
of the deleted class. The original path of the child class must be saved in the
Change Model.

Precondition:
(1) The anonymous class owns only one child class and the type of the child
class is either sequence or non-terminal.

Effect and Change Model for Precondition (1) shown by option-elimination:



Bridging Grammarware and Modelware 165

The order in which the rules are applied, must comply with the listing order of
the rules. The rules do not change the semantics of the metamodel, only some
anonymous classes are eliminated or some terminal classes are restructured in
a more compact way. The expressiveness of the language is the same as with
the un-optimized metamodel, but the size of the metamodel and of the model is
reduced.

5 Customization

The aim of the generated metamodels and models is to maximize the understand-
ability of languages and program specifications. As far as we have described,
the metamodels and models are only graphical representations for the textual
definitions. In this section we introduce a semi-automated mechanism to add
additional semantics to the automatically generated metamodels, which cannot
be expressed in EBNF. The user can attach annotations of a pre-defined set to
the Condensation Metamodel. In order to enhance the quality of the generated
metamodel by supporting improved readability, identification/reference seman-
tics and data types, we propose the following manual annotations for the Con-
densation Metamodel. From these annotations it is possible to derive a Change
Model to propagate the user-defined changes in the metamodel to model level
in order to rebuild a Customized Model from the Condensation Model. The
Change Model is again included in the generated Metamodel, in this case in the
Customized Metamodel. The complete description of the annotation mechanism
for data types and readability may be found in [12].

Identification/Reference: In metamodels the differentiation between Identi-
fication and Reference can be achieved easily. In contrast, grammars have no
appropriate concepts for describing Identification or Reference in order to give a
clue for the language designer’s intentions. In our Mini-Java example the prob-
lem reveals with the class Identifier. An Identifier can be a variable, a class or a
method name. If a variable is of type of a certain class, the identifier must be a
class name and not a variable or method name. To indicate this constraint, we
need additional information from the user in form of annotations, because this
information cannot be derived from EBNF grammars.

Annotations: For this aspect two annotations are available (1) the ID annotation
for defining an Identification and (2) the IDREF annotation for defining a ref-
erence. The stereotype �id� should be assigned to associations, which connect
the element with the identifier class. The association end must have a multiplic-
ity of 1. Also a new reference association to the actual referenced class is needed.
This is done by marking existing associations, which should be redirected, with
the stereotype �idref� and define the new target association end. The trans-
formation has to delete the pseudo references, which become obsolete by the use
of the user-created reference associations. The Change Model stores the original
target of the reference association.



166 M. Wimmer and G. Kramler

Effect and Change Model:

Readability: In metamodels the ability to give convenient names to elements
makes it easier for the user to understand the intentions of the language designer.
With annotations for names we allow the user to replace anonymous names, like
OPT1 or ALT1 with convenient labels.

Data Types: MOF provides the following data types for metamodelling: string,
integer and boolean. In contrast, EBNF has no concepts for data types and so
they have to be described with complex expressions. These expressions result in
complex class structures in the generated Condensation Metamodel. The substi-
tution of such complex structures with data types provided by MOF leads to a
more convenient metamodel.

As an example for the final output of our framework see Figure 2. In this
figure an excerpt from the Customized Metamodel for Mini-Java is shown. Due
to lack of space, we ignore stereotypes and tagged values concerning the concrete
syntax. Note that the metamodel is completely automatically generated with our
framework, except for manual annotations in the Condensation Metamodel. On
the basis of Figure 2 it is readily identifiable, that the proposed optimization
rules and annotations lead to a very intuitive metamodel.

Fig. 2. Core of the Mini-Java Metamodel



Bridging Grammarware and Modelware 167

6 Related Work

This section compares our work with related research activities: on the one hand
approaches addressing the bridging of technical spaces and on the other hand
approaches discussing the mapping between EBNF and MOF concepts.

Another mapping approach based on the M3-layer is described in [2]. In par-
ticular this work is focused on bridging model engineering and ontology engi-
neering. Unlike our approach, only languages are transformed, which are based
on MOF and have an XMI representation. Therefore it is possible to transform
the XML representation with XSLT.

Alanen and Porres [1] discuss relations between context-free grammars and
MOF metamodels. In contrast to our work, they only define mappings for M2
based on M3. We extend this approach by mapping not only M2, but also M1
based on M3. Furthermore, we establish various optimizations in order to get a
more user-friendly metamodel. Our approach has used some mapping concepts
of this previous work to define the grammar to raw metamodel transformation
rules.

7 Conclusion and Future Work

In this work we have presented a generic framework, which supports the trans-
formation of grammars into metamodels and of programs into models. The used
transformation process is based on the M3 level, which allows to generate bridges
between grammarware and modelware automatically. Furthermore we have de-
scribed how to build a minimal and user-friendly metamodel through a number
of optimization rules and user-annotations.

We are currently working on a prototype for the presented framework. As
soon as our prototype is full functioning, we will use it to evaluate our framework
with larger grammars and extensive programs. We hope this facility brings more
insight on bridging grammarware and modelware. Therefore our next steps will
be searching for additional optimization rules and user annotations, which allow
a more flexible design mechanism for the final metamodel.

References

1. Marcus Alanen and Ivan Porres. A Relation Between Context-Free Grammars and
Meta Object Facility Metamodels. Technical report, Turku Centre for Computer
Science, 2003.

2. J. Bézivin, V. Devedzic, D. Djuric, J.M. Favreau, D. Gasevic, and F. Jouault.
An M3-Neutral infrastructure for bridging model engineering and ontology engi-
neering. In Proceedings of the first International Conference on Interoperability of
Enteprise Software and Applications, (INTEROP-ESA 05), 2005.

3. Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley Professional, 2000.

4. ISO. ISO/IEC 14977:1996(E), Information technology - Syntactic metalanguage -
Extended BNF, 1996.



168 M. Wimmer and G. Kramler

5. P. Klint, R. Lämmel, and C. Verhoef. Towards an engineering discipline for gram-
marware. ACM TOSEM, May30 2005. To appear; Online since July 2003, 47
pages.

6. K. Koskimies. Object Orientation in Attribute Grammars. LNCS, vol. 545.
Springer-Verlag, pages 297–329, 1991.

7. Ivan Kurtev, Mehmet Aksit, and Jean Bézivin. Technical Spaces: An Initial Ap-
praisal. CoopIS, DOA2́002 Federated Conferences, Industrial track, Irvine, 2002.

8. OMG. Meta Object Facility (MOF) 2.0 Core Specification. http://www.omg.org/
docs/ptc/03-10-04.pdf, 2004.

9. OMG. Architecture Driven Modernization. www.omg.org/adm, 2005.
10. OMG. XML Metadata Interchange (XMI) Specification. OMG, http://www.omg.

org/docs/formal/05-05-01.pdf, 2005.
11. Ryan Stansifer. EBNF Grammar for Mini-Java. http://www.cs.fit.edu/˜ryan/

cse4251/mini java grammar.html, August 2005.
12. Manuel Wimmer and Gerhard Kramler. Bridging Grammarware and Modelware.

Technical report, Vienna University of Technology, http://www.big.tuwien.ac.at/
research/publications/2005/1105.pdf, 2005.

13. Niklaus Wirth. What can we do about the unnecessary diversity of notation for
syntactic definitions. Communications of the ACM, 20(11), November 1997.


	Indroduction
	Overview of the Framework Architecture
	Parsing and Raw (Meta)model
	Condensation
	Customization
	Related Work
	Conclusion and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




