

Lecture Notes in Computer Science 3844
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jean-Michel Bruel (Ed.)

Satellite Events
at the MoDELS 2005
Conference

MoDELS 2005 International Workshops
Doctoral Symposium, Educators Symposium
Montego Bay, Jamaica, October 2-7, 2005
Revised Selected Papers

13

Volume Editor

Jean-Michel Bruel
Université de Pau
LIUPPA
64012 Pau, P.O. Box , France
E-mail: Jean-Michel.Bruel@univ-pau.fr

Library of Congress Control Number: 2005938812

CR Subject Classification (1998): D.2, D.3, I.6, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-31780-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31780-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11663430 06/3142 5 4 3 2 1 0

These proceedings are dedicated to the memory of

Pr. Muhammad Jaffer-ur Rehman

Mohammad Ali Jinna University, Pakistan

(MoDELS 2005 PC member)

Preface

It was a tradition in the previous UML series to host a number of workshops.
Workshops provide the opportunity for a small group of people to exchange
recent or preliminary results and to conduct intensive discussions on a particular
topic. They complement the main conference and are generally very appreciated
by attendees, most of them also attending the main conference.

For this new 2005 edition, it was decided to host 12 one-day satellite events,
during the three first days of the conference. The 2003 conference held nine
workshops, last year one held nine workshops and a new Doctorial Symposium.
This year, we have chosen to hold the successful Doctorial Symposium and to
add a novelty, mainly related to the broader scope of the new series: a symposium
dedicated to models education.

The Selection Committee that helped me in reviewing the proposals was
formed by the following researchers:

– Elisa Baniassad, Chinese University of Hong Kong
– Siobhán Clarke, Trinity College Dublin, Ireland
– Gregor Engels, University of Paderborn, Germany
– Ana Moreira, Universidade Nova de Lisboa, Lisbon, Portugal
– Ivan Porres, Åbo Akademi University, Turku, Finland
– Ambrosio Toval, University of Murcia, Spain

We selected ten workshops among which four were held in the previous edition
of the conference, one is the merging of two successful workshops from last year,
and five are new to the conference series. This novelty has been particularly
interesting and we hope that the community will also appreciate it. It reflects
the changes at the main conference level itself.

These 12 events were, both in terms of registration and in discussions and
interest, a very pleasant success. The reader will find in these proceedings an
abstract of each workshop, written by the organizers, as well as an improved
version of a selection of the two best papers of each workshop. An exception has
been made for the Doctorial Symposium, where all the Ph.D. papers have been
included as 2-page summaries of their work. We hope that this will provide a
good idea of the workshop discussions and results.

I would like to thank the workshop organizers, the Selection Committee mem-
bers for the help and advice they have provided, and also Geri Georg, Conference
Chair of the MODELS 2005 conference, for her support and her friendship.

November 2005 Jean-Michel Bruel
Workshop Chair
MODELS 2005

VIII Preface

Table of Contents

W1 – OCL

Tool Support for OCL and Related Formalisms – Needs and Trends
Thomas Baar, Dan Chiorean, Alexandre Correa, Martin Gogolla,
Heinrich Hußmann, Octavian Patrascoiu, Peter H. Schmitt,
Jos Warmer . 1

Lessons Learned from Developing a Dynamic OCL Constraint
Enforcement Tool for Java

Wojciech J. Dzidek, Lionel C. Briand, Yvan Labiche 10

OCL and Graph-Transformations – A Symbiotic Alliance to Alleviate
the Frame Problem

Thomas Baar . 20

W2 – MoDeVA

Report on the 2nd Workshop on Model Development and
Validation – MoDeVa

Benoit Baudry, Christophe Gaston, Sudipto Ghosh 32

Using Process Algebra to Validate Behavioral Aspects of
Object-Oriented Models

Alban Rasse, Jean-Marc Perronne, Pierre-Alain Muller,
Bernard Thirion . 39

Automated Analysis of Natural Language Properties for UML Models
Sascha Konrad, Betty H.C. Cheng . 48

W3 – MARTES

Modeling and Analysis of Real-Time and Embedded Systems
Susanne Graf, Sébastien Gérard, Øystein Haugen, Iulian Ober,
Bran Selic . 58

Modular Verification of Safe Online-Reconfiguration for Proactive
Components in Mechatronic UML

Holger Giese, Martin Hirsch . 67

X Table of Contents

Annotating UML Models with Non-functional Properties for
Quantitative Analysis

Huáscar Espinoza, Hubert Dubois, Sébastien Gérard, Julio Medina,
Dorina C. Petriu, Murray Woodside . 79

W4 – Aspect-Oriented Modeling

Report of the 7th International Workshop on Aspect-Oriented
Modeling

Jörg Kienzle, Jeff Gray, Dominik Stein . 91

Modeling Aspect-Oriented Compositions
Thomas Cottenier, Aswin van den Berg,
Tzilla Elrad . 100

Towards a Generic Aspect Oriented Design Process
Andrew Jackson, Siobhán Clarke . 110

W5 – MTiP

Model Transformations in Practice Workshop
Jean Bézivin, Bernhard Rumpe, Andy Schürr,
Laurence Tratt . 120

Transforming Models with ATL
Frédéric Jouault, Ivan Kurtev . 128

Practical Declarative Model Transformation with Tefkat
Michael Lawley, Jim Steel . 139

W6 – WiSME

Essentials of the 4th UML/MoDELS Workshop in Software Model
Engineering (WiSME’2005)

Krzysztof Czarnecki, Jean-Marie Favre, Martin Gogolla,
Tom Mens . 151

Bridging Grammarware and Modelware
Manuel Wimmer, Gerhard Kramler . 159

sNets: A First Generation Model Engineering Platform
Jean Bézivin . 169

Table of Contents XI

W7 – MDDAUI

Workshop Report: Model Driven Development of Advanced User
Interfaces (MDDAUI)

Andreas Pleuß, Jan van den Bergh, Stefan Sauer,
Heinrich Hußmann . 182

Towards Model Driven Engineering of Plastic User Interfaces
Jean-Sébastien Sottet, Gaëlle Calvary, Jean-Marie Favre,
Joëlle Coutaz, Alexandre Demeure, Lionel Balme 191

UML Model Mappings for Platform Independent User Interface Design
Tim Schattkowsky, Marc Lohmann . 201

W8 – NfC

Workshop on Models for Non-functional Properties of Component-Based
Software – NfC

Geri Georg, Jan Øyvind Aagedal, Raffaela Mirandola,
Ileana Ober, Dorina Petriu, Wolfgang Theilmann, Jon Whittle,
Steffen Zschaler . 210

Abstraction-Raising Transformation for Generating Analysis Models
Antonino Sabetta, Dorina C. Petriu, Vincenzo Grassi,
Raffaela Mirandola . 217

Explicit Architectural Policies to Satisfy NFRs Using COTS
Claudia López, Hernán Astudillo . 227

W9 – MDD for Product-Lines

Workshop 9 Summary
Douglas C. Schmidt, Andrey Nechypurenko,
Egon Wuchner . 237

Addressing Domain Evolution Challenges in Software Product Lines
Gan Deng, Gunther Lenz, Douglas C. Schmidt . 247

From Requirements Documents to Feature Models for Aspect Oriented
Product Line Implementation

Neil Loughran, Américo Sampaio,
Awais Rashid . 262

XII Table of Contents

W10 – WUsCaM

Use Cases in Model-Driven Software Engineering
Hernán Astudillo, Gonzalo Génova, Micha�l Śmia�lek, Juan Llorens,
Pierre Metz, Rubén Prieto-Dı́az . 272

Use Cases, Actions, and Roles
Guy Genilloud, William F. Frank, Gonzalo Génova 280

Specifying Precise Use Cases with Use Case Charts
Jon Whittle . 290

Educator’s Symposium

Summary of the Educator’s Symposium
Holger Giese, Pascal Roques, Timothy C. Lethbridge 302

Teaching UML Is Teaching Software Engineering Is Teaching
Abstraction

Gregor Engels, Jan Hendrik Hausmann, Marc Lohmann,
Stefan Sauer . 306

Best Practices for Teaching UML Based Software Development
Ludwik Kuzniarz, Miroslaw Staron . 320

Doctorial Symposium

MoDELS 2005 Doctoral Symposium Summary
Jeff Gray . 333

Preening: Reflection of Models in the Mirror a Meta-modelling
Approach to Generate Reflective Middleware Configurations

Nelly Bencomo, Gordon Blair . 337

Transformation-Based Structure Model Evolution
Fabian Büttner . 339

Software Hazard Analysis for X-by-Wire Applications
Ireri Ibarra-Alvarado, Richard K. Stobart, Rudi Lutz 341

Enhancement of Development Technologies for Agent-Based Software
Engineering

Andre Karpǐstšenko . 343

Table of Contents XIII

Modeling Reactive Systems and Aspect-Orientation
Mark Mahoney . 345

SelfSync: A Dynamic Round-Trip Engineering Environment
Ellen Van Paesschen, Maja D’Hondt . 347

A Framework for Composable Security Definition, Assurance, and
Enforcement

J.A. Pavlich-Mariscal, S.A. Demurjian, L.D. Michel 353

Ontology-Based Model Transformation
Stephan Roser, Bernhard Bauer . 355

Modeling Turnpike: A Model-Driven Framework for Domain-Specific
Software Development

Hiroshi Wada, Jun Suzuki . 357

Author Index . 359

Tool Support for OCL and Related Formalisms –
Needs and Trends

Thomas Baar1, Dan Chiorean2, Alexandre Correa3,
Martin Gogolla4, Heinrich Hußmann5, Octavian Patrascoiu6,

Peter H. Schmitt7, and Jos Warmer8

1 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
2 “Babes-Bolyai” University of Cluj-Napoca, Romania

3 University of Rio de Janeiro, Brazil
4 University of Bremen, Germany

5 LMU Munich, Germany
6 University of Kent, United Kingdom

7 Universität Karlsruhe, Germany
8 Ordina, The Netherlands

Abstract. The recent trend in software engineering to model-centered
methodologies is an excellent opportunity for OCL to become a widely
used specification language. If the focus of the development activities is
shifted from implementation code to more abstract models then software
developers need a formalism to provide a complete, unambiguous and
consistent model at a very detailed level. OCL is currently the only
language that can bring this level of detail to UML models. The purpose
of the workshop was to identify future challenges for OCL and to discuss
how OCL and its current tool support can be improved to meet these
challenges. The workshop gathered numerous experts from academia and
industry to report on success stories, to formulate wishes to the next
generation of OCL tools, and to identify weaknesses in the language,
which make OCL sometimes cumbersome to use. The workshop could
also attract numerous people whose aim was to get an overview on the
state of the art of OCL tool support and on how OCL can efficiently be
applied in practice.

1 Motivation and Goals

Model-centric methodologies see modeling artifacts as the primary output of de-
velopment activities and not implementation code, as it is currently the case in
most software development projects. These new methodologies were triggered by
recent standardizations of meta-modeling technologies, which have facilitated the
syntactic and semantic specification of modeling languages. It has been reported
in numerous case studies how model-centric approaches can yield a productivity
leap and thus dramatically reduce development costs. Model-centric methodolo-
gies could, however, not become mainstream yet, because this would require a
matured, seamless tool support for all development phases. One of today’s great

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 1–9, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 T. Baar et al.

challenges is to make modeling tools as powerful and easy to use as current
Integrated Development Environments (IDEs) for programming languages.

The Object Constraint Language (OCL) is a standardized, versatile, multi-
purpose specification language. It can bring a degree of preciseness to graphical
models that is needed if the graphical models should become the primary arti-
facts in the development process. The pressure to improve the tool support for
OCL goes along with the overall challenge to improve the quality of modeling
tools in general. Improved tool support is just one thing that has to be addressed
in order to increase the popularity of OCL. There are plenty of other questions
this workshop was devoted to. The following list is a (surely incomplete) classi-
fication of questions that need to be answered.

Technical Questions on How to Improve Tool Support for OCL. There
is a technical dimension how the community can effectively provide better OCL
tool support. How can we facilitate the development of new tools? Which features
should an OCL tool offer to encourage the usage of OCL in practice? Is it feasible
to make OCL executable and to provide an animator for OCL? Should we strive
for a common architecture of OCL tools which would enable us to reuse standard
components, such as a parsing component?

These and similar questions are discussed in the workshop papers [5–8]. The
project described in [6] provides a new grammar for OCL that can be used
as a starting point to build a parser (actually, the grammar has been already
’implemented’ in form of a parser). This is a remarkable step forward since
the official grammar given in the OCL 2.0 language specification intentionally
abstracts from ’implementation glitches’.

Language Issues. The language specification for OCL has certainly improved
over the last years, but there are still some debatable points in the OCL seman-
tics. Furthermore, OCL is missing some constructs, e.g. a modifies clause, that
are widely accepted in the specification language community and that are offered
by other specification languages such as the Java Modeling Language (JML).

The paper [9] strives to find a solution for the frame problem that has been
highly neglected in OCL so far. The papers [8, 5] discuss besides the semantics of
certain constructs also the general architecture of OCL. They try to classify the
concepts according to their importance from the language architecture’s point
of view. Based on this concept classification, the definition of OCL in syntax
and semantics could be reorganized to make it more flexible and to define OCL
rather as a family of languages than one, entirely fixed language.

Usability Questions and Application Examples. Besides improved tool
support and a clear and concise language description, OCL would also bene-
fit from more convincing examples and application scenarios.

The paper [3] applies OCL to make the terminology used by meta-modeling
experts much more precise. So far, there was a rudimental common agreement
among meta-modelers on what basic meta-modeling concepts are supposed to
mean but this agreement has never been formalized beforehand.

Tool Support for OCL and Related Formalisms – Needs and Trends 3

The paper [4] describes an approach to guide the user when writing OCL
constraints. The paper shows how a widely-used class of OCL constraints can ac-
tually be generated by instantiating a schematic OCL constraint. This technique
is especially suitable for software developers who write their first constraints and
want to become familiar with the language.

1.1 Organization

The workshop continued a series of OCL workshops held at previous UML con-
ferences: York, 2000, Toronto 2001, San Francisco, 2003, and Lisbon, 2004. The
workshop was organized by the authors of this article, some of them where al-
ready involved in the organization of previous OCL workshops and some of them
joint the organization team for the first time.

The organizing team formed also the programme committee of the work-
shop. Each workshop submission received 2-4 reviews written by the members
of the organizing team. Based on the reviews, the decision on the paper ac-
ceptance was taken unanimously. For papers that were co-authored by one of
the workshop organizers, the review process, of course, ensured that the au-
thors had no influence on the acceptance/rejection decision for papers written by
themselves.

2 Accepted Papers

All papers accepted at the workshop are published in [1], what can be down-
loaded either from EPFL’s publication archive http://infoscience.epfl.ch
or from the workshop’s website [2]. For the convenience of the reader, we have
included here the abstract of each paper.

Title: On Squeezing M0, M1, M2, and M3 into a Single Object Diagram
Authors: Martin Gogolla, Jean-Marie Favre, Fabian Büttner
Abstract: We propose an approach for the integrated description of a meta-
model and its formal relationship to its models and the model instantiations.
The central idea is to use so-called layered graphs permitting to describe type
graphs and instance graphs. A type graph can describe a collection of types and
their relationships whereas an instance graph can represent instances belong-
ing to the types and respecting the relationships required by the type graph.
Type graphs and instance graphs are used iteratively, i.e., an instance graph
on one layer can be regarded as a type graph of the next lower layer. Our ap-
proach models layered graphs with a UML class diagram, and operations and
invariants are formally characterized with OCL and are validated with the USE
tool. Metamodeling properties like strictness or well-typedness and features like
potency can be formulated as OCL constraints and operations. We are provid-
ing easily understandable definitions for several metamodeling notions which
are currently used in a loose way by modelers. Such properties and features
can then be discussed on a rigorous, formal ground. This issue is also the main
purpose of the paper, namely, to provide a basis for discussing metamodeling
topics.

4 T. Baar et al.

Title: Formal Description of OCL Specification Patterns for Behavioral Speci-
fication of Software Components
Author: Jörg Ackermann
Abstract: The Object Constraint Language (OCL) is often used for behavioral
specification of software components. One current problem in specifying behav-
ioral aspects comes from the fact that editing OCL constraints manually is time
consuming and error-prone. To simplify constraint definition we propose to use
specification patterns for which OCL constraints can be generated automati-
cally. In this paper we outline this solution proposal and develop a way how to
formally describe such specification patterns on which a library of reusable OCL
specifications is based.

Title: Supporting OCL as part of a Family of Languages
Authors: David H. Akehurst, Gareth Howells, Klaus D. McDonald-Maier
Abstract: With the continued interest in Model Driven techniques for software
development more and more uses are found for query or expression languages
that navigate and manipulate object-oriented models. The Object Constraint
Language is one of the most frequently used languages; however, its original
intended use as a constraint expression language has been succeeded by its fre-
quently proposed use as a basis for a more general model query language, model
transformation language and potential action language. We see a future where
OCL forms a basis for a family of languages related in particular to Model Driven
Development techniques; as a consequence we require an appropriate tool suite
to aid in the development of such language families. This paper proposes some
important aspects of such a tool suit.

Title: Generation of an OCL 2.0 Parser
Authors: Birgit Demuth, Heinrich Hussmann, Ansgar Konermann
Abstract: The OCL 2.0 specification defines explicitly a concrete and an ab-
stract syntax. The concrete syntax allows modelers to write down OCL expres-
sions in a textual way. The abstract syntax represents the concepts of OCL
using a MOF compliant metamodel. OCL 2.0 implementations should follow
this specification. In doing so emphasis is placed on the fact that at the end
of the processing a tool should produce the same well-formed instance of the
abstract syntax as given in the specification. This offers the possibility to imple-
ment OCL-like languages with the same semantics that are for example easier
to use for business modelers. Therefore we looked for a parser technique that
helps us to generate an OCL parser to a large extent. In this paper we present
the technique we developed and proved within the scope of the Dresden OCL
Toolkit. The resulting Dresden OCL2 parser is especially characterized by us-
ing a generation approach not only based on a context-free grammar but on an
attribute grammar to create the required instance of the abstract syntax of an
OCL expression.

Title: Lessons Learned from Developing a Dynamic OCL Constraint Enforce-
ment Tool for Java
Authors: Wojciech J. Dzidek, Lionel C. Briand, Yvan Labiche

Tool Support for OCL and Related Formalisms – Needs and Trends 5

Abstract: Analysis and design by contract allows the definition of a formal
agreement between a class and its clients, expressing each partys rights and
obligations. Contracts written in the Object Constraint Language (OCL) are
known to be a useful technique to specify the precondition and postcondition
of operations and class invariants in a UML context, making the definition of
object-oriented analysis or design elements more precise while also helping in
testing and debugging. In this article, we report on the experiences with the
development of ocl2j, a tool that automatically instruments OCL constraints in
Java programs using aspect-oriented programming (AOP). The approach strives
for automatic and efficient generation of contract code, and a non-intrusive in-
strumentation technique. A summary of our approach is given along with the
results of an initial case study, the discussion of encountered problems, and the
necessary future work to resolve the encountered issues.

Title: Proposals for a Widespread Use of OCL
Authors: Dan Chiorean, Maria Bortes, Dyan Corutiu
Abstract: In spite of the fact that OCL and UML evolved simultaneously, the
usage of the constraint language in modeling real-world applications has been
insignificant compared to the usage of the graphical language. Presently, OCL
is requested in new modeling approaches: Model Driven Architecture, Model
Driven Development, Domain Specific Languages, Aspect Oriented Modeling,
and various emerging technologies: Semantic Web, Business Rules. In this con-
text, the question What has to be done for OCL to become the rule, not the
exception, in the modeling domain? is more pressing than ever. The purpose of
this paper is to propose an answer to this question, although not a complete
one. Our work is an attempt to synchronize the language specification and its
understanding, straight related to the language implementation in CASE tools,
by proposing solutions for incomplete or non-deterministic OCL specifications.
In order to manage the new extensions required for the constraint language, a
new language structure is suggested.

Title: OCL and Graph Transformations – A Symbiotic Alliance to Alleviate the
Frame Problem
Author: Thomas Baar
Abstract: Many popular methodologies are influenced by Design by Contract.
They recommend to specify the intended behavior of operations in an early
phase of the software development life cycle. In practice, software developers
use most often natural language to describe how the state of the system is
supposed to change when the operation is executed. Formal contract specifica-
tion languages are still rarely used because their semantics often mismatch the
needs of software developers. Restrictive specification languages usually suffer
from the frame problem: It is hard to express which parts of the system state
should remain unaffected when the specified operation is executed. Constructive
specification languages, instead, suffer from the tendency to make specifications
deterministic.

This paper investigates how a combination of OCL and graph transforma-
tions can overcome the frame problem and can make constructive specifications

6 T. Baar et al.

less deterministic. Our new contract specification language is considerably more
expressive than both pure OCL and pure graph transformations.

3 Workshop Results

The workshop attracted 38 registered attendees. The motivation was rather
divers; some of them wanted to learn OCL and to get acquainted with it, others
came to discuss specific problems in depth.

3.1 Spontaneous Tool Overview Session

Since the workshop attracted many people from academia and industry who
were not OCL experts but wanted to get an overview on OCL technology, Mar-
tin Gogolla made, after every workshop participant has introduced himself, the
suggestion to devote the first session to present briefly some of the currently
existing OCL tools. This was especially attractive since some of the tool devel-
opers were sitting in the workshop room. The following tools were informally
presented to the audience:

Martin Gogolla: USE Tool. The USE tool (UML-based Specification Envi-
ronment)1 supports analysts, designers and developers in executing UML models
and checking OCL constraints and thus enables them to employ model-driven
techniques for software production. USE allows the validation of UML models
and OCL constraints based on animation and certification. USE permits analyz-
ing the model structure (classes, associations, attributes, and invariants) and the
model behavior (operations and pre- and postconditions) by generating typical
snapshots (system states) and by executing typical operation sequences (scenar-
ios). Developers can formally check constraints (invariants and pre- and post-
conditions) against their expectations and can, to a certain extent, derive formal
model properties.

Heinrich Hußmann: Dresden OCL2 Toolkit. The Dresden OCL2 Toolkit2

is a set of tools for processing OCL specifications. The heart of the toolkit is
a recently redesigned parser for OCL 2.0. The Abstract Syntax Tree (AST)
produced by the parser conforms with the official metamodel of OCL 2.0. Other
tools in the toolkit can translate OCL specifications into SQL queries or into
Java code, which is able to check the correctness of OCL assertions at runtime.

Behzad Bordbar: UML2Alloy. UML2Alloy3 allows to translate UML class
diagrams enriched with OCL expressions into models written in Alloy. Class
diagrams are used to depict the static structure of the system. OCL statements
are used to both define behavior through pre- and postconditions, and invariants
on the UML class diagrams. The tool accepts a UML model of the system in
1 See http://www.db.informatik.uni-bremen.de/projects/USE/
2 See http://dresden-ocl.sourceforge.net
3 See http://www.cs.bham.ac.uk/~bxb/UML2Alloy.html

Tool Support for OCL and Related Formalisms – Needs and Trends 7

XMI format and guides the user step by step through the translation of the UML
model to a corresponding Alloy model. Users can then use Alloy Analyzer on the
produced Alloy model to conduct analysis. Alloy Analyzer provides the ability
of Analysis. This includes simulation of the system, which provides examples
of instances that conform to the model. This is particularly helpful in checking
if the model is overconstrained and to increase the confidence in correctness
of the model. It is also possible to check the correctness of logical statements,
assertions, about the model.

Thomas Baar: KeY Tool and Grammatical Framework (GF). The KeY
tool4 is not primarily an OCL tool but has an OCL front end (in fact, it uses
the OCL parser from the Dresden OCL toolkit) for behavioral specification of
operations in a UML class diagram. The KeY tool allows the user to verify
the correctness of operation implementations written in Java in respect to an
OCL specification given as a pair of pre- and postcondition (contract). Other-
wise stated, using KeY one can statically prove that whenever the operation’s
implementation is invoked in a state in which the pre-condition holds, the ex-
ecution of the implementation will terminate and yield to a state in which the
postcondition holds.

The Grammatical Framework (GF) is designed as a stand-alone tool but
has been fully integrated into the KeY tool. The Grammatical Framework of-
fers translations of OCL specifications into natural language. Most developers
appreciate if OCL constraints are presented in natural language since – as for
any other formal specification language – it is time consuming to read and to
understand formal OCL constraints. Languages, currently supported by GF as
a target language, are English, Swedish, Finnish, German. Also the opposite di-
rection of translation, from natural language to OCL, is prototypically realized.

3.2 Discussion

The last session of the workshop was devoted to discussion on OCL issues raised
during the paper presentation sessions as well as other issues that are of com-
mon interest. The following list captures the main points of the discussion. Many
problems remained unsolved and it was not always possible to come to an agree-
ment among all participants.

OCL Must Be Supported by Better Tools. Most of the current OCL
tools are academic tools and were developed by a team of a single university.
Although the quality of tools has improved considerably over the last years, it
is not a surprise that these OCL tools cannot compete in terms of usability
and the functionality they offer with integrated development environments for
writing implementation code.

One trap a lot of OCL tool development teams fall into is to capture every
possible application scenario for OCL by their tool. Instead of a one-fits-it-
all-tool we need rather a component-oriented approach where specialized tools
4 See http://www.key-project.org

8 T. Baar et al.

provide services using standardized interfaces and other tools can take advan-
tages of them. Examples for such services could be: parse a constraint, evaluate a
constraint, pretty print a constraint, find counterexample that constraint always
holds, generate implementation code, etc. A first step towards this goal could be
to define a list of functionalities a user would expect from a matured OCL tool.
The list should also clarify in which scenario the functionality would be useful.

Applying OCL Yields to Better Software and Saves Valuable Time.
Based on the current examples and case studies it is hard to convince software
developers on the usefulness of applying OCL in practice. There are even experi-
ences reported in the literature where an OCL specification of a Java framework
is considered to be less informative than other ways to specify the framework,
e.g. by a reference implementation or carefully written informal comments. On
the other hand, a few controlled experiments conducted in academic settings
have reported positive results on using OCL in UML based developments.

Developers might be convinced more easily once we had compelling results
from more experiments available. For instance, it would be interesting to set up
two teams developing the same application in parallel and measure the effort and
the quality of the resulting artifacts. One team uses OCL assertions whereas the
other tries to model and implement the application the traditional way without
OCL assertions. Such an experiment can hardly be done in real software industry
but it is possible to run it at universities with two groups of students (trained
in OCL and without any knowledge on OCL).

Promising Application Areas for OCL Have to Be Identified. We need
a clear idea on what are the most promising application scenarios for OCL. If
OCL is used at the very detailed level of implementation models to describe
the behavior of implemented methods, then it competes for instance with JML.
In this case, OCL is often not chosen as the specification language because it’s
semantics is not aligned enough with this application area. For instance, the
type system of OCL refers to that of UML and do not take the peculiarities of
Java’s type system into account (however, the Java type system could be made
available to OCL via a Java profile).

But weaknesses on one side are strengths on the other side. Since OCL is fully
integrated into the UML metamodel, it can specify properties directly at any
level of abstraction. As another advantage, OCL provides powerful mechanisms
for reflection and allows the user to explore the metamodel within a constraint.

OCL Is a Family of Languages. The application scenarios of OCL are very
divers and require sometimes to adapt the semantics of certain constructs to the
current scenario or to add new, scenario-specific constructs. This gives rise to
treat OCL as a family of languages instead of a fixed one. The OCL language
specification should be rewritten according to this fact and should allow the user
to customize the currently needed dialect of OCL. The possibility to customize
the language has of course to be backed by the tools that support OCL. Either a
tool can be customized by the user, i.e. the tool is tailored to the OCL dialect the
user has in mind, or the tool clearly states which of OCL’s dialects it supports.

Tool Support for OCL and Related Formalisms – Needs and Trends 9

More Teaching Modules on the Art of Specification Are Needed.
There is still a lack of good teaching modules for OCL and the diversity among
the illustrating examples for OCL constraints is rather low. Also case studies on
bigger projects would help many potential users to find out whether or not OCL
is the proper formalism to describe the problems they have.

It was decided on the workshop to launch a new website as an archive of exist-
ing teaching modules, experience reports, etc. This website is already available
under http://www-st.inf.tu-dresden.de/ocl/. Everybody is encouraged to
contribute!

Acknowledgement

The authors are grateful to Behzad Bordbar and Dave Akehurst for their com-
ments on earlier drafts of this workshop report.

References

1. Thomas Baar, editor. Tool Support for OCL and Related Formalisms - Needs
and Trends, MoDELS’05 Conference Workshop, Montego Bay, Jamaica, October
4, 2005, Proceedings, Technical Report LGL-REPORT-2005-001. EPFL, 2005.

2. Homepage of OCL Workshop 2005. http://lgl.epfl.ch/members/baar/oclws05.
3. Martin Gogolla, Jean-Marie Favre, and Fabian Büttner. On squeezing M0, M1, M2,

and M3 into a single object diagram.
4. Jörg Ackermann. Formal description of OCL specification patterns for behavioral

specification of software components.
5. David H. Akehurst, Gareth Howells, and Klaus D. McDonald-Maier. Supporting

OCL as part of a family of languages.
6. Birgit Demuth, Heinrich Hussmann, and Ansgar Konermann. Generation of an OCL

2.0 parser.
7. Wojciech J. Dzidek, Lionel C. Briand, and Yvan Labiche. Lessons learned from

developing a dynamic OCL constraint enforcement tool for Java.
8. Dan Chiorean, Maria Bortes, and Dyan Corutiu. Proposals for a widespread use of

OCL.
9. Thomas Baar. OCL and graph transformations – a symbiotic alliance to alleviate

the frame problem.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 10 – 19, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Lessons Learned from Developing a Dynamic OCL
Constraint Enforcement Tool for Java

Wojciech J. Dzidek2, Lionel C. Briand1,2, and Yvan Labiche1

1 Software Quality Engineering Laboratory,
Department of Systems and Computer Engineering – Carleton University,

1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
{briand, labiche}@sce.carleton.ca

2 Simula Research Laboratory, Lysaker, Norway
dzidek@simula.no

Abstract. Analysis and design by contract allows the definition of a formal
agreement between a class and its clients, expressing each party’s rights and
obligations. Contracts written in the Object Constraint Language (OCL) are
known to be a useful technique to specify the precondition and postcondition of
operations and class invariants in a UML context, making the definition of
object-oriented analysis or design elements more precise while also helping in
testing and debugging. In this article, we report on the experiences with the
development of ocl2j, a tool that automatically instruments OCL constraints in
Java programs using aspect-oriented programming (AOP). The approach strives
for automatic and efficient generation of contract code, and a non-intrusive
instrumentation technique. A summary of our approach is given along with the
results of an initial case study, the discussion of encountered problems, and the
necessary future work to resolve the encountered issues.

1 Introduction

The usefulness of analysis and design by contract (ADBC) has been recognized by
current and emerging software paradigms. For example, in [1], a book on component
software, an entire chapter is devoted to the subject of contracts, and the author argues
that using a formal language to specify them would be ideal except for the
disadvantage of the complexity associated with the usage of a formal language.
However, recent experiments have shown that OCL provides a number of advantages
in the context of UML modeling [2], thus suggesting its complexity to be manageable
by software engineers. Likewise in [3], a book discussing distributed object-oriented
technologies, Emmerich argues that the notion of contracts is paramount in distributed
systems as client and server are often developed autonomously. Last, model driven
architecture (MDA), also known as model driven development (MDD), is perceived
by many as a promising approach to software development [4]. In [4], the authors
note that the combination of UML with OCL is at the moment probably the best way
to develop high-quality and high-level models, as this results in precise,
unambiguous, and consistent models. Having discussed the advantages of OCL, it
comes as a surprise that the language is not used more widely for ADBC. One reason

 Lessons Learned from Developing a Dynamic OCL Constraint Enforcement Tool 11

for this might be the well-established prejudices against any formal elements among
software development experts and many influential methodologists. Another reason
for the unsatisfactory utilization of OCL is the lack of industrial strength tools, e.g.,
tools to generate code assertions from OCL contracts.

The benefits of using contract assertions in source code is shown in [5], where a
rigorous empirical study showed that such assertions detected a large percentage of
failures and thus can be considered acceptable substitutes to hard-coded oracles in test
drivers. This study also showed that contract assertions can be used to significantly
lower the effort of locating faults after the detection of a failure, and that the contracts
need not be perfect to be highly effective. Based on such results, the next step was
therefore to address the automation of using OCL contracts to instrument Java
systems. This paper reports on our experience with the development and use of ocl2j,
a tool for the automated verification of OCL contracts in Java systems [6]. These
verifications are dynamic, i.e., are performed during the execution of the application.

The paper briefly starts with background information, motivation, and related
work. Then we go through an overview of our approach, followed by a discussion of
some of the main technical and methodological issues with respect to transformation
of constraints from OCL to Java. Next, an initial case study, aimed at showing the
feasibility of the ocl2j approach, is presented. Finally, difficulties with using OCL for
this purpose are outlined, conclusions are then provided.

2 Motivation and Related Work

Currently, two tools exist for the purpose of dynamic enforcement of OCL constraints
in Java systems: the Dresden OCL toolkit (DOT) [7, 8] and the Object Constraint
Language Environment (OCLE) [9]. We decided to implement our own solution as
DOT did not fulfill all of our requirements and OCLE did not exist at the time, though
it doesn’t fully address our needs either.

Our aim was to have a tool that would: (1) support all the core OCL 1.4
functionality, (2) correctly enforce constraints, (3) instrument (insert the contract
checking and enforcement code) program code at the bytecode level (as opposed to
altering the source-code), (4) allow for optional dynamic enforcement to the Liskov
Substitution Principle (LSP) [10], (5) support for separate compilation (i.e., allowing
modifications of the application source code without recompiling assertion code or
vice-versa), (6) correctly check constraints when exceptions are thrown, (7) have the
ability for assertion code to use private members, (8) have the option to use either
compile-time or load-time instrumentation (with load-time instrumentation constraint
checking code can be installed or removed without requiring recompilation), and (9)
have the ability to add assertions to classes for which the source-code is not available.

DOT was the pioneering work for this problem and is open-source software. It
relies on the following technical choices. First, the instrumentation occurs at the
source code level: original methods are renamed and wrapped, and supplementary
code is added. OCL types are implemented in Java and Java variables (attributes,
method parameters or return value) used in assertions are wrapped with equivalent
OCL types. Last, the generated code is constructed in such a way that it uses Java
reflection mechanisms at runtime to determine implementation details. Additional

12 W.J. Dzidek, L.C. Briand, and Y. Labiche

logic is inserted that tries to minimize the checking of invariants. Those technical
decisions result in a large memory and performance penalty as a direct consequence
of the virtual cloning (of all objects) and the wrapping (of all objects involved in OCL
constraints). Support for OCL is also incomplete as, for example, query operations are
not supported. Furthermore, constraints on elements in collections are not properly
enforced as changes to elements in the collection can go unnoticed [6]. (Source-code
level instrumentation suffers from two main disadvantages: it makes the developer
deal with two versions of the source-code and it makes it much harder to debug the
application, e.g., when single stepping through the source-code.)

OCLE is a UML CASE tool offering OCL support both at the UML metamodel
and model level, though we only look at the latter: i.e., support for dynamic OCL
constraint enforcement. Like DOT, OCLE instruments the source code and is limited
in its support of OCL (e.g. the @pre keyword is not supported). Furthermore, it
cannot instrument existing (reverse-engineered) source code.

Note that although other tools exist that add design by contract support to Java
[11, 12], they are not discussed in this paper as they do not address the transformation
of OCL expressions into assertions.

3 The ocl2j Approach

This section presents our approach (ocl2j) towards the automatic generation and
instrumentation of OCL constraints in Java. Our approach consists of Java code being
created from OCL expressions and the target system then being instrumented: (1) The
necessary information is retrieved from the target system’s UML model and source
code; (2) Every OCL expression is parsed, an abstract syntax tree (AST) is generated
[7], and the AST is used to create the assertion code (the OCL to Java transformation
rules were defined as semantic actions associated with production rules of the OCL
grammar [13]. The generation of Java assertions from OCL constraints is thus
rigorously defined and easily automated.); (3) The target system is then instrumented
with the assertion code, using AspectJ which is the main Java implementation of
Aspect Oriented Programming (AOP) [14]. The techniques involved in step (3) are
omitted as they’re already described in [15]. It is important to emphasize that this
strategy played a large role in helping us achieve the goals outlines in Section 2.

The section starts (Section3.1) with a discussion of how OCL types are
transformed in Java types. Next, Section 3.2 discusses the topic of equality with
respect to OCL and Java. Section 3.3 shows how the OCL @pre construct is
addressed. Finally, Section 3.4 shows how we were able to use AspectJ to provide
clean and efficient support for oclAny::oclIsNew().

3.1 OCL to Java Transformations

The checking of contracts at runtime slows down the execution of the program. If this
slowdown is too great the developers will not use the technology. For this reason it is
important to focus on techniques that enable faster checking of contracts. One of these
techniques is to translate OCL expressions directly into Java using the types retrieved
from the target system (through reflection) at the assertion-code generation stage,

 Lessons Learned from Developing a Dynamic OCL Constraint Enforcement Tool 13

instead of wrapping Java types and operations with OCL-like types and operations
[7, 8]. The translation time is thus spent during instrumentation rather than execution.
This distinction becomes critical during maintenance of large systems since changes
to the system only occur to the subsystem under development. For this reason it is
both unnecessary and inefficient to perform the OCL to Java type resolution over the
whole system every time the system is executed.

Our OCL to Java type resolution relies on the following principles. First,
whenever a simple mapping exists between OCL and Java types/operations, the
translation is straightforward. For instance, OCL collection operation size() maps
directly to the size() operation of the java.util.Collection interface (which
every collection class in Java implements). When OCL types/operations cannot be
directly converted to types/operations from standard Java libraries, the
instrumentation code (aspect code) provides the functionality that is “missing” in the
libraries. This ensures that no wrapping is necessary, and no additions to the target
system are required. The instrumentation code (i.e., the aspect) contains inner classes
with operations that provide additional functionality to complete the mapping to Java
such as the collection->count(obj):Integer operation, that counts the number
of times object obj occurs in collection and does not have any counterpart in Java
collection classes/interfaces. The aspect code thus contains inner class
OclCollection with a count() static operation that takes two arguments: the
collection on which to count, and the object that needs to be counted.

Next, OCL, unlike Java, has no notion of primitive types (e.g., int) as everything
is considered an object. Java, on the other hand, supports primitive types and
corresponding primitive value wrapper classes, or simply wrapper classes (e.g.,
Integer). OCL provides four, so-called, basic types: Boolean, Integer, Real and
String. There is one exception to these differences in OCL and Java type systems:
strings are objects in both OCL and Java. Having both primitive types and wrapper
classes has a major impact on the process of OCL to Java transformation (unless the
system is written in Java 1.5 where the autoboxing feature is available). For example,
consider the following OCL constraint: someCollection->includes(5). When
transforming the OCL expression into Java source code, 5 has to be transformed into
either primitive value 5 or an instance of wrapper class Integer (new Integer(5)).
As Java collections only take objects as elements, the latter is the correct choice. A
general, trivial solution to this problem would be to convert every literal value into an
object, but as already discussed, this is inefficient. A more efficient solution consists
in analyzing the types used in the OCL expression, the types required in the
corresponding Java source code, as well as the characteristics of the expression, and
converting objects to their primitive types when possible (i.e. values used in logical,
addition, multiplication, and unary operations).

OCL has three collection types, namely Set, Bag, and Sequence, whereas, Java
only has two main collection interfaces, namely java.util.Set and
java.util.List (we assume that user-define collections directly or indirectly
implement java.util.Collection). There is a direct mapping between OCL Set
and java.util.Set and between OCL Sequence and java.util.List.
However, OCL Bag does not have a direct Java counterpart. A bag is a collection in
which duplicates are allowed [16]. java.util.Set cannot be used to implement an

14 W.J. Dzidek, L.C. Briand, and Y. Labiche

OCL Bag as it does not allow duplicates. The only possible alternative, which is
assumed in the ocl2j approach, is to implement OCL Bag with java.util.List.

The following 3 scenarios are encountered when translating a collection operation:

1. There is a direct mapping between the OCL operation and a Java operation.
2. The OCL operation does not have a direct counterpart but its functionality can

easily be derived from existing Java operations.
3. OCL operations that iterate over collections and evaluate an OCL expression

(passed as a parameter to the operation) on elements in the collection are more
complex. They do not have a direct Java counterpart and cannot be simply
implemented using the operations provided by java.util.Set or
java.util.List. These OCL operations are exists, forAll, isUnique,
sortedBy, select, reject, collect, and iterate. They require more attention
as the parameter is an OCL expression which requires to be instrumented as well in
the aspect code. Templates and transformation rules are used to generate a unique
method (residing in the aspect) for every distinct use of these operations [6].

3.2 Testing for Equality

Assertion code that tests for equality can take any one of three forms. First, if the
values to be compared are of primitive type then the Java “==” construct is used in the
equality test. Next, if the values being compared (or just one of them) are of reference
type wrapping a primitive then the primitive value is extracted from the object using
the appropriate method (e.g., intValue() for an object of type Integer) and again
the values are tested for equality using the Java “==” construct. In other cases, objects
are tested for equality using their equals(o:Object):boolean method. This is
done as equality in OCL is defined at the object level, not the reference level. For
example, let’s take a look at the java.awt.Point class which has two attributes:
x:int and y:int. Given two points Point a = new Point(5, 5) and Point b
= new Point(5, 5). If we compare these points at a “reference level” they will not
be equal (a == b evaluates to false), even though they the two objects a and b do
represent the same point. Thus, Point’s equals method must be used to evaluate
their equality (a.equals(b) evaluates to true).

We assume that the equals() method is properly implemented [17] so that
objects are deemed equal when their key attributes are equal. We define key attributes
as attributes that define an object’s identity (e.g., attributes x and y in the case of the
Point class). Sometimes each instance of a class is unique (no clones are possible) in
which case the default equals() functionality (i.e., inherited from
java.lang.Object, considers each instance only equal to itself) will suffice as this
functionality only compares reference values for equality, but when this is not the
case the equals() method must be overridden. Note that this last point is often
neglected by developers of Java-based systems [17].

3.3 Using Previous Property Values in OCL Postconditions

This section discusses the practical implementation of the OCL language construct
@pre, used in postconditions to access the value of an object property at the start of

 Lessons Learned from Developing a Dynamic OCL Constraint Enforcement Tool 15

the execution of the operation. Depending on the property that the @pre is associated
with different values and amount of data must be stored temporarily until the
constrained method finishes executing so that the postcondition can be checked. @pre
can be used with respect to one of the following:

1. Java types corresponding to OCL Basic types or query methods that return a
value of such a type. The mapping between these types is discussed in Section 3.1.
In the case of a primitive type, the primitive value is stored in a temporary
variable. In the case of an object, the reference to the object is stored in a
temporary variable. Only the reference is stored as these types are immutable and
thus they cannot change (during the execution of the constrained method).

2. Query methods that return an object. In this case the objects are handled in the
same way as described above, only the reference to that object is stored in a
temporary variable (duplicated), the object itself is not cloned. The object is not
cloned as we assume that the target system is written with proper encapsulation
techniques, meaning that query methods that return an object to which the context
class (the class containing the query method) is related via composite aggregation
return a clone of the object, not the object itself. This is standard practice as
discussed in Item 24 of [17]. Note that this is a necessary requirement as the
following example will demonstrate: Consider a query method returning a
reference to an object X, used in a method M’s postcondition with the @pre
keyword (i.e., we are interested in the value of X at precondition-time): i.e., the
postcondition reads …=…query()@pre. Further assume that M modifies X during
its execution. Once M finishes execution the postcondition is verified. Since the
query method returns a reference to X (instead of a clone of X), the postcondition
will use the new version of X, as opposed to the original version at precondition-
time.

3. Objects (references to objects). The object types in this discussion exclude the
ones discussed in the points above. In this case a clone of the object is taken and
stored in a temporary variable. We assume that the programmer properly
implements cloneability support (as will be discussed).

4. Collections. A collection’s identity is defined by the elements in that collection,
thus a clone of a collection contains a clone of every element in the original
collection. Using @pre on a collection will result in such a duplication of the
collection in most cases. When the OCL collection operation being invoked on
someCollection@pre is size():Integer, isEmpty():Boolean,
notEmpty():Boolean, or sum():T then only the result of the operation is
stored in the temporary variable. We note that in a lot of cases it may not be
necessary to duplicate the collection in such a manner to enforce the postcondition
correctly, but this is a subject for future work.

For a guide to providing support for cloneability see Item 10 in [17]. Essentially,
two types of cloning methods exist. In a shallow copy, the fields declared in a class
and its parents (if any) will have values identical to those of the object being cloned.
In the case of a class exhibiting one or more composite relationships the shallow copy
is not sufficient and a deep copy must be used. In a deep copy, all the objects in
the composition hierarchy must also be cloned. To understand why, recall our
objective: We need access to the objects, as they were, before the constrained method

16 W.J. Dzidek, L.C. Briand, and Y. Labiche

executed. Objects are uniquely identified by their key attributes (key attributes are
discussed in Section 3.2). If these objects have composite links to other objects (i.e.,
their class has composite relationships), thus forming a hierarchy of objects, the key
attributes may be located anywhere in the hierarchy. A deep copy is therefore
necessary.

3.4 oclAny::oclIsNew() Support

Any OCL type in a UML model, including user-defined classes, is an instance of
OclType: it allows access to meta-level information regarding the UML model. In
addition, every type in OCL is a child class of OclAny, i.e., all model types inherit the
properties of OclAny. Among those properties is operation oclAny::oclIsNew()
that can only be used in a postcondition: It evaluates to true if the object on which it
is called has been created during the execution of the constrained method.

The ocl2j solution to the problem of implementing operation
oclAny::oclIsNew() is the following. If this operation is used on a type in an OCL
expression, a collection is added to an AspectJ aspect. This collection will store
references to all the instances of the type created during the execution of the
constrained method (as oclAny::oclIsNew() can only be used in the context of a
postcondition): This is easily achieved with AspectJ as it only requires that the aspect
comprises an advice to add, at the end of the execution of any constructor of the type
of interest or its subtypes, the reference of the newly created instance. This raises the
question of the choice of the Java data structure to store those references and
the impact of aspect code on object garbage collection in Java: Objects in the
instrumented program should be garbage collected if they are not used in
the application code, even though they may be referenced by the aspect code. A
solution to this problem is to use class java.util.WeakHashMap to store these
references in the aspect. This collection was specifically designed so as to store
references that would not be accounted by the garbage collector. It is based on a hash
map where the keys are weak references to the objects we are monitoring. The
garbage collector can get rid of an object, even when this object is still referenced,
provided that these references are only used in instances of class WeakHashMap.
When this is the case, the object is garbage collected and any reference to it removed
from instances of the WeakHashMap.

Determining whether an object was created during the execution of the constrained
method involves checking the WeakHashMap collection for the presence of the object
in question. Finally, after the constrained method finishes executing and the
postcondition is checked, the collection of instances (created during the execution of
that method) is discarded.

Please note that this solution is not easily mapped to a solution that enables the use
of the oclAny:: allInstances() construct as there is no way to force the JVM to
run the garbage collection operation (though Runtime.getRuntime().gc() can be
used to suggest this to the JVM). Thus, such an implementation of oclAny::
allInstances() could, in certain instances, return a collection of objects including
ones that are designated for garbage collection (no longer referenced).

 Lessons Learned from Developing a Dynamic OCL Constraint Enforcement Tool 17

4 Preliminary Case Study

The case study is based on the system presented in [16]: The “Royal and Loyal”
system example. Though modest in size, this system was chosen due to the large
number of diverse constraints being already defined for it, including some quite
complex ones. It should then provide initial evidence that ocl2j works for a wide
variety of constraints. The UML model in [16] was expanded in this work to the
system shown in [6] in order to be implementable. Once expanded, it was
implemented in Java and consisted of 381 LOCs, including 14 classes, 47 OCL
constraints, 53 attributes, and 46 operations.

The original version of the R&L system and the version with the assertion code
(instrumented) are compared for a set of scenarios where various numbers of
customers are added and various amounts of purchases are made. We use the
following three criteria for comparison: (1) bytecode size of the classes, (2) time it
takes to execute the program (in various scenarios), and (3) memory footprint (again,
in various scenarios). From the case study we conclude that programs that have
relatively large collections with many complicated constraints associated with these
collections can expect, as a ballpark figure, a degradation in execution time of 2 to 3
times. Otherwise, the degradation in performance is smaller as the execution speed is
slowed down by roughly 60%. This is significant but does not prevent the use of
instrumented contracts in most cases during testing, unless the system’s behavior is
extremely sensitive to execution deadlines. The sources of degradation in
performance have been further investigated in [6] where solutions are proposed for
optimization. With respect to criteria (1), the target system grew 2.5 times in size, and
(3), the maximum overhead percentage observed for the above scenarios were 14%
and 10.5%, respectively.

5 Future Challenges

While developing ocl2j we ran into several non-trivial issues that require significant
work to address. Among others:

• Providing support for the @pre keyword leaves a lot of room for performance
optimizations. For example, to properly evaluate the postcondition
self.aCollection@pre = self.aCollection in every scenario, one must
create a new collection (say tempCollection) that holds a clone of every
element present in self.aCollection. If aCollection is large or if the
elements in that collection are expensive to clone, then the evaluation of this
postcondition becomes very expensive. Furthermore, this potentially expensive
operation is not even necessary if all the designer intended to check was whether
self.aCollection@pre and self.aCollection point to the same object
(i.e. hold the same reference). In such a situation the designer should be allowed
to distinguish weather a deep or shallow copy is meant by the @pre. One way of
addressing this would be by adding the keyword @preShallow to OCL.

• The use of @pre may lead to un-computable expressions. As shown in [18], the
expression self.b.c@pre with respect to the example in Section 7.5.15 in [20]

18 W.J. Dzidek, L.C. Briand, and Y. Labiche

is not computable: “Before invocation of the method, it is not yet known what
the future value of the b property will be, and therefore it is not possible to store
the value of self.b.c@pre for later use in the postcondition!”.

• Our experience revealed that, by far, the largest performance penalties
(execution time overhead) of checking the OCL constraints during the execution
of the system came from OCL collection operations [6]. For this reason we have
started working on an approach to minimize these performance penalties. In
general the strategy involves checking a constraint on a collection whenever the
state of the collection changes in such a way that it could invalidate the
constraint. For example, consider the constraint aCollection-

>forAll(anExpression). If this constraint is an invariant then it will be
checked before and after any public method executes, even if neither the state of
aCollection nor its elements changes. An alternative to this would be to check
that anExpression holds for a newly added element to aCollection, and that
anExpression holds for elements in the collection that undergo changes that
may invalidate it. This alterative will be more efficient on a large, often-checked,
collection that does not undergo large changes. Note that this kind of strategy is
facilitated by the use of AOP as the instrumentation technology.

• The implementation of the OclAny::allInstances():Set(T) functionality
in Java is challenging since Java uses automatic garbage collection, i.e., objects
do not have to be explicitly destroyed. Thus, the only way to know whether an
object is ready to be garbage collected (and therefore not be in the
allInstances set) is to run the garbage collection operation (costly execution-
wise) after every state change in the system involving the destruction of a
reference.

6 Conclusions

We have presented a methodology, supported by a prototype tool (ocl2j), to
automatically transform OCL constraints into Java assertions. The user of ocl2j can
then specify whether a runtime exception is thrown or an error message is printed to
the standard error output upon the falsification of an assertion during execution. This
has shown, in past studies [5], to be extremely valuable during testing to detect
failures and help debugging.

Transformation rules to translate OCL constraints into Java assertions have been
derived in a systematic manner with the goal that upon instrumentation the generated
assertion code will be efficient in terms of execution time and memory overhead. This
was largely achieved thanks to the systematic definition of efficient semantic actions
on production rules in the OCL grammar, and the minimization of reflection use at
runtime. An initial case study has shown that the overhead due to instrumentation
compares very well to previous approaches [8] and is likely to be acceptable in most
situations, at least as far as testing is concerned. More empirical studies are however
required. Furthermore, we have shown how we dealt with aspects of the OCL
specification that present serious instrumentation challenges (e.g. providing support
for @pre and oclIsNew()) and reported on issues that we feel require future work
(e.g. refinement of the OCL syntax and advanced optimization techniques).

 Lessons Learned from Developing a Dynamic OCL Constraint Enforcement Tool 19

References

1. Szyperski, C., Component Software. 2nd ed. 2002: ACM Press.
2. Briand, L.C., et al. A Controlled Experiment on the Impact of the Object Constraint

Language in UML-Based Development. In IEEE ICSM 2004. p. 380-389.
3. Emmerich, W., Engineering Distributed Objects. 2000: Wiley.
4. Kleppe, A., J. Warmer, and W. Bast, MDA Explained - The Model Driven Architecture:

Practice and Promise. 2003: Addison-Wesley.
5. Briand, L.C., Y. Labiche, and H. Sun, Investigating the Use of Analysis Contracts to

Improve the Testability of Object-Oriented Code. Software - Practice and Experience,
2003. 33(7): p. 637-672.

6. Briand, L.C., W. Dzidek, and Y. Labiche, Using Aspect-Oriented Programming to
Instrument OCL Contracts in Java. 2004. SCE-04-03. http://www.sce.carleton.ca/squall.

7. Finger, F., Design and Implementation of a Modular OCL Compiler. 2000, Dresden
University of Technology.

8. Wiebicke, R., Utility Support for Checking OCL Business Rules in Java Programs. 2000,
Dresden University of Technology.

9. LCI, Object Constraint Language Environment (OCLE). http://lci.cs.ubbcluj.ro/ocle/.
10. Liskov, B., Data Abstraction and Hierarchy. SIGPLAN Notices, 1988. 23(5).
11. Plösch, R., Evaluation of Assertion Support for the Java Programming Language. Journal

Of Object Technology, 2002. 1(3).
12. Lackner, M., A. Krall, and F. Puntigam, Supporting Design by Contract in Java. Journal

Of Object Technology, 2002. 1(3).
13. Appel, A.W., Modern Compiler Implementation in Java. 2nd ed. 2002: Cambridge

University Press.
14. Elrad, T., R.E. Filman, and A. Bader, Aspect-oriented programming: Introduction.

Communications of the ACM, 2001. 44(10): p. 29-32.
15. Briand, L.C., W.J. Dzidek, and Y. Labiche. Instrumenting Contracts with Aspect-Oriented

Programming to Increase Observability and Support Debugging. In IEEE International
Conference on Software Maintenance. 2005.

16. Warmer, J. and A. Kleppe, The Object Constraint Language. 1999: Addison-Wesley.
17. Bloch, J., Effective Java: Programming Language Guide. 2001: Addison Wesley.
18. Hussmann, H., F. Finger, and R. Wiebicke. Using Previous Property Values in OCL

Postconditions - An Implementation Perspective. in <<UML>>2000 Workshop - "UML
2.0 - The Future of the UML Constraint Language OCL". 2000.

OCL and Graph-Transformations – A Symbiotic
Alliance to Alleviate the Frame Problem�

Thomas Baar

École Polytechnique Fédérale de Lausanne (EPFL),
School of Computer and Communication Sciences,

CH-1015 Lausanne, Switzerland
thomas.baar@epfl.ch

Abstract. Many popular methodologies are influenced by Design by
Contract. They recommend to specify the intended behavior of opera-
tions in an early phase of the software development life cycle. Formal
contract specification languages, however, are still rarely used because
their semantics often mismatch the needs of software developers. Restric-
tive specification languages usually suffer from the ”frame problem”: It
is hard to express which parts of the system state should remain unaf-
fected when the specified operation is executed. Constructive specifica-
tion languages, instead, suffer from the tendency to make specifications
deterministic. This paper investigates how a combination of OCL and
graph transformations can overcome the frame problem and can make
constructive specifications less deterministic. Our new contract specifica-
tion language is considerably more expressive than both pure OCL and
pure graph transformations.

Keywords: Design by Contract, Behavior Specification, Graph Gram-
mars, OCL, QVT.

1 Motivation

Design by Contract (DbC) [1, 2] encourages software developers to specify the
behavior of class operations in an early phase of the software development life
cycle. Precise descriptions of the intended behavior of operations can be of great
help to grasp design decisions and to understand the responsibilities of classes
identified in the design. The specification of behavior is given in form of a con-
tract consisting of a pre- and a postcondition, which clarify two things: The
pre-condition explicates all conditions that are expected to hold whenever the
operation is invoked. The post-condition describes how the system state looks
like upon termination of the operation’s execution.

There are many specification languages available to define contracts formally.
Despite their differences at the surface level, all languages can be divided into
only two classes. The classification is based on the technique to specify the

� This work was supported by Hasler-Foundation, project DICS-1850.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 20–31, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

OCL and Graph-Transformations – A Symbiotic Alliance 21

post-condition of a contract. Restrictive specification languages formulate the
post-condition in form of a predicate, i.e. a Boolean expression, which restricts
the allowed values for properties in the post-state. Well-known examples for
restrictive languages are OCL, JML, Z, and Eiffel. Constructive specification
languages interpret post-conditions not as restrictions on the post-state but –
conceptually completely different – as updates, which transform the pre-state
into the post-state. In many cases, an update denotes a deterministic contract:
for a pre-state that satisfies the pre-condition the post-state can be computed
deterministically. Well-known examples for constructive languages are B, ASM,
graph transformations, and UML’s Action Language.

This paper investigates how the expressive power of constructive languages
– as an example we consider one form of graph transformations – can be im-
proved to master non-deterministic contracts. In Sect. 3, the basic elements of
graph transformations are extended with restrictive specification elements (OCL
clauses). In its extended version, graph transformations are more powerful but
still not powerful enough to formalize all contracts that are relevant in practice.
Thus, a second extension is discussed in Sect. 4, which allows to simulate the
loose semantics of restrictive languages. To summarize, the proposed extensions
of graph transformations enable software developers to write formal contracts
that (1) do not suffer from the frame problem, (2) are non-deterministic, and
(3) allow to change a state freely.

Related Work. The idea to use graph transformations to formalize contracts
is not novel. There are even already tools for this purpose available [3, 4]. The
examples we found in the literature, however, are always deterministic contracts,
which do not require to extend graph transformations with restrictive specifica-
tion elements.

The idea to extend graph transformations with OCL clauses has been adopted
from the Query/Views/Transformations proposal (QVT) [5], which is a response
on a corresponding request for proposals by the OMG. In Sect. 3, the QVT
approach is put into a broader context by providing the link from model trans-
formation (the original application domain of QVT) to formal contract
specification.

Extending graph transformation rules with OCL also means to combine OCL
with object diagrams, what has been explored in the literature also for a differ-
ent target than contract formalization. The language VOCL (Visual OCL) uses
collaborations to represent OCL constraints in a visual format for better read-
ability [6]. Similarly, the proposal made by Schürr in [7] is inspired by Spider
diagrams and aims at a more readable, graphical depiction of OCL constraints.
The approaches described in [6, 7] cannot be compared with the approach pre-
sented in this paper because they have a fundamentally different goal. Firstly,
[6, 7] do not use OCL in order to improve the expressive power of a graphical
formalism. Instead, the graphical formalism is merely used as an alternative to
OCL’s textual standard syntax. Secondly, our approach targets only operation
contracts whereas [6, 7] aim at a visualization of any kind of OCL constraints
including invariants.

22 T. Baar

2 Restrictive Languages and the Frame Problem

2.1 Example: CD Player

The main purpose of CD players is to entertain people and to play the content of
compact discs (CDs). The content of a CD is organized by tracks that are burned
in a certain order on the CD. We want to assume that a CD can be played in
two modes. In the normal mode, all tracks on the CD are played in the same
order as they appear on the CD. In addition, the CD player can work in a shuffle
mode in which the tracks are played in a randomized order. Finally, we want
to assume that a CD player has a display on which, depending on the chosen
display mode, the elapsed or remaining time for the current track is shown. This
CD player scenario is modeled straightforwardly by the class diagram shown in
Fig. 1.

CD Track
0..10..1 1..*

<<enumerate>>
TimeDM

elapsed
remaining

CDPlayer

timeDisplayMode:TimeDM
currentTrack:Integer

setNextTrack()
setRandomTrack()
play()

inserted {ordered}

Fig. 1. Static model of CD player scenario

In the next subsection, we will focus on the formal behavior specification for
the operations setNextTrack() whose intended semantics is to determine the
next track to be played if the CD player is working in the normal mode. The
operation setRandomTrack()will be specified in Sect. 3 and determines the next
track if the CD player works in the shuffle mode.

2.2 Complexity of the Frame Problem

The intended semantics of operation setNextTrack() is to move one track for-
ward on the CD and to increase the value of attribute currentTrack by one.
The formalization of this behavior in a restrictive language such as OCL seems
to be straightforward but there are some traps one can fall into.

context CDPlayer : : setNextTrack ()
pre : s e l f . in se r t ed −>notEmpty ()
post : s e l f . currentTrack = (s e l f . currentTrack@pre mod
s e l f . i n s e r t ed . track−>s i z e ()) + 1

This contract has some merits since it resolves ambiguities that were hidden
in the informal description of the behavior. The first important information is
expressed by the pre-condition saying that the CD player assumes to have a
CD inserted whenever the operation setNextTrack() is invoked. Note that this
assumption is indeed necessary because the post-condition navigates over the

OCL and Graph-Transformations – A Symbiotic Alliance 23

currently inserted CD. The second merit of the contract is to make explicit the
behavior of setNextTrack() when the current track is the last one on the CD.
Reasonable variants might be to set currentTrack to zero (and thus to stop
playing) or to continue with the first track on the CD as it is stipulated by our
OCL constraint.

Although the OCL contract clarifies the informally given specification in some
respects, it does not capture completely the intended behavior. According to the
formal semantics of OCL in [8], an implementation still fulfills the contract even
if it would not only change the value of currentTrack but also the display
mode (attribute timeDisplayMode). Or the implementation could create/delete
other objects, or could change the state of other objects, or could change the
connections (links) between objects.

3 Constructive Languages and Non-deterministic
Contracts

Graph transformations are introduced as a constructive specification language.
It is discussed, why pure graph transformations are able to specify the operation
setNextTrack() but fail to specify setRandomTrack() correctly. To overcome
this problem, we finally discuss a combination of constructive and restrictive
specification style.

3.1 Non-deterministic Contracts

Non-deterministic contracts are necessary when not all details of the operation
behavior should be fixed in time of writing the contract.

The intended behavior of setRandomTrack() is a typical example for a non-
deterministic contract. The operation name setRandomTrack might be mislead-
ing as it might set up the expectation that our contract will enforce a true
randomized behavior of the implementation in the sense that invoking the op-
eration twice in the same state will most likely result in different post-states.
Note that this kind of randomness cannot be expressed by a contract (neither in
OCL nor in any other contract language) because it would require to describe
formally the behavior of multiple invocations whereas a contract can specify only
the behavior of a single invocation.

The specification of setRandomTrack() in OCL looks as follows:

context CDPlayer : : setRandomTrack ()
pre : s e l f . in se r t ed −>notEmpty ()
post : Set { 1 . . s e l f . i n s e r t ed . track−>s i z e ()}

−>i n c l ud e s (s e l f . currentTrack)

This contract suffers again from the frame problem but, if this is ignored
for a while, the post-condition keeps intentionally the exact post-state open
and thus allows many different implementations. Even, an implementation that
constantly sets attribute currentTrack to 1 was possible and would conform to
this contract.

24 T. Baar

3.2 Graph Transformations as a Constructive Language

A graph transformation rule consists of two graph patterns called left-hand side
(LHS) and right-hand side (RHS). Graph patterns are normal graphs whose
elements, i.e. nodes and links connecting some nodes, are identified by labels.

Besides this basic version of graph transformation rules, modern graph trans-
formation systems offer much more sophisticated elements to describe patterns
such as typed nodes, multiobjects, negative application conditions (NACs), pa-
rameters, etc. (see [9]). In the rest of the paper, we will use the graph transforma-
tion system QVT submitted as a proposal to the OMG for the standardization
of model transformations. For details on the syntax/semantics of this formalism,
the interested reader is referred to [5]. A bigger example on how QVT can be
used as a contract specification language is given in [10].

As a simple example for a behavioral specification using graph transforma-
tions, Fig. 2 shows a rule specifying the intended behavior of setNextTrack().

setNextTrack(self:CDPlayer)

self:CDPlayer

currentTrack=x
aCD:CD

inserted self:CDPlayer

currentTrack=
 (x mod self.inserted.track->size()) + 1

aCD:CD
inserted

Fig. 2. Specification of setNextTrack with QVT

The graph patterns LHS, RHS use typed nodes (e.g. self:CDPlayer) that
must conform to the system description given in Fig. 1. The LHS of the rule
serves two things. First, it imposes restrictions that must hold in order to make
the rule applicable for the given state. For setNextTrack(), the effective re-
striction is that the CD player self has a CD inserted (expressed by the link
between self and aCD). The second purpose of LHS is to query the pre-state
and to extract information that is important for the post-condition encoded
by RHS. In our example, the variable x extracts the current value of attribute
currentTrack. Note that the attribute currentTrack could have been omitted
in LHS and the rule would still be applicable on exactly the same set of graphs
as before (but, in this case, RHS had to be reformulated).

The RHS of setNextTrack() is almost identical to LHS except for the value of
attribute currentTrack. Consequently, applying the rule on a state will change
only the value of currentTrack on the object self and nothing else. The new
value of this attribute is computed based on the information queried during the
first step of the rule application.

3.3 Mixing Constructive and Restrictive Languages

Graph transformation rules, as they were explained so far, can capture deter-
ministic contracts in an elegant way whereas it seems hopeless to use them for
non-deterministic contracts.

OCL and Graph-Transformations – A Symbiotic Alliance 25

Fortunately, there is a solution and the same problem has been already tackled
by other constructive languages. The language B, for example, offers, besides
a pseudo-programming language for computing the post-state, the construct
ANY-WHERE. This construct causes a non-deterministic split in the control
flow and connects the same pre-state with possibly many post-states. The non-
deterministic choices are, however, restricted by a predicate, which has to be
evaluated in all control flows to true. In other words, constructive and restrictive
specification style is mixed. The formal semantics of ANY-WHERE is defined in
[11]. For an example-driven explanation of ANY-WHERE, the reader is referred
to [12].

setRandomTrack(self:CDPlayer)

self:CDPlayer

currentTrack=x
aCD:CD

inserted self:CDPlayer

currentTrack= y
aCD:CD

inserted

{when}
0 < y and y < self.inserted.track->size() + 1

Fig. 3. Specification of setRandomTrack with QVT

Basically, for increasing the expressive power of graph transformations the
same idea as in B can be applied. In QVT, variables can occur in RHS even if
they do not occur in LHS. Consequently, the value of these fresh variables is not
fixed anymore by the first step of the rule application and can be chosen non-
deterministically. In order to get at least partial control over the values of these
variables, QVT has added when-clauses to transformation rules. A when-clause
contains constraints written in OCL. The constraint restricts the possible values
not only for fresh variables used in RHS but for all elements in LHS and RHS.

The specification of setRandomTrack() shown in Fig. 3 takes advantage of
the fresh variable y in RHS. The value of y is restricted in the when-clause what
exactly captures the intended semantics.

4 Giving Graph Transformations a Loose Semantics

Although the integration of the when-clause is a necessary step to make graph
transformations widely applicable and to overcome the determinism problem,
this step is not sufficient. Another immanent problem of constructive languages
remained unsolved. It is sometimes necessary to express in the contract that the
implementations of the operation are allowed to change parts of the system state
in an arbitrary way. If one puts this request to its very end, it means that in
some cases the loose semantics of restrictive languages is needed.

In this section, we propose an extension of QVT that makes it possible to
simulate the loose semantics of purely restrictive contracts written in OCL. These
enrichments require a slight extension of QVT’s notation to describe LHS and
RHS.

26 T. Baar

4.1 Possible Side Effects of Restrictive Specifications

As argued in Sect. 2, the contract for setNextTrack() written in OCL does not
exclude unintended side effects. These side effects can be classified as follows:

1. On object self, the values of the attributes not mentioned in the post-
condition might have been changed.

2. The values of attributes of CDPlayer-objects different from self might have
been changed.

3. The values of attributes of objects of other classes might have been changed.
4. An unrestricted number of objects of some classes might have been newly

created.
5. An arbitrary number of existing objects except selfmight have been deleted.
6. An arbitrary number of links might have been created/deleted.

We will demonstrate in Sect. 4.3 how the contract for setNextTrack() shown
in Fig. 2 had to be changed in order to capture each of these possible side effects.
Beforehand, in the next subsection, the new constructs proposed for QVT, which
are needed to simulate loose semantics, are summarized.

4.2 A Proposal for Extending QVT

Optional Creation/Deletion of Objects and Links. Graph transformation
rules must be able to express that an object is optionally created or deleted. The
same holds for links. So far, one can only specify that an object/link must have
been created (deleted) by displaying the object/link in RHS but not LHS (in LHS
but not in RHS). We propose to adorn an object/link in RHS with a question
mark (’?’) to mark its optional creation/deletion.

Note that it is a proven technique to adorn elements in LHS and RHS in order
to modify the standard semantics of the rule. QVT and other graph transforma-
tion formalisms allow already to adorn elements with ’X’ in order to express a
negative application condition (NAC).

Placeholders to Denote Arbitrary Attributes/Classes. A more signif-
icant extension of graph transformations is the introduction of placeholders.
Currently, QVT allows to describe the change of an attribute value only if the
name of the attribute is known. One can, for example, not specify the reset of
all attributes of type Integer to 0 unless all these attributes explicitly occur in
the graph transformation rule.

We propose to use placeholders for attributes as a representation of arbitrary
attributes. These placeholders appear in the same compartment of the object
as normal attributes. In order to distinguish between normal attributes and
placeholders, we start the name of the latter always with a backslash (\). This
convention relies on the assumption that the name of normal attributes never
starts with backslash. For example, if \att appears in the attribute compartment
of an object, then it represents all attributes of this object (including attributes
inherited from super-classes).

OCL and Graph-Transformations – A Symbiotic Alliance 27

Attribute

name:String
Class

ObjectSlot

*

*

*

1

1

1

1

anchestorclasses *

Class.allAttributes:Set(Attribute) = self.anchestorclasses->including(self)->collect(attribute)

Association

name:String

Link

2 participants

*

1

*

* 2 *

Fig. 4. Simplifed metamodel for states

Sometimes, a placeholder should not represent all possible attributes but only
some of them. To achieve this, we propose to use QVT’s when-clause to define
using OCL constraints which attributes are represented by which placeholders.
Such OCL constraints, however, refer to the metamodel of UML object diagrams.
To ease the understanding, we rely here on a simplified version of the official
metamodel as shown in Fig. 4.

Furthermore, in order to distinguish easily OCL constraints referring to the
metamodel from ordinary ones, we decided – slightly abusing OCL’s official
concrete syntax – to precede within OCL expressions each navigation on the
metalevel with a backslash.

Besides placeholders for attributes there are also analogously defined place-
holders for classes.

4.3 Realization of Possible Side Effects

We give examples on how the side effects of OCL constraints presented in
Sect. 4.1 can be simulated using our extension of QVT. In all cases, we start
from the constructive specification of setNextTrack() shown in Fig. 2.

Other Attributes for Self Can Change. A naive solution could be to ex-
plicitly list all attributes of object self in both LHS and RHS and to assign in
RHS a fresh variable to the attribute.

This solution is first of all tedious to write down and in addition has the limits
that were already discussed: In time of writing the contract, not all subclasses
of CDPlayer might be known. Be aware that the QVT rule formulated in Fig. 2
is applicable even when self matches with an object whose actual type is not
CDPlayer but a subclass of it. The core of the problem is, that, when writing
the contract, we cannot predict which attributes the object self actually has.

The rule shown in Fig. 5 overcomes this principal problem. Each attribute of
self is represented by placeholder \attDiffCurrentTrack as long as its name
is different from ’currentTrack’. This is precisely described in the when-clause
by an OCL constraint: For the actual class of self (which might be a subclass

28 T. Baar

setNextTrack(self:CDPlayer)

self:CDPlayer

currentTrack=x
\attDiffCurrentTrack=v

aCD:CD
inserted self:CDPlayer

currentTrack= (x mod n) + 1
\attDiffCurrentTrack=v'

aCD:CD
inserted

{when}
n = self.inserted.track->size() and
self.\class.\allAttributes->reject(a| a.\name='currentTrack')->includes(\attDiffCurrentTrack)

Fig. 5. Different attribute values for self

of CDPlayer) all valid declarations of attributes (including declarations from
super-classes) are collected. The OCL constraint in the when-clause stipulates
that the placeholder \attDiffCurrentTrack stands for any attribute as long as
it is not named ’currentTrack’ since attribute currentTrack cannot be changed
in an arbitrary way. The value of \attDiffCurrentTrack in LHS is represented
by variable v, which does not occur in the RHS. The new value v’ in RHS shows
that the value of the attribute matching with \attDiffCurrentTrack might
have been changed during the execution of the operation.

State of Other CDPlayer-Objects Might Change. This side effect is sim-
ilar to the effect of changing the state of self and can be captured by applying
the same technique to enrich the QVT transformation. A new object other is
added to both LHS and RHS. In RHS, the value of the placeholder \att is
changed to a possibly new value v’.

setNextTrack(self:CDPlayer)

self:CDPlayer

currentTrack=x
aCD:CD

inserted self:CDPlayer

currentTrack= (x mod n) + 1
aCD:CD

inserted

{when}
n = self.inserted.track->size() and
self <> other

other:CDPlayer

\att=v

other:CDPlayer

\att=v'

Fig. 6. Different attribute values for other objects of class CDPlayer

State of Objects of Other Classes Might Change. In order to simulate
state changes on objects of arbitrary classes different from CDPlayer (and its
subclasses) placeholders for classes are needed. We have introduced the place-
holder \OtherClasswhose value is restricted by an appropriate constraint in the
when-clause. The technique to change the state of objects of class \OtherClass
is the same as the one exploited above to simulate the state change of CDPlayer-
objects.

Objects Different from Self Might Have Been Deleted. It is not enough
to add the question mark to the new object other (that represents an arbitrary

OCL and Graph-Transformations – A Symbiotic Alliance 29

setNextTrack(self:CDPlayer)

self:CDPlayer

currentTrack=x

aCD:CD

\att1 = v1

inserted self:CDPlayer

currentTrack= (x mod n) + 1
aCD:CD

\att1=v1'

inserted

{when}
n = self.inserted.track->size() and
\Class.allInstances->reject(c| c.\name='CDPlayer' or c.\anchestorclasses.\name->includes('CDPlayer')->
 includes(\OtherClass) and
other.\class.\allAttribute->includes(\att)

other:\OtherClass

\att=v

other:\OtherClass

\att=v'

Fig. 7. Different attributes for object of other classes

setNextTrack(self:CDPlayer)

self:CDPlayer

currentTrack=x
aCD:CD

inserted self:CDPlayer

currentTrack= (x mod n) + 1
aCD:CD

inserted

{when}
n = self.inserted.track->size() and
self<>other

other:\Class other:\Class

?

?

Fig. 8. Deletion of objects

object different from self). Unfortunately, the question mark must also be at-
tached on all objects different from self that are explicitly mentioned in RHS
(without such a question mark, the QVT semantics stipulates that all objects
occurring in RHS are not deleted).

Objects Might Have Been Created. Optional creation of arbitrarily many
objects is expressed by adding a multiobject other to RHS. For each class, other
represents the set of newly created objects.

setNextTrack(self:CDPlayer)

self:CDPlayer

currentTrack=x
aCD:CD

inserted self:CDPlayer

currentTrack= (x mod n) + 1
aCD:CD

inserted

{when}
n = self.inserted.track->size()

other:\Class

Fig. 9. Creation of objects

Links Might Have Been Created. For the optional creation of links, two
arbitrary objects o1, o2 are searched in LHS. The classes of o1, o2 must be
connected by an association with name assoname. RHS stipulates the optional
creation of a corresponding link between both objects.

30 T. Baar

setNextTrack(self:CDPlayer,assoname:String)

self:CDPlayer

currentTrack=x
aCD:CD

inserted self:CDPlayer

currentTrack= (x mod n) + 1
aCD:CD

inserted

{when}
n = self.inserted.track->size() and
\Class1.anchestorclasses->including(\Class1)->exists(c1|
 \Class2.anchestorclasses->including(\Class2)->exists(c2|
 \Association.allInstances->select(name=assoname)->exists(a| a.participants = Set(c1,c2))))

o1:\Class1 o2:\Class2 o1:\Class1 o2:\Class2? assoname

Fig. 10. Creation of links

Links Might Have Been Deleted. Analogously to the optional deletion of
objects we mark also links that are deleted optionally with a question mark.

setNextTrack(self:CDPlayer)

self:CDPlayer

currentTrack=x
aCD:CD

inserted self:CDPlayer

currentTrack= (x mod n) + 1
aCD:CD

inserted?

{when}
n = self.inserted.track->size()

o1:\Class1 ?o2:\Class2 o1:\Class1 o2:\Class2

Fig. 11. Deletion of links

5 Conclusion and Future Work

In this paper, pros and cons of the two main behavior specification paradigms –
constructive and restrictive style – are discussed. If restrictive languages do not
provide provision for tackling the frame problem (such as OCL), then the speci-
fied contracts are comparably weak and do most often not capture the behavior
intended by the user. Constructive languages suffer from the opposite problem as
they sometimes prescribe too detailed the behavior and do not allow the freedom
for variations among possible implementations. These two fundamental problems
make it also very difficult to define a semantically preserving transformation from
specifications of restrictive specification languages into specifications written in
a constructive language, or vice versa.

Graph transformations can be used as a basically constructive specification
language but it is sometimes also possible to pursue a restrictive specification
style. Contracts given in form of a graph transformation rule have the advantage
of being easily accessible by humans due to the visual format. In many cases,
constructive contracts are intended and constructive contracts work well. For
the case that a purely constructive semantics is not appropriate, we have given
in Sect. 4 a catalog of proposals to enrich a graph transition rule so that the
intended behavior is met. This approach to adapt the semantics of the rule more
to the loose semantics of restrictive languages is very flexible since the user has
the possibility to traverse the metamodel with OCL constraints.

OCL and Graph-Transformations – A Symbiotic Alliance 31

A lot of work remains to be done. First of all, the proposed formalism of
extended graph transformations should be implemented by a tool to resolve all
the small problems that can only be recognized if a tool has to be built. In order
to become confident in the formal semantics of the formalism, an evaluator needs
to be implemented that can decide for any contract and any given state transition
whether or not the transition conforms to the contract.

Once such a tool is available, it should be applied on bigger case studies
showing or disproving the appropriateness of the proposed formalism for practi-
cal software development.

References

1. Bertrand Meyer. Applying “design by contract”. IEEE Computer, 25(10):40–51,
October 1992.

2. Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Englewood
Cliffs, second edition, 1997.

3. Claudia Ermel and Roswitha Bardohl. Scenario animation for visual behavior
models: A generic approach. Software and Systems Modeling (SoSym), 3(2):164–
177, 2004.

4. Lars Grunske, Leif Geiger, Albert Zündorf, Niels van Eetvelde, Pieter van Gorp,
and Dániel Varró. Model-driven Software Development - Volume II of Research
and Practice in Software Engineering, chapter Using Graph Transformation for
Practical Model Driven Software Engineering. Springer, 2005.

5. OMG. Revised submission for MOF 2.0, Query/Views/Transformations, version
1.8. OMG Document ad/04-10-11, Dec 2004.

6. Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer.
Consistency checking and visualization of OCL constraints. In UML 2000 - The
Unified Modeling Language, volume 1939 of LNCS, pages 294–308. Springer, 2000.

7. Andy Schürr. Adding graph transformation concepts to UML’s constraint language
OCL. Electronic Notes in Theoretical Computer Science, Proc. of UNIGRA 2001:
Uniform Approaches to Graphical Process Specification Techniques, 44(4), 2001.

8. OMG. UML 2.0 OCL Specification – OMG Final Adopted Specification. OMG
Document ptc/03-10-14, Oct 2003.

9. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations. World Scientific, 1997.

10. Slavǐsa Marković and Thomas Baar. Refactoring OCL annotated UML class dia-
grams. In Proc. International Conference on Model Driven Engineering Languages
and Systems (MoDELS), volume 3713 of LNCS, pages 280–294. Springer, 2005.

11. Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Cambridge
University Press, August 1996.

12. Thomas Baar. Non-deterministic constructs in OCL – what does any() mean. In
Proc. 12th SDL Forum, volume 3530 of LNCS, pages 32–46. Springer, 2005.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 32 – 38, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Report on the 2nd Workshop on Model Development and
Validation – MoDeVa

Benoit Baudry1, Christophe Gaston2, and Sudipto Ghosh3

1 INRIA, France
benoit.baudry@irisa.fr

2 CEA/LIST, France
christophe.gaston@cea.fr

3 Colorado State University, USA
ghosh@cs.colostate.edu

1 Introduction

Rigorous design and validation methods appear to be more and more necessary in an
industrial context. Software systems are becoming increasingly large and complex,
and run the risk of serious failures from unpredictable behaviors resulting from
interactions between sub-systems. Without proper standardization of modeling
notations and approaches, human beings find it difficult to understand the systems.

Object-oriented and component-oriented design approaches in general, and the
Model Driven Architecture (MDA) approach in particular attempt to overcome this
problem. Formal methods have been intensively applied to evaluate the reliability of
systems. These methods generally require adequate specification and structuring
languages to describe the parts of the system under validation.

A major problem encountered when trying to combine design and validation
features is that structuring languages suitable for one feature are generally not suitable
for the other. For example, the object-oriented paradigm is suitable for large scale
system design, since it allows anthropomorphic design based on service exchanges of
basic entities. However, this paradigm is not suitable (without restriction) for
validation activities, since any enrichment of a system is likely to cause loss of global
properties. In the opposite way, the modular paradigm ensures properties preservation
but the price to pay is a higher level of design difficulty.

The Model Design and Validation (MoDeVa) workshop aimed at being a forum for
researchers and practitioners with varying backgrounds to discuss new ideas
concerning links between model-based design and model-based validation. Topics of
interest included design processes that support complex system modeling and formal
or semi-formal refinement mechanisms. Model-based testing, languages to describe
models (e.g., UML), approaches such as model-driven engineering, model driven
architecture, algebraic languages, automata-based language, first order language, and
propositional languages were considered. The first edition of MoDeVa took place in
Rennes in France in 2004. MoDeVa was a satellite workshop of the ISSRE
conference. This year MoDeVa was a satellite workshop of MoDELS. This paper is a
report on this second edition.

The workshop had two parts – presentation of position papers followed by focused
discussion by two separate groups. Section 2 presents summaries of the 9 papers
selected for presentations. Section 3 summarizes the conclusions of the workshop.

 Report on the 2nd Workshop on Model Development and Validation – MoDeVa 33

2 Paper Summaries

The workshop selected 9 papers out of 17 submissions. One of the main selection
criteria was that the papers clearly demonstrate a step forwards using formal
approaches within a software development methodology. The use of formal
approaches may incorporate the use of formal tools (proving tools, model checkers,
formal testing tool) and include formal definition of semantics to deal with structuring
or refinement mechanisms.

• [1] proposes a formal testing methodology dedicated to the Common
Criteria ISO standard.

• [2] describes a taxonomy of faults that occur in UML design.
• [3] proposes a model based testing approach for UML specifications.
• [4] presents a rigorous and automated based approach for the behavioral

validation of control software systems.
• [5] describes an approach towards increasing the robustness of the UML

refinement machinery.
• [6] suggests a systematic modeling method for embedded systems.
• [7] explores the problem of ensuring correctness of model

transformations.
• [8] describes a round trip engineering process that supports the

specification of UML models and focuses on the analysis of specified
natural language properties.

• [9] proposes an interaction-based approach for use case integration.

[1] Test Generation Methodology Based on Symbolic Execution for the Common
Criteria Higher Levels – Alain Faivre, Christophe Gaston
In the field of security software, the Common Criteria (CC) constitutes an ISO
standard for the evaluation of products and systems from Information
Technologies. The international recognition of the Common Criteria justifies the
investment undertaken by the manufacturers to obtain the certification of their
products. The evaluation criteria are defined according to the Evaluation
Assurance Level (EAL). There are seven EALs: EAL1 to EAL7, in an increasing
order of security demand. For the upper levels of evaluation, the use of formal
methods is mandatory. In that case, supplies intended to realize evaluation
activities must contain components associated to modeling, proof and test. This
contribution proposes a methodology and a tool (AGATHA) which allows
covering the requirements associated to test generation for the upper levels of the
Common Criteria. In that case, the criterion used to stop the test generation activity
is defined by the standard for EAL7 as follows: the generated test case set covers
all functions of the reference model. Each function must be covered “complete”
way (although the term complete remains ambiguous in CC definitions). The
strategy presented in the paper provides a formal meaning to this criterion and
associated test generation techniques.

34 B. Baudry, C. Gaston, and S. Ghosh

[2] A Taxonomy of Faults for UML Designs – Trung Dinh-Trong, Sudipto
Ghosh, Robert France, Benoit Baudry, Franck Fleurey
As researchers and practitioners start adopting model-based software development
techniques, the need to rigorously evaluate design models is becoming apparent.
Evaluation techniques typically use design metrics or verification and validation
approaches that target specific types of faults in the models. Fault models and
taxonomies may be used to develop design techniques that reduce the occurrence of
such faults as well as techniques that can detect these faults. Fault models can also be
used to evaluate the effectiveness of verification and validation approaches. A
taxonomy of faults that occur in UML designs was presented along with a set of
mutation operators for UML class diagrams.

[3] Generating Test Data to test UML Design Models – Trung Dinh-Trong,
Sudipto Ghosh, Robert France, Anneliese Andrews
This paper presents an approach to generating inputs that can be used to test UML
design models. A symbolic execution based approach is used to derive test input
constraints from a Variable Assignment Graph (VAG), which presents an integrated
view of UML class and sequence diagrams. The constraints are solved using Alloy, a
configuration constraint solver, to obtain the test inputs.

[4] Using Process Algebra to Validate Behavioral Aspects of Object-Oriented
Models – Alban Rasse, Jean-Marc Perronne, Pierre-Alain Muller, Bernard
Thirion
This paper presents a rigorous and automated based approach for the behavioral
validation of control software systems. This approach relies on meta-modeling,
model-transformations and process algebra and combines semiformal object-oriented
models with formal validation. Validation of behavioral aspects of object-oriented
models is performed by using a projection into a well-defined formal technical space
(Finite State Process algebra) where model-checkers are available (e.g., LTSA; a
model checker for Labeled Transition Systems). The approach also targets an
implementation platform which conforms to the semantics of the formal technical
space; in turn, this ensures conformance of the final application to the validated
specification.

[5] On the Definition of UML Refinement Patterns – Claudia Pons
This paper describes an approach towards increasing the robustness of the UML
refinement machinery. The aim of this work is not to formalize the UML notation
itself, but to substantiate a number of intuitions about the nature of possible
refinement relations in UML, and even to discover particular refinement structures
that designers do not perceive as refinements in UML.

[6] A Modeling Method for Embedded Systems – Ed Brinksma, Angelika Mader,
Jelena Marincic, Roel Wieringa
This paper suggests a systematic modeling method for embedded systems. The goal is
to derive models (1) that share the relevant properties with the original system, (2)
that are suitable for computer aided analysis, and (3) where the modeling process
itself is transparent and efficient, which is necessary to detect modeling errors early
and to produce model versions (e.g. for product families). The aim is to find

 Report on the 2nd Workshop on Model Development and Validation – MoDeVa 35

techniques to enhance the quality of the model and of the informal argument that it
accurately represents the system. The approach is to use joint decomposition of the
system model and the correctness property, guided by the structure of the physical
environment, following, e.g., engineering blueprints. The approach combines
Jackson’s problem frame approach with a stepwise refinement method to arrive at
provably correct designs of embedded systems.

[7] Model Transformations Should Be More Than Just Model Generators – Jon
Whittle and Borislav Gajanovic
Model transformations are an increasingly important tool in model-driven development
(MDD). However, model transformations are currently only viewed as a technique for
generating models (and, in many cases, only code). Little is said about guaranteeing
the correctness of the generated models. Transformations are software artifacts and, as
such, can contain bugs that testing will not find. This paper proposes that, in fact,
model transformations should do more than just generate models. In addition, they
should generate evidence that the generated models are actually correct. This evidence
can take the form of precise documentation, detailed test cases, invariants that should
hold true of the generated models, and, in the extreme case, proofs that those invariants
do actually hold. The hypothesis is that there is enough information in the definition of
a transformation to provide evidence that certain properties of the generated model are
true. Such information is usually left implicit. By making that information explicit and
annotating the generated model, a consumer of the model increases his/her confidence
that the model does what it is supposed to do.

[8] Automated Analysis of Natural Language Properties for UML Models –
Sascha Konrad, Betty H.C. Cheng
It is well known that errors introduced early in the development process are
commonly the most expensive to correct. The increasingly popular model-driven
architecture (MDA) exacerbates this problem by propagating these errors
automatically to design and code. This paper describes a round trip engineering
process that supports the specification of a UML model using CASE tools, the
analysis of specified natural language properties, and the subsequent model
refinement to eliminate errors uncovered during the analysis. This process has been
implemented in SPIDER, a tool suite that enables developers to specify and analyze a
UML model with respect to behavioral properties specified in terms of natural
language.

[9] Interaction-Based Scenario Integration – Rabeb Mizouni, Aziz Salah,
Rachida Dssouli
This paper proposes an interaction-based approach for use case integration. It consists
of composing use cases automatically with respect to interactions specified among
them. A state-based pattern is defined for each of these interactions. A use case
interaction graph is synthesized, which serves the detection of not only unspecified,
but also implied use case invocations. Additional constraints are added to the system
in order to remove such illicit interactions, called interferences.

36 B. Baudry, C. Gaston, and S. Ghosh

3 Group Discussions

The audience of the workshop was completely representative of the topics of the
workshop. There were people working in the research field of design and people
working in the research field of formal methods. The discussion session aimed at
helping to bridge the gap between those two communities. Therefore, the attendees
formed two groups. One group had to discuss and provide hints to designers about the
challenges in the scope of formal treatment for the UML. The second group had to
isolate particular aspects of the UML language, for which a formal treatment would
useful: this group chose to discuss issues related to the defining, building, using UML
profiles and capturing their semantics.

3.1 Formal Treatment of UML Models

The UML is used in various ways by software developers. Some use it informally,
mainly for the purpose of sketching and communicating system requirements and
design. Their main requirement is flexibility to enable the representation of mental
model of the system to be implemented. They generally do not intend to use these
models for any form of rigorous analysis and hence, formal treatments do not apply to
them.

Formal methods will be useful for development environments that focus on critical
systems. Currently a number of companies use existing methodologies, languages,
and tools such as B, SCADE, and SDL. They would like to use a uniform notation
that would enable them to distribute models to different groups for implementation.
They have considered the UML, which gives them a rich syntax for model
development. However, the development of critical systems requires formal
approaches for analyzing model properties. The lack of completely formal semantics
in the UML prevents them from using it as it stands. For this reason, researchers have
developed mappings from UML to various formal notations which are input
languages for existing analysis tools. This leads to: 1) lack of uniformity in the
expression of semantics; 2) use of similar models with different and hidden semantics.
We need to define a formal UML semantics independent of any particular tool.

The UML is huge and deals with a lot of industrial aspects. Some of these aspects
clearly go beyond software development. If we want to deal with critical system
design, we should be able to restrict the UML to views that are relevant to this
purpose. This restriction must be as small as possible. Indeed, the more a language
introduces keywords and views, the more providing it with a formal semantics may
lead to inconsistencies. Once the relevant parts of the UML are identified, an
interesting approach would be to develop denotational semantics for them. We
propose to follow a denotational approach because the UML is complex. We believe
that providing the UML with only an operational semantics would again raise the
problem of inconsistency between views. This is due to the fact that the UML allows
the management of several views of the same problem. Links between those views
need to be clearly stated. Thus, in order to provide a consistent semantics to the UML,
we believe that a rigorous framework, such as set theory or category theory, is
mandatory. Moreover the use of a denotational semantics limits the risk of
interpretation errors when using formal tools to treat UML specifications. Indeed,

 Report on the 2nd Workshop on Model Development and Validation – MoDeVa 37

having a denotational semantics for (a part of) the UML and a denotational semantics
for the entry language of a formal tool implies to define the bridge between the two
semantics by means of relation and mathematical proofs. Contrarily to such an
approach, in an operational semantics approach, the bridge between two semantics is
generally made by means of a translation and possibly with no hints about the
correctness of the translation. Thus, a denotational approach should provide a good
framework to define semantics independently of any tool.

3.2 UML Profiles

Profiles tailor the UML to specific areas - some for business modeling; others for
particular technologies. For example, the Object Management Group has standard
profiles for CORBA, EDOC, and patterns.

Discussions underlined the importance to have a well defined methodology to
build profile in order to better understand its objective, role, use and semantics. Such
methodology is already used by some users, namely for defining the OMG standard
profiles, but has to be widespread in the whole community. According to the UML2
standard and the current practices, the main points are the following:

a) Profiles are based on the domain meta-model, so first:
• Build the model of the concepts required by the domain (i.e.: the domain

meta-model) with the modeling formalism you want. UML is very often used
to create this domain meta-model that could facilitate the next step of
mapping the domain model to UML meta-model.

• Describe the semantics of the meta-model (either with informal text or any
formalism that seems useful)

b) Profiles are implemented in UML through two steps:
• Identify the mapping between the profile domain meta-model and the UML

meta-models;. Mappings target to identify already existing concepts in the
UML meta-model and the standard UML profiles that fit with the domain
concepts or that could be extended, specialized to fit with the domain
concepts.

• Implement the profile by formalizing the mapping through definitions of
stereotypes, tagged values, constraints, notations, semantic variation points
choices, etc. Provide its UML implementation in XMI (as a UML model of
the profile implementation).

A profile may contain new standard elements, such as stereotypes and tagged
values, and common model elements from the UML library of predefined elements.
OCL constraints define notations and can be used to understand the semantics of the
new standard elements.

The semantics of a profile must be compliant with the semantics of the meta-model
of UML 2.0. Additional well-form ness rules or constraints can never violate these
existing in UML 2.0.

Question of which kind of formal semantics is provided by these profiles
definitions has conclude that it is centered on static semantics and not covers the
dynamic semantics.

38 B. Baudry, C. Gaston, and S. Ghosh

The discussion group agreed that the semantics provided by these profile
definitions are not sufficient from a formal point of view to capture all that is needed
to allow connection to validation tools and automatic code generation.

Profiles may be combined in different manners depending on the granularity and
scope. Approaches need to be developed to check the levels of abstractions of the
profiles, automatically perform profile combination, and check the consistency of the
combination. We need to define development processes that incorporate the use of
profiles. Developers need systematic ways to determine which profile must be used
on which parts of the model. Appropriate tool support can then be developed.

In addition to ongoing works on defining a profile for embedded systems
(MARTE), two subjects have been identified as not sufficiently covered by the
existing standard profiles:

1. Reliability: more particularly concerning dynamic behavior (e.g., transition of
scenarios)

2. Traceability: general subject, partially treated by SysML for requirement
traceability, but not supported for any elements, model evolutions as required in
Model Driven Development.

Finally, the main open issue in the context of defining and using profiles seems to
be the definition of their dynamic semantics. Several approaches can be used to define
the semantics from totally informal to totally formal. They are the following:

1. Develop the semantics in natural language (this one remains mandatory, even if
more formal information is given).

2. Use correspondence style rules with examples.

4 Conclusion

The content of discussions led us to draw the following conclusions. First of all, the
usage of formal tools to treat UML specifications is really meaningful when dealing
with critical system specifications. This is due to the fact that potential users in the
field of critical system design require having a simple, totally formally grounded
semantics to a subpart of the UML. Using formal tools in a different context makes
less sense. Secondly, in order to be compliant with the norm, defining a subpart of the
UML to be mathematically grounded could be done using a profile approach. But
profile themselves should be provided with a semantics. In the next edition of
MoDeVa we propose to concentrate on these issues: What subpart of the UML should
be considered in the field of formal treatment? Are there several subparts (possibly
overlapping) of the UML to be considered depending on the system design domains
considered? How this subpart(s) should be described? How to provide and describe a
formal semantics in a way which would be acceptable for the OMG?

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 39 – 47, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using Process Algebra to Validate Behavioral Aspects of
Object-Oriented Models

Alban Rasse1, Jean-Marc Perronne1, Pierre-Alain Muller2, and Bernard Thirion1

1 MIPS, ESSAIM, Université de Haute Alsace,
12 rue des frères Lumière, 68093 Mulhouse, France

{Alban.Rasse, Jean-Marc.Perronne, Bernard.Thirion}@uha.fr
2 IRISA / INRIA Rennes, Campus Universitaire de Beaulieu,

Avenue du Général Leclerc, 35042 Rennes, France
pierre-alain.muller@irisa.fr

Abstract. We present in this paper a rigorous and automated based approach
for the behavioral validation of control software systems. This approach relies
on metamodeling, model-transformations and process algebra and combines
semi-formal object-oriented models with formal validation. We perform the
validation of behavioral aspects of object-oriented models by using a projection
into a well-defined formal technical space (Finite State Process algebra) where
model-checkers are available (we use LTSA; a model checker for Labeled
Transition Systems). We then target an implementation platform, which con-
forms to the semantics of the formal technical space; in turn, this ensure con-
formance of the final application to the validated specification.

1 Introduction

The increasing complexity of control software systems makes their comprehension
and their construction more and more difficult [1]. The approach proposed in this
paper (Fig. 1) simplifies the reliable design of these software systems through a com-
plete software development cycle (from the specification to the code) in a coherent
and automated way. It is based on existing techniques, from different fields of soft-
ware engineering, and integrates:

– a specification phase based on object-oriented decomposition.
– a validation phase based on formal methods and model-checking tools, so as to

provide software designers with checking techniques that improve their design
quality.

– an implementation phase to ensure the coherence of the generated code according
to both the validation and specification phases.

– a model-based software engineering process in accordance with Model-Driven
Engineering (MDE) [2], which allows - through a metamodel architecture - the in-
tegration of the specification, the validation and the implementation phases into a
coherent software development cycle. Moreover, model transformation – a key
concept in MDE – helps to go from one modeling field to another, which, in turn,
helps to obtain automatically, from a source model, models that are adapted to a

40 A. Rasse et al.

particular technical space. These transformations make the software designer's
tasks easier by hiding, as far as possible, the complexity of formal tools which of-
ten require an important learning effort.

As the whole approach cannot be described in this paper, only the specification and
validation phases, with the associated transformations, will be considered here (dark
gray in Fig. 1).

Part described
in this paper

Semantics equivalence of the behav-
ioral aspects

Model
transformation

 (behavioral
aspects only)

Model
transformation

LTSA
Model-Checker

Checking

Specific
platform

Execution

structure 0
1

2

configuration
a1: b2:

a2: c1:

Specification Model

Meta
Model

Meta
Model

Meta
Model

Implemen-
tation model

Properties
model

(FSP code)

Meta
Meta
Model

Validation
model

(FSP code)

behavior

Fig. 1. Projection of the behavioral aspects into a process algebra technical space

The approach is based on a specification model which represents an abstraction of
the control software. This model is specified using classes, objects and Finite State
Machines (FSM) so as to describe the different aspects (structure, behavior, and con-
figuration) of the system under study. FSMs have been chosen as this formalism is
based on known semantics [3] which can be interpreted in terms of Labeled Transi-
tion System (LTS) [4]. The precisely defined semantics is necessary - on one hand -
to allow the easier use of model transformation techniques and - on other hand - to
ensure the coherence of the approach, since the behavioral aspects of the proposed
models (specification, validation and implementation) are also based on semantics
that can be described in term of LTS. The FSMs are translated into a process algebra
[5] called Finite State Processes (FSP) [3]. This leads to a validation model which can
be analyzed with the Labeled Transition System Analyzer (LTSA) model checking
tool [3].

This paper is divided into four parts. The first part presents the running example
which will be used to illustrate the proposed approach. The second and third sections
describe an overview of the specification model and the validation model

 Using Process Algebra to Validate Behavioral Aspects of Object-Oriented Models 41

respectively. Finally, the fourth section presents the model transformation concepts
necessary for the generation of the validation model.

2 Running Example

The system used to illustrate the present approach is a control software whose role is
to manage the locomotion function of an hexapod robot [6] (Fig. 2.a). A leg moves in
a cyclic way between two positions aep (anterior extreme position) and pep (posterior
extreme position) (Fig. 2.b). The control architecture is based on decentralized control
[7]; the walking cycle of a leg (L) is obtained with local controllers (LC) and the
global behavior is obtained with six local supervisors (LS) which coordinate the local
controllers (Fig. 2.c).

Fig. 2. a) Mobile platform, b) Walking cycle, c) Control architecture

To ensure flexible and robust locomotion, this system must satisfy a set of liveness
and safety properties. As an example, one of these liveness properties says that all the
legs must always execute their walking cycle, whatever the possible execution trace
of the system. And in accordance with the safety properties, one leg can only be
raised if its two neighbors remain on the ground (static stability). The control software
of this robot is a typical example of the software systems which must be validated to
avoid severe dysfunctions at runtime.

3 Specification Model

The specification model, based on object-oriented models, represents an abstraction of
the control software and includes three complementary aspects which represent, re-
spectively, its structure, its behavior and its configuration.

3.1 Specification of the Structural Aspects

To describe the different types of entities present in control systems, we specify the
structural aspects in the form of two conceptual levels [8]. The first level models the
passive objects which must be controlled, while the second level corresponds to be-
havioral objects (active entities) whose role is to control passive objects in their state

a) b)

:L

:L

:L

:L

:L

:L

:SL

:LC :LC

:LC

:LC :LC

:LC

:LS

:LS :LS

:LS

:LS

c)

Protraction

Retraction
pep

aep

42 A. Rasse et al.

space (Fig. 3.a). This explicit representation of behaviors allows these to be consid-
ered as full objects and so, to be manipulated and organized within an object-oriented
architecture. Moreover, the systematic separation of passive objects from behavioral
objects helps to abstract and isolate them and thus to simplify their specification. This
organization can also be generalized since a passive/behavior association can be con-
sidered as a new (passive) object which is, itself, supervised by another behavior (Fig.
3.a).

3.2 Specification of the Behavioral Aspects

We model the dynamic aspects of control systems by associating each behavioral
class with a Finite State Machine (Fig. 3.b). Figure 3.b models the discrete behavior
of a leg controlled by its local controller, which is itself coordinated by its local su-
pervisor. Once specified in this way, the behavioral objects execute an elementary
task, in an autonomous and independent manner, and their concurrent execution de-
scribes the entire state space of the six legs.

« behavior »
Local Controller (LC)

« passive »
Leg (L)

« behavior »
Local Supervisor (LS)

control

control

« composite »
Locomotion

a)

privilege
Down

Up
down up

Protraction

Retraction

transfer aep

pep
Wait

b) c)
Platform

lc2: LC

l2:Llc3: LC

ls3:LS

l3:L
:Locomotion

ls3.privilege
/ lc4.transfer

ls3.privilege
/ lc2.transfer

ls3.up / lc3.transfer,
ls3.down / lc3.aep

lc4: LC

l4:L

Fig. 3. Specification model of the Locomotion function: a) structural aspects, b) behavioral
aspects, c) configuration aspects

To ensure reliable locomotion, some of these states - for example the state in which
all the legs are raised at the same moment - must be prohibited. To restrict the entire
state-space to the allowed state-space, we allow (or not) some transitions to be fired
by synchronizing the actions of the LC instances with those of the LS instances.
These synchronizations (or shared actions) are detailed in the configuration aspects.
Moreover, we propose to combine behavioral and passive objects together in a com-
posite object (Fig. 3.a), so as to explicitly represent a modeled software function (here
the Locomotion). To make design easier and development effort profitable these com-
posite can be manipulated and (re)used to model more complex software functions in
a hierarchic and modular way.

3.3 Configuration Aspects

The previously described behavioral and structural aspects specify a set of possible
configurations of a family of software systems in terms of classes, interactions and

 Using Process Algebra to Validate Behavioral Aspects of Object-Oriented Models 43

behaviors. Consequently, modeling a particular software system of this family re-
quires the description of a particular configuration. This particular configuration,
which is represented with an object diagram (Fig. 3.c) helps to better define the struc-
tural aspects by specifying the topology and interactions of the instances which make
up the software system. Moreover, it also helps to better define the behavioral aspects
by specifying - in the form of relabeling annotations [3], (instance1.actionA
/instance2.actionB) - the actions which are shared between these instances. These
shared actions allow to synchronize instances in order to obtain the desired behavior.
The object diagram in figure 3.c illustrates part of the configuration of the mobile
platform. This diagram shows, in accordance with the previously mentioned safety
property, how the local supervisor ls3 allows the evolving of local controller lc3
according to the position of the two neighboring legs l2 and l4. Indeed if legs l2 and
l4 are raised (lc2 and lc4 receive the privilege to do their protraction:
ls3.privilege/lc4.transfer or ls3.privilege/lc2.transfer) then leg l3 can only be in the
Down state (Fig. 3.b). Conversely, if the legs l2 and l4 remain on the ground, leg l3
can be allowed to rise (ls3.up/lc3.transfer) which will then preempt the privilege of its
neighbors.

This last specification phase helps to complete the specification model whose
global behavior (Locomotion function) must be validated so as to make sure that its
specification respects the expected properties.

4 Validation Model

Simulation and model-checking techniques aim to make software reliable by ensuring
designers that their models meet their requirements [9, 10]. The integration of these
complementary methods into object-oriented constructions seems pertinent as they
allow the efficient validation of software systems. In the proposed approach, the vali-
dation model is described in the form of process algebra called Finite State Process
(FSP) [3] in order to use LTSA [3]. The advantage of LTSA is that it allows both the
simulation and the checking of behavioral models.

4.1 Specification of the Validation Model Using FSP

In LTSA, a system is structured using a set of primitive processes, whose behavior is
modeled in FSP in the form of expressions combining local processes and actions.
The representation of the global behavior of systems is obtained with the composition
of instances of these processes (instance: Process) and with the representation of their
interactions through shared actions within a composite process. So similarly to the
specification model, modeling a composite process allows the specification of a com-
plex system in a modular, hierarchic way; the instances of composite processes are
potentially reused in another composite. To specify the validation model, we collect
the entities contained in the specification model (states, actions, relabeling annota-
tions, …) to transform these entities into FSP (i.e. section 5). Thus, as shown in
Fig.4.a, for the local controller (LC), the behavior of a behavioral class, graphically
described by its FSM (Fig. 3.b), is used to obtain the primitive process (LC) in FSP.

44 A. Rasse et al.

LC = Retraction,
Retraction = (pep -> Wait),
Wait = (transfert -> Protraction),
Protraction = (aep -> Retraction).

|| Locomotion = (lc1 : LC || lc2 : LC || …
 || ls1 : LS || ls2 : LS || …)

/ {
ls3.privilege / lc2.transfer,
ls3.up / lc3.transfer,
…
}.

a)

b)

Fig. 4. Behavioral description in FSP, a) of the LC primitive process, b) of the Locomotion
composite process

In a second step, the composite type instances which are presented in the configu-
ration aspects (Fig.3.c) are used to generate the composite processes in FSP (Fig.4.b).
As an example, the Locomotion behavior is obtained from a set of six instances (lci)
of the primitive process local controller (LC) and six instances (lsi) of primitive proc-
esses local supervisor (LS). These instances are composed in a parallel way (||), then
synchronized (/) using their shared actions - thanks to the annotation
(ls3.privilege/lc2.transfer, ls3.up/lc3.transfer, etc…) - included in the Locomotion
composite object (Fig. 3.c). This Locomotion behavioral model is then checked using
LTSA.

4.2 Analysis of the Validation Model

LTSA allows the interactive simulation of the different execution traces of the speci-
fied model to ensure that the latter satisfies the expected behavior. Simulation, which
is a non-exhaustive validation, can be completed with a search for violation of live-
ness and safety properties. In the validation model proposed here, only the liveness
properties will be presented. A liveness property asserts that « something good even-
tually happens » [9]. In LTSA, liveness properties are expressed with the keyword
progress. The liveness property mentioned earlier (at the end of section 2) consists in
checking that each local controller (lci) can always execute its walking cycle, which
results in the recurrent detection of the transfer action for each local controller
(Fig.5).

progress Leg1_Cycle = {lc1.transfer },…, progress Leg6_Cycle = {lc6.transfer }.

Fig. 5. Liveness properties in FSP

 Using Process Algebra to Validate Behavioral Aspects of Object-Oriented Models 45

If a property is violated by the validation model, LTSA produces the sequence of
actions leading to this violation. The designer can then modify his/her model accord-
ing to the obtained results.

5 Model Transformation

Model-Driven Engineering [2] aims to unify software activities from the specification
down to the executable code production, through the integration of heterogeneous
models into coherent software developments. This coherent integration is only possi-
ble - according to MDE - through a formally defined metamodeling architecture
which allows - through different levels of abstraction (models, metamodels,
metametamodel) - the precise definition of the concepts used to characterize a particu-
lar type of (meta)model. In this architecture, metamodels describe all the concepts
necessary for the definition of a specific type of models, while the metametamodel
specifies the concepts that are common to the metamodels used. So, from these com-
mon concepts, a set of relations between the entities of the metamodels can be de-
duced. Table 1 describes the correspondence of the concepts of the specification
metamodel and those of the validation metamodel.

Table 1. Correspondence between the specification and validation metamodel

Specification
metamodel

Validation
metamodel

Behavior classes Primitive processes (Pp)

Instances Instance of Pp

FSM states Local processes

FSM action Action prefix

Guard Guard

Composite classes Composite processes

Shared action Relabeling

… …

The transformation rules which can be deduced from these relations are applied to
the entities of a source model (here, the specification model) in order to obtain the
entities of the target model (here, the validation model) in a systematic way. More-
over, the explicit representation of the metamodels and transformation rules allows
the use of model transformation tools for the automated generation of specific target
models (Fig. 6). In accordance with MDE, the present approach is based on the con-
cepts of models, metamodels and model transformations and has been prototyped
with a metamodeling environment – MetaEdit [11] - in order to transform the specifi-
cation model into a validation model (FSP code). The FSP code obtained in this way
can directly be analyzed with the LTSA tool. As the proposed models respect the LTS
semantics, the semantic gap between these models is reduced, which makes the trans-
formation between models easier. Moreover, the use of model transformation tools
makes the proposed approach even more reliable by avoiding the errors that would be
caused by manual transcriptions.

46 A. Rasse et al.

Transformation
rules

Model
transformation

toolSource model Target model

Excerpt from the source
metamodel

aS0

b

conforms to

BehaviorA = S0,
S0 = (a -> S1),
S1 = (b -> S2),
S2 = (c -> S0).

FSM

Transition

Behavioral
class

State

Behavior A

ProcessDef :
ProcessIdent Paramopt = Process-
Body
AlphabetExtensionoptRelabeloptHid-
ingopt .
ProcessBody :
LocalProcess
LocalProcess , LocalProcessDefs

conforms to

Excerpt from the target
metamodel

S1

S2

c

Fig. 6. Conceptual representation of metamodeling

As said in the introduction, the aim of the present approach is to produce an execu-
table code for the implementation of validated control software. However, even if the
joint use of object-oriented techniques, checking tools and model transformation
techniques makes software development easier and more reliable, it does not guaran-
tee that the implementation conforms with the validation. That is why, the approach
presented in this paper is part of a global software development (Fig. 1) in which the
use of a framework and a runtime platform – also in conformity with LTS semantics –
helps to reduce the semantic gap between the models and thus allows the easier gen-
eration of a code in accordance with the specification and validation models [12]. So,
this approach allows the creation of a coherent software development cycle that inte-
grates specification, validation and implementation phases.

6 Conclusion and Perspective

This paper has presented an approach combining object-oriented techniques with
formal validation and MDE, to ensure the validated specification of control software.
In a first step, it proposes an object-oriented specification completed with FSM for the
modeling of software systems. The specification model thus obtained is sufficiently
precise to be used as a source model for automated software generation. It can be
transformed into a process algebra so as to be validated with a model-checking tool.
This approach which has been applied on a locomotion software system has the ad-
vantage of making the conception of software systems easier while increasing their
reliability and also of being integrated in a coherent global development ranging from
the specification to the implementation. We will continue this work, in a first step, by
the checking of other liveness and safety properties to validate more effectively the
Locomotion function of the robot. In a second step, we plan to implement the ap-
proach on a number of various applications to test its robustness.

 Using Process Algebra to Validate Behavioral Aspects of Object-Oriented Models 47

References

1. Sanz, R., Pfister, C., Schaufelberger, W. and De Atonio, A., Software for Complex Con-
trollers In: Control Of Complex Systems (Karl Astrom, P. Albertos, M. Blanke, A. Isidori,
W. Schaufelberger, R. Sanz, Ed.). Springer-Verlag, London (2001) 143-164.

2. Bézivin. In search of a Basic Principle for Model-Driven Engineering, Novatica Journal,
Special Issue (2004).

3. Magee, J. and Kramer, J., Concurrency. State Models & Java Programs. John Wiley &
Sons, Chichester, UK (1999).

4. Arnold, A., Finite Transition System, Prentice Hall, Prentice Hall (1994).
5. Bergstra, J.A., Ponse, A. and Smolka, S.A. editors, Handbook of Process Algebra. Elsevier

Science, Amsterdam (2001).
6. Thirion, B. and Thiry, L., Concurrent programming for the Control of Hexapode Walking,

ACM Ada letters, n°21 (2002) 12-36.
7. Lin, F., and Wonham W.M., Decentralized Control and Coordination of Discrete-Event

Systems with Partial Observation. IEEE Transactions on Automatic Control, vol.35, n°12
(1990) 1330-1337.

8. Perronne, J.M., Rasse, A., Thiry, L., Thirion, B., A Modeling Framework for Complex
Behavior Modeling and Integration, Proceedings of IADIS’05, Algrave, Portugal (2005).

9. Bérard, B. et al. Systems and Software verification. Model-Checking Techniques and
Tools, Springer (2001).

10. Clarke, E.M., Grumberg, O. and Peled, D. Model checking, The MIT Press, Cambridge,
Mass. (1999).

11. Domain Specific Modeling with MetaEdit+, January 2005, http://www.metacase.com/
12. Rasse, A., Perronne JM., Thirion, B. Toward a Validated Object-Oriented Design Ap-

proach to Control Software. Proceedings of 16th IFAC World Congress, Prague, Czech
Republic (2005).

Automated Analysis of Natural Language Properties
for UML Models�

Sascha Konrad and Betty H.C. Cheng��

Software Engineering and Network Systems Laboratory,
Department of Computer Science and Engineering,

Michigan State University, 3115 Engineering Building,
East Lansing, Michigan 48824 USA

{konradsa, chengb}@cse.msu.edu

Abstract. It is well known that errors introduced early in the development pro-
cess are commonly the most expensive to correct. The increasingly popular
model-driven architecture (MDA) exacerbates this problem by propagating these
errors automatically to design and code. This paper describes a round trip en-
gineering process that supports the specification of a UML model using CASE
tools, the analysis of specified natural language properties, and the subsequent
model refinement to eliminate errors uncovered during the analysis. This process
has been implemented in SPIDER, a tool suite that enables developers to specify
and analyze a UML model with respect to behavioral properties specified in terms
of natural language.

1 Introduction

Errors introduced early in the development process are known to have significantly
higher correction costs [1]. To worsen this problem, in the increasingly popular
model-driven architecture (MDA) [2], platform-independent models are transformed
to platform-specific models via transformation techniques. As such, these errors are di-
rectly propagated to the platform-specific models and may also be propagated to code,
thereby motivating their detection in the platform-independent models. Validating UML
models according to metrics and design guidelines can be an effective means to catch
structural errors [3, 4], but generally not behavioral modeling errors. Several tools for
the behavioral analysis of UML models have been developed, where a user typically
specifies properties in terms of formal specification languages. However, these formal
specification languages often have a complex syntax and semantics and are, therefore,
rarely used in practice. To ease the use of formal specification languages, we have de-
veloped a customizable process for specifying properties of formal system models in
terms of natural language and formally analyzing these properties using various formal
analysis tools [5].

� This work has been supported in part by NSF grants EIA-0000433, EIA-0130724, CDA-
9700732, CCR-9901017, Department of the Navy, Office of Naval Research under Grant No.
N00014-01-1-0744, Eaton Corporation, Siemens Corporate Research, and in cooperation with
Siemens Automotive, Detroit Diesel Corporation, and General Dynamics Land Systems.

�� Corresponding author.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 48–57, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Automated Analysis of Natural Language Properties for UML Models 49

Several other tools exists to support the design and validation of system models.
Commercial tools commonly offer validation and/or animation capabilities, such as
Rhapsody [6] and Rational XDE [7]. In general, these tools aid in uncovering struc-
tural errors, but are not designed for the analysis of behavioral properties of a system
model. Other tools have been developed for the formal analysis of system models spec-
ified in terms of UML, such as vUML [8], Hugo [9], and Fujaba [10]. However, these
tools have still not gained a widespread use in industry. One main reason is the need to
use complex specification logics and/or formal analysis tools. Consequently, only users
with an advanced knowledge in formal methods are inclined to use these tools for the
specification and analysis of their system models.

In this paper, we present three main contributions: First, we developed a process for
specifying and analyzing formal properties, where the objective is to make the formal
nature of the specification and analysis process transparent to the user. As such, property
templates based on specification patterns developed by Dwyer et al. [11] can be spec-
ified in natural language and used to analyze the system model. We implemented this
process in SPIDER (Specification Pattern Instantiation and Derivation EnviRonment),
and we show how SPIDER can be used in combination with a previously developed
UML formalization framework, termed Hydra [12], for the analysis of UML models.
Second, to facilitate the specification process, we provide support for instantiating the
natural language property templates with information that is automatically extracted
from the formal system model under consideration. Third, the process is customizable
for different domain-specific natural language vocabularies and specification styles,
specification pattern systems, and analysis tools.

In this work, we show how our process can be used to specify and analyze natu-
ral language properties of UML models. More specifically, our round trip engineer-
ing process is configured to read UML 1.4 [13] models1 specified in terms of XMI
1.1 [15] and generate the formal specification language Promela for the model checker
Spin [16]. Natural language properties are derived using a grammar [17] that sup-
ports the specification patterns by Dwyer et al. [11]. Our grammar supports the natural
language representation of these specification patterns. In this paper, the grammar is
used to specify linear-time temporal logic (LTL) properties [18], the property descrip-
tion language of the Spin model checker. The grammar can be customized according
to vocabulary and specification style of a domain. For example, the vocabulary and
natural language specification style to capture a cause-effect property for the embed-
ded systems domain may be different from that used for a web service application.
As such, the mappings from the structured natural language grammar to the specifi-
cation patterns should reflect the appropriate intent. In addition, the semantic UML
mapping rules of Hydra can be customized and adapted to other domains [12]. In this
paper, we use a semantic interpretation considered to be suitable for the embedded
systems domain. Our approach does not require the user to know the specific syntax
and semantics of the formal specification language used or the details of the analy-
sis procedures of the targeted formal analysis tool. An analysis process can be auto-
matically executed and the analysis results are displayed to the user in a form easy to
comprehend.

1 CASE tool support for the recently finalized UML 2.0 [14] is still limited.

50 S. Konrad and B.H.C. Cheng

Overall, we introduce a customizable process that combines the completeness of a
pattern system for specifying properties of UML models with the accessibility of a natu-
ral language representation, and present a prototype implementation termed SPIDER. To
validate our approach, we have applied the process and tools to several examples from
industry, including an electronically controlled steering system and an adaptive light
control system. The remainder of the paper is organized as follows. Section 2 describes
our process and the main components of SPIDER in more detail. Section 3 examines
related work. Finally, Section 4 gives concluding remarks and discusses future work.

2 Specification and Analysis

This section introduces our specification and analysis process and also overviews major
SPIDER elements. Figure 1 contains a UML activity diagram overviewing the process,
where the first two steps of the process are initialization steps and can be performed
in any order. The shaded swimlane indicates this portion of the process performed by
an administrator for domain customization purposes. The process is illustrated with a
running example, the formal specification of the natural language property:

Whenever process() of the Processor has been called, then eventually the Proces-
sor returns to the Idle state.

(1) Configuring the Process and Deriving a Property
In the first initialization step, a specification pattern system has to be created. A spec-
ification pattern system is a collection of properties, specified in terms of one or more
formal specification languages. Each property is also specified in terms of natural lan-
guage with an accompanying natural language grammar. In SPIDER, the Pattern System
Manager (shaded portion of Figure 1) is used to create and associate formal proper-
ties to their natural language representations, or a previously created pattern system can
be loaded. For this paper, the specification pattern system consists of formal proper-
ties from the specification patterns by Dwyer et al. [11] and a corresponding natural
language grammar [17]. The specification pattern system contains several patterns ap-
plicable to software properties specified in different formalisms, such as LTL [18], com-
putational tree logic (CTL) [19], graphical interval logic (GIL) [20], and quantified
regular expressions (QRE) [21]. Specification patterns are categorized into two ma-
jor groups: occurrence patterns and order patterns. Occurrence patterns are concerned
with the occurrence of single states/events during the execution of a program, such as
existence and absence of certain states/events. Order patterns, on the other hand, are
concerned with the relative order of multiple occurrences of states/events during the ex-
ecution of a program, such as precedence or response relations between states/events.
The specification patterns have been found sufficient to specify most commonly
occurring properties [11]. However, while the pattern system is largely reusable, the
structured natural language grammar may have to be adapted to accommodate the spec-
ification style of a specific domain.

Automated Analysis of Natural Language Properties for UML Models 51

Pa
tte

rn
 S

ys
te

m
 M

an
ag

er
Pr

op
er

ty
 D

er
iv

er

U
se

r c
re

at
es

st

ru
ct

ur
ed

 N
L

gr
am

m
ar

U
se

r c
re

at
es

fo
rm

al

sp
ec

ifi
ca

tio
ns

U
se

r d
er

iv
es

 N
L

pr
op

er
ty

 u
si

ng

st
ru

ct
ur

ed

la
ng

ua
ge

gr

am
m

ar

Pr
op

er
ty

In

st
an

tia
to

r

U
M

L
M

od
el

In

te
rp

re
te

r
U

M
L

M
od

el

A
na

ly
ze

r

Ex
tr

ac
t m

od
el

-
sp

ec
ifi

c
in

fo
rm

at
io

n

U
se

r
in

st
an

tia
te

s
N

L
pr

op
er

ty

M
ap

 N
L

pr
op

er
ty

an

d
U

M
L

m
od

el

to
 fo

rm
al

re

pr
es

en
ta

tio
ns

D
is

pl
ay

 a
na

ly
si

s
re

su
lts

[N
L

sp
ec

ifi
ca

tio
n

co
nf

ig
ur

at
io

n
do

es
 n

ot
 e

xi
st

]

[N
L

sp
ec

ifi
ca

tio
n

co
nf

ig
ur

at
io

n
ex

is
ts

] Lo
ad

 e
xi

st
in

g
N

L
sp

ec
ifi

ca
tio

n
co

nf
ig

ur
at

io
n

U
se

r c
or

re
ct

s
U

M
L

m
od

el

U
se

r c
re

at
es

 N
L-

fo
rm

al

sp
ec

ifi
ca

tio
n

m
ap

pi
ng

s

Pe
rf

or
m

pr

op
er

ty
-b

as
ed

sl

ic
in

g

A
na

ly
ze

 fo
rm

al

m
od

el

C
A

SE
 T

oo
l

U
se

r c
re

at
es

U

M
L

m
od

el

Va
lid

at
e

U
M

L
m

od
el

[v
al

id
at

io
n

un
co

ve
re

d
no

 e
rr

or
s]

A
B

A
B

[p
ro

pe
rty

 h
ol

ds
, m

or
e

pr
op

er
tie

s
to

 c
he

ck
]

Fo
rm

al
 A

na
ly

si
s

To
ol

 C
on

ne
ct

or

[p
ro

pe
rty

 h
ol

ds
, n

o
m

or
e

pr
op

er
tie

s
to

 c
he

ck
]

[v
al

id
at

io
n

un
co

ve
re

d
er

ro
rs

]

Vi
su

al
iz

e
vi

ol
at

io
n [v

io
la

tio
n

fo
un

d]

F
ig

.1
.U

M
L

ac
tiv

it
y

di
ag

ra
m

ov
er

vi
ew

in
g

ou
r

sp
ec

ifi
ca

ti
on

an
d

an
al

ys
is

pr
oc

es
s

52 S. Konrad and B.H.C. Cheng

The Pattern System Manager is intended to be used by domain experts and formal
methods experts as an administrative tool that configures SPIDER according to a spec-
ification pattern system. It aids in the construction and management of specification
pattern systems with their associated structured natural language grammars. Structured
natural language grammars are captured in Extended Backus-Naur Form (EBNF) and
internally translated into a BNF representation. For grammar rules containing choices,
additional descriptors are included. These descriptors comprise two parts: an abbrevi-
ated name of the choice and a textual explanation of each choice. This information is
used in the derivation process to provide guidance and feedback to the user when mak-
ing a choice in the derivation process. The Pattern System Manager is also used by the
formal methods experts to create the mappings between the sentences generated from
the natural language grammar and elements from the specification pattern system.

After the process has been instantiated with a natural language grammar and map-
pings to a specification pattern system, the property to be analyzed is derived. In SPI-
DER, the Property Deriver is used to guide the user in a stepwise fashion in con-
structing a structured natural language property template for capturing the property.
Non-terminals are highlighted in the template that is being derived, and the user re-
solves these non-terminals with applicable production rules. The Property Deriver as-
sists the user in making specification choices by offering descriptive information about
each choice. Each time the user highlights a particular choice, the Property Deriver
highlights corresponding descriptors. In addition, the Property Deriver gives a preview
of selecting a particular choice for the natural language property template being derived.

For our running example, the user needs to perform three choices during the deriva-
tion process. At first, the user needs to decide what the scope of the property is. For
simplicity, we assume a global scope is selected for the property. In the next step, the
user needs to choose whether the property belongs to the occurrence or order category.
Since the property involves multiple occurrences, the order category is chosen. Finally,
the user needs to select the appropriate specification pattern. The property describes
a cause-effect relation, since the occurrence of a cause (process() being called) is ex-
pected to have a certain effect (the Processor returning to state Idle). Therefore, the
Response Specification Pattern [11] is chosen. Finally, we obtain the following natural
language specification template:

Globally, it is always the case that if P holds, then S eventually holds.

After the natural language template is derived, the first step ends at the connector A
in Figure 1.

(2) Creating the UML Model
In the second initialization step, a UML model is created using a CASE tool. To in-
clude the model in our process instantiation, the model is exchanged with SPIDER using
XMI [15]. Figure 2 shows an example UML class Processor with an associated state
diagram capturing the behavior of the class. Initially, the model is validated by Hydra
using static analysis techniques [22]. The model validation encompasses several checks
for intra- and inter-diagram validity, such as checks for well-formedness of names and
expressions, missing initial states, states without incoming or outgoing transitions, and

Automated Analysis of Natural Language Properties for UML Models 53

Processor

process():void

x: int

(a) Class Diagram

Idle Process

[]/x:=x+1

x:=0

process()[]/

(b) State Diagram

Fig. 2. Example UML model

undeclared variables, signals, or types. If errors are found during the validation that pre-
vent a formally specified model from being generated from the UML diagrams, then the
user is prompted to correct these errors before proceeding. After the model passes the
validation checks, the UML Model Interpreter automatically extracts information about
model elements from the UML model, such as the names of classes, variables, signals,
and states. For example, for the UML diagram in Figure 2, the UML Model Interpreter
extracts the following information for class Processor:

Variable name(s): x
Signal name(s): process
State name(s): Idle, Process

The UML Model Interpreter is part of the Formal Analysis Tool Connector that is
used to connect SPIDER with UML tools and the Spin model checker. In general, the
tool connector enables SPIDER to extract information from a system model, create for-
mal specifications of properties in a form suitable for a particular formal analysis tool,
execute the verification of a property, and analyze the output generated by a verifica-
tion run of the formal analysis tool. SPIDER allows additional Formal Analysis Tool
Connector components to be plugged in. Therefore, making it extensible to numerous
analysis tools beyond the ones explicitly mentioned in this paper. After the information
has been extracted from the UML system model, the second step ends at the connectorB
in Figure 1.

(3) Instantiating the Property
After the previous two steps have reached connectors A and B, the information ex-
tracted by the UML Model Interpreter is then used by the Property Instantiator to in-
stantiate the structured natural language template with boolean propositions containing
model-specific elements. In addition to specifying boolean expressions on variable val-
ues of UML classes, two other predicates are supported in the boolean propositions:
(1) A call(...) predicate to specify that an signal of a class is called and (2) an
enter(...) predicate to specify that a class enters a specific state.

In order to instantiate the property template for our running example, we need
to replace P and S with appropriate boolean propositions generated from the in-
formation extracted from the system model in the previous step. The cause P

54 S. Konrad and B.H.C. Cheng

needs to describe that “process() of the Processor has been called” and is there-
fore replaced by call(Processor.process()). The effect S needs to cap-
ture that “the Processor returns to the Idle state”, and is therefore replaced by
enter(Processor:Idle). Finally, we obtain the following instantiated natural
language property:

Globally, it is always the case that if call(Processor.process()) holds,
then enter(Processor:Idle) eventually holds.

(4) Analyzing the Property
After the instantiation step is completed, the model can be analyzed for adherence to
the specified property. In SPIDER, the UML Model Analyzer, which is also part of the
Formal Analysis Tool Connector, maps the instantiated natural language template to
the corresponding specification pattern instances, namely LTL formulae [18] for the
Spin model checker [16]. In order to enable the analysis of the property in our running
example, the above instantiated natural language property is mapped to the following
LTL formula:

�(call(Processor.process()) → ♦(enter(Processor:Idle)))

In order to reduce the cost of model checking, we perform an automated abstraction
of the formal model before executing the analysis. The UML Model Analyzer performs
a property-based slicing on the formal system model, where it invokes the slicing al-
gorithm provided by Spin2 and removes constructs identified as redundant. After the
slicing is complete, SPIDER invokes the Spin model checker and performs the analysis.

(5) Displaying Analysis Results
After the model checking has completed, the UML Model Analyzer provides analysis
results back to the Property Instantiator, which are then visually presented to the user
using a traffic light icon. Red indicates that the property was violated and a counter
example is returned; Green indicates that the property holds for the selected model; and
Yellow indicates that problems occurred during the analysis process that prohibited the
successful verification of the property. Example problems include exceeding the avail-
able system memory for storing the states of the model during an exhaustive state space
exploration. If a violation of a property is found, then the user can visualize the execu-
tion that lead to the violation, correct the model, and repeat the analysis. Finally, when
the property holds on the selected model, the user can analyze additional properties or
exit from the tool and the analysis process.

3 Related Work

Several tools have been developed for the formal analysis of system models specified
in terms of UML, such as vUML [8], HUGO[/RT] [23], and Fujaba [10]. In addition,

2 The slicing algorithm of Spin is sound and complete with respect to any property specifiable
in terms of LTL [16].

Automated Analysis of Natural Language Properties for UML Models 55

some commercial tools commonly offer validation and/or animation capabilities, such
as Rhapsody [6] and Rational XDE [7]. While these tools also have similar purposes
when compared to SPIDER configured with Hydra, they do not offer support for the
specification of properties in terms of natural language. On the other hand, numerous
approaches [5] construct formal specifications in different forms (such as temporal log-
ics, OO-based representations, Prolog specifications), from natural language to support
a variety of tasks, ranging from completeness and consistency checking to formal val-
idation and verification. While these approaches allow the use of moderately restricted
natural language (a completely unrestricted language is considered undesirable for prac-
tical and technical reasons [24]), this type of extraction is a more ambitious goal than
our approach using syntax-guided derivation and model-based instantiation, since it re-
quires advanced natural language processing approaches and techniques to deal with
imprecision and ambiguities inherent to natural language specifications. In summary,
none of these approaches combines the completeness of a pattern system, the support
for real-time properties, amenability for formal validation and verification with a wide
variety of formal validation and verification tools, and the accessibility of a natural
language representation in any natural language subset for which a context-free, non-
circular grammar can be constructed.

Several other projects have investigated how to make specification patterns more ac-
cessible via more informal representations. Smith et al. developed Propel [25], where
they extended the specification patterns by Dwyer et al. [11] to address important and
subtle aspects about a property, such as what happens in a cause-effect relation if the
cause recurs before the effect has occurred. These extended specification patterns are
specified in terms of finite-state automata instead of temporal logic formulae, and nat-
ural language templates help a specifier to precisely capture a property in natural lan-
guage. In contrast to our approach, they focus on capturing subtle properties of individ-
ual specification patterns, rather than applying the specification patterns to the analysis
of UML models. Mondragon et al. developed a tool called Prospec [26] for the spec-
ification of properties based on Dwyer et al.’s specification patterns. The tool offers
assistance in the specification process and extends the specification pattern system by
Dwyer et al. with compositional patterns. Differing from our tool suite, they do not
include support for natural language representations.

4 Conclusions

We have presented a configurable process for UML model analysis implemented in the
SPIDER toolkit. We expect several benefits to be gained from using SPIDER. First, users
less experienced in the specification of formal properties are able to create formally-
analyzable natural language representations of properties for their UML models. Feed-
back from industrial collaborators has indicated that this specification style is preferred
over formal specification languages. Second, SPIDER is extensible to the use of sev-
eral formal analysis tools by offering the ability to plug in additional Formal Analysis
Tool Connector components. Therefore, a wide variety of formal analysis tools can be
used to analyze the behavioral properties. Currently, SPIDER supports the Spin model
checker [16] for UML models and support for additional formal analysis tools is being
developed.

56 S. Konrad and B.H.C. Cheng

Third, SPIDER provides a single environment for specification construction and anal-
ysis. The tool suite enables a user to automatically analyze a system model and vi-
sualize the analysis results. Currently, our tool is targeted at the novice specifier, as
evidenced by the step-by-step guidance during the derivation process and making the
formal specification language transparent to the user. We acknowledge that the step-
wise, specification-facilitating features, while helpful for the novice user, might be too
constraining for users with advanced knowledge in formal specification and analysis.
This problem is commonly encountered in syntax-directed editing approaches [27] and
we are investigating techniques to mitigate these problems, such as the use of multiple
views and different levels of assistance for the derivation and instantiation tasks.

Future work will investigate how to incorporate previously developed real-time ex-
tensions to our formalization framework [28] and specification patterns [17]. This work
will also examine how to best visualize the analysis results. Finally, we are continuing
to work with industrial collaborators to obtain feedback on the usability of SPIDER.

References

1. Lutz, R.R.: Targeting safety-related errors during software requirements analysis. In: SIG-
SOFT’93 Symposium on the Foundations of Software Engineering. (1993)

2. Object Management Group: Model driven architecture. http://www.omg.org/mda/
(2005)

3. Berenbach, B.: The evaluation of large, complex UML analysis and design models. In:
Proceedings of the 26th International Conference on Software Engineering (ICSE’04), IEEE
Computer Society (2004) 232–241

4. Cheng, B.H.C., Stephenson, R., Berenbach, B.: Lessons learned from metrics-based auto-
mated analysis of industrial UML models (an experience report). In: Proceedings of the
ACM/IEEE 8th International Conference on Model Driven Engineering Languages and Sys-
tems, Montego Bay, Jamaica (2005) 324–338

5. Konrad, S., Cheng, B.H.C.: Facilitating the construction of specification pattern-based prop-
erties. In: Proceedings of the IEEE International Requirements Engineering Conference
(RE05), Paris, France (2005)

6. I-logix: Rhapsody (2005) http://www.ilogix.com/rhapsody/rhapsody.cfm.
7. IBM: Rational Rose XDE Developer (2005) http://www-306.ibm.com/software/

awdtools/developer/rosexde/.
8. Lilius, J., Paltor, I.P.: vUML: A tool for verifying UML models. In: Proceedings of the 14th

IEEE International Conference on Automated Software Engineering (ASE99), Washington,
DC, USA, IEEE Computer Society (1999)

9. Schäfer, T., Knapp, A., Merz, S.: Model checking UML state machines and collaborations.
Electronic Notes in Theoretical Computer Science 55(3) (2001)

10. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: Proceedings of the 22nd
International Conference on Software Engineering, New York, NY, USA, ACM Press (2000)
742–745

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: Proceedings of the 21st International Conference on Software Engineering,
IEEE Computer Society Press (1999) 411–420

12. McUmber, W.E., Cheng, B.H.C.: A general framework for formalizing UML with formal
languages. In: Proceedings of the IEEE International Conference on Software Engineering
(ICSE01), Toronto, Canada (2001)

Automated Analysis of Natural Language Properties for UML Models 57

13. Object Management Group: UML Specifications, Version 1.4 (2002) http://www.omg.
org/cgi-bin/doc?formal/04-07-02.

14. Object Management Group: UML 2.0 Superstructure Specification (2004)
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02.

15. Object Management Group: OMG-XML metadata interchange (XMI) specification, v1.1
(2000) http://www.omg.org/cgi-bin/doc?formal/00-11-02.

16. Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Addison-Wesley,
Reading, Massachusetts (2004)

17. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Proceedings of the Interna-
tional Conference on Software Engineering (ICSE05), St Louis, MO, USA (2005)

18. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems. Springer-
Verlag New York, Inc. (1992)

19. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Languages
and Systems (2) (1986) 244–263

20. Ramakrishna, Y.S., Melliar-Smith, P.M., Moser, L.E., Dillon, L.K., Kutty, G.: Interval logics
and their decision procedures: Part I + II. Theoretical Computer Science 166;170(1-2) (1996)
1–47;1–46

21. Olender, K.M., Osterweil, L.J.: Cecil: A sequencing constraint language for automatic static
analysis generation. IEEE Transactions on Software Engineering 16(3) (1990) 268–280

22. Campbell, L.A., Cheng, B.H.C., McUmber, W.E., Stirewalt, R.E.K.: Automatically detecting
and visualizing errors in UML diagrams. Requirements Engineering Journal 7(4) (2002)
246–287

23. Knapp, A., Merz, S., Rauh, C.: Model checking timed UML state machines and collabora-
tions. In Damm, W., Olderog, E.R., eds.: 7th International Symposium on Formal Techniques
in Real-Time and Fault Tolerant Systems (FTRTFT 2002). Volume 2469 of Lecture Notes in
Computer Science., Oldenburg, Germany, Springer-Verlag (2002) 395–414

24. R. Nelken, N. Francez: Automatic translation of natural-language system specifications into
temporal logic. In Rajeev Alur, Thomas A. Henzinger, eds.: Proceedings of the Eighth Inter-
national Conference on Computer Aided Verification CAV. Volume 1102., New Brunswick,
NJ, USA, Springer Verlag (1996) 360–371

25. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Propel: An approach supporting
property elucidation. In: Proceedings of the 24th International Conference on Software En-
gineering, ACM Press (2002) 11–21

26. Mondragon, O., Gates, A.Q.: Supporting elicitation and specification of software properties
through patterns and composite propositions. International Journal on Software Engineering
and Knowledge Engineering 14(1) (2004) 21–41

27. Khwaja, A.A., Urban, J.E.: Syntax-directed editing environments: Issues and features. In:
SAC ’93: Proceedings of the 1993 ACM/SIGAPP Symposium on Applied Computing, ACM
Press (1993) 230–237

28. Konrad, S., Campbell, L.A., Cheng, B.H.C.: Automated analysis of timing information in
UML diagrams. In: Proceedings of the Nineteenth IEEE International Conference on Auto-
mated Software Engineering (ASE04), Linz, Austria (2004) 350–353 (Poster summary).

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 58 – 66, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modeling and Analysis of Real-Time and
 Embedded Systems

Susanne Graf1, Sébastien Gérard2, Øystein Haugen3, Iulian Ober1, and Bran Selic4

1 VERIMAG, Grenoble, France
{Susanne.Graf, Iulian.Ober}@imag.fr

2 CEA-List, Sacley, France
Sebastien.Gerard@cea.fr

3 University of Oslo, Norway
Oystein.Haugen@ifi.uio.no

4 IBM, Canada
bselic@ca.ibm.com

Abstract. This paper presents an overview of the workshop MARTES on
Modeling and Analysis of Real-time and Embedded Systems that has taken
place for the first time in association with the MODELS/UML 2005 conference.
The main themes discussed at this workshop concerned (1) methodologies and
tools for quantitative analysis and (2) methodologies and languages for
modeling quantitative aspects of real-time and embedded systems in the context
of model driven development.

1 Introduction

The idea of model-based development, in which models representing specifications of
functional aspects are compiled into code for particular platforms, is a very attractive
idea. In particular application domains, tools supporting such an approach have been
developed already in the past. A good example is the SCADE tool for the
development of real-time controllers with guaranteed properties for very simple non-
distributed platforms or for platforms like TTA maintaining for the application the
illusion of a non distributed platform [CR01, CM05].

The more recent OMG Model Driven Architecture (MDA) initiative puts forward
the similar idea that in general future process development will focus on models, thus
keeping application development and underlying platform technology as separate as
possible, where the aspects influenced by the underlying platform technology concern
mainly non-functional aspects and communication primitives.

A significant consequence of the MDA paradigm is the possibility to build
application models that can be conveniently ported to new technologies – like new
implementation languages or middleware – with minimal effort and risk, and that can
be analyzed – directly or through model transformation – in order to validate or/and
verify real-time properties and schedulability.

As already mentioned, in the area of DRES (Distributed, Real-time and Embedded
Systems), this model-oriented trend is also extremely promissing, and it should be
extended to more general frameworks than the before-mentioned ones. DRES
however, have particular demands concerning the useful modeling concepts, semantic
interoperability of models and tools or the use of verification methods.

 Modeling and Analysis of Real-Time and Embedded Systems 59

The Unified Modeling Language UML aims at providing an integrated modeling
framework encompassing architecture descriptions and behavior descriptions. Even
though UML 2.0 includes a simple time model, real-time aspects are not yet handled
in a completely satisfactory fashion and are also not well integrated today in existing
tools. A first step to the inclusion of extra-functional characteristics into the modeling
framework has been achieved by the “UML profile for Schedulability, Performance
and Time” [OMG03]. More recently, several efforts have been and are being
undertaken to improve this initial proposal in several aspects, e.g. to integrate the
profile with UML 2.0 rather than UML 1.4.

• A “UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms (QoS)” [OMG04].

• The IST project Omega [Omega] aimed precisely at the definition of a UML
profile for real-time and embedded systems with a semantic foundation
[GOO05] and with tool support for validation [OGO05]. Notice that this real-
time framework defines a set of modeling elements, expressive enough to
define a precise semantics for all the time constraints introduced in SPT as tag
values or stereotypes by means of constraints between well defined
occurrences of events. Events represent time points, and we have defined
naming conventions for events associated with the execution of any syntactic
construct1.

The objectives of the MARTES workshop were to discuss the possible uses and
deficiencies of the existing profiles, as well as the usefulness of new features, in
particular in the context of ongoing efforts in model driven development, such as the
current call for proposal MARTE “Modeling and Analysis of Real Time and
Embedded systems”. A motivation for this call was to express modeling paradigms,
such as the synchronous approach, that are used in the context of real-time and
embedded systems, but have not been addressed so far by UML. Another issue
addressed by this call is the expression of real-time properties and requirements and
their analysis. Another ongoing development important for real-time and embedded
systems which has been discussed already in previous workshops is related to the
development of a notation for semantics.

Finally, a goal of this workshop was to bring together researchers from academia
and industry to discuss and progress on these issues, as well as other issues in the
context of time, scheduling and architecture in UML and UML-related notations, such
as notations for expressing time and architecture related requirements, semantic
issues, analysis tools and modeling paradigms.

2 The Contributions

Eight quality contributions were presented at the workshop, backed by a full paper or
by a shorter position paper. All the papers together are available on the workshop

1 This is a similarity to UML 2.0 where with every behavior execution is associated a start and

a finish event, but we have introduced a concrete syntax for these events, and we have
defined a set of concrete attributes these events may have.

60 S. Graf et al.

webpage2. Here, we provide a short summary of the individual papers. They looked at
the workshop’s themes from very different angles. Two of them appear in these
proceedings; they have been chosen for their intrinsic quality and particular interest
for the subjects of this workshop.

2.1 A Unified Approach for Predictability Analysis of Real-Time Systems Using
UML-Based Control Flow Information [GBL05]

The aim of this position paper is an approach to predictability analysis for
(distributed) Real-Time Systems (RTS) based on UML. The models are mainly
standard UML 2.0 Sequence Diagrams (SD), and the analysis is based on a control
flow analysis method for SD, augmented with analysis of timing and distribution
information.

The approach targets resource usage analysis, load forecasting, and dynamic
dependency analysis in time-dependent systems, in particular in early phases of the
software lifecycle. Standard UML models and extensions are used as input. The use
of the profiles is demonstrated on hand of a case study, in which the resource usage of
network traffic is analyzed in a distributed RTS.

There is a common core for the different predictability analyses proposed, namely
the control flow analysis of SD. The hope is that this does increase reusability of
analysis information and will simplify the implementation of other predictability
analysis algorithms.

2.2 Modular Verification of Safe Online-Reconfiguration for Proactive
Components in Mechatronic UML [GH05]

While traditionally the environment considered by an autonomous mechatronic
system consisted only of the measurable surrounding physical world, today‘s
advanced mechatronic systems are complex distributed systems acquiring sensor
values and sending commands through buses or even wireless networks. In this
context, mechatronic systems consist of cooperating agents optimizing the system
behavior by adjusting their local behavior and cooperation structure to better serve
their current goals depending on the experienced mechanical and information
environment. The Mechatronic UML approach defines a profile and a methodology
for the component-wise development of such self-optimizing mechatronic systems by
providing a notion for hybrid components represented by state machines: states
correspond to modes in which particular control laws are used (laws which might be
developed using tools like Simulink), and mode changes are used to adapt the control
laws due to particular observations in the system.

At last year’s workshop, an environment for modular analysis integrated in the
Fujaba tool [BGN+04] has been presented for the verification of purely reactive
behavior with only restricted time constraints, where modularity is obtained through
particular required and provided interfaces represented by state charts. This
environment has been adapted for applying model checking to verify safe modular
reconfiguration for systems which include components with complex time constraints
and proactive behavior. The tool is demonstrated on a case study, an automatic shuttle

2 See http://www.martes.org/

 Modeling and Analysis of Real-Time and Embedded Systems 61

system in which shuttles may build convoys to save energy. The tool also includes
automatic code generation for the particular platform used in the case study, which
makes it of particular practical interest.

We considered that this approach was a particularly interesting demonstration of
the usefulness of UML for model based development in a particular application
domain.

2.3 Timing Analysis and Validation of the Embedded MARS Bus Manager
[OGY05]

This paper presented the profile for modeling real-time systems and their
requirements defined in the Omega project [GOO05] by using it in a case study done
by an industrial user with the IF/IFx tool developed for this profile [OGO05].

The aim of the profile is, contrary to the one presented [GH05], not to be bound to
a particular methodology for a particular set of application, but to be adaptable to a
larger set of applications. The Omega real time profile provides means for specifying
the timing of design models – at different levels of abstraction – by using timers and
clocks in system objects for handling time-dependent design or in environment
objects for describing an environment with particular timing properties. Platform
dependent execution times needed for the analysis are annotated back into the models.
Requirements are represented by “observers”, state machines triggered by semantic
level events and representing acceptors of timed languages of such events. Observers
can express arbitrary properties and in particular all those “standard property patterns”
identified in SPT or in [EDG+05] below. Observers are also related to protocol
machines, as they represent externally visible properties of some context; the
difference is that they can refer to more semantic level events and have acceptance
and ignore states allowing the expression of richer properties.

The aim of the paper was to show the usability of the Omega profile and its tools
for designers of real-time systems on hand of a case study in which functional
decomposition has been used for modular verification of a small system with complex
timing properties.

2.4 Validating Temporal Properties of a Deployed Application with an MDD
Approach [HCB+05]

This paper shows another usage of the Omega profile, but in the context of
telecommunication systems where the description of the deployment of functional
service components on a distributed platform and timing properties are important
issues. The paper proposes a particular methodology for representing (static) software
and platform architectures by component diagrams annotated with properties
expressing the relevant typing information for different kinds of resources. Also some
dynamic aspects related to resources, such as processor usage policies, are represented
by a small number of keywords. The dynamic aspects of the developed services by
composition of service components are described by means of Live Sequence Charts
[DH99, HKP04], a non-standard notation, similar to Sequence diagrams but
appropriate for the expression of properties of systems rather than of particular runs.
Notice that they are of similar expressiveness as the above mentioned observers but

62 S. Graf et al.

propose a different style, well adapted for service level requirement specifications.
Using the available LSC tools, requirements are first analyzed as such and then
translated into state machine models. These state machine models are then composed
with the platform model and analyzed with the IF/IFx tool.

The paper suggests also the use of symmetry reduction techniques as an alternative
to the use of modular abstractions proposed in [OGY05] as it is potentially easier to
automate, and is useful for analyzing systems with reasonably small multiplicities.

Using another model transformation to appropriate tools, still under development,
these specifications will also be used for the validation of QoS properties of statistical
nature.

2.5 Modeling and Analysis of Concurrent and Real-Time Object-Oriented
Designs [PG05]

This position paper proposes a method for early design analysis, in which hierarchical
colored Petri nets (CPN) are used for capturing the dynamic aspects of an object
oriented architecture provided by an UML based model. The UML model is
transformed in a structural way based on appropriate stereotypes and templates, into a
CPN and partially completed at the CPN level. The proposed approach is essentially
top-down, making intensive use of hierarchical construction. On the resulting model
existing analysis tools can be used. For Petri nets there exist syntax level analysis
methods for validating control invariants and deadlock freedom, but here the main
interest was the use of the powerful (simulation based) state space and performance
analysis provided by the tool DesignCPN [Jen99].

Like in the previous paper, an important aspect is the use of the same model for
requirements and performance oriented analysis. Currently, the flow of the method is
addressing designers familiar with both notations, UML and Petri nets. A tool-
supported method for translating back the resulting CPN models into UML is future
work.

2.6 Introducing Control in the Gaspard2 Data-Parallel Metamodel:
Synchronous Approach [LDB+05]

This paper is about the introduction of explicit control into the array oriented
language Gaspard2, used for programming of computation intensive reactive systems.
The aim is to exploit the explicit representation of data parallelism for deriving
efficient code or hardware for a given platform. The derivation of code for complex
and distributed platforms requires taking into account specific timing information and
some kind of architecture exploration. In order to reuse existing code generation
algorithms based on the synchrony hypothesis, it is needed to explicitly introduce
both timing information and control. At user level, this is done by means of a
particular UML profile which introduces explicit control by state machines used as
mode automata [MR98]. In order to reuse existing code generation tools, the
functional specification and the extensions with explicit control and times are mixed
into a unique array specification, in which time and control correspond to particular
dimensions. The obtained specification is used for validation and code generation.

 Modeling and Analysis of Real-Time and Embedded Systems 63

This is interesting work, very much related to the approach proposed earlier in
[GH05] or to recent proposals for extending SCADE for distributed platforms, or also
to the work on compilation for the synchronous language Signal. Presently, the
verification is done separately for the functional model and for timing and control. To
evaluate to what extent this is realistic and to provide useful results, are the objectives
of future work.

2.7 Some Requirements for Quantitative Annotations of Software Designs
[PW05]

The main aim of this paper is to provide general mechanisms for the definition of QoS
annotations and a comparison of the expressiveness of existing profiles.

This effort is made in the context of work for the MARTE profile. In MARTE, the
general mechanisms introduced will be used to indicate timing and memory-usage
properties of the software and of its behavior, as well as timing, capacity and
utilization properties of resources. Other kinds of non-functional requirement analysis
need different types of characteristics; for instance reliability analysis calls for failure
rates and probabilities.

The authors define a meta-model of quantitative annotations that identifies which
quantities are relevant to the analysis domain; this meta-model will then help to define
the issues that need to be resolved for each analysis domain: (1) which is the
quantitative domain the analysis is working on, (2) how quantitative characteristics
are attached to model elements, (3) how different quantitative characteristics are
related to each other and finally (4) the actual expression of constraints on and
between quantitative characteristics which may represent hypotheses or requirements
on the system. Especially for performance analysis, it is important to distinguish
“realizations” that are values for characteristics that actually occur during execution
runs and “measures” defining statistical properties over all realizations in any run.

The paper considers how two previous profiles, SPT [OMG03] and QOS
[OMG04], address these requirements and raises issues and questions related to
defining a UML profile for MARTE.

2.8 A General Structure for the Analysis Framework of the UML MARTE
Profile [EDG+05]

This paper focuses like [PW05] on the expression of non functional properties in the
context of MARTE, under a slightly different angle. It aims to provide a robust basis
to the MARTE profile for Modeling and Analysis of Real-Time and Embedded
systems. It analyzes in particular the existing annotating mechanisms of extra-
functional properties and some specific requirements of the concerned RFP to
consistently derive a preliminary framework for the subprofile concerning analysis
and expression of requirements.

It mainly focuses on providing a Quantitative Analysis domain model which gives
a good account of the relevant attributes and measures and their relations in the form
of catalogs. It includes a flexible mechanism to easily add and suppress QoS attributes
without changing the associated Domain Model and Profile, which covers inclusion
of modeling capability for new analysis techniques.

64 S. Graf et al.

The analysis domains covered include both performance and scheduling analysis.
Its final aim is indeed to allow the unification of the existing Schedulability and
Performance modeling sub-profiles in the pertinent aspects, whereas letting them
separated in the specialized ones. For this purpose, it is structured into four modeling
views which influence the relevant analysis techniques and which are the workload,
behavior, allocation and the platform view.

3 Workshop Discussions and Results

Most presentations directly addressed modeling or validation of systems with real-
time properties, and most of them are more or less related to UML. Some approaches
proposed the use of UML and provided therefore some extensions, whereas some
proposed completion of UML modeling by external formalisms, such as Petri nets
[PG05] or array languages [LDB+05]. All validation approaches include naturally
mappings into analysis specific formalism. Two papers were directly related to the
ongoing effort for the MARTE RFP. Contrary to last year, no paper provided in-depth
discussion of semantic issues.

The approaches presented in [GH05, LDB+05] are complete, in the sense that they
provide tools for both validation and code generation, the other ones propose rather a
high-level design and refinement approach, including platform related characteristics
as far as they are needed for validation, but no actual code generation. They are meant
for complementing some code generation process which does not exist or at least is
not made precise.

The approaches presented in [GBL05, HCB+05, PG05] propose analysis for
service oriented requirement specifications; in [HCB+05] it is also proposed to later
on check these requirements against the design level specifications of software
components defining the actual system, where in the future tools based on synthesis
methods may be used for generating such design specifications.

The approaches in [GH05, OGY05, LDB+05] work on design specifications. In
[LDB+05], they main accent is on code generation by guaranteeing the specified
design. Emerging global properties of runs (temporal properties) are not really
addressed. In [GH05] verification of temporal safety properties is done locally on
individual components, where a methodology based on refinement is used for
addressing global properties. [OGY05] does allow specification of global temporal
properties, where the “observers” used for that purpose represent properties of all
interactions, rather than under specifications as it is the case for sequence diagrams.
Both [GH05] and [OGY05] do verification compositionally, where decomposition of
properties and designs is used to make verification tractable. In [GH05]
decompositions are always checked for refinement, whereas in [OGY05] abstraction
is used to show that a decomposed system still satisfies the same global properties.

We may notice that most approaches go along with some methodology bound to
some application domain. In the discussion arose the question which method could
also be useful for the problem (often some particular case study) solved by the other
approaches. Indeed, the approaches are quite complementary, but not all the
approaches match the need of all addressed domains.

 Modeling and Analysis of Real-Time and Embedded Systems 65

In particular, the application domain of real-time controllers, addressed in [GH05,
LDB+05] and to some context also in [OGY05] which have to satisfy hard real-time
constraints, scenario-based performance analysis seems to play a less important role,
whereas in the strongly service oriented systems, as for example those presented in
[HCB+05], beyond statistical properties, mainly untimed safety properties are
relevant which depend however on a timed model.

4 Conclusions

Compared with last year, where we have noted in the context of real-time analysis a
clear trend towards either small profiles, including just what is available for the
targeted validation tools or profiles providing rich but rigid catalogs of properties, the
situation has slightly evolved.

With respect to the analysis of real-time properties, the MARTE profile includes
some catalog representative for the domain of real-time properties, but it aims also at
providing means for the expression of general, user defined properties and moreover,
it is less biased to annotations of interactions. However, it still provides syntax and
means to extend syntax, without providing also appropriate means for defining the
semantics of the proposed annotations. An important result of the workshop is the
merging of the proposals made in [PW05] and in [EDG+05]; the result is [EGP+05]
which has been chosen for inclusion in the conference proceedings.

Concerning validation of real-time constraints, we consider that the most important
issue is to provide methodologies making this kind of “intrinsically global properties”
compositional. We found that [GH05] represents the most complete approach with
this respect, and we have therefore chosen this paper to appear in the proceedings.

References

[BGHS04] S. Burmester, H. Giese, M. Hirsch, and D. Schilling. Incremental Design and
Formal Verification with UML/RT in the FUJABA Real-Time Tool Suite, in Wshp
on Specification and Verification of Real Time Embedded systems, SVERTS
2004.

[CM05] P. Caspi and O. Maler. From Control loops to real-time programs. In Handbook of
Networked and Embedded Control Systems. CRC Press, 2005.

[CR01] P. Caspi and P. Raymond. From Control system design to embedded code: the
synchronous data-flow approach. In 40th IEEE Conference on Decision and
Control (CDC’01), Florida, December 2001.

[DH99] W. Damm and D. Harel. LSCs: Breathing life into Message Sequence Charts. In
FMOODS’99 IFIP Int. Conf. on Formal Methods for Open Object-Based
Distributed Systems. Kluwer, 1999. Also to appear in Journal on Formal Methods
in System Design.

[EDG+05] Huascar Espinoza, Hubert Dubois, Sébastien Gérard, and Julio Medina. A General
Structure for the Analysis Framework of the UML MARTE Profile. In [GGHS05].

[EGP+05] Huáscar Espinoza, Hubert Dubois, Sébastien Gérard, Julio Medina, Dorina C.
Petriu, Murray Woodside. Annotating UML Models with Non-Functional
Properties for Quantitative Analysis. In these proceedings.

66 S. Graf et al.

[GBL05] Vahid Garousi, Lionel Briand and Yvan Labiche. A Unified Approach for
Predictability Analysis of Real-Time Systems using UML-based Control Flow
Information. In [GGHS05].

[GGHS05] S. Gérard, S. Graf, O. Haugen, and B. Selic, editors. MARTES 2005, Workshop on
Modelling and Analysis of Real Time and Embedded Systems, with MODELS
2005.

[GH05] Holger Giese and Martin Hirsch. Modular Verification of Safe Online-
Reconfiguration for Proactive Components in Mechatronic UML. In [GGHS05]
and these proceedings.

[GOO05] S. Graf, I. Ober, and I. Ober. Timed annotations in UML. STTT, Int. Journal on
Software Tools for Technology Transfer, 2005. under press.

[HCB+05] Jean-Louis Houberdon, Pierre Combes, Jean-Philippe Babau, and Isabelle Auge-
Blum. Validating temporal properties of a deployed application with an MDD
approach. In [GGHS05].

[HKP04] D. Harel, H. Kugler, and A. Pnueli. Smart Play-Out Extended: Time and Forbidden
Elements . In Int. Conf. on Quality Software (QSIC04). IEEE Press, 2004.

[Jen99] K. Jensen, "DesignCPN," 4.0 ed. Aarhus, Denmark: University of Aarhus, 1999
[LDB+05] Ouassila Labbani, Jean-Luc Dekeyser, Pierre Boulet, and Eric Rutten. Introducing

Control in the Gaspard2 Data-Parallel Metamodel: Synchronous Approach.
[GGHS05].

[MR98] F. Maraninchi and Y. Rémond, Mode-automata: About modes and states for
reactive systems, European Symp. On Programming ESOP, LNCS 1381, Lisbon,
Portugal, 1998

[OGO05] I. Ober, S. Graf, and I. Ober. Validating timed UML models by simulation and
verification. Int. Journal on Software Tools for Technology Transfer, 2005. Under
press.

[OGY05] Iulian Ober, Susanne Graf, and Yuri Yushtein. Timing analysis and validation of
the embedded MARS bus manager. In [GGHS05].

[Omega] The homepage of the Omega project http://www-omega.imag.fr/
[OMG03] OMG. UML Profile for Schedulability, Performance, and Time, formal/03-09-01,

09/2003.
[OMG03b] OMG. Object Constraint Language, version 2.0. Final adopted specification,

document ptc/2003-10-14, 10/2003.
[OMG04] OMG. UML Profile for Modelling Quality of Service and Fault Tolerance

Characteristics and Mechanisms. Specification, ptc/2004-06-01, 06/2004.
[PG05] Robert Pettit and Hassan Gomaa. Modeling and Analysis of Concurrent and Real-

Time Object-Oriented Designs. In [GGHS05].
[PW05] Dorina Petriu and Murray Woodside. Some Requirements for Quantitative

Annotations of Software Designs. In [GGHS05].

Modular Verification of Safe Online-Reconfiguration for
Proactive Components in Mechatronic UML�

Holger Giese and Martin Hirsch��

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany

{hg, mahirsch}@uni-paderborn.de

Abstract. While traditionally the environment considered by an autonomous
mechatronic systems only consists of the measurable, surrounding physical
world, today advanced mechatronic systems also include the context established
by the information technology. This trend makes mechatronic systems possible
which consist of cooperating agents which optimize and reconfigure the system
behavior by adjusting their local behavior and cooperation structure to better
serve their current goals depending on the experienced mechanical and informa-
tion environment. The MECHATRONIC UML approach enables the component-
wise development of such self-optimizing mechatronic systems by providing a
notion for hybrid components and support for modular verification of the safe
online-reconfiguration. In this paper, we present an extension to the formerly pre-
sented solution which overcomes the restriction that only purely reactive behavior
with restricted time constraints can be verified. We present how model check-
ing can be employed to also verify the safe modular reconfiguration for systems
which include components with complex time constraints and proactive behavior.

1 Introduction

To realize advanced mechatronic systems such as intelligent cooperating vehicles, the
engineers from the different disciplines mechanical engineering, electrical engineer-
ing, and software engineering have to cooperate successfully. The development of
such systems becomes even more challenging, if the mechatronic systems should be
able to adjust their behavior and structure at run-time (cf. self-adaptation and self-
optimization [1]).

The environment of autonomous mechatronic subsystems today no longer consists
only of the physical world. In addition, the context built by the interconnection of the
system via information technology such as local bus systems or wireless networking
technology has to be taken into account. Therefore, today more flexible mechatronic
systems are developed which require complex online reconfiguration schemes for the
control algorithms which can effect not only a single component but whole hierarchies
of connected components.

� This work was developed in the course of the Special Research Initiative 614 - Self-optimizing
Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemeinschaft.

�� Supported by the University of Paderborn.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 67–78, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

68 H. Giese and M. Hirsch

The MECHATRONIC UML approach provides an approach for the component-
wise development of such complex self-optimizing mechatronic systems. It supports
a component notion and the specification of required online reconfiguration activi-
ties which go across multiple levels of a component hierarchy [2]. Therefore, online-
reconfiguration can be employed also on the higher levels of the system control but
also across the boundaries traditionally given by the involved disciplines. The MECHA-
TRONIC UML approach also supports model checking techniques for real-time process-
ing at the higher levels. It addresses the scalability problem of these techniques by sup-
porting a compositional proceeding for modeling and compositional verification of the
real-time software when using the UML 2.0 component model and the corresponding
definition of ports and connectors as well as patterns [3].

In [2], an approach to combine such a compositional approach with techniques to
ensure the proper modular reconfiguration has been presented which require a rather
restricted purely reactive behavior and rather restricted local timing constraints for the
subordinated components. More complex timing constraints including clock invariants
which enforce certain reconfiguration sequences or proactive behavior in the sense
that the subordinated component autonomously decides that a reconfiguration is re-
quired is currently not supported. In this paper, we present how the verification of the
safe reconfiguration can be accomplished with model checking to also cover these two
cases.

The paper proceeds with an informal introduction on modeling with the MECHA-
TRONIC UML approach by means of an example given in Section 2 and some remarks
on the current tool support. To point to the limitations of the existing approach the ex-
ample is extended with proactive behavior and non complex timing constraints which
effect the reconfiguration. The concepts and first evaluation results for verifying the
safe reconfiguration follow in Section 4. We close the paper with a discussion of related
work (Section 5) and a final conclusion including an outlook on planned future work in
Section 6.

2 Modeling and Current Tool Support

In this section, we introduce our MECHATRONIC UML approach focusing on modeling
with hybrid components (cf. [2]). Furthermore, we present our current tool support for
modeling and verification of hybrid systems.

To outline our approach, we employ an example which stems from the RailCab1 re-
search project at the University of Paderborn. Autonomous shuttles are developed which
operate individually and make independent and decentralized operational decisions.

The shuttle’s active suspension system and its optimization is one example for a
complex mechatronic system whose control software we design in the following. The
schema of the relevant physical model of our example is shown in Figure 1(a).

The suspension module is based on air springs which are damped actively by the
displacement of their bases and three vertical hydraulic cylinders which move the bases
of the air springs via an intermediate frame – the suspension frame. The vital task of
the system is to provide the passengers a high comfort and to guarantee safety when

1 http://www-nbp.upb.de/en/index.html

Modular Verification of Safe Online-Reconfiguration for Proactive Components 69

(a)

A B C

prop.- valves

A / D

controller

D / A

sensors

hydr. pump

car body

hydr. actuators

air springs

to the

actuators

z

y

a

(b)

Monitor
Role

:Sensor

:Registry

Registry
Role

:Monitor

storage : Storage

:BC

Registration
Monitor−

Fig. 1. 1(a) Scheme of the suspension module / 1(b) Monitor and its environment

controlling the shuttle’s car body. In order to achieve this goal, multiple feedback con-
trollers are used with different capabilities in matters of safety and comfort [4].

We focus on 3 controllers which provide the shuttle different comfort: The Refer-
ence controller provides sophisticated comfort by referring to a trajectory describing
the required motion of the coach body in order to compensate the current track’s un-
evenness, slopes, etc. To guarantee stability, all sensors have to deliver correct values. In
case of e.g. incorrect values the less comfortable Absolute controller has to be applied,
which requires only the vertical acceleration as input. If this sensor fails, our Robust
controller, which provides the lowest comfort, but requires just standard inputs to guar-
antee stability, has to be applied. We have to distinguish between two different cases:
atomic switching and cross fading. In the case of atomic switching, the change takes
place between two computation steps. If the operating points of the controllers are not
identical, it will be necessary to cross-fade between the two controllers.

The architecture of the suspension module is depicted in Figure 1(b). The Monitor
component coordinates its embedded components BC, Sensor, and Storage. Further, it
communicates via the MonitorRegistration pattern with the Registry. If Registry sends
the information about the upcoming track section to Monitor, the Monitor stores it in the
Storage component. Sensor provides the signals. To model the hierarchical embedding
of the BC component into the Monitor component, aggregation for UML 2.0 components
is used. The non-hierarchical link of the Monitor component to the Registry component
is described by two ports (as defined in the UML 2.0 as unfilled boxes) and a connector.

To additionally model the quasi-continuous aspects of the model in form of com-
munication via continuous signals, we extend the UML by continuous ports, depicted
by framed triangles whose orientation indicates the direction of the signal flow. The
behavior of the hybrid component is specified by means of an extension of UML State
Machines called hybrid reconfiguration charts. We employ Real-Time Statecharts [5]
to describe required real-time behavior and we describe the continuous behavior by em-
bedding appropriate basic quasi-continuous block configurations (cf. the BC component
behavior in Figure 2(a)).

While a common hybrid automaton specification requires always the same input and
output signals for every location, the required controller logic with its specific required
input and provided output signals is specified within each state of a hybrid reconfig-

70 H. Giese and M. Hirsch

(a)

zAbsFailure

zAbsOK

Robust

Reference

Absolute

zRefOK

zAbsFailure

zRefFailure

<Abs>

<Ref>

<Rob>

zAbsRefOK

(b)

zRefOK

zAbsFailure

zRefFailure

zAbsOK

[Robust]

[Absolute]

zAbsFailure

[Reference]
zAbsRefOK

Fig. 2. Behavior description of the BodyControl (2(a)) and the interface state chart (2(b))

uration chart (cf. Figure 2(a)). The continuous ports that are required in each of the
three interfaces are filled black, the ones that are only used in a subset of the states
are filled white. In our notion of hybrid reconfiguration charts, we introduce additional
fading-transitions, which are visualized by thick arrows, while atomic switches have the
shape of regular arrows. Parameters of a transition are: A source- and a target-location,
a guard and an event trigger, information on whether or not it is an atomic switch, and,
in the latter case, a fading strategy (ffade) and the required fading duration interval
d = [dlow, dup] specifying the minimum and maximum duration of fading.

For embedding or connecting a hybrid component, we do not need all details of the
component realization, but only enough information about its externally observable be-
havior such that compatibility can be analyzed. In Figure 2(b) the related interface state
chart of the BC component is displayed. The interface state chart abstracts from the con-
tinuous behavior, it still contains the information about the input-output dependencies
and permits us to abstract from all internal variables and internal signals.

Therefor, we present in the following a concept for the behavioral embedding of the
subcomponents within the hybrid reconfiguration charts of a component, which permits
to check consistency w.r.t. reconfiguration at a purely syntactical level.

The behavioral embedding of subcomponents is realized by assigning a configura-
tion of aggregated subcomponents (not only quasi-continuous blocks) to each state of
a hybrid reconfiguration chart by means of UML instance diagrams (see Figure 3). A
switch between the states of the monitor chart then implies a switch between states of
the interface state charts of the embedded components.

The behavior of the Monitor component is specified by a hybrid reconfiguration chart
(cf. Figure 3). We have assigned the BC component in the appropriate state to each state
of the upper orthogonal state of the chart. E.g., the BC component instance in state
Reference has been (via a visual embedding) assigned to the location AllAvailable of
the monitor where sensors zref as well as z̈abs are available. The communication with
the Registry is described in the lower orthogonal state of Figure 3 (cf. [2]). The upper
orthogonal state consists of the states RefAvailable and AllAvailable which represents
whether the required reference curve is available for the current track. The upper state
is synchronized by the lower one.

For the outlined MECHATRONIC UML approach there exists tool support. Espe-
cially two specific verification tasks for the resulting systems are supported. At first
the real-time coordination of the distributed software, which is modeled with UML 2.0

Modular Verification of Safe Online-Reconfiguration for Proactive Components 71

:Sensor[Off]:BC[Robust]

storage:Storage

:Sensor[On]:BC[Reference] :Sensor[On]:BC[Absolute]

:BC[Robust] :Sensor[Off]

when(next
Segment)
noData? /

when(nextSegment)
data(Vector zRef)?

registry.sendInfo(zRef) / storage.add(zRef)

when(storage.isEmpty())

Trajectory
Available

/ registry.experience
data(Vector zRef)!
!storage.isEmpty())
when(

when(nextSegment)
data(Vector zRef)? /

sensor.ok

RefAvailable NoneAvailable

sensor.failure

sensor.ok

data(Vector zRef)?

noData?

AbsAvailableAllAvailable

sensor.failure

when(nextSegment)
data(Vector zRef)? /

registry.experience
noData! /

after(20) /
registry.requestInfo

TrajectoryNot
Available

Fig. 3. Behavioral embedding in the Monitor realization

components and connectors is verified using a compositional model checking approach
based on verified coordination patterns [3]. Secondly, a restricted subset of the outlined
hierarchical component structures for modeling of discrete and continuous control be-
havior is checked for the consistent reconfiguration and proper real-time synchroniza-
tion w.r.t reconfiguration [2]. In addition, the second approach can be embedded into
the first one.

The current results enable the systematic development of complex mechatronic sys-
tems with safe online-reconfiguration, as in the current practice of mechatronic systems
the strict hierarchical approach with strict top-down command order is standard. How-
ever, a number of limitations result which seem to unduly restrict the design space for
more advanced modular designs of mechatronic systems in the future.

3 Complex and Proactive Behavior

One severe restriction is that in interface state charts only the duration of transitions
can be specified but not their time-triggered execution. Examples where an extension
to more general time constraints in the interface state chart seem beneficial are, for
example, restrictions on the frequency of mode switches. In our example, the engineer
could more easily ensure the stability of the underlying system if the interface state
chart restricted that after a switch from state Reference to state Absolute a certain time
threshold should elapse before the BC component permits to switch back to the more
comfortable Reference state.

Another limitation is the strict top-down command order. While the processing of
the sensor error already indicates that we have to consider errors of the subcomponents,
the current form of interface state charts does not permit to encode a required reaction
time or switching of the mode within the interface. Thus, whether a required reaction
of the embedding component results or not is currently not included in the interface.
Therefore, besides only emitting warnings, error reports, or wishes to the embedding

72 H. Giese and M. Hirsch

component, true proactive behavior in the interface state charts seems favorable such
that when sending an error report the interface state chart can also initiate that within
a given time frame the current state has to be left. As example for proactive behav-
ior, consider the case that BC component detects that the operation with the reference
data results in unexpected problems and wants to report this to the embedding Monitor
component, the BC component may in addition specify in the interface state chart that
therefore the reference mode has to be left within a given deadline to ensure that the
observed behavior is not critical.

We can characterize these cases where more expressive notion of interface automa-
ton are required as follows: An interface automaton M is complex if it is not simple but
still deterministic. An interface automaton M is proactive if it autonomously decides
that a reconfiguration is required which results in a non-deterministic behavior.

In Section 2, the suspension module was introduced and thereon the control software
was modeled. One characteristic of the control software was the top-down command or-
der. It was not possible for the BC component to influence the Monitor component via
direct events. E.g. if any error occurs when the BC component is in the Reference state,
the BC component has to switch to the Robust state and has to inform the superordi-
nate Monitor component to react in an adequate way. Furthermore, we want to avoid
perpetual uncontrolled switching between Absolute and Reference.

(a)

zAbsFailure

zAbsOK

Robust

Absolute

zAbsFailure

<Abs>

<Ref>

<Rob>

zRefOK

Reference(Main)

Timeout

Reference

/ switchToRobust

zRefFailure

zAbsRefOK

(b)

/ failure/ ok

On

Off

Fig. 4. Behavior description of the BC component (4(a)) and Sensor component (4(b))

In Figure 4(a), the redesigned BC component is depicted. The behavior of the for-
mer BC component is extended by proactive behavior. When the BC component is in
the Reference state, the component is now able to decide autonomously to switch to
the Robust state. Due to non-urgent transitions (dashed line), non-determinism is in-
troduced. This is modeled as follows: While staying in the Reference state, the body
control sends a message switchToRobust to the superordinate Monitor component. This
done, the BC component pauses in a Timeout state. If the timeout is reached, the BC

Modular Verification of Safe Online-Reconfiguration for Proactive Components 73

component switches to Robust. To control the switching between Absolute and Refer-
ence, a timer t is introduced. Everytime the Reference state is entered from the Absolute
state, a clock t is set to zero. To avoid an immediate return back to Absolute, a guard,
representing a threshold, t>=threshold, is added to the transition. All other incoming
transitions to the Reference state get an additional assignment t:=threshold, thus the
threshold is “omitted”. In Figure 4(b) the interface state chart of the sensor component,
consisting of two states, on and off, is depicted.

storage:Storage

:Sensor[On]:BC[Reference]

:Sensor[Off]:BC[Robust]

:Sensor[On]:BC[Absolute]

:BC[Robust] :Sensor[Off]

when(next
Segment)
noData? /

when(nextSegment)
data(Vector zRef)?

registry.sendInfo(zRef) / storage.add(zRef)

when(storage.isEmpty())

Trajectory
Available

/ registry.experience
data(Vector zRef)!
!storage.isEmpty())
when(

when(nextSegment)
data(Vector zRef)? /

RefAvailable NoneAvailable

sensor.failure

sensor.ok

data(Vector zRef)?

noData?

AbsAvailable

registry.experience
noData! /

after(20) /
registry.requestInfo

TrajectoryNot
Available

sensor.ok

bc.switchToRobust

when(nextSegment)
data(Vector zRef)? /

AllAvailable

sensor.failure

Fig. 5. Behavioral embedding in the Monitor realization

Similar to Figure 3, the behavior of the Monitor component is depicted in Figure 5.
In addition to the old Monitor component, we have to take into account the proactive
and timing behavior of the subordinated components. Since the body control now sends
the switchToRobust message, the monitor component has to consume this message.

4 Checking Complex and Proactive Subcomponents

To adjust our modular reasoning approach to the extensions outlined in the last section,
we have to provide checks for refinement and correct embedding which support the
introduced more expressive interface automata.

4.1 Checking Refinement

Complex and proactive components do not result in a simple interface state chart and
thus the checking procedure for ensuring that the interface state chart corresponds to
the component behavior is not applicable.

In [6], an approach for checking the employed notion of refinement (M �RT M I)
has been presented which requires that M I is deterministic. If the interface state chart
M I is complex but not proactive, we can thus employ this approach. For a deterministic
M I we have to derive a corresponding test automaton M I

t as described in [6] and then
check M‖M I

t for time stopping deadlocks.

74 H. Giese and M. Hirsch

If, however, the interface state chart M I is proactive and thus not deterministic, we
have to look for alternatives, as we cannot derive a deterministic timed automaton for
each non-deterministic one (cf. [7]). Analyzing the limitation of the approach outlined
in [6], we can conclude that the branching within the on-the-fly traversed cross-product
simply requires that a unique mapping to a state in the refined model exists which is
guaranteed in [6] by the deterministic character of M I .

We propose to exploit the mapping map : LI
p → L between the passive states of

the interface automaton and related states in the underlying realization to achieve a
feasible solution for this case. For a mapping map which assigns to each realization
state exactly one state of the interface automaton and thus map−1 is a function and
we write l′ = map−1(l)) and the case that no two transitions with the same source
location, label, and target location exist, we can build syntactically the cross-product
M ′ = M I ×map M .

We can then simply check whether a time stopping deadlock or a bad state can be
reached in M ′ and conclude that refinement holds if no such violation has been detected.
A more detailed and technical description of the mapping can be found in [8] and will
be omitted here.

To verify if the hybrid reconfiguration automaton of the BC component is a correct
refinement of the BC component interface state chart, we have to built a timed automata
model as explained above. We use the model checker UPPAAL [9] for the verification
and check the constraints, formulated in TCTL, A[] not deadlock and E<> BodyCon-
trol.Error ensuring the correct refinement. The verification took about 1.21 seconds and
at maximum about 8032 KB were allocated by the verifier2.

4.2 Checking the Embedding

To realize the dynamic checking for the prove of correct reconfiguration behavior, the
hybrid reconfiguration chart and the interface state chart have to be transformed to an
appropriate model which can be handled by a model checker. In [10], transformation
rules from Real-Time Statecharts to timed automata were introduced. In the following,
we reuse and extend theses transformation rules.

In hybrid reconfiguration charts, component instances are embedded in locations.
During the transformation, the instances are omitted because the associated interface
state charts are also transformed. Due to this fact, for the transformation of locations,
we can apply the same ones as for Real-Time Statecharts.

In addition to the locations, the transitions have to be transformed. In contrast to
Real-Time Statecharts, a transition is associated with a fading function. Since the fad-
ing function does not affect the real-time behavior, it is omitted, too. Hence the same
transformation as for Real-Time Statecharts is used. As mentioned before, the inter-
face state charts of the embedded component instances have to be transformed. It has
to be guaranteed that the embedded component instance leaves an internal location iff
the superordinate component leaves a location. For example, when the monitor com-
ponent leaves the location NoneAvailable, the embedded component instance BC has to
leave the internal location Robust. To achieve this behavior, we use the synchroniza-
tion semantics from the timed automata model. The superordinate component has the

2 The verification was done on a Pentium 4, 2.4 GHz, 1 GB memory, OS Linux Redhat.

Modular Verification of Safe Online-Reconfiguration for Proactive Components 75

Sensor
B

odyC
ontrol

M
onitor

Fig. 6. Synchronization between Monitor, Sensor, and BodyControl

t_intern<=50 t_intern<=50 t_intern<=0

NoneAvailableRefAvailable

t_intern<=50

AbsAvailable

t_intern<=50

AllAvailable

timer<=51

NoneAvailableAbsAvailable_entry!

NoneAvailableAbsAvailable_entry!

t_intern>=20

NoneAvailableAbsAvailable_exit!

NoneAvailableAbsAvailable_exit!

t_intern:=0

AllAvailableRefAvailable_entry!

t_intern>=20

AllAvailableRefAvailable_entry!

AllAvailableRefAvailable_exit!

AllAvailableRefAvailable_exit!

t_intern:=0
RefAvailableAllAvailable_entry!

RefAvailableAllAvailable_entry!
t_intern>=20

RefAvailableAllAvailable_exit!

RefAvailableAllAvailable_exit!
t_intern:=0

AbsAvailableNoneAvailable_entry!

AbsAvailableNoneAvailable_entry!

AbsAvailableNoneAvailable_exit!

AbsAvailableNoneAvailable_exit!
t_intern:=0

timer:=0

AbsAvailableAllAvailable_entry!

t_intern>=20

AbsAvailableAllAvailable_exit!

t_intern:=0

AllAvailableAbsAvailable_entry!

AllAvailableAbsAvailable_exit!

reinit!

timer==51

bc_switchToRobust?

timer:=0

Fig. 7. Timed Automaton of the Monitor state chart

meaning of a sender (!), whereas the embedded component instances have the meaning
of a receiver (?). In the case of more than one embedded component instance, we use
a chain of committed locations (cf. [9]) for synchronization. In Figure 6, an example is
depicted.

For the evaluation, we use the real-time model checker UPPAAL [9]. As an example
the transformed timed automata of the interface state chart of the of the Monitor com-
ponent is depicted in Figure 7. For clarity, we do not depict the timed automaton of the
Sensor (the transformation is rather trivial). For the verification the automata are exe-
cuted in parallel. We check the property A[] not deadlock. As result of the verification,
we get that the system is deadlock free. In particular, this means we have a correct em-
bedding of all components. The verification took about 0.31 seconds and at maximum
about 2092 KB were allocated by the verifier.

76 H. Giese and M. Hirsch

5 Related Work

The de facto industry standard for modeling of mechatronic systems with hybrid behav-
ior is MATLAB/Simulink and Stateflow3. Formal verification of MATLAB/Simulink
and Stateflow models of moderate size can be accomplished by automatically trans-
forming them to hybrid automata (cf. [11]).

Besides MATLAB/Simulink and Stateflow, there are also a number of approaches,
like Charon [12], Masaccio [13], HyCharts & HyRoom [14], and Hybrid I/O Automata
[15], which address the problem of modeling complex systems by some form of hybrid
state charts. Some of them support hierarchy and parallelism as well as a notion of
component and some of them even support formal verification.

All existing approaches fail in providing a component concept which supports a
dynamic interface which enables to decompose systems with online reconfiguration
into multiple hybrid state charts. Thus, a usually not feasible check of the whole system
is required to ensure that a system with complex reconfiguration such as the presented
example is correct w.r.t. the reconfiguration and real-time behavior.

Another consequence is that in these approaches the control engineering know-how
for the continuous control and the software engineering know-how for the real-time
coordination have to be specified both within a single hybrid component and thus a
tight cooperation between engineers from different camps is required. In our approach,
in contrast, an interface between the control engineering specific details and the more
software engineering oriented distributed real-time processing is possible which support
more realistic loosely coupled development processes.

Available compositional reasoning approaches for hybrid systems [16, 17, 18] re-
quire high manual effort of inventing auxiliary properties to enable a full verification
to decide whether the described reconfiguration is consistent. The presented approach
in contrast will ensure consistency by means of a syntactical check or modular model
checking of the separate components and their interfaces.

We employ in our approach the algorithm for checking the refinement relation be-
tween timed automata as proposed in [6]. As outlined in the paper, for proactive and
thus non-deterministic interface automata this approach is not applicable.

In [19], an algorithm for checking the existence of a simulation relation to investigate
the opportunities of refinement checking for Cottbus Timed Automata is developed. The
approach is restricted to simulation and closed timed automata with integer semantics,
while we require a stronger form of refinement (ready simulation).

6 Conclusion and Future Work

Within this paper, we presented an incremental improvement of our modular verifica-
tion approach for checking that the online-reconfiguration of MECHATRONIC UML
models is safe. In our earlier proposal [2], severe restrictions to the expressiveness of
the supported component interface are employed to ensure that efficient checks can be
used which do not have to consider the whole state space. In this paper, we present
support for more expressive interfaces which include complex timing constraints and

3 http://www.mathworks.com

Modular Verification of Safe Online-Reconfiguration for Proactive Components 77

proactive behavior employing model checking. The underlying concepts are outlined
and formally defined. In addition, first experimental results are reported.

While modeling of hybrid systems with the MECHATRONIC UML approach is
already supported by the FUJABA Real-Time Tool Suite4, the described refinement
checks and the check for the correct embedding are currently under development.

In future work, we plan to further improve and extend our approach w.r.t. modeling
and verification such that the full hybrid behavior of the components is covered. On
particular next step is to apply the general checking procedure for simulation as pre-
sented in [19] for checking our notion of refinement by generalizing our extension of
the automata presented in Section 4.1 (cf. [8]).

References

1. Janos Sztipanovits, Gabor Karsai, and Ted Bapty. Self-adaptive software for signal process-
ing. Commun. ACM, 41(5):66–73, 1998.

2. Holger Giese, Sven Burmester, Wilhelm Schäfer, and Oliver Oberschelp. Modular Design
and Verification of Component-Based Mechatronic Systems with Online-Reconfiguration.
In Proc. of 12th ACM SIGSOFT Foundations of Software Engineering 2004 (FSE 2004),
Newport Beach, USA, pages 179–188. ACM Press, November 2004.

3. Holger Giese, Matthias Tichy, Sven Burmester, Wilhelm Schäfer, and Stephan Flake. To-
wards the Compositional Verification of Real-Time UML Designs. In Proc. of the European
Software Engineering Conference (ESEC), Helsinki, Finland, pages 38–47. ACM Press, Sep-
tember 2003.

4. T. Hestermeyer, P. Schlautmann, and C. Ettingshausen. Active suspension system for railway
vehicles-system design and kinematics. In Proc. of the 2nd IFAC - Confecence on mecha-
tronic systems, Berkeley, California, USA, 9-11December 2002.

5. Sven Burmester, Holger Giese, and Wilhelm Schäfer. Model-driven architecture for hard
real-time systems: From platform independent models to code. In Proc. of the European
Conference on Model Driven Architecture - Foundations and Applications (ECMDA-FA’05),
Nürnberg, Germany, LNCS, pages 1–15. Springer Verlag, November 2005.

6. Henrik Ejersbo Jensen, Kim Guldstr, Kim Guldstr, and Arne Skou. Scaling up Uppaal Au-
tomatic Verification of Real-Time Systems using Compositionality and Abstraction. In Pro-
ceedings of the 6th International Symposium on Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRTFT 2000), volume 1926 of LNCS, Pune, India, September 2000.
Springer Verlag.

7. Stavros Tripakis. Folk theorems on the determinization and minimization of timed automata.
In Formal Modeling and Analysis of Timed Systems: First International Workshop, FOR-
MATS 2003, Marseille, France, September 6-7, 2003. Revised Papers, volume 2791, pages
182 – 188, 2004.

8. Holger Giese and Martin Hirsch. Timed and Hybrid Refinement in Mechtronic UML. Tech-
nical Report tr-ri-03-266, University of Paderborn, Paderborn, Germany, December 2005.

9. Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL. In Marco
Bernardo and Flavio Corradini, editors, Formal Methods for the Design of Real-Time Sys-
tems: 4th International School on Formal Methods for the Design of Computer, Communica-
tion, and Software Systems, SFM-RT 2004, volume 3185 of LNCS, pages 200–236. Springer
Verlag, September 2004.

4 http://www.fujaba.de

78 H. Giese and M. Hirsch

10. Sven Burmester, Holger Giese, Martin Hirsch, and Daniela Schilling. Incremental design
and formal verification with UML/RT in the FUJABA real-time tool suite. In Proceedings
of the International Workshop on Specification and vaildation of UML models for Real Time
and embedded Systems, SVERTS2004, Satellite Event of the 7th International Conference on
the Unified Modeling Language, UML2004, October 2004.

11. Aditya Agrawal, Gyula Simon, and Gabor Karsai. Semantic Translation of
Simulink/Stateflow models to Hybrid Automata using Graph Transformations. In Inter-
national Workshop on Graph Transformation and Visual Modeling Techniques, Barcelona,
Spain, 2004.

12. R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic, V. Kumar, I. Lee, P. Mishra,
G. Pappas, and O. Sokolsky. Hierarchical Hybrid Modeling of Embedded Systems. In First
Workshop on Embedded Software, 2001.

13. Thomas A. Henzinger. Masaccio: A Formal Model for Embedded Components. In Pro-
ceedings of the First IFIP International Conference on Theoretical Computer Science (TCS),
volume 1872 of LNCS, pages 549–563, 2000.

14. R. Grosu, T. Stauner, and M. Broy. A modular visual model for hybrid systems. In Proc. of
Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’98), volume 1486 of
LNCS. Springer Verlag, 1998.

15. Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O Automata Revisited. In
Proceedings of the 4th International Workshop on Hybrid Systems: Computation and Con-
trol (HSCC 2001), Rome, Italy, March 28-30, 2001, volume 2034 of LNCS, pages 403–417.
Springer Verlag, 2001.

16. Leslie Lamport. Hybrid systems in tla+. In Hybrid Systems, pages 77–102, London, UK,
1993. Springer Verlag.

17. Thomas A. Henzinger, Marius Minea, and Vinayak Prabhu. Assume-Guarantee Reason-
ing for Hierarchical Hybrid Systems. In Proceedings of the 4th International Workshop on
Hybrid Systems: Computation and Control (HSCC 2001), Rome, Italy, March 28-30, 2001,
volume 2034 of LNCS, pages 275–290. Springer Verlag, 2001.

18. Thomas A. Henzinger, Christoph M. Kirsch, Marco A.A. Sanvido, and Wolfgang Pree. From
Control Models to Real-Time Code Using Giotto. In IEEE Control Systems Magazine
23(1):50-64, 2003. A preliminary report on this work appeared in C.M. Kirsch, M.A.A. San-
vido, T.A. Henzinger, and W. Pree, A Giotto-based helicopter control system, Proceedings
of the Second International Workshop on Embedded Software (EMSOFT), volume 2491 of
LNCS, pages 46–60. Springer Verlag, 2002.

19. Dirk Beyer. Efficient reachability analysis and refinement checking of timed automata using
BDDs. In T. Margaria and T. F. Melham, editors, Proceedings of the 11th IFIP WG 10.5 Ad-
vanced Research Working Conference on Correct Hardware Design and Verification Meth-
ods (CHARME 2001), volume 2144 of LNCS, pages 86–91. Springer Verlag, 2001.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 79 – 90, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Annotating UML Models with Non-functional Properties
for Quantitative Analysis

Huáscar Espinoza1, Hubert Dubois1, Sébastien Gérard1, Julio Medina2,
Dorina C. Petriu3, and Murray Woodside3

1 CEA Saclay, DRT/LIST/DTSI/SOL/L-LSP,
F-91191, Gif sur Yvette Cedex, France

{huascar.espinoza, hubert.dubois, sebastien.gerard}@cea.fr
2 Universidad de Cantabria, Departamento de Electrónica y Computadores,

Av. Los Castros s/n, 39005 Santander, Spain
medinajl@unican.es

3 Carleton University, Department of Systems and Computer Engineering,
1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6

{petriu, cmw}@sce.carleton.ca

Abstract. This work is motivated by the recent Request For Proposals issued by
OMG for a new UML Profile named “Modeling and Analysis of Real-Time and
Embedded systems”. The paper describes first some domain concepts for anno-
tating Non-Functional Properties (NFPs), whose focus is on supporting tempo-
ral verification of UML-based models. Particular emphasis is given to sched-
ulability and performance analysis for real-time systems. We discuss next some
general requirements for NFP annotations and evaluate how the UML profiles
for “Schedulability, Performance, and Time Specification” and for “Modeling
Quality of Service and Fault Tolerance Characteristics and Mechanisms”, ad-
dress these requirements. Last but not least, the paper proposes a preliminary
framework for describing NFPs by considering the major requirements previ-
ously stated and by analyzing some UML mechanisms to attach NFPs to model
elements.

1 Introduction

The change of focus from code to models promoted by OMG’s Model Driven Archi-
tecture (MDA) raises the need to integrate the analysis of non-functional requirements
of UML models (such as performance, schedulability, reliability, scalability, etc.) in
the development process of Real-Time and Embedded Systems (RTES). Different
kinds of analysis techniques require different annotations in the UML models to ex-
press quantitative and qualitative non-functional requirements and properties.

The focus of this paper is on annotations for quantitative analysis techniques used
for the verification and validation of temporal characteristics of RTES. Such annota-
tions are required to bridge the gap between the domains of software development and
analysis, because they should be usable by software designers but, at the same time,
they also must support the analysis model concepts. This paper discusses the problem
of adding non-functional properties to an UML model, but does not address other re-
lated problems, such as transforming an annotated UML model into an analysis one,
evaluating the analysis model, or reporting the results back to UML models [8].

80 H. Espinoza et al.

The solution proposed by OMG to the problem of extending the power of expres-
sion of UML for different application domains is to define standard UML profiles.
Two examples of profiles able to add annotations for non-functional characteristics
are the “UML Profile for Schedulability, Performance, and Time Specification” (SPT)
[11] and the “UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms” (QoS&FT) [13]. In order to upgrade SPT to UML
2.0 and extend its scope with RTES modeling capabilities, a Request For Proposals
(RFP) was issued for a new UML Profile named MARTE (“Modeling and Analysis of
Real-Time and Embedded systems”) [12]. The goals of this paper are to give a first
reflection on the analysis concerns for the upcoming UML MARTE profile and to
promote its standardization at the OMG.

Some of this underlying work is supported by the Accord|UML project [3, 7] and by
the MAST (Modeling and Analysis Suite for real-Time applications) project [10] to
connect UML models of real-time embedded systems with schedulability analysis
tools. A first experimental approach was defined in [15], where the authors have pre-
sented a schedulability analysis model which is semi-automatically derived from a
conception model, and is then analyzed [9]. MAST defines and builds UML concep-
tual models, which align quite well with the SPT profile concepts, for the considera-
tion of timing properties in object-oriented distributed systems.

A rich body of work on performance analysis from UML models has been sur-
veyed in [1]. Examples of UML model transformations to different performance
modeling formalisms are: from UML to Layered Queueing Networks in [8, 16], to
Stochastic Petri Nets in [2], and to multiple performance models in [19].

Other UML profiles for different quantitative analyses have already been proposed
in the literature, such as a reliability profile in [4], a profile with formal semantics
dedicated to real-time modeling named OMEGA in [6], and a profile for real-time
constraints with OCL in [5].

The paper is organized as follows. Section 2 describes the domain model for non-
functional property annotations for quantitative analyses. Section 3 presents a list of
requirements for NFP annotations. Section 4 compares briefly the advantages and dis-
advantages of the SPT and QoS&FT Profiles. Section 5 presents our proposal for a
framework for NFP annotations for MARTE, which realizes the domain model intro-
duced in Section 2. Finally, the conclusions are presented in Section 6.

2 Domain Model for Non-functional Properties Annotations

2.1 Domain Model

The model of a computing system describes its architecture and behavior by means of
model elements (e.g., resources, resources services, behavior features, logical
operations, configurations modes, modeling views), and the externally visible
properties of those model elements. When we refer to properties, this includes the
functional and also the non-functional properties. Functional properties describe what
a system model does, and non-functional properties how it does it.

In the context of model-driven development approaches for real-time and
embedded systems, modeling of Non-Functional Properties (NFPs) is essential for the
quantitative analysis of the system (see Figure 1). NFPs provides information about

 Annotating UML Models with Non-functional Properties for Quantitative Analysis 81

different characteristics, as for example throughput, delays, overheads, scheduling
policies, correctness.

Quantitative analysis techniques are used to verify early NFPs of interest (e.g., re-
sponse times, utilization, queue sizes) based on other available NFPs (e.g., worst case
execution times -WCET-, deadlines). The analysis techniques considered in this paper
belong to the two following analysis domains: Schedulability and Performance. Fur-
ther work will also cover WCET Analysis. Schedulability analysis uses mathematical
means (e.g., RMA-based techniques) to predict whether a set of software tasks meets
its timing constraints and to verify its temporal correctness. Performance analysis uses
statistical techniques (e.g., queuing theory, Petri Nets, etc.) to determine whether a
system will meet its performance requirements (such as response time or throughput).

Due to the abstraction involved in the construction of a model, only some NFPs are
relevant to a certain Quantitative Analysis. In other words, a given Quantitative
Analysis uses a set of NFPs which establish the ontology of the analysis domain.

Fig. 1. Domain model for Non-Functional Property annotations

According to measurement theory, physical Systems (see Figure 1) are character-
ized along different dimensions that correspond to a set of measurement Quantities,
which can be Basic or Derived. The most used Basic Quantities are length, mass,
time, current, temperature and luminous intensity. The units of measure for the basic
quantities are organized in systems of measures, such as the universally accepted
Système International (SI) or International System of Units. Values are expressed in
the same unit and can be compared. Derived Quantities (e.g., area, volume, force, fre-
quency, etc.) are obtained from the Basic Quantities by known formulas.

A Model of a System (which is considered here to be expressed in UML) can be
extended by standard UML mechanisms with additional semantic expressing concepts
from a given analysis domain. An Annotated Model contains Annotated Model Ele-
ments, which are UML model elements extended by standard UML mechanisms. For
example, some typical performance-related Annotated Model Elements are: Step (a

82 H. Espinoza et al.

unit of execution as defined in the SPT profile), Scenario (a sequence of Steps), Re-
source (as defined in the General Resource Model of SPT), Service (an operation of-
fered by a Resource or by a component of some kind, which may be further defined
by a Scenario).

An Annotated Model Element has certain non-functional characteristics represented
by NFPs. The annotations are specified by the designer in the UML model and at-
tached to different model elements. Examples are: the total delay of a Step when exe-
cuted (including queueing delays), the utilization of a Resource, the response time and
throughput of a Service, etc.

2.2 Quantitative and Qualitative NFPs

In general, a NFP can be either qualitative or quantitative, as shown in Figure 2. Most
of the NFPs used for quantitative analysis (such as performance or schedulability) are
quantitative, but some properties may be qualitative.

Fig. 2. Domain model for Quantitative and Qualitative NFPs

A Quantitative NFP is measurable, countable, or comparable, and can be repre-
sented by an amount which is a numerical value. When the system is simulated or
executed, a given Quantitative NFP may be characterized by a set of Realizations and
Measures (see Figure 2). Realizations (also called Sample Functions) represent a set
of values that occur for the Quantitative NFP under consideration at run-time (for in-
stance, measurements collected from a real system or a simulation experiment). A
Quantitative NFP may be realized once or repeated times over an extended run. In a
cyclic deterministic system, in which each cycle has the same values, a single Reali-
zation is sufficient to characterize completely the Quantitative NFP. In performance
analysis with random traffic, a long run producing long sequences of values may be
necessary in order to obtain accurate evaluation results.

A Measure is a (statistical) function (e.g, mean, max, min, median, variance, stan-
dard deviation, histogram, etc.) characterizing the set of Realizations. Measures may
be computed either directly by applying the desired function to the set of Realizations
values, or by using theoretical functions of the probability distribution given for the
respective Quantitative NFP.

In any case, even Realization sets are not annotated directly on the UML model
(too much information!) They are represented instead in an abstract way through the
corresponding Measures, which should be annotated on the UML model.

 Annotating UML Models with Non-functional Properties for Quantitative Analysis 83

On the other hand, a Qualitative NFP refers to inherent or distinctive characteris-
tics that are not easy to measure directly. In general, a Qualitative NFP is denoted by
a label (e.g., “bronze”, “silver” and “gold” level of service) representing a high-level
of abstraction characterization that is meaningful to the analyst and the analysis tools.
More specifically, a Qualitative NFP takes a value from a list of allowed values (e.g.,
an enumeration data type), where each value identifies a possible alternative. When
looking in more detail at a Qualitative NFP, it may be possible to define it in function
of a set of criteria, which may be in turn qualitative or quantitative. Some Qualitative
NFPs have precisely-known meanings that can be interpreted by the analysis domain,
for example the choice of a scheduler type for a processor, or the choice of a statisti-
cal distribution for the latency of a network. In both of these examples, the full speci-
fication of the property requires not only a qualitative value, but also some quantita-
tive parameters, as for instance:

 Scheduler-type = roundRobin(quantumSize)
 Latency-value = gamma(mean, variance)

3 Requirements for NFP Annotations

In our context, “annotation” is a process of attaching information to selected UML
model elements. We must be able to annotate NFPs to structural elements such as ob-
jects and nodes, as well as behavioral elements such as lifelines, execution-
occurrences, messages, activities and transitions. We identified different requirements
for attaching NFPs to model elements which are described in the rest of the section.

3.1 Variables and Expressions

In most quantitative evaluations, some of the expressed quantities are derived from
other quantities. This particularity is so fundamental to quantitative studies that it
must be provided in the annotations discussed in this paper. As a motivating example,
let us suppose that there is a characteristic size (call it $dataSize, in bytes) of a data
structure that is stored, retrieved, processed and passed in messages. The CPU cost of
operations, the delay for transmitting messages, the memory space required for stor-
age, are all functions of $dataSize. It is much easier as well as more informative, to
define these quantitative properties by expressions; also, the evaluation is more robust
to changes in the design or the usage of the system, that could change the value of
$dataSize. We can call $dataSize an independent parameter of the evaluation.

From this example, it is easy to see that an important requirement is to be able to
annotate NFPs not only with concrete values, but also with variable names and ex-
pressions. However, defining variable names in the annotation space raises the ques-
tion of scope. For instance, it should be possible to combine views and diagrams cre-
ated separately into a single analysis, where the same name may have been used more
than once. Some way to disambiguate these names is necessary. The scoping mecha-
nisms should also handle the problem of UML models that are simultaneously anno-
tated for multiple kinds of analysis.

Another requirement drawn from the above example is that there is a need for in-
dependent evaluation parameters that may affect many other NFPs through depend-
encies, which in turn can be expressed through functional relationships. These evalua-

84 H. Espinoza et al.

tion parameters need to be attached to the analysis as a whole, either at the level of a
UML diagram or at the level of a collection of diagrams.

3.2 Sources of NFPs

It is a peculiarity of the NFPs that the same property may be defined separately from
different sources. An obvious example is required values, versus achieved values, but
additional subdivisions may arise. For example, the achieved value may be measured
in a certain test (there may be more than one of these for the same NFP), or be esti-
mated by an analytic model. Values may be stated for different execution environ-
ments. Input attributes may take assumed values based on the expertise of the de-
signer/analyst, and there may be more than one of these (e.g., for worst-case and best-
case, or representing the expertise of different parties). The ability to designate differ-
ent sources and to compare the values given by different sources is fundamental to the
full exploitation of the evaluation methodology.

It would be desirable to support user-definable sources, apart from the strings de-
scribed to convey details. However, for tool support it seems desirable to define a list
of standard codes for required and achieved values. It should clearly be possible to de-
fine as many versions of a single NFP, from different sources, as necessary. The ca-
pability for defining details could be used to list the results of a series of tests or
model analyses representing different platforms, or different imposed load levels.

The purpose of expressing different sources is to gather the maximum information
from the designer side. Automated analysis tools will have to filter the values accord-
ing to the kind of data needed for the current analysis.

3.3 Usability of NFPs

Other requirement for NFP annotations is a tradeoff between usability and flexibility.
Usability suggests the merit of defining a set of standard NFPs for a given analysis
domain, so they can be easily referred to and, consequently, every user of the annota-
tions means the same thing. For NFPs with well-known variants, a set of definitions
can be standardized, which cover the important cases with differently-named meas-
ures; these can be translated if necessary by domain specialists for the use of an
analysis tool with different names. However there are some NFPs whose meaning is
model-dependent. This requires a capability for users to define their own NFPs. Thus
flexibility and expressive power requires that the users have the capability to define
their own quantitative measures, but usability requires a set of standard measures that
can be used in straightforward way.

4 Comparing the SPT and QoS&FT Profiles

As mentioned, the background for MARTE comes from two existing profiles: SPT
and QoS&FT. While SPT is specifically customized for the real-time systems domain,
QoS&FT profile has a broader scope that includes all kinds of QoS properties. The
MARTE RFP asks for a full compliance with the UML profile for QoS&FT. It is true
that the QoS&FT profile already defines a framework to express NFPs. However, it
exist some strong reasons to define a different framework in the context of MARTE:

 Annotating UML Models with Non-functional Properties for Quantitative Analysis 85

• In general, the term “QoS” is associated to the aptitude of a service for providing a
suitable quality level to the different demands of its clients. The NFPs considered
here have a larger extent, and may describe the internals and externals of the sys-
tem, some of them directly related to the users of resource services and their QoS
perception and others not.

• The QoS&FT profile supports modeling of NFPs, with statistical qualifiers and
measurement units. However, it ignores some necessary attributes such as
measurement sources, property versions, variables, and values defined by
mathematical expressions.

• The QoS&FT profile provides a flexible mechanism to store pre-defined QoS
Characteristics. However, it requires too much effort for the users due to its three-
step annotation process: a) define a QoS Catalog with the most common QoS
Characteristics for each analysis domain, b) derive a Quality Model for each appli-
cation by instantiating template classes from the catalog and c) annotate UML
models with QoS Constraints and QoSValues (which imply the creation of extra
objects required just for annotation purposes).

On the other hand, the SPT profile provides a straightforward annotation mecha-
nism through predefined stereotypes end tagged values, and supports already some of
the requirements for NFP annotations, such as symbolic variables and expressions
through its specialized Tag Value Language (TVL). Table 1 compares different fea-
tures of the two profiles.

Table 1. Comparison of SPT and QoS&FT profiles

Requirement SPT Profile QoS&FT Profile

Annotation process Light-weight Heavy-weight

Allows for user-defined measures No (measures are predefined) Yes (targeted for user-defined
measures)

Type for time values RTtimeValue No

User-defined delay measure
between an arbitrary pair of events

No No

Expressions for defining quantitative
NFPs

Yes
Part of the TVL language

No

Quantitative variables and
independent evaluation parameters

Yes
Part of the TVL language

No

Expressions for defining constraints Limited Yes
Full power of OCL

In summary, we can say that SPT’s modeling method and annotation style are
really simple for users (namely light-weight), but its structure is not flexible enough
to allow for new user-defined QoS properties or for different analysis techniques.
Conversely, the QoS&FT profile’s annotation style is more complicated for users
(namely heavy-weight), but its structure is more flexible because of the library style
for defining QoS properties, OCL constraints to describe complex QoS functions, and
useful qualifiers for QoS properties. In our work, we intend to provide a flexible and
straightforward framework for MARTE while adopting the best modeling practices
from both profiles.

86 H. Espinoza et al.

5 Proposed Framework for MARTE NFP Annotations

In this section, we describe our proposal of a NFP modeling framework intended to
meet the major requirements stated in Sections 2-4. Figure 3 shows the core UML
metamodel to support major NFPs descriptions.

Fig. 3. Core NFP: Abstract Syntax

A given Quantitative Analysis domain uses a set of NFPs which are organized in a
NFP Library. For instance, in the case of software performance analysis, the NFPs are
throughput, response time, utilization, CPU execution demand, etc. Likewise, NFPs
can be grouped into NFP Categories, similarly to the way in which the QoS Charac-
teristics are grouped into QoS Categories in the QoS&FT profile.

The Core NFP package provides the capability of annotating model elements by
Complex NFP or directly by Basic NFP. The first one is just a constructor, and the
second one the concrete holder of NFPs. For instance, we could represent the Arrival
Pattern property as a data structure (i.e., Complex NFP) that has a number of attrib-
utes: Pattern, Period, Minimum Arrival Time, etc. (i.e., Basic NFPs) which will be as-
sociated to a concrete value. A Basic NFP can represent either a quantitative property
(ultimately a value and a unit) or a qualitative property (e.g, enumeration type or
string). Also, a Basic NFP can be a realization (e.g., a set of values) or a statistical
function (mean, variance, etc.).

Thus, Complex NFPs (e.g., response latency, processor throughput, correctness)
are a generalization of QoS Characteristics described in the QoS&FT Profile. Basic
NFPs (e.g. event period, minimum arrival time, WCET, deadline, scheduling opti-
mally criterion) corresponds to the QoS Dimensions of the QoS Profile. We adopt the
attributes Statistical Qualifier (e.g., max, min, mean, variance) and Direction (e.g. in-
creasing, decreasing) from the QoS profile, but we remove the Unit attribute because
we are interested on defining the units at the user model level.

Each Basic NFP has a NFP Type that constrains the specification of their values.
At level of user models, we can apply different versions of NFP Value Specifications
for each Basic NFP.

In Figure 4, we show the domain model for different Basic NFP types. NFP_type
includes the general attributes source (e.g., required, estimated, calculated) and Lan-
guage used for specifying the textual notations of the Value Specification. In the same

 Annotating UML Models with Non-functional Properties for Quantitative Analysis 87

way, specific NFP types use a set of pre-defined units (e.g., ms, s, kB/s). Units are at-
tributes of most Quantitative NFP and it is important that standard forms are used. For
space reasons, we do not show here the predefined units (e.g., duration units, size
units). In order to complete the description of different types, the values of each par-
ticular Basic NFP will be specified according to its NFP Type.

The NFP Type concept proposed here allows for the definition of types for anno-
tating NFP values similar to the RTtimeValue type in SPT. However, we propose to
use a different taxonomy (Figure 4).

Fig. 4. NFP Types: Abstract Syntax

In order to define the legal lexical atoms to specify NFP values, we use the model
presented in Figure 5. A value can be specified as a constant value (NFP Constant), as
a variable (NFP Variable) or as an expression (NFP Expression).

NFP Constant is a literal expression that represents a constant. In addition to the
Literal constants supported by UML, we include List and Real constants. List con-
stants are literals of heterogeneous types that can be combined into a list of items be-
tween a set of parentheses, with individual items separated by commas. Notice that,
here, we do not define the grammar for the syntax of textual annotations.

NFP Variable can be used as placeholders for results from analysis tools in the
UML annotations, or to support relationships between different NFPs. We adopt the
SPT’s syntax “$string” for variable names in the annotation domain, to distinguish
them from names used in the UML model itself.

Fig. 5. NFP Value Specification Abstract Syntax

88 H. Espinoza et al.

NFP Expressions are used to derive NFPs from other NFPs. An expression can be
a simple constant or variable, or it can be a compound expression formed by combin-
ing expressions through operators. From an analysis point of view, allowing for NFP
Expressions makes the analysis more flexible and more robust to change.

Next, we have to define the mechanism for attaching the MARTE annotations to
UML model elements while providing flexibility and usability as discussed in Section
3.3. We consider two potential mechanisms: Tagged Values and Constraints. Tagged
values are value slots associated to attributes of specific UML stereotypes, hence, one
tagged value characterizes just one model element. On the other hand, a constraint is a
condition expressed in natural language text or in a machine readable language (e.g.,
OCL) for declaring some semantics of one or various model elements. This is useful
if we define NFPs that involve more than one element (for instance, a delay between
two different events). Thus, we are interested in supporting both mechanisms.

Figure 6 illustrates the alternative in which tagged values are used for annotating
NFPs (only a simplified version is shown).

Fig. 6. Applying Tagged Values for annotating NFPs

Here, we include a partial view of the NFP Annotation profile, including the NFP
types used in our example. The Complex NFP concept is extended to UML DataType,
and the Basic NFP one to UML Properties. Thus, Complex NFPs become structured
types which are compounded of Basic NFP.

In the example from Figure 6, the NFP annotation profile is applied to a NFP li-
brary for Schedulability Analysis. Most features of Basic NFPs are declared in this li-
brary, as well as their assigned NFP types. Furthermore, the Complex NFPs defined
here are used, in turn, as types of generic attributes associated to stereotypes for

 Annotating UML Models with Non-functional Properties for Quantitative Analysis 89

Schedulability Analysis. For instance, the response stereotype has the generic attrib-
utes efficiency and latency, which are typed with the corresponding Complex NFPs.

Finally, we are able to apply the Schedulability Analysis profile, and consequently
the underlying NFP library to user models. This structure allows users to attach com-
plex structures of NFPs to UML model elements in a standardized way. Moreover,
user-defined NFPs can be added by modifying the existing libraries.

6 Conclusions

This paper defines a framework for annotating NFPs that are necessary for different
kinds of quantitative analyses. The relationships between NFPs annotations and UML
model elements are discussed. Based on the domain concepts, a list of requirements
for attaching NFPs annotations to UML model elements is established. A summary of
how the existing SPT and QoS&FT profiles meet these requirements is also pre-
sented. The goal is to understand and clarify the premises for some of the require-
ments in the MARTE RFP, in order to refine them and to make sure that they are con-
sistent, complete and capture all the expressive power needed for a future MARTE
solution.

The proposed approach for NFPs annotations involves the adoption of some useful
structural concepts (e.g., libraries, categories) and qualifiers (e.g., statistical qualifiers,
units) from the UML profile for QoS&FT, as well as its library style (i.e., catalogs)
for defining domain-specific NFPs. However, some considerations to reduce its in-
herent complexity and to facilitate the modeling process are taken. Additionally, some
key features provided by the SPT profile are adopted. For instance, we formalize, by
means of MOF metamodels, some concepts supported by the TVL syntax to annotate
constant, variable and expression values. In this manner, we intended to provide a
flexible and straightforward framework for supporting a wide variety of NFPs annota-
tions while adopting best modeling practices of both UML profiles.

Acknowledgements

The research of the Carleton team is supported by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC). The CEA team is partially supported by
the PROTES project of the CARROLL French Research program. Huascar Espinoza
is supported by the Programme AlBan of the European Union, scholarship No.
E04D028544BO.

References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M., “Model-based performance predic-
tion in software development: a survey” IEEE Transactions on Software Engineering, Vol
30, N.5, pp.295-310, May 2004.

2. S. Bernardi, S. Donatelli, and J. Merseguer, “From UML sequence diagrams and state-
charts to analysable Petri net models” in Proc. of 3rd Int. Workshop on Software and Per-
formance (WOSP02), pp. 35-45, Rome, July 2002.

90 H. Espinoza et al.

3. CEA, I-Logix, Uppsala, OFFIS, PSA, MECEL, ICOM, "UML based methodology for real
time embedded systems," version 1.0, April 2003, Project IST 10069 AIT-WOODDES.

4. V. Cortellessa, A. Pompei, “Towards a UML profile for QoS: a contribution in the reli-
ability domain”, In Proc. 4th Int. Workshop on Software and Performance WOSP'2004,
pp.197 - 206, Redwood Shores, California, 2004.

5. S. Flake, W. Mueller, “A UML Profile for Real-Time Constraints with the OCL” In J. M.
Jezequel, H. Hussmann, S. Cook (Eds.) UML'2002, Dresden, Germany LNCS (2460), pp.
179 – 195, Springer Verlag 2002.

6. S. Graf, Ileana Ober, Iulian Ober “Timed annotations in UML”, accepted to STTT, Int.
Journal on Software Tools for Technology Transfer, Springer Verlag, 2004

7. A. Lanusse, S. Gérard, F. Terrier, “Real-time Modelling with UML: The ACCORD Ap-
proach”, In Proceedings of the UML’98, Springer Verlag LNCS 1618.

8. L. Lavagno, G. Martin, and B. Selic, "UML for Real. Design of Embedded Real-Time
Systems," Kluwer Academic Publishers, 2003.

9. D. Lugato, C. Bigot, Y. Valot “Validation and automatic test generation on UML models:
the AGATHA approach”, In Proceedings of the Workshop FMICS, ENTCS 66 n°2, 2002.

10. J.L. Medina, M. González Harbour, and J.M. Drake, “MAST Real-Time View: A Graphic
UML Tool for Modeling Object-Oriented Real-Time Systems” Proceedings of the 22nd
IEEE Real-Time Systems Symposium (RTSS 2001), London, UK, IEEE Computer Soci-
ety Press, pp. 245-256, December 2001.

11. Object Management Group, “UML Profile for Schedulability, Performance, and Time”,
Version 1.1. 2005. OMG document: formal/05-01-02.

12. Object Management Group, “UML Profile for Modeling and Analysis of Real-Time and
Embedded systems (MARTE)”, RFP. 2005. OMG document: realtime/05-02-06.

13. Object Management Group, “UML Profile for Modeling Quality of Service and Fault Tol-
erance Characteristics and Mechanisms”, 2004. OMG document ptc/04-09-01.

14. J. C. Palencia and M. G. Harbour, “Exploiting Precedence Relations in the Schedulability
Analysis of Distributed Real-Time Systems”, Proceedings of the 20th Real-Time Systems
Symposium, IEEE Computer Society Press, pp 328-339, December 1999.

15. T.H. Phan, S. Gérard and D. Lugato. “Schedulability Validation for UML-modeled real-
time systems with symbolic execution and jitter compensation”. ERCT Workshop, 2003.

16. D.C. Petriu, "Performance Analysis with the SPT Profile", in Model-Driven Engineering
for Distributed and Embedded Systems, (S. Gerard, J.P. Babeau, J. Champeau, Eds), pp.
205-224, Hermes Science Publishing Ltd., London, England, 2005.

17. B. Selic, “A Generic Framework for Modeling Resources with UML”, IEEE Computer,
Vol.33, N. 6, pp. 64-69. June, 2000.

18. Sha, L., Abdelzaher, T., Arzen, K., E., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Cac-
camo, M., Lehoczky, J., Mok, A., K., “Real Time Scheduling Theory: A Historical Per-
spective”, Real-Time Systems Journal, Vol. 28, No, 2-3, pp. 101-155, 2004.

19. C.M. Woodside, D.C. Petriu, D.B. Petriu, H. Shen, T. Israr, J. Merseguer, “Performance
by Unified Model Analysis (PUMA)”, In Proc. of 5th Int. Workshop on Software and Per-
formance WOSP'2005, pp.1-12, Palma, Spain, July 2005.

Report of the 7th International Workshop on
Aspect-Oriented Modeling

Jörg Kienzle1, Jeff Gray2, and Dominik Stein3

1 School of Computer Science, McGill University, Montreal, QC, Canada
2 Department of Computer and Information Sciences,

University of Alabama at Birmingham, Birmingham, AL, USA
3 Institute for Computer Science and Business Information Systems,

University of Duisburg-Essen, Essen, Germany
Joerg.Kienzle@mcgill.ca, gray@cis.uab.edu, dominik.stein@icb.uni-due.de

Abstract. This report summarizes the outcome of the 7th Workshop
on Aspect-Oriented Modeling (AOM) held in conjunction with the 8th
International Conference on Model Driven Engineering Languages and
Systems – MoDELS 2005 – in Montego Bay, Jamaica, on the 2nd of
October 2005. The workshop brought together researchers and prac-
titioners from two communities: aspect-oriented software development
(AOSD) and software model engineering. It provided a forum for dis-
cussing the state of the art in modeling crosscutting concerns at different
stages of the software development process: requirements elicitation and
analysis, software architecture, detailed design, and mapping to aspect-
oriented programming constructs. This paper gives an overview of the
accepted submissions, and summarizes the results of the different discus-
sion groups.

1 Introduction

This paper summarizes the outcome of the 7th edition of the successful Aspect-
Oriented Modeling Workshop series. An overview of what happened at previous
editions of the workshop can be found at http://dawis.informatik.uni-essen.de/
events/AOM_MODELS2005/preveds.shtml. The workshop took place at the Half
Moon Resort in Montego Bay, Jamaica, on Sunday, October 2nd 2005, as part of
the 8th International Conference on Model Driven Engineering Languages and
Systems – MoDELS 2005[1], formerly known as the series of conferences on the
Unified Modeling Language. Participation to the workshop was open to anyone
attending the conference, and as a result there were approximately 40 partici-
pants. A total of 14 position papers were submitted and reviewed by the program
committee, 12 of which were accepted to the workshop. In order to leave enough
time for discussion, only the morning sessions were dedicated to presentations.
Based on the reviews of the papers, six of the papers were allocated 10-minute
presentation slots, five papers were chosen for 20-minute presentation slots with
the intention to stimulate and provide provocative input to the afternoon dis-
cussions. Before the lunch break, the attendees were asked to submit a list of

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 91–99, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

92 J. Kienzle, J. Gray, and D. Stein

questions for the afternoon discussion session. Based on these questions, the
attendees split into two groups: a "model-transformation and aspect-oriented
modeling" group, and a "core aspect-oriented modeling concepts and aspect-
oriented software processes" group. The results of the discussion groups were
collected at the end of the workshop, and presented and re-discussed with the
entirety of the workshop participants.

The rest of this report is structured as follows: Section 2 gives an overview to
the accepted papers. Section 3 summarizes the results of the discussion groups.
Section 4 concludes the report and presents identified future research directions.

2 Overview of Accepted Position Papers

Robert France from Colorado State University presented a position paper in
which the authors explore the relationship between (aspect-oriented) model com-
position and model transformation[2]. They compare two high-level architectures
of model transformation engines that could achieve aspect-oriented composition
of models. One architecture describes a very specialized/dedicated transforma-
tion engine that takes a primary model, an aspect model, composition directives,
and signature definitions as input to finally produce the composed model. The
second architecture is very generic and symmetric. It takes a primary model and
an aspect model and bindings as an input to produce the composed model.

Wolfgang Grieskamp from Microsoft Research presented a framework for com-
posing behavioral models [3]. In the framework, different aspects of the sys-
tem behavior are described using action machines (state machines or scenarios).
These models can then be symmetrically composed and transformed to yield
integrated models that can be used for model checking, refinement checking,
and testing purpose. The techniques described in the paper rely on symbolic
representation of values and state.

Mark Mahoney from Carthage College described a technique that enables
weaving crosscutting concerns expressed in Live Sequence Charts (LSC) [4]. He
presented how one can use pattern matching techniques in the pre-charts of an
LSC to define “cross-cutting triggers” (similar to pointcuts in standard AOP
languages), that activate the behavior described in an associated main chart
(comparable to an AOP advice).

Jaime Pavlich-Mariscal from the University of Connecticut presented how
they modeled access control schemas using role slices, and how they used aspect-
oriented programming techniques to implement their system [5]. They outlined
their goals to extend role slices with dynamic facilities. Thereo, their future re-
search directions include adding support for access control based on run-time
elements, as well as relating role-slice hierarchies with class hierarchies. These
changes at the modeling level might require new AOP language features to im-
plement them.

Jean-Paul Bodeveix from the Paul Sabatier University in Toulouse showed
how one can specify real-time constraints in EMITL (Event Metric Interval
Temporal Logic), and then transform this description into timed automata,

Report of the 7th International Workshop on Aspect-Oriented Modeling 93

and finally into a B specification [6]. This timing information can then be
combined with a B specification of the functional behavior of a system to re-
sult in a composed B specification that specifies the functional and the timing
behavior.

Tihamér Levendovszky from Budapest University of Technology and Eco-
nomics presented how they used aspect-oriented techniques for applying OCL
constraints [7]. He presented the Visual Modeling and Transformation System
(VMTS), a meta-modeling environment, together with its Visual Control Flow
Language (VCFL), a language allowing to express model transformations using
graph rewriting techniques. VCFL uses OCL constraints to define constraints on
the nodes of the transformation steps and to choose between different control
flow branches. Often, the same constraint has to be repetitively applied to many
different places in a transformation. Aspect-orientation can help to modularize
such crosscutting constraints.

Aswin Van Den Berg from Motorolla Labs presented a framework for mod-
ularizing crosscutting concerns in embedded software, and how this framework
can automate the composition of concerns at different phases of the code gener-
ation process [8]. He presented AspectSDL, an aspect-oriented framework that
makes it possible to compose SDL statecharts. The aspect weaver composes core
models and aspect bean models according to a binding definition (connector)
and weaving strategy definitions. The ultimate goal is to perform consistency
checks on the composed model, as well as to use it for simulation purpose.

Ana Moreira from the University of Lisbon presented how to build a metadata
repository that describes the content, quality, structure, and other important
data of concerns during the early stages of software development [9]. Such a
repository allows a developer to navigate over all stored information to facilitate
reuse, version control, and traceability.

In his second presentation, Robert France showed how they extended their
aspect-oriented modeling approach to use signatures when composing models
[10]. In their approach, crosscutting functionality is described by aspect-models
and the core application functionality is described by a primary model. When
composing models, model elements are merged with one another if their signa-
tures match. A signature in this case consists of some or all properties of a model
element as defined in the UML metamodel.

Andrew Jackson from Trinity College in Dublin presented the high-level view
of a generic aspect-oriented design process [11]. The paper defines the core re-
quirements of an aspect-oriented process to include support for modularization,
composition, conflict resolution, and internal and external traceability. In ad-
dition, a good process must be an open, customizable, platform independent
process that integrates with existing software development methodologies. It
should support quality assurance metrics, staged adoption, and product fami-
lies. Based on these requirements, the paper defines a process architecture with
the following phases: concern identification and classification, design tests, reuse
design, concern module design, composition specification design, verification, and
refinement.

94 J. Kienzle, J. Gray, and D. Stein

Andrew also agreed to present [12], a paper that describes how model-driven
software development and an aspect-oriented modeling technique called “Aspec-
tual Collaborations” can be brought together by providing a graphical composi-
tion mechanism.

3 Summary of the Discussion Groups

The following section summarizes the results of the afternoon working group
sessions. The participants split into two groups – a “Model Transformation” and
a “Core Aspect-Oriented Concepts” group – to discuss the questions submitted
by the attendees before the lunch break.

3.1 Model Transformation Group

The model transformation working group was charged with the task of discussing
various issues related to the transformation mechanisms of model weaving. The
questions discussed are highlighted below along with summary comments.

What Is Model Transformation? Before getting into the details of aspect
weaving at the modeling level, the working group began with a discussion of the
meaning of model transformation in general. A distinction was made between
a source model and the target model. In some cases, there may be multiple
sources and targets. The participants agreed that model transformation can be
summarized as graph transformation, where a model is a set of typed nodes in
a hypergraph that are manipulated according to the goals of a transformation
rule. The process of model transformation eventually reaches a fixed point after
multiple iterations among a set of transformation rules.

What Is Model Weaving? There are two essential characteristics that seem
to be common among most model weavers: 1) a pattern matching engine, like
a pointcut language that provides quantification among modeling elements, and
2) a composition mechanism that transforms source models according to a new
concern. In general, there were three types of weaving that were discussed:

– Static weaving on static structure, such as weaving into class diagrams where
the semantics are pre-existing

– Static weaving on dynamic behavior, such as weaving into state-charts
– Dynamic weaving on dynamic behavior, which is the current focus of dy-

namic AOP languages. The working group could not identify a typical usage
scenario for this type of weaving at the modeling level. Furthermore, the
issue of dynamic weaving on static structure was not very clear within the
modeling context.

Is Model Transformation Equivalent to Weaving? The working group
discussed the relationship between model transformation and model weaving. It
was determined that all weaving is a model transformation, but not all model
transformation is weaving (e.g., model refactoring can be a model transforma-

Report of the 7th International Workshop on Aspect-Oriented Modeling 95

tion that is not crosscutting). This is similar to the relation of program trans-
formation to aspect code weavers, where an aspect is a special type of program
transformation that captures crosscutting concerns.

Are There Generic Patterns for Model Transformation and Weaving?
An interesting thread arose from the discussion that examined whether common
patterns of transformation have emerged from the experience of model transfor-
mation experts. Two patterns that were mentioned are Find a Leaf, which can
be used to flatten hierarchical structures, and Transitive Closure, which can be
used to collect modeling attributes during stages of a model transformation. It
was also observed that the UMLAUT tool uses visitors, abstract factory, and
other well-known design patterns for transformations in an OO style, and can
be made specific for different models of computation (e.g., stateflow).

Is Model Weaving Fundamentally the Same as Applying Rules in a
Rule-Based Engine? One of the working group participants asked if a rule-
based engine could be used for model weaving. The consensus of the group was
that a rule language could theoretically capture some categories of crosscutting
in a model, but the pragmatic application was less clear. It was suggested by
one member that a model engineer often desires a higher level of abstraction.
Several comparisons were presented as analogies to using rules for aspect weav-
ing, and why a more focused language would be more desirable. Some of those
counterexamples include:

– C++ abstractions to support objects can be simulated as C function point-
ers, but a pointer approach lacks the level of abstraction provided by pure
OO constructs.

– Database triggers can capture limited crosscutting concerns in stored proce-
dures, but the same language cannot be used for general AOP.

– Metaobject protocols and reflection can also be used to address crosscutting
concerns, but are not as easy to use as a pure aspect language.

The summary from this discussion is that there exists a tradeoff between natu-
ralness of expression and power of language. A rule-based language could be used
in some cases to describe modeling aspects, but the naturalness and applicability
are not as evident when compared to a pure aspect modeling language.

How Can Properties of Model Weaving Be Proven? There was concern
among the participants regarding the manner in which the resulting properties
of the model weaving could be proven. This question was re-stated in terms
of traditional verification (i.e., is the weaving itself performed correctly?) and
validation (i.e., is the result that which was in the mind of the designer?). This
was cited as a strong need for future work, with little being done on the topic so
far. The composition of modeling aspects and the resulting behavior is trivial if
the concerns are orthogonal (i.e., no interference), but more challenging if non-
orthogonal (e.g., composing two separate access control aspects, such as RBAC
and mandatory access control).

96 J. Kienzle, J. Gray, and D. Stein

What Are the Performance Issues Associated with Aspect Modeling?
The notion of performance as it relates to aspect modeling can be broken down
into three separate questions. The first issue relates to the actual performance
of the model weaver itself (i.e., how long does it take to weave the models?). Of
course, this will depend on the size of the source model and the speed of the model
weaving tool. A second type of performance issue concerns the resulting size of
the target model. An explosion of the size of the model after weaving may inhibit
further analysis and generation. A third version of this question may apply to
the performance of the actual modeled system. The desire to model performance
using aspects may be motivated by different domain requirements, such as a
model for real-time embedded systems. The ability to modularize crosscutting
modeling concerns related to performance may enable a model engineer to change
properties of a model in a rapid manner as compared to a tedious and error prone
manual approach.

3.2 Core Aspect-Oriented Concepts Group

The core aspect-oriented concepts group looked at the issues that arise when
applying aspect-oriented modeling techniques to real-world models.

How Do Existing Aspect-Oriented Modeling Techniques Scale? Sev-
eral participants with industrial background expressed their concerns about how
existing aspect-oriented modeling techniques would scale to systems with hun-
dreds of classes and aspects. Participants from Motorola mentioned that aspect-
oriented techniques actually do work well in industrial settings, even in large
scale systems, provided that the number of aspects is small. Orthogonal aspects
such as logging work particularily well. The discussion group identified the lack
of availability of real-world UML models, i.e. models with hundreds of classes,
as one of the reasons why current AOM approaches have been applied to toy
examples only. Also, functional crosscutting concerns are not trivial to identify
and modularize. The problem of aspect dependencies and conflict detection was
determined as one of the main scalability challenges.

Some argued that in order to achieve scalability we need a common core meta-
model. The UML meta-model was deemed to be missing the power to express
relationships among different models. Some suggested the definition of an AML
– an Aspect Meta Language – that provides a unified type space linking UML
and aspects together.

Does Aspect-Oriented Modeling Improve Reuse? There has not been
a lot of evidence that aspect-orientation improves reuse. The attendees of the
workshop figured that the reason for this is the lack of a good aspect-oriented
design process, and the fact that students and programmers in general are
not educated to write reusable code, even for object-oriented systems. Dif-
ferent aspect-oriented approaches are also not compatible, which makes reuse
very difficult. Again, the use of a common meta-model could improve this
situation.

Report of the 7th International Workshop on Aspect-Oriented Modeling 97

How Good Are Aspect-Oriented Modeling Tools? In aspect-oriented
modeling, there is a big need for flexible tools. Unfortunately, tool vendors like
to provide their home-grown extensions to UML, but do not allow (or make it
very complicated for) users to extend the tool on their own. The only solution
nowadays is to export models and then write "filter-like" mini-tools that parse
the exported file and apply the desired transformations on it. Tools are also in-
flexible because they often present only one view of the system to the developer
at a given time. For some approaches it would be nice to simultaneously display
multiple models, e.g. the primary model and an aspect model. Since this is cur-
rently not supported, a lot of mental work has to be performed by the developer
during design.

What Decisions Are Human Decisions and What Choices Can Be
Automated? Many model transformations need additional human input in
order to be applied to a given model. Sometimes the choice of the model trans-
formation to be applied is done by a human. It is important to record these
human decisions, and why these decisions have been made, in order to provide
traceability and accountability during software development. It is not yet clear
from which point on the generation of code can be completely automated.

Should it Be Allowed to "Restrain" Aspects, e.g. Hide Join Points
from Other Aspects in the System? The discussion started out from the
question of why aspects are better than components. Components in the past
have promised out-of-the-box reuse in the sense of "buy your component to take
care of concern X". However, reuse of components only seems to work for very
specific concerns. Some participants argued that aspects will deliver, because
they are so flexible. Others argued that aspects are so flexible as to be useless.

This raised the question of whether it should be possible to restrict aspect
configurations to not expose their join points to other parts of the system. The
arguments in favor of restriction were the conservation of important software
engineering properties such as encapsulation and information hiding. Controlling
the scope of aspects can also help to distribute development of large systems
among different teams without the danger of having one aspect in one part of
the system unintentionally affecting other parts of a system. Finally, restriction
would allow to ensure non-functional and run-time properties such as execution
time, etc. On the other hand, the major argument against restriction is the fact
that unrestricted aspects make it possible to add functionality anywhere. This
allows for rapid development and prototyping because developers can focus on
a smaller part of the project without having to worry about designing for future
extension. Also, unrestricted aspects can help tremendously in a world where
requirements are likely to change.

What Benefits Does Aspect-Oriented Modeling Bring to Industry?
Aspect-orientation was identified as an elegant way to perform "functional de-
composition" for large industrial projects. It provides a flexible framework in
which concerns can be identified and resolved at different levels of refinement.

98 J. Kienzle, J. Gray, and D. Stein

It allows developers to postpone decisions and focus on important concerns first,
maybe even implement a prototype, without having to worry about other con-
cerns. Thanks to aspect-orientation, secondary concerns can be added to the
system at a later phase.

4 Concluding Remarks

The workshop continued the tradition of having a very diverse representation
of participants. The authors came from seven different countries (Argentina,
France, Germany, Hungary, Ireland, Portugal, and USA), the organizing and
programming committees represented nine countries (Canada, China, France,
Germany, Ireland, Israel, Netherlands, Switzerland, and USA). In addition to
the geographical diversity, the AOM workshop also attracted participants with
wide research interests in aspects across the entire spectrum of the development
lifecycle. As a result, this provided opportunities for a variety of opinions that
were well-informed from the accumulated experience of the participants.

The growth of the workshop continued to increase, which indicates a strong
interest in the area among researchers in aspect-oriented modeling. Many of the
participants felt a new sense of maturity at the workshop that has not been
evident in past editions. For example, the previous debates over definition of
terms and mechanisms were replaced with deeper discussions focused on the
core issues that need to be addressed to move the area into a common modeling
practice. With this workshop report, we’d like to give researches who couldn’t
attend the workshop the opportunity to gain insights to these issues, and to
point out a future research agenda in the field of aspect-oriented modeling.

Acknowledgements

The organizers spent a lot of time ensuring that the workshop was a success.
The organizers for this edition of the workshop were Omar Aldawud, Tzilla
Elrad, Jeff Gray, Mohamed Kandé, Jörg Kienzle, and Dominik Stein. An ex-
pert program committee provided assistance in reviewing the submitted papers.
The members of the program committee were Mehmet Aksit, Elisa Baniassad,
Jean Bézivin, Siobhán Clarke, Robert France, Sudipto Ghosh, Stefan Hanenberg,
Shmuel Katz, Raghu Reddy, Martin Robillard, and Christa Schwanninger. Last
but not least, we’d like to thank all submitters and participants of the workshop
who contributed with their papers and positions.

References

1. Briand, L., Williams, C., eds.: 8th International Conference on Model Driven En-
gineering Languages and Systems, Montego Bay, Jamaica, Oct. 2-7, 2005. Number
3713 in Lecture Notes in Computer Science, Springer Verlag (2005)

2. Baudry, B., Fleury, F., France, R., Reddy, R.: Exploring the relationship between
model composition and model transformation. In: 7th International Workshop on
Aspect-Oriented Modeling, Montego Bay, Jamaica, Oct. 2nd, 2005. (2005)

Report of the 7th International Workshop on Aspect-Oriented Modeling 99

3. Grieskamp, W., Kicillof, N., Campbell, C.: Behavioral composition in symbolic
domains. In: 7th International Workshop on Aspect-Oriented Modeling, Montego
Bay, Jamaica, Oct. 2nd, 2005. (2005)

4. Mahoney, M., Elrad, T.: Weaving crosscutting concerns into live sequence charts
using the play engine. In: 7th International Workshop on Aspect-Oriented Model-
ing, Montego Bay, Jamaica, Oct. 2nd, 2005. (2005)

5. Pavlich-Mariscal, J., Michel, L., Demurjian, S.A.: Role slices and runtime per-
missions: Improving an AOP-based access control schema. In: 7th International
Workshop on Aspect-Oriented Modeling, Montego Bay, Jamaica, Oct. 2nd, 2005.
(2005)

6. Rached, M., Bodeveix, J.P., Filali, M., Nasr, O.: Real-time aspects: Specification
and composition in b. In: 7th International Workshop on Aspect-Oriented Model-
ing, Montego Bay, Jamaica, Oct. 2nd, 2005. (2005)

7. Lengyel, L., Levendovszky, T., Charaf, H.: Real-time aspects: Specification and
composition in b. In: 7th International Workshop on Aspect-Oriented Modeling,
Montego Bay, Jamaica, Oct. 2nd, 2005. (2005)

8. Cottenier, T., Van Den Berg, A., Elrad, T.: Modeling aspect-oriented compo-
sitions. In: 7th International Workshop on Aspect-Oriented Modeling, Montego
Bay, Jamaica, Oct. 2nd, 2005. (2005)

9. Ferreira, R., Raminhos, R., Moreira, A.: Metadata driven aspect specification. In:
7th International Workshop on Aspect-Oriented Modeling, Montego Bay, Jamaica,
Oct. 2nd, 2005. (2005)

10. Reddy, R., France, R., Gosh, S., Fleury, F., Baudry, B.: Model composition - a
signature based approach. In: 7th International Workshop on Aspect-Oriented
Modeling, Montego Bay, Jamaica, Oct. 2nd, 2005. (2005)

11. Jackson, A., Clarke, S.: Towards a generic aspect-oriented design process. In:
7th International Workshop on Aspect-Oriented Modeling, Montego Bay, Jamaica,
Oct. 2nd, 2005. (2005)

12. Groher, I., Bleicher, S., Schwanninger, C.: Model-driven development for pluggable
collaborations. In: 7th International Workshop on Aspect-Oriented Modeling, Mon-
tego Bay, Jamaica, Oct. 2nd, 2005. (2005)

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 100 – 109, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modeling Aspect-Oriented Compositions

Thomas Cottenier1,2, Aswin van den Berg1, and Tzilla Elrad2

1 Software and Systems Engineering Research, Motorola Labs,
1300 E Algonquin Road, 60173 Schaumburg, IL, USA

{thomas.cottenier, aswin.vandenberg}@motorola.com
2 Concurrent Programming Research Group, Illinois Institute of Technology,

3300 S Federal Street, 60616 Chicago, IL, USA
{cotttho, elrad}@iit.edu

Abstract. Crosscutting concerns are pervasive in embedded software, because
of the various constraints imposed by the environment and the stringent QoS
requirements on the system. This paper presents a framework for modularizing
crosscutting concerns in embedded and distributed software, and automating
their composition at the modeling level, for simulation and validation purposes.
The proposed approach does not extend the semantics of the UML in order to
represent aspects. Rather, it dedicates a metamodel to the representation of the
composition semantics between aspects and core models. The paper illustrates
this approach by presenting a model weaver for SDL statecharts developed at
Motorola Labs. Crosscutting behavior is designed with plain SDL statecharts
and encapsulated into modules called aspect beans. The weaver looks at the as-
pect beans and the core SDL statecharts from a perspective that is defined by
lightweight extensions to the SDL and UML metamodels. A connector meta-
model defines the structure of the aspect-to-core binding definition. Finally, a
weaver behavioral metamodel defines composition primitives for specifying
weaving strategies.

1 Introduction

Model-Driven Development (MDD) is a software development methodology that
emphasizes precise modeling for automated generation of optimized code. MDD
techniques also target automated simulation, verification, use-case validation and test
case generation. MDD approaches have been widely adopted in the industry, espe-
cially for the development of applications that have stringent performance require-
ments, such as embedded control software for telecommunication devices.

Embedded Software applications are especially difficult to design and build be-
cause of the constraints placed on them and because of the problem domain. The
telecommunication industry has therefore driven a research effort towards a standard
specification language for real-time, stimulus response systems, the Specification and
Description Language (SDL) [1]. SDL is standardized as an ITU recommendation,
and has continually evolved since its first version in 1980 to now include Object-
Oriented features. In SDL, the basis for description of behavior is communicating
Extended State Machines that are represented by processes. Communication is repre-
sented by signals that can take place between processes or between processes and the

 Modeling Aspect-Oriented Compositions 101

environment of the system. Under pressure of the industry, the UML 2.0 has adopted
some core features that are inspired by the SDL, such as a framework for dealing with
Actions. The UML profile for Communicating Systems (UML-CS) [2] complements
these extensions, to provide full support for SDL modeling, within the UML. For
example, the UML-CS provides support for the definition of timers. Over the years,
the industry has developed powerful code generators that take SDL models as input,
map the models to some internal code representation and perform aggressive code
optimizations. The generated code is mostly C code.

Typically, the process from requirement analysis to implementation and testing in-
volves the following steps. The initial requirements are collected in a text document.
System analysis results in UML models and Message Sequence Charts (MSC) [3] that
capture the typical scenarios. The classes are mapped to SDL semi-automatically, and
the SDL diagrams are completed manually to a level where they can be checked for
consistency, simulated and validated. A test suite is generated from the SDL specifi-
cation and finally, executable code is generated fully automatically.

Yet, the modeling process is time-consuming and error prone. All implementation
details need to be reflected at the modeling level, before the application models can be
simulated, and code can be generated. Many of these implementation details relate to
the non-functional requirements of these applications, such as fault-tolerance, logging
or security. In many cases, the hierarchical decomposition paradigm of SDL does not
enable those concerns to be well modularized into separate SDL modules.

The Aspect-Oriented Software Development (AOSD) [4] community identifies
those concerns as being crosscutting concerns. Their implementation cannot be well
encapsulated within the modularity units of the language, because they follow differ-
ent composition rules. Crosscutting concerns are pervasive in embedded software,
because of the various constraints imposed by the environment and the stringent QoS
requirements on the system. During the initial design phases, these concerns cannot
be mapped from requirement to design in isolation, and end up tangled with model
elements that implement other requirements.

This work proposes a framework for modularizing crosscutting concerns in em-
bedded software, and automating their composition at different phases of the code
generation process, including the modeling level, the different intermediary code
representation levels and at the level of the final generated code. This paper discusses
aspect modeling within the framework.

2 Approaches to AO Modeling

2.1 Lightweight UML Extension

The lightweight extension to the UML approaches take advantage of the UML exten-
sion mechanisms (stereotypes, tagged values and constraints) to refine the UML
metamodel as to support AOP language constructs. The works of Pawlak [6],
Aldawud [7] and Stein [8] fall into this category. These approaches provide graphical
notations for aspects, for example, by defining pointcut associations, which link ad-
vices to joinpoints. The aspects tend to be tightly coupled to the core model. For large
projects, the relations might involve many classes of the application, and the visual

102 T. Cottenier, A. van den Berg, and T. Elrad

representation of crosscutting does not scale well. The result of composition is com-
plex and difficult to read and comprehend. The design model looks like a woven
model.

The authors’ position is that joinpoints are a validation and verification issue. This
implies that during the design phase, we do not want to know where the joinpoints
are, and hence, we do not need an explicit modeling construct for them.

2.2 Heavyweight UML Extension

The proponents of heavyweight extensions to the UML argue that aspects need to be
first-class elements in the UML, because lightweight extension mechanisms are not
expressive enough to capture weaving semantics by themselves, The heavyweight
UML extension approaches define a self-contained metamodel that fits AOSD. The
metamodel is obtained by tailoring the UML kernel metamodel. Heavyweight exten-
sions provide graphical notations for aspects, but do not define the weaving concept
explicitly. The works of Kandé [9], Han [10] and Lions [11] fall into this category.

Heavyweight approaches are complex to implement. Furthermore, when extending
the UML metamodel, all the tools that realize test case generation, model validation
and code generation need to be refactored to support the new AO metamodel.

2.3 Model Transformation Approaches

Model transformation approaches recognize the weaving process as a concept in the
expanded metamodel of the UML. Model weaving approaches realize the coordina-
tion of crosscutting concerns with a base model through model transformation. Model
weaving provides the capability to describe the essence of a concern into a separate
model and transform other models accordingly. These approaches have the disadvan-
tage that the AOP language constructs have no clear counterpart at the modeling
level. The work of Gray [12] falls into this category.

2.4 Hybrid Approaches

Hybrid approaches to AOM recognize weaving as a concept in the modeling process,
but leverage the weaving process by extending the UML metamodel. Typically, the
metamodel for modeling core program elements is extended to support a join point
model. The metamodel for modeling aspects is extended to support the notion of
aspect, advice, pointcut and intertype declaration. A model weaver composes the
aspect models with the core models by associating advice bodies to joinpoints, and
intertype declaration to core model elements.

Tkatchenko [13] proposes a simple joinpoint model that is implemented through a
heavyweight UML extension. The weaving process can partly be made implicit, be-
cause the extended metamodel extension captures part of the weaving semantics.

The work of Clarke and Baniassad [14] proposes a UML design model that en-
compasses different separation-of-concern techniques, including aspect-oriented de-
compositions. A Theme represents a modularized view of a requirement or concern
in the system. The behavior of aspects is modeled using diagram templates. Themes
are coordinated semi-automatically by an engine that applies merge and replace rules,

 Modeling Aspect-Oriented Compositions 103

and parameterizes the diagram templates, by binding adviced methods to concrete
joinpoints.

The work of Reddy [15] also takes advantage of UML templates for designing ge-
neric crosscutting features. Before composing the models the weaver instantiates the
aspect models by binding application-specific elements to the template parameters.

2.5 AOM and MDA

The hybrid approach has interesting connections with the OMG Model Driven Archi-
tecture (MDA) [6]. The MDA separates platform independent details from the plat-
form specific details of the system in a series of models. The approach is for each
concern, to automatically expand more abstract diagrams by substituting the more
concrete sub-diagrams into the abstract one. MDA proceeds by defining model trans-
formation specifications that will automatically introduce, for example, platform spe-
cific behavior into a platform independent model. The transformation maps model
elements of one domain metamodel to model elements of a target metamodel. The
transformation is defined according to a transformation metamodel that defines the
primitives of the transformation.

The hybrid approach defines a domain metamodel (a metamodel for modeling as-
pects), a target metamodel (a metamodel to visualize crosscutting behavior) and
model transformation rules that conform to an AOSD metamodel. Aspects inject
some more specific concern implementations into a more abstract model.

The relationship between MDA model transformations and model weaving is
analogous to the relationship between AOP languages and Meta Object Protocol
(MOP) languages. MOP’s enable more powerful transformations, but are hard to
write. AOP restricts the transformation space to a limited set of transformations, on a
limited set of language elements. Aspects are less powerful, but provide better modu-
larization units, and cover much of the MOP transformation space.

3 Aspect-Oriented Composition for Communicating Systems

3.1 Requirements

In an MDD setting, the SDL statechart weaver needs to accommodate the following
constraints:

− The semantics of the SDL metamodel elements used to model the core applica-
tion can not be modified to accommodate aspect weaving. It should be possible
to simulate, validate and generated code from those models with the existing
MDD tool suite.

− The aspect behavior needs to be specified in standard SDL, so that crosscutting
behavior can be simulated and validated independently, and that code can be gen-
erated with the existing MDD tool suite. The metamodel used to model aspect
behavior can therefore not break the semantics of SDL.

− It should be possible to validate and simulate the result of the composition be-
tween core models and aspect models using the existing MDD tool suite. The
statechart weaver should therefore produce models that conform to the SDL
metamodel.

104 T. Cottenier, A. van den Berg, and T. Elrad

Within an industrial setting and a specific domain, many crosscutting concerns
tend to have common implementations from an application to another. The models
that implement crosscutting concerns are themselves reusable from one application to
another. What differs from one application to another are the bindings between aspect
and core model. Therefore, we adopt an Aspect-Oriented architecture that involves a
connector – a component that binds generic (within the domain) advices to applica-
tion specific joinpoints. It encapsulates pointcut expressions and context binding defi-
nitions between joinpoints and named advices. The aspect advices are therefore made
more reusable, as they do not depend on application-specific pointcut expressions.

This approach differs from the previous ones in that neither the core models, nei-
ther the aspect models require specific support for aspect-orientation. The author’s
position is that much of the complexity of aspect-oriented modeling is due to the
difficulty of representing the aspect/core semantic interactions. This complexity can
be overcome by defining separate diagrams that model the composition between the
aspect behavioral diagrams and the core models.

3.2 AspectSDL: An SDL Statechart Weaver

The crosscutting behavior is modeled using regular SDL statecharts. Those models
are referred to as SDL Aspect Beans. A connector defines the bindings between as-
pect bean statecharts and the core model statecharts. Figure 1 illustrates the architec-
ture of the AspectSDL weaving engine. The SDL statechart weaver operates accord-
ing to four distinct metamodels:

Fig. 1. Architecture of the AspectSDL weaving engine. The SDL statechart weaver operates
according to four distinct metamodels: a joinpoint metamodel, an aspect bean metamodel, a
connector metamodel and a behavioral metamodel of the weaver.

JP
Meta-
model

Structural
Metamodel of

Weaver

SDL
Metamodel

Behavioral
Metamodel of

Weaver

Engine
MetaPrograming
API

Models

Weaving Strategies

AB
Meta-
mode

Transformation

<aspect><pointcut
name="hashtable_update"
expres-
sion="Map_t::update"
type="call" <parameter
name="p"
type="Map_t"/><paramete
r name="d1"
type="(.)*"/>

 <return
" lt"

 Modeling Aspect-Oriented Compositions 105

− A lightweight extension to the SDL profile that defines the joinpoint concept for
SDL statecharts

− A lightweight extension to the UML metamodel that defines the concepts of as-
pect bean, advice, and intertype declaration.

− A connector metamodel that specifies how the bindings between aspect beans
and model elements are defined. The connector metamodel is a structural weav-
ing metamodel. It defines the static concepts the model weaver uses to identify
crosscutting, such as pointcut and advice declaration.

− A behavioral weaving metamodel that specifies how weaving strategies are de-
fined. A weaving strategy defines the operations to be performed to bind an as-
pect bean element to the core model. Weaving strategies define the weaving se-
mantics. The behavioral weaving metamodel defines a metaprogramming API for
the weaving engine.

4 AspectSDL Metamodels

4.1 Aspect Bean Profile

The Aspect Bean profile defines how the AspectSDL weaver looks at the Aspect
Bean SDL statecharts. Aspect Beans are defined as Class stereotypes. We adopt an
aspect model where advices have an explicit name. This allows advices to be defined
independently of pointcut expressions. Advices are defined as Operation stereotypes.
This is consistent with Stein’s UML notation for Aspect-Oriented Design [8]. An
advice is a special kind of operation that may not be called explicitly. InterType at-
tributes are defined as Attribute stereotypes and InterType operations are defined as
Operation stereotypes.

4.2 Joinpoint Profile

The extensions to the SDL metamodel described in this section are defined with re-
spect to the UML profile for SDL [2], as represented in Telelogic TAU G2 [16].

The Joinpoint profile defines which elements in the SDL statecharts can be consid-
ered as joinpoints. The joinpoint metamodel should be as simple as possible. A simple
joinpoint metamodel is one that allows various types of joinpoints to be treated uni-
formly. The Action concept of UML 2.0 matches the concept of a joinpoint well. An
action is the finest level of granularity for the specification of a method. All methods
directly or indirectly contain actions. When a method is executed, all or some of these
actions are executed. The action concept captures all the caller side types of joinpoints
in an Aspect language.

The Joinpoint profile defines a call joinpoint as an Action stereotype. The “Call-
Joinpoint” stereotype applies to all Actions that have an “Action Expression”. During
the weaving process, all actions whose action expression matches a call pointcut ex-
pression are selected as active joinpoints.

Method execution joinpoints are not captured by the Action concept. A method
execution joinpoint can be seen as a UML 2.0 Method. A Method is the implementa-
tion of an operation, describing how it is executed at runtime. A method is associated
to an expression that identifies the operation it implements.

106 T. Cottenier, A. van den Berg, and T. Elrad

The Joinpoint profile defines an execution joinpoint as a Method stereotype. Dur-
ing the weaving process, all methods whose expression matches an execution pointcut
expression are selected as active joinpoints.

As shown in Figure 2, there is a nice symmetry between caller side and execution
joinpoints. While execution joinpoints own an entry and an exit operation, caller
side joinpoints are owned by an entry State and an exit State. The entry and exit
relationships correspond to the location where before, after and around advice ele-
ments are woven. Most types of joinpoints are covered by the metamodel, while it
does not capture elements that are irrelevant to aspect weaving. In [13], Tkatchenko
proposes a Joinpoint metamodel, where all elements that include a declaration sig-
nature are considered joinpoints. Yet, this metamodel captures elements that are
irrelevant to aspect weaving, while it does not cover method return or method exe-
cution joinpoints.

Fig. 2. The Joinpoint Profile

Figure 3 depicts some of the joinpoints that are captured by the caller side joinpoint
stereotype. Aside from the usual types of joinpoints such as method call (Expres-
sionAction), exception throwing (ThrowAction), and the return joinpoint (ReturnAc-
tion) it also supports new types of joinpoints that are useful for embedded and distrib-
uted software development, such as Set Timer, Reset Timer, Send Signal and Receive
Signal.

 Modeling Aspect-Oriented Compositions 107

Fig. 3. Caller side joinpoint types

Fig. 4. The Connector Metamodel

4.3 Connector Metamodel

The connector is used in the first phase of the weaving process, to identify all active
joinpoints in the core model, and the advices of the aspect bean. The connector also
defines the binding between advice arguments and pointcut parameters. It captures
context passing between the core model elements and the aspect bean model ele-

108 T. Cottenier, A. van den Berg, and T. Elrad

ments. The connector metamodel of Figure 4 defines the structure of the aspect-to-
core binding definition. An Advice definition is bound to one or more pointcuts. A
pointcut is composed of a pointcut expression and a scope expression which narrows
the scope of the pointcut. Scope expressions include ‘within’ and ‘cflow’ expressions.

4.3 Weaver Behavioral Metamodel

SDL statechart weaving primary serves simulation and validation purposes. The goal
of the AspectSDL framework is larger. The framework intends to provide pluggabil-
ity of crosscutting concerns at different phases of the code generation process, includ-
ing the modeling level, the different intermediary code representation levels and at the
level of the final generated code. Weaving at the level of the intermediary code repre-
sentation needs to be consistent with model weaving, as to not affect the simulation,
verification and validation processes. There is therefore a need for mechanisms that
provide traceability between the weaving semantics at the model level, the intermedi-
ary code representation level and the code level. The weaver behavioral metamodel
intends to provide a common set of primitives to describe the weaving semantics at
those different levels, using weaving strategies. The metamodel would enable the
actions of the weavers of the framework to be consistent. At the second phase of the
weaving process, joinpoints and advices have been identified, and their bindings are
defined. Weaving strategies define the operations to be performed on the core model
to implement the binding definition. These operations may vary from one type of
joinpoint to another and from one type of diagram to another.

5 Conclusions

We distinguish between modeling crosscutting behavior (Aspect Beans) and modeling
the aspect composition. The authors’ position is that the UML is suited for modeling
aspect beans, but that it cannot accommodate the complex semantics of the weaving
process. Therefore, we dedicate a separate metamodel for an aspect connector, whose
role is to define primitives for modeling the composition between models that encap-
sulate the behavior of aspects and the models that capture the core concerns of the
application. The paper illustrates this approach by presenting a model weaver for SDL
statecharts. AspectSDL adopts an aspect modeling approach that recognizes weaving
as a specific type of model transformation. The AspectSDL composes core models
and aspect bean models according to a binding definition (connector) and weaving
strategy definitions. Lightweight extension to the SDL profile are proposed, a connec-
tor metamodel is presented and a weaver behavioral metamodel is discussed.

Acknowledgements

This work is partially supported by CISE NSF grant No. 0137743, and performed at
Motorola Labs.

 Modeling Aspect-Oriented Compositions 109

References

1. ITU, Z. 100: Specification and Description Language (SDL), ITU-T, Geneva (2000)
2. ETSI: UML Profile for Communicating Systems, DTR/MTS-00085 (2004)
3. ITU, Z.120: Message Sequence Charts (MSC), ITU-T, Geneva (2000)
4. Kiczales, G., et Al.: Aspect-Oriented Programming. Proceedings of the European Confer-

ence on Object-Oriented Programming, Springer-Verlag (1997)
5. OMG: Model-Driven Architecture homepage http://www.omg.org/mda/ (2000)
6. Pawlak, R., et Al.: A UML Notation for Aspect-Oriented Software Design. 1st Interna-

tional Workshop on Aspect Oriented Modeling at the 1st International Conference on As-
pect-Oriented Software Development, Enschede, The Netherlands (2002)

7. Aldawud, O., Elrad, T., Bader, A.: A UML Profile for Aspect- Oriented Software Design.
3rd International Workshop on Aspect Oriented Modeling at the 2nd International Confer-
ence on Aspect- Oriented Software Development, Boston, USA (2003)

8. Stein, D., Hanenberg, S., Unland, R.: A UML-Based Aspect-Oriented Design Notation for
AspectJ. Proceedings of the 1st international conference on Aspect-Oriented Software
Development, Enschede, The Netherlands (2002)

9. Kandé, M..M., Kienzle, J.,Strohmeier, A.: From AOP to UML , A Bottom-Up Approach,
Aspect-Oriented Modeling with UML workshop at the 1st International Conference on
Aspect-Oriented Software Development, Enschede, The Netherlands (2002)

10. Han, Y., Kniesel G., Cremers A.: Towards Visual AspectJ by a Meta Model and Modeling
Notation, 6th International Workshop on Aspect-Oriented Modeling at the 4th Interna-
tional Conference on Aspect-Oriented Software Development, Chicago, USA (2004)

11. Lions, J.M., Simoneau, D., Pilette, G., Moussa, I.: Extending OpenTool/UML Using
Metamodeling : An aspect-oriented programming case study, 2nd International Workshop
on Aspect Oriented Modeling, UML 2002, Dresden, Germany (2002)

12. Gray, J.: Aspect-Oriented Domain-Specific Modeling: A Generative Approach Using a
Meta-weaver Framework, Ph.D. Dissertation, Department of Electrical Engineering and
Computer Science, Vanderbilt University, Nashville (2002)

13. Tkatchenko, M., Kiczales, G.: Uniform Support for Modeling Crosscutting Structure, 6th
International Workshop on Aspect-Oriented Modeling at the 4th International Conference
on Aspect-Oriented Software Development, Chicago, USA (2004)

14. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design. The Theme Approach
Addison-Wesley, Object Technology Series, ISBN: 0-321-24674-8 (2005)

15. Reddy, R., France, R., Georg, G.: An Aspect-Oriented Modeling Approach to Analyzing
Dependability Features, 6th Workshop on Aspect-Oriented Modeling at the 4th Interna-
tional Conference on Aspect-Oriented Software Development, Chicago, USA (2002)

16. Telelogic: TAU G2 homepage, http://www.telelogic.com/products/tau/index.cfm (2005)

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 110 – 119, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards a Generic Aspect Oriented Design Process

Andrew Jackson and Siobhán Clarke

Distributed Systems Group, Trinity College Dublin, Dublin 2, Ireland
{Andrew.Jackson, Siobhán.Clarke}@cs.tcd.ie

Abstract. Aspect oriented design (AOD) research is fragmented. Barriers to
AOD adoption are, in part, due to this fragmentation. Individually, many ap-
proaches provide elegant solutions to subsets of particular key issues related to
AOD. Collectively, a significant set of these issues are addressed. We propose
integrating existing AOD approaches through a generic AOD process. It is our
intuition that such integration will consistently address the issues relevant to
AOD.

1 Introduction

There have been many approaches to Aspect Oriented Design (AOD). Each approach
attempts to capture and address significant issues relating to crosscutting in design.
We have surveyed twenty-two AOD approaches [9] and have found that many ap-
proaches to AOD are language focused - either ignoring or assuming an implicit com-
plementary AOD process. We have identified several key issues a designer may face
during the AO design process. These include: How to identity and classify concerns
for design, How to test concern designs, how to reuse concern designs, how to design
concern modules, how to design composition specifications, and how to refine AO
designs. The Theme [1] process and the Use Case driven (AOSDUC) [10] process
provide the most complete and explicit treatments of the AOD issues. As such, these
approaches have heavily influenced our approach. Other approaches that have signifi-
cantly impacted our approach include: State charts and UML Profiles (SUP) [3], As-
pect-Oriented Design Modeling (AODM) [13], Aspect-Oriented Architecture Model-
ing (AAM) [4], UML for Aspects (UFA) [8], Architectural Views of Aspects (AVA)
[11], Aspect Modeling Language (AML) [6], Aspect Oriented Component Engineer-
ing (AOCE) [7] and CAM/DAOP [5]. Many of these approaches are focused on AOD
language support but implicitly describe processes to deal with specific subsets of
AOD issues. Individually, these approaches provide elegant solutions to subsets of
particular key issues which relate to AOD. Collectively, a significant set of these
issues are addressed by these approaches. To address all of these issues, we propose
an integration of existing AOD approaches through a generic AOD process. It is our
intuition that such integration will address the issues relevant to AOD. In Section 2,
we present a generic AOD process model and possible configurations of process in-
stantiations. In Section 3, we provide a detailed description of the AOD process ac-
tivities. For each activity, we also describe related AOD approaches that are candi-
dates for integration. In Section 4, we present a summary and our future work.

 Towards a Generic Aspect Oriented Design Process 111

2 AOD Process

As acceptance of the AO paradigm is grows, there seems to be a growing consensus
that existing research should now be integrated. Our goal is to remove the barriers to
AOD adoption through provision of a generic AOD process. We anticipate that doing
so will make the adoption of AOD a significantly easier task. Our initial generic AOD
process model is presented in Figure 1. The process model contains seven distinct
design activities, which can be engaged in flexible a sequence. Each of the activities
in the AOD process deals with particular AOD related issues. Each activity is de-
scribed in detail in Section 3.

Fig. 1. Generic AOD Process

2.1 Process Configurations

Here we describe the configurable properties of the generic AOD process.

2.1.1 Configuring Activities Sequences
Activity sequences are highly configurable in this process. A significant example of
this flexibility is at the start of the process. The process can begin by engaging the
concern identification and classification, design test(s), design by reuse, design com-
position specification(s) or design concern module(s) activities. The designer can
choose the activities and the sequence in which they need to be engaged to meet the
designer’s needs. The designer can select and configure the sequence of activities that
they deem appropriate for specific contexts. Although the process is flexible, it does
have some constraints. A significant constraint in any instantiation of the process is
that one of the core activities (reuse by design, design composition specification and
design concern module) must be executed.

2.1.2 Degrees of Refinement
The AOD process can be executed once or recursively. The refinement activity of the
design process indicates that the process may be executed recursively. Employing a
horizontal layered design process is a concept that has recently been popularized
through MDA1. This recursive approach to AO design has been investigated in the
CAM/DAOP design process [5]. Other approaches, when integrated, support staged

1 MDA http://www.omg.org/mda/

112 A. Jackson and S. Clarke

design. UFA [8] and AML [6], the AspectJ refinement of UFA, is a good example of
a staged design process model created from approach integration. Figure 2 depicts a
model of refinement. This model can be extended or constrained as appropriate. It
begins with an initial design process that creates a high level design or analysis
model. This is then refined into a middle level design. This is a complete design but it
remains platform independent. Low level design is a platform specific refinement of
the middle level design. Following such a model of refinement allows design deci-
sions to be encapsulated. At the analysis level, decisions relating to concern identifi-
cation, concern relationship classification and assigning responsibilities to concerns
can be defined. At the middle level, the decisions relating to platform independent
designs can be taken. At the low level, decisions relating to the realisation of specific
platforms can be made.

Fig. 2. Degrees of Refinement

By encapsulating the specific decisions in a refinement model, the designer can fo-
cus on the decisions are appropriate to their context. For example, and as illustrated in
Figure 2, the CAM/DAOP [5] approach separates the design decisions into three
stages. At a high level, there are decisions made to define “the basic entities and the
structure of the system from an architectural point of view”. These decisions are
based on a computational model, which “focuses on the functional decomposition of
the system into objects which interact at interfaces, exchanging messages and signals
that invoke operations and deliver service responses, but without detailing the system
precise architecture, or any of its implementation details”. The product of this is a
component aspect model (CAM). This model is a description of the components and
aspects of an application. At the middle level, decisions are made to define how
“components and aspects are weaved, and how the abstract entities of the CAM
model can be represented from the computational and engineering viewpoints”. The
result of these decisions is a DAOP model, which is a specialisation of the CAM
model. At the low level, decisions are taken to describe the DAOP model “from a
technology viewpoint”. In this model decisions on how “to implement the DAOP
platform using Java/RMI, CORBA, EJB, or .NET, using their corresponding services
and mechanisms” are taken.

 Towards a Generic Aspect Oriented Design Process 113

2.1.3 Iteration Strategies
Refinement reduces complexity through partitioning the design process along a hori-
zontal dimension. The generic AO design process can also be partitioned vertically
through applying iterative design. There are two high level elements to be designed in
a generic AO design process – a concern and a composition specification. It is our
initial intuition that it makes sense for these elements to be addressed through separate
iterations of the design process.

Fig. 3. Iterative strategies

Figure 3 depicts three possible strategies for applying the generic AO process in an
iterative process. The boxes with solid lines represent iterations and boxes with bro-
ken lines represent composite concerns (the product of composition). Diagram (a) -
Continual cumulative composition, depicts the process when applied in a more tradi-
tional manner. Composition specifications are designed at the end of iterations. In this
strategy there is a cumulatively growing composite concern to which concerns devel-
oped per-iteration are applied. Diagram (b) - Once off composition, shows that con-
cerns and the composition specification can be developed in separate iterations. In this
strategy concerns can be designed first, a composition specification may then be de-
vised to specify how the concerns are to be integrated into a composite concern. The
alternative is to firstly design composition specification. This would describe the
concerns that need to be integrated. Diagram (c) - Hierarchical composition, follows
a hierarchical iteration pattern. In this strategy composites are created through itera-
tive design, the composition specifications for the integration of composites are then
designed in a separated iteration.

3 AOD Activities and Related Work

The generic AOD process represents an integration of several related works. In this
section we discuss the related work in relation to the activities of the AOD process.
The verification activity is not addressed here. The primary purpose of this activity is
to facilitate the integration of formal methods in design.

114 A. Jackson and S. Clarke

3.1 Concern Identification and Classification

Identifying and classifying concerns is supported by and several AOD approaches.
Theme [1] and AOCE [7] are examples of approaches that provide support for con-
cern identification and classification. The SUP [3] approach identifies crosscutting
concerns building an Object Oriented (OO) model and extracting crosscutting con-
cerns from that model.

Fig. 4. Concern Identification & Classification

Our process integrates these approaches. In Figure 4, the process begins with input
analysis. After analysis, the process may be ignored if concerns are fully identified
and classified. The input can be rejected and returned for analysis (in complementary
AO requirements engineering and AO architecture design processes [9]). Imperfect
input (such as OO input in SUP) can be handled by creating models of imperfect input
and identifying crosscutting concerns therein. Also concern relevant to the design
process can be identified, some concerns emerge during design that are not present in
requirements. Once concerns are identified, they must be classified. Classification
defines the concern type through describing the relationships between the identified
concerns. We define two types of concern classification – crosscutting and non-
crosscutting. We recognise that these may be extended.

3.2 Design Tests

There are number of possibilities emerging to provide AO testing support [14]. It is our
belief that the ability to test designs will significantly reduce defects in design and
resulting implementation. Work is underway to introduce executable design tests [2].
Currently there are very few means of testing AO design. The application of use case
specifications to test concern designs is described in [10]. The comparison of compos-
ite (basic, sub, alternative and/or extensional) flows against concern design is the basis
for the test. These composite flows can be specified as concern test design modules.

The process of testing AO designs is presented in Figure 5. Designing AO tests can
include reusing existing tests (concern modules and composition specifications), cre-
ating tests for concern modules and designing tests for composition specifications or
composing concern module tests to test composition specifications. The process al-
lows the designer to choose the order in which deign testing activities are engaged.
Tests can also be verified and refined where appropriate.

 Towards a Generic Aspect Oriented Design Process 115

Fig. 5. Design Tests

3.3 Design by Reuse

Particular approaches to AOD support design reuse. AAM [4], for example, supports
reuse of crosscutting design modules. AAM describes reusable crosscutting design
modules as “context-free aspects”. These are reused by applying system design ele-
ments or context to the context-free aspect. UFA [8] follows a similar pattern, sup-
porting reuse of crosscutting design modules or “abstract aspects” through a “connec-
tor” or a set of design elements from the concern or composite concerns to which the
“abstract aspect” should be applied. Design by reuse is illustrated in Figure 6. This
process involves searching a design repository for an appropriate design, deciding if
the design can be reused, and then applying the reused element in a system design
context. When design elements cannot be reused, they need to be designed from
scratch. This process also allows concern and composition specification designs that
are candidates for reuse to be “de-contextualized” or abstracted and added to a design
repository.

Fig. 6. Design by Reuse

116 A. Jackson and S. Clarke

3.4 Concern Module Design

Twenty-one of the twenty-two AOD approaches that we have surveyed [9] provide
support for designing crosscutting concerns separately in UML AOD languages.
Some approaches also support the modularization of non-crosscutting concerns. Sig-
nificant examples of this include - AOSDUC [10], AVA [11] and Theme [1]. Ap-
proaches such as AODM [13] and AAM [4] provide means for representing crosscut-
ting concerns within separate design modules. We have not restricted the process to
provide support for the separate design of crosscutting concerns. This process facili-
tates the design of both crosscutting and non-crosscutting concerns as first-class enti-
ties. Because of the overwhelming support for UML in the AOD community [9], we
are basing our concern module design on a UML design process.

Fig. 7. Concern Module Design

Figure 7 illustrates the process of designing a concern module. The design process
includes the ability to refine the concern modules into sub-concerns (taken from AVA
[11]). The process also allows different specialisations of the design process. There are
three choices non-crosscutting, crosscutting and other classifications. Other process
specialisations can be made for new types of concern that may emerge. This allows the
non-crosscutting and crosscutting process to be further specialised. In cases the process
mandates the creation of an initial interface, for which structural and behavioural views
(UML diagrams) of the concern are created. Tests can be created before or after the
design. The concern design modules can also be verified and refined.

3.5 Composition Specification Design

All of the AOD approaches that we have surveyed [9] provide support for represent-
ing crosscutting concerns in separate design modules. There are two means of design-
ing a crosscutting concern. The first is to design it as part of the design of a concern
module. Examples of this include the AODM [13] and AAM [4] approaches. The
second is to design the concern specification separately. The best examples of this
include UFA [8] & AML [6], Theme [1] and AVA [11]. We support the second ap-
proach as it subsumes the latter ensuring approach generality.

 Towards a Generic Aspect Oriented Design Process 117

Fig. 8. Design Concern Specification

As depicted in Figure 8, this process is divided into two sub-processes. One sub-
process deals with structural composition and the other deals with behavioural com-
position. The sub-processes in both cases are concerned with identifying where com-
position is required and also how composition should occur. This process also deals
with the identification and resolution of conflict issues between concerns that arise
during the composition. Ordering of composition is an issue that is highlighted in the
AVA [11] approach. Determining the order of composition is an activity in this proc-
ess. Composition specification can be designed in a test driven manner - tests can be
designed after design and applied as a means to ensure design correctness.

3.6 Refinement

As described in Section 2.3.3, the design process has been engineered, such that, the
products created during the process, can be used as input to the design process for
refinement. We refer to this type of refinement as vertical refinement. We also rec-
ognize horizontal refinement in this process. Each activity process defined in this
contains a refinement activity. Horizontal refinement is a process of improvement or
fine-tuning. When designing concerns, it can be difficult to know whether the de-
signed solution is good or not. Software metrics are used to measure properties of
software, such as maintainability and/or reusability. AO metrics have been proposed
[12]. These metrics have been based on the AspectJ model of AO and target imple-
mentation. Some of these metrics may be applied to particular instantiations of the
AOD process that utilize AspectJ like models. However, it is difficult to apply metrics
which target AspectJ models to design approaches such as Theme [1] or UFA [8]
which follow different models of AO.

4 Summary and Future Work

The contribution of a generic AOD process is a consistent means for addressing all of
the issues related to AOD in an extensible, customizable and independent generic

118 A. Jackson and S. Clarke

process, which is easy to adopt. Our generic process is based on the approaches sur-
veyed in [9]. In Section 2, we describe the proposed generic AOD process and illus-
trate how it can be flexibly configured for adoption in existing processes. In Section
3, we illustrate how each issue related to AOD is addressed in the generic AOD proc-
ess that we have presented. We also describe examples of related work that may be
integrated to support each process activity. In our future work, we will investigate the
integration of existing research into a complete and workable generic AOD process.
As there is not much literature that describes a generic AOD processes in use, we
intend to evaluate and validate the generic AOD process by applying it in several case
studies. An example of a case study to which we are applying different configurations
of the AOD process is an Auction System2, previously used in publications which
evaluate the Fondue Method. In parallel with the AOD process, we are working on
creating a common AOD language to support all of the activities in this process.

Acknowledgements

This work is supported by European Commission grant IST-2-004349: European
Network of Excellence on Aspect-Oriented Software Development (AOSD-Europe),
2004-2008.

References

[1] Clarke S., Baniassad E., Aspect-Oriented Analysis amd Design the Theme Approach,
ISBN: 0321246748 Addison-Wesley, 2005.

[2] Dinh-Trong T. T., A Systematic Approach to Testing UML Design Models, Doctoral
Symposium, Unified Modeling Language (UML), October 10-15, 2004, Lisbon, Portugal.

[3] Elrad, T., Aldawud, O., Bader, A., Aspect-Oriented Modeling: Bridging the Gap between
Implementation and Design, Generative Programming and Component Engineering Con-
ference (GPCE), October 6-8, Pittsburgh, PA, USA, 2002.

[4] France R., Ray I., Georg G., Ghosh S., An Aspect-Oriented Approach to Early Design
Modeling, IEE Proceedings - Software, vol 151, number 4, August, 2004.

[5] Fuentes L., Pinto M., Vallecillo A., How MDA Can Help Designing Component- and
Aspect-based Applications, Enterprise Distributed Object Computing Conference
(EDOC), September 16-19, Brisbane, Australia, 2003.

[6] Groher I., Baumgarth T., Aspect-Orientation from Design to Code, Aspect-Oriented Re-
quirements Engineering and Architecture Design workshop, Aspect-Oriented Software
Development (AOSD), March 22-26, Lancaster, UK, 2004.

[7] Grundy, J.C., Multi-perspective specification, design and implementation of components
using aspects, International Journal of Software Engineering and Knowledge Engineer-
ing, Vol. 10, No. 6, December 2000.

[8] Herrmann S., Composable Designs with UFA,Workshop: Aspect-oriented Modelling, 1st
International Conference on Aspect-Oriented Software Development (AOSD), Univer-
sity of Twente Enschede, The Netherlands, April 22-26, 2002.

[9] Chitchyan R., Rashid A., Sawyer P., Garcia A., Alarcon M.P, Bakker J., Tekinerdogan
B., Jackson A., Clarke S., Survey of Aspect-Oriented Analysis and Design Approaches,
http://www.aosd-europe.net/documents/analys.pdf, 2005.

2 http://lgl.epfl.ch/research/fondue/case-studies/auction/

 Towards a Generic Aspect Oriented Design Process 119

[10] Jacobson I., Ng P., Aspect-Oriented Software Development with Use Cases, ISBN:
0321268881, Addison Wesley Professional, 2005.

[11] Katara M., Katz S., Architectural Views of Aspects, Aspect-Oriented Software Devel-
opment (AOSD), March 17 - 21, Boston, Massachusetts, USA, 2003.

[12] Sant'Anna C., Garcia A., Chavez C., Lucena C., Staa A. V., On the Reuse and Mainte-
nance of Aspect-Oriented Software: An Assessment Framework XVII Brazilian Sympo-
sium on Software Engineering, Manaus, Brazil, October 2003.

[13] Stein D., Hanenberg S., Unland R., Designing Aspect-Oriented Crosscutting in UML,
Workshop: Aspect-oriented Modelling, 1 Aspect-Oriented Software Development
(AOSD), April 22-26, University of Twente, Enschede, The Netherlands, 2002.

[14] Workshop on Testing Aspect-Oriented Programs, http://www.cs.colostate.edu/~rta/wtaop/
Chicago, USA, March 14-18, 2005

Model Transformations in Practice Workshop

Jean Bézivin, Bernhard Rumpe, Andy Schürr, and Laurence Tratt

University of Nantes, TU Darmstadt, TU Braunschweig, King’s College London
http://sosym.dcs.kcl.ac.uk/events/mtip/

1 Background

Model Transformations in Practice (MTiP) 2005 was a workshop which pro-
vided a forum for the model transformation community to discuss practical
model transformation issues. Although many different model transformation ap-
proaches have been proposed and explored in recent years, there has been little
work on comparing and contrasting various approaches. Without such compar-
isons, it is hard to assess new model transformation approaches such as the up-
coming OMG MOF/QVT recommendation, or to discern sensible future paths
for the area. Our aims with the workshop were to create a forum that would
help lead to an increased understanding of the relative merits of different model
transformation techniques and approaches. A more advanced understanding of
such merits is of considerable benefit to both the model transformation and
wider modelling communities.

2 Workshop Format

In order to achieve the workshops’ aims, we took an unusual approach in the
Call for Papers (CfP). We decided that the workshop would focus on under-
lying model transformations mechanisms, concepts, languages and tools, devel-
opment environments, libraries, practises and patterns, verification and opti-
mization techniques, traceability and composeability issues, applicability scope,
deployment techniques, and so on. In order to achieve aim, we detailed a specific
mandatory example that all submissions had to tackle (detailed in section 5),
in order that it would be easier to compare and contrast submissions. Authors
were asked to take a particular model transformation approach and structure
their submission as follows:

1. An overview of the authors’ chosen model transformation approach.
2. The required aspects of the mandatory model transformation example.
3. Optionally, additional aspects of the mandatory model transformation ex-

ample.
4. Optionally, extra model transformations chosen by the authors from a list

of alternatives.
5. Results and discussion.

Authors were asked to consider and discuss, where relevant, the following issues
with regard to their chosen approach:

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 120–127, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Model Transformations in Practice Workshop 121

– Composition of transformations.
– Robustness and error handling,
– Debugging support.
– Flexibility, overall usability and power of the chosen approach.
– Whether the approach can express bidirectional and / or incremental (some-

times known as change propagating) transformations.
– Technical aspects such as the ability to deal with model exchange formats,

modelling tool APIs, and layout updates.

3 Accepted Submissions

Because of the unusual demands of our CfP, we were pleasantly surprised at both
the quantity and quality of submissions. In the end we accepted the following
eight submissions:

Model Transformation by Graph Transformation: A Comparative Study
Gabriele Taentzer, Karsten Ehrig, Esther Guerra, Juan de Lara, Laszlo Lengyel,
Tihamer Levendovszky, Ulrike Prange, Daniel Varro, Szilvia Varro-Gyapay,
Technische Universität Berlin, Universidad Carlos III de Madrid, Universidad
Autonoma de Madrid, Budapest University of Technology and Economics

Model Transformation with Triple Graph Grammars
Alexander Königs, University of Technology Darmstadt

Kent Model Transformation Language
D.H.Akehurst, W.G.Howells, K.D.McDonald-Maier, University of Kent

Practical Declarative Model Transformation With Tefkat
Michael Lawley, Jim Steel, DSTC, University of Rennes

Transforming Models with ATL
Frédéric Jouault, Ivan Kurtev, INRIA

Model Transformation Approach Based on MOLA
Audris Kalnins, Edgars Celms, Agris Sostaks, University of Latvia

On Executable Meta-Languages applied to Model Transformations
Pierre-Alain Muller, Franck Fleurey, Didier Vojtisek, Zoé Drey, Damien Pol-
let, Frédéric Fondement, Philippe Studer, Jean-Marc Jézéquel, IRISA/INRIA,
France, EPFL/IC/UP-LGL, INJ, Switzerland, Université de Haute-Alsace

Model Transformation in Practice Using the BOC Model Transformer
Marion Murzek, Gerti Kappel, Gerhard Kramler, Vienna University of
Technology

With so many high quality submissions to pick from, choosing only two for
inclusion in these proceedings was an inevitably difficult task. However we believe
that the two papers that the programme committee voted to select are indicative
of the overall high quality of submissions.

122 J. Bézivin et al.

4 Programme Committee

The workshop had a programme committee which reflected many of the differ-
ent parts of the model transformation community. The programme committee
performed sterling work in reviewing the CfP, voting on papers to accept and so
on. The programme committee consists of:

Wim Bast Compuware, Netherlands
Tony Clark Xactium, UK
Krzysztof Czarnecki University of Waterloo, Canada
Gregor Engels University of Paderborn, Germany
Kerry Raymond DSTC, Australia
Robert France Colorado State University, USA
Jens Jahnke University of Victoria, Canada
Jean-Marc Jézéquel University of Rennes, INRIA, France
Stuart Kent Microsoft, UK
Gabor Karsai Vanderbilt University, Tennessee, USA
Gregor Kiczales University of British Columbia, Canada
Reiko Heckel University of Leicester, UK
Dániel Varró Budapest University of Technology and Economics,

Hungary
R. Venkatesh Tata Consultancy Services, India
Albert Zündorf University of Kassel, Germany

5 Mandatory Example

All submissions were asked to tackle the example as outlined in this section.
The example itself is a slight variation on the well known ‘class to RDBMS’
transformation. This example was chosen because, despite its relative simplicity,
it tends to exercise a broad class of model transformation features. Perhaps
inevitably after the release of this example, prospective authors found small
ambiguities, missing details, and even the odd small mistake in the specification.
We kept the workshop website up to date with ‘errata’ on the CfP, and informally
suggested to authors that in the event of doubt on their part, they were welcome
to choose a particular path provided they documented it appropriately.

The rest of this section contains the model transformation specification as it
was defined in the CfP which the reader will find useful when reading the two
papers selected from the MTiP workshop.

5.1 Meta-models

The meta-model for class models is shown in figure 1. The following OCL con-
straint is also part of the model (the allAttributes operation returns a class’s
local and inherited attributes):

context Class inv:
allAttributes()->size > 0 and
allAttributes()->exists(attr | attr.is_primary = true)

Model Transformations in Practice Workshop 123

Classifier

name : String

PrimitiveDataType
Class

is_persistent : bool
parent

Attribute

is_primary : bool
name : String

attrs
*

type

Association

name : String

destsrc

Fig. 1. Class meta-model

Table

name : String

FKey

fkeys
*

Column

type : String
name : String

pkey
*

cols
*

references

cols
*

Fig. 2. RDBMS meta-model

A model consists of classes and directed associations. A class consists, possibly
via inheritance, of one or more attributes, at least one of which must be marked as
constituting the classes’ primary key. An attribute type is either that of another
user class, or of a primitive data type (e.g. String, Int). Associations are consid-
ered to have a 1 multiplicity on their destination. Submissions may assume the
presence of standard data-types as instances of the PrimitiveDataType class.

124 J. Bézivin et al.

The meta-model for RDBMS models is shown in figure 2. An RDBMS model
consists of one or more tables. A table consists of one or more columns. One
or more of these columns will be included in the pkey slot, denoting that the
column forms part of the tables primary key slot. A table may also contain
zero or more foreign keys. Each foreign key refers to the particular table it
identifies, and denotes one or more columns in the table as being part of the
foreign key.

Transformation. This version of the transformation contains several subtleties
that authors will need to be aware of. In order to facilitate comparisons between
approaches, authors should ensure that they accurately implement the transfor-
mation.

1. Classes that are marked as persistent in the source model should be trans-
formed into a single table of the same name in the target model. The resultant
table should contain one or more columns for every attribute in the class,
and one or more columns for every association for which the class is marked
as being the source. Attributes should be transformed as per rules 3 – 5.

2. Classes that are marked as non-persistent should not be transformed at the
top level. For each attribute whose type is a non-persistent class, or for each
association whose dst is such a class, each of the classes’ attributes should be
transformed as per rule 3. The columns should be named name transformed
attr where name is the name of the attribute or association in question, and
transformed attr is a transformed attribute, the two being separated by
an underscore character. The columns will be placed in tables created from
persistent classes.

3. Attributes whose type is a primitive data type (e.g. String, Int) should be
transformed to a single column whose type is the same as the primitive data
type.

4. Attributes whose type is a persistent class should be transformed to one
or more columns, which should be created from the persistent classes’ pri-
mary key attributes. The columns should be named name transformed
attr where name is the attributes’ name. The resultant columns should
be marked as constituting a foreign key; the FKey element created should
refer to the table created from the persistent class.

5. Attributes whose type is a non-persistent class should be transformed to one
or more columns, as per rule 2. Note that the primary keys and foreign keys
of the translated non-persistent class need to be merged in appropriately,
taking into consideration that the translated non-persistent class may con-
tain primary and foreign keys from an arbitrary number of other translated
classes.

6. When transforming a class, all attributes of its parent classes (which must
be recursively calculated), and all associations which have such classes as
a src, should be considered. Attributes in subclasses with the same name
as an attribute in a parent class are considered to override the parent at-
tribute.

Model Transformations in Practice Workshop 125

7. In inheritance hierarchies, only the top-most parent class should be con-
verted into a table; the resultant table should however contain the merged
columns from all of its subclasses.

Notes on the transformation:

– Rules 2, 4 and 5 are recursive – the ‘drilling down’ into attributes’ types can
occur to an arbitrary level.

– Associations do not directly transform into elements; however each associa-
tion which has a particular class as a src must be considered when trans-
forming that class into a table and / or columns.

– When merging the transformation of a non-persistent class, care must be
taken to handle the primary and foreign keys of the transformed class ap-
propriately.

– Foreign keys, primary keys and so on should point to the correct model
elements – transformations which create duplicate elements with the same
names are not considered to provide an adequate solution.

Authors are encouraged to take particular note of the following points when they
create their transformations:

– The recursive nature of the drilling down.
– The creation of foreign keys.
– Associations.

Example Execution. Figures 3 and 4 show the example input and output to
the class to RDBMS transformation example.

typetype

:Attribute
name = "name"

attrs

:PrimitiveDataType
name = "String"

type

is_primary = true

:Attribute
name = "order_no"

attrs

is_primary = true

:Class
name="Order"
is_persistent=true

:Class
name="Customer"
is_persistent=true

:Attribute
name = "addr"

attrs

is_primary = true

:Class
name="Address"
is_persistent=false

:PrimitiveDataType
name = "int"

:Association
name="customer"

src dest

:Association
name="address"

src dest

Fig. 3. Example input

126 J. Bézivin et al.

co
ls

co
ls

:T
ab

le
na

m
e=

"O
rd

er
"

pk
ey

:F
K

ey

na
m

e=
"c

us
to

m
er

_n
am

e"
ty

pe
 =

 "
S

tr
in

g"

:C
o

lu
m

n

co
ls

fk
ey

s

co
ls

co
ls

pk
ey

:C
o

lu
m

n
na

m
e=

"n
am

e"
ty

pe
=

"S
tr

in
g"

:T
ab

le
na

m
e=

"C
us

to
m

er
"

pk
ey

re
fe

re
nc

es

na
m

e=
"c

us
to

m
er

_a
dd

re
ss

_a
dd

r"
ty

pe
 =

 "
S

tr
in

g":C
o

lu
m

n
:C

o
lu

m
n

na
m

e=
"o

rd
er

_n
o"

ty
pe

=
"I

nt
"

co
ls

co
ls

na
m

e=
"a

dd
re

ss
_a

dd
r"

ty
pe

 =
 "

S
tr

in
g"

:C
o

lu
m

n

F
ig

.4
.
E

xa
m

pl
e

ou
tp

ut

Model Transformations in Practice Workshop 127

6 Workshop Outcomes

The workshop itself was a lively, and well attended affair. We devoted a sub-
stantial portion of the day to discussion. Much of this related to the model
transformation approaches presented, and their relation to other approaches not
presented (e.g. the forthcoming QVT standard). In no particular order, some of
the points raised during discussion were as follows:

– Current model transformation approaches lack scalability in two aspects:
their efficiency, and their code organization. The latter would be aided by
features such as modularity.

– The relationship of model transformations to normal compilers could fruit-
fully be explored.

– A lack of formalization of model transformation approaches, and consequent
inability to reason reliably about model transformations.

– Are bidirectional transformations practical and / or desirable?
– The importance of tracing information for tool users to track their transfor-

mations.
– Difficulties in making diagrammatic syntaxes for all aspects of model trans-

formations.
– A need for more sophisticated taxonomies of model transformation systems.
– A need to define the relationship of semantics preserving model transforma-

tions to the concept of refinement.

7 And Finally...

We would like to thank the authors of papers, the programme committee, and
all those who turned up and participated on the day itself for making the MTiP
workshop a success. Due to the interest in this subject, we anticipate holding
another workshop on this subject to which you are all cordially invited!

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 128 – 138, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Transforming Models with ATL*

Frédéric Jouault and Ivan Kurtev

ATLAS Group (INRIA & LINA, University of Nantes)
{frederic.jouault, ivan.kurtev}@univ-nantes.fr

Abstract. This paper presents ATL (ATLAS Transformation Language): a
hybrid model transformation language that allows both declarative and
imperative constructs to be used in transformation definitions. The paper
describes the language syntax and semantics by using examples. ATL is
supported by a set of development tools such as an editor, a compiler, a virtual
machine, and a debugger. A case study shows the applicability of the language
constructs. Alternative ways for implementing the case study are outlined. In
addition to the current features, the planned future ATL features are briefly
discussed.

1 Introduction

Model transformations play an important role in Model Driven Engineering (MDE)
approach. It is expected that writing model transformation definitions will become a
common task in software development. Software engineers should be supported in
performing this task by mature tools and techniques in the same way as they are
supported now by IDEs, compilers, and debuggers in their everyday work.

One direction for providing such a support is to develop domain-specific languages
designed to solve common model transformation tasks. Indeed, this is the approach
that has been taken recently by the research community and software industry. As a
result a number of transformation languages have been proposed. We observe that,
even though the problem domain of these languages is common, they still differ in the
employed programming paradigm. Current model transformation languages usually
expose a synthesis of paradigms already developed for programming languages
(declarative, functional, object-oriented, imperative, etc.). It is not clear if a single
approach will prevail in the future. A deeper understanding and more experience
based on real and non-trivial problems is still necessary. We believe that different
approaches are suitable for different types of tasks. One class of problems may be
easily solved by a declarative language, while another class is more amenable to an
imperative approach.

In this paper we describe a transformation language and present how different
programming styles allowed by this language may be applied to solve different types
of problems. The language is named ATL (ATLAS Transformation Language) and is
developed as a part of the AMMA (ATLAS Model Management Architecture)
platform [2]. ATL is a hybrid language, i.e. it is a mix of declarative and imperative
constructs.

* Work partially supported by ModelWare, IST European project 511731.

 Transforming Models with ATL 129

We present the syntax and semantics of ATL informally by using examples. Space
limit does not allow presenting the full ATL grammar and a detailed description of its
semantics. A simple case study illustrates the usage of the language.

The paper is organized as follows. Section 2 gives an overview of the context in
which ATL is used. Section 3 presents the language constructs on the base of
examples. Section 4 presents a case study that shows the applicability of ATL.
Section 5 describes the tool support available for ATL: the ATL virtual machine, the
ATL compiler, the IDE based on Eclipse, and the debugger. Section 6 presents a brief
comparison with other approaches for model transformations and outlines directions
for future work. Section 7 gives conclusions.

2 General Overview of the ATL Transformation Approach

ATL is applied in a transformational pattern shown in Fig. 1. In this pattern a source
model Ma is transformed into a target model Mb according to a transformation
definition mma2mmb.atl written in the ATL language. The transformation definition
is a model. The source and target models and the transformation definition conform to
their metamodels MMa, MMb, and ATL respectively. The metamodels conform to the
MOF metametamodel [8].

Fig. 1. Overview of ATL transformational approach

ATL is a hybrid transformation language. It contains a mixture of declarative and
imperative constructs. We encourage a declarative style of specifying transformations.
However, it is sometimes difficult to provide a complete declarative solution for a
given transformational problem. In that case developers may resort to the imperative
features of the language.

ATL transformations are unidirectional, operating on read-only source models and
producing write-only target models. During the execution of a transformation the
source model may be navigated but changes are not allowed. Target model cannot be
navigated. A bidirectional transformation is implemented as a couple of
transformations: one for each direction.

conformsTo

transformation

mma2mmb.atl

ATL

source target

executes MMbMMa

MOF

Ma Mb

130 F. Jouault and I. Kurtev

3 Presentation of ATL

In this section we present the features of the ATL language. The syntax of the
language is presented based on examples (sections 3.1-3.4). Then in section 3.5 we
briefly describe the execution semantics of ATL.

3.1 Overall Structure of Transformation Definitions

Transformation definitions in ATL form modules. A module contains a mandatory
header section, import section, and a number of helpers and transformation rules.

Header section gives the name of the transformation module and declares the
source and target models. Below we give an example header section:

module SimpleClass2SimpleRDBMS;
create OUT : SimpleRDBMS from IN : SimpleClass;

The header section starts with the keyword module followed by the name of the
module. Then the source and target models are declared as variables typed by their
metamodels. The keyword create indicates the target models. The keyword from
indicates the source models. In our example the target model bound to the variable
OUT is created from the source model IN. The source and target models conform to
the metamodels SimpleClass and SimpleRDBMS respectively. In general, more than
one source and target models may be enumerated in the header section.

Helpers and transformation rules are the constructs used to specify the
transformation functionality. They are explained in the next two sections.

3.2 Helpers

The term helper comes from the OCL specification ([9], section 7.4.4, p11), which
defines two kinds of helpers: operation and attribute helpers.

In ATL, a helper can only be specified on an OCL type or on a source metamodel
type since target models are not navigable. Operation helpers define operations in the
context of a model element or in the context of a module. They can have input
parameters and can use recursion. Attribute helpers are used to associate read-only
named values to source model elements. Similarly to operation helpers they have a
name, a context, and a type. The difference is that they cannot have input parameters.
Their values are specified by an OCL expression. Like operation helpers, attribute
helpers can be recursively defined with constraints about termination and cycles.

Attribute helpers can be considered as a means to decorate source models before
transformation execution. A decoration of a model element may depend on the
decoration of other elements. To illustrate the syntax of attribute helpers we consider
an example.

1. helper context SimpleClass!Class def : allAttributes :
2. Sequence(SimpleClass!Attribute) = self.attrs->union(
3. if not self.parent.oclIsUndefined() then
4. self.parent.allAttributes->select(attr |
5. not self.attrs->exists(at | at.name = attr.name))
6. else Sequence {} endif -- Terminating case for the recursion
7.)->flatten();

The attribute helper allAtributes is used to determine all the attributes of a given
class including the defined and the inherited attributes. It is associated to classes in the

 Transforming Models with ATL 131

source model (indicated by the keyword context and the reference to the type in the
source metamodel SimpleClass!Class) and its values are sequences of attributes (line
2). The OCL expression used to calculate value of the helper is given after the ‘=’
symbol (lines 2-7). This is an example of a recursive helper (line 4).

3.3 Transformation Rules

Transformation rule is the basic construct in ATL used to express the transformation
logic. ATL rules may be specified either in a declarative style or in an imperative
style. In this section we focus on declarative rules. Section 3.4 describes the
imperative features of ATL.

Matched Rules. Declarative ATL rules are called matched rules. A matched rule is
composed of a source pattern and of a target pattern. Rule source pattern specifies a
set of source types (coming from source metamodels and the set of collection types
available in OCL) and a guard (an OCL Boolean expression). A source pattern is
evaluated to a set of matches in source models.

The target pattern is composed of a set of elements. Every element specifies a
target type (from the target metamodel) and a set of bindings. A binding refers to a
feature of the type (i.e. an attribute, a reference or an association end) and specifies an
initialization expression for the feature value. The following snippet shows a simple
matched rule in ATL.

1. rule PersistentClass2Table{
2. from
3. c : SimpleClass!Class (c.is_persistent and c.parent.oclIsUndefined())
4. to
5. t : SimpleRDBMS!Table (name <- c.name)
6. }

The rule name PersistentClass2Table is given after the keyword rule (line 1). The
rule source pattern specifies one variable of type Class (line 3). The guard (line 3)
specifies that only persistent classes without superclasses will be matched.

The target pattern contains one element of type Table (line 5) assigned to the
variable t. This element has one binding that specifies an expression for initializing
the attribute name of the table. The symbol ‘<-‘ is used to delimit the feature to be
initialized (left-hand side) from the initialization expression (right-hand side).

Execution Semantics of Matched Rules. Matched rules are executed over matches
of their source pattern. For a given match the target elements of the specified types
are created in the target model and their features are initialized using the bindings.

Executing a rule on a match additionally creates a traceability link in the internal
structures of the transformation engine. This link relates three components: the rule,
the match (i.e. source elements) and the newly created target elements.

The feature initialization uses a value resolution algorithm, called ATL resolve
algorithm. The algorithm is applied on the values of binding expressions. If the value
type is primitive, then the value is assigned to the corresponding feature. If its type is
a metamodel type or a collection type there are two possibilities:

• if the value is a target element it is assigned to the feature;
• if the value is a source element it is first resolved into a target element

using internal traceability links. The resolution results in an element from

132 F. Jouault and I. Kurtev

the target model created from the source element by a given rule. After
the resolution the target model element becomes the value of the feature;

Thanks to this algorithm, target elements can be linked together using source
model navigation.

Kinds of Matched Rules. There are several kinds of matched rules differing in the
way how they are triggered.

• Standard rules are applied once for every match that can be found in
source models;

• Lazy rules are triggered by other rules. They are applied on a single match
as many times as it is referred to by other rules, every time producing a
new set of target elements;

• Unique lazy rules are also triggered by other rules. They are applied only
once for a given match. If a unique lazy rule is triggered later on the same
match the already created target elements are used;

The ATL resolution algorithm takes care of triggering lazy and unique lazy rules
when a source element is referred to within an initialization expression.

Rule Inheritance. In ATL rule inheritance can be used as a code reuse mechanism
and also as a mechanism for specifying polymorphic rules.

A rule (called subrule) may inherit from another rule (parent rule). A subrule
matches a subset of what its parent rule matches. The source pattern types in the
parent rule may be replaced by their subtypes in the subrule source pattern. The guard
of a subrule forms a conjunction with the guard of the parent rule.

A subrule target pattern extends its parent target pattern using any combination of
the following: by subtyping target types, by adding bindings, by replacing bindings,
and by adding new target elements.

3.4 Imperative Features of ATL

The declarative style of transformation specification has a number of advantages. It is
usually based on specifying relations between source and target patterns and thus
tends to be closer to the way how the developers intuitively perceive a transformation.
This style stresses on encoding these relations and hides the details related to selection
of source elements, rule triggering and ordering, dealing with traceability, etc.
Therefore, it can hide complex transformation algorithms behind a simple syntax.

However, in some cases complex source-domain or target-domain specific
algorithms may be required and it may be difficult to specify a pure declarative
solution for them. There are several possible approaches to this issue. We consider
two of them:

• allow native operation calls to modules written in an arbitrary language.
This solution has the drawback that it moves the control flow out of the
transformation language semantics;

• offer an imperative part in the transformation language. In that way the
control flow remains in the transformation language semantics but the
developer must encode this control flow explicitly;

 Transforming Models with ATL 133

ATL has an imperative part based on two main constructs:

• called rules. A called rule is basically a procedure: it is invoked by name
and may take arguments. Its implementation can be native or specified in
ATL;

• action block. An action block is a sequence of imperative statements and
can be used instead of or in a combination with a target pattern in matched
or called rules. The imperative statements available in ATL are the well
known constructs for specifying control flow such as conditions, loops,
assignments, etc. We do not give their syntax in this paper;

If either a called rule or an action block is used in an ATL program, this program is
no longer fully declarative.

3.5 Execution of Transformation Definitions

In this section we briefly sketch some aspects of the execution algorithm of ATL
transformations. The execution starts by invoking an optional called rule marked as
entry point. This rule, in turn, may invoke other called rules. Then the algorithm
executes the standard matched rules (some of them may contain an action block).
Rule matching and rule application are separated in two phases. In the first phase all
patterns of the rules are matched against the source model(s). For every match the
target elements are created. Traceability links are also created in this phase. In the
second phase all the bindings for the created target elements are executed. ATL
resolution algorithm and execution of lazy rules are applied if necessary.

The algorithm does not suppose any order in rule matching, target elements
creation for a match, and target elements initialization. Action block (if present) must,
however, be executed after having applied the declarative part of the rule.

Attribute helpers may be initialized in a pass performed before running the rest of
the transformation. They may also be lazily evaluated when the helper value is read
for the first time. Since the source models are read-only, the attribute helper values
may be cached. Lazy evaluation and caching improve the performance.

As long as lazy rules and called rules are not used, the execution algorithm
terminates and is deterministic. Although the order of execution of rules is non-
deterministic, different execution orders produce the same result for a given source
model. This is a consequence of the fact that source models are read-only: the
execution of a rule cannot change the set of matches. In addition, target models are
write-only: the initialization of a target element cannot impact the initialization of
another. It is possible to have recursive helpers that do not terminate. In this case the
transformation does not terminate either. Called rules use imperative constructs and
the termination is not guaranteed. Lazy rules may introduce circular references to
each other thus causing non-termination.

4 Case Study: Transforming Class to Relational Models

Because of the lack of space we present a rather simplified version of the case study
given in the call for papers of the workshop. For the full version the reader is referred
to [5]. The case study requires transformation of simple class models to relational
models. The source and target metamodels are shown in Fig. 2.

134 F. Jouault and I. Kurtev

Fig. 2. Source and target metamodels

Classes in the source model have names and a number of attributes. They may be
declared as persistent (attribute is_persistent). The type of an attribute is a classifier:
either a primitive data type or a class. Attributes may be defined as primary (attribute
is_primary). Every relational model contains a number of tables. Each table has a
number of columns, some of them form a primary key. A table may be associated to
zero or more foreign keys. We will focus only on two transformation rules:

• Persistent classes that are roots of an inheritance hierarchy are transformed to
tables;

• Table columns are derived from the attributes of a class. Attributes of a
primitive type are transformed to a single column. If the attribute is primary it
results in a column from the primary key. Attributes of a non-primitive type
are transformed to a set of columns derived from the type attributes. This rule
is applied recursively until a set of primitive attributes is obtained (flattening);

Below we give the transformation definition for the case study.

1. module SimpleClass2SimpleRDBMS;
2. create OUT : SimpleRDBMS from IN : SimpleClass;
3.
4. helper context SimpleClass!Class def :
5. flattenedAttributes : Sequence(Sequence(SimpleClass!Attribute)) =
6. self.attrs->collect(a |
7. if a.type.oclIsKindOf(SimpleClass!PrimitiveDataType) then Sequence {a}
8. else a.type.flattenedAttributes->collect (t | t->prepend(a))
9. endif
10.)->flatten();
11.
12. rule PersistentClass2Table{
13. from
14. c : SimpleClass!Class (c.is_persistent and c.parent.oclIsUndefined())
15. to t : SimpleRDBMS!Table (
16. name <- c.name,
17. cols <- c.flattenedAttributes,
18. pkey <- c.flattenedAttributes->select(t | t->last().is_primary)
19.)
20. }
21.
22. unique lazy rule AttributeTrace2Column {
23. from trace : Sequence(SimpleClass!Attribute)
24. to col : SimpleRDBMS!Column (
25. name <- trace->iterate(a; acc : String = '' |
26. acc + if acc = '' then '' else '_' endif + a.name),
27. type <- trace->last().type
28.)
29. }

 Transforming Models with ATL 135

The transformation specification may be split into two logical parts. The first part
performs decoration of the source model and the second part contains the actual
transformation rules. The decoration part is based on the helper flattenedAttributes. In
the helper every class generates a sequence of traces derived from its attributes. Every
trace is a sequence of attributes and will be transformed to a column. If an attribute is
of a primitive type then the trace is the attribute itself (line 7). If an attribute is of a
non-primitive type then it results in a set of traces derived from the traces of its type
by prepending the attribute to every trace (line 8). The traces represent the paths to the
primitive attributes for a given class after application of flattening.

Transformation rules use the result of the decoration part to create the elements in
the target model. Rule PersistentClass2Table transforms persistent root classes to
tables. The interesting part of this rule is the initialization of the features of the
created tables. The code in line 17 initializes the cols slot of the table. The value of
this slot is a collection of all the columns of the table. Columns are created from
traces contained in the flattenedAttributes helper. The value of the helper is resolved
according to the ATL resolution algorithm. The resolution requires finding a rule that
transforms the value of the expression into target model elements. In this case we
have an implicit invocation of a transformation rule. The only suitable rule is
AttributeTrace2Column unique lazy rule. This rule transforms traces to columns.

Furthermore the slot pkey contains the primary key of the table. Primary key is a
subset of all the columns of the table. The columns in the key are created from the
traces whose last element is a primary attribute (line 18). Similarly to the previous slot
we have an implicit invocation of AttributeTrace2Column rule. This rule may be
triggered multiple times over the same source. Since it is a unique lazy rule the
invocations after the first time will return the same result.

It must be noted that this implementation relies on features of ATL that are not
implemented yet. Current compiler does not fully support lazy rules, rules with
multiple source elements, and source elements that are of OCL types (e.g. sequences).
A working solution is available on the Eclipse GMT project site [5].

5 ATL Tools

ATL is accompanied by a set of tools that include the ATL transformation engine, the
ATL integrated development environment (IDE) based on Eclipse, and the ATL
debugger. ATL transformations are compiled to programs in specialized byte-code.
Byte-code is executed by the ATL virtual machine. The virtual machine is specialized
in handling models and provides a set of instructions for model manipulation.

The architecture of ATL execution engine is shown in Fig. 3. The virtual machine
may run on top of various model management systems. To isolate the VM from their
specifics an intermediate level is introduced called Model Handler Abstraction Layer.
This layer translates the instructions of the VM for model manipulation to the
instructions of a specific model handler. Model handlers are components that provide
programming interface for model manipulation. Some examples are Eclipse Modeling
Framework (EMF) [4] and MDR [7]. Model repository provides storage facilities for
models.

136 F. Jouault and I. Kurtev

Fig. 3. The architecture of the ATL execution engine

The current ATL IDE is built on top of Eclipse platform. It includes an editor that
provides view of the text with syntax highlighting, outline (view of the model
corresponding to the text), and error reporting. The IDE uses the Eclipse interface to
the ATL debugger.

Table 1 presents a summary of the features of the current ATL compiler and some
features planned for future extensions. Stars indicate the supported features. An
explanation of some of the features is given after the table.

Table 1. ATL features summary

ATL feature Current version Future extensions
metamodel types,
OCL primitive and
tuple types,
transformation module
(i.e. static)

*
OCL helpers

operations and
attributes in the
context of

OCL collection types *

helpers libraries * Code reuse
rule libraries (importable modules) *

standard *
lazy *
unique lazy *
rule inheritance *

Matched rules

multiple source elements *
standard *
with rule inheritance *

ATL resolve
algorithm

with lazy rules *

Refining mode (1) *(basic) *(improved)

Traceability internal external

ATL called rules *
native called rules *

Imperative
part

action blocks *

OCL type checking Dynamic
Static (following the

specification)

(1) In ATL, source models are read-only and target models are write-only; this prohibits in-place
transformations. However, such transformations are quite common in certain domains. ATL provides
a mechanism to answer this need: refining mode. This mode can be used for transformations having
the same source and target metamodel. Unmatched source elements are automatically copied into the
target model, as if a default copying rule was present.

Model Handler Abstraction Layer

EMF MDR …

ATL VM

ATL Compiler

Model repository
XMI 2.0

XMI 1.2

ATL programs

 Transforming Models with ATL 137

6 Related and Future Work

In the last couple of years we observed a number of proposals for model
transformation languages. Some of them are a response to the QVT RFP issued by
OMG [10]. As we explained in Section 2 ATL is applicable in QVT transformation
scenarios where transformation definitions are specified on the base of MOF
metamodels [8]. However, ATL is designed to support other transformation scenarios
going beyond QVT context where source and target models are artifacts created with
various technologies such as databases, XML documents, etc. In that way ATL serves
the purpose of the AMMA platform as a generic data management platform. A
comparison between ATL and the last QVT proposal may be found in [6].

Another class of transformation approaches relies on graph transformations theory
[1][11]. ATL is not directly based on the mathematical foundation of these
approaches. An interesting direction for future research is to formalize the ATL
semantics in terms of graph transformation theory. The declarative part of ATL is
especially suitable for this.

In [3] we present an application of ATL by showing how it can be used to check
models if they satisfy given constraints. A simple specific target metamodel is
defined to represent diagnostics resulting from evaluation of these constraints as a
set of problems (i.e. constraint violations). OCL constraints defined on a metamodel
can then be translated into ATL rules generating such problems. Diagnostic models
can subsequently be transformed into any convenient representation. We plan to
extend this work and show how ATL can be used to compute any kind of metrics on
models.

Static type checking of OCL expressions used in ATL programs is not
implemented in current compiler. It is, however, necessary to be closer to OCL 2.0
specification.

7 Conclusions

In this paper we presented ATL: a hybrid model transformation language developed
as a part of the ATLAS Model Management Architecture. ATL is supported by a set
of development tools built on top of the Eclipse environment: a compiler, a virtual
machine, an editor, and a debugger.

The current state of ATL tools already allows solving non-trivial problems. This is
demonstrated by the increasing number of implemented examples and the interest
shown by the ATL user community that provides a valuable feedback.

The applicability of ATL was demonstrated in a case study. We identified
alternative ways for implementing the case study. Alternatives are based of different
programming styles, e.g. declarative and imperative. ATL allows both styles to be
used in transformation definitions depending on the problem at hand. We encourage a
declarative approach for defining transformations whenever possible. We believe that
this approach allows transformation developers to focus on the essential relations
among the model elements and to leave the handling of complex execution algorithms
and optimizations to the ATL compiler and virtual machine.

138 F. Jouault and I. Kurtev

References

[1] Agrawal A., Karsai G., Kalmar Z., Neema S., Shi F., Vizhanyo A.The Design of a
Simple Language for Graph Transformations, Journal in Software and System Modeling,
in review, 2005

[2] Bézivin, J., Jouault, F., and Touzet, D. An Introduction to the ATLAS Model
Management Architecture. Research Report LINA, (05-01)

[3] Bézivin, J., Jouault, F. Using ATL for Checking Models. To appear in the proceedings of
the GraMoT workshop of GPCE 2005 conference in Tallinn, Estonia

[4] Budinsky, F., Steinberg, D., Raymond Ellersick, R., Ed Merks, E., Brodsky, S. A., Grose,
T. J. Eclipse Modeling Framework, Addison Wesley, 2003

[5] Eclipse Foundation, Generative Model Transformer Project, http://www.eclipse.org/gmt/
[6] Jouault, F., Kurtev, I. On the Architectural Alignment of ATL and QVT. Proceedings of

ACM SAC 2006, Track on Model Transformations, Dijon, France, 2006, to appear
[7] Netbeans Meta Data Repository (MDR). http://mdr.netbeans.org
[8] OMG. Meta Object Facility (MOF) Specification, version 1.4, OMG Document

formal/2002-04-03
[9] OMG. Object Constraint Language (OCL). OMG Document ptc/03-10-14

[10] OMG. MOF 2.0 Query/Views/Transformations RFP. OMG document ad/2002-04-10,
2002

[11] Varró, D., Varró, G., Pataricza, A. Designing the automatic transformation of visual
languages. Journal of Science of Computer Programming, vol. 44, pp. 205-227, Elsevier,
2002

Practical Declarative Model Transformation with
Tefkat�

Michael Lawley1 and Jim Steel2

1 CRC for Enterprise Distributed Systems Technology (DSTC),
Brisbane, QLD 4072, Australia
michael@lawley.id.au

2 INRIA/Irisa, University of Rennes 1, France
jsteel@irisa.fr

Abstract. We present Tefkat, an implementation of a language designed specifi-
cally for the transformation of MOF models using patterns and rules. The lan-
guage adopts a declarative paradigm, wherein users may concern themselves
solely with the relations between the models rather than needing to deal explic-
itly with issues such as order of rule execution and pattern searching/traversal of
input models. In this paper, we demonstrate the language using a provided exam-
ple and highlight a number of language features used in solving the problem, a
simple object-to-relational mapping.

1 Introduction

Tefkat is the result of 5 years of research and development of languages for model
transformation [1, 2, 3, 4], most recently in the context of the OMG’s QVT work [5].
In reaching the current point, one of the guiding principles has been that model trans-
formation be treated as a specific problem, and that approaches treating it as a specific
sub-problem of general-purpose programming will result in languages ill-suited for the
specific issues that face model transformation.

Exploring different approaches to model transformations has revealed requirements,
patterns and approaches in writing transformations that appeared very frequently when
solving the prototypical examples of the problem space. The current approach attempts
as much as possible to build these mechanisms into the language, in order that the pro-
grammer need not concern themselves with problems such as implementing algorithms
for detecting input model patterns or ordering the application of their rules.

In this paper we present a summary of the language and its features, using a manda-
tory example to illustrate how they combine to allow users to construct model
transformations.

In Section 2 we present an overview of the language. In section 3 we elaborate on
some of the details of the language and how they are used in solving the mandatory
example. Section 4 presents a discussion of several aspects of Tefkat’s implementation,

� The work reported in this paper has been funded in part by the Co-operative Research Centre
for Enterprise Distributed Systems Technology (DSTC) through the Australian Federal Gov-
ernment’s CRC Programme (Department of Education, Science, and Training).

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 139–150, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

140 M. Lawley and J. Steel

including its concrete syntax and environment. The full text of the mandatory class-to-
relational example may be found at the end of the paper following the conclusion.

2 Language Overview

The Tefkat language is declarative, logic-based, and defined in terms of a MOF meta-
model. It has been specifically designed to address both the OMG’s QVT RFP [6] and
additional requirements identified as a result of a series of experiments with different
transformation language approaches [1].

A Tefkat transformation specification effectively asserts a set of constraints that
should hold over a collection of (disjoint) source and target extents (models). These
constraints can:

– assert the existence of object instances in a target extent,
– assert the type of object instances in a target extent,
– assert the value(s) of object features,
– assert the relative order of values of an object’s feature, and
– assert that a named relationship holds between one or more values (usually source

and target object references).

A Tefkat language implementation uses these implied constraints to construct, if
possible, a suitable set of target models that satisfy the constraints.

There are several aspects of the language worth noting:

– transformations do not specify a traversal order of the input models, nor an execu-
tion order for the rules – implementations must ensure that rules are executed in an
order that satisfies the semantics,

– transformations are constructive – you cannot constrain an object to not exist, nor
a feature to not have a particular value,

– it is not intended to describe or perform in-place model updates,
– change propagation can be supported through a model-merge process [7],
– the language is defined in terms of its abstract syntax (via a MOF metamodel).

Thus, several concrete syntaxes are possible. This paper uses an SQL-inspired syn-
tax.

Every transformation is expressed relative to three kinds of extents: one or more
source extents, one or more target extents, and a single tracking extent. A transformation
rule can query both source extents and the tracking extent, and can constrain/make
assertions about both the target extents and the tracking extent. Thus the tracking extent
is special since it is the only extent that can be both queried and constrained.

More formally, a rule, r, can be considered to have two parts: the query, src, and the
constraint, tgt, and two sets of variables: those that occur in the query, x, and those that
occur only in the constraint, y. We can then write

r ≡ ∀x src(x) → ∃y tgt(x, y)

Practical Declarative Model Transformation with Tefkat 141

3 Mandatory Example

In this section we introduce various aspects of the Tefkat language via fragments of the
sample solution to the mandatory example.

A transformation is a named entity with named parameters for the input and output
models that participate in the transformation. Any number of metamodels may be im-
ported by a transformation. This brings all the EClassifiers in these metamodels into
consideration when class, datatype, and enum names are resolved.

TRANSFORMATION mtip05_class_to_relational: class -> relational

IMPORT http:///mtip05/class.ecore
IMPORT http:///mtip05/rdbms.ecore

The transformation specification then contains any number of class definitions, rules,
pattern definitions, and template definitions.

3.1 Class Definitions

Class definitions allow for the simple specification of ECore models and are part of
the concrete syntax of Tefkat, but not part of its abstract syntax. Their main use is for
definition of a transformation’s tracking classes. Tracking classes are part of the mech-
anism used to represent the named relationships between source and target elements.
Valid types for the features of these classes include all the types that are in-scope as a
result of IMPORT statements plus the ECore data-types corresponding to: boolean,
string, int, long, float, and double.

Here we define two classes that are used for tracking relationships in the sample
solution. These are discussed further in Section 3.4 below.

CLASS ClsToTbl {
Class class;
Table table;

};

CLASS AttrToCol {
Class class;
Attribute attr;
Column col;

};

Note that for complex transformations one would normally create a separate meta-
model defining these classes and import it into the transformation’s namespace.

3.2 Rules

Rules are the primary action elements of the transformation. Broadly speaking, each
rule consists of two constraints - source and target - that share variables. More specifi-
cally, the rule matches and then constrains a number of objects, either from the source

142 M. Lawley and J. Steel

model or from the trackings, and then creates (or ensures the existence of) a number of
target model objects with a set of constraints.

The following rule matches all instances of Class (in the default extent, class)
for which the is_persistent attribute is true. and asserts that a Table with the
same name must exist and that the ClsToTbl relationship holds for the corresponding
Class and Table instances.

RULE ClassAndTable(C, T)
FORALL Class C {

is_persistent: true;
name: N;

}
MAKE Table T {

name: N;
}

LINKING ClsToTbl WITH class = C, table = T;

Since the semantics of rules requires the target to always hold whenever the source
holds, we can use a target of FALSE to encode constraints that input models should
satisfy in order for the transformation to be valid.

For example, a non-persistent class with an association to itself would result in an
infinite number of columns being created. Here is a rule whose source pattern matches
this condition. Note the use of the built-in Pattern println to provide useful feedback
in case the constraint is violated.

RULE constraint_no_reflexive_relations_on_non_persistent_classes
FORALL Class C
WHERE C.is_persistent = false
AND ClassHasReference(C, C, _)
AND println("Found a non-persistent class in relation (by

association or attribute) with itself: ", C)
SET FALSE;

3.3 Pattern and Template Definitions

Pattern and template definitions are used to name and parameterise constraints that
may be used in multiple rules. Pattern definitions correspond to source constraints and
template definitions correspond to target constraints.

A pattern/template may be recursively defined. That is, it may directly or indirectly
refer to itself. Such recursion is commonly used when matching recursive tree or graph
structures like the parent reference of Class in the example.

Here are several patterns used in the solution of the mandatory example. Note the
recursive nature of the pattern ClassHasAttr to drill down into a Class’s attributes
reflecting the recursive nature of the specification’s rules 2, 4, and 5.

PATTERN ClassHasAttr(Class, Attr, Name, IsKey)
WHERE ClassHasSimpleAttr(Class, Attr, Name, IsKey)

OR ClassHasIncludedAttr(Class, Attr, Name, IsKey)
OR ClassChildHasAttr(Class, Attr, Name, IsKey);

Practical Declarative Model Transformation with Tefkat 143

PATTERN ClassHasSimpleAttr(Class, Attr, Name, IsKey)
FORALL Class Class {

attrs: Attribute Attr {
type: PrimitiveDataType _PT;
name: Name;
is_primary: IsKey;

};
};

PATTERN ClassHasIncludedAttr(Class, Attr, Name, IsKey)
FORALL Class Class
WHERE ClassHasReference(Class, Type, RefName)
AND ClassHasAttr(Type, Attr, AttrName, IsKeyForType)
AND IF Type.is_persistent = true

THEN
IsKeyForType = true AND
IsKey = false

ELSE
IsKey = IsKeyForType

ENDIF
AND Name = join("_", RefName, AttrName);

PATTERN ClassChildHasAttr(Class, Attr, Name, IsKey)
FORALL Class SubClass
WHERE Class = SubClass.parent
AND ClassHasAttr(SubClass, Attr, Name, IsKey)
AND IsKey = false;

3.4 Trackings

Tracking classes are used to represent mapping relationships between source and target
elements. While they may directly reflect a relationship established by a single rule
(such as the rule ClassAndTable in Section 3.2), multiple rules may contribute to a
single tracking relationship. This allows other rules that depend on that relationship to
be decoupled from the details of how the relationship is established.

As discussed in [2, 4], decoupling the rules that establish a mapping relationship
from those that depend on that relationship is a key aspect of supporting maintainability
and re-use of rules and transformations.

3.5 FROM Clauses

For any non-trivial transformation one needs to be able to carefully control the number
of objects that are created. In Tefkat this information is represented in the abstract syn-
tax by an Injection term. The corresponding concrete syntax is the optional FROM
clause. There will be exactly one object created for each unique tuple corresponding to
a FROM.

In the case of MAKE clauses that do not contain explicit FROM clauses, an implicit
FROM is constructed as follows: the label is the concatenation of the rule name and
the name of the target instance variable, and the parameters are the set of variables

144 M. Lawley and J. Steel

corresponding to source instances in the containing rule’s FORALL clause. For exam-
ple, the implicit FROM clause for MAKE Table T in the rule ClassAndTable in
Section 3.2 is: FROM ClassAndTable_T(C).

The following rule shows a case where an explicit FROM is required. The originating
Class and the path of attributes and associations, as encoded in the name bound to N
uniquely identify the Columns to be created.

RULE MakeColumns
WHERE ClassHasAttr(C, A, N, IsKey)
AND ClsToTbl LINKS class = C, table = T

MAKE Column Col FROM col(C, N) {
name: N;
type: A.type.name;

}
SET T.cols = Col,

IF IsKey = true
THEN

SET T.pkey = Col
ENDIF

LINKING AttrToCol WITH class = C, attr = A, col = Col;

The use of an explicit FROM clause allows multiple rules to separately and indepen-
dently assert the existence of a target object, with only a single object being actually
created. Again, this enhances the maintainability and re-usablility of rules and transfor-
mations.

4 Language Implementation

4.1 Concrete Syntax

The concrete syntax of Tefkat was initially designed to feel familiar and comfortable
to programmers with experience using SQL, another declarative language, and also to
suggest an intuitive semantics that help direct the writing of rules.

The only major change to the syntax since its first specification has been the intro-
duction of object literals.

Class Class {
attrs: Attribute Attr {
type: PrimitiveDataType _PT;
name: Name;
is_primary: IsKey;

};
}

Object literals are pure syntactic sugar designed to make rules more succinct and
readable since, with appropriate formatting, they expose explicit structure in the con-
straints being specified.

Practical Declarative Model Transformation with Tefkat 145

Here is the equivalent constraint expressed without using object literal synyax.

Class Class AND
Class.attrs = Attr AND
Attribute Attr AND
Attr.type = PT AND
PrimitiveDataType PT AND
Attr.name = Name AND
Attr.is_primary = IsKey

Another concrete syntax feature that deserves special mention is the use of variables
whose name begins with an underscore. These variables are termed anonymous vari-
ables and references to them are, by definition, unique. That is, if the variable name
_PT, for example, is used more than once in an individual rule, patterm, or temaplate,
then each reference defines and refers to a different variable.

While not an error, the parser will emit a warning when an anonymous variable (ex-
cept for the variables named by a single underscore) is used more than once. The parser
will also emit a warning when a variable whose name does not begin with an underscore
is used only once in a given rule. By naming variables to avoid these warnings, simple
spelling mistakes and some copy-and-paste errors are more easily detected, which is a
real bonus for a language that does not require variables to be explicitly declared.

4.2 Advanced Language Features

Tefkat is designed to support transformations that span meta-levels. There are two key
features that enable this: reflection, and the Any Type.

Support for reflection comes in two parts. The simplest is allowing access to the
reflective features that every object implicitly inherits from EObject. For example,
you can access an object’s container object with O.eContainer(), all its contained
objects with O.eContents(), and its meta-class object with O.eClass().

The more advanced aspect is the ability to use an arbitrary expression, prefixed by
a dollar symbol, anywhere a type name or feature name may be used. In the sim-
plest case, O.$"name" = A is equivalent to O.name = N. Other examples include
O.$join("_", N1, N2) = A which gets the value of an attribute whose name
is the concatentation of N1, "_", and N2, and O1.name = N AND $N O2 which
binds O2 to all instances of the class named by the value of N.

The Any Type is represented by an underscore. It behaves like an implicit universal
supertype of all types. This allows a transformation rule to match all objects regardless
of their actual type and without requiring an explicit common supertype. To illustrate
this, here is a transformation that makes a copy of an arbitrary input model.

TRANSFORMATION copy : src -> tgt

IMPORT http://www.eclipse.org/emf/2002/Ecore

CLASS ObjToObj {
EObject src;
EObject tgt;

};

146 M. Lawley and J. Steel

RULE copyObjects
FORALL _ Src
MAKE $Src.eClass() Tgt
LINKING ObjToObj WITH src = Src, tgt = Tgt;

RULE copyAttributeValues
WHERE ObjToObj LINKS src = Src, tgt = Tgt
AND Src.eClass() = Class
AND Class.eAllAttributes = Attr
AND Attr.changeable = true
AND Src.eIsSet(Attr) = true
AND Value = Src.$Attr

SET Tgt.$Attr = Value;

RULE copyObjectReferences
WHERE ObjToObj LINKS src = Src, tgt = Tgt
AND Src.eClass() = Class
AND Class.eAllReferences = Ref
AND Ref.changeable = true
AND Src.eIsSet(Ref) = true
AND Value = Src.$Ref
AND ObjToObj LINKS src = Value, tgt = TgtValue

SET Tgt.$Ref = TgtValue;

4.3 The Engine and Environment

The Tefkat engine is suitable for standalone use and is invokable from the command-
line, but for most developers it will be used as part of a full-featured set of Eclipse
plugins. These include a syntax-highlighting editor that is integrated with the parser
to provide direct, linked feedback on parser errors and warnings. Figure 1 shows this
editor, including a warning about a singleton variable use. Note the outline view to the
right. Clicking on an entry in this view will cause the editor to jump to the appropriate
line.

Also included with the Eclipse plugin is a source-level debugger, shown in Figure 2.
Running the transformation in the debugger allows you to single step through the eval-
uation of each term in a rule. Variables and their bindings are shown in the view at the
top right, while the stack displays the current term and the terms of the current rule that
have been evaluated leading to this point.

While very useful, the debugger does suffer some limitations. Being a declarative
logic-based language, the execution model is somewhat like that of Prolog. Thus the
internal state is a set of trees rather than the stack of traditional procedural languages
for which the Eclipse debugging framework is designed.

This, coupled with the need to re-order terms during evaluation for both efficiency
and semantic correctness (for example, ensuring that a variable is bound to an object
before attempting to get a feature’s value), means that it can sometimes be difficult to
follow a rule’s execution, although the integrated source highlighting helps a great deal.

To improve the debugging experience we would like to explore the use of anno-
tations to describe the expected behaviour of parts of rules. This would be similar to

Practical Declarative Model Transformation with Tefkat 147

Fig. 1. The Tefkat editor for Eclipse

Fig. 2. The Tefkat source-level debugger for Eclipse

the determinism declarations used in Mercury [8]. In the longer term, it may also be
possible to adapt concepts from declarative debugging [9].

Tefkat is integrated with the Eclipse build system. Its configuration is stored as a
model in the file tefkat.xml. This describes one or more transformation applica-
tions in terms of source and target models, an optional trace model for recording which
rules and source elements were used to create which target elements, and any mappings
required to translate URIs naming meta-models to resolvable URLs. The build integra-

148 M. Lawley and J. Steel

tion allows a transformation to be re-run whenever the specification or any of the source
models is updated.

Alternatively, the normal Eclipse launch mechanism can be used to manually execute
a transformation. This is also how debugging mode is entered.

Finally, Tefkat includes several concessions to pragmatics. Firstly, as shown in the
constraint rule in Section 3.2, Tefkat includes the pre-defined pattern println which
always succeeds, binds no variables, and prints its arguments to the console. Its main
use is as a probe for debugging.

Also useful for debugging is the ability to tell Tefkat to continue executing rather
than aborting when a rule fails. This means that target and trace models are still gener-
ated and, although they result from buggy rules, they can be very useful for post-mortem
debugging.

Another concession is the ability to invoke methods on objects, not just access fea-
tures. This includes not just those methods defined in the meta-model, but also those
that make up the Java implementation. Since Tefkat is built on EMF, this includes all
the reflective methods from EObject. Note that calling methods that have side-effects
is a dangerous and unpredictable thing to do since Tefkat makes no guarantees about
evaluation order.

4.4 Limitations

One technical aspect of the language is the need for transformations to be stratified.
Essentially this means that a rule (or pattern) cannot depend (directly or indirectly) on
its own negation. For example, a rule cannot check that there are no instances of a
tracking class, and then create an instance of that tracking class.

It is the need to be able to determine stratifiability of a transformation that gives rise
to the limitations on querying elements in target extents. Tefkat’s support for reflec-
tion means that determining negative dependencies in the face of arbitrary target extent
queries would impose too great a cost. By limiting queries to source extents and the
special tracking extent, this cost is avoided.

The cost, however, is that complex transformations may need to store large amounts
of information in the tracking classes. Future work will investigate whether it is practical
to relax some of the limitations on querying target extents.

One possible way to mitigate this problem is to stream transformations. That is, in-
stead of specifying a single large transformation that does everything, perform a series
of smaller transformations. In this way, target extents from earlier transformations be-
come queriable source extents in later transformations.

While this form of transformation composition can be done outside of the Tefkat
language, we believe there are benefits to supporting it and other forms of composition
directly in the language.

5 Conclusion

The example, typical of those used as both exemplary and motivating problems for
model transformation, shows how the use of a declarative language allows transforma-
tion writers to focus their endeavours on the logic of the transformation rather than on
how to facilitate its execution.

Practical Declarative Model Transformation with Tefkat 149

The example presented, although interesting, is by necessity small in scale. A num-
ber of other works are currently underway using the language and engine that are of-
fering valuable feedback and serving to evaluate their ability to deal with large-scale
examples. In [10], the authors have written Tefkat transformations to generate UML2
Testing Profile models from UML requirements and design models. In [7], the author
addresses the problem of change propagation for Tefkat, and implements it using trans-
formations themselves written in Tefkat. One transformation takes as input the updated
source model, the original (possibly updated) target models and a newly generated tar-
get model, and the trace models for the original and new transformations and produces a
delta model. The delta model represents the differences between the old and new target
models. Based on heuristics and user feedback, a subsequent transformation produces a
final target model that preserves any manual changes that may have been made between
transformation executions.

In addition, the engine is also being used to manage the transformation between
electronic health record formats and to generate Xforms for input of health record in-
formation. The metamodels and transformations in each of these examples are both
large and complex. The Xform transformation is also of particular interest because it
takes two meta-models as input (a reference model, and an archetype model [11]), and
produces an XML Schema-based model as output. Additionally, it needs to combine
implicit hints from both input models to construct a useful ordering of input fields and
labels in the resulting Xform.

Our experiences with Tefkat demonstrate that declarative transformation specifica-
tion is both practical and productive. A declarative specification means you can con-
centrate on what the transformation should do rather than getting caught up in how the
transformation should do it.

References

1. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation: The missing
link of MDA. In Corradini, A., Ehrig, H., Kreowski, H.J., Rozemberg, G., eds.: Proc. 1st
International Conference on Graph Transformation, ICGT’02. Volume 2505 of Lecture Notes
in Computer Science., Springer Verlag (2002) 90–105

2. Duddy, K., Gerber, A., Lawley, M., Raymond, K., Steel, J.: Model transformation: A declar-
ative, reusable patterns approach. In: Proc. 7th IEEE International Enterprise Distributed
Object Computing Conference, EDOC 2003, Brisbane, Australia (2003) 174–195

3. Duddy, K., Gerber, A., Lawley, M., Raymond, K., Steel, J.: Declarative transformation for
object-oriented models. In van Bommel, P., ed.: Transformation of Knowledge, Information,
and Data: Theory and Applications. Idea Group Publishing (2004)

4. Lawley, M., Duddy, K., Gerber, A., Raymond, K.: Language features for re-use and maintain-
ability of MDA transformations. In: OOPSLA workshop on Best Practices for Model-Driven
Software Development, Vancouver, Canada (2004)

5. DSTC, IBM, CBOP: MOF Query/View/Transformation, initial submission (2003)
6. OMG: Request for Proposal: MOF 2.0 Query/Views/Transformations RFP. OMG Docu-

ment: ad/02-04-10 (2002)
7. Metke, A.: Change propagation in the MDA: A model merging approach. Master’s thesis,

School of Information Technology and Electrical Engineering, The University of Queensland
(2005)

150 M. Lawley and J. Steel

8. Henderson, F., Somogyi, Z., Conway, T.: Determinism analysis in the Mercury compiler. In:
Proceedings of the Australian Computer Science Conference, Melbourne, Australia (1996)
337–346

9. Naish, L.: A three-valued declarative debugging scheme. Technical Report 97/5, Department
of Computer Science, University of Melbourne, Melbourne, Australia (1997)

10. Dai, Z.R.: Model-driven testing with UML 2.0. In Akehurst, D., ed.: Second European Work-
shop on Model Driven Architecture (MDA), Canterbury, Kent, University of Kent (2004)
179–187

11. Beale, T., Goodchild, A., Heard, S.: EHR design principles. http://titanium.dstc.edu.au/
papers/ehr_design_principles.pdf (2002)

Essentials of the 4th UML/MoDELS Workshop
in Software Model Engineering (WiSME’2005)

Krzysztof Czarnecki1, Jean-Marie Favre2,
Martin Gogolla3, and Tom Mens4

1 University of Waterloo, Canada
2 University of Grenoble, France
3 University of Bremen, Germany

4 University of Mons-Hainaut, Belgium

Abstract. Model-Driven Engineering is a form of generative engineer-
ing, by which all or at least central parts of a software application are
generated from models. Model Driven Engineering should be seen as an
integrative approach combining existing software engineering techniques
(e.g., testing and refinement) and technical spaces (e.g., ’ModelWare’,
’XmlWare’) that have usually been studied in separation. The goal of the
workshop is to improve common understanding of these techniques across
technical spaces and create bridges and increase the synergies among the
spaces. This year’s WiSME workshop will concentrate on two comple-
menting themes: Bridging Technical Spaces and Model-Driven Evolu-
tion. This paper reports on a workshop held at the 8th UML/MoDELS
conference. It describes motivation and aims, organisational issues, and
abstracts of the accepted papers.

1 Motivation and Aims

The OMG initiative Model Driven Architecture (MDA) attempts to separate
business functionality specification from the implementations of that functional-
ity on specific technology platforms. This approach is intended to play a key role
in the fields of information system and software engineering. MDA is supposed
to provide a basic technical framework for information integration and tool in-
teroperability based on the separation of platform specific models (PSMs) from
platform independent models (PIMs). Models of coarse granularity and high
abstraction will represent the various functional and non-functional aspects of
computer systems. In the long term, there will be well-defined operations on
models, implemented by well-defined commercial tools, that will allow us to
build, transform, merge, verify, and evolve models. Key standards in the MDA
are based on OMG recommendations such as UML, MOF, XMI, CWM, QVT.

MDA can be considered an implementation of a more general trend that
has been gathering momentum in recent years called Model Driven Engineer-
ing (MDE). Model-Driven Engineering is a form of generative engineering, by
which all or at least central parts of a software application is generated from
models. The basic ideas of this approach are close to those of other disciplines

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 151–158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

152 K. Czarnecki et al.

of software engineering, such as Generative Programming, Domain Specific Lan-
guages (DSLs), Model Integrated Computing (MIC), and Software Factories. In
this new perspective, models, metamodels, and transformations take a primary
position amongst the artifacts of development. MDE aims at making models the
primary driving assets in all aspects of software engineering, including system
design, platform and language definition, definition of mappings among artifacts,
but also design data integration, design analysis, tool specification, and product
family development. Model Driven Engineering should be seen as an integrative
approach combining existing techniques and technical spaces that have usually
been studied in separation. The goal of the workshop is to improve common un-
derstanding of these techniques, to increase the benefits of combining approaches
such as grammars, schemas, or metamodels, and to create bridges between such
various technical spaces.

The workshop will concentrate this year on two complementing themes: Bridg-
ing Technical Spaces and Model-Driven Evolution. When dealing with models
residing in different technical spaces (e.g., UML/MOF and XML), one encoun-
ters the problem of co-evolution or model synchronisation across technical spaces.
For example, whenever a change is made to a UML model, which is also rep-
resented in another format (e.g., XMI), both models need to be synchronised.
The fact that this synchronisation occurs in different technical spaces makes the
problem difficult and interesting. Another topic within these themes is the prob-
lem of language evolution: How can one deal with the fact that the languages
in which models are developed (e.g., UML, MOF, XML, XMI) evolve at a rapid
pace? The descriptions developed in these languages need to co-evolve as well.
This form co-evolution has been known in the technology space of databases as
schema evolution.

The non-exhaustive list of topics included:

– Transformation systems for models; Types of transformations; Merging of a
platform model and a business model

– Transformation frameworks; Transformation libraries; Transformations pro-
cesses; Transformations as reuseable assets

– Operations on models: Merging, alignment, verification, validation, refactor-
ing, refinement, abstraction, reduction, normalization, generalization

– Models, Schemas, Grammars, Meta-models and Ontologies; Reflection in
meta-model architectures

– Meta-modeling frameworks and tool integration
– Modularity aspects for model organization: profiles, packages, name spaces,

viewpoints, contexts; Issues of granularity for models
– Meta-data and repositories; Middleware-supported model engineering
– Requirements modeling; Know-how modeling; Architecture modeling; Ser-

vice modeling; Rule modeling
– Co-evolution of and synchronization between models (including business

models, requirements, analysis and design models, and source code)
– MDA and MDE industrial cases, best practices and empirical studies
– Co-evolution of meta-models and models, schema and data, meta-grammar

and grammar

Essentials of the 4th UML/MoDELS Workshop 153

– Co-transformation (e.g., co-transforming database schemas and SQL expres-
sions and applications)

– Megamodeling (i.e., defining basic MDE concepts and structure of MDE
component repository structures)

– Technology spaces (e.g., MDA, GrammarWare, XmlWare) and bridges be-
tween them (e.g., the relationships between ’Grammar’ and ’Class Diagram’)

2 Organisational Issues

This workshop is the fourth in a series of workshops started at UML’2002 [1] and
continued at UML’2003 [2] and UML’2004 [3]. The paper selection process was
carefully supported by an international programme committee and additional
referees. All accepted papers can be found in [4]. Revised versions of the papers
will be published in Electronic Notes in Theoretical Computer Science (ENTCS),
Elsevier.

Programme Committee

– Jean Bezivin, INRIA & University of Nantes, France
– Mireille Blay, University of Nice, France
– Krysztof Czarnecki, University of Waterloo, Canada
– Johannes Ernst, NetMesh, USA
– Jack Greenfield, Microsoft, USA
– Jean-Marie Favre, University of Grenoble, France
– Robert France, University of Boulder, USA
– Martin Gogolla, University of Bremen, Germany
– Pieter Van Gorp, University of Antwerp, Belgium
– Reiko Heckel, University of Manchester, Great Britain
– Gabor Karsai, Vanderbilt University, USA
– Ivan Kurtev, University of Twente, The Netherlands
– Ralf Laemmel, Microsoft, USA
– Steve Mellor, ProjTech, USA
– Tom Mens, University of Mons-Hainaut, Belgium
– Alfonso Pierantonio, University of L’Aquila, Italy
– Paul Sammut, Xactium, Great Britain
– Gabi Taentzer, Technical University of Berlin, Germany
– German Vega, University of Grenoble, France
– Jon Whittle, George Mason University, USA
– Andreas Winter, University of Koblenz, Germany

The workshop was structured into 4 thematic sessions:

– Bridging Approaches for Technical Spaces (Papers 3.1-3.3)
– Bridging Textware and Modelware (Papers 3.4-3.6)
– Modeling Approaches (Papers 3.7-3.9)
– Modeling Engineering Environments (Papers 3.10-3.11)

154 K. Czarnecki et al.

3 Presented Papers

3.1 Model Engineering Support for Tool Interoperability

Jean Bezivin, Hugo Bruneliere, Frederic Jouault, Ivan Kurtev

ATLAS group - INRIA - LINA, Universite de Nantes, France

Abstract: In this paper we want to show how MDE (Model Driven Engineering)
approaches may help solving some practical engineering problems. Our view of
MDE is not based on the usage of huge and rather monolithic modeling lan-
guages like UML 2.0 but instead on small DSLs (Domain Specific Languages)
defined by well focused metamodels. As a consequence we use a rather ”agile”
view of MDE where each tool is characterized by one of several metamodels
and where the interoperability between tools is implemented by specific model
transformation operations. We base our discussion on a practical illustrative
problem of bug-tracking in a collaborative project involving different partners
using tools at different maturity levels. We conclude by discussing the help that
MDE approaches may bring to solving these kinds of situations.

3.2 A Metamodel Refinement Approach for Bridging Technical
Spaces - A Case Study

A. Staikopoulos, B. Bordbar

School of Computer Science, University of Birmingham, UK

Abstract: To benefit from positive aspects of an existing diverse set of Technical
Spaces, it is important to develop methods of automated transformation of mod-
els between such domains. Sometimes it is possible to describe Technical Spaces
via metamodels. In such cases, the Model Driven Engineering and Architecture
pose as a natural candidate for dealing with such transformations between Tech-
nical Spaces. This paper deals with the case where the metamodel of the source
Technical Space is more complex than the metamodel of the destination. Thus,
the gap between the two Technical Spaces is highly non-trivial. The method pre-
sented in this paper is based on successive metamodel refinements to bridge this
gap. Finally, the method is applied to the transformation from Business Process
Execution Language to Petri nets.

3.3 Bridging Persistency Impacts: Towards Automatic Integration
of Domain-Data Layers

Mira Balaban and Lior Limonad

Computer Science Department, Ben-Gurion University of the Negev, ISRAEL

Abstract: Domain and data layers are two different technical spaces that need
to co-exist and co-evolve in integrated complex systems. The combined

Essentials of the 4th UML/MoDELS Workshop 155

operation of Domain and Data modules usually suffers from model mismatch
problems, and raises problems of consistency. Existing methods and technolo-
gies offer partial solutions that do not support full automation of persistency
decisions. In this paper we introduce a method for automatic construction of
a Data Access Layer that bridges between a Domain and a Data layers. The
method is based on analysis of class navigation patterns that involve persis-
tency stereotyping in the domain layer. Such patterns are termed Data Access
Patterns. For each pattern we suggest a data access layer implementation that
can be automated, and leaves the domain layer classes intact. The combined
analysis of all patterns provides a complete solution for bridging persistency
impacts. The current implementation handles the static aspects, i.e., schema
transformation.

3.4 Bridging Grammarware and Modelware

Manuel Wimmer, Gerhard Kramler

Business Informatics Group, Vienna University of Technology, Austria

Abstract: In Software Engineering many text-based languages and sup- porting
tools are used, forming the grammarware technical space. Cur- rently model
driven engineering is the new emerging paradigm for soft- ware engineering,
which uses modelling languages and tools, forming the modelware technical
space. Transition to the new technical space and interoperability between these
two technical spaces is needed in many development scenarios. Building a bridge
between these two technical spaces is a tedious task, that has to be repeated
for each language to be transformed. Therefore, we propose a generic bridge
between gram- marware and modelware technical spaces, that can generate a
specfic bridge based on the EBNF of a given language semi-automatically. The
generation comprises of two steps, (1) automatic generation of meta- model cor-
responding to the EBNF and (2) annotations to provide the additional semantics
not captured by the EBNF. The generated bridge is capable of bi-directional
transformations between sentences (programs) and corresponding models and
can be used in re-engineering applications and for integration of text-based and
model-based tools. The benefits of this approach are rapid development and
correctness.

3.5 HUTN as a Bridge Between ModelWare and GrammarWare:
An Experience Report

Pierre-Alain Muller, Michel Hassenforder

IRISA/INRIA, Rennes, France

Abstract: In this paper we report on our experience using HUTN as a bridge
between ModelWare and GrammarWare, to generate parsers and editors for

156 K. Czarnecki et al.

DSLs defined under the shape of metamodels. We describe the problems that we
have encountered with the ambiguities of the current HUTN specification and
discuss how this specification may be fixed to be usable with grammar- driven
tools.

3.6 Specifications for Mapping UML Models to XML Schemas

Krish Narayanan, Shreya Ramaswamy

Department of Computer Science, Eastern Michigan University, General Motors
Corporation

Abstract: An imminent activity in software design is to map models, either from
one level of detail to another or from different perspectives of an application.
It is extremely important that these models are consistent with each other in
the semantics they carry for a successful software implementation. With the
introduction of a number of CASE tools, this activity has been partially auto-
mated with little or no human intervention. Yet, one of the major drawbacks of
these tools is that the mapping process sometimes tends to loose the inherent
semantics of an application. Also, for some applications, there are no such com-
mercially available tools. In this paper, we focus on XML applications that use a
standard structure specified by their corresponding schemas. The output of the
design activity for such applications is typically, a generic model that represents
the schema in an abstract way. UML being the language of choice for modeling
software systems, is often used in modeling XML applications. But, the mapping
from UML models to XML schemas is far from perfect. We consider the intrica-
cies involved in both the forward (UML to XML) and reverse (XML to UML)
engineering processes and ensure that the application’s structural semantics are
maintained in the mapping process. In this paper, we define the complete spec-
ifications for forward engineering UML model constructs to their corresponding
XML counter parts. We also share our experiences from a tool we have developed
that automates the mapping process.

3.7 Navigating the MetaMuddle

Arnor Solberg, Robert France, Raghu Reddy

SINTEF/University of Oslo, Norway, Colorado State University, USA

Abstract: Developers of model transformations and other model-driven devel-
opment (MDD) mechanisms that manipulate models often work at the meta-
model level. The complexity of the UML metamodel can hinder the develop-
ment of UML-based MDD technologies. In this paper, we identify some of the
current barriers to understanding, using and evolving the UML 2.0 metamodel
and present ideas on how to simplify these tasks using query based views and
aspect oriented techniques.

Essentials of the 4th UML/MoDELS Workshop 157

3.8 A UML Precise Specification of Design Patterns Using
Decoupling Constraints

Samir Ammour, Mikal Ziane, Xavier Blanc and Salima Chantit

LIP6, Laboratoire d.Informatique de Paris 6, Paris, France

Abstract: UML collaboration templates do not capture the problem part of de-
sign patterns. It is then possible to apply a pattern solution in contexts that
are not consistent with this solution. Moreover, when the context evolves, it
must stay consistent with the patterns that were previously applied. Since de-
sign problems can be quite varied, we focused on one of the most frequent design
goals of design patterns: avoiding unnecessary coupling. In this paper, we adapt
the notion of decoupling constraints to UML models and we express it using
the Object Constraint Language. Adding decoupling constraints to collabora-
tion templates allows checking if a context is consistent with the solution of a
pattern and eases the adaption of this solution to an evolving context. These
constraints must be checked before applying a pattern but also when the con-
text evolves, to guarantee that the solution of the pattern is consistent and
complete.

3.9 A Meta-model for the Problem Frames Approach

Maria Lencastre1, Juliane Boetlho1, Pedro Clericuzzi1, Joao Araojo

Pernambuco University, Brazil, Universidade Nova de Lisboa, Portugal

Abstract: Michael Jackson’s Problem Frames are a well-known software engi-
neering approach for requirements analysis and problem domain specification.
This paper describes this technique through the definition of a meta-model,
whose aim is to clarify the involved concepts to help the devel- opment and
implementation of tool support and also to compare, transform, merge different
requirement techniques.

3.10 A Presentation Framework for Metamodeling Environments

Gergely Mezei, Tihamor Levendovszky, Hassan Charaf

Budapest University of Technology and Economics, Budapest, Hungary

Abstract: Although the flexibility provided by metamodeling systems is proven
to be enough in practical applications, the presentation is not supported to the
same extent. The goal of this paper is to present a presentation framework which
exploits the advantages of the underlying metamodeling system and provides
enough flexibility to present the concrete syntax of feature models, UML 2.0
diagrams, and resource diagram for mobile telephones. The static structure as
well as the behavioral aspect are described to illustrate the solutions and the
design decisions related to the framework.

158 K. Czarnecki et al.

3.11 Some Lessons Learnt in the Building of a Model Engineering
Platform

Jean Bezivin

Atlas Group, INRIA and LINA, University of Nantes, France

Abstract: As we are currently improving AMMA (ATLAS Model Management
Architecture), a second generation model engineering platform installed on top
of the Eclipse Modeling Framework (EMF), we borrow inspiration from a pre-
vious work undertaken fifteen years ago at the University of Nantes. This initial
model engineering platform named sNets (Semantic Networks) included several
functional blocks like the sMachine, the sBrowser, the sQuery, the sAction sys-
tem, etc. Several parts of these tools are still in use today. At a time when we
are defining the main architectural style of the new platform, it may be helpful
to come back on the initial learning of this project. This paper describes the
sNets project and summarizes some lessons learnt in the course of the design
and utilization of this first generation modelling framework.

References

1. Jean Bezivin, Robert France: Proc. 1st UML Workshop in Software Model Engi-
neering (WiSME’2002). www.metamodel.com/wisme-2002.

2. Jean Bezivin, Martin Gogolla: Proc. 2nd UML Workshop in Software Model Engi-
neering (WiSME’2003). www.metamodel.com/wisme-2003.

3. Martin Gogolla, Paul Sammut, Jon Whittle: Proc. 3rd UML Workshop in Software
Model Engineering (WiSME’2004). www.metamodel.com/wisme-2004.

4. Krzysztof Czarnecki, Jean-Marie Favre, Martin Gogolla, Tom Mens: Proc. 4th UML
Workshop in Software Model Engineering (WiSME’2005). www.metamodel.com/
wisme-2005.

Bridging Grammarware and Modelware

Manuel Wimmer and Gerhard Kramler

Business Informatics Group, Vienna University of Technology, Austria
lastname@big.tuwien.ac.at

Abstract. In Software Engineering many text-based languages and sup-
porting tools are used, forming the grammarware technical space. Cur-
rently model driven engineering is the new emerging paradigm for soft-
ware engineering, which uses modelling languages and tools, forming the
modelware technical space. Transition to the new technical space and
interoperability between these two technical spaces is needed in many
development scenarios. Building a bridge between these two technical
spaces is a tedious task, that has to be repeated for each language to
be transformed. Therefore, we propose a generic bridge between gram-
marware and modelware technical spaces, that can generate a specific
bridge based on the EBNF of a given language semi-automatically. The
generation comprises of two steps, (1) automatic generation of meta-
model corresponding to the EBNF and (2) annotations to provide the
additional semantics not captured by the EBNF. The generated bridge is
capable of bi-directional transformations between sentences (programs)
and corresponding models and can be used in re-engineering applications
and for integration of text-based and model-based tools.

1 Indroduction

The term technical spaces was introduced in [7] and with it the demand for
bridges between several technical spaces. Manual bridging of technical spaces is a
error prone and recurring task, typically relevant in model driven engineering but
also in other software engineering disciplines, e.g., the migration from relational
databases to XML based documents. Therefore a need for tools arises, which
support and automate interoperability between technical spaces.

A bridge between grammarware and modelware is useful in many software
development tasks. Not only forward engineering but also reverse engineering
of existing software systems is a suitable field of application. Regarding the
latter the Object Management Group (OMG) is working on model-based reverse
engineering and software modernization. For that purpose a special work group
for Architecture-Driven Modernization (ADM, [9]) has been initiated. The main
target of ADM is to rebuild existing applications, e.g, legacy systems, as models
and then perform refactorings or transform them to new target architectures. A
bridge between grammarware and modelware can act as a basic infrastructure
tool to support various ADM tasks.

Bridging two technical spaces involves several tasks, such as processing the
artifacts in the source technical space and transforming them into new artifacts,

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 159–168, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

160 M. Wimmer and G. Kramler

that can be processed by tools from the target technical space. Currently trans-
formation definitions are placed at the M2 level, e.g., between Java grammar and
UML class diagram metamodel. This approach has a huge drawback, because
for each pair of languages exactly one bridge must be defined. For another pair
a different bridge has to be developed. Generally speaking for technical space
1, which has n languages, and technical space 2, which has m languages, n ∗ m
bridges are needed. Considering the huge amount of languages in the grammar-
ware, bridging at the M2 level is not a satisfying solution. In modelware there
are not existing as many languages as in grammarware existing, but it seems
that many Domain Specific Modeling Languages [3] will be developed in the
near future. The exploding number of language combinations between these two
spaces requires a more generic approach, which allows to generate bridges for all
language combinations in the same way automatically.

In this paper we propose a generic mechanism for the semi-automatic gen-
eration of a specific bridge between grammarware and modelware based on the
EBNF of a given language. EBNF [13] [4] is the most used metalanguage for
defining programming languages in the grammarware. However other forms of
metalanguages [6] are common, and sometimes there are no formal grammar de-
finitions available at all. It is important to note that our work does not address
these problems - for more information see [5]. In the modelware our mecha-
nism is based on MOF [8], which is the main standard for defining metamodels.
The first step in the proposed process is the production of a metamodel and a
transformation program for transforming programs into models. The resulting
metamodels and models have some drawbacks, because of the genericity of the
transformation rules. In order to eliminate these unintentional properties, we
introduce a second step - the optimization of metamodels and models. Some op-
timization steps can be done automatically - we call this process condensation -
but some optimizations have to be done semi-automatically by user-annotations.
This optimization process is called customization. With manual annotations it
is possible to add semantics to the metamodels that are not captured by the
original grammars.

The rest of the paper uses Mini-Java [11] as an running example and is struc-
tured as follows. Section 2 provides an overview of the framework architecture.
Section 3 presents details of the parsing process and the raw meta model. Fur-
thermore mappings between EBNF and MOF concepts are discussed. In section
4 details about the optimization steps in the condensation process are shown.
Section 5 represents the main features of the customization process, in particular
the manual annotations. Section 6 gives an overview of the related work and how
it differs from this work. Finally, section 7 draws some conclusions and outlines
future work regarding implementation and application.

2 Overview of the Framework Architecture

Our proposed framework exploits the fact, that grammarware and modelware
have metalanguages. The main idea is to find correspondences between EBNF
and MOF concepts and to use these correspondences for defining bridges.

Bridging Grammarware and Modelware 161

Fig. 1. Framework Overview

Figure 1 shows the main idea by a correspondence relation in the M3 layer
between EBNF and MOF. EBNF is a reflexive language, i.e., EBNF can be de-
scribed in EBNF. We utilize this property for constructing an attributed gram-
mar, which defines a grammar for EBNF and implements the correspondences
between EBNF and MOF as transformation rules. A compiler-compiler takes
the attributed grammar as input and generates a parser called Grammar Parser
(GP). On the one hand the GP converts grammars defined in EBNF into Raw
Metamodels and on the other hand it generates a parser for programs, which are
conform to the processed grammar. This parser is called Program Parser (PP).
Via the PP programs can be transformed in a Raw Models. The Raw Metamodel
and the Raw Model are expressed in XML Metadata Interchange (XMI [10]),
thus they can be processed by modelware tools. The grammar parser and the
program parser act as the main bridging technologies between grammarware and
modelware. It is important to note, that both parsers are automatically gener-
ated from grammars and from the correspondences between EBNF and MOF.

Once the Raw Metamodel and the Raw Model are created, we have reached
the modelware technical space. However the Raw Metamodel and the Raw Model
can grow very big in terms of number of classes. To eliminate this drawback, some
transformation rules for optimization are introduced, which can be automatically
executed by model transformation engines. The optimization rules are applied
to the Raw Metamodel and the outcome of this transformation is called Con-
densation Metamodel. Not only the metamodel has to be optimized, but also the
model has to be adjusted in such a way that it is conform to the Condensation
metamodel. This adjustment is defined by a Change Model, which includes all
required information to rebuild the Raw Model as a Condensation Model.

Furthermore our approach provides a mechanism to add additional semantics
to the metamodel that cannot be expressed in EBNF. These additional semantics

162 M. Wimmer and G. Kramler

are attached to the Condensation Metamodel by manual annotations. In par-
ticular, this annotations cover aspects like Identification/References semantics,
data types and improved readability. The annotated Condensation Metamodel
is automatically transformed into a Customized Metamodel. Again, the changes
in the metamodel layer must be propagated to the model layer. For this task
we introduce a second Change Model. The Change Model covers all user-defined
modifications and propagates them to the condensation model, which is finally
transformed into a Customized Model.

The main reason why the optimizations are done in the modelware and not in
the grammarware is that the framework is aligned to be used by model engineers.
Apart from that two further reasons have influenced our design decision: (1) the
optimization rules require potentially complete parse trees, which are available
by the Raw (Meta)models. (2) MOF, in contrast to EBNF, has an inherent
annotation mechanism, therefore we decided not to directly annotate the EBNF
grammars.

3 Parsing and Raw (Meta)model

The main target of the parsing process is to transform the textual definitions
of the grammarware into a format, that can be processed by model engineer-
ing tools. The first step is parsing the grammar of a given language. For our
framework we decided to use EBNF as metalanguage, because it is the most
used metalanguage to define grammars. In order to process each EBNF gram-
mar identical, the syntax of the grammars must conform to the standardized
EBNF syntax [4]. The Grammar Parser for processing the EBNF grammars can
be generated by a compiler-compiler and an attributed grammar. The attributed
grammar contains the structure and the concepts of EBNF, as well as method
calls for the transformation of EBNF concepts to MOF concepts.

For the transformation of EBNF concepts into MOF concepts, the correspon-
dences between these two metalanguages have to be clarified. This has been done
in previous work - see [1], where relations between EBNF and MOF concepts
are discussed. Based on this work, we constructed a complete set of transforma-
tion rules, which are summarized in the following. The transformation rules are
organized along the major EBNF concepts, i.e., production rule, non-terminal,
terminal, sequence, repetition, optional and alternative.

Rule 1: Represent every left hand side of a production rule as a class. The
elements of the right hand side are represented as classes as defined by the
following rules and are connected to the left hand side class by a containment
association. An exceptional case is the first production rule of the grammar.
In this case the LHS class is additionally marked with the 	start symbol

stereotype.

Rule 2: Represent every non-terminal as a class, which is called like the non-
terminal name plus REF and is marked with a 	reference
 stereotype. The
class is connected to the corresponding left hand side class of the non-terminal
by an association.

Bridging Grammarware and Modelware 163

Rule 3: Represent every terminal as a class named as T plus a consecutive
number and marked with the stereotype 	terminal
. The value of the terminal
is represented as the value of the literal property.

Rule 4: Represent a sequence as an anonymous class called SEQ plus a consecu-
tive number and marked with 	sequence
 stereotype. The classes representing
the sequence are attached to the anonymous class by a containment association.
The associations are assigned with an 	ordered
 stereotype and a key/value
pair indicating the position of the element in the sequence.

Rule 5: Represent every repetition by an anonymous class called REP plus a
consecutive number and marked with a 	repetition
 stereotype. The anony-
mous class has a one-to-many association with the class representing the repeated
element. Note, that it is important to tag the association end with multiplic-
ity many as ordered. This constraint is required to rebuild the linear order of
EBNF.

Rule 6: Represent every option by an anonymous class called OPT plus a con-
secutive number and marked with a 	option
 stereotype. The anonymous
class has a zero-to-one association with the class representing the optional ele-
ment.

Rule 7: Represents every alternative as a subclass of an anonymous class called
ALT plus a consecutive number. The anonymous class is marked with an
	alternative
 stereotype and is defined as an abstract class.

Mappings for the grouping concept can be ignored in the transformation
process, because a group can be directly transformed in a sequence element
or in an alternative element. Furthermore there is no need for a special transfor-
mation rule for recursive definitions, because this rule can be constructed from
the combination of rule 2 and 7.

The Grammar Parser implements the listed transformation rules and is there-
fore able to generate a Raw Metamodel expressed in XMI from a grammar ex-
pressed in EBNF. Not only a Raw Metamodel is produced by the Grammar
Parser, but also a Program Parser is derived from the correspondences at M3
level and the generated Raw Metamodel. The Program Parser creates a corre-
sponding model representation in XMI - called Raw Model - from textual-based
programs.

4 Condensation

The generated Raw Metamodels and Raw Models have some unintentional prop-
erties. The generic transformation rules, explained in chapter 3, let the design
size of the models grow immoderate, because lots of anonymous classes were
introduced. To eliminate this drawback, transformation rules for optimization
of the Raw Metamodel and of the Raw Model are established, which can be ex-
ecuted by model transformation engines automatically. The optimization rules

164 M. Wimmer and G. Kramler

have to derive (1) a optimized Metamodel - called Condensation Metamodel -
from the Raw Metamodel and (2) a Change Model, which includes all necessary
informations to rebuild a Condensation Model from a Raw Model. From the
combination of Condensation Metamodel and Change Model it is possible to
rebuild a model from a Raw Model, so that it is conform to the Condensation
Metamodel. The Change Model is included in the Condensation Metamodel as
special marked annotations.

The optimization of the Raw Metamodel starts with the upper class in the
class hierarchy - the class marked with 	start symbol
. From this class the
optimization rules are executed in depth-first order, because the containment
hierarchy of the Raw Metamodel corresponds to the tree strucutre of the EBNF
grammar and therefore can be processed like a tree. When an optimization rule
matches for a given class, the children of this class must be checked, whether
optimization rules can be applied on them. This has to be done recursively
until a child class is found on the path, for which no optimization rules can be
applied. Then all optimization rules are performed on the path in reverse order,
until the class with the original match is reached. From this class the depth-first
optimization is continued. It is important that the changes in the child classes
are reflected in the optimization of the upper classes, because this makes it
possible to execute the optimization in one step and no temporary metamodels
are needed. In the following the optimization rule 1 for the Raw Metamodel is
shortly quoted. The complete description of rule 2 (optimization of sequences),
3 (optimization of terminal classes) and 4 (optimization of alternatives) may be
found in [12].

Rule1: Deletion of anonymous classes for options and repetitions, where pre-
condition 1 holds. The child class in the containment hierarchy takes the place
of the deleted class. The original path of the child class must be saved in the
Change Model.

Precondition:
(1) The anonymous class owns only one child class and the type of the child
class is either sequence or non-terminal.

Effect and Change Model for Precondition (1) shown by option-elimination:

Bridging Grammarware and Modelware 165

The order in which the rules are applied, must comply with the listing order of
the rules. The rules do not change the semantics of the metamodel, only some
anonymous classes are eliminated or some terminal classes are restructured in
a more compact way. The expressiveness of the language is the same as with
the un-optimized metamodel, but the size of the metamodel and of the model is
reduced.

5 Customization

The aim of the generated metamodels and models is to maximize the understand-
ability of languages and program specifications. As far as we have described,
the metamodels and models are only graphical representations for the textual
definitions. In this section we introduce a semi-automated mechanism to add
additional semantics to the automatically generated metamodels, which cannot
be expressed in EBNF. The user can attach annotations of a pre-defined set to
the Condensation Metamodel. In order to enhance the quality of the generated
metamodel by supporting improved readability, identification/reference seman-
tics and data types, we propose the following manual annotations for the Con-
densation Metamodel. From these annotations it is possible to derive a Change
Model to propagate the user-defined changes in the metamodel to model level
in order to rebuild a Customized Model from the Condensation Model. The
Change Model is again included in the generated Metamodel, in this case in the
Customized Metamodel. The complete description of the annotation mechanism
for data types and readability may be found in [12].

Identification/Reference: In metamodels the differentiation between Identi-
fication and Reference can be achieved easily. In contrast, grammars have no
appropriate concepts for describing Identification or Reference in order to give a
clue for the language designer’s intentions. In our Mini-Java example the prob-
lem reveals with the class Identifier. An Identifier can be a variable, a class or a
method name. If a variable is of type of a certain class, the identifier must be a
class name and not a variable or method name. To indicate this constraint, we
need additional information from the user in form of annotations, because this
information cannot be derived from EBNF grammars.

Annotations: For this aspect two annotations are available (1) the ID annotation
for defining an Identification and (2) the IDREF annotation for defining a ref-
erence. The stereotype 	id
 should be assigned to associations, which connect
the element with the identifier class. The association end must have a multiplic-
ity of 1. Also a new reference association to the actual referenced class is needed.
This is done by marking existing associations, which should be redirected, with
the stereotype 	idref
 and define the new target association end. The trans-
formation has to delete the pseudo references, which become obsolete by the use
of the user-created reference associations. The Change Model stores the original
target of the reference association.

166 M. Wimmer and G. Kramler

Effect and Change Model:

Readability: In metamodels the ability to give convenient names to elements
makes it easier for the user to understand the intentions of the language designer.
With annotations for names we allow the user to replace anonymous names, like
OPT1 or ALT1 with convenient labels.

Data Types: MOF provides the following data types for metamodelling: string,
integer and boolean. In contrast, EBNF has no concepts for data types and so
they have to be described with complex expressions. These expressions result in
complex class structures in the generated Condensation Metamodel. The substi-
tution of such complex structures with data types provided by MOF leads to a
more convenient metamodel.

As an example for the final output of our framework see Figure 2. In this
figure an excerpt from the Customized Metamodel for Mini-Java is shown. Due
to lack of space, we ignore stereotypes and tagged values concerning the concrete
syntax. Note that the metamodel is completely automatically generated with our
framework, except for manual annotations in the Condensation Metamodel. On
the basis of Figure 2 it is readily identifiable, that the proposed optimization
rules and annotations lead to a very intuitive metamodel.

Fig. 2. Core of the Mini-Java Metamodel

Bridging Grammarware and Modelware 167

6 Related Work

This section compares our work with related research activities: on the one hand
approaches addressing the bridging of technical spaces and on the other hand
approaches discussing the mapping between EBNF and MOF concepts.

Another mapping approach based on the M3-layer is described in [2]. In par-
ticular this work is focused on bridging model engineering and ontology engi-
neering. Unlike our approach, only languages are transformed, which are based
on MOF and have an XMI representation. Therefore it is possible to transform
the XML representation with XSLT.

Alanen and Porres [1] discuss relations between context-free grammars and
MOF metamodels. In contrast to our work, they only define mappings for M2
based on M3. We extend this approach by mapping not only M2, but also M1
based on M3. Furthermore, we establish various optimizations in order to get a
more user-friendly metamodel. Our approach has used some mapping concepts
of this previous work to define the grammar to raw metamodel transformation
rules.

7 Conclusion and Future Work

In this work we have presented a generic framework, which supports the trans-
formation of grammars into metamodels and of programs into models. The used
transformation process is based on the M3 level, which allows to generate bridges
between grammarware and modelware automatically. Furthermore we have de-
scribed how to build a minimal and user-friendly metamodel through a number
of optimization rules and user-annotations.

We are currently working on a prototype for the presented framework. As
soon as our prototype is full functioning, we will use it to evaluate our framework
with larger grammars and extensive programs. We hope this facility brings more
insight on bridging grammarware and modelware. Therefore our next steps will
be searching for additional optimization rules and user annotations, which allow
a more flexible design mechanism for the final metamodel.

References

1. Marcus Alanen and Ivan Porres. A Relation Between Context-Free Grammars and
Meta Object Facility Metamodels. Technical report, Turku Centre for Computer
Science, 2003.

2. J. Bézivin, V. Devedzic, D. Djuric, J.M. Favreau, D. Gasevic, and F. Jouault.
An M3-Neutral infrastructure for bridging model engineering and ontology engi-
neering. In Proceedings of the first International Conference on Interoperability of
Enteprise Software and Applications, (INTEROP-ESA 05), 2005.

3. Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley Professional, 2000.

4. ISO. ISO/IEC 14977:1996(E), Information technology - Syntactic metalanguage -
Extended BNF, 1996.

168 M. Wimmer and G. Kramler

5. P. Klint, R. Lämmel, and C. Verhoef. Towards an engineering discipline for gram-
marware. ACM TOSEM, May30 2005. To appear; Online since July 2003, 47
pages.

6. K. Koskimies. Object Orientation in Attribute Grammars. LNCS, vol. 545.
Springer-Verlag, pages 297–329, 1991.

7. Ivan Kurtev, Mehmet Aksit, and Jean Bézivin. Technical Spaces: An Initial Ap-
praisal. CoopIS, DOA2́002 Federated Conferences, Industrial track, Irvine, 2002.

8. OMG. Meta Object Facility (MOF) 2.0 Core Specification. http://www.omg.org/
docs/ptc/03-10-04.pdf, 2004.

9. OMG. Architecture Driven Modernization. www.omg.org/adm, 2005.
10. OMG. XML Metadata Interchange (XMI) Specification. OMG, http://www.omg.

org/docs/formal/05-05-01.pdf, 2005.
11. Ryan Stansifer. EBNF Grammar for Mini-Java. http://www.cs.fit.edu/˜ryan/

cse4251/mini java grammar.html, August 2005.
12. Manuel Wimmer and Gerhard Kramler. Bridging Grammarware and Modelware.

Technical report, Vienna University of Technology, http://www.big.tuwien.ac.at/
research/publications/2005/1105.pdf, 2005.

13. Niklaus Wirth. What can we do about the unnecessary diversity of notation for
syntactic definitions. Communications of the ACM, 20(11), November 1997.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 169 – 181, 2006.
© Springer-Verlag Berlin Heidelberg 2006

sNets: A First Generation Model Engineering Platform

Jean Bézivin

Atlas Group, INRIA and LINA, University of Nantes,
2, rue de la Houssinière - BP92208, 44322 Nantes Cedex 3, France

Jean.Bezivin@univ-nantes.fr

Abstract. As we are currently improving AMMA (the ATLAS Model
Management Architecture), a second generation model engineering platform
installed on top of the Eclipse Modeling Framework (EMF), we borrow
inspiration from a previous work undertaken fifteen years ago at the University
of Nantes. This initial model-engineering platform named sNets (for Semantic
Networks) included several functional blocks like the sMachine, the sBrowser,
the sQuery, the sAction system, etc. Several parts of these tools are still in use
today. At a time when we are defining the main architectural style of the new
platform, it may be helpful to come back on the initial learning of this project.
This paper describes the sNets project and summarizes some lessons learnt in
the course of the design and utilization of this first generation modeling
framework.

1 Introduction

This paper summarizes some lessons learnt in the building of a model-engineering
platform fifteen years ago. Initiated in 1990 the project was concluded several years
later by the PhD Thesis of Richard Lemesle in October 2000. The application we had
in mind when starting the project was the reverse engineering of legacy systems,
mainly COBOL programs [5], [18]. The idea was to use what is called today a
COBOL metamodel or DSL (Domain Specific Language) to extract models from
programs in order to facilitate many viewing, querying and transforming operations
on these models. Several other metamodels were also produced and used during this
work.

1.1 Context of the Project

The first idea was to use directly the facilities of an advanced object-oriented
language (Smalltalk-80) for building the reverse engineering system. We wanted the
system to be very evolutionary and capable of handling not only standard COBOL but
other languages as well, including dialects of COBOL itself. Soon it became obvious
that the advanced Smalltalk mechanisms were not sufficient to provide the needed
extensibility. Starting from the Smalltalk compiler written in Smalltalk, we designed a
COBOL analyzer written in Smalltalk. When dealing with all the syntactical
categories found in a COBOL program, we came to the conclusion that the precise,
complete and evolutionary expression of these categories and of the various relations
between them needed a stronger ontological framework support. The architectural

170 J. Bézivin

decision to build an intermediate layer, on top of Smalltalk, able to allow modular and
changeable definitions of “domains” was rapidly taken. This layer built itself in
Smalltalk was intended to facilitate the decoupling of the application from the
underlying system. In retrospect, we understand this as a transition from pure object-
oriented programming to domain modeling and a positioning of both technologies.
The main part of the intermediate layer is the sMachine, some kind of model
engineering virtual machine, functionally similar to the ATL virtual machine recently
described in [25].

1.2 Inspiration

The basic inspiration in the sNets project was the PIE system defined by Bobrow and
Goldstein [19]. This was one of the first important applications built in the Smalltalk-
76 language. PIE was a collaborative work support system with advanced versioning
capabilities. This project was later restarted at Xerox to build a new version of PIE in
Smalltalk-80, but unfortunately cancelled. The study of the PIE system started in
1989 in Nantes but no code was available and a first series of prototypes had to be
built in order to implement the described properties of the system. Many features
were added to PIE in the first series of sNets prototypes in order to build
progressively a three-level modeling framework, similar to the present MOF-based
metamodeling frameworks.

1.3 Organization

This paper is organized as follows. Section 2 describes the main results achieved in
the sNets project. Section 3 presents a short related work discussion. Section 4
presents some lessons learnt in this project and section 5 concludes.

2 Achievements

2.1 The sNets Conceptual Model

The basic underlying algebraic structure was directed edge-labeled graphs. From
the PIE system, we kept the organization of a semantic network and the versioning
system. We then added three new features that were found at this time to be
essential to achieve our goals: global typing, reflectivity and partitioning. The usual
definition of sNets was some kind of reflective, typed and partitioned semantic
networks. A unique "meta" relation (Figure 1) was used to define the global typing
system.

The lower part of Figure 1 could be interpreted as:

∃ x, ∃ y : Cat (x) ∧ Mat (y) ∧ name (x,"aCat") ∧ name (y,"aMat") ∧ on (x,y)

The global typing system defined as in the left part (a) of Figure 2 could be
visually presented as in the right part (b) of the same Figure.

 sNets: A First Generation Model Engineering Platform 171

Fig. 1. Basic sNets organization

Fig. 2. Visual sNets notation for the global
typing system

2.2 The “Universe” Concept

We became rapidly convinced that modularity mechanisms should be added to our
modeling framework right from the start. We decided that, in the global sNets graph,
we would add a notion of partition of the graph (a subgraph), captured by the concept
of a "Universe" (Figure 3). Any sNets element belongs to one and exactly one such
Universe.

Fig. 3. Capturing graph partitions with the notion of Universe

2.3 The “Layer” Concept

The notion of universe was important to define an organization of the global modeling
graph. We stated that SU is a meta-universe of U iff every element of U finds its
metaelement in SU. This relation named "sem" at the time is today recognized as the
"conformsTo" relation [13] defining the conformance between a model and its
metamodel.

The conformance relation between universe U and meta-universe SU in Figure 4
captured by the "sem" relation allowed defining a three-layer system (U, SU, SSU) as
illustrated by Figure 5.

172 J. Bézivin

Fig. 4. Universes and meta-universes: the sem relation

Fig. 5. The three layer organization

All the situations illustrated in the previous figures were made explicit and
formally specified in [28], a specification work that was done in parallel with the
Smalltalk implementation. This resulting three-layer organization was then found
satisfactory and could be used for several practical experiments on various domains
different from the COBOL domain (software test, languages and methods, etc.).

In the sNets organization, every node pertains to one and only one universe and has
three standard links: "meta", "name" and "partOf". Some less important relations were
also added in the first SSU layer (commonly called now the M3 layer), for example to
express that a link represents the reverse relation of another link.

2.4 The sMachine

In order to implement this entire framework, a virtual machine was then defined and
implemented in Smalltalk, with a set of APIs for accessing the various model
elements [26]. Many examples of meta-universes were then built and served to
experimental assessment. In some cases, universes based on these meta-universes
were set up. This gave a first idea of the remaining scale-up problems. With some

 sNets: A First Generation Model Engineering Platform 173

meta-universes of the Smalltalk system, the volume of a typical extracted universe
could be of the order of more than 50.000 nodes and challenged the memory capacity
and processing power of the basic desktop machines at the time (1990's).

2.5 The sBrowser

Viewing a complex graph was an important challenge. The first idea to browse such
structures was to build specialized visual tools. In reason of the sNets uniform
representation structure, such a visual presentation could be defined (and as a matter
was defined) in specialized viewing tools (Figure 6). Note that in this view
bidirectional links are automatically drawn to represent couples of unidirectional
reverse links.

Fig. 6. Visual presentation of sNets

However, practical experience with such visual presentations shown serious limits
when displaying more than 50 nodes simultaneously [10]. A new solution had to be
found. Taking inspiration from the initial PIE system, a sliding window textual
browsing system was then defined (Figure 7). This sBrowser system provided
browsing capabilities that performed independently of the size of the whole graph.

The version of the sBrowser pictured in Figure 7 has the same capabilities as the
original Smalltalk one, but was later redesigned in Java in [28]. The buttons at the
bottom allows broadening or narrowing the window view on the graph (here the
window is seven panes wide).

The sBrowser was the basis for technical observation and updating of the sNets
system. However, this could not be accepted by end users that would need to access
the system. Therefore, several different specialized browsers were defined for specific
meta-universes at the level M2 (i.e. metamodels). Since one main application was the
analysis of COBOL programs, specialized COBOL browser were programmed by
hand on top of the sNets representation. No tentative was made to generate this
browser semi-automatically from the COBOL semantic universe (metamodel).

174 J. Bézivin

Fig. 7. The standard sBrowser system

2.6 The "sAction" Concept

Very rapidly, it was found interesting to define what is presently known as M3-
executability. The name that was initially given to some special nodes was semantic
actions (sActions). This allowed to associate standard executability to every node in
any of the three layers of the sNets. In the first version of the framework, the
implementation of the various types of semantic actions was done by associating them
to Smalltalk blocks (similar to Lisp closure), that could be executed in the context of
the Smalltalk object representing the current node. From a given node, several named
links could lead to such semantics actions. This allowed a very simple and powerful
mechanism of automatic definition of contextual pop-up menus (e.g. right mouse
button click) displaying the various link labels leading to a node of type sAction like

Fig. 8. Applying sActions in sNets

 sNets: A First Generation Model Engineering Platform 175

ioWindow, new, spawn, edit, file, Actions, and show Empty Links in the example of
Figure 8. A possibility of hierarchical pop-up menus could be added without any
difficulty, following a similar organization.

2.7 The "sQuery" Concept

Very soon after the start of the sNets project, the need arose for a mechanism for
querying graphs. The initial specification of the project involved the use of path
expressions as navigation and querying facility in these graphs. A first complete
implementation was presented in [20]. This allowed to write such selection
expressions as (a.(b|c*).d)* to access a set of nodes from a given node. The
vocabulary {a,b,c,d} corresponded in this implementation to any edge label in the
graph, not only labels of a given level-2 universe. The important objective of the
project described in [20] was the homogeneous representation of query expressions in
the graph itself, as normal sNets expressions. This querying facility was then
extended in [28] as a full model transformation facility and proposed as such in [29].
Some time later, the OMG launched the QVT request for proposal (RFP).

3 Related Work

The work on sNets was also much influenced by other important contributions in
model engineering that have been very often forgotten in recent literature. It is
common practice to date the beginning the modern period of model engineering at the
launch of the MDA initiative by OMG in 2000. The reality is much more complex.

We have already mentioned the important impact of such proposals as PIE and
Sowa graphs on the domain. Other initiatives were also very influential. We will only
quote below some of those that came to our attention during the course of the sNets
project. A complete review of influencing model-engineering sources is beyond the
scope of the present paper, but would constitute an interesting undertaking.

Since the beginning, we have acknowledged the strong link between modern model
engineering and ontology engineering. The pioneering work of Gruber was a
permanent source of inspiration. The KIF (Knowledge Interchange Format [2]) had
many interesting features related to modularity that comforted us in the idea of
installing this notion at the hearth of the formalism with the notion of sNets Universes
related to the notion of KIF "Theory". The modular organization of KIF theories is
still today an example to follow. The recent work of Gruber (Every Ontology is a
Treaty [23]) is completely relevant to model engineering and could be applied to
metamodels.

CDIF (CASE Data Interchange Format [21]) was most influential in the period
when UML and MOF were still being defined at OMG. Once again here, one of the
key values of CDIF, beyond its ability to provide a standard exchange scheme
between CASE tools (ako XMI without the XML lexical basis) was its strong
modularity device ("Subject Areas") and the important varieties of corresponding
metamodels. It is unfortunate that only a limited number of ideas made their way to
the UML/MOF construction at that time.

176 J. Bézivin

The story of the Microsoft OIM (Open Information Model) initiative is hard to
follow today since many historical traces recorded in Web sites have already been
lost. Some disappeared like the one handled by the Metadata coalition. Fortunately,
one may still find traces of these in such contributions as [4]. In the following
organization of metamodels (Figure 9) extracted from [4], we can even see that a
transformation metamodel was included. Note that in this work, the UML metamodel
is the first proposal UML 1.0. OIM proposed at this time an advanced model-
engineering environment that unfortunately was not pursued. Many lessons from this
undertaking have probably been lost.

Fig. 9. The Microsoft Open Information Model (OIM)

Many CASE or MetaCASE tool builders have been very influential in the 80's, like
Concerto (Edourd André), MetaEdit+ (Juha-Pekka Tolvanen), GraphTalk (Patrick
Jeulin) and many more. It is surprising how the present undertakings in metamodel
driven tools are ignoring the lessons of these past projects and very often reinventing
the wheel. MetaEdit+ was built in Smalltalk like sNets but concentrated on graphical
modeling, GraphTalk used an underlying structure of hypergraphs and Concerto
initially developed most of the advanced ideas we see now appearing in modern
model engineering platforms.

4 Lessons Learnt

Many lessons learnt in this project may still be of interest today. We propose some of
them here as an initial list. We are still borrowing inspiration from this project when
studying the design alternatives of our current AMMA platform built on top of the
Eclipse project [1].

4.1 On the Need for a Conceptual Model

In retrospect what seems the most important issue when building such a platform is to
define a clear and precise conceptual model -there is nothing more practical than a
good theory-. This conceptual model has to be matched onto an efficient
implementation. This was achieved in the sNets system through several cycles of
definition/implementation.

 sNets: A First Generation Model Engineering Platform 177

Another requirement that is often made is the mapping onto normative
recommendations. In the case of the sNets, this goal was not pursued at all. One reason
is that the interesting normative recommendations (like CDIF) were not in the domain
of reverse engineering. As a result, the whole sNets system relied on proprietary
formats. In retrospect this was not too much of a problem since it was possible when
necessary to map onto existing standards. Mapping to UML or to MOF-based system
could be achieved later at a reasonable implementation cost by specific bridges.

4.2 On the Need for Minimality

One goal that was pursued since the beginning of the project was the definition of a
minimal level M3 universe (SSU). We tried very hard to eliminate all that was not
strictly necessary at the M3 level (domain independent) to allow this feature to be
reintroduced at the M2 level (domain dependent). This permanent quest for
conceptual simplicity helped us to achieve the best performance for the virtual
machine. It also allowed us to provide maximum evolutivity and flexibility due to the
domain-specific M2-level universes. One decision that was probably not adequately
addressed in the sNets project was to implement in the sMachine a powerful version
management system, based on the PIE "context" feature. Today we recognize that
there are several needs for such a version management capability and this should
probably be left to the M2 level. This is similar to the model transformation language.
Instead of defining just only one at the M3 level, it seems wise to allow for multiple
definitions of such model transformation languages at the M2 level, by defining the
associated metamodel or DSL.

4.3 From Implicit to Explicit

In retrospect what seems the most important issue when building such a platform is to
define beforehand a clear and precise conceptual model making explicit all the design
choices. After that, the implementation decisions could be applied, even by short-
circuits. For example, the fact that each node has an outgoing name link leading to
another node of type String with the name itself as its value could be implemented in
a more efficient way in associating directly the String to the node. However, to all
actions implying this node, the initial specification was expected.

In the sNets system, we tried to be as explicit as possible. We realized later that we
had probably not completely reached this goal. If one looks at Figure 4 for example,
one may realize that there is no possibility to link physically edge r to node r. The
reason is that we are working in a graph and not in a hypergraph. The conceptual cost
of using a hypergraph would probably be too important. A compromise was to use
Sowa graphs to make explicit the "meta" relation between an "edge" and a "node"
themselves explicitly represented in the Sowa graph as described in Figure 10
extracted from [180]. It seems that this later approach of using Sowa graphs for
expressing the model engineering conceptual model could be a good choice. Of
course, this does not contradict the implementation choices of the sNets, but may
complement it by a more general conceptual model1.

1 Another interesting property of the Sowa graph notation is that it would not need an

additional assertion language like OCL because the same language may describe at the same
time the structural definition part and the logical assertion part.

178 J. Bézivin

Fig. 10. A Sowa graph representation of modeling layers

4.4 Modularity Devices

As has been mentioned, the idea that model modularity mechanisms should be built
from the start at the M3 level was an important design decision in sNets. A study was
later conducted of the various proposed solutions (CDIF, OMG, etc.) and concluded
on the high importance of this subject [27]. In retrospect, we may blame the weak
definition of UML profiles, for many difficulties in present implementations of OMG
recommendations. There is still a need for defining a clearer extension scheme for
MOF metamodels.

4.5 Metamodels and Grammars

One feature of the original sNets system was the support for model extraction process
based on a given metamodel. This was not pursued towards automatic support and
was done only for the COBOL programs. The COBOL semantic universe was hand-
coded into a context free grammar transformed into a "T-gen" parser recognizing
input conforming to that grammar. T-gen is a Smalltalk translator generator. We
know today that much more advanced automatic translation between grammars and
metamodels are possible and also with other technical spaces like XML and many
others.

4.6 Key Role of the Metametamodel

After observing many undertakings in the light of what was achieved in the sNets
project, we are convinced of the essential role of a proper definition and
implementation of the M3 level (metametamodel). With a weak definition of this key
part of any model engineering framework, there is little hope to stability and
convergence. On the contrary, a precisely defined and well-implemented M3-level
metametamodel will allow the evolutive improvement of a library of M2-level
metamodels.

 sNets: A First Generation Model Engineering Platform 179

5 Conclusions

As we have seen in this paper, there are many similarities between building a model-
engineering platform in the present context and in a previous context. Even if this
seems strange, the building of a model-engineering platform on top of the Eclipse
system is very similar to the initial building of a model-engineering platform on top of
the Smalltalk language. The main idea is how to map a conceptual view of such a
platform onto an executable framework. Mapping to EMF is probably easier because
it takes already into account some of the normative choices of the OMG for us (MOF)
by providing an approximation of it with ECORE. This is the dimension we missed in
the sNets: the correspondences with the normative world that did not exist at the time.
However, we realize today that the price to pay for such a normative alignment may
be very high. Furthermore, there are several ways to achieve this alignment: by
interpretation or by transformation. Today these two possibilities still exist and should
be compared when making engineering choices.

The experience in the sNets system is of high value today in the building of the
AMMA platform [1]. For example, the status of the primitive types that we needed to
introduce in the SSU M3-level universe is quite important and should not be confused
with the similar primitive types that may be introduced in domain specific contexts at
the M2-level. Another lesson is about the interest of choosing an object-oriented M3
or not. The need to introduce or not classes and attributes at the M3 level is much
more accurately perceived when we have been able to experiment with a neutral M3.
The sNets M3 level has no such feature and may be seen as closer to prototype-based
object languages (like Self) than to class-based object languages (like Smalltalk). At a
time when it may become important to evaluate and compare such different industrial
choices as the OMG MOF 2.0, the Eclipse ECORE, the Microsoft DSL Tools, the
experience gained with sNets is very valuable.

The most important lesson in the work on the sNets system was that it was possible
to build a neutral and minimal M3-level infrastructure. The comparison with other
industrial or normative M3-level solutions has still to be made on objective basis.

Acknowledgements

It is difficult to thank all the contributors to the sNets system since the beginning of
the project. The main architect has been Richard Lemesle helped by Jérôme Lanneluc
for the initial sMachine. While working on this project, Jérôme Lanneluc was
supported by the OTI Company, Ottawa, Canada. Jérôme Cupif and Régis Cavaro
implemented the initial sQuery system. The sBrowser has been implemented several
times in Smalltalk by different people, each bringing iteratively new functionalities
and new simplifications. The performance issues of the sBrowser and sMachine have
been constantly improved through these different implementations. The present work
has been supported in part by the IST European project ModelWare (contract IP
#511731) and by a grant from Microsoft Research (Cambridge).

180 J. Bézivin

References

1. Allilaire, F., Bézivin, J., Didonet Del Fabro, M., Jouault, F., Touzet, D., Valduriez, P.
AMMA : vers une plate-forme générique d'ingénierie des modèles. Génie Logiciel
(73):8-15, (2005) see also the ATL website www.sciences.univ-nantes.fr/lina/atl

2. American National Standard, KIF Proposed Standard Draft, Knowledge Interchange
Format, NCITS.T2/98-004, http://logic.stanford.edu/kif/dpans.html

3. Antonetti, F. The OSMTool project, Technical report, OSM project, University of
Nantes LIST, (1994)

4. Bernstein, P.A., T. Bergstraesser, J. Carlson, S. Pal, P. Sanders, D. Shutt, Microsoft
Repository Version 2 and the Open Information Model, Information Systems 24(2),
(1999), pp. 71-98. available from http://research.microsoft.com/~philbe/

5. Bézivin, J & Lemesle, R. sNets : The Core Formalism for an Object-Oriented CASE
Tool COODBSE’94 Proceedings of the Colloquium on Object Orientation in Databases
and Software Engineering, World Scientific Publishers, ISBN 981-02-2170-3, pp 224-
239, (1994)

6. Bézivin, J. & Gerbé, O. Towards a Precise Definition of the OMG/MDA Framework
ASE'01, Automated Software Engineering, IEEE Computer Society Press, San Diego,
USA, (2001).

7. Bézivin, J. & Lanneluc, J. & Lemesle, R. A Kernel Representation System for OSM.
Rapport de recherche ERTO, Université de Nantes, (1994)

8. Bézivin, J. & Lemesle, R. Ontology-Based Layered Semantics for Precise OAD&D
Modeling ECOOP’97 Workshop on Precise Semantics for Object-Oriented Modeling
Techniques, Jyväskylä (Finland). LNCS Vol. 1357, Springer, (1998), ISBN 3-540-64039-
8, pp 151-154

9. Bézivin, J. & Lemesle, R. Reflective Modeling Schemes, OOPSLA'99 workshop on
Object-Oriented Reflection and Software Engineering, Denver. pp 107-122 (proceedings),
(1999)

10. Bézivin, J. & Lemesle, R. sBrowser : a prototype Meta-Browser for Model
Engineering, OOPSLA'98 Workshop on Model Engineering, Methods and Tools
Integration with CDIF, Vancouver, (1998)

11. Bézivin, J. & Lemesle, R. Towards A True Reflective Scheme Reflection and Software
Engineering, LNCS Vol. 1826, Springer, (2000), pp 21-38

12. Bézivin, J. Lanneluc, J. & Lemesle, R. sNets: The Core Formalism for an Object-
Oriented CASE Tool, Object-Oriented Technology for Database and Software Systems,
V.S. Alagar & R. Missaoui ed., World Scientific Publishers, (1995), p. 224-239.

13. Bézivin, J. On the Unification Power of Models. Software and System Modeling
(SoSym) 4(2):171-188, Springer Journals, (2005)

14. Bézivin, J., Ernst, J. & Pidcock, W. Model Engineering with CDIF OOPSLA'98,
Vancouver, post-proceedings, Summary of the workshop, (October 1998)

15. Bézivin, J., Lanneluc, J., Lemesle, R. A Kernel Representation System for OSM.
Resarch Report, University & Nantes, (1994)

16. Bézivin, J., Lanneluc, J., Lemesle, R. Representing Knowledge in the Object-Oriented
Lifecycle TOOLS PACIFIC'94, Melbourne, (December 1994), Prentice Hall, pp. 13-24

17. Bézivin, J., Lanneluc, J., Lemesle, R. Un réseau Sémantique au cœur d’un AGL.
LM094, Grenoble, 13-14 (October 1994), 12 p.

18. Bézivin, J., Lennon, Y., Nguyen Huu, Ch. From Cobol to OMT - A Reengineering
Workbench Based on Semantic Networks TOOLS USA'95, (1995), Santa Barbara.

 sNets: A First Generation Model Engineering Platform 181

19. Bobrow, D.G., Goldstein, I.P. Representing Design Alternatives, Proc. Conf. on
Artificial Intelligence and the Simulation of Behaviour, Amsterdam, (July 1980)

20. Cupif, J, Cavaro, R. Système Avancé de Navigation dans un réseau sémantique. Report
of Master Student work, (1995-1996)

21. Ernst, J. Introduction to CDIF, (September 1997), www.eigroiup.org/cdif/intro.html
22. Franceschini, A., Faure, L. Study of the Personal Information Environment and

second prototype implementations, Report of Master Student work, (1992-1993)
23. Gruber, T. R. Every Ontology is a Treaty AIS Bulletin, Vol. 1, Issue 4, (2004),

http://www.sigsemis.org/newsletter/october2004/tom_gruber_interview_sigsemis
24. Gruber, T.R. A Translation Approach to Portable Ontologies. Knowledge Acquisition,

5(2):199-220, (1993)
25. Jouault, F., Kurtev, I. On the Architectural Alignment of ATL and QVT, ACM

Symposium on Applied Computing (SAC 06), Model Transformation Track, Dijon,
Bourgogne, France, (2006)

26. Lanneluc, J. The sMachine (Version 3), Technical report, OSM project, University of
Nantes LIST, (1994)

27. Lemesle, R. Meta-modeling and Modularity : Comparison between MOF, CDIF and
sNets formalisms, OOPSLA'98 Workshop on Model Engineering, Methods and Tools
Integration with CDIF, Vancouver, (1998)

28. Lemesle, R. Techniques de modélisation et de métamodélisation PhD Thesis,
University of Nantes, (26 October 2000)

29. Lemesle, R. Transformation Rules Based on Meta-modeling, Enterprise Distributed
Object Computing, EDOC'98 proceedings, San Diego, (1998).

30. Lemesle, R. Un réseau sémantique au coeur d’un AGL Master Thesis (DEA),
(September 1994)

31. Lescalier, V., Gréard, B., Study of the Personal Information Environment and First
Prototype Implementations, Report of Master Student work, (1991-1992)

Workshop Report: Model Driven Development
of Advanced User Interfaces (MDDAUI)

Andreas Pleuß1, Jan van den Bergh2, Stefan Sauer3, and Heinrich Hußmann1

1 Institute for Computer Science,
University of Munich, Munich, Germany

{Andreas.Pleuss, Heinrich.Hussmann}@ifi.lmu.de
2 Expertise Centre for Digital Media,
Hasselt University, Hasselt, Belgium

Jan.VandenBergh@uhasselt.be
3 Institute for Computer Science,

University of Paderborn, Paderborn, Germany
sauer@upb.de

Abstract. This paper reports about the workshop Model Driven Devel-
opment of Advanced User Interfaces (MDDAUI) which was held on Oc-
tober 2nd, 2005 at the MoDELS/UML 2005 conference in Montego Bay,
Jamaica. We introduce the topic of the workshop and give an overview
about the workshop’s structure. Then we summarize the accepted contri-
butions and finally we provide an overview about the workshop discussion
and its results.

It is intended to provide a follow-up event of this workshop in the
next year.

1 Workshop Topic

The user interface of an application is often one of the core factors determining
its success. Existing approaches for user interface development provide abstract
and platform independent models for basic widget-based user interfaces. This
workshop deals with model driven development of advanced user interfaces.

Today there is an increasing demand for user interfaces with high usability
whereas the covered functionality gets more and more complex. Applications
often provide more intuitive interaction techniques as well as tailored and cus-
tomizable representations of information. Complex information is presented in
individual and interactive graphic objects. Techniques like animation or 3D vi-
sualization are used to achieve a more comprehensive or attractive presentation.
Some user interfaces also use additional perception channels beside graphics,
e.g. speech or haptic output. In addition, the usage of temporal media types,
like animation or sound, and the combination of different modalities lead to syn-
chronization and dependency issues. Moreover, even within a single modality,
different devices are used for different purposes.

While on the one hand such a broad spectrum of presentation, perception,
and representation media has been established, it is on the other hand necessary

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 182–190, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Workshop Report: MDDAUI 183

to figure out a possible configuration which best addresses the user’s needs. An
appropriate level of usability often requires customization of the user interface.
Some applications also require an automatic adaptation to their current runtime
context, like location or available devices.

Significant work has been done addressing these issues for an advanced de-
velopment of user interfaces and further research is still under progress. For
application development in general, some of the most important state-of-the-art
concepts are the Unified Modeling Language and the Model Driven Development
(MDD) paradigm. Thus, the workshop involves the areas of software engineer-
ing and human-computer interaction and aims to integrate the required methods
and concepts of advanced user interface development into MDD. The goal is to
support a model driven development of applications under comprehensive con-
sideration of features of advanced user interfaces. The target application area
is not limited to classical business applications and may include for example
games, simulations, and infotainment or edutainment applications.

2 Spectrum of Submissions and Participants

Interested participants were asked to submit a short position paper of four pages
length in double-column format. We received 13 submissions from which 9 have
been accepted according to the reviews of the program committee. As various
work has already been done in the area of user interface development, we con-
centrated on papers which demonstrate the experience of the authors in this
field and clearly focus on the workshop topic.

The resulting spectrum of participants included people from human-computer
interaction domain as well as people working mainly in the field of model driven
development. Besides people from academia, we had also participants working
in industrial context.

As a result, the presentations included a broad spectrum of views on the
workshop topic. In particular the literature references in the accepted papers
provide a very comprehensive overview over existing work relevant in this re-
search area. Most accepted papers propose a concrete solution for some of the
open problems while a few are position papers which summarize the state-of-the
art and outline critical problems and challenges in model driven user interface
development.

3 Workshop Schedule

The workshop took one day during the week of the MoDELS/UML 2005 con-
ference. We provided sufficient time for in-depth discussion, scheduling the pre-
sentation of papers mainly within the two morning sessions. A selected number
of papers were presented as long presentations while all other accepted papers
were presented in short presentations.

The talks in the two morning sessions were structured according to the follow-
ing scheme: The first session was used for the presentation of approaches with

184 A. Pleuß et al.

a more general usage of models and model-based techniques for user interface
development. The second session was used for papers which address more ex-
plicitly the techniques and standards of model driven development like model
driven architecture (MDA). Finally, two short talks which presented more spe-
cific approaches opened the discussion sessions in the afternoon.

The detailed program can be found on the workshop webpage [1].

4 Presented Papers

The following section summarizes the papers presented on the workshop. All
papers are published in [2].

4.1 A. Boedcher, K. Mukasa, D. Zuelke: Capturing Common
and Variable Design Aspects for Ubiquitous Computing with
MB-UID

This paper describes a model-based development process for useware, i.e. hard-
ware and software components used for operating technical systems, e.g. in a
factory. The process allows developing the user interface for different devices
in a consistent way by identifying commonalities and variabilities of the inter-
faces. The models in the process are described using an XML language called
UseML.

4.2 A. Wolff, P. Forbrig, D. Reichart: Tool Support for Model-Based
Generation of Advanced User-Interfaces

The paper shows a model driven approach for user interface development un-
der consideration of existing models like task models, dialogue models, and
abstract user interface models. In particular, the paper focuses on the tool
chain to support the models and the transformations between them. To en-
able an evolutionary development process, the tools apply to an ”edit by re-
placement” approach which allows the developer to keep the connections of
model elements throughout the different levels of abstraction in the develop-
ment process.

4.3 S. Basnyat, R. Bastide, P. Palanque: Extending the Boundaries
of Model-Based Development to Account for Errors

This approach addresses the domain of safety-critical interactive systems by
integrating information about possible erroneous user behavior into the models.
Therefore, the authors introduce an extension for task models. As an extended
system model they use an existing approach called ICO (Interactive Cooperative
Objects). Finally, they define the relationships between the extended task models
and the ICOs.

Workshop Report: MDDAUI 185

4.4 N. Sukaviriya, S. Kumaran, P. Nandi, T. Heath: Integrate
Model-Driven UI with Business Transformations: Shifting
Focus of Model-Driven UI

This position paper provides an overview about current problems and challenges
in practical application of model driven user interface development. Therefore,
the authors explain several problem fields based on their experience with the inte-
gration of user interface design with model-based approaches. For the goal of inte-
grating user interface development and model-based business process modelling,
the authors show commonalities between these two tasks and conclude that busi-
ness analysis can act as a useful starting point for user interface development.

4.5 J.S. Sottet, G. Calvary, J.M. Favre: Towards Model Driven
Engineering of Plastic User Interfaces

This paper presents a model driven approach for the development of plastic user
interfaces. With the term plasticity the authors refer to user interfaces which are
adaptable to the context of use specified by the respective target platform, user,
and environment. They consequently apply the state-of-the-art techniques of
model driven development. In this way, they aim on the one hand to overcome
known problems of monolithic code generators for user interfaces but on the
other hand also to gain new insights – with user interfaces development as a very
complex application domain – in the research area of model driven engineering.

4.6 T. Schattkowsky, M. Lohmann: Towards Employing UML
Model Mappings for Platform Independent User Interface
Design

This paper introduces a model driven approach for the development of user
interfaces based on an extended UML class diagram, called information model.
The information model contains the information to be provided by the system
augmented with abstract information whether the user is allowed e.g. to create,
delete or edit this information during runtime. On that base, transformation
rules are described which finally lead to the specification of a concrete platform
specific user interface.

4.7 J. Van den Bergh, K. Coninx: Using UML 2.0 and Profiles for
Modeling Context-Sensitive User Interfaces

The paper presents a UML profile for context-sensitive user interfaces. It intro-
duces stereotypes to support the modelling of common user interface models,
like task models and dialogue models, with UML 2.0. In addition, it presents a
context model to specify the context of the application, like the user and the
environment. The elements from the context model can then be used to specify
the influence of the application’s context on its behaviour.

186 A. Pleuß et al.

4.8 R.I. Bull, J.M. Favre: Visualization in the Context of Model
Driven Engineering

The paper proposes a model driven approach to realize complex visualizations
of large data. Therefore, it provides explicit metamodels for common complex
graphical visualizations. A complex graphical visualization of a system’s data can
thus be generated by defining transformations between the models of the source
data and the target graph. As an example, the authors show the generation of
visualizations for source code.

4.9 C. Nill, V. Sikka: Modeling Software Applications and User
Interfaces Using Metaphorical Entities

The paper discusses the use of metaphors to design interactive software. In this
way it proposes to combine the concepts from user interface metaphors and the
concepts from the ”Tools and Materials” approach from software engineering
domain. The authors propose to use the metaphors as a kind of conceptual
patterns for an application’s user interface.

5 Workshop Discussions

The sessions in the afternoon were mainly used for discussions. The discussions
started with a collection of relevant general research questions in the whole
group. We considered three complexes of questions as most relevant for the
model driven development of (advanced) user interfaces:

– Models: Which are the adequate models? Which models are more important
in which situation and what are some important points of attention?

– Process: What is an adequate development process? How to integrate pro-
totypes? How to incorporate the user?

– Validation: How to validate the proposed approaches? How to validate the
models?

On that base we formed two discussion groups to go more into the details.
Each group consisted of eight workshop participants. The first group discussed
on models for advanced user interfaces, the second group discussed on the model
driven development process for (advanced) user interfaces. The third topic, val-
idation, was not further discussed at this workshop.

5.1 Models

The discussion about the kind of models that are adequate in model driven
development of advanced user interfaces was started by the observation that the
answer to this question would probably be dependent on the kind of application.
Therefore an attempt was made to define a limited number of categories of
user interfaces. The discussion resulted in three categories identified by typical
examples: “wordprocessor”, “website”, “first person shooter”.

Workshop Report: MDDAUI 187

The first category, identified by the wordprocessor, has a user interface built
around a document or object. Other examples are graphics editors, spreadsheets
or integrated development environments. The manipulation of a central object
or document is the main purpose of an application. Much of the functionality is
dependent on the state of the object (e.g. selection of a word, paragraph, figure,
table or no selection at all).

The second category, identified by the website (but also database applica-
tions), has a central role in the interface for different kinds of user-tasks. When
lots of tasks are available, they are probably arranged around user roles or user
interests, not around a central object.

The third category, identified by the first-person shooter, contains applications
that are proactive, and often offer an immersive experience. These applications
typically do not wait for user interaction, but rather act on their own and the
user reacts to changes. Simulation software, action games and role playing games
can be put in this category.

The discussion then continued on what makes the user interfaces of these
applications inherently different. Four different criteria were determined: the
influence of time on the behaviour of the application, the importance/structuring
of user-tasks, the line between application logic and user interface, and the nature
of the “controls”.

Table 1 gives an overview of the perceived characteristics for each combination
of categories and criteria. The score given for task importance should be regarded
as follows: High task importance denotes that one can easily establish a number
of steps or actions that have to be taken to reach a certain goal. One can therefore
create a clear and highly structured task models organized in a tree structure
for the given category of application. The medium score is given to applications
like the word processor, which typically offer a lot of functionality. A task model
of such an application would consist of a lot of tasks that can be executed in
parallel or in an order-independent way. Such tasks typically have one or more
preconditions which depend on the results of tasks that are performed at an
earlier moment in time, such as a piece of text has to be selected before it can be
made bold. Another example can be that some information had to be put on the
clipboard (precondition) before it can be pasted somewhere in the document. A
low score is given for user interfaces where it is very hard to establish a direct
correlation between the high-level goals and the low-level actions. One could say
that the scores are inverse proportional to the number of ways to solve a problem
through the user interface of the application.

Table 1. Characteristics for the different categories

Category 1 Category 2 Category 3
Task importance medium high low
Time dependency low low high
Separation of UI medium high low

Controls specialized, standard custom,
standard no direct clues

188 A. Pleuß et al.

The timing of interactions has different importance for different types of appli-
cations. The time it takes to do a certain action is in general not very important
in the first two categories of user interfaces/applications, while this is in many
cases crucial for applications of the last category, since the state of the applica-
tion changes whether or not a user interacts with it.

The degree of separation between the user interface and the application logic
also depends on the category of application. This is also shown by the type of
controls that are used to realize the user interface of applications in each cat-
egory. The applications in the second category can do with standards controls.
Applications of the first category require a single specialized and complex con-
trol. In the last category of applications, the user interface is usually for the
greatest part custom-made, with highly specialized controls or actions that are
only accessible through short-cuts (no visual or other clues that those actions
are available).

During the discussion it became clear that different categories of user inter-
faces can be discerned which have different requirements for models that would
be used to describe them. It was, however, noted that the categorization that was
made is not absolute and that it would need additional research to confirm that
these categories are really different. A last remark was that one application can
have different parts that belong to different categories. For example, the general
configuration part of a 3D racing game application is part of category 2, while
the part responsible for game play is of category 3 and the part to configure the
car is of category 1.

As a general conclusion we can say that it is very probable that there is
no single set of models optimal for every kind of user interface. It is however
necessary to investigate the compatibility of the models to enable model driven
development of complete applications, including the user interface.

5.2 Process

The discussion about the model driven development process for (advanced) user
interfaces focused on problems of the practical application of model driven ap-
proaches. Thereby we considered the knowledge of those participants with ex-
perience as user interface designer in industrial context. We found the following
research question as an extract of the most important issues regarding the model
driven development process in practice:

In the field of human-computer interaction and user interface design,
well-established techniques exist to incorporate on the one hand creativ-
ity and on the other hand the user into the user interface development
process. This observation yields the question how to incorporate the
user/prototypes/creativity into the model-based development process?

In this view, we have elaborated the following properties of the model driven
development process for user interfaces:

Models as Transmitter of Information. The role of models from the view-
point of user interface design is to act as a kind of transmitter for the essential

Workshop Report: MDDAUI 189

information about the user interface. A first aspect here is the transmission of
information between different tools in the development process. With regard
to user interface design, the involved tools here are not only modelling tools,
but also tools to support the creative aspects mentioned in the question stated
above. These are not only common user interface builders; often more sketching
and drawing oriented tools like Photoshop are used to freely create ideas about
a possible user interface design.

A second, possibly closely related, aspect is the transmission of information
between different stakeholders within the development process. The supposed
user of the system is often interested in the concrete layout, represented e.g.
by screenshot-like images or prototypes, to discuss ideas and details about the
system. The software developer, however, is interested in an abstract view on
that part of the user interface which interrelates with the application logic.

In such a scenario, the models can act as the common information base for
all the different representations and views on the user interface, containing the
important essence of the overall decisions and hiding irrelevant or too much
detailed information of respective development artefacts. For example from a
screenshot of the user interface, the involved abstract user interface elements
may be the only important information to be provided for further develop-
ment steps. Other models may specify the number of different presentation
units (e.g. screenshots) required for the overall system and the links between
them.

Resulting Benefits. The discussion above led us to the core benefits of a model
driven process in the view of such a design-oriented process. As the models act
as transmitter for information, they can increase efficiency by preventing to
create very similar information many times during the development process.
Examples are hi-fi mock-ups or prototypes which build up on low-fi mock-ups
like sketches: While the concept is derived from foregoing low-fi mock-ups, the
realization itself has to be started from scratch again. If the required essence of
the earlier development steps is captured within models, it will be possible to
generate starting points for the next development steps.

Another benefit of models is their potential as communication tool between
different stakeholders. This is especially important the context of user interface
development, as it usually involves additional stakeholders (in addition to the
software designer and the customer) like e.g. a user interface designer or, more
specifically, a graphic designer. The models can also act as a kind of contract
between them.

Certainly, general advantages of models are likewise significant for user inter-
face development, like quality assurance, model-based validation, and documen-
tation.

Requirements on Models. Finally, we discussed the resulting requirements
on models to achieve a process which integrates experts, methods, and tools from
user interface design area into model driven development. First, the models have
to be flexible enough. This means in particular that models are allowed to be

190 A. Pleuß et al.

incomplete during the development process, to enable the creative design process
and not to force designers to make decisions earlier than necessary.

Second, the modelling language must provide a high degree of usability for
stakeholders who have to deal with the respective model. For example, models
which have to be read or created by user interface designers should not base too
much on technical concepts. A possibly intuitive notation and the recognition of
well-known concepts in the modelling language can strongly increase the general
acceptance of the language and thus the success of the whole process.

6 Conclusion

The workshop about Model Driven Development of Advanced User Interfaces
was a first event to bring together knowledge from the fields of user interface
development and model driven engineering. We received a broad spectrum of
high quality contributions from people with very different backgrounds within
this area. Thus, the submitted papers provide a comprehensive overview about
work and literature relevant in this field.

Based on the success of this workshop, it is intended to aim for a follow-up
event in the next year. A possible future direction is a more detailed analysis of
the differences and commonalities between the available concepts.

Acknowledgements

We thank the workshop participants for their high quality contributions as well
as the program committee members for their valuable reviews.

References

[1] MoDELS 2005 Workshop on Model Driven Development of Advanced User Inter-
faces, Workshop Webpage, 2005 http://www.edm.uhasselt.be/mddaui2005/

[2] Pleuß, A., Van den Bergh, J., Hußmann, H., Sauer, S.: Proceedings of Model Driven
Development of Advanced User Interfaces. CEUR Workshop Proceedings, Vol. 159,
2005, http://ceur-ws.org/Vol-159

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 191 – 200, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards Model Driven Engineering
of Plastic User Interfaces

Jean-Sébastien Sottet, Gaëlle Calvary, Jean-Marie Favre,
Joëlle Coutaz, Alexandre Demeure, and Lionel Balme

University of Grenoble, France
{Jean-Sebastien.Sottet, Gaelle.Calvary, Jean-Marie.Favre,
Joelle.Coutaz, Alexandre.Demeure, Lionel.Balme}@imag.fr

Abstract. Ubiquitous computing has introduced the need for interactive sys-
tems to run on multiple platforms in different physical environments. Providing
a user interface specially crafted for each context of use (<user, platform, envi-
ronment>) is costly, may result in inconsistent behaviors [5] and above all is
limited to the contexts of use that have been envisioned at design time. Oppor-
tunistic interaction in a changing environment requires enabling approaches and
techniques for gracefully adapting the interactive system to its context of use. In
Human-Computer Interaction, this ability of an interactive system to withstand
variations of context of use while preserving its quality in use is called
plasticity [7]. This paper shows how Model Driven Engineering is suited for
supporting plasticity both at design time and run time.

1 Introduction

In 1990s, Human Computer Interaction (HCI) promoted model-based approaches for
automatically generating the code of the User Interface (UI) from more abstract de-
scriptions. A plethora of Model-Based Interface Development Environments (MB-
IDE) appeared, killing the approach by the poor quality of the generated UIs. In 2001,
models come back [17] empowered by a taxonomy of transformations encompassing
the seminal automatic forward engineering, and acting as a framework for reasoning
about UIs engineering [6].

In the meantime, Software Engineering (SE) was advancing in Model Driven Engi-
neering (MDE) [20], promoting networks of "productive" models, i.e. models that can
be processed by the machine and that are interconnected through explicit mappings and
transformations [12]. The cornerstone is the definition of explicit metamodels, i.e. mod-
els of the modeling languages used to describe the models. Actually, the focus is mostly
set on transformation and traceability rather than on runtime productive models.

This paper bridges the gap between SE and HCI, envisioning MDE for both the de-
sign and run time of advanced UIs called plastic UIs. In HCI, plasticity refers to the
ability of an interactive system to mould itself to a range of contexts of use while
preserving its quality in use [7]. A context of use is defined as a triplet <user, plat-
form, environment > respectively depicting the end user of the interactive system, the
hardware and software resources that sustain the interaction, and the physical space in
which the interaction takes place. With ubiquitous computing, UIs are no longer con-

192 J.-S. Sottet et al.

fined to a unique desktop. They may be distributed and migrate across a dynamic set
of possibly heterogeneous interaction resources that are opportunistically composed,
borrowed and lent. For instance, because the battery of the PC gets low, the interac-
tive system fully migrates to the nearest platform: another PC, a PDA, or a phone.
But, of course, the UI cannot be the same on a PC and a PDA or a phone. As a result,
the UI has to be remold to gracefully target such an other platform. Distribution, mi-
gration and molding are the three fulcra of plasticity [2].

Plasticity has first been addressed from the multi-targeting perspective, investigat-
ing design processes for producing UIs fitted for a range of targets (i.e., explicit con-
texts of use). Section 3 presents a MDE framework that, like SE, focuses on transfor-
mation and traceability. But, in ubiquitous computing, the changing and not always
foreseeable context of use requires to go beyond multi-targeting. Both the vision and
a research agenda are provided in section 4 for supporting a full plasticity. The paper
is illustrated on a simple case study presented in section 2.

2 Case Study: Home Heating Control System

Basically, a Home Heating Control System (HHCS) makes observable and modifiable
the temperature at home. In the case study, two rooms (the living room and the wine
cellar) are equipped with a thermostat that can be set through different UIs (Figure 1).
In a/, the screen size is comfortable enough to display the two thermostats. In b/, c/
and d/, the system shows a single thermostat at a time. The other one is accessible
through a navigation task supported by a button in b/, a combo box in c/ and hyper-
links in d/. In e/, the watch is so small that the HHCS is limited to the most important
room: the living room.

a) b)

c)

d)

e)

Fig. 1. Variants of a Home Heating Control System UI depending on the screen size

Experience shows that code-centric engineering is not suited for product line ap-
proaches: it induces extra-cost in development and maintenance, and does not prevent
ergonomic inconsistencies [5].

 Towards Model Driven Engineering of Plastic User Interfaces 193

3 From Mono- to Multi-targeting

The European CAMELEON project [8] produced a model-based framework for struc-
turing the development process of UIs. This section proposes an improved version,
compliant with the MDE backbone: design processes, metamodels, mappings and
transformations.

3.1 Development Process

Whilst current industrial practice is still mostly code-centric (right bottom of Figure
2), MDE processes are based on successive refinements of models with the integra-
tion of new information at each step. ArtStudio [22] and Teresa [16] exemplify for-
ward engineering processes. Conversely, Vaquita [4] and WebRevenge [18] build
abstract models from implementations. Such reverse engineering tools are valuable
for both dealing with legacy systems and facilitating the elaboration of abstract mod-
els. Figure 2 proposes a MDE CAMELEON-based framework that covers both for-
ward and reverse engineering. In practice, processes are iterative rather than straight-
forward, mixing forward and reverse engineering, the number of steps and the entry
point may vary [14].

M1-Tsk’’'M1-Cpt’'' M1-Wks'' M1-Int' M1-PrgM1-Plf’’’ M1-Env’’'M1-Usr’'' M1-Ppt’''

M1-Tsk’'M1-Cpt’' M1-Wks' M1-IntM1-Plf’’ M1-Env’'M1-Usr’' M1-Ppt’'

M1-Tsk’M1-Cpt’ M1-WksM1-Plf’ M1-Env’M1-Usr’ M1-Ppt’

M2-TskM2-Cpt M2-WksM2-Plf M2-EnvM2-Usr M2-Ppt

Context of Use Property Domain

User

M2

M1

M
o
d
e
l
tr

a
n
s
fo

rm
a
ti
o
n
s

Hypothesis Design

Platform Environment Property Concept Task Workspace Interactor Program

adhoc UI

 programming

Model Driven Engineering of Rigid User Interfaces

Towards Model Driven Engineering of Plastic User Interfaces

M1-TskM1-CptM1-Plf M1-EnvM1-Usr M1-Ppt

Fig. 2. A Model Driven Engineering framework for the development of UIs. For clarity, map-
pings and transformations are not shown.

The framework makes explicit the two levels, M1 and M2, of the metapyramid
[13]. The top layer corresponds to the M2 level: each package represents a meta-
model. As the reader can see, many facets have to be made explicit comprising design
hypotheses and design decisions. Design hypotheses include the definition of the

194 J.-S. Sottet et al.

target (<user, platform, environment>), the elicitation of required properties (typi-
cally, the quality in use), and the applicative domain in terms of both concepts and
user tasks. Design decisions cope with the structure of the UI in workspaces, its ren-
dering with interactors, and its coding as an executable/interpretable program.

The models representing a specific interactive system (e.g., HHCS in Figure 1c)
belong to the M1 layer. The set of columns represent different points of view on a
same UI. In a given column, all models conform to [13] the same metamodel. A line
is the result of a (reverse) engineering step. The framework makes explicit the need
for revising models during the engineering process to fit in new constraints. For in-
stance, an initial task model (M1-Tsk) might be tuned into another version (M1-Tsk')
for replacing a tasks interleaving (Figure 1a) with a sequence (Figure 1b) due to a too
small screen size.

3.2 (Meta)Models

Metamodels are keys to Model Driven Engineering. To be productive, each model
must be accompanied with a precise and explicit metamodel. Otherwise the model
cannot be interpreted and transformed by a machine. As historically speaking, the
backbone of model-based approaches was limited to the domain and design models,
their metamodels are of course more advanced than the innovative metamodels of
target (M2-User, M2-Platform, M2-Environment) and properties (M2-Property).
Figure 3 introduces very basic metamodels for demonstrating the framework on the

Fig. 3. Models conform to Metamodels for the UI (M1-Program) presented in Fig1c. For clar-
ity, few mappings (at the M2 level only) are shown.

 Towards Model Driven Engineering of Plastic User Interfaces 195

case study depicted in Figure 1c. The concepts (M1-Concept) are limited to the
notions of "home", "room" and "temperature". They are written as an UML class
diagram. The task model (M1-Task) decomposes the root task "control the tempera-
ture at home" in first "specify the room" then "set its thermostat". A workspace is
created per task (M1-Workspace), and the navigation between workspaces complies
with the task decomposition. At the interactor level (M1-Interactor), the root task is
mapped to a window that contains the two panels corresponding to the sub-tasks. The
selections (room and temperature) are done through combo boxes whilst a label
makes observable the temperature unit. The program model (which metamodel
describes the HTML language) is not shown.

Obviously, metamodels are connected together. For clarity, few links are drawn in
Figure 3. They express that:

• Tasks may manipulate concepts (mapping between M2-Concept and M2-Task).
For instance, the task "control the temperature at home" manipulates the concept of
"home";

• Tasks are performed in workspaces which navigation may be driven by the opera-
tors between tasks (mapping between M2-Task and M2-Workspace);

• Tasks, workspaces and concepts are rendered by interactors (mappings between
M2-Task, M2-Concept, and M2-Interactor).

3.3 Mappings and Transformations

With metamodels, mappings and transformations are the cornerstones of MDE. With-
out them, all the models would be isolated. On the contrary, the idea is to incremen-
tally transform abstract models (Platform Independent Models, PIM in MDE jargon)
into Platform Specific Models (PSM). This is obviously an over simplification.
Monolithic code generators are not suited for advanced UIs. An alternative comes
from libraries of small composable and extensible transformations. The designer se-
lects and if necessary tunes the appropriate transformations. If no transformation is
appropriate, a new one can be written thanks to transformation languages. It can then
be added to a library for further use. In this way, expertise can be captured and pack-
aged into transformation libraries.

Quite often, transformation engines are associated to specific modeling environ-
ments based on a given set of metamodels for UI development. This is the case for
TransformiXML in the UsiXML environment [15]. While this kind of approaches is
worth, it is specific to UI development. It does not cover the whole software engineer-
ing process.

The core idea of our approach is to use generic MDE techniques and extensive li-
braries of metamodels. This approach is being investigated in the Zooomm project
[23]. While emerging standards for expressing MDE transformations are under active
development (e.g. QVT), we are investigating the appropriateness of the ATL generic
MDE transformation language [3] for plasticity. The following piece of code is an
example of transformation written in ATL based on the metamodels of Figure 3. It
describes very simple rules transforming tasks (M1-Task) into workspaces (M1-
Workspace):

196 J.-S. Sottet et al.

• The rule TaskToSpace creates one workspace w per user task t. The workspace
takes the name of the task;

• The rule OrOperatorToSequence applies to the task model. It transforms all OR
operators o between two user tasks (o.leftTask and o.rightTask) into two sequence
operators (from o.motherTask to o.leftTask, and o.leftTask to o.rightTask).

module M2TaskToM2Workspace {
 from M1Task : M2Task
 to M1Workspace : M2Workspace
 -- One workspace per task
 rule TaskToSpace {
 from t : M2Task!Task
 to w : M2Workspace!Space (
 name <- t.name)
 }
 -- OrOperator to SequenceOperators
 rule OrOperatorToSequence{
 from o : M2Task!BinaryOperator (
 o.name = "or"
)
 to motherToLeft : M2Workspace!Sequence (
 origin<- [TaskToSpace.w]o.motherTask,
 destination<-[TaskToSpace.w]o.leftTask)
…

As pointed out by the MDE framework, mappings and transformations must be fur-
ther explored to convey both their validity domain (i.e., the contexts of use in which
they make sense) and their rationale (e.g., the properties they preserve). This is neces-
sary for promoting transformations libraries, and envisioning their use at runtime.
More generally, this vision of prefabricated hand-made models, selected, transformed,
and linked at runtime is the approach we promote for supporting a full plasticity.

4 From Multi-targeting to Plasticity

The "no limit" vision of ubiquitous computing compels to open approaches capable of
adapting the UI to unforeseen contexts of use. Services discovery calls for this same
openness. However, experience shows that on the fly generated UIs do not compete
with the quality of "hand made" UIs. As a result, a mix of prefabrication and creation
on the fly rises as a valuable approach. The milestones are: ecosystems for an exten-
sive use of productive models, a mix of open and close adaptations, and a meta-UI for
providing the end user with the observability and control of plasticity.

4.1 Towards Ecosystems

An ecosystem refers to the complex of organisms and their environment interacting as
a unit. By analogy, plastic interactive systems and the surroundings in which they
evolve form an ecosystem, i.e., an islet in which physical and digital resources are
borrowed and lent. The metaphor of octopuses that cling to rocks may be taken for
conveying the opportunistic deployment of plastic interactive systems among the
available resources. An octopus can stick to a unique rock, or on the contrary take

 Towards Model Driven Engineering of Plastic User Interfaces 197

benefit from its elasticity to spread on a set of rocks. Its deployment depends on the
surroundings (the topology, other organisms, undercurrents, etc.). The approach we
promote for enabling this full plasticity takes advantage of the MDE framework but
goes one step further: the deployment of the interactive system is finer described, its
evolution is integrated, and models and mappings have an existence at runtime.

As explained in [9], the key activities in software architectural design include:
functional and modular decompositions, functions allocation to modules, processes
identification, mapping modules with processes and mapping processes with proces-
sors. From a plasticity perspective, adaptation may change both the identification of
software architecture elements (functions, modules, processes and processors) and
their mappings (functions and modules, modules and processes, processes and proces-
sors). Typically, when a PDA arrives, the availability of this new processor may trig-
ger a reshuffling of any element and/or mapping, for instance a migration. Yet, the
framework is limited to the UI perspective (it does not take into account the func-
tional core) and covers neither the modules nor the processes (the UI is directly
mapped on the platform). This calls for an extension of the framework to integrate the
functional, modular and coordination structures [9]. The physical structure [9] re-
quires more advanced platform and environment models. This is challenging as plat-
form and environment tend to blend together [2]. For instance, augmented tables and
rain curtains may serve as display surfaces. As a consequence, the physicality of an
entity (physical, digital and spiritual) and its role become central and might be mod-
eled [11].

As pointed out in CAMELEON, additional metamodels are required for modeling
the transformation of the interactive system when the context of use changes.
CAMELEON distinguishes the evolution and transition models. Whilst the evolution
model prescribes the reaction to perform in case of change of context of use, the tran-
sition model deals with the continuity of interaction for accompanying the end user in
the change. Pick and Drop [21] provides an example of transition: yellow lines are
projected on the table to make observable the platform to which the UI is migrating.

Thus, an interactive system becomes a "cobweb" made of interconnected models.
For instance, the combo-box "Living room" in Figure 3 knows to which task it corre-
sponds (i.e., "specify the room"). If this task t is optional, then a strategy may be to
suppress t if the user shrinks the window. Suppressing t will be "simply" done by
deleting all the interactors that are mapped on t. As shown in [11], this approach is
powerful for reasoning about UIs. Traditional usability properties such as observabil-
ity [1] and more advanced properties such as distribution, replication and migration
can be formally defined and checked [11].

4.2 Towards a Mix of Close and Open Adaptation

Close-adaptiveness refers to the ability of an interactive system to handle a set of
contexts of use alone. A close adaptive interactive system embeds mechanisms for
sensing the context of use, detecting the need of adaptation, computing and executing
the most appropriate reaction. The reaction may be dictated by an internal evolution
model or computed on the fly. In the opposite, open-adaptiveness makes reference to
adaptation processes that are taken over by tier components, for instance the DMP
middleware [2]. To that end, the interactive system provides the world with manage-

198 J.-S. Sottet et al.

ment mechanisms: self-descriptive meta-data (such as the current state and the ser-
vices it supports and requires), and the methods to control its behavior such as
start/stop and get/set-state. Active models are a good option for a meta-description at
runtime.

Between these two extremes of full close and full open adaptations, hybrid alloca-
tions distribute the four steps of the adaptation process (sensing the context of use,
detecting the need of adaptation, computing and executing the reaction) in a slinky
way to either the interactive system or tier components. Typically, if the interactive
system does not embed all the components necessary for its adaptation, then an exter-
nal components manager may be used to retrieve existing reusable components in a
components storage [8]. To do so, components are self-descriptive: they indicate the
function they support, the context of use they require, the properties they satisfy, etc.
Obviously, MDE approach is fine for such a metadescription.

4.3 Towards a Meta-user Interface

From the end user perspective, the future heads for interactive spaces that harmoni-
ously combine the physical space, the computing, networking and interaction re-
sources available at this place and the digital world [2]. Meta-user interfaces (meta-
UI) will be to interactive spaces what the desktop is to conventional workstations.
They will bind together the activities that can be performed within the interactive
space and provide users with the means to configure, control and evaluate the state of
the space. Typically, the interaction techniques used to couple two surfaces, detach
part of the UI, migrate UIs and accompany the end user in the change will be part of
the meta-UI. Dash styles and scissors may convey the detachability of UIs elements;
polylines may afford their tearability (the detachment is possible but not recom-
mended); magnets could solve the dropping and reattachment of UIs elements, etc.
Such techniques are nothing else than the UI of the MDE revised framework: any
model, any mapping, any transformation should be under the control of the end user.

5 Conclusion

Models are not new in HCI. First attempts focused on full automatic generation of
UIs, but the quality of both code and usability was poor. Moreover, the use of quite
monolithic code generators made impossible the UIs customization and the integra-
tion of specific heuristics based on application domains. Finally, existing environ-
ments were not designed with interoperability in mind.

The approach presented in this paper is quite different. Instead of focusing on the
UI only, general MDE techniques are investigated. The key idea is to merge the ex-
perience of both MDE and HCI communities. Instead of developing specific model
based tools such as transformation languages for HCI, reusing emerging MDE tech-
nologies is promising. First versions might not be fully suited to UI development
specificities, but if this is the case, this would lead to new requirements for MDE.

More generally, let us remember the unifying feature of the approach: HCI and
MDE, design time and run time, remolding and redistribution. This last point is quite
innovative as migration is considered as a quite heavy development process in the
MDE community.

 Towards Model Driven Engineering of Plastic User Interfaces 199

Acknowledgements

This work has been supported by the SIMILAR European Network of Excellence.

References

1. Abowd G., Coutaz J., Nigay L., "Structuring the Space of Interactive System Properties",
Proceeding of the IFIP, 1992.

2. Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G. CAMELEON-RT: A Soft-
ware Architecture Reference Model for Distributed, Migratable, and Plastic User Inter-
faces, Lecture Notes in Computer Science, Volume 3295 / 2004, Ambient Intelligence:
Second European Symposium, EUSAI 2004, Markopoulos P., Eggen B., Aarts E. et al.
(Eds), Springer-Verlag Heidelberg (Publisher), ISBN: 3-540-23721-6, Eindhoven, The
Netherlands, November 8-11, 2004, pp 291-302.

3. Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui., J. "First Experiments with the ATL
Transformation Language: transforming XSLT into Xquery", in OOPSLA Workshop,
Anaheim California USA, 2003.

4. Bouillon, L., Vanderdonckt, J., Retargeting Web Pages to other Computing Platforms,
Proceedings of IEEE 9th Working Conference on Reverse Engineering WCRE'2002
(Richmond, 29 October-1 November 2002), IEEE Computer Society Press, Los Alamitos,
2002, pp. 339-348.

5. Calvary, G., Coutaz, J., Thevenin, D. A Unifying Reference Framework for the Develop-
ment of Plastic User Interfaces, Proceedings of 8th IFIP International Conference on Engi-
neering for Human-Computer Interaction EHCI’2001 (Toronto, 11-13 May 2001), R. Lit-
tle and L. Nigay (eds.), Lecture Notes in Computer Science, Vol. 2254, Springer-Verlag,
Berlin, 2001, pp. 173-192.

6. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Souchon, N., Bouillon, L. Vander-
donckt, J. Plasticity of User Interfaces: A Revised Reference Framework, First Interna-
tional Workshop on Task Models and Diagrams for User Interface Design
TAMODIA'2002, Bucarest, 18-19 July 2002, pp 127-134.

7. Calvary, G., Coutaz, J., Dâassi, O., Balme, L., Demeure, A. Towards a new generation of
widgets for supporting software plasticity: the « comet », EHCI-DSVIS'2004, The 9th
IFIP Working Conference on Engineering for Human-Computer Interaction Jointly with
The 11th International Workshop on Design, Specification and Verification of Interactive
Systems, Bastide, R., Palanque, P., Roth, J. (Eds), Lecture Notes in Computer Science
3425, Springer, ISSN 0302-9743, Hamburg, Germany, July 11-13, 2004, pp 306-323.

8. CAMELEON (Context Aware Modelling for Enabling and Leveraging Effective interac-
tiON) project: http://giove.isti.cnr.it/cameleon.html.

9. Coutaz, J. Architectural Design for User Interfaces; The Encyclopedia of Software Engi-
neering, J. Marciniak Ed., Wiley & Sons Publ., seconde édition, 2001.

10. Coutaz, J., Lachenal, C., Dupuy-Chessa, S. Ontology for Multi-surface Interaction. Proc.
Interact 2003, M. Rauterberg et al. Eds, IOS Press Publ., IFIP, 2003, pp.447-454.

11. Demeure, A., Calvary, G., Sottet, J.S., Vanderdonckt, J. A Reference Model for Distrib-
uted User Interfaces, International Workshop on Task Models and Diagrams for User In-
terface Design, September 2005, Gdansk, Poland, pp 79-86.

12. Favre J.M., "Foundations of Model (Driven) (Reverse) Engineering", Dagsthul Seminar
on Language Engineering for Model Driven Development, DROPS,
http://drops.dagstuhl.de/portals/04101, 2004.

200 J.-S. Sottet et al.

13. Favre J.M., "Foundations of the Meta-pyramids: Languages and Metamodels", DROPS,
http://drops.dagstuhl.de/portals/04101, 2004.

14. Limbourg, Q. "Multi-path Development of User Interfaces", PhD of University of Lou-
vain La Neuve, Belgium, 2004.

15. Limbourg Q., Vanderdonckt J., Michotte B., Bouillon L., Lopez-Jaquero, V., "UsiXML: a
Language Supporting Multi-Path Development of User Interfaces", Working Conference
on Engineering for Human-Computer Interaction, 2004.

16. Mori G., Paternò F., Santoro C. "Design and Development of Multidevice User Interfaces
through Multiple Logical Descriptions" IEEE Transactions on Software Engineering, Au-
gust 2004.

17. Myers B., Hudson S.E., Pausch R. "Past, Present, and Future of User Interface Software
Tools", Transactions on Computer-Human Interaction (TOCHI), Vol 7, Issue 1, 2000.

18. Paganelli, L., Paternò, F. A Tool for Creating Design Models from Web Site Code, Inter-
national Journal of Software Engineering and Knowledge Engineering, World Scientific
Publishing 13(2), pp. 169-189, 2003.

19. Paternò, F. ConcurTaskTrees: An Engineered Notation for Task Models, Chapter 24, in
Diaper, D., Stanton, N. (Eds.), The Handbook of Task Analysis for Human-Computer In-
teraction, pp. 483-503, Lawrence Erlbaum Associates, 2003.

20. Planet MDE, "A Web Portal for the Model Driven Engineering Community"
http://planetmde.org.

21. Rekimoto, J.: Pick and Drop: A Direct Manipulation Technique for Multiple Computer
Environments. In Proc. of UIST97, ACM Press, (1997) 31-39.

22. Thevenin, D., Coutaz, J., Calvary, G. A Reference Framework for the Development of
Plastic User Interfaces. In Multi-Device and Multi-Context User Interfaces: Engineering
and Applications Frameworks. Wiley Publ., H. Javahery Eds, 2003.

23. Zooomm, "Zooomm, The International ZOO Of MetaModels, Schemas and Grammar for
Software Engineering”, http://zooomm.org.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 201 – 209, 2006.
© Springer-Verlag Berlin Heidelberg 2006

UML Model Mappings for Platform Independent
User Interface Design

Tim Schattkowsky1 and Marc Lohmann2

1 C-LAB, Fürstenallee 11, 33102 Paderborn, Germany
tim@c-lab.de

2 University of Paderborn, Department of Computer Science, Warburger Str. 100,
33098 Paderborn, Germany

mlohmann@uni-paderborn.de

Abstract. While model based design of platform independent application logic
has already shown significant success, the design of platform independent user
interfaces still needs further investigation. Nowadays, user interface design is
usually platform specific or based on C-level cross-platform libraries. In this
paper, we propose a MDA like design approach for user interfaces based on the
transformation of UML models at different levels of abstraction. This enables
platform independent design of user interfaces and a clear separation of UI and
application logic design while enabling full use of native controls in the actual
user interface implementation.

1 Introduction

Today, user interface development is still dominated by platform-dependent GUI
builders like those provided by the leading development environments. These tools
are suitable for building prototypes and real UIs at a very low level of abstraction.
Normally, they can only be used to design a user interface for one specific platform
and one specific programming language. Usually a user interface designer who devel-
ops a user interface for an application has to understand the relationship between the
different elements of his user interface, the implementation specific classes of the
application and the specific characteristics of a target platform. Furthermore, lack of
abstraction in UI design often forces large parts of the UI implementation in the re-
sponsibility of the software engineer rather than enabling the UI designer to work
concurrently.

Nowadays, these problems are getting even more important as contemporary appli-
cations are developed for different target platform. Modern information and commu-
nication systems have to present their UI on different devices with different capabili-
ties. Thus, providing individual user interfaces for different target platforms becomes
an increasing burden as the number of platforms as well as the size of the applications
increases.

UI Models can provide an abstraction from the detailed problems of the implemen-
tation technologies and specific platform characteristics and can allow user interface
designers to focus on the conceptual tasks. In the software engineering community
model-driven development has become very successful. Especially the diagrams of
the industry standard UML (Unified Markup Language) [5] have become very suc-

202 T. Schattkowsky and M. Lohmann

cessful and accompanying software development tools are available. Models are an
established part of modern software development processes and thus a manual im-
plementation of user interfaces becomes more and more undesirable. Furthermore,
designing the interfaces on a higher abstraction level allows a clear separation of UI
and application logic design. Thus, using models we can improve both productivity
and software quality.

The problem with using models for the development of user interfaces is that we
still face the problem that we have to generate user interface implementations for
different platforms. Again, we can find a solution for this problem in the field of soft-
ware engineering. The OMG has proposed the Model Driven Architecture (MDA) [6]
that allows for deriving code from stable models even if the underlying infrastructure
shifts over time. The idea is to distinguish between platform-independent models
(PIMs) that are refined into platform-specific models (PSMs) which carry annotations
for the generation of platform-specific code.

We propose an approach that adapts the MDA to the development of user inter-
faces. Our approach starts with the development of a platform independent model that
describes the information to be displayed on a user interface. Designing the displayed
information on such a high abstraction level allows for a complete separation of the
user interface and application logic design. This platform independent model is re-
fined at multiple levels to a platform specific model from which can be employed to
generate an implementation for a specific target platform. The transformation steps
between the different models are described by graph transformation rules.

The remainder of this paper is organized as follows: The next section discusses re-
lated work before section 3 introduces our approach. Finally, section 4 closes with a
conclusion and future work.

2 Related Work

UI design has been subject to research for quite some time now. However, model
based methods are largely discussed in the context of XML.

The User Interface Markup Language (UIML) [1] is an XML language that aims at
providing a meta language for the declarative description of UIs. UIML maps abstract
UI elements to actual platform widgets and describes events on these elements. The
mapping is based on identifiers with no additional semantics and must be done by the
application. UIML does not provide a generic mapping approach from a single ab-
stract specification to different platforms. Instead, it is not independent from the target
platform and the event mapping mechanism is quite limited. This latter is addressed
by [2] where a similar UI description is complemented by more sophisticated behav-
ior specification. However, this is not comparable to the expressiveness of UML’s
behavior models.

The User interface eXtensible Markup Language (UsiXML) [4] addresses the need
for more abstraction in UI design, but still in an XML context. However, it introduces
the idea to create an abstract UI model based on a domain model that is later refined
to a concrete UI model consisting of existing widgets. This model is the basis for
generating the final UI implementation. The whole approach is based on XML and
graph transformations [3]. It is not aligned with the UML or behavior modeling in
general. However, the approach could produce UML compliant output and a UI de-
sign tool based on the approach is available [11].

 UML Model Mappings for Platform Independent User Interface Design 203

Finally, [7] discusses UI modeling using the UML. Different levels of abstraction
exist in the form of a fixed simple model for abstract UIs that are the foundation for
manual refinement of the abstract model to the actual application model.

3 Design Approach

Our approach is driven by the idea to allow for a complete separation of the UI and
application logic design. As in MDA, our approach starts with the creation of a plat-
form independent model. Before generating a platform specific UI implementation,
the designer can configure the UI on multiple levels of PIMs, each independent of a
target platform. From the most detailed PIM we can generate a platform specific UI
implementation (see Fig. 1). Transformation rules between the different models facili-
tate tool support for our UI development approach.

Information Retrieval Model (IRM)

Actual User Interface Implementation

Abstract User Interface Model (AUIM)

View Composition

Code Generation

View Composition Model (VCM)

Concrete User Interface Model (CUIM)

Transformation Rules

Abstract
UI Elements

Model
(AUIEM)

Information Model (IM)

Transformation Rules

Information
Metamodel

Platform
Model
(PM)

Implementation Language

Information
Retrieval
Definition

Platform
 D

ependent
Platform

 Independent

Fig. 1. Platform Independent UI Design Flow

3.1 Information Model

Our basic PIM is the Information Model (IM). This class diagram provides an abstract
definition of the information and their logical dependencies that should be presented
and modified through a UI. It is undistorted by technology information. Therefore, it
allows business experts to ascertain much better than with a platform specific model
and it provides an early starting point for user interface design.

204 T. Schattkowsky and M. Lohmann

Connection

User

+ «editable» Login: String
+ «editable» Name: String = ""
+ «editable» Password: String
+ «editable» Description: String = ""

Port

+ «creatable» Number: Integer
+ «creatable» UseSSL: Boolean

Group

+ «editable» Name: String

Folder

+ «editable» URI: String
+ «editable» BasePath: String

Permissions

+ «editable» Write: Boolean = false
+ «editable» Read: Boolean = false
+ «editable» List: Boolean = false
+ «editable» Execute: Boolean = false

ContentHandler

MimeType

+ «editable» FileExtensions: String [0..* ordered]

WebContentHandler

+ «editable» DefaultDocumentName: String [0..* ordered]

Request

+ Method: String

Response

+ Code: Integer
+ «editable» CloseConnection: Boolean

Message

+ Number: Integer
+ TimeStamp: DateTime

Body

+ Length: Integer

InternetAddress

+ Hostname: String
+ IPAddress: Integer [1..4 ordered]

«root»
Server

1

*

«deletable»

*

*

«editable»

*

* «editable» *

* «editable» *

«editable»

*

*

«editable»
*

*

0..1

10..1

«editable»

*

0..1

1

«editable»

*

«editable»

*

«editable»

*

Fig. 2. Web Server Configuration UI Example - Information Model

 UML Model Mappings for Platform Independent User Interface Design 205

Figure 2 shows the IM of an administration interface of a simple Web server. The
Web Server may have a ContentHandler at a certain Port to which a Connection can
be made by a User to access the content of a Folder if he has the necessary Permis-
sions according to his Group memberships. Furthermore, the pending Requests and
Responses are represented.

The associations and attributes in the IM are marked to indicate different kinds of
data. Generally, the stereotypes <<readonly>> and <<editable>>, are used to mark
associations and attributes as only displayable or editable. Attributes marked <<edit-
able>> may have their values altered at runtime while such associations may have
links added and removed. If an association is marked as <<deletable>>, links may
only be removed in contrast to attributes, which may instead be marked as <<creat-
able>> indicating that their value may only be set by the constructor, i.e., when creat-
ing a new instance. If no stereotype is provided for an attribute or association, <<re-
adonly>> is assumed.

The data types used by the attributes in the IM are fixed and range from primitive
types (e.g. Integer, Float) to complex types defined by classes. Operations may be
defined to interface application logic that cannot be captured by the data model, e.g.,
to send explicit messages to the application aside from persistent data.

The whole IM is a composition tree starting by a <<root>> class whose only in-
stance represents the whole systems. This enables inference of aggregations to auto-
matically generate all levels of abstraction from the IM without the need for user
interaction. However, usually this is not desirable and the UI designer wants to pro-
vide these decisions manually at each level of abstraction.

3.2 Abstract User Interface Model

The PIM at the next level is the Abstract User Interface Model (AUIM). It includes
some aspects of UI technology event though platform-specific details are absent.
Essentially, the AUIM combines the data from the IM with abstract UI elements to
access and manipulate that data. We have developed a metamodel –Abstract User
Interface Elements Model (AUIEM)–that defines different UI elements at an abstract
level in terms of related data sets and triggers. This Metamodel can be extended to
project-specific needs by using the UML profiling mechanism.

Figure 3 shows an excerpt from the AUIEM employed in our example. This ex-
cerpt defines the Choice UIElement for selecting one Item from a Set. Furthermore, it
provides the necessary elements to employ the Choice to select an Instance of a Class
or a Link from a Property.

These elements are used in a set of graph transformation rules [8] that facilitate
tool support for our approach. Each rule consists of a left hand side (subgraph of the
IM) and a right hand side (subgraph of the respective AUIM to be created). In Fig. 4
an <<editable>> association is mapped to a set of UIElements for deleting and adding
links on the association. The basic intuition is that every object or link, which is only
present in the right hand side of the rule, is newly created and every object or link,
which is present only in the left hand side of the rule, is being deleted. Objects or
links which are present on both sides are unaffected by the rule.

206 T. Schattkowsky and M. Lohmann

«UIElement»
Set

«UIElement»
FilteredInstances

«UIElement»
FilteredLinks

Type

Class

Property

«UIElement»
Item

«UIElement»
Link

«UIElement»
Choice

«UIElement»
Instance

«UIElement»
KillLinkTrigger

«UIElement»
UITrigger

«UIElement»
AddLinkTrigger

*1

+choices

+associationProperty

* 1

+target

* 1

+link

0..1

0..1+chosen

1

*
+ownedAttribute*

1+type

*1

+property

*1
{redefines type}

+class

*1

+type

Fig. 3. Excerpt from the AUIEM used for the Example Transformations

The application order of rules is not determined. Furthermore, different rules with
the same left-hand side may exist to provide alternative UI elements for the same
structure. The actual choice of the desired mappings is an interactive design decision
that can be supported by tools. However, complete generation of the AUIM based on
the rules is possible. This could be interesting in the context of an UI style defining
the actual mappings to be applied.

 UML Model Mappings for Platform Independent User Interface Design 207

<C> :Class

:Class

:Property

:Association

<P> :Property

:Extension

:Stereotype

name = "editable"

:ExtensionEnd

«UIElement»

:Choice

<P> :Property

L R

«UIElement»

:KillLinkTrigger

«UIElement»

:AddLinkTrigger

«UIElement»

:Choice

<C> :Class

«UIElement»

:FilteredInstances

«UIElement»

:FilteredLinks

«UIElement» «UIElement»

<t> :Type <t> :Type

→
+chosen

+choices

+class

+target

+chosen

+memberEnd

+memberEnd

+choices

+Link

+type+type

Fig. 4. IM-AUIM Mapping Rule Example

3.3 View Composition Model

The most detailed PIM is the View Composition Model (VCM). It partitions the
AUIM into several overlapping and navigable Views. Each of these Views provides
the scope of a Class instance for the contained UIElements. Thus, master-detail-like
views can be implemented. Furthermore, navigation along Links can be defined. Fi-
nally, Views can be composed. Each contained view either inherits the scope from the
containing view or has the scope provided by links selected in the containing View. A
root View must be defined. Views enable the purposeful selection of different plat-
form UI elements for the same UIElement depending on the overall context of a View
while deriving the Concrete User Interface Model (CUIM) representing the actual
platform dependent user interface.

208 T. Schattkowsky and M. Lohmann

3.4 Concrete User Interface Model

The CUIM is defined by the Platform Model (PM), which contains a set of available
native UI elements on the target platform. Like in the AUIEM, these elements are
combined with the elements form the Information Metamodel. Thus, the translation
between these models is based on the substitution of the UIElements from the
AUIEM by native UI elements from the PM.

The creation of the CUIM not only involves mapping the UIElements to actual UI
controls (widgets) on the target platform, but also providing additional layout and
decoration. A GUI builder tool should support the whole task where the designer may
handpick individual mappings for UIElements. Transformation rules similar to the
rules for the IM-AUIM transforamtion can be employed here. These rules map
UIElements and their context to attributed and annotated instances of platform spe-
cific UI classes.

The resulting CUIM has to be complemented by the Information Retrieval Model
(IRM) describing how the data processed by the UI is actually accessed. The IRM is a
behavioral UML model (e.g. an activity diagram) giving an operational description
how to retrieve the IM elements from the actual implementation. Thus, the IRM func-
tions as an abstraction layer between the UI and the application similar to database
abstraction layers. However, the actual implementation of the IRM may vary and is
not discussed here.

To create an Actual User Interface Implementation, complete code generation takes
place combining the IRM and CUIM information to a working platform dependent
UI. Again, a set of transformation rules is used here.

4 Conclusion and Future Work

In this paper, we have proposed a model-driven design approach for user interfaces
based on the UML. This approach allows for concurrent development of UI and ap-
plication logic by starting from a common platform independent information model.
Furthermore, due to our code generation mechanisms we can support different target
platforms from the same abstract model. The approach has been outlined and dis-
cussed on the context of a real world Web server administration interface example.

We are currently implementing the results of the manual execution of our approach
for this example. Future work will include a prototype implementation in the context
of our work in the fields of executable models [10] and concurrent software
components [9].

References

1. Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams, S. M., Shuster, J. E.: UIML:
an appliance-independent xml user interface language. In Computer Networks 31, Elsevier
Science, 1999

2. Bleul, S., Schäfer, R., Müller, W.: Multimodal Dialog Description for Mobile Devices. In
Proc. Workshop on XML-based User Interface Description Languages at AVI 2004, 2004.

 UML Model Mappings for Platform Independent User Interface Design 209

3. Limbourg, Q., Vanderdonckt, J.: Addressing the Mapping Problem in User Interface De-
sign with UsiXML. In Proc. of 3rd Int. Workshop on Task Models and Diagrams for user
interface design TAMODIA’2004, ACM Press, New York, 2004.

4. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez-Jaquero, V.: UsiXML:
a Language Supporting Multi-Path Development of User Interfaces. In Proc. EHCI-
DSVIS'2004, 2004.

5. Object Management Group, The: Unified Modeling Language: Infrastructure. OMG
ad/2004-10-02, 2004.

6. Object Management Group, The: Model Driven Architecture (MDA). OMG ormsc/2001-
07-01, 2001.

7. Pinheiro da Silva, P., Paton, N.: User Interface Modelling with UML. In Proc. of the 10th
European-Japanese Conference on Information Modelling and Knowledge Representation,
2000.

8. Rozenberg, G. et al (eds.): Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1. World Scientific, Singapore, 1997

9. Schattkowsky, T., Förster, A: A generic Component Framework for High Performance
Locally Concurrent Computing based on UML 2.0 Activities. In Proc. 12th Annual IEEE
International Conference and Workshop on the Engineering of Computer Based Systems
(ECBS), 2005.

10. Schattkowsky, T. Müller, W.: Model-Based Design of Embedded Systems. In Proc. 7th
IEEE International Symposium on Object-oriented Real-time distributed Computing
(ISORC), 2004.

11. Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces of In-
formation Systems. In Proc. of 17th Conf. on Advanced Information Systems Engineering
CAiSE'05 (Porto, 13-17 June 2005), O. Pastor & J. Falcão e Cunha (eds.), Lecture Notes
in Computer Science, Vol. 3520, Springer-Verlag, Berlin, 2005.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 210 – 216, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Workshop on Models for Non-functional Properties of
Component-Based Software – NfC

Geri Georg1, Jan Øyvind Aagedal2, Raffaela Mirandola3, Ileana Ober4, Dorina Petriu5,
Wolfgang Theilmann6, Jon Whittle7, and Steffen Zschaler8

1 Colorado State University, Computer Science Department, Fort Collins, USA
2 SSINTEF ICT and Simula Research Laboratory, Oslo, Norway

3 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy
4 IRIT - Université Paul Sabatier, France

5 Carleton University, Systems and Computer Engineering Dept., Ottawa, Canada
6 SAP Research, Belfast, UK

7 George Mason University, Fairfax, USA
8 Technische Universität Dresden, Fakultät Informatik, Dresden, Germany

Abstract. Developing reliable software is a complex, daunting, and error-prone
task. Many researchers are interested in improving support for developers
creating such software. Component-based software engineering has emerged as
an important paradigm for handling complexity. In addition, using models to
raise the level of abstraction when reasoning about systems, is another
technique to lower complexity. The goal of the NfC series of workshops is to
look at issues related to the integration of non-functional property expression,
evaluation, and prediction in the context of component-based software
engineering and find the best techniques to deal with non-functional properties
in a model based approach. Approaches need to include semantic issues,
questions of modeling language definition, and also support for automation,
such as analysis algorithms, MDA-based approaches, and tool-support for
refinement steps. Since models are only really meaningful if used in the context
of a software development process, the workshop also welcomes work in this
area. The aim of the 2005 NfC workshop was to bring together practitioners and
academics that are currently working with these topics and highlight the
ongoing solutions and problems still remaining. The 2005 NfC workshop was
organized as two half-day sessions: The morning session was dedicated to
presentations and discussion of papers, followed in the afternoon by working
sessions. The topics of the working sessions were derived from the morning
discussions, and from topics discussed in the 2004 NfC workshop.

1 Introduction

The workshop on Models for Non-Functional Properties of Component-Based
Software (NfC Workshop) was held at MoDELS 2005, and was the second such
workshop held in conjunction with the UML series of conferences. Four papers were
presented in the morning, each followed by discussion and questions. Discussion
topics were collected during this time, and grouped into four categories for

 Workshop on Models for Non-functional Properties of Component-Based Software 211

small-group discussion in the afternoon. We also reviewed the discussion outcomes
from last year’s workshop, and added them to the discussion topics for the afternoon.
We noted that we were continuing discussion in some areas from last year, while
others no longer appeared to be issues. In particular the area of non-functional
property (nfp) conflict identification and resolution is still very much a concern.

The workshop held at UML 2004 [1] produced results in four areas. These are
summarized below:

• In the area of domain limits we agreed that by starting at the requirements stage
and moving toward code, functional properties are identified first, and non-
functional properties are identified later. Properties are not functional or non-
functional by themselves, but rather depend on the point of view, or intent of the
system.

• In the area of non-functional property support, we agreed that they need to be
considered throughout the entire development process. We also noted that for
verification purposes, many non-functional properties require separate analysis
models to be constructed and analyzed. The results of such analyses need to feed
back into the development process. Most of the time, the properties are verified at
several steps of the development process and thus at several levels of abstraction.
Analysis results and models are usually not maintained over functional refinement
steps, but rather must be recreated at each different level of abstraction.
Representation of non-functional properties is often different at different stages in
the development process. For example, properties are expressed very explicitly in
the requirements, but can be represented by certain structures in the architecture, or
by a middleware configuration. This requires sophisticated notions of refinement
and traceability.

• We also discussed resources as components versus these being two different
concepts. The general conclusion was that there is no formal difference between
components and resources. However, it may be practical to distinguish them for
hiding implementation details and complexity. They can be distinguished based on
usage, where resources represent an encapsulation of lower-level components. This
issue did not come up at all in the 2005 workshop, and we did not include it in any
discussions at the recent NfC Workshop.

• We identified different composition dimensions. These were: 1) the semantics of
model composition versus composition of e.g. components executing in a container
2) the way in which properties of individual components contribute to the
properties exhibited by the composed system 3) the semantics of composition
when the constituent properties are not orthogonal. Note that the papers presented
at NfC 2005 did not address composition; it remains an open and actively
researched area.

Four papers were presented at the workshop, using the following format. First the
author made a presentation regarding the paper, then a workshop organizer made a
very short presentation of related ideas or questions, then we discussed the paper,
ideas, and questions. This format generated many additional ideas which were
captured for the afternoon discussions.

212 G. Georg et al.

2 Overview of the Papers Presented at the 2005 NfC Workshop

The complete papers and slides presented at the workshop are available on the
workshop website, at http://www.comquad.org/nfc05/. Two of the papers
are also published in this workshop satellite proceedings. This section therefore
presents an overview of the papers.

2.1 Adding Behavior Description Support to COTS Components Through the
Use of Aspects [4]

The authors discuss the need for flexibility when adding new features to reusable
components. They present a method that is based on aspect-oriented techniques to add
such features to COTS components. An example is given for a stack component by
using state machines to describe the various features and their composition. The
paper also discusses the issue of having insufficient behavioural descriptions of COTS
components, and the generally unsatisfactory situation this leaves. There does not
appear to be a systematic way to approach this problem. In fact, this issue led to one
of the afternoon discussions.

2.2 Abstraction-Raising Transformation for Generating Analysis Models [5]

The paper presents a graph grammar based model transformation technique, focused
on abstraction-raising to remove information in a model and to bring it into an
analysable notation. This is accomplished using graph-based transformations coupled
with relational transformations to map from a source UML activity model to Klaper, a
performance analysis language. A brief example is given to demonstrate the graphical
rule-based transformations and mapping to Klaper. Two rules are presented, SEQ and
COND which are defined to transform specific UML activities into the more abstract
concepts needed by Klaper.

2.3 Explicit Architectural Policies to Satisfy NFRs Using COTS [2]

This paper presents an approach to extend MDA to take into account “concern-
specific” non-functional requirements (NFRs). The underlying idea is to exploit
architectural policies and mechanisms, and a multidimensional description of
components to consider a non-functional requirement starting at the architectural
level. The paper describes a framework under development that extends MDA to deal
explicitly with non-functional requirements. The key ideas are: 1) the representation
of concern-specific NFRs using architectural policies, 2) the systematic reification of
policies into mechanisms and 3) a description of the ways in which different
components implement the said mechanism.

2.4 Extending Security Requirement Patterns to Support Aspect-Oriented
Risk-Driven Development [3]

The paper extends previous work of the authors in the area of aspect-oriented risk-
driven development (AORDD), which combines two approaches, risk-driven analysis
and aspect-oriented development, with the purpose of enabling software designers to

 Workshop on Models for Non-functional Properties of Component-Based Software 213

trade off between alternative security design solutions. More specifically, the paper
describes an extension to a security pattern profile that supports AORDD. The paper
starts from a UML profile for security requirement patterns, a profile defined by the
authors previously, which is extended to support aspect-oriented risk-driven
development approach for designing security solutions.

3 Discussions at the 2005 NfC Workshop

We identified four areas to stimulate discussions in the 2005 workshop. These were:

• Technical issues dealing with non-functional properties such as how to obtain a
behavioral description of a component, and what to do when components affect
more than one non-functional property.

• Users and practicality including handling incomplete or imprecise models, and
addressing the gap between architectural levels of abstraction and development.

• Property composition, specifically identifying and resolving conflicts between non-
functional properties.

• Other applications of techniques dealing with non-functional properties such as
creating self-modifying systems.

The resulting discussions actually produced results in six areas: 1) obtaining
information about a component and describing that information, 2) specifying what is
needed in a component, 3) a small discussion on systems development using
components, including legacy systems re-engineering, 4) bridging the abstraction gap
between architecture and development with respect to non-functional properties, 5)
conflict identification and resolution between non-functional properties, and 6) areas
of particular interest for discussions at a future workshop.

3.1 Obtaining Information About a Component

We came to the conclusion that component developers are unlikely to begin
completely characterizing their components in the near future. We therefore need to
identify other methods to characterize component behavior. A first step in this
process is probably to define certain dimensions that need to be described. Some non-
functional properties are fairly well defined and therefore their dimensions have been
identified. Examples of such non-functional properties include security, fault
tolerance, and quality of service (QoS).

Once dimensions are identified, there appear to be only a few viable ways to
determine a component’s characteristics. One is via reverse engineering and the other
is via experimentation and tracing. Interviews with component developers can be used
in conjunction with these methods to characterize component behaviour. Functional
behaviour can then be described using state machines or state charts, while some non-
functional property behaviour must be reported via metrics or benchmarks. It was
generally agreed that some sort of middle-man or institution that compiled and
catalogued this information into a readily available medium (like a TTL book in the
semi-conductor world) would be very useful. The existence and widespread use of

214 G. Georg et al.

such a catalogue could also influence component developers to better characterize the
components they provide.

Describing the non-functional property behaviour of a component goes hand-in-
hand with obtaining information about that behaviour, so we also discussed this issue.
We noted that notations for describing component behaviour will vary, but in all cases
non-functional property behaviour is to some extent dependent on the execution
environment, and the support provided by middleware. We hypothesized that the
internal properties of a component could be described, and then the effect of
middleware support on those properties could be specified. We agreed that the
context or support provided by middleware really had to be understood before it was
possible to reason about non-functional properties.

3.2 Defining What Non-functional Properties Are Needed in a Component

Another topic related to component non-functional property description is specifying
what non-functional properties are needed in a component. We believe demand-
driven models that only describe the necessary properties will be used to specify
components. These models will vary in their type and detail. Examples of the range
of model complexity are simple ATAM or SAM models all the way to UML/state
charts or semantic meta-models. The key will be being able to adequately specify the
required non-functional property behaviour. In some cases, a simple model may need
to be augmented to convey the specification. We again noted that non-functional
properties which have been studied in depth (e.g. security, fault tolerance, and QoS)
will be initially easier to specify since the dimensions involved in characterizing the
property are well defined. In many cases the developer may have to do more work to
adequately specify the component. This specification must be complete with respect
to the developer’s expectations, including expectations about the execution context.
We noted that profiles may be useful in this space, but profiles require that non-
functional properties are described as objects, which may not be possible or feasible
depending on the non-functional property. The new OMG profile on Quality of
Service (QoS) for component software, and QoS Enabled Distributed Objects (Qedo),
may be useful for component non-functional property specification.

3.3 Systems Development Relative to the Non-functional Properties of
Components

We briefly discussed systems development and its relation to the non-functional
properties of components. We noted that there is usually a metaphor used to describe
a system solution, and that component descriptions must be mapped into this higher
level metaphor. The solution metaphor must also identify and describe non-
functional properties. Legacy systems re-engineering presents interesting situations
since often non-functional properties can be removed from legacy code and
middleware components can be used to provide these properties. In some cases it
may not be possible to completely refactor the legacy system, but it may be possible
to reorganize it so that components can provide some non-functional properties. We
discussed the issue of components that provide more non-functional properties than
are strictly needed, and noted that it is often possible to configure components so they

 Workshop on Models for Non-functional Properties of Component-Based Software 215

only provide the desired non-functional properties. In other cases, extra non-
functional properties can be ignored. However, in all cases it is necessary to trace
what non-functional properties of the components are being used and why, so that if
in the future a different component is used, the required non-functional properties are
still included in the system.

3.4 Bridging the Abstraction Gap Between Architecture and Development

We spent quite awhile discussing the abstraction gap between what an architect
decides is needed in a system and what components developers add to a system to
achieve the architectural goals. Several alternatives emerged from our discussion. On
the one hand we discussed mechanisms to bridge the gap between abstract models and
code, and on the other hand we discussed mechanisms to identify portions of code
responsible for implementing various architectural behaviors.

Mechanisms to bridge the gap between abstract models and code include refining
models and then eventually generating code from models, defining policies for
templates to create mechanisms, and using domain-specific solutions to implement
architectural behaviour. Such solutions generally exist within technology domains and
also within non-functional property domains.

Mechanisms to identify code related to architectural behaviour include pattern
searching to find patterns of code often used to implement a behaviour, e.g. caching in
web applications, and using traces to identify code related to particular behaviours.
Architect interviews may also be helpful in determining code that implements a part
of the architecture. Once such areas of code are identified, they can be removed, and
the remaining code can be analyzed further to determine if it is architecturally
consistent with the initial intent of the architects. This ability is especially important
since systems tend to diverge from architectural standards over time. We noted that
finding patterns can be difficult if the pattern is cross-cutting. This observation led to
a discussion regarding the use of aspects. Aspects are one way to represent the design
of a non-functional property and allow it to be integrated into a system design. An
alternative is to use overriding and inheritance to configure and choose between
different non-functional property behaviors.

3.5 Non-functional Property Conflict Identification and Resolution

We discussed non-functional property conflict identification and resolution and noted
that these conflicts usually occur because of underlying conflicts in requirements that
need to be resolved. Luckily, components are often highly configurable and this can
help resolve system non-functional property conflicts. The Kestrel algebraic
specification language was discussed. This language is used to specify and resolve
conflicts in functionality. The Kestrel group is working on adapting the language to
be used in the non-functional property space, and it remains to be seen if they are
successful.

3.6 Future Workshop Topics

Finally, we noted that an area of particular interest for research and discussion for the
next NfC workshop is that of dynamic analysis of non-functional properties, and
changing a running system to effect different non-functional properties.

216 G. Georg et al.

4 Conclusions

The creative environment during the workshop discussions and the interest in the
discussed topics convinced us one more time, how much dealing with non-functional
properties is an open research area. With respect to last year’s edition, we perceived a
gain in maturity of the NfC community towards some issues, while a great deal of
work remains in other areas.

The workshop organizers would like to thank all the participants in this year’s
workshop, and invite you to help organize another workshop on this topic in the
future. Suggestions for topics in the next call for papers, invited talks, and workshop
organization are welcome. Feedback on the usefulness of this workshop is also
welcome.

References

[1] Jean-Michel Bruel, Geri Georg, Heinrich Hussmann, Ileana Ober, Christoph Pohl, Jon
Whittle and Steffen Zschaler: Models for Non-functional Aspects of Component-Based
Software (NfC'04), in: Nuno Jardim Nunes, Bran Selic, Alberto Rodrigues da Silva, et al.
(eds.), UML Modeling Languages and Applications: 2004 Satellite Activities, Springer
2005 (LNCS 3297), pp. 62-66

[2] C. López, H. Astudillo. Explicit Architectural Policies to Satisfy NFRs using COTS
[3] G. Georg, S. Hilde Houmb, D. Matheson. Extending Security Requirement Patterns to

Support Aspect-Oriented Risk-Driven Development
[4] A. Moreira, J.-M. Bruel, and J. Araújo. Adding Behavior Description Support to COTS

Components through the Use of Aspects
[5] A. Sabetta, D. C. Petriu, V. Grassi, R. Mirandola. Abstraction-Raising Transformation for

Generating Analysis Models

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 217 – 226, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Abstraction-Raising Transformation for Generating
Analysis Models

Antonino Sabetta1, Dorina C. Petriu2, Vincenzo Grassi1, and Raffaela Mirandola1

1 University of “Tor Vergata”, Dept. of Informatics,
Systems and Production, Rome, Italy

{sabetta, vgrassi, mirandola}@info.uniroma2.it
2 Carleton University, Department of Systems and Computer Engineering,

Ottawa, ON Canada, K1S 5B6
petriu@sce.carleton.ca

Abstract. The verification of non-functional requirements of software models
(such as performance, reliability, scalability, security, etc.) requires the trans-
formation of UML models into different analysis models such as Petri nets,
queueing networks, formal logic, etc., which represent the system at a higher
level of abstraction. The paper proposes a new “abstraction-raising” transforma-
tion approach for generating analysis models from UML models. In general,
such transformations must bridge a large semantic gap between the source and
the target model. The proposed approach is illustrated by a transformation from
UML to Klaper (Kernel LAnguage for PErformance and Reliability analysis of
component-based systems).

1 Introduction

OMG’s Model Driven Architecture (MDA) promotes the idea that software develop-
ment should be based on models throughout the entire software lifecycle [13]. This
change of focus from code to models raises the need for formal verification of func-
tional and non-functional characteristics of UML software models. Over the years,
many modeling formalisms (such as queueing networks, Petri nets, fault trees, formal
logic, process algebras, etc.) and corresponding tools have been developed for the
analysis of different non-functional characteristics (such as performance, reliability,
scalability, security, etc.). The challenge is not to reinvent new analysis methods tar-
geted to UML models, but to bridge the gap between UML-based software develop-
ment tools and different existing analysis tools.

Each of these analysis models and tools is suited for the evaluation of different
non-functional software properties. In general, an analysis model abstracts away
many details of the original software model, emphasizing only the aspects of interests
for the respective analysis. A transformation whereby a more abstract target analysis
model is generated from a source software model is called here “abstraction-raising”
transformation, as opposed to a “refining” transformation that produces a more de-
tailed target model (such as the transformations used in MDA).

Traditionally, analysis models were built “by hand” by specialists in the field, then
solved and evaluated separately. However, with the change of focus on models
brought by MDA, a new trend started to emerge, whereby software models are auto-

218 A. Sabetta et al.

matically transformed into different analysis models. For example, this kind of ap-
proach was used to obtain a formal logic model for analyzing security characteristics
in [7]. Transformations from UML into different performance models have been sur-
veyed in [1]. Examples of such transformations are from UML to Layered Queueing
Networks in [10, 11], to Stochastic Petri Nets in [2], and to Stochastic Process Alge-
bra in [3]. More recently, a transformation framework from multiple design models
into different performance models was proposed in [17].

Different kinds of analysis techniques may require additional annotations to the
UML model to express, for instance non-functional requirements and characteristics,
or the user's directives for the desired analysis. OMG's solution to this problem is to
define standard UML profiles for different purposes. Two examples of such profiles
are the “UML Profile for Schedulability, Performance, and Time”[14] and "UML
Profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms"[15].

The paper proposes a new approach for developing abstraction-raising transforma-
tions from UML to different kind of analysis models in different formalisms (such as
Petri nets, queueing networks, fault trees, formal logic, etc.) In general, such trans-
formations must bridge a large semantic gap between the source and the target model,
which represent the system at different abstraction levels. The proposed approach is
illustrated by a transformation from UML to Klaper (Kernel LAnguage for PErform-
ance and Reliability analysis of component-based systems) [6].

2 Conceptual Description of the Transformation Approach

The proposed approach combines two methods that, so far, have been used separately
in model transformations: relational and graph grammar-based transformations [5]. In
the relational approach, used in the proposal for the QVT standard [12], the source
and target models are each described by its own metamodel; a transformation defines
relations (mappings) between different element types of the source and target
(meta)models. According to [12], a Transformation is a generalization of both Rela-
tion and Mapping. Relations are non-executable bi-directional transformation specifi-
cations, whereas Mappings are unidirectional transformation implementations used to
generate a target model from the source model.

The graph-transformation and relational approaches are compared in [8]. While the
former is based on matching and replacement, the latter is based on matching and
reconciliation. The conclusion is that, is spite of their differences, advantages and
disadvantages, the two approaches are rather similar. More research is needed to iden-
tify which one is more suitable for certain kinds of applications.

In our proposed approach, we keep the idea that the source and target models are
described by separate metamodels, between which transformations must be defined.
However, in our case the target metamodel represents analysis domain concepts,
which are usually at a higher-level of abstraction than the source model concepts. In
order to define mappings between the source and target models, sometimes it is nec-
essary to group (aggregate) a large number of source model elements according to
certain rules, and to map the whole group to a single target element. The aggregation

 Abstraction-Raising Transformation for Generating Analysis Models 219

rules correspond to the raising in the abstraction level necessary for bridging the se-
mantic gap between the source and the target model. Such rules are dependent on the
semantic differences between the source and target model, and are not represented in
the source metamodel.

Therefore, a new mechanism is needed to express the aggregation rules, in addition
to the mechanism for defining the transformation from source to target. We propose
to use a graph grammar [16] for describing the aggregation rules; the terminals of the
graph grammar correspond to metaobjects from the source model, whereas the non-
terminals correspond to more abstract concepts that will be transformed directly in
target model concepts. The proposed transformation approach is illustrated in Fig.1.
Some target model elements can be obtained by a direct mapping from source models
elements, like in a relational transformation, whereas other target elements, represent-
ing more abstract concepts, correspond to graph-grammar non-terminals obtained by
parsing the source model. According to the taxonomy of model transformations pro-
posed in [9], the abstraction-raising transformation discussed in this paper is both
exogenous (i.e., the source and target models are different) and vertical (the abstrac-
tion level is different).

source
model

target
modelsource

model

target
model

Fig. 1. Principle of the proposed “abstraction-raising” transformation approach

3 Analysis Model for Component-Based Systems

In this section, the abstraction-raising transformation approach presented in section 2
is illustrated by applying it to the transformation of a UML model extended with the
SPT Profile to an analysis model named Klaper (Kernel LAnguage for PErformance
and Reliability analysis of component-based systems) [6].

3.1 Description of the Source Model

We assume that the source UML model describes the high-level software architecture
as a component diagram, and the key scenario(s) for performance/reliability analysis
as activity diagram(s), as in Fig. 2.a. We also assume that the information required for
the generation of the analysis model is available from the source UML model, possi-
bly by means of annotations compliant with one or more profiles [14, 4].

220 A. Sabetta et al.

<<component>>

UserInterface

<<component>>
ECommServer <<component>>

DBMSShopping
Cart

Buy DB

browse and
select items

<<PAresource>>
UserInterface

idle

call
get_item

add item
to query

sanitize
query

item list

<<PAstep>>
{PArep= $r}

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md4} idle

process
query

log
transaction

generate
page

query

display

a) Source model: component and activity diagrams

c) Klaper model for the ECommServ component

Buy: Service

formalParam = {itemList:integer}
scheduling = ‘FIFO’
isSync = false

ECommServer: Resource
capacity=1
scheduling=‘FIFO’

doTranscation: Activity
internalExecTime = …
isSync = false

genQuery: Activity

internalExecTime = s3.demand
isSync = true

idle: Activity

internalExecTime = …
isSync = false

: ActualParam

value = itemList

: fork

: start

: end

idle: Activity

internalExecTime = …
isSync = false

behaviour

offered
service

m
aps to

b) Parsing and mapping

sanitize
query

c

b1: localcall

a4

call
get-item

sanitize
query

c
a1

add item
to query

a3

a4

demand =
b1.demand
* c.$r

b2: loop

sanitize
querya4

demand =
b2.demand
+ a4.$md4

b3: seqdemand =
a1.$md1+
a2.$md2+
a3.$md3

get_item

a2

<<PAresource>>
ECommServ

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md1}

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md3}

<<PAresource>>
DBMSShoppingCart

get_item

ShoppingCart

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md2}

<<component>>

UserInterface

<<component>>
ECommServer <<component>>

DBMSShopping
Cart

Buy DB

browse and
select items

<<PAresource>>
UserInterface

idle

call
get_item

add item
to query

sanitize
query

item list

<<PAstep>>
{PArep= $r}

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md4} idle

process
query

log
transaction

generate
page

query

display

a) Source model: component and activity diagrams

c) Klaper model for the ECommServ component

Buy: Service

formalParam = {itemList:integer}
scheduling = ‘FIFO’
isSync = false

ECommServer: Resource
capacity=1
scheduling=‘FIFO’

doTranscation: Activity
internalExecTime = …
isSync = false

genQuery: Activity

internalExecTime = s3.demand
isSync = true

idle: Activity

internalExecTime = …
isSync = false

: ActualParam

value = itemList

: fork

: start

: end

idle: Activity

internalExecTime = …
isSync = false

behaviour

offered
service

m
aps to

b) Parsing and mapping

sanitize
query

c

b1: localcall

a4

call
get-item

sanitize
query

c
a1

add item
to query

a3

a4

demand =
b1.demand
* c.$r

b2: loop

sanitize
querya4

demand =
b2.demand
+ a4.$md4

b3: seqdemand =
a1.$md1+
a2.$md2+
a3.$md3

get_item

a2

<<PAresource>>
ECommServ

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md1}

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md1}

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md3}

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md3}

<<PAresource>>
DBMSShoppingCart

get_item

ShoppingCart

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md2}

<<PAstep>>
{PAdemand= ‘assm’,

’mean’, $md2}

Fig. 2. Example of abstraction-raising transformation from UML to Klaper

 Abstraction-Raising Transformation for Generating Analysis Models 221

Although both the parsing and the mapping implied by the proposed transforma-
tion are defined at the abstract syntax level based on the metamodel representation of
the source model, the paper uses only the graphical UML notation for the sake of
conciseness. The example is an e-commerce application designed as a client/server
system with three basic components: a user interface, an e-commerce server compo-
nent and a database (at the top of Fig. 2.a). Due to space limitations, we consider a
single usage scenario, which is part of the checkout procedure, given as an activity
diagram in Fig. 2.a. After the user has selected one or more items, the first client-
server interaction takes place, with UserInterface acting as client of the EComm-
Server. We assume that a server component waits for requests in the “idle” state.
After accepting a client request, ECommServer loops through the items in the shop-
ping cart to prepare a database query, and acts in turn as client in another client-server
interaction, where the DBMS is the server. After getting the required information,
ECommServer generates a page with the checkout information, sends it to the User-
Inteface for display and returns to the “idle” state, where it can accept a new request.

The SPT Profile is used to identify the main basic abstractions for performance
analysis in the UML model from Fig. 2.a. Scenarios define response paths through the
system, and can have QoS requirements such as response times or throughputs. Each
scenario is executed by a workload, which can be closed or open. Scenarios are com-
posed of scenario steps that can be joined in sequence, loops, branches, fork/joins, etc.
A step (stereotyped as <<PAstep>>) may be an elementary operation at the lowest
level of granularity, or a complex sub-scenario. Each step has a mean number of repe-
titions, a host execution demand, other demand to resources and its own QoS charac-
teristics, which are given as tagged value. Resource is another basic SPT abstraction;
it can be active or passive, each with its own attributes.

Not all SPT annotations are shown in Fig. 2.a, just a few <<PAStep>> stereotypes
applied to different activities. The tagged value PAdemand gives the CPU demand for
a step. For instance, “PAdemand =’assm’, ‘mean’, $md1, ‘ms’” means that the step has
an assumed mean execution time of $md1 ms (where $md1is a variable). The tagged
value “PArep =$r” gives the average number of loop repetitions. Such quantitative
annotations will be used during the transformation process to compute the parameters
of the target model. A more detailed description of the use of SPT profile for per-
formance analysis is given in [11].

3.2 Description of the Target Model

The target model in this case study is an abstract analysis model expressed in Klaper,
a Kernel Language for Performance and Reliability analysis of component-based
systems [6]. Its purpose is to capture in a lightweight and compact model all the rele-
vant information for the performance and reliability analysis of component-based
systems, while abstracting away irrelevant details. Klaper was designed as an inter-
mediate “distilled” language to help bridge the large semantic gap between design-
oriented and analysis-oriented notations, and to mitigate the “N-by-M” problem of
translating N design notation types into M performance/reliability model types.

222 A. Sabetta et al.

ResourceService

BehaviourWorkload

Step

Control Start Stop Activity

Branch Fork Join Acquire Release ServiceCall

+prev

+next

ActualParam

+offeredService0..*

+resource

1

1

1..*

+usedService

0..*

0..*

0..*

0..*

{ordered}0..*

+nestedActivity

0..*

1..*

0..1

+calledService
0..1

Fig. 3. Klaper metamodel (adapted from [6])

This “N-by-M” problem is reduced to a less complex task of defining N+M trans-
formations: N from different design notations to Klaper, and M from it to different
analysis models. (In this paper, we consider only one transformation, from UML 2 to
Klaper). Klaper has been defined in [6] as a MOF-compliant metamodel to allow the
exploitation of existing transformation facilities in the context of MDA. A diagram of
the metamodel is shown in Fig.3. The domain model underlying Klaper considers that
a system is an assembly of interacting Resources, where a resource may offer (and
possibly require) Services. Thus, Klaper Resources can represent both software com-
ponents and physical resources like processors, communication links or other physical
devices. Each offered Service is characterized by a list of formal parameters that can
be instantiated with actual values by other resources requiring that service. The Be-
haviour of (offered) services is modeled as a graph of Steps that can be simple “inter-
nal” Activities (i.e. operations that do not require any services offered by other re-
sources), or Activities with one or more associated ServiceCalls addressed to other
Resources, or Control nodes (Begin/End, Fork/Join, etc.). An interesting feature of
Klaper is that service parameters are meant to represent abstractions (for example
expressed in terms of random variables) of the “real” service parameters (see [6] for
more details).

3.3 Model Transformation

From a high level perspective, the mapping from UML to Klaper can be described as
follows. UML components (from component diagrams) and nodes (from deployment
diagrams) are mapped onto Klaper resources. The corresponding offered and required
services are derived from the provided and required interfaces for each component.
The behaviour of each offered service is derived from a suitable UML activity or state
diagram, that either specifies the local component behaviour or the global system
behaviour. Due to space constraints, we do not describe in this example the mapping
of UML nodes to Klaper resources, nor the derivation of the behaviour that models

 Abstraction-Raising Transformation for Generating Analysis Models 223

the interactions between components (i.e. connectors). The attributes of Klaper ele-
ments defined in [6] are mainly derived from the information provided by the SPT
[14] and reliability stereotypes [4] given in the UML source model.

Many of the mappings from UML to Klaper are straightforward, in that they can be
described as one-to-one relations between elements of the two metamodels; for in-
stance each UML component is mapped to a Klaper resource, each provided interface
of a UML component is mapped to a service offered by the resource corresponding to
that component, each required interface is mapped to a service call, and so on. How-
ever, there are cases where a group of elements in the source model represents, as a
whole, an abstraction that will be mapped to a single Klaper element. To illustrate
more clearly this idea, let us examine the derivation of the Klaper model for the
ECommServ component (see Fig. 2.c).

In general, the behaviour is represented in the analysis model at a higher level of
abstraction than in the source model; this comes from the nature of the transformation
from a software design to a performance model. Thus, we do not need to translate
each and every UML activity to a Klaper step, but would like to aggregate unneces-
sary details. For instance, we may decide that all the activities executed in a single
swimlane between the receiving of a message and the sending of the next message (as
shown in the shaded fragment in Fig. 2.a) should be grouped and mapped, as a whole,
to a single Klaper activity (shown by the “maps-to” arrow in Fig. 2). We may also
want to aggregate, in the same block, calls to local passive objects. The fragment
shown in Fig. 2.a is rather simple, but in principle can have any number of activities
connected in different ways in sequence, branches, loops, etc. Since the UML meta-
model does not define a concept (metaclass) corresponding to a “block of activities”
as described above, there is no single element in the source metamodel that can be
mapped to an element in the target metamodel. We propose to describe the above
aggregation rules by the means of a few graph grammar rules (see Fig. 4).

By applying the grammar rules in an appropriate order, we can eventually reduce a
“correct” activity diagram to the starting symbol ‘AD’. In the parsing process, a set of
non-terminals are generated, which correspond to more “abstract” constructions found
in the source model. The rules are applied for reduction as follows: when a subgraph
matching the right hand side (rhs) of a rule is found in the host graph (i.e., in the
source model possibly rewritten by previous rules), the matching subgraph is removed
and is replaced by the left hand side (lhs) of the rule, according to the embedding
policy. More precisely: a) the edges attached to nodes of the rhs that are kept in the
lhs are preserved (they represent the “context”); b) the edges that are left dangling
(because of the removal of some node from the lhs) are removed; c) if a node in the
rhs is rewritten as one node in the lhs, then all the edges attached to the former are
redirected to the latter (this applies to non-injective morphisms too). The graph
grammar is structured so that high level constructs, such as loops, conditional con-
structs, sequences and client-server interactions, are discovered through parsing. To
this purpose the concept of a “block” has been introduced and formally defined in the
grammar by rule 2. Most of the rules are recursive, raising the abstraction power of
the proposed technique.

224 A. Sabetta et al.

AD block P

rule 1

rule 2

block P loop Pcond Pseq P

CS P

block

P

block

InitialNode

P

block

P

ActivityFinalNode

block
Action P

rule 2.a rule 2.b rule 2.c rule 2.d

rule 2.f rule 2.g rule 2.h rule 2.i

rule 5

loop

P

block

block

PDecisionNode DecisionNode

rule 2.l

1

2
3

1

2
3

1

2
3

1

2
3

1

2
3

1

2

3 1

2

3 2

1

3

1

2
3

1,2

1

2

3
1

2

3

rule 6

block

P

Fork Join

Join Forkblock

P

1 2

43

6
5

rule 4
cond

P

block

block

PDecisionNode DecisionNode1

2

3
1

2

3

rule 3
seq

P

block block

P
1

2

3 1

2

3

Legend

P

is a shortcut for a ControlFlow element

is a shortcut for a Partition element

Action P localcall P

rule 2.e

1

2
3

rule 7

localcallP

1

2

3

block

block

block PP 3

2

1

CS

P

1

2

3

4

5

Fig. 4. Graph grammar

Basic constructs such as sequences, conditional blocks and loops are defined, in
terms of blocks and terminal symbols, by rules 3, 4 and 5. Rule 6 is used to recognize
the asynchronous client-server interactions and rule 7 reduces calls to passive objects.
Remarkably, each of the blocks in the right hand side of the grammar rules can repre-
sent structures as simple as an elementary action or as complex as a big block that
could contain in turn other client-server interactions and arbitrarily nested conditions,
loops and sequences.

Fig. 2.b illustrates how the rules are applied in order to aggregate the activities
from the shaded fragment to a single block. In order to keep the figure clear, a few
details of the transformation steps were omitted. In the first step, rule 2.d is applied to

 Abstraction-Raising Transformation for Generating Analysis Models 225

each of the actions to rewrite them as blocks. Then blocks a1, a2 and a3, are reduced
by rule 7 to a localcall non-terminal (b1). Non-terminal elements have their own
attributes, computed from the elements in the right-hand side of the reduction rule,
possibly by considering also the stereotypes and tagged values attached to them. In
this example, the attribute demand of b1 (which represents the average CPU execu-
tion time required for this block) is computed as the sum of the mean execution times
for the activities a1 a2 and a3 (given as SPT performance annotations in Fig.2.a). In
the second step, rule 2.e transforms the localcall non-terminal into a block, and then
the loop can be parsed by rule 5 yielding b2. The attribute demand for b2 is com-
puted, by multiplying the demand of the loop body with the number of repetitions. In
step 3 the loop is rewritten as a block (rule 2.c) and then rule 3 collapses the sequence
of blocks (b2, a4) into b3.

This node, obtained by parsing a complex structure, will be mapped to a single
Klaper element (also given in grey in Fig. 2.c). A simplified Klaper model of the
component ECommServer offering the service Buy, is described by the graph of steps
from start to end given in Fig. 2.c. After the service, the component will remain idle.

The example shows that the abstraction-raising transformation from UML to Kla-
per aggregates away details that are not important for performance/reliability analysis,
but maintains enough information so that the analysis results (such as response times
for services under different workloads, throughputs, utilization of different resources,
queue lengths, time to failure, etc.) can be imported back in the UML models, by
using the mapping between the elements of the source and target models. The exam-
ple also illustrates how the graph grammar rules can be used to impose and verify
additional well-formedness constraints on top of the standard UML metamodel.

4 Conclusions

This paper tackles the problem of abstraction-raising transformation for deriving
analysis-oriented models from design specifications of component-based software
systems. The proposed approach addresses the need to bridge the significant semantic
gap that usually exists between the software design domain (source) and the perform-
ance/reliability domain (target). We propose to separate the concern of parsing the
source model for extracting higher-level of abstraction concepts from the concern of
mapping between the source and target model, which could be realized by traditional
MDA techniques. A graph grammar is used to parse the source model and to extract
higher-level of abstraction constructs that are semantically closer to the target domain.
Our proposal can be seamlessly integrated into standard MOF-based transformation
frameworks, as the parsing and the extension of the source model can be realized as a
pre-processing step of a “conventional” model transformation pipeline.

Acknowledgements

This work was done during Antonino Sabetta’s visit to Carleton University, Ottawa,
with the financial support of NSERC Canada through its Discovery and Strategic
Grants, of the MIUR-FIRB project “PERF: Performance evaluation of complex sys-
tems” and of the MIUR project “Model driven design and analysis of adaptable soft-
ware architectures”.

226 A. Sabetta et al.

References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M., "Model-based performance predic-
tion in software development: a survey" IEEE Transactions on Software Engineering, Vol
30, N.5, pp.295-310, May 2004.

2. S. Bernardi, S. Donatelli, and J. Merseguer, "From UML sequence diagrams and state-
charts to analysable Petri net models," in Proc. of 3rd Int. Workshop on Software and Per-
formance (WOSP02), Rome, July 2002, pp. 35-45.

3. C. Cavenet, S. Gilmore, J. Hillston, L. Kloul, and P. Stevens, "Analysing UML 2.0 activity
diagrams in the software performance engineering process," in Proc. 4th Int. Workshop on
Software and Performance (WOSP 2004), Redwood City, CA, Jan 2004, pp. 74-83.

4. V. Cortellessa, A.Pompei, “Towards a UML profile for QoS: a contribution in the reliabil-
ity domain”, In Proc. 4th Int. Workshop on Software and Performance WOSP'2004,
pp.197 - 206, Redwood Shores, California, 2004

5. K. Czarnecki and S. Helsen, "Classification of Model Transformation Approaches",
OOPSLA’03 Workshop on Generative Techniques in the Context of MDA, 2003.

6. V. Grassi, R. Mirandola, A.Sabetta, “From Design to Analysis Models: A Kernel Lan-
guage for Performance and Reliability Analysis of Component-based Systems”, In Proc.
5th Int. Workshop on Software and Performance WOSP'2005, pp. 25-36, Palma, Spain,
July 2005.

7. J. Jürjens, P. Shabalin, "Automated Verification of UMLsec Models for Security Re-
quirements", Proceedings of UML 2004, Lisbon, Portugal Oct. 11–15, 2004.

8. J.M. Kuster, S. Sendall, M. Wahler, “Comparing Two Model Transformation Ap-
proaches”, Proc. Workshop on OCL and Model Driven Engineering, October, 2004.

9. T. Mens, K. Czarnecki, P. Van Gorp, “A Taxonomy of Model transformations”, in Proc.
of Dagstuhl 04101 Language Engineering for Model-Driven Software Development (J.
Bezivin, R. Heckel eds), 2005.

10. D.C. Petriu, H.Shen, “Applying the UML Performance Profile: Graph Grammar based
derivation of LQN models from UML specifications”, in Computer Performance Evalua-
tion: Modelling Techniques and Tools, (T. Fields, P. Harrison, J. Bradley, U. Harder,
Eds.) LNCS 2324, pp.159-177, Springer, 2002.

11. D. C. Petriu, C. M. Woodside, "Performance Analysis with UML," in UML for Real, (B.
Selic, L. Lavagno, and G. Martin, eds.), pp. 221-240, Kluwer, 2003.

12. OMG, QVT-Merge Group, "Revised submission for MOF 2.0
Query/Views/Transformations RFP”, version 1.0, April 2004.

13. OMG, “MDA Guide”, version 1.0.1, June 2003.
14. OMG, “UML Profile for Schedulability, Performance, and Time”, version 1.0, formal/03-

09-01, September 2003.
15. OMG, "UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics

and Mechanisms (QoS)", Adopted Specification, ptc/2004-06-01, June 2004.
16. Schürr, A., Programmed Graph Replacement Systems, in G.Rozenberg (ed): Handbook of

Graph Grammars and Computing by Graph Transformations, pp. 479-546, 1997.
17. Woodside, C.M, Petriu, D.C., Petriu, D.B., Shen, H, Israr, T., and Merseguer, J. “Per-

formance by Unified Model Analysis (PUMA)”, In Proc. 5th Int. Workshop on Software
and Performance WOSP'2005, pp.1-12, Palma, Spain, July 2005.

Explicit Architectural Policies to Satisfy NFRs
Using COTS

Claudia López and Hernán Astudillo

Universidad Técnica Federico Santa Maŕıa, Departamento de Informática,
Avenida España 1680, Valparáıso, Chile

clopez@inf.utfsm.cl, hernan@inf.utfsm.cl

Abstract. Software architecture decisions hinge more on non-functional
requirements (NFRs) than on functional ones, since the architecture stip-
ulates which software to build. Model-Driven Architecture (MDA) aims
to automate the derivation/generation of software from high level ar-
chitectural specifications, but most current MDA implementations start
from software design (i.e. how to build a software piece) rather than
software architecture. This article presents an approach to extend MDA
through the concepts of architectural policies and mechanisms. The key
ideas are representation of NFRs through architectural concerns using
architectural policies, systematic reification of policies into mechanisms,
and multi-dimensional description of components as implementations of
mechanisms. A detailed illustrative example is provided. Azimut frame-
work realizes these ideas, supports larger-scale work through catalogs of
policies, mechanisms and components, and allows traceability and reuse
of architecture by enabling these architecture-level descriptions and rea-
soning using incomplete characterizations of requirements and COTS.

1 Introduction

Model-driven Software Development and Model-driven Architecture (MDA) [1]
arise from the possibility of building software systems through systematic trans-
formations of high level models. Most proposed approaches emphasize modeling
and transformations that address functional requirements, but in practice Non-
Functional Requirements (NFRs) such as reliability, performance and stability
are much harder to satisfy, and therefore the ones that require most attention
from software architects.

Some proposals [2–8]extend MDA to deal explicitly with NFRs, especially
from a perspective of components more than from detailed software design. Yet
remains much work to be done: there is no traceability of decisions from NFRs
to architecture to design and to final implementation, nor techniques to generate
hybrid solutions that combine pre-existing components and ad-hoc development.

This article presents the key ideas of a Azimut framework that extends MDA
with explicit modeling of architectural policies and their derivation into imple-
mentation. The key framework ideas are representation of NFRs with architec-
tural policies, mapping and systematic refinement of architectural policies into

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 227–236, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

228 C. López and H. Astudillo

mechanisms, multi-dimensional description of pre-existing components (herein
labeled COTS) and specific products insofar as they implement architectural
mechanisms, and ongoing development of a multi-dimensional catalog of com-
ponents. The Azimut allow to systematically select feasible architectural solu-
tions using incomplete characterizations of the system requirements and available
COTS.

The reminder of this paper is structured as follows: Section 2 provides a
brief overview of related work on NFRs in MDA; Section 3 introduces the Az-
imut Framework and the concepts of Platform-Independent Architecture Model
(PIAM), Architecture Reification Model (ARM), and Policies-Specific Platform-
Independent Model for Concern v (PIMv); Section 4 illustrates Azimut and its
concepts with a detailed example; and Section 5 and 6 discusses further work
and conclusions, respectively.

2 MDA, NFRs, and Component-Based Development

Software architects focus more on NFRs than on functional requirements be-
cause the former are much harder to satisfy in large and distributed systems.
NFRs cannot be satisfied with local design decisions, but require global solu-
tions because they correspond to systemic properties; for example, security and
stability usually cannot be added ex-post-facto to an already running system
without large effort and risk. Software architecture focuses on reasoning about
which software to build or to include, and not necessarily about how to build it.
Therefore, system NFRs are key since they determine the nature of the solution.

Despite having architecture in their name, most proposed MDA methods and
tools (e.g. [9–12]) take as starting point a description in terms of functional
components at design level, leaving the resolution of NFRs to prior steps.

Some recent projects [2–8]have addressed explicit mechanisms to satisfy NFRs
through MDA transformations. From a component-based standpoint, some
projects [2–4]try to satisfy system NFRs through a model-driven process for
selecting components to achieve systemic NFRs, and later configuring and de-
ploying the selected components. Other projects from a more design-oriented
approach [5–8]aim to generate implementations that satisfy multiples NFRs at
once, starting out from design description at platform-independent (PIM) level;
thus, NFRs must be modeled and solved at prior stages.

Other researches deal with NFRs on MDA, but focus on only one NFR
[13–15], on code generation to monitor NFRs [17], or use MDA to analyze NFRs
at design time [16]. We focus on implementing solutions to multiple NFRs.

3 Architectural Policies to Implement NFRs Through
MDA and COTS

Our research goal is developing tools to describe, automate and keep trace-
ability of architectural decisions from NFRs into implementations that satisfy
them, using COTS whenever possible. The key conceptual feature is descriptions

Explicit Architectural Policies to Satisfy NFRs Using COTS 229

using architectural policies and mechanisms. The process supported by these
tools is an iterative exploration of design spaces by human architects. The ap-
proach and tools lend themselves to use incomplete and architecture-oriented
information on requirements and COTS; we speak of ”characterizations” rather
than ”specifications”.

3.1 Architectural Policies and Mechanisms

Architects may reason about the overall solution properties using architectural
policies, and later refine them (perhaps from existing policy catalogs) into ar-
tifacts and concepts that serve as inputs to software designers and developers,
such as component models, detailed code design, standards, protocols, or even
code itself. Thus, architects define policies for specific architectural concerns
and identify alternative mechanisms to implement such policies. For example,
an availability concern may be addressed by fault-tolerance policies (such as
master-slave replication or active replication) and a security concern may be
addressed by access control policies (such as identification-, authorization- or
authentication-based) [19].

Each reification yields more concrete artifacts; thus, architectural decisions
drive a process of successive reifications of NFRs that end with implementations
of mechanisms that do satisfy these NFRs.

To characterize such reifications, we use concepts from the distributed systems
community [18], duly adapted to the software architecture context:

Architectural Policy: The first reification from NFRs to architectural con-
cepts. Architectural policies can be characterized through specific concern
dimensions that allow describing NFRs with more details.

Architectural Mechanism: A construct that satisfies architectural policies.
Several mechanisms may satisfy the same architectural policy; and can also
be characterized with concern dimensions.

As a brief example (expanded in Section 4), consider inter-communication
among applications. An architectural concern is the communication type, which
might have the dimensions of sessions, topology, sender, integrity v/s timeliness
and synchrony [20]. Then, the requirement send a private report to subscribers by
Internet might be mapped in some project (in architectural terms) as requiring
communication ”asynchronous, with 1:M topology, with a push initiator mech-
anism, and priorizing integrity over timeliness”. Based on these architectural
requirements, an architect (or automated tool!) can search a catalog for any ex-
isting mechanisms or combination thereof that provides this specified policy; in
our case, lacking additional restrictions, a good first fit is SMTP (the standard
e-mail protocol), and thus any available COTS that provide it.

3.2 Generation of Policies-Specific PIMs

Figure 1 gives an overview of the Azimut framework. We distinguish two PIM
levels, Platform-Independent Architecture Model (PIAM) and Platform-
Independent Model for Concern v (PIMv).

230 C. López and H. Astudillo

Fig. 1. Azimut Framework for NFRs and COTS

The PIAM characterizes platform-independent architectural policies and
their dimensions, and the PIMv characterize platform-independent mechanisms
satisfying the required architectural policies. The PIAM ’s elements are trans-
formed to PIM ’s and PIMv’s using the Architectural Reification Model (ARM),
which provides guidelines to go from architectural policies to architectural mech-
anisms. The ARM indicates which combinations satisfy each policy, and may
have rules about mechanism combinations (e.g. potential restrictions).

The transformation process determines feasible sets of mechanisms that pro-
vide specific architectural policies, and propose them to the architect for val-
idation or correction; supported mechanisms are presented according to the
policies they satisfy (possibly several), and are grouped into PIMv for each
concern v.

3.3 Treatment of Policies-Specific PIMs

The previous process generates platform-independent models (a PIM for func-
tional domain components and a PIMv for components supporting policies for
each concern v) that must be implemented on specific platforms.

The PIM is transformed into a set of PSM ; this is encoded by the plat-
form mappings PM . The generated PSM can be transformed to code using
conventional MDA approaches such as [9, 10, 11, 12].

The platform-independent model PIMv for each concern v may also be im-
plemented with a MDA approach for NFRs [5, 6, 7, 8], or may be mapped to
selected COTS. In the former case, each PIMv generates a PSMv as encoded

Explicit Architectural Policies to Satisfy NFRs Using COTS 231

in the PMv. Since each PSMv gives place to code and deployment descriptors,
they are weaved with the PIM -derived code using an aspect weaver (AW). De-
ployment descriptors are generated by a descriptor generator (DG), and guide
the deployment process for the code.

Implementing a PIMv with COTS requires other selection/transformation
step. If one or more of the selected mechanisms are implemented by an avail-
able COTS (or set thereof), the process identifies them and the parameters they
should take to implement the intended mechanism. This step is codified in a
Mechanism Reification Mappings (MRM), which uses a COTS catalog that de-
scribes available components, the mechanism(s) that each one implements, and
their required parameters. In addition, the MRM contains rules about the pos-
sible combinations of COTS and the platforms where they can be implemented.
The process uses several algorithms to determine the best combination of avail-
able components to implement the required mechanisms in PIMv under the
MRM constraints.

The COTSMv (COTS Model) describes the components to be assembled
and deployed to satisfy policies for concern v, and is shown in Figure 1 by the
right-most column. The COTSMv are used to generate deployment descriptors,
just like the to PSMv. The deployment descriptors include information about
the actual COTS parameters.

The last transformation includes a COTStuner that allows configuring
COTS, finally yielding deployable work sets consisting of generated code, de-
ployment descriptors and configured components.

4 Example

Let’s explore an example with a requirement about extraction and propagation
of information on stocks behavior. A requirement might be:

The system must collect data for a customers portfolio and report back with
it. The system extracts information from several sources according to portfo-
lio, summarizes it into a report, and sends this report to the customer. The
service must have 99.9% availability and provide security through access
control.

This requirement can be decomposed into functional and non-functional re-
quirements. The former can be Extract information, Synthesize information and
Send information. The service Send information has the NFRs of availabil-
ity=99,9% and security by access control.

From these requirements it is possible to identify architectural concerns as the
communication type architectural concern relates to the system must extract
information from different sources and the system must send such reports to the
client ; other architectural concerns are security and availability.

Without loss of generality, we will focus on the requirement Send information
to show our derivation process for all identified architectural concerns in this
example. Extract information can be dealt with a similar process considering
only communication type concern, and Synthesize information can be used to
guide software development in traditional MDA approach.

232 C. López and H. Astudillo

Figure 2 shows the architectural concerns related to the requirements of
this example, and the valid values for the dimensions of communication type,
security [21, 22] and availability [21, 23, 24] concern.

Fig. 2. Partial content of the Architecture Reification Mappings (ARM)

Thus, we can specify a requirement for Communication Type being asynchro-
nous, with 1:M topology and Push initiator kind; also, the communication must
privilege integrity over timeliness. Security requirements are focused on access
control, and we assume that these requirements are individual authorization and
authentication based on something that user knows [22], as usual. Availability
may be reified to several architectural concerns, such as replication, recovery and

Explicit Architectural Policies to Satisfy NFRs Using COTS 233

fault monitoring, but we only will focus on replication concern. To meet a high
availability requirement, we specify that it needs replica with persistent state
and primary-based consistency.

Once requirements for architectural concerns are defined by specifying theirs
dimensions, we need to reify these architectural policies to mechanisms. Table
1, 2 and 3 show several architectural mechanisms that satisfy some of the ar-
chitectural policies for the communication type, security and availability
concerns, respectively. Notice that in this example, architectural mechanisms
are specifications of communication protocols, security mechanisms and tactics
to meet availability goals, and therefore they are platform-independent just like
architectural policies, although at a lower abstraction level. These mechanisms
are available as targets for the ARM -guided reification process that maps archi-
tectural policies for the each concern into specific mechanisms.

With the available ARM information (shown in Table 1, 2 and 3), the frame-
work can recommend to the architect several possible mechanisms to satisfy the
specified architectural policies. For example, the policies related to
Communication Type for Send information can be reified to the protocols NNTP
(used for client-initiated subscription-based articles reading) or SMTP (used to
send e-mail); on the client side, IMAP (used for read news), or POP3 and IMAP
(both widely used for e-mail reading).

We need to select among these alternative mechanisms. In practice the actual
choice among alternative mechanisms is usually taken using information not
available in Table 1 (such as cost or simplicity), but this rationale can be recorded
to provide traceability and support the selection process.

On the other concerns, requirements for access control policies can be ad-
dressed with a password mechanisms, and availability requirements with pas-
sive replication of servers.

Once mechanisms are chosen, they are reified by choosing specific compo-
nents that implement them. Figure 3 shows a (part of the) MRM ’s catalog

Table 1. Partial content of the ARM for Communication Type

Mechanism Synchrony Topology Initiator Integrity/Timeliness Sessions
SMTP Asynchronous 1:M Push Integrity Yes
NNTP Asynchronous 1:M Push Integrity Yes
RSS Asynchronous 1:M Pull Integrity Yes
SIP Synchronous P2P Pull Timeliness No

POP3 Synchronous M:1 Pull Integrity Yes
IMAP Synchronous M:1 Pull Integrity Yes

Table 2. Partial content of the ARM for Access Control

Mechanism Authorization Authentication
Personal Password Individual Something the user knows

ID Card Individual Something the user has
Fingerprint Individual Something the user is

234 C. López and H. Astudillo

Table 3. Partial content of the ARM for Node Replication

Mechanism State
Update Propagation

Consistency
Propagation Kind

Active Replication Persistent State Operations Push Replicated-write
Passive ReplicationPersistent State State Push Primary-based

Fig. 3. Partial content of COTS Catalog in the MRM

COTS components that describes available options to implement these particu-
lar communication mechanisms.

If SMTP and IMAP or POP3 are chosen, the MRM -known available COTS
alternatives are SendMail, QMail and Courier Mail Server (for SMTP) and Out-
look and Thunderbird (for POP3 and IMAP). We also need to select imple-
mentations for selected access control and replication mechanisms. For instance,
SMTP-AUTH protocol can implement access control for SMTP, and therefore
we need to identify COTS that implement SMTP-AUTH, such as SendMail (8.1
and later), QMail (with qmail-smtpd-auth patch) and Courier Mail Server; both,
Outlook and Thunderbird implement POP-AUTH and IMAP-AUTH to support
access control mechanisms for sending mail. Regarding replication, there are sev-
eral possibilities as well: passive replication achieving SMTP server replication
and related policies with ad-hoc development; purchasing/adquiring COTS with
this capabilities (e.g. LifeKeeper for Linux, SMTP.NET for Windows); or out-
sourcing this service to third parties defining SLA (availability=99,9%).

At this point, the architect makes the first decision about platform, in this
case picking one on which both products run; the known choices are Windows
(a gamut of choices itself) and Linux (likewise). We leave that last leg of the
exercise to the reader.

5 Further Work

Work in progress includes expanding the policies catalog by adding more con-
cerns and their dimensions, extending the framework to allow generation and
comparison of alternative combinations of mechanism to satisfy a given prob-
lem, and identifying constraints on mechanism combinations. Hard problems
that are being jointly studied with combonatorial optimization researchers are
exploration and selection of mechanism combinations that are optimal according

Explicit Architectural Policies to Satisfy NFRs Using COTS 235

to second-order non-technical criteria (such as purchase cost, deployment risk,
and development complexity) and their trade-off analysis; support for architec-
tural what-if analysis (impact of requirement changes) and backwards questions
(from available COTS or their providers, to original requirements that they sat-
isfy); and exploration of the solutions space through incomplete and imprecise
characterizations of COTS, mechanisms, or both.

Currently, Azimut models describing each abstraction level are tagged UML
models, used as direct input to and output from the Azimut prototype, based on
AndroMDA [9]. Applications of the aspect oriented approach are being consid-
ered as alternative representations of the policies and mechanisms dimensions
and the mappings among them. Also, parallel work is starting to be able to
predict, assess and measure quality attributes of the system to be built.

6 Conclusions

This article presents NFRs and their satisfaction using the Azimut framework
and the process it supports. Azimut extends MDA for reasoning about architec-
tural policies, preserving traceability of architectural decisions, and generating
hybrid solutions with COTS and ad-hoc development.

The key framework ideas are representation of NFRs with architectural poli-
cies, multi-dimensional description of components as implementations of specific
architectural mechanisms, systematic refinement and mapping from architec-
tural policies into mechanisms and COTS, and development of catalogs of poli-
cies, mechanisms and COTS. The systematic use of architectural policies and
mechanisms allows describing and reasoning architectural decisions at an archi-
tecture level, i.e. determining which software to build rather than how to build
it, to provide certain required systemic properties (NFRs).

The Azimut approach avoids the complexity that would come from demand-
ing correct, complete and consistent descriptions for NFRs and COTS, by us-
ing incomplete descriptions of NFRs and of available COTS (”characteriza-
tions” rather than full specifications) and by supporting the architect in the
systematic exploration of the design space with automated COTS search and
selection.

References

1. Object Management Group: MDA Guide Version 1.0.1 (June 2003).
http://www.omg.org/cgi-bin/doc?omg/03-06-01

2. Gokhale, A., Balasubramanian, K., and Lu, T. CoSMIC: Addressing Crosscutting
Deployment and Configuration Concerns of Distributed Real-Time and Embedded
Systems. OOPSLA 2004, ACM Press, p. 218-219.

3. Solberg A., Huusa K. E., Aagedal J. ., Abrahamsen E: QoS-aware MDA. Workshop
SIVEOS-MDA 2003, ENTCS Journal.

4. Cao, F., Bryant, B., Raje, R., Auguston, M., Olson, A., Burt. C: A Component As-
sembly Approach Based on Aspect-Oriented Generative Domain Modeling. ENTCS
2005, pp.119-136.

236 C. López and H. Astudillo

5. Burt, C., Bryant, B., Raje, R., Olson, A., Auguston, M.: Quality of Service Issues
Related to Transforming Platform Independent Models to Platform Specific Models.
EDOC 2002, pp.212-223.

6. Silaghi, R., Fondement, F., Strohmeier, A.: Towards an MDA-Oriented UML Pro-
file for Distribution. EDOC 2004, pp.227-239.

7. Simmonds, D., Solberg, A., Reddy, R., France, R., Ghosh, S.: An Aspect Oriented
Model Driven Framework. EDOC 2005, to appear.

8. Weis, T., Ulbrich, A., Geihs, K., Becker, C.: Quality of Service in Middleware and
Applications: A Model-Driven Approach. EDOC 2004, pp.160-171.

9. AndroMDA website. http://www.andromda.org/
10. OptimalJ website. http://www.compuware.com/products/optimalj/
11. ArcStyler website. http://www.interactive-objects.com/
12. SosyInc Modeler and Transformation Engine website. http://www.sosyinc.com/
13. Almeida, J.P.A., van Sinderen, M.J., Ferreira Pires, L. and Wegdam, M.: Handling

QoS in MDA: a discussion on availability and dynamic Reconfiguration. Workshop
MDAFA 2003, TR-CTIT-03-27, pp. 91-96.

14. Basin, D., Doser, J., and Lodderstedt, T.: Model driven security for process-oriented
systems. SACMAT 2003, pp.100-109.

15. Lang, U., and Schreiner, R.: OpenPMF: A Model-Driven Security Framework for
Distributed Systems. Presented at ISSE 2004

16. Skene, J., and Emmerich, W.: A Model Driven Architecture Approach to Analysis
of Non-Functional Properties of Software Architectures. ACE 2003, pp.236-239.

17. Pignaton, R., Villagra, V., Asensio, J., Berrocal, J.: Developing QoS-aware
Component-Based Applications Using MDA Principles. EDOC 2004, pp.172-183.

18. Policy and Mechanism Definitions. http://wiki.cs.uiuc.edu/MFA/
Policy+and+Mechanism

19. Firesmith, D.: Specifying Reusable Security Requirements. Journal of Object Tech-
nology, Vol. 3, No 1, (Jan-Feb 2004), pp.61-75.

20. Britton, C.: IT Architectures and Middleware: Strategies for Building Large, Inte-
grated Systems. Addison-Wesley Professional (Dec 2000).

21. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, Second
Edition Addison-Wesley Professional (Apr 2003).

22. http://sarwiki.informatik.hu-berlin.de/Authentication_Mechanisms
23. OMG Specification : UML Profile for Modeling Quality of Service and Fault Toler-

ance Characteristics and Mechanisms, (Jun 2004) http://www.omg.org/docs/ptc/
04-06-01.pdf

24. Tanenbaum, A., Van Steen, M.: Distributed Systems Principles and Paradigms
Prentice Hall (2002)

Workshop 9 Summary
MDD for Software Product-Lines: Fact or Fiction?

Douglas C. Schmidt1, Andrey Nechypurenko2, and Egon Wuchner2

1 Vanderbilt University, Nashville, TN, USA
2 Siemens AG, CT SE 2, Munich, Germany

1 Workshop Synopsis and Goals

Software product-lines are an important technology for meeting the growing
demand for highly customized - yet reusable - solutions. Commonality-variability
analysis (CVA) is a well-known approach to address the challenges of software
product-line development. The goal of CVA is to identify (1) what aspects of
a software system are stable across multiple variants or over time, (2) what
aspects of a software system vary across multiple variants or over time, and
(3) the development techniques that best address specific commonalities and
their variabilities, e.g., to allow substitution of custom variable implementations
via a common interface. Model-driven development (MDD) provides effective
techniques for documenting and conveying the results of a CVA by combining

– Metamodeling, which defines type systems that precisely express key ab-
stract syntax characteristics and static semantic constraints associated with
product-lines for particular application domains, such as software defined
radios, avionics mission computing, and inventory tracking.

– Domain-specific modeling languages (DSMLs), which provide pro-
gramming notations that are guided by and extend metamodels to formalize
the process of specifying product-line structure, behavior, and requirements
in a domain.

– Model transformations and code generators, which ensure the consis-
tency of product-line implementations with analysis information associated
with functional and quality of service (QoS) requirements captured by struc-
tural and behavioral models.

Key advantages of using MDD in conjunction with CVA are (1) rigorously cap-
turing the key roles and responsibilities in a CVA and (2) helping automate
repetitive tasks that must be accomplished for each product instance. Often,
however, new customer requirements invalidate the results of earlier CVAs, such
that a CVA and its derived meta-models, DSMLs, and generators must be mod-
ified invasively and intrusively to reflect these new requirements.

For example, previous generations of automotive audio output systems (e.g.,
radio, CD) did not have to share the audio output channel, e.g., only one audio
source could be active at the same time (i.e., either radio or CD). The intro-
duction of built-in mobile phone and traffic messaging systems require sharing

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 237–246, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

238 D.C. Schmidt, A. Nechypurenko, and E. Wuchner

and switching ownership of the audio output channel and must be managed cor-
respondently. This new feature can cause changes to the set of entities defined
by the metamodel. In addition, the set of composition and collaboration rules
can undergo significant changes. These modifications can significantly compli-
cate product-line evolution and maintenance efforts, which may outweigh the
advantages of product- line development and automation compared to single
product instance development.

The focus this workshop was on new theory and methods to reduce the im-
pact of the new unanticipated requirements on the (meta)models and model
interpreters to improve the (re)usability of model-based technologies in produc-
tion large-scale applications. In particular, the papers (1) explored the pros and
cons of current model-based technologies for software product-line development,
validation, and evolution, (2) summarized the state of the current research on
solution approaches regarding the problem of stabilizing meta-models, model-
transformations, and code generators non-intrusively, and (3) analyzed the im-
pact of promising relevant software development methodologies and techniques
for software product-lines on industrial software development.

2 Workshop Organization

The workshop was organized into two parts. In the first part, a representative from
each paper presented the material in the paper and the audience asked questions.
During each paper presentation, the workshop organizers summarized the set of
problems addressed by the authors and the corresponding set of suggested solu-
tions. As a result, we collected an interconnected set of problem/solution pairs.

In the second part of the workshop, the organizers conducted a moderated
discussion session to evaluate the maturity level of the R&D approaches with
respect to solutions available for identified problems. To reach this goal, the
moderator presented each problem statement, then the statement were refined
during interactive discussion. Suggested solutions based on the workshop papers
were discussed, followed by an evaluation of the maturity level of these solutions.

The remainder of this document is divided into sections corresponding to
each identified problem. There are also subsections that outline suggested solu-
tions and present the maturity level mark we agreed upon during the workshop
discussions. Due to time restrictions, we did not discuss and evaluate all prob-
lem/solution domains in detail.

The figures shown in this document use ovals to depict the problem and boxes
represent the proposed solution. As mentioned above, some solutions were evalu-
ated. We used the range 1 to 5 where 5 means “very mature” and 1 corresponds
to the “very immature.”

The suggested approaches are not evaluated or commented. They are also
not presented in detail level to avoid duplication of each paper where the cor-
responding approach is described. The goal of our workshop discussion was to
simply summarize the suggested solutions to the identified problems and roughly
determine the maturity level of the model-based approaches.

Workshop 9 Summary 239

3 Metamodel Definition

Several authors [1, 2, 5] identified that having a high-quality metamodel is a key
factor for successful and productive use of Domain Specific Languages (DSL).
It is not yet clear, however, what are the most flexible and productive ways to
define metamodels. The following solutions were suggested by workshop paper
authors:

Fig. 1. Suggested Solution for Metamodel Definition

• Use UML and extend it if necessary. UML provides several extension mech-
anisms, such as stereotypes and tagged values, that can be used to define
metamodels via pure UML notation, and if necessary extend it using pro-
vided extension mechanisms [6]. Maturity level: 2.

• Use an ontology-based approach. The problem of metamodeling can be
treated as a detailed problem domain analysis, i.e., identification of the
domain-specific entities and their relationships. An ontology graph is the
set of interconnected domain specific entities. It may be possible and help-
ful to apply ontology-based approaches to define metamodels since they are
ontologies of the problem domain [4]. Maturity level: 2.

• Use the OMG Meta-Object Facility (MOF2) and extensible metamodeling
languages. The OMG MOF2 www.omg.org/technology/documents/formal/
mof.htm provides an extensible, flexible, and standardized way to define, ac-
cess, and maintain (meta)models. These standardized mechanisms can im-
prove modeling experience in cases where different modeling tasks could be
accomplished with different modeling tools that interoperate using MOF2.
There is not yet much support for this standard from tool vendors, however.
Maturity level: 2.

4 Maintenance and Improvement of Code Generators

In large-scale applications, i.e., with thousands of components, the complexity
and related maintenance problems of the code generators and other types of
required model interpreters/transformations can quickly outweigh the advan-
tages of a generative approach. This problem becomes even more complicated

240 D.C. Schmidt, A. Nechypurenko, and E. Wuchner

in product-line architecture development, where unexpected changes in require-
ments for new product instances can yield complicated changes propagated from
the metamodel level down to models, and then down to code generators and
model validation algorithms. Workshop participants made the following sugges-
tions to overcome these types of problems:

Fig. 2. Maintenances of Model Interpreters (Generators) and Model Evolution

• Generate only glue code for underlying framework. Early generations of Com-
puter Aided Software Engineering (CASE)-based tools often failed because
of attempts to generate the complete application. As a result, the generated
code was suboptimal, hard to understand and debug, and hard to integrate
into common runtime platforms, such as middleware and application frame-
works. Experience shows that it might be more effective to generate only
glue-code and configuration layers for existing middleware and frameworks.
In this approach, the complexity of code generators could be significantly
reduced and quality of the generated code improved. Maturity level: 5.

• Capture commonality in frameworks. The workshop participants generally
agreed that model-driven tools (and related overhead compared to tradi-
tional handcrafted development) is most effective where many product in-
stances with a high degree of commonality and certain variabilities must be
produced (generated) and maintained. In such cases, workshop participants
[2] recommended that common functionality should be captured in reusable
software frameworks instead of trying to increase the complexity of code
generators.

Workshop 9 Summary 241

• Develop and use composition and chaining frameworks. Chaining and com-
posing reusable components can also be challenging e.g., due to ensuring
end-to-end QoS of component assemblies in distributed real-time and em-
bedded systems. The are also often certain semantic constraints and rules
how to compose certain components which need to be enforced (ideally be-
fore the runtime) to avoid run-time errors. Certain related problems can
be solved by development of specialized infrastructure (e.g., frameworks,
components, libraries, etc.) that help to connect available software arti-
facts together to produce runnable applications [2]. The implementations
of CORBA Component Model (CCM) Deployment and Configuration speci-
fication www.omg.org/cgi-bin/doc?mars/2003-05-08 is an example of this
approach, though it is just reaching critical mass in terms of multiple inter-
operable implementations and adoption by industry. Maturity level: 2.

5 Model and Domain Evolution

Evolution in understanding of the key problem domain aspects and relationships
between different entities reflected in DSLs could lead to changes in formalized
knowledge representation, which is typically exposed in form of metamodels.
In turn, these changes can invalidate the existing set of models that are build
under certain assumptions (i.e., in conformance with metamodels). To provide
an effective model-driven development cycle, the solution to model and domain
evolution should be found. The following solution approaches were discussed
during the workshop:

• Capture commonality in frameworks. As shown in Figure 2, the idea of using
frameworks to capture commonalities between product-line members could
also help while evolving and changing models as a result of evolution of the
domain understanding [2].

• Introduce model extension mechanisms. Certain evolution and reusability
problems at the metamodel level can be solved applying well-known tech-
niques from the domain of object-oriented analysis. For example, introduc-
ing metamodel entity inheritance relationships in metamodeling environment
could encapsulate certain common properties in common base entities. As a
result, the change that will affect all derived entities can be localized [2, 5].

• Apply design patterns to improve reusability of underlying frameworks. A
typical source of problems during model evolution is the mismatch between
required flexibilities at the problem domain level and the configuration and
adaptation mechanisms available at the solution level, i.e., at the level of
frameworks used in the generated code. Applying patterns for framework
development can help improve the reusability and configuration of provided
building blocks. In turn, this can help reduce the amount of work required
to reflect (meta)model evolution at all levels of a model-driven tool chain [2].

242 D.C. Schmidt, A. Nechypurenko, and E. Wuchner

6 Complexity at the Solution Level

To perform automatic mapping (e.g., code generation) from the problem domain
described as model(s), the solution domain should also be modeled and/or cer-
tain assumptions about the solution space should be made. The complexity of
modern technologies typically used as a solution domain has increased to the
level where it is hard to understand and use these technologies properly to solve
certain problems. Without clear understanding how the solution space is defined,
however, it is hard to develop (or generate) high quality solutions. The following
solution approaches were discussed during the workshop:

Fig. 3. Dealing with Complexity at the Solution Level

• UML and its default profiles can be used to model object-/component-oriented
systems. If the solution space can be described using object-oriented method-
ologies and corresponding languages (such as C++ or Java) then UML can
be used to model the problem domain. Maturity level: elaboration: 4, trans-
lation: 2.

• DSMLs are appropriate for vertical application domain-specific modeling.
Often, domain experts describe the solution using terminology and abstrac-
tions different from the object-oriented paradigm. In such cases, the use of
DSLs is preferable because it bridges the gap between domain experts and
software engineers. Multiple transformations may be necessary to convert
high-level models to lower-level source code. For example, the first transfor-
mation (manual or automatic) could represent the solution in DSL and then
the second transformation can treat the DSL as a problem domain at lower
level and consider an object-oriented framework as a target solution domain.
Maturity level: elaboration - 2 (depends on domain expertise), translation - 4.

7 How to Enforce Constraints

Certain sets of rules for modelers can be exposed in metamodels. Often, however,
there is a set of logical constraints that restrict how certain model elements can

Workshop 9 Summary 243

be configured or interact with each other. These constraints should be enforced
automatically via a modeling environment. The following solution approach was
discussed during the workshop:

Fig. 4. Enforcing Constraints

• Use tools that can enforce constraints. It is responsibility of the modeling en-
vironment to provide the possibility to specify constraints and then check and
enforce these constraints [5]. An example of such constraints are the Object
Constraint Language (OCL) www.omg.org/technology/documents/formal/
uml.htm provided by the Generic Modeling Environment (GME)
www.isis.vanderbilt.edu/Projects/gme/. Maturity level: 4.

8 How to Transform Variation Points to Code

Often DSLs are designed in such a way that each DSL element could be pa-
rameterized and configured to reflect the variability presented in the subject
of modeling. Due to typical paradigm mismatches between concepts described

Fig. 5. Capturing and Transforming Variation Points to Code

244 D.C. Schmidt, A. Nechypurenko, and E. Wuchner

in DSL and concepts available in modern programming languages, however, it
is often hard to identify how DSL variation points should be transformed or
implemented with concrete programming language [3]. The following solution
approach was discussed during the workshop:

• Use feature analysis and mapping to use cases. Systematic feature analysis
together with use case modeling can help identify the right set of software
components or any other artifacts required to implement certain functional-
ity (features). Maturity level: 3-4.

9 How to Capture and Express Variation Points

There are many ways to capture variability at the problem domain level and
express them in DSL building blocks. For example, customization properties,
DSL elements, inheritance, and customized reactions on user actions (such as
resizing and moving) can help make DSLs easier to understand for domain en-
gineers. These capabilities can also improve the reusability of DSL entities. In
contrast to the object-oriented technologies, however, there are few well-defined
rules and patterns that can help DSL developers decide which way is preferable
in certain situations. For instance, in object-oriented design there is a set of pat-
terns, such as Strategy, Service Configurator and Template Method, that help
enhance flexibility. The following solution approaches were discussed during the
workshop:

• Use feature analysis and mapping to use cases. As shown in Figure 5, system-
atic feature analysis and mapping to use cases can help identify the variation
points and the proper way to express them in DSLs [3]. Maturity level: 3-4.

• Model external features separately using context ontology. It is helpful to
distinguish between internal and external features, e.g., to track the rela-
tionships between different features and functionality supposed to be pro-
vided by application. To simplify these tracking and maintenance tasks, the
ontology-based analysis and modeling of external features could be used [4].
Maturity level: 1.

10 How to Ensure the Quality of the Generated Code

The fact that the source code or any other artifacts are generated cannot be used
as an excuse for the poor quality of the generated code. For example, redundancy,
lack of proper encapsulation, bloated or dead code is often as problematic with
code generated from modeling tools as it is with manually written code. The
following solution approaches were discussed during the workshop:

• Use framework specialization techniques. These techniques include (1) frame-
work instrumentation and annotation to simplify code generation and cus-
tomization, (2) specialization using provided configuration options and cus-
tomization hooks, and (3) evolution driven by changing requirements or im-
proved problem or solution domain understanding. These techniques can be

Workshop 9 Summary 245

Fig. 6. How to Ensure the Quality of the Generated Code

used to generate application-specific versions where one side is based on a
solid framework foundation, whereas the other side consists of application-
specific functionality to ensure that all specific requirements are met [7].

11 Dealing with Overhead to Build the Model-Driven
Infrastructure

Infrastructure that supports model-driven development of concrete product in-
stances should be developed in advance and is rarely available off-the-shelf. For
example, DSLs should be designed carefully based on extensive domain analysis.
The result of this analysis should be documented formally using metamodel-
ing. Code generators should be developed to automate the transformation from
previously designed DSLs. All these activities require considerable up-front in-
vestments and need to be performed carefully to ensure that the overhead of
building the modeling infrastructure does not offset the benefits of using it.

The following solution approach was discussed during the workshop:

• Use compositional metamodeling techniques. Compositional metamodeling
is a key idea to simplify the construction of DSML metamodels. This tech-
nique provides a metamodel composition capability by reusing existing meta-
model language concepts. When building complex metamodel for large-scale
DSMLs, such metamodels can be built by reusing existing metamodel lan-
guages as libraries. Apart from being read-only, all objects in the meta-
model imported through the library are equivalent to objects created from
scratch. Metamodel designers can then create subtypes and instances from
the metamodel library and refer library objects through references. Maturity
level: 2-3.

246 D.C. Schmidt, A. Nechypurenko, and E. Wuchner

References

[1] Vikram Bhanot, Dominick Paniscotti, Angel Roman and Bruce Trask: Using
Domain-Specific Modeling to Develop Software Defined Radio Components and
Applications

[2] Gan Deng, Gunther Lenz and Douglas C. Schmidt: Addressing Domain Evolution
Challenges in Model-Driven Software Product-line Architectures

[3] Neil Loughran, Am=E9rico Sampaio and Awais Rashid: From Requirements Doc-
uments to Feature Models for Aspect Oriented Product Line Implementation

[4] Dennis Wagelaar: Towards Context-Aware Feature Modelling using Ontologies
[5] Jules White and Douglas C. Schmidt: Simplifying the Development of Product-line

Customization Tools via Model Driven Development
[6] Hassan Gomaa: Variability Management in Software Product Lines
[7] Arvind S. Krishna, Aniruddha Gokhaley, Douglas C. Schmidt, Venkatesh, Prasad

Ranganathz and John Hatcliffz: Model-driven Middleware Specialization Tech-
niques for Software Product-line Architectures in Distributed Real-time and Em-
bedded Systems

[8] OMG: “Meta-Object Facility, version 2.0”,=20 url.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 247 – 261, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Addressing Domain Evolution Challenges in Software
Product Lines

Gan Deng1, Gunther Lenz2, and Douglas C. Schmidt1

1 Department of EECS, Vanderbilt University,
Nashville, Tennessee, USA 37203

{dengg, schmidt}@dre.vanderbilt.edu
2 Siemens Corporate Research, Princeton, NJ 08540

lenz.gunther@siemens.com

Abstract. It is hard to develop and evolve software product-line architectures
(PLAs) for large-scale distributed real-time and embedded (DRE) systems. Al-
though certain challenges of PLAs can be addressed by combining model-
driven development (MDD) techniques with component frameworks, domain
evolution problems remain largely unresolved. In particular, extending or refac-
toring existing software product-lines to handle unanticipated requirements or
better satisfy current requirements requires significant effort. This paper de-
scribes techniques for minimizing such impacts on MDD-based PLAs for DRE
systems through a case study that shows how a layered architecture and model-
to-model transformation tool support can reduce the effort of PLA evolution.

Keywords: Model-driven development, Product-line Architectures, Model
Transformation.

1 Introduction

Software product-line architectures (PLAs) [20] are a promising technology for in-
dustrializing software development by focusing on the automated assembly and cus-
tomization of domain-specific components, rather than (re)programming systems
manually. Conventional PLAs consist of component frameworks [29] as core assets,
whose design captures recurring structures, connectors, and control flow in an appli-
cation domain, along with the points of variation explicitly allowed among these enti-
ties. PLAs are typically designed using common/variability analysis (CVA) [23],
which captures key characteristics of software product-lines, including (1) scope,
which defines the domains and context of the PLA, (2) commonalities, which describe
the attributes that recur across all members of the family of products, and (3) vari-
abilities, which describe the attributes unique to the different members of the family
of products.

Despite improvements in third-generation programming languages (such as Java,
C#, and C++) and runtime platforms (such as component and web services middle-
ware), the levels of abstraction at which PLAs are developed today remains low rela-
tive to the concepts and concerns within the application domains themselves. A prom-
ising means to address this problem involves developing PLAs using model-driven

248 G. Deng, G. Lenz, and D.C. Schmidt

development (MDD) [9] tools. As shown in Figure 1, MDD tools help raise the level
of abstraction and narrow the gap between problem and solution domain by combin-
ing (1) metamodeling and model interpreters to create domain-specific modeling lan-
guages (DSMLs) with (2) CVA and object-oriented extensibility capabilities to create
domain-specific component frameworks. DSMLs help automate repetitive tasks that
must be accomplished for each product instance, e.g., generating code to glue compo-
nents together or synthesizing deployment artifacts for middleware platforms Do-
main-specific component frameworks factor out common usage patterns in a domain
into reusable platforms, which help reduce the complexity of designing DSMLs by
simplifying the code generated by their associated model interpreters.

To use MDD-based PLA technologies effectively in practice, however, requires
practical and scalable solutions to the domain evolution problem [30], which arises
when existing PLAs are extended and/or refactored to handle unanticipated require-
ments or better satisfy current requirements. Although PLAs can be enhanced by
combining component frameworks with DSMLs, existing MDD tools do not handle
the domain evolution problem effectively since they require significant manual
changes to existing component frameworks and metamodels. For example, changing
metamodels in a PLA typically invalidates models based on previous versions of the
metamodels. While software developers can manually update their models and/or
components developed with a previous metamodel to work with the new metamodel,
this approach is clearly tedious, error-prone, and non-scalable.

Fig. 1. Using DSMLs and Component Middleware to Enhance Abstraction and Narrow the Gap
between Problem and Solution Domain

This paper describes our approach to PLA domain evolution. We use a case study
of a representative MDD-based tool for DRE system to describe how to evolve PLAs
systematically and minimize human intervention for specifying model-to-model trans-
formation rules as a result of metamodel changes. Our approach automates many

DSML

Meta Model

Interpreter

OS API calls

Frameworks
and Reusable
Components

Product Line Analysis

Product Line
Specific

Requirements

Business
Problems

Abstraction

Commonality
& Variability

Analysis

Solution
Domain

Problem
Domain

 Addressing Domain Evolution Challenges in Software Product Lines 249

tedious, time consuming, and error-prone tasks of model-to-model transformation to
reduce the complexity of PLA evolution significantly.

The remainder of this paper is organized as follows: Section 2 describes our vi-
sion of the architecture of PLA for DRE systems, and introduces our case study,
which applies the Event QoS Aspect Language (EQAL) MDD tool to simplify the
integration and interoperability of diverse publish/subscribe mechanisms in the
Bold Stroke PLA; Section 3 describes challenges we faced when evolving models
developed using EQAL and presents our solutions to these challenges; Section 4
compares our work on EQAL with related research; and Section 5 presents conclud-
ing remarks.

2 Overview of MDD-Based PLA and Case Study (EQAL)

This section presents an overview of an MDD-based PLA for DRE systems, focusing
on the design concepts, common patterns, and software architecture. We then describe
the structure and functionality of EQAL.

2.1 Design Concepts of MDD-Based PLAs for DRE Systems

The MDD-based design and composition approach for embedded systems in [10]
describes the benefits of combining DSML and reusable component frameworks. We
believe this approach also applies to the design of PLAs for large-scale DRE systems.
Figure 2 illustrates the high-level design principle and overall architecture of an
MDD-based PLA solution that exploits a layered and compositional architecture to
modularize various design concerns for DRE systems.

Fig. 2. MDD-Based Product-line Architecture for DRE Systems

250 G. Deng, G. Lenz, and D.C. Schmidt

MDD-based PLAs for DRE systems are based on a core set of platforms, frame-
works, languages, and tools. DRE systems increasingly run on commercial-off-the-
shelf (COTS) middleware and OS platforms. Middleware platforms include Real-time
Java, Real-time CORBA, Real-time CCM, and the Data Distribution Service (DDS)
and OS platforms include VxWorks, Timesys Linux, and Windows CE. Since many
DRE systems require a loosely-coupled distribution architecture to simplify extensi-
bility, COTS middleware typically provides publish/subscribe-based communication
mechanisms where application components communicate anonymously and asyn-
chronously by defining three software roles: publishers generate events that are
transmitted to subscribers via event channels that accept events from publishers and
deliver events to subscribers. Event-based communication helps developers concen-
trate on the application-specific concerns of their DRE systems, and leaves the con-
nection, communication, and QoS-related details to middleware developers and tools.
An event-based communication model also helps reduce ownership costs since it de-
fines clear boundaries between the components in the application, thereby reducing
dependencies and maintenance costs associated with replacement, integration, and
revalidation of components. Moreover, core components of event-based architectures
can be reused, thereby reducing development, quality assurance, and evolution effort.

Component frameworks provide reusable building blocks of PLAs for DRE sys-
tems. These frameworks are increasingly built atop COTS middleware and OS plat-
forms. Since the philosophy of COTS middleware and OS platforms catered to main-
taining “generality, wide applicability, portability ad reusability,” customized frame-
works are often desired in DRE software product-lines to (1) raise the level of ab-
straction, and (2) offer product-line specific runtime environments. Examples of
component frameworks include domain-specific middleware services layer in the
Boeing Bold Stroke PLA [26], which supports many Boeing product variants, such as
F/A-18E, F/A-18F, F-15E, and F-15K, using a component-based, publish/subscribe
platform built atop The ACE ORB (TAO) [27] and Prism [28], which is QoS-enabled
component middleware influenced by the Lightweight CORBA Component Model
(CCM) [19]. The Boeing Bold Stoke PLA supports systematic reuse of avionics mis-
sion computing functionality and is configurable for product-specific functionality
(such as heads-up display, navigation, and sensor management) and execution envi-
ronments (such as different networks/buses, hardware, operating systems, and pro-
gramming languages).

Domain-specific modeling languages (DSMLs) and patterns facilitate the
model-based design, development, and analysis of vertical application domains, such
as industrial process control, telecommunications, and avionics mission computing.
Example DSMLs the include Saturn Site Production Flow (SSPF), which is a manu-
facturing execution system serving as an integral and enabling component of the
business process for car manufacture industry [11] and the Embedded System Model-
ing Language (ESML) [12], which models mission computing applications in the
Boeing Bold Stroke PLA. DSMLs are also applicable to horizontal platform domains,
such as the domain of component middleware for DRE systems, which provide the
infrastructure for many vertical application domains. Examples of DSMLs for hori-
zontal platforms include Platform Independent Component Modeling Language
(PICML) [13], which facilitates the development of QoS-enabled component-based
DRE systems and J2EEML [17], which facilitates the development of EJB applica-

 Addressing Domain Evolution Challenges in Software Product Lines 251

tions. Regardless of whether the DSMLs target vertical or horizontal domains, model
interpreters can be used to generate various artifacts (such as code and metadata de-
scriptors), which can be integrated with component frameworks to form executable
applications and/or simulations.

As shown in Figure 2, MDD-based PLA defines a framework of components that
adhere to a common architectural style with a clear separation of commonalities and
appropriate provisions for incorporating variations by integrating vertical/horizontal
DSMLs, component frameworks, middleware and OS platforms. In this architecture,
MDD technologies are used to model PLA features and glue components together,
e.g., they could be utilized to synthesize deployment artifacts [13] for standard mid-
dleware platforms.

2.2 The Design of EQAL

The Event QoS Aspect Language (EQAL) is an MDD tool designed to reduce certain
aspects of component-based publish/subscribe PLA-based DRE systems, such as the
Boeing Bold Stroke PLA described in Section 2.1. EQAL is implemented using the
Generic Modeling Environment (GME) [5], which is a toolkit that supports the devel-
opment of DSMLs. The EQAL DSML provides an integrated set of metamodels,
model interpreters, and standards-based component middleware that allowing PLA
developers to visually configure and deploy event-based communication mechanisms
in DRE systems via models instead of programming them manually. EQAL is an ex-
ample of a DSML that supports a horizontal platform domain, i.e., it is not restricted
to a particular vertical application domain, but instead can be leveraged by multiple
vertical domains.

Fig. 3. EQAL MDD Tool Architecture Fig. 4. EQAL Framework Evolution

As shown in Figure 3, EQAL is a layered architecture that supports several types
of abstractions, which are subject to change stemming from domain evolution, as dis-
cussed in Section 3. The bottom layer is the EQAL Runtime Framework, which is a

252 G. Deng, G. Lenz, and D.C. Schmidt

portable, OS-independent framework built atop the Component-Integrated ACE ORB
(CIAO) QoS-enabled implementation of the Lightweight CCM specification. The
EQAL Runtime Framework provides an extensible way to deploy various event-based
communication mechanisms, including a two-way event communication mechanism
based on direct method invocation, the CORBA Event Service, and TAO’s Real-time
Event Service [24].

The middle layer in the EQAL architecture is a set of domain models that represent
instances of modeled DRE systems. These models are created by the EQAL DSML
and are used to capture the structural and behavioral semantic aspects of event-based
DRE systems.

The top layer of the EQAL MDD architecture consists of metamodel that enables
developers to model concepts of event-based DRE systems, including the configura-
tion and deployment of various publish/subscribe services and how these services are
used by CCM components. This layer also contains several model interpreters that
synthesize various types of configuration files that specify QoS configurations, pa-
rameters, and constraints. The EQAL interpreters automatically generate pub-
lish/subscribe service configuration files and service property description files needed
by the underlying EQAL Runtime Framework and CIAO middleware.

Although the EQAL MDD tool could be used to simplify the integration and inter-
operability of diverse publish/subscribe mechanisms in some PLAs, evolving such a
MDD-based PLA would often bring additional challenges.

3 Resolving Challenges of MDD-Based PLA When Facing Domain
Evolution

This section examines challenges associated with evolving an MDD-based PLA in the
context of the Boeing Bold Stroke PLA and the EQAL DSML. For each challenge,
we explain the context in which the challenge arises, identify key problems that must
be addressed, outline our approach for resolving the challenges, and describe how we
can apply these solutions using EQAL.

3.1 Challenge 1: Capturing New Requirements into Existing MDD-Based
Software Product-Lines for DRE Systems

Context. Change is a natural and inevitable part of the software PLA lifecycle. The
changes may be initiated to correct, improve, or extend assets or products. Since as-
sets are often dependent on other assets, changes to one asset may require correspond-
ing changes in other assets. Moreover, changes to assets in PLAs can propagate to
affect all products using these assets. A successful process for PLA evolution must
therefore manage these changes effectively [15].

Problem → New Requirements Must Be Captured into Existing PLAs. DRE
systems must evolve to adapt to changing requirements and operational contexts. In
addition, when some emerging technologies become sufficiently mature, it is often
desirable to integrate them into existing PLAs for DRE systems. For example, de-

 Addressing Domain Evolution Challenges in Software Product Lines 253

pending on customer requirements, different product variants in the Bold Stroke
PLA may require different levels of QoS assurance for event communication, includ-
ing timing constraints, event delivery latency, jitter, and scalability. Even within the
same product variant, different levels of QoS assurance may be required for different
communication paths, depending on system criticality, e.g., certain communication
paths between components may require more stringent QoS requirements than other
ones.

The event communication mechanisms currently supported by EQAL include: (1)
two-way based event communication based on direct method invocation, (2) CORBA
event service, and (3) TAO’s Real-time Event Service [24]. Although the communica-
tion mechanisms provided by EQAL are applicable to many types of event-based sys-
tems, with the evolution in a domain and new technologies emerging, other event
communication mechanisms may be needed. For example, TAO’s reliable multicast
Federated Notification Service is desired in certain DRE systems to address scal-
ability and reliability. Likewise, the OMG’s Data Distribution Service (DDS) [25] is
often desired when low latency and advanced QoS capabilities are key product variant
concerns. When these two new publish/subscribe technologies are added into the ex-
isting EQAL MDD tool, all layers in EQAL MDD architecture must change accord-
ingly, including EQAL Runtime Framework, EQAL DSML and EQAL Domain
Models. Moreover, since EQAL models have already been used in earlier incarnations
of a PLA, such as Bold Stroke, we must minimize the effort required to migrate exist-
ing EQAL models to adhere to the new metamodels.

Solution → Evolve PLA Systematically Through Framework and Metamodel
Enhancement. Although a layered PLA can significantly reduce software design
complexity by separating concerns and enforcing boundaries between different layers,
since different layers in PLA still need to interact with each other through predefined
interfaces, therefore, to integrate new requirements into a PLA, all layers must evolve
in a systematic manner. As shown in Figure 3, for most PLAs for DRE systems we
generalized this evolution to the following three ordered steps:

1. Component framework evolution. As discussed in Section 2.1, frameworks are
often built atop middleware and OS platforms and provide the runtime environ-
ment to DRE systems. As a result, whenever the DRE systems must evolve to
adapt to new requirements, component frameworks are often affected since they
have direct impact on the system.

2. DSML evolution. DSML metamodels and interpreters are often used to capture
the variability and features of DRE systems so a system can expose different ca-
pabilities for different product variants. Often, DSMLs are used to glue different
component framework entities together to form a complete application. Hence,
typically DSML evolution should be performed after framework evolution is com-
pleted.

3. Domain model evolution. The DSML metamodel defines a type system to which
domain models must conform to. Since the changes to the metamodel of a DSML
often invalidate the existing domain models by redefining the type system, domain
model evolution must be performed after the DSML evolution.

254 G. Deng, G. Lenz, and D.C. Schmidt

We discuss the challenges and solutions associated with component framework and
DSML evolution in the Section 3.1.1 and then discuss the challenges and solutions
associated with domain model evolution in Section 3.1.2.

3.1.1 EQAL Framework Evolution
In our case study, the EQAL Runtime Framework provides a set of service configura-
tion libraries that can configure various publish/subscribe services. Since these mid-
dleware services can be configured using well-defined and documented interfaces, we
can formulate the usage patterns of such middleware services easily. The EQAL Run-
time Framework can encapsulate these usage patterns and provide reusable libraries
that (1) contain wrapper façades for the underlying publish/subscribe middleware
services to shield component developers from tedious and error-prone programming
tasks associated with initializing and configuring these publish/subscribe services and
(2) expose interfaces to the external tools to manage the services, so that service con-
figuration and deployment processes can be automated, as shown in Figure 3. I. To
incorporate these new publish/subscribe technologies and minimize the impact on
existing DRE systems, we used the Adapter and Strategy patterns so all event com-
munication mechanisms supported by EQAL provide the same interface, yet can also
be configured with different strategies and QoS configurations.

3.1.2 EQAL DSML Evolution
The EQAL metamodel must be enhanced to incorporate these new requirements, so
system developers can model the behavior of new event-based communication
mechanisms visually. For example, to enhance EQAL to support DDS and TAO’s
Federated Notification Service, the metamodel of the EQAL DSML must be
changed. Since the EQAL metamodel defines the language to describe EQAL do-
main models, it is essential to minimize the impact on EQAL domain models, so that
the EQAL domain models can be transformed easily to comply with the new EQAL
metamodel.

Compositional metamodeling is a key idea to make metamodel scalable and easier
to evolve. This technique provides a metamodel composition capability for reusing
and combining existing modeling languages and language concepts. Since EQAL is
implemented with GME, when new publish/subscribe services are integrated, we
could design a new DSML within GME and import the old EQAL metamodel as a
“library”.. Apart from being read-only, all objects in the metamodel imported through
the library are equivalent to objects created from scratch. Since the new pub-
lish/subscribe services share much commonality between the exiting pub-
lish/subscribe services that EQAL already supports, when the old EQAL metamodel
is imported as library, we could create subtypes and instances from the metamodel
library and refer library objects through references.

3.2 Challenge 2: Migrating Existing Domain Models with MDD-Based PLA
Evolution

Context. The primary value of the MDD paradigm stems from the models created
using the DSML. These models specify the system, and from the models the executa-
ble system can be generated or composed. Changes to the computer-based system can
be modeled, and the resulting executable model is thus a working version of the actual
system. Unfortunately, if the metamodel is changed, all models that were defined us-

 Addressing Domain Evolution Challenges in Software Product Lines 255

ing that metamodel may require maintenance to adapt to the semantics that represent
the computer-based system correctly. Without ensuring the correctness of the domain
models after a change to the domain, the benefits of MDD will be lost. The only way
to use instance models based on the original metamodel is to migrate them to use the
modified metamodel. During this migration process, we must preserve the existing set
of domain model assets and allow new features to be added into domain models; ide-
ally with as little human intervention effort as possible.

Problem → Existing Domain Models Evolution Techniques Require Excessive
Human Intervention. To address the challenge of preserving the existing set of do-
main model assets, old domain models must be transformed to become compliant
with the changed metamodel. In the MDD research community, particularly in the
DSML community, research has been conducted on using model transformation to
address metamodel evolution. Since the underlying structure of models, especially
visual models, can be described by graphs, most of the model transformation research
has been conducted in the context of graph transformation. In particular, recent re-
search [1,2] has shown that graph transformation is a promising formalism to specify
model transformations rules.

Most existing model transformation techniques, however, require the transforma-
tion be performed after the domain metamodel has changed. For example, when an
old metamodel is modified and a new metamodel based on it is created, the model
transformation designer must take both the old metamodel and new metamodel as
input, and then manually specify the model transformation rules based on these two
metamodels by using the “transformation behavior specification language” provided
by the transformation tool. Although such a design approach could solve the model
transformation problem, it introduces additional effort in specifying the model trans-
formation rules, even if the metamodel evolution is minor (e.g., a simple rename of a
concept in the metamodel). This additional effort is particularly high when the meta-
models are complex, since the transformation tool must take both complex metamod-
els as input to specify the transformation.

Solution → Tool-Supported Domain Model Migration. To preserve the assets of
domain models, our approach is to bring model migration capabilities online, i.e.,
embed domain model migration capabilities into the metamodeling environment it-
self. This approach is sufficiently generic to be applied to any existing metamodeling
environment. A description of the change in semantics between an old and a new
DSML is a sufficient specification to transform domain models such that they are
correct in the new DSML. Moreover, the pattern that specifies the proper model mi-
gration is driven by the change in semantics, and may be fully specified by a model
composed of entities from the old and new metamodels, along with directions for
their modification [6].

3.2.1 Integration of Syntactic-Based and Semantic-Based Domain Model
Migration

Based on the characteristics of metamodel change, researchers have shown that 14
“atomic” types of metamodel changes can be defined [6], as shown in Table 1.

256 G. Deng, G. Lenz, and D.C. Schmidt

Table 1. Changes that Require a Paradigm Shift [6]

These results provide us the intuition into the problem. In some cases, the seman-
tics can be easily specified. For example, if the metamodel designer deletes an atom
called “foo” in the metamodel and creates a new atom called “bar” we can then spec-
ify the semantics of the change as:

replace(Atom("foo") -> Atom("bar"));

Syntactic metamodel changes, however, can often affect semantic changes, which
results in a highly challenging task in model migration, i.e., semantic migration. Se-
mantic migration requires that the meaning of the old domain models is preserved
after the transformation, and that the new domain models conform to the entire set of
static constraints required in the new domain. In these cases, it is quite challenging to
discover the semantics of the change. To make such algorithms provide actual “se-
mantic migration” capabilities, human input will be necessary since semantic changes
in metamodels can not be captured through syntactic changes alone.

For model migration, we generalized two approaches to perform model transfor-
mation with semantic migration. In the first approach, given two distinct metamodels,
old and new, we can perform a transformation that converts the old model in entirety
to the new one. This means one will have to write a complete set of rules to convert
each entity in the models. In the second approach, we create a unified metamodel (old
+ new), such that both old and new models are valid in it. Developers can then write
transformation translators that convert those parts of the model belonging to the old
part of the paradigm to equivalent models in the new part of the paradigm.

 Addressing Domain Evolution Challenges in Software Product Lines 257

It is evident that the second approach is much cleaner and user-friendly than the
first approach since it requires much less human effort. We are therefore investigating
the second model migration approach. In our approach, after the unified metamodel is
formulated, we use an "SQL-like" declaratively language that allows one to query and
change the model to define model transformation rules. The Embedded Constraint
Language (ECL), used by the C-SAW GME plug-in [2], seems to be a good candidate
for such a language. The ECL is a textual language for describing transformations on
visual models. Similar to the Object Constraint Language (OCL) defined in OMG’s
UML specification, the ECL provides concepts such as collection and model naviga-
tion. In addition, the ECL also provides a rich set of operators that are not found in the
OCL to support model aggregations, connections, and transformations. ECL is an
imperative language that allows one to specify procedural style transformation rules
of the syntax translator to capture the semantic migration.

3.2.2 EQAL Domain Model Evolution
Figure 5 illustrates the BasicSP application scenario in the Boeing Bold Stroke PLA,
in which two component instances named BMDevice and BMClosedED are con-
nected with each other through real-time event channel provided by TAO’s Real-time
Event Service. An event channel consists of one RTEC_Proxy_Consumer module
and RTEC_Proxy_Supplier module, which could be configured with various
QoS settings. Consider a domain evolution scenario, where the Real-time Event Ser-
vice is not the desired choice for a particular Bold Stroke product variant, so it must
be replaced with TAO Federated Notification Service. In this case, the current domain
model below will become invalid and must be migrated to the new EQAL DSML that
supports the configuration of TAO’s Federated Notification Service.

Fig. 5. EQAL Configuring Real-time Event Service between Two Components

With ECL declarative language, we could create a model translator by defining
strategies as below:

258 G. Deng, G. Lenz, and D.C. Schmidt

The semantic meaning of this translator is straightforward, i.e., first find the inter-
ested model elements and their associations that are based on TAO’s Real-time Event
Service and replace these model elements and associations with TAO’s Federated
Notification Service.

4 Related Work

Software product-line is a viable software development paradigm that enables order-
of-magnitude improvements in time to market, cost, productivity, quality, and other
business drivers [20]. As MDD technology becomes more pervasive, there has been
an increase in focus on technologies, architecture, and tools for applying MDD-based
techniques into software PLAs. This section compares our research with related work.

Microsoft’s Software Factory scheme [9] focuses on combining MDD- and com-
ponent-based techniques with product-line principles to create highly extensible de-
velopment tools quickly and cheaply for specific domains. The PLAs for DRE sys-
tems we describe in Section 2 are similar to the Software Factory scheme, but focuses
on how aspects of PLAs for DRE systems should be designed and evolved throughout
a system’s lifecycle.

Generative software development techniques [19] develop software system fami-
lies by synthesizing code and other artifacts from specifications written in textual or
graphical domain-specific languages. Key concepts and idea in this paradigm include
DSML, domain and application engineering, and generative domain models. Feature
modeling [18] is a method and notation for capturing common/variable features in a
system family. This software development paradigm is related to our approach,
though in our MDD-based PLA we use domain-specific graphical DSML notations to
describe the application semantics, instead of using a universal feature modeling nota-
tion since the latter is too restrictive for many DRE systems. .

Significant efforts have focused on evolution problems of model-based legacy sys-
tems. The Atlas Transformation Language (ATL) developed in the Generative Model
Transformer project [22] aims to define and perform general transformations based on
OMG’s MDA technology. Atlas is a model transformation language specified both as
a metamodel and as a textual concrete syntax, and a hybrid of declarative and

strategy ChangeToFNS() {

declare FNS_Proxy_Consumer,
FNS_Proxy_Supplier : model;

// Find interested model elements…
if(atoms()->select(a | a.kindOf() =

"RTEC_Proxy_Consumer")->size() >= 1) then

//get the RTEC_Proxy_Consumer model element
//and its connections

…
//delete the RTEC_Proxy_Consumer model element
RTEC_Model.deleteModel(

“RTEC_Proxy_Consumer”,
“RTEC_proxy_consumer”);

//add the FNS_Proxy_Consumer model
FNS_Proxy_Consumer:=

addModel(“FNS_Proxy_Consumer”,

“FNS_proxy_consumer”);
FNS_Proxy_Consumer.setAttribute("Reactive", "1");
FNS_Proxy_Consumer.setAttribute("LockType",
"Thread Mutex");

//add the connections
RTEC_Model.addConnection(
"Event_Source_Proxy_Consumer",
event_source,
FNS_Proxy_Consumer);
RTEC_Model.addConnection(
"Proxy_Supplier_Event_Sink",
FNS_Proxy_Consumer,
event_sink);

//do similar to the FNS_Proxy_Supplier model
…
endif;

};

 Addressing Domain Evolution Challenges in Software Product Lines 259

imperative language. The Graph Rewriting and Transformation (GReAT) [21] tool
provides a model transformation specification language to handle the model migration
problem by explicitly defining complex graph patterns and pattern matching algo-
rithms through models. While the methods mentioned above are powerful, they are
also labor-intensive since transformations must be defined manually, which does not
scale up for large-scale DRE systems. In contrast, our approach enables automatic
transformation with limited human intervention that eliminates much of the tedious
tasks of model evolution. C-SAW [2] is a general model transformation engine devel-
oped as a GME [5] plug-in and is compatible with any metamodel, i.e., it is domain-
dependent and can be used with any modeling language defined within the GME. C-
SAW, however, can only handle domain model transformations when the metamodel
is not changed, while our approach can be used even when the metamodel has
changed.

5 Concluding Remarks

Large-scale DRE systems are hard to build. Software product-line architectures
(PLAs) are an important technology for meeting the growing demand for highly cus-
tomized and reusable DRE systems. MDD-based PLA provides a promising means to
develop software product-lines for DRE systems by combining metamodeling,
DSMLs, interpreters, frameworks, and COTS middleware and OS platforms.

Software product-lines must inevitably evolve to meet new requirements. Adding
new (particularly new unanticipated) requirements to MDD-based PLAs, however,
often causes invasive modifications to the PLA’s component frameworks and DSMLs
to reflect these new requirements. Since these modifications significantly complicate
PLA evolution efforts, they can outweigh the advantages of PLA development com-
pared to one off development. To rectify these problems, a layered and compositional
architecture is needed to modularize system concerns and reduce the effort associated
with domain evolution. This paper illustrates via a case study how (1) structural-based
model transformations help maintain the stability of domain evolution by automati-
cally transforming domain models and (2) aspect-oriented model transformation and
weaving helps reduce human effort by capturing model-based structural concerns.

References

[1] Jonathan Sprinkle, Aditya Agrawal, Tihamer Levendovszky, Feng Shi, Gabor Karsai,
“Domain Model Translation Using Graph Transformations,” ECBS 2003: 159-167

[2] Jeff Gray, Ted Bapty, Sandeep Neema, James Tuck, “Handling Crosscutting Constraints
in Domain-specific Modeling,” Communicaton of ACM 44(10): 87-93 (2001)

[3] Jayant Madhavan, Philip A. Bernstein, Erhard Rahm: “Generic Schema Matching with
Cupid,” VLDB 2001: 49-58, Roma, Italy

[4] Frank Budinsky, David Steinberg, Ed Merks, Ray Ellersick, Timothy Grose, “Eclipse
Modeling Framework”, Addison-Wesley 2004

[5] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., Nordstrom G.,
Sprinkle J., Volgyesi P., “The Generic Modeling Environment,” Workshop on Intelligent
Signal Processing, Budapest, Hungary, May 17, 2001.

260 G. Deng, G. Lenz, and D.C. Schmidt

[6] Jonathan Sprinkle, Gabor Karsai, “A Domain-Specific Visual Language for Domain
Model Evolution”, Journal of Visual Language and Computation, vol. 15, no. 3-4, pp.
291-307, Jun., 2004.

[7] Gan Deng, Jaiganesh Balasubramanian, William Otte, Douglas C. Schmidt, and Anirud-
dha Gokhale, “DAnCE: A QoS-enabled Component Deployment and Conguration En-
gine,” Proceedings of the 3rd Working Conference on Component Deployment, Greno-
ble, France, November 28-29, 2005.

[8] Gan Deng, “Supporting Configuration and Deployment of Component-based DRE Sys-
tems Using Frameworks, Models, and Aspects,” OOPSLA ’06 Companion, October
2005, San Diego, CA, to appear

[9] Jack Greenfield, Keith Short, Steve Cook, Stuart Kent, John Crupi, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools, Wiley 2004

[10] Gabor Kasai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty, “Model-Integrated Devel-
opment of Embedded software”, Proceedings of the IEEE number 1, volume 91, Jan. 2003

[11] Karsai G., Sztipanovits J., Ledeczi A., Moore M., “Model-Integrated System Develop-
ment: Models, Architecture and Process,” 21st Annual International Computer Software
and Application Conference (COMPSAC), pp. 176-181, Bethesda, MD, August, 1997

[12] http://www.isis.vanderbilt.edu/Projects/mobies/.
[13] Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons, Aniruddha

Gokhale, and Douglas C. Schmidt, “A Platform-Independent Component Modeling Lan-
guage for Distributed Real-time and Embedded Systems,” Proceedings of the 11th IEEE
Real-Time and Embedded Technology and Applications Symposium, San Francisco, CA,
March 2005

[14] George Edwards, Gan Deng, Douglas C. Schmidt, Anirudda Gokhale, and Balachandran
Natarajan, “Model-driven Configuration and Deployment of Component Middleware
Publisher/Subscriber Services,” Proceedings of the 3rd ACM International Conference
on Generative Programming and Component Engineering, Vancouver, CA, October
2004

[15] John D. McGregor, “The Evolution of Product-line Assets,” Technical Report,
CMU/SEI-2003-TR-005m ESC-TR-2003-005

[16] David Sharp. “Avionics Product-line Software Architecture Flow Policies,” In Proceed-
ings of the Digital Avionics Systems Conference, 1999

[17] Jules White, Douglas Schmidt, and Aniruddha Gokhale, “Simplifying Autonomic Enter-
prise Java Bean Applications via Model-driven Development: a Case Study”, Proceed-
ings of ACM/IEEE 8th International Conference on Model Driven Engineering Lan-
guages and Systems, Montego Bay, Jamaica, October 5-7, 2005.

[18] Krzysztof Czarnecki, Simon. Helsen, and Ulrich. Eisenecker, “Staged configuration us-
ing feature models”, In Proceedings of the Third Software Product-Line Conference,
Robert Nord, 2004

[19] Krzysztof Czarnecki, Ulrich Eisenecker, Generative Programming: Methods, Tools, and
Applications, Addison-Wesley 2000

[20] Paul Clements, Linda Northrop, Software Product-lines: Practices and Patterns, Addi-
son-Wesley, ISBN 0201703327, August 20, 2001

[21] Aditya Agrawal, Gabor Karsai, Ákos Lédeczi, “An End-to-end Domain-driven Software
Devel opment Framework,” Proceeding of ACM SIGPLAN OOPSLA 2003 Domain
Driven Design session , Anaheim, CA, 2003

[22] Available at Generative Model Transformer project website, http://www.eclipse.org/gmt/
[23] James Coplien, Daniel Hoffman, and David Weiss, “Commonality and Variability in

Software Engineering” IEEE Software, 15(6) November/December, 37—45, 1998

 Addressing Domain Evolution Challenges in Software Product Lines 261

[24] Tim Harrison and David Levine and Douglas C. Schmidt, “The Design and Performance
of a Real-time CORBA Event Service”, Proceedings of OOPSLA '97, ACM, Atlanta,
GA, October 6-7, 1997

[25] OMG’s “Data Distribution Service for Real-time Systems Specification”, version 1.0,
Dec.2004. http://www.omg.org/docs/formal/04-12-02.pdf

[26] David Sharp and Wendy Roll, “Model-Based Integration of Reusable Component-Based
Avionics System,” in Proceedings of the Workshop on Model-Driven Embedded Systems
in RTAS 2003, May 2003

[27] Douglas Schmidt, David Levine, and Sumedh Mungee, “The Design and Performance of
Real-Time Object Request Brokers”, Computer Communications, vol. 21, pp. 294–324,
Apr. 1998

[28] Wendy Roll, “Towards Model-Based and CCM-Based Applications for Real-Time Sys-
tems,” in Proceedings of the International Symposium on Object-Oriented Real-time Dis-
tributed Computing (ISORC), Hokkaido, Japan, IEEE/IFIP, May 2003

[29] Clemens Szyperski, “Component Software: Beyond Object-Oriented Programming”,
Addison-Wesley, Dec. 1997

[30] Randall R. Macala, Lynn D. Stuckey, Jr. David C. Gross, "Managing Domain-Specific,
Product-Line Development", IEEE Software, Vol.14, No. 13, May 1996

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 262 – 271, 2006.
© Springer-Verlag Berlin Heidelberg 2006

From Requirements Documents to Feature Models for
Aspect Oriented Product Line Implementation

Neil Loughran, Américo Sampaio, and Awais Rashid

Computing Department, InfoLab 21, Lancaster University, Lancaster LA1 4WA, UK
{loughran, a.sampaio, awais}@comp.lancs.ac.uk

Abstract. Software product line engineering has emerged as an approach to
developing software which targets a given domain. However, the processes
involved in developing a software product line can be time consuming and error
prone without adequate lifecycle tool support. In this paper we describe our
approach, NAPLES, which uses natural language processing and aspect-
oriented techniques to facilitate requirements analysis, commonality and
variability analysis, concern identification to derive suitable feature oriented
models for implementation.

1 Introduction

Software product line engineering [19] promotes an architecture centric approach to
developing software, which targets a particular domain or market segment. Software
can then be created that is customizable to the particular requirements of different
customers. Utilizing such an approach can yield high quality, optimized software with
an increase in productivity and consistency as well as reductions in time to market,
costs and error rates. Among the influencing factors that may necessitate the move to a
product line architecture are identification of new market trends and their domains,
business mergers and the encapsulation of multiple but overlapping existing products
that a company may have in their itinerary. However, software product lines are
difficult to develop with many of the activities (e.g., domain analysis, modeling and
implementation) being time consuming and error prone. Lifecycle tool support and an
associated methodology which aims to address these problems are therefore essential.

In this paper we present our approach, NAPLES (Natural language Aspect-based
Product Line Engineering of Systems), a product line engineering approach that
provides life cycle tool support for taking requirements documents and other textual
assets (e.g. documentation and user manuals) and analyzes them for potential features
and aspect candidates as well as commonalities and variabilities within a given
domain. We demonstrate the approach by taking an existing set of requirements and
performing analysis on them in order to mine for key domain concepts, viewpoints and
aspects as well as variabilities, which can then be mapped to a suitable feature model.

The next section provides an overview of NAPLES. Section 3 demonstrates how
NAPLES provides guidance and tool support to effectively mine concepts (e.g.,
concerns, commonalities, variabilities) as well as facilitates to produce the models in
further phases. Section 4 demonstrates how framed-aspect models can be
systematically delineated from the previous identified concepts and how they can map
to a modularized implementation. Section 5 provides discussion on the process and

 From Requirements Documents to Feature Models 263

explains how it could be utilized for different contexts such as building a product line
from scratch or from existing systems. Section 6 briefly describes related work while
section 7 concludes the paper.

2 Natural Language Aspect-Based Product Line Engineering for
Systems (NAPLES)

The NAPLES approach addresses product line (PL) engineering throughout the
lifecycle by using different techniques, e.g., natural language processing (NLP) and
aspect-oriented software development (AOSD), to provide automated support and
separation of concerns during the PL lifecycle. For example, during requirements
activities, tool support based on natural language processing techniques and aspect-
oriented requirements engineering (AORE) [1, 2] is provided to mine for different
concepts and help the developer to build models from these concepts. The tools used
with the approach do not automate 100% of the engineering tasks but they aim to
provide effective support for product line engineering in a cost-effective way, which
is vital for product line engineering. Fig. 1 presents the NAPLES approach showing
its activities and input/output artifacts.

Fig. 1. An overview of the NAPLES approach

The approach starts with the Mining Elements activity which identifies important
concepts (e.g., early aspects [1-3], viewpoints [4], commonalities and variabilities)
from the requirements documents used as input, and presents them to the user in a
format that can be used to produce a structured model (AORE model [1, 2] and
feature model). The EA-Miner [3, 5] tool uses the WMATRIX [6, 7] natural
language processor to pre-process the input documents and get relevant information.
WMATRIX provides part-of-speech and semantic tagging, frequency analysis and
concordances1 to identify concepts of potential significance in the domain. Part-of-

1 Concordance is a way of presenting a list of chunks of text containing a specific word and its

surrounding text. The word of interest is highlighted and separated from the rest of the text
(e.g., centered). Example: text… vehicle ….text.

264 N. Loughran, A. Sampaio, and A. Rashid

speech analysis automates the extraction of syntactic categories from the text (e.g.,
nouns and verbs).

The information produced by the NLP processor is then used by EA-Miner to help
list possible key domain concept candidates. For example, for the identification of
viewpoints, the tool lists the most frequently occurring nouns in the text, and for Early
Aspects it lists words whose meaning resembles a broadly scoped concern (e.g.,
security, performance, parallel, logon, authorize, and so forth) Details on how EA-
Miner performs its identification can be found in [3, 5]. Commonalities and
variabilities are also identified in a similar fashion, and this is detailed in Section 3.

 After the software developer has identified and selected the concepts of interest in
the previous activity, EA-Miner helps to build structured models during the
Structuring into Models activity. The tool enables the application of screen out
functionalities (e.g., add, remove, check synonyms) to discard irrelevant concepts,
add new ones and check if the same concepts are identified as different ones. The
output is an AORE model showing the viewpoints, early aspects and composition
rules as well as a feature model showing features alongside their commonalities and
variabilities.
 The Deriving Framed Aspects activity uses the previous models (AORE and
feature model) and provides guidance on how to delineate an aspect-oriented model
based on framed aspects. The framed classes and aspects are then used by the frame
processor in the Generating code activity to create the code in a specific language
(e.g., AspectJ [17]). More details are given in Section 4.

3 Commonality and Variability Analysis

The process for identifying commonality and variabilities is similar to what we have
previously done with success to identify viewpoints and early aspects in [3, 5]. We
will explain the procedure using an example of a requirements description for a
product line of mobile phones.

Example:
A mobile phone company XYZ wants to create a product line for its products aiming
at reducing the costs of its operations. The phones will have similar features that can
vary according to the model. Some details of the product line are:

 The phone models are: Model A, Model B and Model C.
 The feature game will be present in all models. For models A and B the games

are already installed and the difference is that model B has games G3 and G4 in
addition to G1 and G2 also found in A. Model C has all the previous games and
also the option to download more games. For all gaming features, it is important
to offer good performance to the users. Each game provides some facility to
store high scores.

 The feature list of contacts is offered in all 3 models and varies in the capacity of
the numbers of contacts that can be stored. For models A and B up to 50 contacts
can be saved while for model C up to 100.

 From Requirements Documents to Feature Models 265

 Model C is the only one to offer a web browser and chat functionalities for real-
time communication over the web. There is provision for the user to store the
URLs of their favorite web pages.

 All mobile phones offer a password protection mechanism that is requested when
the phone is turned on. The password is stored in the phone in an encrypted
manner.

The identification of commonalities is based on a lexicon of relevant domain
concepts for mobile phones (e.g., model, game, contacts, chat and calendar). The task
of the tool is to compare if each word in the document is “equalTo” a domain concept.
The “equalTo” procedure is defined as: if a word is lexically equal, ignoring case and
suffixes, to the word in the lexicon AND the word has same semantic class as a word
in the lexicon. The comparison after the AND avoids identifying words in the text that
have the same spelling but are used in a completely different meaning (e.g., the word
performance can be used to indicate a constraint on a software or to indicate the act of
a dancer or artist in a show). The meaning of the words are attributed by the tagging
feature of WMATRIX which tags each word in the input file with its part-of-speech
and semantic categories (e.g., <w id="8.25" pos="VVN" sem="A9+"> stored </w>).
This means that the word stored is a verb (VVN) whose meaning belongs to the class
of “Getting and giving; possession” (A9).

Fig. 2. A screenshot depicting the EA-Miner tool

The EA-Miner tool helps the user to identify variabilities by providing the
surrounding text in which the word occurs. In figure 2, after the user selects the
“contacts” commonality, the right-hand side shows in which sentences (i.e., sentences
7 and 8) of the document the word appears. The rules of thumb for identifying
commonalities and variabilities are:

266 N. Loughran, A. Sampaio, and A. Rashid

 The tool lists the commonalities on the left-hand side and the user searches for
possible variabilities by looking at the surrounding context of a specific
commonality (e.g., contacts);

 The user looks at the details on the right-hand side and identifies concepts that
modify the commonality in some way (e.g., the size of the list of contacts is
variable depending on the model).

Another example would be to select the word ‘game’ which would result in the
display of the following sentences:

 4 Some details of the product line are: The phone models are: Model A, Model B
and Model C. The feature game will be present in all models.

 5 For models A and B the games are already installed and the difference is that
model B has games G3 and G4 in addition to G1 and G2 also found in A. Model
C has all the previous games and also the option to download more games.

This information then helps to identify ‘game’ as a commonality and that each
model can offer different games. Figure 3 shows a feature model based on FODA [18]
which can be easily built from the information previously described.

Mobile Phones

Key
Mandatory

OptionalG1 G2 G3 G4

Password
protection

Games Web BrowserContact List

<size>

Mobile Phones

Key
Mandatory

OptionalG1 G2 G3 G4

Password
protection

Games Web BrowserContact List

<size>

Fig. 3. Part of the FODA model for mobile phone domain

It is a relatively simple process to map the variabilities identified to the appropriate
features. For example the Contact List feature is parameterized with a <size>
attribute to indicate that this a fine grained variability point contained within the
feature itself. An optional feature such as Web Browser is coarser grained in nature
so is given its own feature space.

The benefits of using the tool are more evident when considering situations where
the input files contain masses of information of a varying nature such as manuals,
legacy documents, and previous requirements. This kind of situation is common to
occur in company mergers where a wide variety of documents exist. In such
situations, tool support would be very helpful in order to mine for the key concepts
that will aid the construction of assets for the merged product line. Another benefit of
the tool is that it is scalable. We have previously run the tool with several

 From Requirements Documents to Feature Models 267

requirements documents in [5] and the tool takes just a few minutes to process and
display the results even considering large documents (tens of thousands of words).

The process for identifying early aspects and viewpoints, shown in figure 2, is
detailed in [3, 5] and is briefly mentioned here. Viewpoints represent stakeholders’
intentions and also are the base decompositions of our RE model. They are identified
by getting a list of the most frequent nouns from WMATRIX and their structure
groups the requirements needed to satisfy specific stakeholder goals.

The early aspects seen on top of figure 2 represent crosscutting concerns (e.g.,
system properties such as security) that crosscut the viewpoints. The crosscutting
points are also listed by the tool (e.g., “performance” crosscuts viewpoint “users” at
sentence 6 in figure 2).

The identification of viewpoints will drive the implementation of the functional
requirements of the features and the early aspects will help to point out some
crosscutting concerns (as we will discuss for persistence in Section 4) that can affect
multiple features and are not captured by the FODA model in figure 3. The next
section shows how the list of viewpoints, early aspects and the FODA model built by
the EA-Miner tool will be useful for delineating the models in the next stages.

4 Delineating Implementation from Feature Models

The previous stages involved searching for key domain concepts, identifying possible
aspects and their variabilities and modeling them appropriately. In this section we
describe how we might go about implementing the various concerns in our product
line.

In [15] a process called framed aspects is described which unifies frame
technology [16], a language independent meta-language for implementing variability,
with aspect languages such as AspectJ [17]. Frame technology implements useful
conditional compilation, parameterization and code refactoring techniques along with
a configuration language. The framed aspects process uses AOP to modularize
crosscutting and tangled concerns and utilizes framing to allow those aspects to be
parameterized and configured to different requirements. An important contribution
of framed aspects is the provision of a methodology for development.

The framed aspect approach involves a number of key stages:

1) Variability modeling using FODA (as done in figure 3).
2) Frame delineation of feature model (as done in figure 4)
3) Creation of parameterized, generalized aspects within the delineated frames.
4) Creation of composition rules for composing the required frames together

and imposing constraints.
5) Development of specification templates for developers.

From the derived feature model in figure 3 we can now clearly delineate coarse
grained common features in our product line from the variant ones. This is illustrated
in figure 4. Mandatory features are always included in every product instantiation so
these form part of the commonality set and are delineated as such. Optional features
are variants and are therefore delineated separately. The fine grained variability point
<size> is a simple parameter which is internal to a common feature, but the feature

268 N. Loughran, A. Sampaio, and A. Rashid

Contact List itself is mandatory, and therefore delineated as a common feature. In
other words, at this level of abstraction we are only really interested in delineating
coarse grained features.

Mobile Phones

Key
Mandatory

Optional
G1 G2 G3 G4

Password
protection

Games Web BrowserContact List

<size>

Delineation

Mobile Phones

Key
Mandatory

Optional
G1 G2 G3 G4

Password
protection

Games Web BrowserContact List

<size>

Delineation

Fig. 4. Delineating common and variable parts of the mobile phone feature model

aspect Persistence

Commonalities

Aspect code for all common features

Variablities

<if WebBrowser chosen>
Include aspect code for WebBrowser

<if Game3 chosen>
Include aspect code for Game3

<if Game4 chosen>
Include aspect code for Game4

class PasswordManager

class ContactList<size>

class WebBrowser

class Game1

class Game2

class Game3

class Game4

aspect Persistence

Commonalities

Aspect code for all common features

Variablities

<if WebBrowser chosen>
Include aspect code for WebBrowser

<if Game3 chosen>
Include aspect code for Game3

<if Game4 chosen>
Include aspect code for Game4

class PasswordManager

class ContactList<size>

class WebBrowser

class Game1

class Game2

class Game3

class Game4

Fig. 5. The persistence concern and its crosscutting common and variable features

The feature diagram approach, used alone in isolation, does not provide an obvious
implementation strategy, as it focuses on providing a commonality and variability
model, which can be used to delineate features and create the appropriate
configuration rules and constraints. However, by using the guidelines previously
identified in the mining and structuring activities, as described in section 3, we can
make a sound judgment as to what aspects and classes will be used in our
architecture. Then we can combine this with the feature diagrams in order to
generalize those concerns using frame technology.

 From Requirements Documents to Feature Models 269

An example of a concern we identified at the mining activity was persistence.
This was identified due to the words ‘storage’ and ‘stored’ being used in the
document. Because these words crosscut multiple features (e.g. password
protection, games, contact list and web browser) we knew that this was a potential
candidate for an aspect. Moreover, we could identify from the feature model that
some of these features, where the persistence aspect crosscut, were optional (e.g.
web browser), therefore the persistence aspect itself needed to be generalized using
the variability mechanisms available in framed aspects. Figure 5 illustrates how an
implementation of the persistence concern might proceed with this in mind. Note
that in the figure we have simply mapped non crosscutting features to a single class
implementation although in reality each feature may consist of multiple classes.

5 Discussion

The process we have described in this paper considered an example where a product
line would be created from scratch. However, in many cases this approach might not
be the most practical. A product line could be the merging of existing overlapping
products in order to better manage them. Alternatively a product line may be taking
an existing product and generalizing so that it can be adapted to different
requirements. The question is, can we still apply the processes of NAPLES to these
situations? We believe the answer is yes.

With respect to multiple overlapping systems, textual assets (e.g. the original
requirements documents, user manuals, legacy documentation and so forth) can be
processed with EA-Miner in order to find common and variable parts which will
facilitate redesign. The redesign can enable the construction of a new product line
since early stages of development (e.g., requirements, design) mining the existing
assets and restructuring them according to NAPLES models (e.g., AORE, framed
aspects). The approach will minimize the effort in structuring the existing information
into a new product line by offering the automated support described before and also
facilitate further evolution by means of separation of concerns.

Similarly, in the process of making a single existing product into a software
product line, domain concepts can be mined using the domain lexicon and can also
help with the identification of possible future places for variability. The viewpoint
and aspect identification models can lead to better modularized designs which are
more conducive to software product line development. For example, considering the
description of a specific mobile phone we could see that possible candidates for
common features would be games, list of contacts, chat, web browser, video, camera,
etc. Each of these features would be identified by the tool alongside the possible
aspects that affect them such as security, persistence and performance. The processes
described in sections 3 and 4 would then help to restructure the current assets into
the basis of a product line architecture with less effort compared to manual
approaches.

270 N. Loughran, A. Sampaio, and A. Rashid

6 Related Work

The use of natural language processing techniques in automation of some tasks in
requirements engineering has been discussed in [8-10]. Most of these approaches
focus on identifying abstractions in requirements documents and building models
from them. NAPLES differs by adding semantic tagging and AORE to address
crosscutting concerns and issues pertinent to product lines e.g. domain analysis,
commonality and variability and lifecycle variability management.

One approach that addresses crosscutting concerns throughout the lifecycle is the
Theme [11] analysis and design method; Theme/Doc [12] is the requirements
modeling approach within this method while Theme/UML is the design mechanism.
Some support for package parameterization exists in Theme/UML and one can also
map Theme/UML designs to multiple AOP languages. However, Theme has not been
designed for product line engineering and as such does not support variability and
commonality identification and analysis. Like our approach, Theme/Doc has support
for lexical analysis to identify aspects in requirements. However, the developer has to
read through the whole set of input documentation and manually identify a list of
action words and entities that are provided as input to the Theme/Doc tool. This has
the potential of becoming a bottleneck in case of large documents used for input (e.g.,
tens of thousands of words). Our approach, however, is based on the WMATRIX
NLP tool suite which has been shown to work for large document sets [7]. The
approach in [13] considers the identification of variabilities in code using concern
graphs [14]. After the variabilities are found a list of refactorings are applied in the
code to factor out the variabilities into aspects. A key difference that NAPLES
addresses is that product lines are not only about code level assets and therefore other
assets such as requirements documents and design models can also be considered and
receive their proper treatment.

7 Conclusions

In this paper we have described NAPLES, our approach for taking textual assets (e.g.
requirements documents, user manuals, interview transcripts, legacy documents and
so forth) and deducing concerns, aspects, feature commonalities and variabilities so
that an implementation can follow. Utilizing tool support saves time and effort,
reducing errors and provides a holistic treatment of concerns and variability across the
software lifecycle aiding traceability of requirements to their implementation. The
semi-automated approach we have outlined provides guidelines for designs, which
will inevitably help to drive the implementation phase and ease the creation of
generalized code assets. Improving the identification of early aspects, commonalities
and variabilities, as well as evolution issues pertaining to the product line, will be a
focus of future work. Additionally, the guidelines applied to the delineation of feature
models and their realization with the framed aspects approach will also be
investigated in greater depth. The processes in NAPLES provide a systematic
approach to creating a software product line architecture from requirements through
to implementation. The approach automates many of the tasks which consume time
and effort thus cutting costs.

 From Requirements Documents to Feature Models 271

Acknowledgments

This is supported by European Commission grant IST-2-004349: European Network of
Excellence on Aspect-Oriented Software Development (AOSD-Europe), 2004-2008.

References

1. Rashid, A., A. Moreira, and J. Araujo. Modularisation and Composition of Aspectual
Requirements. in 2nd International Conference on Aspect Oriented Software
Development (AOSD). 2003. Boston, USA: ACM.

2. Rashid, A., et al. Early Aspects: a Model for Aspect-Oriented Requirements Engineering. in
International Conference on Requirements Engineering (RE). 2002. Essen, Germany: IEEE.

3. Sampaio, A., et al. Mining Aspects in Requirements. in Early Aspects 2005: Aspect-
Oriented Requirements Engineering and Architecture Design Workshop (held with AOSD
2005). 2005. Chicago, Illinois, USA.

4. Finkelstein, A. and I. Sommerville, The Viewpoints FAQ. BCS/IEE Software
Engineering Journal, 1996. 11(1).

5. Sampaio, A., et al. EA-Miner: A tool for automating aspect-oriented requirements
identification. in 20th IEEE/ACM International Conference on Automated Software
Engineering (ASE2005) 2005. Long Beach, California, USA.

6. Rayson, P., UCREL Semantic Analysis System (USAS). 2005:
http://www.comp.lancs.ac.uk/ucrel/usas/.

7. Sawyer, P., P. Rayson, and R. Garside, REVERE: Support for Requirements Synthesis
from Documents. Information Systems Frontiers, 2002. 4(3): p. 343-353.

8. Ambriola, V. and V. Gervasi. Processing natural language requirements. in International
Conference on Automated Software Engineering. 1997. Los Alamitos: IEEE Computer
Society Press.

9. Burg, F.M., Linguistic Instruments in Requirements Engineering. 1997: IOS Press.
10. Goldin, L. and D. Berry, AbstFinder: A Prototype Natural Language Text Abstraction

Finder for Use in Requirements Elicitation. Automated Software Engineering, 1997. 4.
11. Baniassad, E. and S. Clarke. Theme: An Approach for Aspect-Oriented Analysis and Design.

in International Conference on Software Engineering. 2004. Edinburgh, Scotland, UK.
12. Baniassad, E. and S. Clarke. Finding Aspects in Requirements with Theme/Doc. in

Workshop on Early Aspects (held with AOSD 2004). 2004. Lancaster, UK.
13. Alves, V., et al. Extracting and Evolving Mobile Games Product Lines. in 9th

International Software Product Line Conference (SPLC-EUROPE 2005) 2005. 26-29
September 2005 Rennes, France

14. Robillard, M. and G. Murphy. Concern graphs: Finding and describing concerns using
structural program dependencies. in 24th International Conference on Software
Engineering. 2002.

15. Loughran, N., Rashid A. (2004) Framed Aspects: Supporting Variability and
Configurability for AOP. International Conference on Software Reuse, Madrid, Spain.

16. Bassett, P. Framing Software Reuse: Lessons From the Real World: Prentice Hall, 1997.
17. "AspectJ Home Page http://www.eclipse.org/aspectj/," 2005.
18. Kang, K, S. Cohen, J. Hess, W. Novak, and A. Peterson, "Feature Oriented Domain

Analysis Feasibility Study," SEI Technical Report CMU/SEI-90-TR-21 1990.
19. Clements, P and L. Northrop, "Software Product Lines - Practices and Patterns," Addison

Wesley, 2002.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 272 – 279, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Use Cases in Model-Driven Software Engineering

Hernán Astudillo1, Gonzalo Génova2, Michał miałek3,
Juan Llorens2, Pierre Metz4, and Rubén Prieto-Díaz5

1 Universidad Técnica Federico Santa María, Chile
2 Universidad Carlos III de Madrid, Spain

3 Warsaw University of Technology, Poland
4 SYNSPACE, Germany

5 James Madison University, USA
hernan@inf.utfsm.cl, ggenova@inf.uc3m.es,

smialek@iem.pw.edu.pl, llorens@inf.uc3m.es,
pmetz@fbi.fh-darmstadt.de prietorx@cisat.jmu.edu

http://www.ie.inf.uc3m.es/wuscam-05/

Abstract. Use cases have achieved wide use as specification tools for
systems observable behavior, but there still remains a large gap between
specifying behavior and determining the software components to build or
procure. WUsCaM 05 – “Workshop on Use Cases in Model-Driven Software
Engineering” – brought together use case and MDSE experts from industry
and academia to identify and characterize problem areas and promising
approaches.

1 Motivation and Goals

This workshop was the second in the series of Workshops on Use Case Modeling
(WUsCaM-05). The first one took place in 2004 in conjunction with the UML’04
Conference, under the name “Open Issues in Industrial Use Case Modeling”. The
success of the first edition encouraged us to continue the series within the MoDELS
Conference, focusing the workshop on the more specific topic of “Use Cases in
Model-Driven Software Engineering”, which was one of the main concerns of last
year workshop discussions.

The integration of use cases within Model-Driven Software Engineering requires a
better definition of use case contents, in particular description of behavior through
sequences of action steps, pre- and post- conditions, and relationship between use
case models and conceptual models. The UML2 specification allows for several
textual and graphical representations of use cases, but does not provide any rules for
transformations between different representations at the same level of abstraction. It
does not provide either any rule for transformations of these representations to other
artifacts at levels closer to implementation. This workshop aims to show how the
resourceful application of use case models may help to bridge the “requirements gap”
in current research and practice of model-driven methodologies.

 Use Cases in Model-Driven Software Engineering 273

1.1 Open Areas for Research

As a result of last year workshop discussions, we identified before the workshop a set
of open areas for research, which can be grouped in two main topics: semantics of use
cases, and pragmatics of use cases.

Semantics of use cases
 Semantic connection between the use case model and other software models

(static and dynamic).
 Appropriateness of the UML 2.0 meta-model for supporting use case

semantics and transformation into other models.
 Adding traceability information to use case models and their specification

items.
 Refinement of collaboration and participation of actors in a use case.
 Precise notation (functional and structural) for use case specification items

enabling model transformation.
 Clarification of relationships between use cases in the context of their

transformation into other models.

Pragmatics of use cases

 Methods for use case application in a model-driven software lifecycle.
 Automatic transformations of use case model and its items into other models

(analytical, architectural, design).
 Use case views and model views.
 Use cases composition.
 Tools supporting precise use case specification and transformation.
 Tools for use case verification and execution.
 Novel applications of use case models in model-driven development.

1.2 Organization

The workshop has been organized by Hernán Astudillo (Universidad Técnica
Federico Santa María, Chile), Gonzalo Génova (Universidad Carlos III de Madrid,
Spain), Michał miałek (Warsaw University of Technology, Poland), Juan Llorens miałek (Warsaw University of Technology, Poland), Juan Llorens
(Universidad Carlos III de Madrid, Spain), Pierre Metz (SYNSPACE, Germany), and
Rubén Prieto-Díaz (James Madison University, VA, USA).

Submitted papers were reviewed by an international team of experts composed by
the organizers and Bruce Anderson (IBM Business Consulting Services, UK), Guy
Genilloud (Universidad Carlos III de Madrid, Spain), Sadahiro Isoda (Toyohashi
University of Technology, Japan), Joaquin Miller (X-Change Technologies, USA),
and Anthony Simons (University of Sheffield, UK). Each paper received between 2
and 4 reviews before being accepted.

2 Initial Positions of the Participants

The two initial sessions of the workshop were devoted to presentation of the accepted
position papers, which represented a good mixture of experiences and researches both

274 H. Astudillo et al.

from academia and industry, as was one of the goals of the workshop. The authors
came to the workshop with the following positions:

 Guy Genilloud, William F. Frank, Gonzalo Génova. Use Cases, Actions,
and Roles. Use Cases are widely used for specifying systems, but their
semantics are unclear in ways that make it difficult to apply use cases to
complex problems. The authors suggested clarifications to use case
semantics so that use case modeling can be applied to relate automated
systems to business processes and process specifications, particularly in
situations where it’s necessary to integrate multiple systems in support of a
single business process. They discussed the original intentions of Ivar
Jacobson and UML and found out that use case specifications, whether
written in natural language or as interaction diagrams, are misleading as to
what is a use case (instance). They considered then a more natural modeling
technique, and established a relation between a use case, a joint action, and a
role.

 Rogardt Heldal. Use Cases Are more than System Operations. Correctly
written use cases can be an important artifact for describing how a software
system should behave. Use cases should be informal enough to permit
anyone in a software project to understand them, in particular the customer
(often lacking a formal background). One consequence of adopting use cases
to, for example, MDA (Model Driven Architecture) can be an increasing
level of formalism, which can severely limit understanding of use cases.
Also, too few guidelines for how to write use cases make them both hard to
write and understand. Finding the right level of formalism was the topic of
this paper. Heldal suggested a new way of writing the action steps of use
cases by introducing “action blocks”. The introduction of action blocks
makes use cases more formal, but still understandable. In addition, action
blocks support the creation of contracts for system operations. He also
argued that treating system operations as use cases is a misuse of use cases
—system operations and use cases should be separate artifacts. One should
be able to obtain several system operations from a use case, otherwise there
is no dialog (process) between actors and use cases. He believes that having
a clear distinction between use cases and contracts will improve the quality
of both.

 Claudia López, Hernán Astudillo. Use Case- and Scenario-Based
Approach to Represent NFRs and Architectural Policies. Software
architecture decisions pay primary attention to nonfunctional requirements
(NFRs), yet use cases normally describe functional requirements. This article
presented scenario-based descriptions of “Architectural Concerns” to satisfy
NFRs and of “Architectural Policies” to represent architectural choices to
address such concerns. The Azimut framework combines these modeling
abstractions with “Architectural Mechanisms” to enable iterative and
traceable derivation of COTS-based software architectures. An example was
shown using an inter-application communication problem, and its use in an
MDA context was explored.

 Hassan Gomaa, Erika Mir Olimpiew. The Role of Use Cases in
Requirements and Analysis Modeling. The authors described the role of use

 Use Cases in Model-Driven Software Engineering 275

cases in the requirements and analysis modeling phases of a model-driven
software engineering process, built on previous work by distinguishing
between the black box and white box views of a system in the requirements
and analysis phases. Furthermore, this paper described and related test
models to the black box and white box views of a system.

 Michał miałek. Can Use Cases Drive Software Factories? Contemporary
software systems are becoming more and more complex with many new
features reflecting the growing users needs. Software development
organizations struggle with problems associated with this complexity, often
caused by inability to cope with constantly changing user requirements.
Supporting efforts to overcome these problems, miałek proposed a method
for organizing the software lifecycle around precisely defined requirements
models based on use cases that can be quickly transformed into design level
artifacts. The same use cases with precisely linked vocabulary notions are the
means to control reuse of artifacts, promising the lifecycle to become even
faster and more resourceful. With properly applied use case models
practitioners can significantly improve the concept of “software factories”
that newly emerges in the area of model driven software engineering.

 Jon Whittle. Specifying Precise Use Cases with Use Case Charts. Use cases
are a popular method for capturing and structuring software requirements.
The informality of use cases is both a blessing and a curse. It enables easy
application and learning but is a barrier to automated methods for test case
generation, validation or simulation. Whittle presented “use case charts”, a
precise way of specifying use cases that aims to retain the benefits of easy
understanding but also supports automated analysis. The graphical and
abstract syntax of use case charts were given, along with a sketch of their
formal semantics.

Besides the previous authors, two other participants at the workshop asked for a slot
to make short presentations on-the-fly, which were very much related to the ongoing
discussions:

 Pascal Roques talked about how to derive use cases from business process
activity diagrams.

 Richard Sanders presented research on using UML2 Collaborations to
model Use Cases, showing benefits gained by Composite Structure diagrams
compared to Use Case diagrams in UML2 («extend» and «include» being
poorly integrated in the UML language).

3 Workshop Results

The remaining two sessions of the workshop were devoted to discussions and
synthesis work, trying to reach agreement wherever possible. We first established a
list of open issues and prioritized them for the discussion. The discussion was then
centered around three main topics: use case-driven development, some misuses of use
cases (and how to avoid them by adequate teaching), and non-functional requirements
and use cases. We identified other interesting issues but we had not time to discuss

276 H. Astudillo et al.

them in-depth: business process modeling, use cases and UML, use cases and aspects,
the gap between theory and practice, project size estimation (use case points have
been unsuccessful), and completeness of use cases. The following subsections
summarize the discussions and agreements about the three main issues.

3.1 Use Case Driven Development

Use case-driven software development is an idea present and applied for many years
in several methodologies (with UP being the most prominent). Unfortunately, use
case models themselves cause many problems in applying them as true software
development artifacts. These problems seem to arise from the fact that use cases are
usually developed for multiple purposes: they should be well understandable by the
users, enable good understanding of the system’s external behavior, be coherent with
the system’s conceptual model, and finally, be easy to apply in the development
process leading to the final software system. These highly diverse applications get
reflected in a plethora of notations ranging from very informal “paragraphs of text” to
perfectly formal “use case programming languages”.

During the discussion we identified three topics which would allow us to resolve
the ambiguity problem associated with use cases and would make the idea of use case
development more efficient. These topics are:

 Differences and translation between use case representations for different
purposes.

 Translation of use cases into design level artifacts.
 Reuse management on the use case level.

The first topic comes from noting that use cases could be represented by several
notations at the same time. Each of these notations could be used for different
purposes. The notations would include semi-formal text (subject-verb-object
sentences) or graphs (activity diagrams, sequence diagrams). These notations would
allow for different views of a particular use case for a specific reader (customer,
developer, etc.). However, two important prerequisites need to be met. First of all, we
should have an automatic transformation that would allow for instantaneous change of
the view. Second, when writing use cases with any of the notations we should build a
separate, independent vocabulary that would constitute a conceptual model of the
specified system.

The second discussed topic derives from a statement that there still exists a
significant gap between requirements and software being developed on the basis of
these requirements. There is no “seamless transformation” path between requirements
artifacts (like use cases) and design and implementation artifacts. This path can be
significantly supported by introducing certain transformation mechanisms in
accordance with the general ideas of model-driven software development. It can be
argued that this transformation cannot be fully automatic. Design models need certain
design decisions that can be made only by skillful architects and designers. However,
certain tools can support developers in developing a first draft of the design model
and in keeping the design model constantly coherent with the requirements model and
vice-versa.

 Use Cases in Model-Driven Software Engineering 277

The third topic, maybe the most important among all three, comes from observing
very low levels of requirements-driven reuse in software development. This might be
caused also by lack of satisfactory solutions in the previous two topics which are
closely related. Requirements-driven reuse can be organized around precisely
formulated use cases closely mapped (transformed) onto design, implementation and
testing level artifacts. The discussion showed two possible approaches to use case
driven reuse. One approach is associated with already widely known method of
software product lines. With this approach, the reuse process would be organized
around specifying commonality and variability of use cases. Another approach would
be to treat use case models together with other, precisely related software artifacts
(design, code, …) as complete cases. These cases could then be kept in libraries ready
for future reuse. In this approach, all the effort associated with reuse is deferred until
there arises a possibility of actual reuse.

It can be noted that all three of these topics are closely dependent on developments
in model transformations. We stress the need to define precise transformations and
mappings between artifacts on the requirements level (use cases, conceptual models,
non-functional requirements) and from requirements to design.

3.2 Misuse of Use Cases

In spite of their having been around for years, we identified some common misuses of
use cases among practitioners:

 Reducing use cases to system operations. There was general agreement that
use cases and system operations should be separate artifacts at different
levels of abstraction. Confusing them leads to use case models with too many
use cases which are too small. A system operation is invoked by a message
from an actor to the system. A use case typically contains invocations of
several system operations, otherwise there is no dialog (process) between
actors and use cases. Use cases are the starting point for identifying system
operations, which is an important step in the design of the system.

 Relationships between use cases. Practitioners encounter real difficulties in
distinguishing and properly applying «include» and «extend» relationships.
Moreover, included and, more frequently, extending use cases are not
usually full use cases, but mere fragments. Inheritance between use cases has
not a better condition, since its meaning is not defined for the various
existing use case representations (what parts of a textual specification are
inherited, and how? what about graphical representations?). All of this often
leads to vane uses of these relationships.

 Describing business processes instead of use cases. A use case describes an
interaction between the actor(s) and the system which yields a valuable
result. A use case does not describe a whole business process, it describes
only that part of the business process where the system has a contribution.
The distinction is more necessary when we want to integrate several systems
in a single business process.

 Applying use cases even when they are not suitable. Use cases are not
adequate for describing the requirements of any kind of system. Use cases
are good for dialog-driven systems, i.e. when the description of system-user

278 H. Astudillo et al.

interactions are useful to extract functional requirements. However, use cases
are not adequate for event-driven systems, or for extraction of non-functional
requirements.

 Finding the appropriate level of detail. Maybe this is one of the most
difficult points about use cases. There is no universal solution, since the level
of detail depends on the audience: it should not be the same for users and
stakeholders, than for analysts and developers. A principal problem here is
that use cases cannot be recursively decomposed into smaller use cases,
which would ease the use of the same concept at different levels of
abstraction. Besides, practitioners risk to confuse between refinement
(evolving the use case description, e.g. by adding details, into a new version
that still fulfills the same purpose) and realization (creation of new artifacts
in the following software development steps that implement the services
identified by use cases).

3.3 Non-functional Requirements

Non-functional requirements (NFRs) are system-wide requirements that correspond to
systemic properties, usually run-time (e.g. availability, reliability, security) or
deployment-time (e.g. portability). The NFRs topic brought up a lovely discussion as
well, which yielded several consensus ideas.

 NFR cross-cut many use cases. In general, NFRs do not pertain to a single
individual task to be realized by a user, and cannot be specified with use
cases since they aim to describe such individual tasks. We need a consistent
way to indicate NFRs as related use cases (e.g. availability requirements for
specific use cases).

 Consistency among views. There are several ways of describing
requirements, and we need better correspondences between artifacts at the
requirements level (use cases, conceptual models, non-functional
requirements).

 Taking NFRs from requirements into design. NFRs are a key input to the
architecture and design tasks, so they must be gathered and collected like
functional requirements are. A problem is how to preserve and transmit
forward such requirements through a phase (use case modeling) that has no
major use for them.

 Appropriateness of recording NFRs in use cases. There were differing
opinions regarding the convenience of describing NFRs in, or associated to,
use cases. One position paper had explained two (existing) notations to
record NFRs alongside use cases. Some felt that allowing this mix may
pollute the “business task of value” sense of use cases, by forcing to consider
and record system-wide assertions instead of focusing on the task being
described. Others argued that this may be so, but since in practice many
analysis teams collect only use cases, it would be beneficial to associate
NFRs to them, with the proviso that this information can be separated and
recovered later for design (see above).

 Formalism. Whilst several more-or-less formal semantics have been
proposed for use cases, they do not account for the complexity of describing

 Use Cases in Model-Driven Software Engineering 279

NFRs as well. More formal notations for use cases-with-NFRs will be
necessary to implement MDA’s goal of (semi-)automated model translation.

 Aspects. Aspect-oriented modeling may be a good to describe NFRs in a use
case context. One of the workshop papers had presented an approach based
on architectural policies rather than aspects, and the participants wondered
whether policies and aspects are congruent; work remains to be done in that
regard. The interaction of aspects and use cases remains an interesting area,
with some work already existing on Aspect-Oriented Requirements.

4 Conclusions and Future Work

The workshop discussions leave quite clear that use cases are the main way to specify
functional requirements in modern systems development, yet some non-trivial
problems remain to be addressed by the community vis-à-vis the representation of
target problems, the supported processes, and the actual use by humans. These points
were addressed above (“non-functional requirements and use cases”, “some misuses
of use cases”, and “use case-driven development”, respectively).

The two best papers presented at the workshop are also published in this volume
along with the workshop report. To select these two papers, we had into account
mainly the opinions of the reviewers, but we also considered the opinions of the other
workshop participants (authors and attendants). The two chosen papers were
“Specifying Precise Use Cases with Use Case Charts”, by Jon Whittle, and “Use
Cases, Actions, and Roles” by Guy Genilloud, William F. Frank and Gonzalo
Génova.

Given the success of this scientific meeting, we hope there will be a third edition of
this workshop series in the next MoDELS Conference. More information can be
found at the workshop web site (http://www.ie.inf.uc3m.es/wuscam-05/).

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 280 – 289, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Use Cases, Actions, and Roles

Guy Genilloud1, William F. Frank2, and Gonzalo Génova3

1,3 Departamento de Informática, Universidad Carlos III de Madrid,
Avda. Universidad, 30 – 28911 Leganés, Madrid, Spain

guy.genilloud@ie.inf.uc3m.es, ggenova@inf.uc3m.es
2 X-Change Technologies Group, 363 7th Avenue, Floor 11, New York, NY 10001

wfrank@xtg.bz

Abstract. Use Cases are widely used for specifying systems, but their seman-
tics are unclear in ways that make it difficult to apply use cases to complex
problems. In this paper, we suggest clarifications to use case semantics so that
use case modeling can be applied to relate automated systems to business proc-
esses and process specifications, particularly in situations where we need to in-
tegrate multiple systems in support of a business process. We discuss the origi-
nal intentions of Ivar Jacobson and UML and we find out that use case
specifications, whether written in natural language or as interaction diagrams,
are misleading as to what is a use case (instance). We consider then a more
natural modeling technique, and establish a relation between a use case, a joint
action, and a role.

1 Introduction

Use Cases are widely used in software engineering for specifying the observable be-
havior of systems. However, there is still controversy among practitioners about a
number of issues, for example whether or not internal actions of the system should be
described at all [1], and what to think of actions by actors [2, 3]. In Section 2, we find
answers to these questions by looking at the main definitions of a use case, both by
Ivar Jacobson and in UML. While the answers are easy to obtain, they are also sur-
prising because most, if not all, use case specifications are misleading in this respect.

Nothing is said in UML-2 [4] about the semantic relation between a use case and
an action in an activity diagram, even though activity diagrams may be used to model
business processes. May a use case correspond to such an action? And what would be
the correspondence? We answer this question by considering the modeling technique
of the RM-ODP, rather than that of UML (see Sections 3 and 4).

2 What Is a Use Case?

For understanding the semantic of use case specifications, or in other words, for
knowing what is a use case (in this paper, we follow ODP and Jacobson’s original
terminology; so by use case, we mean use case instance), we look at some of the most
important definitions and explanations by both UML and Ivar Jacobson. In the quotes
below, the emphasis is ours. We start with the definition in UML-2:

 Use Cases, Actions, and Roles 281

“A use case is the specification of a set of actions performed by a system, which
yields an observable result that is, typically, of value for one or more actors or other
stakeholders of the system.” [4]

Before UML, Ivar Jacobson provided several definitions of a use case, and some
explanations:

"A use case is a sequence of transactions performed by a system, which yields a
measurable result of values for a particular actor." [5]

"A use case is a sequence of transactions in a system, whose task is to yield a result
of measurable value to an individual actor of the system." [6]

“Use case: the definition above is really a specific flow of events through the sys-
tem, that is, an instance. There are great many possible courses of events, many of
which are very similar. To make a use case model meaningful, you usually group the
courses of events and call each of the groups a use case class. …” [6]

“In the system: when we say ‘transactions in a system’, we mean that the system
supplies the use cases. The actors communicate with the system’s use cases.” [6]

"Transaction: a transaction is an atomic set of activities that are performed either
fully or not at all. It is invoked by a stimulus from an actor to the system or by a point
in time being reached in the system. A transaction consists of a set of actions, deci-
sions and transmission of stimuli to the invoking actor, or to some other actor(s)." [6]

The main difference between UML’s definition and Jacobson’s is that, before be-
ing influenced by UML and the meta-modeling approach to language definition, Ivar
Jacobson was not thinking of a use case as a specification, but rather as the real thing
that the system does. This point is of little importance for this paper, as is the differ-
ence between “a sequence of transactions” and “a set of actions.”

Rather, what matters to us right now is what has remained constant across all defi-
nitions and explanations. From the sentences we have underlined, it is very clear that
Jacobson and UML intend use cases to include exclusively actions performed by the
system, and no other actions performed by actors. In all the above definitions, actions
performed by actors are not mentioned, and this cannot be by omission.

Note also that the two sets of definitions share a view of the use case as a sequence
of actions, rather than as an action. Since most any action is decomposable into
smaller groups of actions, and any sequence of actions is considered as such only be-
cause the entire sequence is considered to be a manifestation of some higher level ac-
tion, as the single action of playing a baseball game is a sequence of playing some in-
nings, the sharp distinction between a sequence of actions and an action is only one of
viewpoint, and makes inter-viewpoint communications difficult.

Jacobson, like UML, considers the stimuli sent by actors to the system as being
events outside of use cases. Likewise for the stimuli received by actors. The actual
communication of stimuli is not modeled – they are simply assumed to arrive at the
receiver some time after having been sent by the sender (without any action taking
place).

2.1 Actions by Actors

The above observation (that a use case includes exclusively actions performed by the
system) is likely to surprise many practitioners. Indeed, most if not all use case textual
specifications describe actions by actors: for example, “the clerk inputs customer in-

282 G. Genilloud, W.F. Frank, and G. Génova

formation in the system”, “the customer selects one of the presented options”, “the
system manager confirms her entries,” etc (some authors even recommend using mul-
tiple columns for textual use case specifications, one column for the actions of the
system, the other(s) for the actions of the actors).

Describing actor’s actions is in fact just a way of describing that the system will
receive the corresponding stimuli and input values. It is more important to write use
case specifications such that they are an easy read for users and stakeholders (un-
trained in computing science or object modeling), than to write a use case specifica-
tion so that it fits exactly its intended semantics. The question of whether an actor’s
actions of sending information to the system belongs or not to a use case is important
to methodologists, and perhaps to analysts or to programmers, but not to their cus-
tomers.

Some use cases are specified with an interaction diagram, showing the system in-
teracting with its actors. In this case, it is the limitations of the graphical notation that
make it necessary to represent actors and their actions of sending and receiving mes-
sages. In this case, it is a lot simpler to teach readers of specifications that the only ac-
tions relevant to the use case are those of the system, than to extend the interaction
diagram notation.

2.2 Internal Actions of the System

Does a use case include internal actions by the system? Of course, it does, or there
would be no relevant actions in it.

Following the classical object modeling technique (in which objects communicate
exclusively by exchanging messages between them) assumed by UML and by Ivar
Jacobson, sending a message is an internal action of the sender, and receiving it is an
internal action of the receiver (when an object’s state machine receives/accepts a mes-
sage as an input event, no other object observes or controls that action). Such actions
of the system clearly belong to the use case, but what about other actions, such as re-
cording a customer’s address, or erasing the data of its credit card?

They do. Read the quotes in Section 2.1: both UML and Jacobson speak of a set of
actions performed by a system, without insisting that they should be actions of either
sending or receiving a message. Again, this cannot be by accident.

In an old Objectory manual (1994), it is written:
“In the description of a use case, there are descriptions of what happens in the sys-

tem. The use case description does not define how tasks are performed in the system.”
This is a clear confirmation that a use case includes actions of changing the sys-

tem’s state, and that use case specifications describe them. Of course, the level of
granularity of the actions should be such no unnecessary details are revealed (or
rather, that programmers are not excessively constrained).

It would be a big mistake to omit such actions in the use case description. Think of
yourselves as an analyst, who faces the question of whether or not to write, “The sys-
tem erases the customer’s credit card information” (assuming that no confirmation of
this fact is to be given to the actor). Do you want to tell programmers that the system
must erase credit card information, or leave the decision to them? Therefore, a use
case description should include those internal actions of the system whose effects can
be observed or inferred by the actors.

 Use Cases, Actions, and Roles 283

Lesley Lamport explains in [7] that it is almost necessary to mention internal ac-
tions in a (black box) system specification, and not just the system interactions. While
it is possible to write specifications without mentioning any internal actions (Lamport
calls such specifications purely temporal), it is not desirable to do this: the specifica-
tions so obtained would be much more complex. Doing so would of course be totally
against the philosophy of use cases, that specifications should be easy to read, even by
non-professionals. Indeed, for knowing what the system does in a particular use case,
a reader would potentially need to read all the use case specifications, instead of just
one.

2.3 The Actor’s Task and the Use Case

Jacobson explains his important idea that a use case should yield a result of measur-
able value to its primary actor:

“A measurable value: this expression is a very important key to finding the correct
level of a use case, that is, one that is not too detailed. A use case must help the actor
to perform a task that has identifiable value. It may be possible to assess the perform-
ance of a use case in terms of price or cost. For example, applying for a loan in a
bank is something that is of value for a customer of a bank.”[6]

Jacobson explanations are such that the actor alone is performing this task, for
which it receives help from the system. The task of the use case is to help the actor,
and it is entirely separate from the actor’s task. It seems therefore that the responsibil-
ity of the actor’s task lies squarely with the actor, not at all with the system.

But do human actors see things in this way? If we were to ask some actors about
the task they are performing, many of them would tell us that their task actually re-
quires them to use the computer – they would not see the computer as just a help tool.
With respect to taking responsibility, they would tell us that they do not feel responsi-
ble if the system makes incorrect actions, or gives them incorrect values (she is not
checking calculations received from the system, and she is not asked to doing it). In
many cases, the system’s availability is essential for the actor’s task to be performed.
For all these reasons, it would seem reasonable to say that the actor and the system are
performing the task together. But Ivar Jacobson assumed a modeling technique in
which the system and its actors perform all their actions alone, and communicate ex-
clusively by exchanging messages. Since a use case consists exclusively of actions by
the system, it cannot be a part of the actor’s task. However, it can be part of means by
which the actor might achieve his goals, if the actor is a primary one (an actor for
whose benefit the system exists).

In the second part of this paper, we will look at this same issue from a different
perspective, that of the ODP modeling technique [8].

3 Use Cases from an ODP Perspective

3.1 ODP Basic Modeling Concepts

In an ODP model, entities in the real world can be modeled by objects, including the
system, no matter if it is an IT centralized system, a distributed IT system, or a busi-
ness system. The ODP notion of object is much more general than that of most OO

284 G. Genilloud, W.F. Frank, and G. Génova

specification or programming languages, in particular because an object may partici-
pate in all kinds of interactions (see below), instead of just communicating with other
objects by exchanging messages.

8.1 Object: A model of an entity. An object is characterized by its behaviour (see
8.6) and, dually, by its state (see 8.7). An object is distinct from any other object. An
object is encapsulated, i.e. any change in its state can only occur as a result of an in-
ternal action or as a result of an interaction (see 8.3) with its environment (see 8.2).
… [8]

8.3 Action: Something which happens.
Every action of interest for modeling purposes is associated with at least one ob-

ject.
The set of actions associated with an object is partitioned into internal actions and

interactions. An internal action always takes place without the participation of the
environment of the object. An interaction takes place with the participation of the en-
vironment of the object.

NOTES

1 - "Action" means "action occurrence". Depending on context, a specification
may express that an action has occurred, is occurring or may occur.

2 - The granularity of actions is a design choice. An action need not be instantane-
ous. Actions may overlap in time. … [8]

An action of an object is either an internal action or an interaction of that object.
The discriminator between these two categories is rather subtle, because an object
may interact with itself [9]. So, for the purpose of this paper, we will adopt a simpler
classification. Borrowing the terminology from Catalysis [10], we speak of localized
actions for those actions which have just one participating object, and of joint actions
for those actions in which several objects participate (so, every joint action is an inter-
action, but not every interaction is a joint action). An object which participates in an
action is a participant in that action.

The ODP modeling technique is such that the actor’s task is preferably modeled as
a single joint action in which the system is also a participant. This joint action is com-
posite, since it is specified as a configuration of simpler (joint or localized) actions1.
Communication of information between objects is explained by joint actions of the
communicating objects, either directly between themselves, or with intermediate ob-
jects [9, definition 8.8]. See [11] for a discussion and examples of joint actions at the
granularity level of use cases.

The ODP modeling technique makes it easy and natural to model the task of a pri-
mary actor, but what is a use case? To answer this question, we investigate the notion
of role in a joint action.

1 In Catalysis, all joint actions are specified atomically (using pre- and post-conditions on the

participant states) before being decomposed. However, an “atomic” specification is only
valid under the assumption that no other joint action, happening concurrently, interferes with
this joint action. We do not propose adopting this practice, as it is not realistic for actions at
the granularity of use cases. For example, an actor may receive an urgent call and decide not
to complete a task.

 Use Cases, Actions, and Roles 285

3.2 Joint Actions and Roles

A fundamental characteristic of ODP interactions, and therefore of joint actions, is
that they have roles (“An object may interact with itself, in which case it is considered
to play at least two roles in the interaction.” [8, Definition 8.3, Note 4]). For any joint
action that we imagine, we can always find two or more roles.

Unfortunately, the RM-ODP explanations of the concept of role let much to be de-
sired (they might be changed in the next revision of the standard). So we provide here
a different explanation2: actions are decomposed in different parts that are played (in
principle) by different objects; a role (of an action) is that part of an action that is
played by an object, i.e., the contribution of that object to the action. Thus, a role is a
part of an interaction, in a non-recursive decomposition of that action3. This decom-
position is non-recursive in that the parts obtained, the roles, are not all actions. It is
different from the typical recursive decomposition of an action, which yields sub-
actions. We call the decomposition of an action that yields its roles the role decompo-
sition of the action.

A role decomposition may be applied to an action seen as a whole, in which case it
simply yields the roles of the action. For example, in an action in which a message is
communicated, there is a sender and a receiver.

A role decomposition may also be applied to an action seen as a configuration of
simpler actions (sub-actions) with constraints between them (e.g., the sequential con-
straint that an action occurs before another). In this case, the decomposition yields the
relevant roles of the joint sub-actions, and the relevant localized sub-actions. As for
the constraints between actions, they remain. For example, the role of accepting a
proposal includes receiving the proposal (a role in a joint action), reading it (a local-
ized action), and giving back a notification of acceptance to the counter-party (a role
in another joint action).

A role is therefore a subset of the behavior of an object, that is, a role is a collec-
tion of more primitive roles (of joint actions) and localized actions with a set of con-
straints between them. The behavior of an object is then the union of all its roles. It is
also a collection of roles and localized actions with a set of constraints between them.
The difference between role and behavior is that a role is a contribution to some joint
action, whilst no such constraint applies to the behavior of an object.

3.2.1 Difference with the Behavior of an Object in the RM-ODP
The interested reader should note that the following definition in the RM-ODP is
flawed.

8.6 Behaviour (of an object): A collection of actions with a set of constraints on
when they may occur. … [8]

The problem is in fact obvious (so much that one may make the definition right
without even thinking about it). For knowing what an object does, that is, its behavior,
it is not enough to know all the actions in which this object participates. One must
also know which roles the object performs in those actions. For example, consider a
joint action in which two people get married, in front of two witnesses (as illustrated

2 The concept of role, being primitive, cannot be defined on the basis of other concepts, but it

can be explained (much like the RM-ODP does for objects and actions).
3 We would define a role of a link in the same way.

286 G. Genilloud, W.F. Frank, and G. Génova

in Fig. 2). If you were only told that a person participated in the action, you would not
know whether he or she got married or was simply a witness.

3.3 Use Cases and Actors Are Roles

Having explained the concepts of joint action and role, we are now in a position to
provide an alternate definition of a use case, which assumes the ODP modeling tech-
nique:

Use Case: The system role in a joint action (among the system, its actors, and possi-
bly additional participants) that is intended by the system's designer, and expected by
some actor or other stakeholder, when circumstances are appropriate, to yield a par-
ticular observable result that is of value to one or more actors or other stakeholders of
the system.

Our definition makes it clear that IT systems, not just people, perform some of the
actions of a business process (remember that the original vision is for a use case to
help an actor perform a task, which might be an action in a business process). Like-
wise, IT systems (or in fact their providers), rather than their actors, may need to as-
sume the responsibility when an action fails to provide the expected results. In other
words, business processes are not composed of actors’ actions (performed with the
“help” of the system), but of actor-system joint actions.

Defining a use case as a role of a joint action is also interesting because it makes
the notion of actor easier to understand. In UML-1.5, an actor was defined as “A co-
herent set of roles that users of use cases play when interacting with these use cases.
An actor has one role for each use case with which it communicates.” But UML 1.5
did not provide one compatible, good explanation of the concept of role. And it failed
to point out that a use case is a role of the system [3].

No real progress has been made in UML-2 with respect to the concepts of actor
and role. In fact, the new definition of actor in UML-2 speaks of just one role for an
actor, which makes the notion of an actor harder to understand. The definition may
still be considered to be correct, if one sees this single role as a composite of the ac-
tor’s roles in the use cases in which it participates. For further explanations of the
concept of actor, see [12] and [11].

4 Applications to Business Processes

Support for a business process by IT systems becomes particularly clear, when one
understands the idea that the IT system is performing roles (use cases) in the actions.

A business process is a configuration of localized and joint actions (e.g., a se-
quence of actions). Typically, people are involved in many actions, and more and
more they perform their tasks by using an IT system. It is even possible that one per-
son uses several systems in support of a single joint action.

Unfortunately, some notations for business process modeling work under the as-
sumption that all actions are localized to just one participant (e.g., UML activity dia-
grams with swimlanes). They do not support representing joint actions with their mul-
tiple participants, much less indicating which specific role each participant performs

 Use Cases, Actions, and Roles 287

in the joint action4 (see Section 4.2). So a specifier faces a problem whenever she
wants to describe an action that happens to have multiple participants (e.g., a primary
actor, a system and a secondary actor). She may decide to aggregate all the action par-
ticipants as a group, but she may end up having too many groups, some of which un-
natural. She may represent only one action participant and omit others (in particular
the system that helps the primary participant perform her task). Or she may decom-
pose the action into sub-actions, such that all actions are localized, and participants
(supposedly) communicate by exchanging messages). She would therefore go at a
much lower level of abstraction than she originally intended to. In any case, these no-
tations make it unnecessarily difficult to relate use cases to the actions of the business
process (i.e., in Jacobson’s terms, to the tasks of the primary actors).

The problems that we mentioned here are compounded when one wants to examine
how several systems might be used jointly for supporting a same actor in a same busi-
ness process. Indeed, one needs then not just to relate each system’s use cases to the
business process, but also to relate them to use cases of other systems. The following
method, based on the concept of joint action, solves all these problems: first specify
the business process (once and for all) as a configuration of joint actions, then find the
participants in each action, and find their roles (or contributions in the action). Use
cases are then given by the roles of the systems in the joint actions.

4.1 Making Use of the Use Case Specification Technique

The use cases graphical notation may be used to support our approach, as Wegmann
and Genilloud showed in [11]. Fig. 1, taken from that paper, can be produced using
most UML case tools on the market. Ovals represent joint actions, and actors repre-
sent participants. The role of a participant is represented using a rolename of the asso-
ciation between the actor and the use case. The related mutiplicity indicates how
many roles of the type (say sender) might be in the joint action.

Corporate HQ
Backoffice

transfer
Price

Store
Backoffice

transfer
Price

1 * 1

Cash Register

1

sender receiver receiversender

1

Fig. 1. The Use Case Notation may be used for representing joint actions and roles

G e t

m a r r ie d

2

s p o u s e w itn e s s

2

Fig. 2. A joint action with four roles of two types, spouse and witness

4 Such notations may nevertheless have a concept of role, much like the use cases notation has

the concept of actor (see Section 0). But they lack support for the more fundamental concept
of a joint action’s role.

288 G. Genilloud, W.F. Frank, and G. Génova

Joint actions may be specified textually, just like use cases. The difference is that
the (sub-)actions of all participants must be mentioned, not just those in which the
system participates. The use case specification(s) may then be obtained by projection
of this joint action specification, i.e., by removing all the actions in which the system
does not participate.

4.2 Improving the Activity Diagrams Notation

UML activity diagrams might be improved for supporting joint actions. It should be
possible to indicate that actions have multiple participants, each playing one or more
roles in the action. For a participant in an action, it should be possible to indicate the
type of role that it performs, with a name (much like a role name of an association in
UML).

We stress that this name should denote a type of role rather than a role (a role is not
a type, but a kind of part of a joint action). It is indeed possible for several participants
to perform roles of the same type (for example, a “Get married” joint action with two
identical roles of spouse, and two identical roles of witness). If we were to name roles
rather than their types, the notation might be unnecessarily restrictive and unnatural.
For example, UML insists that all rolenames of associations be different, which rules
out the possibility of having symmetric associations in a model [13]. See [12] for a
discussion of the relation between the notions of role, type of role, and type of object.

5 Summary and Conclusions

In this paper, we set out to answer the question of what is a use case. We had in mind
settling two issues often debated by use case methodologists and practitioners. We
found that Jacobson’s and UML definitions of a use case provide authoritative an-
swers: (1) all the system’s actions, not just those of sending or receiving messages,
should be described (to some extent) in a use case specification; and (2), only the ac-
tions of the system belong to a use case, and none of the actors.

Common use case textual specifications do not reflect the second answer, but it is
all for the better. Specifications in natural language should describe the actors’ actions
of entering data, selecting an option, etc., as a matter of convention (it is clear enough
that the system receives those data), and so that they can be easily read by system us-
ers and other stakeholders. Likewise, interaction diagrams should describe the actors
sending and receiving messages, because doing otherwise would require complicating
the current notation.

In the second part of the paper, we considered use cases in the light of the ODP
modeling technique. That is, we replaced the message passing hypothesis with joint
actions [10], in which several participants may change state. This modeling technique
is more natural than that of UML, since joint actions can model actions in natural lan-
guage, given by verbs. All joint actions come with multiple roles; e.g., the buy action
has the roles of buyer, seller, the sold entity, and its counterpart.

We then explained a use case as a role in a joint action, an important idea when
one is attempting to relate IT systems to business processes, or to integrate multiple
systems in support of a business process.

 Use Cases, Actions, and Roles 289

We showed that the use cases specification technique (i.e., the use cases graphical
notation together with textual specifications) is applicable to modeling joint actions,
and we indicated how the activity diagrams notation should be extended in support of
the same cause.

Acknowledgements

We acknowledge the contributions of Joaquin Miller and Alain Wegmann to the years
of discussions that led to this paper. We are also grateful to the anonymous reviewers
for their valuable comments and suggestions.

References

1. Anderson, B. Formalism, technique and rigour in use case modelling. in UML2004 Work-
shop on Open Issues in Industrial Use Case Modeling. 2004. Lisbon, Portugal.

2. Isoda, S. On UML2.0’s Abandonment of the Actors-Call-Use-Cases Conjecture. in
UML2004 Workshop on Open Issues in Industrial Use Case Modeling. 2004. Lisbon, Por-
tugal.

3. Génova, G. and J. Llorens. The Emperor’s New Use Case. in UML2004 Workshop on
Open Issues in Industrial Use Case Modeling. 2004. Lisbon, Portugal.

4. OMG, Unified Modeling Language: Superstructure (version 2.0). 2004, OMG.
5. Jacobson, I., et al., Object-Oriented Software Engineering--A Use Case Driven Approach.

1992, Reading, Massachusetts: Addison-Wesley, 1992. 524.
6. Jacobson, I., M. Ericsson, and A. Jacobson, The Object Advantage: Business Process Re-

engineering with Object Technology. ACM Press Books. 1995: Addison-Wesley. 347 pp.
7. Lamport, L., A simple approach to specifying concurrent systems. Communications of the

ACM, 1989. 32(1): p. 32-45.
8. ISO/IEC and ITU-T, Open Distributed Processing - Basic Reference Model - Part 2:

Foundations, in Standard 10746-2, Recommendation X.902. 1995.
9. Genilloud, G. and G. Génova. On Interactions in the RM-ODP. in submitted to the Work-

shop on ODP for Enterprise Computing (WODPEC 2005). 2005. Enschede, The Nether-
lands.

10. D'Souza, D.F. and A.C. Wills, Objects, Components and Frameworks With UML : The
Catalysis Approach. Addison-Wesley Object Technology Series. 1998: Addison-Wesley.
912.

11. Wegmann, A. and G. Genilloud. The Role of "Roles" in Use Case Diagrams. in Third In-
ternational Conference on the Unified Modeling Language (UML2000). 2000. York, UK:
Springer-Verlag.

12. Genilloud, G. and A. Wegmann. A Foundation for the Concept of Role in the RM-ODP. in
4th International Enterprise Distributed Object Computing Conference (EDOC 2000).
2000. Makuhari, Japan: IEEE Computer Society.

13. Génova, G., Interlacement of structural and dynamic aspects in UML associations (Ph. D.
Thesis). 2003, Carlos III University of Madrid: Madrid, Spain.

Specifying Precise Use Cases with Use Case
Charts

Jon Whittle

Dept of Information & Software Engineering,
George Mason University,

4400 University Drive,
Fairfax, VA 22030

jwhittle@ise.gmu.edu

Abstract. Use cases are a popular method for capturing and structur-
ing software requirements. The informality of use cases is both a blessing
and a curse. It enables easy application and learning but is a barrier to
automated methods for test case generation, validation or simulation.
This paper presents use case charts, a precise way of specifying use cases
that aims to retain the benefits of easy understanding but also supports
automated analysis. The graphical and abstract syntax of use case charts
are given, along with a sketch of their formal semantics.

1 Use Case Charts

Use cases are a popular way of structuring and analyzing software requirements
but are usually written informally as a set of use case diagrams and text-based
templates. This makes them very easy to use but is a barrier to the application
of automated analysis methods such as test case generation, simulation and
validation. More precise formalisms for specifying use cases are needed but the
advantages of informal notations should not be sacrificed in the process. In this
paper, use case charts, a 3-level notation based on extended activity diagrams,
is proposed as a way of specifying use cases in detail, in a way that combines
the formality of precise modeling with the ease of use of existing notations. The
primary purpose of use case charts so far has been to simulate use cases but
use case charts are also precise enough for test case generation and automated
validation. With respect to simulation, use case charts provide sufficient detail
that a set of communicating finite state machines can be generated automatically
from them. These state machines can then be simulated using existing state
machine simulators.

The idea behind use case charts is illustrated in Figure 1. For the purposes of
this paper, a use case is defined to be a collection of scenarios, where a scenario
is an expected or actual execution trace of a system. A use case chart specifies
the scenarios for a system as a 3-level, use case-based description: level-1 is
an extended activity diagram where the nodes are use cases; level-2 is a set of
extended activity diagrams where the nodes are scenarios; level-3 is a set of
UML2.0 ([1]) interaction diagrams. Each level-1 use case node is defined by a

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 290–301, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Specifying Precise Use Cases with Use Case Charts 291

Fig. 1. Use Case Charts

level-2 activity diagram (i.e., a set of connected scenario nodes). This diagram
is called a scenario chart. Each level-2 scenario node is defined by a UML2.0
interaction diagram.

Semantically, control flow of the entire use case chart starts with the initial
node of the use case chart (level 1). When flow passes into a use case chart node
at level-1, the defining level-2 scenario chart is executed with flow passing from
the scenario chart’s initial node in the usual manner. Flow exits a scenario node
when a final node is reached. Note that there are two types of final nodes for
scenario charts: those that represent successful completion of the scenario chart
and those that represent completion with failure. Flow only continues beyond a
scenario chart if a final success node is reached. If a final failure node is reached,
the use case thread to which the scenario chart belongs is terminated. A formal
semantics for use case charts is sketched in Section 3.

Figures 2, 3 and 4 give an example of how use case charts can be used to
precisely describe use cases. The system under development is an automated
train shuttle service in which autonomous shuttles transport passengers between
stations [2]. When a passenger requires transport, a central broker asks all active
shuttles for bids on the transport order. The shuttle with the lowest bid wins.
A complete set of requirements for this application is given in [2]. Figure 2
shows a use case chart that includes use cases for initialization of the system,
maintenance and repair of shuttles, and transportation (split into multiple use
cases). Figure 3 is a scenario chart that defines the Carry Out Order use case.
Figure 4 is an interaction diagram forming part of the definition of the use case
Make A Bid.

292 J. Whittle

Fig. 2. Shuttle System Use Case Chart

Fig. 3. Shuttle System Scenario Chart for Carry Out Order

The use case chart in Figure 2 shows the main use cases for the shuttle system
and the relationships between them. As stated previously, a use case chart is
an extended activity diagram. Note that the usual 〈〈includes〉〉 and 〈〈extends〉〉
relationships from use case diagrams are not part of use case charts. If desired,
these can be represented independently on a conventional use case diagram.
Figure 2 shows that the shuttle system first goes through an Initialization use

Specifying Precise Use Cases with Use Case Charts 293

Fig. 4. Shuttle System Interaction Diagram for a scenario in Make A Bid

case. After that, four use cases execute in parallel. If the Make A Bid use case
is successful, it can be followed by Carry Out Order or another bidding process
(executed in parallel). The Retirement use case represents the case when the
shuttles are shut down. It preempts any activity associated to Make A Bid. This
is represented by a stereotyped preemption relationship that applies to a region.
A region is a set of nodes enclosed in a dashed box. Note that, in the figure,
a region is syntactic sugar and can be replaced by multiple preemption arrows,
one to each node in the region.

Figure 3 is a description of what happens in the Carry Out Order use case.
Transportation of passengers takes place and the broker is informed of success.
The asterisk in the region represents the fact that the region may execute in

294 J. Whittle

parallel with itself any numbers of times. In other words, the use case may involve
multiple concurrent transports of passengers. However, the requirements of the
problem state that during transport, shuttles may not move to intermediate
stations except to pick up or drop off passengers. This is captured by introducing
a negative scenario node with a stereotyped negation arrow. Note that scenario
charts must have at least one final success or final failure node. A final success
node represents the fact that execution of the use case has successfully completed
and is given graphically by the final activity node as in Figure 3. A final failure
node says that the use case completes but that execution should not continue
beyond the use case. This is given graphically using the final flow node of activity
diagram notation, i.e., a circle with a cross through it1. As an example, suppose
that the passenger transport cannot be completed for some reason. This could
be captured by introducing a scenario capturing the failure and then an arrow
to a final failure node. In this case, when the final failure node is reached, the
Make Payment use case in Figure 2 will not execute — i.e., payment will not be
paid for an unsuccessful transport.

Each scenario node in Figure 3 is described by a UML2.0 interaction dia-
gram. Figure 4 shows an interaction diagram that is part of the Make A Bid
use case. This particular example is shown to illustrate extensions that use case
charts introduce to UML2.0 interaction diagrams, namely, multiobjects and uni-
versal/existential messages. We introduce two new interaction operators, exist
and all. We also introduce a stereotype 〈〈multiobject〉〉 which denotes that an
interaction applies to multiple instances of a classifier. In the figure, Shuttle is
stereotyped as a multiobject which means that multiple shuttles may participate
in the interaction. There are two interaction fragments. The first has operator
“all”. This means that the Broker sends the enclosed messages to all shuttles.
The second operator has operator “exist” meaning that there must be at least
one makeBid message to Controller followed by at least one makeBid message
to Broker. The semantics can be easily extended to more than one multiobject.
For example, if in the “all” fragment, Broker is also a multiobject, then legal
traces would be those in which each broker sends a message to each shuttle.

The activity diagrams used in use case charts and scenario charts are a re-
stricted version of UML2.0 activity diagrams but with some additional relation-
ships between nodes. They are restricted in the sense that they do not include
object flow, swimlanes, signals etc. They do include additional notations, how-
ever. The abstract syntax is defined in Section 2. The concrete syntax reuses as
much of the activity diagram notation as possible. Informally, the allowed arrow
types between nodes (either in use case or scenario charts) are given as follows,
where, for each arrow, X and Y are either both scenario nodes or both use case
nodes:

1. X continues from Y (i.e., the usual activity diagram arrow)
2. X and Y are alternatives (the usual alternative defined by a condition in an

activity diagram)
3. X and Y run in parallel (the usual activity diagram fork and join)
1 Note that this is not the standard UML2.0 interpretation for the final flow node.

Specifying Precise Use Cases with Use Case Charts 295

4. X preempts Y — i.e., X interrupts Y and control does not return to Y
once X is complete. This is shown graphically by an arrow stereotyped with
〈〈preempts〉〉 from X to Y .

5. X suspends Y — i.e., X interrupts Y and control returns to Y once X is com-
plete. This is shown graphically by an arrow stereotyped with 〈〈suspends〉〉
from X to Y .

6. X is negative — i.e., the scenarios defined by X should never happen. This
is shown graphically by an arrow stereotyped with 〈〈neg〉〉 to X and where
the source of the arrow is the region over which the scope of the negation
applies.

7. X may have multiple copies — i.e., X can run in parallel with itself any
number of times. This is shown graphically by an asterisk attached to node
X .

8. X crosscuts Y — X is an aspect that crosscuts Y . This is shown graphically
by an arrow stereotyped with 〈〈aspect〉〉 from X to Y .

Discussion of aspects is outside the scope of this paper. The interested reader is
referred to [3]. Briefly, a use case node is an aspect if it crosscuts other use cases.
Similarly, a scenario node is an aspect if it crosscuts other scenarios. Use case
charts contain well-defined notations for representing and composing aspects.

In addition, use case charts and scenario charts may have regions (graphically
shown by dashed boxes) that scope nodes together. Arrows of type (4), (5), (8),
in the preceding list, may have a region as the target of the arrow. Arrows of
type (7) may have a region as the source of the arrow. All other arrows do not
link regions.

Arrow types (4), (5), (6) and (8) are not part of UML2.0 activity diagrams
(although there is a similar notation to (4) and (5) for interruption). Activity
diagrams do have a notion of region for defining an interruptible set of nodes.
Regions in use case charts are a general-purpose scoping mechanism not re-
stricted to defining interrupts. Note that the semantics for use case charts is,
in places, different than UML2.0 activity diagrams and is sketched in section 3.
In addition to the arrow and region extensions, there are minor extensions to
interaction diagrams.

The graphical notation for use case charts is similar to notations such as
UML2.0 interaction overview diagrams (IODs) and high-level message sequence
charts (hMSCs). Use case charts are a hierarchical approach to defining use
cases. In IODs, there are only two levels of hierarchy — activity diagrams con-
nect references to interaction diagrams but use cases are not incorporated. In
hMSCs, nodes can be references to other hMSCs so there is an unlimited number
of hierarchical levels. However, all references in hMSCs ultimately are to inter-
action diagrams (MSCs) so, once again, the third use case level is not captured.
Modeling use cases with either IODs or hMSCs would require, in addition, the
usual use case diagrams. The use case chart approach also extends both activity
diagrams and interaction diagrams to increase the expressive power of use case
charts. The key goal of use case charts is to support use case simulation. This
cannot be done with existing use case modeling notations.

296 J. Whittle

2 Use Case Chart Syntax

2.1 Abstract Syntax for Scenario Charts

The abstract syntax of a scenario chart is given first.

Definition 1. A scenario chart is a graph of the form (S, RS , ES , s0, SF , SF ′ ,
LS, fS , mS , LE) where S is a set of scenario nodes, RS ⊆ P(S) is a set of regions,
ES ⊆ (P(S∪RS)×P(S∪RS)×LE) is a set of edges with labels from LE, s0 ∈ S is
the unique initial node, SF ⊂ S is a set of success final nodes, SF ′ ⊂ S is a set of
failure final nodes, LS is a set of scenario labels, fS : S → LS is a total, injective
function mapping each scenario node to a label and ms : S ∪ RS → {+, −}
is a total function marking whether each scenario or region can have multiple
concurrent executions. The labels in LS are references to an interaction diagram.
LE is defined to be the set {normal, neg, preempts, suspends}. LS is the set of
words from some alphabet Σ.

This definition describes a graph where edges may have multiple sources and
targets. This subsumes the notion of fork and join from activity diagrams which
can be taken care of by allowing edges to have multiple source nodes and/or
multiple target nodes. Multiple source nodes lead in the use case chart graphical
notation to a join and multiple target nodes lead to a fork.

Regions are a scoping mechanism used to group nodes. For the most part,
they are simply syntactic sugar and can be eliminated by replacing each outgoing
edge with outgoing edges for each node in the region, and each incoming edge
with incoming edges for each node in the region. For example, a region with an
incoming preemption edge can be replaced with edges that preempt each node
in the region. A region with a normal outgoing edge (i.e., no stereotypes) is
equivalent to normal edges leaving each node in the region, i.e., a join.

The only case when regions cannot be viewed as syntactic sugar is when a
region is marked to have concurrent executions (graphically, an asterisk). This
case cannot be eliminated (without changing the semantics) by projecting the
concurrent executions inside the region.

As stated previously, the intuition behind success final and failure final nodes
is that a success final node denotes successful completion of the scenario chart —
and hence that the current “thread” in the enclosing use case chart continues; a
failure final node denotes that the scenario chart completes but unsuccessfully —
and hence that the current “thread” in the enclosing use case chart terminates.

This paper omits the notion of condition but it is enough to say that guards
could be placed on arrows leaving a node.

2.2 Abstract Syntax for Use Case Charts

The abstract syntax for a use case chart is almost identical except that a use
case chart has only one type of final node (for success) and each use case node
maps to a scenario chart not an interaction diagram. Only one type of final node
is required for use case charts because there is no notion of success or failure —
either a use case chart completes or it does not.

Specifying Precise Use Cases with Use Case Charts 297

Definition 2. A use case chart is a graph of the form (U, RU , EU , u0, UF , C, fU ,
mU , LE) where U is a set of nodes, RU ⊆ P(U) is a set of regions, EU ⊆
(P(U ∪ RU) × P(U ∪ RU) × LE) is a set of edges, u0 ∈ U is the unique initial
node, UF ⊂ U is a set of final nodes, C is a set of scenario charts, fU : U → is
a total, injective function mapping each use case node to a scenario chart and
mU : U ∪ RU → {+, −} is a total function marking whether the use case or
region can have multiple concurrent executions.

A 3-level use case chart is well-formed if all edges map use case nodes to use
case nodes or scenario nodes to scenario nodes. In other words, there should be
no edge that links a use case node and a scenario node. Formally, dom(fS) ∩
dom(fU) = ∅.

3 Use Case Chart Semantics

This section sketches a trace-based semantics for use case charts. A trace se-
mantics is used to achieve consistency with existing semantics for sequence chart
notations. A trace is a sequence of events where an event may be a send event,
!x, or a receive event, ?x. The semantics of a 3-level use case chart is defined as
follows.

Definition 3. The semantics of a 3-level use case chart, U , is a pair of trace
sets, (PU , NU), where PU is the set of positive traces for U and NU is the set of
negative traces for U .

Positive traces are traces that are possible in any implementation of the use
case chart. Negative traces may never occur in a valid implementation of the
use case chart. An implementation satisfies a use case chart if every positive
trace is a possible execution path and if no negative trace is a possible execution
path.

The details of the semantics are given in stages — first, the semantics of
UML2.0 interaction diagrams is given, followed by the semantics for scenario
charts, and finally, use case charts.

3.1 Semantics of UML2.0 Interaction Diagrams

A message in a UML2.0 interaction has two events — a send event and a re-
ceive event. The send event must come before the receive event. In UML2.0, as
shown in Figure 4, messages are composed using interaction fragments, where a
fragment has an interaction operator and a number of interaction operands. For
example, Figure 4 has two unary-operand fragments — one with the all operator
and one with the exist operator.

The default operator is seq which represents weak sequencing. Any messages
not explicitly contained within a fragment are by default assumed to be contained
within a seq fragment. seq fragments are defined in UML2.0 to have a weak
sequencing semantics ([1]):

298 J. Whittle

– The ordering of events within each operand is maintained.
– Events on different lifelines from different operands may come in any order.
– Events on the same lifeline from different operands are ordered such that an

event from the first operand comes before an event from the second operand.

Any seq fragment joins two traces — one from each of its operands – in a way
that satisfies these three constraints. The positive traces for seq are all possible
ways of joining a positive trace from the first operand and a positive trace from
the second operand. The negative traces for seq are those derived from joining
a positive trace from the first operand with a negative trace from the second, or
a negative trace from the first with either a positive or negative trace from the
second.

A trace semantics for the other interaction operators can be given in the same
way. For example, for alt, the set of positive traces is the union of the set of
positive traces from each operand. Similarly, the set of negative traces is the
union of the set of negative traces from each operand. par is defined by inter-
leaving traces from each of its operands. Its positive traces are the interleavings
of positive traces from both operands. Its negative traces are the interleavings of
negative traces from both operands, or a positive trace from one operand with
the negative trace from the other operand. The neg operator simply negates
all traces — its set of negative traces is the union of the positive and negative
traces of its operand. This captures the fact that the negation of a negative
trace remains negative. These notions are based on the formalization of UML2.0
interaction diagrams given in [4].

The semantics for the multiobject extensions are now given. Multiobjects
cannot be used unless either an existential or universal operator is also used.
Hence, only the semantics for the operators exist and all need be given. Sup-
pose that an all fragment is applied to a positive trace of events, t1, t2, The
resulting positive traces are all those that can be derived by replacing each ti
by its image under all. Suppose that ti is a receive event where the receiving
instance is stereotyped as a multiobject. Then the image under all is given as
the trace ti1 , ti2 , . . . where each tij is the same event but received by instance j.
The corresponding send event is also replaced by a set of send events, one for
each instance j. The same logic applies if ti is a send event where the sending
instance is a multiobject. In this case, ti is replaced by a set of send events, one
for each instance of the multiobject, and the corresponding receive events for
the new send events are added. If, for a message, both its sending and receiving
instances are multiobjects, the preceding rules result in duplication which is just
removed.

When an all fragment is applied to a negative trace of events, the semantics
is derived in the same way as in the previous paragraph. For example, a negative
send event is replaced with multiple negative send events, one for each instance
of the multiobject, and the corresponding negative receive events are added.

The case for exist is the same except that positive (alternatively, negative)
traces for the exist fragment are those in which ti is replaced by a trace for just
one of the multiobject instances, not all of them.

Specifying Precise Use Cases with Use Case Charts 299

3.2 Semantics of Scenario Charts

As stated in the previous section, the semantics of an interaction diagram is
given as a pair of sets of traces. The semantics is extended to scenario charts
in the natural way — the semantics of a scenario chart is also given by a set of
positive traces and a set of negative traces.

Edges of type normal in scenario charts can be given a semantics by “flatten-
ing” the edge — i.e., create a new interaction diagram that takes the interaction
diagrams represented by the source and target and connects them using an in-
teraction fragment with a particular interaction operator. Normal edges with
only one source and target edge are flattened using the seq interaction oper-
ator for sequential composition. This captures the weak sequential semantics
of one-to-one normal edges. Many-to-many normal edges are flattened using
the par interaction operator. This is because the semantics of a one-to-many
edge is defined to be a forking and that of a many-to-one edge is defined to
be a joining of “threads”. Hence, a many-to-many edge can be replaced by a
fork and join in the usual activity diagram notation. Since normal edges can
be eliminated in this way, their semantics is not explicitly given here but the
semantics is assumed to be that of the equivalent “flattened” interaction dia-
gram. This leaves only edges of type neg, preempts and suspends to be dealt
with.

In what follows, c1 preempts c2 informally means that scenario c1 preempts
c2. c1 suspends c2 means that c1 suspends c2 and c1 negative during c2 means
that c1 can never happen during the execution of c2.

The semantics for preemption, suspension and negation are given only for
one-to-one edges, but can be extended in the obvious way to many-to-many
edges: for example, if there is a preemption edge with multiple target nodes, it
means that all those nodes are preempted by the source(s) of the preemption
edge.

For preemption, a positive trace for c1 preempts c2 is any trace made up of a
prefix of a positive trace of c2 concatenated with a positive trace of c1. Note that
a preempting scenario cannot have negative traces (if it does, they are simply
ignored). Furthermore, c1 preempts c2 does not introduce any new negative
traces because preempting traces have no effect on the original negative traces.
The case for suspension is similar except that control returns to the suspended
scenario once the suspending scenario is complete.

For the negation case, the positive traces of c1 negative during c2 are simply
the positive traces of c2. Negative traces, however, can be any trace that is an
interleaving of a positive trace of c2 with a positive trace of c1. This, in effect,
defines a monitor for traces of c1 — if a c1 trace occurs at any point, even with
events interleaved with its own events, then an error state has been entered.
Note that c1 cannot have negative traces.

The semantics for multiple concurrent executions (the asterisk notation) is
given by interleaving and hence can be described in terms of flattening using
par operators. The number of par operators is unbounded since there can be
any number of executions of the node.

300 J. Whittle

For the most part, regions are merely syntactic sugar. The exception is when
a region is defined as having multiple concurrent executions. In this case, the
traces of the region are given by the semantics of multiple executions as described
in the previous paragraph.

The semantics for final success and final failure nodes are given in the following
subsection.

3.3 Semantics of Use Case Charts

The semantics for use case charts is essentially the same as for scenario charts be-
cause both a scenario and a use case are given meaning as a set of traces. For use
case charts, however, the meaning of a normal edge is given by strong not weak
sequential composition. This means that before execution can continue along an
edge to the next use case, all instances of participating classifiers must com-
plete (where completion is defined below). In contrast, in scenario charts, some
instances may complete and continue to the next node while others remain in
the current node. Strong composition is chosen to define use case charts because
nodes represent use cases. Use cases are considered modular functional units
in which the entire unit must complete before control goes elsewhere. Strong
composition enforces the modularity and, in most cases, is probably adequate.
However, the author acknowledges that, in certain situations, weak composition
may be desired and future versions of use case charts may allow the modeler
to choose the type of composition. Semantically, strong composition of traces is
just concatenation.

A use case chart node completes if and only if its defining scenario chart
reaches a final success or final failure node. If the scenario chart reaches a final
success node, control continues to the next use case node. If the scenario chart
reaches a final failure node, the use case “thread” terminates. Semantically, each
trace in a scenario chart is either infinite, ends with a final success node (a success
trace) or a final failure node (a failure trace). Suppose a use case chart has two
nodes, U1 and U2, connected by a single edge from U1 to U2. Then the positive
trace set of the use case chart is the union of three trace sets: the positive infinite
traces of U1, the set of traces formed by concatenating positive success traces
from U1 with positive traces from U2, and the set of positive failure traces from
U1. The extension to negative traces is straightforward.

4 Related Work and Conclusion

A variety of notations for scenario-based definitions exist, such as UML2.0 inter-
action overview diagrams, high-level message sequence charts (hMSCs) and ap-
proaches based on activity diagrams (e.g., [5]). Notationally, the extensions that
use case charts provide are relatively minor. The notation is based on UML2.0
activity diagrams and some extensions have been suggested by other authors
— e.g., [6] deals with preemption for hMSCs. The contribution is that use case
charts are a usable yet precise notation that can be directly executed. Work to-
wards simulating use case charts is currently underway. A state machine-based

Specifying Precise Use Cases with Use Case Charts 301

simulator for interaction diagrams has already been defined [7] and a simulator
for the remaining parts of use case charts is being developed.

Use case charts are intended to be used as a way to rapidly simulate use case
scenarios. As such, they can be used either during requirements engineering or
early design. Clearly, the appropriateness of their use depends on the applica-
tion and they are more suited to complex, reactive systems. For example, so far
they have been used to model air traffic control and telecommunication appli-
cations. In such applications, the sequence of interactions in use cases quickly
becomes very complex and stakeholders quickly question the validity of the inter-
actions they have developed. By using use case charts, these interactions can be
simulated either during requirements gathering or early design. The focus on re-
active, concurrent and distributed systems means that interaction diagrams are
the most suitable notation for the level 3 models although, in principle, there
is no reason why level 3 could not be based on activity diagrams as well. Note
that use case charts are not meant to be a substitute for use case diagrams. The
two diagram types are usually used together — use case diagrams focus on the
actors whereas use case charts focus on the interactions (the initiating actors are
implicitly defined at level 3).

References

1. OMG: Unified modeling language 2.0 specification (2005) http://www.omg.org.
2. Software Engineering Group, University of Paderborn: Shuttle system

case study (2005) http://www.cs.uni-paderborn.de/cs/ag-schaefer/CaseStudies/
ShuttleSystem/.

3. Whittle, J., Araújo, J.: Scenario modelling with aspects. IEE Proceedings — Soft-
ware 151 (2004) 157–172

4. Haugen, O., Husa, K.E., Runde, R.K., Stølen, K.: Stairs: Towards formal design with
sequence diagrams. Journal of Software and System Modeling (2005) To Appear.

5. Smialek, M.: Accommodating informality with necessary precision in use case sce-
narios. In: Proceedings of Workshop on Open Issues in Industrial Use Case Modeling
at UML2004. (2004)

6. Krueger, I.: Distributed System Design with Message Sequence Charts. PhD thesis,
Technische Universitaet Muenchen (2000)

7. Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In: ICSE
’00: Proceedings of the 22nd international conference on software engineering, New
York, NY, USA, ACM Press (2000) 314–323

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 302 – 305, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Summary of the Educator’s Symposium

Holger Giese1, Pascal Roques2, and Timothy C. Lethbridge3

1 University of Paderborn, Germany
hg@uni-paderborn.de

http://www.springer.de/comp/lncs/index.html
2 Valtech Training, France

pascal.roques@valtech-training.fr
3 University of Ottawa, Canada
tcl@site.uottawa.ca

Abstract. This first Educators’ Symposium of the conference on Model Driven
Engineering Languages and Systems (MoDELS - formerly the UML series of
conferences) was intended as a forum to foster discussion and the exchange of
information on education and training concerning model-driven engineering.
This summary reports about the workshop and the results of the discussions
during the workshop.

1 Introduction

Model-driven development approaches and technologies for software-based systems,
in which development is centered round the manipulation of models, raise the level of
abstraction and thus, improve our abilities to develop complex systems. A number of
approaches and tools have been proposed for the model-driven development (MDD)
of software-based systems. Examples are the UML, model-driven architecture
(MDA), and model-integrated computing (MIC).

Initiating the model-driven development vision into common practice requires not
only sophisticated modeling approaches and tools, but also considerable training and
education efforts. To help developers adopt MDD, its principles and applications need
to be taught to practitioners in industry, incorporated in university curricula, and
probably even introduced in schools for primary education.

The educator’s symposium at the MoDELS conference, the premier conference
devoted to the topic of model-driven engineering of software-based systems, served
as a forum in which educators and trainers met to discuss pedagogy, use of
technology, and to share their experience pertaining to teaching modeling techniques
and model-driven development. The symposium also facilitated the sharing of project
ideas, exemplar models, and other teaching materials.

The symposium had 16 submissions from which only 9 papers were accepted. All
papers presented during the symposium have been published in a technical report [1].
The areas addressed by the papers of this symposium include experience reports from
academia, industry, and primary schools regarding issues related to teaching modeling
and model-driven development in particular. The covered topics were MDD with
UML [2,4,5,6,8,9,10], MDD in general [3,7], course design issues [3,4,5,6,7,8,10],
and design patterns [4,8,9]. Additionally, methodology issues as well as the

 Summary of the Educator’s Symposium 303

integrating of modeling and model driven development into the curriculum are
discussed. Extended versions of the two best papers [5, 10] are included in this
volume.

In addition to the presentations, the symposium included time slots for working
groups. Two possible working group themes were presented: Timothy C. Lethbridge
proposed to discuss the role that modeling should play in the curriculum for software
engineering and Pascal Roques proposed to discuss the differences and commonalities
of teaching students and training professionals in the field.

In an initial discussion these two working group themes were slightly adjusted to
also include other topics of interest. In the following we will outline the results
obtained during the discussions.

2 Results of the Working Group on Modeling in the Curriculum

Tim Lethbridge first presented some information about the modeling content in SE-
2004 [11]. The group members in this session then brainstormed for answers to two
questions. The following are edited versions of the answers they produced:

The first question was: “What should be the goals and outcomes of modeling
aspects of curricula?” The conclusions were as follows, most important first:

• Students should be able to communicate effectively using abstractions: They
should be able to understand abstractions (beyond those found in programming
languages), create new abstractions and validate abstractions.

• Students should be able to model heterogeneously: They should be able to find
the right abstraction for the problem at hand, create different models for different
audiences, and be able to work with different views of the same system. They
should know the properties of each type of model, and should be able to choose the
level of formalism so as to be cost-effective and balance costs and quality

• Students should be able to model in at least one “real” domain. They need to
have knowledge of both the domain and ways to model in that domain. Since it is
impossible to educate students in a large number of domains, they need to be able
to have the flexibility to choose their specialty. Finally, they should be able to
develop and work with domain-specific models and languages in their domain(s).

• Students should be able to apply a wide variety of patterns in their models,
particularly design patterns. Patterns are widely recognized as effective expressions
of expert knowledge. Applying patterns will result in better models.

• Students should have a deep understanding of quality. They need to understand
how their modeling work influences the quality of the final product, and they need
to be able to certify that models have certain properties.

• Students should be able to create ‘models that count’: i.e. not just diagrams, but
models that are formally analyzable, executable and/or used to generate final code
of the system. Students should also be able to transition models to design and code,
extract a model from code, and understand what a compiler and model compiler do.

• Students should know the importance of keeping models updated.
• Students should know the basics of creating modeling tools and metamodelling.

The second question addressed was, “What do we need to do to improve model
education?” The answers fall into the following three themes:

304 H. Giese, P. Roques, and T.C. Lethbridge

• We should confront students with complex models they have to change, rather
than having them create models from scratch. This will teach by example and help
students learn about scalability. One strategy is to have students build systems
using frameworks, and with models of the frameworks. Models should also be used
as building blocks to build other models: i.e. students should re-use models as
components. Students should also model with COTS components.

• We should expose students to modeling in a variety of domains, including in
other types of engineering. For example, we can demonstrate electrical, mechanical
and software modeling in the automotive and aeronautical industries, and teach
about the types of analysis these models permit – such as performance, safety, etc.

• We should ensure students learn the benefits of modeling. In particular we must
demonstrate that good modeling makes systems easier to change and can lead to
improved performance. At the same time students must understand the limitations
of modeling. This can be accomplished using well-designed case studies.

3 Differences and Commonalities of Teaching Students and
Training Professionals in the Field

To start the discussion, Pascal Roques made a short presentation of his activities as a
modeling consultant and trainer for a French training company called Valtech
Training. He focused on the use of adult learning theory [12] in Valtech’s courses:
Key tenets of this are: a) Create a positive environment, b) Disseminate information,
c) Exercise knowledge, and d) Provide feedback. The main goal is to provide trainees
with confidence and the ability to apply course concepts outside the classroom.

The group tried to figure out the main differences and commonalities between
teaching students and training professionals in the field. The following are some of
the conclusions reached by the group:

Firstly, adult learners are volunteers. They need the knowledge for their daily work
and their company is paying for it, so they want a concrete return on investment, and
practical training is also required. Students don’t have the “context”, adults have:
very often, professionals want to see examples in their domain. But real-life examples
are very difficult to elaborate.

Adult learners are often already experts in their field. They may be even more
experienced than the teacher. People who have a lot of experience and expertise are
often more reluctant to change. In particular, there is an important difficulty for the
teacher if the trainees have been “forced” to go to the training to reconvert (example:
COBOL programmers taking UML and Java courses).

In adult courses, there is often no exam at the end. The exception is for certification
courses. Sometimes adults simply want to improve their C.V., and in such cases have
a similar motivation to students regarding succeeding in exams.

Other differences relate to logistics. Groups of trained professionals are usually
smaller (3 to 12), but may be very heterogeneous regarding their experience in the
topic, group interaction, career background, etc. Training courses are short (1 to 5
days), compared to a semester with 2 to 6 hours a week. So training for professionals
must be efficient and fast. The intensity is different; there is less time to digest. One

 Summary of the Educator’s Symposium 305

consequence is that professionals usually do not have enough time to use modeling
tools, whereas students have time to master them and indeed specifically want to.

To sum up the main differences, one could say that professionals need state-of-the-
art skills, while students want knowledge that will survive the next 10 years.

4 Conclusion

The symposium attracted more than 20 participants, including researchers and
instructors with various interests and backgrounds in modeling and MDD. The
working group discussions benefited greatly from this mixture of the two perspectives
provided by the two categories of attendees. We hope that this first Educators’
Symposium initiates what will become a permanent offering at future MoDELS
conferences such that it can serve as a starting point for building an active community
that addresses the specific problems of teaching and training issues related to
modeling and the model-driven paradigm.

References

[1] Holger Giese and Pascal Roques (Editors). Proceedings of the Educators' Symposium of
the ACM / IEEE 8th International Conference on Model Driven Engineering Languages
and Systems, Half Moon Resort, Montego Bay, Jamaica. October 3, 2005. Technical
Report tr-ri-05-260, Department of Computer Science, University of Paderborn.
A4: http://models05-edu.upb.de/proceedings/models05-edu-proceedings-a4.pdf Letter:
http://models05-edu.upb.de/proceedings/models05-edu-proceedings-letter.pdf

[2] Jörg Niere, Carsten Schulte. Avoiding anecdotal evidence: An experience report about
evaluating an object-oriented modeling course. In [1].

[3] Pádua, Paula Filho. A Model-driven Software Process for Course Projects. In [1].
[4] Kendra Cooper, Jing Dong, Kang Zhang, Lawrence Chung. Teaching Experiences with

UML at The University of Texas at Dallas. In [1].
[5] Ludwik Kuzniarz, Miroslaw Staron. Best Practices for Teaching UML based Software

Development. In [1].
[6] Shayne Flint, Clive Boughton. Three years experience teaching Executable/Translatable

UML. In [1].
[7] Anirudha S. Gokhale, Jeff Gray. Advancing Model Driven Devlopment Education via

Collaborative Research. In [1].
[8] Eduardo B. Fernandez, María M. Larrondo Petrie. Teaching a course on data and

network security using UML and patterns. In [1].
[9] Claudia Pons. Basis for a Course on Design Patterns: going beyond the intuition. In [1].

[10] Gregor Engels, Jan Hendrik Hausmann, Marc Lohmann, Stefan Sauer. Teaching UML is
Teaching Software Engineering is Teaching Abstraction. In [1].

[11] IEEE and ACM: Software Engineering 2004 Curriculum Recommendations:
http://sites.computer.org/ccse.

[12] William A. Draves, How to Teach Adults, 2nd edition, LERN, 1997.

Teaching UML Is Teaching Software Engineering
Is Teaching Abstraction

Gregor Engels, Jan Hendrik Hausmann, Marc Lohmann, and Stefan Sauer

Universität Paderborn, Germany
{engels, hausmann, mlohmann, sauer}@upb.de

Abstract. As the Unified Modeling Language (UML) has by now seen
widespread and successful use in the software industry and academia
alike, it has also found its way into many computer science curricula. An
outstanding advantage of teaching UML is that it enables an illustration
of many crucial concepts of software engineering, far beyond its concrete
notation. Most important among these concepts is that of abstraction.
We present a course design which demonstrates the use of UML as a ve-
hicle for teaching such core concepts of software engineering. Multimedia
elements and tools help to efficiently convey the course’s message to the
students.

1 Introduction

What shall we teach undergraduate computer science (CS) students? This ques-
tion has plagued our profession for decades now. Possible answers range over
several dimensions from principles (“Programming first!”) over different appli-
cation fields (“Compiler construction!”), technologies (“Java!”), and paradigms
(“OO!”). And for the last five years, another big player has entered the con-
test for the students’ attention: UML [10]. Being widely used in industry by
now, proficiency in UML is certainly a valuable asset for every CS student. The
widespread academic interest is also a factor in integrating this topic in the
curriculum.

Evidence for the rapid increase in the importance of UML can be gained from
the IEEE/ACM’s computing curricula project, which mentioned UML only in
passing in 2001 (amongst CRC cards and other data modeling techniques) [11]
and which explicitly places UML as a central component in the core course in
software engineering (SE) in 2004 [12].

The incorporation of UML in a curriculum can and should not happen by
adding a separate “UML” course. UML is nothing but a means to reach an end
(the end in this case being the expression of software models). And there should
not be courses purely on means in an academic setting. On the one hand, there is
clear and present danger that the knowledge gained in such a course is outdated
before the graduation day (UML 2, anyone?). On the other hand, university
graduates are expected to know the ‘why’ and not only the ‘how’.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 306–319, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Teaching UML Is Teaching Software Engineering Is Teaching Abstraction 307

Fortunately, UML has a very natural application context and that is soft-
ware development. In the context of a stepwise refinement from problem to
program, one cannot only showcase UML’s various features, but one can also
demonstrate how these features are employed in a practical and meaningful
context. The teaching of structured development itself (also a fundamental con-
cept which should appear in every CS education) also benefits from employing
UML diagrams as they help to make the various stages of development more
tangible.

Another benefit of teaching UML to undergraduates goes even beyond soft-
ware development: UML is a set of notations for modeling. The core of modeling
is abstraction; and abstraction is the principle which is right at the heart of
software engineering and in fact of computer science in general. According to
Hoare: “In the development of our understanding of complex phenomena, the
most powerful tool available to the human intellect is abstraction.” [6].

However, as Jeff Kramer repeatedly pointed out in a recent series of
keynotes [8], abstraction is as hard to teach as it is important. His solution,
as well as ours, is the use of modeling. Modeling languages provide a fixed struc-
ture in which to express certain aspects of a domain or idea. Thus, the creation
of UML diagrams always implies abstracting from the concrete instance and
recognizing the more abstract core of the matter.

The notion of abstraction is not absolute, but depends on a particular pur-
pose. Abstractions of the same subject can vary in the aspect they represent
and their level of detail. The relations between these abstractions are captured
by the notions of consistency and refinement. Decomposition and synthesis are
techniques to elicit new abstractions. All of these very general concepts appear
naturally in the context of UML-based development. Since UML is a family of
diagrams rather than a single diagram, students also very naturally learn about
different possible aspects and their interrelations.

In this paper we make the case that teaching UML is teaching Software En-
gineering and is teaching abstraction at the same time. As such, teaching UML
is not just ”another language course“ but it can and should play a central role
in each undergraduate CS education.

The presentation of the paper proceeds in three sections. We start by laying
out the recently remodeled CS program in Paderborn, which implements the
points made in this paper. Focusing more concretely on a single course, we show
the concept of the course Softwareentwurf (translates to software design), which
is the fundamental SE/UML course for undergraduate students (Sect. 3). Here,
we illustrate the integrated teaching of software development principles along
a simplified software development process together with extensive UML model-
ing. We point out how fundamental concepts can be elicited in this structure.
Even the best teaching concepts fail without a proper operationalization. Thus
in Sect. 4, we present some of the practices which we have found useful in con-
veying our intentions to the students. Our experiences with the course are briefly
reported in Section 5.

308 G. Engels et al.

2 The Paderborn CS Curriculum

Due to the switch to the Bachelor/Master structure, the Paderborn CS depart-
ment has recently restructured its academic program.

In the Bachelor CS program, four different thematic columns are integrated
(see Figure 1): Software Engineering and Information Systems (SE/IS), Algo-
rithms and Models (AM), Embedded Systems and System Software (ESS), and
Human Computer Interaction (HCI). In addition, the curriculum covers courses
in mathematics as well as a limited number of courses in a minor subject (like
economics, engineering or natural sciences). This overall structure as well as the
concrete courses implementing this structure have not only been accredited by
the German ASIIN accreditation agency, but have also formed the basis for a
national recommendation for a well-structured CS curriculum.

In the first term of the Bachelor curriculum, CS students have to take a course
on object-oriented programming (with an introduction to the Java programming
language) as well as a course on foundations of modeling concepts. Topics which
are taught in this course cover basic structuring means like sets, trees, terms,
graphs, and basic modeling instruments like predicate logic, finite automata,
Petri Nets, and ER models.

This emphasis on programming and modeling concepts right from the begin-
ning distinguishes the Paderborn CS curriculum from most other CS curricula
of German universities. Intentionally, this choice led to a reduction of general

Internship

M
in

or

Bachelor in Computer Science @ University of Paderborn

Bachelor Thesis

M
at

he
m

at
ic

s

M
in

or
 S

ub
je

ct

Programming

Programming

Prog. Languages

Software
Engineering

Softwareentwurf

SE Lab Course

DB Systems

SE / IS

Programming

Programming

Prog. Languages

Software
Engineering

Softwareentwurf

SE Lab Course

DB Systems

SE / IS

Modeling
Concepts

Data Structures
and Algorithms

Theory of
Computation,

Formal
Languages, and

Complexity

AM

Modeling
Concepts

Data Structures
and Algorithms

Theory of
Computation,

Formal
Languages, and

Complexity

AM

Computer
Engineering

Computer
Engineering

Computer
Architecture

System
Software

ESS

Computer
Engineering

Computer
Engineering

Computer
Architecture

System
Software

ESS

2 modules

HCI

2 modules

HCI

2 modules

SE / IS

2 modules

SE / IS

2 modules

AM

2 modules

AM

2 modules

ESS

2 modules

ESS

Fig. 1. Paderborn CS curriculum

Teaching UML Is Teaching Software Engineering Is Teaching Abstraction 309

mathematics courses. Rather emphasizing the modeling aspect right from the be-
ginning yields the advantage that CS students are dealing with computer science
issues from the first day of their studies and are focusing more on formalisms
and abstractions that are directly applicable in CS.

The programming education is continued in the second term by introducing
advanced programming concepts (e.g., concurrency), different paradigms (e.g.,
functional programming), and the wealth of fundamental data structures and
algorithms. All of these courses provide the students with solid programming
skills but the scope of examples and exercises is limited to the implementation
of search algorithms and the like, i.e., tasks which have a clear structure and
require neither teamwork nor extensive planning.

In the third term, the students take the course Softwareentwurf, which is the
running example of this paper. The objective of the course is to introduce the
students to the problems of industrial-strength software development and supply
them with knowledge about software engineering techniques (especially UML)
to overcome these problems. The course is also intended to build on, recall, and
expand basic OO principles from the fundamental programming courses.

Based on this introduction to SE, all CS students have to take part in a lab
course during the fourth term. In this lab course, a complex software development
project has to be solved by small teams of students (cf. [5] for details on this
course). The skills and knowledge acquired during the Softwareentwurf course
are applied here in a practical setting. Upon finishing this lab, the students
have to apply their skills in the industrial reality during a mandatory 8-week
internship in a software company.

The overall structure of the program is thus to start from initial programming
experience and to continually refine this experience in eliciting more abstract
concepts on the one hand and practically applicable skills on the other hand.
Teaching UML works towards both of these ends.

3 Embedding UML in a Software Development Process
for Teaching - The Softwareentwurf Course

In this section we focus on the course Softwareentwurf. The presentation here is
not intended to completely reflect the contents of the course (nor is the course
intended to cover all topics of Software Engineering) but rather to point out how
fundamental CS concepts are embedded in this course.

The course is oriented along a simplified software development process which
starts with a requirements specification phase and moves over analysis and design
phases towards actual implementation. The different models and UML diagrams
employed during this process and a selection of their relations are depicted in Fig-
ure 2. We omitted all relations which are not mentioned in the following sections.

3.1 Building Abstractions - The Domain Model

The first model which is being built in our development process is the so-
called domain model, a class diagram representing concepts and relations in the

310 G. Engels et al.

Description
of Domain

Goals Domain Model

Structure Behavior

Product Functions
1.
2.
3.

1.
2.
3.

Product Functions
1.
2.
3.

1.
2.
3.

Requirements
Specification

Analysis
Document

Business Process
Model

Business Process
Model

Architecture Analysis
Class Diagram

Design
Document

Component
Diagram

Component
Diagram

Design
Class Diagram

StatechartStatechart

Analysis Sequence DiagramAnalysis Sequence Diagram

Fig. 2. Concepts underlying the Paderborn Softwareentwurf course

problem domain of the software system. Domain models help us to thoroughly
understand the structure of the problem we face and thus aid us in building the
right system for the user’s needs.

Creating such a model requires two different kinds of knowledge: what is to
be modeled and how is the model to be expressed. The latter kind of knowledge
comprises the actual UML syntax symbols and is the ‘easy’ part of teaching
as students quickly pick up the notations and tools can be used to aid them
in drawing diagrams. What to model is actually the hard part as this question
involves understanding of object-oriented structures and abstractions.

There are actually two steps of abstraction required for eventually achieving
the domain class model. At first, situations in the problem domain have to be in-
terpreted in terms of relevant objects and relations (we cannot-in general-assume
a generalized description of the domain to be readily available, see Sect. 4.1
and 4.2). Irrelevant details have to be discarded and relevant information has to
be notated using an object diagram.

The second abstraction generalizes these instance models towards the type
level (Figure 3 shows a slide from the lecture exemplifying this distinction). Its
result is expressed by a UML class diagram. Note that the notion of abstraction
in these cases is not the same: while an object diagram is a token model, i.e.,
a projection of an observed situation, the class diagram is a type model, i.e., a
generalization which only corresponds indirectly to real situations [9].

Experienced modelers actually perform both of these abstraction tasks at
the same time, i.e., they can formulate a class diagram directly on the basis of
concrete situations, but it is easier for students to separate these tasks.

Except for trivial cases, both abstraction tasks can yield a number of different
actual results for a given problem. Typical questions are: “What is relevant?”,
“Which entities belong to the problem domain, which are outside of it?”, and
“Which level of detail is detailed enough?”. Furthermore, information can often

Teaching UML Is Teaching Software Engineering Is Teaching Abstraction 311

Video:Object Diagram:Class Diagram:

Carussell

Tray

weight : integer

Carussell 1

Tray 1

weight = 700

Fig. 3. Slide of lecture Softwareentwurf

be encoded in a number of ways in a UML diagram. Elements of the problem
domain can for instance become classes of their own or they may become part
of another class as its attributes. Structural relations can be encoded as object-
valued attributes, associations, association classes or classes representing the
relation explicitly.

Students need to be provided with a set of guidelines which help them to
decide such questions. Scott Ambler’s UML Style [2] is a collection of such gen-
eral modeling guidelines, others are suitable for the didactic context only. For
instance, we explicitly interdict object-valued attributes since the elicitation of
domain structures and their visual representation are the main purpose of the
domain model and using object-valued attributes defies this purpose. However,
such rules can only be guidelines and students often feel very uncomfortable in
facing the unavoidable ambiguities in building abstractions.

3.2 Separation of Concerns - The Business Activities

The documentation of the problem domain also covers the description of impor-
tant business processes. This is the second modeling perspective of the software’s
context description and it is separated from the domain model as another con-
cern. While the domain model represents the structure of the problem domain,
the business process model describes the relevant behavior. We use UML activity
diagrams to represent the business processes.

The hard part here is once again not the UML syntax (which is fairly easy for
basic activity diagrams) but realizing what to model. In the domain model we
forced students to concentrate on the structural aspect only. Now, only activities
are in the focus of the model. It is often surprising for students that the same
domain descriptions which already yielded a detailed domain model also contain
the information to build an equally detailed process model which is (at least
notationally) completely independent from the domain model. The realization
of multiple aspects which transcend most problem situations is very important as
it allows for immense reduction in problem complexity. Structure and behavior

312 G. Engels et al.

are actually an easy case as they are intuitively orthogonal, later phases in the
process will pose much closer related concerns (e.g., inter-object and intra-object
behavior).

3.3 OO at Work - The Analysis Sequence Diagram

Moving from the requirements specification to the analysis phase again implies
a significant shift in perspective. While the former phase forces the students
to think in terms of the problem domain only and discourages all premature
notions of solutions, the analysis phase works towards shaping a solution for the
given problem. This entails a number of different concepts which coincide in the
central diagram of this phase: the analysis sequence diagram.

The first concept that underlies this diagram is integration. Following the
object-oriented paradigm of integration of structure and behavior, the differ-
ent concerns of the requirements specification need to be brought together in a
meaningful way. In addition, we need to account for the overall structure of the
chosen architecture.

Another underlying principle of analysis is decomposition: the responsibilities
of the software system are partitioned among interacting objects. This relates
to architecture again. For example, following a three-layer architecture we can
distinguish between Entity, Boundary, and Control classes (as introduced in the
Unified Process [7]). Entity classes are derived from the domain model, Control
classes represent the execution of product functions (modeled as use cases in the
requirements specification), and Boundary classes encapsulate the communica-
tion with external entities. The interaction between these objects is depicted by
a sequence diagram.

Building the analysis sequence diagram forces students to recall the basic
principles of object-orientation. Distributed data and localized behavior on this
data are principles which lead them to a suitable solution. In each step of the
construction, one needs to decide which step in the overall task is to be carried
out next, which object is best suited to carry out this task, and how can this
object be accessed from the current object. Even though the students should be
aware of these principles from previous courses, applying them in this abstract
fashion is rather challenging.

A further complication is that-at this point of the course-students have be-
come rather familiar with thinking in terms of the type level, i.e., classes. An-
alyzing a single scenario with a sequence diagram forces them to work on the
instance level again. The ability to mentally switch between these levels seam-
lessly is a very important capability for a software engineer. To quote Donald
Knuth on this: “Computer scientists see things simultaneously at the low level
and the high level” [14].

The overall effort for students to cope with tying information from three
different sources together and eliciting new structures under the OO paradigm is
very high. Again, not a unique diagram can be designated to be the only correct
solution for a given problem, there is rather a space of equivalent acceptable
solutions, differing in the level of detail or in some decisions taken.

Teaching UML Is Teaching Software Engineering Is Teaching Abstraction 313

3.4 Refinement - How Class Diagrams Change

As emphasized in the last section, analysis works along the scenarios of the sys-
tem on the instance level. The information distributed over the various analysis
sequence diagrams needs to undergo a synthesis into a single diagram. For this
purpose we use the analysis class diagram. Information regarding objects, their
operations and properties are collected from the sequence diagrams and com-
bined in a class diagram. Especially the derivation of associations is not straight-
forward as associations denote a permanent relationship between objects of two
classes (in contrast to temporary relationships by parameter or result passing).
Whether an established relationship is permanent can only be decided by taking
all sequence diagrams into account, i.e., we have a global criterion.

Up to this point in the course, the students could identify UML notations
and their purpose by their use in the process. The analysis class diagram breaks
this mapping up as its intention differs significantly from that of the domain
model, even though both employ the notation of a UML class diagram. Eliciting
the connections and distinctions between these two kinds of class diagrams gives
rise to the notion of refinement. The refinement notion in this case is that classes
of the domain model that are not used in an analysis sequence diagram will not
appear in the analysis class diagram; classes that are used might be extended
with new information. The classes conceived during the analysis phase (Control
and Boundary classes) and their relationships are added, and operations and
navigation directions of associations can now be used. Later in the process, a
further class diagram will be introduced for gathering the results of the design
phase. With this overloading of the class diagram notation, the students realize
that modeling notations can be used in a number of contexts and that knowledge
about the context is essential for their interpretation.

3.5 A Different Perspective - Statecharts

Introducing the statechart notation during the design phase enforces once more
a change of perspective. While sequence diagrams depict system behavior in
terms of object interaction, statecharts concentrate on invocation sequences on a
single object. These two views on object behavior have close connections, thus the
problem of consistency needs to be addressed. In the Softwareentwurf course, we
use statecharts in the sense of protocol statecharts, i.e., every invocation sequence
on an object in a sequence diagram must be permitted by the transitions of
the statechart of the object’s class. This notion of consistency facilitates the
construction of statecharts from sequence diagrams and vice versa.

3.6 Summary

In this section we have shown how teaching the different diagrams of UML in the
context of a software development process can demonstrate a number of funda-
mental concepts related to abstraction. If students understand these concepts,
they acquire knowledge which is neither bound to our particular instance of a
process, nor to the use of UML as a modeling notation (as, e.g., pointed out

314 G. Engels et al.

in [3]). Using models in this way is not without its problems, however. As em-
phasized above, the necessary creativity and ambiguity in finding the ’right’ ab-
straction is an uncomfortable process for students. Keeping track of the different
relations between the produced diagrams is also challenging. For these and other
problems, practical measures need to be taken to actually achieve the course’s
goals. The next section is devoted to such more practical teaching concepts.

4 Getting the Show on the Road - Didactics, Exercises,
Tools and Tricks

Planning an educational course has a strategic as well as a tactical level. On the
strategic level, the learning targets are determined and the general structure of
the course is derived from them. This has been covered in the previous section.
On the tactical level, one needs to address the more detailed issues of how to
realize the strategies in a successful way. While general didactic principles can
often be applied here, we are aware of a number of issues which are rather specific
for the teaching of UML as we perform it. In this section we highlight four of
these specific issues and outline our solutions for them.

4.1 Feigning Incompetence for Requirements Capture - The Use of
Multimedia

In teaching requirements engineering, we can identify an inherent obstacle. Most
of the problems in gathering the requirements stem from the fact that the re-
quirements are formulated and posed by persons who are unfamiliar with the
process of requirements capture, have no knowledge of the technical terminology
used in computer science, and cannot distinguish requirements towards a soft-
ware system from the working context surrounding it. There is furthermore the
problem that the input is typically incomplete and can even be contradictory if
multiple stakeholders have been interviewed.

Good software engineering teachers, however, are always trying to present
consistent, precise and complete information to their students. They are aware
of the technological terms and automatically categorize information according
to their knowledge. If such teachers do now try to present a requirements en-
gineering problem, they will find it very hard, if not impossible, to keep this
knowledge from influencing the presentation in a way as to give students hints
on the solution of the problem. In other words, it is impossible for them to feign
the required incompetence.

For instance, consider most textbook examples for descriptions underlying the
construction of class diagrams (exceptions notwithstanding). The text usually
comprises clear entities with elaborated relationships. (”An elevator serves a
number of floors. Each elevator has a maximal load capacity. On each floor
there is one calling button.“) Expressing this information in the form of a UML
class diagram can be no more than a simple translation and is not necessarily
modeling. All necessary abstractions have been already made by formulating the
text.

Teaching UML Is Teaching Software Engineering Is Teaching Abstraction 315

A possible solution for this dilemma is the use of video techniques. By relying
on an external medium for the presentation of the problem domain, the lecturer
can be sure that no solution hints slip into the presentation. This effect is max-
imized if videos can be obtained from external sources which are not influenced
by the intentions of requirements engineering. Thus the influence of the lecturer
is eliminated from both the production and the presentation of the example.

A video does furthermore present the full complexity of realistic work sur-
roundings and the activities carried out there. To handle this audiovisual com-
plexity, to avoid information overload, and to form the right abstractions are
important parts of requirements engineering. If the problem domain is presented
by a text instead of a video, this complexity is vastly reduced.

In our Softwareentwurf course, we make heavily use of video techniques to
present concrete and realistic problem domains with a sufficient complexity. For
example, we were able to obtain a video from a machine manufacturer (orig-
inally intended for marketing purposes) which describes the operations of an
automated storage system for a hospital. We use this video in the lecture to
present the domain as a foundation for the domain and business models (cf.
Sect. 3.1 and 3.2).

4.2 Listening Is Not Nearly Enough - Exercises and Examples

A central problem of teaching modeling (and thus abstraction) is that the pro-
cess of abstraction cannot be formalized, but relies on creativity and intuition.
Consequently, no unique model can be designated in practice as the optimal
abstraction for a given problem, but there is rather a space of good solutions.
Building abstractions can thus not be learned by following a deterministic recipe.
It rather requires a certain skill and intuition to detect relevant information, set-
tle on the correct level of abstraction, and choose adequate representations for
the information. Such skills cannot be effectively taught in lectures. They have
to be based on experience (see also [4]). Thus, exercises are absolutely crucial
for the teaching of modeling.

In the Softwareentwurf course we employ two different kinds of exercises:
group sessions where the students solve small problems in teams under the guid-
ance of a tutor and home exercises where the students have to tackle more com-
plex assignments over the course of a week. Especially for the (unguided) home
exercises, it is essential to provide examples which are complex enough to actu-
ally allow for non-trivial abstractions, but which also have enough limitations to
prevent students from getting lost in the task. We found board games to be a
very good domain for such examples. Board games comprise domain structures
and business processes (game rules) which are partially documented in the in-
structions and can partially be elicited by actually playing the game. Especially
this hands-on experience allows the students to engage in much more detailed
discussion on the relevance of certain elements. Disagreement in interpreting
rules gives rise to sometimes rather different models and sparks debates on the
comparability of different solutions. Board games also have a reduced complex-
ity, clear context delimitations, and a high motivational factor for students. A

316 G. Engels et al.

rich variety of examples ranging from the very simple to the very complex can
be gained from this general domain.

4.3 Modeling at Hand - How Tools Can Help

Employing modeling tools in the educational setting comprises advantages and
disadvantages which need to be carefully weighted. Advantages are that (1)
modeling tools allow for incremental development of complex models, (2) changes
are facilitated easily, and (3) the resulting models are not only cleaner than many
scribbled paper-and-pen solutions, but also better thought out as students are
unburdened from looking up notations and can concentrate on the content of
the model rather than its form. Experience with modeling tools is also a benefit
for students who start working in industry after their graduation.

Unfortunately, modeling tools typically used in industry, such as IBM’s Ratio-
nal Rose or Borland’s Together, have significant drawbacks when applied in an
educational setting. These drawbacks stem from the fact that professional mod-
eling tools are rather heavyweight pieces of software in several aspects. From an
organizational point of view, licensing and cost questions need to be addressed
as well as support for their installation and operation (in the rather diverse
configurations of the students’ computers).

Other issues stem from the didactical point of view: the tools’ user interfaces
are quite complex and their rich set of features can distract inexperienced users.
Using such tools entails the risk that the students concentrate on the tool usage
rather than the particular modeling exercise. Additionally, confusion arises if the

Fig. 4. DAVE

Teaching UML Is Teaching Software Engineering Is Teaching Abstraction 317

modeling tools do not follow the standard UML notation (e.g. great variety can
be observed in displaying an association’s reading direction).

Heavyweight tools furthermore enforce certain consistency notions in the mod-
els, for example object diagrams can only be drawn if an according class diagram
is present. The consistency in this case is intended for enabling automatic code
generation and does not necessarily conform to the notions of consistency that
we introduce in the lecture.

For educational purposes it is desirable to have rather lightweight tools that
allow the students to concentrate on modeling instead of tool handling. The Dort-
mund Automaton Visualizer and Editor (DAVE) [13] developed in the eLearning
project MuSofT [1] is such a lightweight tool for modeling statecharts. A screen-
shot of this tool is displayed in Figure 4.

Explicitly designed for eLearning purposes, DAVE not only supports the mod-
eling of statecharts, but also includes a simulation engine. Students can thus get
direct feedback on the semantics of their models when they are doing their home-
work. We observed a significant improvement of the students’ understanding of
statecharts due to the adoption of DAVE in the exercises while the organizational
effort was reasonable.

4.4 Holding Things Together - On the Importance of Documents

From previous courses we knew that the students had huge problems with the
large amount of different UML notations and their application in a software
development process. Diagrams were regarded as separate entities and their in-
terrelations were not comprehended by the students.

As a remedy for this problem, we introduced documents as a further struc-
turing means in our process. The main idea of this document-centric approach is
that documents incorporate the different diagrams of a development phase, thus
clarifying their relations. We designed templates for the documents which do
not only predefine the structure, but also provide guidelines for constructing the
models and ensuring their consistency. Document templates are complemented
by review guidelines and checklists in order to let the students review and im-
prove the quality of their respective documents. The document structure is also
used in guiding the lecture, thus students have now an improved understanding
about where to apply which technique (according to our empirical evaluations,
the number of students who reported problems with the mapping of lecture and
exercise topics was reduced by 70%).

5 Findings

Taking one’s own medicine is always bitter. As the students need time to learn
the abstract concepts behind software engineering, we needed time to recognize
the abstract concepts behind our teaching of UML as well. The current form of
the Softwareentwurf course as presented in this paper is the result of 7 years
of teaching UML to more than 2000 students. The process of reflection upon
our teaching was fueled and guided by closely monitoring our recipients, the

318 G. Engels et al.

students. This monitoring included direct feedback from the students collected,
e.g., by questionnaires as well as our examination of their performance. Obtain-
ing meaningful quantified evaluation results has proven to be hard as different
student groups were exposed to multiple different factors which cannot be reli-
ably separated (e.g., changes in the overall curriculum, lecture times, lecturers,
examples used etc.).

More important than our own judgement of our teaching success is the fact
how well our course prepares the students for the challenges ahead of them, i.e.,
the lab course and the internship. By using video observations of software de-
velopment teams in the lab course we could ascertain that the students followed
the structured development process that we taught and used the UML diagrams
accordingly. When faced with new requirements (in the lab course they have
to extend an existing system [5], thus use re-engineering techniques) they were
able to adopt the process and the documents and showed (sometimes surpris-
ingly good) ideas how to employ UML diagrams for this new task. We see this
flexible handling as an indication that the students’ understanding does indeed
transcend the concrete notations and methodology that we teach them and ex-
tends to the concepts behind it. It is this understanding of principles which will
be most beneficial for CS students in the long term, whether they choose to
continue with the Master program or begin a career in industry.

6 Conclusions

In this paper we have argued that—from an educational perspective—UML is
not ”just another modeling notation“, but an excellent vehicle to demonstrate
some of the very core principles behind computer science in general and software
engineering in particular. Our Softwareentwurf course implements this idea of
combining the usually competing goals of eliciting abstract concepts and training
practical skills. In our experience, the combination of these goals is beneficial
for learning and acquiring both concepts and skills since the abstract concepts
become more tangible and the practical skills become more transferable by this
combination.

For educators who teach UML and software engineering, we hope to have
provided some new insights on the strategic and some useful tips for the tactical
planning of their own course.

References

1. Klaus Alfert, Ernst-Erich Doberkat, Gregor Engels, Marc Lohmann, Johannes Ma-
genheim, and Andy Schürr. MuSoft: Multimedia in der Softwaretechnik. In Soft-
ware Engineering im Unterricht der Hochschulen, pages 70–80. dpunkt Verlag,
2003.

2. Scott W. Ambler. The Elements of UML Style. Cambridge University Press, New
York, NY, USA, 2002.

3. Kim Bruce. Thoughts on computer science education. ACM Computing Surveys,
28(4es):93, 1996.

Teaching UML Is Teaching Software Engineering Is Teaching Abstraction 319

4. Philip J. Burton and Russel E. Bruhn. Using UML to facilitate the teaching of
object-oriented systems analysis and design. Journal of Computing Sciences in
Colleges, 19(3):278–290, 2004.

5. Matthias Gehrke, Holger Giese, Ulrich A. Nickel, Jörg Niere, Matthias Tichy,
Jörg P. Wadsack, and Albert Zündorf. Reporting about industrial strength soft-
ware engineering courses for undergraduates. In ICSE ’02: Proceedings of the 24th
International Conference on Software Engineering, pages 395–405, New York, NY,
USA, 2002. ACM Press.

6. C.A.R Hoare. Notes on data structuring. In O.-J. Dahl, E. W. Dijkstra, and
C. A. R. Hoare, editors, Structured Programming, pages 83–174. Academic Press,
1972.

7. Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software De-
velopment Process. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

8. Jeff Kramer. Abstraction - is it teachable? ’The Devil is in the Detail’. In CSEE&T,
page 32. IEEE Computer Society, 2003.

9. Thomas Kuehne. What is a model? In Jean Bezivin and Reiko
Heckel, editors, Language Engineering for Model-Driven Software Devel-
opment, number 04101 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany, 2005.
http://drops.dagstuhl.de/opus/volltexte/2005/23.

10. Object Management Group. UML 2.0 Superstructure- Public Specification-. OMG
document formal/05-07-04, August 2005.

11. The Joint Task Force on Computing Curricula. Computing curricula 2001 com-
puter science - final report. IEEE Computer Society, Association for Computing
Machinery http://www.sigcse.org/cc2001/, 2001.

12. The Joint Task Force on Computing Curricula. Software engineering 2004 cur-
riculum guidelines for undergraduate degree programs in software engineering: A
volume of the computing curricula series. http://sites.computer.org/ccse/,
2004.

13. Jörg Pleumann. Erfahrungen mit dem multimedialen, didaktischen Model-
lierungswerkzeug DAVE. In Gregor Engels and Silke Seehusen, editors, DeLFI
2004: Die e-Learning Fachtagung Informatik, Tagung der Fachgruppe e-Learning
der Gesellschaft für Informatik e.V. (GI) 6.-8. September 2004 in Paderborn, vol-
ume 52 of LNI, pages 55–66. GI, 2004.

14. Jack J. Woehr. An interview with Donald Knuth. Dr. Dobb’s Journal of Software
Tools, 21(4), April 1996.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 320 – 332, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Best Practices for Teaching UML Based Software
Development

Ludwik Kuzniarz and Miroslaw Staron

School of Engineering, Blekinge Institute of Technology,
Ronneby, Sweden

{Ludwik.Kuzniarz, Miroslaw.Staron}@bth.se

Abstract. Software development is the core activity performed within software
engineering. The Unified Modelling Language (UML) has become a de facto
standard language for expressing artefacts used and produced within software
development process. As a result of that there is an expanding activity related to
teaching the process of software development and the language at both higher
education institutions and in software industry. The aim of the education in UML
is to prepare software developers to effectively use UML and modelling at their
work. Therefore guidelines on a proper way of teaching and learning processes
and notations are foreseen. The paper elaborates on experiences and lessons
learned from the course on UML based software development delivered as part of
software engineering curriculum. In the paper we identify a set of best practices
for teaching modelling and UML. The best practices are based on the experiences
gathered from multiple course deliveries over a period of five years.

1 Introduction

Since its formal introduction object oriented software development (OOSD) has been
widely adopted by both researchers and practitioners. At early stages the effective
application of OOSD was limited by the lack of proper notation for expressing the
artefacts used and produced throughout the OOSD process. To address this difficulty
the Unified Modelling Language (UML, [1]) has been introduced. The language has
been gaining wide acceptance and became de facto standard modelling language used
within OOSD due to its generality, standardization and growing tool support.

Development teams in software industry use UML based OOSD approach due to
the eminent advantages of visual modelling. The usage poses a requirement that the
developers should be educated or trained both in OOSD and UML. To meet the
demands education curricula at higher education institutions have been modified and
updated. A number of OOSD and UML retraining courses are being developed and
delivered. In order for the courses to focus on effective, holistic and deep student
learning [2, 3] such courses should be well designed and executed. Furthermore, they
should meet “local” constrains such as background and experience of participants as
there are indications that (especially in the case of commercial retraining courses in
industry) many individuals attend such courses just to find out that the benefits from
participation are rather limited. These were basically caused by the fact that the
courses were not properly designed and conducted.

 Best Practices for Teaching UML Based Software Development 321

We identified a target reader of this paper as a teacher and practitioner who wants
to teach UML based software development in a modern, proper and effective way, to
design and to deliver an appropriate course. The research question considered in this
paper is: how to teach both UML and OOSD to novice and experienced developers?
As an answer to the research question we formulate eight good practices on how to
develop an OOSD with UML course based on our experiences gained form delivering
such a course at Blekinge Institute of Technology (BTH) and from the needs
identified at our research contacts in industry.

The paper is organized as follows. First, we present the most relevant related work
in the field in Section 2. In Section 3 we present the context in which the course has
been developed and delivered. The context is considered in the subsequent section
where we present best practices that we identified. Each identified practice is
formulated as a general statement followed by a reference to the course with
comments how it has been identified and used. Finally, in the last section we re-
examine the practices and underline special role some of them play.

2 Related Work

The issues of teaching modelling for students is also discussed in [4]. The author of
that paper show how graph theory formalisms can be used to teach modelling (using
UML as an example) in graduate level courses. Although using graph theory in
teaching could be perceived as a best practice, the authors do not consider the
semantics of the graph structures and therefore introduce the danger of teaching
modelling on a different level of abstraction than required in industry.

The issues related to teaching software development process in courses containing
projects was already discussed in [5]. In this paper we support the claims of the author
of that paper that teaching software processes should be done in courses which
contain project activities.

One of the issues which we consider in this paper is using students as subjects in
software engineering experiments. The issues related to that are presented in [6]. The
authors of that paper show the challenges in considering different perspectives
(teacher’s, experimenter’s and student’s) while performing experiments with students.
We used their experiences in our work which led to identification of this particular
best practice (c.f. [7]).

A set of good practices related to introducing experiments to curricula in software
engineering can be found in [8]. We used these practices in the course of considering
whether experimentation is a good practice.

3 Software Development Course

Basic idea behind the Software Engineering (SE) curriculum at BTH is to prepare the
graduates to be able to develop software systems in a professional way according to
recent developments in software engineering technology. Our OOSD course [9] is a
basic course in SE curriculum at BTH. Other courses (including projects which students
do with industrial partners during their third year of study) require knowledge that the

322 L. Kuzniarz and M. Staron

students are supposed to gain in this course. Thus one of the primary demands for the
course is that it should be up-to-date – with respect to contents and the teaching process.
Another demand is that it should be complementary with other courses within the entire
program.

3.1 Overview of the Course

The course is given primarily for the first year students of the SE program but is also
accessible for the students of other programs. The prerequisite to the course are the
basic skills in object oriented programming. The objective of the course is provide the
student with the knowledge and skills to perceive and solve problems in a systematic
way utilizing the object-oriented paradigm; particularly using models expressed in
UML as core development assets. It was desired that after completing the course the
student will have knowledge and skills to be able to apply object oriented approach to
the construction of software using UML as a modelling language and appropriate
modelling tool. In particular to analyze the problem, design a logical solution and
implement it. The focus in the course is put on awareness of development process and
on proper and effective usage of models in order to create the working software
product.

3.2 Structure of the Course

The course consists of the following study activities: lectures, exercises, labs and
projects. Lectures are the source of information on the notions, techniques and
processes related to the subject while exercises are a forum for discussion on concrete
issues related to the topics covered on lectures. There is a strict mutual dependency
between those two study activities. Students are given a set of small problems, have a
chance to present their solutions, and have comments on them. The questions are
followed by a general discussion on the possible approaches to solve the issues, their
advantages and drawbacks. During labs which are placed in computer rooms student
can get acquaintance with UML tools and have the possibility to get assistance from
teachers on his/her individual project. Labs are assisted by a teacher who helps the
student with technical problems concerning the functionality of the tool and with the
problems related to performing the task for the project. During the project the student
is supposed to develop a small size system using the process presented during the
lectures.

The course is delivered as 5 study points course what means that participants are
supposed to spend approximately 200 hours on it (i.e. equivalent to five weeks full
time work). This influenced the overall work load assigned to the course activities and
influenced the scope of the project. The task for the project is to develop a small size
system. The development is structured into two interactions. In the first iteration a
(simple) basic version of the system is to be developed while the task for the second is
to create an extended version. Within iterations the development process introduced
on the lectures has to be followed. Students produce a set of artefacts grouped into
design report which are handed to the teacher for inspection, comments and
correction. The teacher also plays the role of customer who wants the student to
“produce” software that will fulfil his needs. Each student receives initial description

 Best Practices for Teaching UML Based Software Development 323

of the problem (a simple requirements specification) and then requests a meeting with
the customer if something seems unclear and needs to be discussed.

It was found that the having two iterations in the project was very important. In the
first iteration students usually make many errors; they try to make short-cuts. But it is
in a way desired that they learn on their mistakes. And in fact the second iteration
goes rather smoothly and they see the advantages and profits from following the
development process.

The organization of the course consists of several activities which are intertwined
and should be considered together. These are presented in Table 1.

Table 1. Activities in the course

Activity Units Description Aim
Lecture

(L)
12 Provide theory to be

applied during exercises
and labs.

Provide material and
information to be used in
other activities.

Exercise
(E)

5 Tutorial-like exercises–
discussion on small
problems related to
lectures

Highlight issues from lectures
on practical problems.

Lab
(P)

5
(4+1)

1

Time for students own
work on practical task –
a mini project.

Provide assistance for students
doing the projects

Report
(R)

5
(4+1)

Deliveries of lab
reports–each group have
fixed time for individual
comments

Provide students with
individual feedback on their
projects.

Each of the activities is aimed at different purposes. Lectures are mostly aimed at

transmitting knowledge, while exercises and labs are focused on providing the
students with the possibility to use the knowledge in practice. The way in which
material is lectured and subsequently used during exercises determines the sequencing
of the activities. The basic material is provided during the first lectures before any
other form of exercises. Sequencing of the activities is shown in Table 2.

In principle the practical exercises and labs are given every other week so that the
students have enough time to solve the problems, read upon them and, if necessary,
turn for help to teachers.

The remarks on the course that have been made so far can be considered as a
preliminary overall best practice which we have identified. It relates to the overall
design of the course so that it meets the requirements and ensures proper quality of
education and basically relate to any course. Further, more specific best practices are
in the subsequent section.

1 Four mandatory moments and one additional for high pass.

324 L. Kuzniarz and M. Staron

Table 2. Sequence of activities in the course

Week Sequence Comment
1 L1 – L3 L1-L3 cover material for Ex1, La1
2 E1, P1, L4 – L7 L4 – L7 cover material for E2 & P2
3 R1, E2, P2 R1 needs to be before star-ting next exercises and

labs.
4 L8 – L10 Lectures cover material required for E3, P3, E4,

P4
5 R2, E3, P3
6 L11 Summary
7 R3, E4, P4, L12
8 R4, E5, P5
9 R5

4 Best Practices

The course introduced in the previous sections has been delivered for five years.
Initial course was based on overall requirements for the course from the curriculum
but it has been constantly modified and adjusted based on the experiences from the
course activities, observations, feedback from the participants, and our experience
from researching in the UML-related topics. The best practices are intended to answer
the questions what can be considered and taken into account when designing a course
on UML based software development or for improving of the existing such a course.

4.1 Tailoring of Development Process

Standard development processes introduced and advocated by organizations or
method specialists experts, due to their wide applicability, can be considered rather as
frameworks to be instantiated in a particular environment. Moreover, they are not
suitable for direct usage on introductory courses. So proper instantiation (or tailoring)
of them is necessary. As a matter of fact, what we found more appropriate, a special
dedicated development process for the course should be developed. Such a process
should take into account the knowledge of participants, placement of the course in the
context – education curriculum at academia or local environment of a company,
course restrictions and format as well as requirements from real developments
processes the participants are already familiar with.

In the case of the OOSD course at BTH a special didactic process named Sample
Development Process has been elaborated. The created process is based on the
recommendations from standards - Unified Software Development Process (USDP)
[10, 11] and Rational Unified Process [12-14]. The idea behind the student oriented
process was to extract key ideas preserving the “spirit” of the standard processes and
focus on the basic ideas thus minimizing the burden of learning the rest for students.
The approach is in line with (and in particular was stimulated by) other texts on
USDP [15-20] which attempt to give a “light” introduction to USDP. Our tailored
process has the following characteristics:

 Best Practices for Teaching UML Based Software Development 325

• It is iterative – it is arranged as a sequence of iterations (arranged by use cases),
• It is incremental – within each iteration a working version of the system is

produced,
• It is UML-based – all major artefacts are expressed in UML.
• It is use case driven - iterations are supposed to produce a system realizing a set of

use cases.

The process is arranged as a sequence of iterations. The goal of each iteration is to
produce a working version of the system. During each iteration there are sequences of
development phases and within each phase a number of artefacts are produced. The
details of the process can be found in [17] when the activities and their relationships
are discussed in more detail.

4.2 Defined Artefacts and Creation Procedures

All development activities are aimed at producing a set of artefacts based on already
existing artefacts. One of the basic questions that are to be answered by a specific
development process is what artefacts and in what sequence should be created.
Definition of artefacts together with their purpose and mutual relationships is a
starting point.

In the process that was designed for the course the following artefacts were
defined:

• Use Case Diagram – for providing a graphical representation of the functionality of
the system, relationships between functionalities and actors interacting with the
system,

• Use Case Description – for description of the interaction between the system and
the actor that uses the system,

• Domain/Conceptual Model – for presenting the concepts from the problem domain
important from the perspective of the developed system,

• System Sequence Diagram – for specification of the steps identified in the use
case description expressed as messages exchanged between the actors and the
system,

• Contract for System Operation – for specification of the operations that model
messages, which later serves as a specification of the interface of the system,

• Interaction Diagram for System Operation - for specification of a collaboration that
provides functionality of a given system operation.

• Design Class Diagram – for defining the static view of the system which includes
classes used to implement the functionality in the context of a solution domain (i.e.
programming language),

• State Diagram for a design class – for presenting the behaviour of the design class
(produced for a class having non-trivial state machines).

These artefacts are produced in a certain order and are mutually dependent and
influential. Fig. 1 presents the sequencing of the artefacts within a single iteration.
Unidirectional arrows indicate the sequence of creation of artefacts; bidirectional
arrows indicate that the artefacts should be updated continuously based on each other.

326 L. Kuzniarz and M. Staron

These artefacts are produced in a certain order and are mutually dependent and
influential. Fig. 1 presents the sequencing of the artefacts within a single iteration.
Unidirectional arrows indicate the sequence of creation of artefacts; bidirectional
arrows indicate that the artefacts should be updated continuously based on each other.

Fig. 1. Sequencing between artefacts

In the lecture and further in the project activities we stress the understanding of the
role of the artefact in the process, how it contributes in achieving the final goal which
we found to be of substantial help in learning of the development process.

4.3 Consistency Awareness and Management

Artefacts produced in the development process describe properties of the “things
involved” – both from real world and the software. An important property of all the
artefacts should be that they are mutually consistent. Basically it means that properties
of a “thing” – modelling element - expressed on one artefact should not contradict the
properties of the properties of the same “thing” expressed on another artefact.
Consistency is about mutual relationship, agreement and logical consequence among
all the artefacts used and produced within a development process. Consistency should
be explicitly introduced. Proper sequencing of the artefacts is important from the
perspective of consistency between artefacts. We introduce the notion of consistency
in our process based on the relationships between artefacts shown on Figure 1. Each
artefact should be consistent with its predecessors and successors. Some even
informal rules at least for checking consistency should be introduced. It would be

 Best Practices for Teaching UML Based Software Development 327

beneficial if some advice on how to create new artefact such that it remains consistent
with the existing artefact could be formulated.

A number of consistency rules are formulated and used throughout our sample
process. Here is a sample of pairs of categories of artefacts and example checks:

• Use case description and system sequence diagram: each step in a use case
description should have a corresponding message in the system sequence diagram
for this use case,

• System sequence diagram and conceptual model: messages (modelled as system
operations) used in System Sequence Diagram should be defined for the class
encapsulating the system in the Conceptual Model,

• Contracts and Conceptual Model: elements used in the pre and post conditions of
the contracts should be defined in the conceptual model (contracts should be
defined in the context of conceptual model),

• Interaction diagram for operation and design class diagram: links used in the
interaction diagrams should be instances of the existing associations defined in the
design class diagram,

• State diagrams and interaction diagram for operation: the sequence of messages
that is defined for the interaction diagram for the operation in interaction diagram
should be a subsequence of a sequence of messages acceptable by state machines
for classes that take part in this interaction.

Awareness of preserving consistency between artefacts is of high importance from the
practical point of view. If there are some inconsistencies in the design then sooner or
later they will be revealed – most likely by programmers implementing the design,
during tests or in the worst case while using the system – and the later the more
serious consequences could be. So development process should include elements
relating to checking consistency and ensuring consistency. At present this is mainly
manual activity but to be really effective extensive tool support would be required
based on formalization of the consistency rules.

4.4 Effective Usage of Models and Modelling

In every software development activity, the main goal of the development process is
running code. The question of how to achieve that goal in a safe and effective way
should be posed and answered during the course. The answer should be in a
development process. We advocate and show that modelling is a proper way to
achieve that goal and models are proper means to produce the code in an effective and
safe way. We show that models in the process are used for different purposes – for
improving understanding the problem and the solution as well as precise specification
of the code which has to be produced. The purposes of the models dictate the
elements (e.g. diagrams and elements presented in them) which should be used in
models. The intention is to show that we model all that we need but nothing less (i.e.
we advocate the Occam’s razor principle). The students learn that models serve a
purpose deeper than just documentation. All models must lead to final product –
working version of the system. Another principle that the students learn is that if the
model is not used anywhere, it should not be created.

328 L. Kuzniarz and M. Staron

We also show what support for the creation and maintenance of models can be
obtained from a modelling tool in order to improve efficiency of modelling. Finally
try to show the students by indicating and discussing errors in their design the value
of abstraction and separation of concerns in early detection of pitfalls that otherwise
would lead to serious implementation problems. We encourage students also to use
the tool for performing simulation on models which will allow for earlier error
detection and also to generate as much source code as possible (not only the
“skeleton” code). For that reason we tested and evaluated tools from two different
vendors and chose the one which had better fitted the course – had better support for
creation and maintenance of the set of artefacts that are used in the sample
development process. Therefore the tool can be said to be specifically chosen by the
participants as the tool which provides the best help in their learning process. The
evaluation relates to another best practice – experiments in the course.

4.4 Constant Feedback from Participants

In order for the course to be effective it requires to be delivered on the right
level – the level that the participants of the course can comprehend – and on the right
pace – the task that participants have to perform should be manageable. Both of those
elements should be estimated when creating the course and later adjusted. The
adjustment should be based on the feedback during the course – on the observations
made on the understanding of the delivered material and progress of work within
course activities as well as on discussion and suggestions from the participant during
the course evaluation meeting. We found out that two such meetings are useful. The
first takes place after first few course activities – and this allows to introduce “on the
fly” necessary urgent improvements specific to the particular course group - if
needed, while the second takes place after the course when more deep evaluation of
the course and suggestion for future realizes is discussed. Exercises we have on the
course play also an important role. During the discussion on the small problem we
gave to the students it was possible to find out what particular problems the students
of the particular edition of the course have and to adopt appropriately the lectures.

4.5 Industrial and Professional Relevance

Providing Industrial relevance is an important factor that should be taken into account
when designing the course [21].

First, the participants should be prepared for real-world software development in
industry. Second, the professionals in industry should be able to utilize the knowledge
of new technologies that is introduced into companies with newly graduated
employees. Thus the content of the course should be relevant for the industry. In
particular, the problems that are lectured on the course should be relevant – i.e.
similar to real-world problems – whenever possible. This situation is presented in
Figure 2.

For example in the case of our course it was found that if the models are to be used
effectively for code generation the code generation process needs to be well
understood by developers. Therefore a lot of effort has been put on making the
students aware of how the tool generates the source code from their models. For

 Best Practices for Teaching UML Based Software Development 329

example the subjects used during exercises are also inspired by the needs identified in
our industrial case studies (e.g. [22]).

Fig. 2. Industrial coupling of the course

4.6 Conducting Experiments During the Course

A recent best practice which we identified and introduced in last three course
deliveries was the conduction of experiments related to research carried out at the
software engineering research lab at BTH. The experiments are aimed at evaluating
usability of certain constructs in UML (namely stereotypes) for increasing
understanding of UML models and thus improving quality of models [23]. The
experiments are not mandatory for the course but they usually attract almost all
students since the experiments:

• allow students experience new modelling elements in UML designs which are not
lectured on the course,

• provide students with basic experience in empirical methods in software
engineering (these methods are then required from the during their master year),

• stimulate the interest of students on practical issues related to using models in
industry (since the experiments are aimed at evaluation of stereotypes from the
perspective of their usage in industry; the experiment was also replicated in
industry [24]),

• stimulate their interest in the subject since similar problems that are the object of
the experiment appear also as examination questions, and

• give them feeling of contribution to the research carried out at their university
which is appreciated by them.

Although there are some costs (from students’ perspective) of taking part in the
experiment the benefits are obvious and usually result in increased learning outcome
– students are better motivated to study and as a consequence better prepared for the
examination in the end.

Another example of experiment which was conducted during the course was an
empirical comparison of two UML tools. One of the tools was later adopted for usage
in the course – Telelogic Tau G2 [25]. Yet another experiment we performed was a
comparison of performance of C++ and Java programmers in the context of manual
translation of a toy-size design into source code. In that case students had real

330 L. Kuzniarz and M. Staron

influence on the course as the choice was based on objective measured performance
and subjective opinions.

4.7 Transfer of Research Results

It is also important that the course gives the participant awareness and raises interest
of new upcoming technologies or recent developments in the area. In the case of this
course it is both the modelling language and the development process. Using recent
research results explicitly in the course gives students motivation that they learn
things which are on the front edge of software development. Furthermore, since this is
the introductory course, the concepts that are lectured on the course might be adopted
by the time the students graduate. Thus motivates them better to study as they see it as
a possibility of increasing their status in society by getting chances for better
employment opportunities after leaving university.

We use the results of our research as part of the course content – i.e. we transfer
experiences from research to education. In our course we introduced proper and
effective usage of advanced UML elements based on our empirical studies – for
instance where and how introduce stereotypes, how they can help, what benefits can
be obtained (transferred from [23, 24]). Another example is a more efficient and
advanced (or non–standard) usage of capabilities included in modelling tools – we
encouraged only using them as much more than diagram editors - as model
management environments. We encourage students to create automatically various
artefacts using our custom add-ins to the tool in compliance with the emerging ideas
of Model Driven Software Architecture (e.g. [26, 27]) inspired by our recent research
results in it.

5 Conclusions

The research presented in this paper was motivated by increasing popularity of both
object oriented software development paradigm and the usage of UML in the course
of software development processes. It is a contribution to the discussion on how UML
and modelling should be introduced to the developers. The paper starts with
presentation of teaching of UML based software development at Blekinge Institute of
Technology. It presents lessons learned during multiple deliveries of the course and
formulates best practices for creating and conducting of this course. The practices are
based on problems encountered and observations made during the course deliveries.
The practices are basically of two basic types – pedagogy wise and subject wise. The
identified practices address the posed research question – how to teach UML and
OOSD. These practices can be used as a basis for formulation of guidelines for
construction of dedicated (for a specific audience) courses on the concepts behind
UML and software development process. The observations made can be adopted in
migration to teaching Model Driven Development (MDD) as these kinds of courses
are based on essentially similar principles – extensive usage of models.

Two of the practices are worth to be especially emphasized. The first practice is the
consistency between all artefacts in the entire process – introducing the awareness of
that, formulating appropriate rules and consequently checking it. Consistency between

 Best Practices for Teaching UML Based Software Development 331

different models used and produced within software development process is an
important relationship between the artefacts as it materializes the statement that all
artefacts represent non-contradicting and uniform views of a single system.
Consistency checking is also extended to incorporate checking the consistency
between requirement specifications and the models.

The second practice is of the pedagogical type and concerns realization of the
students’ projects. The project should have two iterations – the first is focused solely
on learning, quite often on the mistakes made, the second is a more mature solution
based on experiences gained in the first iteration and aimed at testing the skills and
final evaluation of the students.

Our further work includes further research into the practices. In particular we
intend to investigate the impact of these practices on students’ perception of the
course in a qualitative and quantitative ways.

References

1. Object Management Group: Unified Modeling Language Specification: Infrastructure
version 2.0. Vol. 2004. Object Management Group (2004)

2. Ramsden, P.: Learning to teach in higher education. RoutledgeFalmer, London ; New
York (2003)

3. Prosser, M., Trigwell, K.: Understanding learning and teaching : the experience in higher
education. Society for Research into Higher Education & Open University Press,
Buckingham [England] ; Philadelphia, PA (1999)

4. Tamai, T.: How to Teach Software Modeling. 27th International Conference on Software
Engineering. IEEE, St. Louis, Mo, USA (2005) 609-610

5. Filho, W.P.P.: Process Issues in Course Projects. 27th International Conference on
Software Engineering. IEEE, St. Louis, Mo, USA (2005) 629-630

6. Carver, J., Jaccheri, L., Morasca, S., Shull, F.: Issues in Using Students in Empirical
Studies in Software Engineering Education. 9th International Software Metrics
Symposium. IEEE Computer Society, Sydney, Australia (2003) 239-251

7. Kuzniarz , L., Staron, M., Wohlin, C.: Students as Subjects in Software Engineering
Experimentation. Third Conference on Software Engineering Research and Practise in
Sweden. Lund Institute of Technology, Lund, Sweden (2003) 19-24

8. Höst, M.: Introducing empirical software engineering methods in education. Software
Engineering Education and Training, 2002. (CSEE&T 2002). Proceedings. 15th
Conference on (2002) 170-179

9. Kuzniarz , L., Staron, M.: Object-oriented software development. Vol. 2005 (2005)
10. Kruchten, P.: The rational unified process : an introduction. Addison-Wesley, Reading,

MA (2000)
11. Kruchten, P.: The rational unified process. Addison-Wesley, Reading, Mass. (1999)
12. Kroll, P., Kruchten, P.: The rational unified process made easy : a practitioner's guide to

the RUP. Addison-Wesley, Boston (2003)
13. Larman, C.: Applying UML and patterns: an introduction to object-oriented analysis and

design and the unified process. Prentice Hall PTR, Upper Saddle River, NJ (2002)
14. Rational: Rational Unified Process documentation. Vol. 2002. Rational Corp (2000)
15. Robillard, P.N., D'Astous, P., Kruchten, P.: Software engineering process with the

UPEDU. Addison Wesley, Boston (2003)

332 L. Kuzniarz and M. Staron

16. Kuzniarz, L., Reggio, G., Sourrouille, J.L., Huzar, Z.: Workshop on Consistency Problems
in UML-based Software Development. In: Kuzniarz, L. (ed.): <<UML>> 2002. Blekinge
Institute of Technology, Dresden (2002) 1-160

17. Kuzniarz , L., Staron, M.: Inconsistencies in Student Designs. The 2nd Workshop on
Consistency Problems in UML-based Software Development. Blekinge Intitute of
Technology, San Francisco, CA (2003) 9-18

18. Arlow, J., Neustadt, I.: UML and the unified process : practical object-oriented analysis
and design. Addison-Wesley, London ; New York (2002)

19. Favre, L.: UML and the unified process. IRM Press, Hershey, Pa. (2003)
20. Jacobson, I., Booch, G., Rumbaugh, J.: The unified software development process.

Addison-Wesley, Reading, Mass (1999)
21. Glass, R.L.: Facts and fallacies of software engineering. Addison-Wesley, Boston, MA

(2003)
22. Staron, M., Kuzniarz, L., Wallin, L.: A Case Study On Transformation Focused Industrial

MDA Realization. 3rd UML Workshop in Software Model Engineering, Lisbon, Portugal
(2004)

23. Kuzniarz, L., Staron, M., Wohlin, C.: An Empirical Study on Using Stereotypes to
Improve Understanding of UML Models. The 12th International Workshop on Program
Comprehension. IEEE Computer Society, Bari, Italy (2004) 14-23

24. Staron, M., Kuzniarz, L., Wohlin, C.: An Industrial Replication of an Empirical Study on
Using Stereotypes To Improve Understanding of UML Models. Software Engineering
Research and Practice in Sweden. Department of Computer and Information Science,
Linköping, Sweden (2004) 53-62

25. Telelogic: Telelogic Tau G2. Malmo (2004)
26. Mellor, S.J.: MDA distilled : principles of model-driven architecture. Addison-Wesley,

Boston (2004)
27. Miller, J., Mukerji, J.: MDA Guide. Vol. 2004. Object Management Group (2003)

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 333 – 336, 2006.
© Springer-Verlag Berlin Heidelberg 2006

MoDELS 2005 Doctoral Symposium Summary

Jeff Gray

University of Alabama at Birmingham,
Department of Computer and Information Sciences,

Birmingham AL 35294, USA
gray@cis.uab.edu

Abstract. The MoDELS Doctoral Symposium brought together nine doctoral
students and five mentors to spend a day discussing student research
presentations. A truly international representation among students and mentors
provided a diverse opportunity to offer suggestions and advice regarding the
vision and direction of the student dissertation ideas. This summary offers an
overview of the activities that occurred at the Symposium.

1 Introduction

The Doctoral Symposium at the MoDELS conference took place at the Half Moon
Resort in Montego Bay, Jamaica, on Tuesday, October 4th 2005. The Symposium
provided an international forum for doctoral students to interact with other students
and faculty mentors. The Symposium brought together doctoral students working in
areas related to modeling and model-driven engineering. Participating students were
provided the opportunity to present and to discuss their research goals, methods and
results within a constructive and international atmosphere.

The Symposium was intended for students who already settled on a specific
research proposal with some preliminary results, but still had enough time remaining
before their final defense so that they could benefit from the Symposium discussions.
Due to the mentoring aspect of the event, the Symposium was open only to those
students and mentors participating directly.

Among the nine students selected to participate in the Symposium, six students
offered a formal presentation and three students discussed their work through a poster
presentation. The participating students, along with the titles of their presentations and
their affiliation, were:

• Preening: Reflection of Models in the Mirror
Nelly Bencomo, Lancaster University, UK

• Transformation-Based Structure Model Evolution
Fabian Büttner, University of Bremen, Germany

• Software Hazard Analysis for X-By-Wire Applications
Erendira Ibarra-Alvarado, University of Sussex, UK

• Enhancement of Development Technology for Agent-Based Software
Engineering
Andre Karpištšenko, Talinn Technical University, Estonia

334 J. Gray

• Aspect-Oriented Modeling Research
Mark Mahoney, Illinois Inst. Technology, USA

• SelfSync: A Dynamic Round-Trip Engineering Environment
Ellen Van Paesschen, Vrije Universiteit Brussel, Belgium

• A Framework for Composable Security Definition, Assurance, and
Enforcement
Jaime Pavlich-Mariscal, University of Connecticut, USA

• Ontology-based Model Transformation
Stephan Roser, University of Augsburg, Germany

• Modeling Turnpike: a Model-Driven Framework for Domain-Specific
Software Development
Hiroshi Wada, U. Massachusetts-Boston, USA

The Symposium organizers worked hard to provide useful guidance for completion
of the dissertation research and initiation of a research career. The mentors
comprising the organizing committee included the following:

• Aditya Agrawal, MathWorks, USA
• Jean Bézivin, University of Nantes, France
• Betty Cheng, Michigan State University, USA
• Emanuel Grant, University of North Dakota, USA
• (Chair) Jeff Gray, University of Alabama at Birmingham, USA
• Jörg Kienzle, McGill University, Canada
• Ana Moreira, Universidade Nova de Lisboa, Portugal
• Kerry Raymond, DSTC, Australia

2 Summary of Student Presentations

Each student prepared an extended abstract that also appears in this workshop reader.
This section offers a brief summary of the student presentations and poster discussion.

Nelly Bencomo’s doctoral research represents the design and implementation of a
set of metamodels for specifying a family of reflective middleware. The metamodels
are used to capture the core concepts of the middleware design and the existing
relationships. The initial metamodels have revealed a range of techniques to generate
the appropriate components required by the middleware.

A presentation by Fabian Büttner introduced a transformation catalog for UML
class diagrams that have OCL constraints. The problem addressed is how to evolve
the static class models without rendering the associated OCL invalid. Each
transformation must be verified as transformation steps that preserve the OCL.

The doctoral work of Erendira Ibarra-Alvarado is focused on a comprehensive
safety approach for developing automotive software systems focusing on X-by-Wire
applications. In her work, the automotive application is modeled in UML with various
safety assurance analysis techniques available.

Andre Karpištšenko discussed his initial work on integrating existing and emerging
tools to provide a development platform for time-aware multi-agent systems;
specifically, the integration of Real-Time UML (RT-UML) with Agent UML (AUML).
The focus is on modeling techniques at the early stages of development.

 MoDELS 2005 Doctoral Symposium Summary 335

Mark Mahoney spoke at the Symposium about his work on modeling reactive
object behavior using statecharts and scenarios. The specific contribution of Mark’s
research is to realize that some of the properties in a Live Sequence Chart are
crosscutting in nature and can be addressed by an aspect-oriented approach.

Hiroshi Wada’s research centers on a generic framework that provides integration
of arbitrary domain-specific modeling languages. In Modeling Turnpike, the core
concepts from a specific domain can be represented in various notations and
transformed to a final implementation.

A poster discussion was offered by Ellen Van Paesschen, whose work involves a
dynamic approach to round-trip engineering with models. The heart of her approach
uses a prototype-based language (Self) to provide a two-phased mechanism for rapid
prototyping.

Another poster was presented by Jaime Pavlich-Mariscal. Jaime’s research
considers strategies for modeling alternative security concerns. The focus is an
aspect-oriented approach to offer separation of the concerns between the modeling
and code artifacts.

A third poster presentation was given by Stephan Roser, who discussed an
approach toward model transformation that takes into consideration ontologies to
derive the transformation. An application area of the proposed work may enable better
integration during enterprise modeling.

3 Summary of Mentor Advice

At the end of the Symposium, each mentor was allotted several minutes to offer
words of general advice regarding doctoral research and career advancement. This
section provides an overview of the collective guidance offered by the mentors.

Doctoral research can be classified as a journey that requires a passion to be
developed for the love of discovery. Along the way, many hurdles will need to be
overcome that will require much patience. It is not unusual for a young researcher to
be so zealous that they become depressed when the research does not progress at the
speed they envisioned. Because there is more to life than research, the students were
encouraged to also enjoy this special time in their life during their doctoral studies by
developing new relationships and exploring activities outside of the laboratory.
Socially and professionally, the network of contacts and friends that are established
throughout the doctoral studies will serve as a lifelong source of support and
opportunity.

The importance of a literature search was mentioned by several mentors. It was
pointed out that the skill of exploring related research is not simply for the initial
phases of the PhD, but rather an activity that will be useful throughout a researcher’s
entire career. A characteristic of a good literature search is that it does more than
simply enumerate references; a good literature search provides a comparative
description that offers a discussion of the advantages and disadvantages of the related
work. Strategies for compiling a literature search include keeping a database of papers
that were considered along with annotations of important contributions of each paper.
To a doctoral student in the early phase of their research, the criticality of the

336 J. Gray

literature search is essential to understand what has already been done and what can
be leveraged as possible extensions.

It was suggested to the students that they always be able to define their research
problem concisely, as well as the associated questions on why the question is
important. The key challenges of the problem need to be understood and explained
well to others, in addition to the approach and method taken to offer a new
contribution. The importance of being able to validate the results of the research is a
critical part of evaluating the impact of the contribution and proving the merit of the
approach to others.

As researchers, the students were reminded of the necessity of publishing the
results of their work. Several reasons were provided to highlight the need to publish.
First, publishing provides feedback from research peers that may be useful to
influencing the direction of the dissertation. Second, writing throughout the PhD
process also eases the burden of having to write a large dissertation at the end.
Writing helps to provide structure to incubating ideas and also offers a historical
account of the decisions and justifications made along the way. Third, the current
competitive climate for research positions (both in industry and academia) has seen
junior candidates for entry level research positions with multiple journal papers and
dozens of other publications. To be competitive, a doctoral student must establish a
pattern consistent with a researcher active in publishing results.

4 Conclusion

The fruitful exchange among mentors and students at the Symposium provided
mutual benefit toward addressing promising research ideas for future exploration.
Among the mentors, it was agreed that there are many future stars among the student
participants and that it will be exciting to watch all of their careers unfold. It was
suggested that the Doctoral Symposium be offered as an annual event at the MoDELS
conference such that the future of the modeling research community can be fostered
from the candid interaction that is provided by such a mentoring opportunity.
Additional information about the workshop, including pictures of the activities, can be
found at: http://www.cs.colostate.edu/models05/doctoralSymposium.html

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 337 – 338, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Preening: Reflection of Models in the Mirror
a Meta-modelling Approach to Generate Reflective

Middleware Configurations

Nelly Bencomo and Gordon Blair

Comp. Dept, InfoLab21, Lancaster University, Lancaster, LA1 4WA, UK
nelly@acm.org

Abstract. This paper outlines some partial results of my PhD research on how
to use Model-Driven Engineering to systematically generate reflective middle-
ware family configurations.

1 Introduction

Meta-level architectures and the concept of reflection are useful for modifying
programming systems dynamically in a controlled way. A number of experimental
reflective middleware platforms have been developed and used in industry. At Lan-
caster University [6], we have investigated the role of reflection [4] in supporting both
customisation and dynamic re-configuration of middleware platforms. To comple-
ment the use of reflection, we also investigate the use of component technologies, and
the associated concept of component frameworks [5] in the construction of our open
middleware solutions.

Challenging new requirements have emerged when working with dynamically re-
configurable component frameworks with (un)pluggable components. Middleware
developers deal with a large number of variability decisions when planning configura-
tions at various stages of the development cycle. These factors make it error-prone to
manually guarantee that all these decisions are consistent. Such ad hoc approaches do
not offer formal foundations for verification that the ultimately configured middle-
ware will offer the required functionality.

Our main research topic focuses on whether Model-Driven Engineering (MDE)
techniques can be successfully used to address the challenges described above and
what are the implications of its application. MDE is a new paradigm that encompasses
domain analysis, metamodeling and model-driven code generation. We believe that
Model Driven techniques provide a key solution when systematically generating con-
figurations of the Middleware families.

2 Partial Results and Research Challenges

We have already specified a kernel or set of UML meta-models that embraces the
fundamental concepts. All middleware family members regardless of their domain
shares this minimum set of concepts. On top of this, we propose a set of so called
extensions (caplets and reflective extensions) that captures the extensibility of the

338 N. Bencomo and G. Blair

approach [2]. Three reflective extensions are now supported (Architecture, Interface,
and Interception). In outline, different middleware configurations are generated from
models that are written in terms of these meta-models. The models are sufficiently
abstract that a number of different concrete configurations of components can be
generated from them. The concrete configurations that are generated are determined
by the following dimensions of variability:

(i) deployment environment: refers to the resource capabilities of the hard-
ware/software environment in which the system will be deployed

(ii) QoS: allows the abstract-to-concrete mapping to be influenced by non functional
consideration such as mobility, dependability, or security

(iii) (re)configurability: refers to the degree of reflective support required at runtime.

Achieving our goal requires that we deal with a number of research challenges:

− the variability dimensions described crosscut each other [1]. How do we represent
the crosscutting concerns identified (i.e. aspects) in the proposed meta-models?

− a key area of future work is to investigate how to maintain the UML models at
runtime and keep them causally connected with the underlying running system in
order to support reconfiguration. What should a runtime UML model look like?

− we propose the use of our suit of orthogonal reflective extensions as basis for
different reflective implementation mechanisms for supporting dynamic AOP to
address the problem of adaptation at run-time [3]. How can we model the synergy
between AOP and reflection?

Answers and solutions to these questions and problems would lead to new formal
mechanisms to generate families of systems bringing together the advantages of
MDE, reflection, and Aspect Oriented Software Development (AOSD) [7].

References

1. Bencomo N., Blair G.: Raising a Reflective Family, Models and Aspects - Handling Cross-
cutting Concerns in MDSD, ECOOP, Scotland, (2005)

2. Bencomo N., Blair G., Coulson G., Batista T.: Towards a Meta-Modelling Approach to
Configurable Middleware, 2nd ECOOP Workshop on Reflection, AOP and Meta-Data for
Software Evolution, ECOOP, Scotland (2005)

3. Bencomo N., Blair G., Coulson G., Grace P., Rashid A.: Reflection and Aspects meet
again, 1st Aspect Oriented Middleware Development, Middleware 2005, France (2005)

4. Maes, P.: Concepts and Experiments in Computational Reflection, Proc. OOPSLA'87, Vol.
22 of ACM SIGPLAN Notices, pp147-155, ACM Press (1987)

5. Szyperski C.: Component Software: Beyond Object-Oriented Programming, Addison-
Wesley, (2002)

6. Middleware: http://www.comp.lancs.ac.uk/computing/research/mpg/reflection/index.php
7. AOSD Community: http://aosd.net/

Transformation-Based Structure Model Evolution

Fabian Büttner

University of Bremen, Computer Science Department, Database Systems Group

Models have become more and more important in software development. The Model
Driven Architecture (MDA) currently addressed by a large number of people, research
groups, and tools documents this emphasis on having models as central artifacts in
software engineering.

Typically, a model undergoes many changes in its lifetime, in the same way as an end
product (software) does. If it does not, the model might have been a throw away artifact
which is no longer connected to the software developed from it. To prevent having
throw-away models, we believe that one needs strong tool support for the evolution of
models which allows us to continuously develop and refine existing models.

In our work, we formulate a catalogue of refactoring-like transformations to static
structure models which are given by UML class diagrams and attached OCL constraints.
Changing static structure model elements may render existing OCL expressions invalid.
Thus, each transformation has to be accomplished by a number of change rules for ex-
isting OCL expressions. Furthermore, there typically exist states (represented as object
diagrams) of the model as well. Such states may exist as analysis artifacts, for example
to refine use case descriptions. It is therefore important to investigate each model trans-
formation w.r.t. its capability to represent existing states under a changed model. We
have to distinguish between state preserving model transformations and those which
are not, or only partly state preserving.

In our work, each model transformation is organized as a set of transformation steps.
Each of these steps describes a single change to a model in terms of its metamodel repre-
sentation, providing an operational characterization of the transformation. Furthermore,
each transformation is classified w.r.t. the context under which it is state preserving. If
a transformation is state preserving, a corresponding state transformation is provided as
well.

On the tool side we are currently implementing the complete catalogue as an exten-
sion of the USE (“UML Specification Environment”) tool. This extended version allows
us to interactively change a model while keeping OCL constraints and states in sync.
An evolution browser documents all changes through the life cycle of a model.

There is related work in many areas: refactorings and design patterns aim to provide
automatic changes and solutions to typical design problems to programmers. For mod-
els, there are several approaches to employ graph transformations to define model trans-
formations. Other transformation languages follow a relation-based approach. There
also exist a number of model transformation language proposals as a respond to the
QVT RFP of the OMG. Due to the paper format, we consequently do not include any
references except our own previous work. The final work will of course include a de-
tailed discussion of related work. We have already studied a couple of transformations
to UML class diagrams in [BG04b, BBG]. Particular aspects of class diagram semantics
are discussed in [BG04a].

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 339–340, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

340 F. Büttner

The catalogue under development will contain a selection of carefully chosen trans-
formations that are essential to the evolution of structure models, particularly on the
analysis level. This includes changing the multiplicity of association ends, changes to
the generalization hierarchy, moving attributes along associations, splitting and joining
classes, and other transformations. The idea is that as many as possible of the correc-
tions, transformations, and other changes to be made during the lifetime of a model
can be made consistently and automatically within the USE tool (i.e., without manually
rewriting existing OCL constraints or throwing away existing states).

All transformations of our catalogue are (or will be) implemented in the aforemen-
tioned extension to the USE tool. Each transformation is motivated by a single change to
a class diagram. Each of these changes is realized by a number of transformation steps.
These steps are provided mainly by UML collaborations showing how an instance of
the UML metamodel (for class diagrams) and the OCL expression trees (i.e., instances
of the OCL metamodel) have to be modified. We like to emphasize that our steps are
formulated in a simple, operational formalism given by standard UML collaborations
and state machines.

At the time of writing, the transformation catalogue is partly implemented in USE.
We have gained much feedback on our transformations by experimenting with several
models. In particular, the transformations for changing the multiplicities of associa-
tion end, replacing generalizations by compositions, and moving attributes along as-
sociations are already applicable. Implementing the collaborations in Java was really
simplified by the help of our ’dynamic dispatcher’ [BRLG04] component (a very slim
implementation of multi-methods tailored for applying the visitor design pattern). The
way the transformations are implemented follows closely the way they are presented in
our work, giving some first evidence that the transformations, organized in transforma-
tion steps, are sound and consistent. A more formal discussion will be included in our
final work.

References

[BBG] Fabian Büttner, Hanna Bauerdick, and Martin Gogolla. Towards transformation of
integrity constraints and database states. In Danielle Martin, editor, Proc. 16th Inter-
national Conference and Workshop on Database and Expert Systems Applications
(DEXA 2005), to appear. IEEE, Los Alamitos.

[BG04a] Fabian Büttner and Martin Gogolla. On Generalization and Overriding in UML 2.0.
In Nuno Jardim Nunes, Bran Selic, Alberto Rodrigues da Silva, and Ambrosio To-
val Alvarez, editors, UML’2004 Modeling Languages and Applications. UML’2004
Satellite Activities., pages 67–67. Springer, Berlin, LNCS 3297, 2004.

[BG04b] Fabian Büttner and Martin Gogolla. Realizing UML Metamodel Transformations
with AGG. In Reiko Heckel, editor, Proc. ETAPS Workshop Graph Transformation
and Visual Modeling Techniques (GT-VMT’2004). Electronic Notes in Theoretical
Computer Science (ENTCS), Elsevier, 2004.

[BRLG04] Fabian Büttner, Oliver Radfelder, Arne Lindow, and Martin Gogolla. Digging into
the Visitor Pattern. In Frank Maurer and Günther Ruhe, editors, Proc. IEEE 16th
Int. Conf. Software Engineering and Knowlege Engineering (SEKE’2004). IEEE,
Los Alamitos, 2004.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 341 – 342, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Software Hazard Analysis for X-by-Wire Applications

Ireri Ibarra-Alvarado1, Richard K. Stobart1, and Rudi Lutz2

1 Dept. of Engineering and Design, University of Sussex, Falmer, BN1 9QT, U.K.
2 Dept. of Informatics University of Sussex, Falmer, BN1 9QH, U.K.

{eii20, r.k.stobart, rudil}@sussex.ac.uk

One of the latest technologies in the automotive industry is “X-by-Wire”, where
mechanical components are replaced by electronic functions typically controlled by
software. X-by-Wire impacts on the overall vehicle safety for example: by
eliminating the steering column, the likelihood of it intruding into the passenger
compartment during a collision decreases. X-by-Wire also provides the driver with
convenient features such as variable steering ratio for ease of manoeuvrability.

As a result of the lack of standardisation of the current modelling tools and the
different approaches the tool vendors follow for code generation [1], amongst other
software issues in the development of real-time embedded systems for vehicles, there
is a need to adapt the current software development practices to give a competitive
answer to the demands in the automotive market.

The objective of this research is to develop a set of guidelines on how to perform
hazard analysis where models of both system and controls are developed in UML
(Unified Modeling Language) following the ROPES (Rapid Object-Oriented
Development Process for Embedded Systems) process; embedding with this hazard
analysis procedures in the development process itself. By using UML we establish a
common language to be used by the different stakeholders involved in the project.

The first phase of the proposed safety lifecycle starts with a PHA (Preliminary
Hazard Analysis) which involves an initial risk assessment in order to identify safety
critical components and functions and then reflect them in the requirements. PHA is
performed on the UCD (Use Case Diagram) and CD (Class Diagram) to check that
they contain enough information to roughly match the system requirements. This
procedure is implicit to a degree, in the analysis process to build the diagrams and
design reviews, in order to produce a highly abstract set of diagrams to be used in the
next phase of the development lifecycle, which is the System Safety Analysis, where
it is planned to use HAZOP (Hazards and Operability Study).

HAZOP was born in the process industry; its purpose is to find hazards arising
from the interaction of components in a plant, which is achieved by analysing flows
of substances using a set of guidewords to conduct the discussion. The general
approach of this work is to use the guidewords in DEF STAN 00-58, which were
modified from the original ones to fit systems containing electronics, with a very clear
interpretation for each attribute, in analogy, examining information flows.

For the SSA (System Safety Analysis) phase a HAZOP study is performed on the
master CD, here we anticipate that we will verify that it adheres to the requirements.
If flaws are found at this stage, these constitute potential faults which are being
identified and corrected. However two main things are evaluated with this strategy -
the first is how close the model is to the requirements, and the second is the
completeness and accuracy of the requirements from a safety perspective. These

342 I. Ibarra-Alvarado, R.K. Stobart, and R. Lutz

feedback paths make it difficult to differentiate the initial stages of the safety
lifecycle.

In the DSA (Detailed Safety Analysis) that corresponds to the low level system
design phase it is planned to have a much more detailed CD and Statecharts and to
use a different hazard analysis technique than HAZOP. We have to bear in mind that
not all hazard analysis techniques will be suitable to match the type of information
provided by each diagram.

The case study is a Steer-by-Wire system, during the HAZOP analysis, performed
in the SSA phase; we focused on the master CD, using the requirements list as the
basis to determine if the information there was mapped adequately to the master CD.
Two things are important to note here:

• A HAZOP study is not a design review. The master CD must be mature enough to
be used in the HAZOP, making sure that it represents the designer’s most refined
representation of the system. Although informal design reviews were previously
carried out between some members of the HAZOP team, a different perspective
was brought up in the HAZOP meeting, such as a design change that needed to be
considered for safety reasons, e.g. supplying additional information in the master
CD such as redundancy for sensors and actuators.

• The master CD at this stage represents a combination of hardware and software,
and the hardware at least needs to be represented as accurately as possible, since it
constitutes a major design decision even at this early stage.

There were a total of 10 changes in the class diagram that resulted from the
HAZOP study, they account for additions and deletions of inheritance and association
relationships, and addition of classes. The nature of these changes in the CD, address
specific safety concerns that were either not seen during the design reviews or that the
requirements did not explicitly state.

HAZOP appears to be a useful technique for the initial phases of the safety
lifecycle, due to its inherent level of abstraction. Nonetheless, in a later phase a more
detailed safety analysis will be performed using a different technique, such as FMEA
(Failure Modes and Effects Analysis) expecting that it will allow the quantification of
the probability of failures.

References

1. Furst, S. Autocoding in Automotive Software Development, Qualification Aspects of
ACGs. in IEE Automotive Electronics Conference. 2005.

2. Leveson, N., SAFEWARE 1995, USA: Addison Wesley.
3. MoD, Defence Standard 00-58: HAZOP Studies on Systems Containing Programmable

Electronics. 2000.
4. Rumbaugh, J., Jacobson, I. and Booch, G., The Unified Modeling Language, Reference

Manual. Second ed. 2004: Addison-Wesley.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 343 – 344, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Enhancement of Development Technologies for
Agent-Based Software Engineering*

Andre Karpištšenko

Tallinn Technical University, Ehitajate tee 5,
19086 Tallinn, Estonia
andre@lap.ee

1 Background

Modern systems are software-intensive and must meet increasingly demanding re-
quirements in order to cope with significant degrees of uncertainty, dynamic envi-
ronments, and to provide greater flexibility. Agent-based development metaphors and
technologies provide well suited structures and techniques to handle such complexity.
However, when developing complex open systems, the tools provide insufficient sup-
port for effective specification and implementation of such systems.

With the official release of UML 2.0, the fundamental definition of behavior will
offer means for modeling interactions and for specifying systems independently of
where the system/environment boundary is drawn. This would suggest that the utiliza-
tion of Model Driven Architecture (MDA) offers a content platform for modeling
multi-agent systems. However, as critics of MDA suggest, it is distinctly nontrivial –
many would argue impossible – to support and evolve semantically correct platform-
specific models for complex platforms such as J2EE or .NET. Drawing the parallel
with inherently complex multi-agent systems, additional means of modeling have to
be considered.

2 Purpose and Possible Impacts

The focus of this doctoral work is on the effective modeling practices in the early
stages of software development. The purpose is to improve the modeling possibilities
of time-aware multi-agent systems (TA-MAS) to enable formal analysis of composite
system behavior.

From the perspective of agent-orientation, the work could create possibilities to
automatically control and verify agent-oriented implementations against their model
specifications. This would facilitate the engineering of complex systems, as the prob-
lems associated with the coupling and interaction of components are significantly
reduced and the problem of managing control relationships among the software com-
ponents is reduced. This thesis is also expected to contribute to the behavioral model-
ing aspects – elaborate the list of behavioral features that can be analyzed in early
stages of the software process, and methods applicable for this analysis.

* Due to paper format (extended abstract) no references are included here.

344 A. Karpištšenko

3 Preliminary Results

Due to the early stage of the doctoral work, the majority of results are “work in
progress”. For this reason this paragraph is organized as an overview of the relevant
topics with a glimpse of the ongoing work.

3.1 Modeling Time-Aware Multi-agent Systems with UML

The existing trend in practical applications has led to (partial) merging of two do-
mains – multi-agents and real-time embedded systems. For modeling real-time sys-
tems there are widely acknowledged Real-Time UML Profiles (RT-UML). However
when it comes to modeling agents, the formalizations and standards are still evolving.
A well known modeling language is AgentUML (AUML) which heavily relies on
UML.

As RT-UML puts a lot of attention to concurrency and communication issues,
which are inherent characteristics of multi-agent systems, the doctoral work is on
merging the relevant parts with the existing AUML. As the authors of AUML have
stated, that UML is not relied upon, but reused, open-source AUML tools are pre-
ferred for ease of modification. Integration with RT-UML is required, as current tim-
ing constraints and the underlying time model, defined in AUML do not satisfy the
needs of real-time systems.

The first group of prototype models will include a model of an ant colony simula-
tion and in the near future models will be developed for agents collecting information
(e.g. for digital maps) in heterogeneous computing network with dynamically chang-
ing topology (e.g. ad hoc sensor networks, currently such an experimental environ-
ment is being built in Tallinn University of Technology).

3.2 Meta-programming of Domain-Specific Agents

As discussed in the background section of this paper, UML based models of TA-MAS
might prove inefficient in practice. Since attention to methods, tools, and models that
directly support domain-oriented programming is crucial, a study of alternative mod-
eling tools is planned in parallel with the work on UML profiles.

The focus is on modeling/programming environments for domain-specific lan-
guages with full support from the IDE. The variety of languages and formalizations
required for designing multi-agent systems suggest that seamless interoperability is a
must for successful code generation and the maintenance of TA-MAS.

The current possible canditate environments, for defining domain-specific lan-
guages and models, are currently MetaEdit+ metaCase tool by MetaCase and Meta
Programming System (focused on textual representation of model) by JetBrains. The
motivation for using existing frameworks for design and implementation of languages
is to shift focus of research work from tool development to agent domain specific
characteristics. As a result of experimentation with existing tools, concrete modeling
requirements inherent to agent domain can be specified.
 Research within this doctoral work is expected to result in a prototype modeling
language for TA-MAS with possible candidates for target format (code generation)
being KRATT or JADE agent frameworks.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 345 – 346, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modeling Reactive Systems and Aspect-Orientation

Mark Mahoney

Illinois Institute of Technology,
Chicago, IL, USA

mahomar@iit.edu

This paper describes the research I am currently performing as a PhD student at the
Illinois Institute of Technology with my advisor Dr. Tzilla Elrad. The focus of my
research is Aspect-Oriented Modeling and reactive systems. In particular I am inter-
ested in the modeling of reactive objects using statecharts and scenarios.

One of the limitations of object-oriented software development is that it does not
have an efficient way of expressing crosscutting concerns. A crosscutting concern is
one that cannot easily be modularized into a single unit such as a class. Rather, it is
spread out or tangled with the implementation of other concerns. The goal of Aspect-
Oriented Software Development (AOSD) is to separate crosscutting concerns from
core concerns. The focus of my research is to tackle one of the most important parts
of Aspect-Oriented software design- modeling. Currently, the modeling techniques
that address crosscutting concerns in reactive systems lack the expressiveness to
model interactions between core and crosscutting concerns effectively. In particular,
my research focuses on modeling class behavior with statecharts and scenarios.
 The goals of my future work are to further examine the use of statecharts and to
explore scenario based languages for addressing crosscutting concerns. With respect
to the statechart work I have begun, I am looking into other contexts such as ubiqui-
tous computing and how crosscutting concerns are handled in those environments. On
a parallel track, I intend to continue exploring Aspect-Oriented Modeling by research-
ing techniques to model crosscutting concerns in scenario based languages like Live
Sequence Charts (LSC)[1]. LSC’s allow one to model user concerns in a formal lan-
guage similar to UML use cases and sequence diagrams. Tools have been developed
to verify these models are consistent and complete. I will be exploring the use of
Aspect-Oriented use case research and scenarios.

I plan to continue working with state based systems. I am currently researching as-
pects as they apply to ubiquitous computing and variability. I am interested in discov-
ering if statecharts controlling separate machines may be combined into one statechart
with orthogonal regions for the purpose of coordination and control. These distributed
statecharts would travel to different orthogonal regions of different machines based on
the location of the device. For example, an airplane may have a statechart that de-
scribes its current state (ascending, descending, etc). Each air traffic control tower
across the country may require that as a plane flies through its airspace it add its state-
chart to the tower’s statechart in an orthogonal region. The tower can then reinterpret
events from each plane to control the airspace. For example, an air traffic control tower
in Washington D. C. may reinterpret a ‘descent’ event as a threat, whereas that same
event may be reinterpreted to an indication of landing in another tower’s statechart. I
intend on altering the AOSF to handle distribution and movement of statecharts.

346 M. Mahoney

I have just begun to research the effect of crosscutting concerns on scenario-based
languages. A scenario, like a use case, models a typical interaction a user has with a
system to provide some useful result. One particular scenario based language, called
Live Sequence Charts (LSC), deals with reactive systems. Scenario-based descrip-
tions of behavior are not immune to crosscutting concerns. I am researching ways to
address crosscutting concerns in scenarios by proposing some additions to the LSC
language and an accompanying tool called the Play-Engine. The proposals I have
made would allow one to see the effect of applying crosscutting concerns to different
scenarios.

My early work focuses on mapping concepts in the AOSD world to LSC’s. I have
been able to equate an LSC’s pre-chart to the idea of a ‘pointcut’ and a main chart to
an ‘advice’ in Aspect-Oriented Programming (AOP) languages. Further, in order to
increase the amount of quantification in the models I have proposed extensions to the
LSC language to allow regular expressions in the names of participating objects and
the messages that flow between objects.

There are still some mappings needed to be worked out. Most AOP languages al-
low the developer to specify that an advice be applied before, after, or around a point-
cut. More work is needed to be done to sort out the semantics of a similar mechanism
in the LSC language. I plan on investigating whether there is any benefit to creating
separate types of LSC for core and crosscutting concerns. If a separate model is cre-
ated for aspect LSC’s it may allow more flexibility in quantifying join points by being
able to include more than one pre-chart using the logical operators AND, OR, and
NOT.

I also plan on researching whether state machine generation is possible using
LSC’s and the proposed extensions to the language. Another alternative I am consid-
ering developing an executing environment similar to the Play-Engine that deals with
my proposed extensions. Lastly, I intend on examining the relationship between
LSC’s and a recent work [2] on AOSD and use cases. I believe LSC’s may be a more
appropriate tool than sequence diagrams in the proposed process since they allow for
verification and validation and serve as executable test cases.

References

1. Harel, D, Marelly, R. 2003. Come, Let's Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer-Verlag

2. Jacobson, I. Ng, P. Aspect-Oriented Software Development with Use Cases. Addison-
Wesley. 2005.

SelfSync: A Dynamic Round-Trip Engineering
Environment

Ellen Van Paesschen1 and Maja D’Hondt2

1 Programming Technology Laboratory
2 Software and System Engineering Laboratory,

Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussel, Belgium
{evpaessc, mjdhondt}@vub.ac.be

Abstract. Model-Driven Engineering (MDE) advocates the generation
of software applications from models, which are views on certain as-
pects of the software. In order to minimize the delta between these
views we propose a highly dynamic Round-Trip Engineering (RTE) tech-
nique where the elements of the various views are one and the same. We
combine Extended Entity-Relationship diagrams with an object-oriented
prototype-based language in a two-phased technique that allows for the
rapid prototyping of the modeled applications. Run-time objects are in-
cluded in the RTE process resulting in advanced constraint enforcement.
Moreover support is provided for straightforward role modeling.

1 Introduction

In Model-Driven Engineering (MDE) software applications are generated from
models, which are views on certain aspects of the software. The goal of this
research is to minimize the “distance” (the delta) between different views. We
consider the following three views:

– A domain analysis view represented by a data modeling diagram
– Implementation objects, related to object-oriented programs at code-time
– Population objects, derived from implementation objects, containing actual

data for running the application

During Round-Trip Engineering (RTE) these views need to be synchronized con-
tinuously [1],[5],[10]. We want to provide a highly dynamic approach to RTE,
where the elements of the data modeling view and the corresponding implemen-
tation objects are one and the same. This contrasts with other approaches, which
usually employ a synchronization strategy based on transformation [10],[24] (see
Section 4). Moreover we want to include population objects in the RTE process.

An interesting academic case study in this context is role modeling [19]. In
this case the distance between the data modeling view and a corresponding
implementation is significant: from a modeling perspective roles are subtypes of
the persons performing them but in the code a person object performing a role
is more specialized than the role object itself [16], [9].

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 347–352, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

348 E. Van Paesschen and M. D’Hondt

2 Our Approach

We propose a two-phased approach that continuously synchronizes between a
data modeling view and a view on an object-oriented implementation [14], [16],
[15]. For the data modeling view we selected the Extended Entity-Relationship di-
agramming technique [3] while the object-oriented implementation is developed
in the prototype-based language Self [20].

EER Modeling. EER diagrams consist of the typical data modeling elements,
similar to Class Diagrams in the Unified Modeling Language (UML): entities
(classes in the UML), attributes and operations1 in entities, and association and
inheritance relations between entities. The associations can be 1-to-1, 1-to-many,
and many-to-many. The EER notation we use combines existing approaches [3],
[6] but is merely a consequence of our choice of development platform.

There is an almost religious discussion between the (E)ER and the UML com-
munities as to which approach is better. Typical claims are that (E)ER modeling
is more formally funded but that the UML is more open [17]. In our work, how-
ever, the use of EER does not exclude the transfer of our conceptual results to
an UML-based context. We describe Round-Trip Engineering on the data mod-
eling level in terms of entities, attributes and operations, and association and
inheritance relations. These EER modeling elements have equivalent modeling
elements in Class Diagrams of the UML.

Self. The object-oriented implementation language we employ is the prototype-
based language Self. Prototype-based languages can be considered object-
oriented languages without classes. As such, a prototype is used for sharing state
between objects and new objects can be created by cloning a prototype. Self
introduces another concept, traits, which share behavior among objects and let
objects inherit from them, similar to classes. For more details on the language
we refer to [23].

Part of the motivation to select Self is based on its reflective and dynamic
character that is crucial in Round-Trip Engineering. Class-based languages such
as Java and C++ that apply static typing and have few or no reflection facilities
do not allow for synchronization at the level of the run-time population objects.
Moreover they do not support role modeling in a straightforward manner [9].
The fact that in Self parents are shared and can be modified dynamically caused
us to prefer Self to a dynamically-typed class-based language such as Smalltalk.
Role modeling can be simulated in Smalltalk but not as natural as in Self [16].

2.1 A Two-Phased Approach

Our approach constitutes two typically but not necessarily subsequently exe-
cuted phases, which we present in detail in [14]. In the first active modeling
phase a user draws an EER diagram while corresponding Self implementation
1 We extended the standard EER diagram with operation slots in addition to attribute

slots.

SelfSync: A Dynamic Round-Trip Engineering Environment 349

objects — prototypes and traits — are automatically created. In reality, the Self
objects are the modeled entities: drawing a new EER entity automatically results
in a graphical EER entity view being created on a new Self object. Hence, we
support incremental and continuous synchronization per entity and per object :
changes to an EER entity are in fact changes to a view on one object and thus
automatically propagated to the object via Self’s reflection mechanism. Simi-
larly, changes to an object are automatically propagated to the corresponding
EER entity.

The second phase of our approach is an interactive prototyping process2. This
phase allows a user to interactively create and initialize ready-to-use population
objects from each implementation object created in the previous phase.

3 Tool Support and Validation

SelfSync is a tool that implements the two-phased approach described in Section
2.1. First, we extended Self with a drawing editor for EER diagrams. Next, we
added a new EER “view” on Self objects with the help of the Morphic framework
and realized a bidirectional active link between EER views and implementation
objects. As explained in Section 3.1, SelfSync supports (1) enforcing constraints
on population objects steered from the data model, (2) advanced method syn-
chronization between data model and implementation, (3) changing populations
of objects steered from the data model and (4) a natural synchronization between
modeling and implementing during role modeling.

3.1 Validation

Constraint Enforcement. After the interactive prototyping phase we ensure that
the multiplicity constraints imposed by a one-to-one or one-to-many relation-
ship between two entities are satisfied at all times. When two entities are in a
relationship in which the first one has a single reference (one or zero) to the
second one, the uniqueness of this reference is enforced in the population objects
in two ways. We first ensure that all population objects that have been derived
from the first entity refer to at most one population object that has been derived
from the second entity. Secondly, we also ensure that only one population object
derived from the second entity refers to population objects derived from the first
entity. If two entities are in a one-to-one relationship, this is enforced in the two
directions.

Dependencies between entities and weak entities in an EER diagram result in
another kind of enforcement of population objects derived from these entities.
In this case we ensure that when a population object is deleted, all population
objects that refer to it and have been derived from a weak entity that depends
on the entity from which the deleted population object is derived, are deleted
2 Note that a prototype is a special object in prototype-based languages for supporting

data sharing of several objects whereas prototyping is the activity of instantiating
and initializing a program into a ready-to-use, running system.

350 E. Van Paesschen and M. D’Hondt

also. Note that for the enforcement to be actually performed, the population
objects that are candidates for deletion are not allowed to be referenced by any
other population object.

Method Synchronization. The EER diagram used in SelfSync is extended with
operations. These operations are linked to the method bodies of the correspond-
ing methods in the implementation objects. First, the method bodies can be
edited in the EER diagram, which is automatically synchronized with the ac-
tual method bodies in the implementation objects, and vice versa. Second, we
also support the possibility to “inject” behavior before or after one or more
selected operations in the EER diagram. This is a simple visual version of Aspect-
Oriented Programming [13], where the join points are selected in a diagram
instead of described by a pointcut. This new piece of code is again automatically
added at the beginning or end of the method bodies of all selected operations
in the EER diagram. These code injections maintain their identity: at any point
in time the layers of different code injections of an operation can be consulted.
Each of these injections can be removed locally or in all operations where this
specific injection was added.

Object Generations. Changing a method in an implementation object, more
specifically in the traits has repercussions on all population objects that have
been derived from it. Since we allow changing method bodies by manipulating
the corresponding operations in the EER diagram, SelfSync supports behavioral
evolution of entire existing generations of population objects, steered from the
EER diagram.

The Role Modeling Concept. SelfSync was successfully extended with a role
modeling concept to represent the fact that one entity can dynamically adapt
the behavior of another entity. To tackle the paradox of roles being both sub- and
supertypes [19] we introduced the concept of warped hierarchies [16]. Modeling
roles by means of our extension to the EER diagram results in corresponding
implementation objects being automatically created with the structure of warped
hierarchies. In the corresponding population objects, an arbitrary number of
roles can be added or removed dynamically thanks to multiple inheritance and
dynamic parent modification. The technique is based on meta-programming and
Self’s state inheritance mechanism called copy-down [23].

4 Existing Approaches

Round-Trip Engineering. The state-of-the-art in RTE includes application such
as Rational XDE [22], Borland Together [24], and FUJABA [21]. One of the
leaders in this domain is Borland’s Together. In this commercial tool set the
synchronization mechanism between UML Class Diagrams and implementation
is realized by the LiveSource technology. More specifically, the implementation
model (i.e. the source code) is parsed and rendered as two views: a UML Class
Diagram and in a formatted textual form. LiveSource is in fact a code parsing

SelfSync: A Dynamic Round-Trip Engineering Environment 351

engine. The user can manipulate either view and even the implementation model.
However, all user actions are translated directly to the implementation model
and then translated back to both views. Population objects are not included
in the RTE process. There is no real support for constraint enforcement or
for manipulating operations in the Class Diagram. Role modeling as described
above is rather hard in a Class Diagram [9], [19]. Other related work in RTE, is
mostly concerned with characterizing RTE rather than providing concrete tool
support [1].

Role Modeling. We summarize the four approaches that are most relevant to our
approach described in [16]. For more approaches we refer to [19]. The category
concept [7] is defined as the subset of the union of a number of roles (types). As
in our approach the Entity-Relationship diagram was extended: relationships are
not defined on entity types, but on categories. In [2] roles are considered temporal
specializations: statically, a manager is a specialization of a person. However,
when a particular person object becomes a manager, its type is changed from
person to the subtype employee thereby inheriting all aspects of its new role.
In this way reversed specializations, similar to warped hierarchies, are realized
temporarily. [18] also separate between static and dynamic type hierarchies: state
sharing, behaviour sharing, as in Self, and subset hierarchies are combined into
a new specialization modeling concept. In [12] delegation is used to implement
dynamic roles that “import” state and behavior from their parent objects.

The role modeling concepts in the approaches described above provide suit-
able alternatives but were – to the best of our knowledge – never integrated
in an object-oriented RTE modeling environment that supports automatic syn-
chronization between the modeled roles and a corresponding implementation.

EER and Object-Orientation. Since the late eighties, it has been encouraged to
combine (E)ER models and object-orientation (OO) [4]. Various approaches and
techniques exist for translating EER into object-orientation [8],[11]. Such map-
pings can be used in the domain of object-relational (O/R) mappers [25]. These
tools generate an object implementation from a data model such as (E)ER, and
possibly support synchronization of both models. Some of them generate code to
enforce constraints on relationships and dependencies between implementation
objects, based on the data model. However, these applications do not consider
behavior (operations) at the level of the data model.

References

1. U. Assman. Automatic roundtrip engineering. Electronic Notes in Theoretical
Computer Science, 82.

2. C. Bock and J. Odell. A more complete model of relations and their implementa-
tion: Roles. JOOP, 11(2):51–54, 1998.

3. P. P. Chen. The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst., 1(1):9–36, 1976.

4. P. P. Chen, B. Thalheim, and L. Y. Wong. Future directions of conceptual mod-
eling. In Conceptual Modeling, pages 287–301, 1997.

352 E. Van Paesschen and M. D’Hondt

5. S. Demeyer, S. Ducasse, and S. Tichelaar. Why unified is not universal? In UML’99,
Fort Collins, CO, USA, October 28-30. 1999, Proceedings, volume 1723 of LNCS,
pages 630–644. Springer, 1999.

6. R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addison-Wesley
World Student Series, 3 edition, 1994.

7. R. Elmasri, J. Weeldreyer, and A. Hevner. The category concept: an extension to
the entity-relationship model. Data Knowl. Eng., 1(1):75–116, 1985.

8. J. Fong. Mapping extended entity relationship model to object modeling technique.
SIGMOD Record, 24(3):18–22, 1995.

9. M. Fowler. Dealing with roles. Technical report, Department of Computer Science,
Washington University, 1997.

10. A. Henriksson and H. Larsson. A definition of round-trip engineering. Technical
report, Linkopings Universitet, Sweden, 2003.

11. R. Herzig and M. Gogolla. Transforming conceptual data models into an object
model. In ER’92, Karlsruhe, Germany, October 1992, Proceedings, volume 645 of
Lecture Notes in Computer Science, pages 280–298. Springer, 1992.

12. A. Jodlowski, P. Habela, J. Plodzien, and K. Subieta. Dynamic object roles –
adjusting the notion for flexible modeling. In IDEAS, pages 449–456, 2004.

13. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In Proceedings of the 15th Euro-
pean Conference on Object-Oriented Programming (ECOOP’01), pages 220–242.
Springer-Verlag, 1997.

14. E. V. Paesschen, M. D’Hondt, and W. D. Meuter. Rapid prototyping of eer models.
In ISIM 2005, Hradec Nad Moravici, Czech Republic, April 2005, Proceedings,
pages 194–209. MARQ, 2005.

15. E. V. Paesschen, W. D. Meuter, and M. D’Hondt. Selfsync: a dynamic round-
trip engineering environment. In Proceedings of the ACM/IEEE 8th International
Conference on Model-Driven Engineering Languages and Systems (MoDELS’05),
October 2-7, Montego Bay, Jamaica, 2005.

16. E. V. Paesschen, W. D. Meuter, and M. D’Hondt. Role modeling in selfsync
with warped hierarchies. In Proceedings of the AAAI Fall Symposium on Roles,
November 3 - 6, Arlington, Virginia, USA, 2005 (to appear).

17. K.-D. Schewe. UML: A modern dinosaur? In Proc. 10th European-Japanese Confer-
ence on Information Modelling and Knowledge Bases, Saariselkä (Finland), 2000.
IOS Press, Amsterdam, 2000.

18. M. Snoeck and G. Dedene. Generalization/specialization and role in object oriented
conceptual modeling. Data Knowl. Eng., 19(2):171–195, 1996.

19. F. Steimann. A radical revision of UML’s role concept. In A. Evans, S. Kent, and
B. Selic, editors, UML 2000, York, UK, October 2000, Proceedings, volume 1939
of LNCS, pages 194–209. Springer, 2000.

20. D. Ungar and R. B. Smith. Self: The power of simplicity. In OOPSLA ’87, Orlando,
Florida, USA, pages 227–242, New York, NY, USA, 1987. ACM Press.

21. Fujaba: http://wwwcs.uni-paderborn.de/cs/fujaba/.
22. Rational: http://www-306.ibm.com/software/awdtools/developer/rosexde/.
23. Self: http://research.sun.com/self/.
24. Together: http://www.borland.com/together/.
25. Toplink: http://www.oracle.com/technology/products/ias/toplink/index.html.

A Framework for Composable Security
Definition, Assurance, and Enforcement

J.A. Pavlich-Mariscal, S.A. Demurjian, and L.D. Michel

Department of Computer Science & Engineering,
The University of Connecticut, Unit-2155,
371 Fairfield Road, Storrs, CT 06269- 2155

jaime.pavlich@uconn.edu,
{steve, ldm}@engr.uconn.edu

The objective of this research is to develop techniques that integrate alternative
security concerns (e.g., mandatory access control, delegation, authentication,
etc.) into the software process. A framework is proposed to achieve composable
security definition, assurance, and enforcement via a model-driven framework
that preserves separation of security concerns from modeling through imple-
mentation, and provides mechanisms to compose these concerns into the ap-
plication, while maintaining consistency between design models and code. At
modeling-time, separation of concerns (e.g., RBAC, MAC, delegation, autho-
rization, etc.) is emphasized by defining concern-specific modeling languages. At
the implementation-level, aspect-oriented programming (AOP) transitions secu-
rity concerns into modularized code that enforces each concern. This research
assumes the use of an underlying object-oriented language with aspect-oriented
extensions, and infrastructure to implement the applications and support secure
access to the public methods of classes, e.g., Java with AspectJ or C++ with
AspectC++.

The closest related research are [1] that proposes a metamodel to define se-
curity languages, and [4] that proposes an approach to validate access control
policies. None of these approaches emphasizes aspect-oriented security enforce-
ment code generation or method-based permissions, which are some of the main
foci of our research.

The main research tasks required to realize the framework are:

1. Identify a broad set of Security Concern Models (e.g., RBAC, MAC, del-
egation, authorization, parameters of security models, etc.) that are both
quantifiable units and composable. The main criteria to identify a compos-
able concern is to determine if its properties can be expressed as formal
method preconditions.

2. Design a means to integrate the Security Concern Models into a design model
(UML) to capture security requirements as part of the software process.
This may involve extending existing UML capabilities, proposing new UML
diagrams, and/or integrating with other security modeling techniques.

3. Develop a formal model to represent security and non-security concerns that
captures a design state for use in static analyses of the security properties
of the framework.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 353–354, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

354 J.A. Pavlich-Mariscal, S.A. Demurjian, and L.D. Michel

4. Design formal rules that will govern the mapping of each Security Concern
Model to AOP enforcement code, including the composition of multiple con-
cerns and application code.

The central contribution expected from this research is a complete framework
that integrates security with the software process, preserves the separation of
security and non-security concerns, and yields applications that are the compo-
sition of application and enforcement code. Specific contributions include:

– Visual and non-visual modeling extensions to UML that represent and inte-
grate all of the Security Concern Models into the software process.

– Strong assurance that the AOP code generated for every individual Security
Concern Model, and for their composition with one another, is secure.

– A formal model to capture security and non-security application concerns, a
design state, leveraged to prove assertions regarding security consistency and
completeness of individual Security Concern Models and their composition.

– Detailed algorithms that map Security Concern Models (and their compo-
sition) into composable AOP enforcement code that preserves separation of
concerns.

As of this writing, the status of the research plan outlined above is as follows:
A new UML artifact was proposed, the role-slice diagram that allows a soft-
ware/security engineer to capture the Security Concern Model for RBAC [2].
An initial formal model was proposed[3] for security and non-security concerns
via a functional notation based on structural operational semantics. Algorithms
were designed for mapping a role-slice diagram to AOP security enforcement code
[2, 3] via model composition to manage role hierarchies. A software prototype is
being built, and will be utilized for experimental validation of the research.

References

1. David Basin, Jürgen Doser, and Torsten Lodderstedt. Model driven security, Engi-
neering Theories of Software Intensive Systems. 2004.

2. J. A. Pavlich-Mariscal, T. Doan, L. Michel, S. A. Demurjian, and T. C. Ting. Role
Slices: A Notation for RBAC Permission Assignment and Enforcement. In Proceed-
ings of 19th Annual IFIP WG 11.3 Working Conference on Data and Applications
Security, 2005.

3. Jaime A. Pavlich-Mariscal, L. Michel, and Steven A. Demurjian. A Formal Enforce-
ment Framework for Role-Based Access Control using Aspect-Oriented Program-
ming. In Lionel Briand and Clay Williams, editors, ACM/IEEE 8th International
Conference on Model Driven Engineering Languages and Systems, Montego Bay,
Jamaica, 2005.

4. Eunjee Song, Raghu Reddy, Robert France, Indrakshi Ray, Geri Georg, and Roger
Alexander. Verifiable composition of access control features and applications. In
Proceedings of 10th ACM Symposium on Access Control Models and Technologies
(SACMAT 2005), 2005.

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 355 – 356, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Ontology-Based Model Transformation

Stephan Roser and Bernhard Bauer

Programming of Distributed Systems,
Institute of Computer Science, University of Augsburg, Germany
{roser, bauer}@informatik.uni-augsburg.de

1 Introduction

Today, model-driven development is getting more sophisticated and is used for mod-
eling enterprises and developing application systems. To develop more and more
complex systems efficiently, the trend is to intelligent infrastructure services. Since
current interoperability solutions operate essentially at a syntactical level, technolo-
gies have to be developed enabling interoperability based on middleware, and devel-
opment platforms have to be enriched with machine-understandable semantics. Our
approach of ‘Ontology-based Model Transformation’ will contribute to these chal-
lenges by lifting syntactical metamodel description into ontologies.

Software methodologies are typically characterized by modeling languages and a
software process. Like described in [2] and also realized in many approaches, meth-
odologies have to be tailored to software development projects, comprising the
choice of appropriate modeling languages. By enriching model-driven development
with ontologies a mutual understanding for conceptual integration can be achieved
[1]. Model transformations specified between ontologies, will lead to interoperable
model transformations independent of methodologies’ tailoring to specific projects.
The specification of multiple model transformations will be reduced to few ontol-
ogy-based model transformations. One specification of an ontology-based model
transformation can be used to generate multiple transformations for specific
environments.

2 Ontology-Based Model Transformation

In the Model Driven Architecture (MDA) a model is a representation of a part of the
functionality, structure and behavior of a system. A specification is said to be formal
when it is based on a language with well defined structure (‘syntax’) and meaning
(‘semantics’). Most metamodels have, despite of well defined syntax, descriptions of
their semantic concepts which is not machine understandable. Taking the idea of the
semantic web, where the word semantic means machine understandable to modeling,
metamodels have to be grounded using ontology metadata, enabling machines to un-
derstand the meaning of metamodels’ concepts. We lift the syntactical model descrip-
tion into ontologies describing the concepts of the model in a machine understandable
form. Model transformations are defined on top of those ontologies.

Ontology-based model transformation achieves an increased level of abstraction by
the following:

356 S. Roser and B. Bauer

• Semantic Transformation: A semantic
transformation is a transformation speci-
fication describing a transformation
between two ontologies. A semantic
transformation is specified between a
source ontology and a target ontology,
but it can also be bidirectional.

• Syntax-semantic Binding: The syntax-
semantic binding specifies the connec-
tion between syntax (metamodels) and
semantics (ontologies).

• MO-Binding: Metamodel-ontology Bind
ings specify how semantic information
can be derived from model elements.

• OM-Binding: Ontology-metamodel Bin
dings specify how ontology elements are
expressed in models.

Figure 1 shows the overall approach of ontology-based model transformation. A
combination of one semantic transformation, one MO-Binding and one OM-Binding
form a transformation configuration. A transformation configuration is the basis for
an automated generation of common model transformations. A generator for model
transformations takes a transformation configuration as well as appropriate
metamodel- and ontology-definitions as input and outputs a model transformation
specified in an intermediate model transformation language. The generated model
transformation is input to arbitrary MDA-tools performing model transformations.

3 Conclusions and Outlook

Since the approach presented is based on ontologies, more sophisticated ontology
techniques can be applied. A challenge will be to combine ontology-based model
transformation techniques with ontology technology like ontology mappings, seman-
tic rules languages, inference machines, etc.. Ontology-based model transformation
will provide input for interoperability solutions, like semantically enriched
middleware platforms or semantic-based development platforms. This will contribute
to interoperability in enterprise modeling, by providing basic technology for the de-
velopment of generic and standardized model transformations and methodologies.

References

1. B. Elvesæter, A. Hahn, A-J. Berre, T. Neple: Towards an Interoperability Framework for
Model-Driven Development of Software Systems, INTEROP-ESA’05, 2005.

2. S. Roser, B. Bauer: A Categorization of Collaborative Business Process Modeling Tech-
niques, SoS4CO Workshop in 7th CEC Conference, IEEE, 2005.

Intermediate Model Transformation Language

MMs Onts

Transformation Configuration

QVT

ATL

XSLT

M1 M2MDA-
Tool

M1 M2ATL-
Engine

M1 M2XSLT-
Processor

OM-BindingMO-Binding
Semantic

Transformation

GENERATOR

MM: Metamodel; Ont: Ontology; M1: Model 1; M2: Model 2

Intermediate Model Transformation Language

MMsMMs OntsOnts

Transformation Configuration

QVT

ATL

XSLT

M1 M2MDA-
Tool

M1M1 M2M2MDA-
Tool

M1 M2ATL-
Engine

M1M1 M2M2ATL-
Engine

M1 M2XSLT-
Processor

M1M1 M2M2XSLT-
Processor

OM-BindingMO-Binding
Semantic

Transformation

GENERATOR

MM: Metamodel; Ont: Ontology; M1: Model 1; M2: Model 2

Fig. 1. Overall approach of ontology-based
model transformation

J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 357 – 358, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modeling Turnpike: A Model-Driven Framework for
Domain-Specific Software Development*

Hiroshi Wada and Jun Suzuki

Department of Computer Science,
University of Massachusetts, Boston

shu@cs.umb.edu, xs@cs.umb.edu

This Ph.D. research investigates a generic model-driven development (MDD) frame-
work that supports various domain-specific solutions (i.e. modeling, programming
and development processes to directly deal with domain concepts), and empirically
evaluates a series of techniques to develop such a framework. Steps towards creating
the proposed framework include investigating a generic foundation to handle arbitrary
Domain Specific Languages (DSLs); strategies, principles and tradeoffs in different
DSL designs (e.g. DSL syntax and semantics); building blocks for modeling and
programming domain concepts; transformation strategies from domain concepts to the
final (compilable) source code; development processes to leverage the proposed
framework well; model-driven approaches for maintenance and tests; and perform-
ance implications of major functional components in the framework.

This project proposes and investigates a new MDD framework, called Modeling
Turnpike (or mTurnpike). mTurnpike allows developers to model and program do-
main concepts in arbitrary DSLs and to transform them to the final (compilable)
source code in a seamless manner [1]. Leveraging the notions of UML metamodeling
and attribute-oriented programming, mTurnpike provides an abstraction to represent
domain concepts at the modeling and programming layers simultaneously.

At the modeling layer, domain concepts are represented as a Domain Specific
Model (DSM), which is represented as a set of UML 2.0 class and composite structure
diagrams with UML profile. At the programming layer, domain concepts are repre-
sented as a Domain Specific Code (DSC), which consists of attribute-oriented pro-
grams. By hiding the implementation details of those semantics from program code,
attributes increase the level of programming abstraction and reduce programming
complexity, resulting in simpler and more readable programs.

mTurnpike transforms domain concepts from the modeling layer to programming
layer, and vise versa, by providing a seamless mapping between DSMs and DSCs.
After mTurnpike generates a DSC, programmers write method code in the generated
DSC in order to implement dynamic behaviors for domain concepts. mTurnpike
transforms a DSM and DSC into a more detailed model and program by applying a
given transformation rule. mTurnpike allows developers to define arbitrary transfor-
mation rules, each of which specifies how to specialize a DSM and DSC to particular
implementation and deployment technologies.

* This research is supported in part by OGIS International, Inc. and Electric Power Develop-

ment Co., Ltd.

358 H. Wada and J. Suzuki

This project addresses several research issues as follows. 1) To handle arbitrary
domain concepts at the modeling and programming layer, mTurnpike adopts a lan-
guage-in-language design strategy to define DSLs in which different specialized
languages are defined on top of a generic and customizable language (i.e. UML and
Java). This design strategy improves the versatility of mTurnpike. 2) To provide
higher abstraction to programmers through DSCs. Programmers write method code in
DSCs before generating final source code. This means that programmers can focus on
coding application’s business logic without handling the details in implementation
and deployment technologies. 3) To transform domain concepts at the modeling layer
to the final source code, a transformation mechanism that handles both a model and
code is required. mTurnpike allows developers to define transformation rules in a
declarative manner. Declarative transformation rules are more readable and easier to
write and maintain than procedural ones. This framework design contributes its ease
of use and maintainability. 4) To improve the separation of concerns, mTurnpike
maps domain concepts between the modeling and programming layers in a seamless
and bi-directional manner. This mapping allows modelers and programmers to deal
with the same set of domain concepts in different representations (i.e. UML models
and annotated code), yet at the same level of abstraction. This means that modelers do
not have to involve programming details, and programmers do not have to possess
detailed domain knowledge and UML modeling expertise. This separation of con-
cerns can reduce the complexity in application development, and increase the produc-
tivity for developers to model and program domain concepts.

The future directions of this project include the following issues. 1) To support
multiple DSLs at a time, i.e. DSLs for a vertical domain and a horizontal domain, a
future work will address generating compilable code through combining DSMs and
DSCs written in multiple DSLs. 2) To clear the tradeoffs and selection criterions
between languages to describe domain specific concepts. mTurnpike currently em-
ploys UML to define DSMs at the modeling layer, but there are several modeling
languages to describe domain-specific concepts other than UML. Tradeoffs between
them are not still clear. 3) To support code transformation from a DSC (i.e. method
code that programmers add) to final code, a future work will investigate general code
transform method (e.g. code transformation mechanism leveraging EBNF). 4) To
improve maintainability, a future work will address a mechanism to debug a DSC
directly and traceability between a DSM and the final code. 5) A set of preliminary
performance measurements reveals mTurnpike’s forntend has several bottlenecks. A
future plan will address performance improvements on them.

Reference

1. H. Wada and J. Suzuki, "Modeling Turnpike Frontend System: a Model-Driven Develop-
ment Framework Leveraging UML Metamodeling and Attribute-Oriented Programming,"
In Proc. of the 8th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, October 2005.

Author Index

Aagedal, Jan Øyvind 210
Astudillo, Hernán 227, 272

Baar, Thomas 1, 20
Balme, Lionel 191
Baudry, Benoit 32
Bauer, Bernhard 355
Bencomo, Nelly 337
Bézivin, Jean 120, 169
Blair, Gordon 337
Briand, Lionel C. 10
Büttner, Fabian 339

Calvary, Gaëlle 191
Cheng, Betty H.C. 48
Chiorean, Dan 1
Clarke, Siobhán 110
Correa, Alexandre 1
Cottenier, Thomas 100
Coutaz, Joëlle 191
Czarnecki, Krzysztof 151

Demeure, Alexandre 191
Demurjian, S.A. 353
Deng, Gan 247
D’Hondt, Maja 347
Dubois, Hubert 79
Dzidek, Wojciech J. 10

Elrad, Tzilla 100
Engels, Gregor 306
Espinoza, Huáscar 79

Favre, Jean-Marie 151, 191
Frank, William F. 280

Gaston, Christophe 32
Genilloud, Guy 280
Génova, Gonzalo 272, 280
Georg, Geri 210
Gérard, Sébastien 58, 79
Ghosh, Sudipto 32
Giese, Holger 67, 302
Gogolla, Martin 1, 151
Graf, Susanne 58

Grassi, Vincenzo 217
Gray, Jeff 91, 333

Haugen, Øystein 58
Hausmann, Jan Hendrik 306
Hirsch, Martin 67
Hußmann, Heinrich 1, 182

Ibarra-Alvarado, Ireri 341

Jackson, Andrew 110
Jouault, Frédéric 128

Karpǐstšenko, Andre 343
Kienzle, Jörg 91
Konrad, Sascha 48
Kramler, Gerhard 159
Kurtev, Ivan 128
Kuzniarz, Ludwik 320

Labiche, Yvan 10
Lawley, Michael 139
Lenz, Gunther 247
Lethbridge, Timothy C. 302
Llorens, Juan 272
Lohmann, Marc 201, 306
López, Claudia 227
Loughran, Neil 262
Lutz, Rudi 341

Mahoney, Mark 345
Medina, Julio 79
Mens, Tom 151
Metz, Pierre 272
Michel, L.D. 353
Mirandola, Raffaela 210, 217
Muller, Pierre-Alain 39

Nechypurenko, Andrey 237

Ober, Ileana 210
Ober, Iulian 58

Patrascoiu, Octavian 1
Pavlich-Mariscal, J.A. 353

360 Author Index

Perronne, Jean-Marc 39
Petriu, Dorina C. 79, 210, 217
Pleuß, Andreas 182
Prieto-Dı́az, Rubén 272

Rashid, Awais 262
Rasse, Alban 39
Roques, Pascal 302
Roser, Stephan 355
Rumpe, Bernhard 120

Sabetta, Antonino 217
Sampaio, Américo 262
Sauer, Stefan 182, 306
Schattkowsky, Tim 201
Schmidt, Douglas C. 237, 247
Schmitt, Peter H. 1
Schürr, Andy 120
Selic, Bran 58
Śmia�lek, Micha�l 272
Sottet, Jean-Sébastien 191
Staron, Miroslaw 320

Steel, Jim 139
Stein, Dominik 91
Stobart, Richard K. 341
Suzuki, Jun 357

Theilmann, Wolfgang 210
Thirion, Bernard 39
Tratt, Laurence 120

van den Berg, Aswin 100
van den Bergh, Jan 182
Van Paesschen, Ellen 347

Wada, Hiroshi 357
Warmer, Jos 1
Whittle, Jon 210, 290
Wimmer, Manuel 159
Woodside, Murray 79
Wuchner, Egon 237

Zschaler, Steffen 210

	Frontmatter
	W1 -- OCL
	Tool Support for OCL and Related Formalisms -- Needs and Trends
	Lessons Learned from Developing a Dynamic OCL Constraint Enforcement Tool for Java
	OCL and Graph-Transformations -- A Symbiotic Alliance to Alleviate the Frame Problem

	W2 -- MoDeVA
	Report on the 2<Superscript>nd</Superscript> Workshop on Model Development and Validation -- MoDeVa
	Using Process Algebra to Validate Behavioral Aspects of Object-Oriented Models
	Automated Analysis of Natural Language Properties for UML Models

	W3 -- MARTES
	Modeling and Analysis of Real-Time and Embedded Systems
	Modular Verification of Safe Online-Reconfiguration for Proactive Components in Mechatronic UML
	Annotating UML Models with Non-functional Properties for Quantitative Analysis

	W4 -- Aspect-Oriented Modeling
	Report of the 7th International Workshop on Aspect-Oriented Modeling
	Modeling Aspect-Oriented Compositions
	Towards a Generic Aspect Oriented Design Process

	W5 -- MTiP
	Model Transformations in Practice Workshop
	Transforming Models with ATL
	Practical Declarative Model Transformation with Tefkat

	W6 -- WiSME
	Essentials of the 4th UML/MoDELS Workshop in Software Model Engineering~(WiSME'2005)
	Bridging Grammarware and Modelware
	sNets: A First Generation Model Engineering Platform

	W7 -- MDDAUI
	Workshop Report: Model Driven Development of Advanced User Interfaces (MDDAUI)
	Towards Model Driven Engineering of Plastic User Interfaces
	UML Model Mappings for Platform Independent User Interface Design

	W8 -- NfC
	Workshop on Models for Non-functional Properties of Component-Based Software -- NfC
	Abstraction-Raising Transformation for Generating Analysis Models
	Explicit Architectural Policies to Satisfy NFRs Using COTS

	W9 -- MDD for Product-Lines
	Workshop 9 Summary
	Addressing Domain Evolution Challenges in Software Product Lines
	From Requirements Documents to Feature Models for Aspect Oriented Product Line Implementation

	W10 -- WUsCaM
	Use Cases in Model-Driven Software Engineering
	Use Cases, Actions, and Roles
	Specifying Precise Use Cases with Use Case Charts

	Educator's Symposium
	Summary of the Educator's Symposium
	Teaching UML Is Teaching Software Engineering Is Teaching Abstraction
	Best Practices for Teaching UML Based Software Development

	Doctorial Symposium
	MoDELS 2005 Doctoral Symposium Summary
	Preening: Reflection of Models in the Mirror a Meta-modelling Approach to Generate Reflective Middleware Configurations
	Transformation-Based Structure Model Evolution
	Software Hazard Analysis for X-by-Wire Applications
	Enhancement of Development Technologies for Agent-Based Software Engineering
	Modeling Reactive Systems and Aspect-Orientation
	SelfSync: A Dynamic Round-Trip Engineering Environment
	A Framework for Composable Security Definition, Assurance, and Enforcement
	Ontology-Based Model Transformation
	Modeling Turnpike: A Model-Driven Framework for Domain-Specific Software Development

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

