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In Memoriam

Dedicated to the memory of Ondrej Sýkora.



Preface

The 13th International Symposium on Graph Drawing (GD 2005) was held in
Limerick, Ireland, September 12-14, 2005. One hundred and fifteen participants
from 19 countries attended GD 2005.

In response to the call for papers the Program Committee received 101 submis-
sions, each detailing original research or a system demonstration. Each submission
was reviewed by at least three Program Committee members; each referee’s com-
ments were returned to the authors. Following extensive discussions, the commit-
tee accepted 38 long papers, 3 short papers and 3 long system demos, each of which
were presented during one of the conference’s 12 sessions. Eight posters were also
accepted and were on display throughout the conference.

Two invited speakers, Kurt Mehlhorn and George Robertson, gave fascinating
talks during the conference. Prof. Mehlhorn spoke on the use of minimum cycle
bases for reconstructing surfaces, while Dr. Robertson gave a perspective, past
and present, on the visualization of hierarchies.

As is now traditional, a graph drawing contest was held during the conference.
The accompanying report, written by Stephen Kobourov, details this year’s con-
test. This year a day-long workshop, organized by Seok-Hee Hong and Dorothea
Wagner, was held in conjunction with the conference. A report on the “Workshop
on Network Analysis and Visualization,” written by Seok-Hee Hong, is included
in the proceedings.

We are indebted to many people for the success of the conference. The Pro-
gram Committee and external referees worked diligently to select only the best
of the submitted papers. The Organizing Committee under the co-chairmanship
of Nikola Nikolov worked tirelessly in the months leading up to the conference.
In particular, a big debt is owed to Aaron Quigley for his Herculean fund-raising
efforts, to Alex Tarassov for his system maintenance, to Karol Lynch for his
web page development, and to Gemma Swift and Nuala Kitson for their ad-
ministrative support and constant good humor. Thanks are also due to Vincent
Cunnane, who opened the conference. Last, but not least, we thank Peter Eades,
who provided valuable direction and kept a steady head throughout.

The conference received assistance from Science Foundation Ireland (Benefac-
tor); Intel Corp., Microsoft Corp. and Tom Sawyer Software (Gold Sponsors);
National ICT Australia, Enterprise Ireland, Fáilte Ireland, ILOG Inc., AbsInt
Angewandte Informatik GmbH (Silver Sponsors); Lucent Technologies, Jameson
Irish Whiskey and Dell Inc.

The 14th International Symposium on Graph Drawing (GD 2006) will be held
September 18-20, 2006 in Karlsruhe, Germany, co-chaired by Michael Kaufmann
and Dorothea Wagner.

October 2005 Patrick Healy
Nikola S. Nikolov

Limerick
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Peter Eades National ICT Australia Ltd., Univ. of Sydney
Hubert de Fraysseix Centre d’Analyse et de Mathematique Sociale
Patrick Healy University of Limerick
Michael Kaufmann University of Tübingen
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Crossings and Permutations�

Therese Biedl1, Franz J. Brandenburg2, and Xiaotie Deng3

1 School of Computer Science, University of Waterloo, ON N2L3G1, Canada
biedl@uwaterloo.ca

2 Lehrstuhl für Informatik, Universität Passau, 94030 Passau, Germany
brandenb@informatik.uni-passau.de

3 Department of Computer Science, City University of Hong Kong,
83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China

csdeng@cityu.edu.hk

Abstract. We investigate crossing minimization problems for a set of
permutations, where a crossing expresses a disarrangement between ele-
ments. The goal is a common permutation π∗ which minimizes the num-
ber of crossings. This is known as the Kemeny optimal aggregation prob-
lem minimizing the Kendall-τ distance. Recent interest into this problem
comes from application to meta-search and spam reduction on the Web.

This rank aggregation problem can be phrased as a one-sided two-
layer crossing minimization problem for an edge coloured bipartite graph,
where crossings are counted only for monochromatic edges.

Here we introduce the max version of the crossing minimization prob-
lem, which attempts to minimize the discrimination against any permuta-
tion. We show the NP-hardness of the common and the max version for k ≥
4 permutations (and k even), and establish a 2-2/k and a 2-approximation,
respectively. For two permutations crossing minimization is solved by in-
specting the drawings, whereas it remains open for three permutations.

1 Introduction

One-sided crossing minimization is a major component in the Sugiyama algo-
rithm. The one-sided crossing minimization problem has gained much interest
and is one of the most intensively studied problems in graph drawing [8, 15]. For
general graphs the crossing minimization problem is known to be NP-hard [13].
The NP-hardness also holds for bipartite graphs where the upper layer is fixed,
and the graphs are dense with about n1n2/3 crossings [10], or alternatively, the
graphs are sparse with degree at least four on the free layer [17]. The special
case with degree 2 vertices on the free layer is solvable in linear time, whereas
the degree 3 case is open.

The rank aggregation problem finds a consensus ranking on a set of alterna-
tives, based on preferences of individual voters. The roots for a mathematical
� The work of the first author was supported by NSERC, and done while the author

was visiting Universität Passau. The work of the second and third authors was
partially supported by a grant from the German Academic Exchange Service (Project
D/0506978) and from the Research Grant Council of the Hong Kong Joint Research
Scheme (Project No. G HK008/04).

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 1–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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investigation of the problem lie in voting theory and go back to Borda (1781) and
Condorcet (1785). Rank aggregations occur in many contexts, including sport,
voting, business, and most recently, the Internet. ”Who is the winner?” In gym-
nastics, figure skating or dancing this is decided by averaging or ranking the
points of the judges. In Formula 1 racing and similarly at the annual European
Song Contest the winner is who has the most points. Is this scheme fair? Why
not deciding the winner by the majority of first places?

Also, the organizers of GD2005 are confronted with our crossing minimization
problem. They have to make many decisions. For example, which beer (wine,
food) shall be served at the GD conference dinner? What is the best choice for
the individual taste of the participants? Or, more specific: which beer is the best?

In their seminal paper from the WWW10 conference, Dwork et al. [9] have
used rank aggregation methods for web searching and spam reduction. A search
engine is called good if it behaves close to the aggregate ranking of several
search engines. Besides experimental results they have investigated the theo-
retical foundations of the rank aggregation problem. One of the main results is
the NP-hardness of computing a so-called Kemeny optimal permutation of just
four permutations, here called PCM-4. However, the given proof has some flaws,
and is repaired here. In addition, we show a relationship to the feedback arc
set problem and establish a 2-2/k approximation, which is achieved by the best
input permutation.

The common rank aggregation methods take the sum of all disagreements over
all permutations. Here we introduce the maximum version, PCMmax-k, which
expresses a fair aggregation and attempts to avoid a too severe discrimination
of any participant or permutation. With the optimal solution, nobody should
be totally unhappy. We show the NP-hardness of PCMmax-k for all k ≥ 4 and
establish a 2-approximation, which is achieved by any input permutation. This
parallels similar results for the Kemeny aggregation problem [1, 9] and for the
Coherence aggregation problem [5]. The case PCMmax-2 with two permutations
is efficiently solvable, whereas the case k = 3 remains open.

Besides the specific results, this work aims to bridge the gap between the
combinatorics of rank aggregations and crossing minimizations in graph drawing,
with a mutual exchange of notions, insights, and results.

In Section 2 we introduce the basic notions from graph drawing and rank
aggregations, and show how to draw rank aggregations. In Section 3 we state the
NP-hardness of the crossing minimization problems for just four permutations,
and prove the approximation results, and in Section 4 we investigate the special
cases with two and three permutations.

2 Preliminaries

Given a set of alternatives U , a ranking π with respect to U is an ordering of
a subset S of U such that π = (x1, x2, . . . , xr) with xi > xi+1, if xi is ranked
higher than xi+1 for some total order > on U .
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For convenience, we assign unique integers to the items of U and let U =
{1, . . . , n}. We call π a (full) permutation, if S = U , and a partial permutation,
if S ⊆ U . A permutation is represented by an ordered list of items, where the
rank of an item is given by its position in the ordered list, with the highest, most
significant, or best item in first place.

The rank aggregation or the crossings of permutations problem is to combine
several rankings π1, . . . , πk on U , in order to obtain a common ranking π∗, which
can be regarded as the compromise between the rankings. The goal is the best
possible common ranking, where the notion of ‘better’ depends on the objective.
It is formally expressed as a cost measure or a penalty between the πi and π∗;
the common version takes the sum of the penalties, the max version is introduced
here. Several of these criteria have a correspondence in graph drawing.

A prominent and frequently studied criterion is the Kendall-τ distance [3, 5, 9,
16]. The Kendall-τ distance of two permutations over U = {1, . . . , n} measures
the number of pairwise disagreements or inversions, K(π, τ) = |{(u, v) | π(u) <
π(v) and τ(u) > τ(v)}|. This value is invariant under renaming, or the application
of a permutation σ on both π and τ , and such that τ becomes the identity.
For a set of permutations P = {π1, . . . , πk} this generalizes by collecting all
disagreements, K(P, π∗) =

∑k
i=1 K(πi, π

∗).
The value K(P, π∗) can be expressed in various ways. For every pair of distinct

items (u, v), the agreement AP (u, v) is the number of permutations from P which
rank u higher than v, and the disagreement is DP (u, v) = k − AP (u, v). Clearly,
the agreement on (u, v) equals the disagreement on the reverse ordering (v, u).
For every (unordered) pair of items, let Δ(u, v) = |k − 2AP (u, v)| express the
difference between the agreement and the disagreement of u and v.

There is an established lower bound for the number of unavoidable crossings
for the permutations of P , which is the sum over the least of the agreements and
disagreements,

LB(P ) =
∑
u<v

min{AP (u, v), DP (u, v)}.

Then the disagreement against a common permutation π∗ is

K(P, π∗) = LB(P ) +
∑

π∗(u)<π∗(v) and DP (u,v)>AP (u,v)

Δ(u, v).

Thus Δ(u, v) is added as a penalty if π∗ disagrees with the majority of the
permutations. If there is a tie for the ranking of u and v in P , then just the term
from the lower bound is taken into account.

Recall that for the crossing minimization problem of two layered graphs the
agreement and disagreement of two free vertices u and v is the crossing number
of the edges incident with u and v and placing u left of v, or vice versa. The so
obtained lower bound is often ‘good’ and close to the optimum value [14].

Another popular measure for the distance between permutations is the Spear-
man footrule distance, which accumulates the linear arrangement or the length
between two permutations over {1, . . . , n} by f(π, τ) =

∑
i |π(i) − τ(i)|. Again

this extends to a set P of permutations by summation f(P, π∗) =
∑k

j=1 f(πi, π
∗).
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These measures can be scaled by individual weights, and they can be ex-
tended to partial permutations π1, . . . , πk, where each permutation operates on
its subset of the universe, see [9].

Given a set of (full or partial) permutations P = {π1, . . . , πk} on a universe
U = {1, . . . , n}, the crossing number of P is the number of crossings against
the best permutation π∗ with respect to the Kendall-τ -distance, i.e., CR(P ) =
minπ∗ K(P, π∗). The crossing minimization problem is finding such a permuta-
tion π∗. We will refer to the crossing minimization problem of k permutations
as the PCM-k problem.

A new cost measure is the max crossing number, which attempts to minimize
the number of crossings for any permutation. For a set of k permutations P
and a target permutation π∗ let Kmax(P, π∗) = max{K(πi, π

∗) | πi ∈ P} and
define the max crossing number of P by CRmax(P ) = minπ∗ Kmax(P, π∗). The
permutation π∗ giving the value CRmax(P ) is a solution to the max crossing
minimization problem. This problem is referred to as the PCMmax-k problem.
One could similarly consider a maximum version for the Spearman footrule dis-
tance; we have not investigated the latter further.

The following fact is readily seen.

Lemma 1. For a set of k permutations P = {π1, . . . , πk},

CRmax(P ) ≤ CR(P ) ≤ k · CRmax(P ).

The crossing number represents an aggregation, which is the best compromise
for the given lists of preferences and minimizes the number of disagreements.
The minimal number of crossings does not necessarily distribute them uniformly
among the given permutations; one can construct examples where CRmax(P ) ≥
�CR(P )/2� and not CRmax(P ) = �CR(P )/k� as one would hope. The latter
equation holds for k = 2. The objective behind the max crossing number is
an aggregation, which is fair and treats every permutation equally well and
minimizes the discrimination of each participant. Clearly, both objectives can
be combined to the best possible permutation π∗ which minimizes the sum of
crossings and then balances their distribution.

2.1 Drawing Permutations

We now translate rank aggregations to graph drawing. Two permutations π and
τ on a universe U = {1, . . . , n} are drawn as a two-layer bipartite graph with the
vertices 1, . . . , n on each layer in the order given by π and τ and a straight-line
edge between the two occurrences of each item v on the two layers.

A set of k permutations π1, . . . , πk and a common permutation π∗ are repre-
sented by a sequence of pairs of permutations, where the lower layer is fixed in all
drawings. For convenience, we let the lower layer be the identity with π∗(i) = i.
We can merge the permutations into the coloured permutation graph G, which
is a bipartite graph with k edge colours, such that there are vertices 1, . . . , n on
each layer. There is an edge in the i-th colour between u on the upper layer and
j on the lower layer if and only if πi(u) = j. See also Fig. 1.
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1 2 3 4 5 6

Fig. 1. Coloured permutation graph for π1 = (6, 3, 1, 4, 2, 5) (green and solid), π2 =
(3, 5, 2, 6, 1, 4) (blue and dashed), and π3 = (4, 1, 5, 3, 6, 2) (red and dotted)

Obviously, for two full or partial permutations π and τ , the Kendall-τ dis-
tance K(π, π∗) is the number of edge crossings in a straight-line drawing of their
bipartite graph. It ranges between 0 and n(n − 1)/2 and can be efficiently com-
puted either by accumulating for every i the number of items, which are greater
than i and occur to the left of i in π, provided π∗ is the identity, or by techniques
from counting crossings in two-layer graphs in [21].

Lemma 2. The Kendall-τ distance K(π, π∗) of two permutations over U =
{1, . . . , n} can be computed in O(n log n) time.

2.2 Penalty Graphs

There is a direct relationship between the crossing minimization problem and the
feedback arc set problem, which has been established at several places. Recall that
the feedback arc set problem is finding the least number of arcs F in a directed
graph G = (V, E), such that every directed cycle contains at least one arc from
F , i.e., the graph G′ = (V, E − F ) is acyclic. In the more general weighted
case, the objective is a set of arcs with least weight. In the two-layer crossing
minimization problem, the penalty graph has arcs with weights corresponding to
the difference between the number of crossings among the edges incident with
two vertices u and v, if u is placed left of v, or vice versa.

In their seminal paper, Sugiyama et al. [20] have introduced the penalty di-
graph for the two-layer crossing minimization problem, and in [2] it is used for
voting tournaments. Demetrescu and Finocchi [6] have used this approach for
the two-sided crossing minimization problem and have tested several heuristics.
Recently, Ailon et al. [1] have established improved randomized approximations
for aggregation and feedback arc set problems.

For the crossing minimization problem for permutations, the penalty graph
can be applied in the same spirit, but we use the difference in the majority counts
Δ(u, v) as edge weights. Thus, for a set of permutations P over {1, . . . , n} the
penalty digraph of P is a weighted directed graph H = (V, A, w) with a vertex for
each item u and an arc (u, v) with weight Δ(u, v) if and only if a strict majority
of permutations rank u higher than v, i.e., if (u − v) · (DP (u, v) − AP (u, v)) <
0. Let w(FAS(P )) denote the weight of the optimum feedback arc set in the
penalty digraph.
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First, we establish the connection between the crossing number and the feed-
back arc set of the penalty graph. For the two-layer crossing minimization
problem it was first observed by Sugiyama [20], and used in various places,
[1, 6, 10, 17]. As a consequence, the crossing minimization problem can be re-
duced to a feedback arc set problem.

Theorem 1. Let P = {π1, . . . , πk} be a set of permutations. Then the crossing
number of P equals the lower bound plus the weight of the feedback arc set

CR(P ) = LB(P ) + w(FAS(P )).

Proof. For any permutation π there are LB(P ) unavoidable inversions or cross-
ings and K(P, π) = LB(P ) +

∑
π(u)<π(v) and DP (u,v)>AP (u,v) Δ(u, v). Now, the

deletion of all arcs (u, v) with u < v and π(u) > π(v) from the penalty digraph
of P leaves an acyclic digraph, since there are no cycles in a single permutation
π. If π is such that K(P, π) is minimal, then the set of arcs removed from the
penalty graph is a feedback arc set.

Conversely, consider the penalty graph of P and remove any set of arcs F to
make the remainder acyclic. Consider any permutation π which is in conformity
with a topological ordering. Then K(P, π) ≤ LB(P ) +

∑
f∈F Δ(f), and if F is

such that its weight is w(FAS(P )), then π is such that K(P, π) is minimal.

3 Complexity of Optimal Permutations

In this section we study the complexity of finding an optimal permutation for
the common and the max crossing numbers. There are strong similarities to the
one-sided crossing minimization problem, which go through to the number of
permutations and the degrees of the free vertices.

Crossing minimization in graphs is NP-hard. This holds true for general
graphs [13], and even for two-layer graphs with the upper layer fixed. These
graphs may be dense [10] or sparse with degree k = 4 for the vertices on the free
layer [17]. The case of degree 3-graphs for the free layer is still open.

Correspondingly, there are NP-hardness results for permutations. For many
partial permutations with just two elements the crossing minimization problem
is in one-to-one correspondence with the feedback arc set problem, where every
two element permutation represents an arc, and thus is NP-hard [11, 12]. By a
different reduction from the feedback arc set problem, Bartholdi et al. [3] have
proved the NP-hardness of Kemeny optimal permutations for many permuta-
tions. In [2] the first NP-hardness proof is credited to Orlin (1981, unpublished
manuscript).

A major strengthening has been claimed by Dwork [9] with a reduction from
the feedback arc set problem to just four permutations. However, the construc-
tion in [9] has some flaws and needs some minor corrections.

Theorem 2. The (common) crossing minimization problem PCM-k is NP-hard
for k full permutations, where k ≥ 4 and k even.
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Proof. (Sketch). We follow the construction in [9] and reduce from the feedback
arc set problem. We only explain the case k = 4 here; for k ≥ 6 use the technique
of [9]. Let G = (V, E) be a directed graph with |V | = {v1, . . . , vn} and |E| = m
in which we want to find the smallest feedback arc set. For every vertex v let
out(v) be the sequence of outgoing edges in any order, and let in(v) denote the
sequence of incoming edges. Finally, for a sequence x let xr denote its reversal,
reading the elements right-to-left. Now, construct two pairs of permutations from
the vertices and edges of G.

π1 = v1, out(v1), v2, out(v2), . . . , vn, out(vn),
π2 = vn, out(vn)r, . . . , v2, out(v2)r, v1, out(v1)r,

π3 = in(v1), v1, in(v2), v2, . . . , in(vn), vn, and
π4 = in(vn)r, vn, . . . , in(v2)r, v2, in(v1)r, v1.

In [9] the incoming edges are listed to the right of their vertices in π3 and π4,
but then the construction does not work.

Let K ′ = 2
(
n
2

)
+ 2
(
m
2

)
+ 2m(n − 1). The claim is now that G has a feedback

set of size at most f iff CR(P ) ≤ K = K ′ + 2f . Dwork et al. [9] use a different
value for K. We omit the (straightforward) proof of this claim for space reasons.

For the common crossing minimization problem we sum the number of cross-
ings of monochrome edges. In the max problem we wish to minimize the maxi-
mal number of such crossings, i.e., we wish to treat every arrangement as fair as
possible.

Theorem 3. The max crossing minimization problem PCMmax-k is NP-hard
for any k ≥ 4 (full or partial) permutations.

Proof. (Sketch) Consider the permutations π1, . . . , π4 from Theorem 2, and con-
struct four new permutations over four copies of pairwise disjoint elements,
namely

σ1 = π1 ·π2 ·π3 ·π4, σ2 = π2 ·π3 ·π4 ·π1, σ3 = π3 ·π4 ·π1 ·π2, σ4 = π4 ·π1 ·π2 ·π3.

One can show that the permutation that minimizes the maximal number of
crossings to σ1, . . . , σ4 solves again the feedback arc problem.

3.1 Approximation Algorithms

Since the crossing minimization problems are NP-hard for any (even) k ≥ 4, we
cannot hope to find the best solution in polynomial time, and hence study other
ways to attack the problem. One easy way is to use integer programming; the
problem can be formulated, in a relative straightforward way (we omit details)
as a 0/1 program with O(n4 + k) variables and constraints. Another way is to
consider approximation algorithms, which we study next.

There is a close connection between the number of crossings, i.e., the Kendall-
τ distance and the Spearman-footrule distance, as established in [7]. For a pair of
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permutations, every move induces a disarrangement and each crossings implies
that at most two elements must move each by one position. Hence, K(π, τ) ≤
f(π, τ) ≤ 2K(π, τ) for full permutations π and τ . The optimal permutation for
the Spearman-footrule distance can be computed by solving a weighted perfect
bipartite matching problem, as explained in [9].

An alternative 2-approximation is obtained by choosing the best among the
given permutations, see [1], and there is a simple 2-approximation for the coher-
ence complexity [5]. We now show that the technique of choosing the best among
the given permutations in fact gives an even better approximation, in particular
for small values of k.

Theorem 4. There is a (2− 2
k )-approximation for the (common) crossing min-

imization problem PCM-k.

Proof. Let P = π1, . . . , πk be the input permutations. For a > d and a + d = k,
let Ea,d be those arcs u → v for which AP (u, v) = a and DP (u, v) = d, i.e.,
u comes before v in a permutations, and after v in d permutations. Denote
ma,d = |Ea,d|.

Consider the k vertex orderings defined by the k permutations, and count the
number of arcs that are reversed in them. For a > d, each arc in Ea,d must be
reversed in exactly d of the permutations, hence the total number of reversed
arcs is

L = mk−1,1 + 2mk−2,2 + · · · + jmk−j,j + . . . 1 =
∑

a>d,a+d=k

dma,d. (1)

By the pigeon hole principle, therefore in at least one of the permutations (say
in π1), the number of reversed arcs is at most 1/kth of Equation 1. Denote by
ra,d the number of arcs in Ea,d that are reversed in π1, then we therefore have

rk−1,1 + rk−2,2 + · · ·+ rk−j,j + · · · ≤ 1
k

(mk−1,1 + 2mk−2,2 + · · · + jmk−j,j + . . . )

Each arc in Ea,d has weight a − d in the feedback arc set problem, so the weight
of the feedback arc set solution defined by π1 is

w(FAS) = (k − 2)rk−1,1 + (k − 4)rk−2,2 + · · · + (k − 2j)rk−j,j + . . .

≤ (k − 2)rk−1,1 + (k − 2)rk−2,2 + · · · + (k − 2)rk−j,j + . . .

≤ (k − 2)
1
k

(mk−1,1 + 2mk−2,2 + · · · + jmk−j,j + . . . ) =
k − 2

k
L

Now note that L of Equation 1 also exactly equals the lower bound LB(P ), since
we only consider edges in Ea,d with a > d. Therefore, the number of crossings
obtained with π1 is

LB(P ) + w(FAS) ≤ L +
k − 2

k
L = (2 − 2

k
)L ≤ (2 − 2

k
)OPT,

where OPT is the number of crossings in the optimal solution.
1 The series ends for j = �(k − 1)/2�, but in order not to clutter the equations, we

will not write this explicitly here.
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We note here that if the target permutation is taken from the given set of
permutations, the (2− 2

k )-approximation is best possible for PCM-k. Namely, let
σ1, . . . , σk be k permutations (over distinct elements) of length N = n/k, and
consider the following k permutations:

π1 = σr
1 · σ2 · σ3 · · · · · σk

π2 = σ1 · σr
2 · σ3 · · · · · σk

π3 = σ1 · σ2 · σr
3 · · · · · σk

...
...

πk = σ1 · σ2 · σ3 · · · · · σr
k

Then π∗ = σ1 · σ2 · · · · · σk achieves k
(
N
2

)
crossings. However, any πi disagrees

with any πj on the directions of both σi and σj , and hence creates 2(k − 1)
(
N
2

)
crossings, which is 2k−2

k = 2 − 2
k times the optimum.

Now we turn to approximation algorithms for the max version of the problem.
Here, choosing any of the input permutations yields a 2-approximation, and
again, this cannot be improved.

Theorem 5. There is a 2-approximation for the max crossing minimization
problem PCMmax-k.

Proof. Let π1, . . . , πk be a given set of permutations. We claim that any of these
permutations is a 2-approximation, and prove this for π1.

Let π∗ be the optimal permutation for the PCMmax-k problem, and let j∗

be the index of the permutation where the maximum is achieved in the optimal
solution, i.e.,

K(πj∗ , π∗) ≥ K(πi, π
∗) for all i.

Note that the optimal value OPT equals therefore K(πj∗ , π∗). Now for any
permutation πi, we have

K(πi, π1) ≤ K(πi, π
∗) + K(π∗, π1) ≤ K(πj∗ , π∗) + K(π∗, πj∗) = 2OPT,

so maxi K(πi, π1) ≤ 2OPT, and therefore π1 is a 2-approximation for the max
crossing number problem.

Clearly, if the target permutation is taken from the given set of permu-
tations, the 2-approximation is best possible for PCMmax-k. To see this use
any permutation π and its reversal πr. Then CR(π, πr) = n(n − 1)/2 and
CRmax(π, πr) = �n(n − 1)/4�.

It remains open whether the approximation bound could be improved by
choosing some other permutations. Note that for the one-sided two-layer crossing
minimization, the best approximation bound long stood at 2 as well [22], but
was recently improved to 1.4664 [19]. Some randomized approximations have
been established in [1].
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4 The Small Cases

We now consider PCM-k and PCMmax-k for small values of k. Clearly, for k = 1,
a single user will take his preferences for the optimal arrangement, and then there
are no crossings.

Consider the case k = 2. For bipartite graphs with vertices of degree 2 on the
lower layer the one-sided crossing minimization problem is solvable in linear time
by the barycenter heuristic, and due to the nesting structure of the neighbours
on the upper layer determines the left-right positions in an optimal layout, see
[17]. The main ingredient here is that the penalty digraph is acyclic.

Similarly, the permutation crossing number can be found easily for two per-
mutations π1 and π2; π1 itself is optimal with value c = K(π1, π2). Many optimal
permutations can be found from a straight-line drawing of π1 and π2, see also
Figure 2. Consider an arbitrary poly-line from left to right that crosses each
straight line (v, v) for v = 1, . . . , n exactly once (we call such a line a pseudo-
line.) This yields a permutation π∗ by listing the elements in the order in which
they were crossed. Any permutation obtained in such a way is optimal for
PCM-2.

For example, for π1 = (6, 3, 1, 4, 2, 5) and π2 = (3, 5, 2, 6, 1, 4), π1 and π2
themselves and also (6, 3, 5, 2, 1, 4) are optimal, see Fig. 2.

6 3 1 4 2 5

3 5 2 6 1 4

Fig. 2. Crossings for 2 permutations

Using these “intermediate” permutations, the max crossing problem can be
solved in polynomial time by a sweep-line technique. Since the sum of the num-
ber of crossings c is determined, the max crossing minimization problem is solved
by distributing these crossings uniformly to either side such that CRmax(π1, π2) =
�c/2�. An optimal permutation—which is best possible both for the sum and for
the maximum—can be computed in O(n + r) log n time by a standard sweep-line
technique, where r is the number of crossings, by searching among all pseudo-lines.

Now we address the case k = 3. Here, the complexity is open, both for permu-
tations and for one-sided two-layered graphs with degree k on the free layer [17].

There is a 3-D drawing of the crossing minimization problem, where the per-
mutations are represented on three piles in parallel to the Z-axis, and for every
item i there is a triangle between the three occurrences of i. Whether such a
drawing can be used to find the optimal solution (or even a good approxima-
tion), similar as for k = 2, remains open.

For the crossings of permutations problem the case with odd numbers is spe-
cial. For every pair of items u and v there is a clear winner. There are no ties
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and the penalty graph is a complete tournament, i.e., there is exactly one di-
rected arc (u, v) or (v, u) between each pair of vertices. Then every cycle c has a
subcycle of length three [18]. There are simple permutations including a cycle,
e.g. (1, 2, 3), (2, 3, 1) and (3, 2, 1). The feedback arc set problem in tournaments
has been discussed at several places, see e.g. [1, 4]. It is NP-hard in the weighted
version, and still open in the unweighted case.

5 Conclusion

In this paper, we investigated the problem of rank aggregation, which corre-
sponds to find a permutation that minimizes the number of crossings with a
given set of permutations. We introduced a variant that instead considers the
maximum number of crossings among those permutations. We investigated com-
plexity results and approximation algorithms.

This problem is a one-sided two-layer crossing minimization problem in an
edge-coloured bipartite graph, where only crossings between equally coloured
edges are counted. As such, it is not surprising that the complexity results for
our problem mirror the ones for one-sided two-layer crossing minimization. We
end by mentioning some of the numerous open problems that remain in this field:

1. How do the common techniques from one-sided two-layer crossing minimiza-
tion, such as barycenter and median heuristics, sifting, or ILP approaches
perform for the crossing minimization of permutations?

2. How can the Spearman footrule distance be used for the one-sided two-layer
crossing minimization problem? How does it relate to sorting the barycen-
ters?

3. Investigate the max versions, e.g., max Spearman footrule distance and the
maximum number of crossings for any edge in the one-sided two-layer cross-
ing minimization problem.

4. Improve the approximations and establish bounds for partial permutations.
5. The case k = 3 remains wide open. Is it NP-hard or polynomial?
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14. M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: performance
of exact and heuristic algorithms. J. Graph Alg. Appl. 1, (1997), 1–25.

15. M. Kaufmann and D. Wagner (Eds.). Drawing Graphs: Methods and Models,
LNCS 2025, (2001).

16. J. G. Kemeny. Mathematics without numbers. Daedalus 88, (1959), 577–591.
17. X. Munos, W. Unger, and I. Vrto. One sided crossing minimization is NP-hard for

sparse graphs. Proc. GD 2001, LNCS 2265, (2002), 115–123.
18. J.W. Moon. Topics on Tournaments. Holt, New York (1968).
19. H. Nagamochi. An Improved approximation to the One-Sided Bilayer Drawing.

Discr. Comp. Geometry 33(4), (2005), 569–591.
20. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-

archical systems structures. IEEE Trans. SMC 11, (1981), 109–125.
21. V. Waddle and A. Malhotra An E log E line crossing algorithm for leveled graphs.

Proc. GD 99, LNCS 1731 (2000), 59–70.
22. A. Yamaguchi and A. Sugimoto. An approximation algorithm for the two-layered

graph drawing problem. Discrete Comput. Geom. 33, (2005), 565–591.



Morphing Planar Graphs While Preserving
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Abstract. Two straight-line drawings P, Q of a graph (V, E) are called
parallel if, for every edge (u, v) ∈ E, the vector from u to v has the same
direction in both P and Q. We study problems of the form: given sim-
ple, parallel drawings P, Q does there exist a continuous transformation
between them such that intermediate drawings of the transformation
remain simple and parallel with P (and Q)? We prove that a transfor-
mation can always be found in the case of orthogonal drawings; however,
when edges are allowed to be in one of three or more slopes the problem
becomes NP-hard.

1 Introduction

The process of drawing a graph is rarely a one-time task devoid of prior geometric
information. In many situations we already have a drawing of a graph, and the
graph may change or the requirements on the drawing may change. Dynamic
graph drawing [6] deals with the situation where the graph changes incrementally.
The goals—to avoid recomputing the drawing from scratch, and to preserve the
user’s mental map [22]—are accomplished by altering the drawing as little as
possible, which makes it straightforward to animate the changes.

There are situations however, where the graph changes more dramatically or
the requirements on the drawing change, and the best approach is to compute
a new drawing. Preserving the user’s mental map is still desirable, but it is no
longer straightforward to animate a continuous transformation from the original
drawing to the new drawing [14, 15].

Transforming one geometric object to another in a continuous way is called
morphing, and is well-studied in graphics [16], where it is often accomplished
in image space by transforming each pixel. More appropriate for graph drawing
applications are object space morphs, which operate on geometric objects.

In addition to the visualization applications just mentioned, morphing graph
drawings also finds application in the medical imaging problem of creating a
3-dimensional model from 2-dimensional slices obtained e.g. by X-rays [2].

Morphing without maintaining geometric structure is easy but usually un-
helpful. The linear morph, for example, moves every vertex in a straight line
from its position in the source to its position in the target. It has the desirable
property of making minimal changes to vertex positions, but has the undesirable

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 13–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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property of producing intersections between disjoint objects—for example, you
and your dance partner would change places by moving through each other.

Besides avoiding intersections, some other criteria for quality morphs are that
a vertex should not stray too far from the line between its initial and final po-
sitions, and the length and direction of an edge should not deviate radically
from the initial and final values. Criteria for evaluating interactive graph draw-
ings also apply—see Bridgeman and Tamassia [7] for the case of orthogonal
drawings.

Our aim in this paper is not to develop heuristics to address the many (con-
flicting) criteria. Rather, we concentrate on morphs that exactly preserve two
properties: planarity (i.e. simplicity) and edge directions—we call these parallel
morphs. The source and target drawings are simple straight-line drawings that
represent the same graph embedded the same way, and such that each edge in
the source drawing is parallel to its counterpart in the target drawing.

Our main result is an algorithm to find a parallel morph for the case of or-
thogonal graph drawings. The morphs produced by our algorithm are composed
of O(n) linear morphs where n is the size of the graphs. The user’s mental model
should be well preserved by these morphs. We briefly address the issue of how
edge lengths change during the morph. One application of this result arises when
VLSI compaction techniques [20] (which preserve edge directions) are used to
reduce the area of an orthogonal drawing—our morph provides a continuous
motion from the original drawing to the compacted one.

Recently, Lubiw, Petrick and Spriggs [21] devised an algorithm for morph-
ing between two orthogonal drawings of a graph, where in these drawings ver-
tices are points and edges are orthogonal paths. Morphs produced by the algo-
rithm maintain both planarity and orthogonality. The algorithm employs—as a
subroutine—the parallel-morphing algorithm described in the present paper.

On the negative side, we show that it is NP-hard to decide whether a parallel
morph exists for the case of general planar graph drawings—in fact, in a typical
2-3 dichotomy, the problem is hard for 3 edge directions, and easy for 2.

1.1 Background

There is a broad, rich body of work on transforming one object to another
while maintaining some geometric structure. Included are problems of morphing,
animation, motion planning, folding, linkage reconfiguration, rigidity theory, etc.
We will mention some of the most relevant background.

Preserving the Mental Map. Friedrich et al. [14, 15] considered the problem
of “animating” the transformation from one graph drawing (not necessarily pla-
nar) to another. They do not insist on any geometric structure being strictly
maintained, but their goal is to produce an animation that preserves the users
mental map, and the criteria they formulate to accomplish this include minimiz-
ing temporary edge crossings and maintaining some minimal distance between
nodes. Their method uses a combination of rigid motions and linear morphs,
with the addition of clustering techniques in the second paper.
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Preserving Simplicity. In 1944, long before the word “morph” was coined,
Cairns [9] showed that there is a non-intersecting morph from any planar
triangulation to any isomorphic one with the same fixed triangle as a boundary.
Thomassen [23] strengthened this in two ways: First, he generalized to con-
vex subdivisions and morphs preserving convexity. Secondly, he generalized to
straight-line drawings of planar graphs, using the technique of “compatible tri-
angulation” (discovered independently by Aronov et al. [1]) to augment both
drawings to isomorphic triangulations, thus reducing to Cairns’ result. These
results are constructive, but algorithmic issues are not explored. Although only
one vertex moves at a time, the graph is contracted down to a triangle which
does nothing for the user’s mental map.

Independently, Floater and Gotsman [13] proved Thomassen’s convex mor-
phing result using an entirely different approach based on Tutte’s method of
embedding graphs using barycentric coordinates. Their morph moves all ver-
tices at once, and computes snapshots of the graph at intermediate time points.
Combining this result with compatible triangulation [1] gives a different non-
intersecting morph for straight line drawings [17]. These morphs can be visually
pleasing, but there are no analytical results on the complexity of the vertex
trajectories, or the number of time steps required to give the appearance of
continuous motion. Erten, Kobourov, and Pitta [11, 12] have implemented the
Floater-Gotsman method, with a preliminary phase that attempts to align the
two drawings using rigid planar transformations.

Preserving Edge Directions. In addition to preserving simplicity and con-
vexity, Thomassen [23] considered the problem of preserving edge directions.
He showed that between any two simple orthogonal cycles with corresponding
edges parallel, there is a parallel morph. Thomassen’s morphs shrink edges to
infinitesimal lengths. Our main result in this paper generalizes Thomassen’s re-
sult to orthogonal graphs, rather than just cycles, and we do not shrink edges
to infinitesimal lengths.

Thomassen’s result was extended in a different direction to the case of simple
non-orthogonal cycles by Guibas et al. [19], and independently by Grenander
et al. [18]. In related work we show that there exists a parallel morph between
any two trees in any dimension, but not for orthogonal cycles in 3D even if they
represent the trivial knot [3], and not for edge graphs of genus-0 orthogonal
polyhedra in 3D [5].

Wehave also explored the possibility of parallelmorphs that change edge lengths
monotonically—the most stringent condition for nice edge-length behavior. We
show[4] thatsuchmorphsarepossible forconvexandorthogonallyconvexpolygons,
but that the decision problem becomes NP-hard for orthogonal polygons.

Preserving Edge Lengths: Linkage Reconfiguration and Rigidity. When
a morph must preserve simplicity and edge lengths (rather than directions) we ar-
rive at linkage reconfiguration problems, a topic of considerable recent interest—
see [10] and references therein. For connections with rigidity theory and parallel
redrawings, please see [3].
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2 Preliminaries

Let (V, E) be an undirected graph with vertex set V and edge set E, and let
p : V → IR2. The triple P = (V, E, p) uniquely determines a bend-free straight-
line drawing of graph (V, E) in the plane. Each edge (u, v) ∈ E is represented
in this drawing by the line segment between p(u) and p(v). We will use p(u, v)
to refer to this edge, and |p(u, v)| to denote its length. A drawing P = (V, E, p)
is called simple if each vertex lies at unique coordinates and each pair of (non-
equal) edges may intersect each other only at a common vertex. A drawing is
orthogonal if each edge of the drawing is parallel with one of the axes.

Two drawings P = (V, E, p) and Q = (V, E, q) of the same graph are called
parallel if for each edge (u, v) ∈ E, there exists some λ > 0 such that p(u)−p(v) =
λ(q(u) − q(v)). When this expression holds for a particular edge (u, v), we say
that (u, v) has the same direction in both P and Q.

Given two simple, parallel drawings P, Q of a graph (V, E) a parallel morph
from P to Q is a continuous motion of the vertices that takes us from P to Q such
that at all times the positions of the vertices determine a drawing of (V, E) that
is both simple and parallel with P and Q. Formally, a parallel morph from P to Q
is a continuously changing family of drawings R such that R(0) = P , R(1) = Q,
and for every t ∈ [0, 1], R(t) = (V, E, rt) where rt : V → IR2 determines a simple
drawing R(t) that is parallel with P and Q.

Given drawings P = (V, E, p) and Q = (V, E, q), the linear morph between
them is the morph in which each vertex v ∈ V moves continuously from p(v) to
q(v) at constant velocity—i.e. using the notation above, rt(v) = tq(v)+(1−t)p(v)
for each vertex v ∈ V . Notice, by this definition R(0) = P and R(1) = Q. One
can show easily that a linear morph between two parallel simple drawings keeps
each edge parallel with its realization in R(0) and R(1), and changes edge-lengths
monotonically. However, it may destroy simplicity. At the heart of our algorithm
is the result that a linear morph does maintain simplicity in some situations:
when the ordering of the coordinates of the vertices is the same in P and Q; and
more generally, when P and Q are rectangular drawings as defined in the next
section. These results are proved in [5].

3 Morphing Orthogonal Drawings

This section contains our main result—an algorithm to find a parallel morph
between any two simple parallel orthogonal graph drawings that are “bend-
free”—i.e. in which each edge is a single line segment.

Traditionally, an orthogonal graph drawing represents each edge as a path
with bends. We find it more convenient to deal with edges that are single line
segments (e.g. for defining “parallel”). Morphing of traditional orthogonal graph
drawings can be achieved via our method if each edge has the same number
and direction of bends in the source and target drawings—we simply replace
each bend by a vertex. Henceforth, “orthogonal drawing” will mean “bend-free
orthogonal drawing”.
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Fig. 1. A rectangular drawing

Theorem 1. Any two simple parallel orthogonal drawings P, Q of a connected
graph (V, E) admit a parallel morph that is composed of O(|V |) linear morphs.

3.1 Overview of the Morphing Algorithm

A rectangular drawing is a drawing in which the boundary of every face—
including the outer face—is a rectangle (Fig. 1); the side of a rectangular face
may be subdivided by any number of vertices. (A rectangular drawing is a type
of turn-regular drawing as defined by Bridgeman et al. [8], i.e. no face has “kitty
corners”.) One can show that for a pair of parallel rectangular drawings, the
linear morph is a parallel morph, i.e. it maintains both simplicity and edge di-
rections.

So given two parallel orthogonal drawings P and Q, if they are rectangu-
lar drawings, we can morph them by applying a linear morph. Otherwise, our
approach is to augment the drawings (by adding vertices, subdividing edges,
and/or adding edges) to turn them into parallel rectangular drawings. Clearly,
if we can morph two parallel augmented drawings, then we can also morph the
original drawings by using the induced morph.

Our algorithm has three stages. The first stage ensures that the boundary of
the exterior face of each drawing is a rectangle. Adding a new bounding rectangle
around each drawing is easy; the only complication is maintaining connectedness
of the graph and keeping the drawings parallel. In the target drawing Q, add a
non-intersecting vertical edge between some vertex v and a new vertex u placed
along the upper edge of the boundary rectangle. See Fig. 2 (a) and (b). We want
the source drawing P to be parallel with the new target. In the source drawing,
we can subdivide the upper edge of the bounding rectangle by vertex u, and
position it above v, but the line segment (u, v) may cross parts of the drawing.
We fix this by performing a parallel morph of the source so that (u, v) can be
added, while maintaining simplicity. The fact that such a morph can always be
performed on an orthogonal drawing is the key idea underlying our algorithm.
Details are given in Sect. 3.2.

This completes the first stage of the algorithm. At this point, we have a new
source and new target drawing. The drawings are parallel, the underlying graph
is connected, and the the exterior face is bounded by a rectangle.

The second stage of the algorithm further modifies the drawings obtained in
the first stage so that the boundary of each interior face is a rectangle. Until
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w

(c)(b)(a)

Fig. 2. Modifying the target drawing: (a) The original target. (b) The target following
the first stage. (c) The target after adding an edge in the second stage.

every face of the target is a rectangle, iterate as follows. Pick a face f that is
not a rectangle, and add a vertical edge from one reflex vertex w of f to the
nearest edge e of f , which we subdivide by a new vertex z; see Fig. 2(c). To
maintain parallel drawings, subdivide edge e by vertex z in the source drawing.
Then, morph the source so that the vertical edge (w, z) can be added to it while
maintaining the simplicity of the drawing; refer again to Sect. 3.2 for details.

The third stage of the algorithm is a linear morph between the rectangular
source and rectangular target drawings. With that, the morph is complete.

3.2 Morphing to Add a New Edge

The first two stages of our morphing algorithm depend on the ability to morph
the source drawing to a parallel drawing that admits a non-intersecting vertical
edge between two given vertices. The idea is to draw a non-intersecting orthog-
onal path between the two vertices, and then morph the drawing (including the
path) in order to straighten the path until it has no bends—at which point it
forms the desired edge.

Not every orthogonal path can be straightened. Let Φ be a simple orthogonal
drawing of a path. Φ is balanced if we encounter an equal number of left and
right turns as we follow the path from one end to the other. In the remainder of
this section we show that a balanced path can be straightened, and that in the
above situation we can always find a balanced path between the two vertices we
wish to join by an edge. Together with an analysis of the number of morphing
steps, this will complete the proof of Theorem 1.

Straightening a Balanced Path. In this section we show that a balanced
path of m bends can be straightened using O(m) linear morphs.

Suppose that P and Φ are drawings. We define P ∪ Φ in the natural way,
noting that any vertex common to P and Φ must be in the same location in
both drawings.

Lemma 1. Let P = (V, E, p) and Φ = (VΦ, EΦ, φ) be simple orthogonal draw-
ings with vα, vβ ∈ V ∩ VΦ such that Φ is a balanced drawing of a path with
end-vertices vα and vβ, and P ∪ Φ is simple. There exists a parallel morph from
P to a drawing P ′ = (V, E, p′) such that p′(vα) and p′(vβ) can be connected by a
horizontal or vertical line segment whose interior does not intersect P ′. Further,



Morphing Planar Graphs While Preserving Edge Directions 19

vc vd

va vb va

(b)(a)

vb

vdvc

Fig. 3. The arrangement of the path vertices

the morph is composed of a sequence of O(m) linear morphs, where m is the
number of vertices in Φ.

Proof. As we follow Φ from vα to vβ , we pass an equal number of left and right
turns. We prove the lemma by induction on the number of left turns in Φ. If Φ
contains no left turns, then it contains no right turns either and must be a line
segment, and we are done. So assume that Φ contains k > 0 left turns. Since Φ is
balanced, somewhere a left turn must be followed by a right turn or vice versa;
so assume that va, vb, vc, vd ∈ VΦ is a sub-path with a right turn at vb followed
by a left turn at vc. We will show below how to remove these two turns with a
linear morph; this proves the lemma by induction.

Assume w.l.o.g. that the arrangement of φ(va), φ(vb), φ(vc), φ(vd) is as shown
in Fig. 3(a). Let V ⊂ V ∪ VΦ be those vertices that lie either:

1. Strictly above the ray originating at φ(vb) and going leftward; or
2. On or above the ray originating at φ(vc) and going rightward.

The vertices in V are shown black in Fig. 3, while the others are drawn white.
Let R be the linear morph from P ∪ Φ in which each v ∈ V moves upward

at a uniform rate a distance of |φ(vb, vc)| while other vertices remain fixed; see
Fig. 3(b). Let P ′ = (V, E, p′) denote the drawing of graph (V, E) following this
linear morph. Notice, R reduces the distance between vb and vc to zero. Simplify
the path graph (VΦ, EΦ) by removing vb and vc and adding the horizontal edge
(va, vd). The resulting path Φ′ has one fewer left turn and one fewer right turn
than Φ, so it is a balanced path between vα and vβ with fewer than k left turns.

To complete the proof we must show that R keeps edges parallel, and—
excepting vertices vα and vβ—maintains simplicity. This is proved easily (we
omit details) by observing the following properties of our morph: (1) Vertices
move only vertically and upward. (2) If a vertex moves, then any vertex vertically
above it (with the exception of vb) moves by exactly the same amount. (3) By
simplicity of Φ ∪ P , no horizontal edge of P has one vertex in V and the other
vertex outside V . �
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(b)(a)

Fig. 4. A path from a vertex in P to infinity: In (a) the path has an excess of eight
left turns, and in (b) the path is balanced

Finding a Balanced Path in the First Stage. Recall that for the first stage
we want a balanced path in the source drawing between vertex v lying on the
original outer face and a vertex u on the upper edge of the bounding rectangle.
It suffices to show that we can build a simple balanced path from v that ends in
an upward-directed vertical ray.

Lemma 2. Let P = (V, E, p) be an orthogonal drawing of a connected graph and
let v ∈ V be a vertex that has no incident vertical segment above it, such that
the face immediately above p(v) is the outer face. Drawing P admits a balanced
simple path Φ of complexity O(|V |) that starts at p(v), goes upward, and ends
with an upward-directed vertical ray.

Proof. We construct a path that goes upward some small distance ε from p(v)
and then walks around the boundary of the outer face until we reach a point
where an upward-directed ray does not intersect P . If this path is balanced we
are done. Otherwise, add the appropriate number of turns of opposite direction,
as illustrated in Fig. 4(b). �

Lemma 1 and Lemma 2 together prove that the first stage of the algorithm
runs correctly, and is composed of O(n) morphing steps.

Finding a Balanced Path in the Second Stage. We augment the target
drawing by Θ(n) edges to produce a rectangular drawing, and, for each such edge,
find a corresponding orthogonal path in the source which we then straighten by
morphing. If we were to add the target edges in arbitrary order, each of the Θ(n)
paths in the source might have Θ(n) bends to straighten, for a total of Θ(n2)
morphing steps in this stage. We can avoid this by choosing the new target edges
carefully. We use only vertical edges. Each new vertical edge cuts a face in two.
We choose an edge s.t. one of the new faces is a rectangle. In the source drawing,
we find a balanced path with O(1) turns by walking just inside the perimeter
of this rectangular face. Straightening this balanced path takes O(1) morphing
steps, for a total of O(n) morphing steps in the second stage.

This finishes the proof of Theorem 1. We note here that while only O(n) lin-
ear morphs are needed, each of them might require Ω(n) time for updating the
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coordinates of vertices (which are needed for computing later morphs correctly).
Hence the total time to perform all morphs is O(n2).

4 Edge Lengths in Morphing Orthogonal Drawings

In this section we explore how edge lengths change during parallel morphs be-
tween orthogonal drawings. There seems to be a trade-off between the number
of times an edge increases and decreases in length, and the amount by which
an edge deviates from its lengths in the source and target. Morphs produced by
the algorithm of Sect. 3 are well-behaved with respect to the first measure, but
not the second. In these morphs, each edge is non-decreasing in length until the
third stage when a linear morph to the target is performed. If, prior to the final
linear morph, we scale up the drawing so that every edge is longer than its target
length, we obtain a two-phase morph where edges are non-decreasing in the first
phase, and non-increasing in the second phase. Call this a (+, −)-morph. We can
prove any (+, −)-morph will, in some cases, dramatically alter edge lengths.

For a parallel morph R(t) = (V, E, rt), define the stretch factor Δ(R) as:

Δ(R) = max
(u,v)∈E

{
maxt∈[0,1]{|rt(u, v)|}

max{|r0(u, v)|, |r1(u, v)|} ,
min{|r0(u, v)|, |r1(u, v)|}

mint∈[0,1]{|rt(u, v)|}

}
(1)

The stretch factor is the largest factor by which some edge of the graph deviates
from the range delimited by its lengths in the source and target drawings.

Theorem 2. For any positive integer n there exists a pair of parallel orthogonal
drawings with n vertices such that for any (+, −)-morph R between the drawings,
Δ(R) ≥ 2Ω(n)/n.

Due to space limitations we omit the proof, but an example of the construction
is given in Fig. 5. Curiously, we have been unable to construct situations where
(−, +)-morphs have such bad stretch factors. If we allow more fluctuations in
edge lengths we can do much better.

a

d
c

b

Fig. 5. The source drawing for Theorem 2. The target drawing is similar, except that
spirals b and c are “disentwined” while spirals a and d are “entwined.”

Theorem 3. There exists a parallel morph R between any two simple orthogonal
drawings P, Q of a graph (V, E) such that Δ(R) ≤ n − 1, where n = |V |.
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By Theorem 1 there exists a parallel morph R′ from P to Q. The idea—for
proving Theorem 3—is to decompose R′ by a sequence of breakpoints such that
between breakpoints no two vertices change order in w.r.t. a coordinate axis.
The drawings at the breakpoints can be realized on nice-sized grids, and a new
parallel morph R can be generated by a sequence of linear morphs between
successive drawings on these nice-sized grids. Edge lengths are well-behaved on
the grid, and linear morphs change edge-lengths monotonically. R has a linear
stretch factor and each edge will alternately expand and shrink O(n3) times.

5 Non-orthogonal Morphing Is NP-Hard

Previous sections deal with orthogonal drawings. We now consider general draw-
ings, and prove that it is NP-hard to decide whether parallel non-orthogonal
drawings of a graph admit a parallel morph—even if there are only three possi-
ble edge directions. We note that the algorithm of Sect. 3 together with a shear
can be used to morph any parallel graphs drawn using two edge directions.

Our NP-hardness reduction is from a closely related problem called Parallel
Morphing with Static Edges (PM-Static):

– Given parallel orthogonal polygons P = (V, E, p) and Q = (V, E, q) and a
subset E ⊂ E such that for each edge (u, v) ∈ E , |p(u, v)| = |q(u, v)|,

– does P, Q admit a parallel morph such that all edges in E remain of fixed
length throughout the morph?

We call the edges in E , static edges, and the remaining edges of E are called
elastic edges. The proof that PM-Static is NP-hard appears in [5]; we use a
similar reduction to prove it NP-hard to decide whether two parallel orthogonal
polygons admit a monotone morph [4].

Theorem 4. Given two parallel drawings of a graph, it is NP-hard to decide
whether there exists a parallel morph between them—even in the case where
edges can only be horizontal, vertical, or of slope 1.

Proof. We reduce from PM-Static. Let P = (V, E, p) and Q = (V, E, q) be a
pair of parallel orthogonal polygons and let E ⊆ E be a set of static edges, whose
lengths in P and Q are equal. Assume w.l.o.g. that both P and Q are embedded
on a unit grid, i.e., all vertices are located at integer coordinates; one can show
(details omitted) that this can be done with coordinates polynomial in n = |V |.

Construct a drawing P ′ from P as follows. Fix a value ε = (4n)−1. For each
vertex v ∈ V , include a drawing of an ε× ε-square in P ′, centered at p(v), with a
diagonal edge between the lower-left and upper-right corners. Observe that such
a square permits only translation and scaling during a parallel morph.

For each edge (u, v) ∈ E, in P ′ connect the diagonalized squares corresponding
to u and v as follows. An elastic edge of P is encoded in P ′ by two parallel axis-
aligned edges, and a static edge is encoded by a series of diagonalized squares; see
Fig. 6. The encoding of a static edge in P ′ permits only translation and scaling
in a parallel morph, while the encoding of an elastic edge also permits changes
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P’P

Fig. 6. An orthogonal polygon P and corresponding drawing P ′

to the length of the two parallel edges. We construct Q′ from Q in the same
way. One can easily verify that P ′ and Q′ are simple, and also show (details are
omitted here) that they admit a parallel morph if and only if P and Q admit a
parallel morph that does not change the length any static edge. �

6 Conclusion

This paper addressed the problem of morphing one planar graph drawing to
another when corresponding edges have the same direction and the morph should
maintain this property. We showed how to morph orthogonal graph drawings;
our morphs are computationally and visually well-behaved. However, as soon
we allow edges to have one of three slopes the problem becomes NP-hard. We
conclude with some open problems.

The morphing algorithm of Sect. 3 works for orthogonal point-drawings (ver-
tices are points), but not necessarily for orthogonal box-drawings (vertices are
disjoint boxes that must remain of the same dimensions throughout the morph).
What is the complexity of this problem? In more practical situations, corre-
sponding edges will not be parallel in the source and target drawings. A morph
should not change edge directions more than necessary. Is it possible to design
morphs that minimize changes to edge directions, or to angles? Even the follow-
ing is open: given two polygons, is there a non-intersecting morph between them
that preserves convexity/non-convexity of angles?
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Abstract. Spectral methods are naturally suited for dynamic graph
layout, because moderate changes of a graph yield moderate changes of
the layout under weak assumptions. We discuss some general principles
for dynamic graph layout and derive a dynamic spectral layout approach
for the animation of small-world models.

1 Introduction

The main problem in dynamic graph layout is the balance of layout quality and
mental-map preservation [17]. Typically, the problem is addressed by adapting a
static layout method such that it produces similar layouts for successive graphs.
While these adaptations are typically ad-hoc [8], others [2, 1] are based on the
formally derived method [3] of integrating difference metrics [5] into the static
method. See [4] for an overview of the dynamic graph drawing problem.

Spectral layout denotes the use of eigenvectors of graph-related matrices such
as the adjacency or Laplacian matrix as coordinate vectors. See, e.g., [15] for
an introduction. We argue that spectral methods are particularly suited for dy-
namic graph layout both from a theoretical and practical point of view, because
moderate changes in the graph naturally translate into moderate changes of the
layout, and updates can be computed efficiently.

This paper is organized as follows. In Sect. 2, we define some basic notation
and recall the principles of spectral graph layout. The dynamic graph layout
problem is reviewed briefly in Sect. 3, and methods for updates between layouts
of consecutive graphs are treated in more detail in Sect. 4. In Sect. 5, our ap-
proach for small worlds is introduced, and we conclude with a brief discussion
in Sect. 6.

2 Preliminaries

For ease of exposition we consider only two-dimensional straight-line represen-
tations of simple, undirected graphs G = (V, E) with positive edge weights
ω : E → IR+, although most techniques and results in this paper easily carry
over to other classes of graphs.

In straight-line representations, a two-dimensional layout is determined by a
vector (pv)v∈V of positions pv = (xv, yv). Most of the time we will reason about
one-dimensional layouts x that represent the projection of p onto one component.

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 25–36, 2005.
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For any graph-related matrix M(G), a spectral layout of G is defined by two
eigenvectors x and y of M(G). For simplicity, we will only consider layouts
derived from the Laplacian matrix L(G) of G, which is defined by elements

v,w =

{∑
u∈V ω(u, v) , v = w ,

−ω(v, w) , v �= w ,

The rows of L(G) add up to 0, thus, the vector 1 = (1, . . . , 1)T is a trivial
eigenvector for eigenvalue 0. Since L(G) is symmetric all eigenvalues are real,
and the theorem of Gershgorin [13] yields, that the spectrum is bounded to the
interval [0, g], for an upper bound g ≥ 0. Hence, the spectrum can be written
as 0 = λ1 ≤ λ2 ≤ . . . ≤ λn ≤ g with corresponding unit eigenvectors 1/

√
n =

v1, . . . , vn.
Based on the Laplacian, a spectral layout is defined as p = (v2, v3), where

v2 and v3 are unit eigenvectors to the second and third smallest eigenvalues of
the corresponding Laplacian matrix L(G). This has already been used for graph
drawing in 1970 by Hall [14].

For sparse graphs of moderate size, a practical method to determine the cor-
responding eigenvectors is power iteration. For an initial vector x the matrix
multiplication L(G)x/||L(G)x|| is iterated until it converges to a unit eigenvec-
tor associated with the largest eigenvalue. Since we are not interested in vn, we
use matrix L̂ = g · I − L(G), which has the same eigenvectors with the order
of their eigenvalues g = g − λ1 ≥ g − λ2 ≥ . . . ≥ g − λn reversed. To obtain
v2 and v3, respectively, x is orthogonalized with v1 (and in the case of v3 also
with v2) after each iteration step, i.e., the mean value

∑n
i=1 xi/n is subtracted

from every element of x to ensure x⊥1. Spectral layouts of larger graphs can be
computed efficiently using multiscale methods [16].

3 Dynamic Layout

In our setting, a dynamic graph is a sequence G(1), . . . , G(r) of graphs with, in
general, small edit distance, i.e. G(t) is obtained from G(t−1), 1 < t ≤ r, by
adding, changing, and deleting only a few vertices and edges.

There are two main scenarios for the animation of a dynamic graph, depending
on whether the individual graphs are presented to the layout algorithm one at
a time, or the entire sequence is known in advance. Layout approaches for the
offline scenario (e.g., [7]) are frequently based on a layout of the union of all
graphs in the sequence. A variant are 2.5D representations in which all graphs
are shown at once (e.g., [9]). In the online scenario, the typical approach is to
consider only the previous layout (e.g., [8]). A variant in which provisions for
likely future changes are made is presented in [6].

Since, typically, spectral layouts of similar graphs do not differ much anyway,
it is reasonable to ignore the fact that a graph is but one graph in a sequence
altogether and compute static layouts for each of them. We rather concentrate
on the update step between consecutive layouts.
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4 Updates

Assume we are given a sequence of layouts p1, . . . , pr for a dynamic graph
G(1), . . . , G(r). The step from pt to pt+1 is called logical update, whereas the
actual animation of the transition is referred to as the physical update.

While simple, say, linear interpolation of two layouts is most frequently used in
graph editors, more sophisticated techniques for morphing are available (see, e.g.,
[11, 12, 10]. General morphing strategies do not take into account the method by
which origin and target layout are generated.

For dynamic spectral layout, at least two additional strategies are reasonable.

4.1 Iteration

If the target layout xt+1 is a spectral layout, the iteration for its own computation
can and should be initialized with xt, that will usually be close to the target
layout. The power iteration then produces intermediate layouts which can be
used for the physical update. A way to enhance the smoothness of morphing
is needed because of the observation, that the first steps of the iteration yield
greater movement of the vertices when compared to later steps. Let L̂ = g · I −
L(G(t+1)). An iteration step then consists of computing the new layout L̂x/||L̂x||
from a given layout x⊥1. Let g = λ1 ≥ λ2 ≥ . . . ≥ λn and 1/

√
n = v1, v2, . . . , vn

be the eigenvalues and unit eigenvectors of L̂, respectively. Then if λ1 > λ2 > λ3
(otherwise just proper eigenvectors and eigenvalues would have to be chosen in
what follows) and x =

∑n
i=2 aivi, a2 �= 0 we have

L̂kx

||L̂kx||
−→ v2 and

∣∣∣∣∣∣v2 − L̂kx

||L̂kx||

∣∣∣∣∣∣ =
∣∣∣∣∣∣v2 −

∑n
i=2 λk

i aivi

||L̂kx||

∣∣∣∣∣∣
≤ 1 − λk

2a2

||L̂kx||
+
∑n

i=3 λk
i ai

||L̂kx||
= O

(
(λ3/λ2)k

)
.

One way to handle this non-linear decay is to use layouts after appropriately
spaced numbers of steps, or to use layouts only if the difference to the last used
layout exceeds some threshold c in some metric, e.g., if ||x−x′||2 > c. Both ways
will enhance the smoothness of morphing by avoiding the drawing of many small
movements at the end of the iteration process.

4.2 Interpolation

If both origin and target layout xt and xt+1 are spectral layouts, intermediate
layouts can also be obtained by computing eigenvectors of some intermediate
matrices from L(G(t)) to L(G(t+1)). We interpolate linearly by

αL(G(t)) + (1 − α)L(G(t+1)), 1 ≥ α ≥ 0 .
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Layouts are computed for a sequence of breakpoints 1 ≥ α1 > α2 > . . . >
αk ≥ 0 (αj+1 − αj constant, or proportional to sin(πj/k), depending on what
kind of morphing seems to be appropriate, the latter one slowing down at the
beginning and end). For every breakpoint αj the iteration is initialized with the
layout of αj−1, which allows fast convergence and small movements between two
succeeding breakpoints. Deletion and insertion of vertices have to be handled in
a different manner, since the matrix dimension changes. See Sect. 5 for details.

Figs. 2 and 4 show smooth animations of this method. Theoretical justification
for smoothness comes along with a theorem by Rellich [18] applied to the finite
dimensional case. Matrix αL(G(t))+(1−α)L(G(t+1)) can be seen as a perturbed
self-adjoint operator L(ε) = L(G(t))+ε(L(G(t+1))−L(G(t))) with corresponding
eigenvalues λi(ε) and eigenvectors vi(ε), that are holomorphic with respect to
ε, i.e.

L(ε)vi(ε) = λi(ε)vi(ε), (1)

where vi(0) are eigenvectors at time t and vi(1) can be permuted by a permu-
tation π, such that vπ(i)(1) are (ordered) eigenvectors at time t + 1. Note that
two eigenvectors may only have to be exchanged if its corresponding eigenvalues
intersect during the time from t to t + 1. And even then the power iteration ex-
changes these eigenvectors sufficiently smooth for pleasing animations, because
the corresponding eigenvalues remain within the same range for some time due
to smooth functions λi(ε). Consider λ2 and v2 of the following small-world ex-
ample with n = 100 vertices and k = 7, where starting from a circle each vertex
is connected to its 2k nearest neighbors. Both λ2(ε) and v2(ε) can locally be
written as power series

λ2(ε) = μ0 + εμ1 + ε2μ2 + . . . ,

v2(ε) = w0 + εw1 + ε2w2 + . . . . (2)

We show that ||wi|| ≤ 1 and |μi| ≤ 2/
√

n for i > 0, hence λ2(ε) and v2(ε) will
be smooth functions, say, within [0, 1/2] (and by the same construction within
the remaining interval, too). We write L(ε) = L + εP , where P is the insertion
of an edge between two non-adjacent vertices (with indices 1 and r), and denote
by I the identity matrix. From (1) and (2) we get

Lw0 = μ0w0 ,

(L − μ0I)wj =
j−1∑
i=0

μj−iwi − Pwj−1 , (j > 0) , (3)

where we can recursively choose wj , (j > 0) such that wj⊥w0. Since the right
hand sides of (3) need to be orthogonal to w0 for j > 0 this yields

μj = 〈Pwj−1, w0〉 , (j > 0) .

Now we can recursively compute upper bounds for |μj | and ||wj ||. Note that λ2
has multiplicity 2, and the right hand sides of (3) are also orthogonal to v1, such
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that 1/(λ4 − λ2) is the least upper bound of the inverse mapping of L − μ0I
applied to the right hand side.

|μ1| = (w0,1 − w0,r)2 ≤ 2/n ≤ 2/
√

n ,

||w1|| ≤ 2|w0,1 − w0,r|
λ4 − λ2

≤ 2
√

2/n

1.568
=: c ≤ 1/4.35 ,

|μj | ≤ 2κj−1c
j−1/

√
n ≤ 2/

√
n ,

||wj || ≤ κjc
j ≤ 1 ,

where κj is defined by κ0 = 1 and κj =
∑j−1

i=0 κiκj−i−1 for j > 0.

Lemma 1. κj ≤ 4.35j .

Proof. We show κj ≤ 4.35j/(j +1)2, which holds for all j < 144 (by evaluating).
For j ≥ 144

κj ≤
j−1∑
i=0

4.35i

(i + 1)2
· 4.35j−i−1

(j − i)2
≤ 2 · 4.35j−1

�j/2�∑
i=0

1
(i + 1)2

· 1
(j − i)2

≤ 2 · 4.35j−1

(
1

(j − 9)2

10∑
i=1

1
i2

+
4
j2

(
ζ(2) −

10∑
i=1

1
i2

))
≤ 4.35j−1

(j + 1)2
· 4.348 .

�

Note that ||wj || ≤ 1 could also be shown for much weaker assumptions than
c ≤ 1/4.35, which was sufficient for our example. Lemma 1 is only very close to
optimal, the least upper bound of 1/(λ4 − λ2) is in general not achieved, and
|μj | = | 〈Pwj−1, w0〉 | can in general be better bounded than by ||wj−1||

√
4/n.

5 Application to Small Worlds

Spectral layout methods are naturally suited for smooth dynamic layout, because
the influence of vertices and edges that are subject to change can be increased or
decreased gradually. Moreover, each can be determined by iterative computations
that benefit from good initialization, so that moderate changes leads to moderate
and efficient updates.

Watts and Strogatz [19] introduced a random graph model that captures
some often-observed features of empirical graphs simultaneously: sparseness, lo-
cal clustering, and small average distances. This is achieved by starting from a
cycle and connecting each node with its 2k nearest neighbors for some small,
fixed k. The resulting graph is sparse and has a high clustering coefficient (av-
erage density of vertex neighborhoods), but also high (linear) average distance.

The average distance drops quickly when only a few random edges are rewired
randomly. If each edge is rewired independently with some probability p, there
is a large interval of p in which the average distance is already logarithmic while
the clustering coefficient is still reasonably high.
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5.1 Dynamic Laplacian Layout

Interestingly, spectral layouts highlight the construction underlying the above
model and thus point to the artificiality of generated graphs. This is due to the

Fig. 1. Update by iteration (read top left to top right to bottom right to bottom left).
Note the spread of change along the graph structure.

Fig. 2. Update by interpolation. Layout anomalies are restricted to modified part of
graph.
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fact that spectral layouts of regular structures display their symmetry very well,
and are only moderately disturbed by small perturbations in the graph (mirror-
ing the argument for their use in dynamic layout). The initial ring structure of
the small world in Fig. 5 is therefore still apparent, even though a significant
number of chords have been introduced by random rewiring. In fact, the lay-
out conveys very well which parts of the ring have been brought together by
short-cut edges.

Figs. 1 and 2 point out differences between the two approaches using interme-
diate layouts obtained from the power iteration and from matrix interpolation.

Fig. 3. Update by simple linear interpolation. Intermediate layouts are less symmetric.

Fig. 4. Interpolation updates maintain symmetry
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Fig. 5. Evolution of a small world (read top to bottom, left to right)
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It can be seen that the power iteration first acts locally around the changes. This
stems from the fact that in the first multiplication only the neighborhood of the
change, i.e., the two incident vertices of an edge with changed weight or the
neighbors of a deleted or inserted vertex, is affected. The next step also affects
vertices at distance 2, and so on. Hence, the change spreads like a wavefront.
The matrix interpolation approach acts globally at every step. Interpolating the
Laplacian matrices corresponds to gradually changing edge weights. The anima-
tion therefore is much more smooth.

Figs. 3 and 4 show differences between simple linear interpolation of the po-
sitions and matrix interpolation. In Fig. 3 can be seen, that the symmetry of
the graph to its vertical axis is not preserved during the animation, whereas in
Fig. 4 each intermediate layout preserves this symmetry.

Fig. 5 finally shows some snapshots of a small world evolving from a torus.
The layouts were obtained by using matrix interpolation (one intermediate step
per change shown). Note that deletion and insertion of vertices requires some
extra efforts, in particular, if the deletion of a vertex disconnects the graph.

5.2 Deletion and Insertion of Vertices

Consider deletion of a single vertex v, that does not disconnect the graph. Ma-
trix L(G(t+1)) is then expanded by one row and column of zeros corresponding
to vertex v, such that L(G(t)) and L(G(t+1)) have the same dimension. This
derived matrix has a double eigenvalue 0. A new corresponding eigenvector is,
e.g., (0, . . . , 0, 1, 0, . . . , 0)T, where the 1 is at position corresponding to v. This
eigenvector will cause vertex v to drift away during power iteration, and thus
all other vertices stick together. This can be prevented by defining v,v = g in
matrix L(G(t+1)), leading to a movement of v towards 0. But in practice, the
following method proved to be successful. After every matrix multiplication re-
set the position of v to the barycenter of its neighbors. This either prevents a
drifting away or an absorbing to 0, which would otherwise be hard to manage.
Apart from using matrix αL(G(t)) + (1 − α)L(G(t+1)) for the power iteration,
orthogonalization and normalization also have to be adapted. For time t + 1 we
only need xt+1⊥(1, . . . , 1, 0, 1, . . . , 1), instead of xt+1⊥1, and only the restriction
to the elements not corresponding to v have to be normalized. Both can be done
by linear interpolation of these operations.

Insertion of a vertex v is treated analogously. Expand matrix L(G(t)) by one
row and column of zeros as above. Orthogonalization and normalization again
have to be adapted.

5.3 Disconnected Graphs

The deletion of a cut vertex (or a bridge) disconnects the graph G(t+1) into k ≥ 2
components G1, . . . , Gk. Each component is drawn separately by spectral meth-
ods and afterwards these layouts are merged to a layout for G(t+1). Basically,
there are three parameters for each component, that have to be determined af-
ter a layout xj for each Gj was computed. The first one determines the size of
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each component, i.e., find a constant sj , that scales xj to sjxj . The second one
determines where the barycenter of each component is set to. The rotation angle
of each component could also be considered, but we concentrate on the first two
parameters only.

The removal of a cut vertex (or a bridge) yields a matrix L(G(t+1)), that,
after rearranging, consists of k blocks L1, . . . , Lk, which are Laplacian matrices
of lower dimensions

L(G(t+1)) =

⎛⎜⎜⎜⎝
L1 0

L2
. . .

0 Lk

⎞⎟⎟⎟⎠ .

Each of the components is now drawn separately, simply by the common power
iteration of the whole matrix L(G(t+1)), where only normalization and orthogo-
nalization have to be modified appropriately. The barycenter cj of each compo-
nent thus is 0, which we now reset to a new position. For notational purposes
identify the 2-dimensional plane with complex numbers. Let the current barycen-
ters cj be sorted increasingly by their angle to the positive real axis and reset
them to

cj :=
η

2
√

2
exp

(2πi

η

(
− ηj

2
+

j∑
�=1

η�

))
, ηj =

√
|Gj |

|G(t+1)| , η =
k∑

j=1

ηj .

Fig. 6. Drawing connected components (top: left to right, bottom: right to left)
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Together with a normalization sj = ηj , this has the effect, that the components
are distributed on a circle with radius η/(2

√
2), each on an area proportional to

the size of the component, and none of them overlap. Depending on the shape of
the components the radius can also be decreased. Note that the normalization
is also well suited, because

∑k
j=1 η2

j = 1 – analogous to ||x|| = 1.
Altogether, when removing a cut vertex, new barycenters are computed, power

iteration with modified orthogonalization/normalization is applied, and mean-
while each component moves to its new barycenter linearly to the chosen break-
points.

Further splitting and merging of connected components are handled analo-
gously, see Fig. 6 for an example.

6 Discussion

We have proposed a dynamization scheme for spectral layout and applied it to
changing small-world graphs. While there is no need to make special provisions
for logical updates, it turns out that matrix interpolation is the method of choice
for the physical update. Despite its simplicity, the scheme achieves both static
layout quality and mental-map preservation, because it utilizes stability inherent
in spectral layout methods.

Much of the dynamization scheme directly applies to force-directed methods
as well, and is in fact driven by common practices [8].

For both spectral and force-directed layout update computations are rather
efficient, since the preceding layouts are usually very good initializations for iter-
ative methods. For large graphs, it will be interesting to generalize the approach
to multilevel methods, possibly by maintaining (at least part of) the coarsening
hierarchy and reusing level layouts for initialization.

In general, spectral layouts are not suitable for graphs with low connectivity,
even in the static case. However, our dynamic approach is likely to work with
any improved methods for static spectral layout as well.
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Abstract. The crossing number of a graph is the minimum number of
edge crossings in any drawing of the graph into the plane. This very basic
property has been studied extensively in the literature from a theoretic
point of view and many bounds exist for a variety of graph classes. In this
paper, we present the first algorithm able to compute the crossing number
of general sparse graphs of moderate size and present computational
results on a popular benchmark set of graphs. The approach uses a new
integer linear programming formulation of the problem combined with
strong heuristics and problem reduction techniques. This enables us to
compute the crossing number for 91 percent of all graphs on up to 40
nodes in the benchmark set within a time limit of five minutes per graph.

1 Introduction

Crossing minimization is among the oldest and most fundamental problems aris-
ing in the areas of automatic graph drawing and VLSI design. At the same time,
it is very easy to formulate: “Given a graph G = (V, E), draw it in the plane with
a minimum number of edge crossings”. A drawing of G is a mapping of each
vertex v ∈ V to a distinct point and each edge e = (v, w) ∈ E to a curve con-
necting the incident vertices v and w without passing through any other vertex.
Common points of two edges that are not incident vertices are called crossings.
The minimum number of crossings among all drawings of G is denoted by cr(G).

The main goal in automatic graph drawing is to obtain a layout that is easy to
read and understand. Although the definition of layout quality often depends on
the particular application and is hard to measure, the number of edge crossings is
among the most important criteria [18]. Figure 1 shows a comparison of different
drawings for the same graph preferring different aesthetic criteria.

In fact, the crossing minimization problem is even older than the area of
automatic graph drawing. It goes back to P. Turán, who proposed the problem
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(a) (b) (c)

Fig. 1. Three drawings of the same graph with 51 (a), twelve (b), and four crossings (c).
Most aesthetic criteria like few edge bends, uniform edge lengths, or a small drawing
area favor the first two drawings, while the last drawing is preferable with respect to
the number of edge crossings.

in his “Notes of Welcome” in the first issue of the Journal of Graph Theory [19].
While working in a labor camp during the Second World War, he noted that
crossings of the rails between kilns and storage yards caused the trucks to jump
the rails. Minimizing these crossings corresponds to the crossing minimization
problem for a complete bipartite graph Km,n.

In 1953, K. Zarankiewicz and K. Urbańık independently claimed a solution for
this problem by providing a drawing rule for complete bipartite graphs Km,n with
�m

2 ��m−1
2 ��n

2 ��n−1
2 � crossings. About ten years later, their proof of optimality

was shown to be wrong and it is still unknown whether the conjecture holds. The
situation for complete graphs Kn is similar. Their crossing number is conjectured
to be 1

4�n
2 ��n−1

2 ��n−2
2 ��n−3

2 �, which has been verified for graphs of up to ten
nodes by Guy [10]. However, both conjectures are based on a drawing rule and
therefore serve as an upper bound for cr(G).

It is well known that the general crossing minimization problem is NP-hard [7].
More precisely, it is shown that the crossing number problem, i.e., “given a graph
G and a non-negative integer K, decide whether there is a drawing of G with at
most K edge crossings”, is NP-complete. However, for fixed K, we can obtain a
polynomial time algorithm by examining all possible configurations with up to
K crossings. Clearly, this algorithm is not appropriate in practical applications
for larger values of K. Recently, Grohe could show that this problem can be
solved in time O(|V |2) [8]. Even though the exponent is independent of K, the
constant factor of his algorithm grows doubly exponentially in K. Therefore,
this method is also of little relevance in practice.

The search for approximation algorithms did not lead to significant results
either. While there is no known polynomial time approximation algorithm with
any type of quality guarantee for the general problem, Bhatt and Leighton could
derive an algorithm for graphs with bounded degree that approximates the num-
ber of crossings plus the number of nodes in polynomial time [2]. Due to the



Exact Crossing Minimization 39

complexity of the crossing minimization problem, many restricted versions have
been considered in the literature. However, in most cases, e.g., for bipartite,
linear, and circular drawings, the problem remains NP-hard [6, 16, 15].

The most prominent and practically successful approach for solving the cross-
ing minimization problem heuristically is the planarization approach [1], which
addresses the problem by a two step strategy. The idea is to remove a preferably
small number of edges in order to obtain a planar subgraph and reinsert them
into a planar drawing with as few crossings as possible. For each step, various
algorithms can be applied. Pre- and post-processing procedures have been devel-
oped to improve the solution quality. A computational study on state-of-the-art
heuristics can be found in [9].

Contribution and Structure. In this paper, we present the first algorithm able to
compute the crossing number of general sparse graphs of moderate size. We state
computational results on a popular benchmark set of graphs, the so-called Rome
library [5]. The approach uses a new integer linear programming formulation of
the problem combined with strong heuristics and problem reduction techniques.
This enables us to compute the crossing number for 91 percent of all graphs
on up to 40 nodes in the Rome library within a time limit of five minutes per
graph. In Sect. 2, we show how to reduce the problem to the easier problem of
computing crossing-minimal drawings where each edge is involved in at most
one crossing. We give an integer linear programming formulation for the simpler
problem and a branch-and-cut algorithm to compute provably optimal solutions
for this formulation in Sect. 3. Section 4 summarizes the computational results
obtained with our new approach for the simple as well as the general crossing
number problem for Rome library graphs. We present conclusions and further
work in Section 5.

2 Reduction to Simple Drawings

The area of crossing minimization is closely related to the field of planarity test-
ing, which aims to decide whether a given graph G can be drawn in the plane
without any edge crossings. This task can be performed surprisingly fast, more
precisely in linear time [11, 4]. Beyond doubt, one of the ground-breaking results
in this research area was Kuratowski’s theorem, which provides a full charac-
terization of planar graphs based on the complete graph K5 and the complete
bipartite graph K3,3.

Theorem 1 (Kuratowski’s theorem). A finite graph is planar if and only if
it contains no subgraph that is a subdivision of K5 or K3,3.

We can obtain a subdivision S of a graph G by repeatedly replacing its edges
by a path of length two.

As a consequence of Theorem 1, at least two edges in every Kuratowski sub-
division, i.e., a subdivision of K5 or K3,3, have to cross in every planar drawing
of a graph G. As we describe in Section 3, we can obtain inequalities from this
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observation that fully characterize the set of realizable crossing configurations
(corresponding to drawings in the plane).

Unfortunately, even deciding whether there is a drawing for a given set of
edge crossings is NP-complete [13]. This problem is known as the realizability
problem and can be stated as follows: “Given a set of edge pairs D, does there
exist a drawing of G such that two edges e, f ∈ E cross each other if and only
if {e, f} ∈ D?

In order to efficiently answer this question, we also need to know the order of
the edge crossings for a particular edge e. With this additional information, it
is easy to solve the problem by placing dummy vertices on all chosen crossings
and testing the resulting graph for planarity.

One way to work around the realizability problem is the reduction to simple
drawings. A drawing is called simple if each edge crosses at most one other edge.
Not surprisingly, there are graphs that do not admit any simple drawing. Pach
and Tóth [17] showed the following more general theorem:

Theorem 2. Let G = (V, E) be a simple graph drawn in the plane so that every
edge is crossed by at most k others. If 0 ≤ k ≤ 4, then we have

|E| ≤ (k + 3)(|V | − 2) . (1)

They could further prove that this bound cannot be improved for 0 ≤ k ≤ 2 and
that for any k ≥ 1 the following inequality holds:

|E| ≤
√

16.875 k |V | ≈ 4.108
√

k |V | (2)
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Fig. 2. Optimal drawing of a graph with two crossings (a) and an optimum simple
drawing of the same graph with three crossings (b). Both drawings were produced
with our exact algorithm presented in this paper.
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Furthermore, Bodlaender and Grigoriev proved that it is NP-complete to de-
termine whether there is a simple drawing for a given graph G [3]. If there is
such a drawing, we denote the minimum number of crossings among all simple
drawings of G by crs(G).

Even if there is a simple drawing for G, its crossing number crs(G) does not
necessarily coincide with cr(G). Consider the sample graph in Figure 2. The left
drawing shows an optimum drawing with two crossings while the right drawing
shows an optimum drawing among all simple drawings.

However, given a graph G = (V, E) we can create a graph G∗ = (V ∗, E∗) by
replacing every edge e ∈ E with a path of length |E|. It is easy to show that
for any non-negative number K the graph G can be drawn with K crossings
if and only if there is a simple drawing of G∗ with K crossings. Therefore, it
is “sufficient” to solve the crossing minimization problem restricted to simple
drawings in order to solve the general crossing minimization problem, clearly
at significant computational expense. Since the transformation obviously can be
done in polynomial time, the NP-completeness of the corresponding decision
problem for simple drawings follows immediately from the NP-completeness for
the general crossing number problem [7].

It is well-known that every graph G admits a good drawing with a minimum
number of crossings, i.e., a drawing that satisfies the following conditions:

1. no edge crosses itself
2. adjacent edges do not cross each other
3. non-adjacent edges cross each other at most once

Therefore it is sufficient to replace every edge e = (v, w) ∈ E with a path of
length |E| − |δ(v)| − |δ(w)| − 1. We can further lower the number of required
dummy edges by using any upper bound for cr(G), since no edge can cross more
than cr(G) other edges in any optimal solution.

3 An Integer Linear Program for Simple Drawings

Mathematical programming is a powerful tool to address NP-hard combinatorial
optimization problems. Starting from an integer linear program (ILP) modeling
the problem under consideration, i.e., a linear program with integer variables,
sophisticated techniques like branch-and-cut can be applied. In the following, we
present an integer linear programming formulation for the crossing minimization
problem restricted to simple drawings. It is described in Sect. 2 how this method
can be used to solve the general crossing minimization problem.

Let G = (V, E) be a graph and let D be a set of unordered pairs of edges
of G. We call D simple if for every e ∈ E there is at most one f ∈ E such
that (e, f) ∈ D. Furthermore, D is called realizable if there is a drawing of G
such that there is a crossing between edges e and f if and only if (e, f) ∈ D.

For every graph G and every simple D, we denote with GD the graph that is
obtained by introducing a dummy node de,f for each pair of edges (e, f) ∈ D.
More precisely, we introduce dummy nodes on both e and f and identify them.
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Note that GD is only well-defined if D is simple, as otherwise it would not be
clear where to place the dummy nodes. For both edges e1 and e2 resulting from
splitting e, we set ê1 = ê2 = e, analogously for f .

Corollary 1. Let D be simple. Then D is realizable if and only if GD is planar.

Using a linear time planarity testing and embedding algorithm, we can thus test
in time O(|V | + |D|) whether D is realizable, and compute a realizing drawing
in the affirmative case.

Definition 1. For a set of pairs of edges D ⊆ E2 we define

xD
e,f =

{
1 if (e, f) ∈ D

0 otherwise .

Next, for every subgraph H = (V ′, E′) of GD, let Ĥ = {ê | e ∈ E′} ⊆ E. Less
formally, Ĥ contains all edges of G involved in the subgraph H of GD.

Proposition 1. Let D be simple and realizable. For an arbitrary simple set of
pairs of edges D′ ⊆ E2 of G = (V, E) and any subdivision H of K5 or K3,3
in GD′ , the following inequality holds:

CD′,H :
∑

(e,f)∈Ĥ2\D′

xD
ef ≥ 1 −

∑
(e,f)∈Ĥ2∩D′

(1 − xD
ef ) (3)

Proof. Suppose (3) is violated. Since xD
e,f ∈ {0, 1} for all e, f ∈ E, the left hand

side of (3) must be zero and the right hand side must be one, which means that

xD
e,f = 0 for all (e, f) ∈ Ĥ2 \ D′, and

xD
e,f = 1 for all (e, f) ∈ Ĥ2 ∩ D′ .

It follows from the definition of xD that Ĥ2 ∩ D′ = Ĥ2 ∩ D, in other words,
that GD corresponds to GD′ on the subgraph induced by Ĥ, so that H is also
a forbidden subgraph in GD, i.e., a subdivision of K5 or K3,3. It follows from
Kuratowski’s Theorem that GD is not planar. This contradicts the realizability
of D by Corollary 1. �

Theorem 3. Let G = (V, E) be a simple graph. A set of pairs of edges D ⊆ E2

is simple and realizable if and only if the following conditions hold:

xD
e,f ∈ {0, 1} ∀ e, f ∈ E, e �= f∑

f∈E

xD
e,f ≤ 1 ∀ e ∈ E

CD′,H
for every simple D′ ⊆ E2 and every
forbidden subgraph H in GD′
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Proof. It is easy to see that the constraints from the second row are satisfied if
and only if D is simple. It remains to show that a simple D is realizable if and
only if the conditions CD′,H from the last row hold. For a realizable D every
CD′,H is satisfied according to Proposition 1.

We have to show that any non-realizable set D violates at least one of the
constraints CD′,H . It follows from Corollary 1 that GD is not planar if D is not
realizable and we know from Theorem 1 that there exists a subdivision H of K5
or K3,3 in GD. Let D′ = D and consider the constraint CD,H :

CD,H :
∑

(e,f)∈Ĥ2\D

xD
ef ≥ 1 −

∑
(e,f)∈Ĥ2∩D

(1 − xD
ef ) (4)

It follows from the definition of xD that every xD
e,f ∈ Ĥ2 \ D is zero, hence the

left hand side of (4) is also zero. Since Ĥ2 ∩ D ⊆ D we also know that∑
(e,f)∈Ĥ2∩D

(1 − xD
ef ) = 0 ,

so that the right hand side of CD,H is one. Thus CD,H is violated. �

For every simple and realizable set D ⊆ E2, we can compute a corresponding
drawing in polynomial time. Thus we can reformulate the crossing minimization
problem for simple drawings as “Given a graph G = (V, E), find a simple and
realizable subset D ⊆ E2 of minimum cardinality”. This immediately leads to
the following ILP-formulation, where we use x(F ) as an abbreviation for the
term

∑
(e,f)∈F xe,f :

min x(E2)

s.t.
∑
f∈E

xe,f ≤ 1 ∀e ∈ E

x(Ĥ2 \ D′) − x(Ĥ2 ∩ D′) ≥ 1 − |Ĥ2 ∩ D′| for every simple D′

and every forbidden subgraph H in GD′

xe,f ∈ {0, 1} ∀ e, f ∈ E

It is clearly impractical to generate all constraints CD,H in advance and solve
the ILP in a single step. Instead, we embed the given formulation into a branch-
and-cut framework, separating violated inequalities dynamically during runtime
according to the proof of Theorem 3.

A crucial factor in this approach is the separation problem: “Given a class of
valid inequalities and a vector y ∈ Rn, either prove that y satisfies all inequali-
ties in the class, or find an inequality which is violated by y.”. Although we can
easily separate violated inequalities for integral solution vectors according to the
proof of Theorem 3, the problem is more complex within the branch-and-cut
framework since we have to deal with fractional values. A heuristic for separat-
ing the inequalities is to round variables to either zero or one, and then check
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for violated inequalities. The problem is that the inequalities produced by this
heuristic might not be violated by the current fractional solution. In this case we
select a branching variable and split the current problem into two subproblems
by setting the branching variable to zero, respectively one. The same is done if
no inequalities at all are produced by the separation heuristic.

In some cases, we can omit variables from our ILP. For instance, we can split
the graph into its blocks (two-connected components) and solve these blocks
independently—the crossing number of a graph is equal to the sum of the crossing
numbers of its blocks. Furthermore, it is easy to show that adjacent edges do
not cross in an optimal drawing and no edge crosses itself, i.e., we can restrict
ourselves to good drawings.

4 Computational Results

We have implemented the presented algorithm in C++ using the class library
LEDA and solve the linear programs arising during the optimization process
with the commercial optimization library CPLEX (version 8.1). We have inte-
grated our new algorithm into AGD, a powerful library of Algorithms for Graph
Drawing. This enables us to use any of the existing planar layout algorithms to
produce a drawing for G with cr(G) crossings.

In order to decrease the computational expense of many input graphs, we
applied a number of correctness preserving pre-processing procedures. These re-
move edges temporarily that do not influence the crossing number of the result-
ing graph. More precisely we repeatedly remove nodes of degree one and merge
paths such that each vertex except the start and the end vertex has degree two
to a single edge. The latter approach cannot be applied if we intend to determine
crs(G), since we may exclude the optimal solutions from consideration.

In order to obtain good upper bounds, we apply additionally to known bounds
based on the number of vertices and edges the well known planarization ap-
proach to the input graph [1]. Furthermore, we make use of an exact algorithm
proposed by Jünger and Mutzel [12] that computes the skewness sk(G) of G. It
is defined as the minimum number of edges that must be removed from G in
order to obtain a planar subgraph. It is well-known that the crossing number of
a graph cannot be smaller than its skewness. Hence we have that cr(G) ≥ sk(G).
Computing the skewness is equivalent to the maximum planar subgraph problem,
which was shown to be NP-hard by Liu and Geldmacher [14]. However, medium
sized instances can be solved to optimality in reasonable computation time.

To test the performance of our new algorithm and to compare its solution
quality to heuristic approaches, we used a benchmark set of graphs of the Uni-
versity of Rome III, introduced in [5]. The set contains 11, 389 graphs that consist
of 10 to 100 vertices and 9 to 158 edges. These graphs were generated from a
core set of 112 “real life” graphs used in database design and software engineer-
ing applications. Most of the graphs are sparse, which is a common property in
most application areas of automatic graph drawing. The average ratio between
the number of edges and the number of nodes of the graphs from the benchmark
set is about 1.35.



Exact Crossing Minimization 45

Due to the complexity of the crossing minimization problem we only consider
graphs of up to 40 nodes. We need to round the current fractional solution to
integer values in order to separate violated inequalities. Therefore we experi-
mented with different strategies and compared their performance against each
other.

– R1 We round every value that is greater than 1−ε to one. All other variables
are mapped to zero. In our implementation, we used ε = 10−10.

– R05 Every variable with a value greater or equal than 0.5 is rounded to one.
– R0208 If the value of a variable is less than 0.2 or greater than 0.8 it is

mapped to zero or one, respectively. In the interval [0.2, 0.8] a coin flip
decides if we round to zero or one.

It turns out that R1 performs best on average and is therefore presented in
the following figures. While this strategy often leads to constraints that are
already satisfied by the current fractional solution, the generated cuts are usually
stronger.

Figure 3 shows the percentage of graphs that could be solved within a time
limit of five minutes on an Intel Pentium 4 with 2.4 GHz and 1 GB of main mem-
ory. As expected, the difference between our implementation for cr(G) (crossing
number) and crs(G) (simple crossing number) grows with the size of the graphs.
The smaller number of variables needed for the computation of crs(G) (where
we do not need edge decomposition) leads to a significantly higher number of
instances that could be solved within the time limit. While the percentage of
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Table 1. The computation time strongly depends on the number of crossings. The
values K, t̄crs, and t̄cr denote the number of crossings and the average computation
time to compute the (simple) crossing-minimal drawings.

K t̄cr t̄crs
1 0.16s 0.16s
2 6.40s 0.79s
3 52.90s 8.20s
4 155.05s 31.57s

graphs with 40 nodes where we can compute cr(G) within the time limit goes
down to about 65%, we can still compute crs(G) for about 80% of these instances.

Table 1 shows the average computation time for instances that could be solved
within five minutes by all of the considered rounding strategies. The required
time to solve a particular instance strongly depends on its crossing number, as
the table illustrates.

Clearly we are interested in the quality of our results in comparison to heuris-
tic approaches. For the computation of heuristic values we used the planarization
approach. Gutwenger and Mutzel presented an extensive computational study
of crossing minimization heuristics [9]. The authors investigate the effects of var-
ious methods for the computation of a maximal planar subgraph and different
edge re-insertion strategies for the planarization approach. Furthermore, they
study the impact of post-processing heuristics.
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Figure 4 shows the average improvement in percent that could be achieved in
comparison to the basic planarization approach (BASIC) and the improved ver-
sion (BEST), for different classes of graphs. To highlight the improvements, we
only considered graphs that could be solved to optimality within the time limit.
We can clearly improve the heuristic results for the basic approach, even for the
relatively small instances considered in our computational study. Even compared
to the best known heuristic methods we achieve a notable improvement for some
larger instances. The average improvement over the whole considered benchmark
set is about 19.6% for the basic heuristic and 4.1% for the best known strategy.

5 Conclusion and Future Work

In this paper, we have presented the first algorithm that is able to compute
the crossing number for sparse graphs of moderate size. We achieved this by
combining a new integer linear programming formulation for the problem with
sophisticated problem reduction techniques and the best known heuristics for the
problem. Our implementation of the algorithm is able to compute the crossing
number for 91 percent of all graphs on up to 40 vertices in a popular benchmark
set of graphs within five minutes.

One way of improving the performance of the approach would be to use
column generation for subdividing edges. As our computational results have
shown, the problem is much easier to solve for simple drawings than for non-
simple drawings. If we found a way of testing efficiently if subdividing a certain
edge, and thus allowing more crossings on it, would decrease the overall number
of crossings, we could expect to be able to solve much larger problem instances.

Another way forward is studying the polyhedron defined by the set of realiz-
able crossing vectors. By adding new constraints that exclude fractional solutions
that are not excluded by our current constraints we should be able to compute
the crossing number for larger graphs with more crossings.
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Abstract. Consider a planar drawing Γ of a planar graph G such
that the vertices are drawn as small circles and the edges are drawn
as thin strips. Consider a cycle c of G. Is it possible to draw c as a non-
intersecting closed curve inside Γ , following the circles that correspond in
Γ to the vertices of c and the strips that connect them? We show that this
test can be done in polynomial time and study this problem in the frame-
work of clustered planarity for highly non-connected clustered graphs.

1 Introduction

Let Γ be a planar drawing of a planar graph G and c be a cycle composed of
vertices and edges of G. We deal with the problem of testing if c can be drawn
on Γ without crossings.

Of course, if the vertices of G are drawn as points, the edges as simple curves,
and the drawing of c must coincide with the drawing of its vertices and edges,
then the problem is trivial. In this case c can be drawn without crossings if and
only if it is simple.

We consider the problem from a different point of view. Namely, we suppose
that the vertices of G are drawn in Γ as “small circles” and the edges as “thin
strips”. Hence, c can pass several times through a vertex or through an edge
without crossing itself. In this case even a non-simple cycle can have a chance
to be drawn without crossings.

The problem, in our opinion, is interesting in itself. However, we study it
because of its meaning in the field of clustered planarity [11, 10].

Clustered planarity is a classical Graph Drawing topic (see [4] for a survey).
A cluster of a graph is a non empty subset of its vertices. A clustered graph
C(G, T ) is a graph G plus a rooted tree T such that the leaves of T are the
vertices of G. Each node ν of T corresponds to the cluster V (ν) of G whose
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vertices are the leaves of the subtree rooted at ν. The subgraph of G induced by
V (ν) is denoted as G(ν). An edge e between a vertex of V (ν) and a vertex of
V − V (ν) is incident to ν. Graph G and tree T are called underlying graph and
inclusion tree, respectively. A clustered graph is connected if for each node ν of
T we have that G(ν) is connected.

In a drawing of a clustered graph vertices and edges of G are drawn as points
and curves as usual [8], and each node ν of T is a simple closed region R(ν) such
that: (i) R(ν) contains the drawing of G(ν); (ii) R(ν) contains a region R(μ) if
and only if μ is a descendant of ν in T ; and (iii) any two regions R(ν1) and R(ν2)
do not intersect if ν1 is not a descendant or an ancestor of ν2. Consider an edge
e and a node ν of T . If e is incident on ν and e crosses the boundary of R(ν)
more than once, we say that edge e and region R(ν) have an edge-region crossing.
Also, edge e and region R(ν) have an edge-region crossing if e is not incident
on ν and e crosses the boundary of R(ν). A drawing of a clustered graph is c-
planar if it does not have edge crossings and edge-region crossings. A clustered
graph is c-planar if it has a c-planar drawing. C-planarity testing algorithms for
connected clustered graphs are shown in [13, 11, 6]. A planarization algorithm
for connected clustered graph is shown in [7].

However, the complexity of the c-planarity testing for a non connected clus-
tered graph is still unknown. A contribution on this topic has been given by
Gutwenger et al. who presented a polynomial time algorithm for c-planarity
testing for almost connected clustered graphs [12].

Another contribution studying the interplay between c-planarity and connec-
tivity has been presented in [3] by Cornelsen and Wagner. They show that a
completely connected clustered graph is c-planar if and only if its underlying
graph is planar. A completely connected clustered graph is so that not only each
cluster is connected but also its complement is connected.

A clustered graph C(G, T ) is flat if all the leaves of T have distance two from
the root. This implies that all the non-root clusters have depth 1 in T . Hence, in
a flat clustered graph C(G, T ) a graph of the clusters G1(C) can be identified.
Vertices of G1(C) are the children of the root of T and an edge (μ, ν) exists if
and only if an edge of G exists incident to both μ and ν.

Flat clustered graphs offer a way to deepen our insight into the properties
of non-connected c-planar clustered graphs. In fact, by changing the families of
the graphs G and G1(C), c-planarity problems of increasing complexity can be
identified. The works in [2, 1] by Biedl, Kaufmann, and Mutzel can be interpreted
as a linear time c-planarity test for non connected flat clustered graphs with
exactly two clusters.

A clustered cycle is a flat clustered graph whose underlying graph is a cycle.
In [5] it is shown that for a clustered cycle C(G, T ) where G1(C) is also a cycle,
the c-planarity testing and embedding problem can be solved in linear time.

A rigid clustered cycle is a clustered cycle C in which G1(C) has a prescribed
planar embedding. In this paper we tackle the c-planarity testing and embedding
problem for rigid clustered cycles. Namely, consider again the problem stated at
the beginning of this section according to the above definitions. The cycle is
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the underlying graph of a flat clustered graph and the nodes of the graph are
the clusters. If you are able to find a drawing of the cycle without intersections
you are also able to find a c-planar embedding for the rigid clustered cycle and
vice versa.

In this paper we present the following results. We develop a new theory for
dealing with rigid clustered cycles, based on operations that preserve their c-
planarity (Section 3). We show that the c-planarity of a rigid clustered cycle
can be tested in polynomial time (Section 4). As a side effect we also solve
in polynomial time the cycle drawing problem stated at the beginning of the
section. If the rigid clustered cycle is c-planar we also show a simple method
for computing a planar embedding of it (Section 5). Section 2 contains basic
definitions, while conclusions and open problems are in Section 6.

2 Basic Definitions

We assume familiarity with connectivity and planarity of graphs [9, 8].
In the following we need a slightly wider definition of clustered cycle in which

G1(C) is allowed to have multiple edges between two nodes. We define a clustered
cycle C(G, G1, ΦV , ΦE), where G1 is a graph, possibly with multiple edges, G is
a cycle, ΦV maps each vertex of G to a vertex of G1, and ΦE maps each edge
of G between vertices v1 ∈ μ1 and v2 ∈ μ2, where μ1 �= μ2, to an edge of G1

between vertices μ1 and μ2.
In the following, to avoid ambiguities, we denote G1 as G1(C), its edges will

be called pipes while its vertices will be called nodes or clusters.
Given a cluster μ ∈ G1(C), we denote by deg(μ) the number of pipes that are

adjacent to μ in G1(C), where multiple pipes count for their multiplicity. The
size of a pipe of G1(C) is the number of edges of G it contains.

It is easy to see that a path in G whose vertices belong to the same cluster
can be collapsed into a single vertex without affecting the c-planarity property
of the clustered cycle. Hence, in the following we consider only clustered cycles
where consecutive vertices belong to distinct clusters. We call cusp a vertex v of
G whose incident edges e1 and e2 are such that ΦE(e1) = ΦE(e2).

Given a rigid clustered cycle C the embedding Λ of C is the specification, for
each pipe a in G1(C) and for each end node μ of a, of the total ordering λμ(a)
of the edges contained in a when turning around μ clockwise. An embedding of
a clustered cycle is c-planar if there exists a planar drawing of C that respects
such embedding. If an embedding is c-planar, for each pipe a = (μ, ν), we have
that λμ(a) = λν(a), where λν(a) denotes the reverse of λν(a).

3 Fountain Clusters

Consider a clustered cycle C and one of its clusters μ = {v1, . . . , vq}. For each
vi let wi and zi be its neighbors. Cluster μ is a fountain cluster if there exists a
cluster ν different from μ such that for each vi we have that wi ∈ ν or zi ∈ ν (see
Fig. 1 for an example). We call base of μ the pipe of G1(C) between μ and ν.
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μ

ν
wi

vi

zi

Fig. 1. A fountain cluster

A fountain clustered cycle is a clustered cycle in which each cluster is a foun-
tain cluster.

Let μ be a fountain cluster and let b be a base of μ. The following properties
hold:

Property 1. Cluster μ has a second base b′ �= b if and only if deg(μ) = 2 and no
cusps belongs to μ. Otherwise μ has a single base.

Property 2. The edges incident to a cusp v of μ belong to b.

Property 3. Let a be a pipe incident to μ. If a is also a base for μ then size(a) =
size(b), otherwise size(a) < size(b).

3.1 Cluster Expansion

Given a cluster μ of C, we call cluster expansion of μ the following operation
(see Fig. 2), that produces the clustered cycle C′.

Let a1, . . . , ak be the pipes incident to μ, where k = deg(μ). Let v a vertex
belonging to μ, and let ei and ej be the edges incident to v, where ei ∈ ai and
ej ∈ aj , respectively. Note that if v is a cusp, then ai = aj.

Cluster μ is replaced in C′ with k new clusters μ1, . . . μk, each one incident
to pipes a1, . . . , ak, respectively. All the other clusters of C are unchanged in C′.
Each non-cusp vertex v in μ having edges ei ∈ ai and ej ∈ aj is represented in
C′ by two new vertices v′ and v′′, with ΦV (v′) = μi and ΦV (v′′) = μj . A new
pipe (μi, μj) is inserted (if not already present) and a new edge (v′, v′′) is added
such that ΦE(v′, v′′) = (μi, μj). Each cusp vertex v having its edges in pipe ai

stays unchanged in C′, and belongs to cluster μi.
Note that a cluster μi produced by the cluster expansion is a fountain cluster

with base ai. Hence, after one expansion the number of non-fountain clusters of
C′ is not greater than the number of non-fountain clusters of C. Also, before
applying the cluster expansion, μ could be the end node of multiple pipes. After
the cluster expansion these multiple pipes are eliminated.
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μ
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a2

a3

a4

a5

v

μ1

μ2

μ3

μ4

μ5v′
v′′

(a) (b)

Fig. 2. An example of cluster expansion: (a) A non-fountain cluster μ. (b) The result
of the cluster expansion.

Up to now, the expansion operation has been defined whithout considering
the embedding of C and C′. If C is embedded (rigid) it is easy to extend the
definition of cluster expansion considering also embedding issues. Namely, we
embed the new pipes around the new nodes with the same order the old edges
had in C. Note that, even if the starting embedding is planar, the resulting
embedding may be not planar due to the new pipes inserted among the clusters
μ1, . . . μk.

Given a rigid clustered cycle C, a cluster expansion of one of its clusters μ is
feasible if the embedding induced on G1(C′) is planar, that is, if C′ is a rigid
clustered cycle.

Lemma 1. Given a rigid clustered cycle C, if a cluster expansion of one of its
clusters μ is not feasible, then C is not c-planar.

Proof. If the cluster expansion of μ is not feasible, then the induced embedding
on G1(C′) contains a crossing, that is, it contains two pipes (μi, μh) and (μj , μl),
with i < j < h < l. This implies that there exist two paths of G, one traversing
clusters νi, μ, νh and the other traversing νj , μ, νl. Since the embedding of μ is
fixed, this two paths cannot be drawn without intersections. �

A cluster expansion operation on a clustered cycle C is done performing a
cluster expansion for each non-fountain cluster of C. A cluster expansion of a
rigid clustered cycle is feasible if all the required cluster expansions are feasible,
that is if the result is a rigid clustered cycle.

Property 4. The cluster expansion of a clustered cycle produces a fountain clus-
tered cycle.
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Lemma 2. Let C be a rigid clustered cycle and let μ be a cluster of C. Let C′

be the result of a feasible cluster expansion applied to μ. C is c-planar iff C′ is
c-planar.

Proof sketch. Suppose that C is c-planar, and let Γ be a c-planar embedding of C.
A c-planar embedding Γ ′ of C′ can be computed as follows. For each pipe that is
present both in C and in C′, including pipes a1, . . . , ak incident to μ, we assume
that the order of edges in Γ ′ is the same as in Γ . The order of the edges inside
the pipes added among nodes μ1, . . . , μk is determined by the their order in the
bases a1, . . . , ak. Hence, the c-planarity of Γ ′ follows from the c-planarity of Γ .

Suppose now that C′ is c-planar, and let Γ ′ be a c-planar embedding of C′.
A c-planar embedding Γ of C can directly obtained from Γ ′. Since all pipes of
C are also present in C′, the order of their edges can be assumed to be the same
as in Γ ′. Consider edge e of pipe (μi, μj) in Γ ′. The path ei, e, ej of Γ ′, where
ei ∈ ai and ej ∈ aj corresponds to path ei, ej in Γ . Hence, the c-planarity of Γ ′

implies the c-planarity of Γ . �
By repeatedly applying Lemma 2 we have:

Lemma 3. Let C be a rigid clustered cycle and let C′ be a feasible cluster ex-
pansion of C. C is c-planar iff C′ is c-planar.

3.2 Pipe Contraction

We call a pipe b between two fountain clusters μ and ν contractible if (i) b is the
only pipe between μ and ν, (ii) b is a base for both μ and ν, and (iii) b is the
only base for one of them.

We define the pipe contraction operation on a contractible pipe b as follows.
The pipe contraction produces a clustered cycle C′ starting from a clustered
cycle C by replacing μ, ν, and b, with a new cluster μ′, which is adjacent to all
the clusters which μ and ν were adjacent to.

If μ and ν were adjacent to the same cluster ρ, μ′ is doubly adjacent to ρ;
that is, the pipe contraction may introduce multiple pipes incident to μ′.

Each edge ein entering μ or ν belongs to a path pC = ein, v, e1, v1, . . . , ek,
vk, eout, where eout is the first edge exiting μ or ν and ΦE(ei) = b, i = 1, . . . , k.
Since b is a base for both μ and ν, k ≥ 1. Path pC is replaced by pC′ =
ein, vμ′ , eout, with ΦV (vμ′) = μ′.

An example of pipe contraction is shown in Fig. 3. Note that the new cluster
μ′ is, in general, not a fountain cluster. If C has a prescribed embedding we
assume that the result has also a prescribed embedding in which the circular
order of the pipes around μ′ is the same as the circular order they have in C
around the subgraph composed of μ, ν, and b.

Lemma 4. Let C be a fountain clustered cycle and C′ be obtained from C by
applying a pipe contraction operation. C is c-planar iff C′ is c-planar.

Proof sketch. Suppose that C is c-planar, let Γ be a c-planar drawing of C, we
show how to build a c-planar drawing Γ ′ of C′ by slighly modifying Γ . Namely,
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μ
b

ν

ρ

μ′

ρ

(a) (b)

Fig. 3. An example of pipe contraction: (a) pipe b before contraction; (b) The result
of the contraction of b

region R(μ′) is the union of R(μ), R(ν), and the stripe corresponding to b.
(Observe that R(μ′) is connected.) Each path pC = ein, v, e1, v1, . . . , ek, vk, eout

of C, with ΦE(ei) = b, is replaced by pC′ = ein, vμ′ , eout, where vμ′ replaces v,
and all vertices vi, with i = 1, . . . , k, are removed joining their incident edges. It
is easy to see that the obtained drawing is a c-planar drawing of C′.

Suppose now that C′ is c-planar, and let Γ ′ be a c-planar drawing of C′. We
provide a c-planar drawing Γ of C by suitably modifying Γ ′. We take region
R(μ) = R(μ′). Observe that in Γ ′ all the pipes that were incident to ν are
consecutively attached to the border of R(μ′). Hence, it is possible to add two
arbitrarily thin stripes, corresponding to b and R(ν), respectively, along the
border of R(μ′) in such a way to intersect those pipes only (see Fig 4.b).

Now, consider the edges entering R(μ′) that were incident to μ before contrac-
tion in counterclockwise order. Let ein be the current edge and pC′ = ein, vμ′ , eout

R(μ′)

p1
C′

peven
C′

podd
C′

R(μ)

R(ν)
��

b
��

p1
C

peven
C

podd
C

(a) (b)

Fig. 4. A drawing Γ ′ of C′ (a) and the corresponding drawing Γ of C (b)
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be the path of C′ that replaced pC = ein, v, e1, v1, . . . , ek, vk, eout. (Remember
that k ≥ 1.) If k = 1, it is easy to obtain a drawing of pC = ein, v, e1, v1, eout

starting from the drawing of pC′ = ein, vμ′ , eout by replacing vμ′ with v and
splitting eout with a vertex v1 in such a way that v1 is into R(μ) (see paths p1

C′

and p1
C of Fig 4 for an example).

Analogously, if k is odd (eout was incident to ν) it is possible to draw pC =
ein, v, e1, v1, . . . , ek, vk, eout in a thin stripe along the drawing of pC′ = ein, vμ′ ,
eout (see paths podd

C′ and podd
C of Fig 4 for an example). If k is even, then both ein

and eout were incident to μ in C. In this case the drawing of pC′ = ein, vμ′ , eout

does not immidiately provide a drawing of pC = ein, v, e1, v1, . . . , ek, vk, eout,
which can be built as follows. Vertex v is placed into R(μ) as edge ein crosses the
border of R(μ). Edge e1 follows clockwise the border of R(μ) till the previous edge
e′in entering R(μ) is found (or R(ν) is reached). Since edges ein are considered in
counterclockwise order and since b was a base for both μ and ν, path p′C , starting
with edge e′in, always has vertex v′ into R(μ) and v′1 into R(ν). Therefore, edge
e1 can be drawn arbitrarily near to path p′C and can be terminated with v1
placed into R(ν). Edges ei, with i = 2, . . . , k, can be drawn in an arbitrarily thin
stripe adjacent to e1, positioning vi alternately into R(μ) and R(ν). Finally, edge
eout can follow path pC′ to exit R(ν) (see paths peven

C′ and peven
C of Fig 4 for an

example). �

4 C-Planarity Testing of Clustered Cycles

In this section we describe a c-planarity testing algorithm for rigid clustered cy-
cles. The following lemmas state properties of clustered cycles which are needed
to prove the correctness of the algorithm.

Lemma 5. Let C be a fountain clustered cycle such thatG1(C) is not a simple cycle
and has not multiple pipes. There exists at least one contractible pipe b∗ in G1(C).

Proof sketch. Consider a pipe b = (μ, ν) of maximum size. Since b is the pipe of
maximum size for both μ and ν, by Property 3, b is the base for both. If one
between μ and ν (say μ) has degree different from two then, by Property 1, μ
admits a single base and the statement holds with b∗ = b. Otherwise, suppose
that both μ and ν have degree two and that both have two bases. Let b1 be
the second base of μ. Due to Property 3, size(b1) = size(b). Therefore b1 is
also a base for its incident cluster μ1 �= μ. If b1 is the only base for μ1 then
the statement holds with b∗ = b1, otherwise μ1 has a second base b2 �= b1, with
size(b2) = size(b1), and we apply the same argument to b2. Since G1(C) is not
a simple cycle the current pipe bi is different from b and there exists at least a
j for which bj is the only base for μj . �

We introduce a quantity that will be used to analyze the algorithm both in
terms of correctness and in terms of time complexity. Intuitively, it is an indicator
of the structural complexity of G1(C). We denote by E(C) the following quantity:
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E(C) =
∑

a∈{pipes of G1(C)}
(size(a))2.

We now concentrate on a pair of consecutive contraction-expansion operations
and show how E changes.

Lemma 6. Let C be a fountain clustered cycle and let b = (μ, ν) be a contractible
pipe which is the only base for μ. Let C∗ be the clustered cycle obtained by
applying a pipe contraction to b followed by a cluster expansion of the obtained
cluster μ′. We have that E(C∗) < E(C).

Proof. Let C′ be the clustered cycle generated by the pipe contraction applied
to b. C′ contains all the pipes of C with the exception of b, then E(C′) =
E(C) − (size(b))2. Clustered cycle C∗ has the same pipes of C′ plus a set of
new pipes a1, . . . , ak. If k = 0 then E(C∗) = E(C′) < E(C). If k = 1 then
deg(μ′) = deg(μ) = deg(ν) = 2. Since b is the only base for μ by Proper-
ties 1 and 2, b contains edges incident to cusps which are not present in a1.
Therefore E(C∗) < E(C). Suppose k > 2. We have that E(C∗) = E(C′) +∑k

j=1(size(aj))2 = E(C)−(size(b))2+
∑k

j=1(size(aj))2. Observe that each edge
contained in the pipes a1, . . . , ak is generated by the split of a vertex in μ′, and
that the number of vertices in μ′ is at most size(b). Then,

∑k
j=1 size(aj) ≤

size(b). Hence,
∑k

j=1(size(ak))2 < (size(b))2, and the statement follows. �

Lemma 7. A clustered cycle C whose graph of the clusters G1(C) is a path is
c-planar.

Proof sketch. Let μ1, . . . , μm be the nodes of G1(C) in the order in which they
appear in the path. A planar embedding of C can be built as follows. Traverse the
cycle G starting from a vertex in μ1. Each edge e belonging to pipe a = (μi, μj)
is inserted at the last position of λμi(a) and at the first position of λμj (a). When
the path comes back to μ1 for the last time it can be connected to the starting
point preserving c-planarity. �

We are now ready to introduce the c-planarity testing algorithm for a rigid
clustered cycle C. First, the algorithm performs a cluster expansion for each
non-fountain cluster. If one of such expansions is not feasible, then, according
to Lemma 1, C is not c-planar. If all the expansions are feasible, according to
Property 4, we obtain a fountain clustered cycle Cf , which is c-planar iff C is
c-planar. If the clusters of Cf form a cycle, then the c-planarity can be easily
tested using the results described in [5]. If G1(Cf ) is a path, then Lemma 7
states that Cf is c-planar. If the clusters of Cf form neither a cycle nor a path,
then Lemma 5 ensures that there exists a contractible pipe b∗ = (μ, ν). Perform a
contraction operation on b∗. Perform a cluster expansion on the resulting cluster.
These last two steps are performed until the clusters of the clustered cycle form
a cycle, or a path, or a cluster expansion fails. Note that a pipe contraction may
temporarily generate multiple pipes; however, the subsequent cluster expansion
produces a new clustered cycle which has no multiple pipes. The algorithm,
called ClusteredCyclePlanarityTesting, is formally described below.
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Algorithm ClusteredCyclePlanarityTesting

input A rigid clustered cycle C
output True if C is c-planar, false otherwise

for all non-fountain clusters μ in C do
perform a cluster expansion of μ
if the cluster expansion of μ is not feasible then

return false
end if

end for
{at this point C is a fountain clustered cycle}
while C is not a cycle or a path do

let b be a contractible pipe of C
apply a pipe contraction to b, obtaining cluster μ′.
perform a cluster expansion of μ′

if the cluster expansion of μ′ is not feasible then
return false

end if
end while
{at this point C is a cycle or a path}
if C is a cycle then

return the result of the c-planarity testing on C
else

return true
end if

Theorem 1. There exists a polynomial time algorithm to test if a rigid clustered
cycle is c-planar.

Proof. First, we prove that algorithm ClusteredCyclePlanarityTesting can be
always executed in a polynomial number of steps. Let C be a rigid clustered
cycle whose underlying cycle is G and be n the number of vertices of G. In the
first phase of the algorithm a cluster expansion is performed for all the non-
fountain clusters. Each cluster expansion can be performed in polynomial time.
At the end of this phase the number of vertices is at most 2n. Suppose that E
is the value of E(C) at the end of this phase. We have that E = O(n2).

By Lemma 6 each pair of pipe contraction and cluster expansion decreases
E(C) of at least one unit. Hence, the body of the while cycle is executed at
most E times. Also, a contractible pipe always exists (see Lemma 5) and can
be determined in constant time using a suitable data structure that contains
the candidate bases and that is updated after each operation. This proves that
algorithm ClusteredCyclePlanarityTesting terminates in polynomial time.

Second, we prove that algorithm ClusteredCyclePlanarityTesting gives the
correct result. Lemmas 2, 3, and 4 guarantee that the cluster expansion and
pipe contraction operations can be applied without modifying the c-planarity
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property of the graph, while if a cluster expansion is not feasible the graph is
not c-planar. If none of the cluster expansions fails, either the algorithm produces
a k-cluster cycle and applies the c-planarity testing algorithm shown in [5], or
produces a clustered path, which by Lemma 7 is always c-planar. Also, (see the
above discussion) the algorithm always terminates. �

5 Computing C-Planar Embeddings of Clustered Cycles

In this section we show how to build an embedding for a c-planar rigid clustered
cycle. We assume that Algorithm ClusteredCyclePlanarityTesting, described in
Section 4, has been applied, and that each step of the algorithm has been
recorded. The clustered cycle Cend obtained at the last step of the execution
of that algorithm is such that G1(Cend) is a cycle or a path. A c-planar em-
bedding of Cend can be easily computed by using the results described in [5],
if G1(Cend) is a cycle, or by using the technique introduced in the proof of
Lemma 7, if G1(Cend) is a path.

The embedding of the input clustered cycle can be obtained by going through
the transformations operated by Algorithm ClusteredCyclePlanarityTesting in
reverse order starting from a c-planar embedding of Cend. Algorithm Clustered-
CyclePlanarityTesting performs two kind of operations: pipe contraction and
cluster expansion.

For each cluster expansion on a clustered cycle C, which produces a cluster
cycle C′, the embedding of C is directly obtained from the embedding of C′ as
described in the proof of Lemma 2 since all pipes in C′ are also in C and their
embedding do not change.

For each pipe contraction on a clustered cycle C, which produces a cluster
cycle C′, only part of the embedding of C can be directly obtained from the
embedding of C′ since C has one more pipe (the contracted one) with respect
to C′. The proof of Lemma 4 describes how to compute a c-planar embedding
of C starting from a c-planar embedding of C′.

From the above discussion and from the fact that ClusteredCyclePlanari-
tyTesting has a polynomial time complexity we can state the following result.

Theorem 2. Given a c-planar rigid clustered cycle, a c-planar embedding of it
can be computed in polynomial time.

6 Conclusions

In this paper we addressed the problem of drawing, without crossings, a cycle
in a planar embedded graph and have shown that the problem can be solved in
polynomial time.

If we interpret the problem and the result from the clustered planarity per-
spective it turns out that we have identified a new family of flat clustered graphs
that are highly non-connected and whose c-planarity can be tested in polynomial
time. This might be useful for deepening the insight into the general problem of
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testing the c-planarity of non-connected clustered graphs, whose computational
complexity is still unknown.

However, we point out that a trivial generalization of the result to flat clus-
tered graphs whose underlying graph is a general graph fails. In fact, it is easily
to find clustered graphs which are not c-planar while all cycles of their underlying
graphs are separately c-planar.
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Abstract. Let G = (V, E) be a plane triangulated graph where each
vertex is assigned a positive weight. A rectilinear dual of G is a partition
of a rectangle into |V | simple rectilinear regions, one for each vertex, such
that two regions are adjacent if and only if the corresponding vertices
are connected by an edge in E. A rectilinear dual is called a cartogram
if the area of each region is equal to the weight of the corresponding
vertex. We show that every vertex-weighted plane triangulated graph G
admits a cartogram of constant complexity, that is, a cartogram where
the number of vertices of each region is constant.

1 Introduction

Motivation. Cartographers have developed many different techniques to visu-
alize statistical data about a set of regions like countries, states or counties.
Cartograms are among the most well known and widely used of these tech-
niques. The regions of a cartogram are deformed such that the area of a region
corresponds to a particular geographic variable [4]. The most common variable
is population: In a population cartogram, the areas of the regions are propor-
tional to their population. There are several types of cartograms. Of particular
relevance for this paper are the rectangular cartograms introduced by Raisz in
1934 [12], where each region is represented by a rectangle. This has the advan-
tage that the areas (and thereby the associated values) of the regions can be
easily estimated by visual inspection.

Whether a cartogram is good is determined by several factors. In this paper
we focus on two important criteria, namely the correct adjacencies of the regions
of the cartogram and the cartographic error [5]. The first criterion requires that
the dual graph of the cartogram is the same as the dual graph of the original
map. Here the dual graph of a map—also referred to as adjacency graph—is the
graph that has one node per region and connects two regions if they are adjacent,
where two regions are considered to be adjacent if they share a 1-dimensional
part of their boundaries (see Fig. 1). The second criterion, the cartographic
error, is defined for each region as |Ac − As| /As, where Ac is the area of the
region in the cartogram and As is the specified area of that region, given by the
geographic variable to be shown.
� Supported by the Netherlands’ Organisation for Scientific Research (NWO) under
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Fig. 1. The provinces of the Netherlands, their adjacency graph, a population carto-
gram—here additional “sea rectangles” were added to preserve the outer shape

From a graph-theoretic point of view constructing rectangular cartograms
with correct adjacencies and zero cartographic error translates to the following
problem. We are given a plane graph G = (V, E) (the dual graph of the original
map) and a positive weight for each vertex (the required area of the region for
that vertex). Then we want to construct a partition of a rectangle into rect-
angular regions whose dual graph is G—such a partition is called a rectangular
dual of G—and where the area of each region is the weight of the corresponding
vertex. As usual, we assume the input graph G is plane and triangulated, except
possibly the outer face; this means that the original map did not have four or
more countries whose boundaries share a common point and that G does not
have degree-2 nodes.1

Unfortunately not every vertex-weighted plane triangulated graph admits a
rectangular cartogram, even if we ignore the vertex weights and concentrate
only on the correct adjacencies. There are several possibilities to address this
problem. One is to relax the strict requirements on the adjacencies and areas.
For example, Van Kreveld and Speckmann [14] gave an algorithm that constructs
rectangular cartograms that in practice have only a small cartographic error and
mild disturbances of the adjacencies. Heilmann et al. [6] gave an algorithm that
always produces regions with the correct areas; unfortunately the adjacencies can
be disturbed badly. The other extreme is to ignore the area constraints and focus
only on getting the correct adjacencies—that is, to focus on rectangular duals
rather than cartograms. This setting is relevant for computing floor plans in VLSI
design. As mentioned above, ignoring the area constraints still does not guarantee
that a solution exists. But, if the input graph is a triangulated plane graph
without separating triangles—a separating triangle is a 3-cycle with vertices
both inside and outside the cycle—then a rectangular dual always exists [1, 8]
and can be computed in linear time [7].

Another option is to use different shapes for the regions. We restrict our
attention to so-called rectilinear cartograms, which use rectilinear polygons as
regions—see [10, 4] for some examples from the cartography community. If we

1 Degree-2 nodes can easily be handled using suitable pre- and postprocessing
steps [14].
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now ignore the area requirement then things become much better: Any plane tri-
angulated graph admits a rectilinear dual. In fact, Liao et al. [9] recently showed
that any plane triangulated graph admits a rectilinear dual with regions of small
complexity, namely rectangles, L-shapes, and T-shapes. The main questions now
are: Does any plane triangulated vertex-weighted graph admit a rectilinear car-
togram with zero cartographic error and correct adjacencies? And if so, can it
always be done with a constant number of vertices per region?

This problem was studied by Rahman et al. [11] for a very special class of
graphs, namely a certain subclass of graphs that admit a sliceable dual—see
below. They showed that such graphs admit a rectilinear cartogram where every
region has at most 8 vertices. Biedl and Genc [2] showed that it is NP-hard to
decide if a rectilinear cartogram that uses regions with at most 8 vertices exists
for a given graph. Furthermore, a rectangular layout can be interpreted as a
plane, cubic graph. Thomassen showed [13] that any such graph can be drawn
with straight (but not necessarily horizontal or vertical) edges such that every
bounded face has any prescribed area. These results leave the two questions
stated above still unanswered. Our paper answers them: We prove that any
plane triangulated vertex-weighted graph admits a rectilinear cartogram all of
whose regions have constant complexity. Before we describe our results in more
detail we first define the terminology we use more precisely.

Terminology. A layout L is a partition of a rectangle R into a finite set of
interior-disjoint regions. We consider only rectilinear layouts, where every region
is a simple rectilinear polygon whose sides are parallel to the edges of R. We
define the complexity of a rectilinear polygon as the total number of its vertices
and the complexity of a rectilinear layout as the maximum complexity of any
of its regions. A rectilinear layout is called rectangular if all its regions are
rectangles. Thus, a rectangular layout is a rectilinear layout of complexity 4.
Finally, a rectangular layout is called sliceable if it can be obtained by recursively
slicing a rectangle by horizontal and vertical lines, which we call slice lines. (In
computational geometry, such a recursive subdivision is called a (rectilinear)
binary space partition, or BSP for short.)

We denote the dual graph (also called connectivity graph) of a layout L by
G(L). Given a graph G, a layout L such that G = G(L) is called a dual layout (or
simply a dual) for G. The dual G(L) is unique for any layout L. Note that not
every graph G has a dual layout. If it does, then the dual layout is not necessarily
unique.
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Fig. 2. A graph G with a rectangular, rectilinear, and sliceable dual
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Every vertex v of a vertex-weighted graph G has a positive weight w(v) asso-
ciated with it. Given a vertex-weighted plane graph G that admits a dual L, we
say that L is a cartogram if the area of each region of L is equal to the weight of
the corresponding vertex of G. The cartogram is called rectangular (rectilinear,
sliceable) if the corresponding layout is rectangular (rectilinear, sliceable).

Results. In Section 2 we show how to construct a cartogram of complexity
12 for any vertex-weighted plane triangulated graph that has a sliceable dual.
We extend our results in Section 3 to general vertex-weighted plane triangu-
lated graphs G. Specifically, if G admits a rectangular dual then we can con-
struct a cartogram of complexity at most 20, otherwise we can construct a car-
togram of complexity at most 60. In Section 4 we conclude with several open
problems.

2 Graphs That Admit a Sliceable Dual

Let G = (V, E) be a vertex-weighted plane triangulated graph with n vertices
that admits a sliceable dual. The exact characterization of such graphs is still
unknown, but Yeap and Sarrafzadeh [15] proved that every triangulated plane
graph without separating triangles and without separating 4-cycles has a slice-
able dual. W.l.o.g. we assume that the vertex weights of G sum to 1, and that
the rectangle R that we want to partition is the unit square.

Let L1 be a sliceable dual for G. We scale and stretch L1 such that it becomes
a partition of the unit square R. We will transform L1 into a cartogram for G in
three steps. In the first step we transform L1 into a layout L2 where every region
has the correct area. In doing so, however, we may loose some of the adjacencies,
that is, L2 may no longer be a dual layout for G. This is remedied in the second
step, where we transform L2 into a layout L3 whose dual is G. In this step we
re-introduce some errors in the areas. But these errors are small, and we can
remove them in the third step, which produces the final cartogram, L4. Below
we describe each of these steps in more detail.

Step 1: Setting the Areas Right
The first step is relatively easy. Recall that a sliceable layout is a recursive
partition of R into rectangles by vertical and horizontal slice lines. This recursive
partition can be modelled as a BSP tree T . Each node ν of T corresponds to a
rectangle R(ν) ⊆ R and the interior nodes store a slice line (ν). The rectangles
R(ν) are defined recursively, as follows. We have R(root(T )) = R. Furthermore,
R(leftchild(ν)) = R(ν) ∩ −(ν) and R(rightchild(ν)) = R(ν) ∩ +(ν), where
−(ν) and +(ν) denote the half-space to the left and right of (ν) (or, if (ν)
is horizontal, above and below (ν)). The rectangles R(ν) corresponding to the
leaves are precisely the regions of the sliceable layout. See for example Figure 3—
the shaded rectangle corresponds to the shaded node. The BSP tree for a sliceable
layout is not necessarily unique, because different recursive partition processes
may lead to the same layout.
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Fig. 3. A graph G, the layout L1, and the BSP tree T

The point where two or maximally three slice lines meet is called a junction
(point). We distinguish between T- and X-junctions. A T-junction involves two
slice lines while an X-junction involves three slice lines, two of which are aligned.

Now, let T be a BSP tree that models the sliceable layout L1. We will trans-
form L1 into L2 by changing the coordinates of the slice lines used by T in a
top-down manner. We maintain the following invariant: When we arrive at a
node ν in T , the area of R(ν) is equal to the sum of the required areas of the
regions represented by the leaves below ν. Clearly this is true when we start the
procedure at the root of T . Now assume that we arrive at a node ν which stores
a slice line (ν). We simply sum up all the required areas in the left subtree of
ν and adjust the position of the (ν) in the unique way that assigns the cor-
rect areas to R(leftchild(ν)) and R(rightchild(ν)). When we reach a leaf there is
nothing to do; the rectangle it represents now has the required area.

Step 2: Setting the Adjacencies Right
The movement of the slice lines in Step 1 may have changed the adjacencies
between the regions. To remedy this, we will use the BSP tree T again.

δν εν

�(ν)

Fig. 4. The shift and
tail strips for �i

Before we start, we define two strips for each slice
line (ν). These strips are centered around (ν) and are
called the tail strip and the shift strip. The width of the
tail strip is 2εν and the width of the shift strip is 2δν ,
where εν < δν and εν and δν are sufficiently small. The
exact values of εν and δν will be specified in Step 3. At
this point it is relevant only that we can choose them
in such a way that the shift strips of two slice lines are
disjoint except when two slice lines meet.

We will make sure that the changes to the layout
in Step 2 all occur within the tail strips and that the
changes in Step 3 all occur within the shift strips. Due
to the choice of the δν ’s all the junction points within
the shift strip will lie on the slice line (ν).

To restore the correct adjacencies, we traverse the
BSP tree bottom-up. We maintain the invariant that
after handling a node ν, all adjacencies between regions inside R(ν) have been
restored. Now suppose that we reach a node ν. The invariant tells us that all
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adjacencies inside R(leftchild(ν)) and R(rightchild(ν)) have been restored. It re-
mains to restore the correct adjacencies between regions on different sides of the
slice line (ν). We will describe how to restore the adjacencies for the case where
(ν) is vertical; horizontal slice lines are handled in a similar fashion, with the
roles of the x- and y-coordinates exchanged.

A1

A2

A3

A4
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A7

B1

B2

B3

B4

B5

�(ν)

Fig. 5. Left and right
neighbors

Let A1, A2, . . . , Ak be the set of regions inside R(ν)
bordering (ν) from the left, and let B1, B2, . . . , Bm

be the set of regions inside R(ν) bordering (ν) from
the right. Both the Ai’s and the Bj ’s are numbered
from top to bottom—see Figure 5. We write Ai ≺ Aj

to indicate that Ai is above Aj ; thus Ai ≺ Aj if and
only if i < j. The same notation is used for the Bj ’s.
Now consider the tail strip centered around (ν). All
slice lines ending on (ν) are straight lines within the
tail strip (and, in fact, even within the shift strip).
This is true before Step 2, but as we argue later, it is
still true when we start to process (ν).

In Step 1 (and when Step 2 was applied to
R(leftchild(ν)) and R(rightchild(ν))), the slice lines
separating the Ai’s from each other and the slice lines
separating the Bj ’s from each other may have shifted, thus disturbing the adja-
cencies between the Ai’s and Bj ’s. For each Ai, we define top(Ai) := Bk if Bk

is the highest region (among the Bj ’s) adjacent to Ai in the original layout L1.
Similarly, bottom(Ai) is the lowest such region. This means that in L1, the re-
gion Ai was adjacent to all Bj with top(Ai) � Bj � bottom(Ai). We restore
these adjacencies for Ai by adding at most two so-called tails to Ai, as described
below. This is done from top to bottom: We first handle A1, then A2, and so
on. During this process the slice line (ν) will be deformed—it will no longer be
a straight line, but it will become a rectilinear poly-line. However, the part of
(ν) bordering regions we still have to handle will be straight. More precisely,
we maintain the following invariant: When we start to handle a region Ai, the
part of (ν) that lies below the bottom edge of top(Ai) is straight and the right
borders of all Aj � Ai are collinear with that part of .

Next we describe how Ai is handled. There are two cases, which are not
mutually exclusive: Zero, one, or both of them may apply. When both cases
apply, we treat first (a) and then (b).

(a) If Ai is not adjacent to top(Ai) and top(Ai) is higher than Ai, then we add
a tail from Ai to top(Ai). (If Ai is not adjacent to top(Ai) and top(Ai)
is lower than Ai, then case (b) will automatically connect Ai to top(Ai).)
More precisely, we add a rectangle to the right of Ai whose bottom edge
is collinear with the bottom edge of Ai and whose top edge is contained in
the bottom edge of top(Ai). The width of this rectangle is εν

n . Moreover,
we shift the part of the slice line below top(Ai) by εν

n to the right. Observe
that this will make all the Bj below top(Ai) smaller and all Aj below Ai

larger.
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(b) If Ai is not adjacent to bottom(Ai) and bottom(Ai) is lower than Ai, then
we also add a tail, as follows. (If Ai was not adjacent to bottom(Ai) and
bottom(Ai) was higher than Ai, then necessarily case (a) has already been
treated and in fact Ai is now adjacent to bottom(Ai).) First, we shift the
part of the slice line below the top edge of bottom(Ai) by εν

n to the left.
Observe that this will enlarge bottom(Ai) and all the Bj below it, and make
all Aj � Ai smaller. Next, we add a rectangle of width εν

n to Ai, which con-
nects Ai to bottom(Ai). Its top edge is contained in the bottom edge of Ai,
its right edge is collinear to Ai’s right edge, and its bottom edge is contained
in the top edge of bottom(Ai).

Note that every tail “ends” on some Bj , that is, no tail extends all the way to
the slice lines on which (ν) ends. This implies that

– no bends are introduced inside the shift strips of the two slice lines on which
(ν) ends (as we already claimed earlier).

– the bordering sequence (the sets of countries along each side of a slice line
and their order) of any other slice line remains unchanged.

– the bottom end of (ν) shifts only within the tail strip of (ν).

Lemma 1. The layout L3 obtained after Step 2 has the following properties:

(i) If two regions are adjacent in L1, then they are also adjacent in L3.
(ii) The tails that are added when handling a slice line  all lie within the tail

strip of .
(iii) Each region gets at most three tails.

Proof.

(i) It follows from the construction that each region Ai along a slice line (ν) has
the required adjacencies after (ν) has been handled. Hence, the construction
maintains the invariant that all adjacencies within R(ν) are restored after
(ν) has been handled. Therefore, after the slice line that is stored at the
root of T is handled, all adjacencies have been restored.

(ii) A tail inside a tail strip of width 2εν has width εν

n and is always adjacent
to the current slice line. A slice line is shifted at most n − 2 times by εν

n .
Hence, the tails lie within the tail strip, as claimed.
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(iii) A region can get tails only when the slice line r on its right and the slice
line t along its top are handled. Since a region must be either the topmost
region along r or the rightmost region along t it can only get a double tail
along one of these slice lines. Thus each region receives at most 3 tails. Note
that since the tails along the same slice line are aligned, a region does not
get more than three concave vertices. �

Note that if G is triangulated then Lemma 1 (i) implies that two regions in
L3 are adjacent if and only if they are adjacent in L1: All required adjacencies
are present and in a plane triangulated graph there is no room for additional
adjacencies.

Step 3: Repairing the Areas
When we repaired the adjacencies in Step 2, we re-introduced some small errors
in the areas of the regions. We now set out to remedy this. In Step 2, the slice
lines actually became rectilinear poly-lines. These poly-lines, which we will keep
on calling slice lines for convenience, are monotone: A horizontal (resp. vertical)
line intersects any vertical (resp. horizontal) slice line in a single point, a segment,
or not at all. We will repair the areas by moving the slice lines in a top-down
manner, similar to Step 1. But because we do not want to loose any adjacencies
again, we have to be more careful in how we exactly move a slice line. This is
described next.

Assume that we wish to move a horizontal slice line  = ν ; vertical slice lines
are treated in a similar manner. Let 1 and 2 be the slice lines to the left and
to the right of , that is, the slice lines on which  ends. We define a so-called
container for , denoted by C(). The container C() is a rectangle containing
most of , as well as parts of the other slice lines ending on . Instead of moving
the slice line  we will move the container C() and its complete contents.

We first define the container C() more precisely. The top and bottom edge
of C() are contained in the boundary of the tail strip of . The position of the
right edge of  is determined by what happened at the junction between  and
2 when 2 was processed during Step 2. Let Ai and Ai+1 be the regions above
and below  and bordering 2.

(i) Ai did not get a downward tail and Ai+1 did not get an upward tail.
In this case either there is no other junction on 2 within ’s shift strip, or
there is exactly one and it lies within ’s tail strip (see Fig. 7(a)). If there
is a junction on 2 within ’s tail strip in the direction in which C() should
be moved, then we set the right edge of the container C() at distance εν/n
from 2 (see Fig. 7(b)). Otherwise, the right edge of the container is collinear
with the part of 2 lying within ’s shift strip (see Fig. 7(c)).

(ii) Ai got a downward tail or Ai+1 got an upward tail.
Note that in this case more tails may have entered the tail strip of . For
example, if Ai+1 got an upward tail then some other regions below Ai+1
possibly got an upward tail as well. In this case the right edge of C() will go
through the leftmost such tail edge—see Fig. 8. Figures 9 and 10 illustrate
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the case, when  and 2 were involved in an X-junction in L1—hence Ai+1
could have a tail within ’s tail strip.

The position of the left edge of C() is determined in a similar fashion, the
details can be found in the full paper. Note that no matter what was going on on
the other sides of 1 and 2, the adjacencies are preserved when C() is moved.

Recall that we are repairing the areas in a top-down manner. When we get to
slice line , we need to make sure that the total area above —or rather the total
area of the regions corresponding to the left subtree of the node corresponding to
 in the BSP tree—is correct. We do this by moving the container C(). We will
show below that the error we have to repair is so small that it can be repaired by
moving C() within the shift strip of . The parts of the slice lines ending on 
that are inside the shift strip and outside the tail strip are all straight segments;
this follows from Lemma 1 (ii). Hence, when we move C() we can simply shrink
or stretch these segments, and the topology does not change. We first analyze
what happens to the complexity of the regions when we move the containers.

Lemma 2. After Step 3 a region gets at most 4 concave vertices in total.

Proof. We might only “bend” a slice line , ending on slice lines 1 and 2, when
moving its container C(). Thus we can introduce concave vertices to two regions
adjacent to  and 1 (2), denoted above as Bj and Bj+1 (Ai and Ai+1). It is
easy to verify—see Figures 7–10—that a region can only get an extra concave
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vertex at the junction of  and 2 when the corner of the region did not yet get
a tail in Step 2. The same is true for the junction of  and 1. Hence the total
number of concave vertices is bounded by four—at most one for each corner of
the region in L1. �

It remains to prove that we can choose the widths of the tail strip and shift
strip appropriately. The two properties that we require are as follows.

Requirement 1. The shift strips of slice lines do not intersect if the slice lines
do not intersect after Step 1.

Requirement 2. The shift strip of each slice line  is wide enough so that,
when handling  in Step 3, moving the container C() can repair the areas while
staying within the shift strip.

For the first requirement it is sufficient to take the width of the shift strip to
be smaller than Δ/2, where Δ := min(Δx, Δy) and Δx (Δy) is the minimum
difference between any two distinct x-coordinates (y-coordinates) of the vertical
(horizontal) slice lines after Step 1.

As for the second requirement, we provide a very rough estimate of the values
for the width of the shift and tails strips, just to show that suitable values exist.
Number the slice lines 1, . . . n−1 in the same order in which we handle them.
(For example, the slice line at the root of the BSP tree will be 1.)

Lemma 3. If the width of the shift strip of slice line k is set to δk := Δ/4 ·
((Δ(1 − Δ))/10)n−k−1 and the width of the tail strip is set to εk := δk ·Δ/2, for
1 � k � n − 1, then Requirements 1 and 2 are fulfilled.

The proof of Lemma 3 can be found in the full version of the paper. We conclude
this section with the following theorem:

Theorem 1. Let G be a vertex-weighted plane triangulated graph that admits a
sliceable dual. Then G admits a cartogram of complexity at most 12.

3 General Graphs

In the previous section we described an algorithm to construct cartograms for
graphs that admit a sliceable dual. Next we consider more general graphs, namely
graphs that admit a rectangular dual and arbitrary triangulated plane graphs.
These more general classes of graphs are handled by adding an extra step before
the three steps described in the previous section.

We begin with graphs that admit a rectangular dual, that is, plane trian-
gulated graphs without separating triangles. Such a rectangular dual can be
constructed, for example, by the algorithm of Kant and He [7]. Let now G be
a plane triangulated graph without separating triangles and L0 a rectangular
dual of G. We construct a rectilinear BSP on L0, that is, we recursively partition
L0 using horizontal or vertical splitting lines until each cell in the partitioning
intersects a single rectangle from L0. This can be done in such a way that each
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rectangle in L0 is cut into at most four subrectangles [3]. The resulting layout
of these subrectangles, L1, is sliceable by construction.

We then assign weights to the subrectangles. If a rectangle in L0 representing
a vertex v of G was cut into k subrectangles in L1 then each subrectangle is
assigned weight w(v)/k. (In practice it may be better to make the weight of
each subrectangle proportional to its area.) Next, we perform Step 1–3 of the
previous section on the layout L1 with these weights. Each rectilinear region
in the layout L4 obtained after Step 3 corresponds to a subrectangle in L1.
Finally, we merge the regions corresponding to subrectangles coming from the
same rectangle in L0—and, hence, from the same vertex of G—thus obtaining
a layout L5 with one region per vertex of G. The next lemma guarantees the
correctness of our approach, its proof can be found in the full paper.

Lemma 4. The algorithm described above produces a layout where each region
has the correct area and adjacencies.

It remains to analyze the complexity of the regions in the final layout. Of course
we can just multiply the bound from the previous section by four, since each
vertex in G is represented by four rectangles in L1. This results in a bound of 48.
The next lemma shows that things are not quite that bad, its proof can be found
in the full paper.

Lemma 5. The algorithm described above produces regions of complexity at
most 20.

The next theorem summarizes our result for graphs that admit a rectangular
dual.

Theorem 2. Let G be a vertex-weighted plane triangulated graph that admits a
rectangular dual, i.e., G has no separating triangles. Then G admits a cartogram
of complexity at most 20.

We now turn our attention to general plane triangulated graphs. As mentioned
earlier, Liao et al. [9] showed that any plane triangulated graph has a rectilinear
dual that uses L- and T-shapes—that is, regions of maximal complexity 8—in
addition to rectangles. We cut each region into at most three subrectangles and
then proceed as in the previous case: We cut the collection of subrectangle with
a BSP to obtain a sliceable layout L1, we assign weights to the rectangles in
L1, run Step 1–3, and merge regions belonging to the same vertex in G. This
immediately gives the following corollary.

Corollary 1. Any vertex-weighted plane triangulated graph G admits a car-
togram of complexity at most 60.

4 Conclusions

We proved that every plane triangulated vertex-weighted graph admits a recti-
linear cartogram of constant complexity. Currently, however, our method is not
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practical. First of all, although the complexity of the cartogram is bounded by a
constant, it is rather high. So interesting open problems are to give an algorithm
that produces cartograms of smaller complexity and to give lower bounds on
the minimum complexity required to guarantee the existence of a cartogram. It
would also be useful to give an exact characterization of the graphs that admit
a sliceable dual, since the bound we obtain for such graphs is much better. A
second problem with our algorithm from a practical point of view is that the
tails we add to get the correct adjacencies can be quite thin. It would be nice to
see if it is possible to do with wider tails.
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Abstract. Let S be a set of horizontal line segments, or bars, in the
plane. We say that G is a bar visibility graph, and S its bar visibility rep-
resentation, if there exists a one-to-one correspondence between vertices
of G and bars in S, such that there is an edge between two vertices in G
if and only if there exists an unobstructed vertical line of sight between
their corresponding bars. If bars are allowed to see through each other,
the graphs representable in this way are precisely the interval graphs.
We consider representations in which bars are allowed to see through at
most k other bars. Since all bar visibility graphs are planar, we seek mea-
surements of closeness to planarity for bar k-visibility graphs. We obtain
an upper bound on the number of edges in a bar k-visibility graph. As
a consequence, we obtain an upper bound of 12 on the chromatic num-
ber of bar 1-visibility graphs, and a tight upper bound of 8 on the size
of the largest complete bar 1-visibility graph. We conjecture that bar
1-visibility graphs have thickness at most 2.

1 Introduction

Recent attention has been drawn to a variety of generalizations of bar visibility
graphs [2, 3, 6, 5, 7, 8, 11, 12, 14, 15]. In this note, we report on a new generaliza-
tion of bar visibility graphs called bar k-visibility graphs, and discuss some of
their properties; complete details can be found in [4]. In what follows, we use
the standard graph theory terminology found in [9, 17].

Let S be a set of disjoint horizontal line segments, or bars, in the plane. We
say that a graph G is a bar visibility graph, and S a bar visibility representation
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G H

Fig. 1. The bar visibility representation shown is an ε-visibility representation of G
and a strong visibility representation of H

of G, if there exists a one-to-one correspondence between vertices of G and bars
in S, such that there is an edge between two vertices x and y in G if and only if
there exists a vertical line segment L, called a line of sight, whose endpoints are
contained in X and Y , respectively, and which does not intersect any other bar
in S. [1, 12, 13, 18].

If each line of sight is required to be a rectangle of positive width, then S is
an ε-visibility representation of G, and when each line of sight is a line segment,
then S is a strong visibility representation of G [16]. In general, these definitions
are not equivalent; K2,3 admits an ε-visibility representation but not a strong
visibility representation, as shown in Figure 1.

Given a set of bars S in the plane, suppose that an endpoint of a bar B
and an endpoint of a bar C in S have the same x-coordinate. We elongate
one of these two bars so that their endpoints have distinct x-coordinates. If S
is a strong visibility representation of a graph G, then we may perform this
elongation so that S is still a strong visibility representation of G. If S is an
ε-visibility representation of G, then we may perform this elongation so that S
is an ε-visibility representation of a new graph H with G ⊆ H . Since we are
interested in the maximum number of edges obtainable in a representation, we
may consider the graph H instead of the graph G. Repeating this process yields
a set of bars with pairwise distinct endpoint x-coordinates. For the remainder
of this paper, we assume that all bar visibility representations are of this form.

If a set of bars S has all endpoint x-coordinates distinct, the graphs G and
H that have S as a strong bar visibility representation and an ε-visibility repre-
sentation, respectively, are isomorphic. Hence without loss of generality, for the
remainder of the paper, all bar visibility representations are strong bar visibility
representations.

By contrast, suppose that S is a set of closed intervals on the real line. The
graph G is called an interval graph and S an interval representation of G if
there exists a one-to-one correspondence between vertices of G and intervals
in S, such that x and y are adjacent in G if and only if their corresponding
intervals intersect. Suppose we call a set S of horizontal bars in the plane an
x-ray-visibility representation if we allow sight lines to intersect arbitrarily many
bars in S. Then we can easily transform an x-ray-visibility representation into
an interval representation by vertically translating the bars in S, and vice-versa.
Therefore G is an x-ray-visibility graph if and only if G is an interval graph.

Motivated by this correspondence, we define a bar k-visibility graph to be
a graph with a bar visibility representation in which a sight line between bars
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X and Y intersects at most k additional bars. As a first step on the road to
a characterization of bar k-visibility graphs, since all bar visibility graphs are
planar, we seek measurements of closeness to planarity for bar k-visibility graphs.

2 An Edge Bound for Bar 1-Visibility Graphs

Suppose G is a graph with n vertices, and S is a bar 1-visibility representation
of G. Since we consider S to be a strong visibility representation of G, without
loss of generality, we may assume that all endpoints of all bars in S have distinct
x-coordinates, and all bars in S have distinct y-coordinates.

It will be convenient to use four different labeling systems for the bars in
S. Label the bars 1l, 2l, . . ., nl in increasing order of the x-coordinate of their
left endpoint. Label them 1r, 2r, . . ., nr in decreasing order of the x-coordinate
of their right endpoint. Label them 1b, 2b, . . ., nb in increasing order of their
y-coordinate. Finally, label them 1t, 2t, . . ., nt in decreasing order of their y-
coordinate. So the bar 1l has leftmost left endpoint, the bar 1r has rightmost
right endpoint, the bar 1b = nt is bottommost in the representation, and the bar
1t = nb is topmost in the representation. We use this notation for the remainder
of the paper.

Remark 1. Suppose S is a bar k-visibility representation of a graph G with n
vertices. We elongate the top and bottom bars of S to obtain a new bar k-
visibility representation S′ of a new graph G′, with the additional property that
1t = 1r = 1l and 1b = 2r = 2l in S′. The graph G′ has n vertices and contains G
as a subgraph. We may therefore assume that every edge-maximal bar k-visibility
graph has such a bar k-visibility representation.

Lemma 1. If G is a bar 1-visibility graph with n ≥ 4 vertices, then G has at
most 6n − 17 edges.

Proof. Suppose G is a graph with n vertices, and S is a bar 1-visibility repre-
sentation of G. We define the following correspondence between bars in S and
edges of G. Let U be the bar in S associated with vertex u. For every edge {u, v}
in G, let ({u, v}) be the vertical line segment from a point in U to a point in
V whose x-coordinate is the infimum of x coordinates of lines of sight between
U and V . An edge {u, v} is called a left edge of U (respectively V ) if ({u, v})
contains the left endpoint of U (respectively V ). If ({u, v}) contains neither U
nor V ’s left endpoint then it must contain the right endpoint of some bar B
(that blocks the 1-visibility of U from V from that point on). In this case, we
call {u, v} a right edge of B. Note that the right edges of B are not incident to
the vertex b of G corresponding to the bar B. Each bar B can have at most 4
left edges (two to bars above B in S and two to bars below B in S) and at most
2 right edges, as shown in Figure 2.

Counting both left and right edges, each bar in S is associated with at most
6 edges. So there are at most 6n edges in G. However, the bars 1l, 2l, 3l, and 4l

have at most 0, 1, 2, and 3 left edges, respectively. Similarly, the bars 1r, 2r, 3r,
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B

Fig. 2. The two right edges associated to bar B

and 4r have at most 0, 0, 0, and 1 right edges, respectively. Therefore there are
at most 4n − 10 left edges and at most 2n − 7 right edges, for a total of at most
6n − 17 edges in G. �

Theorem 1. If G is a bar 1-visibility graph with n ≥ 5 vertices, then G has at
most 6n − 20 edges.

Proof. We improve the bound given in Lemma 1 by using a slightly more so-
phisticated technique. We follow the notation of Lemma 1.

By Remark 1, the edge {1t, 1b} will always be a left edge. Since the edge
associated with the right endpoint of the bar 4r can only be this edge, the bar
4r must have 0 right edges. So there are at most 2n − 8 right edges in G, and
6n − 18 edges in total. If G has exactly 6n − 18 edges, then bars 1l, 2l, 3l, and
4l must have at least 0, 1, 2, and 2 left edges, respectively.

Suppose that bar 4l has only two left edges. Then it does not have a line of
sight to bar 3l, which can happen only if 3l ends before 4l begins. Then 3l = nr,
and 3l has 0 right edges. Therefore G has at most 6n − 20 edges. The only
remaining possibility is that bar 4l has exactly three left edges.

If S had at most 4n− 12 left edges, then S would have at most 6n− 20 edges
in total. The remaining possibilities are that S has either 4n− 11 or 4n− 10 left
edges. Since 1l, 2l, 3l, and 4l have exactly 0, 1, 2, and 3 left edges, respectively,
all other bars in S must have exactly four left edges, except perhaps for one bar
il, which may have three left edges. By the same argument, since 1r, 2r, 3r, and
4r have no right edges, every additional bar must have exactly two right edges,
except one additional bar, which may have only one.

Consider the four edges e1 = {1t, 1b}, e2 = {1t, 2b}, e3 = {2t, 1b}, and e4 =
{2t, 2b}. If il = 2b, then the edges e1 and e3 are left edges, but the edges e2 and
e4 may not be. If il = 2t, then the edges e1 and e2 are left edges, but the edges
e3 and e4 may not be. If il is neither of these bars, then all four of these edges
are left edges.

Since the bars 2t and 2b have at most one right edge each, one of them must
be bar 3r or bar 4r. Without loss of generality, assume that bar 2t is either
bar 3r or bar 4r. So in the order of the bars 1r through 5r given by increasing
y-coordinate, the bar 5r must appear either second or third. Figure 3 shows the
four possibilities that may occur.

In each of the four cases shown, and for each of the three possibilities for the
bar il, one can check that 5r has at most one right edge. So the remaining bars
must all have exactly two right edges. Therefore the bars 2t and 2b must be two
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2r=1b

3r=2t

4r

5r

...
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2r=1b

4r=2t

3r

5r

...

1r=1t

2r=1b

4r=2t

3r

5r

Fig. 3. The four possible arrangements of bars 1r, 2r, 3r, 4l, and 5r

of the three bars 3r, 4r, and 5r. But this implies that any right edge associated
to 5r must be between a pair of the bars 1t, 2t, 1b, and 2b. Therefore 5r must
have no right edges, and G has at most 6n − 20 edges in total. �

Corollary 2. The graph K9 is not a bar 1-visibility graph.

Proof. Any bar 1-visibility graph with 9 vertices has at most 34 edges, whereas
K9 has 36 edges. �

Corollary 3. If G is a bar 1-visibility graph, then χ(G) ≤ 12.

Proof. We proceed by induction. Assume that all bar 1-visibility graphs with
n − 1 vertices have χ ≤ 12, and suppose that G is a bar 1-visibility graph
with n vertices. By Theorem 1,

∑
v∈V (G) deg(v) < 12n, so the average degree

of a vertex in G is strictly less than 12. Then there must exist a vertex v in
G of degree at most 11. We consider the graph G − v. Although this graph
may not be a bar 1-visibility graph, it is a subgraph of the graph G′ with bar
1-visibility representation obtained from a representation of G by deleting the
bar corresponding to v. Therefore the edge bound in Theorem 1 still applies to
H . By the induction hypothesis, we may color the vertices of H with 12 colors,
replace v, and color v with a color not used on its neighbors. �

Corollary 4. There are thickness-2 graphs with n vertices that are not bar 1-
visibility graphs for all n ≥ 15.

Proof. Note that there are no thickness-2 graphs with n vertices and more than
6n−12 edges, since if G has thickness 2 then G is the union of two planar graphs,
each of which have at most 3n−6 edges. Consider the graph G = C3�C5 formed
by replacing each vertex in C5 with C3 and taking the join of neighboring C3’s.
G has 15 vertices and 6 · 15 − 12 = 78 edges. Since G is the union of the two
planar graphs shown in Figure 4, G has thickness 2.

Let G15 = G and suppose L1 and L2 are the two plane layers of G15. Let
{a, b, c} be a face in L1 and {d, e, f} be a face in L2 such that {a, b, c}∩{d, e, f} =
∅. Add a new vertex v to G15 adjacent to {a, b, c} in L1 and {d, e, f} in L2; define
the new graph to be G16. The graph G16 has 16 vertices and 6 ·16−12 edges, and
thickness 2. Following the same procedure, inductively we construct an infinite
family of graphs Gn such that for all n ≥ 15, Gn has n vertices and 6n − 12
edges, and thickness 2. Therefore none of these graphs can be a bar 1-visibility
graph by Theorem 1. �
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Fig. 4. Two planar graphs whose union is not a bar 1-visibility graph
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Fig. 5. A bar 1-visibility representation with 6n − 20 edges

Note that the graphs {Gn} given in the proof of Corollary 4 have the largest
possible number of edges while having thickness 2.

Theorem 5. There exist bar 1-visibility graphs with 6n − 20 edges, n ≥ 5.

Proof. The graph with representation shown in Figure 5 is a bar 1-visibility
graph with 6n − 20 edges. For ease of counting, the left and right endpoints of
bars in this representation are labeled with the number of left and right edges
associated to each bar. Note that this representation has 4n − 11 left edges and
2n − 9 right edges. Although n = 11 in this representation, more bars can easily
be deleted to create a representation with as few as 5 bars, or added to create a
representation with arbitrarily many bars. For the values n = 5 through 8, this
representation yields a complete graph. �

Corollary 6. The graph K8 is a bar 1-visibility graph.

Proof. Take only eight bars in the representation shown in Figure 5. �

By Corollary 6, if G is a bar 1-visibility graph, then χ(G) may be 8. No bar
1-visibility graph is known with chromatic number 9. The standard example of a
graph with chromatic number 9 but clique number smaller than 9 is the Sulanke
graph K6 ∨ C5 [17], which is not a bar 1-visibility graph since it has 11 vertices
and 50 edges.
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3 Edge Bounds on Bar k-Visibility Graphs

The following theorem generalizes Lemma 1 for k > 1. The proof is entirely
analogous to the proof of Lemma 1, and can be found in [4].

Theorem 7. If G is a bar k-visibility graph with n ≥ 2k + 2 vertices, then G
has at most (k + 1)(3n − 7

2k − 5) edges.

Theorem 8. There exist bar k-visibility graphs with n vertices and (k+1)(3n−
4k − 6) edges for k ≥ 0 and n ≥ 3k + 3.

Proof. Figure 6 shows a bar k-visibility representation of a graph with n vertices
and (k + 1)(3n − 4k − 6) edges. As in Figure 5, the left and right endpoints of
bars in this representation are labeled with the number of left and right edges
associated to each bar. Although n = 4k + 4 in this representation, more bars
can easily be deleted to create a representation with as few as 3k + 3 bars, or
added to create a representation with arbitrarily many bars. �
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Fig. 6. A bar k-visibility graph with n vertices and (k + 1)(3n − 4k − 6) edges

Note that Theorem 8 gives the largest number of edges in a bar k-visibility
graph for k = 0, 1. We believe that this is the case for larger k as well. We state
this as a conjecture.

Conjecture 1. If G is a bar k-visibility graph, then G has at most (k + 1)(3n −
4k − 6) edges.

The following theorem is a corollary of Theorem 7.

Theorem 9. K5k+5 is not a bar k-visibility graph.

Proof. By way of contradiction, suppose that G is a graph with n = 5k + 5
vertices. Then by Theorem 7, G has at most (k + 1)(3(5k + 5) − 7

2k − 5) =
23
2 k2 + 43

2 k + 10 edges. However, K5k+5 has
(5k+5

2

)
= 25

2 k2 + 45
2 k + 10 edges. �
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Note that if Conjecture 1 is true, we immediately obtain the following con-
jecture as a corollary.

Conjecture 2. K4k+4 is the largest complete bar k-visibility graph.

Proof (Assuming Conjecture 1). Figure 6 shows a bar k-visibility representation
of K4k+4. Conversely, suppose that G is a graph with n = 4k + 5 vertices. Then
by Conjecture 1, G has at most (k + 1)(3(4k + 5) − 4k − 6) = 8k2 + 17k + 9
edges. However, K4k+5 has

(4k+5
2

)
= 8k2 + 18k + 10 edges. �

Conjecture 1 is not required to prove Conjecture 2 when k = 0 or 1; we have
already proved these cases in the previous section. Note also that the graph
K4k+4 exactly achieves the bound given by Conjecture 1. So if this conjecture
is correct, the family of complete graphs K4k+4 is an example of a family of
edge-maximal bar k-visibility graphs.

4 Thickness of Bar k-Visibility Graphs

By Corollary 6, K8 is a bar 1-visibility graph, and thus there are non-planar
bar 1-visibility graphs. Motivated by the fact that all bar 0-visibility graphs
are planar [10], we are interested in measuring the closeness to planarity of bar
1-visibility graphs. The thickness Θ(G) of a graph G is the minimum number
of planar graphs whose union is G. K8 has thickness 2 [12], so there exist bar
1-visibility graphs with thickness 2. Conversely, the following theorem from [4]
gives an upper bound for the thickness of a bar 1-visibility graph.

Suppose G is a bar 1-visibility graph, and S is a bar 1-visibility representation
of G. We define the underlying bar visibility graph G0 of S to be the graph with
bar visibility representation S. The following theorem relates the thickness of G
to the chromatic number of G0.

Theorem 10. If G is a bar 1-visibility graph and G0 an underlying bar visibility
graph of G, then Θ(G) ≤ χ(G0). In particular, the thickness of any bar 1-
visibility graph is at most four.

We conjecture that bar 1-visibility graphs have thickness no greater than 2.
More generally, we know that the thickness of a bar k-visibility graph is bounded
by some function of k [4]. The smallest such function of k is still open.

5 Future Work

We close with a list of open problems inspired by the results of this note.

1. What is the largest number of edges in a bar 2-visibility graph with n
vertices?

2. What is the largest number of edges in a bar k-visibility graph with n
vertices?
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3. Are there bar 1-visibility graphs with thickness 3?
4. More generally, what is the largest thickness of a bar k-visibility graph? Is

it k + 1?
5. Are there bar 1-visibility graphs with chromatic number 9?
6. More generally, what is the largest chromatic number of a bar k-visibility

graph?
7. What is the largest crossing number of a bar k-visibility graph?
8. What is the largest genus of a bar k-visibility graph?
9. What is a complete characterization of bar k-visibility graphs?

10. Is there an efficient recognition algorithm for bar k-visibility graphs?
11. Rectangle visibility graphs are defined in [7, 8, 15]. Generalize the results of

this note to rectangle visibility graphs.
12. Arc- and circle-visibility graphs are defined in [11]. Generalize the results of

this note to arc- and circle-visibility graphs.
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Abstract. We give a drawing of Kn in 3D in which vertices are placed
at integer grid points and edges are drawn crossing-free with at most one
bend per edge in a volume bounded by O(n2.5).

1 Introduction

Drawing graphs in three dimensions has been considered by several authors in
the graph-drawing field under a variety of models. One natural model is to draw
vertices as points at integer-valued grid points in a 3D Cartesian coordinate
system and represent edges as straight line segments between adjacent vertices
with no pair of edges intersecting. The volume of such a drawing is typically
defined in terms of a smallest bounding box containing the drawing and with
sides orthogonal to one of the coordinate axes. If such a box B has width w,
length l and height h, then we refer to the dimensions of B as (w + 1) × (l +
1) × (h + 1) and define the volume of B as (w + 1) · (l + 1) · (h + 1).

It was shown by Cohen et al. [3] that it is possible to draw any graph in this
model, and indeed the complete graph Kn is drawable within a bounding box
of volume Θ(n3). Restricted classes of graphs may however be drawn in smaller
asymptotic volume. For example, Calamonieri and Sterbini [2] showed that 2-, 3-,
and 4-colourable graphs can be drawn in O(n2) volume. Pach et al. [11] showed a
volume bound of Θ(n2) for r-colourable graphs (r a constant). Dujmović et al. [4]
investigated the connection of bounded tree-width to 3D layouts. Felsner et al. [8]
showed that outerplanar graphs can be drawn in O(n) volume. Establishing
tight volume bounds for planar graphs remains an open problem. Dujmović and
Wood [5] showed an upper bound of O(n1.5) on the volume of planar graphs at
Graph Drawing 2003.

In 2-dimensional graph drawing, the effect of allowing bends in edges has been
well studied. For example, Kaufmann and Wiese [9] showed that all planar graphs
can be drawn with only 2 bends per edge and all vertices located on a straight line.
� Supported in part by the NSERC Canada.
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The consequences of allowing bends in 3D has received less attention. Note
that bend points must also occur at integer grid points. Bose et al. [1] showed
that the number of edges in a graph provides an asymptotic lower bound on the
volume regardless of the number of bends permitted, thus establishing Ω(n2) as
the lower bound on the volume for Kn. This lower bound was explicitly achieved
by Dyck et al. [7] who presented a construction with at most 2 bends per edge.
The upper bound is also a consequence of a more general result of Dujmović and
Wood [6]. In [10], Morin and Wood presented a one-bend drawing of Kn that
achieves O(n3/ log2 n) volume. It is the gap between this result and the Ω(n2)
lower bound that motivates this paper; we improve the Morin and Wood result
to achieve a one-bend drawing with volume O(n2.5).

2 Preliminaries

We call the axes of our 3D Cartesian coordinate system respectively X, Y and Z.
The one-bend construction of Kn by Morin and Wood [10] considers O(log n)

packets of O( n
log n ) collinear vertices. All the vertices lie in the XY -plane and

edges joining vertices of different packets lie above this plane. Edges joining
vertices within a packet lie below this plane and the volume of these (complete)
subgraphs is a consequence of the following lemma.

Lemma 1 ([10]). For all q � 1, Km has a one-bend drawing in an axis-parallel
box of size q × m ×

⌈
π2

3
m2

q

⌉
with all the vertices on the Y -axis.

Indeed, Ω(n3) volume is required for a collinear one-bend drawing of Kn as
shown by Morin and Wood. We present here a brief description of the construc-
tion behind Lemma 1 because we will use it in our construction. The edges are
divided into Θ(m2) chains of edges (i.e., sequences of edges). A chain connects
all vertices with index equal to i modulo j such that the vertices on the chain
are ordered with increasing indices. In each chain, the bends are placed on a line
parallel to the Y -axis through a point of integer coordinates (x, z) in the XZ-
plane. The chains thus lie in planes that contain the Y -axis (where the vertices
lie). In the XZ-plane, the points (x, z) are chosen so that they are all strictly
visible from the origin. The well-known fact that there are Θ(m2) such choices
in a rectangle of size q × m2

q ensures that all the Θ(m2) chains can be placed in
distinct planes, and thus that the edges do not cross.

3 The Construction

Our construction is roughly as follows. We split the n vertices into k packets of
n
k vertices, where all vertices in one packet have the same X and Z coordinates.
All edges of the complete graph contain a bend. All edges joining two vertices
of one packet are placed below and right (positive X direction) of the packet,
and all edges joining two vertices of different packets are placed “above”. We
present our construction for an arbitrary k and show later that the volume of the
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X

Z

vi0,�

vi,�

e�,�→i,0

e�,�→i,nk−1

X

Y

v0,1

Z

X

2 4 60

(a) (b) (c)

Fig. 1. (a) Projection on the XY -plane of the vertices (dots), the bends (squares),
and the edges leaving vertex v0,1. Here, n = 16 and k = 4. (b) Construction of the
Z-coordinates. (c) XZ-projection of the bounding boxes of the interpacket edges.

bounding box of the drawing is minimized for k = n
1
4 . We assume for simplicity

that n
k is an integer.

X and Y coordinates of the vertices. We first describe the X and
Y-coordinates of the vertices. Refer to Figure 1(a). All vertices have different
Y-coordinates, ranging between 0 and n− 1. We divide the set of n vertices into
k packets, denoted V0, . . . , Vk−1, of n

k vertices. All vertices in the same packet
Vi have the same X-coordinate 2i, the same Z-coordinate zi (defined later), and
consecutive Y-coordinates. Precisely, the j-th vertex in the i-th packet, denoted
vi,j , has coordinates (2i, in

k + j, zi), with 0 � j � n
k − 1 and 0 � i � k − 1.

Edges joining vertices of one packet. Since all the vertices of one packet
are collinear, we can draw the complete graph on these vertices using the q ×
m × O(m2/q) volume construction of [10] described in Section 2. In that con-
struction there are m collinear vertices; here we have m = n

k vertices. We
choose q = k and draw the edges so that the bounding box of this complete
subgraph is below (negative Z) and to the right (positive X) of the vertices.
Notice that we have chosen q = k so that these complete subgraphs do not
asymptotically increase the width of the final drawing. In the sequel of the con-
struction, we only consider edges that join vertices of distinct packets, and their
bends.

X and Y coordinates of the bends. Refer to Figure 1(a). The bend of an
edge joining vertex vi1,j1 to vertex vi2,j2 , with i1 < i2, is denoted ei1,j1→i2,j2 .
It separates the edge into two distinct segments, the outgoing segment which
starts at vi1,j1 and ends at ei1,j1→i2,j2 , and the incoming segment which starts
with ei1,j1→i2,j2 and ends at vi2,j2 .

A bend ei1,j1→i2,j2 has coordinates (2i2 − 1, i1
n
k + j1, zi2,j2), that is, its X-

coordinate is one less than the X-coordinate of vi2,j2 , its Y -coordinate is the
same as for vi1,j1 , and its Z-coordinate, which only depends on vi2,j2 , will be
defined later.
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Z-coordinates of the vertices and bends. We will assign values to zi and
zi,j so that edges do not cross. In fact, our construction is designed to verify
the following lemma. In the following we consider the projection on the XZ-
plane of the vertices vi,� and bends e�,�→i,j where � can take any value since the
projected points are identical.

Lemma 2. Projected onto the XZ-plane, the polar ordering ≺i0 viewed from a
vertex vi0,� of the vertices vi,� and bends e�,�→i,j with i0 < i < k and 0 � j < n

k
satisfies vi−1,� ≺i0 e�,�→i,0 ≺i0 . . . ≺i0 e�,�→i,j ≺i0 . . . ≺i0 e�,�→i, n

k −1 �i0 vi,�.

Our construction is as follows. First, let z0 = 0 and z1,j = j + 1, then z1 is
chosen such that v1,� is at the same polar angle about v0,� as e0,�→1, n

k
−1, which

gives z1 = 2z1, n
k −1 = 2n

k (see Figure 1(b)).
Assume now that we have placed vertices and bends up to index i. To get

a correct polar ordering around vi−1,� we need to have the next bends above
the line through vi−1,� and vi,� thus we place the next bend at zi+1,0 = zi +
1
2 (zi − zi−1) + 1 and the following bends on edges going to vi+1,� at zi+1,j =
zi + 1

2 (zi − zi−1) + 1 + j.
The vertex vi+1,� is placed at the same polar angle about vi,� as e�,�→i+1, n

k −1

which gives zi+1 = zi +2(zi+1, n
k
−1 − zi) = zi +2( zi−zi−1

2 + n
k ) = 2zi − zi−1 +2n

k ;
solving this recurrence1 yields zi = i(i + 1)n

k . Then we obtain zi,j = zi−1 +
1
2 (zi−1 − zi−2) + 1 + j = (i − 1)(i + 1)n

k + 1 + j. To summarize, the coordinates
of the vertices and bends are

vi,j =
(

2i, i
n

k
+ j, i(i + 1)

n

k

)
ei1,j1→i2,j2 =

(
2i2 − 1, i1

n

k
+ j1, (i22 − 1)

n

k
+ 1 + j2

)
Proof of Lemma 2. The correct polar ordering of the vi,� viewed from vi0,� is
guaranteed since all these points are ordered on a convex curve (i.e. a parabola).
Let Li be the line through vi,� and vi+1,�. The correct polar ordering of vi,�, the
e�,�→i+1,j and vi+1,�, viewed from vi,�, comes directly from the construction;
moreover, this ordering is the same for all viewpoints vi0,�, i0 < i, since these
viewpoints lie above Li−1 (see Figure 1(b)).

4 Proof of Correctness

We say that two edges cross if their relative interiors intersect. We prove in this
section that no two edges of our construction cross. We first show that the edges
joining vertices within the same packet induce no crossing. Then, we show that
there is no crossing between two outgoing segments, two incoming segments, and
finally one outgoing and one incoming segment.

Edges joining vertices within packets. We use the same technique as in
the Morin-Wood construction [10] to ensure that no two edges joining vertices
1 An inductive verification is easy since with this formula we have:

2zi − zi−1 +2n
k

= n
k
[2i(i+1)− i(i− 1)+2] = n

k
[i2 +3i+2] = (i+1)(i+2)n

k
= zi+1.
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within a given packet cross. An edge joining vertices within a packet crosses no
other edge joining vertices within another packet since the projection onto the
Y -axis of the bounding boxes of the Morin-Wood constructions do not intersect.
Finally, the bounding box of the Morin-Wood construction properly intersects
no edge joining distinct packets since they do not properly intersect in XZ-
projection (see Fig. 1(c)). Hence, edges joining vertices within a packet cross no
other edge.

Outgoing-outgoing segments. If two outgoing segments start from different
vertices, they lie in two different planes parallel to the XZ-plane. Otherwise,
by Lemma 2, the two segments only share their starting point. Hence no two
outgoing segments cross.

Incoming-incoming segments. Note that an incoming segment joining
e�,�→i,j to vi,j lies in the plane Pi,j through the two lines parallel to the Y -
axis and containing, respectively, all the e�,�→i,j and all the vi,�. For a pair of
incoming segments, we consider three cases according to whether both segments
finish at the same vertex, at distinct vertices of the same packet, or at vertices
of different packets. In the first case, the segments live in a plane Pi,j ; they start
at different bends and end at the same vertex, hence they do not cross. In the
second case, the two segments live in two planes Pi,j and Pi,j′ whose intersection
is the line vi,jvi,j′ . The segments end there and thus cannot cross. In the third
case, the segments do not overlap in the X-direction, thus they do not cross.

Incoming-outgoing segments. Consider an outgoing segment joining vertex
vi1,� to bend ei1,�→i3,� and an incoming segment joining bend e�,�→i2,� to vertex
vi2,�, where � can be any value (see Figure 2). The ranges over the X-axis of the
two segments are [2i1, 2i3−1] and [2i2−1, 2i2]. They overlap only if i1 < i2 < i3,
and, in such a case, Lemma 2 yields that, viewed from vi1,�, the points satisfy the
polar ordering e�,�→i2,� �i1 vi2,� ≺i1 ei1,�→i3,�. This implies that, in projection
onto the XZ-plane, points e�,�→i2,� and vi2,� are below the line segment joining
vi1,� and ei1,�→i3,�. Hence the two segments do not cross.

X

Y

vi1,� ei1,�→i3,�

e�,�→i2,�

vi2,�

X

Z

vi1,�

ei1,�→i3,�

e�,�→i2,�

vi2,�

2i22i2−12i1 2i3−1 2i22i2−12i1 2i3−1

vi3,�

Fig. 2. Incoming and outgoing segments in XY and XZ-projections
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5 Volume Analysis

The dimension of the bounding box of our construction for edges between packets
has size smaller than 2k×n×kn since the highest vertex has Z-coordinate zk−1 =
k(k − 1)n

k . The complete subgraphs within packets have size k × n
k ×

⌈
π2

3
n2

k3

⌉
and thus our complete construction fits in a box of size O(k)× n×O(n2

k3 + kn).
To balance the increasing and decreasing terms of the Z-dimension we choose k

such that n2

k3 = kn that is k = n
1
4 . Recall that we assumed for simplicity that k

and n
k were integers; for any n we can apply our construction with �n 1

4 �4 vertices
and then remove the extra vertices and edges. We thus have the following result.

Theorem 1. Every complete graph Kn has a one-bend drawing in an axis-
parallel box of dimensions O(n

1
4 ) × n × O(n

5
4 ) and volume O(n2.5).

Remark 1. An alternative for applying Lemma 1 with boxes that match the X-
dimension of our construction (choosing q = k with m = n

k ) is to take boxes
whose size matches the Z-dimension of our construction (choosing q = kn with
m = n

k ). Then the dimension of the bounding box of the Morin-Wood construc-
tion for interpacket edges is O(n2

k2 · 1
kn )× n

k × kn which gives a total size for our
construction of O(k + n

k3 )×n×2kn. This is still optimal for k = n
1
4 but it offers

a trade-off between volume and aspect ratio of the box for k ∈ [1, n
1
4 ].

References

1. P. Bose, J. Czyzowicz, P. Morin and D. R. Wood. The maximum number of edges
in a three-dimensional grid-drawing, JGAA, 8(1):21–26, 2004.

2. T. Calamoneri and A. Sterbini. 3D straight-line grid drawing of 4-colorable graphs,
Information Processing Letters 63(2):97–102, 1997.

3. R. F. Cohen, P. Eades, T. Lin, and F. Ruskey. Three-dimensional graph drawing,
Algorithmica, 17:199–208, 1997.
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Small Area Drawings of Outerplanar Graphs�

(Extended Abstract)
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Abstract. We show three linear time algorithms for constructing planar straight-
line grid drawings of outerplanar graphs. The first and the second algorithm are
for balanced outerplanar graphs. Both require linear area. The drawings produced
by the first algorithm are not outerplanar while those produced by the second
algorithm are. On the other hand, the first algorithm constructs drawings with
better angular resolution. The third algorithm constructs outerplanar drawings of
general outerplanar graphs with O(n1.48) area. Further, we study the interplay
between the area requirements of the drawings of an outerplanar graph and the
area requirements of a special class of drawings of its dual tree.

1 Introduction

Straight-line drawings of planar graphs have been studied by several authors and consti-
tute one of the main fields of investigation in Graph Drawing. Groundbreaking works of
the end of the 20th Century [5, 13, 4] have shown that a planar graph with n vertices has
a planar straight-line drawing with integer coordinates (“grid” drawing) with O(n2)
area. Further, it has been shown [12] that there exist graphs that, for such drawings,
require quadratic area.

Planar straight-line grid drawings have also been studied for subclasses of planar
graphs, looking for subquadratic area bounds. For example a linear area algorithm for
drawing binary trees with arbitrary aspect ratio has been shown in [8].

Another subclass of planar graphs that attracted research work in this field is the
one of the outerplanar graphs. An outerplanar graph is a planar graph that has a planar
drawing such that all its vertices are on the outer face. The dual graph of an outerplanar
graph is a tree (but for the outer face). Garg and Rusu [9] proved that an n-vertex
outerplanar graph has a planar straight-line grid drawing with O(d ·n1.48) area, where d
is the maximum degree of the vertices of the graph. Biedl [1] conjectured that O(n lg n)
area is sufficient for such graphs.

In [10, 2] are presented algorithms for constructing straight-line drawings with ver-
tices in general position.

Outerplanar graphs have been studied also with respect to other types of drawings.
In [1] and in [11] are presented algorithms to construct planar polyline drawings with

� Work partially supported by EC - Fet Project DELIS - Contract no 001907, by “Project ALGO-
NEXT: Algorithms for the Next Generation Internet and Web: Methodologies, Design, and
Experiments”, MIUR Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale, and
by “MAIS Project”, MIUR–FIRB.

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 89–100, 2005.
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O(n log n) area and O(d · n) area, respectively. An algorithm for constructing in three
dimensions straight-line drawings with linear volume is presented in [7].

In this paper we present the following results. They always refer to planar straight-
line grid drawings. We show (Section 3) a linear time algorithm for constructing non-
outerplanar drawings of balanced outerplanar graphs in linear area and with angular
resolution ≥ c√

n
, with c constant. A balanced outerplanar graph is such that its dual

tree is balanced. We define a new type of drawings of binary trees, called star-shaped
drawings (Section 4). We show that, given a drawing of an outerplanar graph it can
be found a star-shaped drawing of its dual tree with the same area bound. Conversely,
given a star-shaped drawing of a binary tree it can be found a drawing of its dual out-
erplanar graph with the same area bound but for the placement of two special vertices.
Based on such correspondence, we show a linear time algorithm for drawing a balanced
outerplanar graph in linear area (Section 4). The drawings obtained with this algorithm
are outerplanar, but the angular resolution is worse with respect to the algorithm of Sec-
tion 3. Again, based on the above correspondence and exploiting a decomposition tech-
nique of binary trees presented in [3], we show a linear time algorithm for constructing
outerplanar drawings of general outerplanar graphs with O(n1.48) area (Section 5).

2 Preliminaries

We assume familiarity with Graph Drawing (see e.g. [6]).
An outerplanar graph is a planar graph that has a planar drawing with all its vertices

on the same (say outer) face. Such a drawing is called outerplanar drawing. In this
paper we deal with outerplanar graphs that are also biconnected. However, this is not a
limitation since an outerplanar graph can be always augmented with a linear number of
extra edges to a biconnected outerplanar graph. Hence, the algorithms and theorems we
present can be applied also to general outerplanar graphs after a simple preprocessing
step that does not alter the number of vertices of the graph.

We define the dual graph of an outerplanar graph G as follows. The vertices of the
dual graph are the faces of G, with the exception of the outer face that is not associated
to any vertex of the dual of G. Two vertices f1 and f2 of the dual graph sharing an
edge of G are connected, in the dual graph, by edge (f1, f2). The dual graph of an
outerplanar graph is always a tree. Hence, in the following we call it dual tree.

A maximal outerplanar graph is an outerplanar graph such that all its faces but,
eventually, the outer face are composed by three edges. Note that any outerplanar graph
can be augmented to a maximal outerplanar by adding extra edges. The vertices of the
dual graph of a maximal outerplanar graph have degree at most three. From now on,
unless otherwise specified, we assume that outerplanar graphs are maximal.

We can select an edge (u, v) of the outer face of an outerplanar graph G and root the
dual tree T of G at the internal face r containing (u, v). Let w be the third vertex of r.
We call vertices u and v poles and vertex w central vertex. We also call u left vertex and
v right vertex. Consider a face f of T and suppose that f is composed in G by edges
(v1, v2), (v2, v3), and (v3, v1), in this clockwise order around f . Also, suppose that the
parent of f in T and f share edge (v1, v2) or that (f is the root) (v1, v2) = (u, v). The
face sharing with f (if any) edge (v3, v1) is the left child of f , while the face sharing
with f (if any) edge (v2, v3) is the right child of f . We obtain a binary tree.
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A balanced outerplanar graph is an outerplanar graph whose dual tree can be rooted
to a balanced binary tree. The height of an outerplanar graph is the number of nodes on
the longest path of its dual tree from the root to a leaf. A complete outerplanar graph
is an outerplanar graph whose dual tree is a complete binary tree. A grid drawing of
a graph is such that all its vertices have integer coordinates. A straight-line drawing is
such that all edges are rectilinear segments. Let Γ be a straight-line grid drawing and
consider the smallest rectangle B(Γ ) with sides parallel to the x- and y-axes that covers
Γ completely. We call B(Γ ) the bounding box of Γ . We denote with b(Γ ), t(Γ ), l(Γ )
and r(Γ ) the bottom, top, left and right side of B(Γ ), respectively. The height (width)
of Γ is one plus the height (width) of B(Γ ). The area of Γ is the height of Γ multiplied
by its width.

3 Non-outerplanar Drawings of Balanced Outerplanar Graphs

We call Gh a complete outerplanar graph with height h, Th its dual tree, and Γh its
planar straight-line grid drawing. Let also uh, vh and wh be the left vertex, the right
vertex and the central vertex of Gh, respectively.

We show an inductive algorithm to draw complete outerplanar graphs. Base case:
if h = 1, then place u1 in (0, 0), v1 in (1, 1) and w1 in (1, 0). Inductive case: if
h > 1, suppose you have drawn Γh−1; let r be the line through vh−1 and wh−1, let
b be the line through uh−1 and vh−1 and let a be the line parallel to and at horizontal
distance one unit from r, in the opposite side of the drawing with respect to r. Shift
uh−1 and vh−1 along b of one horizontal unit, moving away from Γh−1. Now mirror the
modified drawing Γh−1 with respect to a. Insert the edge from uh−1 to its symmetric
vertex, say z. Let uh = uh−1, vh = z and wh = vh−1. Examples of the drawings
produced by the algorithm are shown in Fig. 1. Showing the planarity of the obtained
drawings is trivially done by induction. Now we analyze their area requirement. Let
heighth and widthh be the height and the width of Γh, respectively. We distinguish
two cases. h is even: it’s easy to see that heighth−1 = 2 · heighth−2 + 1 and that
heighth = heighth−1 + 2. So we have heighth = 2 · heighth−2 + 3. Hence we
obtain:

heighth = . . . (((height2 ·2 + 3) · 2 + 3) . . . · 2 + 3︸ ︷︷ ︸
h−2
2 times

= height2 ·2
h−2
2 +3 ·2 h−4

2 +

3 · 2
h−6

2 + . . . + 3. Let m = h−2
2 ; replacing height2 with its value 4 we obtain:

heighth = 4 · 2m + 3 · 2m−1 + 3 · 2m−2 + . . . + 3 = 4 · 2m + 3 · (2m−1 + 2m−2 +
. . . + 1) = 4 · 2m + 3 · (2m − 1) = 7 · 2m − 3 = 7 · 2

h−2
2 − 3 = 7

2 · 2
h
2 − 3 =

7
2 · 2(lg n)

1
2 − 3 = 7

2 · n 1
2 − 3 = 7

2 ·
√

n − 3 = O(n
1
2 ). It’s easy to see that: widthh =

2 ·heighth−1 = 7 ·
√

n−7 = O(n
1
2 ). If h is odd, using heighth = 2 ·heighth−1+1

we obtain: heighth =
(

7
2 · 2 h−1

2 − 3
)
· 2 + 1 = 7√

2
· 2 h

2 − 5 = 7√
2
· 2(lg n)

1
2 − 5 =

7√
2
·
√

n − 5 = O(n
1
2 ). It’s easy to see that the width is equal to the height, hence we

have: widthh = 7√
2
·
√

n − 5 = O(n
1
2 ).

About the angular resolution, let uh be the left vertex of Gh. Recall that uh−1 = uh.
Passing from Gh−1 to Gh the number of the neighbours of uh−1 increases by one,
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(a) (b)

Fig. 1. Applications of the algorithm in Section 3. (a) Γ4. (b) Γ5.

beacuse of the insertion in Γh of the symmetric vertex of uh−1. Let m (t) be the largest
odd (even) integer≤ h. We can prove by induction that the smallest angle in the drawing
is φ, the angle between half-lines a and b starting at uh and passing respectively through
va, the neighbour of uh inserted in Γm, and through vb, the neighbour of uh inserted
in Γm−2. Let c be the half-line starting at uh and passing through vc, the neighbour of
uh inserted in Γt. Let vd be the intersection point between a and the line through vb

and orthogonal to a. Let ve be the intersection point between c and the line through vb

and orthogonal to c. Let R1 be the triangle whose vertices are uh, vb and ve. We denote
with ah, bh and ch the lengths of the segments vbve, uhve and uhvb, respectively. Note
that, by construction, bh = ah + 1. Now suppose h is odd; following the construction
of the algorithm we obtain ah = 2 · ah−2 + 4 and solving the recurrence equation
we obtain ah = 7

2 · 2
h−1
2 − 4. Hence bh = 7

2 · 2
h−1
2 − 3. Applying the Pythagorean

theorem to R1 we obtain ch =
√

a2
h + b2

h =
√

49
4 · 2h − 49 · 2 h−1

2 + 25. Observing

that vbvd =
√

2
2 , for every h, we finally obtain: φ ≈ sin φ =

√
2

2 49
4 ·2h−49·2

h−1
2 +25

>

c · 2−h/2 = c√
n
, where c is a constant. If h is even, in a similar way we obtain:φ ≈

sin φ =
√

2

2 49
8 ·2h− 35

2 ·2
h
2 +13

> c · 2−h/2 = c√
n
, where c is a constant. From the above

discussion and from the fact that a balanced outerplanar graph can be augmented to
complete without altering its height we have:

Theorem 1. Given an n-vertex balanced outerplanar graph G with height h, there
exists an O(n) time algorithm that constructs a planar straight-line grid drawing Γ of
G such that: (i) if h is even, then the height of Γ is 7

2

√
n− 3 and its width is 7

√
n − 7;

(ii) if h is odd, then the height of Γ is 7√
2

√
n − 5 and its width is 7√

2

√
n − 5; (iii) the

angular resolution of Γ is greater than c√
n

, with c constant; (iv) if G is complete, then
isomorphic subgraphs of G have congruent drawings in Γ up to a translation and a
reflection; and (v) if G is complete, then Γ is axially symmetric.

4 Outerplanar Drawings and Star-Shaped Drawings

Let T be a binary tree rooted at r. The leftmost (rightmost) path of T is the path
v0, v1, . . . , vm such that v0 = r, vi+1 is the left (right) child of vi, ∀i such that 0 ≤
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i ≤ m − 1, and vm doesn’t have a left (right) child. The outer-left set (outer-right set)
of a planar straight-line drawing Γ of T is the set of points with integer coordinates
from which we can draw edges to each one of the nodes of the leftmost (rightmost)
path of T without crossing Γ . The left-right (right-left) path of a node n ∈ T is the
path v0, v1, . . . , vm such that v0 = n, v1 is the left (right) child of v0, vi+1 is the right
(left) child of vi, ∀i such that 1 ≤ i ≤ m − 1, and vm doesn’t have a right (left) child.
The left polygon of the neighbours (right polygon of the neighbours) of a node n ∈ T
is the polygon of the segments representing in Γ the edges of the left-right path (of the
right-left path) plus an extra segment connecting vm and v0.

A planar straight-line order-preserving drawing Γ of T is star-shaped if all the fol-
lowing conditions are satisfied. (1) For each node n ∈ T its left (right) polygon of
neighbours Pl = (n, v1, . . . , vm) (Pr = (n, v1, . . . , vm)) is a simple polygon and each
segment (n, vi), 2 ≤ i ≤ m − 1 belongs to the interior of Pl (Pr), but for its endpoints
n and vi. (2) For each pair of nodes n1, n2 ∈ T the left polygon of neighbours or the
right polygon of neighbours of n1 does not intersect with the left polygon of neighbours
or with the right polygon of neighbours of n2, but, possibly, at common endpoints or
at common edges. (3) There exist point pl in the outer-left set of T and point pr in the
outer-right set of T such that segment (pl, pr) doesn’t intersect any edge of Γ .

Given a drawing Γ of an outerplanar graph we call internal subdrawing the drawing
obtained by deleting from Γ its poles and their incident edges.

Lemma 1. Let G be an n-vertex outerplanar graph such that its dual tree T has a
star-shaped drawing with f(n) area. We have that G has an outerplanar straight-line
drawing such that the area of its internal subdrawing is f(n).

Lemma 2. Let G be an n-vertex outerplanar graph that has an outerplanar straight-
line drawing with f(n) area. We have that its dual tree T has a planar star-shaped
straight-line drawing with an area that is at most f(n).

To prove the above lemmas we first establish a correspondence γ between the ver-
tices of G and the nodes of T , so that for each node n ∈ T there is one and only
one vertex v of G such that γ(n) = v and for each vertex v ∈ G, but for the poles,
there is one and only one node n ∈ T such that γ−1(v) = n. Consider a subtree of T
rooted at n. Suppose that (vl, vc) is the edge of G dual to the edge connecting n to its
left child (if any). Analogously, suppose that (vr, vc) is the edge of G dual to the edge
connecting n to its right child (if any). We set γ(n) = vc. Now, suppose you have a
planar star-shaped straight-line grid drawing Γ of T . Map each vertex v of G, but for
its poles, to the point where the node n such that γ−1(v) = n is drawn. Map the left
vertex ul of G to a point pl of the outer-left set and the right vertex vr of G in a point
pr of the outer-right set so that the edge (pl, pr) doesn’t intersect any of the edges of
T . Draw the edges from ul to each vertex on the leftmost path of T and the edges from
vr to each vertex on the rightmost path of T . Draw the edge (ul, vr). By Condition (3)
in the definition of star-shaped drawing and by the definitions of outer-left set and of
outer-right set, pl and pr exist and their incident edges don’t intersect Γ . For each node
n (and so for each vertex v = γ(n)) draw edges to each vertex on its left-right path and
to each vertex on its right-left path. Because of Condition 1 and 2 in the definition of
star-shaped drawing each of such segments doesn’t intersect any other segment of the
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drawing. The drawing obtained after these insertions is an outerplanar straight-line grid
drawing of G as a consequence of the construction and of the correspondence between
vertices of G and nodes of T . We have also just seen that each step preserves the initial
planarity. The area bound of Lemma 1 is easily obtained by observing that the vertices
of G (but the poles) and the nodes of T have exactly the same coordinates.

Now we can start from an outerplanar drawing Φ of G, then we can use again the
correspondence between vertices of G and nodes of T to obtain a star-shaped drawing
of T . Remove from Φ the poles of G. For each vertex v let n be the node of T such
that γ−1(v) = n and let nl and nr be the left and the right child of n, respectively.
Remove all edges incident on v, but those whose second endpoint is a vertex z such
that γ−1(z) = nl or γ−1(z) = nr. We obtain a star-shaped drawing of T : it’s easy to
see that the drawing is planar, straight-line, grid and order-preserving and that all the
conditions of a star-shaped drawing are verified, since the initial drawing Φ is a planar
straight-line grid drawing of G. Again, the area bound of Lemma 2 is easily obtained
by observing that the vertices of G (but the poles) and the nodes of T have exactly the
same coordinates.

We apply the above lemmas to construct a linear area drawing of a complete outer-
planar graph. We denote with Th a complete binary tree, rh its root, and Γh its drawing.
What follows is an inductive algorithm to construct a star-shaped drawing of a com-
plete binary tree. Base case: if h = 1, then place r1 in (0, 0). Inductive case: if h > 1,
suppose you have drawn Γh−1. Now we distiguish two subcases. h is even: let r be the
highest horizontal line such that r intersects Γh−1. Let a be the line above r parallel
to and at vertical distance one unit from r. Let b be the lowest line with slope π

4 with
respect to the x-axis and such that b intersects Γh−1. Mirror Γh−1 with respect to a.
Place rh at the intersection between a and b. Insert the edges from rh to its children. If
h is odd let r be the highest line with slope 3π

4 with respect to the x-axis and such that
r intersects Γh−1. Let a be the line above r parallel to and at vertical distance two units
from r. Let b be the lowest line with slope π

4 with respect to the x-axis and such that b
intersects Γh−1. Mirror Γh−1 respect to a. Translate the new part of the drawing by a
vector (−1, 0). Place rh at the intersection between a and b. Insert the edges from rh to
its children. A drawing produced by the algorithm is shown in Fig. 2.a.

It is easy to see, by induction, that the resulting drawing is star-shaped. Now we
analyze the area requirements of the above algorithm. Let heighth and widthh be the
height and the width of Γh, respectively. We distinguish two cases. h is even: it’s easy
to see that heighth−1 = heighth−2 + 2 and that heighth = 2 · heighth−1 + 1. So we
have heighth = 2 · heighth−2 + 5. Hence we obtain:

heighth = . . . (((height2 ·2 + 5) · 2 + 5) . . . · 2 + 5︸ ︷︷ ︸
h−2
2 times

= height2 ·2
h−2
2 +5 ·2 h−4

2 +

5 · 2
h−6

2 + . . . + 5. Let m = h−2
2 ; replacing height2 with its value 3 we obtain:

heighth = 3 ·2m +5 ·2m−1+5 ·2m−2+ . . .+5 = 3 ·2m +5 ·(2m−1+2m−2+ . . .+1)

= 3 · 2m + 5 · (2m − 1) = 8 · 2m − 5 = 8 · 2 h−2
2 − 5 = 4 · 2 h

2 − 5 = 4 · 2(lg n)
1
2 − 5 =

4 · n 1
2 − 5 = 4 ·

√
n − 5 = O(n

1
2 ). It’s easy to see that widthh = heighth+1

2 = 2 ·√
n − 2 = O(n

1
2 ). If h is odd, using heighth = heighth−1 + 2 we obtain: heighth
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(a) (b)

Fig. 2. Application of the algorithm in Section 4. (a) Γ6. (b) The drawing of G6 built over Γ6.

=
(
4 · 2 h−1

2 − 5
)

+2 = 4√
2
·2 h

2 −3 = 4√
2
·2(lg n)

1
2 −3 = 4√

2
·√n−3 = O(n

1
2 ). It’s

easy to see that widthh = heighth−1 =
(

4√
2
·
√

n − 3
)
−1 = 4√

2
·
√

n−4 = O(n
1
2 ).

We exploit the above algorithm and Lemma 1 to prove the following theorem.

Theorem 2. Given an n-vertex balanced outerplanar graph G with height h, there
exists an O(n) time algorithm that constructs an outerplanar straight-line grid drawing
Γ of G such that: (i) if h is even, then the height of Γ is 4

√
n − 5 and its width is

2
√

n− 1; (ii) if h is odd, then the height of Γ is 4√
2

√
n− 3 and its width is 4√

2

√
n− 3;

(iii) the angular resolution of Γ is less than c
n , with c constant; (iv) if G is complete,

then isomorphic subgraphs of G have congruent drawings in Γ up to a translation and
a reflection; and (v) if G is complete, then Γ is axially symmetric.

Proof. Γ is constructed as follows. First, we add to G dummy vertices and edges to
make it complete without altering h. Second, we draw star-shaped its dual tree T . Third,
using the correspondence between the vertices of G and the nodes of T introduced in
the proof of Lemmas 1 and 2, we build a drawing Γ ′ of the internal subgraph of G.
Finally, we place the poles of G and their incident edges, obtaining Γ . This is done as
follows. We place the left vertex on the same line of b(Γ ′), one unit to the right of r(Γ ′)
and we place the right vertex on the same line of t(Γ ′) one unit to the right of r(Γ ′).
This placement allows to draw edges from the left vertex to each node of the leftmost
path of T and from the right vertex to each node of the rightmost path of T without
crossings. Furthermore, this placement increases by one unit the width without altering
the height of Γ . Note that similar but different placements of the poles, as the one in
Fig. 2.b, are also possible.

The bounds on height and width of Γ descend from the bounds given for star-shaped
drawings. Now we analyze the angular resolution. Namely, we show that there is an
angle that decreases faster than 1

n . If h is odd let v1 be the root of T , else (h even) let
v1 be the left child of the root of T . Let (v1, w0, w1, . . . , wm) be the left-right path of
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v1. Let φ be the angle between the half-lines a and b starting at v1 and passing through
wm−1 and wm, respectively. From trigonometry we have:

sin φ = sin( ̂wmv1w0) cos( ̂wm−1v1w0) − sin( ̂wm−1v1w0) cos( ̂wmv1w0). Observe
that v1w0 =

√
2, ∀h. Let k be the biggest even integer ≤ h − 1. We have w0wm =√

2(2 · 2 k
2 − 3); moreover w0wm−1 = w0wm −

√
2, since wm−1wm =

√
2, ∀h; hence

w0wm−1 =
√

2(2 · 2 k
2 − 4). Using the Pythagorean theorem we obtain:

sin φ =
w0wm√

w0wm
2 + v1w0

2
· v1w0√

w0wm−1
2 + v1w0

2
+

+
v1w0√

w0wm
2 + v1w0

2
· w0wm−1√

w0wm−1
2 + v1w0

2
=

=
v1w0(w0wm − w0wm−1)√

w0wm
2 + v1w0

2
√

w0wm−1
2 + v1w0

2

=
√

2
√

2√
2(2 · 2 k

2 − 3)2
√

2(2 · 2 k
2 − 4)2

=

=
2

2
√

4 · 2k − 12 · 2 k
2 + 10

√
4 · 2k − 16 · 2 k

2 + 17
.

Hence φ ≈ sin φ < c · (2−k) and since k = O(h), we have φ < c
n , with c constant.

5 Outerplanar Drawings of General Outerplanar Graphs

This section is devoted to the proof of the following theorem. The main ingredients
of the proof are: (i) a recursive algorithm for constructing a star-shaped drawing of a
binary tree, (ii) Lemma 1, and (iii) Lemma 3 presented by Chan in [3].

Theorem 3. Given an n-vertex outerplanar graph G, there exists an O(n) time algo-
rithm that constructs an O(n1.48) area outerplanar straight-line grid drawing of G.

Lemma 3. [3] Let p = 0.48. Given any binary tree T of size n, there exists a root-
to-leaf path π such that for any left subree α and right subtree β of π, |α|p + |β|p ≤
(1 − δ)np, for some constant δ > 0.

First, we show two techniques, called Constructions 1–2, for constructing a star-
shaped drawing Γi, with i ∈ {1, 2}, of a general binary tree T with n nodes. Each one
is defined in terms of itself and of the other one. In the following we call spine a root-
to-leaf path S = (v0, v1, . . . , vm) of T . Let si be the non spine child of vi and let T (si)
be the subtree of T rooted at si. We denote with Wi(n) the width of Γi, with Wi,l(n)
(Wi,r(n)) the width of the part of Γi that is to the left (to the right) of S and with n(t)
the number of nodes in the subtree of T rooted at t.

Now we show Construction 1. First, we draw each vi ∈ S together with T (si),
obtaining Γ (vi); then we put all the Γ (vi) together to obtain Γ1. Construction 1 has
four subcases, labelled 1xy, x ∈ {t, b} and y ∈ {l, r}. Index x states that S is drawn
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Fig. 3. Constructions (a)1bl, (b)1tr, (c)2bl and (d)2tr. The edges (vi, vi+1) labelled r (l) are such
that vi+1 is the right (resp. left) child of vi. The thick edges show the spine (in Construction 1)
and the leftmost and the rightmost paths (in Construction 2) of T .

going towards the top (x = t) or towards the bottom (x = b) of Γ1. Index y states that
the leftmost path (y = l), or the rightmost path (y = r), is drawn going towards the left.
In the following we show the details of Construction 1bl, while the others are easily
obtained from 1bl after a reflection with respect to the x-axis and/or a switch of the left
with the right and vice-versa. Constructions 1bl and 1tr are shown in Fig. 3.

Suppose v1 is the left (right) child of v0. Let k be the first index such that vk is
the right (left) child of vk−1. In the following we denote the subtree T (sk−1) (T (s0))
also with T (sl) and we denote the subtree T (s0) (T (sk−1)) also with T (sr). Draw
T (s0) and T (sk−1) with Construction 1bl, obtaining Γ (s0) and Γ (sk−1), respectively.
Draw v0 one unit above and one unit to the left (right) of B(Γ (s0)), obtaining Γ (v0).
Draw vk−1 one unit above and one unit to the right (left) of B(Γ (sk−1)), obtaining
Γ (vk−1). Draw any other left (right) subtree with Construction 2tr (with Construction
2bl), obtaining Γ (si). If si is the left (right) child of vi, draw vi on the same horizontal
channel and one unit to the right (to the left) of si, obtaining Γ (vi).

Now we put together all the Γ (vi), 0 ≤ i ≤ m as follows. Place Γ (v0) anywhere
in the plane. For 1 ≤ i ≤ m, if vi is the left child (right child) of vi−1 and vi+1 is the
left child (right child) of vi or vi is a leaf (i = m), then draw Γ (vi) so that vi is on the
same vertical channel of vi−1 and so that b(Γ (vi−1)) is one unit above the t(Γ (vi)).
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Else (vi is the left child (right child) of vi−1 and vi+1 is the right child (left child) of
vi) if vi is a left child (right child) draw vi on the vertical channel one unit to the left
(to the right) with respect to the vertical channel of vi−1 and so that b(Γ (vi−1)) is one
unit above t(Γ (vi)).

Property 1. Construction 1bl guarantees that all the vertices of the leftmost (rightmost)
path of T are visible from any point that is above and to the left (right) of B(Γ1).

Property 2. Suppose that the drawing of Construction 2tr is star-shaped and that it
places the leftmost and the rightmost paths of the tree on the right side of its bounding
box. Suppose also that the drawing of Construction 2bl is star-shaped and that it places
the leftmost and the rightmost paths of the tree on the left side of its bounding box. We
have that the drawing obtained with Construction 1bl is star-shaped.

Property 3. W1,l(n) = max(W1(n(sl)), maxi(W2(n(si)))), where i is such that si is
the left child of vi. W1,r(n) = max(W1(n(sr)), maxi(W2(n(si)))), where i is such
that si is the right child of vi.

Analogous properties hold for Constructions 1br, 1tl,and 1tr.
Construction 2 is as follows. We have four subcases, say 2xy, where x ∈ {t, b} and

y ∈ {l, r}. Index x states that the leftmost path is drawn going towards the top (x = t) or
going towards the bottom (x = b) of Γ2. Index y states that the root is drawn on the right
side (y = r) or on the left side (y = l) of Γ2. In the following we show Construction
2bl, while the other cases are easily obtained from 2bl after a reflection with respect
to the y-axis and/or a switch of the left with the right and vice-versa. Constructions
2bl and 2tr are shown in Fig. 3.Let r be the root of T , let Cl = (ul,0, ul,1, . . . , ul,m)
(Cr = (ur,0, ur,1, . . . , ur,p)) be the leftmost (rightmost) path of T , with ul,0 = ur,0 = r.
Let sl,i (sr,i) be the right (left) child of a node ul,i ∈ Cl (ur,i ∈ Cr); we call T (sl,i)
(T (sr,i)) the subtree of T rooted in sl,i (sr,i). First, we draw each ul,i ∈ Cl together
with T (sl,i) and each ur,i ∈ Cr together with T (sr,i), obtaining Γ (ul,i) and Γ (ur,i)
respectively; then we put all the Γ (ul,i) and the Γ (ur,i) together to obtain Γ2.

Let k and j be two indexes such that k, j ∈ {l, r} and let x such that 1 ≤ x ≤ m if
k = l and such that 1 ≤ x ≤ p if k = r. Find the heaviest subtree T (sk,x) among all
the subtrees T (sj,i). Let T (sk,xl) and T (sk,xr) be the left and the right subtree of sk,x,
with root sk,xl and sk,xr , respectively. Draw T (sk,xl) with Construction 1bl and draw
T (sk,xr) with Construction 1tr, obtaining Γ (sk,xl) and Γ (sk,xr), respectively. Draw
any other subtree T (sj,i) with Construction 2bl, obtaining Γ (sj,i).

Place Γ (sk,xl) anywhere in the plane. Place Γ (sk,xr) so that b(Γ (sk,xr)) is three
vertical units above t(Γ (sk,xl)) and so that l(Γ (sk,xr)) is on the same vertical chan-
nel of l(Γ (sk,xl)). Place sk,x one unit above t(Γ (sk,xl)) and one unit to the right of
the rightmost boundary between r(Γ (sk,xl)) and r(Γ (sk,xr)). Draw uk,x on the same
horizontal channel of sk,x, one unit to the left of l(Γ (sk,xl)). If k = l (k = r) draw
uk,x−1 one unit above (one unit below) uk,x. Place Γ (sk,x−1) so that l(Γ (sk,x−1)) is
on the same vertical channel of l(Γ (sk,x)) and so that (if k = l) b(Γ (sk,x−1)) is one
unit above t(Γ (sk,x)) or (if k = r) t(Γ (sk,x−1)) is one unit below b(Γ (sk,x)), obtain-
ing Γ (uk,x−1). For each Γ (sj,i), but for Γ (sk,x−1) and Γ (sk,x), place uj,i one unit to
the left of sj,i, obtaining Γ (uj,i). Finally place all the Γ (uj,i) (and so also Γ (uk,x−1))
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so that all uj,i are on the same vertical channel, so that b(Γ (ur,i)) is one unit above
t(Γ (ur,i−1)), 2 ≤ i ≤ p, so that t(Γ (ul,i)) is one unit below b(Γ (ul,i−1)), 2 ≤ i ≤ m,
and so that t(Γ (ul,1)) is one unit below b(Γ (ur,1)).

Property 4. Construction 2bl guarantees that all the vertices of the leftmost (rightmost)
path of T are on the left side of the bounding box of Γ2.

Property 5. Suppose that the drawing of Constructions 1tr and 1bl are star-shaped.
Suppose that Construction 1tr is such that the leftmost (the rightmost) path of T (sk,xr)
is visible from any point that is below and to the right (to the left) of B(Γ (sk,xr)). Sup-
pose also that Construction 1bl is such that the leftmost (the rightmost) path of T (sk,xl)
is visible from any point that is above and to the left (to the right) of B(Γ (sk,xl)). We
have that the drawing obtained with Construction 2bl is star-shaped.

Property 6. W2(n)=max(2+W1(n(sk,xl)),2+W1(n(sk,xr)),max(1+W2(n(sj,i)))),
where j ∈ {l, r} and i is not equal to x.

Analogous properties hold for Constructions 2br, 2tl,and 2tr.
We can use Constructions 1–2 for constructing a star-shaped drawing Γ of a binary

tree T as follows. First, we select any spine. Second, we apply Construction 1bl. Third,
we recursively apply all the constructions in the appropriate cases. From the above
properties we have that Γ is star-shaped.

At this point we can draw a general outerplanar graph G with dual tree T as follows.
First, we draw T with the above algorithm. Second, we apply Lemma 1 to construct an
outerplanar drawing of the internal subgraph of G with the same height and width of T .
Third, exploiting Property 1 we place the poles of G obtaining a drawing that has the
same height and width plus one unit.

Now we analyze the height and the width of Γ . About the height, it’s easy to see that
there is at least one vertex for each horizontal line that intersects Γ . So we immediately
obtain that the height of Γ is O(n). About the width W (n), let n1 (n2) be the number
of vertices of the heaviest left (right) subtree of the spine S. We want to show that
W (n) ≤ W (n1) + W (n2) + 6.

We focus on W1,l(n) to show that W1,l(n) ≤ W (n1) + 2. For this purpose we
start from the expression of W1,l(n) as a function of W1(n) and of W2(n), then we
substitute W2(n) with its definition as function of W1(n) and of W2(n). We repeat this
substitution until we have obtained that W1,l(n) is defined only in terms of W1(n).

Let n(s∗j ) be the maximum number of nodes of a subtree recursively drawn with
Construction 2, after that j substitutions of W2(n) with its definition (as a function of
W1(n) and of W2(n)) have been made. Let n(s∗j,l) and n(s∗j,r) be the number of nodes
of the left and the right subtrees of s∗j , respectively.

By Property 3 we have W1,l(n) = max(W1(n(sl)), max(W2(n(si)))), with i such
that T (si) is the left subtree of a spine node vi. By applying several times Property 6
to the above equation we have: W1,l(n) = max(W1(n(sl)), 2 + W1(n(sk,xl)), 2 +
W1(n(sk,xr)), 1+W2(n(s∗1)))≤max(W1(n(sl)), 2+W1(n(sk,xl)), 2+W1(n(sk,xr)),
3+W1(n(s∗1,l)), 3+W1(n(s∗1,r)), 2+W2(n(s∗2)))≤max(W1(n(sl)), 2+W1(n(sk,xl)),
2+W1(n(sk,xr)), 3+W1(n(s∗1,l)), 3+W1(n(s∗1,r)), 4+W1(n(s∗2,l)), 4+W1(n(s∗2,r)),
3 + W2(n(s∗3))) ≤ . . . ≤ max(W1(n(sl)), 2 + W1(n(sk,xl)), 2 + W1(n(sk,xr)), 3 +
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W1(n(s∗1,l)), 3 + W1(n(s∗1,r)), 4 + W1(n(s∗2,l)), 4 + W1(n(s∗2,r)), 5 + W1(n(s∗3,l)),
5 + W1(n(s∗3,r)), . . .)

Observe that n(s∗j+1) ≤ 1
2n(s∗j ), since we draw the heaviest subtree T ′ of T (s∗j)

with Construction 1 and a subtree T ′′ with size greater than 1
2n(s∗j ) implies n(T ′) +

n(T ′′) > n(s∗j ), that is impossible by definition. Hence, assuming W1(n) > lg n,
we obtain W1,l(n) ≤ max(W1(n(sl)), 2 + W1(n(sk,xl)), 2 + W1(n(sk,xr))) ≤ 2 +
W1(n1). With similar arguments we obtain W1,r(n) ≤ 2 + W1(n2). Observing that S
is drawn on two adjacent vertical channels we have W1(n) = W1,l(n) + W1,r(n) + 2,
hence we obtain W (n) = W1(n) ≤ W1(n1) + W1(n2) + 6 ≤ W (n1) + W (n2) + 6.
As done in [3], we can choose in linear time a spine of T by maintaining the invariance
that n1

p + n2
p ≤ (1 − δ)np. Observe that W (n) ≤ maxnp

l +np
r≤(1−δ)np(W (nl) +

W (nr) + 6), for any left (right) subtree of S with nl (nr) nodes; by induction this
solves to W (n) = O(np) and applying Lemma 3, we can complete the analysis of the
width of Γ concluding that is possible to get W (n) = O(n0.48).

From the results on the height and on the width, we obtain the O(n1.48) area bound
on Γ . It is easy to see that the algorithm can be implemented to run in linear time.
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{digiacomo, liotta}@diei.unipg.it

2 School of Computing, Queen’s University, Kingston, Ontario, Canada
henk@cs.queensu.ca

3 Dept. of Math. and Computer Science, University of Lethbridge, Canada
wismath@cs.uleth.ca

Abstract. This paper studies the problem of drawing directed acyclic
graphs in three dimensions in the straight-line grid model, and so that
all directed edges are oriented in a common (upward) direction. We show
that there exists a family of outerplanar directed acyclic graphs whose
volume requirement is super-linear. We also prove that for the special
case of rooted trees a linear volume upper bound is achievable.

1 Introduction

The problem of computing 3D grid drawings of graphs so that the vertices are
represented at integer grid-points, the edges are crossing-free straight-line seg-
ments, and the volume is small, has received a lot of attention in the graph
drawing literature (e.g., [4, 5, 7, 8, 9, 12, 13]). While the interested reader is re-
ferred to the exhaustive introduction and list of references of [9] for reasons of
space, we recall in this extended abstract some of the more recent results on the
subject. In what follows, n denotes the number of vertices, and m the number
of edges of a graph.

Dujmović and Wood [12] proved that drawings on an integer grid with an
O(n1.5) volume can be obtained for planar graphs, graphs with bounded degree,
graphs with bounded genus, and graphs with no Kh (h constant) as a minor.
Bose et al. [3] proved that the maximum number of edges in a grid drawing of
dimensions X×Y ×Z is (2X−1)(2Y −1)(2Z−1)−XY Z, which implies a lower
bound of m+n

8 on the volume of a 3D grid drawing of any graph. Felsner et al. [13]
initiated the study of restricted integer grids, where all vertices are drawn on a
small set of parallel grid lines, called tracks and proved that outerplanar graphs
can be drawn by using three tracks on an integer grid of size O(1)×O(1)×O(n).
Dujmović, Morin, and Wood [9] showed that a graph G admits a drawing on
an integer grid of size O(1) × O(1) × O(n) if and only if G admits a drawing
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on an integer grid consisting of a constant number of tracks. Dujmović, Morin,
and Wood used this result to show in [9] that graphs of bounded tree-width
(including, for example, series-parallel graphs and k-outerplanar graphs with
constant k) have 3D straight-line grid drawings of O(n) volume. Some of the
constant factors in the volume bounds of [9] are improved in [8]. As far as we
know, the question of whether all planar graphs admit a 3D straight-line grid
drawing of O(n) volume remains a fascinating open problem.

This paper studies the problem of computing 3D straight-line grid drawings
of directed acyclic graphs so that all edges are drawn oriented in a common
direction; such drawings are called 3D upward drawings in the remainder of the
paper. Recall that 2D straight-line grid drawings of directed acyclic graphs such
that all edges are drawn upward are a classical subject of investigation in the
graph drawing literature (see, e.g. [1, 2, 14, 18]). Little is known about volume
requirements of 3D upward drawings. Poranen [19] presented an algorithm to
compute a 3D upward drawing of an arbitrary series-parallel digraph in O(n3)
volume. This bound can be improved to O(n2) and O(n) if the series-parallel
digraph has some additional properties. The major contributions of the present
paper can be listed as follows.

– We introduce and study the notion of upward track layout, which extends a
similar concept studied by Dujmović, Morin, and Wood (see, e.g. [9, 10, 11,
12]). We relate upward track layouts to upward queue layouts and use this
relationship to prove some of our volume bounds.

– We show that there exist outerplanar directed acyclic graphs which have
a Ω(n1.5) volume lower bound. This result could be regarded as the 3D
counterpart of a theorem in [6], which proves that upward grid drawings in
2D can require area exponential in the number of vertices. Note however that
the class of graphs that we use for our lower bound has an O(n2) upward
drawing in 2D. Also note that undirected outerplanar graphs admit a 3D
grid drawing in optimal O(n) volume [13].

– Motivated by the above super-linear lower bound, we investigate families of
outerplanar graphs which admit upward 3D drawings of linear volume. In
particular, we show that every tree has an upward 3D drawing on a grid of
size O(1) × O(1) × O(n).

The remainder of this paper is organized as follows. Preliminaries can be
found in Section 2. The definition of upward track layout, and the volume lower
bound for 3D upward drawings of outerplanar graphs are in Section 3. How to
compute linear-volume 3D upward drawings of trees is the subject of Section 4.
Other families of graphs and gaps on the volume are discussed in Section 5. Some
proofs are sketched or omitted for reasons of space.

2 Preliminaries

Let G be a directed acyclic graph (DAG). The underlying undirected graph Ĝ of
G is the undirected graph obtained by ignoring the directions of the edges of G.
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A 3D straight-line grid drawing Γ of an undirected graph G maps each vertex
of G to a distinct point of Z3 and each edge of G to the straight-line segment
between its vertices. we denote the x-, y- and z-coordinates of p by x(v), y(v)
and z(v). A crossing-free straight-line grid drawing is a straight-line grid drawing
such that edges intersect only at shared end-vertices and an edge only intersect
a vertex that is an end-vertex of that edge.

A (crossing-free) straight-line grid drawing of a DAG G is a (crossing-free)
straight-line grid drawing of the underlying undirected graph Ĝ of G. A 3D
straight-line grid drawing of G is upward if for each directed edge (u, v) ∈ G we
have z(u) < z(v).

The bounding box of a straight-line grid drawing Γ of a graph G is the min-
imum axis-aligned box containing Γ . If the sides of the bounding box of a 3D
straight-line grid drawing Γ parallel to the x-, y-, and z-axis have lengths W −1,
D − 1 and H − 1, respectively, we say that Γ has width W , depth D and height
H . We also say that Γ has size W × D × H and volume W · D · H .

3 Volume Requirements of 3D Upward Drawings

In this section we present a super-linear lower bound on the volume of 3D upward
drawings of outerplanar DAGs. In order to do this, we start by introducing and
studying the concept of an upward track layout, which extends the (undirected)
notion of an improper track layout as defined by Dujmović et al. [10].

3.1 Upward Track Layouts

Let G = (V, E) be an undirected graph. A t-track assignment γ of G consists
of a partition of V into t sets V0, V1, . . . , Vt−1 and a total order ≤i for each set
Vi. We write u <i w if u ≤i w and u = w. There is an overlap if there exist
three vertices u, v, w such that u, v, w ∈ Vi, (u, w) ∈ E and u <i v <i w. There
is an X-crossing if there exist two edges (u, v) and (w, z) such that u, w ∈ Vi,
v, z ∈ Vj , with i = j, and u <i w and z <j v. A t-track layout of G is a t-track
assignment of G without overlaps and X-crossings. The minimum value of t such
that G has an t-track layout is called the track number of G and is denoted as
tn(G).

Definition 1. Let G = (V, E) be a DAG. An upward t-track layout of G is a
partition of V into t sets V0, V1, . . . , Vt−1, called tracks, a total order ≤i for each
track Vi and a partial order � on V such that there is no overlap, there is no
X-crossing, if (u, v) ∈ E then u � v and if u ≤i v for some i then u � v.

The minimum value of t such that G has an upward t-track layout is called
the upward track number of G and is denoted as utn(G).

We complete this section by studying the relationship between upward track
layout and another well-known graph parameter, namely the upward queue-
number [15, 16, 17].

Let G = (V, E) be an undirected graph. A q-queue layout of G consists of a
total ordering ≤σ of V and a partition of E into q sets, called queues, such that
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there are no two edges (u, v) and (w, z) in the same queue such that u <σ w <σ

z <σ v, where u <σ w means u ≤σ w and u = w. The minimum value of q such
that G has a q-queue layout is called the queue number of G and is denoted as
qn(G).

Let G = (V, E) be a DAG. An upward q-queue layout of G consists of a total
ordering ≤σ of V and a partition of E into q sets, called queues, such that it
is a q-queue layout for the undirected underlying graph Ĝ of G and for each
edge (u, v) ∈ E, we have u <σ v. The minimum value of q such that G has an
upward q-queue layout is called the upward queue number of G and is denoted
as uqn(G).

Lemma 1. Let G be a DAG. Then

uqn(G) ≤
(

utn(G)
2

)
+ utn(G).

Sketch of Proof. The total ordering σ of the queue layout is a total order that
respects the partial order � of the track layout. All edges between any pair of
tracks can be put in a queue. All edges on a track can be put in a queue. �

Note that in the undirected case Dujmović et al. [10] proved that qn(G) ≤
tn(G), for every graph G. As the following lemma shows, the relationship stated
by Lemma 1 can be asimptotically tight for DAGs.

Lemma 2. For all n there exists a DAG G with at least n vertices such that
uqn(G) ≥ (utn(G) − 2)2/2.

Proof. Let k be the smallest integer such that there is a value t for which t(t+1) =
2k ≥ n. Consider the graph G = (V, E). The set V is Vu ∪ Vv where Vu =
{u0, u1, . . . , uk−1} and Vv = {v0, v1, . . . , vk−1}. The set of edges E is Eu∪Ev∪Euv

where Eu = {(ui, ui+1) | 0 ≤ i < k − 1}, Ev = {(vi, vi+1) | 0 ≤ i < k − 1} and
Euv = {(ui, vk−1−i) | 0 ≤ i < k}. The graph G contains the Hamiltonian path
consisting of Eu ∪Ev plus the edge (uk−1, v0). The order of the vertices of G in
this Hamiltonian path is the unique topological sort of G and therefore it must
be the total order for the upward queue layout. Since no two edges from Euv

can belong to the same queue, it follows that uqn(G) ≥ k. It is not hard to see
that in fact uqn(G) = k.

Consider the following upward layout of G on t + 2 tracks. Place all vertices
of V on the tracks in the order given below. For an illustration see Figure 1,
where k = 10 and t = 4. Place vertices u0, u1, . . . , ut−1 on track 0. Then place
the next t − 1 vertices of Vu on track 1, the next t − 2 vertices of Vu on track
2, etc. So track t − 1 contains the vertex uk−1. Place v0 on track t + 1. Place
v1 and v2 on tracks t + 1 and t respectively. Then place the next three vertices
of Vv on tracks t + 1, t and t − 1, etc. So the last group of vertices placed is
{vk−t, vk−t−1, . . . , vk−1}, and they lie on tracks t + 1, t, . . . , 2. It can easily be
verified that the edges of E do not form an X-crossing. So utn(G) ≤ t + 2. We
have uqn(G) = k = t(t + 1)/2 ≥ (utn(G) − 2)2/2, so the lemma holds. ��
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u9

u2u3u1u0u1 u9

v9 v1v0

v0

Fig. 1. A graph G and a partial 5-track layout of G

3.2 Volume Requirement

We next show a super-linear volume lower bound by using the results in the
previous subsection and the following lemma.

Lemma 3. Let G be a DAG and let Γ be a 3D straight-line upward grid drawing
of G such that the sides of the bounding box of Γ parallel to the x-, y-, and z-axis
have length W , D, and H, respectively. Then utn(G) ≤ W · D.

Sketch of Proof. All lines in Γ parallel to the z-axis are the tracks of the track
layout. The total ordering ≤i on each track Vi and the partial order � for the
track layout can be defined according to the z-coordinates of the vertices in Γ .

�
Theorem 1. There exists an outerplanar DAG G with n vertices such that any
crossing-free 3D straight-line upward grid drawing of G requires Ω(n1.5) volume.

Proof. Consider the DAG G = (V, E) with m = 3n/2−2 edges as defined in the
proof of Lemma 2 and illustrated in Figure 1 with n = 20.

As we saw in the proof of Lemma 2, uqn(G) = k = n/2. Assume for contradic-
tion that there exists a 3D straight-line upward grid drawing Γ of G with volume
o(n1.5). Let W , D, and H be the width, depth, and height of Γ . Since Γ is up-
ward, we have z(u0) < z(u1) < · · · < z(uk−1) < z(v0) < z(v1) < · · · < z(vk−1).
This implies that H ≥ n. In order to have a volume of o(n1.5) it must be that
W ·D = o(n

1
2 ). By Lemma 3 this would imply utn(G) = o(n

1
2 ). By Lemma 1, we

have uqn(G) = O(utn(G)2) and therefore it would be uqn(G) = o(n), but this is
impossible because we proved that uqn(G) = Ω(n). ��

Note that in contrast to Theorem 1, undirected outerplanar graphs admit a
crossing-free 3D straight-line upward grid drawing in optimal O(n) volume [13].
Theorem 1 can be regarded as the three-dimensional counterpart of well-known
results which show that in two-dimensions, undirected and directed planar
graphs have different area requirements [6].

4 Compact 3D Upward Drawings of Trees

Based on the result of Theorem 1 we next investigate whether there exist mean-
ingful families of outerplanar DAGs with o(n1.5) volume upper bounds. In this
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section we study compact 3D upward drawings of trees and paths. We recall that
Heath et al. [17] proved that every tree DAG has an upward 2-queue layout and
that every path DAG has an upward 1-queue layout.

Definition 2. Let G = (V, E) be a DAG. A 3D upward straight-line grid draw-
ing Γ of G on t lines is a drawing of G with vertices placed on t lines parallel to
the z-axis such that the drawing induced by the vertices on two of the t lines is
crossing-free.

Recall that in an upward grid drawing, we also have z(u) < z(v) for all edges
(u, v).

Lemma 4. If DAG G has a 3D upward straight-line grid drawing on t-lines of
height H, then G has a 3D crossing-free straight-line upward grid drawing of size
t × p × p · H and volume O(t3 · H), where p is the smallest prime number such
that p ≥ t.

The lemma follows directly from a similar result in [9].

Corollary 1. Let G be a DAG with n vertices. G has a 3D crossing-free straight-
line upward grid drawing of size utn(G) × p × p · n and volume O(utn(G)3 · n),
where p is the smallest prime number such that p ≥ utn(G).

Lemma 5. Let T be a directed tree with n vertices. Then T admits an upward
straight-line grid drawing on 7 lines.

Sketch of Proof. Let v be a vertex of T . The set of edges of T is E. We use T +(v)
to denote the subtree of T induced by all vertices w for which there is a directed
path of length ≥ 0 from v to w. Similarly, T−(v) is the subtree of T induced by
all vertices w for which there is a directed path of length ≥ 0 from w to v.

Let r be a vertex of T that has no incoming edges, i.e. there are no edges
(v, r) in E. Let F0 be T +(r). Let F1 = {T−(w) | v ∈ F0, w /∈ F0, (w, v) ∈ E}.
In other words F1 is a forest of trees T−(w) for all nodes w for which there is
an edge (w, v) in E with v ∈ F0 and w /∈ F0. Similarly, let F2 = {T +(w) | v ∈
F1, w /∈ F0 ∪ F1, (v, w) ∈ E}, F3 = {T−(w) | v ∈ F2, w /∈ F1 ∪ F2, (w, v) ∈ E},
etc. Since T is connected, it follows that each vertex v of T belongs to some Fi.

We first draw the single tree of F0, i.e. the tree T +(r), on tracks 0, 1 and
2 using the wrap-around algorithm described in [13]. We then place the roots

z

F5

F4F2

F3
F1

F0

Fig. 2. Drawing of a tree decomposed into 6 forests
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of the trees in F1 on track 3. We then use the algorithm of [13] again to place
the remaining vertices of F1 on tracks 3, 4 and 5, but now wrapping the trees
from high z values to smaller z values. Suppose we have placed Fi on tracks
j, j + 1, j + 2. If i is odd we place the roots of the forest Fi+1 on track j + 3,
sufficiently far above Fi−1 to leave room for Fi+2. We then use the wrap-around
algorithm to place the remaining vertices of Fi+1 on tracks j+3, j+4, j+5. If i is
even we place the roots of the forest Fi+1 on track j +3, below all vertices of Fi,
but above Fi−2. We then use the wrap-around algorithm to place the remaining
vertices of Fi+1 on tracks j +3, j +4, j +5, so that all vertices of Fi+1 are above
the vertices of Fi−2. It can be shown that the resulting drawing has no overlaps
and no X-crossings. For an illustration, see Figure 2. �

Theorem 2. Every directed tree T with n vertices admits a 3D crossing-free
straight-line upward grid drawing of size 7 × 7 × 7 · n and volume O(n).

An immediate consequence of Lemma 5 is that for every tree T utn(T ) ≤ 7.
It is possible to prove that there exists a directed tree T such that utn(T ) ≥ 4.
Therefore the following theorem holds.

Theorem 3. Let T be a directed tree. Then 4 ≤ utn(T ) ≤ 7.

For the special case of a path, the result of Theorem 2 can be further improved
as shown in the following.

Theorem 4. Every directed path P with n vertices admits a 3D crossing-free
straight-line upward grid drawing of size 2 × 2 × n and volume O(n).

Sketch of Proof. Let P be a directed path with vertices v0, . . . , vn−1. We assume
without loss of generality that the first edge from v0 to v1 is directed in the
direction from v0 to v1. Decompose the path into k chains of consecutive edges
that are similarly directed. We refer to the vertices where the path changes
direction as w0 = v0, w1, w2, ..., wk = vn−1, and the directed chains as W0=
w0 → w1, W1= w1 ← w2, W2= w2 → w3, etcetera.

These chains alternate in direction and our goal is to draw them on three
tracks in the order 0, 1, 2, 0, 1, . . .. The algorithm to layout the chains is straight-
forward except that some care is required if there is a long down chain that

w1 w1

w4 W3

W1

z

w2

w5

w4

w3

w0

w0

W4

W2

W0

w2

w5

w3

Fig. 3. Paths on 3 tracks
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might interfere with previously placed vertices. To avoid this, we maintain an
invariant that places vertices of the form w2i+1 sufficiently high. See Figure 3 for
the general technique. Finally, the tracks can be drawn in 3D (non-coplanarly)
in an upward manner and achieving the stated size and volume. �

5 Extensions to Other Families of DAGs

Let G = (V, E) be a DAG. A vertex c-colouring of G is a partition {Vi : 1 ≤
i ≤ c}, such that for every edge (u, v) ∈ E, if u ∈ Vi and v ∈ Vj , then i = j.
The minimum value of c such that G has a vertex c-colouring is called the
chromatic number and is denoted by χ(G). A strong star colouring of a graph G
is a vertex colouring of G such that each bichromatic subgraph consists of a star
and possibly some isolated vertices. The minimum value of c such that G has a
strong star colouring with c colours is called the strong star chromatic number
and is denoted by χsst(G). Th definition of strong star chromatic number is
due to Dujmović and Wood [12] who observed that track number is at most
strong star chromatic number, i.e. tn(G) ≤ χsst(G). It is easy to prove that also
utn(G) ≤ χsst(G).

In [12] it has been proven that every graph G with m edges and maxi-
mum degree Δ ≥ 1 has strong star chromatic number χsst(G) < 14

√
Δm and

χsst(G) < 15m2/3. Consequences of these results are that every planar graph
has upward track number O(n2/3) and that this bound reduces to O(

√
n) if the

planar graph has bounded degree. This allows us to find upper bounds on the
volume of a 3D crossing-free straight-line upward grid drawing of several families
of graphs. In particular, outerplanar graphs and Halin Graphs as special cases
of planar graphs with unbounded degree, have upward track number O(n2/3)
and by Corollary 1, volume O(n3). On the other hand k-planar graphs (i.e. pla-
nar graphs with maximum vertex degree at most k) and X-trees as examples of
planar graphs with bounded degree have upward track number O(

√
n) and by

Corollary 1, volume O(n2.5). It is easy to construct an X-tree and a Halin graph
that contains the graph of Figure 1, which is outerplanar, planar and k-planar

Table 1. Upper and Lower Bounds on the Volume of a 3D crossing-free straight-line
upward grid drawing of different families of graphs

Family of DAGs Volume Upper Bound Volume Lower Bound
Trees O(n) (7 × 7 × 7 · n) Ω(n)
Paths O(n) (2 × 2 × n) Ω(n)
X-trees O(n2.5) Ω(n1.5)
Halin O(n3) Ω(n1.5)
Outerplanar O(n3) Ω(n1.5)
Planar O(n3) Ω(n1.5)
k-planar O(n2.5) Ω(n1.5)
arbitrary O(n4) Ω(n1.5)
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for each k ≥ 3. It follows that a lower bound of Ω(n1.5) on the volume of a 3D
crossing-free straight-line upward grid drawing can be established for all these
families of graphs. We conclude by observing that a trivial upper bound on the
upward track number of an arbitrary graph G is O(n) and hence by Corollary 1
a trivial upper bound on the volume is O(n4). Table 1 summarizes these upper
and lower bounds on the volume.
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Abstract. Let R and B be two sets of points such that the points of
R are colored red and the points of B are colored blue. Let P be a path
such that |R| vertices of P are red and |B| vertices of P are blue. We
study the problem of computing a crossing-free drawing of P such that
each blue vertex is represented as a point of B and each red vertex of P
is represented as a point of R. We show that such a drawing can always
be realized by using at most one bend per edge.

1 Introduction

Let G be a planar graph such that each vertex of G is colored with either the
red or the blue color. Let R and B be two distinct sets of red and blue points in
the plane, respectively, such that |R| equals the number of red vertices of G and
|B| equals the number of blue vertices of G. A bichromatic point-set embedding
of G onto R∪B is a crossing-free drawing such that those vertices that are blue
in G are mapped to points of B and those vertices that are red in G are mapped
to points of R. The mapping of each blue/red vertex of G to a corresponding
blue/red point of R ∪ B is not part of the input.

The problem of computing bichromatic point-set embeddings for different sub-
classes of planar graphs has attracted considerable interest during the last fifteen
years. We briefly recall here only some of the most relevant results concerning
the case that G is a simple path, since this is the main subject of this short
paper. For an exhaustive survey see [5]. In what follows we shall denote with S
the set R ∪ B and implicitly assume that the red (blue) points of S are always
as many as the red (blue) vertices of the bi-colored input path P .

Akiyama and Urrutia [2] exhibit a set S of sixteen points in convex position
on which a proper 2-colored path P does not admit a straight-line bichromatic
point-set embedding, and present an O(n2)-time algorithm to test whether a
proper 2-colored path has a straight-line bichromatic point-set embedding on a
given set of points. Abellanas et al. [1] also study straight-line point-set embed-
dings for a path P with a proper 2-coloring. They show that if either the convex
hull of S consists of all red points and no blue points or S is a linearly separable
bipartition (i.e. there exists a line that separates all blue points from the red
ones), then P has a straight-line point-set embedding onto S. Finally, a recent
paper by Kaneko, Kano, and Suzuki [4] provides a complete characterization
of those paths with a proper 2-coloring that admit a straight-line bichromatic
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point-set embedding onto any set of points S in general position: If P has at
most twelve vertices or if it has exactly fourteen vertices, then P always admits
a straight-line bichromatic point-set embedding onto S; for all other cases, there
exist configurations of S for which P does not admit a straight-line bichromatic
point-set embedding.

Motivated by the result of Kaneko, Kano, and Suzuki [4], we study the prob-
lem of constructing a bichromatic point-set embedding of a 2-colored path by
removing the restriction that no three points of S are collinear and by not assum-
ing that the given 2-coloring is proper. We observe that allowing collinearities
naturally leads to bichromatic point set embeddings whose edges can contain
bends. The main contribution of this paper is the following theorem.

Theorem 1. Let P be a simple path such that each vertex of P is colored with
either the red or the blue color. Let R and B be two distinct sets of points in
the plane such that |R| equals the number of red vertices of P and |B| equals the
number of blue vertices of P . Then P admits a bichromatic point-set embedding
onto R ∪ B with at most one bend per edge.

The proof of Theorem 1 is based on showing that a 2-colored path admits
a bichromatic point-set embedding onto any given set S if and only if it has a
suitably defined 2-page bichromatic book embedding (see Section 2).

2 Preliminaries

Let G = (V, E) be a planar graph. A 2-coloring of G is a partition of V into 2
disjoint sets Vb and Vr . We call blue vertices the vertices of Vb and red vertices
the vertices of Vr. A 2-coloring is proper if for every edge (u, v) ∈ E we have
u ∈ Vb and v ∈ Vr. Given a vertex v we denote by c(v) the color of v. If a graph
G has a 2-coloring we say that it is 2-colored, if the 2-coloring is proper we say
that G is properly 2-colored.

Let G be a planar 2-colored graph and let S = B ∪ R be a set of points in
the plane, such that |B| = |Vb| and |R| = |Vr|. We call blue points the points of
B and red points the points of R. A point-set embedding onto S of G is a planar
drawing Γ such that the vertices of G are drawn in Γ on the points of S, and
each edge of G is drawn as a polyline in Γ (Kaufmann and Wiese [6] show that
any planar graph admits a points-set embedding). G has a bichromatic point-set
embedding onto S if G has a point-set embedding onto S such that every blue
vertex is drawn on a blue point, and every red vertex is drawn on a red point.
A planar 2-colored graph G is bichromatic point-set embeddable if for any set of
points, S = R ∪ B such that |B| = |Vb| and |R| = |Vr|, G has a bichromatic
point-set embedding onto S.

Let G be a planar graph. An h-page book embedding of G consists of a linear
ordering λ of the vertices of G and a partition of the edges of G into h disjoint
sets, called pages, such that there are no two edges (u, v) and (w, z) in the same
page with u < w < v < z in λ. A different but equivalent definition of an h-page
book embedding is the following. An h-page book embedding of G is a drawing
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of G such that all the vertices of G are drawn as points of a straight line l called
spine, each edge is drawn on one of h half-planes, called pages, having l as a
common boundary, and no two edges in the same page cross. According to this
second definition, a book embedding is a drawing rather than a combinatorial
object. In the following we shall always refer to this “geometric” definition rather
than to the “combinatorial” one. In the special case when h = 2 we have that a
2-page book embedding of G is a planar drawing such that all the vertices are
drawn as points of a straight line l, and each edge is drawn on one of the two
half-planes defined by l.

A red-blue sequence σ is a sequence of points along a straight line l such that
each point p ∈ σ is either red or blue. Given a point p of σ, we denote by c(p)
the color of p. Let nr and nb be the number of red and blue points in a red-
blue sequence σ, respectively, and let G be a planar 2-colored graph such that
|Vb| = nb and |Vr| = nr. An h-page book embedding of G consistent with σ is an
h-page book embedding of G such that each vertex v of G is represented by a
point p of σ and c(v) = c(p). Notice that the exact position of the points of σ on
the line l is not relevant for the existence of the book embedding, and only their
relative order is important. A planar 2-colored graph G is h-page bichromatic
book embeddable if, for any red-blue sequence σ with |Vb| = nb and |Vr | = nr,
G has an h-page book embedding consistent with σ. Let γ be an h-page book
embedding of G, and let v be a vertex of G. We say that v is accessible from a
page π if there is no edge (u, w) in π such that u < v < w in the linear ordering
of γ. Analogously we say that a point p ∈ σ is accessible from a page π if there
is no edge (u, w) in π such that u < p < w in the linear ordering of γ. Two
vertices/points accessible from a common page can be connected by an edge
without creating any crossings.

In [3] it has been proved that there is a strong connection between point-set
embeddability and book embeddability. More precisely, the following lemma is
an immediate consequence of [3].

Lemma 1. [3] Let G be a planar graph. G admits a 2-page book embedding if
and only if G admits a point-set embedding with at most 1 bend per edge on any
set of points.

The following theorem shows that the result can be extended to the case of
bichromatic point-set embedding and bichromatic book embedding. The proof
is omitted for reasons of space.

Theorem 2. Let G be a planar 2-colored graph. Then G is bichromatic point-set
embeddable with at most 1 bend per edge if and only if it is 2-page bichromatic
book embeddable.

3 Bichromatic Point-Set Embedding of Paths

In this section we prove Theorem 1 and apply it to the bichromatic point-set
embeddability of cycles. Based on Theorem 2, it suffices to prove the following.
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Theorem 3. Let P be a 2-colored path, and let σ be any red-blue sequence. Then
P has a 2-page bichromatic book-embedding that is consistent with σ.

Proof. Let Vb and Vr be the set of blue and red vertices of P respectively, and let
σ be any red-blue sequence such that nb = |Vb| and nr = |Vr|, where nb and nr

are the number of blue and red points of σ, respectively. Denote as p0, p1, . . . pn−1
the points of σ in the order they have in σ. We describe how to construct a 2-
page bichromatic book embedding of P consistent with σ. We shall denote with
Pk the sub-path of P induced by the first k + 1 vertices of P . The k + 1 vertices
of Pk are denoted as v0, v1, . . . , vk.

The proof is constructive and adds one vertex and one edge per step to the
bichromatic book embedding. At step k all vertices of Pk−1 have already been
added to the bichromatic book embedding, and we add vertex vk and edge
(vk−1, vk). We denote by σk ⊆ σ the red-blue sequence consisting of all points
representing the vertices of Pk. We prove by induction that at the end of step k
the following invariants hold:
Property 1. Let pi be the rightmost point of σk. Denote as NBk the set of all
points of σ \ σk that precede pi in σ. All points in NBk have the same color
and are all accessible from the same page π. Furthermore, vertex vk is accessible
from π.
Property 2. Let pj be the point of σk representing vertex vk, and let pi be the
rightmost point of σk. Either i = j, or if j = i then c(pi+1) = c(pj).

At step k = 0 we choose the leftmost point pi of σ such that c(pi) = c(v0).
Properties 1 and 2 trivially hold in this case. At step k > 0 vertex vk and
edge (vk−1, vk) are added according to the following cases, which depend on the
position of the point representing vk−1 in σk−1.
Case 1. vk−1 is represented as the rightmost point pi of σk−1. There are
three sub-cases (see also Figure 1):
Case 1.a. If c(pi+1) = c(vk) then map vk to pi+1, and arbitrarily assign
(vk−1, vk) to one of the two pages. No crossing is created by adding edge
(vk−1, vk) because vk−1 and vk are represented as consecutive points in the
sequence. Properties 1 and 2 hold in this case. Namely, NBk = NBk−1 because
there is no point between pi and pi+1. Hence all points in NBk have the same
color and are all accessible from a same page π by induction. Also, vk is repre-
sented as the rightmost point of σk, and hence it is accessible from both pages.
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Fig. 1. Illustrations for Theorem 3 (a) Case 1.a (b) Case 1.b (c) Case 1.c
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It follows that Property 1 holds. Concerning the statement of Property 2, we
observe that in this case the point of σk representing vertex vk is the rightmost
point.
Case 1.b. Neither pi+1 nor the vertices in NBk−1 have the same color as vk.
Map vk to the first vertex pj to the right of pi that has the same color as vk,
i.e. j = min{h | h > i ∧ c(ph) = c(vk)}. By induction all points in NBk−1
are accessible from a same page π. We assign edge (vk−1, vk) to the other page
(the one different from π). The addition of edge (vk−1, vk) does not introduce
any crossings, because there is no other edge with an endvertex mapped on a
point between pi and pj . We have that NBk = NBk−1 ∪ {pi+1, pi+2, . . . , pj−1},
and that c(pi+1) = c(pi+2) = · · · = c(pj−1) = c(vk), because pj is the first point
after pi such that c(pj) = c(pi). It follows that all vertices of NBk have the same
color. Also, they are all accessible from π because we assign edge (vk−1, vk)
to the page different from π. Hence the invariant expressed by Property 1 is
maintained. Concerning the statement of Property 2, we observe that also in
this case the point of σk representing vertex vk is the rightmost point.
Case 1.c. c(pi+1) = c(vk), NBk−1 = ∅, and the vertices of NBk−1 have the same
color as vk. We map vk to the rightmost point pj of NBk−1, i.e. j = max{h | ph ∈
NBk−1}. By induction all vertices of NBk−1 are accessible from a page π, and
we assign edge (vk−1, vk) to π. The addition of edge (vk−1, vk) does not create
a crossing because, by Property 1, vk−1 and pj are accessible from a common
page. We have that NBk = NBk−1 \ {pj}. It follows that the vertices of NBk

all have the same color and are all accessible from a page π by induction. Point
pj is accessible from π by induction, and it remains accessible also after that
edge (vk−1, vk) is drawn on π. Thus Property 1 holds. Property 2 holds since
c(pi+1) = c(vk).

Case 2. vk−1 is not represented as the rightmost point pi of σk−1. We
distinguish three sub-cases (see also Figure 2):

Case 2.a. c(vk) = c(vk−1) and NBk−1 = ∅. By induction all points of NBk−1
have the same color. Also, note that the points of NBk−1 plus the point repre-
senting vk−1 all belong to NBk−2 by induction, and hence they all have the same
color as vk. We map vk to the rightmost point pj of NBk−1, i.e. j = max{h | ph ∈
NBk−1}. By induction the vertices of NBk−1 are accessible from a page π; we
assign edge (vk−1, vk) to π. The addition of (vk−1, vk) does not create a crossing
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because, by Property 1, vk−1 and pj are accessible from a common page. We
have that NBk = NBk−1 \ {pj}, therefore all points of NBk have the same color
and are all accessible from page π by induction. Point pj was accessible from π
by induction, and it remains accessible also after edge (vk−1, vk) is drawn on π.
Thus, Property 1 holds. Property 2 holds because by induction c(pi+1) = c(vk−1)
and c(vk) = c(vk−1).
Case 2.b. c(vk) = c(vk−1) and NBk−1 = ∅. Choose the first vertex pj to the right
of pi such that pj has the same color as vk, i.e. j = min{h | h > i ∧ c(ph) = c(vk)}.
Since the point representing vk−1 is an element of NBk−2, this point is accessible
from a page π by induction. We assign edge (vk−1, vk) to π. Since point pj is to
the right of pi, pj is accessible from both pages, and therefore the addition of edge
(vk−1, vk) does not create a crossing. We have that NBk = pi+1, pi+2, . . . , pj−1.
Notice that c(pi+1) = c(pi+2) = · · · = c(pj−1) = c(vk) because pj is the first
point after pi such that c(pj) = c(pi). It follows that all points of NBk have the
same color. Also, they are all accessible from the page different from π. Vertex
vk is accessible from both pages because it is drawn on the rightmost point of
σk. Therefore the invariants of Property 1 holds. Property 2 trivially holds since
vk is represented as the rightmost point of σk.
Case 2.c. c(vk) = c(vk−1). By Property 2 we have that c(pi+1) = c(vk). Map vk

to pi+1. Since the point representing vk−1 is an element of NBk−2, it is accessible
from a page π. We assign edge (vk−1, vk) to π. Since point pi+1 is to the right of
pi, it is accessible from both pages, and therefore the addition of edge (vk−1, vk)
does not create a crossing. We have that NBk = NBk−1 because there is no
point between pi and pi+1. Hence all points in NBk have the same color, and
are all accessible from a same page by induction. Also vk is represented as the
rightmost point of σk and hence it is accessible from both pages. It follows that
both the invariants expressed by Properties 1 and 2 are maintained.

This concludes the proof of this theorem and hence of Theorem 1. ��
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Bipartite embeddings of trees in the plane. Discrete Applied Mathematics, 93(2-
3):141–148, 1999.

2. J. Akiyama and J. Urrutia. Simple alternating path problem. Discrete Mathematics,
84:101–103, 1990.

3. E. Di Giacomo, W. Didimo, G. Liotta, and S. K. Wismath. Book-embeddability of
series-parallel digraphs. Algorithmica. to appear.

4. A. Kaneko, M. Kano, and K. Suzuki. Path coverings of two sets of points in the
plane. In J. Pach, editor, Towards a Theory of Geometric Graph, volume 342 of
Contempory Mathematics. American Mathematical Society, Providence, 2004.

5. A. Kanenko and M. Kano. Discrete geometry on red and blue points in the plane -
a survey -. In Discrete and Computational Geometry, volume 25 of Algorithms and
Combinatories. Springer, 2003.

6. M. Kaufmann and R. Wiese. Embedding vertices at points: Few bends suffice for
planar graphs. Journal of Graph Algorithms and Applications, 6(1):115–129, 2002.



Upward Spirality and Upward Planarity Testing�

Walter Didimo, Francesco Giordano, and Giuseppe Liotta
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Abstract. The upward planarity testing problem is known to be NP-
hard. We describe an O(n4)-time upward planarity testing and embed-
ding algorithm for the class of digraphs that do not contain rigid tricon-
nected components. We also present a new FPT algorithm that solves the
upward planarity testing and embedding problem for general digraphs.

1 Introduction

An upward planar drawing of a planar digraph G is a crossing-free drawing of
G such that the vertices of G are mapped to points of the plane and the edges
of G are drawn as simple curves that are monotone in the upward direction.
A digraph that admits an upward planar drawing is an upward planar digraph.
Unfortunately, not all planar digraphs are upward planar. The digraph of Fig-
ure 1(a) is not upward planar independent of the choice of its planar embedding.
The upward planarity testing problem asks whether a planar digraph G has an
upward planar drawing.
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Fig. 1. (a) A digraph G that is not upward planar. (b) The underlying undirected
graph of G is a series-parallel graph, i.e., it does not have rigid components.

The upward planarity testing problem is a classical subject of investigation in
the graph drawing literature, and many papers have been devoted to this subject
during the last decade. Bertolazzi et al. [1] present an O(n2)-time algorithm that
tests whether a digraph with a given planar embedding is upward planar. Garg
and Tamassia [9] show that the problem in the variable embedding setting is
NP-complete. Papakostas [14] presents an O(n2)-time algorithm for testing the
� This work is partially supported by the MIUR Project ALGO-NEXT: Algorithms
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upward planarity of outerplanar digraphs. Hutton and Lubiw [13] describe an
O(n2)-time testing algorithm for digraphs that have a single source. Bertolazzi
et al. [3] improve this last result by showing an optimal O(n) testing algorithm
for the same class of digraphs studied by Hutton and Lubiw. Bertolazzi et al. [2]
describe a branch-and-bound testing algorithm for biconnected planar digraphs.
Recently, fixed parameter tractable (FPT) algorithms have also been designed:
Chan [4] presents an O(t! ·8t ·n3 +(2 · t)3·2c

t! ·8t ·n)-time algorithm where c and
t are the number of cut-vertices and the number of triconnected components of
G, respectively. Healy and Lynch [12] improve Chan’s result by giving an O(2t ·
t! · n2)-time algorithm; in the same paper, Healy and Lynch describe a second
upward planarity testing algorithm whose time complexity is O(n2+k4(2k+1)!),
with k = |E| − |V |.

In this paper we describe a polynomial time algorithm and a new FPT al-
gorithm for the upward planarity testing problem in the variable embedding
setting. More precisely:
– We introduce and study the concept of upward spirality (Section 3), which

is a measure of how much a component of a digraph is “rolled-up” in an
upward planar drawing. A similar concept was introduced in the literature
in the context of orthogonal drawings [6].

– We describe an O(n4)-time upward planarity testing and embedding algo-
rithm for the class of series-parallel digraphs, i.e. biconnected digraphs whose
SPQR-tree does not have any R-node (Section 4). Our algorithm still runs
in polynomial time even if the digraph is not biconnected and any block is
a series-parallel digraph.

– Using the above results, we design a new FPT algorithm for upward planarity
testing of general digraphs whose time complexity is O(dt·n3+d·t2·n+d2 ·n2),
where d is the maximum diameter of any split component of G and t is the
number of (non-trivial) triconnected components of G (Section 5).

For reasons of space, all proofs are omitted and some sections are sketched.
Details can be found in [8].

2 Preliminaries

We assume familiarity with basic concepts of graph drawing and graph pla-
narity [5]. Let G be a planar digraph with a given planar embedding. A vertex
of G is bimodal if the circular list of its incident edges can be partitioned into two
(possibly empty) lists, one consisting of incoming edges and the other consisting
of outgoing edges. If all vertices of G are bimodal then G and its embedding
are called bimodal. Acyclicity and bimodality are necessary conditions for the
upward planar drawability of an embedded planar digraph [1]. However, they
are not sufficient conditions.

Let f be a face of an embedded planar bimodal digraph G and suppose that
the boundary of f is visited clockwise if f is internal, and counterclockwise if f
is external. Let a = (e1, v, e2) be a triplet such that v is a vertex of the boundary
of f and e1, e2 are incident edges of v that are consecutive on the boundary of f .
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Triplet a is called an angle of f . Also, a is a switch angle of f if the direction
of e1 is opposite to the direction of e2 (note that e1 and e2 may coincide if G is
not biconnected). If e1 and e2 are both incoming in v, then a is a sink-switch of
f ; if they are both outgoing, a is a source-switch of f . A source or a sink of G
is called a switch vertex of G; a vertex that is not a switch vertex is called an
internal vertex of G.

Let Γ be an upward planar drawing of G and let a be an angle of G. Label a
with a letter L (resp. a letter S) if it is a switch angle and has in Γ a value greater
(resp. less) than π. Label a with a letter F if it is not a switch angle. The labeled
embedded digraph UG so obtained is called an upward planar representation of G,
and can be viewed as the equivalence class of all (embedding preserving) upward
planar drawings of G that induce the same angle labeling on G. Drawing Γ is
also said to be an upward planar drawing that preserves UG.

Now, consider an embedded planar digraph G and a labeling of its angles
with labels L, S, and F . If v is a vertex of G, we denote by L(v), S(v), and F (v)
the number of angles at v that are labeled L, S, and F , respectively. The degree
of v is defined as the number of angles at v, and is denoted as deg(v). Also, if f
is a face of G, L(f), S(f), and F (f) denote the number of angles of f that are
labeled L, S, and F , respectively. The following result is a restatement of the
results in [1].

Lemma 1. Let G be an acyclic planar bimodal embedded digraph with angle
labels L, S, F . G and its labeling define an upward planar representation if and
only if the following properties hold: (UP1) If v is a switch vertex of G then:
L(v) = 1, S(v) = deg(v) − 1, F (v) = 0; (UP2) If v is not a switch vertex of G
then: L(v) = 0, S(v) = deg(v) − 2, F (v) = 2; (UP3) If f is a face of G then:
L(f) = S(f) − 2 if f is internal and L(f) = S(f) + 2 if f is external.

From an upward planar representation UG it is always possible to construct in
linear time an upward planar drawing of G that preserves UG, where each edge is
drawn as a straight-line segment or as a polyline. Figure 2 shows an embedded
planar digraph G, an upward planar representation UG of G, and an upward
planar drawing of G within UG. Given an upward planar representation UG, the
angles labeled L, S, and F are called large, small, and flat angles, respectively. If
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Fig. 2. (a) A planar embedded bimodal digraph G. (b) An upward planar representa-
tion UG of G. (c) An upward planar drawing of G within UG.
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Fig. 3. Transformation of an SPQR-tree into its canonical form

G′ is a subgraph of G, then G′ has an upward planar representation UG′ induced
by UG, which is defined as follows. Let a = (e1, v, e2) be an angle of G′, and let
A be the counterclockwise sequence of angles of UG between e1 and e2. Angle a
in UG′ is labeled: L if A either contains one large angle or two flat angles; F if
A contains only one flat angle; S otherwise.

Let G be a biconnected graph and let e = {s, t} be any edge of G, called
reference edge. The SPQR-tree of G with respect to e describes a decomposition
of G in terms of its triconnected components, and implicitly represents all planar
embeddings of G with e on the external face. We assume familiarity with all
formal definitions about SPQR-trees [7]. Suppose that G is given with an st-
numbering of its vertices, such that the source and the sink of this numbering
are the end-vertices s, t of the reference edge of G. If T is the SPQR-tree of G
with respect to e, given any node μ of T , let u and v be the two poles of μ, so
that u precedes v in the st-numbering. We call u and v the first pole and the
second pole of the pertinent graph Gμ of μ. If G has a fixed planar embedding
with reference edge e on the external face, the right face of Gμ is the face to the
right of Gμ in G, while moving from u to v. The left face of Gμ is the face to
the left of Gμ in G, while moving from u to v. The path on the right face of Gμ,
going from u to v, is called the right path of Gμ. The path on the left face of
Gμ, going from u to v, is called the left path of Gμ.

In the remainder of the paper, we consider SPQR-trees of directed graphs
(digraphs) G. In this case, the computation of the decomposition tree is done
exactly as for undirected graphs, by ignoring the orientation of the edges of
G. Notice that, there is no connection between the orientation of the edges
of G and the definition of first and second poles of the pertinent digraphs. In
order to simplify the description of our upward planarity testing algorithm, we
use canonical SPQR-trees, i.e., SPQR-trees where each S-node has always two
children. A canonical SPQR-tree T of G can be constructed from an SPQR-
tree of G by applying on every S-node the transformation illustrated in Figure 3.
A canonical SPQR-tree of G has a number of nodes that is still linear in the
number of vertices of G.

We say that a biconnected digraph G is a series-parallel digraph if its SPQR-
tree only consists of Q-, S-, and P -nodes.

3 Upward Spirality

In the following, we assume that G is a biconnected digraph, T an SPQR-tree
of G, UG an upward representation of G, and Gμ the pertinent digraph of a node
μ of T , with first pole u and second pole v.
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Let P =< v1, e1, v2, . . . , vi, ei, . . . , ek−1, vk > be any simple (undirected) path
(possibly a simple cycle) in G, and let UP be the upward planar representation
of P induced by UG. Consider a vertex vi (i ∈ {2, . . . , k − 1}) that is a switch
of P , and denote by a = (ei−1, vi, ei), a′ = (ei, vi, ei−1) the two angles at vi in
UP . Walking on P from v1 to vk, we say that vi is a left turn (resp. right turn)
of UP if a (resp. a′) is large. We denote by n(UP ) the number of right turns
minus the number of left turns of UP , and we call n(UP ) the turn number of P
in UG, or simpler, the turn number of UP . Similarly, if P is a simple cycle, i.e.
v1 = vk, and we walk clockwise on P , we say that we encounter a left turn (resp.
right turn) of UP on any switches of P that has a large angle (resp. small angle)
inside the cycle. Because of Lemma 1, if P is a simple cycle of UG, then its turn
number is n(UP ) = 2.

Denoted by w ∈ {u, v} any of the two poles of Gμ, we want to classify w on
the basis of the labeling of the angles at w in UG. The label of the angle at w in
the right face (resp. in the left face) of Gμ is called the right inter-label (resp. the
left inter-label) of w. An intra-label of w is any label of an angle at w internal at
Gμ. We assign to each angle label an integer weight, in such a way that labels
S, F , and L have weight 0, 1, and 2, respectively. The intra-labeling weight of w
is the sum of the weights of all intra-labels of w. From properties UP1 and UP2
of Lemma 1, the intra-labeling weight of w ranges from 0 to 2.

In UG, we describe the angles labeling of the pole w of Gμ, by using a string
tw = XY λ, such that X is the left inter-label of w, Y is the right inter-label of w,
and λ is the intra-labeling weight of w. We say that tw is the pole category of w.
We remark that, since UG is an upward planar representation, not all categories
XY λ (X, Y ∈ {S, F, L}, λ ∈ {0, 1, 2}) are possible for a pole w of a pertinent
digraph of G. Indeed, as also observed above, the sum of all angle labels at w
must verify UP1 and UP2, and w must be bimodal. Hence, the following lemma
immediately follows (see also Figure 4):

Lemma 2. The possible pole categories of any pole of Gμ in UG are: SS0, SS1,
SS2, SF0, SF1, FS0, FS1, FF0, SL0, LS0.
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Fig. 4. Illustration of the pole categories for the first pole of a pertinent digraph within
an upward planar representation. Grey portions are the internal parts of the pertinent
digraph. The two labels around the pole are the inter-labels of the pole. The illustration
for the second pole is symmetric.
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In order to introduce the notion of upward spirality we need to identify two
suitable vertices that we call the left external vertex of w, denoted as wl, and
the right external vertex of w, denoted as wr, where w is still any of the two
poles of Gμ. The right and the left external vertices of w are defined based on
the pole category tw of w, with respect to Gμ in UG. More precisely, let el be
the edge incident on w, that is on the left path of Gμ and that does not belong
to Gμ; let er be the edge incident on w, that is on the right path of Gμ and that
does not belong to Gμ. Also, let x be the end-vertex of el other than w and let y
be the end-vertex of er other than w. The external vertices wl and wr of w are
defined as follows: (Case 1) One of the following three subcases is verified: (i)
tw ∈ {SS0, SF0, FS0, FF0}; (ii) tw = SL0 and w is the first pole of Gμ; (iii)
tw = LS0 and w is the second pole of Gμ. In this case wl = wr = w. (Case
2) One of the following two subcases is verified: (i) tw ∈ {FS1, SF1, SS1, SS2};
(ii) tw = SL0 and w is the second pole of Gμ; (iii) tw = LS0 and w is the first
pole of Gμ. In this case wl = x and wr = y.

Let ul, ur be the left and the right external vertices of the first pole u of
Gμ and let vl, vr be the left and the right external vertices of the second pole
v of Gμ. Let Puv be an (undirected) path from u to v in Gμ. The undirected
path Pl = (ul, u) ∪ Puv ∪ (v, vl) is called a left spine of Gμ. The path Pr =
(ur, u) ∪ Puv ∪ (v, vr) is called a right spine of Gμ. For example, the left spine
and the right spine of a pertinent digraph are highlighted in Figure 5.

The following lemma shows that the turn number of a spine of a pertinent
digraph of an upward representation is an invariant property of the upward
representation itself.

Lemma 3. Let P ′
r, P

′′
r be two distinct right spines of Gμ and let P ′

l , P
′′
l be two

distinct left spines of Gμ. Then n(UP ′
r
) = n(UP ′′

r
) and n(UP ′

l
) = n(UP ′′

l
).

For example, in Figure 5, Gμ′ has only two left spines, that also concide with
the right spines. The turn number of these spines is −1. Based on Lemma 3, we
can denote by nl(UGμ) the turn number of any left spine of Gμ in UG, without
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Fig. 5. An upward planar representation of a series-parallel digraph G, and an SPQR-
tree T of G rooted at edge e. Gμ and Gμ′ are the pertinent digraphs of nodes μ and
μ′ of T , with poles u, v, u′, v′, respectively. The pole categories of u and v are SS2 and
SS1, respectively. The ones of u′ and v′ are FS1 and SL0, respectively. The left and
the right spines of Gμ constructed on the right path of Gμ are highlighted.
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ambiguity; similarly, nr(UGμ) denotes the turn number of any right spine of Gμ.
The upward spirality of Gμ within UG (or simpler, the upward spirality of UGμ),

is denoted as σ(UGμ) and is defined as follows: σ(UGμ) = nl(UGμ )+nr(UGμ )
2 .

For example, in Figure 5, σ(UGμ) = −1/2, and σ(UGμ′ ) = −1. Suppose now
that Pl and Pr are a left spine and a right spine of Gμ, constructed using the same
path Puv =< u, w1, w2, . . . , wk, v > between the poles u, v of Gμ. We can rewrite
the turn number of the spines as follows: n(UPl

) = n(UPuv )+aul
+avl

, n(UPr ) =
n(UPuv ) + aur + avr , where aul

= n(UPul
), aur = n(UPur

), avl
= n(UPvl

),
avr = n(UPvr

), and Pul
=< ul, u, w1 >, Pur =< ur, u, w1 >, Pvl

=< wk, v, vl >,
Pvr =< wk, v, vr >. Of course, aul

, aur , avl
, avr ∈ {−1, 0, 1}. From the invariant

property of Lemma 3, the upward spirality of UGμ , can be rewritten as follows:

σ(UGμ) = n(UPuv ) +
(aul

+ aur )
2

+
(avl

+ avr )
2

(1)

In order to uniquely refer to the values aul
, aur , avl

, avr for the upward spi-
rality of UGμ , we aim at rewriting σ(UGμ) in a kind of canonical form, choosing
always a “special” path Puv. We define the following equivalence relationship
between any two paths P ′

uv, P ′′
uv of Gμ, within a given upward representation

UG of G. We say that P ′
uv, P

′′
uv are turn equivalent if n(UP ′

uv
) = n(UP ′′

uv
), i.e, if

they have the same turn number. Since σ(UGμ) assumes the same value if we
use P ′

uv or P ′′
uv in Formula (1), and since aul

, aur , avl
, avr ∈ {−1, 0, 1}, then the

turn-equivalence relationship partitions the set of the undirected paths of UGμ ,
from the first to the second pole, into a finite set of equivalence classes. The
following lemma gives a useful property of the paths of Gμ.

Lemma 4. Let P r
uv be a path of Gμ that is turn-equivalent to the right path of

Gμ, and let P l
uv be a path of Gμ that is turn-equivalent to the left path of Gμ. If

Puv is any path of Gμ between u and v, then n(UP l
uv

) ≥ n(UPuv ) ≥ n(UP r
uv

).

In Formula (1) we now choose as path Puv any path P r
uv that is turn-equivalent

to the right path of Gμ, and we consider the corresponding values (aul
+ aur)/2

and (aul
+ aur )/2. Denote n(UP r

uv
) by α(UGμ), and denote (aul

+ aur )/2, (aul
+

aur )/2 by αu(UGμ) and αv(UGμ), respectively.
The upward spirality of UGμ can be rewritten in the following canonical form:

σ(UGμ) = α(UGμ)+αu(UGμ)+αv(UGμ). We call α(UGμ) the internal spirality of
UGμ , and αu(UGμ), αv(UGμ) the first-pole spirality and the second-pole spirality,
respectively. From Lemma 4, each of the terms aul

, aur , avl
, avr in Formula (1)

takes the maximum possible value when Puv = P r
uv. This also implies that,

for any choice of Puv, (aul
+ aur )/2 ≤ αu(UGμ) and (avl

+ avr )/2 ≤ αv(UGμ).
Therefore, for each pole category, it is possible to determine the exact value of
the two pole spiralities, since we know that they take the maximum possible
value and since we know what are the two external vertices. The next results
prove that the upward spirality can only take a linear number of values.

Lemma 5. Let n be the minimum number of switches on any path between the
poles u and v of Gμ. Then, −n−2 ≤ σ(UGμ) ≤ n+2. Also, αu(UGμ)+αv(UGμ) ∈
{−1,−1/2, 0, 1/2, 1, 3/2, 2}.
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Theorem 1. Let G be a digraph with n vertices, T an SPQR-tree of G, and
Gμ the pertinent digraph of a node μ of T . There are at most O(n) values for
the upward spirality of Gμ within any upward planar representation of G.

The following lemmas describe the relationships between the upward spirali-
ties of series and parallel compositions, and the ones of their components.

Lemma 6. Let μ be an S-node of T with children μ1 and μ2. Let Gμ be the
pertinent digraph of μ, with poles u and v, and let Gμ1 , Gμ2 be the pertinent
digraphs of μ1, μ2, with poles u1 = u, v1, and u2 = v1, v2 = v, respectively. The
following relationship holds: σ(UGμ) = σ(UGμ1

) + σ(UGμ2
).

Lemma 7. Let μ be a P node of T with children μ1, . . . , μk, ordered from left
to right. Let Gμ be the pertinent digraph of μ and let Gμ1 , . . . , Gμk

be the per-
tinent digraphs of μ1, . . . , μk, respectively. For each i = 1, . . . , k, the following
relationships hold: (1) α(UGμ) = α(UGμi

)+δ(i)(UGμ), δ(i)(UGμ) ∈ {0, 1, 2, 3, 4};
(2) α(UGμ1

) ≥ α(UGμ2
) ≥ · · · ≥ α(UGμk

) = α(UGμ).

Consider now the subgraph G′ of G consisting of Gμ plus the edges incident on
u and v that are external to Gμ, and let U ′

G′ be any upward planar representation
of G′ such that the planar embedding of the external edges of Gμ and the
angle labels between these edges in U ′

G′ are the same as in UG. Notice that,
the planar embedding of Gμ in U ′

G′ can be different from the one in UG. Denote
by t′u = X ′

uY ′
uλu and t′v = X ′

vY ′
vλv the pole categories of u and v for U ′

Gμ
. The

operation of substitution of UGμ with U ′
Gμ

in UG defines a new planar embedded
digraph S(U ′

Gμ
, UG) with angle labels S, F , and L such that: (i) The planar

embedding and the labels of the angles of subgraph G − Gμ are the same as in
UG; (ii) The planar embedding and the labels of the angles of subgraph Gμ are
the same as in U ′

Gμ
; (iii) The inter-labels of Gμ at u and at v are X ′

u, Y ′
u, X ′

v, Y
′
v ,

respectively. We say that UGμ is substitutable with U ′
Gμ

in UG if S(U ′
Gμ

, UG) is
still an upward planar representation of G. The following theorem is the main
result of this section.

Theorem 2. If U ′
Gμ

and UGμ have the same upward spirality and the same pole
categories (i.e. t′u = tu, t′v = tv), then UGμ is substitutable with U ′

Gμ
in UG.

4 Upward Planarity Testing of Series-Parallel Digraphs

The outline of our upward planarity testing and embedding algorithm for series-
parallel digraphs is as follows. For each possible choice of an edge e of G, the
algorithm computes the SPQR-tree T of G with reference edge e. Then, the
algorithm visits T from bottom to top, in post-order. Each time a node μ of
T is visited, μ is equipped with a set of upward planar representations of Gμ

(which we call feasible set of μ), such that each upward planar representation
is constrained to have assigned pole categories and an assigned value of upward
spirality. Using the result of Theorem 2, for each possible combination of pole
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categories and upward spirality value, the algorithm stores only one constrained
upward planar representation, if there exists one. The feasible set of each S-node
and P -node of T is computed by considering the feasible sets of its children. In
this way, the algorithm incrementally tries to construct an upward planar rep-
resentation of G with edge e on the external face, from the leaves to the root,
while exploring a subset of upward planar representations that is “representa-
tive” of the whole set of upward planar representations of G. The algorithm ends
if the feasible set of a node is empty or if the feasible sets of all nodes have been
successfully computed. In the following we formalize the definition of feasible set
and then describe how the feasible sets of the different types of nodes can be
computed.

A feasible tuple of μ is defined as follows: τμ =< UGμ , σ(UGμ), tu, tv >,
where UGμ is an upward planar representation of Gμ with pole categories tu, tv
and upward spirality σ(UGμ). Let τ ′

μ =< U ′
Gμ

, σ(U ′
Gμ

), t′u, t′v > and τ ′′
μ =<

U ′′
Gμ

, σ(U ′′
Gμ

), t′′u, t′′v > be two feasible tuples of μ. We say that U ′
Gμ

and U ′′
Gμ

are spirality equivalent if σ(U ′
Gμ

) = σ(U ′′
Gμ

), t′u = t′′u, and t′v = t′′v . In this case,
we also say that τ ′

μ and τ ′′
μ are spirality equivalent. A feasible set Fμ of μ is a

set of feasible tuples of μ such that there is exactly one representative tuple for
each class of spirality equivalent feasible tuples of μ. The next lemma guarantees
that our algorithm is able to find an upward planar representation of G with e
on the external face, if there exists one.

Lemma 8. Let G be an upward planar digraph with edge e on the external face,
and let T be the SPQR-tree of G with respect to e. There exists an upward planar
representation UG of G such that: (i) e is on the external face of UG; (ii) for
each node μ of T , there exists a feasible tuple τμ =< UGμ , σ(UGμ), tu, tv > in the
feasible set of μ, where UGμ is the upward representation of Gμ induced by UG.

All the Q-nodes have the same feasible set, which can be computed with a pre-
processing step in O(1) time. Namely, if μ is a Q-node, both the internal spirality
and the internal-labeling weight of any upward planar representation UGμ of Gμ

are equal to 0. We can only have three upward spirality values for UGμ : 0, 1,
and −1. More precisely, if (u, v) is the (undirected) edge represented by μ, the
algorithm inserts in Fμ a tuple for each of the following combinations of upward
spirality and pole categories: (1) σ(UGμ) = 0, tu ∈ {SS0, SF0, FS0, FF0, SL0},
tv ∈ {SS0, SF0, FS0, FF0, LS0}. (2) σ(UGμ) = 0, tu = LS0 and tv = SL0. (3)
σ(UGμ) = 1, tu = LS0, tv ∈ {SS0, SF0, FS0, FF0, LS0}. (4) σ(UGμ) = −1,
tu ∈ {SS0, SF0, FS0, FF0, SL0}, tv = SL0. In all these tuples, UGμ is the edge
(u, v) oriented upward.

Let μ be an S-node of T , and let u and v be the first pole and the second pole of
Gμ, respectively. Let μ1, μ2 be the two children of μ; denote by u1 = u, v1 the first
pole and the second pole of Gμ1 ; also denote by u2 = v1, v2 = v the first pole and
the second pole of Gμ2 . The feasible set of μ is computed using the relationship
of Lemma 6. For each pair of tuples τ1 =< UGμ1

, σ(UGμ1
), tu1 , tv1 >∈ Fμ1 ,

τ2 =< UGμ2
, σ(UGμ2

), tu2 , tv2 >∈ Fμ2 , the algorithm checks if the inter-labels
of tv1 and tu2 are the same, and if the orientations of the edges incident on
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u2 = v1 in UGμ1
and UGμ2

are compatible. In the affirmative case, it constructs
a new tuple τ =< UGμ , σ(UGμ), tu, tv >, which will be inserted in Fμ, only if
Fμ does not already contain a spirality equivalent tuple; τ is defined as follows:
σ(UGμ) = σ(UGμ1

) + σ(UGμ2
); tu = tu1 , tv = tv2 ; UGμ is the series composition

of UGμ1
and UGμ2

on the common vertex u2 = v1. Since each feasible set has
O(n) tuples, the feasible set of an S-node can be computed in O(n2) time.

The computation of the feasible set of a P -node is a more complicated task,
since the skeleton of a P -node with k children has O(k!) possible planar em-
beddings, and we want to keep the computation polynomial in the number of
vertices of the graph. Let μ be a P -node of T , with first pole u and second pole
v. Let μ1, . . . , μk be the children of μ. We remark that each Gμi (i = 1, . . . , k)
has ui = u and vi = v as the first pole and the second pole, respectively. In order
to construct the feasible set of μ, we evaluate the possibility of constructing an
upward planar representation UGμ for each possible way of fixing σ(UGμ), tu,
and tv. Namely, for each choice of σ(UGμ), tu, tv, the algorithm must verify if it
is possible to select from the feasible sets of μ1, . . . , μk, a subset of upward pla-
nar representations UGμ1

, . . . , UGμk
that can assume a “parallel configuration”

compatible with σ(UGμ), tu, tv. The conditions of Lemma 7 allow us to limit the
number of these configurations, so that it is not needed to consider all permuta-
tions of the children of μ in the skel(μ). Actually, it can be proved that the total
number of configurations is constant with respect to the number of vertices of
G. The set of possible configurations is defined on the basis of tu and tv; each
configuration consists of a sequence of groups, such that each group can host
a certain number of upward planar representations, all having the same pole
categories and the same internal spirality (which also implies the same upward
spirality). The groups in the sequence are ordered according to their values of
internal spirality. In this way, on the basis of σ(UGμ) and for each configura-
tion above defined, the algorithm tries to select a set of upward representations
UGμ1

, . . . , UGμk
from the feasible sets of μ1, . . . , μk and to assign each of them

to a group in the configuration. This assignment problem is solved by searching
a feasible flow in a suitable network constructed from the configuration. The
formal description of the configurations and the construction of the feasible set
using a sequence of flow-based algorithms can be found in [8]. The construction
of the feasible sets of all P -nodes can be done in O(n3) time.

Once all feasible sets have been computed for the nodes of T , the algorithm
performs a final step to verify if it is possible to construct an upward planar
representation from the feasible set of the root of T (which is a Q-node) and the
one of its child. Namely, let μ be the root and let ν be its child. The following
lemma holds.

Lemma 9. G has an upward planar representation UG if and only if there exist
two tuples τμ =< UGμ , σ(UGμ), tuμ , tvμ >∈ Fμ, τν =< UGν , σ(UGν ), tuν , tvν >∈
Fν such that: (1) σ(UGμ) − σ(UGν ) = 2; (2) Yuμ = Xuν , Yvμ = Xvν , where
tw = XwYwλw and w ∈ {uμ, uν, vμ, vν}.

According to Lemma 9, the algorithm looks for two tuples that verify the
conditions (1) and (2) in the statement. If these tuples are found, the final upward
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planar representation is returned, otherwise the upward planarity testing fails.
The next theorem summarizes the main result of this section. The final time
complexity of the testing algorithm follows from the above discussion, iterating
over all SPQR-trees of G (one for each choice of the reference edge).

Theorem 3. Let G be a biconnected series-parallel digraph with n vertices.
There exists an O(n4)-time algorithm that tests if G is upward planar and, if so,
that constructs an upward planar drawing of G.

5 An FPT Algorithm for General Digraphs

To extend the upward planarity testing algorithm above described to general
biconnected digraphs, we need to describe how to compute the feasible sets of
R-nodes. Unfortunately, to compute the feasible set of an R-node μ, we cannot
rely on any relationship between the upward spirality of UGμ and the upward
spirality of its children. Therefore, we simply consider all possible combinations
of tuples for each virtual edge of skel(μ) in constructing UGμ . Namely, let ei

be a virtual edge of skel(μ) and let μi be the child of μ corresponding to ei.
We substitute to ei the upward planar representation UGμi

of a tuple in the
feasible set of μi. We repeat this process for each virtual edge, until a “partial
candidate” upward planar representation U ′

Gμ
of Gμ is constructed. We then

apply on this partial representation the flow-based upward planarity testing
algorithm proposed by Bertolazzi et al. [1], where the assignment of the switches
to the faces is constrained for the part of the representation that is already fixed.
In order to construct the feasible set of μ, we need to run the testing algorithm
over all possible combinations of upward spirality and pole categories of UGμ .
For each given value of upward spirality σ and for each choice of pole categories
tu, tv, we enrich the partial upward representation U ′

Gμ
with a suitable external

gadget, that forces UGμ to have upward spirality σ and pole categories tu, tv. This
gadget will have a fixed upward planar representation, which is still translated
into a set of constraints on the flow network. See [8] for a detailed construction
of the external gadgets.

The feasible set of an R-node μ, computed with the above procedure, requires
to consider all possible combinations of tuples in the feasible set of the children
of μ, and, for each of these combinations, we need to consider all possible values
of upward spirality and pole categories. The procedure must be also applied to
the two possible planar embeddings of skel(μ). Denote by t the number of non-
trivial triconnected components of G and denote by d the maximum diameter of
a split component of G. The feasible set of an R-node of μ can be then computed
in O(dtμ · n2) time, where n is the number of vertices of G, and tμ ≤ t is the
number of virtual edges (distinct from the reference edge) of μ. Indeed, the
minimum number of switches in any path between the poles of Gμ is at most d,
and therefore, from Lemma 5, the upward spirality of UGμ can take O(d) possible
values and the feasible set of any node of T has O(d) tuples. Also, O(n2) is the
complexity of the upward planarity testing of Bertolazzi et al. Hence, the feasible
set of all R-nodes can be computed in O(dt · n2) time.
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Our FPT algorithm can be eventually extended to general planar digraphs,
using a recent result of Healy and Lynch [10, 11] about the upward planarity
testing of simply connected graphs (refer to [8]). The following theorem holds,
by observing that the feasible sets of P - and S-nodes of each SPQR-tree T can
be computed in O(d · t2)-time and O(d2n)-time, respectively, and by iterating
over all decomposition trees of G.

Theorem 4. Let G be a connected planar digraph with n vertices. Suppose that
each block of G has at most t (non-trivial) triconnected components, and that
each split component of a block has a diameter at most d. There exists an O(dt ·
n3 + d · t2 · n + d2 · n2)-time algorithm that tests if G is upward planar and, if
so, that constructs an upward planar drawing of G.

Theorem 5. Let G be a connected planar digraph with n vertices and such that
each block is a series-parallel digraph. There exists an O(n4)-time algorithm that
tests if G is upward planar and, if so, that constructs an upward planar drawing
of G.
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Abstract. Consider a drawing of a graph G in the plane such that cross-
ing edges are coloured differently. The minimum number of colours, taken
over all drawings of G, is the classical graph parameter thickness θ(G).
By restricting the edges to be straight, we obtain the geometric thick-
ness θ(G). By further restricting the vertices to be in convex position,
we obtain the book thickness bt(G). This paper studies the relationship
between these parameters and the treewidth of G. Let θ(Tk) / θ(Tk)
/ bt(Tk) denote the maximum thickness / geometric thickness / book
thickness of a graph with treewidth at most k. We prove that:
– θ(Tk) = θ(Tk) = �k/2�, and
– bt(Tk) = k for k ≤ 2, and bt(Tk) = k + 1 for k ≥ 3.

The first result says that the lower bound for thickness can be matched
by an upper bound, even in the more restrictive geometric setting. The
second result disproves the conjecture of Ganley and Heath [Discrete
Appl. Math. 2001] that bt(Tk) = k for all k. Analogous results are proved
for outerthickness, arboricity, and star-arboricity.

1 Introduction

Partitions of the edge set of a graph G into a small number of ‘nice’ subgraphs
is in the mainstream of graph theory. For example, in a proper edge colouring,
the subgraphs of the partition are matchings. When the subgraphs are required
to be planar (respectively, acyclic), then the minimum number of subgraphs in
a partition of G is the thickness (arboricity) of G. Thickness and arboricity
are classical graph parameters that have been studied since the early 1960’s.
The first results in this paper concern the relationship between treewidth and
parameters such as thickness and arboricity. Treewidth is a more modern graph
parameter which is particularly important in structural and algorithmic graph
theory. For each of thickness and arboricity (and other related parameters), we
prove tight bounds on the minimum number of subgraphs in a partition of a
graph with treewidth k. These introductory results are presented in Section 2.
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The main results of the paper concern partitions of graphs with an additional
geometric property. Namely, that there is a drawing of the graph, and each
subgraph in the partition is drawn without crossings. This type of drawing has
applications in graph visualisation (where each plane subgraph is coloured by a
distinct colour), and in multilayer VLSI (where each plane subgraph corresponds
to a set of wires that can be routed without crossings in a single layer). When
there is no restriction on the edges, the minimum number of plane subgraphs,
taken over all drawings of G, is again the thickness of G. By restricting the edges
to be straight, we obtain the geometric thickness of G. By further restricting the
vertices to be in convex position, we obtain the book thickness of G. Our main
results precisely determine the maximum geometric thickness and maximum
book thickness of all graphs with treewidth k. We also determine the analogous
value for a number of other related parameters.

The paper is organised as follows. Section 3 formally introduces all of the
geometric parameters to be studied. Section 4 states our main results. The proofs
of our two main theorems are presented in Sections 5 and 6. The remaining proofs
are in the full version of the paper [6].

2 Abstract Graph Parameters

We consider graphs G that are simple, finite, and undirected. Let V (G) and E(G)
denote the vertex and edge sets of G. For A, B ⊆ V (G), let G[A; B] denote the
bipartite subgraph of G with vertex set A ∪ B and edge set {vw ∈ E(G) : v ∈
A, w ∈ B}. A graph parameter is a function f such that f(G) ∈ N for all graphs
G. For a graph class G, let f(G) := max{f(G) : G ∈ G}. If f(G) is unbounded,
then let f(G) := ∞.

The thickness of a graph G, denoted by θ(G), is the minimum number of
planar subgraphs that partition E(G) (see [11]). A graph is outerplanar if it
has a plane drawing with all the vertices on the boundary of the outerface.
The outerthickness of a graph G, denoted by θo(G), is the minimum number of
outerplanar subgraphs that partition E(G) (see [8]). The arboricity of a graph
G, denoted by a(G), is the minimum number of forests that partition E(G). [12]
proved that a(G) = max{� |E(H)|

|V (H)|−1� : H ⊆ G}. A star-forest is graph in which
every component is a star. The star-arboricity of a graph G, denoted by sa(G),
is the minimum number of star-forests that partition E(G) (see [1]). Thickness,
outerthickness, arboricity and star-arboricity are always within a constant factor
of each other (see [6]).

In the remainder of this section we determine the maximum value of each of
the above four parameters for graphs of treewidth k. A set of k pairwise ad-
jacent vertices in a graph G is a k-clique. For a vertex v of G, let NG(v) :=
{w ∈ V (G) : vw ∈ E(G)} and NG[v] := NG(v) ∪ {v}. We say v is k-simplicial
if NG(v) is a k-clique. A k-tree is a graph G such that either G is (isomor-
phic to) the complete graph Kk, or G has a k-simplicial vertex v and G \ v
is a k-tree. The treewidth of a graph G is the minimum k ∈ N such that G
is a spanning subgraph of a k-tree. Let Tk denote the class of graphs with
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treewidth at most k. Many families of graphs have bounded treewidth. T1 is
the class of forests. Graphs in T2 are obviously planar—a 2-simplicial vertex
can always be drawn near the edge connecting its two neighbours. Graphs
in T2 are characterised as those with no K4-minor, and are sometimes called
series-parallel.

Theorem 1. θ(Tk) = �k/2�

Proof. The upper bound immediately follows from a more general result by [4].
Now for the lower bound. The result is trivial if k ≤ 2. Assume k ≥ 3. Let
 := �k/2� − 1. Let G be the k-tree obtained by adding 2k + 1 k-simplicial
vertices adjacent to each vertex of a k-clique. Suppose that θ(G) ≤ . In the
corresponding edge -colouring of G, consider the vector of colours on the edges
incident to each k-simplicial vertex. There are k possible colour vectors. Thus
there are at least three k-simplicial vertices x, y, z with the same colour vector.
At least �k/� ≥ 3 of the k edges incident to x are monochromatic. Say these
edges are xa, xb, xc. Since y and z have the same colour vector as x, the K3,3
subgraph induced by {xa, xb, xc, ya, yb, yc, za, zb, zc} is monochromatic. Since
K3,3 is not planar, θ(G) ≥  + 1 = �k/2�. Therefore θ(Tk) ≥ �k/2�. ��

The proofs of the following two results are similar to that of Theorem 1, and
can be found in the full version of the paper [6].

Theorem 2. θo(Tk) = a(Tk) = k

Theorem 3. sa(Tk) = k + 1

3 Geometric Parameters

For our purposes, a drawing of a graph represents the vertices by a set of points
in the plane in general position (no three collinear), and represents each edge
by a simple closed curve between its endpoints, such that the only vertices that
an edge intersects are its own endpoints. Two edges cross if they intersect at
some point other than a common endpoint. A graph drawing with no cross-
ings is plane. A plane drawing in which all the vertices are on the outerface is
outerplane.

The thickness of a graph drawing is the minimum k ∈ N such that the edges
of the drawing can be partitioned into k plane subgraphs; that is, each edge
is assigned one of k colours such that monochromatic edges do not cross. Any
planar graph can be drawn with its vertices at prespecified locations [9, 13]. Thus
a graph with thickness k has a drawing with thickness k [9]. However, in such
a representation the edges may be highly curved. This motivates the notion of
geometric thickness.

A drawing of a graph is geometric if every edge is represented by a straight
line-segment. The geometric thickness of a graph G, denoted by θ(G), is the
minimum k ∈ N such that there is a geometric drawing of G with thickness k.
[10] first defined geometric thickness under the name of real linear thickness,



132 V. Dujmović and D.R. Wood

and it has also been called rectilinear thickness. By the Fáry-Wagner theorem,
a graph has geometric thickness one if and only if it is planar.

We generalise the notion of geometric thickness as follows. The outerthickness
of a graph drawing is the minimum k ∈ N such that the edges of the drawing can
be partitioned into k outerplane subgraphs. The arboricity and star-arboricity
of a graph drawing are defined similarly, where it is respectively required that
each subgraph be a plane forest or a plane star-forest. Again a graph with out-
erthickness /arboricity / star-arboricity k has a drawing with outerthickness /
arboricity / star-arboricity k [9, 13]. The geometric outerthickness / geometric
arboricity / geometric star-arboricity of a graph G, denoted by θo(G) / a(G) /
sa(G), is the minimum k ∈ N such that there is a geometric drawing of G with
outerthickness / arboricity / star-arboricity k.

A geometric drawing in which the vertices are in convex position is called
a book embedding. The book thickness of a graph G, denoted by bt(G), is the
minimum k ∈ N such that there is book embedding of G with thickness k. Note
that whether two edges cross in a book embedding is simply determined by the
relative positions of their endpoints in the cyclic order of the vertices around
the convex hull. One can think of the vertices as being ordered on the spine of a
book and each plane subgraph being drawn without crossings on a single page.
Book embeddings are ubiquitous structures with a variety of applications; see [5]
for a survey with over 50 references. A graph has book thickness one if and only
if it is outerplanar [2]. A graph has a book thickness at most two if and only if it
is a subgraph of a Hamiltonian planar graph [2]. [15] proved that planar graphs
have book thickness at most four.

The book arboricity / book star-arboricity of a graph G, denoted by ba(G) /
bsa(G), is the minimum k ∈ N such that there is a book embedding of G with
arboricity / star-arboricity k. There is no point in defining “book outerthickness”
since it would always equal book thickness.

4 Main Results

In this paper we determine the value of all of the geometric graph parameters
defined in Section 3 for Tk. The following theorem, which is proved in Section 6,
is the most significant result in the paper. It says that the lower bound for the
(abstract) thickness of Tk (Theorem 1) can be matched by an upper bound, even
in the more restrictive setting of geometric thickness.

Theorem 4. θ(Tk) = �k/2�

We have the following theorem for the geometric outerthickness and geomet-
ric arboricity of Tk. It says that the lower bounds for the outerthickness and
arboricity of Tk can be matched by an upper bound on the corresponding geo-
metric parameter. By the lower bound in Theorem 2, to prove Theorem 5, it
suffices to show that a(Tk) ≤ k; we do so in [6].
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Theorem 5. θo(Tk) = a(Tk) = k

We have the following theorem for the book thickness and book arboricity
of Tk.

Theorem 6. bt(Tk) = ba(Tk) =

{
k for k ≤ 2
k + 1 for k ≥ 3

This theorem gives an example of an abstract parameter that is not matched
by its geometric counterpart. In particular, bt(Tk) > θo(Tk) = k for k ≥ 3.
Theorem 6 with k = 1 was proved by [2]. That bt(T2) ≤ 2 was independently
proved by [14] and [3]. Note that bt(T2) = 2 since there are series parallel graphs
that are not outerplanar, K2,3 being the primary example. We prove the stronger
result that ba(T2) = 2 in [6]. [7] proved that every k-tree has a book embedding
with thickness at most k +1. It is easily seen that each plane subgraph is in fact
a star-forest. Thus bt(Tk) ≤ ba(Tk) ≤ bsa(Tk) ≤ k + 1. We give an alternative
proof of this result in [6]. [7] proved a lower bound of bt(Tk) ≥ k, and conjectured
that bt(Tk) = k. Thus Theorem 6 refutes this conjecture. The proof is given in
Section 5, where we construct a k-tree G with bt(G) > k.

Finally observe that the upper bound of [7] mentioned above and the lower
bound in Theorem 3 prove the following result for the star-arboricity of Tk.

Theorem 7. sa(Tk) = sa(Tk) = bsa(Tk) = k + 1

5 Book Thickness: Proof of Theorem 6 (k ≥ 3)

By the discussion in Section 4, it suffices to show that for all k ≥ 3, there is a
k-tree G with book thickness bt(G) > k. Define G by the following construction:

– Start with a k-clique V1.
– Add k(2k + 1) k-simplicial vertices adjacent to each vertex in V1; call this

set of vertices V2.
– For each vertex v ∈ V2, choose three distinct vertices x1, x2, x3 ∈ V1, and for

each 1 ≤ i ≤ 3, add four k-simplicial vertices adjacent to each vertex of the
clique (V1 ∪ {v}) \ {xi}. Each set of four vertices is called an i-block of v.
Let V3 be the set of vertices added in this step.

Clearly G is a k-tree. Assume for the sake of contradiction that G has a book
embedding with thickness k. Let {E1, E2, . . . , Ek} be the corresponding partition
of the edges. For each ordered pair of vertices v, w ∈ V (G), let the arc-set Vvw

be the list of vertices in clockwise order from v to w (not including v and w).
Say V1 = (y1, y2, . . . , yk) in anticlockwise order. There are k(2k + 1) vertices in
V2. Without loss of generality there are at least 2k +1 vertices in V2 ∩Vy1yk

. Let
(v1, v2, . . . , v2k+1) be 2k + 1 vertices in V2 ∩ Vy1yk

in clockwise order.
Observe that the k edges {yivk−i+1 : 1 ≤ i ≤ k} are pairwise crossing,

and thus receive distinct colours, as illustrated in Figure 1(a). Without loss of
generality, each yivk−i+1 ∈ Ei. As illustrated in Figure 1(b), this implies that
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y1v2k+1 ∈ E1, since y1v2k+1 crosses all of {yivk−i+1 : 2 ≤ i ≤ k} which are
coloured {2, 3, . . . , k}. As illustrated in Figure 1(c), this in turn implies y2v2k ∈
E2, and so on. By an easy induction, we obtain that yiv2k+2−i ∈ Ei for all
1 ≤ i ≤ k, as illustrated in Figure 1(d). It follows that for all 1 ≤ i ≤ k and
k − i + 1 ≤ j ≤ 2k + 2 − i, the edge yivj ∈ Ei, as illustrated in Figure 1(e).
Finally, as illustrated in 1(f), we have:

If qyi ∈ E(G) and q ∈ V
̂vk−1vk+3

, then qyi ∈ Ei. (�)
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Fig. 1. Example in the proof of Theorem 6 with k = 3

Consider any of the twelve vertices w ∈ V3 that are added onto a clique
that contain vk+1. Then w is adjacent to vk+1. Moreover, w is in V

̂vkvk+1
or

V
̂vk+1vk+2

, as otherwise the edge wvk+1 crosses k edges of G[{vk−1, vk+1}; V1]
that are all coloured differently, which is a contradiction. By the pigeon-hole
principle, one of V

̂vkvk+1
and V

̂vk+1vk+2
contains at least two vertices from two

distinct p-blocks of vk+1. Without loss of generality, V
̂vkvk+1

does. Let these four
vertices be (a, b, c, d) in clockwise order.

Each vertex in {b, c, d} is adjacent to k − 1 vertices of V1. Not all of b, c, d
are adjacent to the same subset of k − 1 vertices in V1, as otherwise all of b, c, d
would belong to the same p-block. Hence each vertex in V1 has a neighbour in
{b, c, d}. By (�) the edges of G[{b, c, d}, V1] receive all k colours. However, every
edge in G[{b, c, d}; V1] crosses the edge avk+1, implying that there is no colour
available for avk+1. This contradiction completes the proof.
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6 Geometric Thickness: Proof of Theorem 4

The proofs of all of our upper bounds depend upon the following lemma.

Lemma 8. For every k-tree G, either:

(1) there is a (possibly empty) independent set S ⊆ V (G) of k-simplicial vertices
in G such that G \ S = Kk, or

(2) there is a nonempty independent set S ⊆ V (G) of k-simplicial vertices in G
and a vertex v ∈ V (G) \ S, such that:
(a) G \ S is a k-tree,
(b) v is k-simplicial in G \ S,
(c) for every vertex w ∈ S, there is exactly one vertex u ∈ NG\S(v) such

that NG(w) = NG\S [v] \ {u},
(d) every k-simplicial vertex of G that is not in S is not adjacent to v.

Proof. We proceed by induction on |V (G)|. If |V (G)| = k then G = Kk and prop-
erty (1) is satisfied with S = ∅. If |V (G)| = k + 1 then G = Kk+1 and property
(1) is satisfied with S = {v} for any vertex v. Now suppose that |V (G)| ≥ k +2.
Let L be the set of k-simplicial vertices of G. Then L is a nonempty independent
set, and G \ L is a k-tree. Moreover, the neighbourhood of each vertex in L is
a k-clique. If G \ L = Kk, then property (1) is satisfied with S = L. Otherwise,
G \ L has a k-simplicial vertex v. Let S be the set of neighbours of v in L. We
claim that property (2) is satisfied. Now S = ∅, as otherwise v ∈ L. Since G is
not a clique and each vertex in S is simplicial, G\S is a k-tree. Consider a vertex
w ∈ S. Now NG(w) is a k-clique and v ∈ NG(w). Thus NG(w) ⊆ NG\S [v]. Since
|NG(w)| = k and |NG\S [v]| = k + 1, there is exactly one vertex u ∈ NG\S(v) for
which NG(w) = NG\S[v] \ {u}. Part (d) is immediate. ��

We now turn to the proof of Theorem 4. The lower bound θ(Tk) ≥ �k/2�
follows from the stronger lower bound θ(Tk) ≥ �k/2� in Theorem 1. The theorem
is true for all 0-, 1- and 2-trees since they are planar. To prove the upper bound
θ(Tk) ≤ �k/2�, it suffices to prove that θ(2k) ≤ k for all k ≥ 2. Let I := {i,−i :
1 ≤ i ≤ k}.

Consider a geometric drawing of a 2k-tree G, in which the edges are coloured
with k colours. Let v be a 2k-simplicial vertex of G, where (u1, u2, . . . , uk,
u−1, u−2, . . . , u−k) are the neighbours of v in clockwise order around v. Let
Fi(v) denote the closed infinite wedge centred at v (but not including v), which
is bounded by the ray −→vui and the ray that is opposite to the ray −−→vu−i. As
illustrated in Figure 2(a), we say that v has the fan property if:

– Fi(v) ∩ Fj(v) = ∅ for all distinct i, j ∈ I,
– there are exactly two edges of each colour incident to v, and
– the edges vui and vu−i receive the same colour for all 1 ≤ i ≤ k.

We proceed by induction on |V (G)| with the hypothesis: “every 2k-tree G has
a geometric drawing with thickness k; moreover, if |V (G)| ≥ 2k + 2, then every
2k-simplicial vertex v of G has the fan property.” Let G be a 2k-tree. Apply
Lemma 8 to G.
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(a)

u1
u−1

u2

u−2

u3

u−3

v
F1(v)

F2(v)
F3(v)

F−1(v)

F−2(v) F−3(v)

(b)

v0

v1v2

v3

v4 v5

Fig. 2. Proof of Theorem 4: (a) the fan property, (b) the base case

First suppose that Lemma 8 gives a (possibly empty) independent set S ⊆
V (G) of 2k-simplicial vertices in G such that G \ S = K2k. Say V (G \ S) =
{v0, v1, . . . , v2k−1}. Position v0, v1, . . . , v2k−1 evenly spaced on a circle in the
plane, and in this order. The edges of G\S can be k-coloured using the standard
book embedding of K2k with thickness k, where each edge vαvβ is coloured
� 1

2 ((α + β) mod 2k)�. Each colour class forms a plane zig-zag pattern. For each
vertex w ∈ S and for all 0 ≤ i ≤ k − 1, colour the edges wvi and wvk+i by i. As
illustrated in Figure 2(b), position the vertices in S in a small enough region near
the centre of the circle so that monochromatic edges do not cross, each w ∈ S
has the fan property, and V (G) is in general position. If |V (G)| ≥ 2k+2, then no
vertex in {v0, v1, . . . , v2k−1} is 2k-simplicial in G. Therefore, each 2k-simplicial
vertex of G is in S, and thus has the fan property.

Now suppose that Lemma 8 gives a nonempty independent set S ⊆ V (G) of
2k-simplicial vertices in G and a vertex v ∈ V (G)\S, such that v is 2k-simplicial
in the k-tree G\S. If |V (G)\S| ≥ 2k+2, then by induction, there is a geometric
drawing of G \ S with thickness k, in which v has the fan property. Otherwise,
G \ S = K2k+1 and thus the set S′ = {v} is an independent set of 2k-simplicial
vertices in G \ S such that (G \ S) \ S′ = K2k. Thus by the construction given
above, there is a geometric drawing of G \ S with thickness k, in which v has
the fan property.

Say NG\S(v) = (u1, u2, . . . , uk, u−1, u−2, . . . , u−k) in clockwise order about
v. Without loss of generality, the edges vui and vu−i are coloured i, for all
1 ≤ i ≤ k. Choose a small enough disc Dε centred at v such that:

(a) the only vertices in Rε are NG\S[v],
(b) every edge of G \ S that intersects Dε is incident to v (as illustrated in

Figure 3), and
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ε

u1

u2

u3 u4

u5

v

Fig. 3. The ‘empty’ disc Dε

(c) should a vertex whose neighbourhood is {u1, u2, . . . , uk, u−1, u−2, . . . , u−k}
be placed in Dε, then it would have the fan property.

By Lemma 8, for every vertex w ∈ S, there is exactly one i ∈ I for which
NG(w) = NG\S [v] \ {ui}. Let Si := {w ∈ S : NG(w) = NG\S[v] \ {ui}} for
all i ∈ I. Two vertices in Si have the same neighbourhood in G. For all i ∈ I,
choose one vertex xi ∈ Si (if any). We will first draw xi for all i ∈ I. Once that
is completed, we will draw the remaining vertices in S.

As illustrated in 4, for all i ∈ I, colour the edge xiv by |i|, and colour the edge
xiuj by |j| for all j ∈ I \ {i}. Now in a drawing of G , for each i ∈ I, Fi(xi) is
the closed infinite wedge bounded by the ray −→xiv and the ray that is opposite to
−−−→xiu−i, and F−i(xi) is the closed infinite wedge bounded by the ray −−−→xiu−i and the
ray that is opposite to −→xiv. Observe that in a drawing of G, if xi ∈ F−i(v) for all
i ∈ I, then v ∈ F�(xi) for all  = i. Therefore, for i ∈ I in some arbitrary order,
each vertex xi can initially be positioned on the line-segment vu−i ∩ (Dε \ {v}),
so that xi ∈

⋃
{F�(xj) :  ∈ I \ {j}} for every j ∈ I. This is possible by the

previous observation, since there is always a point close enough to v where xi

can be positioned, so that xi ∈
⋃
{F�(xj) :  ∈ I \ {j}} for all the vertices xj

that are drawn before xi. Observe that each vertex xi has the fan property in
the thus constructed illegal drawing.

Now we move each vertex xi just off the edge vu−i to obtain a legal drawing.
In particular, move each xi by a small enough distance ε′ into F−i(v), so that
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Fig. 4. Placing each xi on the edge vu−i; the circle Dε is chosen small enough so that
the edges incident with ui are almost parallel
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Fi(xi) does not contain the vertex xj , for all j ∈ I \ {i,−i}. This implies that
for all distinct i, j ∈ I with i = −j, we have that xj ∈ F�(xi) for all  ∈ I.

To prove that monochromatic edges do not cross, we distinguish four types
of edges coloured i, where 1 ≤ i ≤ k:

1. edges of G \ S coloured i,
2. the edges xiv and x−iv,
3. edges xjui for some j ∈ I \ {i}, and
4. edges x�u−i for some  ∈ I \ {−i}.

First we prove that no type-(1) edge is involved in a monochromatic crossing.
No two type-(1) edges cross by induction. Since a type-(2) edge is contained in
Dε, by (b) in the choice of ε, type-(1) and type-(2) edges do not cross. Suppose
that a type-(1) edges e crosses a type-(3) or type-(4) edge. By (a) in the choice
of ε, e would also cross vui. Since vui is coloured i, by induction applied to G\S,
e is not coloured i.

The two type-(2) edges do not cross since they are both incident to v. Type-
(3) edges do not cross since they are all incident to ui. Type-(4) edges do not
cross since they are all incident to u−i.

Suppose that a type-(2) edge xiv crosses a type-(3) edge xjui for some j ∈
I \ {i}. By construction, xi ∈ F−i(v) and xj ∈ F−i(v). Therefore, if xjui crosses
xiv, then xjui also crosses the edge vu−i, which is a type-(1) edge of colour |i|.
Thus this type of crossing was ruled out when type-(1) edges were considered.
Now suppose that a type-(2) edge x−iv crosses a type-(3) edge xjui for some
j ∈ I \ {i}. Then xj ∈ F−i(x−i), which contradicts the placement of xj . Thus
no type-(2) edge crosses a type-(3) edge. By symmetry, no type-(2) edge crosses
a type-(4) edge.

If a type-(3) edge x−iui crosses a type-(4) edge x�u−i (for some  ∈ I \ {−i}),
then x�u−i also crosses the edge vui, which is a type-(1) edge coloured |i|. Thus
this type of crossing was ruled out when type-(1) edges were considered. By
symmetry, a type-(4) edge xiu−i does not cross a type-(3) edge x�ui (for all
 ∈ I \ {i}). Finally, if a type-(3) edge xjui (for some j ∈ I \ {i,−i}) crosses a
type-(4) edge x�u−i (for some  ∈ I\{−i, i}), then x� ∈ Fi(xj) and xj ∈ F−i(x�),
contradicting our placement of x� or xj . Thus type-(3) edges do not cross type-
(4) edges.

Each vertex z ∈ Si \ {xi} can be drawn in a small enough region around xi,
and every edge zuj coloured with the same colour as xiuj , so that z has fan
property and monochromatic edges do not cross.

It remains to prove that each 2k-simplicial vertex of G has the fan property
whenever |V (G)| ≥ 2k + 2. By construction that is true for all 2k-simplicial
vertices of G that are in S. The remaining 2k-simplicial vertices of G are also
2k-simplicial in the 2k-tree G \ S. If |V (G) \ S| ≥ 2k + 2, then by induction, the
invariant is also maintained for all 2k-simplicial vertices of G that are not in S.
If G \ S is K2k+1, then by Lemma 8(d), there is no 2k-simplicial vertex of G in
G \ S. Thus the invariant is maintained.
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Abstract. The adoption of the stress-majorization method from multi-dimensio-
nal scaling into graph layout has provided an improved mathematical basis and
better convergence properties for so-called “force-directed placement” techniques.
In this paper we give an algorithm for augmenting such stress-majorization tech-
niques with orthogonal ordering constraints and we demonstrate several graph-
drawing applications where this class of constraints can be very useful.

Keywords: graph layout, constrained optimization, separation constraints.

1 Introduction

The family of graph drawing algorithms that attempt to find an embedding of a graph
that minimizes some continuous goal function, are variously known as spring-embedder
or force-directed placement algorithms. A popular algorithm in this family has been that
of Kamada and Kawai [9] in which squared differences between ideal distances for pairs
of nodes and their Euclidean distance in the embedding is minimized. Gansner et al. [6]
recently revisited this method and suggested using functional majorization — an opti-
mization technique from the field of multidimensional scaling. Functional majorization
iteratively improves the drawing by considering a sequence of quadratic forms that bound
the stress function from above. They showed that it had distinct advantages over the orig-
inal algorithm of Kamada and Kawai; particularly, a strictly monotonic decrease in stress
and that it could achieve lower values of the cost function in the same running time.

A useful property of the majorization approach is that each iteration involves min-
imizing a convenient quadratic function. Gansner et al. [6] mentioned that this allows
using any available equation solver. In this paper we take advantage of this property,
and show how it helps in handling ordering constraints on the nodes. The quadratic
nature of the function we minimize in each iteration allows us to efficiently add such
linear constraints. In fact, minimizing linearly constrained quadratic functions is known
as quadratic programming, which is an efficiently solvable problem [13]. However, we
have found that general quadratic programming solvers will significantly slow down
the stress majorization process. Therefore, we suggest a solver which is crafted espe-
cially for our problem, utilizing its unique nature. This solver can deal with ordering
constraints without significantly increasing the running time of the layout process. We
also demonstrate the utility of imposing this class of constraints — which we call or-
thogonal ordering constraints — to applications such as network layout reflecting the
relative positions of an underlying set of coordinates and directed graph drawing.

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 141–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Background

We recently introduced the idea of using stress majorization coupled with standard
quadratic programming techniques for drawing directed graphs [5]. In the so-called
DIG-COLA1 technique, nodes in the digraph were partitioned into layers based on
their hierarchical level and constraints were introduced in the vertical dimension to keep
these layers separated. Compared to standard hierarchical graph drawing methods the
DIG-COLA algorithm was shown to produce layouts with a much better distribution
of edge lengths and for large, dense graphs it was able to find layouts with fewer edge
crossings. However, a commercial quadratic programming solver was used to minimize
the quadratic forms subject to constraints. This generic approach meant that layout for
graphs with hundreds or thousands of nodes could take some minutes to perform.

Another case where orthogonal ordering constraints are useful is when we want to
improve the readability of a given layout without significantly changing it. Misue et
al. [10] discussed the importance of preserving a user’s “mental map” when adjusting
graph layouts. One of their models for the mental map focused on preserving orthogonal
ordering of the nodes in a layout — the relative above/below, left/right positions of the
nodes.

The potential for constraint-based, force-directed graph layout was explored by Ryall
et al. [11], however their implementation did not use true constraint solving techniques.
Rather, they added stiff springs to a standard force-directed model to keep user-selected
parts of the diagram roughly spaced as desired. True constraint solving techniques for
graph drawing were explored by He and Marriott in [7], where a Kamada-Kawai-based
method was extended with an active-set constraint solving technique to provide separa-
tion constraints. However, only small examples of fewer than 20 nodes were tested and
the scalability of the technique was not tested.

3 Problem Formulation

The general goal function, known as the stress function, which we seek to minimize is
described by ∑

i<j

wij(||Xi − Xj|| − dij)2

where for each pair of nodes i and j, dij gives an ideal separation between i and j
(usually their graph-theoretical distance), wij = d−2

ij is used as a normalization constant
and X is a n × d matrix of positions for all nodes, where d is the dimensionality of the
drawing and n is the number of nodes.

Majorization minimizes this stress function by iteratively minimizing quadratic
forms that approximate and bound it from above. Due to its central role in this work,
we provide the essential details of the method. Recall that wij are the normalization
constants in the stress function. We use the n × n matrix A, defined by

Ai,j =
{
−wij i = j∑

k �=i wik i = j
. (1)

1 Directed Graphs with Constraint-based Layout.
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In addition, given an n × d coordinate matrix Z , we define the n × n matrix AZ by

AZ
i,j =

{
−wij · dij · inv(‖Zi − Zj‖) i = j
−
∑

k �=i AZ
i,k i = j

, (2)

where inv(x) = 1/x when x = 0 and 0 otherwise.
It can be shown (see [6]) that the stress function is bounded from above by the

quadratic form FZ(X) defined as

FZ(X) =
∑
i<j

wijd
2
ij +

d∑
a=1

((
X(a)

)T

AX(a) − 2
(
X(a)

)T

AZZ(a)
)

. (3)

Here, X(a) denotes the a-th column of matrix X . Thus, we have

stress(X) � FZ(X) (4)

with equality when Z = X .
We differentiate by X and find that the global minima of FZ(X) are given by solving

AX = AZZ (5)

This leads to the following iterative optimization process. Given some layout X(t),
we compute a layout X(t + 1) so that stress(X(t + 1)) < stress(X(t)). We use
the function FX(t)(X) which satisfies FX(t)(X(t)) = stress(X(t)). Then, we take
X(t + 1) as the minimizer of FX(t)(X) by solving (5).

Note that it would be equivalent to consider in each iteration d independent opti-
mization problems, one problem for each axis. Hence the a-th axis of the drawing is
determined by minimizing

xT Ax − 2xT AZZ(a) (6)

Henceforth, we will work, w.l.o.g., with this 1-D layout formulation as it allows a
more convenient notation.

So far we have described the usual, unconstrained stress majorization. In this work
we consider a case where we have additional ordering constraints on each axis. Each
node i is assigned a level of index 1 ≤ lev[i] ≤ m and variable placement must respect
this level. Thus, instead of minimizing (6), we would take the a-th axis of the drawing
as the solution of

min
x

xT Ax − 2xT AZZ(a)

subject to: lev[i] < lev[j] ⇒ xi ≤ xj

for all i, j ∈ {1, . . . , n}
(7)

For brevity henceforth we will replace 2AZZ(a) with b ∈ Rn, so the target func-
tion is merely f(x) = xT Ax − xT b. We call this the Quadratic Programming with
Orthogonal Constraints (QPOC) problem.

It is easy to show that A is positive semi-definite, so the problem has only global
minima. Such a quadratic programming problem can be solved in a polynomial time
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[13]. However, our experiments show that generic quadratic-programming solvers are
much slower than solving an unconstrained problem. To accelerate computation we can
utilize two special characteristics of the problem:

1. During the majorization process, we iteratively solve closely related quadratic pro-
grams: The constraints and the matrix A are not changed between iterations, while
only the vector b is changed. Therefore, the solution of the previous iteration is still
a feasible solution for current iteration (satisfying all constraints). Moreover, this
previous solution is probably very close to the new optimal solution (e.g., consider
that in most iterations the coordinates are only slightly changed). However, such
initialization, called “warm-start”, is fundamentally not trivial for the barrier (or
interior-point) methods used by most commercial solvers.

2. Our constraints are very simple as each of them involve only two variables, being of
the form xi ≤ xj . This allows a simple mechanism for guaranteeing the feasibility
of the solution.

In the next section we describe an algorithm for solving the QPOC problem.

4 Algorithm

We give an iterative gradient-projection algorithm (see Bertsekas [1]) for finding a so-
lution to a QPOC Problem. The algorithm, solve QPOC, is shown in Figure 1. The
first step is to decrease f(x) = xT Ax + xT b, by moving x in the direction of steep-
est descent, i.e. if the gradient is g = ∇f(x) = Ax + b this direction is −g. While
we are guaranteed that — with appropriate selection of step-size s — the energy is
decreased by this first step, the new positions may violate the ordering constraints.
We correct this by calling the project procedure which returns the closest point x̄ to
x which satisfies the ordering constraints, i.e. it projects x on to the feasible region.
Finally, we calculate a vector d from our initial position x̂ to x̄ and we ensure mono-

procedure solve QPOC(A, b, lev)
k ← 0, x ← initial soln()
repeat

g ← 2Ax + b

s ← gT g
gT Ag

x̂ ← x
x̄ ←project(x̂ − sg, lev)
d ← x̄ − x̂

α ← max( gT d
dT Ad

, 1)
x ← x̂ + αd

until ‖x̂ − x‖ sufficiently small
return x

Fig. 1. Algorithm to find an optimal solution to a QPOC problem with variables x1, . . . , xn,
symmetric positive-semidefinite matrix A, vector b and 1 ≤ lev[i] ≤ m + 1 gives the level for
each node i
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tonic decrease in stress when moving in this direction by computing a second stepsize
α = arg minα∈[0,1]f(x + αd) which minimizes stress in this interval.

The procedure project is the main technical innovation in this paper. The main dif-
ficulty in implementing gradient-projection methods is the need to efficiently project
on to the feasible region. Because of the simple nature of the orthogonal ordering con-
straints we can do this in O(mn + n logn) time where m is the number of levels
and n the number of variables. The project procedure (Figure 2) iteratively changes
the positions till all constraints are satisifed. In iteration k all constraints involving
nodes up to the (k + 1)-th level are imposed. More technically, it starts by finding
an ordering of the nodes q such that a = q[i], b = q[i + 1] implies either lev[a] <
lev[b] or (lev[a] = lev[b] and xa � xb). For convenience we also keep an array
1 < p1, . . . pm = n + 1 of indices for the start of each partition excluding the first
(for convenience pm was set to n + 1). When considering partition k, which contains
the nodes abovek = {u|pk ≤ q[u] < pk+1}, we ensure that none of these nodes are
assigned positions lower than that of belowk = {l|1 ≤ q[l] < pk}. To achieve this
we create a minimal set Uk ⊆ {j|1 ≤ q[j] < pk+1} that includes nodes violating this
condition. To impose the constraints we force all nodes of Uk to lie on a single point
posnUk. Since we want to minimize the quadratic function, we take this point as the av-

procedure project(x,lev)
q ← {1 ≤ i ≤ n} sorted by (xi, lev[i])
p ← indices to start of each level in q

s.t. p1 < . . . < pm−1 < pm = n + 1
and lev[q[pk ]] = lev[q[pk − 1]] + 1, 1 ≤ k < m

for 1 ≤ k < m do
% belowk = {l|1 ≤ q[l] < pk}, abovek = {u|pk ≤ q[u] < pk+1}
% Find Uk = {q[i]|il < i < iu} ⊆ belowk ∪ abovek

maxiu ← pk+1 − 1
l ← q[pk − 1], u ← q[pk]
sum ← xl + xu, w ← 2
iu ← pk + 1, il ← pk − 2
if xl > xu then

repeat
finished ← true
u ← q[iu]
posnUk ← sum

w
if iu ≤ maxiu and xu < posnUk then

iu ← iu + 1, w ← w + 1
sum ← sum + xu

finished ← false
end if
l ← q[il]
if il ≥ 1 and xl > posnUk then

il ← il − 1, w ← w + 1
sum ← sum + xl

finished ← false
end if

until finished
for il < i < iu do

j ← q[i]
xj ← posnUk

end for
end if

end for
return x

Fig. 2. Algorithm to project variables to the closest position in the feasible region, 1 ≤ lev[i] ≤
m gives the level for each node i
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erage of all positions in Uk. The set Uk is minimal in that it does not necessarily include
all nodes violating the boundary condition for k, but only the minimal number that need
to be moved to posnUk such that this condition may be satisfied. The following lemma
captures this.

Lemma 1. During execution of project(x,lev) after finishing the kth iteration in which
Uk and its associated posnUk are computed

posnUk =

∑
i∈Uk

xi

|Uk|
(8)

and
Uk = {l ∈ belowk | xl > posnUk} ∪ {u ∈ abovek | xu < posnUk} (9)

where the position for xi is its value before the start of the iteration.

Proof. Equation (8) follows directly from the algorithm and is invariant throughout the
loop incrementally building Uk (since whenever Uk is expanded posnUk is recalcu-
lated).

The post-condition (9) implies that Uk includes all nodes that violate the internal
constraints among 1, . . . , pk − 1 and pk, . . . , pk+1 − 1. Proof is as follows. The levels
are examined in order. When examining level k all nodes in belowk must be sorted by
position in q (either by the initial precondition for q or since they have been assigned to
a position posnUl, l < k). The precondition for q also ensures that nodes in abovek are
sorted by position.

If there is overlap between the tail of belowk and the head of abovek we place these
in Uk and set posnUk. We then iteratively examine the successive elements of belowk

(from the tail) and abovek (from the head) and add them to Uk until no further overlap
is found between these elements and posnUk.

By construction the only elements l ∈ belowk not placed in Uk are those for which
xl ≤ posnUk (otherwise the loop would not terminate). Dually, for any element u ∈
abovek not placed in Uk we have that xu ≥ posnUk. Thus

Uk ⊇ {1 ≤ q[i] < pk | xi > posnUk} ∪ {pk ≤ i < pk+1 | xi < posnUk}

We now show containment by induction. We prove for Uk ∩ belowk, while the proof
for Uk∩abovek is analogous. The base case follows from the fact that at the moment we
add some l ∈ belowk, it must hold that xl > posnUk. Now, if later we add l′ ∈ belowk,
then since belowk is ordered by position, xl′ ≤ xl. By hypothesis, xl > posnUk

and since the new posnUk is the weighted average of x′
l and posnUk, we still have

xl > posnUk. If later we add u ∈ abovek, then since we are adding u we must have
xu < posnUk. Now by hypothesis, xl > posnUk and so xl > xu. Thus as for the
previous case xl > posnUk. ��
Corollary 1. During execution of project(x,lev) after finishing the kth iteration in
which Uk and its associated posnUk are computed

posnUk =

∑
i∈Uk

xi

|Uk|
(10)

where the position of xi is the input position.
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Proof. Notice that unlike Equation (8), the xi’s refer now to the input positions, rather
than to their values before the current iteration. This makes a difference when we find
that posnUk < posnUl, l < k and therefore Uk ⊃ Ul and posnUk will be calculated
from posnUl for those nodes in Ul rather than their original positions. In this case (10)
still holds as

posnUk =
1

|Uk|

⎛⎝|Ul|posnUl +
∑

i∈Uk\Ul

xi

⎞⎠
=

1
|Uk|

⎛⎝|Ul|(
1

|Ul|
∑
j∈Ul

xj) +
∑

i∈Uk\Ul

xi

⎞⎠ =
1

|Uk|
∑
i∈Uk

xi

��
We now show that this results in a valid gradient-projection method.

Lemma 2. If the result of the call project(x0,lev) is x then x is the closest point to x0

satisfying the ordering constraints defined by lev.

Proof. (Sketch) We must prove that x minimizes F (x) =
∑n

i=1(xi − x0
i )

2 subject
to satisfying the ordering constraints. It follows from the construction that x satisfies
the ordering constraints. Proving optimality is more difficult. Let u1, . . . , um−1 be new
variables, one for each partition k. We set values to the new variables by setting uk to
be max{xi | lev [i] = k}.

Recall that if we are minimizing a function F with a set of convex equalities C over
variables X , then we can associate a variable λc called the Lagrange multiplier with
each c ∈ C. Given a solution x we have that this is a minimal solution iff there exist
values for the Lagrange multipliers satisfying

∂F

∂x
=
∑
c∈C

λc
∂c

∂x
(11)

for each variable x ∈ X . Furthermore, if we also allow inequalities then the above
statement continues to hold as long as λc ≥ 0 for all inequalities c of form c(x) ≥ 0.
By definition an inequality c which is not active, i.e., c(x) > 0 has λc = 0. These are
known as the Karush-Kuhn-Tucker conditions; see [1].

We now prove that x minimizes F (x) subject to, for k = 1, . . . , m − 1:

uk−1 ≤ uk if k > 1
xi ≤ uk for all i s.t. lev [i] = k
xi ≥ uk for all i s.t. lev [i] = k + 1

These constraints are equivalent to the ordering constraints.
We show optimality by giving values for all λc satisfying Equation (11). An inequal-

ity xi ≤ uk or xi ≥ uk is active if i ∈ Uk \ Uk−1. Note that we can have Uk ⊆ Uk+1,
in which case we must be careful to make the right constraint active so as to ensure
that each xi will be involved in no more than one active constraint. For a constraint c
of form xi ≥ uk we set λc = ∂F

∂xi
and for c of form xi ≤ uk we set λc = − ∂F

∂xi
. The

constraint c of form uk ≤ uk+1 is active if Uk ⊆ Uk+1. We set λc = −
∑

i∈Uk

∂F
∂xi

. For
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all other inequalities c we set λc = 0. We give an extended formal proof of this lemma
in [4].

We can now prove the correctness of solve QPOC:

Theorem 1. solve QPOC converges to an optimal solution to the input QPOC
Problem.

Proof. Lemma 2 ensures that solve QPOC is a gradient projection method. We now
show that a more general proof of convergence for gradient projection methods holds
for our specific stepsize calculations. First consider a variant of solve QPOC in which s
is always 1 — note that for both constant s and the calculation of s used in Figure 1 the
method is equivalent to standard steepest-descent in the case when no active constraints
are encountered. With constant s = 1 the computation of α implements a Limited
Minimization Rule and so from [1–Proposition 2.3.1] every limit point of solve QPOC
is a stationary point. Since the original problem is convex any stationary point is an
optimal solution. Now consider our computation of s. To ensure convergence we must
prove that if sk → 0 where sk is the value of s in the kth iteration then the limit point of
solve QPOC is a stationary point. But since the computation of sk is also an example of
the Limited Minimization Rule on the unconstrained problem, sk → 0 only if the limit
point of solve QPOC is a stationary point for the unconstrained problem, in which case
it must also be a limit point of the constrained problem.

��
4.1 Running Time

The second part of the algorithm, satisfying the constraints, can be performed in
O(mn+n logn) time. However each complete iteration is dominated by computing the
desired positions which takes O(n2) time. This is of course the inherent complexity of
the stress function that contains O(n2) terms. (In fact, this is the same as the complex-
ity of an iteration of the conjugate-gradient method, which is used in the unconstrained
majorization algorithm.) In practice only few (5-30) iterations are required to return the
optimal solution depending on the threshold on ||x − x̂||. Running times for graphs
with various sizes and with varying numbers of boundaries m are given in Table 1. We
compare results for those obtained with the solve QPOC algorithm implemented in C

Table 1. A comparison of results obtained for arranging various graphs with solve QPOC and
the Mosek interior point method. Times are measured in seconds.

Solve QPOC Mosek
graph #nodes (n) #levels (m) Time Stress Time Stress
1138bus 1138 231 4.53 74343 209 74374
nos4 100 34 0.14 216.5 2.75 216.8
nos5 468 256 2.172 8517.3 13.0 8614.6
dwa512 512 14 1.23 22464 37.7 22464
dwb512 512 19 1.57 15707 90.8 16418
NSW Rail 312 54/76 (x/y-axis) 4.92 2288 18.6 2274.5
Backbone 2603 2373/1805 (x/y-axis) 55.8 1246960 > 1000
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and the Mosek interior-point quadratic programming solver [14]. Tests were conducted
on a 2GHz P4-M notebook PC. As expected, since both solvers return the optimal or
near optimal solution, the resulting drawings look identical. However, the dedicated
solve QPOC algorithm significantly outperformed the generic solver. The final “stress”
value is given as a rough measure of relative quality. Note that this is the final stress
value after being monotonically reduced by a number of iterations of the functional-
majorization method. Sample graphs were obtained from the Matrix Market [2] (Such
as 1138bus as shown in Figure 4) and some graphs based on geographic coordinates
which are shown in Figures 5 and 6.

5 Applications

5.1 Directed Graph Drawing

The method and motivation for drawing directed graphs by constrained majorization is
discussed at length in [5]. Generally, a digraph can be said to induce a hierarchical struc-
ture on its nodes based on the precedence relationships defined by its directed edges.
Consequently, an appropriate depiction of a digraph allocates the y-axis to showing this
hierarchy. Thus, if node i precedes node j in the hierarchy, then i will be drawn above
j on the y-axis; see, e.g., Sugiyama et al. [12]. This usually leads to the majority of
directed edges pointing downwards, thereby showing a clear flow from top to bottom.
There are a few possibilities for computing the hierarchical ordering of the nodes. We
base our ordering on the “optimal arrangement” suggested by Carmel et al. [3]. Then,
we compute the 2-D layout that minimizes the stress, while the y-coordinates of the
nodes must obey their hierarchical ordering.

It was shown that this method produces drawings with much more uniform edge
lengths making connectivity in large graphs more visible than in drawings produced by
standard hierarchical graph drawing techniques.

We reproduce some example graphs drawn in this style and compare performance of
our solve QPOC algorithm with that of the solver previously used. Figure 3 illustrates
the concept with a small directed graph containing a cycle. Note that since all nodes in

Fig. 3. A directed graph arranged using orthogonal ordering constraints in just the vertical di-
mension to preserve layering. The color bars on the left side indicate the layer-bands and the faint
horizontal lines indicate the boundaries between these layers.
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the cycle are in the same hierarchical level they are drawn within the same band. Figure
4 shows a much larger example from the matrix market collection [2].

Fig. 4. The 1138bus graph (1138 nodes, 1458 edges) from the Matrix market collection[2], dis-
played as a directed graph

5.2 Layouts Preserving the Orthogonal Ordering

Sometimes a graph has meaningful coordinates. These might be natural physical coor-
dinates associated with the nodes, or just a given layout with which the user is familiar.

(a) Actual geographic positions (b) Ordering preserving layout

Fig. 5. The New South Wales rail network (312 nodes, 322 edges) shown with actual geographic
positions (left) and then refined using stress minimization with orthogonal ordering constraints
(right)
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(a) Actual geographic positions (b) Ordering preserving layout

Fig. 6. A backbone network (2603 nodes, 2931 edges). Left picture is based on the actual ge-
ographic coordinates while the right picture is based on ordering-preserving constrained stress
minimization.

We want to improve the readability of the given layout while keeping its overall struc-
ture, thus preserving the user’s mental map and/or natural properties of the layout. A
way to achieve these goals is to minimize the stress of the graph, while preserving the
original vertical and horizontal ordering of the nodes. These can be achieved by our
algorithm. We provide here two examples of refining layouts with meaningful physical
coordinates.

The first example involves automatic production of rail network maps. This problem
has been tackled as a graph drawing problem by Hong et al. [8]. To produce print qual-
ity drawings the authors seek to satisfy quite complex aesthetic requirements such as
effective labelling, edges strictly aligned to axes or diagonals and no induced crossings.
However, as illustrated in Figure 5, simple orthogonal ordering also goes a long way
to improving these diagrams. Note that the underlying geographic relationships are still
evident while paths have been straightened and complex sections enlarged.

The second example is an internet backbone network as shown in Figure 6. The
layout based on original coordinates contains very dense areas. However, readability is
vastly improved by minimizing the stress, while original orthogonal order is preserved.

6 Conclusion and Further Work

We have demonstrated some applications of orthogonal-ordering constraints and that
stress majorization can efficiently deal with such constraints. We are currently working
on extending the algorithm to work for general separation constraints that may have
many more applications, including clustered graph drawing — where we want to sepa-
rate different clusters — and also cases where we want to restrict portions of the graph
to specific rectangular regions. An obvious extension is to allow a wider variety of lin-
ear constraints. This would allow restricting portions of the graph to specific convex
regions. However solving more general linear constraints requires a more sophisticated
algorithm. Active-set techniques [13] may prove promising in this area.
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Abstract. The problem of node overlap removal is to adjust the layout
generated by typical graph drawing methods so that nodes of non-zero
width and height do not overlap, yet are as close as possible to their
original positions. We give an O(n log n) algorithm for achieving this as-
suming that the number of nodes overlapping any single node is bounded
by some constant. This method has two parts, a constraint generation
algorithm which generates a linear number of “separation” constraints
and an algorithm for finding a solution to these constraints “close” to
the original node placement values. We also extend our constraint solv-
ing algorithm to give an active set based algorithm which is guaranteed
to find the optimal solution but which has considerably worse theoretical
complexity. We compare our method with convex quadratic optimization
and force scan approaches and find that it is faster than either, gives re-
sults of better quality than force scan methods and similar quality to the
quadratic optimisation approach.

Keywords: graph layout, constrained optimization, separation const-
raints.

1 Introduction

Graph drawing has been extensively studied over the last twenty years [1]. How-
ever, most research has dealt with abstract graph layout in which nodes are
treated as points. Unfortunately, this is inadequate in many applications since
nodes frequently have labels or icons and a layout for the abstract graph may
lead to overlaps when these are added. While a few attempts have been made at
designing layout algorithms that consider node size (e.g. [2, 3, 4]), the approaches
are specific to certain layout styles and to the best of the authors’ knowledge
none are perfect in all situations.

For this reason, a number of papers, e.g. [5, 6, 7, 8, 9, 10], have described algo-
rithms for performing layout adjustment in which an initial graph layout is mod-
ified so that node overlapping is removed. The underlying assumption is that the
initial graph layout is good so that this layout should be preserved when remov-
ing the node overlap. Lyons et al.[10] offered a technique based on iteratively
moving nodes to the centre of their Voronoi cells until crossings are removed.

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 153–164, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Misue et al. [5] propose several models for a user’s “mental map” based on or-
thogonal ordering, proximity relations and topology and define a simple heuristic
Force Scan algorithm (FSA) for node-overlap removal that preserves orthogo-
nal ordering. Hayashi et al. [7] propose a variant algorithm (FSA′) that pro-
duces more compact drawings while still preserving orthogonal ordering. They
also show that this problem is NP-complete. Various other improvements to the
FSA method exist and a survey is presented by Li et al. [11]. More recently,
Marriott et al. [6] investigated a quadratic programming (QP) approach which
minimises displacement of nodes while satisfying non-overlap constraints. Their
results demonstrate that the technique offers results that are preferable to FSA
in a number of respects, but require significantly more processing time. In this
paper we address the last issue.

Our contribution consists of two parts: first, we detail a new algorithm for
computing the linear constraints to ensure non-overlap in a single dimension.
This has worst case complexity O(n log n) where n is the number of nodes and
generates O(n) non-overlap constraints — assuming that the number of nodes
overlapping a single node is bounded by some constant k. Previous approaches
have had quadratic or cubic complexity and as far as we are aware it has not been
previously realized that only a linear number of non-overlap constraints are re-
quired. Each non-overlap constraint has the form u+a ≤ v where u and v are vari-
ables and a ≥ 0 is a constant. Such constraints are called separation constraints.
Our second contribution is to give a simple algorithm for solving quadratic pro-
gramming problems of the form: minimize

∑
i=1 vi.weight×(vi−vi.des)2 subject

to a conjunction of separation constraints over variables v1, . . . , vn where vi.des
is the desired value of variable vi and vi.weight ≥ 0 the relative importance. We
show that in practice this algorithm produces optimal solutions to the quadratic
program much faster than generic solvers, but also that first part of the algorithm
can be run alone to produce near optimal solutions in O(n log n) time.

2 Background

We assume that we are given a graph G with nodes V = {1, . . . , n}, a width,
wv, and height, hv, for each node v ∈ V ,1 and an initial layout for the graph G,
in which each node v ∈ V is placed at (x0

v, y0
v) and u = v ⇒ (x0

u, y0
u) = (x0

v, y0
v).

We are concerned with layout adjustment: we wish to preserve the initial
graph layout as much as possible while removing all node label overlapping. A
natural heuristic to use for preserving the initial layout is to require that nodes
are moved as little as possible. This corresponds to the Proximity Relations
mental map model of Misue et al. [5].

Following [6] we define the layout adjustment problem to be the constrained
optimization problem: minimize φchange subject to Cno where the variables of
the layout adjustment problem are the x and y coordinates of each node v ∈ V ,
xv and yv respectively, and the objective function minimizes node movement
1 Any extra padding required to ensure a minimal separation between nodes is included

in wv and hv.
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φchange = φx + φy =
∑

v∈V (xv − x0
v)

2 + (yv − y0
v)2, and the constraints Cno

ensure that there is no node overlapping. That is, for all u, v ∈ V , u = v implies

xv − xu ≥ 1
2 (wv + wu) (v right of u) ∨ xu − xv ≥ 1

2 (wv + wu) (u right of v)
∨ yv − yu ≥ 1

2 (hv + hu) (v above u) ∨ yu − yv ≥ 1
2 (hv + hu) (u above v)

A variant of this problem is when we additionally require that the new layout
preserves the orthogonal ordering of nodes in the original graph, i.e., their rela-
tive ordering in the x and y directions. This is a heuristic to preserve more of the
original graph’s structure. Define Coo

x =
∧
{xv ≥ xu | x0

v ≥ x0
u} and Coo

y equiva-
lently for y. The orthogonal ordering problem adds Coo

x ∧Coo
y to the constraints

to solve.
Our approach to solving the layout adjustment problem is based on [6] where

quadratic programming is used to solve a linear approximation of the layout ad-
justment problem. There are two main ideas behind the quadratic programming
approach. The first is to approximate each non-overlap constraint in Cno by
one of its disjuncts. The second is to separate treatment of the x and y dimen-
sions, by breaking the optimization function and constraint set into two parts.
Separating the problem in this way improves efficiency by reducing the number
of constraints considered in each problem and if we solve for the x direction
first, it allows us to delay the computation of Cno

y to take into account the node
overlapping which has been removed by the optimization in the x direction.

3 Generating Non-overlap Constraints

We generate the non-overlap constraints in each dimension in O(|V | log |V |) time
using a line-sweep algorithm related to standard rectangle overlap detection
methods [12]. First, consider the generation of horizontal constraints. We use a
vertical sweep through the nodes, keeping a horizontal “scan line” list of open
nodes with each node having references to its closest left and right neighbors (or
more exactly the neighbors with which it is currently necessary to generate a
non-overlap constraint). When the scan line reaches the top of a new node, this
is added to the list and its neighbors computed. When the bottom of a node is
reached the the separation constraints for the node are generated and the node
is removed from the list.

The detailed algorithm is shown on the left of Figure 1. It uses a vertically
sorted list of events to guide the movement of the scan line. An event is a
record with three fields, kind which is either open or close respectively indicating
whether the top or bottom of the node has been reached, node which is the node
name, and posn which is the vertical position at which this happens.

The scan line stores the currently open nodes. We use a red-black tree to
provide O(log |V |) insert, remove, next left and next right operations. The func-
tions new, insert and remove create and update the scan line. The functions
next left(scan line, v) and next right(scan line, v) return the closest neighbors
to each side of node v in the scan line.
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procedure generate Cno
x (V )

events := { event(open, v, yv − hv/2),
event(close, v, yv + hv/2) | v ∈ V }

[e1, . . . , e2n] := events sorted by posn
scan line := new()
for each e1, . . . , e2n do

v := ei.node
if ei.kind = open then

scan line := insert(scan line, v)
leftv := get left nbours(scan line, v)
rightv := get right nbours(scan line, v)
left[v] := leftv
for each u ∈ leftv do

right[u] := (right[u] ∪ {v}) \ rightv
right[v] := rightv
for each u ∈ rightv do

left[u] := (left[u] ∪ {v}) \ leftv
else /* ei.kind = close */

for each u ∈ left[v] do
generate xu + (wu + wv)/2 ≤ xv

right[u] := right[u] \ {v}
for each u ∈ right[v] do

generate xv + (wu + wv)/2 ≤ xu

left[u] := left[u] \ {v}
scan line := remove(scan line, v)

return

function get left nbours(scan line, v)
u := next left(scan line, v)
while u �= NULL do

if olapx(u, v) ≤ 0 then
leftv := leftv ∪ {u}
return leftv

if olapx(u, v) ≤ olapy(u, v) then
leftv := leftv ∪ {u}

u := next left(scan line, u)
return leftv

procedure satisfy VPSC(V ,C)
[v1, . . . , vn] := total order(V ,C)
for i:= 1, . . . , n do

merge left(block(vi))
return [v1 ← posn(v1), . . . , vn ← posn(vn)]

procedure merge left(b)
while violation(top(b.in)) > 0 do

c := top(b.in)
b.in := remove(c)
bl := block[left(c)]
distbltob := offset[left(c)] + gap(c)

−offset[right(c)]
if b.nvars > bl.nvars then

merge block(b, c, bl, −distbltob)
else

merge block(bl, c, b, distbltob)
b := bl

return

procedure merge block(p, c, b, distptob)
p.wposn := p.wposn + b.wposn−

distptob × b.weight
p.weight := p.weight + b.weight
p.posn := p.wposn/p.weight
p.active := p.active ∪ b.active ∪ {c}
for v ∈ b.vars do

block[v] := p
offset[v] := distptob + offset[v]

p.in := merge(p.in, b.in)
p.vars := p.vars ∪ b.vars
p.nvars := p.nvars + b.nvars
return

Fig. 1. Algorithm generate Cno
x (V ) to generate horizontal non-overlap constraints be-

tween nodes in V , and algorithm satisfy VPSC(V, C) to satisfy the Variable Placement
with Separation Constraints (VPSC) problem

The functions get left nbours(scan line, v) and get right nbours(scan line, v)
detect the neighbours to each side of node v that require non-overlap con-
straints. These are heuristics. It seems reasonable to set up a non-overlap con-
straint with the closest non-overlapping node on each side and a subset of
the overlapping nodes. One choice for get left nbours is shown in Figure 1.
This makes use of the functions olapx(u, v) = (wu + wv)/2 − |x0

u − x0
v| and

olapy(u, v) = (hu + hv)/2 − |y0
u − y0

v| which respectively measure the horizontal
and vertical overlap between nodes u and v. The main loop iteratively searches
left until the first non-overlapping node to the left is found or else there are no
more nodes. Each overlapping node u found on the way is collected in leftv if
the horizontal overlap between u and v is less than the vertical overlap. The ar-
rays left and right detail for each open node v the nodes to each side for which
non-overlap constraints should be generated. The only subtlety is that redun-
dant constraints are removed, i.e. if there is currently a non-overlap constraint
between any u ∈ leftv and u′ ∈ rightv then it can be removed since it will be
implied by the two new non-overlap constraints between u and v and v and u′.
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Theorem 1. The procedure generate Cno
x (V ) has worst-case complexity O(|V | ·

k(log |V | + k) where k is the maximum number of nodes overlapping a single
node with appropriate choice of heap data structure. Furthermore, it will generate
O(k · |V |) constraints.

Proofs to theorems are provided in the technical report [13]. Assuming k is
bounded, the worst case complexity is O(|V | log |V |).

Theorem 2. The procedure generate Cno
x (V ) generates separation constraints

C that ensure that if two nodes do not overlap horizontally in the initial layout
then they will not overlap in any solution to C.

The code for generate Cno
y , the procedure to generate vertical non-overlap

constraints is essentially dual to that of generate Cno
x . The only difference is

that any remaining overlap must be removed vertically. This means that we
need only find the closest node in the analogue of the functions get left nbours
and get right nbours since any other nodes in the scan line will be constrained to
be above or below these. This means that the number of left and right neighbours
is always 1 or less and gives us the following complexity results:

Theorem 3. The procedure generate Cno
y (V ) has worst-case complexity O(|V | ·

log |V |). Furthermore, it will generate no more than 2 · |V | constraints.

Theorem 4. The procedure generate Cno
y (V ) generates separation constraints

C that ensure that no nodes will overlap in any solution to C.

4 Solving Separation Constraints

Non-overlap constraints c have the form u + a ≤ v where u, v are variables
and a ≥ 0 is the minimum gap between them. We use the notation left(c),
right(c) and gap(c) to refer to u, v and a respectively. Such constraints are called
separation constraints. We must solve the following constrained optimization
problem for each dimension:

Variable placement with separation constraints (VPSC) problem. Given n vari-
ables v1, . . . , vn, a weight vi.weight ≥ 0 and a desired value vi.des2 for each
variable and a set of separation constraints C over these variables find an
assignment to the variables which minimizes n

i=1 vi.weight × (vi − vi.des)2

subject to C.

We can treat a set of separation constraints C over variables V as a weighted
directed graph with a node for each v ∈ V and an edge for each c ∈ C from
left(c) to right(c) with length gap(c). We call this the constraint graph. We
define out(v) = {c ∈ C | left(c) = v} and in(v) = {c ∈ C | right(c) = v}. Note
that edges in this graph are not the edges in the original graph.

We restrict attention to VPSC problems in which the constraint graph is
acyclic and for which there is at most one edge between any pair of variables.
2 vi.des is set to x0

vi or y0
vi for each dimension, as used in generate Cno

{x|y}.
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It is possible to transform an arbitrary satisfiable VPSC problem into a prob-
lem of this form and our generation algorithm will generate constraints with
this property. Since the constraint graph is acyclic it imposes a partial order
on the variables: we define u �C v iff there is a (directed) path from u to v
using the edges in separation constraint set C. We will make use of the function
total order(V ,C) which returns a total ordering for the variables in V , i.e. it
returns a list [v1, . . . , vn] s.t. for all j > i, vj �C vi.

We first give a fast algorithm for finding a solution to the VPSC algorithm
which satisfies the separation constraints and which is “close” to optimal. The
algorithm works by merging variables into larger and larger “blocks” of con-
tiguous variables connected by a spanning tree of active constraints, where a
constraint u + a ≤ v is active if at the current position for u and v, u + a = v.

The algorithm is shown in Figure 1. It takes as input a set of separation con-
straints C and a set of variables V . A block b is a record with the following fields:
vars, the set of variables in the block; nvars, the size of vars; active, the set of con-
straints between variables in vars forming the spanning tree of active constraints;
in, the set of constraints {c ∈ C | right(c) ∈ b.vars and left(c) ∈ b.vars}; out,
out-going constraints defined symmetrically to in; posn, the position of the
block’s “reference point”; wposn, the sum of the weighted desired locations of
variables in the block; and weight, the sum of the weights of the variables in the
block.

In addition, the algorithm uses two arrays blocks and offset indexed by vari-
ables where block [v] gives the block of variable v and offset [v] gives the dis-
tance from v to its block’s reference point. Using these we define the function
posn(v) = block (v).posn + offset [v] giving the current position of variable v.

The constraints in the field b.in for each block b are stored in a priority queue
such that the top constraint in the queue is always the most violated where
violation(c) = left(c) + gap(c) − right(c). We use four queue functions: new()
which returns a new queue, add(q, C) which inserts the constraints in the set
C into the queue q and returns the result, top(q) which returns the constraint
in q with maximal violation, remove(q) which deletes the top constraint from
q, and merge(q1, q2) which returns the queue resulting from merging queues q1
and q2. The only slight catch is that some of the constraints in b.in may be
internal constraints, i.e. constraints which are between variables in the same
block. Such internal constraints are removed from the queue when encountered.
Another caveat is that when a block is moved violation changes value. However,
the ordering induced by violation(c) does not change since all variables in the
block will be moved by the same amount and so violation(c) will be changed by
the same amount for all non-internal constraints. This consistent ordering allows
us to implement the priority queues as pairing heaps [14] with efficient support
for the above operations.

The main procedure, satisfy VPSC, processes the variables from smallest to
greatest based on a total order reflecting the constraint graph. At each stage the
invariant is that we have found an assignment to v1, .., vi−1 which satisfies the
separation constraints. We process vertex vi as follows. First, function block is
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Fig. 2. Example of (non-optimal) algorithm for VPSC problem giving optimal (c) or
non-optimal (e) answer

used to create a block b for each vi setting b.posn = vi.des . Some of the “in”
constraints may be violated. If so, we find the most violated constraint c and
merge the two blocks connected by c using the function merge block. We repeat
this until the block no longer overlaps the preceding block, in which case we have
found a solution to v1, .., vi.

At each step we set b.posn for each block b to the optimum position, i.e. the
weighted average of the desired positions:

k
i=1 vi.weight×(offset [vi]−vi.des)

k
i=1 vi.weight

. By
maintaining the fields wposn and weight we are able to efficiently compute the
weighted arithmetic mean when merging two blocks.

Example 1. Consider the example of laying out the boxes A,B,C,D shown in
Figure 2(a) each shown at their desired position 1.5, 3, 3.5, and 5 respectively and
assuming the weights on the boxes are 1,1,2 and 2 respectively. The constraints
generated by generate Cno

x are c1 ≡ vA + 2.5 ≤ vB, c2 ≡ vB + 2 ≤ vC and
c3 ≡ vB + 2 ≤ vD. Assume the algorithm chooses the total order A,B,C,D. First
we add block A, it is placed at its desired position as shown in Figure 2(a).
Next we consider block B, b.in = {c1} and the violation of this constraint is
1. We retrieve bl as the block containing A. and calculate distbltob as 2.5. We
now merge block B into the block containing A. The new block position is 1 as
shown in Figure 2(b), and c1 is added to the active constraints. Next we consider
block C, we find it must merge with block AB. The new positions are shown
in Figure 2(c). Since there is no violation with the block D, the final position
leaves it where it is, i.e. the result is optimal.

Theorem 5. The assignment to the variables V returned by satisfy VPSC(V, C)
satisfies the separation constraints C.
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procedure solve VPSC(V ,C)
satisfy VPSC(V ,C)
compute lm()
while exists c ∈ C s.t. lm[c] < 0 do

choose c ∈ C s.t. lm[c] < 0
b := block[left(c)]
lb := restrict block(b, left(b, c))
rb := restrict block(b, right(b, c))
rb.posn := b.posn
rb.wposn := rb.posn × rb.weight
merge left(lb)
/* original rb may have been merged */
rb := block[right(c)]
rb.wposn := v∈rb v.weight × (v.des − offset[v])
rb.posn := rb.wposn/rb.weight
merge right(rb)
compute lm()

endwhile
return [v1 ← posn(v1), . . . , vn ← posn(vn)]

procedure compute lm()
for each c ∈ C do lm[c] := 0 endfor
for each block b do

choose v ∈ b.vars
comp dfdv(v, b.active, NULL)

function comp dfdv(v, AC, u)
dfdv := v.weight × (posn(v) − v.des)
for each c ∈ AC s.t. v = left(c)

and u �= right(c) do
lm[c] := comp dfdv(right(c), AC, v)
dfdv := dfdv + lm[c]

for each c ∈ AC s.t. v = right(c)
and u �= left(c) do

lm[c] := − comp dfdv(left(c), AC, v)
dfdv := dfdv − lm[c]

return dfdv

Fig. 3. Algorithm to find an optimal solution to a VPSC problem with variables V
and separation constraints C

Theorem 6. The procedure satisfy VPSC(V, C) has worst-case complexity
O(|V | + |C| log |C|) with appropriate choice of priority queue data structure.

Since each block is placed at its optimal position one might hope that the
solution returned by satisfy VPSC is also optimal. This was true for the example
above. Unfortunately, as the following example shows it is not always true.

Example 2. Consider the same blocks as in Example 1 but with the total order
A,B,D,C. The algorithm works identically to the stage shown in Figure 2(b). But
now we consider block D, which overlaps with block AB. We merge the blocks to
create block ABD which is placed at 0.75, as shown in Figure 2(d). Now block
ABD overlaps with block C so we merge the two to the final position 0.166 as
shown in Figure 2(e). The result is not optimal.

The solution will be non-optimal if it can be improved by splitting a block.
This may happen if a merge becomes “invalidated” by a later merge. It is rel-
atively straight-forward to check if a solution is optimal by computing the La-
grange multiplier λc for each constraint c. We must split a block at an active
constraint c if λc is negative. Because of the simple nature of the separation
constraints it is possible to compute λc (more exactly λc/2) for the active con-
straints in each block in linear time. We simply perform a depth-first traversal of
the constraints in b.active summing v.weight×(posn(v)−v.des) for the variables
below this variable in the tree. The algorithm is detailed in Figure 3. It assumes
the data structures in satisfy VPSC and stores λc/2 in the lm[c] for each c ∈ C.
A full justification for this given in [13].

Using this it is relatively simple to extend satisfy VPSC so that it computes
an optimal solution. The algorithm is given in Figure 3. This uses satisfy VPSC
to find an initial solution to the separation constraints and calls compute lm
to compute the Lagrange multipliers. The main while loop checks if the cur-
rent solution is optimal, i.e. if for all c ∈ C, λc ≥ 0, and if so the algorithm
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terminates. Otherwise one of the constraints c ∈ C with a negative Lagrange
multiplier is chosen (we choose c corresponding to min{λc|λc < 0, c ∈ C}) and
the block b containing c is split into two new blocks, lb and rb populated by
left(b, c) and right(b, c) respectively. We define left(b, c) to be the nodes in
b.vars connected by a path of constraints from b.active \ {c} to left(c), i.e. the
variables which are in the left sub-block of b if b is split by removing c. We
define right(b, c) symmetrically. The split is done by calling the procedure re-
strict block(b, V ) which takes a block b and returns a new block restricted to the
variables V ⊆ b.vars. For space reasons we do not include the (straight-forward)
code for this.

Now the new blocks lb and rb are placed in their new positions using the
procedures merge left and merge right. First we place lb. Since lm[c] < 0, lb
wishes to move left and rb wishes to move right. We temporarily place rb at the
former position of b and try and place lb at its optimal position. If any of the
“in” constraints are violated (since lb wishes to move left the “out” constraints
cannot be violated). We remedy this with a call to merge left(lb). The placement
of rb is totally symmetric, although we must first allow for the possibility that
rb has been merged so we update it’s reference to the (possibly new) container
of right(c) and place it back at its desired position. The code for merge right
has not been included since it is symmetric to that of merge left. We have also
omitted references to the “out” constraint priority queues used by merge right.
These are managed in an identical fashion to “in” constraints.

Example 3. Consider the case of Example 2. The result of satisfy VPSC is shown
in Figure 2(d). The Lagrange multipliers calculated for c1, c2, c3 are 1.333, 2.333,
and -0.333 respectively. We should split on constraint c3. We break block ABCD
into ABC and D, and placing them at their optimal positions leads to positions
shown in Figure 2(c). Since there is no overlap the algorithm terminates.

Theorem 7. Let θ be the assignment to the variables V returned by solve VPSC
(V, C). Then θ is an optimal solution to the VPSC Problem with variables V and
constraints C

Termination of solve VPSC is a little more problematic. solve VPSC is an
example of an active-set approach to constrained optimization [15]. In practice
such methods are fast and lend themselves to incremental re-computation but
unfortunately, they may have theoretical exponential worst case behavior and
at least in theory may not terminate if the original problem contains constraints
that are redundant in the sense that the set of equality constraints corresponding
to the separation constraints C, namely {u + a = v | (u + a ≤ v) ∈ C}, contains
redundant constraints. Unfortunately, our algorithm for constraint generation
may generate equality-redundant constraints. We could remove such redundant
separation constraints in a pre-processing step by adding εi to the gap for the ith

separation constraint or else use a variant of lexico-graphic ordering to resolve
which constraint to make active in the case of equal violation. We can then show
that cycling cannot occur. In practice however we have never found a case of cy-
cling and simply terminate the algorithm after a fixed maximum number of splits.
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5 Results

We have compared our method3 SAT = satisfy VPSC and SOL = solve VPSC
versus FSA, the improved Push-Force Scan algorithm [7] and QP quadratic
programming optimization using the Mosek solver [16]. For SAT, SOL and QP
we compare with ( OO) and without orthogonal ordering constraints. We did
not compare empirically with the Voronoi centering algorithm [10] since it gives
very poor results, see Figure 4.

(a) Original layout (b) SAT (c) SOL=QP

(d) SOL OO=QP OO (e) FSA (f) Voronoi

Fig. 4. An example graph layout adjusted using various techniques

Figure 4 shows the initial layout and the results of the various node adjustment
algorithms for a realistic example graph. There is little difference between the
3 A C++ implementation of this algorithm is available from http://www.csse.
monash.edu.au/∼tdwyer.
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Fig. 5. Comparative (a) total displacement from original positions and (b) times

SAT and SOL results. We include a SOL result with the orthogonal ordering
(SOL OO) constraints which attacks the same problem as FSA. Clearly FSA
produces much more spreadout layout. Lastly the Voronoi diagram approach
loses most of the structure of the original layout.

Figure 5 gives running times and relative displacement from original position
for the different methods on randomly generated sets of overlapping rectangles.
We varied the number of rectangles generated but adjusted the size of the rect-
angles to keep k (the average number of overlaps per rectangle) appoximately
constant (k ≈ 10).

We can see that FSA produces the worst displacements, and that SAT pro-
duces very good displacements almost as good as the optimal produced by SOL
and QP. We can see that SAT (with or without orthogonal ordering constraints)
scales better than FSA. While both SOL and QP are significantly slower, SOL
is an order of magnitude faster than QP in the range tested. Adding orthogonal
ordering constraints seems to simplify the problem somewhat and SOL OO re-
quires less splitting than SOL while QP requires more processing time to handle
extra constraints. Therefore SOL OO is significantly faster than QP OO and
SAT OO returns a solution very near to the optimal while remaining extremely
fast. Overall these results show us that SAT is the fastest of all algorithms and
gives very close to optimal results.
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Abstract. We generalize the tree-confluent graphs to a broader class
of graphs called Δ-confluent graphs. This class of graphs and distance-
hereditary graphs, a well-known class of graphs, coincide. Some results
about the visualization of Δ-confluent graphs are also given.

1 Introduction

Confluent Drawing is an approach to visualize non-planar graphs in a planar
way [10]. The idea is simple: we allow groups of edges to be merged together
and drawn as tracks (similar to train tracks). This method allows us to draw, in
a crossing-free manner, graphs that would have many crossings in their normal
drawings. Two examples are shown in Figure. 1. In a confluent drawing, two
nodes are connected if and only if there is a smooth curve path from one to the
other without making sharp turns or double backs, although multiple realizations
of a graph edge in the drawing is allowed.

More formally, a curve is locally-monotone if it contains no self intersections
and no sharp turns, that is, it contains no point with left and right tangents that
form an angle less than or equal to 90 degrees. Intuitively, a locally-monotone
curve is like a single train track, which can make no sharp turns. Confluent
drawings are a way to draw graphs in a planar manner by merging edges together
into tracks, which are the unions of locally-monotone curves.

An undirected graph G is confluent if and only if there exists a drawing A
such that:

– There is a one-to-one mapping between the vertices in G and A, so that, for
each vertex v ∈ V (G), there is a corresponding vertex v′ ∈ A, which has a
unique point placement in the plane.

– There is an edge (vi, vj) in E(G) if and only if there is a locally-monotone
curve e′ connecting v′i and v′j in A.

– A is planar. That is, while locally-monotone curves in A can share overlap-
ping portions, no two can cross.
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Fig. 1. Confluent drawings of K5 and K3,3

We assume readers have basic knowledge about graph theory and we will use
conventional terms and notations of graph theory without defining them. All
graphs considered in this paper are simple graphs, i.e., without loop or multi-
edge. Confluent graphs are closely related to planar graphs. It is, however, very
hard to check whether a given graph can be drawn confluently. The complexity
of recognizing confluent graphs is still open and the problem is expected to be
hard. Hui, Schaefer and Štefankovič [21] define the notion of strong confluency
and show that strong confluency can be recognized in NP. It is then of interest
to study classes of graphs that can or can not be drawn confluently. Several
classes of confluent graphs, as well as several classes of non-confluent graphs,
have been listed [10].

In this paper we continue in the positive direction of this route. We describe
Δ-confluent graphs, a generalization of tree-confluent graphs [21]. We discuss
problems of embedding trees with internal degree three, including embeddings on
the hexagonal grid, which is related to Δ-confluent drawings with large angular
resolution, and show that O(n log n) area is enough for a Δ-confluent drawing
of a Δ-confluent graph with n vertices on the hexagonal grid.

Note that although the method of merging groups of edges is also used to
reduce crossings in confluent layered drawings [14], edge crossings are allowed to
exist in a confluent layered drawing.

2 Δ-Confluent Graphs

Hui, Schaefer and Štefankovič [21] introduce the idea of tree-confluent graphs.
A graph is tree-confluent if and only if it is represented by a planar train track
system which is topologically a tree. It is also shown in their paper that the class
of tree-confluent graphs are equivalent to the class of chordal bipartite graphs.

The class of tree-confluent graphs can be extended into a wider class of graphs
if we allow one more powerful type of junctions.

A Δ-junction is a structure where three paths are allowed to meet in a three-
way complete junction. The connecting point is call a port of the junction. A
Λ-junction is a broken Δ-junction where two of the three ports are disconnected
from each other (exactly same as the track defined in the tree-confluent draw-
ing [21]). The two disconnected paths are called tails of the Λ-junction and the
remaining one is called head.
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Fig. 2. Δ-junction and Λ-junction

A Δ-confluent drawing is a confluent drawing in which every junction in the
drawing is either a Δ-junction, or a Λ-junction, and if we replce every junction
in the drawing with a new vertex, we get a tree. A graph G is Δ-confluent if and
only if it has a Δ-confluent drawing.

The class of cographs in [10] and the class of tree-confluent graphs in [21] are
both included in the class of Δ-confluent graphs. We observe that the class of
Δ-confluent graphs are equivalent to the class of distance-hereditary graphs.

2.1 Distance-Hereditary Graphs

A distance-hereditary graph is a connected graph in which every induced path is
isometric. That is, the distance of any two vertices in an induced path equals their
distance in the graph [2]. Other characterizations have been found for distance-
hereditary graphs: forbidden subgraphs, properties of cycles, etc. Among them,
the following one is most interesting to us:

Theorem 1. [2] Let G be a finite graph with at least two vertices. Then G is
distance-hereditary if and only if G is obtained from K2 by a sequence of one-
vertex extensions: attaching pendant vertices and splitting vertices.

Here attaching a pendant vertex to x means adding a new vertex x′ to G and
making it adjacent to x so x′ has degree one; and splitting x means adding a
new vertex x′ to G and making it adjacent to either x and all neighbors of x,
or just all neighbors of x. Vertices x and x′ forming a split pair are called true
twins (or strong siblings) if they are adjacent, or false twins (or weak siblings)
otherwise.

By reversing the above extension procedure, every finite distance-hereditary
graph G can be reduced to K2 in a sequence of one-vertex operations: either
delete a pendant vertex or identify a pair of twins x′ and x. Such a sequence is
called an elimination sequence (or a pruning sequence).

In the example distance-hereditary graph G of Figure. 3, the vertices are
labelled reversely according to an elimination sequence of G:

17 merged into 16, 16 merged into 15, 15 cut from 3, 14 cut from 2, 13 merged
into 5, 12 merged into 6, 10 merged into 8, 11 merged into 7, 9 cut from 8, 8
merged into 7, 7 cut from 6, 6 merged into 0, 5 cut from 0, 4 merged into 1, 3
cut from 1, 2 merged into 1.

The following theorem states that the class of distance hereditary graphs and
the class of Δ-confluent graphs are equivalent.
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Fig. 3. A distance-hereditary graph G

Theorem 2. A graph G is distance hereditary if and only if it is Δ-confluent.

Proof sketch. Assume G is distance hereditary. We can compute the elimination
sequence of G, then apply an algorithm, which will be described in Section 2.2,
to get a Δ-confluent drawing of G. Thus G is Δ-confluent.

On the other hand, given a Δ-confluent graph G in form of its Δ-confluent
drawing A, we can apply the following operations on the drawing A:

1. contraction. If two vertices y and y′ in A are connected to two ports of
a Δ-junction, or y and y′ are connected to the two tails of a Λ-junction
respectively, then contract y and y′ into a new single vertex, and replace the
junction with this new vertex.

2. deletion. If two vertices y and y′ in A are connected by a Λ-junction, y is
connected to the head and y′ to one tail, remove y′ and replace the junction
with y.

It is easy to observe that contraction in the drawing A corresponds to iden-
tifying a pair of twins in G; and deletion corresponds to removing a pendant
vertex in G.

It is always possible to apply an operation on two vertices connected by a junc-
tion because the underlying graph is a tree. During each operation one junction is
replaced. Since the drawing is finite, the number of junctions is finite. Therefore,
we will reach a point at which the last junction is replaced. After that the draw-
ing reduces to a pair of vertices connected by an edge, and the corresponding G
reduces to a K2. Therefore G is a distance-hereditary graph.

This completes the proof of the equivalence between Δ-confluent graphs and
distance-hereditary graphs. ��

2.2 Elimination Sequence to Δ-Confluent Tree

The recognition problem of distance-hereditary graphs is solvable in linear time
(see [2, 20]). The elimination sequence (ordering) can also be computed in linear



Delta-Confluent Drawings 169

time. Using the method of, for example, Damiand et al. [9] we can obtain an
elimination sequence L for G of Figure. 3:

By using the elimination sequence reversely, we construct a tree structure of
the Δ-confluent drawing of G. This tree structure has n leaves and n−1 internal
nodes. Every internal node has degree of three. The internal nodes represent our
Δ- and Λ-junctions. The construction is as follows.

– While L is non-empty do:
• Get the last item from L

• If item is “b merged into a”
∗ If edge (a, b) ∈ E(G), then replace a with a Δ conjunction using any

of its three connectors, connect a and b to the other two connectors
of the Δ conjunction; otherwise replace a with a Λ conjunction using
its head and connect a and b to its two tails.

• Otherwise item is “b cut from a”, replace a with a Λ conjunction using
one of its tails, connect a to the head and b to the other tail left.

Clearly the structure we obtain is indeed a tree. Once the tree structure is
constructed, the Δ-confluent drawing can be computed by visualizing this tree
structure with its internal nodes replaced by Δ- and Λ-junctions.

3 Visualizing the Δ-Confluent Graphs

There are many methods to visualize the underlying topological tree of a Δ-
confluent drawing. Algorithms for drawing trees have been studied extensively
(see [4, 8, 12, 13, 18, 19, 22, 26, 27, 28, 29, 31, 32] for examples). Theoretically all
the tree visualization methods can be used to lay out the underlying tree of
a Δ-confluent drawing, although free tree drawing techniques might be more
suitable. We choose the following two tree drawing approaches that both yield
large angular resolution (≥ π/2), because in drawings with large angular reso-
lution, each junction lies in a center-like position among the nodes connected to
it, so junctions are easy to perceive and paths are easy to follow.

3.1 Orthogonal Straight-Line Δ-Confluent Drawings

The first tree drawing method is the orthogonal straight-line tree drawing
method. In the drawings by this method, every edge is drawn as a straight-line
segment and every node is drawn at a grid position.

Pick an arbitrary leaf node l of the underlying tree as root and make this free
tree a rooted tree T (alternatively one can adopt the elimination hierarchy tree
of a distance-hereditary graph for use here.) It is easy to see that T is a binary
tree because every internal node of the underlying tree has degree three. We
can then apply any known orthogonal straight-line drawing algorithm for trees
([e.g.[4, 6, 7, 24, 25, 30]]) on T to obtain a layout. After that, replace drawings of
internal nodesz with their corresponding junction drawings.
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3.2 Hexagonal Δ-Confluent Drawings

Since all the internal nodes of underlying trees of Δ-confluent graphs have degree
three, if uniform-length edges and large angular resolution are desirable, it is then
natural to consider the problem of embedding these trees on the hexagonal grid
where each grid point has three neighboring grid points and every cell of the
grid is a regular hexagon.

Some researchers have studied the problem of hexagonal grid drawing of
graphs. Kant [23] presents a linear-time algorithm to draw tri-connected planar
graphs of degree three planar on a n/2×n/2 hexagonal grid. Aziza and Biedl [1]
focus on keeping the number of bends small. They give algorithms that achieve
3.5n+3.5 bends for all simple graphs, prove optimal lower bounds on number of
bends for K7, and provide asymptotic lower bounds for graph classes of various
connectivity. We are not aware of any other result on hexagonal graph drawing,
where the grid consists of regular hexagon cells.

In the Δ-confluent drawings on the hexagonal grid, any segment of an edge
must lie on one side of a hexagon sub-cell. Thus the slope of any segment is
1/2, ∞, or −1/2. An example drawing for the graph from Figure. 3 is shown in
Figure. 4.
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Fig. 4. A hexagonal grid Δ-confluent drawing example

Readers might notice that there are edge bends in the drawing of Figure. 4.
Some trees may require a non-constant number of bends per edge to be embedded
on a hexagonal grid. Thus it is impossible to embed the tree without edge crossing
or edge overlapping, when the bends are limited per edge. However, if unlimited
bends are allowed, we show next that Δ-confluent graphs can be embedded in
the hexagonal grid of O(n log n) area in linear time.

The method is to transform an orthogonal straight-line tree embedding into an
embedding on the hexagonal grid. We use the results of Chan et al. [6] to obtain
an orthogonal straight-line tree drawing. In their paper, a simple “recursive
winding” approach is presented for drawing arbitrary binary trees in small area
with good aspect ratio. They consider both upward and non-upward cases of
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orthogonal straight-line drawings. We show that an upward orthogonal straight-
line drawing of any binary tree can be easily transformed into a drawing of the
same tree on the hexagonal grid.

Figure. 5 (a) exhibits an upward orthogonal straight-line drawing for the
underlying tree of G in Figure. 3, with node 15 being removed temporarily in
order to get a binary tree.

We cover the segments of the hex cell sides with two set of curves: u-curves
and v-curves (Figure. 5 (b)). The u-curves (solid) are waving horizontally and
the v-curves (dashed) along one of the other two slopes. These two sets of curves
are not direct mapping of the lines parallel to x-axis or y-axis in an orthogonal
straight-line drawing settings, because the intersection between a u-curve and a
v-curve is not a grid point, but a side of the grid cell and it contains two grid
points. However this does not matter very much. We choose the lower one of the
two grid points in the intersection (overlapping) as our primary point and the
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Fig. 5. From upward straight-line orthogonal drawing to hexagonal grid drawing. In-
ternal nodes are labelled with letters and leaves with numbers. (a) orthogonal drawing,
generated by Graph Drawing Server (GDS) [5]. (b) u-curves and v-curves. (c) unad-
justed result of transformation (mirrored upside-down for a change).
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other one as our backup point. So the primary point is at the bottom of a grid
cell and its backup is above it to the left. As we can see later, the backup points
allow us to do a final adjustment of the node positions.

When doing the transformation from an orthogonal straight-line drawing to
a hexagonal grid drawing, we are using only the primary points. So there is a
one-to-one mapping between node positions in the orthogonal drawing and the
hexagonal grid drawing. However, there are edges overlapping each other in the
resultant hexagonal grid drawing of such a direct transformation (e.g. edge (a, b)
and edge (a, 16) in Figure. 5 (c)). Now the backup points are used to remove
those overlapping portion of edges. Just move a node from a primary point to
the point’s backup when overlapping happens.
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Fig. 6. Final drawing after adjustment

Figure. 6 shows the Δ-confluent drawing of G after overlapping is removed.
The drawing does not look compact because the orthogonal drawing from which
it is obtained is not tidy in order to have the subtree separation property.

It is not hard to see that backup points are enough for removing all the
overlapping portions while the tree structure is still maintained. If wanted, the
backup points can be also used to reduce the bends along the edges connecting
the tree leaves (e.g. edge connecting node 1). Some bends can be removed as
well after junctions are moved (e.g. the subtree of node 8 and 10).

Theorem 3. Any Δ-confluent graph can be embedded on a grid of size
O(n log n). The representation of its Δ-confluent drawing can be computed in
linear time and can be stored using linear space.

Proof sketch. First the underlying tree of a Δ-confluent graph can be computed
in linear time. The transformation runs in linear time as well. It then remains to
show that the orthogonal tree drawing can be obtained in linear time. Chan et al.
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[6] can realize a upward orthogonal straight-line grid drawing of an arbitrary n-
node binary tree T with O(n log n) area and O(1) aspect ratio. The drawing
achieves subtree separation and can be produced in O(n) time.

By using the transformation, we can build a description of the drawing in
linear time, which includes the placement of each vertex and representation of
each edge. It is straightforward that the drawing has an area of O(n log n) size.
Since the edges are either along u-curves, or along v-curves, we just need to store
the two end points for each edge. Note that although some edge might contain
O(

√
n log n) bends (from the “recursive winding” method), constant amount of

space is enough to describe each edge. Thus the total space complexity of the
representation is O(n). ��

In the hexagonal grid drawings for trees, the subtree separation property is
retained if the subtree separation in hexagonal grid drawings is defined using u, v
area. If different methods of visualizing binary trees on the orthogonal grid are
used, various time complexities, area requirements, and other drawing properties
for the hexagonal grid Δ-confluent drawing can be derived as well.

4 More About Δ-Confluent Graphs

In this section we discuss a Δ-confluent subgraph problem, and list some topics
of possible future work about Δ-confluent graphs.

One way to visualize a non-planar graph is to find a maximum planar sub-
graph of the original graph, compute a planar drawing of the subgraph, and
add the rest of the original graph back on the drawing. An analogous method
to visualize a non-Δ-confluent graph would be to find a maximum Δ-confluent
subgraph, compute a Δ-confluent drawing, and add the rest back. However, just
like the maximum planar subgraph problem, the maximum Δ-confluent sub-
graph problem is difficult. The problem is defined below, and its complexity is
given in Theorem 4.

Maximum Δ-confluent Subgraph Problem:
Instance: A graph G = (V, E), an integer K ≤ |V |.
Question: Is there a V ′ ⊂ V with |V ′| ≥ K such that the subgraph of
G induced by V ′ is a Δ-confluent?

Theorem 4. Maximum Δ-confluent subgraph problem is NP-complete.

Proof. The proof can be derived easily from Garey and Johnson [17, GT21].

[GT21] Induced Subgraph with Property Π :
Instance: A graph G = (V, E), an integer K ≤ |V |.
Question: Is there a V ′ ⊂ V with |V ′| ≥ K such that the subgraph of
G induced by V ′ has property Π?

It is NP-hard for any property Π that holds for arbitrarily large graphs, does
not hold for all graphs, and is hereditary (holds for all induced subgraphs of G
whenever it holds for G). If it can be determined in polynomial time whether
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Π holds for a graph, then the problem is NP-complete. Examples include “G is
a clique”, “G is an independent set”, “G is planar”, “G is bipartite”, “G is
chordal.”

Δ-confluency is a property that holds for arbitrarily large graphs, does not
holds for all graphs, and is hereditary (every induced subgraph of a Δ-confluent
graph is Δ-confluent.) It can be determined in linear time whether a graph is
Δ-confluent. Thus the maximum Δ-confluent subgraph problem is NP-complete.

��

Instead of drawing the maximum subgraph Δ-confluently and adding the
rest back, We could compute a Δ-confluent subgraph cover of the input graph,
visualize each subgraph as a Δ-confluent drawing, and overlay them together.
This leads to the Δ-confluent Subgraph Covering Problem. Like the
maximum Δ-confluent subgraph problem, we expect this problem to be hard as
well.

This alternative way is related to the concept of simultaneous embedding
(see [3, 11, 15, 16]). To visualize an overlay of Δ-confluent subgraph drawings
is to draw trees simultaneously. However simultaneously embedding draws only
two graphs that share the same vertex set V , while a Δ-confluent subgraph
cover could have a cardinality larger than two. Furthermore, the problem of
simultaneously embedding (two) trees hasn’t been solved.

Other interesting problems include:

– How to compute the drawing with optimum area (or number of bends, etc.)
for a Δ-confluent graph?
Generally hexagonal grid drawings by transforming orthogonal drawings are
not area (number of bends, etc.) optimal. If subtree separation is not re-
quired, hexagonal grid drawings with more compact area or smaller number
of bends can be achieved. Maybe a simple incremental algorithm would work.

– The underlying track system here is topologically a tree. What classes of
graphs can we get if other structures are allowed?
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Abstract. We define and investigate a structure called transversal edge-
partition related to triangulations without non empty triangles, which
is equivalent to the regular edge labeling discovered by Kant and He.
We study other properties of this structure and show that it gives rise
to a new straight-line drawing algorithm for triangulations without non
empty triangles, and more generally for 4-connected plane graphs with
at least 4 border vertices. Taking uniformly at random such a trian-
gulation with 4 border vertices and n vertices, the size of the grid is
almost surely 11

27n × 11
27n up to fluctuations of order

√
n, and the half-

perimeter is bounded by n − 1. The best previously known algorithms
for straight-line drawing of such triangulations only guaranteed a grid
of size (�n/2� − 1) × �n/2�. Hence, in comparison, the grid-size of our
algorithm is reduced by a factor 5

27 , which can be explained thanks to
a new bijection between ternary trees and triangulations of the 4-gon
without non empty triangles.

1 Introduction

A plane graph is a connected graph embedded in the plane so that edges do
not cross each other. Many algorithms for drawing plane graphs [4, 15, 2, 10]
endow the graph with a particular structure, from which it is possible to give
coordinates to vertices in a natural way. For example, triangulations, i.e., plane
graphs with only faces of degree 3, are characterized by the fact that their inner
edges can essentially be partitioned into three spanning trees, called Schnyder
Woods, with specific incidence relations [15]. Using these spanning trees it is
possible to associate coordinates to each vertex by counting faces on each side of
particular paths passing by the vertex. Placing vertices in this way and linking
adjacent vertices by segments yields a straight-line drawing algorithm, which
can be refined to produce a drawing on a regular grid of size (n − 2) × (n − 2),
see [16].

A plane graph with an outer face of degree k and inner faces of degree 3 is
called a triangulation of the k-gon. If the interior of any 3-cycle of edges is a
face, the triangulation is irreducible. Observe that it implies k > 3, unless the
graph is reduced to a unique triangle. There exist more compact straight-line
drawing algorithms for irreducible triangulations [9, 11], the size of the grid being
guaranteed to be (�n/2� − 1) × �n/2� in the worst case.

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 177–188, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In this extended abstract we concentrate on irreducible triangulations of the
4-gon, which carry a good level of generallity. Indeed many graphs, includ-
ing 4-connected plane graphs with at least 4 border vertices, can be triangu-
lated (after adding 4 vertices in the outer face) into an irreducible triangula-
tion of the 4-gon, see [1]. By investigating a bijection with ternary trees, we
have observed that each irreducible triangulation of the 4-gon can be endowed
with a structure, called transversal edge-partition, which can be summarized as
follows. Calling Sb, Nr, Nb, Sr (like south-blue, north-red, north-blue, south-
red) the 4 border vertices of T in clockwise order, the inner edges of T can
be oriented and partitioned into two sets: red edges that “flow” from Sr to
Nr, and blue edges that “flow” from Sb to Nb. For those familiar with bipo-
lar orientations [5], i.e. acyclic orientations with two poles, the structure can
also be seen as a transversal couple of bipolar orientations, see Section 2.3.
As we learned after completing a first draft of this extended abstract, Kant
and He used an equivalent structure in [10] and derived nice algorithms of
rectangular-dual drawing and of visibility representation. We explore the proper-
ties of this structure and show in particular in Theorem 1 that it is of the lattice
type.

In Section 3, we derive from the transversal structure a straight-line drawing
algorithm of an irreducible triangulation T of the 4-gon. Like drawing algo-
rithms using Schnyder Woods [15, 2], it is based on face counting operations.
The first step is to endow T with a particular transversal edge-partition, said
minimal, which is obtained by application of an iterative algorithm described in
Section 2.4. Then the transversal structure is used to associate to each vertex
v a path Pr of red edges and a path Pb of blue edges, both passing by v. The
abscissa (resp. ordinate) of v is obtained by counting faces on each side of Pr

(resp. Pb). Our algorithm outputs a straight line embedding on a regular grid of
width W and height H with W + H ≤ n− 1 if the triangulation has n vertices.
This algorithm can be compared to [9] and [11], which produces straight-line
drawing on a grid of size (�n/2�−1)×�n/2�. However, algorithms of [9] and [11]
rely on a particular order of treatment of vertices called canonical ordering, and
a step of coordinate-shifting makes them difficult to implement and to carry
out by hand. As opposed to that, our algorithm can readily be performed on a
piece of paper, because coordinates of vertices can be computed independently
with simple face-counting operations. Finally, our algorithm has the nice feature
that it respects the structure of transversal edge-partition. Indeed, Theorem 2
ensures that red edges are geometrically oriented from Sr to Nr and blue edges
are geometrically oriented from Sb to Nb.

A compact version of the algorithm even ensures that, for a random triangula-
tion with n vertices, the size of the grid is asymptotically almost surely 11

27n× 11
27n

up to small fluctuations, of order
√

n. Compared to [9] and [11], we do not im-
prove on the size of the grid in the worst case, but improve asymptotically by a
reduction-factor 5/27 on the width and height of the grid for a typical (random)
object of large size, see Figure 4.2 for an example with n = 200. The reduc-
tion factor 5/27 can be explained thanks to a new bijection between ternary
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trees and irreducible triangulations of the 4-gon. This bijection is described in
Section 4 and relies on “closure operations”, as introduced by G. Schaeffer [13],
see also [12] for a bijection with unconstrained triangulations. This bijection
has, truth to tell, brought about our discovery of transversal edge-partitions.
Indeed, it turns out to “transport” a so-called transversal edge-bicoloration of a
ternary tree into the minimal transversal edge-partition of its associated triangu-
lation, in the same way that bijection of [12] transports the structure of Schnyder
woods. In addition, the bijection gives a combinatorial way to enumerate rooted
4-connected triangulations, which were already counted by Tutte in [17] using
algebraic methods.

2 Definition of Transversal Structures

2.1 Transversal Edge-Partition

Let T be an irreducible triangulation of the 4-gon. Edges and vertices of T are
said inner or outer whether they belong to the outer face or not. A transversal
edge-partition of T is a partition of the inner edges of T into two sets, say in
blue and in red edge, such that the following conditions are satisfied.

– C1 (Inner vertices): In clockwise order around each inner vertex, its incident
edges form: a non empty interval of red edges, a non empty interval of blue
edges, a non empty interval of red edges, and a non empty interval of blue
edges, see Figure 1a.

– C2 (Border vertices): Writing a1, a2, a3, a4 for the border vertices of T in
clockwise order, all inner edges incident to a1 and to a3 are of one color and
all inner edges incident to a2 and to a4 are of the other color.

Figure 1b gives an example of transversal edge-partition, where we use dark
red for red edges and light blue for blue edges (the same convention will be
used for all figures).

Sr

Nr

Nb

Sb

b)a) c) d)

Fig. 1. The structure of transversal edge-partition: local condition (a) and a complete
example (b). In parallel, the structure of transversal couple of bipolar orientations:
local condition (c) and a complete example (d).
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2.2 Lattice Structure

As it is the case with Schnyder Woods and bipolar orientations, the set of
transversal edge-partitions of a fixed irreducible triangulation of the 4-gon is
a distributive lattice. In addition, the “flip” operation has a nice geometric in-
terpretation. To describe it, we have to introduce some terminology. Given T an
irreducible triangulation of the 4-gon endowed with a transversal edge-partition
X , we define an alternating 4-cycle as a 4-cycle C of inner edges (e1, e2, e3, e4)
of T which are color-alternating (i.e. two adjacent edges of C have different col-
ors). The cycle C is called essential if its interior does not properly contain the
interior of another alternating 4-cycle. Given a vertex v of C, we call left-edge
(resp. right-edge) of v the edge of C starting from v and having the exterior of
C on its left (resp. on its right). It can easily be proven that two cases can occur
for C: either all edges interior to C and incident to a border vertex v of C have
the color of the left-edge of v, then C is called a left alternating 4-cycle; or all
edges interior to C and incident to a border vertex v of C have the color of the
right-edge of v, then C is called a right alternating 4-cycle.

Theorem 1. Let T be an irreducible triangulation of the 4-gon. Then the set
E of transversal edge-partitions of T is a non-empty distributive lattice. Given
X ∈ E, the flip operation consists in finding a right alternating 4-cycle C of X and
then switching the colors of all edges interior to C, making C a left alternating
4-cycle. The (unique) transversal edge-partition of T without right alternating
4-cycle is said minimal.

Proof. The non emptiness of E will be proven constructively in Section 2.4 by
providing an algorithm computing the minimal transversal edge-partition of T .
The lattice structure follows from the fact that E is in bijection with the set
of orientations of an associated graph (called the angular graph) where each
vertex has a fixed outdegree. The set of such orientations with fixed outdegree
is well-known to be a distributive lattice, see [6, 7].

2.3 Transversal Couple of Bipolar Orientations

Given a plane graph G and two vertices S (like South) and N (like North) of G
incident to the outer face of G, a bipolar orientation of G with poles S and N
is an acyclic orientation of the edges of G such that, for each vertex v different
from S and N , there exists an oriented path from S to N passing by v, see [5]
for a detailed decription.

Let T be an irreducible triangulation of the 4-gon. Call Nr, Nb, Sr and Sb the
4 border vertices of T in clockwise order around the outer face of T . A transversal
couple of bipolar orientations is an orientation and a partition of the inner edges
of T into red and blue edges such that the following two conditions are satisfied
(see Figure 1d for an example):

– C1’ (Inner vertices): In clockwise order around each inner vertex of T , its
incident edges form: a non empty interval of outgoing red edges, a non empty
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interval of outgoing blue edges, a non empty interval of ingoing red edges,
and a non empty interval of ingoing blue edges, see Figure 1c.

– C2’ (Border vertices): All inner edges incident to Nb, Nr, Sb and Sr are
respectively ingoing blue, ingoing red, outgoing blue, and outgoing red.

This structure is also defined in [10] under the name of regular edge labeling.
The following proposition explains the name of transversal couple of bipolar
orientations and is also stated in [10]:

Proposition 1. Let T be an irreducible triangulation of the 4-gon. Given a
transversal couple of bipolar orientations of T , the (oriented) red edges induce
a bipolar orientation of the plane graph obtained from T by removing Sb, Nb,
and all non red edges. Similarly, the blue edges induce a bipolar orientation of
T deprived from Sr, Nr and all non blue edges.

Proposition 2. To each transversal couple of bipolar orientations of T corre-
sponds a transversal edge-partition of T , obtained by removing the orientation of
the edges (Compare Figure 1d and Figure 1b). This correspondence is a bijection.

Proposition 2 allows us to manipulate equivalently transversal edge-partitions or
transversal couples of bipolar orientations. The first point of view is more con-
venient to describe the lattice structure, the second one will be more convenient
to describe the drawing algorithm in Section 3.

2.4 Algorithm Computing the Minimal Transversal Edge-Partition

Let us now describe a simple iterative algorithm to compute transversal edge-
partitions. Two different algorithms computing such transversal structures were
already presented in [10]. However we need to compute the minimal transversal
edge-partition, to be used later in the straight-line drawing algorithm. During
the execution, we also orient the edges, so that we compute in fact the underlying
transversal couple of bipolar orientations. The algorithm we introduce consists
in maintaining and iteratively shrinking a cycle C of edges of T such that, in
particular (we do not detail all invariants here):

– The cycle C contains the two edges (Sr, Sb) and (Sr, Nb).
– No edge interior to C connects two vertices of C\{Sr}
– All inner edges of T outside of C are colored and oriented such that Inner-

vertex Condition C1’ (see Section 2) is satisfied for each inner vertex of T
outside of C.

We initialize the cycle C with vertices Sr, Sb, Nb and all interior neighbours
of Nr, color in red all inner edges incident to Nr and orient them toward Nr, see
Figure 2b. Observe also that vertices of C different from Sr can be ordered from
left to right with Sb as leftmost and Nb as rightmost vertex. For two vertices v
and v′ of C\{Sr} with v on the left of v′, we write [v, v′] for the unique path on
C that goes from v to v′ without passing by Sr.

To explain how to update (shrink) C at each step, we need a few definitions. An
internal path of C is a path P of edges interior to C and connecting two vertices
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v and v′ of C. We write CP for the cycle constituted by the concatenation of P
and [v, v′]. The path P is said eligible if the following conditions are satisfied:

– The paths P and [v, v′] have both at least one vertex different from v and
v′.

– Each edge interior to CP connects a vertex of P\{v, v′} to a vertex of
[v, v′]\{v, v′}. In particular, the interior of CP contains no vertex.

– The cycle C′ obtained from C by replacing [v, v′] by P is such that no interior
edge of C′ connects two vertices of C′\{Sr}.

The update operation is the following: find an eligible internal path P of C
and write v and v′ for its extremities with v on the left of v′ (so that v and v′

are called respectively left and right extremity of P); then, color each internal
edge of CP in red and orient it toward [v, v′]\{v, v′}. Color all edges of [v, v′] in
blue and orient them from v to v′; finally update C by replacing in C the path
[v, v′] by the path P .

It can easily be shown that the absence of non empty triangle on T ensures
that the algorithm terminates, i.e. that at each step the cycle C has an eligible
internal path and can be updated (shrinked). After the last update operation, C
is empty. Using all invariants of colors and orientations of edges satisfied by C,
it can be shown that the obtained orientation and coloration of inner edges of T
is a transversal couple of bipolar orientations. Figure 2 illustrates the complete
execution of the algorithm on an example.

This algorithm can easily be adapted to give an algorithm, called Com-
puteMinimal(T), which computes the transversal couple of bipolar orienta-
tions associated (by removing orientation of edges) to the minimal transversal
edge-partition of T , as defined in Theorem 1. Observe that, at each step of the
algorithm, eligible paths of C can be ordered from left to right, by saying that
P1 ≥ P2 if the left extremity and the right extremity of P1 are (weakly) on the
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Nb Sr
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Fig. 2. An example of execution of the algorithm computing the minimal transversal
couple of bipolar orientations. Vertices of the rightmost eligible path are surrounded.
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left respectively of the left extremity and of the right extremity of P2. Although
this order is only partial, it can easily be shown to admit a unique minimum,
called rightmost eligible path of C. Algorithm ComputeMinimal(T) consists
in choosing the rightmost eligible path at each step of the iterative algorithm
described above, see also Figure 2, where the execution respects this choice.

Proposition 3. Given an irreducible triangulation T of the 4-gon, Algorithm
ComputeMinimal(T) outputs the transversal couple of bipolar orientations as-
sociated to the minimal transversal edge-partition of T (by removing edge ori-
entations). In addition, ComputeMinimal(T) can be implemented to run in
linear time.

3 Application to Straight-Line Drawing

We recall that a straight line drawing of a plane graph G consists in placing all
points of G on a regular grid of size [0, W ] × [0, H ] and then linking each pair
of adjacent vertices of G by a segment, with the condition that two different
segments can only meet at their endpoints. The integers W and H are called
the width and the height of the grid.

The structure of transversal edge-partition can be used to derive a simple
algorithm, called TransversalDraw, to perform straight line drawing of an
irreducible triangulation T of the 4-gon. First we have to give a few definitions.
The plane graph obtained from T by removing all blue (resp. red) edges is called
the red-map (resp. blue-map) of T and is denoted by Tr (resp. Tb). We write fr

and fb for the number of inner faces of Tr and Tb. Given an inner vertex v of T ,
we define the leftmost outgoing red path of v as the oriented path starting from
v and such that each edge of the path is the leftmost outgoing red edge at its
origin. As the orientation of red edges is bipolar, this path has no cycle and ends
at Nr. We also define the rightmost ingoing red path of v as the path starting
from v and such that each edge of the path is the rightmost ingoing red edge
at its extremity. This path is also acyclic and ends at Sr. We call separating
red path of v the concatenation of these two paths and denote it by Pr(v). The
path Pr(v) goes from Sr to Nr passing by v, and separates inner faces of Tr into
two sets: those on the left of Pr(v) and those on the right of Pr(v). Similarly,
we define the leftmost outgoing blue path, the rightmost ingoing blue path, and
write Pb(v) for their concatenation, called separating blue path of v.

Algorithm TransversalDraw consists of the following steps, see Figure 3
for a complete execution:

– Perform ComputeMinimal(T) to endow T with its minimal transversal
couple of bipolar orientations.

– Take a regular grid of width fr and height fb.
– Place the border vertices Sr, Sb, Nb, Nr respectively at coordinates (0, 0),

(0, fb), (fr, 0) and (fr, fb).
– For each inner vertex v of T , place v on the grid in the following way:

• The abscissa of v is the number of inner faces of Tr on the left of Pr(v).
• The ordinate of v is the number of inner faces of Tb on the right of Pb(v).
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A
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Fig. 3. The execution of Algorithm TransversalDraw (a)-(e), and of Algorithm
CompactTransversalDraw (a)-(f) on an example

Algorithm TransversalDraw can be enhanced into an algorithm, called
CompactTransversalDraw, giving a more compact drawing. The further
step consists in deleting the unused abscissas and ordinates of the drawing com-
puted by TransversalDraw. An example is given on Figure 3d, obtained from
Figure 3c after having deleted the unused abscissa 3 and the unused ordinate 5.

Theorem 2. Algorithm TransversalDraw and Algorithm CompactTrans
versalDraw can be implemented to run in linear time and compute a straight
line drawing of an irreducible triangulation T of the 4-gon such that:

– All red edges are oriented from bottom to top and weakly oriented from left
to right.

– All blue edges are oriented from left to right and weakly oriented from top to
bottom.

– If T has n vertices, then the width W and height H of the grid of the drawing
given by TransversalDraw(T) verify W + H = n − 1.

– Let T be taken uniformly at random among irreducible triangulations of the
4-gon with n vertices. The width Wc and the height Hc of the grid of the
drawing output by CompactTransversalDraw(T) are asymptotically al-
most surely equal to 11

27n, up to fluctuations εWc and εHc of order
√

n.

In fact the transversal structure used to give coordinates to vertices need not
to be the minimal one. Using any other transversal couple of bipolar orientations,
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the three first points of Theorem 2 remain true. However the analysis of the
reduction-factor 5

27 with CompactTransversalDraw(T) crucially requires
that the transversal structure is the minimal one, see Section 4.2.

Corollary 1. Each 4-connected plane graph G with n vertices and at least 4
vertices on the outer face can be embedded with a straight-line drawing on a
regular grid W × H with W + H ≤ n − 1.

4 Bijection with Ternary Trees and Applications

4.1 Description of the Bijection

A ternary tree A is a tree embedded in the plane with nodes of degree 4, called
inner nodes and nodes of degree 1, called leaves. Edges of A connecting two
inner nodes are called inner edges and edges incident to a leaf are called stems
(these are “pending” edges). A ternary tree can be rooted by marking one of
its leaves, and such rooted ternary trees correspond to the classical definition of
ternary trees (i.e. all nodes have either 0 or 3 children).

We describe briefly the bijection (see [8, 12] for detailed descriptions of similar
bijections), consisting of three main steps: local closure, partial closure and com-
plete closure. Perform a counterclockwise traversal of A (imagine an ant walking
around A with the infinite face on its right). If a stem s and then two inner edges
e1 and e2 are successively encountered during the traversal, merge the extremity
of s with the extremity of e2, so as to close a triangular face. This operation is
called local closure, see Figure 4b. Now we can restart a counterclockwise traver-
sal around the new Figure F , which is identical to A, except that it contains a
triangular face and, more important, the stem s has become an inner edge. Each
time we find a succession (stem, edge, edge), we perform a local closure, update
the figure, and restart, until no local closure is possible. This greedy execution
of local closures is called the partial closure of A, see Figure 4c. It can easily
be shown that the figure F obtained by partial closure of A does not depend of
the order of execution of the local closures. Finally, the last step, called com-
plete closure (see Figure 4d), consists in drawing a 4-gon, and then merging the
extremity of each unmatched stem with a border vertex, so as to create only

d)c)b)a)

Fig. 4. The execution of the closure on an example
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triangular inner faces. It can be shown that the choice of an outer 4-gon is the
good one so that this last operation works without conflict.

Observe that the edges of a ternary tree A can be bicolored in blue and
red edges so that two successive edges incident to an inner node of A have al-
ways different color, see Figure 4a. This bicoloration, unique up to the choice
of the colors, is called the transversal edge-bicoloration of A. Observe that In-
ner Vertex Condition C1 is satisfied on A and remains satisfied throughout the
closure.

Theorem 3. The closure is a bijection between ternary trees with n inner nodes
and irreducible triangulations of the 4-gon with n inner vertices.

The closure transports the transversal edge-bicoloration of a ternary tree into
the minimal transversal edge-partition of its image.

Proof. Injectivity can easily be proven by uniqueness of the transversal edge-
partition without right alternating 4-cycle. The inverse of the closure consists in
computing the minimal transversal edge-partition of T and using the colors to
remove some half-edges, so as to leave a ternary tree.

An irreducible triangulation of the 4-gon is rooted by choosing one of its 4 border
edges and orienting this edge with the infinite face on its right. This well-known
operation eliminates symmetries of the triangulation.

Corollary 2. The closure induces a 4-to-(2n+2) correspondence between the set
An of rooted ternary trees with n inner nodes and the set Tn of rooted irreducible
triangulations of the 4-gon with n inner vertices.

As an enumerative consequence, |Tn| = 4
2n+2 |An| = 4(3n)!

(2n+2)!n! .

Proof. The proof follows easily from the bijection stated in Theorem 3 and from
the fact that a ternary tree with n inner nodes has 2n + 2 leaves and an object
of Tn has 4 edges (the 4 border edges) to carry the root.

4.2 Applications

The closure-bijection has several applications. A first one is a linear-time al-
gorithm to perform uniform random sampling of objects of Tn, using the fact
that rooted ternary trees with n inner nodes can readily be uniformly sam-
pled using parenthesis words. A thorough study of such sampling algorithms is
given in [14]. In addition, sampled objects of Tn are naturally endowed, through
the closure, with their minimal transversal edge-partition. Hence, we can easily
run face-counting algorithms TransversalDraw and CompactTransver-
salDraw on the sampled objects. Performing simulations on objects of large
size (n ≈ 50000), it was observed that the size of the grid is always approxi-
mately n

2 × n
2 with TransversalDraw and n

2 (1 − α) × n
2 (1 − α) with Com-

pactTransversalDraw, where α ≈ 0.18. It turns out that the size of the grid
can be readily analyzed thanks to our closure-bijection, in the same way that
bijection of [12] allowed to analyze parameters of Schnyder woods in [3]. Indeed,
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Fig. 5. A random triangulation with 200 vertices embedded with Algorithms Tran-
sversalDraw and CompactTransversalDraw

unused abscissas and ordinates of TransversalDraw correspond to certain in-
ner edges of the ternary tree, whose number can be proven to be asymptotically
almost surely 5n

27 up to fluctuations of order
√

n.
A second application is counting rooted 4-connected triangulations with n

vertices, whose set is denoted by Cn. It is well known that a 4-connected trian-
gulation is a triangulation where each 3-cycle delimits a face. Hence, the opera-
tion of removing the root edge of an object of Cn and carrying the root on the
counterclockwise-consecutive edge is an (injective) mapping from Cn to Tn−4.
However, given T ∈ Tn−4, the inverse edge-adding-operation can create a sepa-
rating 3-cycle if there exists an internal path of length 2 connecting the origin of
the root of T to the vertex diametrically opposed in the outer face of T . Objects
of Tn−4 having no such internal path are said undecomposable and their set is
denoted by Un−4. The above discussion ensures that they are in bijection with
Cn. A maximal decomposition of an object T of T along the above mentioned
interior paths of length 2 ensures that T is a sequence of objects of U . After a
few simple manipulations and using Corollary 2, we get:

Proposition 4. The series C(z) counting rooted 4-connected triangulations by
their number of inner vertices has the following expression:

C(z) =
z(A(z) − A(z)2 + 1)

1 + z(A(z) − A(z)2 + 1)

where A(z) = z(1 + A(z))3 is the series counting rooted ternary trees by their
number of inner nodes.

Acknowledgments. I would like to thank my advisor Gilles Schaeffer. He has
greatly helped me to produce this work through numerous discussions, steady
encouragment and useful suggestions. I also thank Nicolas Bonichon for fruitful
discussions and Thomas Pillot for very efficient implementations of all algorithms
presented in this extended abstract.
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Abstract. Dynamic processes frequently occur in many applications.
Visualizations of dynamically evolving data, for example as part of the
data analysis, are typically restricted to a cumulative static view or an
animation/sequential view. Both methods have their benefits and are
often complementary in their use. In this article, we present a hybrid
model that combines the two techniques. This is accomplished by 2.5D
drawings which are calculated in an incremental way. The method has
been evaluated on collaboration networks.

1 Introduction

Dynamic graphs occur in many applications such as software visualization, an-
imation of graph algorithms or social network analysis. Most of the time a dy-
namic graph is given by a sequence of graphs that each are snapshots of an
ongoing process. While the visualization of individual points in time helps to un-
derstand the current situation, a visualization of the whole sequence can reveal
information about the evolution in general. So far most visual representations
use either a static cumulative view of the sequence or a dynamic animation.

We describe a new hybrid model for dynamic graph drawing that allows a
simultaneous representation of both, a cumulative and an animated view. Both
views are integrated in such a way that the hybrid layout reveals each of them by
changing the perspective or adjusting visual effects, like color or transparency.
It is assumed that not only the graph structure but also weights of nodes and
edges change over time. A benefit of our approach is the integration of the past
evolution of weights by incorporating a cumulative as well as a regressive change,
i. e., the weights of nodes and edges reflected in the drawing can also decrease
over time. Our approach uses 2.5D drawings where time is represented by the
third dimension. However, the technique can be generalized to d.5D drawings
for arbitrary dimensions d.

Multidimensional visualizations where one or more axes are fixed have been
proposed frequently for network data from various applications. Related methods
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use the third dimension to display structural information [3], a hierarchy [4, 8, 1],
or an evolution over time [2]. Other visualization techniques for dynamics that
are based on conventional 2D or 3D drawings or animations are [9, 11, 5]. See
also [6] for an overview and [10] for a more recent work.

The paper is organized as follows. Section 2 introduces our model and the
corresponding layout technique. It also includes a short discussion of its bene-
fits and potential drawbacks. The special case of evolving graphs and updating
dynamic layouts are topic in Section 3. The results are presented in Section 4.
For illustrative purpose, data from the DBLP1 are used. Finally, Section 5 gives
the conclusion.

2 Hybrid Model

In this section, the basic hybrid model is introduced. Section 2.2 and 2.3 provide
the description on the model and the algorithmic realization. This is followed
by a short discussion of accumulating weights over time while preserving the
mental map.

2.1 Notation

A dynamic graph G is given by a mapping of a time interval T into the set of
weighted graphs. In the following, we assume that there are only finitely many
different images of G and G(t) = (V (t), E(t)) denotes the graph at time t ∈ T .
Without loss of generality we assume that T can be covered by left-closed and
right-open intervals [t, t′[ such that G is fixed on each such interval, and changes
on subsequent intervals. For any given point in time t ∈ T , we denote the earliest
time of the left-adjacent corresponding interval with pred(t) and the earliest time
of the right-adjacent corresponding interval with succ(t). Let G(t) = (V (t), E(t))
be the graph at time t ∈ [t1, t2[, then the nodes that have not been in any
previous graph are denoted by Vnew (t) := {v ∈ V (t) | ∀t′ < t1 : v ∈ V (t′)}
and corresponds to ‘new’ nodes. Similarly Vold (t) := V (t) \ Vnew (t) denotes the
‘old’ nodes. Let ωt denote the weight of a node respectively edge at time t, i. e.,
ωt : V (t) ∪ E(t) → R+

0 .
In this way a dynamic graph corresponds to the observations of the (dynamic)

process and approximates it with a step function. The changes need not be ho-
mogeneously distributed over time and additional observations could be created
artifically using interpolation. Furthermore, it reflects the realized changes in the
dynamic graph drawing setting.

2.2 Paradigm

The original dynamic graph drawing problem has two realizations: First, the cu-
mulative view, which consists of one static layout that emphasizes major trends
during the evolution but hides sporadic fluctuations in the graph structure. Sec-
ondly, the animated or sequential view, which requires a static layout for each
1 http://www.informatik.uni-trier.de/˜ley/db/
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graph that highlights current changes while preserving the general mental map.
Both have in common that they are based on the whole sequence. We address a
more general problem: Given a dynamic graph G and its time interval T := [0, T [.
For any subinterval T ′ = [t1, t2[ of T construct suitable layouts that represent
the evolution during T ′ based on the history of the interval [0, t1[.

ti
m

e
Fig. 1. Hybrid model

Our hybrid model consists of one 2D lay-
out for each graph of a sequence embedded
layer-wise in 3D where the additional dimen-
sion represents the time. A sketch of this sit-
uation is given in Figure 1. To be more pre-
cise, we use one layer for the history [0, t1[ and
one layer for each different graph in the inter-
val [t1, t2[. By tuning the perspective and the
individual properties of the layers, the origi-
nal views, i. e., cumulative and sequential, are
obtained: Looking along the time axes (in its
negative direction) yields the cumulative view
while showing only one layer at a time results in the sequential view. A third
kind of view is obtained when identical nodes in different time slots are con-
nected and the perspective is parallel to the layers. It shows the nodes’ changes
over time. The model is realized by an incremental layout algorithm. First, the
history-layer is initialized with a suitable layout obtained by some established
algorithm. For every additional layer the nodes are split into two groups, old and
new nodes. The old nodes can be easily placed respecting their former positions.
The new nodes first need a good initial placement, before the whole layout can
be optimized to meet esthetic criteria as well as preserving the mental map.

2.3 Algorithmic Framework

The incremental algorithm, which is associated with the hybrid model, is given in
pseudo code in Algorithm 1. It has a large degree of freedom that allows to derive
several versions which are optimized for running time, achieved quality, or de-
pendency of temporal knowledge. Especially the last issue also provides means
to layout dynamic graphs where only partial information is available during the
process. However, a fundamental problem might occur through lack of (future)
knowledge, i. e., the position of a connected component which is completely con-
tained in Vnew (t) has great influence on the overall quality of a drawing. But
the component cannot be properly placed without using information about its
future role. Section 3.1 discusses these aspects for dynamic graphs with complete
information (evolving graphs).

In the following, some simple methods for Step 1 and 2 are stated. For the
initial placement, we suggest a two step approach which combines a barycentric
layout with a localized force-directed relaxation. In this way, new nodes are
close to their older “anchor” nodes and ‘uniformly’ spread. This requires that
every connected component of G(t) has at least one node in Vold (t). As for the
general optimization step, a modified force-directed approach works well if no
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further layout properties have to be ensured. The modifications mainly target
the incorporation of node and edge weights, i. e., large/heavy nodes should be
well distributed, thick/heavy edges should be short.

2.4 Adjustments for Weights and Position

As mentioned in the introduction, the hybrid model is capable of dealing with
decreasing weights. In fact, we propose an updating of the weights of nodes and
edges to incorporate both their current and their accumulated weight. Basically,
there is a tradeoff between old, heavy, and inactive nodes versus young, light,
and extremely active nodes. For every interval [t2, t3[ and its left-adjacent inter-
val [t1, t2[, we define a semi-cumulative version ω̃ of ωt as shown in Equation (1).

ω̃c(v, t2) :=
ω̃(v, t1)

s
+

ωt2(v)
t2 − t1

continuous version

ω̃d(v, t2) :=
ω̃(v, t1)
st2−t1

+ ωt2(v) discrete version.
(1)

If there is no left-adjacent interval, then ω̃(v, t) := ωt(v). The function ω̃ can
be extended to a continous function via interpolation. Depending on a scaling
parameter s, different behavior is favored, i. e., for s = 1 it is the standard cu-
mulative version, for s > 1 young and active nodes are preferred over old and
inactive nodes while it is vice versa for 0 < s < 1. The difference between the
two versions is the interpretation of time, i. e., the continuous version assumes
that the weight ωt(v) has been accumulated since the last observation t1 while
the discrete version interpretes the weight ωt(v) as an instantaneous impulse at
time t and that no other impulse has occurred since time t1. Both models can
be justified, the continuous weighting reflects steady growth in contrast to sin-
gleton events during an elementary time window that is imitated in the discrete
version. In collaboration networks which are restricted to certain publications,
like certain conference publications only, one would prefer the discrete version
over the continuous one because of the time dependency.

Algorithm 1: Generic hybrid layouter

Input: dynamic graph G with time interval [0, T [ and a subinterval [t1, t2[⊆ [0, T [
initialize G([0, t1[) with a suitable layout
t ← t1
while t ≤ t2 do

adjust weights on nodes and edges
for v ∈ Vold (t) do

initialize v with its last used position

1 initialize Vnew (t)
2 optimize G(t) to meet esthetic criteria while preserving the mental map

t ← succ(t)

project each G(t) to the t.th layer
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Similar to other approaches, we introduce additional forces to ensure that the
movement of old nodes stays uniform. There are several different ways to anchor
a node to its copies in different snapshots. The simplest approach introduces an
edge between two identical nodes in consecutive snapshots of ideal length zero.
Thus the copies of a node are connected via a path. By introducing additional
edges the movement of a node can be further restricted. In the extreme case, all
copies of a node are connected to a clique. This type of connection ensures best
to preserve the mental map but might slow down the actual layout computation.
However, since only one (time) layer is active at a point in time t, there are only T
additional positions at which a node might be anchored, where T is the number
of previous intervals. Thus even a clique-like connection between identical nodes
results in only O(T · |V (t)|) additional active edges which does not slow down
the computation too much. Actually, most of the known techniques to control
the movement of nodes can be directly integrated in the hybrid model and its
incremental layout method.

3 Extensions of the Hybrid Model

After the basic hybrid model has been introduced in Section 2, two adjustments
for specific tasks are presented. First, the modification for evolving graph, i. e.,
dynamic graph where the whole function is given, and second, a dynamic version
of the dynamic graph drawing problem, i. e., given a dynamic graph with a layout,
find an extention of this layout if additional time layers are introduced.

3.1 Adjustments for Evolving Graphs

As already mentioned in Section 2.3, incremental layouts cannot find a good
position for connected components consisting of only new nodes. Algorithms
that are based on the whole sequence avoid this problem through their ‘future’
dependencies. For example, in [5, 10] identical nodes in consecutive (time-)layers
are connected with an edge. During the minimization of the overall forces, a good
position of the connected components in early layers is ensured by the position
in subsequent layers in which the component has been connected to an already
placed part. Thus the relative placement is propagated back in time. A similar
scheme can be integrated in the hybrid model: First, the earliest succeeding
time is calculated in which the component is connected to some already placed
nodes. This layer is then used to estimate the relative position of the component
to its anchor nodes and projected back. The optimization step (Algorithm 1,
Step 2) treats the components independently and uses the relative placement to
ensure that none of them are interfering with each other. If a component has
no anchoring nodes, its placement is independent from the remaining graph and
can be done arbitrarily. This additional step can be done in linear time plus
the time for finding the relative position, which depends on the involved layout
technique (Step 1 and 2).

Potential drawbacks are the overhead, if several connected components have
anchoring nodes in different time layers, then the relative position for each com-
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ponent involves a ‘whole’ layout step for each corresponding time-layer. Also,
the case where some connected components of a time layer get connected with
each other before anchoring nodes appear is a bit problematic. But the above
method can be extended to include these cases as well. A different issue is the
impact on the overall quality, i. e., because only a relative placement is estimated,
certain areas of the layout can become wide-stretched while others are too con-
densed. This usually happens if the components are rather sparsely connected.
By manually adjusting the strength of edges, one can counterweight this effect,
however simultaneously diminish the relation between distance in the layout and
edge weights.

3.2 Updating Layouts of Dynamic Graphs

In contrast to the connected components, the hybrid models benefits the ex-
tension or update of the dynamic graph layout when additional data become
available. In other words, given two dynamic graphs G and G′ such that G′ re-
fines G, i. e., both graphs coincide on some parts of their time interval and differ
on the remaining, and a layout L for G, find a new layout L′ for G′ such that
if G(t) = G′(t) then also L(t) = L(t′). This can be interpreted as constraint
dynamic graph drawing problem.

Independent of the algorithm, one can always use interpolation of two adjacent
fixed time layers for intermediate layers. Using the hybrid model, our approach
is to refine the interpolation via bisection, i. e., calculating a rough estimate
of the layout for an intermediate layer and using this as an auxiliary layout
for the interpolation, more precisely: Let [t1, t2k] be an interval on which G is
constant and t1 < t2 < · · · < t2k be a subdivision such that G′ is constant
on [ti, ti+1] for 1 ≤ i < 2k and differs from G. First, a rough placement L(tk) for
time tk is estimated and afterwards recursively applied to the interval [t1, tk].
Upon reaching time t2, an ‘exact’ placement is calculated instead of the rough
placement. Afterwards layouts for t3, . . . , tk are determined in the incremental
fashion of the hybrid model. The process is then repeated on the interval [tk, t2k].

Instead of the bisection approach one could only use the incremental algorithm
to interpolate the interval [t1, t2k], however, if the intervals have many unknown
intermediate points or the layout for t1 and t2k differs a lot, then the overall
quality significantly drops.

Consistency. So far, the hybrid model and other dynamic visualization algo-
rithms behaved similar to the update problem. However, there is a difference
when comparing the L′ with the layout L′′ for G′ ignoring the constraint L. A
fully time-dependent algorithm, like the one in [10] can produce very different
results for L′ and L′′, while general incremental algorithms will give the same
partial layouts on the interval [t0, t1] where t0 is the earliest time and t1 the time
of the first deviation of G and G′.

Also, the hybrid model will produce the same partial layout on [t0, t1]. Fur-
thermore, if the modifications of the intermediate time slots are small or even
consistent with our continual weighting (Section 2.4), then the layouts L′ and L′′
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of the hybrid model will be very similar. The following observation verifies this
claim: If the introduced modifications are small, then both graphs, the original
and the modified one, should have similar high-quality layouts. Moreover using
a local optimum of force-direction layout of the original graph as initialization
for the modified one will quickly convert to a close local optimum.

Thus the similarity of L′ and L′′ on a refined interval [t, t′] highly depends
on the similarity or consistency of the intermediate graphs and the impact on
previous modifications but not on succeeding ones. An extreme case would be
consistent refinement together with a large modification at the end of the se-
quence. Traditional algorithms that use the whole available information would
produce very different layouts L′ and L′′ while incremental and especially the
hybrid model would result in very different layouts upto the heavy modification.
However, this is paid in terms of achieved overall layout quality.

4 Results

We illustrate some results of our hybrid model for citation networks extracted
for the DBLP which is a well-maintained database with approximately 500,000
articles in the area of computer science.

4.1 Data Sets

DBLP maintains information of certain publications. We extracted the overall
collaboration graph, i. e., nodes are people and edges connect to nodes if they
have common publications. Because the publication activity varies a lot and
a single publication can have up to 36 authors, we weighted the edges corre-
spondingly. The weight of a single publication is reciprocal to the number of
authors and the weight of all publications in a year is the sum of the individual
weights. The weight of a node is the sum of the weights of its incident edges (for
a given year).

4.2 Visualizations

In the following, we present several drawings of collaboration networks. In each
visualization, there are the following correspondences: node size and cumulative
publication weight, node color and time, edge thickness and publication weight,
edge color and time. If an edge has a checked pattern, it connects two identical
nodes in consecutive snapshots. When speaking of cumulative weight, we always
refer to the continuous version shown in Equation (1).

A first example is the authorship of [7], which is one of the first books about
graph drawing. Figure 2(a) shows the evolution of their collaboration between
1986 and 2000. It is clearly visible when common publications have occurred,
although individual publications are not identifiable. For example the first col-
laboration between the four authors happened in 1994. Also the node size re-
flects the continuity of cooperations between authors. However, the visualization
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(a) evolution of the collaboration
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Fig. 2. Collaboration between Giuseppe Di Battista (GB), Ioannis Tollis (IT), Peter
Eades (PE) and Roberto Tamassia (RT) between 1986 and 2000

in Figure 2(a) is limited to the four authors and only their collaboration. Fig-
ure 2(b) shows the publication weight of each author within the whole collabora-
tion network. Also, Figure 2(a) illustrates the effect of consistent modifications
(Section 3.2) quite well. Between 1991 and 2000, the modifications have been
very small, i. e., some reweighting on the nodes and edges, one node appeared
while another node disappeared for some time, but the overall layout has been
quite stable.

The second example is the collaboration between Ulrik Brandes, Dorothea
Wagner and their direct coauthors. Both have published several articles in the
graph drawing area and others. Figure 3(a) shows the evolution for 2001 and
2002. The whole network is rather dense, a static cumulative view (without edge
weights) is given in Figure 3(c). The static graph has 50 nodes and 161 edges
while the time-expanded graph has 206 nodes and 434 edges. Some individual
layers are presented in Figure 3(d) and 4 and present the collaboration at specific
points in time. In every layer only those nodes that have published something
are shown. Again Figure 4(a) and 4(b) clearly indicate that the node size is
only relative to the selected network, i. e., nodes like Peter Eades, Joe Marks
or Michael Kaufmann who have a large weight in the whole network (see for
example Figure 2(b)) have a rather peripheral role in this collaboration network.
The balance between old and active nodes and young and active nodes is also
visible in Figure 3(a). As shown in Figure 3(b), Ulrik Brandes and Dorothea
Wagner have roughly the same amount of weighted publications since 1997.
However, Dorothea Wagner has been active since 1989, while Ulrik Brandes
started in 1997. However, in the evolutionary view both have a similar size which
reflects the similar accumulated publication weight. Using a purely cumulative
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(a) evolution between 2000 and 2001
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Fig. 3. Collaboration between Ulrik Brandes (UB), Dorothea Wagner (DW) and their
direct coauthors between 1989 and 2002. (Other abbreviations are SC for Sabine Cor-
nelsen and PE Peter Eades.)

weight, this would not be the case. Finally, Figure 5 shows the collaboration in a
broader sense, i. e., a network with increased number of intermediate coauthors.
The visualization shows a sparse connection between the main part that contains
both Ulrik Brandes and Dorothea Wagner and a peripheral part.

The final example is a collection of some program committee members of the
International Symposium on Graph Drawing. Figure 6(a) shows a 2D project of
the evolution between 1986 and 2003 which mask the time axis while a perspec-
tive view is given in Figure 6(b). This example reflects both that certain groups
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(a) 1999 (b) 2003

Fig. 4. Snapshots of the collaboration between Ulrik Brandes, Dorothea Wagner and
their direct coauthors at different points in time

Fig. 5. Partial view of the collaboration between Ulrik Brandes and Dorothea Wagner
using more intermediate coauthors

are formed over time that collaborate very closely, but also that occasional col-
laboration tend to be repeated. Some of the artifacts on the layer 2003 are due
to incomplete data.
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(a) top view (b) perspective view

Fig. 6. Collaboration between some PC member between 1986 and 2003. (Abbrevia-
tions are GL for Guiseppe Liotta, PE Peter Eades and SK for Stephen Kobourov.)

5 Conclusion

We introduced a hybrid model for drawing dynamic and evolving graphs based
on 2.5D visualizations. It combines several aspects of static cumulative views
and animated/sequential views. The obtained layout permits the general view
of the evolution while integrating individual aspects of certain points in time as
well as cumulative and regressive changes of weight functions. The method has
been evaluated on networks modeling collaboration. In the layouts, structural
important nodes were well visible and long-existent nodes did not mask younger
nodes. Also sparsely connected components were spatially separated.
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Abstract. An actual topic in the graph drawing is the question how to
draw two edge sets on the same vertex set, the so-called simultaneous
drawing of graphs. The goal is to simultaneously find a nice drawing
for both of the sets. It has been found out that only restricted classes
of planar graphs can be drawn simultaneously using straight lines and
without crossings within the same edge set. In this paper, we negatively
answer one of the most often posted open questions namely whether
any two trees with the same vertex set can be drawn simultaneously
crossing-free in a straight line way.

1 Introduction

Recently, a new direction in the area of the graph drawing has been opened:
Simultaneous planar graph drawing [1, 3, 4, 5, 6]. Consider a set of objects with
two different sets of relations. Such structures arise in many applications, e.g. in
software engineering, databases, and social networks. The goal is to draw both
underlying graphs on the same set of vertices in the plane using straight lines such
that each graph alone is displayed as nicely and readable as possible. In case that
both graphs are planar, we require that every graph itself is embedded in a plane
way. More formally, given two planar graphs G1 = (V, E1) and G2 = (V, E2),
simultaneous drawing of G1 and G2 is to find their plane straight line drawings
D1 and D2, such that every vertex is mapped to the same point in both D1
and D2. Brass et al. [1] proved that two paths, two cycles and two caterpillars
can always be drawn simultaneously. A caterpillar is such a tree that the graph
obtained by deleting the leaves is a path. On the other hand, they constructed
2 outerplanar graphs for which the simultaneous drawing is impossible. Erten
and Kobourov [5] found an example of a planar graph and a path that do not
allow a simultaneous drawing. The most posted open problem in this area is the
question whether two trees can always be drawn simultaneously [1, 2, 5]. In this
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paper we answer this question in negative. Our counterexample consists of two
isomorphic trees of depth 2.

2 The Counterexample

The two trees T1(n) = (V, E1) and T2(n) = (V, E2) are given as follows: T1(n)
and T2(n) have a common root r with n common children v1, . . . , vn. The pa-
rameter n will be determined later. The children vi, 1 ≤ i ≤ n of r have again
children vij , 1 ≤ i, j ≤ n, i = j, s.t. (vi, vij) ∈ E1 and (vj , vij) ∈ E2. We call the
edges in E1 ∩E2 thick black, in E1 \E2 thin black and those from E2 \ E1 thin
gray. We denote the union of the two trees by Gn. A straight line drawing of Gn

is called partially planar if there is no crossing of 2 edges from E1 nor crossing of
2 edges from E2, which is equivalent to the simultaneous drawing of T1(n) and
T2(n). Fig. 1 shows a partially planar drawing of G4. Note that this graph class
has already been described in [5].

r

1

32

4

Fig. 1. An example that shows a partially planar drawing of G4

Theorem 1. For n ≥ 15, the simultaneous drawing of Gn is self–intersecting.

Proof. Since G15 is a subgraph of Gn, n ≥ 15 it is sufficient to prove that any
simultaneous drawing for G15 is self–intersecting.

Let us assume that there is a partially planar layout L15 for G15. We consider
such a layout L15 and derive a contradiction.

The proof proceeds in three steps:

Lemma 1. In any partially planar layout L15, there are 8 children of the root
such that in the corresponding sublayout L8 for the subgraph G8 induced by the
root r, the 8 children and the leafs on the connections between them, the root r
lies on the outer face of L8.

In the following, we only argue on the layout L8 of the 8 children from the
previous lemma and derive a contradiction for L8. The indexing is done as the
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children appear in clockwise order seen from the root. We also consider our
indexing to be counted (mod 8) + 1 (or (mod 5) + 1 respectively), s.t. after v8
(or v5 respectively) we have v1 again in clockwise order.

Lemma 2. Let G5 be any subgraph of the G8 induced by the root r, by any
5 children v1, ..., v5 out of the eight children of the root and by the leafs on
the connections between these 5 vertices. For all vertices vi, 1 ≤ i ≤ 5, the
two 4-gons defined by the straight-line segments (vi, vij), (vij , vj), (vj , vji) and
(vji, vi), j = i − 2, i + 2 do intersect.

And finally

Lemma 3. For any layout L8 of G8 as defined above there is a vertex vi,
1 ≤ i ≤ 8, such that the two 4-gons defined by the straight-line segments
(vi, vij), (vij , vj), (vj , vji) and (vji, vi), j = i − 2, i + 2 do not intersect.

Lemma 3 is obviously in contradiction to Lemma 2, therefore no such layout
could exist. ��

In the following section, we provide the proofs of the three lemmata plus all
the necessary definitions and useful observations concerning the structures of
the layout.

3 The Proofs

3.1 Identifying an Appropriate Subgraph

Lemma 4. In any partially planar layout L15, there are 8 children of the root
such that in the corresponding sublayout L8 for the subgraph G8 induced by the
root r, the 8 children and the leafs on the connections between them, the root r
lies on the outer face of L8.

Proof. Let L15 be a partially planar layout of graph G15. Let C = {v1, ..., v15}
be the children of the root in clockwise order. We identify two children vi and vj

such that the polygon formed by (r, vi), (vi, vij), (vij , vj) and (vj , r) encloses a
maximal number of children of the root. Note that vi and vj may not be unique.

Let S be the set of children within the polygon with |S| = k. It is easy to see
that for the whole subgraph Gk induced by the root r, the children in S and
the leafs on the connections between them, the root r lies on the outer face. If
k ≥ 8 we are done and can arbitrarily choose 8 of the children in S to form our
subgraph G8. If k < 8, we consider the set C \S of size l ≥ 8. By the choice of i
and j we know that all but one of the connections within C \S lie on the ’same’
side of the root such that removing only the two segments (vi, vij) and (vij , vj)
will bring r to the outer face of the layout for the subgraph Gl induced by the
root r, the set C \ S and the corresponding leafs. For this case, any subset of
C \ S of size 8 will provide us the desired subgraph G8. ��
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Fig. 2. An example for the choice of vi and vj

3.2 Structural Characterizations

After having identified a partially planar layout L for a G8 such that the root
lies at the outer face, we start with some characterizations to prepare the proof
of the main lemma.

Take any 5 vertices v1, . . . , v5 out of those 8 children in clockwise order. Con-
sider the corresponding graph G5 induced by the root, by v1, . . . , v5 and by
vij , 1 ≤ i, j ≤ 5, i = j and its corresponding layout L5. Clearly L5 is partially
planar.

• Note that each leaf vij has actually two adjacent vertices, namely vi and
vj by a gray edge and by a thin black edge. We can also view each pair of
vertices vi and vj as being connected by two 2-segment polylines, where one
is colored gray/thin black and the other thin black/gray.

• The two connecting 2-segments between each pair vi and vj form a 4-gon
Pij . It is clear that the participating four segments do not cross.

• None of the 5 vertices lies inside of the Pij and none is enclosed by a sequence
of Pij ’s. This means that each of them lie on the outer face of the planar
subdivision formed by the edges vivij and vjvij . This is enforced by the black
edges from the root to the vertices vi and by our condition that none of the
Pij or a sequence of those enclose the root.

• We say that polygons Pij and Plk are intersecting if a segment of Pij crosses
a segment of Plk. Otherwise they are independent.

• Note that a vertex vi can only have two neighboring vertices vj , vk. That
are vertices, such that the polygons Pij and Pik are not separating any
two vertices. That means the polygons Pij and Pik can be assumed to be
independent from each other and from the remaining 4-gons. We also assume
from now on, that our numbering reflects this neighbor property and is in
clockwise order, e.g. vi is neighbor to vi+1 for i ∈ {1, . . . , 4} and v5 is neighbor
to v1.

• The following three configurations for two intersecting polygons Pij and Plk

with i < l < j < k are the basics.
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Configuration 1: The two leaves incident to Pij lie inside the polygon Plk

and the two leaves incident to Plk lie inside the polygon Pij .
Configuration 2: Exactly one leaf of Pij lies inside the polygon Plk and
exactly one leaf of Plk lies inside the polygon Pij .
Configuration 3: The two leaves incident to Pij lie outside the polygon Plk

and the two leaves incident to Plk lie outside the polygon Pij . See Fig. 3.
• Note that for each polygon the colors can be switched.

1

32

4
1

32

4
1

32

4

Fig. 3. Configuration 1, 2 and 3

Next we state the main structural lemma, which is identical to our former
Lemma 2:

Lemma 5. In any partially planar drawing of G5, for each vi, 1 ≤ i ≤ 5, there
are two 2-segment connections to vi+2 and to vi−2 that cross.

Proof. Assume that there is a vertex vi contradicting the claim. By renumber-
ing, we assume that vi = v1. This means that the polygons P13 and P14 are
independent.

In what follows we perform a case analysis. On the top level we distinguish
two different clockwise orders of the four incident segments of the two polygons
attached to v1:

A) thin black, gray, gray, thin black and
B) thin black, gray, thin black, gray.

Clearly, both polylines of P14 separate v3 from v5. So P14 and P35 are inter-
secting.

Then we discuss for each of A) and B) the Configurations 1,2 and 3, described
above, for mutual positions of P14 and P35.

And finally, for each of the previous cases we have two subcases:

a) Polygons P31 and P35 are independent.
b) Polygons P31 and P35 are intersecting.

Vertex v2 is on the convex hull between v1 and v3. It now has to be connected
by two bicolored curves to v4 as well as to v5. We describe the possible route of
the four paths by the sequence of segments that have to be crossed. Fortunately,
this sequence is almost unique.

Before we dive into the case analysis, we formulate some conditions for the
solvability:
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• incident–segments–condition: Two straight line segments adjacent to the
same vertex obviously cannot cross.

• straightness–condition: Two straight line segments cross at most once.
• one–two–condition: Consider a drawing where segments s and s′ are adjacent

to vertex v, s′ forms a double-segment with s′′ and in addition s′′ crosses s.
W.l.o.g. we can assume that there is no such configuration, since any such
configuration can easily be redrawn into a configuration where the crossing
has been removed.

We assume that the one–two–condition is obeyed in the solution and we always
construct a contradiction to the incident–segments condition:

Case A1a: In the Fig. 4(a) consider the two dashed polygonal lines connecting
the vertices v2 to v4 and v5 respectively. They indicate the potential route of the
corresponding double–segments. Clearly the observation holds that at least one
of the two curves have to change its color next to vertex v2 or within the first
polygon P13. If the gray curve changes its color then it follows the thin black curve
to v5 and completely indicates the topological route of the gray-thin black curve
from v2 to v5. Clearly, this is a contradiction to the incident-segment-condition
since the last segment of the gray-thin black curve from v2 to v5 intersects the
last segment of the thin black-gray double segment from v3 to v5. Similarly, if
the thin black curve changes its color next to v2 it follows the gray curve to v4.
As before, we achieve a contradiction to the incident-segment condition since
the last segment of the thin black-gray curve from v2 to v4 intersects the last
segment of the gray-thin black double segment from v2 to v4.

Case A1b,A2b: Since the one-two-condition is violated by the thin black-gray
double segment between v3 and v1 and the first thin black segment between v3
and v5, we can safely assume that these cases does not occur.

Case A2a: Analogously as in case A1a, we argue that one of the two curves
from Fig. 4(a) has to change colors next to v2. It therefore indicates one of the
routes from v2 to v4 or v5. As in the case A1a, we get a contradiction to the
incident-segment condition.

Case A3a: (See Fig. 4(e).) The two curves indicate the similarity to case A1a.
One of the curves has to change its color close to v2 and therefore it produces a
violation of the incident–segments–condition.

Case A3b: (See Fig. 4(f).) As before, the curves and the color changing close
to v2 lead to a violation of the incident–segments condition.

Next, we will consider the case B, where we assume that the clockwise order
of the edges incident to v1 is thin black, gray, thin black, gray. The arguments
are along the same lines as in case A, but for completeness we consider all the
cases:

Case B1a: In Fig. 5(a), we show the two canonical curves one of which has to
change its color near v2 and then follow the other one. Clearly, the same kind of
contradiction to the incident–segments condition occurs as in case A1a.
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(c) The case A1b: P31 and P35 are in-
tersecting

1

3

4

5

2

(d) The case A2b: P31 and P35 are in-
dependent

1

3

4

5

2

(e) Case A3a enhanced by two potential
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(f) Case A3b enhanced by two potential
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Fig. 4. The different cases for the clockwise ordering thin black, gray, gray, thin black

Case B1b: This case cannot occur at all since there is a crossing of segments
of the same color.

Case B2a: (See Fig. 5(c).) As before, the two curves that uniquely indicate the
routes induce at least one contradiction to the incident–segments–condition.
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(b) The case B1b
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(c) Case B2a enhanced by two potential
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(d) Case B2b enhanced by two potential
routes
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(f) Case B3b enhanced by two potential
routes

Fig. 5. The different cases for the clockwise ordering thin black, gray, thin black, gray

Case B2b: (See Fig. 5(d).) Similar to the case B2a. Although the thin black
curve looks promising it violates the incident–segments–condition since it crosses
the first gray segment of the double segment from v4 to v1.
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Case B3a: (See Fig. 5(e).) The snakelike curves immediately lead to a contra-
diction to the incident–segments–condition.

Case B3b: (See Fig. 5(f).) Analogously to the case B3a. This concludes the
proof of the main lemma. ��

3.3 The Final Argument

With the next lemma we state a property for any layout of G8, which is in direct
contradiction to a property that has been shown in Lemma 5.

Lemma 6. For any layout L8 of G8 as defined above there is a vertex vi, 1 ≤ i ≤
8, such that the two 4-gons defined by the straight-line segments (vi, vij), (vij , vj),
(vj , vji) and (vji, vi), j = i − 2, i + 2 (mod 8) do not intersect.

Proof. Assume the 8 children are numbered in clockwise order, see Fig. 6. By
Lemma 5 the polygons P13 and P17 must intersect. The one–two–condition im-
plies that both polygons lie in the halfplane given by the line v3 − v7 and the
vertex v1. Symmetrically, the polygons P35 and P57 lie in the other halfplane.
Hence the polygons P13 and P35 do not intersect. ��

Fig. 6. Polygons P31 and P35 do not intersect

4 Conclusion

We gave an example of a class of tree pairs that are self-intersecting when drawn
simultaneously, but unfortunately the parameter n implies a number of n2 + 1
vertices, our smallest counterexample has size 226. We are optimistic that by
more refined arguments this can be improved to n = 8 or even n = 7.

Another open question is to give a pair of edge-disjoint trees that are self-
intersecting when drawn simultaneously. The class Gn can easily be general-
ized to contain two edge-disjoint trees but our argument for the self-intersection
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heavily relied on the straight-line edges that are contained in both trees. Fi-
nally, it remains an obvious task to generalize these arguments (or find new
one) to prove self-intersection for simpler classes of graphs like a tree and a
caterpillar.
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Abstract. A clustered graph has its vertices grouped into clusters in a
hierarchical way via subset inclusion, thereby imposing a tree structure
on the clustering relationship. The c-planarity problem is to determine if
such a graph can be drawn in a planar way, with clusters drawn as nested
regions and with each edge (drawn as a curve between vertex points)
crossing the boundary of each region at most once. Unfortunately, as
with the graph isomorphism problem, it is open as to whether the c-
planarity problem is NP-complete or in P. In this paper, we show how
to solve the c-planarity problem in polynomial time for a new class of
clustered graphs, which we call extrovert clustered graphs. This class is
quite natural (we argue that it captures many clustering relationships
that are likely to arise in practice) and includes the clustered graphs
tested in previous work by Dahlhaus, as well as Feng, Eades, and Cohen.
Interestingly, this class of graphs does not include, nor is it included
by, a class studied recently by Gutwenger et al.; therefore, this paper
offers an alternative advancement in our understanding of the efficient
drawability of clustered graphs in a planar way. Our testing algorithm
runs in O(n3) time and implies an embedding algorithm with the same
time complexity.

1 Introduction

A clustered graph (or c-graph) consists of a pair C = (G, τ), where G = (V, E)
is an undirected graph having vertex set V and edge set E, and τ is a rooted
tree defining a hierarchy of vertex clusters, which are subsets of V organized
hierarchically by subset inclusion. That is, each node of τ represents a cluster
that is a subset of V (with the root of τ representing V ), and the ancestor-
descendant relation of two nodes corresponds to the inclusion relation of two
clusters. Any two clusters in this hierarchy are either disjoint or one is completely
included in the other. We refer to G and τ as being the underlying graph and the
inclusion tree of C, respectively. Throughout this paper, we reserve the Greek
letters ν and μ for clusters and the Roman letters x and y for vertices.

Clustered graphs arise naturally from any context where a hierarchy is imposed
on a set of interrelated objects. Naturally, we would like to visualize the hierarchical
� This is an extended abstract. Work by the first and the third authors is supported
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information and relationships that are represented in a clustered graph, and a way
of doing so with minimal confusion is to draw the clustered graph in a planar way.
Deciding if such a drawing is possible is one of the most interesting problems in-
volving clustered graphs, and was posed by Feng, Eades and Cohen [12]. Formally,
this problem, which is called the c-planarity problem, asks if C can be drawn (or
embedded) in the plane satisfying the following criteria:

1. There is no crossing between any edges of the underlying graph G.
2. Each cluster ν ∈ τ can be enclosed in one simple closed region by a closed

curve b(ν) which is called the boundary curve of ν.
3. There is no crossing between boundary curves of any two clusters.
4. There is exactly one crossing between an edge (x, y) and a boundary curve

b(ν) if x ∈ ν and y ∈ ν. Otherwise there is no crossing between an edge and
a boundary curve.

Such a drawing is called a c-planar drawing, and a clustered graph is c-planar
iff it admits such a drawing. Clustered graphs and c-planar drawings bear both
significance in theory and interest in practice. For example, if we visualize the
communication network of a company such that the vertices, clusters, and edges
represent respectively workstations, departments, and communications between
two workstations, clearly we want a simple region and single boundary curve
for each department and no crossings except those in the above Criterion 4,
so that, for any department, we can identify (e.g., for monitoring, blocking, or
firewalling) that department’s external communications just by looking at the
boundary curve of the corresponding cluster. Another example application is in
VLSI, where in addition to designing a planar circuit, we might want to piece
each functional module together in a hierarchical way.

While the problem of determining if a given graph is planar is well-known to
be solvable in linear time (e.g., see [3, 14, 17]), the general c-planarity problem

(a) (b) (c) 

x4
x3

x5x6

x2x1

1 2

31 2

x4
x6

x5x3

x2x1

x4
x3

x5x6

x2x1

x4
x3

x5x6

x2x1

Fig. 1. (a) A c-graph C with 5 clusters μ1 = {x1}, μ2 = {x2}, μ3 = {x3, x4, x5, x6},
ν1 = {x3, x5} and ν2 = {x4, x6}, and the inclusion tree τ . C is not c-planar although
the underlying graph is planar. (b) Removing any edge of the underlying graph will
make C c-planar. (c) Splitting cluster ν1 or ν2 will also make C c-planar.
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is not known to be solvable in polynomial time. In particular, the existence of
boundary curves makes the c-planar testing and embedding significantly harder
than simply testing a graph for planarity. In Fig. 1, for example, the c-graph
in (a) is not c-planar although the underlying graph is obviously planar, but
removing one edge or splitting one cluster in this c-graph will make it c-planar,
as illustrated in (b) and (c).

Although a number of papers have addressed the problem of how to draw a
c-planar c-graph in the plane [1, 6, 7, 8, 9, 10], very little progress has been made
in testing the c-planarity of a given c-graph. Previous work provides effective
tests only for a few special classes of c-graphs [4, 5, 12, 13]. In this paper we
define and test a new class of c-graphs, which generalizes the result in [5, 12]
but is not comparable with [4, 13]. The general problem is still open. So far the
testing problem and the embedding problem appear to be equivalent in all solved
cases (since each testing algorithm implies an embedding algorithm), so we don’t
distinguish them unless necessary.

1.1 Previous Results

Let G(ν) be the subgraph of G induced by cluster ν. (ν is a node in τ and
an associated set of vertices in V .) Then ν is a connected cluster iff G(ν) is a
connected subgraph. Otherwise ν = (ν1, . . . , νk) is a disconnected cluster, where
each G(νi) is a connected component of G(ν).1 That is, each νi is a set of vertices
in a connected component of G(ν). For simplicity, we call νi a chunk of ν. A
connected cluster is considered to have itself as the only chunk, i.e., ν = (ν1)
when ν is connected. C is c-connected iff all clusters in τ are connected.2 The
c-planarity problem for c-connected c-graphs was solved in O(n2) time by Feng,
Eades and Cohen [12], and then in linear time by Dauhlhaus [5]. For general
c-graphs, it is unknown if the problem is NP-hard or not. Gutwenger et al. [13]
solved in O(n2) time the case of almost c-connected c-graphs, namely, those c-
graphs in which either each disconnected cluster ν ∈ τ has its parent and all
siblings connected, or all disconnected clusters lie on a path in τ . Cortese et
al. [4] recently solved in polynomial time another special case, which we call the
cycles of clusters, where the underlying graph is a cycle and the clusters at each
level of the inclusion tree, when contracted into vertices, also form a cycle. To
the best of our knowledge, these three classes of c-graphs are the only ones for
which c-planarity has been tested in polynomial time.

1.2 Extrovert C-Graphs

We introduce the concept of classifying the disconnected clusters into extrovert
and introvert, and will later solve the c-planarity problem for the case that all
disconnected clusters are extrovert.
1 In this paper, we will always use superscripts to denote the partition of an object,

and subscripts to distinguish different objects.
2 The previous papers simply used the term connected instead of c-connected, but

we consider it desirable to introduce the new terminology to distinguish between a
connected graph G and a c-connected c-graph C.
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An edge (x, y) ∈ E(G) is called an extrovert edge of a cluster ν iff x ∈ ν
and y ∈ ν.3 We call x an extrovert vertex of ν in this case. We denote by E∗

ν

and V ∗
ν respectively the sets of extrovert edges and extrovert vertices of ν. For a

subset ν0 ⊂ ν, we denote by E∗
ν (ν0) and V ∗

ν (ν0) respectively the corresponding
subsets of E∗

ν and V ∗
ν , i.e., E∗

ν (ν0) = {e ∈ E∗
ν : e is incident on a vertex of ν0}

and V ∗
ν (ν0) = V ∗

ν ∩ ν0.

Definition 1. (extrovert chunks, clusters, and c-graphs)

– A chunk νi of a disconnected cluster ν = (ν1, . . . , νk) is an extrovert chunk
iff the parent cluster μ of ν is connected, and E∗

μ(νi) = ∅.
– A disconnected cluster ν = (ν1, . . . , νk) is an extrovert cluster iff each chunk

νi, i ∈ {1, . . . , k}, is extrovert.
– C = (G, τ) is an extrovert c-graph iff all clusters in τ are either connected

or extrovert.

Otherwise the corresponding chunks, clusters and c-graphs are introvert. (See
Fig. 1 (a) for example of an extrovert c-graph with extrovert clusters ν1 and ν2.)

Like the almost-connected c-graphs of [13], extrovert c-graphs include the class
of c-connected c-graphs. Extrovert c-graphs appear to allow a greater degree of
disconnectivity than almost-connected c-graphs, since many sibling clusters are
allowed to be disconnected. Extrovert c-graphs are also more flexible than the
cycles of clusters of [4].

Extrovert c-graphs are a significant generalization of c-connected c-graphs,
and we hope they will find use in practice. Intuitively, why might several chunks
of a cluster need be drawn together (in the same cluster) when they have no
relationships (edges) between them? Perhaps it is because they have similar
relationships to entities outside of the cluster. Thus, since our definition requires
each chunk of a disconnected cluster ν to have at least one edge going out of the
parent cluster of ν, we might expect that this sort of situation arises in practice.

2 Preliminaries

2.1 PQ-Tree and PQ-Reduction

A PQ-tree [3] T (U) is a tree on a set U of n leaves that has two types of internal
nodes, P-nodes and Q-nodes, where a P-node can permute its children arbitrarily
but a Q-node can only reverse the order of its children. Various combinations
of permuting the children of the P-nodes and reversing the order of children of
some the Q-nodes result in various permutations of U at the tree leaves. The set
of all achievable permutations of the leaves is called the consistent set of T (U)
and is denoted by CONSISTENT(T (U)). We say that a subset S ⊆ U of leaves
in T (U) is consecutive in a permutation π of U if the elements in S appear as a
consecutive subsequence in π. PQ-trees support a reduction operation

PQ-REDUCE(T (U), S) (1)

3 An extrovert edge is called a virtual edge in [12].
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that returns a new PQ-tree whose consistent set contains exactly those elements
of CONSISTENT(T (U)) in which S is consecutive; if there are no such elements
the operation fails.

2.2 Circular Permutations

Suppose we wish to read off the order in which a set of elements appear on
the circumference of a circle. Depending on where we start, and whether we
read clockwise or counterclockwise, we can obtain various permutations; we will
say these permutations are circularly equivalent. For example, the permutations
(3, 5, 2, 4, 1, 6), (2, 4, 1, 6, 3, 5), and (5, 3, 6, 1, 4, 2) are circularly equivalent. We
call an equivalence class of this relation a circular permutation. We say any
element of the equivalence class is a representative of the circular permutation.
Informally, a circular permutation represents the order of objects that appear
around a circle.

Say a set S is consecutive in a circular permutation π if it is consecutive in
any representative of π. Informally, this means that the elements of S appear
consecutively around the circle.

2.3 PC-Trees and PC-Reduction

PC-trees [15] provide an elegant structure that both simplifies PQ-trees and
allows convenient operations on circular permutations. A PC-tree is an unrooted
tree with two types of internal nodes, P-nodes and C-nodes, where a P-node can
permute its neighbors and a C-node is assigned a cyclic order to its neighbors
and can only reverse the order. The circular consistent set of a PC-tree T (U) on
a set of leaves U , denoted C-CONSISTENT(T (U)), is the set of all permissible
circular permutations of the leaves. Much as with PQ-trees, PC-trees support
an operation

PC-REDUCE(T (U), S) (2)

that returns a new PC-tree whose circular consistent set contains exactly those
circular permutations in C-CONSISTENT(T (U)) for which the subset S of leaves
in T (U) is consecutive; again, if there are no such elements, the operation fails.
These trees will be very useful in our algorithm.

It’s clear that a PQ-tree is a rooted image of a PC-tree where the Q-nodes
correspond to the C-nodes. Therefore the concept of circular consistent set also
applies to PQ-trees and the operation PC-REDUCE can take a PQ-tree as input
as well. We will not distinguish PQ-trees and PC-trees any more, but use PQ-
REDUCE and PC-REDUCE as two operations that can act on the same tree.

2.4 C-Planarity of C-Connected C-Graphs

Let D be a planar embedding of G. Then for a subgraph H of G we use D(H)
to denote the subembedding of H in D. The boundary of a face in a planar
embedding consists of the vertices and edges incident with this face. When ν is a
connected cluster, criteria 2–4 in the definition of a c-planar embedding are ac-
tually equivalent to requiring that all extrovert vertices of ν are at theboundary
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of the outer face of D(G(ν)), and all extrovert edges are in the outer face of
D(G(ν)). The boundary curve b(ν) can always be obtained by slightly expand-
ing the boundary of the outer face of D(G(ν)). (See cluster μ3 in Fig. 1 (a).)
In the figures, we use solid lines for the boundary of the outer face of D(G(ν))
and dashed lines for the boundary curve b(ν). The definition of c-planarity re-
stricted to c-connected c-graphs then translates into the following property for
each cluster.

Property 1 (simple). For a connected cluster ν, a simple planar embedding of
ν is a planar embedding D of the graph (G(ν) ∪ E∗

ν ) with the vertices of V ∗
ν

drawn at the boundary of the outer face of the subembedding D(G(ν)) and the
edges of E∗

ν drawn in the outer face of D(G(ν)). For a planar embedding D of
G, we say ν is simple in D if the subembedding D(G(ν)∪E∗

ν ) is a simple planar
embedding of ν. (In both cases the boundary curve b(ν) is a slight expansion of
the boundary of the outer face of D(G(ν).)

The following three lemmas can be deduced from the results of [12]. We sum-
marize and restate them in a particular way to facilitate the presentation of our
work. The first lemma is equivalent to Theorem 1 in [12].

Lemma 1. A c-connected c-graph C = (G, τ) is c-planar iff G is planar and
there exists a planar embedding D of G in which each ν ∈ τ is simple.
The next two lemmas are deduced from the testing algorithm of [12]. We provide
them without proofs. We also omit the original constructions of [12] that fulfill
these procedures.

Lemma 2. For any connected cluster ν of size m, we can build in O(m) time
a PQ-tree on the set of leaves E∗

ν , say T (E∗
ν ), such that the circular consistent

set of (T (E∗
ν )) equals the set of circular permutations of the edges of E∗

ν on b(ν)
resulting from all possible simple planar embeddings of ν.
We write the procedure of building T (E∗

ν) from ν in [12] as the following oper-
ation that converts a subgraph to a PQ-tree.

T (E∗
ν ) ← CONVERT(ν). (3)

Lemma 3. For any PQ-tree T (E∗
ν) resulting from Lemma 2, we can build in

O(m) time a representative subgraph Rν as a replacement of G(ν) in G with the
vertex set rν of Rν being a replacement of the cluster ν, and the extrovert vertex
and extrovert edge sets of rν remaining V ∗

ν and E∗
ν . If we substitute Rν for G(ν)

in G, then

– the circular consistent set of (T (E∗
ν )) equals the set of circular permutations

of E∗
ν at b(rν) resulting from all possible simple planar embeddings of rν .

– G is planar iff G has a planar embedding in which rν is simple.

We write the procedure of building the representative subgraph Rν from T (E∗
ν)

in [12] as
Rν ← REPRESENT(T (E∗

ν)), (4)

and the procedure of substituting Rν for G(ν) in G as
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G ← SUBSTITUTE(G(ν), Rν ). (5)

The above lemmas characterize the c-planarity of c-connected c-graphs, and
provide gadgets to test it. Intuitively, the processes in Lemma 2 and 3 provide
that, G has a planar embedding with ν being simple ⇔ G after the substitu-
tion has a planar embedding with rν being simple ⇔ G after the substitution
is planar. Then the testing algorithm CPT in [12] traverses τ bottom-up and
performs operations (3),(4),(5) for each cluster. After substituting all clusters,
G is planar if and only if the original G has a planar embedding that makes all
original clusters simple, so that c-planarity testing is converted into planarity
testing. The algorithm runs in O(n2) time.

3 C-Planarity of Extrovert C-Graphs

In this section we characterize the c-planarity of extrovert c-graphs. The follow-
ing lemma is a straightforward characterization of the c-planarity of c-graphs.

Lemma 4 (Theorem 2 in [12]). A c-graph C = (G = (V, E), τ) is c-planar, iff
there exists a c-connected c-planar c-graph C′ = (G′ = (V, E′), τ) with E ⊂ E′.

C′ is called a super c-graph of C. Our idea to characterize the c-planarity of
extrovert c-graphs is to treat each chunk of a cluster as a small connected cluster
and use the following two properties together with Property 1.

Property 2 (connectable). Let ν = (ν1, . . . , νk) be a disconnected cluster with
its parent cluster μ being connected, and D be a simple planar embedding of μ
in which each chunk νi of ν is also simple. We say that ν is connectable in D iff
there is a way to draw k − 1 extra edges inside b(μ) that connect the k chunks
of ν into one connected component, without introducing any edge crossings. We
call the extra edges bridges of ν.

Property 3 (conflict). Let νl = (ν1
l , . . . , νkl

l ), l = 1, . . ., be sibling disconnected
clusters with their parent cluster μ being connected, and D be a simple planar
embedding of μ in which each chunk νi

l of each νl is also simple. We say that
the νl’s conflict in D iff each νl is connectable, but there is no way to connect
all of the νl’s inside b(μ) simultaneously without introducing edge crossings.

Theorem 1. An extrovert c-graph C = (G, τ) is c-planar iff G is planar and
there exists a planar embedding D of G such that, each chunk of each cluster
is simple in D; each extrovert cluster is connectable in the subembedding of its
parent cluster; and no sibling extrovert clusters conflict.

Proof. [sketch]Sufficiency. Assume there is such an embedding D of G. Since
each chunk of cluster is simple, we can add a boundary curve for each chunk
in D, which is slightly outside the boundary of the outer face of this chunk.
The only thing disqualifying this drawing to be a c-planar drawing is that an
extrovert cluster is enclosed in not a single but many regions. Connect each
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extrovert cluster ν with k > 1 chunks by adding k − 1 bridges. As required by
Property 2 and 3, the bridge between two chunks νi and νj will cross only with
the boundary curves of νi and νj . So we can merge the k simple closed regions
for chunks into one region by “digging tunnels” along the bridges as shown in
Fig 2. Since each chunk region is simple and there are only k−1 bridges spanning
k chunks, the resulting region for the whole cluster is still simple. Doing this for
all extrovert clusters gives a c-planar embedding of C.

Fig. 2. Merge two chunk regions and boundary curves by digging a tunnel along a
bridge

Necessity. Assume C is c-planar. By Lemma 4, there exists a c-connected super
c-graph C′ = (G′, τ) of C and it has a c-planar embedding D. We only need to
show that in D of G′, each chunk of a cluster is simple; each extrovert cluster is
connectable in the subembedding of its parent; and no sibling extrovert clusters
conflict. Consider an extrovert cluster ν = {ν1, ν2, . . .} with parent cluster μ.
Since each chunk νi is extrovert, there is an extrovert edge in E∗

μ(νi) crossing
b(μ). Therefore any chunk νi cannot be enclosed in an inner face of another
chunk νj , so each chunk must be simple. The properties of being connectable
and not conflicting are obvious, noting that the extra edges in C′ include all
the bridges. ��

4 Testing Algorithm

We first convert the inclusion tree τ into τ ′ by splitting each disconnected cluster
into its chunks. Each node ν ∈ τ is a cluster and each node νi ∈ τ ′ is a chunk.
(See Fig. 3.) We always use μ for a parent and ν a for child. The frame of
our testing algorithm EXTROVERT-CPT is shown in Fig. 4. It inherits the
algorithm CPT in [12], except that we process the chunks in τ ′ instead of the
clusters in τ , and insert the following subroutine to filter the permissible circular
permutations of extrovert edges at b(μi). (See Fig. 5.)

T ′(E∗
μi) ← FILTER(T (E∗

μi)). (6)

Fig. 3. τ and τ ′ for the c-graph in Fig. 1 (a)
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Algorithm EXTROVERT-CPT
1: for each μi ∈ τ ′ in postorder do
2: test planarity of G(μi)
3: if μi is not the root of τ ′ then
4: T (E∗

μi) ← CONVERT(G(μi))
5: T ′(E∗

μi) ← FILTER(T (E∗
μi))

6: Rμi ← REPRESENT(T ′(E∗
μi))

7: G ← SUBSTITUTE(G(μi), Rμi)

Fig. 4. The frame algorithm for testing c-planarity of an extrovert c-graph. If any
subroutine at any moment fails, (either a subgraph is not planar or a reduction is not
doable,) then the algorithm stops and returns “not c-planar”. Otherwise it returns
“c-planar” after passing the planarity test of G(root(τ ′)) in Step 2.

Algorithm FILTER(T (E∗
μi))

for each τ -child ν of μi do
contract S(ν) into a vertex in S

for each ν that is an extrovert τ -child cluster of μi do
for each set of vertices G(μi\ν)j in G(μi\ν) that contracts into a connected com-
ponent Cj

S(μi\ν) in S(μi\ν) do

T (E∗
μi) ←PC-REDUCE(T (E∗

μi), E∗
μi(G(μi\ν)j))

return T (E∗
μi)

Fig. 5. The filter algorithm

Now we describe the filter algorithm FILTER(T (E∗
μi)) shown in Fig. 5. We

call a node ν ∈ τ a τ -child of a node μi ∈ τ ′, and μi the τ ′-parent of ν, if
every chunk νi of ν is a child of μi in τ ′. Since the parent cluster of an extrovert
cluster is connected, each ν ∈ τ has exactly one τ ′-parent. In addition to G, we
maintain a skeleton S of G which is initially equal to G but, at the time any μi

is processed in FILTER(T (E∗
μi)), contracts every τ -child ν of μi into a vertex.

We denote by Cj
F the j-th connected component of a disconnected graph F . Let

S(μi\ν), the subgraph resulting from removing ν from S(μi), have connected
components C1

S(μi\ν), C
2
S(μi\ν), . . .. Let G(μi\ν)j be the part of G(μi\ν) that

contracts into Cj
S(μi\ν) in S (as every τ -child of μi is contracted into a vertex).

Then we require that in the output of FILTER(T (E∗
μi)) the extrovert edges of

μi in each G(μi\ν)j are always consecutive among all extrovert edges of μi on
b(μi). This will be achieved by doing a PC-reduction for each G(μi\ν)j as Fig. 5
shows. (Note that G(μi\ν)j may not be a connected component of G(μi\ν), but
consist of multiple connected components.)

Recall that by Theorem 1, to qualify a planar embedding of G to be a c-
planar embedding of C, we only need to maintain the property of simple for each
chunk of each cluster, the property of connectable for each extrovert cluster, and
the property of no conflict among all extrovert child clusters in each connected
parent cluster. By inheriting the algorithm CPT in [12] but using τ ′ instead
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of τ , EXTROVERT-CPT maintains all the diversity of embedding each chunk
of cluster to be simple. In addition, when μi is the only chunk of a connected
cluster μ, FILTER(T (E∗

μi)) will further filter the simple planar embeddings of
μ, by doing a sequence of PC-reductions for each extrovert child cluster of μ,
so that only those in which all extrovert child clusters of μ are connectable and
don’t conflict are left in the circular consistent set of T ′(E∗

μi ). (If μi is a chunk
of an extrovert cluster, then by the definition of extrovert c-graph all of its τ -
children are connected clusters and FILTER(T (E∗

μi)) does nothing.) We’ll prove
in the next section that FILTER(T (E∗

μi)) fulfills this purpose by performing a
PC-reduction for the extrovert edges of μi incident with each G(μi\ν)j .

5 Proof of Correctness

In this section we show why making some certain sets of extrovert edges consec-
utive among all extrovert edges at b(μ) can provide Property 2 and 3 in Sec. 3
to the planar embedding inside b(μ). In order to prove the main Theorem 2, we
first prove the following lemma.

Lemma 5. Let ν = (ν1, . . . , νk) be an extrovert cluster with parent cluster μ,
and G(μ\ν) have connected components C1

G(μ\ν), C
2
G(μ\ν), . . .. Let D be a simple

planar embedding of μ in which each νi is also simple, and π(E∗
μ) be the circular

permutation of E∗
μ at b(μ). Then ν is connectable in D, iff for each Cj

G(μ\ν),

j = 1, 2, . . ., E∗
μ(Cj

G(μ\ν)) is consecutive in π(E∗
μ).

Proof. [sketch]Necessity. If there is a Cj
G(μ\ν) such that E∗

μ(Cj
G(μ\ν)) is not con-

secutive in π(E∗
μ), then there are ei ∈ E∗

μ, i ∈ {1, 2, 3, 4}, such that e1, e2 ∈
E∗

μ(Cj
G(μ\ν)) are separated by e3, e4 ∈ E∗

μ(Cj
G(μ\ν)) at b(μ). Then there is a path

p ∈ Cj
G(μ\ν) from e1 to e2 cutting b(μ) into two halves with e3 and e4 being on

different sides. (See Fig. 6.) We show that each side contains some chunk νi of
ν, so that ν cannot be connected inside b(μ) without crossing p. See the side of
e3. If e3 is incident with some νi, then νi is on this side. Otherwise e3 is incident
with some Cj′

G(μ\ν) with j′ = j, in which case there must also be some νi on this

side because Cj
G(μ\ν) and Cj′

G(μ\ν) were in a connected graph G(μ) but become

disconnected in G(μ\ν). Similarly the side of e4 contains another chunk νi′
of ν.

Sufficiency. Suppose ν is not connectable inside b(μ). We greedily connect the
chunks of ν until getting a maximal set of connected ∪νi which doesn’t contain
some νi′

. Then there must be some paths in G(μ) with two ends e1, e2 ∈ E∗
μ

cutting b(μ) into two halves and ∪νi and νi′
on different sides. We can show

that among all such paths there is a path p with no vertex of p belonging to
ν, which means that p is contained in some connected component Cj

G(μ\ν) and

E∗
μ(Cj

G(μ\ν)) is not consecutive in π(E∗
μ) since e1 and e2 are separated at b(μ) by

the extrovert edges coming from ∪νi and those from νi′
. Details are omitted. ��
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e3 e4

b( )

p

e2

e1

Fig. 6. e1, e2 and p are in Cj
G(μ\ν), and e3, e4 are not in Cj

G(μ\ν). There must be some

νi on the left of p and another νi′
on the right.

We conclude with the following two theorems with Theorem 3 showing the
correctness and running time of the testing algorithm. Proofs of these theorems
are omitted in this extended abstract. An embedding algorithm is implied by
the testing algorithm. Details are also omitted.

Theorem 2. Let νl = (ν1
l , . . . , νkl

l ), l = 1, 2, . . ., be sibling extrovert clusters
with connected parent cluster μ, D be a simple planar embedding of μ in which
each νi

l is also simple, and π(E∗
μ) be the circular permutation of E∗

μ at b(μ).
Let S be the skeleton of G in which each child cluster of μ is contracted into
a vertex, S(μ\νl) have connected components C1

S(μ\νl)
, C2

S(μ\νl)
, . . ., and each

Cj
S(μ\νl)

, j = 1, 2, . . ., be contracted from a subgraph G(μ\νl)j of G(μ\νl). Then
each νl is connectable and all of the νl’s don’t conflict in D, iff for each G(μ\νl)j,
l = 1, 2, . . . and j = 1, 2, . . ., E∗

μ(G(μ\νl)j) is consecutive in π(E∗
μ).

Theorem 3. The algorithm EXTROVERT-CPT correctly tests the c-planarity
of an extrovert c-graph in O(n3) time.
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Abstract. We present a reduction method that reduces a graph to a
smaller core graph which behaves invariant with respect to planarity
measures like crossing number, skewness, and thickness. The core re-
duction is based on the decomposition of a graph into its triconnected
components and can be computed in linear time. It has applications in
heuristic and exact optimization algorithms for the planarity measures
mentioned above. Experimental results show that this strategy yields a
reduction to 2/3 in average for a widely used benchmark set of graphs.

1 Introduction

Graph drawing is concerned with the problem of rendering a given graph on the
two-dimensional plane so that the resulting drawing is as readable as possible.
Objective criteria for the readability of a drawing depend mostly on the appli-
cation domain, but achieving a drawing without edge crossings is in general a
primary objective. Such a drawing is called a planar drawing. However, it is well
known that not every graph can be drawn without edge crossings. The famous
theorem by Kuratowski [10] shows that a graph is planar if and only if it does
not contain a subdivision of K3,3 or K5.

If a graph G is not planar, a question arises naturally: How far away is the
graph from planarity? For that reason, various measures for non-planarity have
been proposed. The most prominent one is the crossing number of a graph which
asks for the minimum number of crossings in any drawing of G. Further measures
are the skewness which is the minimum number of edges we have to remove from
G in order to obtain a planar graph, and the thickness which is the minimum
number of planar subgraphs of G whose union is G. However, finding an optimal
drawing with respect to any of these non-planarity measures yields an NP-hard
optimization problem [5, 12, 13].

Various heuristic and exact methods for solving these optimization problems
have been proposed; please refer to [11, 14, 7] for an overview. It is well known
that it is sufficient to consider each biconnected component of the graph sep-
arately. We present a new approach based on the triconnectivity structure of
the graph which reduces a 2-connected graph to a core that behaves invariant
to the above non-planarity measures. We call this core graph the non-planar
core C of G and show that it can be constructed in linear computation time. In
order to compute the crossing number, skewness, or thickness of G, any stan-
dard algorithm can be applied to C. This approach targets in particular exact

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 223–234, 2005.
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algorithms, since their running times heavily depend on the instance size. It is
also constructive in the sense that we can reconstruct a solution for G (e.g., a
crossing minimal drawing) from the solution for the core graph C.

This paper is organized as follows. After introducing some basic terminology,
the non-planar core is defined in Sect. 3. The next three sections 4–6 apply the
new reduction technique to crossing number, skewness and thickness. Section 7
shows that a straight-forward idea to further reduce the size of the core is not
possible. We conclude the paper with experimental results.

2 Preliminaries

Let G = (V, E) be a graph. If (u, v) ∈ V × V , we use G ∪ (u, v) as a shorthand
for the graph (V, E ∪ (u, v)). For a subset of the vertices V ′ ⊆ V , we denote with
G[V ′] the vertex induced subgraph (V ′, EV ), where EV ⊆ E is the set of edges
with both end vertices in V ′. If E′ ⊆ E is a subset of the edges of G, we denote
with G[E′] the subgraph induced by the edges in E′, that is G[E′] = (VE , E′)
with VE = {v ∈ V | v is incident with an edge in E′}. Suppose that G is planar
and let Γ be an embedding of G with face set F . The dual graph Γ ∗ = (F, E∗)
of Γ contains an edge e∗ = (f, f ′) for every edge e ∈ E such that e is on the
boundary of both f and f ′; edge e is also called the primal edge of e∗.

2.1 Crossing Number, Skewness, and Thickness

The crossing number ν(G) of a graph G = (V, E) is the minimum number
of crossings in any drawing of G. The skewness μ(G) of G is the size of a
minimum cardinality edge set F such that G[E\F ] is planar, and we call G[E\F ]
a maximum planar subgraph of G. The thickness θ(G) of G is the minimum
number k of planar graphs G1, . . . , Gk such that G1 ∪ . . . ∪ Gk = G.

We extend the notion of crossing number and skewness to graphs with a given
weight function w : E → N. We call the sum∑

e,f∈E
e crosses f

w(e) · w(f)

the crossing weight of a drawing, and we denote with ν(G, w) the weighted
crossing number of G which is the minimum crossing weight of any drawing
of G. If E′ ⊆ E, we define w(E′) :=

∑
e∈E′ w(e) to be the weight of E′, and we

denote with μ(G, w) the weighted skewness of G which is the weight w(F ) of a
minimum weight edge set F such that G[E \ F ] is planar.

In the remainder of this paper, we will restrict our attention to 2-connected
graphs. However, the results on crossing number, skewness, and thickness can
easily be generalized using the following relationships. Let G be a graph and
B1, . . . , Bk its biconnected components. Then,

ν(G) =
∑

i=1,...,k

ν(Bi), μ(G) =
∑

i=1,...,k

μ(Bi), θ(G) = max
i=1,...,k

θ(Bi).
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2.2 Minimum Cuts and Traversing Costs

A cut in G is a partition (S, S̄) of the vertices of G. The capacity c(S, S̄) of the
cut is the cardinality of the set E(S, S̄) of all the edges connecting vertices in S
with vertices in S̄. For two vertices s, t ∈ V , we call (S, S̄) an st-cut if s and t are
in different sets of the cut. A minimum st-cut is an st-cut of minimum capacity.
We denote the capacity of a minimum st-cut in G with mincuts,t(G).

Let s, t ∈ V and G ∪ (s, t) be 2-connected and planar. For an embedding Γ
of G ∪ (s, t), we define the traversing costs of Γ with respect to (s, t) to be the
shortest path in the dual graph of Γ that connects the two faces adjacent to (s, t)
without using the dual edge of (s, t). We also call the corresponding list of primal
edges a traversing path for s and t. Gutwenger, Mutzel, and Weiskircher [8]
showed that the traversing costs are independent of the choice of the embedding
Γ of G. Hence, we define the traversing costs of G with respect to (s, t) to be the
traversing costs of an arbitrary embedding Γ with respect to (s, t). It is easy to
see that a traversing path defines an st-cut. The following theorem shows that
this st-cut is even a minimum st-cut.

Theorem 1. Let G = (V, E) be a graph with s, t ∈ V and G ∪ (s, t) is 2-
connected and planar. Then, the traversing costs of G with respect to (s, t) are
equal to mincuts,t(G).

We are interested in special subgraphs of a 2-connected, not necessarily planar
graph G = (V, E) which we call planar st-components. Let s, t ∈ V be two
distinct vertices. We call an edge induced subgraph C = G[EC ] a planar st-
component of G if G∪(s, t) is 2-connected and planar, and if V (C)∩V ′ ⊆ {s, t},
where V ′ := V (G[E \ EC ]) denotes the vertex set of the graph induced by the
edges not contained in C. Obviously, since G is 2-connected, V (C)∩V ′ is either
empty or contains both s and t.

2.3 SPQR-Trees

SPQR-trees basically represent the decomposition of a biconnected graph into
its triconnected components. For a formal definition we refer the reader to [4, 3].
Informally speaking, the nodes of an SPQR-tree T of a graph G stand for serial
(S-nodes), parallel (P-nodes), and triconnected (R-nodes) structures, as well
as edges of G (Q-nodes). The respective structure is given by skeleton graphs
associated with each node of T , which are either cycles, bundles of parallel edges,
or triconnected simple graphs. We denote with skeleton(η) the skeleton graph
associated with node η. Each edge e ∈ skeleton(η) corresponds to a tree edge
eT = (η, ξ) incident with η. We call ξ the pertinent node of e. The edge e stands
for a subgraph called the expansion graph of e that is only attached to the rest
of the graph at the two end vertices of e. The expansion graph of e is obtained
as follows. Deleting edge eT splits T into two connected components. Let Tξ

be the connected component containing ξ. The expansion graph of e (denoted
with expansion(e)) is the graph induced by the edges that are represented by the
Q-nodes in Tξ. We further introduce the notation expansion+(e) for the graph
expansion(e) ∪ e.
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For our convenience, we omit Q-nodes and distinguish in skeleton graphs
between real edges that are skeleton edges whose pertinent node would be a
Q-node, and virtual edges.

3 The Non-planar Core

Let G be a 2-connected graph and let T be its SPQR-tree. For a subtree S
of T , we define the induced graph G[S] of S to be the edge induced subgraph
G[E′], where E′ is the union of all edges in skeletons of nodes of S that have no
corresponding tree edge in S:

E′ :=
⋃
η∈S

{e ∈ skeleton(η) | e has no corresponding tree edge in S}

Hence, the induced graph consists of virtual edges representing planar st-
components and real edges representing edges of G. Analogously to SPQR-trees,
we define the expansion graph of a virtual edge in G[S] and use the notations
expansion(e) and expansion+(e) for a virtual edge e. We can reconstruct G
from G[S] by replacing every virtual edge with its expansion graph. We have in
particular G[T ] = G.

We define the non-planar core of G to be the empty graph if G is planar,
and the induced graph of the smallest non-empty subtree S of T such that the
expansion+(e) is planar for every virtual edge e in G[S]. It is easy to derive the
following properties of the non-planar core of G.

Lemma 1. Let C = G[S] be the non-planar core of G.

(a) C = ∅ ⇐⇒ G is planar
(b) C = ∅ =⇒ Every leaf of S is an R-node with non-planar skeleton.

Proof. The first part follows directly from the definition.
Let C = ∅ and thus G be non-planar. Then, S must contain a node with

non-planar skeleton. Suppose ξ ∈ S is a leaf whose skeleton is planar. Since S
contains at least one further node, ξ has exactly one adjacent node η in S. But
then the expansion graph of the virtual edge of ξ in skeleton(η) is planar, and
hence S ′ := S − ξ is also a subtree of T with the property that expansion+(e) is
planar for every virtual edge e in G[S′]. This is a contradiction to the minimality
of S. It follows that every leaf of S is a node with non-planar skeleton. This must
be an R-node, since only R-node skeletons can be non-planar. ��

We extend the non-planar core C of G by an additional weight function w :
E(C) → N. If e is a real edge, then w(e) is 1. Otherwise, let e = (s, t) and
we define w(e) := mincuts,t(expansion(e)). We denote the non-planar core with
given edge weights by a pair (C, w).

Theorem 2. Let G = (V, E) be a 2-connected graph. Then, the non-planar core
of G and the corresponding edge weights can be computed in O(|V | + |E|) time.
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Algorithm 1. Computation of the non-planar core.
Require: 2-connected graph G = (V, E)
Ensure: non-planar core (C, w) of G

Let T be the (undirected) SPQR-tree of G

Let candidates be an empty stack of nodes
for all ξ ∈ T do

d[ξ] := deg(ξ)
if d[ξ] = 1 then

candidates .push(ξ)
end if

end for

P := ∅
while candidates �= ∅ do

ξ := candidates .pop()
if skeleton(ξ) is planar then

P := P ∪ {ξ}
for all η ∈ Adj (ξ) do

d[η] := d[η] − 1
if d[η] = 1 then

candidates .push(η)
end if

end for
end if

end while

Let S be the graph induced by the vertices in V (T ) \ P
C := G[S ]

for all edges e ∈ C do
if e is a virtual edge then

w(e) := traversing costs of expansion(e) with respect to e
else

w(e) := 1
end if

end for

Proof. Algorithm 1 shows a procedure for computing the non-planar core. We
achieve linear running time, since constructing an SPQR-tree, testing planarity,
and computing traversing costs takes only linear time; see [6, 9, 8].

4 Crossing Number

In this section, we apply the non-planar core reduction to the crossing number
problem. The following theorem shows that it is sufficient to compute the crossing
number of the non-planar core.
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Theorem 3. Let G be a 2-connected graph, and let (C, w) be its non-planar
core. Then,

ν(G) = ν(C, w).

The proof of Theorem 3 is based on the following lemma which allows us
to restrict the crossings in which the edges of a planar st-component may be
involved so that we can still obtain a crossing minimal drawing of G. A similar
result has been reported by Širáň in [15]. However, as pointed out in [1], the
proof given by Širáň is not correct.

Lemma 2. Let C = (VC , EC) be a planar st-component of G = (V, E). Then,
there exists a crossing minimal drawing D∗ of G such that the induced drawing
D∗

C of C has the following properties:

(a) D∗
C contains no crossings;

(b) s and t lie in a common face fst of D∗
C ;

(c) all vertices in V \ VC are drawn in the region of D∗ defined by fst;
(d) there is a set Es ⊆ EC with |Es| = mincuts,t(C) such that any edge e ∈

E \ EC may only cross through all edges of Es, or through none of EC .

Proof. Let G′ = G[E\EC ] be the graph that results from cutting C out of G. Let
D be an arbitrary, crossing minimal drawing of G, and let DC (resp. D′) be the
induced drawing of C (resp. G′). We denote by P the planarized representation
of G′ induced by D′, i.e. the planar graph obtained from D′ by replacing edge
crossings with dummy vertices. Let ΓP be the corresponding embedding of P
and Γ ∗

P the dual graph of ΓP .
Let p = f1, . . . , fk+1 be a shortest path in Γ ∗

P that connects an adjacent face
of s with an adjacent face of t. There are λ := mincuts,t(C) edge disjoint paths
from s to t in C. Each of these λ paths crosses at least k edges of G′ in the
drawing D. Hence, there are at least λ · k crossings between edges in C and
edges in G′. We denote with Ep the set of primal edges of the edges on the path
p. Let D∗

C be a planar drawing of C in which s and t lie in the same face fst,
and let Es be the edges in a traversing path in D∗

C with respect to s and t.
By Theorem 1, there is a minimum st-cut (S, S̄) with E(S, S̄) = Es, and thus
|Es| = λ. We can combine D′ and D∗

C by placing the drawing of C[S] in face
f1 and the drawing of C[S̄] in fk+1, such that all the edges in Ep cross all the
edges in Es; see Fig. 1. It is easy to verify that the conditions (a)–(d) hold for
the resulting drawing D∗. ��

We conclude this section with the proof of Theorem 3, i.e. we show that
ν(G) = ν(C, w).

Proof (of Theorem 3).

“≤” Let DC be a drawing of C with minimum crossing weight. For each virtual
edge e = (s, t) ∈ C, we replace e by a planar drawing De of the corresponding
planar st-component so that all edges that cross e in DC cross the edges
in a traversing path in De with respect to (s, t). Since we is equal to the
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Fig. 1. Final drawing D∗ of G; here, p = f1, f2, f3, f4, f5 is the shortest path in Γ ∗
P

traversing costs of De with respect to (s, t) by definition, replacing all virtual
edges in this way leads to a drawing of G with ν(C, w) crossings, and hence
ν(G) ≤ ν(C, w).

“≥” On the other hand, let D be a crossing minimal drawing of G. For each
virtual edge e = (s, t) ∈ C, we modify D in the following way. Let C be
the planar st-component corresponding to e, and let G′ be the rest of the
graph. By Lemma 2, we obtain another crossing minimal drawing of G if
we replace the drawing of C with a planar drawing DC of C such that all
edges of G′ that cross edges in C will cross the edges in E(S, S̄), where
(S, S̄) is a minimum st-cut in C. If we replace DC with an edge e = (s, t)
with weight w(e) := |E(S, S̄)| = mincuts,t(C), we obtain a drawing with the
same crossing weight.

By replacing all virtual edges in that way, we obtain a drawing of C whose
crossing weight is the crossing number of G. It follows that ν(G) ≥ ν(C, w),
and hence the theorem holds. ��

5 Skewness

We can apply the non-planar core reduction to the skewness of a graph in a
rather analogue way. The following lemma establishes our main argument.

Lemma 3. Let G = (V, E) be a 2-connected graph, C = (VC , EC) a planar
st-component of G, and P = (V, EP ) a maximum planar subgraph of G. Then,
either C ⊆ P , or |EC | − |EP ∩ EC | = mincuts,t(C).

Proof. We distinguish two cases.

Case 1. There is a path from s to t in P which consists only of edges of C.
Consider an embedding Γ of P . If we cut out C from Γ , then s and t must
lie in a common face of the resulting embedding Γ ′. On the other other
hand, we can construct an embedding ΓC of C in which s and t lie on the
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external face. Inserting ΓC into Γ ′ yields an embedding of P ∪C. Since P is
a maximum planar subgraph of G and C ⊆ G, it follows that C ⊆ P .

Case 2. There is no such path from s to t. Let E′ = EP ∩ EC be the edges of
C contained in P . It follows that C′ = (VC , E′) has at least two connected
components, one containing s, and the other containing t. Hence, the number
of edges in EC \E′ is at least mincuts,t(C), which implies |EC |−|EP ∩EC | ≥
mincuts,t(C).

On the other hand, we can construct an embedding of C with s and t on
the external face, and remove the mincuts,t(C) edges in a traversing path
of C with respect to (s, t). This yields an embedding Γ with two connected
components Cs and Ct with s ∈ Cs and t ∈ Ct. Let G′ = G[E \ EC ] be
the rest of the graph. Since Cs has only s in common with G′ and Ct has
only t in common with G′, we can insert Γ into any embedding of G′ ∩ P
preserving planarity. This implies that |EC |− |EP ∩EC | ≤ mincuts,t(C) and
the lemma holds. ��

Using this lemma, we can show that the non-planar core is invariant with
respect to skewness.

Theorem 4. Let G be a 2-connected graph, and let (C, w) be its non-planar
core. Then,

μ(G) = μ(C, w)

Proof. Let G = (V, E) and C = (VC , EC).

“≥” Let P = (V, EP ) be a maximum planar subgraph of G. We have μ(G) =
|E| − |EP |. We show that we can construct a planar subgraph PC = (VC , E′)
of C with w(EC) − w(E′) = μ(G).

Consider a planar st-component C of G. By Lemma 3, we know that
either C is completely contained in P , or exactly mincuts,t(C) many edges
of C are not in EP . In the first case, we know that an st-path is in P ,
and hence replacing C by the corresponding edge (s, t) preserves planarity.
In the second case, the corresponding virtual edge e = (s, t) with weight
w(e) = mincuts,t(C) will not be in PC .

Constructing PC in this way obviously yields a planar subgraph (VC , E′)
of C with w(EC \ E′) = μ(G).

“≤” Let PC = (VC , EP ) be a maximum weight planar subgraph of C, and let D
be a drawing of PC . We have μ(C, w) = w(EC) − w(EP ). We show that we
can construct a planar subgraph P ′ = (V, E′) of G with |E|− |E′| = μ(C, w).
We again consider a planar st-component C of G. Let e = (s, t) be the corre-
sponding virtual edge, and let DC be a planar drawing of C in which both s
and t lie in the external face. If e is in PC , we can replace e with the drawing
DC and the resulting drawing remains planar. If e is not in PC , we remove
the edges of a traversing path of C with respect to (s, t) from DC . This yields
a drawing D′

C with two connected components, one containing s, and the
other containing t. Obviously, we can add the drawing D′

C to D preserving
planarity, and we removed exactly w(e) = mincuts,t(C) edges from G.
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We finally end up with a drawing of a planar subgraph P = (V, E′) of G
with |E| − |E′| = μ(C, w). ��

6 Thickness

For computing the thickness of G, we do not need to consider the weight of edges
in the non-planar core C of G. Instead, we slightly modify C by splitting every
virtual edge (s, t) whose expansion graph does not contain an edge (s, t). We
denote the resulting graph with core+(G).

Theorem 5. Let G be a 2-connected graph, and let C′ = core+(G). Then,

θ(G) = θ(core+(G))

Proof. “≥” Let θ(G) = k, and let G1, . . . , Gk be k planar graphs with G1∪ . . .∪
Gk = G. We consider a planar st-component C. We distinguish two cases:

(i) If there is a graph Gi such that Gi ∩C contains a path from s to t, then
we remove all edges and vertices = s, t of C from all graphs G1, . . . , Gk,
and we add the edge e = (s, t) to Gi. If C does not contain an edge (s, t),
then we also split e.

(ii) Otherwise, we know that k ≥ 2, and therefore there are two graphs Gi

and Gj with i = j. We add the edges es = (s, d) to Gi and et = (d, t)
to Gj , where d is a new dummy vertex. If any of the end vertices of e1
(resp. e2) is not yet contained in Gi (resp. Gj), we also add this vertex.

It follows that we can construct k planar graphs whose union is core+(G),
and thus θ(G) ≥ θ(core+(G)).

“≤” Let θ(core+(G)) = k, and let G1, . . . , Gk be k pairwise edge disjoint planar
graphs with G1 ∪ . . . ∪Gk = core+(G). We consider a virtual edge e = (s, t)
of the non-planar core of G. Let C = (VC , EC) be the expansion graph of e.
If C contains an edge (s, t), then e is contained in core+(G), and thus there
is a subgraph, say Gi, containing e. We replace e in Gi by C.

Otherwise, C contains an edge e = (s, t) and e was split into two edges,
say e1 = (s, d) and e2 = (d, t), in core+(G). We split C into two edge disjoint
graphs C1 and C2 in the following way: Let E′ be the set of edges incident
with s. Then, C1 is the graph induced by E′, and C2 is the graph induced
by EC \ E′. Let Gi be the graph containing e1, and let Gj be the graph
containing e2. If i = j, then we replace e1 and e2 by C in Gi. Otherwise, we
replace e1 by C1 in Gi, and e2 by C2 in Gj .

It follows that we can construct k planar subgraphs of G whose union is
G, and thus θ(G) ≤ k. ��

7 Further Reductions

It is a straight-forward idea to try to reduce the computation of crossing number
or skewness to the non-planar skeletons of R-nodes. To do this, it would be
necessary to be able to merge two components with the following properties:
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(a) Both components have exactly two nodes, say s and t, in common.
(b) Each component is – if augmented with a virtual edge (s, t) – non-planar

and at least 2-connected.
(c) The crossing number (skewness) of the merged component is the sum of the

crossing numbers (skewnesses) of the components.

In the following we will give counterexamples to show that this approach fails.

Crossing Number. Figure 2(a) shows two components and their crossing min-
imal embedding, with regards to the minimum st-cut of their counterpart, which
defines the weight of the virtual edges. The two components have unique mini-
mum st-cuts, denoted by dashed lines. The minimum st-cut of the left component
is 7, whereby the minimum st-cut of the right one is 5. The minimum crossing
numbers of the left and right components are 10 and 4, respectively; but the
minimum crossing number of the merged result is only 2 · 4+5 = 13 (Fig. 2(b)),
which is less than the sum 10 + 4 = 14. The reason is that we have edges that
partially cross through the counterpart component.

5 7

(a) Crossing minimal (comp.-wise): 10 and 4 (b) Crossing minimal: 13

Fig. 2. Calculating only the crossing numbers of the non-planar R-nodes is not correct

410

(a) Skewness (component-wise): 1 and 4 (b) Skewness (as a whole): 4

Fig. 3. Calculating only the skewnesses of the non-planar R-nodes is not correct

Skewness. Figure 3(a) shows two components including the virtual edges with
the weights of their counterpart’s minimum st-cut. The jelly bag cap shaped
regions denote dense, crossing-free, 3-connected subgraphs, similar to the ones
in Fig. 2. The edges which have to be removed to get a planar subgraph are the
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dashed lines. The skewness of the left component is 1 — note that the choice
between the two possibilities is arbitrary. The skewness of the right component
corresponds to removing its virtual edge, and therefore has the value of 4. We can
see that we have one edge that has to be removed for both components, and is
therefore counted twice: the merged drawing has a skewness of only 4, although
the sum of the separate skewnesses would have suggested 1 + 4 = 5. Note that
we can not even find any set of edges which does not include the virtual edge,
has the size 5, and can be removed in order to get a planar subgraph.

8 Experimental Results and Discussion

We tested the effect of our reduction strategy on a widely used benchmark set
commonly known as the Rome library [2]. This library contains over 11.000
graphs ranging from 10 to 100 vertices, which have been generated from a core
set of 112 graphs used in real-life software engineering and database applications.

We found that all non-planar graphs in the library have a single non-planar
biconnected component whose non-planar core is the skeleton of just one R-node.
Fig. 4 shows the average relative size of the non-planar core C compared to the
non-planar biconnected component (block) and the total graph. Here, the size of
a graph is simply the number of its edges. It turns out that, on average, the size
of the non-planar core is only 2/3 of the size of the non-planar block. Compared
to the whole graph, the size of the non-planar core reduces to about 55% on
average. This shows that the new approach provides a significant improvement
for reducing the size of the graph.

It will be interesting to see the effect the reduction strategy has on the practi-
cal performance of heuristics and exact algorithms for computing crossing num-
ber, skewness, and thickness. It remains an open problem if we can further reduce
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a graph based on its connectivity structure. In particular, there might be the
possibility for improvements by considering cut sets with three or more vertices.
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Abstract. In the last decade several algorithms that generate straight-
line drawings of general large graphs have been invented. In this paper
we investigate some of these methods that are based on force-directed or
algebraic approaches in terms of running time and drawing quality on a
big variety of artificial and real-world graphs. Our experiments indicate
that there exist significant differences in drawing qualities and running
times depending on the classes of tested graphs and algorithms.

1 Introduction

Force-directed graph drawing methods generate drawings of a given general
graph G = (V, E) in the plane in which each edge is represented by a straight line
connecting its two adjacent nodes. The computation of the drawings is based on
associating G with a physical model. Then, an iterative algorithm tries to find a
placement of the nodes so that the total energy of the physical system is mini-
mal. Important esthetic criteria are uniformity of edge length, few edge crossings,
non-overlapping nodes, and the display of symmetries if some exist.

Classical force-directed algorithms like [5, 15, 7, 4, 6] are used successfully in
practice (see e.g. [2]) for drawing general graphs containing few hundreds of
vertices. However, in order to generate drawings of graphs that contain thousands
or hundreds of thousands of vertices more efficient force-directed techniques have
been developed [19, 18, 9, 8, 12, 21, 11, 10]. Besides fast force-directed algorithms
other very fast methods for drawing large graphs (see e.g. [13, 16]) have been
invented. These methods are based on techniques of linear algebra instead of
physical analogies. But they strive for the same esthetic drawing criteria.

Previous experimental tests of these methods are mainly restricted to regular
graphs with grid-like structures (see e.g. [13, 16, 9, 21, 12]). Since general graphs
share these properties quite seldom, and since the test environments of these
experiments are different, a standardized comparison of the methods on a wider
range of graphs is needed.

In this study we experimentally compare some of the fastest state-of-the-art
algorithms for straight-line drawing of general graphs on a big variety of graph
classes. In particular, we investigate the force-directed algorithm GRIP of Gajer
and Kobourov [9] and Gajer et al. [8], the Fast Multi-scale Method (FMS) of

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 235–250, 2005.
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Harel and Koren [12], and the Fast Multipole Multilevel Method (FM3) of Hachul
and Jünger [11, 10]. The examined algebraic methods are the algebraic multigrid
method ACE of Koren et al. [16] and the high-dimensional embedding approach
(HDE) by Harel and Koren [13]. Additionally, one of the faster classical force-
directed algorithms, namely the grid-variant algorithm (GVA) of Fruchterman
and Reingold [7], is tested as a benchmark.

After a short description of the tested algorithms in Section 2 and of the
experimental framework in Section 3, our results are presented in Section 4.

2 The Algorithms

2.1 The Grid-Variant Algorithm (GVA)

The grid-variant algorithm of Fruchterman and Reingold [7] is based on a model
of pairwise repelling charged particles (the nodes) and attracting springs (the
edges), similar to the model of the Spring Embedder of Eades [5]. Since a naive
exact calculation of the repulsive forces acting between all pairs of charges needs
Θ(|V 2|) time per iteration, GVA does only calculate the repulsive forces acting
between nodes that are placed relatively near to each other. Therefore, the rec-
tangular drawing area is subdivided into a regular square grid. The repulsive
forces that act on a node v that is contained in a grid box B are approximated
by summing up only the repulsive forces that are induced by the nodes contained
in B and the nodes in the grid boxes that are neighbors of B. If the number of
iterations is assumed to be constant, the best-case running time of the GVA is
Θ(|V | + |E|). The worst-case running time, however, remains Θ(|V |2 + |E|).

2.2 The Method GRIP

Gajer et al. [8] and Gajer and Kobourov [9] developed the force-directed multi-
level algorithm GRIP. In general, multilevel algorithms are based on two phases.
A coarsening phase, in which a sequence of coarse graphs with decreasing sizes is
computed and a refinement phase in which successively drawings of finer graphs
are computed, using the drawings of the next coarser graphs and a variant of a
suitable force-directed single-level algorithm.

The coarsening phase of GRIP is based on the construction of a maximum
independent set filtration or MIS filtration of the node set V . A MIS filtration
is a family of sets {V =: V0, V1, . . . , Vk} with ∅ ⊂ Vk ⊂ Vk−1 . . . ⊂ V0 so that
each Vi with i ∈ {1, . . . , k} is a maximal subset of Vi−1 for which the graph-
theoretic distance between any pair of its elements is at least 2i−1 + 1. Gajer
and Kobourov [9] use a Spring Embedder-like method as single-level algorithm
at each level. The used force vector is similar to that used in the Kamada-Kawai
method [15], but is restricted to a suitable chosen subset of Vi.

Other notable specifics of GRIP are that it computes the MIS filtration only
and no edge sets of the coarse graphs G0, . . . , Gk that are induced by the filtra-
tions. Furthermore, it is designed to place the nodes in an n-dimensional space
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(n ≥ 2), to draw the graph in this space, and to project it into two or three
dimensions.

The asymptotic running time of the algorithm, excluding the time that is
needed to construct the MIS filtration, is Θ(|V |(log diam(G)2)) for graphs with
bounded maximum node degree, where diam(G) denotes the diameter of G.

2.3 The Fast Multi-scale Method (FMS)

In order to create the sequence of coarse graphs in the force-directed multilevel
method FMS, Harel and Koren [12] use an O(k|V |) algorithm that finds a 2-
approximative solution of the NP-hard k-center problem. The node set Vi of a
graph Gi in the sequence G0, . . . , Gk is determined by the approximative solution
of the ki-center problem on G with ki > ki+1 for all i ∈ {0, . . . , k − 1}.

The authors use a variation of the algorithm of Kamada and Kawai [15] as
force-directed single-level algorithm. In order to speed up the computation of
this method, they modify the energy function of Kamada and Kawai [15] that is
associated with a graph Gi with i ∈ {0, . . . , k−1}. The difference to the original
energy of Kamada and Kawai [15] is that only some of the |V (Gi)| − 1 springs
that are connected with a node v ∈ V (Gi) are considered.

The asymptotic running time of the FMS is Θ(|V ||E|). Additionally, Θ(|V |2)
memory is needed to store the distances between all pairs of nodes.

2.4 The Fast Multipole Multilevel Method (FM3)

The force-directed multilevel algorithm FM3 has been introduced by Hachul and
Jünger [11, 10]. It is based on a combination of an efficient multilevel technique
with an O(|V | log |V |) approximation algorithm to obtain the repulsive forces
between all pairs of nodes.

In the coarsening step subgraphs with a small diameter (called solar systems)
are collapsed to obtain a multilevel representation of the graph. In the used
single-level algorithm, the bottleneck of calculating the repulsive forces acting
between all pairs of charged particles in the Spring Embedder-like force model
is overcome by rapidly evaluating potential fields using a novel multipole-based
tree-code. The worst-case running time of FM3 is O(|V | log |V |+ |E|) with linear
memory requirements.

2.5 The Algebraic Multigrid Method ACE

In the description of their method ACE, Koren et al. [16] define the quadratic
optimization problem

(P ) min xT Lx so that xT x = 1 in the subspace xT 1n = 0 .

Here n = |V | and L is the Laplacian matrix of G.
The minimum of (P) is obtained by the eigenvector that corresponds to the

smallest positive eigenvalue of L. The problem of drawing the graph G in two
dimensions is reduced to the problem of finding the two eigenvectors of L that
are associated with the two smallest eigenvalues.
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Instead of calculating the eigenvectors directly, an algebraic multigrid algo-
rithm is used. Similar to the force-directed multilevel ideas, the idea is to ex-
press the originally high-dimensional problem in lower and lower dimensions,
solving the problem at the lowest dimension, and progressively solving a high-
dimensional problem by using the solutions of the low-dimensional problems.

The authors do not give an upper bound on the asymptotic running time of
ACE in the number of nodes and edges.

2.6 High-Dimensional Embedding (HDE)

The method HDE of Harel and Koren [13] is based on a two phase approach
that first generates an embedding of the graph in a very high-dimensional vector
space and then projects this drawing into the plane.

The high-dimensional embedding of the graph is generated by first using a
linear time algorithm for approximatively solving the k-center problem. A fixed
value of k = 50 is chosen, and k is also the dimension of the high-dimensional
vector space. Then, breadth-first search starting from each of the k center nodes
is performed resulting in k |V |-dimensional vectors that store the graph-theoretic
distances of each v ∈ V to each of the k centers. These vectors are interpreted
as a k-dimensional embedding of the graph.

In order to project the high-dimensional embedding of the graph into the
plane, the k vectors are used to define a covariance matrix S. The x- and y-
coordinates of the two-dimensional drawing are obtained by calculating the two
eigenvectors of S that are associated with its two largest eigenvalues. HDE runs
in O(|V | + |E|) time.

3 The Experiments

3.1 Test-Environment, Implementations, and Parameter Settings

All experiments were performed on a 2.8 GHz Intel Pentium 4 PC with one
gigabyte of memory.

We tested a version of GVA that has been implemented in the framework of
AGD [14] by S. Näher and D. Alberts, an implementation of GRIP by R. Yusufov
that is available from [22], and implementations of FMS, ACE, HDE by Y. Koren
that are available from [17]. Finally, we tested our own implementation of FM3.

In order to obtain a fair comparison, we ran each algorithm with the same
set of standard-parameter settings (given by the authors) on each tested graph.
However, we are aware that in some cases it might be possible to obtain better
results by spending a considerable amount of time with trial-and-error searching
for an optimal set of parameters for each algorithm and graph.

3.2 The Set of Test Graphs

Since only few implementations can handle disconnected and weighted graphs,
we restrict to connected unweighted graphs, here.
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We generated several classes of artificial graphs to examine the scaling of the
algorithms on graphs with predefined structures but different sizes.

These are random grid graphs that were obtained by first creating regular
square grid graphs and then randomly deleting 3% of the nodes. The sierpin-
ski graphs were created by associating the Sierpinski Triangles with graphs.
Furthermore, we generated complete 6-nary trees.

The next two classes of artificial graphs were designed to test how well the
algorithms can handle highly non-uniform distributions of the nodes and high
node degrees. Therefore, we created these graphs in a way so that one can expect
that an energy-minimal configuration of the nodes in a drawing that relies on a
Spring Embedder-like force model induces a tiny subregion of the drawing area
which contains Θ(|V |) nodes. In particular, we constructed trees that contain
a root node r with |V |/4 neighbors. The other nodes were subdivided into six
subtrees of equal size rooted at r. We called these graphs snowflake graphs.

Additionally we created spider graphs by constructing a circle C containing
25% of the nodes. Each node of C is also adjacent to 12 other nodes of the
circle. The remaining nodes were distributed on 8 paths of equal length that
were rooted at one node of C. In contrast to the snowflake graphs is that the
spider graphs have bounded maximum degree.

The last kind of artificial graphs are graphs with a relatively high edge density
|E|/|V | ≥ 14. We called them flower graphs. They are constructed by joining 6
circles of equal length at a single node before replacing each of the nodes by a
complete subgraph with 30 nodes (K30).

The rest of the test graphs are taken from real-world applications. In partic-
ular, we selected graphs from the AT&T graph library [1], from C. Walshaw’s
graph collection [20], and a graph that describes a social network of 2113 people
that we obtained from C. Lipp.

We partitioned the artificial and real-world graphs into two sets. The first set
are graphs that consist of few biconnected components, have a constant maxi-
mum node degree, and have a low edge density. Furthermore, one can expect that
an energy-minimal configuration of the nodes in a Spring Embedder drawing of
such a graph does not contain Θ(|V |) nodes in an extremely tiny subregion of the
drawing area. Since one can anticipate from previous experiments [13, 16, 9, 12]
that the graphs contained in this set do not cause problems for many of the
tested algorithms, we call the set of these graphs kind. The second set is the
complement of the first one, and we call the set of these graphs challenging.

3.3 The Criteria of Evaluation

The natural criteria to evaluate a graph-drawing algorithm in practice are the
needed running times and the quality of the drawings.

Unlike evaluating the first criterion, evaluating the quality of a drawing is
a difficult task. Possible ways are the calculation of the total energy in the
underlying force models or the measurement of relevant esthetic criteria (e.g.
crossing number, uniformity of the edge lengths). However, one of the most
important goals is that an individual user is satisfied with a drawing. Hence,
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we decided to print the drawings and to comment how well they display the
structure of each graph by keeping the modeled esthetic criteria in mind.

4 The Results

4.1 Comparison of the Running Times

Table 1 presents the running times of the methods GVA, FM3, GRIP, FMS, ACE, and
HDE for the tested graphs.

Table 1. The test graphs and the running times that are needed by the tested algo-
rithms to draw them. Explanations: (E) No drawing was generated due to an error in
the executable. (M) No drawing was generated because the memory is restricted to
graphs with ≤ 10, 000 nodes. (T ) No drawing was generated within 10 hours of CPU
time. B denotes the set of biconnected components of the graphs.

Graph Information Algorithm Information
max. CPU Time in SecondsType Name |V | |E| |B| |E|

|V | degree GVA FM3 GRIP FMS ACE HDE
rnd grid 032 985 1834 2 1.8 4 12.5 1.9 0.3 1.0 < 0.1 < 0.1

rnd grid 100 9497 17849 6 1.8 4 203.4 19.1 4.4 32.0 0.5 0.1
Kind

rnd grid 320 97359 184532 2 1.9 4 6316.1 215.4 (E) (M) 4.1 1.3
Arti-

sierpinski 06 1095 2187 1 2.0 4 13.1 1.8 0.3 1.0 < 0.1 < 0.1
ficial

sierpinski 08 9843 19683 1 2.0 4 171.7 16.8 4.8 33.0 1.0 0.1

sierpinski 10 88575 177147 1 2.0 4 3606.4 162.0 (E) (M) 23.4 1.0

crack 10240 30380 1 2.9 9 317.5 23.0 6.8 (M) 0.4 0.2
Kind

fe pwt 36463 144794 55 3.9 15 1869.1 69.0 (E) (M) (T ) 0.5
Real

finan 512 74752 261120 1 3.4 54 6319.8 158.2 (E) (M) 7.5 1.0
World

fe ocean 143437 409593 39 2.8 6 19247.0 355.9 (E) (M) 4.0 3.4

tree d 4 1555 1554 1554 1.0 7 14.3 2.6 0.3 2.0 < 0.1 < 0.1

tree d 5 9331 9330 9330 1.0 7 130.3 17.7 2.4 43.0 0.5 < 0.1

tree d 6 55987 55986 55986 1.0 7 1769.2 121.3 (E) (M) 4.5 0.5

snowflake A 971 970 970 1.0 256 8.0 1.6 0.4 73.0 0.4 < 0.1

Chal- snowflake B 9701 9700 9700 1.0 2506 143.2 17.4 6.1 3320.0 (T ) < 0.1

lenging snowflake C 97001 97000 97000 1.0 25006 14685.7 166.5 (E) (M) (T ) 0.8

Arti- spider A 1000 2200 801 2.2 18 17.6 1.9 0.4 1.0 1.1 < 0.1

ficial spider B 10000 22000 8001 2.2 18 189.0 17.7 7.2 47.0 8.9 0.1

spider C 100000 220000 80001 2.2 18 4568.3 177.2 (E) (M) 280.7 1.3

flower A 930 13521 1 14.5 30 61.7 1.2 0.7 1.0 < 0.1 < 0.1

flower B 9030 131241 1 14.5 30 595.1 11.9 19.3 46.0 1.4 0.2

flower C 90030 1308441 1 14.5 30 11841.5 121.4 (E) (M) (T ) 1.4

ug 380 1104 3231 27 2.9 856 23.1 2.1 0.4 1.0 < 0.1 < 0.1

esslingen 2075 5530 867 2.6 97 43.8 4.0 0.5 404.0 1.0 < 0.1
Chal-

add 32 4960 9462 951 1.9 31 80.6 12.1 1.6 17.0 0.5 < 0.1
lenging

dg 1087 7602 7601 7601 1.0 6566 624.8 18.1 3.6 5402.0 108.4 < 0.1
Real

bcsstk 33 8738 291583 1 33.3 140 1494.6 23.8 29.1 6636.0 0.4 0.3
World

bcsstk 31 35586 572913 48 16.1 188 4338.4 83.6 (E) (M) 1.9 0.7

bcsstk 32 44609 985046 3 22.0 215 6387.1 110.9 (E) (M) 3.6 0.9
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As expected, in most cases GVA is the slowest method among the force-
directed algorithms. The largest graph fe ocean is drawn by GVA in 5 hours
and 20 minutes.

(a) GVA (b) FM3 (c) GRIP

(d) FMS (e) ACE (f) HDE

(g) GVA (h) FM3 (i) GRIP

(j) FMS (k) ACE (l) HDE

Fig. 1. (a)-(f) Drawings of rnd grid 100 and (g)-(l) sierpinski 08 generated by different
algorithms
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The method FM3 is significantly faster than GVA for all tested graphs. The
running times range from less than 2 seconds for the smallest graphs to less than
6 minutes for the largest graph fe ocean. The subquadratic scaling of FM3 can
be experimentally confirmed for all classes of tested graphs.

(a) GVA (b) FM3 (c) GRIP

(d) ACE (e) HDE (f) GVA

(g) FM3 (h) HDE (i) GVA

(j) FM3 (k) ACE (l) HDE

Fig. 2. (a)-(e) Drawings of crack, (f)-(h) fe pwt, and (i)-(l) finan 512 generated by
different algorithms
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Except for the dense graphs flower B and bcsstk 33 GRIP is faster than FM3

(up to a factor 9). Unfortunately, we could not examine the scaling of GRIP for
the largest graphs due to an error in the executable.

Since the memory requirement of FMS is quadratic in the size of the graph, the
implementation of FMS is restricted to graphs that contain at most 10, 000 nodes.
The running time of FMS is comparable with that of FM3 for the smallest and the
medium sized kind graphs. In contrast to this, the CPU time of FMS increases

(a) GVA (b) FM3

(c) ACE (d) HDE
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Fig. 3. (a)-(d) Drawings of fe ocean and (e)-(j) tree 06 05 generated by different
algorithms
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drastically for several challenging graphs, in particular for graphs that either
contain nodes with a very high degree or have a high edge density.

The algorithm ACE is much faster than the force-directed algorithms for
nearly all kind graphs. However, like for FMS, the running times grow extremely
when ACE is used to draw several of the challenging graphs.

The linear time method HDE is by far the fastest algorithm. It needs less than
3.4 seconds for drawing even the largest tested graph.
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Fig. 4. (a)-(f) Drawings of snowflake A and (g)-(l) spider A generated by different
algorithms
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4.2 Comparison of the Drawings

For all kind graphs the classical method GVA does not untangle the drawings
that were induced by the random initial placements.

In contrast to this nearly all algorithms generated comparable pleasing draw-
ings of the kind graphs (see Figure 1, Figure 2, and Figure 3(a)-(d)).

None of the drawings of the complete 6-nary trees (see Figure 3(e)-(j)) is re-
ally convincing, since the force-directed algorithms produce many unnecessary

(a) GVA (b) FM3 (c) GRIP

(d) FMS (e) ACE (f) HDE

0

1

2

3

4

5

6

7

8

9

10 11

12
13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

31

32

33
34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72
73

74

75
76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91
92

93

94 95

96

97

98

99
100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118 119

120

121

122

123

124

125
126127

128

129

130

131 132 133

134

135
136

137

138
139

140

141

142

143

144 145

146

147

148

149

150

151152

153

154

155

156

157
158

159
160

161

162

163

164

165

166

167

168
169

170

171

172

173

174

175

176

177

178

179

180
181

182

183184

185

186
187

188

189

190

191

192

193

194

195

196

197

198

199200

201

202

203

204

205206

207

208

209

210

211

212

213

214
215

216

217

218

219 220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238239

240

241

242

243

244

245

246
247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296
297

298

299
300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340
341

342

343

344

345

346

347

348

349

350

351352

353

354

355

356

357

358

359
360

361

362

363

364

365
366

367

368

369

370371

372
373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389 390
391

392

393
394

395

396

397

398

399

400

401

402

403404

405

406

407

408

409

410

411

412

413

414

415
416

417

418

419420
421

422

423

424

425
426

427

428

429

430

431

432

433

434

435

436

437

438439

440

441

442443

444

445

446

447

448

449

450

451 452
453

454

455

456

457

458

459

460

461462

463

464

465

466467

468
469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500
501

502

503

504

505

506

507

508

509 510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527 528

529

530

531

532

533 534

535

536

537

538

539

540

541

542

543

544

545

546

547

548
549

550

551
552

553

554

555

556

557
558

559

560

561

562

563

564

565
566

567

568

569

570

571

572

573

574

575

576

577

578
579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613
614

615

616

617

618

619

620

621

622

623

624

625 626

627

628

629

630

631

632633

634 635

636 637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659
660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684
685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748
749

750

751

752

753

754

755

756

757

758

759

760

761

762

763 764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812
813

814

815

816

817
818

819
820

821

822

823
824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848
849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926
927

928929

930

931

932

933

934

935

936

937

938

939
940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978 979

980

981

982

983

984

985

986

987

988

989

990

991

992

993994

995

996

997998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036
1037

1038

1039
1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053
1054

1055
1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073
1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100
1101

1102

1103

(g) GVA (h) FM3 (i) GRIP

(j) FMS (k) ACE (l) HDE

Fig. 5. (a)-(f) Drawings of flower B and (g)-(l) ug 380 generated by different algorithms
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edge crossings. However, the drawings generated by FM3 and FMS display parts of
the regularity of these graphs. The algebraic methods ACE and HDE place many
nodes at the same coordinates. In general, this behavior of the algebraic meth-
ods can be observed for graphs that consist of many biconnected components.
Explanations of the theoretical reasons can be found in [3, 16] and [10].

Except FM3 none of the tested algorithms displays the global structure of
the snowflake graphs. Even the drawings of the smallest snowflake graph (see

(a) GVA (b) FM3 (c) GRIP

(d) FMS (e) ACE (f) HDE
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(g) GVA (h) FM3 (i) GRIP

(j) FMS (k) ACE (l) HDE

Fig. 6. (a)-(f) Drawings of dg 1087 and (g)-(l) esslingen generated by different
algorithms
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Figure 4(a)-(f)) leave room for improvement. However, GVA and GRIP visualize
parts of its structure in an appropriate way.

The drawings of the spider A graph (see Figure 4(g)-(l)) that are generated
by GRIP, FMS, and HDE are not as symmetric as that generated by FM3. But they
display the global structure of the graph. The drawing generated by GVA shows
the dense subregion, but GVA does not untangle the 8 paths. The paths in the

(a) GVA (b) FM3 (c) GRIP

(d) FMS (e) ACE (f) HDE

(g) GVA (h) FM3 (i) GRIP

(j) FMS (k) ACE (l) HDE

Fig. 7. (a)-(f) Drawings of add 32 and (g)-(l) bcsstk 33 generated by different
algorithms
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drawing of ACE are not displayed in the same length. The drawings of the larger
spider graphs are of comparable quality.

The drawings of the flower B graph (see Figure 5(a)-(f)) that are generated
by FMS and HDE display the global structure of the graph but the symmetries
are not as clear as in the drawing generated by FM3. The drawings of the other
flower graphs are of comparable quality.

We concentrate on the challenging real-world graphs now. The graphs ug 380
and dg 1087 both contain one node with a very high degree. Furthermore,
dg 1087 has many biconnected components, since it is a tree. Only the drawings
that are generated by GVA, FM3, and GRIP (see Figure 5(g)-(l) and Figure 6(a)-
(f)) clearly display the central regions of these graphs. It can be observed that

(a) GVA (b) FM3 (c) ACE

(d) HDE (e) GVA (f) FM3

(g) ACE (h) HDE

Fig. 8. (a)-(d) Drawings of bcsstk 31 con and (e)-(h) bcsstk 32 generated by different
algorithms
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the edge lengths of the drawing of dg 1087 that is generated by FM3 are more
uniform than in the drawings of dg 1087 that are generated by GVA and GRIP.

The social network esslingen (see Figure 6(g)-(l)) consists of two big well-
connected subgraphs. This can be visualized by FM3, GRIP, and HDE. But all
drawings contain many edge crossings.

Since add 32 that describes a 32 bit adder contains many biconnected com-
ponents, we expect that the drawings have a tree-like shape. This structure is
visualized by GVA, FM3, GRIP, and ACE (see Figure 7(a)-(f)). The drawings of
GVA and GRIP contain many edge crossings, while the drawing of ACE displays
the global structure, but hides local details.

Finally, we discuss the drawings of the graphs bcsstk 31 con, bcsstk 32, and
bcsstk 33 that have a very high edge density. The drawings of bcsstk 33 (see
Figure 7(g)-(l)) that are generated by FM3, GRIP, and ACE are comparable and
visualize the regular structure of the graph. The car body that is modeled by
the graph bcsstk 31 con (see Figure 8(a)-(d)) is visualized by FM3 and ACE only.
All drawings of bcsstk 32 are completely different (see Figure 8(e)-(h)) and an
evaluation of the drawings is left to the reader.

5 Conclusion

We can summarize that only GVA, FM3, and HDE generate drawings of all tested
graphs. The force-directed multilevel methods and the algebraic methods are
— except the methods FMS and ACE for some graphs — much faster than the
comparatively slow classical algorithm GVA. HDE, FM3 and GRIP scale well on all
tested graphs. FM3 needs few minutes to draw the largest graphs. GRIP is up to
factor 9 faster than FM3 but it could not be tested on the largest graphs. All
tested methods are much slower than HDE that needs only few seconds to draw
even the largest graphs.

As expected, all algorithms, except GVA, generate pleasing drawings of the kind
graphs. In contrast to this, the quality of the generated drawings varies a lot
depending on the structures of the tested challenging graphs. Only FM3 generates
pleasing drawings for the majority of the challenging graphs. But there still remain
classes of tested graphs (the complete trees and the social network graph esslingen)
for which the drawing quality of all tested algorithms leaves room for improvement.
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14. M. Jünger, G. W. Klau, P. Mutzel, and R. Weiskircher. In Graph Drawing Soft-
ware, volume XII of Mathematics and Visualization, chapter AGD - A Library of
Algorithms for Graph Drawing, pages 149–172. Springer-Verlag, 2004.

15. T. Kamada and S. Kawai. An Algorithm for Drawing General Undirected Graphs.
Information Processing Letters, 31:7–15, 1989.

16. Y. Koren, L. Carmel, and D. Harel. Drawing Huge Graphs by Algebraic Multigrid
Optimization. Multiscale Modeling and Simulation, 1(4):645–673, 2003.

17. Y. Koren’s algorithms: research.att.com/~yehuda/index_programs.html.
18. A. Quigley and P. Eades. FADE: Graph Drawing, Clustering, and Visual Abstrac-

tion. In Graph Drawing 2000, volume 1984 of LNCS, pages 197–210. Springer-
Verlag, 2001.

19. D. Tunkelang. JIGGLE: Java Interactive Graph Layout Environment. In Graph
Drawing 1998, volume 1547 of LNCS, pages 413–422. Springer-Verlag, 1998.

20. C. Walshaw’s graph collection: staffweb.cms.gre.ac.uk/~c.walshaw/partition.
21. C. Walshaw. A Multilevel Algorithm for Force-Directed Graph Drawing. In Graph

Drawing 2000, volume 1984 of LNCS, pages 171–182. Springer-Verlag, 2001.
22. R. Yusufov’s implementation of GRIP: www.cs.arizona.edu/~kobourov/GRIP.



Hierarchical Layouts of Directed Graphs in
Three Dimensions

Seok-Hee Hong1,2 and Nikola S. Nikolov1,3

1 IMAGEN Program, National ICT Australia Ltd.
2 School of IT, University of Sydney, NSW, Australia

3 Department of CSIS, University of Limerick, Limerick, Republic of Ireland
{seokhee.hong, nikola.nikolov}@nicta.com.au

Abstract. We introduce a new graph drawing convention for 3D hier-
archical drawings of directed graphs. The vertex set is partitioned into
layers of vertices drawn in parallel planes. The vertex set is further par-
titioned into k ≥ 2 subsets, called walls. The layout consists of a set of
parallel walls which are perpendicular to the set of parallel planes of the
layers. We also outline a method for computing such layouts and intro-
duce four alternative algorithms for partitioning the vertex set into walls
which address different aesthetic requirements.1

1 Introduction

The visual representation of hierarchically organised data has application in ar-
eas such as Social Network Analysis, Bioinformatics, Software Engineering, etc.
Hierarchies are commonly modeled by directed graphs (digraphs) and thus visu-
alised by algorithms for drawing digraphs. Most of the research effort in this area
has been related to improvements of various aspects of the Sugiyama method,
the most popular method for creating 2D layered drawings of digraphs [4, 9].

The increasing availability of powerful graphic displays opens new opportu-
nities for developing new methods for 3D graph drawing. There is evidence that
3D graph layouts combined with novel interaction and navigation methods make
graphs easier to comprehend by humans and increase the efficiency of task per-
formance on digraphs [10].

However, there has been relatively little research on drawing digraphs in 3D.
One of the known approaches is the method of Ostry which consists of computing
a layered drawing in 2D and then wrapping it around a cone or a cylinder [8]. An-
other approach is the method used in the graph drawing system GIOTTO3D [5]
which is conceptually different from the Sugiyama method. GIOTTO3D employs
a simple 3-phase algorithm for producing 3D layered drawings of digraphs. In
the first phase a planarisation method is used to draw the graph in 2D; in the
second phase vertices and edges are assigned z-coordinates so that all edges point

1 An online gallery with examples of our 3D hierarchical layouts is available at
http://www.cs.usyd.edu.au/∼visual/valacon/gallery/3DHL.

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 251–261, 2005.
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(a) 2D

(b) Zig-zag (c) Dominating wall

Fig. 1. A 2D layered drawing (a) compared to 3D layered layouts of the same graph
with two parallel walls (b) and (c)

into the same direction and the total edge span is minimised; and at the third
phase the shape of the vertices and the edges is determined.

This paper presents a method for layered drawing of digraphs in 3D which
extends the Sugiyama method. We generalise and extend the work presented
in our previous paper [6]. In summary, we propose an extra step after the layer
assignment of the 2D Sugiyama method. It consists of partitioning the vertex set
into subsets, called walls. Any subset of the vertex set can be a wall. We propose
that layers occupy parallel planes with all edges pointing in the same direction.
Walls also occupy parallel planes which are perpendicular to the layer planes.
Each pair of a wall and a layer intersect into a set of vertices placed along the
line which is the intersection of the corresponding wall and layer planes. As a
result each wall contains a 2D layered drawing. Examples of such a layout can
be seen in Figures 1 and 2.

(a) According to C4 (b) According to both criteria C1 and
C4

Fig. 2. Examples of 3D hierarchical layouts with k > 2 parallel walls
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The motivation behind the proposed drawing convention consists of the fol-
lowing points:

– A 3D layered drawing of a digraph allows the employment of specific 3D
navigation and interaction techniques and decreases visual complexity. For
example, each wall can be viewed separately, the camera may move along
edges between the walls, etc.

– Partitioning the hierarchy into a set of walls each containing a smaller 2D
hierarchy allows us to draw the smaller 2D hierarchies efficiently with fast
heuristics or even exact algorithms which generally would perform worse if
employed for drawing the whole graph as a 2D hierarchy.

– Drawing the 3D hierarchy as a set of 2D hierarchies utilises the extensively
developed techniques for drawing hierarchies in 2D.

Our method can be applied to any digraph, such as a class hierarchy that
originates from a Software Engineering application, or a hierarchical relationship
in a social network, etc. In particular, we report experiments with some of the
graphs in the Rome data set [3].

The paper is organised as follows: in the next section we introduce some
definitions and an outline of the Sugiyama method for drawing digraphs in 2D.
Then in Section 3 we describe our 3D extension to the Sugiyama method. In
Section 4 we show some drawings of digraphs computed with our method and
we compare them to the corresponding 2D drawings. Finally, in Section 5 we
draw some conclusions from this work.

2 Terminology

The Sugiyama method for layered digraph drawing consists of four steps. The
first step is to remove all directed cycles from the graph by inverting the direction
of some edges. In the second step the vertices of the digraph are partitioned into
layers. Let G = (V, E) be a digraph without directed cycles. We denote the set of
all immediate predecessors of vertex v by N−(v) = {u : (u, v) ∈ E}, and the set
of all its immediate successors by N+(v) = {u : (v, u) ∈ E}. A layering of G is de-
fined as an ordered partition L = {L1, L2, ..., Lh} of its vertex set into h subsets,
called layers, such that (u, v) ∈ E with u ∈ Li and v ∈ Lj implies j < i. A di-
graph with a layering is a layered digraph. A layering is proper if all edges are be-
tween vertices in adjacent layers. If this is not the case then after the second step
of the Sugiyama method dummy vertices which subdivide long edges, i.e. edges
which connect vertices in non-adjacent layers, are introduced. Formally, for each
edge e = (u, v) with u ∈ Li, v ∈ Lj, and j < i−1, we introduce i− j−1 dummy
vertices de

j+1, d
e
j+2, . . . , d

e
i−1 into layers Lj+1, Lj+2, . . . , Li−1, respectively. We

also replace edge e by edges (u, de
i−1), (d

e
i−1, d

e
i−2), . . . , (d

e
j+2, d

e
j+1), (d

e
j+1, v).

In the third step a linear order is established for the vertices in each layer. And
in the last fourth step x- and y-coordinates of all vertices are decided as well as
the shape of the edges. Various algorithms, which emphasise different properties
of the drawing, have been suggested for each step of the Sugiyama method [2].
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3 3D Layered Drawing of Directed Graphs

In this section we propose a 3D extension to the Sugiyama method. In summary,
we introduce a new step called wall assignment which further partitions the layer
into a set of k > 1 subsets, called walls, after the layering step. Our method is
outlined in Algorithm 1.

Algorithm 1. 3D Layered Digraph Drawing
Step 1 (Cycle Removal): Remove all directed cycles by inverting the direction of
some edges.

Step 2 (Layer Assignment): Partition the vertex set into h layers, L1, L2, . . . , Lh with
h ≥ 2.

Step 3 (Wall Assignment): Partition the vertices in each layer Li into k subsets,
L1

i , L
2
i , . . . , L

k
i with k ≥ 2.

Step 4 (Vertex Ordering): Set a linear order of the vertices which belong to the same
layer and wall.

Step 5 (Coordinate Assignment): Assign x-, y-, and z-coordinates to each vertex.
Determine the shape of each edge.

Layers occupy parallel planes and each layer Li is partitioned into k subsets,
L1

i , L
2
i , . . . , L

k
i . The vertices placed in the jth group of each layer form a wall.

That is, the set W j = {Lj
1, L

j
2, . . . , L

j
h} is the jth wall. There are k walls in total,

each wall occupies a plane, and the walls occupy k parallel planes which are
perpendicular to the h planes of the layers. In addition, we require all dummy
vertices along the same long edge to be in the same wall in order to avoid more
than one bend outside the walls which contain the endpoints of the edge.

Since we perform the wall-assignment step after the introduction of dummy
vertices we assume that G = (V, E) is a proper layered digraph with a layering
L = {L1, L2, ..., Lh}, i.e. each edge connects vertices in adjacent layers. By par-
titioning the vertices into k ≥ 2 walls we partition the edge set of a digraph into
two subsets: intra wall edges and inter wall edges. Intra wall edges are edges with
both endpoints in the same wall, and inter wall edges are edges with endpoints
in different walls. The span of an inter wall edge is the absolute value of the
difference between the numbers of the two walls which contain the endpoints
of that edge. Note that each inter wall edge has at least one endpoint which is
not a dummy vertex because we require all dummy vertices along the same long
edge to be in the same wall.

The partition of the original vertex set into k walls may originate from the
digraph’s application domain. They might be the clusters of a given clustered
graph. If no such partition is given then the vertex set can be partitioned into k
walls according to the following optimisation criteria:
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– C1. Even distribution of vertices among walls, i.e. balanced partition of the
vertex set into walls.

– C2. As few as possible inter wall edges for avoiding occlusion in the 3D
space.

– C3. As few as possible crossings between inter wall edges in the projection
of the drawing into a plane which is orthogonal to both the layer planes and
the wall planes.

– C4. The sum of the spans of inter wall edges should be minimised.
– C5. As few as possible crossings between intra wall edges.

These criteria are designed to express the properties of layouts with low visual
complexity. They give rise to some hard optimisation problems which require the
development of efficient algorithms. In our previous work we have proposed an
algorithm for partitioning the vertex set into two walls according to C1 and C2.
In the remainder of this section we propose two new methods of partitioning
the vertex set into two walls according to C3, and two versions of a method for
partitioning the vertex set into k-walls according to C4 and C1.

3.1 Two-Wall Partitions

The following two algorithms for partitioning the vertex set into two walls are
designed to have all inter wall edges arranged in a particular pattern such that C3
is satisfied. We call them zig-zag wall partition and dominating wall partition
respectively. Both algorithms scan all layers one by one from bottom to top
and partition each of them into two subsets. We start with a random balanced
partition of the first layer that contains more than one vertex. Each next layer
Li is partitioned into L1

i and L2
i such that L1

i ∪L2
i = Li and L1

i ∩L2
i = φ based

on the partition of layer Li−1.
The zig-zag wall partition and the dominating wall partition differ in the way

layer Li is divided into two subsets based on the already given partition of layer
Li−1 for i ≥ 2. The zig-zag wall partition scans all the vertices in layer Li and
partitions it into L1

i and L2
i by applying different strategies for even and odd

layers. If i is an even number then u ∈ Li will be always assigned to L2
i except in

the case when u has no neighbours in L2
i−1. In that case u will be assigned to L1

i .
That is, a vertex is assigned to L1

i if and only if it has all its immediate successors
in L1

i−1. Note that this is done after the insertion of dummy vertices and all the
immediate successors of u are in layer Li−1. If i is an odd number then u ∈ Li is
assigned to L2

i if and only if all its immediate successors are assigned to L2
i−1. As

a result the inter wall edges form a zig-zag pattern between the two walls. The
zig-zag wall partition is presented as Algorithm 2. An example layout is shown
in Figure 1(b).

The idea of the dominating wall partition is all the inter wall edges have
their origin in the same wall, which we call the dominating wall. We assume
that wall W 1 is the dominating wall, i.e. the wall that consists of L1

1, L
1
2, . . . , L

1
h.

Vertex u ∈ Li is assigned to L2
i if and only if it has no neighbours in L1

i−1. The
dominating wall partition of layer Li is presented as Algorithm 3. An example
layout is shown in Figure 1(c).



256 S.-H. Hong and N.S. Nikolov

Algorithm 2. Zig-zag wall partition of layer Li

if i mod 2 = 0 then
L1

i ← {v ∈ Li : N+(v) ∩ L2
i−1 = φ}

L2
i ← Li \ L1

i

else
L2

i ← {v ∈ Li : N+(v) ∩ L1
i−1 = φ}

L1
i ← Li \ L2

i

end if

Algorithm 3. Dominating wall partition of layer Li

L2
i ← {v ∈ Li : N+(v) ∩ L1

i−1 = φ}
L1

i ← Li \ L2
i

It is easy to see that both the zig-zag wall partition and the dominating
wall partition place all dummy vertices along edge e into the same wall. Both
algorithms take O(|V |+ |E|) time because each vertex is examined and assigned
into a wall and this is done by examining the neighbours of the vertices, i.e. by
examining all the edges of the digraph.

Lemma 1. Both the zig-zag wall partition and the dominating wall partition
algorithms assign all dummy vertices along an edge to the same wall and partition
the vertex set of the graph into two subsets in linear time.

3.2 k-Wall Partitions

We have designed a third algorithm for partitioning the vertex set into k ≥ 2
walls according to C4. That is, the sum of spans of inter wall edges is kept small.

Similar to the two algorithms described above all the layers are scanned one
by one from bottom to top. The first layer which contains more than one vertex
is partitioned randomly and each following layer Li is partitioned on the basis
of the partition of layer Li−1.

For partitioning layer Li into k subsets we apply Algorithm 4. In summary,
for each vertex u ∈ Li all its immediate successors are considered, and u is
placed in the wall whose number is the closest integer to the average of the wall
numbers of the immediate successors of u. In other words, the wall u is placed in
the barycenter of the walls its immediate successors are placed in. An example
layout is shown in Figure 2(a).

In order to achieve a more even distribution of vertices between the walls, i.e.
to satisfy C1, we can keep track on the number of vertices currently assigned to
a wall and when we compute b take this into account giving preference to the
walls with fewer number of vertices. The implementation of such a procedure is
presented in Algorithm 5 which is a generalised version of Algorithm 4. Now the
wall for vertex u is computed as

b =

⌊∑k
j=1 j ∗ max{0, neighbours[j]− |Lj

i |}∑k
j=1 max{0, neighbours[j]− |Lj

i |}
+ 0.5

⌋
. (1)
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Algorithm 4. k-wall partition of layer Li

for all j = 1..k do
Lj

i ← φ
end for
for all u ∈ Li do

if |N+(u)| = 0 then
Let b be a number such that |Lb

i | = min{|L1
i |, |L2

i |, . . . , |Lk
i |}

else
for all j = 1..k do

neighbours[j] ← |N+(u) ∩ Lj
i−1|

end for
b ←

k
j=1 j∗neighbours[j]

k
j=1 neighbours[j]

+ 0.5

end if
Lb

i ← Lb
i ∪ {u}

end for

Algorithm 5. k-wall balanced partition of layer Li

for all j = 1..k do
Lj

i ← φ
end for
for all u ∈ Li do

if u is a dummy vertex then
Let b be the number such that the only immediate successor of u is assigned to
Lb

i−1.
else

for all j = 1..k do
neighbours[j] ← |N+(v) ∩ Lj

i−1|
end for
if k

j=1 max{0, neighbours[j] − |Lj
i |} > 0 then

b ←
k
j=1 j∗max{0,neighbours[j]−|Lj

i |}
k
j=1 max{0,neighbours[j]−|Lj

i |} + 0.5

else
Let b be a number such that |Lb

i | = min{|L1
i |, |L2

i |, . . . , |Lk
i |}

end if
end if
Lb

i ← Lb
i ∪ {u}

end for

in the case
∑k

j=1 max{0, neighbours[j]− |Lj
i |} > 0. Otherwise u is placed in the

wall with currently the fewest number of vertices in the current layer.
It is easy to see that Algorithm 4 guarantees that all dummy vertices along

an edge belong to the same wall. However, this is no longer guaranteed with the
proposed balancing technique. Thus, when applying the balancing technique we
first need to check whether u is dummy and if it is then to place it into the wall
of its immediate successor.
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The time complexity of the proposed k-wall partitioning algorithm is also
O(|V |+ |E|) because similar to the two-wall partitioning algorithms each vertex
and each edge are scanned once.

Lemma 2. Both versions of the k-wall partition algorithm assign all dummy
vertices along an edge to the same wall and partition the vertex set of the graph
into k ≥ 2 subsets in linear time.

4 Computational Results

We applied the presented layout technique for computing 3D hierarchical lay-
outs of graphs taken from the Rome dataset [3]. We randomly chose ten graphs
with 75 vertices. The number of edges of each of them is close to twice the num-
ber of vertices. In the remainder of this section we compare the different wall
assignment techniques:

– (ZZ) Zig-zag wall partition.
– (DW) Dominating wall partition.
– (MC) Balanced min-cut wall partition introduced in [6].
– (KW) k-wall partition.
– (BW) Balanced k-wall partition.
– (SW) Single wall, i.e. a 2D hierarchical layout.

MC is a version of the balanced min-cut wall partition introduced in [6]. Note
that we have slightly modified the original algorithm to make sure all dummy
vertices along an edge go to the same wall which we did not consider in our
previous work.

We assumed that the input graphs are undirected and we assigned direction
to each edge from the vertex with the higher degree to the vertex with the lower
degree. The reason for doing this is because we had to assign the direction of
the edges by using the same method in all experimental graphs. It also allows us
to test how our 3D hierarchical drawings can be used for emphasising centrality
in large and complex networks, in particular the degree centrality, by having a
loose connection between the layers and the centrality values. If both endpoints
of an edge have the same degree then the direction is assigned randomly. We
applied Algorithm 1 six times, once for each wall assignment technique. Each
time we used the same algorithms for the other four steps: cycle removal, layer
assignment, vertex ordering, and coordinate assignment.

We remove directed cycles by reversing the direction of the back edges in a
DFS tree of the digraph. For layer assignment we used the longest-path algorithm
followed by an improvement heuristic [7]. The vertex ordering step is performed
with a layer-by-layer sweep and the barycenter heuristic taking into account
the wall partition. Details about the vertex ordering with 2 walls can be found
in [6]. We used a trivial extension of the same method for k > 2 walls. For the
coordinate assignment step we applied the Brandes-Köpf algorithm for each wall
independently [1]. The z-coordinates are given by the wall numbers.
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Table 1. Vertex and edge distribution for two-wall partitions

graph ZZ DW MC
vertices edges inter vertices edges inter vertices edges inter

wall wall wall
edges edges edges

1 77 30 75 21 24 42 65 44 48 28 55 52 51 48 21
2 55 73 47 75 32 44 84 43 70 41 66 62 63 64 27
3 63 46 57 36 46 41 68 41 47 51 54 55 53 53 33
4 65 56 61 51 33 41 80 40 67 38 62 59 62 57 26
5 79 58 73 54 31 49 88 51 77 30 70 67 73 61 24
6 80 43 83 37 34 43 80 47 65 42 65 58 65 56 33
7 107 53 119 46 30 67 93 77 80 38 82 78 85 79 31
8 73 51 67 48 30 60 64 63 48 34 62 62 59 66 20
9 97 43 104 38 26 65 75 69 55 44 72 68 70 69 29
10 71 77 65 78 43 51 97 57 81 48 75 73 79 77 30

Table 2. Vertex and edge distribution for k-wall partitions

graph number KW BW
of walls vertices edges vertices edges

1 3 28 39 40 22 35 30 42 34 31 26 22 18
2 3 46 42 40 42 35 39 46 46 36 31 35 25
3 2 48 61 35 67 58 51 52 46
4 3 38 46 37 29 39 27 43 45 33 30 33 20
5 4 34 39 34 30 26 33 28 22 41 29 33 34 28 18 27 23
6 4 33 51 20 19 26 56 13 12 42 28 31 22 30 16 24 10
7 4 34 53 43 30 22 52 36 24 46 42 45 27 30 30 32 18
8 3 40 44 40 27 38 31 39 40 45 23 26 36
9 3 36 58 46 26 59 35 52 42 44 40 33 29
10 3 46 62 40 37 67 35 54 53 41 37 44 30

First we compare the two-wall partitioning algorithms. Table 1 shows the
vertex and edge distribution between the walls as well as the number of inter
wall edges. It can be observed that MC does really find wall partitions which
have more even distribution of vertices and edges between the two walls. The
MC partitions typically have the minimum number of inter wall edges, which is
what we expected. The advantage of ZZ and DW is the special arrangement of
inter wall edges they guarantee. We can also see that the distribution of vertices
and edges between the two walls in ZZ and DW is not necessarily unbalanced.

Table 2 compares the vertex and edge distribution for KW and BW. The
number of walls k is a half of the number of layers h, i.e. k = �h

2 �. Thus, different
graphs have a different number of walls. We can observe that BW does find more
balanced distribution of vertices between the walls only if the KW distribution
is not balanced (e.g., graph 9). When the KW distribution is relatively well
balanced then BW may perform worse than KW (e.g., graph 8).
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Table 3. Total span of inter wall edges in k-wall partitions

graph number KW BW
of walls number of inter span of inter number of inter span of inter

wall edges wall edges wall edges wall edges
1 3 33 33 54 68
2 3 47 47 63 78
3 2 37 37 41 41
4 3 50 50 62 77
5 4 49 57 62 94
6 4 47 57 74 105
7 4 61 69 85 118
8 3 49 49 60 73
9 3 48 48 66 80
10 3 47 47 75 93

Fig. 3. Total number of edge crossings between intra wall edges (in all walls)

Table 3 compares KW and BW in terms of sum of the span of inter wall
edges. KW performs better than BW. We observed that the KW wall partitions
have very few inter wall edges between non-adjacent walls.

We have also computed the total number of crossings between intra wall edges.
The results are presented in Figure 4. As expected, the bigger the number of
walls the fewer crossings between intra wall edges. The best of the two-wall
partitions is DW which typically results in a fewer number of intra wall edge
crossings than ZZ and MC. The fewest number of intra wall edge crossings is
reached in BW which is a result we did not expect. However, the BW partitions
have a larger number of inter wall edges and a larger sum of spans of inter wall
edges than KW (see Table 3).

5 Conclusions and Current Work

We introduced a 3D extension to the Sugiyama method. We propose to partition
the vertex set into k ≥ 2 walls; each wall contains a 2D drawing of a layered
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digraph. This is done by introducing an additional wall assignment step into the
Sugiyama method after the layer assignment step. We propose three different
wall assignment algorithms which meet different optimisation criteria.

The computational results suggest that the proposed 3D graph drawing con-
vention results in reduced visual complexity. The choice of a particular wall
assignment algorithm may highly depend on the interaction and navigation tech-
niques. It is also possible to develop new vertex ordering heuristics specific for the
3D layered graph drawings with k walls. We are also looking at the possibility of
defining new optimisation problems arising from 3D drawing aesthetic criteria.

Acknowledgement. The authors would like to thank Michael Forster for the
valuable discussion and suggestions as well as for implementing the Brandes-Köpf
algorithm for coordinate assignment which we used in the drawings included in
the paper.
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Abstract. This paper describes a within-subjects experiment in which
we compare the relative effectiveness of five sociogram drawing conven-
tions in communicating underlying network substance, based on user
task performance and usability preference, in order to examine effects of
different spatial layout formats on human sociogram perception. We also
explore the impact of edge crossings, a widely accepted readability aes-
thetic. Subjective data were gathered based on the methodology of Pur-
chase et al. [14]. Objective data were collected through an online system.

We found that both edge crossings and conventions pose significant
affects on user preference and task performance of finding groups, but
either has little impact on the perception of actor status. On the other
hand, the node positioning and angular resolution might be more im-
portant in perceiving actor status. In visualizing social networks, it is
important to note that the techniques that are highly preferred by users
do not necessarily lead to best task performance.

1 Introduction

Social networks can be modeled as graphs, and visualized as node-edge diagrams
where nodes represent actors, and edges represent relationships between them.
With advances in display media, the use of node-edge diagrams or sociograms
(see Figure 1 for an example) has been increasingly important and popular in
social network analysis. Sociograms serve as simple visual illustrations in helping
people to explore and understand network structure, and to communicate specific
information about network characteristics to others.

One of the major concerns in network visualization is effectiveness. There
are two issues involved here: one is readability. Readability can be affected by
not only intrinsic network characteristics [6], but also layout. In particular, edge
crossings has long been widely accepted a major aesthetic [13, 4]. Purchase [16],
in her pioneering work of a user study which compared the relative effects of five
aesthetic criteria (bends, crosses, angels, orthogonality and symmetry) on ab-
stract graphs, also concluded that edge crossings has greatest impact on human
graph understanding. Subsequently the aesthetic of edge crossings was validated
on UML diagrams [14]. The remark of Purchase et al. [14] that there is no guar-
antee that results of domain-independent experiments could automatically apply
to domain-specific diagrams motivates this paper. We are not aware of any pre-
vious user studies in examining edge crossings impact on the perception of social
networks when domain-specific tasks are performed.
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Fig. 1. Advice network formed by an auditing team. Courtesy of Krackhardt [9].
Ellipses represent managers; diamonds represent staff auditors and boxes represent
secretaries. A line from Donna to Nancy indicates that Donna seeks advice from Nancy.

The other is communication. Good readability does not necessarily lead to
effective underlying semantics communication. When a social network is mapped
to a sociogram, what matters is relationship patterns, not the physical position-
ing of nodes [17]. However, previous studies [10, 11] revealed that the spatial
layout of nodes in a sociogram does affect viewers in perceiving social network
characteristics. Therefore there is practical need for investigating the actual com-
munication effectiveness of a particular visualization method. Surprisingly, al-
though considerable amount of fancy techniques have been proposed in litera-
ture, very little empirical evidence is available to support their effectiveness in
communicating network structure to humans [12].

To address the above questions, we conducted a user study. In this study,
we compared the communication effectiveness of five sociogram drawing con-
ventions, and investigated the impact of edge crossings under each convention,
based on user preference and task performance. Subjective data were gathered
based on the methodology of Purchase et al. [14]. Objective data were collected
through an online system.

1.1 Sociogram Constructing Conventions

Many visualization techniques are aimed to highlight one or two aspects of the
network structure, and confirm to some aesthetics to improve the readability. Of
our particular interest are the following five conventions.

1. Circular layout: all nodes are placed on a circle [17].
2. Hierarchical layout: nodes are arranged by mapping actors’ status scores to

the nodes’ vertical coordinates [2].
3. Radial Layout: all nodes are laid on circumference of circles in a way that

their distances from the center exactly reflect their centrality levels [3].
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4. Group layout: nodes are separated into different groups with nodes in the
same group close to one another. See [5] for a review.

5. Free layout: nodes are arranged without any particular purpose.

For more details about drawing conventions and background, see [7].

2 Experiment

2.1 Subjects

Twenty-three subjects were recruited from a student population in computer
science on a completely voluntary basis. All the subjects were postgraduates
and computer literate. All had node-edge diagram experience such as UML or
ER, associated with their study units; six of them were graph drawing research
students. All had neither academic nor working experience related to social net-
works. They were reimbursed $20 each for their time upon the completion of
their tasks.

2.2 Design

Networks. For this experiment, two networks are used. One is Krackhardt’s
advice network [9]. The network is modeled as a directed graph with 14 nodes
and 23 edges as shown in Figure 1. The network has three groups in a sense that
we discuss later in this section.

The Katz status scores [8] of the actors are shown in Table 1. In this study,
Katz status score was used as the index of importance. We expected subjects to
perceive the importance in accordance with, and we measured their perceptions
against the actors’ Katz status scores.

The second one is a fictionalized network which was produced from the first
one by eliminating all the directions. This gives an undirected graph with 14
nodes and 23 edges, which we call a collaboration network. A line between A and
B means that A and B collaborate with each other.

Sociograms. We used a total of 12 drawings: 1) for each of the five conventions,
two drawings of the advice network - one with minimum crossings and one
with many crossings (see Figure 2); 2) for the collaboration network, a free
convention drawing with minimum crossings and a free convention drawing with
many crossings.

Table 1. Actors’ Katz status scores

Nancy 1.00 Fred 0.02
Donna 0.66 Sharon 0.02
Manuel 0.57 Harold 0.00
Stuart 0.19 Wynn 0.00
Charles 0.17 Susan 0.00
Kathy 0.08 Bob 0.00
Tanya 0.08 Carol 0.00
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Fig. 2. Sociograms for the advice network used in the study
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All nodes were labeled with different names; in every drawing, each node
was mapped to a new name. By providing a context and background for each
network, and names for actors, subjects were expected to perform tasks from
the real world social network perspective [10]. However, subjects were not made
aware that the drawings had the same graph structure.

Tasks. For this experiment, we considered two common social network measures
which are frequently highlighted in sociograms: one is importance or status of
actors; the other is the presence of social groups, in which the connections among
actors are relatively dense. The whole session included 3 main tasks:

1. Online tasks
(a) find 3 most important actors and rate them according to their impor-

tance levels; and
(b) determine how many groups are in the network, and separate the 4 high-

lighted actors according to their group membership, given the condition
that one actor should not belong to more than one group, and one group
should not include only one actor. In formal tests, the same 4 nodes
(actors) across all drawings were highlighted in red rectangles.

2. Subjective rating tasks
(a) Usability acceptance rating: with one page showing all 6 many-crossing

drawings, and the other page showing all 6 minimum-crossing drawings,
subjects were required to rate their usability based on a scale from -3
(completely unacceptable) to +3 (completely acceptable) for importance
tasks and group tasks, respectively.

(b) Crossing preference rating: each many-crossing (A) and minimum-
crossing (B) pair was shown one by one, 6 pairs in total. Subjects needed
to indicate their preferences for importance tasks and group tasks, re-
spectively, based on a scale from -2 (strongly A) to +2 (strongly B),
where, for example, “Strongly A”means A is strongly preferred over B.

(c) Overall usability ranking: with all 10 advice network drawings being
shown in one page, subjects needed to choose 3 drawings that they least
preferred and 3 drawings that they most preferred for their overall us-
ability, using a scale from -3 to -1 and from 1 to 3, respectively.

3. Questionnaires: there were 2 questionnaires with each having a different fo-
cus, and to be presented to subjects before and after they were debriefed
about edge crossings and drawing conventions, respectively. The first
questionnaire asked subjects information about their study background, ex-
perience with node-edge diagrams and social networks, how they interpret
sociograms, and any network structure and sociogram features that they
think may influence their graph perceptions. The second questionnaire asked
about their thoughts about conventions and edge crossings.

For the above rating tasks, subjects were also required to write down a short
explanation for each answer.

Online System. Sociograms were displayed by a custom-built online experi-
mental system. The system was designed so that:
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– A question is shown first, a button on the screen is pressed, then the cor-
responding drawing is shown; after writing down the answer on the answer
sheet provided, the button is pressed and the next question is shown, and
so on.

– Each subject’s response time for each drawing is logged. This starts once a
drawing is completely displayed and ends once the button is pressed.

The study employed a within-subjects design. For online tasks, 10 of the 12
drawings were randomly chosen and shown to comply with the time schedule
and to reduce fatigue. The order of group and importance questions for each
drawing was also random. Subjects were told they could have breaks during
the question viewing periods if they wished. There was no time limit on task
completion, although they were recommended to answer each question in one
minute. During the preparation time, subjects were instructed to answer each
question in the context of the underlying network and as quickly as possible
without compromising accuracy.

2.3 Procedure

A pilot study had been conducted with another four subjects who did not have
any social network background to check our methodology. They showed that they
quickly understood the questions and felt comfortable with the experiment. They
related the visual network representations with their daily social experiences
when performing tasks.

The formal tests took place in a computer laboratory, in which all PCs had
the same specifications. Before starting the experiment, subjects were asked to
read the information sheet, sign the consent form, read through and understand
the tutorial material, ask questions and practice with the online system. The
drawings used for practice were quite different from the ones used in formal
tests, since the practice was only for familiarization with the procedure and
system, not for them to get experienced with sociogram reading.

Once ready to start, subjects indicated to the experimenter, and started run-
ning the online system performing tasks formally. After the online reading tasks
followed by a short break which was to refresh subjects’ memory, they proceeded
with the rating tasks, and the first questionnaire. Then, after being given a de-
briefing document explaining the nature of the study, edge crossings and drawing
conventions, subjects were asked to do the rating tasks (a) and (b) again, and
finally finished with the second questionnaire. Subjects were also encouraged to
verbalize any thoughts and feelings about the experiment. The whole session
took about 60 minutes.

3 Results

The data of three subjects were discarded due to the failure of following in-
structions. Since the collaboration network sociograms did not create distinct
difference with their counterparts, these data have been omitted in our analysis.
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For simplicity, we use C, R, G, H, and F to represent circular, radial, group,
hierarchical and free drawing conventions, respectively, and use P for minimum-
crossing drawing, and C for many-crossing drawing. Therefore CP denotes cir-
cular minimum-crossing drawing; CC denotes circular many-crossing drawing,
and so on.

3.1 User Preference Data

Usability Acceptance. Subjects’ usability rating scale data are illustrated
in Figures 3-4 and analyzed using ANOVA (with Fisher’s PLSD, for pairwise
comparisons).

Fig. 3. Mean importance usability scores Fig. 4. Mean group usability scores

Table 2. Pre- and post-debriefing scores (only data with significant changes are shown)

Importance HP HC RP RC Group RP CC FC HC
Pre 2.21 1.75 1.29 0.42 Pre 1.96 -1.83 -1.13 -0.67
Post 2.75 2.29 1.87 1.63 Post 1.50 -1.43 -0.54 -0.08
P Value 0.04 0.05 0.00 0.00 P Value 0.02 0.03 0.02 0.02

For importance tasks, the minimum-crossing drawing was generally rated
higher than the many-crossing one for each convention. There was a signifi-
cant crossings effect between all minimum-crossing and all many-crossing draw-
ings (p=0.00). Also there was a significant convention effect among all drawings
(p=0.00). The pairwise comparisons revealed that the user acceptance for CP
was significantly different for GP, HP and FP, respectively; the user acceptance
for RP was significantly different for CP and HP, respectively. Furthermore,
paired t tests showed that after debriefing, the drawings of both hierarchical and
radial conventions were rated significantly higher (see Table 2). In particular,
the mean scores of the hierarchical convention pair were higher than all others,
showing that the positioning of nodes was perceived more important than edge
crossings for importance tasks.

For group tasks, GC and GP were rated much higher than others; in fact the
others were perceived as having little usefulness. Analysis found a significant
crossings affect for each pair of drawings for all conventions (p=0.00) except
group convention. Also, conventions produced a significant difference among all
drawings (p=0.00). Pairwise comparisons showed that all pairs were significantly
different except between HP and FP. In subjects’ post-debriefing ratings, there
was a significant change for RP, CC, FC and HC (see Table 2).
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Fig. 5. Mean importance preference scores Fig. 6. Mean group preference scores

Crossing Preference. As can be seen from Figures 5-6, generally, subjects pre-
ferred the minimum-crossing drawing more for each convention. The 1-sample t
tests against the hypothesized mean (=0) revealed that for all conventions except
group convention, subjects’ preference for the minimum-crossing drawings over
the corresponding many-crossing drawings was statistically significant (p<0.01).

The paired t tests revealed that there were no significant changes between the
pre- and post-debriefing ratings, although the post-debriefing preferences were
generally weaker than pre-debriefing preferences for both importance and group
tasks.

Overall Usability Ranking. Subjects’ ranking values for each drawing were
summed as a weighted value, and weighted values for all drawings are shown
in Figure 7. It can be seen that generally, the many-crossing drawings were
less preferred except GC, which was ranked the highest for its overall usability,
followed by GP, then HP. Both CC and FC had the lowest weighted value,
indicating that they were considered having little overall practical utility.

Fig. 7. Overall usability values Fig. 8. Distributions of reported group
number

3.2 User Performance Data

Response Time. Subjects’ response time data are illustrated in Figures 9-10
and analyzed using the non-parametric method of Kruskal-Wallis.

For importance tasks, subjects spent shorter time with the minimum-crossing
drawing than the many-crossing drawing for each convention in general. Among
all minimum-crossing drawings, the shortest time was spent with GP, followed
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Fig. 9. Median time (sec.) for importance Fig. 10. Median time (sec.) for group

by CP, HP, RP, and finally FP. However, statistical tests revealed that these
differences of response time were not statistically significant in terms of the
effect of either edge crossings or drawing conventions.

For group tasks, following a similar pattern, again shorter time was spent with
the minimum-crossing drawing than the many-crossing one for each convention.
Among all minimum-crossing drawings, the shortest time was spent with GP,
followed by RP, CP, HP, and finally FP. Analysis showed that there was a signif-
icant crossings effect between the minimum-crossing and many-crossing pair of
circular convention (p=0.012), and between all minimum-crossing and all many-
crossing drawings (p=0.021), and a significant convention difference among all
drawings (p=0.000). Pairwise comparisons showed that subjects spent signifi-
cantly shorter time with GP than all others at the level of 0.01.

Reported Group Number and Member Group Assignment. Figure 8
illustrates the distribution of the reported group number for each drawing. As
can be seen, GP had largest proportion of subjects (82.4%) responded “cor-
rectly”(3 as expected). An analysis of variance of the reported group number for
all drawings showed there was a significant difference at the level of 0.066.

Also, at dyad level, the member group assignment task was to investigate edge
crossings and convention impact on the perception of actors’ co-memberships. As
can be seen from Figure 11, a relatively larger proportion of subjects performed
this task correctly on the minimum-crossing drawing than on the many-crossing
drawing for each convention except free convention. Among all minimum-crossing
drawings, GP yielded the highest correctness rate (76.5%).

Fig. 11. Group assignment correctness(%) Fig. 12. Weighted values for identifying
important actors
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Identifying Most Important Actors. Figure 12 shows the weighted values
for all drawings. The weighted value is to measure a drawing’s overall effective-
ness of conveying information about importance, and calculated in the following
way: First we gave an index of 5 to the most important actor, 2 to the second
and 1 to the third; then the productions of indices and corresponding correctness
percentages were summed as a weighted value for each drawing. It can be clearly
seen that FC had the highest weighted value, followed by CC, RP, and then RC;
GC had the lowest.

4 Qualitative Data and Discussions

The analysis of subjects’ responses to questionnaires and interviews revealed that
subjects had a strong preference of placing nodes on the top or in the center to
highlight importance, and clustering nodes in the same group and separating
groups to highlight groups. They had tendency to believe that nodes in the
center or on the top are more important, and nodes in close proximity belong to
the same group.

There was strong evidence that edge crossings contribute to the significant
difference in user preference, usability acceptance, and group task performance.
Edge crossings not only affect the ease of reading, but also affect the understand-
ing of network structures.

With respect to drawing convention, for importance tasks, hierarchical con-
vention was strongly preferred, while for group tasks, group convention was
strongly preferred. Users achieved the highest response accuracy with group con-
vention for group tasks. However, the highest response accuracy did not come
with hierarchical convention for importance tasks. For overall usability, group
convention was the one for which the usability was rated high and user perfor-
mance was well as well.

Quite surprisingly, subjects were overwhelmingly in favor of hierarchical con-
vention for importance tasks; they spent relatively short time with HP, but
obtained the lowest correctness rate among all minimum-crossing drawings. On
the other hand, FC obtained the highest correctness rate, but relatively long
time was spent with it. We realized that some subjects had complained in ques-
tionnaires and verbally that in some drawings, edges were incident to nodes
too closely to clearly identify arrow directions. Visual inspection revealed that
indeed, free convention drawings had very good angular resolution, while hierar-
chical convention made angular resolution relatively low, where edges had to be
crowded in one side of nodes. In addition, subjects spent longer time with FC,
which might actually allow them to have better chance to understand network
structure better.

In summary, no obvious evidence was found that either edge crossings or
conventions pose significant impact on user importance task performance. Users
generally performed better when they took longer time. We conjecture that
only those tasks which are closely related to edges and involve edge tracing
can be significantly affected, such as finding groupings. On the other hand, for
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communicating information about actor status, the angular resolution and node
positioning in a sociogram might be more important, compared to drawing con-
ventions and reducing the number of edge crossings.

For detailed discussion of user responses, the recommendations for sociogram
design, and some further hypotheses derived about human graph perception,
see [7].

5 Conclusions

This study, together with previous research [10, 11], has demonstrated that how
sensitive the human sociogram perception is to spatial layout, and how important
it is to have visualization techniques evaluated for their actual effectiveness in
communication from human understanding point of view. It should be noted that
visualization techniques, which are highly preferred by users, do not necessarily
always produce best task performance, as demonstrated in this study.

The findings from this study should be interpreted within the limitations of
the given experimental settings. In this study we had only investigated the rel-
ative effectiveness of five “explanatory visualization” [2] conventions and edge
crossings impact under each convention, in communicating actor status and sub-
group information to novice audience. Their usability in assisting professionals
to explore and understand social networks remains untouched and is beyond the
scope of this study. For a comprehensive overview in this field, see [1].

Additional studies are needed to empirically identify and investigate the im-
pact of other possible variables of human sociogram perception in a more con-
trollable manner.
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Abstract. We study the existence of edges having few crossings with
the other edges in drawings of the complete graph (more precisely, in
simple topological complete graphs). A topological graph T = (V, E) is
a graph drawn in the plane with vertices represented by distinct points
and edges represented by Jordan curves connecting the corresponding
pairs of points (vertices), passing through no other vertices, and having
the property that any intersection point of two edges is either a common
end-point or a point where the two edges properly cross. A topological
graph is simple, if any two edges meet in at most one common point.

Let h = h(n) be the smallest integer such that every simple topological
complete graph on n vertices contains an edge crossing at most h other
edges. We show that Ω(n3/2) ≤ h(n) ≤ O(n2/ log1/4 n). We also show
that the analogous function on other surfaces (torus, Klein bottle) grows
as cn2.

1 Introduction

A topological graph T = (V, E) is a graph drawn in the plane with vertices
represented by distinct points and edges represented by Jordan curves connecting
the corresponding pairs of points (vertices), passing through no other vertices,
and having the property that any intersection point of two edges is either a
common end-point or a point where the two edges properly cross. A topological
graph is simple, if any two edges meet in at most one common point.

One of the traditional themes in the area of graph drawings is to realize a given
abstract graph as a topological graph so that the number of edge crossings is
minimized. Here we consider a variant of a “dual” problem. We study realizations
of the complete graph where each edge crosses “many” other edges.

Consider a network model drawn as a topological graph where the edge cross-
ings are used for the exchange of some commodities (or information) between
the two crossing edges. In any such model, edges with few crossings can exchange
only small amounts of the commodities with the other edges within a time unit.
This leads to the question about the existence of drawings in which each edge
crosses “many” other edges.

If we can choose the underlying abstract graph on n vertices, then we can
realize it with each edge crossing Ω(n2) other edges. E.g., take the vertices of a
regular n-gon and connect each vertex by straight-line segments with the ≈ n/3
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opposite vertices. Each edge in the obtained topological graph crosses at least
≈ n2/9 other edges. Moreover, each edge is realized by a straight-line segment,
thus it is a so-called rectilinear drawing (sometimes also called a geometric graph).
If the underlying graph is fixed then the situation is much more complicated.
In this paper we restrict our attention to topological complete graphs, i.e., to
realizations of (abstract) complete graphs. We are not aware of any result for
other classes of graphs.

If any two edges are allowed to cross each other at most twice, then there are
various realizations of the complete graph with each edge crossing Ω(n2) other
edges. E.g., take n points (vertices) on a short horizontal segment s and for any
two vertices a, b, connect a and b by an arc constructed as follows. Let U(a, b) be
the unit circle going through a and b and having the center above s. Then the
edge ab is drawn as the arc obtained from U(a, b) by removing the part below
the segment ab. Then any two edges with no common vertex cross once or twice.
A different example of such a drawing is described in [14]. In this paper we show
that the situation is different for simple topological (complete) graphs.

According to the so-called crossing lemma [1, 9], if T is a topological graph
with n vertices and e ≥ (3 + ε)n edges then its crossing number is at least
Ω(e3/n2), (i.e., it contains at least Ω(e3/n2) crossing pairs of edges). It follows
that if T is a topological complete graph then its crossing number is Ω(n4) (this
has also a quite easy direct proof). If T is simple then there are at most

(
n−2

2

)
=

O(n2) crossings on each edge. It follows that a simple topological complete graph
on n vertices contains Ω(n2) edges each of which crosses Ω(n2) other edges.

We study the existence of edges with (much) fewer than cn2 crossings. Let
us remark that in any rectilinear drawing of Kn the edges on the boundary of
the convex hull do not cross any other edge. On the other hand, Harborth and
Thürmann [8] found a simple topological complete graph in which each edge
crosses some other edges.

Let h = h(n) be the smallest integer such that every simple topological com-
plete graph on n vertices contains an edge crossing at most h other edges. Har-
borth and Thürmann [8] proved h(n) > (3

4 +o(1))n. Other related questions were
studied e.g. in [5, 6, 7, 16, 17]. It has been asked in the preliminary version of the
book [2] whether h(n) = O(n), and the final version of [2] contains a conjecture
that h(n) = o(n2). In this paper we show that h(n) grows much faster and we
also give the first subquadratic upper bound on h(n):

Theorem 1.
Ω(n3/2) ≤ h(n) ≤ O(n2/ log1/4 n).

We describe two essentially different constructions giving the lower bound.
We present both of them, since they may help in closing the gap between the
bounds given in Theorem 1. We conjecture that the lower bound is closer to
the asymptotic behavior of h(n) than the upper bound, and maybe even h(n) =
Θ(n3/2). We remark that our proof gives a reasonable constant involved in the
Ω−notation in the lower bound in Theorem 1. For simplicity of presentation, we
do not compute the constants.
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It is interesting that for other surfaces (torus, Klein bottle, real projective
plane) it is possible to find simple topological complete graphs with each edge
crossing Ω(n2) other edges. This is discussed in the last section of the paper.

Brass, Moser, and Pach [2] describe a connection between the function h(n)
and the maximum number of disjoint edges in a topological graph. They have
suggested the following greedy procedure: Select an edge intersecting the smallest
number of other edges, delete these edges, and repeat the procedure. The lower
bound in Theorem 1 indicates limits of this procedure in some cases. We remark
that finding many disjoint edges and various similar questions on topological
and geometric graphs have recently received a lot of attention, e.g. see [3, 4, 10,
11, 12, 13, 14, 15].

2 The Lower Bound

2.1 First Construction

Let S be the unit sphere in R3. Our topological complete graph giving the lower
bound in Theorem 1 will be drawn on S by choosing an appropriate set Pn of
n points on S and then connecting each pair of points of Pn by the shortest arc
contained in S. The points of Pn will be “well distributed” on S and in general
position, meaning that no two points of Pn are antipodal and no three points of
Pn lie on a common great circle of S.

The crucial requirement on Pn is the following condition:

(C) If d = d(Pn) denotes the minimum (Euclidean) distance of a pair of points
of Pn then for any point q ∈ S, the 1.1d-neighborhood of q contains a point
of Pn.

The set Pn is constructed as follows. First, we inductively construct n auxiliary
points a1, . . . , an. Choose a point a1 ∈ S arbitrarily. Now, let i ∈ {1, . . . , n − 1}
and suppose that a1, . . . , ai have already been selected. Then we choose ai+1 as
a point on S maximizing the quantity min{||a1 − ai+1||, ||a2 − ai+1||, . . . , ||ai −
ai+1||}. Clearly, we can slightly perturb the constructed set {a1, . . . , an} so that
the perturbed set, Pn, is in general position and satisfies condition (C).

Observe that (d =) d(Pn) = Θ(1/
√

n) follows from the following three facts by
a simple counting argument: (i) the area of S is Θ(1), (ii) the 1.1d-neighborhoods
of the points of Pn cover S, and (iii) the 0.49d-neighborhoods of the points of
Pn are pairwise disjoint.

Let T = Tn be the simple topological complete graph on S such that V (T ) =
Pn and that E(T ) consists of the shortest curves on S connecting the pairs of
vertices. We have to show that every edge in T crosses Ω(n3/2) other edges.

We use the notions equator, northern/southern hemisphere of S in the obvious
way. Clearly, for any two vertices a, b, the edge ab is a portion of the great circle
containing a, b. Thus, it suffices to show that if a portion I of a great circle of S
has length |I| = d then it is intersected by at least Ω(n3/2) edges of T . We may
suppose that I is a portion of the equator. We denote the end-points of I by s
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t

c

I

hemisphere
x

points pi

southern hemisphere

c
equator

northern

equator

S
A

C

s

Fig. 1. The region A (left) and the points pi (right)

and t. For a point x ∈ S not lying on the equator, the spherical triangle stx is
the region on S bounded by I and by the two shortest arcs contained in S and
joining x with the points s and t, respectively.

Let c be the mid-point of the arc I. We consider the region A on S of the points
x on the northern hemisphere such that ||x − c|| < 1

100 and that the spherical
triangle stx has the inner angles at s and t each at most 0.6π (see Figure 1).
The region A is bounded by I and by three arcs of length Θ(1). Clearly, its area
is Θ(1) and it contains Θ(n) points of Pn. It suffices to show that any point of
A ∩ Pn is an end-point of Ω(

√
n) edges intersecting I.

Let x ∈ A ∩ Pn. Consider the great circle C going through the points x
and c (see Figure 1). Since d = Θ(1/

√
n), it is possible to select Θ(

√
n) points

p1, p2, . . . , pt in the intersection of C with the southern hemisphere such that
1
10 < ||c − pi|| <

√
2 (for each i) and ||pi − pj || > 2.2d (for any i = j). In

general, the points pi do not lie in Pn. However, the 1.1d-neighborhood of each
pi contains a point p′i ∈ Pn. By the choice of the points pi, the points p′i are
pairwise distinct. It is not difficult to verify that each of the Θ(

√
n) edges xp′i

intersects the arc I. This completes the proof that any edge in T = Tn crosses
Ω(n3/2) other edges.

2.2 Second Construction

Our second construction giving the lower bound in Theorem 1 is only briefly
outlined in this extended abstract. We start with any fixed simple topological
complete graph T in which each edge has at least one crossing, e.g with the
drawing on Fig. 2. Let V (T ) = {v1, v2, . . . , vt}. Let n ≥ t and suppose for
simplicity that

√
n/t is an integer. We replace each vertex vi by a set Vi of n/t

vertices placed in a square lattice
√

n/t ×
√

n/t of a very small diameter. Any
two vertices in distinct sets Vi, Vj , i = j, will be connected by an edge contained
in a small neighborhood of the edge vivj of T . Let i ∈ {1, . . . , t} and suppose
that the edges in T incident to vi leave the vertex vi in a counterclockwise order
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Fig. 2. A simple topological complete graph on 8 vertices in which each edge crosses
another edge

vivj1 , vivj2 , . . . , vivjt−1 . In a small neighborhood of the convex hull of Vi we draw
the edges leaving from the vertices of Vi so that any edge connecting a vertex of Vi

with a vertex of Vj1 leaves the vertex of Vi along a vector parallel to some vector
(1, ε), where ε > 0 is very small (and different for different edges), and similarly
any edge connecting any vertex of Vi with a vertex of Vj2 , Vj3 , or Vj4 ∪ . . .∪Vjt−1

(respectively) leaves the vertex of Vi along a vector parallel to some vector (ε, 1),
(−1, ε), or (ε,−1) (respectively). This ensures that after a very tiny perturbation
of Vi and after connecting any two vertices of Vi by a straight-line segment, each
such segment (edge) will be intersected by at least

(√
n/t− 1

)
n/t = Θ(n3/2)

edges connecting vertices of Vi with the vertices of Vj1 ∪ Vj2 ∪ Vj3 ∪ Vj4 . It is
not too difficult to check that the whole construction can be done so that the
resulting drawing is a simple topological (complete) graph. Moreover, any edge
connecting vertices from distinct sets Vi, Vj has (n/t)2 = Θ(n2) crossings in
a small neighborhood of the point where the edge vivj crosses another edge
of the graph T . Thus the obtained topological graph gives the lower bound in
Theorem 1.

3 The Upper Bound

Topological graphs G, H are said to be weakly isomorphic, if there exists an inci-
dence preserving one-to-one correspondence between (V (G), E(G)) and (V (H),
E(H)) such that two edges of G intersect if and only if the corresponding two
edges of H do. Let Cm denote a complete convex geometric graph with m ver-
tices (note that all such graphs are weakly isomorphic to each other). A simple
topological complete graph with m vertices is called twisted and denoted by Tm,
if there exists a canonical ordering of its vertices v1, v2, . . . , vm such that for
every i < j and k < l two edges vivj , vkvl cross if and only if i < k < l < j or
k < i < j < l (see Figure 3). Figure 4 shows an equivalent drawing of Tm on the
cylindric surface. If G, H are topological graphs, we say that G contains H , if
G has a topological subgraph weakly isomorphic to H .
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C6 T6

v1 v2 v3 v4 v5 v6

Fig. 3. The convex geometric graph C6 and the twisted graph T6

v1 v2 v3 v4 v5 v6

v1 v2 v3 v4 v5 v6

Fig. 4. Drawing of the twisted graph T6 on the cylindric surface

In the proof of the upper bound, we will use the following asymmetric form
of the result of Pach, Solymosi and Tóth [13]:

Theorem 2. [13] There exists a c > 0 such that for all positive integers n, m1,

m2 satisfying m1m2 ≤ c log1/4 n every simple topological complete graph with n
vertices contains Cm1 or Tm2 .

We will use this theorem for m1 = c′ log1/4 n and m2 constant.
Now we prove two lemmas, the first one related to the complete geometric

graph Cm, the second one related to the twisted drawing T5.

Lemma 1. Let G be a simple topological complete graph with n vertices. If G
contains Cm, then there exists an edge in G which crosses at most 2n2/m other
edges.

Proof. Let H be a topological complete subgraph of G with m vertices weakly
isomorphic to Cm. H has a face F that is bounded by a non-crossing Hamiltonian
cycle C consisting of m edges. Without loss of generality, suppose that F is the
outer face of H . Then all edges of H lie inside the region bounded by the cycle
C. We denote this region by R.
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Claim. Let c be a simple continuous curve which starts and ends inside F , does
not go through any vertex of H and crosses each edge of H at most once. Then
c crosses at most two edges of the cycle C.

Proof. For contradiction, suppose that c crosses more than two edges of C. Then
the intersection of c with R consists of k ≥ 2 disjoint arcs c1, c2, . . . , ck (see
Figure 5). In the region R, the arcs c1, c2 separate two portions of C, denoted
by α, β, from each other (see Figure 5). Since c ⊇ c1 ∪ c2 intersects each edge of
C at most once, each of the arcs α, β contains a vertex of G. However, any edge
e connecting a vertex on α with a vertex on β intersects both c1 and c2. Thus,
it intersects c more than once — a contradiction.

Let c be an arbitrary edge of G and let k be the number of edges of C that
are crossed by c. First, we delete from c a small neighborhood of its end-points,
receiving a curve c′ that is disjoint with all vertices of H and crosses the same
edges as c does. If some of the end-points of c′ lies inside the region R, we delete
from c′ the initial part between the end-point and the first point a, at which c′

crosses C, including a small neighborhood of a. We receive a curve c′′ that has
both its end-points inside F and crosses at least k − 2 edges from C. By the
previous claim, c′′ crosses at most 2 edges from C, thus k ≤ 4.

G has less than n2

2 edges, thus there are at most 2n2 crossings between the
edges of G and the edges of C. By the pigeon-hole principle, among the m edges
of C there is an edge, which crosses at most 2n2/m edges of G.

Consider a simple topological complete graph H weakly isomorphic to the
twisted graph Tm with the canonical ordering v1, v2, . . . , vm of its vertices. The
face incident with the vertices vm−1 and vm only is called an outer face of H
(it coincides with the outer face of the drawing of Tm at Figure 3), similarly the
face incident with the vertices v1 and v2 only is called an inner face of H .

Lemma 2. Let H be a simple topological complete graph weakly isomorphic to
T5. There does not exist a simple continuous curve c, which crosses each edge
of H at most once, does not go through any vertex of H, begins and ends inside
the outer face of H and intersects the inner face of H.

Proof. Let v1, v2, . . . , v5 be the canonical ordering of the vertices of H . Consider
a Hamiltonian cycle H5, which is a subgraph of H with the edge set E(H5) =

c1

c2

c1

c2

c3
c4

α

β

c
c

c

c e

c

Fig. 5. The arcs ci (left) and the arcs α, β (right)
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{v1v2, v2v3, v3v4, v4v5, v5v1}. Let F1, F2, F3, F4 be the four faces of H5 such that
F1 is incident with the vertices v1 and v2 only and Fi borders with Fi+1, i = 1, 2, 3
(see Figure 6). Note that F1 (F4) is the inner (outer) face of H and that Fi does
not border with Fj if |i − j| ≥ 2.

For contradiction, suppose that there exists a simple continuous curve c start-
ing and ending inside F4 and passing through F1, avoiding all vertices of H and
crossing each edge of H at most once. Choose a point p ∈ c∩F1. By the previous
observation, between the starting point and p, c has to pass through the faces F2
and F3, so it must cross at least three edges of H5. Similarly, c crosses at least
three edges of H5 between the point p and its end-point. But H5 has only five
edges, thus at least one of them is crossed by c more than once, a contradiction.

v1 v2 v3 v4 v5

v1 v2 v3 v4 v5

F1 F2 F3 F4

c

p

Fig. 6. The graph H5 and a curve c with six crossings

The following theorem gives the upper bound in Theorem 1.

Theorem 3. There exists a c > 0 such that in every simple topological complete
graph with n vertices there exists an edge that crosses at most cn2/ log1/4 n other
edges.

Proof. Let G be a simple topological complete graph with n vertices. By Theo-
rem 2, every induced subgraph of G with at least n1/8 vertices contains T20 or
C c′

2 log1/4 n. If G contains C c′
2 log1/4 n then, by Lemma 1, G has an edge which

crosses at most 4
c′ n

2/ log1/4 n other edges. For the rest of the proof, suppose that
G does not contain C c′

2 log1/4 n, thus every induced subgraph of G with at least

n1/8 vertices contains T20.
Let T 1

20 be a complete subgraph of G with 20 vertices weakly isomorphic
to T20 and let v1

1 , v1
2 , . . . , v

1
20 be a canonical ordering of its vertices. Consider

a graph H1 with the vertex set V (H1) = V (T 1
20) and the edge set E(H1) =

{v1
1v

1
2 , v

1
2v1

3 , . . . , v
1
19v

1
20, v

1
1v

1
5 , v1

6v
1
10} (see Figure 7). Denote the faces of H1 as

F 1
1 , F 1

2 , . . . , F 1
7 such that F 1

1 is the inner face of T 1
20, F 1

7 contains the outer face
of T 1

20 and F 1
i borders with F 1

i+1, i = 1, 2, . . . , 6 (as on the Figure 7).
Applying Lemma 2 on the twisted induced subgraph of T 1

20 with the vertices
v1
1 , v

1
2 , . . . , v1

5 we get that every edge of G, which crosses v1
1v1

2 , has at least one
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v1
1 v1

2 v1
3 v1

4 v1
5 v1

10 v1
11v1

6

F 1
1 F 1

2 F 1
3 F 1

4 F 1
5 F 1

6 F 1
7

v1
1 v1

2 v1
3 v1

4 v1
5 v1

10 v1
11v1

6

v1
20

v1
20

Fig. 7. The graph H1 and its seven faces

end-point in the set A1 = F 1
1 ∪ F 1

2 ∪ F 1
3 ∪ {v1

3 , v
1
4 , v1

5}. Denote a1 = |A1 ∩
V (G)|. If a1 < n1/8, then there are at most n · n1/8 = n9/8 edges with one
end-point in A1, thus at most n9/8 edges cross the edge v1

1v1
2 . In the other

case, the complete subgraph of G induced by the set A1 ∩ V (G) has a subgraph
T 2

20 weakly isomorphic to T20. Consider a twisted subgraph H of T 1
20 induced

by the vertices v1
10, v

1
9 , v

1
8 , v1

7 , v
1
6 (in this canonical ordering). Every edge of T 2

20
has both its end-points inside the outer face of H , so it cannot intersect the
inner face of H (by Lemma 2). This yields that all edges of T 2

20 lie in the set
B1 = F 1

1 ∪F 1
2 ∪ . . .∪F 1

6 ∪ {v1
3 , v

1
4 , . . . , v1

10}. Denote b1 = |B1 ∩ V (G)|. Note that
A1 ⊆ B1, thus a1 ≤ b1. It follows that at most one face of the graph T 2

20 does
not lie in B1. So we can choose a canonical ordering v2

1 , v
2
2 , . . . , v

2
20 of the vertices

of T 2
20 such that the faces F 2

1 , F 2
2 , . . . , F 2

6 of the graph H2 (defined analogically
as H1 and its faces F 1

i ) lie in B1. We define sets A2, B2 and numbers a2, b2

analogically as A1, B1, a1, b1. B2 is a proper subset of B1, since all vertices of
T 2

20 and faces F 2
1 , F 2

2 , . . . , F 2
6 are contained in B1, but, for example, vertex v2

11
does not lie in B2. It yields that b2 < b1. If a2 ≥ n1/8, then there exists a twisted
complete subgraph T 3

20 of G induced by some 20 vertices of the set A2 ∩ V (G).
Further we proceed by induction, similarly as above. In the i-th step, assuming
that ai−1 ≥ n1/8, we find a twisted complete subgraph T i

20 of G with 20 vertices
and define two integers ai, bi satisfying 0 ≤ ai ≤ bi < bi−i. After finitely many
steps, we get a number ai, which is less than n1/8. It means that the edge vi

1v
i
2

in the graph T i
20 is crossed by less than n9/8 < n2/ log1/4 n other edges of G.

4 Other Surfaces

Here we show that an analogue of the function h(n) is quadratic for the torus
and for the Klein bottle1:

1 The same result for the projective plane has been recently found by Attila Pór (per-
sonal communication). We describe Pór’s construction at the end of this section.
Since any drawing of a finite graph on the projective plane can be easily trans-
formed to a drawing on the Klein bottle, Pór’s construction can be used to obtain
an alternative proof of Proposition 1 for the Klein bottle.
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Proposition 1. On the torus and on the Klein bottle, there exists a simple
topological complete graph with each edge having at least cn2 crossings.

Proof. Consider a rectangle from which, after gluing its opposite sides, we get
a torus. Place the vertices v1, v2, . . . vn along its upper and lower side in this
order. We draw the edges the following way: if j − i mod n ≤ �n−1

2 �, or if
j − i mod n = n

2 and i ≤ n
2 , we represent the edge vivj as a segment starting

at the upper vertex vi, directing down and to the right, possibly leaving the
rectangle on the right-hand side and entering on the left-hand side and ending
at the lower vertex vj . At Figure 8, you can see the representation of the edges
incident to one vertex. It is clear that in this drawing each two edges intersect
at most once and that every edge crosses at least cn2 other edges.

vi vi+1

vi−�n
2 �

vi+�n−1
2 �

vi−1 vi

Fig. 8. Edges incident to the vertex vi in the drawing of Kn on the torus

v1

v�n
2 � vnv1 v�n

2 �+1

v�n
2 �+1 vnv�n

2 �

S1

S2
S3

A B

S1
S2

Fig. 9. Drawing of Kn on the Klein bottle

For the drawing on the Klein bottle, divide the vertices into two sets A =
{v1, v2, . . . , v�n

2 �} and B = {v�n
2 �+1, . . . , vn} and place all the edges into three

strips S1, S2, S3. S1 contains all edges among the vertices of A, S2 contains all
edges among the vertices of B, and S3 all edges between A and B (see Figure 9).
Clearly, we can draw the edges such that no two of them intersect more than
once. It is not difficult to verify that each edge crosses at least cn2 other edges.
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We now describe Attila Pór’s construction of a simple topological complete
graph on n vertices with each edge intersecting at least Ω(n2) other edges. The
projective plane can be obtained by adding a line at infinity to the real plane.
We place the vertices of the constructed topological graph in the vertices of
a regular n-gon P . Any two vertices are connected by the portion of the line
through the two vertices outside of the polygon P . It is easy to see that any
edge is intersected by Ω(n2) other edges.
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On Balloon Drawings of Rooted Trees
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Taipei, Taiwan 106, ROC
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Abstract. Among various styles of tree drawing, balloon drawing, where
each subtree is enclosed in a circle, enjoys a desirable feature of displaying
tree structures in a rather balanced fashion. We first design an efficient
algorithm to optimize angular resolution and aspect ratio for the balloon
drawing of rooted unordered trees. For the case of ordered trees for which
the center of the enclosing circle of a subtree need not coincide with
the root of the subtree, flipping the drawing of a subtree (along the
axis from the parent to the root of the subtree) might change both the
aspect ratio and the angular resolution of the drawing. We show that
optimizing the angular resolution as well as the aspect ratio with respect
to this type of rooted ordered trees is reducible to the perfect matching
problem for bipartite graphs, which is solvable in polynomial time. Aside
from studying balloon drawing from an algorithmic viewpoint, we also
propose a local magnetic spring model for producing dynamic balloon
drawings with applications to the drawings of galaxy systems, H-trees,
and sparse graphs, which are of practical interest.

1 Introduction

Since the majority of algorithms for drawing rooted trees take linear time, rooted
tree structures are suited to be used in an environment in which real-time in-
teractions with users are frequent. Among existing algorithms in the literature
for drawing rooted trees, triangular tree drawing [8], radial or hyperbolic draw-
ing [5], and balloon drawing [1, 3, 6] with respect to cone trees [9] are popular
for visualizing hierarchical graphs. Our concern in this paper is a balloon draw-
ing of a rooted tree which is a drawing having the following properties: (1) all
the children under the same parent are placed on the circumference of the cir-
cle centered at their parent, (2) there exist no edge crossings in the drawing,
and (3) with respect to the root, the deeper an edge is, the shorter its drawing
length becomes.

Each subtree in the balloon drawing of a tree is enclosed entirely in a circle,
which resides in a wedge whose end-point is the parent node of the subtree. The
radius of each circle is proportional to the number of descendants associated
with the root node of the subtree. The ray from the parent to the root of the
subtree divides the wedge into two sub-wedges. Depending on whether the two
sub-wedge angles are required to be identical or not, a balloon drawing can
� Corresponding author. Supported in part by NSC Grant 94-2213-E-002-086, Taiwan.

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 285–296, 2005.
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Fig. 1. (a) and (b) illustrate balloon drawings. (c) and (d) illustrate the SNS model.
Note that in (c), node O is not the root, and the edge between O and its parent goes
through a circle with radius Rmin; (d) is a star graph centered at c0.

further be divided into two types: drawings with even angles (see Figure 1(a))
and drawing with uneven angles (see Figure 1(b)).

The main aesthetic criteria on balloon drawing are angular resolution and
aspect ratio. Angular resolution refers to the smallest angle between two adjacent
edges incident to the common node in straight-line drawing, whereas aspect ratio
is defined as the ratio of the largest angle to the smallest angle formed by two
adjacent edges incident to the common node in straight-line drawing. A tree
layout with a small aspect ratio often enjoys a very balanced view of a tree.

It is not hard to observe that with respect to a rooted unordered tree, changing
the order in which the children of a node are listed affects the angular resolution
as well as the aspect ratio of the drawing. Hence an interesting question arises:
How to find an embedding of a rooted unordered tree such that the balloon drawing
of the tree (of the even angle type) has the maximum angular resolution and the
minimum aspect ratio? In the first part of this paper, we demonstrate an efficient
algorithm which is guaranteed to yield an optimal balloon drawing in terms of
(maximum) angular resolution and (minimum) aspect ratio.

Now consider the case of the uneven angle type. Allowing uneven angles in-
troduces another dimension of flexibility as far as optimizing angular resolution
and aspect ratio is concerned. Even if the embedding (ordering) of a tree is given,
flipping the drawing of a subtree along the axis going through the parent and
the root of the subtree might change the angular resolution and the aspect ratio
of the drawing. Notice in the uneven angle case, the angles on the two sides of
the axis might not be equal. A related question is: How to flip uneven angles in
the balloon drawing of a rooted ordered tree to achieve optimality in angular res-
olution and aspect ratio? Notice in the above, the embedding of the underlying
tree is fixed. As it turns out, we are able to reduce the above problem to that of
perfect matching of bipartite graphs, which admits a polynomial time solution.

Aside from the above two algorithmic issues related to balloon drawing, the
second part of this paper deals with the design and implementation of a force-
directed method (see, e.g., [2, 11]) to provide dynamic balloon drawings. Scalabil-
ity, interactivability, and predictability make dynamic drawing interesting and
important in the issues arising from many applications of information visualiza-
tion. More details about our approach will be given in Section 5.

(a) (b)

r

Rj
Rj-1

O

vparent
(c) (d)

R1

Rj+1

RO 1

j

c0

free_arc

r

Rmin

’i
i

li

li-1

slice ici

free_arc



On Balloon Drawings of Rooted Trees 287

2 Preliminaries

A tree is a connected acyclic graph. A rooted tree where the order of the subtrees
is significant and fixed is called an ordered tree; otherwise, it’s called unordered.
A star graph with n+1 nodes is a rooted tree in which the root node is of degree
n and the others are of degree one. Given a drawing of graph G, the angular
resolution at node v refers to the smallest angle formed by two adjacent edges
incident to the common node v in the drawing of G. The angular resolution of a
drawing of G is defined as the minimum angular resolution among all nodes in
G. The aspect ratio of a drawing of G is the ratio of the largest angular resolution
to the smallest angular resolution in the drawing. The angular resolution (resp.,
aspect ratio) of a graph is in the range of (0◦, 360◦) (resp., [1,∞)).

There exist two models in the literature for generating balloon drawings of
trees. Given a node v, let r(v) be the radius of the drawing circle centered at v.
If we require that r(v) = r(w) for arbitrary two nodes v and w that are of the
same depth from the root of the tree, then such a drawing is called a balloon
drawing under the fractal model [4]. Under this model, if rm and rm−1 are the
lengths of edges at depths m and m − 1, respectively, then

rm = γ × rm−1 (1)

where γ is the predefined ratio (0 < γ < 1) associated with the fractal drawing.
Unlike the fractal model, the subtree with nonuniform sizes (abbreviated as

SNS) model [1, 3] allows subtrees associated with the same parent to reside in
circles of different sizes, and hence, the drawing based on this model often results
in a clearer display on large subtrees than that under the fractal model.

Theorem 1 (see [1, 3]). Given a rooted ordered tree T with n nodes, a balloon
drawing under the SNS model can be obtained in O(n) time in a bottom-up
fashion with the edge length and the angle between two adjacent edges according
to equations (2) and (3) respectively:

r = C/(2π) ∼= (2
∑

j
Rj)/(2π) (2)

θj
∼= (Rj−1 + free arc + Rj)/r (3)

(see Figure 1(c)(d)) where r is the radius of the inner circle centered at node O;
C is the circumference of the inner circle; Rj is the radius of the outer circle
enclosing all subtrees of the j-th child of O, and RO is the radius of the outer
circle enclosing all subtrees of O; since there exist the gap between C and the sum
of all diameters in Equation (2), we can distribute to every θj the gap between
them evenly, denoted by free arc.

Note that the trees considered in [1, 3] are ordered. Since all the angles incident
to a common node are the same in the fractal model, changing the ordering of
the subtrees of a node at any level does not affect the angular resolution (nor
the aspect ratio). Under the SNS model, however, the ordering of subtrees is
critical as far as angular resolution and aspect ratio are concerned. Our goal is
to devise an algorithm for optimizing the angular resolution and aspect ratio of
the balloon drawing of a rooted unordered tree (under the SNS model).
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3 Balloon Drawings with Even Angles

First, consider the following way of drawing a star graph with circles of nonuni-
form size attached to the children of the root (see Figure 1(d) for an example).

Definition 1. The balloon drawing of a star graph with children of nonuniform
size is a drawing in which
1. circles associated with different children of the root do not overlap, and
2. all the children of the root are placed on the circumference of a circle centered

at the root.

Let S be a star graph with n + 1 nodes {c0, c1, ..., cn}, where c0 is the root.
It can easily be seen from Figure 1(d) that, in a balloon drawing of S, the
circle centered at the root is divided into n wedges (or slices) each of which
accommodates a circle associated with a child of c0. Let δi (resp., δ′i) be the
angle between rays −−→

li−1 and −−→c0ci (resp., −→li and −−→c0ci). The balloon drawing is
said to be of even angle if δi = δ′i, for all 1 ≤ i ≤ n. That is, −−→c0ci divides the
respective wedge into two equal sub-wedges; otherwise the drawing is said to be
of uneven angle. In this section, we only consider balloon drawings of even angle.
More will be said about the uneven angle case in Section 4.

Let θi, 1 ≤ i ≤ n, be the degree of the wedge angle enclosing the circle
centered at node ci. (In Figure 1(d) θi = δi + δ′i = 2δi, assuming the even angle
case.) An ordering of the children of c0 is simply a permutation σ of {1, ..., n},
which specifies the placements of nodes c1, ..., cn (and their associated circles)
along the circumference of the circle centered at c0 in the balloon drawing. More
precisely, the children are drawn in the order of cσ1 , cσ2 , ..., cσn , in which cσi and
cσi⊕1 , 1 ≤ i ≤ n, are neighboring nodes. 1 With respect to σ, the degree of the
angle between −−→c0ci and −−−−→c0ci⊕1 is (θσi + θσi⊕1)/2. Hence, the angular resolution
(denoted by AngReslσ) and the aspect ratio (denoted by AspRatioσ) are

AngReslσ = min
1≤i≤n

{
θσi + θσi⊕1

2
}, AspRatioσ = {

max1≤i≤n{
θσi

+θσi⊕1
2 }

min1≤i≤n{
θσi

+θσi⊕1
2 }

}. (4)

Let Σ be the set of all permutations of {1, ..., n}. In what follows, we shall design
an efficient algorithm to find a permutation that returns

optAngResl = max
σ∈Σ

{AngReslσ} and optAspRatio = min
σ∈Σ

{AspRatioσ}.

The optAngResl is said to involve degrees of angles θσi and θσi⊕1 if i is the value
minimizing AngReslσ of Equation (4) w. r. t. the optimal permutation σ.

For notational convenience, we order the set of wedge angles θ1, ..., θn in as-
cending order as either

m1, m2, ..., mk−1, mk, Mk, Mk−1, ..., M2, M1 if n is even, (5)

or m1, m2, ..., mk−1, mk, mid, Mk, Mk−1, ..., M2, M1 if n is odd, (6)
for some k where mi (resp. Mi) is the i-th minimum (resp. maximum) among
all, and mid is the median if n is odd. We define αij = (Mi +mj)/2, 1 ≤ i, j ≤ k.
1 i ⊕ 1 denotes (i mod n) + 1.
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Procedure 1. OptBalloonDrawing
Input: a star graph S with n child nodes of nonuniform size.
Output: a balloon drawing of S optimizing angular resolution and aspect ratio.

– Sort the set of degrees of the wedge angles (accommodating the n nonuniform
circles) into ascending order as mentioned in Equations (5) and (6).
– Output a drawing witnessed by the following circular permutation:
(M1, m2, M3, m4, ..., μ, (, mid), ν, ..., M4, m3, M2, m1)
where {μ, ν} = {Mk, mk} whose values depends on whether n = 2k or 2k + 1 and
whether k is odd or even. Note that M1 and m1 are adjacent.

Recall from Figure 1(c) that, the drawing of the subtree rooted at node O is
enclosed in a circle centered at O. By abstracting out the details of each of the
subtrees associated with the children of O, the balloon drawing of the subtree
at O can always be viewed as a balloon drawing of a star graph with children
of nonuniform size rooted at O, regardless of the depth at which O resides. In
addition, even if we alter the ordering of the children of O, the size of the outer
circle bounding all the children of O remains the same; hence, the optimization
of each of the subtrees at depth k does not affect the optimization of their parent
at depth k − 1. In view of the above, optimizing the angular resolution and the
aspect ratio of a balloon drawing of a rooted unordered tree can be carried out
in a bottom-up fashion. So, it suffices to investigate how to optimize the angular
resolution and the aspect ratio of balloon drawing with respect to star graphs.

Theorem 2. Procedure 1 achieves optimality in angular resolution as well as
in aspect ratio for star graphs.

Proof. (Sketch) In what follows, we only consider the case

σ = (M1, m2, M3, m4, ..., Mk−1, mk, mid, Mk, mk−1, ..., M4, m3, M2, m1)

i.e., n = 2k + 1 and k is odd, and assuming that degrees are all distinct; the
remaining cases are similar (in fact, simpler).

Recall that αij = Mi+mj

2 . One can easily see the following properties of σ:

Property (1). For each i ∈ {2, ..., k}, the angles of degree (mid + mk)/2,
α(i−1)i = (Mi−1 + mi)/2, (Mk + mid)/2, and αi(i−1) = (Mi + mi−1)/2
are included in σ;

Property (2). The minimum degree of σ must be (mid + mk)/2 or αj(j−1),
while the maximum degree of σ must be (Mk + mid)/2 or α(l−1)l for some
j, l ∈ {2, ..., k}.

The reason behind Property (2) is that all the angles consecutively appearing in
σ have the following ordering relationship:

α12 > α32 < α34 > ... > αj(j−1) < ... < α(l−1)l > ... > αk(k−1) < (Mk + mid)/2
> (mid + mk)/2 < α(k−1)k > ... > α43 < α23 > α21 < (M1 + m1)/2 < α12.
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Suppose δ is the permutation that witnesses optAngResl. ¿From Property (2),
the minimum angular resolution of σ must be either αi,i−1, for some 2 ≤ i ≤ k,
or (mid + mk)/2. In what follows, we only need to consider the case when the
minimum angular resolution of σ is αi,i−1; the other case can be proved similarly.

Now if Mi is a neighbor of mi−1 in δ (the optimal permutation), then δ and σ
have the same angular resolution and optAngResl = αi,i−1 because, otherwise,

– if optAngResl < αi,i−1 (which is the angular resolution of σ), then this
contradicts that δ is optimal.

– if optAngResl > αi,i−1, then this’s impossible because δ has an angle of
degree αi,i−1 = (Mi + mi−1)/2.

Hence, σ is optimal as well.
On the other hand, suppose x and y (x < y) are the two neighbors of mi−1 in

δ and neither one is Mi, then both x and y must be greater than Mi; otherwise,
the angular resolution of δ is smaller than (Mi + mi−1)/2 – contradicting δ
being optimal. Also note that optAngResl ≥ (mi−1 + x)/2. Now if we look at a
partition of the set of wedge angles of S as follows:

m1 < ...︸ ︷︷ ︸ < mi−1 < ...︸︷︷︸ < Mi < ... < x < ... < y < ... < M1︸ ︷︷ ︸ .
RA RB RC

(7)

RA contains i − 2 elements, which must be connected to at least i − 1 elements
of RC ; otherwise, the angular resolution in δ becomes less than (Mi +mi−1)/2 –
a contradiction. RC originally contains i− 1 elements. However, x and y are the
two neighbors of mi−1 – meaning that together with mi−1 they are tied together
and cannot be separated. So effectively only ‘i−2’ elements of RC can fill the i−1
neighbors of RA – which is not possible. We have a contradiction. What the above
shows is that in the optimal permutation δ, a neighbor of mi−1 is Mi. Hence,
the angular resolution of δ is ≤ (Mi + mi−1)/2. Since δ witnesses optAngResl,
optAngResl = (Mi + mi−1)/2, meaning that σ also produces optAngResl.

The above implies that optAngResl must be either (mid + mk)/2 or αi(i−1)
for some i ∈ {2, ..., k}, which is always included in the circular permutation σ
produced by Procedure 1. Similarly, we can prove that the minimum degree of
the largest angle of any drawing must be (Mk + mid)/2 or α(j−1)j for some
j ∈ {2, ..., k}, which is also always in σ. Since σ simultaneously possesses both
the maximum degree of the smallest angle and the minimum degree of the largest
angle of any drawing, σ also witnesses the optimum aspect ratio. ��

Using Procedure 1, the drawing of a rooted unordered tree which achieves
optimality in angular resolution and aspect ratio can be constructed efficiently
in a bottom-up fashion.

Finally, in order to give a sense perception on the advantages of our algorithm,
we implement the algorithm and give a simple experimental result shown in
Figure 2. The drawing in (a) based on the fractal model displays that the degrees
of angles spanned by adjacent edges are identical, and hence has the best angular
resolution and aspect ratio. The major drawback of fractal drawing, as seen
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(a) using fractal model. (b) using SNS model,
    assuming an ordered tree.

(c) using our method,
    assuming an unordered tree.
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Fig. 2. An experimental result. (The above is its statistics.)

in (a), is that visibility deteriorates considerably as we move towards deeper
subtrees of complicated structures. For observing more complicated subtrees
clearer and easier, one may apply the SNS model (with respect to an ordered
tree) to yield (b). (Note that (b) has the same ordering as that in(a).) To a certain
extent, the SNS model sacrifices the angular resolution and the aspect ratio in
order to gain better visibility for displaying complicated subtree structures. If
the ordering of subtrees is allowed to be altered, our optimization algorithm has
the ability to optimize the angular resolution and the aspect ratio under the SNS
model on the balloon drawing of the rooted unordered tree, as shown in (c).

4 Balloon Drawings with Uneven Angles

The area of a balloon drawing can be measured by the size of the circle enclosing
the drawing. Minimizing the area of a drawing is an important issue because any
drawing needs to be rendered on a limited region. A careful examination of the
approach investigated in Section 3 suggests that the area of balloon drawing
generated by the SNS model may not be minimal. Part of the reason is the
involvement of the so-called free arc described in Theorem 1 and Figure 1(d),
serving for the purpose of separating the enclosing circles of two neighboring
subtrees. A more subtle point regarding the ‘waste’ of drawing space is illustrated
in Figure 3, in which (a) shows the drawing of a tree under the SNS model. Let
Tv be the subtree rooted at v. Based on the approach discussed in Section 3,
Tv resides in a circle centered at v and the circle included in a wedge in which
the ray from O to v cuts the wedge into two sub-wedges of identical size (i.e.,
θ1 = θ2). By limiting the drawing to the area formed by two lines (see t1 and t2
in (a)) tangent to the outer circle of children of v, the drawing area is reduced,
i.e., the new wedge (in which the drawing of Tv resides) is now spanned by lines
t1 and t2 with the degree of the wedge angle equals θ3 +θ4. Furthermore, the ray−→
Ov cuts this new wedge into two possibly uneven parts (i.e., θ3 need not be equal
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Fig. 3. Immediate step of minimizing area where each shaded circle is a star graph

to θ4). Allowing uneven angles tends to release extra space between the drawings
of neighboring subtrees, in comparison with the case discussed in Section 3 when
only even angles are permitted. The presence of such extra space allows us to
move the position of each subtree inwards (i.e., towards the root node O) which,
in turn, reduces the drawing area as (b) shows. The drawing area can further
be reduced by shrinking the free arc on the bottom of (b). The final drawing is
shown in (c) which obviously has a smaller drawing area (compared with (a)).
However, angular resolution and aspect ratio might deteriorate as (c) indicates.

It’s interesting to observe that in Figure 3(c) the angular resolution and the
aspect ratio might change if we flip the drawing of subtree Tv along the axis −→Ov
(i.e., swapping θ5 and θ6). Hence, a natural question is to determine how the
two possibly uneven angles associated with a subtree are arranged in order to
achieve optimal aspect ratio and angular resolution, assuming the ordering of
subtrees in the drawing is fixed. Such a question can be formulated as follows.

Suppose O is the root of a star graph with n subtrees rooted at A1, ..., An

which are listed in a counterclockwise fashion. Suppose the degrees of the two
angles associated with subtree Ai (1 ≤ i ≤ n) are a0

i and a1
i . Then the sequence

of degrees encountered along the circle centered at O can be expressed as:

{at1
1 , a

t′
1

1︸ ︷︷ ︸, at2
2 , a

t′
2

2︸ ︷︷ ︸, ..., ati

i , a
t′
i

i︸ ︷︷ ︸, ..., atn
n , a

t′
n

n︸ ︷︷ ︸}
A1 A2 ... Ai ... An,

(8)

where ti, t
′
i ∈ {0, 1} and ti + t′i = 1. With respect to the above, the angular

resolution and the aspect ratio can be calculated as follows respectively:

AngResl = min
1≤i≤n

{at′
i

i + a
ti⊕1
i⊕1 }, AspRatio =

max1≤i≤n{at′
i

i + a
ti⊕1
i⊕1 }

min1≤i≤n{a
t′
i

i + a
ti⊕1
i⊕1 }

. (9)

The problem then boils down to assigning 0 and 1 to ti and t′i (1 ≤ i ≤ n) in
order to optimize AngResl and AspRatio. Note that the two values (either ((0,
1) or (1, 0)) of (ti, t′i) correspond to the two configurations of the drawing of the
subtree associated with Ai and one is obtained from the other by flipping along
the axis −−→

OAi. Consider the following problems:

v

(a) Original drawing (b) (c)
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The Aspect Ratio (resp., Angular Resolution) Problem : Given the
initial drawing of a star graph (with uneven angles) specified by Equation
(8) and a real number r, determining the assignments (0 or 1) for ti and t′i
(1 ≤ i ≤ n) so that AspRatio ≤ r (resp., AngResl ≥ r); return false if no
such assignments exist.

In what follows, we show how the above two problems can be reduced to
perfect matching for bipartite graphs. A matching M on a graph G is a set of
edges of G such that any two edges in M shares no common node. A maximum
matching of G is a matching of the maximum cardinality. The largest possible
matching on a graph with n nodes consists of n/2 edges, and such a matching is
called a perfect matching. It is known that the maximum matching problem for
bipartite graphs with n nodes and m edges can be found in O(

√
mn) time [7].

Theorem 3. Both the Aspect Ratio Problem and the Angular Resolut-
ion Problem can be solved in O(n2.5) time.

Proof. (Sketch) We consider the Aspect Ratio Problem first. Let r be the bound
of the desired aspect ratio. Suppose the set of wedge angles of the star graph is
specified as

{b1, b
′
1︸ ︷︷ ︸, b2, b

′
2︸ ︷︷ ︸, ..., bi, b

′
i︸︷︷︸, ..., bn, b′n︸ ︷︷ ︸}

A1 A2 ... Ai ... An.
(10)

Notice that bi and b′i are the degrees of the two angles associated with the wedge
in which the drawing of the subtree rooted at Ai resides. bi (b′i) can be the
neighbor of one of bi−1, b′i−1, bi+1, and b′i+1, depending on where Ai−1, Ai and
Ai+1 are positioned in the drawing. (For instance, if bi is paired with b′i+1, the
angle between −−→

OAi and −−−−→
OAi+1 becomes bi + b′i+1.) As a result, to determine

whether it is feasible to realize a drawing for which the aspect ratio is less than
or equal to r, our algorithm iteratively selects a pair (x, y) where x ∈ {bi, b

′
i} and

y ∈ {bi⊕1, b
′
i⊕1} so that x + y is assumed to be the ‘smallest’ angle in a drawing

respecting the aspect ratio r, if such a drawing exists. Then a bipartite graph
G(x,y) is constructed in such a way that a drawing respecting the aspect ratio r
exists iff G(x,y) has a perfect matching.

To better understand the algorithm, consider the case when (x, y)= (b1, b
′
n).

Let φ = b1 + b′n. G(b1,b′
n) (=((U, W ), E), where U ∪ W is the set of nodes and

U ∩ W = ∅) is constructed as follows (assuming n = 2k):

(a) n = 2 k. (b) n = 2 k + 1.
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Fig. 4. Illustration of modelling. The nodes with odd (resp. even) index are placed on
the upper (resp. lower) level.
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(1) U = {b2i−1, b
′
2i−1; ∀i ∈ {1, ..., k}}−{b1}; W = {b2i, b

′
2i; ∀i ∈ {1, ..., k}}−{b′2k}

(2) Note that (b1, b
′
2k) is the only edge involving b1 and b′2k, so needs not be

considered in computation.
(i) For each i ∈ {2, 3, ..., k − 1}, (s, t) ∈ E, where s ∈ {b2i−1, b

′
2i−1} and t ∈

{b2i−2, b
′
2i−2, b2i, b

′
2i}, if φ ≤ (s + t) ≤ r · φ, meaning that placing s next

to t (inducing an angle of degree s + t) respects the aspect ratio, as well
as φ being the smallest among all the angles in the drawing.

(ii) (b′1, t) ∈ E, where t ∈ {b2, b
′
2}, if φ ≤ (b′1 + t) ≤ r · φ.

(iii) (s, t) ∈ E, where s ∈ {b2k−1, b
′
2k−1} and t ∈ {b2k−2, b

′
2k−2, b2k}, if φ ≤

(s + t) ≤ r · φ.

See Figure 4(a) for the structure of bipartite graph G(b1,b′
n) for the case n = 2k.

The case n = 2k+1 is similar (see Figure 4(b)). It is reasonably easy to see that
G(b1,b′

n) has a perfect matching iff there exists a drawing for which AngResl =
b1 + b′n, and AspRatio ≤ r. By repeatedly selecting a pair (x, y), x ∈ {bi, b

′
i} and

y ∈ {bi⊕1, b
′
i⊕1}, as the one that contributes to AngResl (i.e., the smallest angle),

whether a drawing with an aspect ratio ≤ r exists or not can be determined.
As for the executing time, since every node in the bipartite graph is adjacent

to at most four edges, the number of G(x,y) needed to be considered is O(n). For a
given m-edge n-node bipartite graph, the perfect matching problem can be solved
in O(

√
mn). Hence, the Aspect Ratio Problem can be solved in O(n × √

nn) =
O(n2.5) time. The solution for the Angular Resolution Problem can be performed
along a similar line of the proof for the Aspect Ratio Problem. ��

5 Local Magnetic Spring Model

Like [11], our local magnetic spring model replaces all edges by local magnetized
springs and assumes that each node is placed at the center of a local polar
magnetic field, which can be viewed as a set of vectors radical from the node.
Each angle formed by two adjacent radial vectors of the same node is set evenly
(resp. according to Equation (3)) if the fractal (resp. SNS) model is applied. So
each edge (magnet) is affected by a magnetic torque if it does not align properly
in its corresponding magnetic field. From [2, 11], the spring forces acted at each
node v and the magnetic torque of v taking v’s parent, say p(v), as the reference
point of the torque can be calculated respectively according to Fs = cs log(d/r)
and τ = cτθα, where cs, cτ , and α are constants, d is the current length of the
spring, r is the natural length of the spring calculated according to Equation
(2) (resp. Equation (1)) if the SNS (resp. fractal) model is applied, and θ is the
angle formed between the edge vp(v) and its corresponding magnetic field. After
setting each spring natural length and the orientation of each magnetic field, our
algorithm can output the balloon drawing of a tree automatically (see also an
example in Figure 5).

Based on the above theory, we develop a prototype system for dynamic bal-
loon drawing of trees, running on a Pentium IV 3.2GHz PC. A tree with 200,000
nodes has been executed efficiently (about 0.5 sec per iteration), so it’s satisfac-
tory even in a real-time environment. Figure 6 (a), a random drawing, displays
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Fig. 5. Illustration of our approach. (a) Initial drawing. (b) Local springs. (c) Spring
force equilibrium. (d) Local polar magnetic fields. (e) Magnetic torque equilibrium. (f)
Final drawing. Notice that, in fact, (b) and (d) are applied synchronously in our model.

(a) Initial drawing (c) Fractal model(b) SNS modelAfter 5 iterations. After 15 iterations.

Fig. 6. An incomplete tree with 1,111 nodes, maximum degree 10, and depth 4. (b)
runs 99 iterations and costs 0.110 sec. (c) runs 102 iterations and costs 0.109 sec.

(c) Galaxy system. (d) H-tree. 
vparent

(b) Illustration of some galaxy(subtree).

Rmax [2]

Rmax,O

Rmax [0]

Rmax [1]

O(a) Change focus vertex (root) of the sparse graph
     with spanning tree colored  black.

rootroot

change focus
to reduce crossings

Fig. 7. Applications

the initial drawing of a tree as the input to our algorithm. As our algorithm
progresses, we are able to observe how the evolvement of the drawing preserves
the predictability as the frames between (a) and (b) indicate. It’s desirable for
the dynamic balloon drawing system to offer a capability allowing the user to
interact with and/or navigate through the tree effectively. Once we interact with
a tree, the corresponding local magnetic spring setting should be modified ac-
cordingly, and then the main procedure is performed to yield the new drawing.

In what follows, our balloon drawing algorithm is tailored to cope with three
real-world applications. First, to draw a sparse graph with navigation and in-
teraction operations in mind, a good starting point is to find a spanning tree
(serving as the skeleton of the sparse graph) to which our balloon drawing algo-
rithm is applied. Following that, the remaining edges are added to the drawing.
By interacting with the user, it becomes easier to come up with a nice drawing
with fewer edge crossings as shown in Figure 7 (a).
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Second, a galaxy system involves numerous fixed stars, planets, moons, galax-
ies, and even huge star clusters. Due to universal gravitation, each of the stars
has a revolution around (or related to) some star. Thus stars in a galaxy system
form a hierarchical structure, and their revolution orbits are nearly circular and
probably concentric circular. The center of the universe can be viewed as the
root of the galaxy tree. Nova, a new-born star, can be simulated by the operation
of adding a node to which a light color is assigned, while a black hole, a dying
star, is colored dark which disappears after a period of time. When a star or a
galaxy dies, the corresponding node (nodes), edge(s), and subtree(s) are deleted.
Besides, the behavior that our algorithm propagating the amount of movement
and rotation to children in a top-down fashion and making the nodes on lower
layer move and rotate faster is similar to the fact that the moon rotates around
a planet (earth) faster than around a fixed star (sun). All of the behaviors can
therefore be captured by our system, subject to a slight modification. Figure 7
(b) illustrates the modification and (c) is an experimental result.

Finally, for given a binary tree, if we let the Rmin in Figure 1 (c) and (d) be
zero and adjust the polar magnetic fields slightly, then we end up with Figure 7
(d) as the output drawing, which is an example of the so-called H-tree [10].
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Abstract. In a convex drawing of a plane graph G, every facial
cycle of G is drawn as a convex polygon. A polygon for the outer fa-
cial cycle is called an outer convex polygon. A necessary and sufficient
condition for a plane graph G to have a convex drawing is known. How-
ever, it has not been known how many apices of an outer convex polygon
are necessary for G to have a convex drawing. In this paper, we show that
the minimum number of apices of an outer convex polygon necessary for
G to have a convex drawing is, in effect, equal to the number of leaves in
a triconnected component decomposition tree of a new graph constructed
from G, and that a convex drawing of G having the minimum number
of apices can be found in linear time.

1 Introduction

Recently automatic aesthetic drawing of graphs has created intense interest due
to their broad applications, and as a consequence, a number of drawing methods
have come out [1, 2, 3, 4, 8]. The most typical drawing of a plane graph G is a
straight line drawing in which all vertices of G are drawn as points and all edges
are drawn as straight line segments without any edge-intersection. A straight
line drawing of G is called a convex drawing if every facial cycle is drawn as a
convex polygon, as illustrated in Fig. 1 [1, 9].

In a convex drawing of a plane graph G, the outer facial cycle Fo(G) of G
must be drawn as a convex polygon. A polygonal drawing F ∗

o of Fo(G), called an
outer convex polygon, plays a crucial role in finding a convex drawing of G. The
plane graph G in Fig. 2(a) admits a convex drawing if an outer convex polygon
F ∗

o has four or more apices as illustrated in Fig. 2(b), where apices are drawn
as white circles. However, if F ∗

o has only three apices, that is, F ∗
o is a triangle,

then G does not admit a convex drawing as illustrated in Fig. 2(c).
A necessary and sufficient condition for a plane graph G to have a convex

drawing is known [1, 9]. A linear-time algorithm is also known for finding a convex
drawing of G if G satisfies the condition [1, 7]. We recently give a necessary and
sufficient condition for a plane graph G to have a convex drawing such that

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 297–308, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Convex drawing of a plane graph

(a) (c)(b)
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Fig. 2. (a) Plane graph, (b) convex drawing, and (c) non-convex drawings

an outer convex polygon F ∗
o has exactly three apices [6]. However, it is not

known how many apices of F ∗
o are necessary for a plane graph G to have a

convex drawing.
In this paper, we show that the minimum number of apices of an outer convex

polygon F ∗
o necessary for G to have a convex drawing is, in effect, equal to

the number of leaves in a triconnected component decomposition tree of a new
graph constructed from G, and that a convex drawing of G having the minimum
number of apices of F ∗

o can be found in linear time.
The remainder of the paper is organized as follows. In Section 2 we give some

definitions and two known lemmas. In Section 3 we present our results. Finally
we conclude in Section 4.

2 Preliminaries

In this section, we give some definitions and two known lemmas.
We denote by G = (V, E) an undirected connected simple graph with vertex

set V and edge set E. An edge joining vertices u and v is denoted by (u, v). The
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degree of a vertex v in G is the number of neighbors of v in G, and is denoted
by d(v).

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed embedding. A plane graph G divides
the plane into connected regions, called faces. We denote by Fo(G) the outer
face of G. The boundary of Fo(G) is also denoted by Fo(G). A vertex on Fo(G)
is called an outer vertex, while a vertex not on Fo(G) is called an inner vertex.
An edge on Fo(G) is called an outer edge, while an edge not on Fo(G) is called
an inner edge.

A polygonal drawing F ∗
o of Fo(G) is called an outer convex polygon if F ∗

o is a
convex polygon. A (geometric) vertex of a polygon F ∗

o is called an outer apex. An
outer convex polygon F ∗

o is extendable if G has a convex drawing in which Fo(G)
is drawn as the convex polygon F ∗

o . For example, the outer rectangle drawn by
thick lines in Fig. 2(b) is extendable, while the outer triangle in Fig. 2(c) is not
extendable. We denote by G−Fo(G) the graph obtained from G by deleting all
outer vertices.

We call a vertex v of a connected graph G a cut vertex if its removal from G
results in a disconnected graph. A connected graph G is biconnected if G has no
cut vertex. If G has a convex drawing, then G is biconnected.

The following necessary and sufficient condition for a plane graph G to have
a convex drawing is known.

Lemma 1. [1, 9] Let G be a biconnected plane graph, and let F ∗
o be an outer

convex polygon of G. Assume that F ∗
o is a k-gon, k ≥ 3, and that P1, P2, · · · , Pk

are the k paths in Fo(G), each corresponding to a side of the polygon F ∗
o . Then

F ∗
o is extendable if and only if the following Conditions (a)–(c) hold.

(a) For each inner vertex v with d(v) ≥ 3, there exist three paths disjoint
except v, each joining v and an outer vertex;

(b) The graph G − Fo(G) has no connected component H such that all the
outer vertices adjacent to vertices in H lie on a single path Pi, and no two
outer vertices in each path Pi are joined by an inner edge (see Fig. 3); and

(c) Every cycle containing no outer edge has at least three vertices of degree
≥ 3.

We call a pair {u, v} of vertices in a biconnected graph G a separation pair
if its removal from G results in a disconnected graph, that is, G − {u, v} is not
connected. A biconnected graph G is triconnected if G has no separation pair. A
plane biconnected graph G is internally triconnected if, for any separation pair
{u, v} of G, both u and v are outer vertices and each connected component of
G−{u, v} contains an outer vertex. In other words, G is internally triconnected
if and only if it can be extended to a triconnected graph by adding a vertex in
an outer face and joining it to all outer vertices. If a biconnected plane graph
G is not internally triconnected, then G has a separation pair {u, v} illustrated
in Figs. 4(a)–(c) and a “split graph” H contains an inner vertex other than u
and v.
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(b)(a)
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u vPi Pi

Fig. 3. Examples violating Condition (b)

u

v

u

v

H H H

v

u
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Fig. 4. Biconnected plane graphs which are not internally triconnected

Let G = (V, E) be a biconnected graph, and let {u, v} be a separation pair of
G. Then, G has two subgraphs G′

1 = (V1, E
′
1) and G′

2 = (V2, E
′
2) such that

(a) V = V1
⋃

V2, V1
⋂

V2 = {u, v}; and
(b) E = E′

1
⋃

E′
2, E′

1
⋂

E′
2 = ∅, |E′

1| ≥ 2, |E′
2| ≥ 2.

The graph G in Fig. 5(a) has six separation pairs {u1, u2}, {u1, u3}, {u2, u3},
{u2, u7}, {u3, u6}, and {u4, u5}.

For a separation pair {u, v} of G, G1 = (V1, E
′
1 + (u, v)) and G2 = (V2, E

′
2 +

(u, v)) are called the split graphs of G with respect to {u, v}. The new edges
(u, v) added to G1 and G2 are called the virtual edges. Even if G has no multiple
edges, G1 and G2 may have. Dividing a graph G into two split graphs G1 and G2
are called splitting. Reassembling the two split graphs G1 and G2 into G is called
merging. Merging is the inverse of splitting. Suppose that a graph G is split, the
split graphs are split, and so on, until no more splits are possible, as illustrated in
Fig. 5(b) where virtual edges are drawn by dotted lines. The graphs constructed
in this way are called the split components of G. The split components are
of three types: triple bonds (i.e. a set of three multiple edges), triangles, and
triconnected graphs. The triconnected components of G are obtained from the
split components of G by merging triple bonds into a bond and triangles into a
ring, as far as possible, where a bond is a set of multiple edges and a ring is a
cycle. The graph in Fig. 5(a) is decomposed into seven triconnected components
H1, H2, · · · , H7 as depicted in Fig. 5(c), where H1, H2 and H6 are triconnected
graphs, H3, H4 and H7 are rings, and H5 is a bond. The split components of G
are not necessarily unique, but the triconnected components of G are unique [5].

Let T be a tree in which each node corresponds to a triconnected component
Hi and T has an edge (Hi, Hj), i = j, if and only if Hi and Hj are triconnected
components with respect to the same separation pair, as illustrated in Fig. 5(d).
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Fig. 5. (a) A biconnected graph G, (b) split components, (c) triconnected components,
and (d) a triconnected component decomposition tree T of G
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We call T a triconnected component decomposition tree of G [5]. Clearly every
leaf of T does not correspond to a bond, but corresponds to a triconnected graph
or a ring.

The following lemma is known.

Lemma 2. [5] A triconnected component decomposition tree T of a graph G
can be found in linear time.

3 Convex Drawing of Minimum Outer Apices

One may obviously assume that a plane graph G is biconnected. One may further
assume that every inner vertex of G has degree three or more; if an inner vertex
v has degree two in G, then delete v from G, join the neighbors of v, and let
G′ be the resulting graph; clearly G has a convex drawing if and only if G′ has
no multiple edges and has a convex drawing. We can then newly formalize a
necessary and sufficient condition for G to have a convex drawing, as follows.

Theorem 1. Let G be a plane biconnected graph in which every inner vertex
has degree three or more, and let T be a triconnected component decomposition
tree of G. Then the following (a)–(c) are equivalent with each other:

(a) G has a convex drawing;
(b) G is internally triconnected; and
(c) both of every separation pair are outer vertices, and every node of T

corresponding to a bond has degree two in T .

Proof. We verify (a)⇔(b) and (b)⇔(c), as follows.
(a)⇒(b): Assume that G has a convex drawing. Then G has an extendable

outer convex polygon F ∗
o , and hence Conditions (a)–(c) in Lemma 1 hold for

F ∗
o . Suppose for a contradiction that G is not internally triconnected. Then G

has a separation pair {u, v} illustrated in Figs. 4(a)–(c). In a split graph H with
respect to {u, v}, there is an inner vertex x other than u and v. Vertex x has
degree three or more, and hence every path joining x and an outer vertex must
pass through either u or v. Therefore there are no three paths disjoint except
x, each joining x and an outer vertex. Thus Condition (a) does not hold, a
contradiction.

(b)⇒(a): Assume that G is internally triconnected. Let F ∗
o be an outer convex

polygon in which every outer vertex of G is an apex of F ∗
o . We show that F ∗

o is
extendable and hence G has a convex drawing. Since G is internally triconnected,
clearly both Conditions (a) and (c) in Lemma 1 hold. Thus we shall show that
Condition (b) holds for F ∗

o . Each path Pi in Fo, corresponding to a side of F ∗
o ,

consists of a single edge, and G is a simple graph. Therefore the two outer vertices
in Pi are not joined by an inner edge. Since G is internally triconnected, one can
easily know that G − Fo(G) has no connected component H such that all the
outer vertices adjacent to vertices in H lie on a single path Pi. Thus G satisfies
Conditions (a)–(c), and hence by Lemma 1 F ∗

o is extendable.
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Fig. 6. Plane graphs having separation pairs corresponding to bonds

(b)⇒(c): Assume that G is internally triconnected. Then both of every sep-
aration pair of G are outer vertices, and G does not have a separation pair
{u, v} illustrated in Figs. 4(a)–(c). Therefore, for every separation pair {u, v},
G−{u, v} has exactly two connected components, each containing an outer ver-
tex, as illustrated in Figs. 6(a) and (b); G has an edge (u, v) in Fig. 6(a), while
G has no edge (u, v) in Fig. 6(b). Hence one can easily observe that every node
of T corresponding to a bond has degree two in T ; the bond for Fig. 6(a) is a
set of three multiple edges, two of which are virtual ones, and one of which is a
real one; the bond for Fig. 6(b) is a pair of virtual multiple edges.

(c)⇒(b): Assume that both of every separation pair are outer vertices, and
every node of T corresponding to a bond has degree two in T . We shall show that
G does not have a separation pair {u, v} illustrated in Figs. 4(a)–(c). Since both
of every separation pair are outer vertices, G does not have a separation pair
{u, v} illustrated in Figs. 4(a) and (b). Assume for a contradiction that G has a
separation pair {u, v} illustrated in Fig. 4(c). Then a node of T corresponding to
a bond containing virtual edges (u, v) has degree three or more, a contradiction.

�

By Theorem 1 we may assume that G is internally triconnected and each
inner vertex of G has degree three or more, as the graph in Fig. 1. Thus every
vertex of degree two must be an outer vertex. Let P = v0, v1, v2, · · · , vl+1, l ≥ 1,
be a path on Fo(G) such that d(v0) ≥ 3, d(v1) = d(v2) = · · · = d(vl) = 2 and
d(vl+1) ≥ 3. Such a path P is called an outer chain of G. (The graph in Fig. 1
has four outer chains drawn by thick lines.) We then have the following lemma.

Lemma 3. Let G be an internally triconnected plane graph, and let P =
v0, v1, · · · , vl+1 be an outer chain of G. Then the following Propositions (a)
and (b) hold:

(a) If G has an edge (v0, vl+1), then G has a convex drawing in which exactly
one of the vertices v1, v2, · · · , vl is an outer apex and G has no convex drawing
in which none of them is an outer apex.

(b) If G has no edge (v0, vl+1), then G has a convex drawing in which none of
the vertices v1, v2, · · · , vl is an outer apex. (See Fig. 7.)

Proof. (a) Suppose that G has an edge (v0, vl+1). Since G is internally tricon-
nected, by Theorem 1 G has a convex drawing. Let F ∗

o be the outer convex
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Fig. 7. Outer convex polygons F ∗
o and F ′

o

polygon of an arbitrary convex drawing of G. Clearly one or more of the vertices
v1, v2, · · · , vl are apices of F ∗

o . One can easily modify the drawing to a convex
drawing in which exactly one of them is an outer apex.

(b) Suppose that G has no edge (v0, vl+1). Let F ∗
o be the outer convex poly-

gon of an arbitrary convex drawing of G. We may assume that at least one of
the vertices v1, v2, · · · , vl is an apex of F ∗

o , as illustrated in Fig. 7(a); otherwise,
we have completed a proof for (b). We cut off the region enclosed by the path
P = v0, v1, · · · , vl+1 and a straight line segment vl+1, v0 from the polygon F ∗

o .
Let F ′

o be the resulting outer convex polygon, in which v0, v1, · · · , vl lie on the
line segment connecting v0 and vl+1, as illustrated in Fig. 7(b). We claim that
F ′

o is extendable and hence G has a convex drawing in which none of the vertices
v1, v2, · · · , vl is an apex of the outer convex polygon. Since G is internally tri-
connected, both Conditions (a) and (c) in Lemma 1 hold for F ′

o. Thus we shall
show that Condition (b) holds for F ′

o. Since Condition (b) holds for F ∗
o , the def-

inition of F ′
o implies that Condition (b) holds for all paths of F ′

o, other than P ,
each corresponding to a side of the polygon F ′

o. Since vertices v1, v2, · · · , vl have
degree two and there is no edge (v0, vl+1) in G, no two outer vertices in path P
are joined by an inner edge. Since G is internally triconnected, G − Fo(G) has
no connected component H such that all the outer vertices adjacent to vertices
in H lie on the single path P . Thus G satisfies Conditions (a)–(c), and hence F ′

o
is extendable. �

By Lemma 3, in order to find a convex drawing of minimum outer apices,
we may “contract” an outer chain P = v0, v1, · · · , vl+1 of G as follows: if G has
an edge (v0, vl+1), then we replace P in G with an outer chain P ′ = v0, vi, vl+1
for an arbitrary index i, 1 ≤ i ≤ l; otherwise, we replace P in G with a single
edge (v0, vl+1). Contract every outer chain of G as above, and let G′ be the
resulting graph. G′ is called a contracted graph of G. Figure 8(b) illustrates a
contracted graph of the graph G in Fig. 8(a). Since G is internally triconnected,
G′ is also internally triconnected and hence G′ has a convex drawing. One can
easily observe that the following lemma holds.

Lemma 4. Let G be an internally triconnected plane graph, and let G′ be a
contracted graph of G. If an outer convex polygon F ∗

o is extendable for G′ (as
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Fig. 8. (a) An internally triconnected graph G, (b) a contracted graph G′ of G, (c)
triconnected components of G′, (d) a triconnected component tree T , (e) a convex
drawing of G′, and (f) a convex drawing of G

illustrated in Fig. 8(e)), then the same outer convex polygon F ∗
o is extendable

for G (as illustrated in Fig. 8(f)).

We now have the following lemma.

Lemma 5. Let G be an internally triconnected plane graph, let G′ be a con-
tracted graph of G, let T be a triconnected component decomposition tree of G′,
and let nl be the number of leaves of T . Then the minimum number of apices of
an extendable convex polygon of G′ is equal to max{3, nl}.
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Proof. If nl = 1, that is, G′ is either a cycle or is a triconnected graph, then
G′ has a convex drawing whose outer facial cycle is drawn as a triangle [6, 8].
Therefore, the minimum number of apices of an extendable convex polygon of
G′ is max{3, 1} = 3. We may thus assume that nl ≥ 2.

We first claim that G′ has no extendable outer convex polygon such that the
number of apices is less than max{3, nl}. If 2 ≤ nl ≤ 3, then max{3, nl} = 3
and hence G′ has no extendable outer convex polygon such that the number of
outer apices is less than max{3, nl}. We may thus assume that nl ≥ 4. Suppose
for a contradiction that G′ has an extendable outer convex polygon F ∗

o having
less than max{3, nl} = nl apices. Then G′ has a triconnected component Hj ,
corresponding to a leaf of T , such that none of the outer vertices in Hj other
than the separation pair is an apex of F ∗

o . Hence all the outer vertices in Hj

lie on a single side Pi of the polygon F ∗
o . Since Hj corresponds to a leaf of

T , Hj is either a triconnected graph or a ring. (H1 and H3 in Fig. 8(c) are
triconnected graphs, while H2 is a ring.) Consider first the case where Hj is a
triconnected graph. Then G′ − Fo(G′) has a connected component such that all
the outer vertices adjacent to vertices in the component lie on the side Pi, as
illustrated in Fig. 3(a). Consider next the case where Hj is a ring. Let Hp be
the triconnected component corresponding to the node of T which is adjacent
in T to the leaf corresponding to Hj . By the definitions of T and G′, Hp must
be a bond and contain an inner edge joining two outer vertices of G′. Therefore
the two outer vertices on the side Pi are joined by the inner edge. Thus, in
either case, Condition (b) does not hold for F ∗

o . Hence F ∗
o is not extendable, a

contradiction. We have thus verified the claim.
We then choose a number k = max{3, nl} of outer vertices as apices of an

outer convex polygon F ∗
o of G′, as in the following two cases.

Case 1: nl ≥ 3.
In this case, as an apex, we choose an outer vertex v of G′ from each triconnected

component Hj corresponding to a leaf of T ; v must be other than the vertices of the
separation pair with respect to Hj . We set these nl vertices chosen from all leaves
of T as the apices of F ∗

o . (In Fig. 8(c), there are three triconnected components
H1, H2 and H3 corresponding to leaves of T in Fig. 8(d), and for example the three
vertices depicted as white circles are chosen from H1, H2 and H3.)
Case 2: nl = 2.

In this case, as apices, we first choose two outer vertices from the two leaves
similarly as in Case 1 above. We then choose an arbitrary outer vertex other
than the two vertices as an apex of F ∗

o . We set these three vertices as the apices
of F ∗

o . (The triconnected component decomposition tree T of G′ for the graph
G in Fig. 1 has two leaves, and for example the three vertices depicted as white
circles are chosen as outer apices.)

We finally claim that the k-gon F ∗
o defined above is extendable. We shall

show that Conditions (a)–(c) in Lemma 1 hold for F ∗
o . Since G′ is internally

triconnected, both Conditions (a) and (c) hold. It thus suffices to show that
Condition (b) holds for F ∗

o .
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Suppose for a contradiction that Condition (b) does not hold for F ∗
o . Let P1,

P2, · · · , Pk be the k paths in F ∗
o , each corresponding to a side of the polygon F ∗

o .
Since Condition (b) does not hold for F ∗

o , one of the following two cases occurs.
Case (i): G′−Fo(G′) has a connected component H such that all the outer vertices
adjacent to vertices in H lie on a single path Pi, as illustrated in Fig. 3(a).
Case (ii): two outer vertices in a path Pi are joined by an inner edge, as illustrated
in Fig. 3(b).

We first consider Case (i). Since G′ is internally triconnected, H is contained
in a triconnected component Hj of G′ and Hj must be a leaf of T . Then none
of the outer vertices in Hj other than the separation pair would be chosen as an
outer apices, contrary to the definition of F ∗

o .
We then consider Case (ii). Let (u, v) be the innermost one among all the inner

edges satisfying Case (ii), and let Hj be the triconnected component containing
edge (u, v). Then {u, v} is a separation pair of G′ and Hj is a leaf of T . None
of the outer vertices in Hj other than u and v is an apex of F ∗

o , contrary to the
definition of F ∗

o . �

Given a plane graph G together with an extendable outer convex polygon F ∗
o ,

one can find in linear time a convex drawing of G which is an extension of F ∗
o [1, 7].

Therefore, by Theorem 1 and Lemmas 2, 4 and 5, we have the following theorem.

Theorem 2. Let G be an internally triconnected graph, let T be a triconnected
component decomposition tree of a contracted graph G′ of G, and let nl be the
number of leaves of T . Then one can find a convex drawing of G having the
minimum number of outer apices in linear time, and the minimum number is
equal to max{3, nl}.

4 Conclusions

In this paper, we newly formalize a necessary and sufficient condition for a plane
graph G to have a convex drawing, and show that a convex drawing having the
minimum number of outer apices can be found in linear time.

In a convex grid drawing, all the vertices of G are put on grid points. It is
known that if either G is triconnected or a triconnected component decomposi-
tion tree T of a contracted graph G′ of G has at most three leaves then G has a
convex grid drawing of size (n − 1) × (n − 1) where n is the number of vertices
in G [2, 6]. The remaining problem is to obtain a good upper bound on the size
of a convex grid drawing of G for which T has four or more leaves.
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Abstract. Widely varying node degrees occur in software dependency graphs,
hyperlink structures, social networks, and many other real-world graphs. Finding
dense subgraphs in such graphs is of great practical interest, as these clusters may
correspond to cohesive software modules, semantically related documents, and
groups of friends or collaborators. Many existing clustering criteria and energy
models are biased towards clustering together nodes with high degrees. In this
paper, we introduce a clustering criterion based on normalizing cuts with edge
numbers (instead of node numbers), and a corresponding energy model based on
edge repulsion (instead of node repulsion) that reveal clusters without this bias.

1 Introduction

It is increasingly recognized that the degrees of the nodes in many graph models of
real-world systems vary widely [1], with examples including dependencies between
software artifacts, citations of scientific articles, hyperlink structures (like the World
Wide Web, dictionaries, and thesauri), social networks, and neural networks. Dense
subgraphs of these graphs are of great scientific and practical interest, because these
clusters are candidates for cohesive software modules, research areas, semantically re-
lated terms or documents, groups of closely interacting people, and functional units of
the nervous system.

The first challenge in the identification of such clusters is to formalize the notion of
a cluster. Section 2 shows that several existing cut-based clustering criteria are biased
towards certain cluster sizes, and derives two unbiased clustering criteria by appropri-
ately normalizing the cut. There are two unbiased clustering criteria because the two
natural measures of cluster size, namely the number of nodes and the number of edges,
are equivalent (up to a constant factor) only for graphs with uniform degrees.

The second challenge is the computation and the presentation of the clusters. Sec-
tion 3 introduces two energy models that reveal the clusters corresponding to the two
clustering criteria. This enables the computation of clusters with existing energy mini-
mization algorithms (like the algorithm of Barnes and Hut [3, 19]) that scale to graphs
with thousands of nodes. The presentation as graph drawing facilitates the compre-
hension of the cluster structure, because viewers naturally interpret closely positioned
nodes as strongly related [4, 6]. Section 4 presents example drawings of various real-
world graphs.

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 309–320, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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1.1 Basic Definitions

For a set M , let |M | be the number of elements of M , and let M (2) be the set of
all subsets of M which have exactly two elements. A bipartition of a set M is a pair
(M1, M2) of sets with M1 ∪ M2 = M , M1 ∩ M2 = ∅, M1 = ∅, and M2 = ∅.

A graph G = (V, E) consists of a finite set V of nodes and a finite set E of edges
with E ⊆ V (2). Because drawings can be computed separately for different components
of a graph, we restrict ourselves to connected graphs, i.e. graphs where every pair of
nodes is connected by a path.

For a node v, the degree deg(v) is the number |{u | {u, v} ∈ E}| of nodes adjacent
to v. The total degree

∑
v∈V1

deg(v) of all nodes in a set V1 is denoted by deg(V1). For
two sets of nodes V1 and V2, the number of edges

∣∣{{v1, v2} ∈ E | v1 ∈ V1, v2 ∈ V2}
∣∣

between V1 and V2 is called the cut between V1 and V2 and denoted by cut(V1, V2). We
often identify a set of nodes V1 with the subgraph (V1, {e ∈ E | e ⊆ V1}) it induces.

A d-dimensional drawing of the graph G is a vector p = (pv)v∈V of node positions
pv ∈ IRd. For a drawing p and two nodes u, v ∈ V , the length of the difference vector
pv − pu is called the distance of u and v in p and denoted by ||pv − pu||.

2 Graph Clustering Criteria

Informally, we denote by a graph cluster a subgraph with many internal edges and
few edges to the remaining graph. This can be formalized by defining a measure for
the coupling between subgraphs, such that a smaller coupling corresponds to a better
clustering. This section discusses such measures, starting with the cut. The main result
is that the cut is biased, and has to be normalized with the sizes of the subgraphs.
For graphs with uniform degrees, normalizing the cut with the number of nodes of
the subgraphs is equivalent to normalizing the cut with the number of edges, but for
graphs with nonuniform degrees, these two alternatives lead to considerably different
notions of a cluster. For clarity, the discussion is restricted to the coupling between two
subgraphs, the generalization to more subgraphs is straightforward.

2.1 The Cut

A simple measure of the coupling between two disjoint sets of nodes V1 and V2 of
a graph (V, E) is their cut cut(V1, V2). There exist efficient algorithms for finding a
bipartition of a given graph with the minimum cut [22].

However, the cut prefers bipartitions that consist of a very small and a very large
subgraph, as the following calculation shows. Among the 1

2 (|V |2−|V |) unordered pairs
of nodes from V , there are |V1| · |V2| pairs of one node from V1 and one node from V2.
So the expected cut between V1 and V2 is 2|V1|·|V2|

|V |2−|V | |E|, which is much smaller for
bipartitions with |V1| % |V2| than for bipartitions with |V1| = |V2|.

2.2 The Node-Normalized Cut

An unbiased measure of the coupling between two disjoint sets of nodes V1 and V2
called node-normalized cut is obtained by normalizing the cut with the expected cut
(and ignoring constant factors for simplicity):
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nodenormcut(V1, V2) =
cut(V1, V2)
|V1| · |V2|

For a fixed graph (V, E) and all clusters sizes |V1| and |V2|, the node-normalized cut
has the same expected value 2|E|

|V |2−|V | .
This measure is also known as ratio of the cut, and has been used in VLSI de-

sign [2] and software engineering [16]. Computing a bipartition with minimum node-
normalized cut is NP-complete, but approximable in polynomial time within factor
O(log(|V |)) [15].

The node-normalized cut is still biased towards bipartitions with a very small and
a very large subgraph if the number of edges is used as measure of subgraph size.
Consider two bipartitions of the set of nodes V into two sets V1 and V2 of equal cardi-
nality, where deg(V1) = deg(V2) in the first bipartition, and deg(V1) % deg(V2) in the
second bipartition. (Note that such bipartitions only exist in graphs with nonuniform
degrees.) Then the expected cut, and therefore the node-normalized cut, is much larger
for the first bipartition than for the second.

The following calculation makes this more precise. The |E| edges of a graph (V, E)
have deg(V ) = 2|E| end nodes. So there are 1

2

(
deg(V )2 −

∑
v∈V deg(v)2

)
unordered

pairs of end nodes. (The subtrahend accounts for “pairs” of two equal end nodes.)
Among these pairs, there are deg(V1) deg(V2) pairs of one node from V1 and one node
from V2. So the expected cut between |V1| and |V2| is 2 deg(V1) deg(V2)

deg(V )2− v∈V deg(v)2 |E|, which

is much smaller for bipartitions with deg(V1) % deg(V2) than for bipartitions with
deg(V1) = deg(V2).

2.3 The Edge-Normalized Cut

Normalizing the cut with the expected cut (without constant factors) results in another
measure of coupling called edge-normalized cut:

edgenormcut(V1, V2) =
cut(V1, V2)

deg(V1) deg(V2)

For a fixed graph (V, E) and all clusters sizes deg(V1) and deg(V2), the edge-
normalized cut has the same expected value 2|E|

deg(V )2− v∈V deg(v)2 .

A similar measure has been introduced (without a systematic derivation) by Shi and
Malik [20] as normalized cut:

ncut(V1, V2) =
cut(V1, V2)

deg(V1)
+

cut(V1, V2)
deg(V2)

.

Because (deg(V1)+deg(V2)) edgenormcut(V1, V2) = ncut(V1, V2), the values of the
two measures differ only by the constant factor deg(V ) if V1∪V2 = V . The problem of
deciding whether a given graph has a bipartition with an edge-normalized cut smaller
than a given constant is NP-complete [20].

2.4 Related Work: Other Measures of Coupling

Other measures of the coupling between two disjoint sets of nodes V1 and V2 of a graph
(V, E) include the expansion [14]
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expansion(V1, V2) =
cut(V1, V2)

min(|V1|, |V2])
and the conductance [14]

conductance(V1, V2) =
cut(V1, V2)

min(deg(V1), deg(V2))
.

Computing a bipartition with minimum expansion is NP-complete, but approximable
in polynomial time within factor O(log(|V |)) [15].

The expansion is biased towards similarly-sized clusters: For |V1| = |V |−1 and
|V2| = 1, the expected expansion is 2|E|

|V | , while for |V1| = |V2| = 1
2 |V |, the expected

expansion is only |E|
|V |−1 . The conductance has a similar bias when the total degree is

used as measure of cluster size.

3 Energy Models for Graph Clustering

One particular way to compute and present the cluster structure of graphs is energy-
based graph drawing. That the results are drawings and not partitions of the set of nodes
has several benefits: Drawings facilitate the comprehension of the cluster structure, be-
cause viewers naturally interpret closely positioned nodes as strongly related [4, 6], and
enable the navigation from one cluster to closely related clusters. Drawings show how
clearly clusters are separated, and how closely nodes are associated with their cluster.

In an earlier paper [17], we introduced the LinLog energy model for visualizing
clusters with respect to the node-normalized cut. The main result of this section is that
replacing repulsion between nodes with repulsion between edges adapts the LinLog
model to the edge-normalized cut (and thus to graphs with nonuniform degrees).

3.1 The Edge-Repulsion LinLog Energy Model

The node-repulsion LinLog energy of a drawing p is defined in [17] as

UNodeLinLog(p) =
∑

{u,v}∈E
||pu − pv|| −

∑
{u,v}∈V (2)

ln ||pu − pv||

To avoid infinite energies we assume that different nodes have different positions, which
is no serious restriction because we are interested in drawings with low energy. The
first term of the difference can be interpreted as attraction between adjacent nodes, the
second term as repulsion between different nodes.

In the edge-repulsion LinLog energy model the repulsion between nodes is replaced
by repulsion between edges. In our formalization, the repulsion does not act between
entire edges, but only between their end nodes. So the repulsion between two nodes is
weighted by the number of edges of which they are an end node, i.e. by their degrees:

UEdgeLinLog(p) =
∑

{u,v}∈E
||pu−pv||−

∑
{u,v}∈V (2)

deg(u) deg(v) ln ||pu−pv||

The beauty of edge repulsion lies in its symmetry: Edges cause both attraction and re-
pulsion. In other words, nodes that attract strongly also repulse strongly. More precisely,
each node has consistently – in terms of attraction and repulsion – an influence on the
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drawing proportional to its degree. (This can be visualized by setting the size of a node
to its degree, as in the figures in Sect. 4.) As a beneficial side effect, this symmetry can
also facilitate the introduction and weighting of additional forces [18].

In a node-repulsion LinLog drawing of a graph with very nonuniform degrees, the
positions of the nodes mainly reflect their degrees: The (strongly attracting) high-degree
nodes are mostly placed at the center, and the (weakly attracting, but equally repulsing)
low-degree nodes at the borders. This bias is removed in the edge-repulsion LinLog
model. For graphs with uniform node degrees, both models have equivalent minima up
to scaling.

3.2 Interpretation of Edge-Repulsion LinLog Drawings

The theorems and proofs about the interpretation of node-repulsion LinLog drawings
in [17] can be adapted to edge-repulsion LinLog. This subsection only presents a sim-
plified version to illustrate the difference between node repulsion and edge repulsion.

Let G = (V, E) be a graph, and let (V1, V2) be a bipartition of the set of nodes V
into two cohesive (dense), loosely coupled subgraphs. Let p be a drawing of G with
minimum edge-repulsion LinLog energy. How is the distance of V1 and V2 in p related
to their coupling?

Due to the high cohesion and low coupling, the distances within V1 and within V2
should be much smaller than the distance between V1 and V2 in p. For our discussion,
this situation can be reasonably closely approximated by assuming that all nodes in V1
have the same position and all nodes in V2 have the same position in p. Let d be the
Euclidean distance of these two positions.

Ignoring the energy between nodes of the same subgraph (which is irrelevant for
the distance d between the subgraphs), we obtain the following edge-repulsion LinLog
energy of the drawing p:

U(d) = cut(V1, V2)d − deg(V1) deg(V2) ln d

Because p is a drawing with minimum energy, this function has a global minimum at d,
so U ′(d) = 0.

0 = U ′(d) = cut(V1, V2) − deg(V1) deg(V2)/d

d =
deg(V1) deg(V2)

cut(V1, V2)
=

1
edgenormcut(V1, V2)

So the distance d between V1 and V2 in the drawing with minimum edge-repulsion Lin-
Log energy is the inverse of their edge-normalized cut. For the node-repulsion LinLog
energy model, we only need to replace deg(V1) deg(V2) with |V1| · |V2| in all terms, so
the distance is the inverse node-normalized cut.

This simple analysis method is not meant to replace a more detailed examination (as
done in [17] for node-repulsion LinLog), but it allows a quick approximate assessment
of the clustering properties for many energy models.

3.3 Related Work

Energy Models for Clustering. The force and energy models of Eades [7], Fruchter-
man and Reingold [8], Davidson and Harel [5], and Kamada and Kawai [13] tend to
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(a) (Node-repulsion) Fruchterman-Reingold (b) Edge-repulsion Fruchterman-Reingold

Fig. 1. Two small graphs

enforce uniform (or other given) edge lengths, to support tasks like following paths and
identifying neighbors. The LinLog energy models reveal clusters, which generally re-
quires some long (between-cluster) and short (within-cluster) edges. So the two goals
of clustering and uniform edge lengths are contradictory and cannot be achieved with a
single energy model. But classes of energy models like r-PolyLog [17] allow the user
to choose any compromise.

Edge Repulsion. In many force and energy models, including those of Eades [7] and
Fruchterman and Reingold [8], adjacent nodes attract and all pairs of nodes repulse.
Like node-repulsion LinLog, these models tend to draw dense subgraphs too small (be-
cause attraction dominates repulsion) and sparse subgraphs too large.

Figure 1a shows examples for the Fruchterman-Reingold model: The complete sub-
graph of the left graph contains most edges, but uses only a small part of the drawing
area. Much area is wasted by the unnecessarily long edges to the eight peripheral nodes.
The (sparse) right graph is drawn much larger than the (dense) complete subgraph, al-
though it contains much fewer edges. Further examples are given in Sect. 4.

Like for LinLog, replacing node repulsion with edge repulsion improves the bal-
ance between attraction and repulsion, because both are caused by the edges. Figure 1b
shows that this leads to a more uniform information density and thus better readability.

A related concept is the repulsive force between edges and nodes proposed by David-
son and Harel [5]. This force was introduced exclusively for improving readability, and
not for enabling interpretations with respect to the cluster structure.

Algorithms for Energy Minimization. As usual in force- and energy-based graph
drawing (with the exception of Hall’s energy model [11]), we have no practical
algorithm that finds global minima of the LinLog energy models. In our experi-
ments we use the hierarchical energy minimization algorithm of Barnes and Hut [3],
which was introduced to graph drawing by Quigley and Eades [19]. Its runtime is in
O(|E|+ |V | log |V |) per iteration. The overall runtime grows somewhat faster because
the number of iterations needed for convergence tends to grow with |V |. Some other
efficient minimization algorithms are not expected to find good energy minima for clus-
tering energy models like LinLog and for graphs with small diameter [9, 12, 21, 10].

4 Examples

This section shows example drawings of the edge-repulsion LinLog energy model,
and, for comparison, of the node-repulsion LinLog energy model and the well-known
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Fruchterman-Reingold force model [8]. The first subsection illustrates the differences
between the models with drawings of a pseudo-random graph. The second subsection
shows that drawings of the edge-repulsion LinLog model can provide non-trivial and
useful insights into the structure of real-world graphs.

In all figures, the area of each circle that represents a node is proportional to the
degree of the node, with the exception that there is a minimum area to ensure visibility.
Some drawings were rotated manually. (Rotation does not change the energy.) In most
drawings, the edges are omitted to avoid clutter.

An effective visualization of large graphs requires panning and zooming, and inter-
active showing and hiding of node labels and edges. Therefore we provide VRML files
(offering the first three features) of the drawings on a supplementary web page1.

4.1 Pseudo-Random Graph

Figure 2 shows a pseudo-random graph with eight cluster of 50 nodes. The probability
of an edge {u, v} is

– 1 if u and v belong to the same of the first four clusters,
– 0.5 if u and v belong to the same of the second four clusters,
– 0.2 if u and v belong to different of the first four clusters,
– 0.05 if u and v belong to different of the second four clusters, and
– 0.1 if u belongs to one of the first and v belongs to one of the second four clusters.

Both LinLog models reveal the clusters, but their drawings differ because the degrees
of the nodes are nonuniform. The node-repulsion LinLog drawing places the first four
clusters more closely than the second four clusters, which reflects that node-normalized
cuts between the first four clusters are higher than between the second four clusters. In
the edge-repulsion LinLog drawing the distances between all clusters are similar, which
reflects that the edge-normalized cuts between all pairs of clusters are similar.

(a) Fruchterman-Reingold (b) Node-repulsion LinLog (c) Edge-repulsion LinLog

Fig. 2. Pseudo-random graph

1 http://www-sst.informatik.tu-cottbus.de/GD/erlinlog.html
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(a) Fruchterman-Reingold model

(b) Node-repulsion LinLog model

(c) Edge-repulsion LinLog model

Fig. 3. Friendship network (33 nodes, 147 edges). Double edges correspond to reciprocated rela-
tionships, single edges to non-reciprocated relationships.
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(a) Fruchterman-Reingold model
(b) Node-repulsion LinLog model

(c) Edge-repulsion LinLog model

Fig. 4. Direct flights between US airports (332 nodes, 2126 edges). The airports in Alaska and
the South Sea (e.g. Guam) are omitted to improve readability.

4.2 Real-World Graphs

The graphs in Fig. 3 to 5 were obtained from the Pajek project2. In the drawings of
the Fruchterman-Reingold model (Fig. 3a to 5a) and the node-repulsion LinLog model
(Fig. 3b to 5b), nodes with high degree are placed in the center, and nodes with low
degree near the borders. So the positions of the nodes mainly reflect their degree.

2 http://vlado.fmf.uni-lj.si/pub/networks/data/
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(a) Fruchterman-Reingold model (b) Node-repulsion LinLog model

(c) Edge-repulsion LinLog model

Fig. 5. Hyperlinks between terms in the Online Dictionary for Library and Information Science
ODLIS (2896 nodes, 18238 edges)
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In Fig. 3, only the edge-repulsion LinLog drawing clearly reflects that there are two
groups of friends – the left group around Chris and Rick and the right group around
Steve and Irv – which are mainly connected by Upton and Dan.

Figure 4c shows that the edge-repulsion LinLog model discovers (roughly) the rel-
ative geographical locations of the US airports from the airline routing graph. Besides
providing insights into the structure of the airline routes, this example impressively
shows that the LinLog model can discover non-obvious knowledge in graphs.

The edge-repulsion LinLog drawing of the Online Dictionary for Library and Infor-
mation Science (ODLIS) is shown in Fig. 5c, but the VRML file on the supplementary
web page3 gives a better impression how well semantically related terms are grouped
on all scales. Such grouping is useful e.g. for discovering the global topic areas (like
publishing, printing, computer science, etc.), identifying entry points for the exploration
of topics, or finding semantically related terms even if they are not explicitly linked.

Drawings of three additional graphs are provided on the supplementary web page3.
The grouping of papers from the Graph Drawing symposium in a drawing of the cita-
tion graph reflects research areas. However, there is some noise in the drawing because
many papers have too few citations to be clearly assigned to a group. Again, such draw-
ings have many applications, from getting an overview of the field with its subfields
and landmark papers to identifying related papers even if they have no direct citation
relationship. A drawing of Roget’s thesaurus provides a nice map of (parts of) the Eng-
lish language by grouping semantically related categories, with benefits similar to the
ODLIS visualization. The third drawing reflects how often files of a software system
changed together in the development process. Because changes should be localized in
subsystems, groups of files in this graph help to decompose the system into subsystems
or to improve an existing subsystem hierarchy.

5 Conclusion

Cut-based measures for the coupling of subgraphs should be normalized with the size of
the subgraphs to avoid biases. For graphs with nonuniform degrees, the number of edges
is often a more appropriate measure of the size of subgraphs than the number of nodes.
(For uniform degrees, both are equivalent.) Accordingly, energy models should use edge
repulsion instead of (or in addition to) node repulsion to avoid dense accumulations of
nodes with high degrees. In drawings of one such energy model, called edge-repulsion
LinLog, the distance of groups of nodes is approximately inversely proportional to their
coupling. Drawings of this energy model can provide deep and useful insights into
the structure of real-world graphs from various domains, which are not possible with
previous energy models.
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1. Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Re-
views of Modern Physics, 74(1):47–97, 2002.

2. Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist partitioning: A survey.
Integration, the VLSI Journal, 19(1-2):1–81, 1995.

3 http://www-sst.informatik.tu-cottbus.de/GD/erlinlog.html



320 A. Noack

3. Josh Barnes and Piet Hut. A hierarchical O(N log N) force-calculation algorithm. Nature,
324:446–449, 1986.

4. Jim Blythe, Cathleen McGrath, and David Krackhardt. The effect of graph layout on infer-
ence from social network data. In Proc. GD 1995, pages 40–51. Springer-Verlag, 1996.

5. Ron Davidson and David Harel. Drawing graphs nicely using simulated annealing. ACM
Transactions on Graphics, 15(4):301–331, 1996.

6. Edmund Dengler and William Cowan. Human perception of laid-out graphs. In Proc. GD
1998, pages 441–443. Springer-Verlag, 1998.

7. Peter Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160, 1984.
8. Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed

placement. Software – Practice and Experience, 21(11):1129–1164, 1991.
9. Pawel Gajer, Michael T. Goodrich, and Stephen G. Kobourov. A multi-dimensional approach

to force-directed layouts of large graphs. In Proc. GD 2000, pages 211–221. Springer-Verlag,
2001.
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Abstract. In this paper we investigate the problem of drawing metro
maps which is defined as follows. Given a planar graph G of maximum
degree 8 with its embedding and vertex locations (e.g. the physical loca-
tion of the tracks and stations of a metro system) and a set L of paths or
cycles in G (e.g. metro lines), draw G and L nicely. We first specify the
niceness of a drawing by listing a number of hard and soft constraints.
Then we present a mixed-integer program (MIP) which always finds a
drawing that fulfills all hard constraints (if such a drawing exists) and
optimizes a weighted sum of costs corresponding to the soft constraints.
We also describe some heuristics that speed up the MIP. We have im-
plemented both the MIP and the heuristics. We compare their output to
that of previous algorithms for drawing metro maps and to official metro
maps drawn by graphic designers.

1 Introduction

A metro map is a schematic drawing of the underlying geographic network that
represents the different stations and metro lines of a metro system. The users of
a metro map are the passengers of the public transport system. They want to
quickly answer questions like “How do I get from A to B?” or “After how many
stops do I have to change trains?”. Thus the layout of a metro map must be as
clear as possible whereas exact geometry or scale is less important. The problem
of drawing maps of metro systems and other means of public transportation
is an interesting compromise between schematic road maps [4] where vertex
positions are (mostly) fixed and “conventional” graph drawing where vertices
can go anywhere. The first approach maximizes maintenance of the user’s mental
map, the second approach maximizes esthetics. The mother of all modern metro
maps is Henry Beck’s 1933 map of the London Underground. In the meantime,
graphic designers have come up with different layout styles all over the world [8].

After studying a large number of real-world metro maps [8] we formalized the
problem of drawing high-quality metro maps as follows. As usual we say that an
embedding of a graph G associates to each vertex a list of its adjacent vertices in
clockwise order. We say that a set L of paths and cycles of G is a line cover of G
if each edge of G belongs to at least one element of L. Now the metro-map layout
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problem is the following. Given (a) a planar graph G of maximum degree 8, the
metro graph, (b) the embedding of G, (c) for each vertex v its location π(v) in
the plane, and (d) a line cover L of G, the metro lines, find a nice drawing μ of
G and L. In order to be nice, μ must fulfill a number of hard constraints:

(H1) μ must respect the topology of G,
(H2) all edges of μ(G) must be octilinear line segments, i.e. parallel to one of

the two coordinate axes or to either of their two bisectors,
(H3) each edge e in μ(G) has a minimum length �e, and
(H4) each edge in μ(G) has a certain minimum distance dmin from each non-

incident edge.

Moreover, μ should conform to a number of soft constraints as tightly as possible:

(S1) the paths and cycles in μ(L) should have few bends,
(S2) the total edge length of μ(G) should be small, and
(S3) for each pair of adjacent vertices (u, v) their relative position should be pre-

served, i.e. the angle ∠(μ(u), μ(v)) should be similar to the ∠(π(u), π(v)),
where ∠(a, b) is the angle between the x-axis in positive direction and the
line through a and b directed from a to b.

Note that if the embedding of a metro graph is not planar, this can be achieved
by introducing dummy vertices at crossings, of which there are usually not many.
We denote the number of vertices (including dummy vertices) and edges of G
by n and m, respectively. Let m′ be the total number of edges of the paths and
cycles in L. We have m′ ≥ m.

While the need for most of the above constraints is immediate, constraint (S3)
may need a few explanatory words. The intuition behind requiring the preserva-
tion of the relative position is that users of metro system usually have a certain
notion of compass directions above ground. Suppose a passenger is in π(u) and
wants to go to the adjacent metro station π(v), which he knows to lie south of
π(u), then he would be confused if μ(u) was north of μ(v). Thus ensuring that
the two angles in constraint (S3) do not deviate too much, say by no more than
90 degrees, can be seen as a hard constraint, while it seems to be appropriate
to model smaller deviations as a soft constraint, e.g. by charging a cost propor-
tional to the deviation. Our framework reflects this ambivalence, but modeling
relative position as a purely soft constraint is also possible, see Sect. 3.1 and 3.6.

Compared to the orthogonal drawing of (embedded) graphs, the introduction
of diagonal directions yields drawings that are more similar to the original em-
bedding. In addition, the maximum vertex degree increases from 4 to 8. However,
in contrast to the existence of several efficient algorithms for orthogonal draw-
ings [12, 5], the problem becomes NP-complete in the octilinear case as we show
in [7]. This partially motivates why we do not follow the topology-shape-metric
approach [5] for orthogonal graph drawing: while we could compute a minimum-
bend octilinear shape of a metro graph in polynomial time using Tamassia’s
flow model [12], we cannot efficiently embed the resulting shape without creat-
ing crossings even if an octilinear layout exists.



A MIP for Drawing High-Quality Metro Maps 323

Therefore we decided to model the metro-map layout problem as a MIP,
see Sect. 3. This gave us the necessary flexibility to achieve the following. If
a layout that conforms to all hard constraints exists (which was the case in
all examples we tried), then our MIP finds such a layout. Moreover our MIP
optimizes the weighted sum of cost functions each of which corresponds to a
soft constraint. Our MIP is the first method that guarantees octilinearity, which
is essential for a clear layout of metro maps. Our MIP is also the first method
dedicated to drawing metro maps that uses global optimization and thus avoids
getting trapped in local minima. This contrasts with methods based on local
optimization, see Sect. 2. In [7] we extend our model to combine graph drawing
with the placement of non-overlapping station labels. Binucci et al. [2] have used
a MIP formulations to combine orthogonal graph drawing and label placement.

In order to cope with the running time of MIP solvers, we give several heuris-
tics that speed up our basic MIP, see Sect. 3.7. We have implemented an algo-
rithm based on our MIP formulation. In Sect. 4 we present a metro map that
our algorithm drew of a real-world metro system and compare it to the output
of previous algorithms and to an official metro map.

We stress that our MIP formulation can be used not only for drawing metro
maps, but for any kind of technical drawing with a restricted number of direc-
tions. Brandes et al. [3] introduced the concept of a sketch of a graph. A sketch
can be handmade or the physical embedding of a geometric network like the
real position of telephone cables. Brandes et al. compute an orthogonal drawing
of a sketch in O(n2 log n) time. However, their method cannot be extended to
more directions or to incorporate the concept of metro lines. In contrast, our
framework can be used to draw sketches (possibly dropping constraint (S1)) and
can be extended to more than eight directions. Other possible extensions include
user interaction (e.g. fixing the direction edges or lines), the drawing of maps
in a given format, or the minimization of one dimension of the drawing area
(instead of constraint (S2)).

2 Previous Work

To the best of our knowledge the first attempt to automate the drawing of metro
maps was made by Barkowsky et al. [1]. They use discrete curve evolution, i.e.
an algorithm for polygonal line simplification, to treat the lines of the Hamburg
subway system. However, their algorithm neither restricts the edge directions
nor does it increase station distances in the crowded downtown area. Stations
are labeled but no effort is made to avoid label overlap.

Hong et al. [6] give five methods for the metro-map layout problem. The most
refined of these methods modifies a topology-maintaining spring embedder such
that edge weights are taken into account and such that additional magnetic
forces draw the straight-line edges towards the closest octilinear direction. In a
preprocessing step the metro graph is simplified by contracting each edge that
is incident to a degree-2 vertex. After performing all contractions, the weight
of each remaining edge is set to the number of original edges it replaces. After
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the final layout has been computed, all degree-2 vertices are re-inserted into the
corresponding edges in an equidistant manner. The contraction step reduces the
running time considerably. Station labels are placed in one out of eight direc-
tions. While label–label overlaps are avoided, diagonally placed labels sometimes
intersect network edges.

Stott and Rodgers [10] draw metro maps using multi-criteria optimization
based on hill climbing. For a given layout they define metrics for evaluating
the number of edge intersections, the octilinearity and the length of edges, the
angular resolution at vertices and the straightness of metro lines. The quality of
a layout is a weighted sum over these five metrics. Their iterative optimization
process starts with a layout on the integer grid that is obtained from the original
embedding. In each iteration they consider alternative grid positions for each
vertex within a certain radius. For each of these grid positions they compute
the quality of the modified layout. If any of the positions improves the quality
of the layout, they move the current vertex to the best position among those
that do not change the topology of the layout. They observed typical problems
with local minima during their optimization process and give a heuristic fix
that overcomes one of these problems. Stott and Rodgers have experimented
with enforcing relative position, but report that it does not really improve the
results. They can label stations, but do not check for overlaps other than with
the edges incident to the current station. They use the same contraction method
as Hong et al. [6] to preprocess the input graph.

The main advantage of our method over its predecessors is that we guarantee
to keep all hard constraints (among them octilinearity) and that we avoid the
problem of local optima.

Interestingly enough the layout principles of metro maps have not only been
used in a geographic setting. E.g. Sandvad et al. [9] use the metro-map metaphor
as a way to visualize abstract information related to the Internet.

3 The Basic MIP Model

A MIP consists of two parts: a set of linear constraints and a linear objective
function. In Sect. 3.1 to 3.3 we describe four sets of constraints that model the
hard constraints (H1)–(H4). We model the simultaneous optimization of the
three soft constraints (S1)–(S3) in Sect. 3.4 to 3.6 using a weighted sum of three
individual cost functions:

Minimize λlength costlength + λbends costbends + λdir costdir, (1)

where the variables λi are positive user-defined weights, each of which individu-
ally emphasizes a certain esthetic criterion. The total number of constraints and
variables in our model is of order O(n + m′ + m2). Note that since G is planar
we have m ≤ 3n − 6 due to Euler’s formula.

To be able to treat all four edge directions similarly, we use an (x, y, z1, z2)-
coordinate system as depicted in Fig. 1, where each axis corresponds to one
of the four feasible edge directions in the layout. For each vertex v we define
z1(v) = x(v) + y(v) and z2(v) = x(v) − y(v).
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3.1 Octilinearity and Relative Position

Before modeling the constraints we need some notation to address relative po-
sitions between vertices and to denote directions of edges. For each vertex v we
define a partition of the plane into eight wedge-shaped sectors, numbered from
0 to 7 counterclockwise starting with the positive x-direction as in Fig. 2. To
denote the rough relative position between two vertices u, v in the original lay-
out we use the terms secu(v) and secv(u) representing the sector relative to u in
which v lies and vice versa. Similarly, for each edge {u, v}, we define a variable
dir(u, v) to denote the octilinear direction of {u, v} in the new layout.

As mentioned in the introduction, we partially model the soft constraint (S3)
as a hard constraint. As a compromise between conservation of relative posi-
tions and flexibility to obtain a nice drawing, we allow that an edge is drawn
in three different ways. It can be drawn in the direction corresponding to its
original sector relative to either endpoint or it can be drawn in the two neigh-
boring directions. Let secpred

u (v) = secu(v)−1 (mod 8), secorig
u (v) = secu(v) and

secsucc
u (v) = secu(v)+1 (mod 8). We now restrict dir(u, v), which will be used in

Sect. 3.5 and 3.6, to the set {secpred
u (v), secorig

u (v), secsucc
u (v)}. This is expressed

by the disjunction∨
i∈{pred,orig,succ}

(dir(u, v) = seci
u(v) ∧ dir(v, u) = seci

v(u)). (2)

To model (2) we introduce binary variables αpred, αorig, αsucc and the constraint

αpred(u, v) + αorig(u, v) + αsucc(u, v) = 1 ∀{u, v} ∈ E. (3)

The variable that takes the value 1 will determine the direction in which edge
{u, v} is drawn, i.e. the term of disjunction (2) that will evaluate to true.

Now we model the correct assignment of dir(u, v) and dir(v, u). For each
i ∈ {pred, orig, succ} we have the following set of constraints

dir(u, v) − seci
u(v) ≤ M(1 − αi(u, v))

−dir(u, v) + seci
u(v) ≤ M(1 − αi(u, v))

dir(v, u) − seci
v(u) ≤ M(1 − αi(u, v))

−dir(v, u) + seci
v(u) ≤ M(1 − αi(u, v))

∀{u, v} ∈ E, (4)

where the variables of type dir(u, v) are integers in the range {0, . . . , 7} and M
is a large constant. The use of the large constant M in connection with a set of
binary variables as in (3) is a standard trick in MIP modeling for formulating
a disjunction of constraints. The constant M must be an upper bound on the
left-hand sides of the inequalities. Here, if αi(u, v) = 0, the constraints in (4) are
trivially fulfilled and do not influence the left-hand sides. On the other hand,
if αi(u, v) = 1, the four inequalities are equivalent to dir(u, v) = seci

u(v) and
dir(v, u) = seci

v(u) as desired (equality constraints have to be transformed into
two inequalities when using this trick). Due to (3), αi(u, v) = 1 for exactly one
i ∈ {pred, orig, succ}. Thus, exactly one term of the disjunction (2) must be
fulfilled.
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Further, depending on the actual values of seci
u(v), we add three more con-

straints for each i ∈ {pred, orig, succ}. For example let secorig
u (v) = 2 (meaning v

is vertically above u in the original layout). Then the constraints are as follows

x(u) − x(v) ≤ M(1 − αorig(u, v))
−x(u) + x(v) ≤ M(1 − αorig(u, v))

y(u) − y(v) ≤ M(1 − αorig(u, v)) − �{u,v}

∀{u, v} ∈ E, (5)

where �{u,v} > 0 is the minimum length of edge {u, v}. If αorig(u, v) = 1, these
constraints force u and v to have the same x-coordinate and to keep a vertical
distance of at least �{u,v}. This is exactly what is needed for a vertical upward
running edge. The other seven possibilities are formulated similarly by forcing
one of the coordinates of both vertices to be equal and the distance along the
respective direction to be at least �{u,v}. Overall, this part needs 22m constraints
and 5m variables.

3.2 Conservation of the Embedding

To guarantee conservation of the original embedding it suffices to maintain for
each vertex v ∈ V the circular ordering of all incident edges.

Let N(v) = {u1, u2, . . . , udeg(v)} denote the set of all neighbors of v. The
counterclockwise ordering of the edges {v, u} ∈ E incident to v implies an or-
dering on N(v) by identifying each edge {v, u} with the vertex u opposite of v.
Assume the ordering is u1 < u2 < . . . < udeg(v). Then in the metro map lay-
out one of these vertices, say ui, is assigned the smallest direction number from
the set of possible directions {0, . . . , 7}. All other vertices in N(v) must follow
in the same order as before and must have strictly increasing direction num-
bers: dir(v, ui) < dir(v, ui+1) < . . . < dir(v, ui+deg(v)−1), where in the following
all indices greater than deg(v) are considered modulo deg(v). In other words,
all but one of the inequalities dir(v, u1) < dir(v, u2), . . . ,dir(v, udeg(v)−1) <
dir(v, udeg(v)), dir(v, udeg(v)) < dir(v, u1) must hold.

In order to determine the vertex with smallest direction number, we again use
binary variables as in Sect. 3.1. But instead of using the standard trick to model
a disjunction of deg(v) many terms with deg(v) − 1 constraints each, we make
use of the fact that in each case exactly one of the inequalities may be violated
while the rest must hold. This requires about a factor deg(v) less constraints.
They are as follows:

β1(v) + β2(v) + . . . + βdeg(v)(v) = 1 ∀v ∈ V, deg(v) ≥ 2, (6)

with binary variables βi(v), and

dir(v, u2) − dir(v, u1) ≥ −Mβ1(v) + 1
dir(v, u3) − dir(v, u2) ≥ −Mβ2(v) + 1

...
dir(v, u1) − dir(v, udeg(v)) ≥ −Mβdeg(v)(v) + 1

∀v ∈ V, deg(v) ≥ 2. (7)
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The variable βi that takes value 1 in constraint (6) determines that vertex
ui+1 has minimum direction number among N(v) by not enforcing dir(v, ui+1)−
dir(v, ui) ≥ 1 in constraints (7). All other binary variables βj , (j = i) are set to
0 and thus dir(v, uj+1) − dir(v, uj) ≥ 1 holds for all j = i.

These constraints not only enforce that the embedding is preserved but also
that no two edges incident to the same vertex can have the same direction. An
upper bound on the number of constraints and variables for this part of the MIP
is given by

∑
v∈V (deg(v) + 1) ∈ O(m).

3.3 Planarity

For preserving planarity we have to ensure that certain pairs of edges do not in-
tersect. This can be done in the octilinear setting by distinguishing eight possible
relative positions for a pair {e1, e2} of edges. We express these relative positions
using compass orientations. Fixing an edge e1 a second, non-intersecting edge e2
can either be placed north, south, east, west or northeast, northwest, southeast,
southwest of e1. For example northeast means in terms of our coordinate system
that both vertices incident to e1 have strictly smaller z1-coordinates than both
vertices incident to e2. The other relative positions are defined in a similar way.

Clearly, an octilinear drawing is planar if and only if each pair of non-incident
edges is placed according to one of the above relative positions. Indeed, we model
this disjunctive constraint for all pairs of edges. The constraint∑

i∈{N,S,E,W,NE,NW,SE,SW}
γi(e1, e2) ≥ 1 ∀(e1, e2) ∈

(
E
2

)
,

e1, e2 not incident,
(8)

introduces the variables γN, . . . , γSW. As an example we now give the constraints
for the condition “e2 is east of e1”

x(u1) − x(u2) ≤ M(1 − γE(e1, e2)) − dmin
x(u1) − x(v2) ≤ M(1 − γE(e1, e2)) − dmin
x(v1) − x(u2) ≤ M(1 − γE(e1, e2)) − dmin
x(v1) − x(v2) ≤ M(1 − γE(e1, e2)) − dmin

∀(e1, e2) ∈
(
E
2

)
,

e1, e2 not incident.
(9)

Recall that dmin is the minimum distance between non-incident edges as given
in (H4). Analogously, each of the other seven relative positions is modeled using
four constraints each. This amounts to 33 constraints and 8 variables for each
edge pair. The problem is that the number of edge pairs is O(m2). Therefore,
we give several heuristics in Sect. 3.7 to reduce the number of constraints that
enforce planarity.

3.4 Minimization of Edge Lengths

For modeling the edge lengths one has to specify the underlying metric. We
decided to use the L∞-metric, which defines the distance of two vertices u and v
to be max(|x(u)− x(v)|, |y(u)− y(v)|). We define new real-valued, non-negative
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variables D(u, v) for all edges {u, v} ∈ E which serve as upper bounds on the
lengths of their respective edges. By setting

costlength =
∑

{u,v}∈E

D(u, v) (10)

and by minimizing costlength, the variables D(u, v) indeed equal the correspond-
ing edge lengths.

The constraints that bound D(u, v) depend on the respective direction of the
edge {u, v}. Note that the actual direction of this edge is determined according
to the constraints in Sect. 3.1. Thus we can reuse the binary variables defined in
that section to distinguish the three cases for the edge direction. As an example
assume that secu(v) = 1. Then the constraints are

x(v) − x(u) ≤ M(1 − αprev(u, v)) + D(u, v)
x(v) − x(u) ≤ M(1 − αreal(u, v)) + D(u, v)
y(v) − y(u) ≤ M(1 − αnext(u, v)) + D(u, v)

∀{u, v} ∈ E. (11)

Note that for an edge {u, v} drawn diagonally it holds that |x(u) − x(v)| =
|y(u) − y(v)|. Hence we can use either of the x- or y-coordinates to determine
the length D(u, v). Edge lengths for other values of secu(v) are modeled similarly.
In total we use m variables and 3m constraints.

3.5 Avoiding Bends Along Lines

Clarity in an octilinear drawing depends crucially on the ability to visually follow
the metro lines. This can be partially enhanced by using distinguishable colors,
but also by avoiding bends along the lines.

We define the bend cost subject to the actual angle between two adjacent
edges on a path. Due to the octilinearity constraints and to the fact that two
adjacent edges cannot have the same direction relative to their joint vertex the
angles can only equal 180, 135, 90, and 45 degrees. In that order we define the
corresponding bend cost to be 0, 1, 2, and 3, such that the cost increases with
the acuteness of the angle, see Fig. 3.

In our model we can determine the angle between two adjacent edges {u, v}
and {v, w} by using the values of dir(u, v) and dir(v, w). For ease of notation let
Δdir(u, v, w) = dir(u, v) − dir(v, w). Then, the bend cost can be expressed as

bend(u, v, w) =

{
|Δdir(u, v, w)| if |Δdir(u, v, w)| ≤ 4
8 − |Δdir(u, v, w)| if |Δdir(u, v, w)| ≥ 5.

(12)

Now we can set

costbends =
∑

{u,v},{v,w}∈L, L∈L
bend(u, v, w) (13)

to minimize the number and acuteness of all bends along lines.
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The formulation of bend cost in (12) cannot be transformed directly into a set
of linear constraints because it involves absolute values and a case distinction.
Here, we solve this problem using instead the following constraints for all lines
L ∈ L and pairs of incident edges {u, v}, {v, w} on L. Again, we need some
binary variables, namely δ1(u, v, w), δ2(u, v, w), and δ3(u, v, w). The constraint

δ1(u, v, w) + δ2(u, v, w) + δ3(u, v, w) = 2 (14)

makes sure that exactly one of them takes the value 0. Then, the set of constraints

Δdir(u, v, w) ≤ −5 + δ1(u, v, w)M
Δdir(u, v, w) ≥ 5 − δ2(u, v, w)M
Δdir(u, v, w) ≤ 4 + δ3(u, v, w)M
Δdir(u, v, w) ≥ −4 − δ3(u, v, w)M

(15)

together with

−bend(u, v, w) ≤ Δdir(u, v, w)−8δ1(u, v, w)+8δ2(u, v, w) ≤ bend(u, v, w) (16)

assign the bend cost bend(u, v, w) for the bend between edges {u, v} and {v, w},
where the variable bend(u, v, w) is integer valued and non-negative. Verify that
these constraints in combination with the minimization of (13) indeed model the
bend cost as defined in (12). For a detailed explanation we refer to [7].

Minimizing the number of bends thus uses four variables and seven constraints
for each pair of incident edges on a path L ∈ L. Since there are in total at most
m′ such pairs we are using 4m′ variables and at most 7m′ constraints.

3.6 Preservation of Edge Directions

To preserve as much of the overall appearance of the metro system as possible
we have already restricted the edge directions to the set of the three directions
closest to the original one in Sect. 3.1. Ideally we want to draw an edge {u, v}
using the closest octilinear approximation, i.e. the direction where dir(u, v) =
secu(v). Hence we introduce a cost in case that the layout does not use this
direction. This models (S3).
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For each edge {u, v} we define as its cost a binary variable ε(u, v) which is 0
if and only if dir(u, v) = secu(v). This is modeled as follows

−Mε(u, v) ≤ dir(u, v) − secu(v) ≤ Mε(u, v) ∀{u, v} ∈ E. (17)

Now we can define the edge-direction cost

costdir =
∑

{u,v}∈E

ε(u, v) (18)

which, for each edge, charges 1 when the MIP does not choose the closest octilin-
ear direction. This part of our formulation needs m variables and 2m constraints.

3.7 Speed-Up Techniques

A common feature of metro maps is that they tend to have a large number of
degree-2 vertices on tracks between two interchange stations. It is useful and
common in real metro maps to draw paths between pairs of neighboring in-
terchange or terminal stations as straight as possible. This leads to the idea
of replacing chains of degree-2 vertices temporarily by single edges and rein-
serting the vertices in the final drawing equidistantly on these edge. While this
data-reduction trick has been applied before [6, 10], we extend it by keeping two
vertices on each chain of degree-2 vertices. The rationale behind this is that it al-
lows for drawing the connection between the corresponding interchange vertices
as a polyline with three segments. Our experiments showed that this is a good
compromise. Remember that the target function penalizes bends along lines so
that in many cases bends at these special degree-2 vertices are in fact avoided.

The only part of our MIP formulation that needs a quadratic number of
constraints (and variables) is the one that ensures planarity. This is why we
suggest several ways to reduce the number of these constraints. For a planar
drawing of an embedded graph it suffices to require that non-incident edges
of the same face do not intersect. This already guarantees that no two edges
intersect except at common endpoints. So instead of using the constraints in
Sect. 3.3 for all pairs of non-incident edges we only include them for pairs of
non-incident edges of the same face.

In many real-world examples (see Sect. 4) this is still not enough to solve
the MIP in an acceptable amount of time. To further reduce the number of
constraints we rely on heuristic methods that relax the planarity requirements.
These heuristics involve subdividing the external face using the convex hull and
considering only pairs of edges where at least one edge is a pendant edge, i.e.
an edge that leads to a degree-1 vertex. One can also try to skip the planarity
constraints completely. In some of these experiments the results were indeed
planar in spite of not being enforced in the model. For more details see [7].

4 Experiments

In this section we show how our method performs on the metro system of Sydney
because Sydney has been used as a benchmark before [6, 10]. For more examples,
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Table 1. Total number of constraints and variables for six different planarity tests

CH &
G n m MIP all pairs faces CH PE

PE
none

Sydney uncontr. 174 183 constr. 81416 45182 21983 13535 6242 3041

10 lines contr. 62 71 var. 20329 11545 5921 3873 2105 1329

see [7]. We solved our MIP with the optimizer CPLEX 9.0 running on a Power3-
II processor with 375 MHz under the UNIX operating system AIX 5.1, the only
system with a CPLEX license accessible to us. We have also experimented with
the optimizer XpressMP but found that CPLEX generates better results.

Table 1 shows the size of the uncontracted and contracted network and the
number of constraints and variables for the different planarity options in the
contracted case. The numbers in the columns faces and none show that en-
suring planarity is in fact responsible for about 90% of the constraints and
variables. The other columns show that the convex-hull (CH) and pendant-edge
(PE) heuristics as well as their combination effectively reduce the MIP size.

The CityRail system in Sydney (which we restricted to the more interesting
suburban part) is a relatively large network and has several multiple edges. The
geographic layout is displayed in Fig. 4(a), the official metro map in Fig. 4(f).
The weights used in the objective function were (λlength, λbends, λdir) = (1, 5, 5).
Combining convex-hull and pendant-edge heuristic yielded the planar layout in
Fig. 4(e) within 22 minutes. Observe the influence of the soft constraints on the
layout: There are no unnecessarily long edges (optimization of (S2)). Moreover,
the metro lines only bend where geographically required and pass through in-
terchange stations as straight as possible (optimization of (S1)). And, finally,
the simplified edges tend to follow the original directions of Fig. 4(a) (optimiza-
tion of (S3)). These goals were optimized while guaranteeing octilinearity and
preserving the original embedding.

We now compare our layout of the Sydney map to the results of previous
algorithms. Figure 4(b) is taken from Hong et al. [6] and shows their layout using
a special spring-embedder method. Originally they draw a network that extends
slightly further into the periphery but these extensions should not influence the
layout of the central part of the network. For ease of comparison we clipped
the lines appropriately in Fig. 4(b). Apart from the fact that Hong at al. show
station labels, one can observe that edges are not strictly octilinear and that
avoiding bends along lines is not a goal of their method. In addition, there is a
large variance in the distribution of the edge lengths. Figure 4(c), taken from
Stott and Rodgers [10], shows their layout when applying an edge contraction
step before actually drawing the network. There are two edges that obviously
violate octilinearity, which is an important drawback of this layout. Figure 4(d)
displays the result of the same method without prior edge contraction. It again
shows an almost octilinear layout, now with the exception of one edge.

Our method overcomes the limitations of the previous results: there are no
exceptions to octilinearity and we avoid the problems of local optima in [10]. In
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(a) Original geographic layout (b) Hong et al. (clipping of Fig. 7(b) in [6])

(c) Stott and Rodgers using contracted
edges (Fig. 14 in [10])

(d) Stott and Rodgers using uncontracted
edges (Fig. 15 in [10])

(e) Final layout using our method (f) Clipping of the official map [11]

Fig. 4. Various drawings of the Sydney CityRail system
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contrast to Hong et al. we actively minimize the number of line bends in the
layout and maintain the overall geography using the concept of relative position.

The disadvantage of our method is its running time. While we needed 22
minutes to produce our Sydney map, Hong et al. computed the layout in Fig. 4(b)
within 7.6 seconds. Stott and Rodgers needed 4 minutes for a Sydney map using
a contracted input graph (Fig. 4(c)) and about 28 minutes for the uncontracted
graph (Fig. 4(d)). Experiments were carried out on very different machines.

Acknowledgments. We thank Seok-Hee Hong and Herman Haverkort for in-
teresting discussions and Damian Merrick for the Sydney data.
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Abstract. It is shown that if a graph of n vertices can be drawn on the
torus without edge crossings and the maximum degree of its vertices is at
most d, then its planar crossing number cannot exceed cdn, where c is a
constant. This bound, conjectured by Brass, cannot be improved, apart
from the value of the constant. We strengthen and generalize this result
to the case when the graph has a crossing-free drawing on an orientable
surface of higher genus and there is no restriction on the degrees of the
vertices.

1 Introduction

Let Sg be the compact orientable surface with no boundary, of genus g. Given
a simple graph G, a drawing of G on Sg is a representation of G such that the
vertices of G are represented by points of Sg and the edges are represented by
simple (i.e., non-selfintersecting) continuous arcs in Sg, connecting the corre-
sponding point pairs and not passing through any other vertex. The crossing
number of G on Sg, crg(G), is defined as the minimum number of edge crossings
over all drawings of G in Sg. For cr0(G), the “usual” planar crossing number,
we simply write cr(G).

Let G be a graph of n vertices and e edges, and suppose that it can be drawn
on the torus without crossing, that is, G satisfies cr1(G) = 0. How large can
cr(G) be? Clearly, we have cr(G) <

(
e
2

)
, and this order of magnitude can be

attained, as shown by the following example. Take five vertices and connect any
pair of them by e

20 vertex-disjoint paths of lengths two. In any drawing of this
graph in the plane, every subdivision of K5 gives rise to a crossing. Therefore,
the number of crossings must be at least e2

400 .
Peter Brass suggested that this estimate can be substantially improved if we

impose an upper bound on the degree of the vertices. More precisely, we have

Theorem 1. Let G be a graph of n vertices with maximum degree d, and suppose
that G has a crossing-free drawing on the torus. Then we have cr(G) ≤ cdn,
where c is a constant.
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For d ≥ 3, the bound in Theorem 1 cannot be improved, apart from the value
of the constant c. Consider the following example. Let d ≥ 4, G = Ck×Ck, where
k =

√
n/d is a large integer and Ck denotes a cycle of length k. Obviously, this

graph can be drawn on the torus without crossings. On the other hand, by a
result of Salazar and Ugalde [SU04], its planar crossing number is larger than
(4
5 − ε)k2, for any ε > 0, provided that k is large enough. Substitute every edge

e of G by �d
4� new vertices, each connected to both endpoints of e. The resulting

graph G′ has at most n vertices, each of degree at most d. It can be drawn on
the torus with no crossing, and its planar crossing number is at least(

4
5
− ε

)
k2 ×

⌊
d

4

⌋2

>
1

100
nd.

To see this, it is enough to observe that there is an optimal drawing of G′ in the
plane with the property that any two paths of length two connecting the same
pair of vertices cross precisely the same edges. The same construction can be
slightly modified to show that cr(G) can also grow linearly in n if the maximum
degree d is equal to three.

Theorem 1 can be generalized as follows.

Theorem 2. Let G be a graph of n vertices of maximum degree d that has a
crossing-free drawing on Sg, the orientable surface of genus g. Then we have
cr(G) ≤ cd,gn, where cd,g is a constant depending on d and g.

We can drop the condition on the maximum degree and obtain an even more
general statement.

Theorem 3. Let G be a graph of n vertices with degrees d1, d2, . . . , dn, and
suppose that G has a crossing-free drawing on Sg. Then we have

cr(G) ≤ cg

n∑
i=1

d2
i ,

where cg is a constant depending on g.

To simplify the presentation and to emphasize the main idea of the proof, in
Section 2 first we settle the simplest (planar) case (Theorem 1). In Section 3,
we reduce Theorem 3 to a similar upper bound on the crossing number of G in
Sg−1 (Theorem 3.1). This latter result is established in Section 4.

2 The Simplest Case: Proof of Theorem 1

We can assume that d ≥ 3. It is sufficient to prove that cr(G) ≤ cd(n− 1) holds
for any two-connected graph G satisfying the conditions. Indeed, if G is discon-
nected or has a cut vertex, then it can be obtained as the union of two graphs G1
and G2 with n1 and n2 vertices that have at most one vertex in common, so that



336 J. Pach and G. Tóth

we have n1 + n2 = n or n + 1. Arguing for G1 and G2 separately, we obtain by
induction that

cr(G) = cr(G1) + cr(G2) ≤ cd(n1 − 1) + cd(n2 − 1) ≤ cd(n − 1),

as required.
Let G be a two-connected graph with maximum degree d and cr1(G) = 0. Fix

a crossing-free drawing of G on the torus. We can assume that the boundary of
each face is connected. Indeed, if one of the faces contains a cycle not contractible
within the face, then cutting the torus along this cycle we do not damage any
edge of G. Therefore, G is a planar graph and there is nothing to prove.

If our drawing is not a triangulation, then by adding O(n) extra vertices and
edges we can turn it into one so that the maximum degree of the vertices increases
by at most a factor of three. We have to apply the following easy observation.

Lemma 2.1. Let G be a two-connected graph with n vertices of degree at most
d (d ≥ 3). Suppose that G has a crossing-free drawing on the orientable surface
of genus g such that the boundary of each face is connected. Any such drawing
can be extended to a triangulation of the surface with at most 19n + 36(g − 1)
vertices of maximum degree at most 3d.

Proof. First consider a cycle f = x1x2 . . . xn(f) bounding a single face in the
drawing of G. Note that some vertices xi ∈ V (G) and even some edges may ap-
pear along this cycle several times. Take a simple closed curve γ0 = p1p2 . . . pn(f)
inside the face, running very close to f and passing through the (new) points pi

in this cyclic order. In the ring between f and γ0, connect each vertex xi to pi

and pi+1 (where pn(f)+1 := p1).
Divide γ0 into m0 := �n(f)

d−1 � connected pieces, each consisting of at most d
vertices, such that the last vertex of each piece πi is the first vertex of πi+1, where
1 ≤ i ≤ m0 and πm0+1 := π1. Place a simple closed curve γ1 = q1q2 . . . qm0 in
the interior of γ0. In the ring between γ0 and γ1, connect each qi to all points in
πi. (If m0 = 1 or 2, then γ1 degenerates into a point or a single edge.) If γ1 has
more than three vertices, repeat the same procedure for γ1 in the place of γ0,
and continue as long as the interior of the face is not completely triangulated.
We added

n(f) + m0 + m1 + . . . < n(f) + n(f) +
n(f)

2
+

n(f)
4

+ . . . < 3n(f)

new vertices, and their maximum degree is at most d + 4. The degree of every
original vertex of f increased by at most twice the number of times it appeared
in f .

If we triangulate every face of G in the above manner, the resulting drawing
G′ defines a triangulation of the surface with fewer than n +

∑
f 3n(f) ≤ n +

6|E(G)| vertices, each of degree at most d′ := 3d. By Euler’s formula, we have
n + 6|E(G)| ≤ n + 18(n− 2 + 2g), as required. �

In the sequel, slightly abusing the notation, we write G for the triangulation
G′ and d for its maximum degree d′.
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If G has no noncontractible cycle, i.e., no cycle represented on the torus by a
closed curve not contractible to a point, then we are done, because G is a planar
drawing so that cr(G) = 0. Otherwise, choose a noncontractible cycle C with
the minimum number of vertices, fix an orientation of C, and let k := |V (C)|.
Let El (and Er) denote the set of edges not belonging to C that are incident to
at least one vertex of C and in a small neighborhood of this vertex lie on the
left-hand side (respectively right-hand side) of C. Note that the sets El and Er

are disjoint, but this fact is not necessary for the proof.
Replace C by two copies, Cr and Cl, lying on its right-hand side and left-hand

side. Connect each edge of Er (respectively El) to the corresponding vertex of Cr

(respectively Cl). Cut the torus along C, and attach a disk to each side of the cut.
The resulting spherical (planar) drawing G1 represents a graph, slightly dif-

ferent from G. To transform it into a drawing of G, we have to remove Cl and
(re)connect the edges of El to the corresponding vertices of Cr . In what follows,
we describe how to do this without creating too many crossings.

Let Ĝ1 denote the dual graph of G1, that is, place a vertex of Ĝ1 in each
face of G1, and for any e ∈ E(G1) connect the two vertices assigned to the faces
meeting at e by an edge ê ∈ E(Ĝ1). Let r and l denote the vertices of Ĝ1 lying
in the faces bounded by Cr and Cl.

Lemma 2.2. In Ĝ1, there are k vertex-disjoint paths between the vertices r and l.

Proof. By Menger’s theorem, the maximum number p of (internally) vertex-
disjoint paths connecting r and l in Ĝ1 is equal to the minimum number of
vertices whose deletion separates r from l. Choose p such separating vertices,
and denote the corresponding triangular faces of G by f1, . . . , fp. The interior
of the union of these faces must contain a noncontractible closed curve that
does not pass through any vertex of G. Let δ be such a curve whose number of
intersection points with the edges of G is minimum. Choose an orientation of δ.
Let e1, . . . , eq denote the circular sequence of edges of G intersected by δ. By the
minimality of δ, we have q ≤ p, because the interior of each triangle fi contains
at most one maximal connected piece of δ. Let vi be the right endpoint of ei with
respect to the orientation of δ. Notice that vi is adjacent to or identical with
vi+1, for every 1 ≤ i ≤ q (where vq+1 := v1). Therefore, the circular sequence of
vertices v1, . . . , vq induces a cycle in G that can be continuously deformed to δ.
Thus, we have a noncontractible cycle of length q ≤ p in G, which implies that
k, the length of the shortest such cycle, is at most p, as required. �

By Lemma 2.1, the graph Ĝ has at most 2|V (G)| ≤ 38n vertices. According to
Lemma 2.2, there is a path connecting r and l in Ĝ with fewer than 38n

k internal
vertices. The corresponding faces of G1 form a “corridor” B between Cr and Cl.
Delete now the vertices of Cl from G1. Pull every edge in El through B, and
connect each of them to the corresponding vertex of Cr . See Figures 1 and 2.
Notice that during this procedure one can avoid creating any crossing between
edges belonging to El.

We give an upper bound on the number of crossings in the resulting planar
drawing of G. Using that |C| = k and |El| ≤ dk, we can conclude that by
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Fig. 1. C is the shortest noncontractible cycle

l

rC

C

B

l

rC

C

B

u’1

u1

u’1

u1

2uu’22uu’2

Fig. 2. Pulling the edges in El through the corridor B

pulling each edge through the corridor B, we create at most 38n
k crossings per

edge. Thus, the total number of crossings cannot exceed dk · 38n
k = 38dn, which

completes the proof of Theorem 1. �

3 Reducing Theorem 3 to Theorem 3.1

Given a graph G, let n(G) and σ(G) denote the number of vertices of G and the
sum of the squares of their degrees.

Theorem 3 provides an upper bound for the crossing number of a graph G
that can be drawn on Sg without crossing. Next we show that this bound can be
deduced by repeated application of the following result. In each step, we reduce
the genus of the surface by one.

Theorem 3.1. Let G be a two-connected graph with crg(G) = 0. Then we have
crg−1(G) ≤ c∗gσ(G), for some constant c∗g ≥ 1.
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Proof of Theorem 3 using Theorem 3.1. As in the proof of Theorem 1,
we can assume that G is two-connected. Consider a crossing-free drawing of
G0 := G on Sg. According to Theorem 3.1, G0 can be drawn on Sg−1 with at
most cσ(G) crossings. Place a new vertex at each crossing, and apply Theorem
3.1 to the resulting graph G1. Proceeding like this, we obtain a series of graphs
G2, G3, . . . , Gg, drawn on Sg−2, Sg−3, . . . , S0, respectively, with no crossing.

We claim that for any i, 0 ≤ i ≤ g,

σ(Gi) ≤ (17)i

⎛⎝ ∏
g−i<j≤g

c∗j

⎞⎠ σ(G)

holds. This is obviously true for i = 0. Let 0 < i ≤ g, and assume that the claim
has already been verified for i − 1. Notice that, apart from the original vertices
of Gi−1, every other vertex of Gi has degree four. Thus, applying Theorem 3.1
to the graph Gi−1 that had a crossing-free drawing on Sg−i+1, we obtain

σ(Gi) ≤ σ(Gi−1) + 16crg−i(Gi−1) ≤ σ(Gi−1) + 16c∗g−i+1σ(Gi−1)

≤ (1 + 16c∗g−i+1)(17)i−1

⎛⎝ ∏
g−i+1<j≤g

c∗j

⎞⎠σ(G) ≤ (17)i

⎛⎝ ∏
g−i<j≤g

c∗j

⎞⎠σ(G),

which proves the claim.
It follows from the construction that Gg is a planar graph, and we have

n(Gg) − n(G) < σ(Gg) ≤ 17g

⎛⎝ g∏
j=1

c∗j

⎞⎠ σ(G).

Replacing the n(Gg)−n(G) “new” vertices of Gg by proper crossings, we obtain

a drawing of G in the plane with at most 17g
(∏g

j=1 c∗j

)
σ(G) crossings. This

completes the proof of Theorem 3. �

4 Reducing the Genus by One: Proof of Theorem 3.1

It remains to prove Theorem 3.1.
All noncrossing closed curves C on Sg belong to one of the following three

categories:

1. C is contractible (to a point);
2. C is noncontractible and twosided, i.e., it separates Sg into two connected

components;
3. C is noncontractible and onesided.

Let us cut the surface Sg along C, and attach a disk along each side of the
cut. If C is contractible, we obtain two surfaces: one homeomorphic to Sg and
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the other homeomorphic to the sphere S0. If C is noncontractible and twosided,
then we obtain two surfaces homeomorphic to Sa and Sb, for some a, b > 0 with
a + b = g. Finally, if C is noncontractible and onesided, then we get only one
surface, Sg−1 [MT01].

First we need an auxiliary statement, interesting on its own right.

Theorem 4.1. Let G be a graph with a crossing-free drawing on Sg. If G has
no noncontractible onesided cycle, then G is a planar graph.

Proof. We follow the approach of Cairns and Nikolayevsky [CN00], developed to
handle a similar problem on generalized thrackles. Let S be a very small closed
neighborhood of the union of all edges of the drawing of G on Sg. Then S is a
compact connected surface whose boundary consists of a finite number of closed
curves. Attaching a disk to each of these closed curves, we obtain a surface S′

with no boundary. We show that S′ is a sphere. To verify this claim, consider two
closed curves, α′ and β′, on S′. They can be continuously deformed into closed
walks, α1 and β1, along the edges of G. Let α and β be the corresponding closed
walks along the edges of G in the original drawing on Sg. By the assumption, α
divides Sg into two parts, therefore, β crosses α an even number of times. Since
the original drawing of G on Sg was crossing-free, every crossing between α and
β occurs at a vertex of G. Using the fact that in the new drawing of G on S′,
the cyclic order of the edges incident to a vertex is the same as the cyclic order
of the corresponding edges in the original drawing, we can conclude that α1 and
β1 cross an even number of times. It is not hard to argue that then the same
was true for α′ and β′. Thus, S′ is a surface with no boundary in which any two
closed curves cross an even number of times. This implies that S′ is a sphere.
Consequently, we have a crossing-free drawing of G on the sphere, that is, G is
a planar graph. �

Proof of Theorem 3.1. As in the previous section, let σ(G) denote the the
sum of the squared degrees of the vertices of G. A grid of size k × k is the cross
product Pk × Pk of two paths of length k. The vertices of Pk × Pk with degrees
less than four are said to form the boundary of the grid. The proof of Theorem
3.1 is based on the same idea as that of Theorem 1, but some important details
have to be modified.

Suppose that G is a two-connected graph of n vertices, drawn on Sg without
crossing. We can also assume that G has no crossing-free drawing on Sg−1,
otherwise Theorem 3.1 is trivially true. In particular, it follows that every face
of the drawing of G on Sg has a connected boundary.

Replace each vertex v of degree d(v) > 4 by a grid of size d(v) × d(v) and
connect the edges incident to v to distinct vertices on the boundary of the grid,
preserving their cyclic order. The resulting crossing-free drawing of G′ has at
most σ(G) vertices, each of degree at most four. Every face has a connected
boundary, so that we can apply Lemma 2.1 to turn G′ into a triangulation
G′′ with at most 19σ(G) + 36(g − 1) vertices, each of degree at most twelve.
Restricting G′ and G′′ to any grid substituting for a vertex in G, the only
difference between them is that each quadrilateral face in G′ is subdivided by
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one of its diagonals into two triangles in G′′. Color all edges along the boundaries
of the grids blue, and all other grid and diagonal edges of G′′ that lie in the
interior of some grid red.

If G′′ has no noncontractible onesided cycle, then we are done by Theorem 4.1.
Otherwise, pick such a cycle C with the smallest number k of vertices. Without
increasing its length too much, we can replace all red edges of C by blue edges.
Indeed, the first vertex and the last vertex of any maximal red path in C must
belong to the boundary of the same grid. Replace each such path by the shortest
blue path connecting its first and last vertices along the boundary of the grid
containing them. The resulting cycle C′ is noncontractible, onesided, and its
length is at most 2k. It has no red edges, and we can assume without loss of
generality that it does not intersect itself. Fix an orientation of C′.

Let El (and Er) denote the set of edges not belonging to C′ that are incident
to at least one vertex of C′ and in a small neighborhood of this vertex lie on the
left-hand side (respectively right-hand side) of C′.

Replace C′ by two copies, Cr and Cl, lying on its right-hand side and left-
hand side. Connect each edge of Er and El) to the corresponding vertex of Cr

and Cl. Cut Sg along C, and attach a disk to each side of the cut. The resulting
surface is Sg−1, and it contains a crossing-free drawing G1 of a graph slightly
different from G′′. To obtain a drawing of G′′ from G1, we have to remove Cl and
(re)connect the edges of El to the corresponding vertices of Cr without creating
too many crossings.

Let Ĝ1 be the dual drawing of G1 on Sg−1. Let r (respectively l) be the vertex
of Ĝ1 lying in the face bounded by Cr (respectively Cl). Color blue each vertex
of Ĝ1 that corresponds to a face lying inside a grid in G′′.

Repeating the proof of Lemma 2.2, we obtain

Lemma 4.2. In Ĝ1, there are k vertex-disjoint paths between the vertices r and l.
�

The number of cells in G1 is equal to the number of cells in G′′ plus 2.
Therefore, by Euler’s formula, Ĝ1 has at most

2|V (G′′)|+4(g − 1)+2 ≤ 2 (19σ(G) + 36(g − 1))+4(g− 1)+2 < 40(σ(G)+2g)

vertices. Thus, by Lemma 4.2, there is a path P (rl) between r and l, of length at
most 40(σ(G) + 2g)/k. Replacing all blue vertices of P (rl) by others, we obtain
a new path P ′(rl), not much longer than P (rl). First observe that r and l, the
two endpoints of P (rl), are not blue. Let uv1v2 . . . vjv be an interval along P
such that all vi’s are blue (1 ≤ i ≤ j), but u and v are not. Then the faces
corresponding to u and v must be adjacent to the boundary of some grid in G1.
These two faces are connected by two chains of faces following the outer boundary
of the grid. Replace v1, v2, . . . , vj by the sequence of vertices corresponding to
the shorter of these two chains. Since the degree of every vertex in G1 is at most
twelve, the length of this chain is at most 12j. Repeating this procedure for each
maximal blue interval of P (rl), we obtain a new path P ′(rl), whose length is at
most 480(σ(G) + 2g)/k.
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The corresponding faces of G1 form a “corridor” B between Cr and Cl. Now
delete r, l, and the vertices of Cl. In the same way as in the proof of Theorem 1,
“pull” all edges of El through B, and connect them to the corresponding vertices
of Cr. This step can be carried out without creating any crossing between the
edges in El.

Now we count the number of crossings in the resulting drawing. Since |C′| ≤
2k, |El| ≤ 20k. Pulling them through the corridor B, we create no more than
480(σ(G) + 2g)/k crossings per edge, that is, at most X := 9600(σ(G) + 2g)
crossings altogether.

Deleting the extra vertices and edges from G1 and collapsing each grid into
a vertex, we obtain a drawing of G on Sg−1, in which the number of crossings
cannot exceed X . This concludes the proof of Theorem 3.1. �
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Abstract. In this paper we present an algorithm for drawing an undi-
rected graph G which takes advantage of the structure of the modular
decomposition tree of G. Specifically, our algorithm works by traversing
the modular decomposition tree of the input graph G on n vertices and
m edges, in a bottom-up fashion until it reaches the root of the tree,
while at the same time intermediate drawings are computed. In order
to achieve aesthetically pleasing results, we use grid and circular place-
ment techniques, and utilize an appropriate modification of a well-known
spring embedder algorithm. It turns out, that for some classes of graphs,
our algorithm runs in O(n +m) time, while in general, the running time
is bounded in terms of the processing time of the spring embedder algo-
rithm. The result is a drawing that reveals the structure of the graph G
and preserves certain aesthetic criteria.

1 Introduction

The problem of automatically generating a clear and readable layout of complex
structures inside a graph is receiving increasing attention in the literature [1]. In
this work we present a drawing algorithm which takes advantage of the modular
decomposition of a graph. Our goal is to highlight the global structure of the
graph and reveal the regular structures within it. The usage of the modular
decomposition has been considered by many authors in the past to efficiently
solve other algorithmic problems [4].

Our approach, takes advantage of the modular decomposition of the input
graph G, which is a recursive tree-like partition that reveals modules of G, i.e.
sets of vertices having the same neighborhood. By exploiting the properties of
these modules and especially the properties of the modular decomposition tree
T (G), we are able to draw the modules separately using different techniques for
each one. To achieve aesthetically pleasing results, we utilize a grid placement
technique, a circular drawing paradigm, and a modification of a spring embedder
method, on the appropriate modules. Our algorithm relies on creating interme-
diate drawings in a systematic fashion by traversing the modular decomposition
tree of the input graph from bottom to top, while at the same time certain pa-
rameters are appropriately updated. In the end, the drawing of the graph G is
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obtained by traversing T (G) from the root to the leaves, in order to compute the
final coordinates of the vertices in the drawing area, using the parameters com-
puted in the previous traversal of T (G). It turns out that this way of processing
T (G), enables us to visualize the graph in various levels of abstraction.

Similar approaches for computing the layout of a graph are based on a specific
decomposition of it. Based on this scheme, optimal algorithms have been devel-
oped for drawing a series-parallel digraph [1], and for upward planarity testing
of a single-source digraph [2]. Also, many techniques for drawing hierarchical
clustered graphs, deal with a graph and its tree representation [6, 7, 8]. All these
methods address the problem of visualization, by drawing the non-leaf nodes of
the tree as simple closed curves. Force directed methods have also been devel-
oped to support and show the structure of a clustered graph which is a 2-level
decomposition scheme [13, 18].

2 Definitions and Background Results

We consider finite undirected graphs with no loops or multiple edges. For a
graph G, we denote by V (G) and E(G) the vertex set and the edge set of G,
respectively. Let S be a subset of the vertex set of a graph G. Then, the subgraph
of G induced by S is denoted by G[S]. A clique is a set of pairwise adjacent
vertices; a stable set is a set of pairwise non-adjacent vertices. The degree of a
vertex x in the graph G, denoted d(x), is the number of edges incident on x. For
a graph G on n vertices and m edges, D(G) = 2m/n is the average degree of G.
The complement of a graph G is denoted by G.

Let T be a rooted tree. For convenience, we refer to a vertex of a tree as
a node. The parent of a node t of T is denoted by p(t), whereas the node set
containing the children of t in T is denoted by ch(t). Let h be the height of the
tree T . Then, we denote by Li the node set containing the nodes of the i-th level
of T , for 0 ≤ i ≤ h.

2.1 Modular Decomposition

A subset M of vertices of a graph G is said to be a module of G, if every
vertex outside M is either adjacent to all vertices in M or to none of them.
The emptyset, the singletons, and the vertex set V (G) are trivial modules and
whenever G has only trivial modules it is called a prime (or indecomposable)
graph. It is easy to see that the chordless path on four vertices, P4, is a smallest
non-trivial prime graph, since graphs with three vertices are decomposable [4]. A
non-trivial module is also called homogeneous set. A module M of the graph G
is called a strong module, if for any module M ′ = M of G, either M ′ ∩ M = ∅
or one module is included into the other. A module M of a graph G is called
parallel if G[M ] is a disconnected graph, series if G[M ] is a disconnected graph
and neighborhood if both G[M ] and G[M ] are connected graphs.

The modular decomposition of a graph G is a linear-space representation of
all the partitions of V (G) where each partition class is a module. The modular
decomposition tree T (G) of the graph G (or md-tree for short) is a unique labelled
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tree associated with the modular decomposition of G in which the leaves of T (G)
are the vertices of G and the set of leaves associated with the subtree rooted
at an internal node induces a strong module of G. Thus, the md-tree T (G)
represents all the strong modules of G. An internal node is labelled by either P
(for parallel module), S (for series module), or N (for neighborhood module). It
is shown that for every graph G on n vertices and m edges, the md-tree T (G) is
unique up to isomorphism, the number of nodes in T (G) is O(n) and it can be
constructed in O(n + m) time [5, 15].

Let t be an internal node of the md-tree T (G) of a graph G. We denote
by M(t) the module corresponding to t which consists of the set of vertices of
G associated with the subtree of T (G) rooted at node t; note that M(t) is a
strong module for every (internal or leaf) node t of T (G). Let t1, t2, . . . , tp be
the children of the node t of md-tree T (G). We denote by G(t) the representative
graph of node t defined as follows: V (G(t)) = {t1, t2, . . . , tp} and titj ∈ E(G(t))
if there exists edge vkv� ∈ E(G) such that vk ∈ M(ti) and v� ∈ M(tj). For the
P-, S-, and N-nodes, the following lemma holds (see [4]):

Lemma 1. Let G be a graph, T (G) its modular decomposition tree, and t an
internal node of T (G). Then, G(t) is an edgeless graph if t is a P-node, G(t) is
a complete graph if t is an S-node, and G(t) is a prime graph if t is an N-node.

2.2 Modular Decomposition Based Drawing Γ (G)

Our drawing algorithm is based on the modular decomposition tree of a given
graph G. We deal with box-shaped vertices with a specific size. For every t ∈
T (G) we define c(t) = (x(t), y(t)) ∈ R2 to be the coordinates of the center of
node t, and b(t) = (w(t), h(t)) ∈ R2 to be the dimensions of the box of node
t, where w(t) and h(t) are the width and the height of the box, respectively.
In other words, c(t) is the center of the box b(t). We adopt the straight-line
drawing convention and we impose the following constraints: (C1) vertices do
not overlap; (C2) vertices in every strong module M(t), induced by an internal
node t of T (G), are drawn close (in terms of their Euclidean distance) to each
other; (C3) vertices in every strong module M(t), induced by an internal node
t of T (G), are drawn according to the structure (edgeless or complete or prime)
of the representative graph G(t).

Definition 1. A drawing with the previous constraints is called a modular de-
composition based drawing Γ (G) of the graph G which is a mapping between the
vertices and the Euclidean space R2: Γ (G) : V (G) → R2.

Definition 2. A relative drawing Γ ′(t, T (G)) is an md-drawing of the represen-
tative graph G(t), relative to c(t).

3 The Algorithm

Let G be a graph on n vertices v1, v2, . . . , vn with non-uniform dimensions
b(v1), b(v2), . . . , b(vn), respectively, and m edges. Our algorithm first computes
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the md-tree T (G) using one of the known linear-time algorithms [5, 15]. In
bottom-up fashion, we traverse the md-tree T (G) and calculate the relative
drawing Γ ′(t, T ) for every internal node t. In order to apply the new coordi-
nates to the subtree rooted at t, and finally to the graph G[M(t)], we store
the displacements from the previous coordinates, dis(ti) for every ti. Finally, we
traverse the md-tree T (G) in a top-down fashion and for every internal node
t ∈ T (G), we add the displacement dis(t) to the centers of the boxes of every
child node ti ∈ ch(t). In this way, all the vertices of G[M(t)] obtain the right
coordinates relative to the center of their ancestor node t.

We mention that every relative drawing uses a predefined constant ki as the
preferred edge length of the drawing at the level set Li, 0 ≤ i ≤ h − 1, of
the md-tree T (G). The algorithm, called Module Drawing, is given in detail in
Algorithm 1.

Algorithm. Module Drawing
Input: A graph G on n vertices and m edges.
Output: An md-drawing Γ (G) of the graph G.

1. Construct the modular decomposition tree T of the graph G;
2. Initialize the rectangle boxes b(t) and the centers c(t) for every t ∈ T ;
3. Compute the node sets L0, L1, . . . , Lh of the levels 0, 1, . . . , h of T ,

and assign values to the preferred edge lengths ki;
4. for i = h − 1 down to 0 do { bottom-up fashion}

for every internal node t ∈ Li do
4.1 if t is a P-node then Γ ′(t, T ) ← Draw Edgeless(t, T );
4.2 else if t is a S-node then Γ ′(t, T ) ← Draw Complete(t, T );
4.3 else {t is a N-node} Γ ′(t, T ) ← Draw-Prime(t, T );
4.4 Compute the displacement dis(ti), for each node ti ∈ ch(t),

with respect to their initial placement;
4.5 Update the size of the rectangle box b(t),

according to the frame boundaries of Γ ′(t, T );
5. for i = 0 down to h − 1 do { top-down fashion}

for every internal node t ∈ Li do
for every child ti ∈ ch(t) do
5.1 c(ti) ← c(ti) + dis(t)

6. Return the drawing Γ (G) = Γ ′(r, T ) computed in the root r of T ;

Algorithm 1. Module Drawing

Due to lack of space, the formal description of functions Draw Edgeless and
Draw Complete is omitted, whereas the function Draw-Prime is described in de-
tail in Sect. 4. All these functions are aware of the preferred edge length, denoted
by k, which may be different for each level of T (G). We note here that, one can
use different drawing techniques for each relative drawing to fulfill desired aes-
thetic criteria. Our approach draws edgeless graphs on an underlying grid, com-
plete graphs in a circular way, and prime graphs using a spring embedder method.
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Vertices are placed by function Draw Edgeless, keeping in mind that there
are no connecting edges between them. This is achieved by a grid placement of
the nodes in an arbitrary order. The Euclidean distance between the boundaries
of two nodes placed adjacent on the grid is at least k. For symmetry reasons, we
distribute evenly the space between the nodes in each row, so that a complete
alignment is achieved. Each row is then processed one by one and it is placed
below the previous one, keeping distance of at least k from the bottom boundary
of the previous row.

Function Draw Complete is basically a circular drawing algorithm, even
though the representative graph G(t), is a complete graph. We have chosen
to draw complete graphs in this way, in order to expose the structure of a se-
ries module (see constraint C3). Furthermore, a circular drawing satisfies the
aesthetic criterion of symmetry and is the usual way of representing complete
graphs in textbooks. The vertices of the series module are placed in an arbitrary
order on equal arcs, on the circumference of a cycle centered at c(t). The initial
radius is determined by the smallest sized box. Function Draw Complete process
each node ti ∈ ch(t) one by one, and calculates its final radius by considering
the size of the two adjacent nodes on the cycle. For every node ti a value f(ti)
is computed that represents the maximum distance from c(ti) to a point on its
boundary b(ti). Finally, node ti is positioned on the minimum possible radius,
according to f(ti) and the preferred edge length k, so that any overlapping is
avoided. We note that for a complete graph with uniform nodes the drawing is
a perfect cycle.

For the time complexity of functions Draw Edgeless and Draw Complete, the
following holds:

Lemma 2. Let T (G) be a modular decomposition tree of graph G and let ch(t) be
the set of children of a P-node (resp. an S-node) t ∈ T (G). Function Draw Edge-
less (resp. Draw Complete) constructs a relative drawing Γ ′(t, T ) in O(|ch(t)|)
time.

4 Modified Spring Embedder

In this section we describe in detail a spring embedder algorithm for the im-
plementation of function Draw Prime. Recall that this function is applied on a
N-node t ∈ T (G). Since the representative graph G(t) is a prime graph, function
Draw Prime requires the vertex set V (G(t)) and the edge set E(G(t)).

The main task of Draw Prime is to combine the aesthetic properties of a spring
embedder algorithm, with the constraint that no vertex-to-vertex overlapping oc-
curs. The fact that Draw Prime is applied on the representative graph G(t) that
contains verticeswith non-uniform sizes,makes the drawing task moredemanding.

The function Draw Prime falls in the category of force-integration approaches
[14, 12, 11]. It is based on the Fruchterman & Reingold (FR) spring embedder al-
gorithm [9] and follows the general guidelines of Harel & Koren [12]. Draw Prime
consists of a main iteration loop, that is repeated until some termination criteria
are met. There are three basic steps to each iteration: (i) calculate the effect
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of the edge-attractive forces (ii) calculate the effect of vertex-to-vertex repulsive
forces and (iii) limit the total displacement by a quantity called temperature
which is decreased over the iterations. The temperature is decreased by a cool-
ing schedule, the choice of which greatly affects the quality of the drawing. To
summarize, Draw Prime starts with an initial random placement of the vertices
and an initial temperature, and performs the main iteration loop, until the un-
derlying physical system reaches an equilibrium state. As presented in [9], we
choose a two phase cooling scheme: the first phase starts with a constant initial
temperature and reduces it using an exponential cooling scheme, and the sec-
ond phase, which starts after a number of iterations, maintains a constant low
temperature.

As already mentioned, we must take into account the size of the children ti
of a node t so that vertices of G(t) would not overlap. To achieve this, we have
modified the formulas for the attractive and the repulsive forces between the
vertices of the graph. The final formulas for the forces will be presented later in
the section. We will first describe the heuristics that we use to avoid overlapping.
According to [12], the first modification to the original FR algorithm will result
the following formulas for the attractive fa and the repulsive fr forces:

Modified FR : fa(rMFR) =
r2
MFR

k
and fr(rMFR) =

k2

max(rMFR, ε)
,

where rMFR = f(ti, tj) and f(ti, tj) is the shortest distance between the bound-
aries of the boxes b(ti) and b(tj). The variable k is the preferred edge length for
the drawing and ε is a small positive number.

The next extension is to impose the vertex size constraints gradually. Specif-
ically, at the early iterations of our spring embedder the vertices of the prime
graph are considered dimensionless, and thus, we use the forces of the FR algo-
rithm. This policy, combined with a large initial temperature, allows the layout
to escape possible local optimum states. In this way a possible cluttered layout
is found at early stages of the algorithm, and then, we use the Modified FR
repulsive and attractive forces to fully prevent overlaps (see also [12]).

We noticed that the large number of attractive forces, combined with a small
value of k, do not allow large vertices to be in a certain distance in order to
avoid overlapping. To overcome this problem, we decide to use a factor w in the
calculation of the edge attractive forces, inversely proportional to the graph’s
density. In this manner, we weaken edge attractive forces and allow the algorithm
to position vertices without overlaps.

Hereafter we will denote by G the representative graph G(t). To compute the
reducing factor w, we use the average degree D(G) that can be thought as a
measure for the connectivity of G. To be more precise, we use D−1(G) as the
factor in the Modified FR edge attractive force calculation fa. It follows that the
use of D−1(G) as a multiplicative factor weakens the attractive forces between
vertices. Note that, since the smallest prime graph is a P4, for a prime graph G
we have: 0 < D−1(G) ≤ 0.57.

Using the previous inequality of D−1(G), we set a threshold in the middle of
the interval and consider dense the graphs G s.t. D−1(G) < 0.28 and sparse the
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Fig. 1. Drawings of a 5 × 5 grid using (a) w = D−1(G) = 0.31 and (b) w = 1

graphs s.t. D−1(G) > 0.28. If a graph is considered sparse, after a certain point
in the algorithm we use D(G) as the multiplicative factor.

In Fig. 1 we show two drawings of a 5 × 5 grid with random dimensioned
vertices. The preferred edge length is set to k = 60, which is a small number,
with respect to the dimensions of the vertices. In Fig. 1(a) the factor w =
D−1(G) = 0.31 is used, in the early iterations, for the calculation of the attractive
forces. Since the graph is considered sparse, this factor is reversed (w = D(G))
at final iterations and so the layout becomes more compact. In Fig. 1(b) the
multiplicative factor w is set to one in all iterations.

Having describe the two main features of our spring embedder algorithm, we
can present the attractive and repulsive forces of function Draw Prime (DP) as
follows:

DP : fa(rDP ) =
w · r2

DP

k
and fr(rDP ) =

k2

max(rDP , ε)

where, rDP =

{
||c(ti) − c(tj)||, at early iterations
f(ti, tj), at final iterations

and w =

⎧⎪⎨⎪⎩
D−1(G), at early iterations

D(G),
at final iterations, and
if D−1(G) > 0.28.

We mention that the early and the final iterations coincide with the first and
the second part of the cooling schedule, respectively. We denote by � the number
of the main iterations needed by our spring embedder algorithm. We conclude
with the following lemma.

Lemma 3. Let T (G) be a modular decomposition tree of graph G and let ch(t)
be the set of children of an N-node t ∈ T (G). Function Draw Prime constructs
a relative drawing Γ ′(t, T ) in O(� · |ch(t)|2) time, where � is the number of main
iterations that a spring embedder algorithm performs.
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5 Time Complexity

Next, we introduce the definition of the prime cost of a graph which we will need
in our analysis. Let G be a graph and T (G) be its modular decomposition tree.
We denote by α(G) = {t1, t2, . . . , ts} the set of the N -nodes of T (G). We define
the prime cost of G as the value φ(G) =

∑
t∈α(G)

� · |ch(t)|2, where ch(t) denotes

the set of children of node t in T (G).
It is not difficult to see that for any n-vertex graph G, we have φ(G) = O(�·n2);

for an n-vertex P4-free graph (also known as cograph) G we have φ(G) = 0, since
its md-tree (also known as cotree) does not contain any N-node [4]. It follows
that in other classes of graphs their prime cost is constant. For example, any
N-node of the md-tree of a P4-reducible graph1 contains at most five children
[4]. Hence for an n-vertex P4-reducible graph G we have φ(G) = O(1). We notice
that these classes of graphs arise in applications such as examination scheduling
problems and semantic clustering of index terms [4].

Theorem 1. Let G be a graph on n vertices and m edges. Algorithm Mod-
ule Drawing constructs an md-drawing Γ (G) in O(n + m + φ(G)) time, where
φ(G) is the prime cost of the input graph G.

6 Implementation and Examples

We have implemented our algorithm in C++. The implementation takes as input
an undirected graph G in GraphML format [3]. The vertices are thought of as
rectangles with a predefined size, i.e. with a specific height and width. Three
files are produced in GraphML format: a file that contains the final drawing of
G; a file that contains the md-tree T (G); a file that contains all the relative
drawings computed in each level of T (G). For visualization purposes, we use the
yEd environment [16].

6.1 An Example of Module Drawing

In this section, we illustrate how our algorithm produces a final drawing, by
showing level-by-level relative drawings, on the md-tree of the input graph. For
this purpose we use an input graph from a real life application, which describes
a protein interaction network (see [10] for details). More specifically, the input
graph, which we will call Trans graph, describes a network of proteins that define
transcriptional regulator complexes. The md-tree of the Trans graph contains 1
P-node, 6 S-nodes, and 1 N-node. We label the 51 vertices of the graph and
assign an additional label, besides P or S or N label, to the 8 internal nodes
of the md-tree. In Fig. 2(a) we present the final drawing of Trans graph using
Module Drawing, in Fig. 2(b) we show its modular decomposition tree and in
Fig. 2(c) we present level-by-level relative drawings and how they are combined
to result the final layout.
1 A P4-reducible graph is a graph for which no vertex belongs to more than one P4.
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Fig. 2. Illustration of Module Drawing on Trans graph

Starting from level 3 of the tree in Fig. 2(c), we notice three S-nodes. The
application of the function Draw Series results the relative drawings as shown
in the corresponding boxes. Their parent, which is a P-node, causes them to
be drawn on a 1 × 3 grid. Finally, the root of the md-tree is an N-node; in
particular G(root) is an A-shaped graph, that consists of 1 parallel module, 3
series modules, and 1 simple vertex. The final drawing reveals all modules and
gives a useful insight of the structure of the Trans graph. Moreover, function
Draw Prime, which is the most expensive part of our algorithm, in terms of
time complexity, is applied on a graph of 5 vertices instead of 51.

6.2 Drawing Examples

In all the examples we choose to draw the vertices of a graph over its edges. The
height and width of all the vertices are set to 30 points. As already mentioned
in the description of Module Drawing, we increase the preferred edge length ki

of the i-th level, starting from the level h − 1 of T (G). Thus, we set kh−1 to a
constant and ki = (h− i) · kh−1, for i = h− 2, h− 3, . . . , 0. Obviously, ki < ki−1.
We note that an alternative scheme for increasing the preferred edge length
between levels is presented in [17].

For each example drawn by our algorithm, we present an additional drawing
created by a spring embedder method. For this purpose we apply the Smart
Organic Layout (SOL) utility of yEd [16] with desired parameters. We make
clear that, there is no reason to compare our method to any spring embedder
algorithm, since their drawing goals are different. We use a general purpose
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Fig. 3. Drawings of K9,9 using (a) Module Drawing and (b) Smart Organic Layout

                 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 
20 

21 

22 
23 

24 

25 
26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 79 

80 

81 

82 

83 

84 

85 

86 

87 

                 

0 

1 

2 

3 
4 

5 

6 

7 

8 

9 

10 

11 
12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 
31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 52 

53 54 

55 
56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 
69 

70 

71 

72 

73 
74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 
86 

87 

(a) (b)

Fig. 4. Drawings of a graph using (a) Module Drawing and (b) Smart Organic Layout
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Fig. 5. Drawings of a graph using (a) Module Drawing and (b) Smart Organic Layout

drawing algorithm, such as spring embedder, to obtain a reference layout of a
graph. Note also that we incorporate a spring embedder method in the general
framework of our approach.

In Figs. 3–5 the final drawings of our algorithm are shown on the left side
whereas the drawings of the same graph using SOL are shown on the right side.
Notice that our algorithm manage to expose underlying structures (smaller grids,
circles, paths e.t.c) in all the examples. This observation arises from the fact that
we apply a spring embedder algorithm without the force impact of the vertices
that belong to other modules.
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Fig. 6. Drawings of a graph using (a) Module Drawing and (b) Smart Organic Layout
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Fig. 7. The md-tree of the graph depicted in Fig. 6

In Fig. 6 we show a graph with an md-tree of 3 levels. Notice that our method
reveals three underlying structures: a gear graph2, an A-shaped graph and a
complex of grids. In Fig. 7, we show the md-tree of the graph, in order to
illustrate the intermediate steps of our method. It is useful to consider the md-
tree representation, as a visualization abstraction of the input graph.

7 Concluding Remarks

In this paper we have presented a divide-and-conquer technique for drawing undi-
rected graphs, based on their modular decomposition tree, where each disjoint
induced subgraph (module) is drawn according to its corresponding structure
(edgeless, complete or prime). For certain classes of graphs, the structure of
their modular decomposition trees ensures that each tree node can be processed
in linear time. It turns out that our algorithm, besides its efficiency in terms of
time, also exposes the structure of a graph. Revealing the structure of a graph
by drawing it, can prove to be helpful in identifying, and thus, recognizing, in
which certain class the graph belongs.
2 A gear graph is a wheel graph with a vertex added between each pair of adjacent

vertices of the outer cycle.
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Abstract. Many graph drawing algorithms use st-numberings (st-orien-
tations or bipolar orientations) as a first step. An st-numbering of a bi-
connected undirected graph defines a directed graph with no cycles, one
single source s and one single sink t. As there exist exponentially many
st-numberings that correspond to a certain undirected graph G, using
different st-numberings in various graph drawing algorithms can result
in aesthetically different drawings with different area bounds. In this
paper, we present results concerning new algorithms for parameterized
st-orientations, their impact on graph drawing algorithms and especially
in visibility representations.

1 Introduction

st-orientations (st-numberings) or bipolar orientations are orientations of undi-
rected graphs that satisfy some certain criteria, i.e., they define no cycles and
have exactly one source s and one sink t. Starting with an undirected bicon-
nected graph G = (V, E), many graph drawing algorithms, such as hierarchical
drawings [1], visibility representations [2] and orthogonal drawings [3], use an st-
orientation of G in order to compute a drawing of G. Therefore, the importance
of st-orientations in Graph Drawing is evident.

Given a biconnected undirected graph G = (V, E), with n vertices and m
edges, and two nodes s, t, an st-orientation (also known as bipolar orientation or
st-numbering) of G is defined as an orientation of its edges such that a directed
acyclic graph with exactly one source s and exactly one sink t is produced.
An st-orientation of an undirected graph can be easily computed using an st-
numbering [4] of the respective graph G and orienting the edges of G from low
to high. An st-numbering of G is a numbering of its vertices such that s receives
number 1, t receives number n and every other node except for s, t is adjacent
to at least one lower-numbered and at least one higher-numbered node.

st-numberings were first introduced in 1967 in [5], where it is proved (together
with an O(nm) time algorithm) that given any edge {s, t} of a biconnected
undirected graph G, we can define an st-numbering. However, in 1976 Even and

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 355–367, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Tarjan proposed an algorithm that computes an st-numbering of an undirected
biconnected graph in O(n + m) time [4]. Ebert [6] presented a slightly simpler
algorithm for the computation of such a numbering, which was further simplified
by Tarjan [7]. The planar case has been extensively investigated in [8] where a
linear time algorithm is presented which may reach any st-orientation of a planar
graph. Finally, in [9] a parallel algorithm is described. An overview of the work
concerning bipolar orientations is presented in [10].

However, all developed algorithms compute an st-numbering at random, with-
out expecting any specific properties of the oriented graph. In this paper we
present new techniques that produce such orientations with specific properties.
Namely, our techniques are able to control the length of the longest path of
the resulting directed acyclic graph. This provides significant flexibility to many
graph drawing algorithms such as [2, 3]. Actually, st-orientations play a very im-
portant role in defining certain aesthetics in the drawings produced by algorithms
they use them. The length of the longest path of the final directed graph that is
produced is vital in determining the area bounds of the drawing. In this paper,
we try to answer these questions by connecting a newly developed algorithm for
the computation of st-orientations with graph drawing applications.

The paper is organized as follows. In Section 2 we present the problem, the
objectives and some preliminary definitions. In Section 3 we give a brief de-
scription of the algorithm and show its implication in defining the longest path
length of the final directed graph. A detailed presentation of the algorithm can
be found in [11]. In Section 4 we comment on primal and dual st-orientations and
Section 5 presents experimental results. Finally, some conclusions are presented
in Section 6.

2 Preliminaries

2.1 Motivation and Objectives

Many algorithms in Graph Drawing use st-Orientations as a first step. Addi-
tionally, the length of the longest path from s to t of the specific st-orientation
determines certain aesthetics of the drawing:

– Hierarchical Drawings. One of the most common algorithms in hierarchi-
cal drawing is the longest path layering [1]. This algorithm applies to directed
acyclic graphs. The height of such a drawing is always equal to the length of
the longest path of the directed acyclic graph, l. If we want to visualize an
undirected graph G using this algorithm, we must firstly st-orient G. The
height of the produced drawing will be equal to the length of the longest
path l of the produced st-orientation.

– Visibility Representations. In order to compute visibility representations
of planar graphs, we must compute an optimal topological numbering of an
st-orientation of the input graph [2]. This can be done if we assign unit-
weights to the edges of the graph and compute the longest path to each
one of its vertices from source s. The y-coordinate of each vertex u in the
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visibility representation is equal to the length of the longest path from s
to u. Hence the length of the longest path of the used st-orientation is de-
cisive in visibility representations of undirected graphs. Moreover, in the
visibility representations, the length of the longest path of the dual graph
is also important. How a different primal st-orientation impacts on the dual
orientation is very crucial for visibility representations.

– Orthogonal Drawings. The first step of algorithms that compute orthog-
onal drawings [3] is to compute an st-numbering of the input undirected
graph G. These algorithms compute some variables (such as the row pairs
or the column pairs in [3]) that are functions of the st-orientation and which
determine the width and the height of the drawing. Applying different st-
orientations for the orthogonal drawing of a graph G, can result in different
drawing area bounds.

Figure 1 depicts an undirected graph G (Figure 1a) and two different st-
orientations of it. Figure 2 shows two different longest path and visibility rep-
resentation layouts for the two different st-orientations (1b), (1c) of the same
graph (1a). Note that the drawings have different characteristics, which depend
on the length of the longest path of the different st-orientations.

a

b

c

a

b

c

a

b

c

(a) (b) (c)

Fig. 1. An undirected graph (a) and two (b), (c) possible st-orientations of it

a

b

c

a

b

ca

b

c

a

b

c

(a) (b)

Fig. 2. Longest path layering and visibility representation layouts for the st-orientation
of Figure 1b (a) and for this of Figure 1c (b)
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In order to develop an algorithm for the computation of (longest-path) pa-
rameterized st-orientations, there are mainly two things that we should carefully
consider: (1), the correctness of the final st-orientation and (2), the algorithm
should give us the opportunity to control the length of the longest path of the
final directed graph. The idea behind the algorithm is that, beginning with an
undirected biconnected graph G and two nodes of it s, t, we repeatedly remove
a node vi (different from t), orienting at the same time all its incident edges
from vi to its neighbors. In this way we build up a directed graph F . The first
node removed is the source s, of the desired st-orientation. Thus, the problem
of computing a correct st-orientation is reduced to this of removing the vertices
of the graph with a correct order v1, v2, . . . , vn with v1 = s and vn = t and
simultaneously maintaining a data structure that will allow us to compute such
a correct order.

2.2 Terminology

In this section, we present some terminology and useful observations. Through-
out the paper, NG(v) denotes the set of neighbors of node v in graph G, s the
source and t the sink of the graph. Additionally, l is the length of the longest
path of the primal graph from s to t, whereas l∗ denotes the length of the longest
path of the respective dual graph. Let G = (V, E) be a one-connected undirected
graph, i.e., a graph that contains at least one vertex whose removal causes the
initial graph to disconnect and T = (B ∪C, U) be the respective block-cutpoint
tree [12]. The edges (i, j) ∈ U of the block-cutpoint tree always connect pairs of
blocks (biconnected components) and cutpoints such that the cutpoint of a tree
edge belongs to the vertex set of the corresponding block (see Figure 3).

B2

t

B3

B4

B1

B5

t

B3 B4B2

B5B1

Fig. 3. A one-connected graph and the t-rooted block-cutpoint tree

The block-cutpoint tree is a free tree, i.e., it has no distinct root. In order to
transform this free tree into a rooted tree, we define the t-rooted block-cutpoint
tree with respect to the sink t. Consequently, the root of the block-cutpoint tree
is the block that contains t (see Figure 3).

Finally, we define the leaf-blocks of the t-rooted block-cutpoint tree to be
the blocks, except for the root of the block-cutpoint tree that contain a single
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cutpoint. The block-cutpoint tree can be computed in O(n + m) time with an
algorithm similar to DFS [12].

Following, we give some results that are necessary for the development of the
algorithm.

Lemma 1 ([11]). Let G = (V, E) be an undirected biconnected graph and s, t be
two of its nodes. Suppose we remove s and all its incident edges. Then there is
at least one neighbor of s lying in a leaf-block of the t-rooted block-cutpoint tree.
Moreover, this neighbor is not cutpoint. �

The main idea of the algorithm is based on the successive removal of nodes
and the simultaneous update of the t-rooted block-cutpoint tree. We call each
such node a source, because at the time of its removal it is effectively chosen
to be a source of the remainder of the graph. We initially remove s, the first
source, which is the source of the desired st-orientation and give direction to all
its incident edges from s to all its neighbors. After this removal, the graph ei-
ther remains biconnected or is decomposed into several biconnected components
but the number of leaf-blocks remains the same or is decomposed into several
biconnected components and the number of leaf-blocks changes.

This procedure continues until all nodes of the graph but one are removed. As
it will be clarified in the next sections, at every step of the algorithm there will
be a set of potential sources to choose from. Our aim is to establish a connection
between the current source choice and the length of the longest path of the
produced st-oriented graph.

3 Parameterized st-Orientations

3.1 The Algorithm

Now we describe the procedure in a more formal way. We name this procedure
STN. Let G = (V, E) be an undirected biconnected graph and s, t two of its
nodes. We will compute an st-orientation of G. Suppose we recursively produce
the graphs Gi+1 = Gi − {vi}, where v1 = s and G1 = G for all i = 1, . . . , n − 1.

During the procedure we always maintain a t-rooted block-cutpoint tree. Ad-
ditionally, we maintain a structure Q that plays a major role in the choice of the
current source. Q initially contains the desired source for the final orientation, s.
Finally we maintain the leaf-blocks of the t-rooted block-cutpoint tree. During
every iteration i of the algorithm node vi is chosen so that

– it is a non-cutpoint node that belongs to Q (1)
– it belongs to a leaf-block of the t-rooted block-cutpoint tree (2)

Note that for i = 1 there is a single leaf-block (the initial biconnected graph)
and the cutpoint that defines it is the desired sink of the orientation, t. When a
source vi is removed from the graph, we have to update Q in order to be able to
choose our next source. Q is then updated by removing vi and by inserting all
of the neighbors of vi except for t.
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By Lemma 1, after the removal of a node vi, there will always exist at least
one node satisfying both (1) and (2). In this way we can reach the final sink of the
orientation, t, without disconnecting the graph. Additionally, each time a node vi

is removed we orient all its incident edges from vi to its neighbors. The procedure
continues until Q gets empty. Let F = (V ′, E′) be the directed graph computed
by this procedure. We claim [11] that F = (V ′, E′) is an st-oriented graph:

Theorem 2 ([11]). The directed graph F = (V ′, E′) computed by STN is st-
oriented. �

STN is a recursive algorithm for computing an st-orientation of a biconnected
undirected graph G. The full pseudocode and an illustrative example can be
found in [11]. During the execution of the algorithm we can also compute an
st-numbering f of the initial graph. Actually, for each node vi that is removed
from the graph, the subscript i is the final st-number of node vi. Finally, each
node v inserted into Q is associated with a timestamp value m(v) (which will
finally determine the longest path length). m(v) is set equal to i, every time that
v is discovered by a removed node vi, i.e., v is a neighbor of vi. This means that
m(v) can be updated many times until the algorithm terminates.

Let us now comment on the execution time of the algorithm. Each time a
vertex is removed, we have to update the block-cutpoint tree, which takes time
O(n + m) [12]. As all the vertices are removed, the algorithm runs clearly in
O(nm) time. However we can use the algorithm for biconnectivity maintenance
(which supports edge deletions in O(log5 n) time) proposed in [13] and drop the
bound to O(m log5 n) [11].

3.2 Control of the Length of Longest Path

This section presents methods which can be implemented in order to control the
length of the longest path of an st -orientation computed with STN. Actually,
we take advantage of the timestamps m(u) in order to choose our next source.
During iteration j of the algorithm, we have to pick a leaf-block Bl

j of the t-
rooted block-cutpoint tree and we always have to make a choice on the structure
Q′ = Bl

j ∩Q ∼ {hl
j}, where hl

j is the cutpoint that defines Bl
j . Our investigation

has revealed that if vertices with high timestamp are chosen then long sequences
of vertices are formed and thus there is higher probability to obtain a long
longest path. We call this way of choosing vertices MAX-STN. Actually, MAX-
STN resembles a DFS traversal (it searches the graph at a maximal depth).
Hence, during MAX-STN, the next source v is arbitrarily chosen from the set

{v ∈ Q′ : m(v) = max{m(i) : i ∈ Q′}}.

On the contrary, we have observed that if vertices with low timestamp are chosen,
then the final st-oriented graph has relatively small longest path. We call this
way of choosing vertices MIN-STN, which in turn resembles a BFS traversal.
Hence, during MIN-STN, the next source v is arbitrarily chosen from the set

{v ∈ Q′ : m(v) = min{m(i) : i ∈ Q′}}.
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The length of a longest path from s to t computed with MAX-STN is denoted
with �(t) whereas this computed with MIN-STN is denoted with λ(t). As it has
already been reported, it would be desirable to be able to compute st-oriented
graphs of length of longest path within the interval [λ(t), �(t)]. This is called
a parameterized st-orientation. So the question that arises is: Can we insert a
parameter into our algorithm, for example a real constant p ∈ [0, 1] so that
our algorithm computes an st-oriented graph of length of longest path that is a
function of p?

This is feasible if we modify STN. As the algorithm is executed exactly n times
(n vertices are removed from the graph), we can execute the procedure MAX-
STN for the first pn iterations and the procedure MIN-STN for the remaining
(1−p)n iterations. We call this method PAR-STN(p) and we say that it produces
an st-oriented graph with length of longest path from s to t equal to Δ(p). Note
that PAR-STN(0) is equivalent to MIN-STN, thus Δ(0) = λ(t) while PAR-
STN(1) is equivalent to MAX-STN and Δ(1) = �(t). PAR-STN has been tested
and it seems that when applied to st-Hamiltonian graphs (biconnected graphs
that contain at least one path from s to t that contains all the nodes of the
graph) there is a high probability that Δ(p) ≥ p(n − 1). Actually, Δ(p) is very
close to p(n − 1). Additionally, it has been observed that if we switch the order
of MAX-STN and MIN-STN execution, i.e., execute MIN-STN for the first pn
iterations and MAX-STN for the remaining (1 − p)n iterations, there is a high
probability that Δ(p) ≤ p(n−1). In this case, Δ(p) is again very close to p(n−1).

4 Primal and Dual st-Orientations

4.1 General

Now we present some results concerning the impact of parameterized st-orientat-
ions on st-planar graphs. If we st-orient such a graph, we can define a single
orientation for the dual graph G∗ which is also an s∗t∗-orientation.

This method is used in the visibility representations algorithms [2], when
we have to compute the dual s∗t∗-oriented graph. The length of the longest
path of this graph determines the width of the geometric representation. Thus,
the questions that arise are natural. What is the impact of the parameter p
on the length of the longest path of the dual s∗t∗-oriented graph G∗ of an st-
planar graph G, which (the graph G) has been st-oriented with PAR-STN(p)?
Intuitively, we would expect that l∗ (the length of the longest path of the dual
graph G∗) will grow inversely proportional to l. As we will see, this is not always
the case.

4.2 A Special Class of Planar Graphs

In this section we investigate certain classes of st-planar graphs that can be
st-oriented in such a way that certain lengths of primal and dual longest paths
can be achieved. This is actually a good reason to justify the fact that different
st-orientations are indeed important in many applications.
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Definition 3. We define an n-path planar graph (n ≥ 5) G = (V, E) to be the
planar graph that consists of a path P = v2, v3, . . . , vn−1 of n − 2 nodes and
two other nodes v1, vn such that (v1, vi) ∈ E, (vi, vn) ∈ E ∀i = 2, . . . n − 1 and
(v1, vn) ∈ E.
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Fig. 4. (a) An n-path planar graph. We define node 1 to be the source of the graph and
node n − 1 to be the sink of the graph. (b) Primal and Dual st-orientation with l = 4
and l∗ = 2n − 4. (c) Primal and Dual st-orientation with l = n − 1 and l∗ = 2n − 4.

In Figure 4a, one n-path planar graph is depicted. Its source is node 1 whereas
its sink is node n − 1. Note that an (n + 1)-path planar graph Gn+1 can be ob-
tained from an n-path planar graph Gn if we add a new node and connect it with
nodes v1, v2 and vn (nodes v1 and vn are the rightmost and leftmost nodes of Gn’s
embedding in Figure 4). Let now Gn be an n-path planar graph and λ(Gn), �(Gn)
denote the minimum and the maximum longest path length 1(n−1)-orientations
over the set of all the 1(n− 1)-orientations of Gn respectively. In Figure 4b, the
primal orientation of minimum longest path length (together with the respective
dual orientation of longest path length λ∗(Gn)) is depicted while in Figure 4c
the orientation of maximum longest path length (together with respective dual
orientation of longest path length �∗(Gn)) is depicted. Inductively, we can prove
that for an n-path planar graph the following holds:

Theorem 4 . For all n ≥ 5, it is λ(Gn) = 4, �(Gn) = n − 1 and λ∗(Gn) =
�∗(Gn) = 2n − 4.

According to Theorem 4, the impact of different st-orientations of an n-path
planar graph on the area of their visibility representation is evident. By using
the minimum st-orientation, we will need an area equal to

λ(Gn)λ∗(Gn) = 4(2n− 4) = 8n − 16 = O(n)
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If we use the maximum st-orientation, we will need an area equal to

�(Gn)�∗(Gn) = (n − 1)(2n − 4) = 2n2 − 6n + 4 = O(n2)

Note that while �(Gn)+ �∗(Gn) = 3n− 5 > 2n, it is λ(Gn)+λ∗(Gn) = 2n ≤ 2n.
We therefore introduce the following conjecture:

Conjecture 5. For every n-node planar biconnected graph G, two nodes s, t of
its vertex set, there exists at least one st-orientation of G such that l+l∗ ≤ 2n+c ,
where c is a constant.

In order to face this conjecture, one should try to devise an algorithm that
deterministically st-orients a planar graph in a way that the produced length of
the dual longest path grows at most as much as the primal one does.

5 Experimental Results

Following we present our results for different kinds of graphs, st-Hamiltonian
graphs (undirected graphs that have at least one Hamilton path from s to t and
hence an upper bound for the longest path length equal to n − 1) and planar
graphs. All experiments were run on a Pentium IV machine, 512 MB RAM, 2.8
GH under Windows 2000 professional.

5.1 st-Hamiltonian Graphs

We have implemented the algorithm in Java, using the Java Data Structures
Library (www.jdsl.org) [14]. The graphs we have tested are n-node-undirected

Table 1. Results for density 3.5 st-Hamiltonian graphs

n p=0 p=0.3 p=0.5 p=0.7 p=1
l %(n − 1) l %(n − 1) l %(n − 1) l %(n − 1) l %(n − 1)

100 14.00 0.141 38.90 0.393 59.20 0.598 76.50 0.773 92.20 0.931
200 18.60 0.093 74.10 0.372 113.00 0.568 147.90 0.743 186.60 0.938
300 23.30 0.078 104.80 0.351 165.10 0.552 219.20 0.733 280.70 0.939
400 23.30 0.058 139.10 0.349 213.80 0.536 289.30 0.725 376.30 0.943
500 29.20 0.059 169.40 0.339 267.30 0.536 361.20 0.724 470.70 0.943
600 27.90 0.047 202.10 0.337 318.90 0.532 428.90 0.716 566.60 0.946
800 30.00 0.038 264.90 0.332 415.30 0.520 566.50 0.709 755.60 0.946
900 31.70 0.035 294.30 0.327 469.90 0.523 640.20 0.712 848.10 0.943
1000 36.20 0.036 322.10 0.322 518.20 0.519 709.30 0.710 940.00 0.941
1100 38.90 0.035 353.90 0.322 576.30 0.524 782.90 0.712 1033.40 0.940
1200 34.40 0.029 387.00 0.323 622.10 0.519 845.50 0.705 1127.80 0.941
1300 34.30 0.026 421.10 0.324 674.50 0.519 917.00 0.706 1223.10 0.942
1400 38.90 0.028 448.80 0.321 718.40 0.514 983.90 0.703 1319.90 0.943
1500 38.00 0.025 478.30 0.319 775.70 0.517 1056.40 0.705 1417.10 0.945
1600 39.30 0.025 515.00 0.322 824.30 0.516 1137.20 0.711 1499.10 0.938
1700 38.50 0.023 539.30 0.317 872.00 0.513 1190.40 0.701 1604.00 0.944
1800 41.10 0.023 571.90 0.318 923.60 0.513 1263.80 0.703 1691.30 0.940
1900 41.40 0.022 605.60 0.319 978.60 0.515 1331.80 0.701 1786.30 0.941
2000 44.00 0.022 632.40 0.316 1023.80 0.512 1403.50 0.702 1883.90 0.942
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st-Hamiltonian graphs of density d where n = 100, 200, 300, . . . , 2000 and d =
3.5. For each pair (n, d) we have tested 10 different randomly generated graphs
(and we present the mean of the length of the longest path) in order to get more
reliable results. We have similar results for other values of density as well (see
Figure 5).

As we can see, the results (Table 1 and Figure 5) are remarkably consistent
with the parameter p. The computed longest path length for p = p0 is always
very close to p0(n − 1). The computed results are similar for increasing graphs
size and density.
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Fig. 5. Longest path length as a function of n, d, p (d = 2.5, 6.5)

Table 2. Primal and dual longest path length for triangulated st-planar graphs

p=0 p=0.5 p=1 l × l∗

n 2n l l∗ l + l∗ l l∗ l + l∗ l l∗ l + l∗ p=0 p=0.5 p=1
109 218 31 167 198 75 95 170 100 74 174 5177 7125 7400
310 620 44 503 547 186 319 505 280 163 443 22132 59334 45640
535 1070 98 785 883 240 534 774 402 293 695 76930 128160 117786
763 1526 144 1114 1258 385 780 1165 691 241 932 160416 300300 166531
998 1996 83 1419 1502 425 862 1287 846 340 1186 117777 366350 287640
1302 2604 134 2024 2158 704 1154 1858 1173 451 1624 271216 812416 529023
1501 3002 119 2203 2322 784 1073 1857 1403 224 1627 262157 841232 314272
1719 3438 131 2550 2681 856 1661 2517 1555 515 2070 334050 1421816 800825
1990 3980 208 2339 2547 1013 1581 2594 1773 400 2173 486512 1601553 709200
2159 4318 142 3238 3380 930 1816 2746 1823 445 2268 459796 1688880 811235
2268 4536 148 3136 3284 952 1666 2618 1887 336 2223 464128 1586032 634032
4323 8646 356 5852 6208 2238 3589 5827 3957 841 4798 2083312 8032182 3327837
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Fig. 6. Absolute (left) and normalized (divided by n2) (right) results for visibility
representation area requirement for different values of the parameter p and triangulated
planar graphs. The parameter p = 0 (low longest path length st-oriented graphs) is
clearly preferable.

5.2 Planar Graphs

In this section we present some results for maximum density (triangulated) st-
planar graphs. We also have similar results for low density planar graphs. We
mainly present the impact of the parameter p on the primal and dual longest
path length of the planar graphs. From Table 2, it is clear that the primal and
the dual longest path length are inversely proportional for various values of the
parameter p. We have used the values p = 0, 0.5, 1, as the most representative
ones. The last three columns of Table 3 show the product l× l∗. This is actually
the area that is needed in order to construct a visibility representation of the
given graph using the algorithms proposed in [2].

Fig. 7. Visibility Representations of a 21-path planar graph for different st-orientations
(p = 0, 0.5, 1)
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Fig. 8. Visibility Representations of a 85-node triangulated planar graph for different
st-orientations produced with PAR-STN(p) (p = 0, 0.5, 1)

Fig. 9. Visibility Representations of a 10x10 grid graph for different st-orientations
produced with PAR-STN(p) (p = 0, 0.25, 1)

Figure 7 shows 3 visibility representation frames of a 21-path planar graph.
The difference in the area is evident. Note that the visibility representation that
uses the minimum st-orientation (p = 0) consumes the least area. Figure 8 con-
tains 3 visibility representations frames of a triangulated graph where the value
p = 0 is preferable. Finally, in Figure 9 we present some visibility representa-
tions frames produced by st-orienting a grid graph. In this case, the importance
of the parameter is clear. Using a parameterized st-orientation with p = 0.25 is
preferable, as it produces a more compact drawing.

5.3 Orthogonal Drawings

The impact of the different st-orientations is not very clear in orthogonal draw-
ings. However, for the algorithm described in [3], where the area upper bound
is roughly 0.76n2, we are able to produce st-numberings that produce drawings
of area upper bound roughly equal to 0.68n2 or less, by using the parameterized
st-orientation algorithm. Due to space limitations, we cannot describe further
details.

6 Conclusions

In this paper the application of parameterized st-orientations in graph drawing
algorithms (mainly in visibility representations) is presented. It seems that there
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is a way to efficiently control the length of the longest path of an st-orientation
and keep it ”short”, ”long” or ”medium”. Experimental results not only on pla-
nar graphs but also on non-planar graphs reveal the robustness of the algorithm.

Acknowledgements. The authors would like to thank Hubert de Fraysseix,
C.N.R.S. for his help on the visualization frames produced with his software
P.I.G.A.L.E..
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Abstract. We introduce the 3SAT reduction framework which can be
used to prove the NP-hardness of finding three-dimensional orthogonal
drawings with specific constraints. We use it to show that finding a draw-
ing of a graph whose edges have a fixed shape is NP-hard. Also, it is
NP-hard finding a drawing of a graph with nodes at prescribed positions
when a maximum of two bends per edge is allowed. We comment on the
impact of these results on the two open problems of determining whether
a graph always admits a 3D orthogonal drawing with at most two bends
per edge and of characterizing orthogonal shapes admitting a drawing
without intersections.

1 Introduction

Three-dimensional orthogonal graph drawing has attracted a constant research
interest throughout the last decade [1, 4, 10, 11, 12, 13, 18, 20]. Nevertheless, some
basic questions still lack an answer. It is open, for example, whether a graph of
maximum degree six always admits a drawing with at most two bends per edge
([11, 20], and [5], problem #46). In [19] it is shown that such drawings may imply
many edges sharing the same axis-perpendicular plane.

Also, a characterization of the orthogonal shapes admitting anorthogonal draw-
ing without intersections (called simple orthogonal shapes) is still missing in the
general case ([9] and [3], problem 20). Such a characterization would allow the sep-
aration of the task of defining the shape of the drawing from the task of computing
its coordinates, extending to three-dimensions the well studied and widely adopted
two-dimensional approach known as topology-shape-metrics [16, 6].

More formally, we would like to find the solution to the so-called Simplicity
Testing Problem: Let G be a graph whose edges are directed and labeled with
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a sequence of labels in the set {x+, x–, y+, y–, z+, z–}. Does a 3D orthogonal
drawing of G exist such that each edge has a shape “consistent” with its labeling
and no two edges intersect?

While a solution to the 2D counterpart of the Simplicity Testing Problem can
be found in the works by Vijaian and Widgerson and by Tamassia [16, 17], only
very preliminary results toward the recognition of simple orthogonal 3D shapes
are provided in [7, 8] where paths (with further additional constraints) and cycles
are considered, respectively. In [9] it is shown that the known characterization
for cycles does not immediately extend to even seemingly simple graphs such as
theta graphs (simple graphs consisting of three cycles).

In this paper we consider three-dimensional orthogonal drawing of a maximum
degree six graph from the computational complexity perspective. We introduce
the 3SAT reduction framework which can be used to show that it is NP-hard to
decide if an orthogonal 3D drawing of a graph satisfying some constraints exists
(Section 3). By using such a framework we show that the simplicity testing
problem is NP-complete (Section 4) and that the opposite problem of finding a
drawing of a graph with nodes at prescribed positions is also NP-complete when
a maximum of two bends per edge is allowed (Section 5), while it is polynomial
in the general case.

We comment on the impact of these results on the two open problems of de-
termining whether a graph always admits a drawing with at most two bends per
edge and of characterizing orthogonal shapes admitting an orthogonal drawing
without intersections (Section 6).

2 Background

We assume familiarity with basic graph drawing, graph theory, and computa-
tional geometry terminology (see, e.g. [6, 2, 15]).

A (3D orthogonal) drawing of a graph is such that nodes are mapped to
distinct points of the three dimensional space and edges are chains of axis-parallel
segments. A bend is a point shared between two subsequent segments of the same
edge. An intersection in a 3D orthogonal drawing is a pair of edges that overlap
in at least one point that does not correspond to a common end-node. A k-
bend drawing of a graph, where k is a non-negative integer, is a non-intersecting
drawing such that each edge has at most k bends.

An x-plane (y-plane, z-plane, respectively) is a plane perpendicular to the
x axis (y axis, z axis, respectively). Given a drawing Γ of a graph G and two
nodes u and v, we write u >x v if the x coordinate of u is greater than the x
coordinate of v in Γ . Also, we write u >x>y v if u >x v and u >y v.

A direction label is a label in the set {x+, x–, y+, y–, z+, z–}. Let G be a graph
and Γ be a drawing of G. Let e be an undirected edge of G whose end-nodes are
u and v. Select one of the two possible orientations (u, v) and (v, u) of e and call
p1, p2, . . . , pm the end points of the orthogonal segments corresponding to edge
e in Γ in the order in which they are encountered while moving along e from u
to v. The shape of e in Γ is the sequence of the direction labels corresponding
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to the directions of vectors −−−−→pi, pi+1, i = 1, . . . , m − 1. For example, consider an
edge (u, v) drawn with a single bend b and such that u <x b <y v. The shape of
e consists of the orientation from u to v and the sequence of labels x+, y+. We
also write u−→x+ −→y+ v.

When producing a drawing of a graph one can ask if the positions of the ver-
tices and the shapes of the edges can be computed separately. When computing
positions first, one has to solve the following problem.

Problem: Routing
Instance: A graph G(V, E) and a mapping between nodes and distinct

points of the three-dimensional space.
Question: Does a non-intersecting 3D orthogonal drawing of G exist such

that the nodes have the specified coordinates?

We call 2-Bend Routing the Routing problem when restricted to 2-bend
drawings.

Conversely, it can be asked what is the complexity of deciding if a graph
admits a drawing such that its edges have a specified shape. We call shape graph
a graph where a shape (an orientation and a sequence of direction labels) is
specified for each one of its edges. A shape graph γ is simple if it admits a non-
intersecting drawing Γ such that each edge has the specified shape. Formally,
the Simplicity Testing problem is as follows.

Problem: Simplicity Testing
Instance: A shape graph γ, that is, a graph G(V, E) and a shape for each

edge e ∈ E, consisting of an orientation of e and a sequence of
labels in the set {x+, x–, y+, y–, z+, z–}.

Question: Does a non-intersecting drawing of G exist such that each edge
has the specified shape?

3 The 3SAT Reduction Framework

The 3SAT reduction framework introduced in this section can be used to show
that it is NP-hard finding a 3D drawing of a graph within the orthogonal stan-
dard that satisfies some constraints. By using this framework it is shown, in
Sections 4 and 5, respectively, the NP-hardness of Simplicity Testing and of
2-Bend Routing. Throughout this section, the target problem is assumed to
be as follows:

Problem: Target problem
Instance: A graph G(V, E) and a set S of constraints expressed with respect

to its nodes and edges.
Question: Does a non-intersecting 3D drawing of G exist such that the con-

straints in S are satisfied?
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The 3SAT problem is as follows:

Problem: 3-Satisfiability (3SAT)
Instance: A set of clauses {c1, c2, . . . , cm}, each containing three literals

from a set of boolean variables {v1, v2, . . . , vn}.
Question: Can truth values be assigned to the variables so that each clause

contains at least one true literal?

x

y
z

variable
gadget

joint
gadget

clause
gadget

Fig. 1. A representation of the basic blocks of an instance of the target problem built
as specified by the 3SAT reduction framework

Given a 3SAT instance φ, the 3SAT reduction framework specifies how to
build an instance Iφ = (Gφ(Vφ, Eφ), Sφ) of the target problem such that φ admits
a solution if and only if Iφ does. Gφ(Vφ, Eφ) is composed of three different types
of gadgets connected together. The bounding boxes of the gadgets are depicted
in Fig. 1, while the interior components are not shown and depend on the specific
target problem.

For each boolean variable vi of φ, instance Iφ has a variable gadget Vi. Fig. 1
shows the variable gadgets as tall vertical blocks placed in a row along the y
axis in such a way that, if i < j, variable gadget Vi has lower y coordinates than
variable gadget Vj .

For each clause ci = lh ∨ lj ∨ lk of φ instance Iφ has one clause gadget Ci.
Clause gadgets are represented in Fig. 1 as small cubes. Denoted with vh, vj ,
and vk the variables of literals lh, lj , and lk, respectively, and assumed that
h < j < k, clause gadget Ci is placed directly in front of the variable gadget Vj .

For each clause ci = lh ∨ lj ∨ lk of φ, Iφ has two joint gadgets Ji,h and Ji,k,
depicted in Fig. 1 as flat blocks placed in front of the variable gadgets Vh and Vk,
respectively.

In order to use the 3SAT reduction framework for the NP-hardness proof
of a specific target problem a complete specification must be provided, where a
specification for the 3SAT reduction framework is defined as follows.

– Construction rules describing how, starting from an instance φ of the 3SAT
problem, variable gadgets, joint gadgets, and clause gadgets are built and
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connected together and an instance Iφ = (Gφ(Vφ, Eφ), Sφ) of the target
problem is obtained.

– For each variable gadget Vi a bipartition of the non-intersecting drawings of
Gφ(Vφ, Eφ) satisfying constraints Sφ into two sets, denoted TVi and FVi .

– For each joint gadget Ji,k a bipartition of the non-intersecting drawings of
Gφ(Vφ, Eφ) satisfying constraints Sφ into two sets, denoted TJi,k

and FJi,k
.

A specification is said to be compliant if, for any 3SAT instance φ, the fol-
lowing four statements hold.

Statement 1. Instance Iφ = (Gφ(Vφ, Eφ), Sφ) of the target problem correspond-
ing to instance φ of 3SAT can be constructed in polynomial time.

Statement 2. If a non-intersecting drawing of Gφ(Vφ, Eφ) satisfying Sφ exists,
it belongs to TJi,h

(TJi,k
) if and only if it belongs to TVh

(TVk
).

Statement 3. For each clause ci = lh ∨ lj ∨ lk, where lh (lj, lk, respectively)
is the positive or the negative literal of variable vh (vj, vk, respectively), and for
each non-intersecting drawing Γ of Gφ(Vφ, Eφ) satisfying Sφ at least one among
the following conditions holds:

1. Γ ∈ TJi,h
(Γ ∈ FJi,h

) and lh is the positive (negative) literal of vh.
2. Γ ∈ TVj (Γ ∈ FVj ) and lj is the positive (negative) literal of vj.
3. Γ ∈ TJi,k

(Γ ∈ FJi,k
) and lk is the positive (negative) literal of vk.

Statement 4. Consider a truth assignment to the variables vi, . . . vn satisfy-
ing φ. The set ∩n

i=0Ai, where Ai = TVi if vi is true and Ai = FVi if vi is false,
is non-empty.

Theorem 1. Given a target problem, whose instance is a graph G(V, E) and a
set S of constraints expressed with respect to its nodes and edges, if it admits a
compliant specification for the 3SAT reduction framework, then finding a non-
intersecting 3D orthogonal drawing of G satisfying the constraints in S is NP-
hard.

Proof sketch. Consider a non-intersecting drawing Γ of Gφ(Vφ, Eφ) satisfying
Sφ. It is easy to find an assignment of truth values to the boolean variables that
satisfies φ, by taking vi = true if Γ ∈ TVi and vi = false if Γ ∈ FVi . In fact,
because of Statements 2 and 3 we have that each clause ci = lh ∨ lj ∨ lk has at
least one true literal and thus φ is satisfied. Conversely, consider an assignment
of truth values to the boolean variables that satisfies φ. Statement 4 guarantees
the existence of a drawing of Gφ(Vφ, Eφ) satisfying Sφ. The proof is completed
by showing that instance Iφ = (Gφ(Vφ, Eφ), Sφ) can be obtained in polynomial
time, which is guaranteed by Statement 1. ��

4 Fixing the Shape and Searching for Coordinates

In this section we consider the Simplicity Testing problem, that is the problem
of finding a non-intersecting drawing for a graph whose orthogonal shape is fixed.
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Fig. 2. A drawing of the variable gadget Vi belonging to TVi (a) and a drawing belong-
ing to FVi (b). Nodes n′

j , n′′
j , n′

k, and n′′
k are inserted in order to transmit the geometric

constraints to the clause gadgets of clauses Cj and Ck, respectively (c).

It is easy to prove that the problem is in NP (see [14]). In order to prove that
Simplicity Testing is NP-hard we use the framework introduced in Section 3.

The heart of the variable gadget Vi, depicted in Fig. 2, is the path n1−→z– n2−→z–
n3−→y+

n4−→z+
n5−→y–

n6−→z– n7−→z– n8, whose nodes lie on the same x-plane. Fur-
ther, the path n1−→x– n9−→y– n10−→x+ n11−→y+ n12−→x– n7 constrains nodes n1 and
n7 to share the same z-plane. Analogously, path n2−→x– n13−→y– n14−→x+ n15−→y+

n16−→x–
n8 constrains nodes n2 and n8 to share the same z-plane. We define TVi

as the set of non-intersecting drawings of Gφ(Vφ, Eφ) satisfying the directions
constraints and such that n1 >y n7 (as in Fig. 2.a). Analogously, we define FVi

as the set of non-intersecting drawings of Gφ(Vφ, Eφ) satisfying the direction
constraints and such that n1 <y n7 (as in Fig. 2.b). Observe that TVi and FVi

form a bipartition of the non-intersecting drawings of Gφ(Vφ, Eφ) satisfying the
direction constraints.

For each clause cj of the 3SAT formula in which the variable participates we
insert a node n′

j between nodes n1 and n2 and a node n′′
j between nodes n7 and

n8. In any drawing Γ of Gφ(Vφ, Eφ) satisfying the direction constraints, nodes
n′

j and n′′
j have the same relative position with respect to the y axis as n1 and

n7, i.e., n′
j >y n′′

j if Γ ∈ TVi and n′
j <y n′′

j if Γ ∈ FVi . Suitable edges attached
to the nodes n′

j and n′′
j along the protruding lines shown in Fig. 2.c transmit

the above constraints from Vi to the clause gadget Cj (possibly via joint gadget
Jj,i). Note that nodes n′

j and n′′
j do not need to lie on the same z-plane.

Given a clause ci = lh ∨ lj ∨ lk, the joint gadget Ji,k is the reflected image
with respect to the y axis of the joint gadget Ji,h. Thus, in the following we will
only describe the joint gadget Ji,h, which is depicted in Fig. 3 and composed
of two cycles α = n1−→y+

n2−→x–
n3−→y–

n4−→x+
n5−→y–

n6−→x+
n7−→y+

n8−→x–
n1, and

α′ = n′
1−→y–

n′
2−→x+

n′
3−→y+

n′
4−→x–

n′
5−→y+

n′
6−→x–

n′
7−→y–

n′
8−→x+

n′
1. Nodes n1 and n′

1
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are connected by a path n1−→z– n′′
1−→z– n′

1 while nodes n5 and n′
5 are connected by

the path n5−→z– n′′
5−→z– n′

5.
We define TJi,h

as the set of non-intersecting drawings of Gφ(Vφ, Eφ) satisfying
the directions constraints and such that n′′

5 <x n′′
1 (as in Fig. 3.a). Analogously,

we define FVi as the set of non-intersecting drawings of Gφ(Vφ, Eφ) satisfying
the direction constraints and such that n′′

5 >x n′′
1 (as in Fig. 3.b). Observe that,

since in any non-intersecting drawing of Gφ(Vφ, Eφ) n′′
1 and n′′

5 have distinct
x and y coordinates, TJi,h

and FJi,h
form a bipartition of the non-intersecting

drawings of Gφ(Vφ, Eφ) satisfying the direction constraints.
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Fig. 3. A drawing of the joint gadget Ji,h belonging to TJi,h (a) and a drawing belong-
ing to FJi,h (b)
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The clause gadget is depicted in Fig. 4. Its main component is the path α =
n1−→y+ n2−→x– n3−→y– n4−→x+ n5−→y+ n6−→x+ n7, whose nodes lie on the same z-plane.
Attached to α are the paths n′

1−→z– n1−→z– n′′
1 , n′

2−→z– n2−→z– n′′
2 , n′

6−→z– n6−→z– n′′
6 , and

n′′′
7 −→x+ n′

7−→z– n7−→z– n′′
7−→x+ n8−→y+ n9−→x– n′′

2 .
Joint gadget Ji,h is connected to both variable gadget Vh and clause gadget

Ci. In particular, n′′
1 of Ji,h is connected to n′′

i of Vh with the edge n′′
i −→x+

n′′
1

and n′′
5 of Ji,h is connected to n′

i of Vh with the edge n′
i−→x+ n′′

5 . Each clause
ci = lh ∨ lj ∨ lk is connected to joint gadget Ji,h, variable gadget Vj , and joint
gadget Ji,k. If lh is the positive (negative) literal of variable vh, we attach nodes
n′′

1 and n′′
5 of the joint gadget Ji,h to nodes n′′

6 and n′′
1 (n′′

1 and n′′
6), respectively.

If lj is the positive (negative) literal of variable vj , we attach nodes n′
i and n′′

i of
the variable gadget Vj to n′

6 and n′
1 (n′

1 and n′
6), respectively. If lk is the positive

(negative) literal of variable vk, we attach nodes n1 and n4 of the joint gadget
Ji,k to nodes n′

2 and n′′′
7 (n′′′

7 and n′
2), respectively.

It is now easy to prove that the above construction rules are a compliant
specification for the 3SAT reduction framework. Hence, we have:

Theorem 2. Simplicity Testing is NP-complete.

5 Fixing the Coordinates and Searching for a Shape

In this section we tackle the reverse problem with respect to the one addressed
in Section 4, that is, the problem of finding a routing for the edges when the
position of the nodes is fixed. An algorithm to solve Routing in O(|V |log|V |)
time, where |V | is the number of vertices of the input graph, can be found in [14].
Conversely, we show that the same problem where only two bends per edge are
allowed (2-Bend Routing) is NP-complete.

In order to show that 2-Bend Routing is NP-hard we take advantage of the
3SAT reduction framework introduced in Section 3. The basic gadget shown
in Fig. 5 is used as a building block of several parts of the 2-Bend Routing
instance and is composed of ten nodes. Node n1 is connected to the three nodes
n2, n3 and n4. Analogously, node n5 is connected to the three nodes n6, n7 and
n8. Nodes n1 and n5 are connected both with the single edge (n1, n5) and with
the path of three edges (n1, n1,5), (n1,5, n5,1) and (n5,1, n5).

As for nodes prescribed positions, they are placed in such a way that n1 <x<y

<z n2 =x=y<z n3 =x=y<z n4, n1 =x>y>z n1,5 =x>y>z n5,1 =x>y>z n5, and
n5 <x>y>z n6 =x=y>z n7 =x=y>z n8.

Given a 2-bend drawing of the basic gadget, we call true the basic gadget
when it is drawn with the bend of edge (n1, n5) placed in pt,2 (see Fig. 5.a) and
false the basic gadget when it is drawn with the bend of edge (n1, n5) placed
in pf,2 (see Fig. 5.b). Also, in what follows we use the graphic representation of
the basic gadget shown in Fig. 5.c, where the nodes n1, n2, n3, n4, and n1,5 are
replaced by their bounding box, and analogously for the nodes n5, n6, n7, n8,
and n5,1. In this representation only edge (n1, n5) is shown, and it is assumed
to have its bend in pt,2.
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Fig. 5. A true drawing (a) and a false drawing (b) of the basic gadget. In (c) it is
shown the schematic representation of the basic gadget that is used in the remaining
part of the paper.

The variable gadget Vi is composed of a single basic gadget. Given a variable
gadget Vi, we define as TVi (FVi) the set of non-intersecting 2-bend drawings of
Gφ(Vφ, Eφ) such that the basic gadget is true (false).

The joint gadget Ji,h, which is depicted in Fig. 6 is built by interleaving four
basic gadgets B1, B2, B3, and B4 as follows. B1 intersects the variable gadget
(not shown in Fig. 6). B2 is placed on an orthogonal plane as shown in Fig. 6.

to the
clause gadget

B3
B4

from the
variable gadget

B1

B2

Fig. 6. Joint gadget Ji,h is composed of four interleaved basic gadgets
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n1

n2

from Vj

from Ji,k

from Ji,h

Fig. 7. The clause Ci for clause ci = lh ∨ lj ∨ lk in the case in which lh, lj and lk are
negative literals: if the three variables vh, vh and vk are true, there is no way of adding
edge (n1, n2) with at most two bend

B3 intersects only B2 and is placed on a plane orthogonal to the first two (see
Fig. 6). Finally, B4 is placed on a plane parallel to the first one and intersects
B3 only as shown in Fig. 6. We define TJi,h

(FJi,h
) as the set of non-intersecting

2-bend drawings of Gφ satisfying Sφ such that B4 is true (false).
The clause Ci for clause ci = lh ∨ lj ∨ lk is shown in Fig. 7. It is composed of

two nodes n1 and n2 placed at the opposite vertices of a cube. The two nodes
are joined by edge (n1, n2) (not shown in Fig. 7). In any 2-bend drawing of the
clause gadget edge (n1, n2) uses one of the four vertical edges of the cube. The
basic gadget B4 of joint gadgets Ji,h and Ji,k and the basic gadget coming from
Vj suitably intersect the vertical edges of the cube such that only if one literal
is true the clause gadget admits a non-intersecting drawing.

It is easy to show that 2-Bend Routing is in NP. Since the above described
construction rules are a compliant specification for the 3SAT reduction frame-
work, we have:

Theorem 3. 2-Bend Routing is NP-complete.

6 Discussion and Open Problems

This paper shows that Simplicity Testing is NP-complete, while the reverse
problem, Routing, is feasible. This asymmetry may explain why most three-
dimensional drawing algorithms in the literature determine edge shapes as a
consequence of node relative positions and not vice versa.

With respect to the problem of characterizing simple orthogonal shapes, de-
ciding whether a shape graph is simple is shown here to be NP-complete. Of
course, the problem of characterizing simple orthogonal shapes remains open,
although we now know that in the general case it implies a heavy computation.
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As a consequence of the complexity of the Simplicity Testing problem in
the general case, in any hypothetical 3D drawing process in which the definition
of the shape of the drawing is followed by the actual computation of its coordi-
nates, the first step should be very carefully conceived in order for the second
step to be efficiently computable. In fact, focusing on peculiar classes of shape
graphs seems to be an obliged strategy for practical applications. Are there non
trivial families of shape graph for which the simplicity testing is feasible? In
particular, is there a “universal” set of shape graphs such that any graph is
represented and such that the simplicity testing is guaranteed to be polynomial
and to have a positive answer?

With respect to the problem of determining if a graph of degree six always
admits a 2-bend drawing, this paper shows the NP-completeness of two prob-
lems related with finding such drawings. Namely, it is NP-complete when node
positions are fixed (Section 4) and it is NP-complete when edge shapes are fixed
(Section 5). Some other 3D drawing problems involving the number of the bends
are known to be NP-complete, as, for example, finding a 2-bend drawing when
vertices are placed on the diagonal of a cube [21] (provided that the graph ad-
mits such a drawing). The number of NP-complete problems related with the
computation of a 2-bend drawing raises the following question: What is the
complexity of finding a 2-bend drawing of a graph? If finding such a drawing
was also NP-hard, then any attempt to prove that such a drawing always ex-
ists should produce an algorithm for an intractable problem, which is hard to
conceive without resorting to an enumerative approach (which, in turn, assumes
the existence of a solution). However both the conception of such an algorithm
and the description of a graph not admitting a 2-bend drawing appear to be
elusive goals.
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On Extending a Partial Straight-Line Drawing�
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Abstract. We investigate the computational complexity of the follow-
ing problem. Given a planar graph in which some vertices have already
been placed in the plane, place the remaining vertices to form a planar
straight-line drawing of the whole graph. We show that this extensibil-
ity problem, proposed in the 2003 “Selected Open Problems in Graph
Drawing” [1], is NP-complete.

1 Introduction

A (simple) graph G(V, E) consists of a set V of vertices and a set E of vertex pairs
called edges. A drawing of G is a mapping of each vertex v ∈ V to a distinct point
of the plane and of each edge e ∈ E to a Jordan curve connecting its end-vertices.
A drawing of G is planar if no pair of edges intersect except, possibly, at common
end-vertices. A graph G is planar if it admits a planar drawing. A straight-line
drawing of G is a drawing of G where each edge is mapped to a straight segment.
Every planar graph admits a straight-line drawing, as independently established
by Steinitz and Rademacher [7], Wagner [9], Fary [3], and Stein [6], and such a
drawing can be computed in linear time.

In this paper we show that finding a straight-line planar drawing for a graph
that is already partially drawn is an NP-complete problem. This extensibility
problem was proposed in [1] and thought to be related to the problem of drawing
with fixed vertex positions, a problem that was solved by Cabello [2].

Formally, the Partial Drawing Extensibility problem can be stated as
follows.

Problem: Partial Drawing Extensibility (PDE)
Instance: A planar graph G(V, E) and a mapping between a subset V ′ of

its vertices and a set of distinct points of the plane.
Question: Can coordinates be assigned to the vertices in V − V ′ such that

the resulting straight-line drawing of G(V, E) is planar?

It can be shown that the PDE problem is in NP. In Section 2 we show that
it is also NP-hard. Section 3 concludes the paper.
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2 NP-Hardness Proof

In order to show the NP-hardness of the PDE problem we produce a reduction
from the Planar 3-Satisfiability (P3SAT) problem, which is strongly NP-
complete [5]. P3SAT is defined as follows:

Problem: Planar 3-Satisfiability (P3SAT)
Instance: A set of clauses C1, . . . , Cm each one having three literals from

a set of Boolean variables v1, . . . , vn. A plane bipartite graph
G(VA, VB , E) where nodes in VA correspond to the variables while
nodes in VB correspond to the clauses (hence, |VA| = n and
|VB | = m). Edges connect clauses to the variables of the literals
they contain. Moreover, G(VA, VB, E) is drawn without intersec-
tions on a rectangular grid of polynomial size in such a way that
nodes in VA are arranged in a horizontal line that is not crossed
by any edge (see Fig. 1).

Question: Can truth values be assigned to the variables v1, . . . , vn such that
each clause has a true literal?

2

1 v2 v3 v4 v5 vn

1

4

7

6

5

3

v .     .     .     .

C

C

C

C

C

C

C

Fig. 1. A planar embedding of graph G(VA, VB , E) for a P3SAT instance

Given an instance of the PDE problem, we call fixed vertices those in V ′, i.e.,
those that have assigned coordinates, and we call free vertices those in V − V ′,
whose coordinates have to be found in order to obtain a planar straight-line
drawing of G(V, E). For the construction of the PDE instance we make use of
the basic gadget depicted in Fig. 2. The basic gadget only has fixed vertices,
which form the boundary of a chamber. The chamber has two openings on the
bottom side, called true gate and false gate, respectively, and labeled with a ‘T’
and an ‘F’ in Fig 2. On the top side the chamber has an even number of openings,
that we call exits. The vertices and edges near the exits form narrow corridors
pointing towards one of the two gates, and are called true exits or false exits
depending on which gate they point to. It can be easily checked from Fig. 2,
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T F

F FT T F T

Fig. 2. The basic gadget used to construct the instance of the PDE problem

that only if a path enters a true (resp. false) gate and exits a true (resp. false)
exit, it is possible for it to traverse the basic gadget from one gate to one exit
leaving only two vertices inside the chamber. In particular, the two vertices of
the path must be placed in the spots where dashed circles are drawn in Fig. 2.

Starting from an instance of the P3SAT problem, consisting of the set of
clauses C1, . . . , Cm, each one having three literals from the Boolean variables
v1, . . . , vn, and a drawing of the graph G(VA, VB , E), an instance of the PDE
problem can be constructed as follows. For each variable vi of the P3SAT in-
stance we build a variable gadget depicted in Fig. 3. The variable gadget is
composed of two basic gadgets, one of which is mirrored with respect to the
horizontal axis. The two basic gadgets are glued together in such a way that
their true gates and false gates are attached together. The number of the exits
of the top (bottom) basic gadget is equal to two times the number of the edges
of E that are incident to the node of VA corresponding to vi from above (below)
in the planar drawing of G(VA, VB, E). Also, the small corridors near the exits
point alternatively to the true and to the false gate of each gadget.

Consider a clause Ch = (l1 ∨ l2 ∨ l3), where l1, l2, and l3 are literals of the
variables vl1 , vl2 , and vl3 , respectively. (Variables vl1 , vl2 , and vl3 can be assumed
to be distinct.) We build a clause gadget corresponding to Ch by using three basic
gadgets as depicted in Fig. 4. Each basic gadget corresponds to a literal li and is
attached to a true and a false exit of the variable gadget for vli with two “pipes”,
called the true and false pipe, respectively, each one bending two times before
reaching the variable gadget. Also, the exits of the three basic gadgets point to
the same eight points p1, . . . , p8, while, internally, the small corridors near the
exits of the chambers point to the true gate or the false gate in such a way that
each point p1, . . . , p8 corresponds to a different combination of the truth values
of the basic gadget exits. Further, consider the truth assignment for vl1 , vl2 , and
vl3 that does not satisfy the clause and the point pfalse corresponding to it. The
corridors pointing to pfalse are closed with an edge.

The free vertices of the PDE instance, i.e., those vertices that need to be
placed while preserving planarity, are the following. For each variable vi, we
introduce one free vertex ni,α which is adjacent to the fixed vertex of the variable
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Fig. 3. The variable gadget for a variable which is attached to three clauses from above
and to two clauses from below
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Fig. 4. The clause gadget for a clause Ch = (vi ∨ vj ∨ vk)

gadget of vi labeled nα in Fig. 3. For each clause Ch, we introduce one free
vertex nh,β,γ which is adjacent to the two fixed vertices of the clause gadget
corresponding to Ch labeled nβ and nγ in Fig. 4. If one literal of variable vi

occurs in clause Ch, vertices ni,α and nh,β,γ are joined with a path of six edges,
that is, containing five other free vertices (see Fig. 5).

Theorem 1. The Partial Drawing Extensibility problem is NP-hard.

Proof. Suppose that the P3SAT instance admits a truth assignment such that
each clause has a true literal. A straight-line drawing of the PDE instance can
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Fig. 5. The free vertices of the PDE instance introduced for a clause Ch with literals
of the three variables vi, vj , and vk

be found as follows. Depending on the truth value of variable vi place vertex
ni,α of the variable gadget for vi on the true gate or false gate, and let each
path to a vertex nh,β,γ exit from the corresponding true or false exit to clause
gadget Ch. For each clause Ch with literals l1, l2, and l3, place vertex nh,β,γ on
one point ptrue different from pfalse, and let each path to ni,α pass through the
(unblocked) corridor of the corresponding basic gadget. The obtained straight-
line drawing is planar. In fact, edges between fixed vertices do not intersect,
and, if vi is true (false), for each clause Ch containing a literal of vi, the five free
vertices between each ni,α and nh,β,γ can be placed inside the true (false) pipe
linking the variable gadget for vi to the clause gadget for Ch.

Suppose now that the free vertices of the PDE instance can be placed in such a
way that the resulting straight-line drawing is planar. A truth assignment for the
P3SAT instance such that each clause has a true literal can be easily computed
as follows. Assign to each variable vi a true (false) value if the corresponding
variable gadget has the vertex ni,α near the true (false) gate. We claim that the
truth assignment so computed is such that each clause contains at least a true
literal. In fact, consider the clause gadget of clause Ch. Since the paths attached
to nh,β,γ have five internal vertices only, and since each pipe bends two times, the
planarity of the drawing implies that nh,β,γ is placed on a point ptrue different
from pfalse and that at least one of the three paths joining at nh,β,γ comes from
a variable that has a truth assignment satisfying clause Ch.

Since, starting from a P3SAT instance, the construction of the corresponding
PDE instance can be done in polynomial time, the statement follows.

3 Conclusions

We showed that the Partial Drawing Extensibility problem is NP-complete.
For simplicity, in the NP-hardness proof we used a reduction from the P3SAT
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problem producing non-connected PDE instances. We observe that it is not
difficult to modify the construction in such a way that the resulting graph is
connected. For example, edges can be added to connect each vertex ni,α of the
variable gadget for variable vi to the middle point of each horizontal segment of
the same variable gadget. Analogous changes performed on clause gadgets will
produce a connected graph.

A similar problem to the one addressed in this paper comes up in mesh gener-
ation [4], where the already-placed vertices are usually assumed to form a simple
polygon and the graph is assumed to have all interior faces triangles. Do these
assumptions simplify the problem?

The drawing method of Tutte [8] may be used to show that the problem
becomes tractable when the graph is triconnected and the already-placed vertices
form convex faces.
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Abstract. The crossing number of a graph is the minimum number of
edge intersections in a plane drawing of a graph, where each intersec-
tion is counted separately. If instead we count the number of pairs of
edges that intersect an odd number of times, we obtain the odd cross-
ing number. We show that there is a graph for which these two con-
cepts differ, answering a well-known open question on crossing numbers.
To derive the result we study drawings of maps (graphs with rotation
systems).

1 A Confusion of Crossing Numbers

Intuitively, the crossing number of a graph is the smallest number of edge cross-
ings in any plane drawing of the graph. As it turns out, this definition leaves
room for interpretation, depending on how we answer the questions: what is
a drawing, what is a crossing, and how do we count crossings? The papers
by Pach and Tóth [7] and Székely [9] discuss the historical development of
various interpretations and, often implicit, definitions of the crossing number
concept.

A drawing D of a graph G is a mapping of the vertices and edges of G to
the Euclidean plane, associating a distinct point with each vertex, and a simple
plane curve with each edge such that the ends of an edge map to the endpoints
of the corresponding curve. For simplicity, we also require that

– a curve does not contain any endpoints of other curves in its interior,
– two curves do not touch (that is, intersect without crossing), and
– no more than two curves intersect in a point (other than at a shared end-

point).

In such a drawing the intersection of the interiors of two curves is called a
crossing. Note that by the restrictions we placed on a drawing, crossings do not
involve endpoints, and at most two curves can intersect in a crossing. We often
identify a drawing with the graph it represents. For a drawing D of a graph G
in the plane we define

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 386–396, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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– cr(D) - the total number of crossings in D;
– pcr(D) - the number of pairs of edges which cross at least once; and
– ocr(D) - the number of pairs of edges which cross an odd number of times.

Remark 1. For any drawing D, we have ocr(D) ≤ pcr(D) ≤ cr(D).

We let cr(G) = min cr(D), where the minimum is taken over all drawings D
of G in the plane. We define ocr(G) and pcr(G) analogously.

Remark 2. For any graph G, we have ocr(G) ≤ pcr(G) ≤ cr(G).

The question (first asked by Pach and Tóth [7]) is whether the inequalities are
actually equalities.1 Pach [6] called this “perhaps the most exciting open problem
in the area.” The only evidence for equality is an old theorem by Chojnacki,
which was later rediscovered by Tutte—and the absence of any counterexamples.

Theorem 1 (Chojnacki [4], Tutte [10]). If ocr(G) = 0 then cr(G) = 0.2

In this paper we will construct a simple example of a graph with ocr(G) <
pcr(G) = cr(G). We derive this example from studying what we call weighted
maps on the annulus. Section 2 introduces the notion of weighted maps on arbi-
trary surfaces and gives a counterexample to ocr(M) = pcr(M) for maps on the
annulus. In Section 3 we continue the study of crossing numbers for weighted
maps, proving in particular that cr(M) ≤ cn · ocr(M) for maps on a plane with
n holes. One of the difficulties in dealing with the crossing number is that it is
NP-complete [2]. In Section 4 we show that the crossing number can be com-
puted in polynomial time for maps on the annulus. Finally, in Section 5 we show
how to translate the map counterexample from Section 2 into an infinite family
of simple graphs for which ocr(G) < pcr(G).

2 Map Crossing Numbers

A weighted map M is a 2-manifold S and a set P = {(a1, b1), . . . , (am, bm)} of
pairs of distinct points on ∂S with positive weights w1, . . . , wm. A realization R
of the map M = (S, P ) is a set of m properly embedded arcs γ1, . . . , γm in S
where γi connects ai and bi.3

Let

cr(R) =
∑

1≤k<�≤m

i(γk, γ�)wkw�,

pcr(R) =
∑

1≤k<�≤m

[i(γk, γ�) > 0]wkw�,

1 Doug West lists the problem on his page of open problems in graph theory [12]. Dan
Archdeacon even conjectured that equality holds [1].

2 In fact they proved something stronger, namely that in any drawing of a non-planar
graph there are two non-adjacent edges crossing an odd number of times. Also see [8].

3 If we take a realization R of a map M , and contract each boundary component to
a vertex, we obtain a drawing of a graph with a given rotation system [3]. For our
purposes, maps are a more visual way to look at graphs with a rotation system.
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ocr(R) =
∑

1≤k<�≤m

[i(γk, γ�) ≡ 1 (mod 2)]wkw�,

where i(γ, γ′) is the geometric intersection number of γ and γ′ and [x] is 1 if the
condition x is true, and 0 otherwise.

We define cr(M) = min cr(R), where the minimum is taken over all realiza-
tions R of M . We define pcr(M) and ocr(M) analogously.

Remark 3. For every map M , ocr(M) ≤ pcr(M) ≤ cr(M).

Conjecture 1. For every map M , cr(M) = pcr(M).

Lemma 1. If Conjecture 1 is true then cr(G) = pcr(G) for every graph G.

Proof. Let D be a drawing of G with minimal pair crossing number. Drill small
holes at the vertices. We obtain a drawing R of a weighted map M . If Con-
jecture 1 is true, there exists a drawing of M with the same crossing number.
Collapse the holes to vertices to obtain a drawing D′ of G with cr(D′) ≤ pcr(G).

We can, however, separate the odd crossing number from the crossing number
for weighted maps, even in the annulus (a disk with a hole).

d d

a

c

b

bc

a

Fig. 1. ocr < pcr

When analyzing crossing numbers of drawings on the annulus, we describe
curves with respect to an initial drawing of the curve and a number of Dehn
twists. Consider, for example, the four curves in the left part of Figure 1. Com-
paring them to the corresponding curves in the right part, we see that the curves
labeled c and d have not changed, but the curves labeled a and b have each un-
dergone a single clockwise twist.

Two curves are isotopic rel boundary if they can be obtained from each other
by a continuous deformation which does not move the boundary ∂M . Isotopy
rel boundary is an equivalence relation, its equivalence classes are called isotopy
classes. An isotopy class on annulus is determined by a properly embedded arc
connecting the endpoints, together with the number of twists performed.

Lemma 2. Let a ≤ b ≤ c ≤ d be such that a + c ≥ d. For the weighted map M
in Figure 1 we have cr(M) = pcr(M) = ac + bd and ocr(M) = bc + ad.
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Proof. The upper bounds follow from the drawings in Figure 1, the left drawing
for crossing and pair crossing number, the right drawing for odd crossing number;
it remains to prove the two lower bounds.

First, we claim that
pcr(M) ≥ ac + bd.

Proof of the claim. Let R be a drawing of M minimizing pcr(R). We can apply
twists so that the thick edge d is drawn as in the left part of Figure 1. Let α, β, γ
be the number of clockwise twists that are applied to arcs a, b, c in the left part
of Figure 1 to obtain the drawing R. Then,

pcr(R) = cd[γ = 0]+bd[β = −1]+ad[α = 0]+bc[β = γ]+ab[α = β]+ac[α = γ+1].
(1)

If γ = 0 then pcr(R) ≥ cd + ab because at least one of the last five conditions in
(1) must be true; the last five terms contribute at least ab (since d ≥ c ≥ b ≥ a),
and the first term contributes cd. Since d(c − b) ≥ a(c − b), cd + ab ≥ ac + bd,
and the claim is proved in the case that γ = 0.

Now assume that γ = 0. Equation (1) becomes

pcr(R) = bd[β = −1] + bc[β = 0] + ad[α = 0] + ac[α = 1] + ab[α = β]. (2)

If β = −1 then pcr(R) ≥ bd + ac because either α = 0 or α = 1. Since bd + ac ≥
bc + ad, the claim is proved in the case that β = −1.

This leaves us with the case that β = −1. Equation (2) becomes

pcr(R) = bc + ad[α = 0] + ac[α = 1] + ab[α = −1]. (3)

The right-hand side of Equation (3) is minimized for α = 0. In this case pcr(R) =
bc + ac + ab ≥ ac + bd because we assume that a + c ≥ d. Second, we claim that

ocr(M) ≥ bc + ad.

Proof of the claim. Let R be a drawing of M minimizing ocr(R). Let α, β, γ be
as in the previous claim. We have

ocr(R) = cd[γ]2+bd[β+1]2+ad[α]2+bc[β+γ]2+ab[α+β]2+ac[α+γ+1]2, (4)

where [x]2 is 0 if x ≡ 0 (mod 2), and 1 otherwise.
If β ≡ γ (mod 2) then the claim clearly follows unless γ = 0, β = 1, and

α = 0 (all modulo 2). In that case ocr(R) ≥ bc + ab + ac ≥ bc + ad. Hence, the
claim is proved if β ≡ γ (mod 2).

Assume then that β ≡ γ (mod 2). Equation (4) becomes

ocr(R) = cd[β]2 + bd[β + 1]2 + ad[α]2 + ab[α + β]2 + ac[α + β + 1]2. (5)

If α ≡ 1 (mod 2) then the claim clearly follows because either cd or bd contributes
to the ocr. Thus we can assume α ≡ 0 (mod 2). Equation (5) becomes

ocr(R) = (cd + ab)[β]2 + (bd + ac)[β + 1]2. (6)

For both β ≡ 0 (mod 2) and β ≡ 1 (mod 2) we get ocr(R) ≥ bc + ad. This
finishes the proof of the second claim. �

We get a separation of pcr and ocr for maps with small integral weights.
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Corollary 1. There is a weighted map M on the annulus with edges of weight
a = 1, b = c = 3, and d = 4 for which cr(M) = pcr(M) = 15 and ocr(M) = 13.

Optimizing the gap over the reals yields b = c = 1, a = (
√

3 − 1)/2, and
d = 1 + a, giving us the following separation of pcr(M) and ocr(M).

Corollary 2. There exists a weighted map M on the annulus with ocr(M) ≤√
3/2 pcr(M).

Conjecture 2. For every weighted map M on the annulus, ocr(M) ≥
√

3
2 pcr(M).

3 Upper Bounds on Crossing Numbers

In Section 5 we will transform the separation of ocr and pcr on maps into a
separation on graphs. In particular, we will show that for every ε > 0 there is a
graph G such that

ocr(G) < (
√

3/2 + ε) cr(G).

The gap, however, cannot be arbitrarily large, as Pach and Tóth showed.

Theorem 2 (Pach, Tóth [7]). Let G be a graph. Then cr(G) ≤ 2(ocr(G))2. 4

This result suggests the question whether the linear separation can be im-
proved. We do not believe this to be possible:

Conjecture 3. There is a c > 0 such that cr(G) < c · ocr(G).

Using a graph redrawing idea from from [8] (which investigates other appli-
cations of that idea), we can show something weaker:

Theorem 3. cr(M) ≤ ocr(M)
(

n+4
4

)
/5 for weighted maps M on the plane with

n holes, with strict inequality if n > 1.

As a special case of the theorem, we have that if M is a (weighted) map on
the annulus (n = 2) then cr(M) < 3 ocr(M), which comes reasonably close to
the

√
3/2 lower bound from the previous section. The theorem shows that any

counterexample to Conjecture 3 cannot be constructed on a plane with a small,
fixed number of holes. For reasons of space, we do not include the proof of the
theorem.

4 Computing Crossing Numbers on the Annulus

Let M be a map on the annulus. We explained earlier that as far as crossing
numbers are concerned we can describe a curve in the realization of M by a
properly embedded arc γab connecting endpoints a and b on the inner and outer
boundary of the annulus, and an integer k ∈ Z, counting the number of twists
4 In terms of pcr(G) better upper bounds on cr(G) are known [11, 5].
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applied to the curve γab. Our goal is to compute the number of intersections
between two arcs after applying a number of twists to each one of them. Since
twists can be positive and negative and cancel each other out, we need to count
crossings more carefully. Let us orient all arcs from the inner boundary to the
outer boundary. Traveling along an arc α, a crossing with β counts as +1 if β
crosses from right to left, and as −1 if it crosses from left to right. Summing up
these numbers over all crossings for two arcs α and β yields î(α, β), the algebraic
crossing number of α and β. Tutte [10] introduced the notion

acr(G) = min
D

∑
{e,f}∈(E

2)
|̂i(γe, γf )|,

the algebraic crossing number of a graph, a notion that apparently has not drawn
any attention since.

Let Dk(γ) denote the result of adding k twists to the curve γ. For two curves
α and β connecting the inner and outer boundary we have:

î(Dk(α), D�(β)) = k − � + î(α, β). (7)

Note that i(α, β) = |̂i(α, β)| for any two curves α, β on the annulus.
Let π be a permutation of [n]. A map Mπ corresponding to π is constructed

as follows. Choose n + 1 points on each of the two boundaries and number them
0, 1, . . . , n in the clockwise order. Let ai be the vertex numbered i on the outer
boundary and bi be the vertex numbered πi on the inner boundary, i = 1, . . . , n.
We ask ai to be connected to bi in Mπ.

We will encode a drawing R of Mπ by a sequence of n integers x1, . . . , xn

as follows. Fix a curve β connecting the a0 and b0 and choose γi be such that
i(β, γi) = 0 (for all i). We will connect ai, bi with the arc Dxi(γi) in R. Note
that for i < j, î(γi, γj) = [πi > πj ] and hence

î(Dxi(γi), Dxj (γj)) = xi − xj + [πi > πj ].

We have

acr(Mπ) = cr(Mπ) = min
{∑

i<j

∣∣xi − xj + [πi > πj ]
∣∣wiwj : xi ∈ Z, i ∈ [n]}, (8)

pcr(Mπ) = min
{∑

i<j

[xi − xj + [πi > πj ] = 0]wiwj : xi ∈ Z, i ∈ [n]
}
, (9)

ocr(Mπ) = min
{∑

i<j

[xi − xj + [πi > πj ] ≡ 0 (mod 2)]wiwj : xi ∈ Z, i ∈ [n]
}
.

(10)
Consider the relaxation of the integer program for cr(Mπ):

cr′(Mπ) = min
{∑

i<j

∣∣xi − xj + [πi > πj ]
∣∣wiwj : xi ∈ R, i ∈ [n]

}
. (11)

Since (11) is a relaxation of (8), we have cr′(Mπ) ≤ cr(Mπ). The following lemma
shows that cr′(Mπ) = cr(Mπ).
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Lemma 3. Let n be a positive integer. Let bij ∈ Z and let aij ∈ R be non-
negative, 1 ≤ i < j ≤ n. Then

min
{∑

i<j

aij

∣∣xi − xj + bij

∣∣ : xi ∈ R, i ∈ [n]
}

has an optimal solution with xi ∈ Z, i ∈ [n].

Proof. Let x∗ be an optimal solution which satisfies the maximum number of
xi − xj + bij = 0, 1 ≤ i < j ≤ n. Without loss of generality, we can assume
x∗

1 = 0. Let G be a graph on vertex set [n] with an edge between vertices i, j if
x∗

i − x∗
j + bij = 0. Note that if i, j are connected by an edge and one of x∗

i , x
∗
j is

an integer then both x∗
i and x∗

j are integers. It is then enough to show that G is
connected.

Suppose that G is not connected. There exists non-empty A � V (G) such that
there are no edges between A and V (G)−A. Let χA be the characteristic vector
of the set A, that is, (χA)i = [i ∈ A]. Let f(λ) be the value of the objective
function on x = x∗ + λ · χA. Let I be the interval on which the signs of the
xi − xj + bij , 1 ≤ i < j ≤ n are the same as for x∗. Then I is not the entire
line (otherwise G would be connected). Since f(λ) is linear on I and an open
neighborhood of 0 belongs to I we conclude that f is constant on I. Choosing
x = x∗ + λχA for λ an endpoint of I gives an optimal solution satisfying more
xi − xj + bij = 0, 1 ≤ i < j ≤ n, a contradiction.

Theorem 4. The crossing number of maps on the annulus can be computed in
polynomial time.

Proof. Note that cr′(Mπ) is computed by the following linear program Lπ:

min
∑
i<j

yijwiwj

yij ≥ xi − xj + [πi > πj ], 1 ≤ i < j ≤ n
yij ≥ −xi + xj − [πi > πj ], 1 ≤ i < j ≤ n.

Question 1. Let M be a map on the annulus. Can ocr(M) be computed in
polynomial time?

Conjecture 4. For any map M on the annulus cr(M) = pcr(M).

5 Separating Crossing Numbers of Graphs

We modify the map from Lemma 2 to obtain a graph G separating ocr(G) and
pcr(G). The graph G will have integral weights on edges. From G we can get an
unweighted graph G′ with ocr(G′) = ocr(G) and pcr(G′) = pcr(G) by replacing
an edge of weight w by w parallel edges of weight 1 (this does not change any of
the crossing numbers). If needed we can get rid of parallel edges by subdividing
edges, which does not change any of the crossing numbers.
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We start with the map M from Lemma 2 with the following integral weights:

a =

⌊√
3 − 1
2

m

⌋
, b = c = m, d =

⌊√
3 + 1
2

m

⌋
,

where m ∈ N will be chosen later.
We replace each pair (ai, bi) of M by wi pairs (ai,1, bi,1), . . . , (ai,wi , bi,wi) where

the ai,j (bi,j) occur on ∂S in clockwise order in a small interval around of ai (bi).
We can argue that all the curves corresponding to (ai, bi) can be routed in parallel
in an optimal drawing, and, therefore, the resulting map N with unit weights
will have the same crossing numbers as M .

We then replace the boundaries of the annulus by cycles (using one vertex for
each ai,j and bi,j), obtaining a graph G. We assign weight W = 1+cr(N) to the
edges in the cycles. This ensures that in a drawing of G minimizing any of the
crossing numbers the boundary cycles are embedded without any intersections.
This means that a drawing of G minimizing any of the crossing numbers looks
very much like the drawing of a map on the annulus. With one subtle difference:
one of the boundaries may flip.

Given the map N on the annulus, the flipped map N ′ is obtained by flipping
the order of the points on one of the boundaries. In other words, there are
essentially two different ways of embedding the two boundary cycles of G on
the sphere without intersections depending on the relative orientation of the
boundaries. In one of the cases the drawing D of G gives a drawing of N , in the
other case it gives a drawing of the flipped map N ′. Fortunately, in the flipped
case the group of edges corresponding to the weighted edge from ai to bi must
intersect often with each other (as illustrated in Figure 2).

a

b

d

c

Fig. 2. The inside flipped

Now we know that

ocr(G) ≤ ocr(N) (since every drawing of N is a drawing of G)
≤ w1w3 + w2w4 (by Lemma 2)

≤ 3
2
m2 (by the choice of weights).

We will presently prove the following estimate on the flipped map.
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Lemma 4. ocr(N ′) ≥ 2m2 − 4m.

With that estimate and our discussion of flipped maps, we have

cr(G) = min{cr(N), cr(N ′)}
≥ min{cr(N), ocr(N ′)} (since ocr ≤ cr)

≥ min{
√

3m2 − 2m, 2m2 − 4m} (choice of w, and Lemma 4).

By making m sufficiently large, we can make the ratio of ocr(G) and cr(G)
arbitrarily close to

√
3/2.

Theorem 5. For any ε > 0 there is a graph G such that

ocr(G) < (
√

3/2 + ε) cr(G).

The proof of Lemma 4 will require the following estimate.

Lemma 5. Let 0 ≤ a1 ≤ a2 ≤ · · · ≤ an be such that an ≤ a1 + · · ·+ an−1. Then

max
|yi|≤ai

⎛⎝( n∑
i=1

yi

)2

− 2
n∑

i=1

y2
i

⎞⎠ =

(
n∑

i=1

ai

)2

− 2
n∑

i=1

a2
i .

Proof of Lemma 4. Let w1 = a, w2 = b, w3 = d, w4 = c (with a, b, c, d as in
the definition of N). In any drawing of N ′ each group of the edges split into
two classes, those with an even number of twists and those with an odd num-
ber of twists (two twists make the same contribution to ocr(M ′) as no twists).
Consequently, we can estimate ocr(N ′) as follows.

ocr(N ′) = min
0≤ki≤wi

⎛⎝ 4∑
i=1

(
ki

2

)
+

4∑
i=1

(
wi − ki

2

)
+
∑
i�=j

ki(wj − kj)

⎞⎠
≥ −1

2

4∑
i=1

wi + min
0≤xi≤wi

⎛⎝ 4∑
i=1

x2
i

2
+

4∑
i=1

(wi − xi)2

2
+
∑
i�=j

xi(wj − xj)

⎞⎠
= −1

2

4∑
i=1

wi +
1
4

(
4∑

i=1

wi

)2

+ min
|yi|≤wi/2

⎛⎝2
4∑

i=1

y2
i −

(
4∑

i=1

yi

)2
⎞⎠

≥ 1
2

4∑
i=1

w2
i − 1

2

4∑
i=1

wi (using Lemma 5)

≥ 1
2

⎛⎝(√
3 + 1
2

m − 1

)2

+ 2m2 +

(√
3 − 1
2

m − 1

)2

− 4m

⎞⎠
≥ 2m2 − 4m. (12)

The equality between the second and third line can be verified by substituting
yi = xi − wi/2. �
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Proof of Lemma 5. Let y1, . . . , yn achieve the maximum value. Replacing the
yi by |yi| does not decrease the objective function. Without loss of generality, we
can assume 0 ≤ y1 ≤ y2 ≤ · · · ≤ yn. Note that yi < yj then yi = ai (otherwise
increasing yi by ε and decreasing yj by ε increases the objective function for
small ε).

Let k be the largest i such that yi = ai. Let k = 0 if no such i exists. We have
yi = ai for i ≤ k and yk+1 = · · · = yn. If k = n we are done. Let

f(t) =

(
k∑

i=1

ai + (n − k)t

)2

− 2

(
k∑

i=1

a2
i + (n − k)t2

)
.

We have

f ′(t) = 2(n − k)

(
k∑

i=1

ai + (n − k − 2)t

)
.

Note that for t < ak+1 we have f ′(t) > 0 and hence the only optimal choice is
t = ak+1. Hence yk+1 = ak+1, a contradiction with our choice of k. �

6 Conclusion

The relationship between the different crossing numbers remains mysterious,
and we have already mentioned several open questions and conjectures. Here we
want to revive a question first asked by Tutte (in slightly different form). Recall
the definition of the algebraic crossing number from Section 4:

acr(G) = min
D

∑
{e,f}∈(E

2)
|̂i(γe, γf )|,

where γe is a curve representing edge e in a drawing D of G. It is clear that

acr(G) ≤ cr(G).

Does equality hold?
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Abstract. The depth of a planar embedding of a graph is a measure of the topo-
logical nesting of the biconnected components of the graph in that embedding.
Motivated by the intuition that lower depth values lead to better drawings, previ-
ous works proposed efficient algorithms for finding embeddings with minimum
depth. We present an experimental study that shows the impact of embedding
depth minimization on important aesthetic criteria and relates the effectiveness of
this approach with measures of how much the graph resembles a tree or a bicon-
nected graph. In our study, we use a well known test suite of graphs obtained from
real-world applications and a randomly generated one with favorable biconnec-
tivity properties. In the experiments we consider orthogonal drawings computed
using the topology-shape-metrics approach.

1 Introduction

Well known approaches for drawing graphs compute a planar embedding as an inter-
mediate step [8] and, intuitively, the computed embedding may have a big impact on
the quality of the final drawing. This motivated several research efforts to compute a
planar embedding of a graph that is optimal with respect to certain cost measures (see
for example [3, 11, 5]).

Recently, the concept of depth of a planar embedding has been introduced [22]. In a
planar embedding, blocks (i.e. biconnected components) are inside faces, and faces are
inside blocks. The containment relationships between blocks and faces induce a tree
rooted at the external face. The depth of the planar embedding is the maximum length
of a root-to-leaf path in this tree (see Figure 1, a rigorous definition can be found in
Section 2). In [22] it is proved that it is possible to compute a planar embedding with
minimum depth in linear time if the embedding of each biconnected component is given
and fixed. Gutwenger and Mutzel [14] extended this result by providing an algorithm
for computing embeddings with minimum depth among all planar embeddings of a
graph. They also provide an algorithm that maximizes the number of vertices of the
external face among all the minimum depth embeddings.
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Fig. 1. In this example an embedded graph is shown whose blocks A,B,C,D and E are connected
by means of the cutvertices v, w and z. The embedding has cutfaces f ,g,h and i. The containment
relationship between cutfaces and blocks is represented by a tree of depth 5 rooted at the external
face f .

In this paper we quantify the positive effect on the final drawings of the application
of embedding depth minimization techniques.

Our experiments are performed with the algorithm described in [22], which is called
MinDepth throughout this paper and the results are compared with the ones obtained
using Algorithm LargeDepth (detailed in Section 5) that heuristically computes planar
embeddings with large depth.

For our experiments we focus on orthogonal drawings computed using the topology-
shape-metrics approach [8]. This is a widely used technique for computing orthogo-
nal drawings of general graphs. It has been extensively investigated both theoretically
[15, 24, 12, 16, 17, 7, 6, 18] and experimentally [9, 2]. Its practical applicability has been
demonstrated by various system prototypes [10, 19] and commercial graph drawing
tools [1]. The topology-shape-metrics approach consists of three phases. The first phase
takes as input a graph and computes a planar embedding possibly inserting dummy ver-
tices to represent crossings if the graph is not planar. The second phase determines the
orthogonal shape (angles) preserving the embedding. The third phase computes the co-
ordinates of the drawing preserving both embedding and shape. With this approach the
properties of the embedding computed in the first phase are crucial for the the quality
of the final layout.

In our experiments, we apply the topology-shape-metrics approach where we refine
the embedding computed by the planarization step using both Algorithm MinDepth and
Algorithm LargeDepth. The quality of the resulting drawings is compared with respect
to area, number of bends and total edge length, which are important aesthetic crite-
ria [23]. We relate the effectiveness of embedding depth minimization with two mea-
sures, triviality and max-occupancy, which express how much a graph resembles a tree
or a biconnected graph, respectively. Results show that the effectiveness of embedding
depth minimization is strongly affected by the values of such measures.

Our experiments are performed on two test suites. The first is a well known set of
graphs obtained from real-world applications that allows us to test the effectiveness of
embedding depth minimization on realistic instances. The second is randomly gener-
ated so that graphs present specific biconnectivity properties which allow the embed-
ding depth to vary over a wide range. This permits us to understand how effective the
technique can be in a very favorable setting.
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This paper is organized as follows. Section 2 provides basic definitions. In Section 3
we define new biconnectivity-related measures. In Section 4 we analyze the test suites
used in this paper for biconnectivity properties. In Section 5 we describe a heuristic
algorithm for computing embeddings with large depth. In Section 6 we show the results
of our experimental analysis. In Section 7 we draw the conclusions of our work.

2 Basic Definitions

In this section, we review basic concepts about graphs and embeddings, and give defi-
nitions that will be used throughout the paper.

Let G be a connected planar graph. For simplicity, we assume that G has no parallel
edges or self-loops. A cutvertex of G is a vertex whose deletion disconnects G. Graph G
is said to be biconnected if it has no cutvertices. A block B of G is a maximal subgraph
of G such that B is biconnected. A trivial block is composed by one edge between
two cutvertices with no other path between them. The block-cutvertex tree T of G is a
tree whose nodes are in one-to-one correspondence with the blocks and the cutvertices
of G, and whose edges connect each cutvertex-node to the block-nodes of the blocks
containing the cutvertex.

An embedding Γ of G is an equivalence class of planar drawings of G with the
same circular order of edges around each vertex. Two planar drawings with the same
embedding also induce the same circuits of edges bounding corresponding regions in
the two drawings. These circuits are called the faces of the embedding.

The dual embedding Γ ′ of Γ is the embedded graph induced by the adjacency re-
lations among the faces of Γ through its edges. A cutface f of Γ is a face associated
with a cutvertex of Γ ′. The block-cutface tree T ∗ of Γ is the block-cutvertex tree of
Γ ′. Since the dual of any biconnected embedding is biconnected, T and T ∗ contain the
same set of block-nodes.

A planar embedding is an embedding where a face is chosen as external face. We
consider the block-cutface tree of a planar embedding either rooted at the external face,
if this is a cutface, or rooted at the block that contains the external face.

For a rooted tree T the depth of T (depth T ) is the length of the longest path from
the root of T to one of its leaves. The diameter of a tree is the length of the longest path
between any two leaves.

Let G be a connected planar graph, and assume that we have a prescribed embedding
for each block B of G. We say that Γ is block-preserving for a cutvertex v if Γ preserves
the embedding of each block B containing v, that is, the circular order of the edges of
B incident on v is equal to their circular order in the prescribed embedding of B. We
say that Γ is block-preserving if it is block-preserving for all cutvertices.

Given a cutvertex v of G and block B containing v, we call the pair (B, v) a cutpair.
The faces of block B containing v are called the candidate cutfaces for the cutpair
(B, v) since one or more of them can be cutfaces in block preserving embeddings of G.

3 Biconnectivity-Related Graph Measures

The effectiveness of depth minimization depends on the biconnectivity properties of the
graph. It is easy to find families of graphs whose embedding depth cannot be changed
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by changing the embedding of their cutvertices. Trees and biconnected graphs are ex-
amples of such families. Also, graphs that are “almost trees” or “almost biconnected”
permit a very small variability of the embedding depth and hence we expect the effec-
tiveness of depth minimization techniques to be small for such instances.

We introduce the following measures for a connected graph. We call triviality of a
graph the ratio between the number of the trivial blocks and the total number of edges
of the graph. For each block of the graph, its occupancy is the the ratio between the
number of its edges and the total number of edges of the graph. We call max-occupancy
of a graph the maximum among the occupancies of its blocks.

Intuitively, the triviality is a measure of how much a graph resembles a tree. The triv-
iality of a tree is 1 while the triviality of a biconnected graph is 0. The max-occupancy
is a measure of how much a graph resembles a biconnected graph. A tree has max-
occupancy near to 0 while a biconnected graph has max-occupancy equal to 1.

We expect depth minimization techniques to be particularly useful on graphs that
show both small triviality and small max-occupancy. Small triviality implies that most
of the blocks have more than one face, i.e., the blocks contain cycles that may host
part of the graph, potentially increasing the embedding depth. On the other hand, small
max-occupancy implies that the graph has many blocks of small size making it possible
to have many nestings and hence high depth value. Note that, the average of the occu-
pancies of the blocks is not useful for our purposes. Consider a graph that contains one
big block and many blocks of only one edge, we have high max-occupancy and low
average occupancy. In such a graph, the variability of the embedding introduced by the
presence of the trivial blocks have a small effect on the quality of the drawings, since
aesthetic measures are largely due to the drawing of the big block.

4 Test Suites Analysis

The experiments described in Section 6 are performed over a test suite of about 3,000
graphs containing primarily graphs that represent real-world data and a test suite of 410
randomly generated graphs with specific characteristics.

Graphs from real-world applications. The graphs that represent real-world data are a
subset of the graphs available from the GDToolkit web site [10] (ALF CU data set) and
first used in [9]. We selected the 3724 graphs with no more than 50 nodes from this
set. Most of these graphs were non planar. Most of the graphs with more than 50 nodes
have one big block and many very small blocks and are not well suited for testing the
effectiveness of the depth minimization technique we consider.

In Figure 2(a) the distribution of the diameter of the block-cutvertex tree in the test
suite is shown (average 9.21). In Figure 2(b) the distribution of the degree of the cutver-
tices in the block-cutvertex tree is shown. Most of the cutvertices have degree equal to
2 which is a rather low value. Figures 2(c) and 2(d) show the distribution of the max-
occupancy and of triviality respectively. Most of the graphs have large max-occupancy
which implies that most have one large block encompassing a large portion of the graph.
The above observations show that most of the graphs of this test suite are instances that
can be considered hard for depth minimization techniques.
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Fig. 2. Distributions of biconnectivity-related measurements on the graphs obtained from real-
world applications. Statistics are performed on graphs with up to 50 vertices.

Randomly generated graphs. We randomly generated a set of graphs that feature small
triviality and small max-occupancy. The purpose of such graphs is to understand the
effectiveness of embedding depth minimization in a favorable situation. We generated
410 planar graphs with number of nodes n ranging between 10 and 50. For each value
of n we generated 10 graphs. The generation process creates graphs with the number of
cutvertices between n/10 and n/5, for each cutvertex the number of blocks incident to
it is between 2 and 5, for each block the number of cutvertices incident to it is no more
than 5. The details of the generation algorithm are given in [21].

Some statistics about the randomly generated test suite are shown in Figure 3.

5 Computing Embeddings with Minimum Depth and Large Depth

In this section, we describe in detail Algorithm LargeDepth for computing planar em-
beddings with large depth preserving the embeddings of the blocks, then, to make this
paper more self-contained, we briefly sketch Algorithm MinDepth whose details are
described in [22].

Algorithm LargeDepth takes as input a connected planar graph G with a prescribed
embedding for each of its blocks, and a block B of G. The output is an embedding Γ
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Fig. 3. Distributions of biconnectivity-related measurements on the graphs of the randomly gen-
erated test suite

of G with large depth which has the external face in B. The algorithm considers the
block-cutvertex tree T of G rooted at B and builds the planar embedding Γ by means
of a post-order traversal of T .

Given a node x of T (it may be a cutvertex or a block) we denote with G(x) the
subgraph of G associated with the subtree of T rooted at x and with Γ (x) the planar
embedding of G(x) computed by method embed(x) of the algorithm.

Method embed(x) takes as input graph G(x) and returns a planar embedding Γ (x)
of G(x) with large depth. Let y1, y2, . . . , ym be the children of x in T . The embedding
Γ (x) is computed by assembling the previously computed embeddings Γ (yi) of the
children of x. Since we aim at obtaining embeddings whose block-cutface tree shows
a high depth, when x is a cutvertex, blocks y1, y2, . . . , ym are embedded so that the
block with the deepest embedding is inside all other blocks. The detailed description of
Algorithm LargeDepth follows.

Algorithm LargeDepth

input. A connected planar graph G with block-cutvertex tree T , a prescribed embed-
ding for the blocks of G, and a block B.
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output. A block-preserving planar embedding Γ of G of large depth that has the exter-
nal face in B.

The algorithm consider T rooted at B. It computes and returns Γ = embed(B).

Method embed(B)

input A block B of T .
output A block-preserving planar embedding Γ (B) of large depth that has the external

face in B.

for all children v of B in T do
Let Γ (v) = embed(v).

end for
Let Γ (B) be equal to the prescribed embedding of B.
for all children v of B in T do

Modify Γ (B) by attaching Γ (v) into one of the candidate cutfaces for the cutpair
(B, v)

end for
if B is the root of the block-cutface tree then

choose the external face of Γ (B) such that it is not a cutface, if possible.
else

choose an arbitrary external face for Γ (B) (since embed(v) will change it)
end if

Method embed(v)

input A cutvertex v of T .
output A block-preserving planar embedding Γ (v) of large depth that has v on the

external face.

for all children B of v in T do
Let Γ (B) = embed(B).

end for
Partition the blocks that are children of v in T into two sets BT and BNT :

- BT contains all the trivial blocks (blocks that have only one edge)
- BNT contains all the non-trivial blocks

for all blocks B in BNT do
For each B ∈ BNT select, among the candidate cutfaces for the cutpair (B, v) in
Γ (B), two distinct candidate cutfaces: fext(B), fint(B), where possibly fext(B)
does not contain any block.

end for
Let B̄ be a block in BNT that shows the maximum of depth Γ (B).
Let Γ ′ be Γ (B̄) where all the blocks in BT are attached into fint(B̄) and the external
face of Γ ′ be fext(B̄).
for all blocks B in BNT − {B̄} do
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Modify Γ ′ such that it is equal to Γ (B) where the old Γ ′ is placed into fint(B)
and its external face is fext(B).

end for
Let Γ (v) = Γ ′.

Algorithm LargeDepth computes deep embeddings since method embed(v) com-
putes an embedding whose depth is the maximum depth shown by the children of v
plus 2 times the number of the other non-trivial children of v.

Now we briefly sketch Algorithm MinDepth whose details are given in [22]. The
algorithm starts from an arbitrary cutvertex v of the block-cutvertex tree and builds an
embedding that has v on the external face, by means of a post-order traversal. In choos-
ing how to embed a block and the subgraphs associated with its children, it puts the
deepest sub-embeddings into the external face if possible. The result is an embedding
with minimum depth among those that have v on the external face. All the subtrees of
the rooted block-cutvertex tree turn out to be embedded such that the corresponding
block-cutface tree has minimum depth. Starting from this embedding, it is possible to
compute a block preserving embedding whose block-cutface tree has minimum diame-
ter by applying a small number of changes. The cutface with minimum eccentricity in
the block-cutface tree is chosen to be external which gives a block preserving minimum
depth embedding.

6 Experimental Results

In this section we report the results of the experiments we performed on the test suites
described in Section 4. Our goal is to show how much the depth of the embeddings
affects the area of the drawings, their total edge length, and their number of bends.

The graphs derived from real-world applications may be in general non-planar. Ac-
cording to the topology-shape-metrics approach we planarize them. The planarization
heuristic1 adopted is a well-known one described in [8] and implemented in GDToolkit.
This technique does not introduce new cutvertices and hence it does not change the
block-cutvertex tree of the graph.

For each graph, after the planarization step, we generated two embeddings: one with
minimum depth, by means of Algorithm MinDepth, and one with large depth, by means
of Algorithm LargeDepth. Algorithm LargeDepth was run, for each graph, with all
possible blocks as root and the deepest among the computed embeddings wasselected.

We draw such two embeddings according to the orthogonal drawing standard intro-
duced in [4] (simple podevsnef ). The algorithm used to compute the shape minimizes
the number of bends within that standard. The compaction technique used is the heuris-
tic2 presented in [2] which iteratively compacts along the horizontal and the vertical
direction until the drawing does not change. It provides good performance in terms of
area and total edge length of the drawing.

1 The problem of planarizing a graph introducing the minimum number of crossings is NP-
hard [13].

2 The problems of compacting an orthogonal drawing in order to obtain minimum area or mini-
mum total edge length are NP-hard [20].
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Fig. 4. Measurements performed on the test suite derived from real-world applications. The charts
show the distributions of several comparative parameters.

We call Γmin the drawing obtained from the embedding with minimum depth and
Γlarge the drawing obtained from the embedding with large depth. Figure 4(a) shows
the distribution of the ratio between the area of Γmin and the area of Γlarge. Figure 4(b)
shows the distribution of the ratio between the total edge length of Γmin and the total
edge length of Γlarge. Figure 4(c) shows the distribution of the difference between the
number of bends of Γlarge and Γmin. Figure 4(d) shows Γlarge and Γmin for a graph of
34 vertices (ug31.34).

From Figure 4 we can see that even with the first test suite (the hard one) there is a
clear advantage in minimizing the embedding depth. In particular, for 2/3 of the graphs
Γmin has better area than Γlarge and there are peaks in which the area is decreased to
1/2 of the area of Γlarge. A similar behavior may be observed for the total edge length.
The average of the ratio between the area of Γmin and Γlarge is 0.87. The average of the
ratio between the total edge length of Γmin and Γlarge is 0.81. For the number of bends
the result is not so good. For most of the graphs the number of bends is unchanged.
However, in some cases the number decreases up to 9 units.

We repeated the same experiments on the test suite of 410 randomly generated
graphs and the corresponding charts are shown in Figures 5(a), 5(b) and 5(c). Fig-
ure 5(d) shows Γlarge and Γmin for a graph of 26 vertices.
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Fig. 5. Measurements performed on the randomly generated test suite. The charts show the dis-
tributions of several comparative parameters.

The results in this case are unquestionable. Almost all the considered graphs were
drawn with smaller area, smaller total edge length and fewer number of bends. There
are Γmin drawings whose area is 1/5 of the area of the corresponding Γlarge. The same
holds for total edge length. The number of bends shows an average reduction of 6.5 and
a peak reduction of 19. The average of the ratio between the area of Γmin and Γlarge is
0.51. The average of the ratio between the total edge length of Γmin and Γlarge is 0.43.

7 Conclusions

Our experiments prove that the embedding depth minimization technique has a posi-
tive effect on the quality of the drawings when adopted as a refinement step after the
planarization phase of the topology-shape-metric approach. The effectiveness of the
technique was explored using graphs obtained from real-world data, which gives re-
sults useful for application, and with graphs randomly generated that show specific
biconnectivity properties, which is useful for theoretical investigation. We introduced
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two new measures to easily characterize the latter family of graphs. Also, we provided
a heuristic to compute embeddings with large depth, a problem that may be subject of
a more rigorous theoretical investigation.

Other interesting experimental and/or theoretical analysis can be performed in this
area. For example, investigate how much better the techniques introduced in [14] per-
form compared with those used in this paper? Also, suppose that we randomly choose
embeddings, how likely is it to obtain embeddings with small (or large) depth?
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Abstract. In a no-bend orthogonal drawing of a plane graph, each ver-
tex is drawn as a point and each edge is drawn as a single horizontal or
vertical line segment. A planar graph is said to have a no-bend orthogonal
drawing if at least one of its plane embeddings has a no-bend orthogonal
drawing. Every series-parallel graph is planar. In this paper we give a
linear-time algorithm to examine whether a series-parallel graph G of
the maximum degree three has a no-bend orthogonal drawing and to
find one if G has.

Keywords: Planar Graph, Algorithm, Graph Drawing, Orthogonal
Drawing, Bend, SPQ tree.

1 Introduction

An orthogonal drawing of a planar graph G is a drawing of G such that each
vertex is mapped to a point, each edge is drawn as a sequence of alternate
horizontal and vertical line segments, and any two edges do not cross except
at their common end [NR04, RN02, RNN99, T87]. A bend is a point where an
edge changes its direction in a drawing. If G has a vertex of degree five or
more, then G has no orthogonal drawing. On the other hand, if G has no vertex
of degree five or more, that is, the maximum degree Δ of G is at most four,
then G has an orthogonal drawing, but may need bends. Minimization of the
number of bends in an orthogonal drawing is a challenging problem. A bend-
minimum orthogonal drawing of a planar graph G has the minimum number
of bends among all possible planar orthogonal drawings of G. The problem of
finding a bend-minimum orthogonal drawing is one of the most famous problems
in the graph drawing literature [BEGKLM04] and has been studied both in
the fixed embedding setting [RN02, RNN03, RNN99, T87] and in the variable
embedding setting [DLV98, GT01]. Some plane graphs with fixed embeddings
have an orthogonal drawing without bends, in which each edge is drawn by a
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Fig. 1. (a) A no-bend drawing, and (b)–(d) three embeddings of the same planar graph

single horizontal or vertical line segment [RNN03]. We call such a drawing a
no-bend drawing of a plane graph. Figure 1(a) depicts a no-bend drawing of the
plane graph in Fig. 1(b). As a result in the fixed embedding, Rahman et al.
[RNN03] obtained a necessary and sufficient condition for a plane graph G of
Δ ≤ 3 to have a no-bend drawing, and gave a linear-time algorithm to find a
no-bend drawing if G has.

We say that a planar graph G has a no-bend drawing if at least one of the
plane embedding of G has a no-bend drawing. Figures 1(b), (c) and (d) depict
three of all plane embeddings of the same planar graph G. Among them only
the embedding in Fig. 1(b) has a no-bend drawing as illustrated in Fig. 1(a).
Thus the planar graph G has a no-bend drawing. It is an NP-complete problem
to examine whether a planar graph G of Δ ≤ 4 has a no-bend drawing in the
variable embedding setting [GT01]. However, for a planar graph G of Δ ≤ 3,
Di Battista et al. [DLV98] gave an O(n5 log n) time algorithm to find a bend-
minimum orthogonal drawing of G. Every series-parallel graph is a planar graph,
and their algorithm takes time O(n3) for a series-parallel graph with Δ ≤ 3.
Thus, by their algorithm one can examine in time O(n3) whether a series-parallel
graph with Δ ≤ 3 has a no-bend drawing. As another result in the variable
embedding, Rahman et al. [REN05] gave a linear time algorithm to examine
whether a subdivision G of a planar triconnected cubic graph has a no-bend
drawing, and to find a no-bend drawing of G if G has.

In this paper we study the problem of no-bend orthogonal drawings of series-
parallel graphs with Δ ≤ 3 in the variable embedding setting, and give a linear
algorithm to find a no-bend orthogonal drawing if G has.

The rest of the paper is organized as follows. Section 2 describes some def-
initions and presents preliminary results. Section 3 presents our algorithm to
find a no-bend drawing of a biconnected series-parallel graph G if G has. Finally
Section 4 is a conclusion.

2 Preliminaries

In this section we give some definitions and present preliminary results.
Let G = (V, E) be a connected graph with vertex set V and edge set E. The

degree d(v) of a vertex v is the number of edges incident to v in G. We denote
the maximum degree of graph G by Δ(G) or simply by Δ. The connectivity
κ(G) of a graph G is the minimum number of vertices whose removal results in
a disconnected graph or a single-vertex graph K1. We say that G is k-connected
if κ(G) ≥ k.
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A graph G = (V, E) is called a series-parallel graph (with source s and sink
t) if either G consist of a pair of vertices connected by a single edge, or there
exist two series-parallel graphs Gi = (Vi, Ei), i = 1, 2, with source si and sink ti
such that V = V1 ∪ V2, E = E1 ∪ E2, and either s = s1, t1 = s2 and t = t2 or
s = s1 = s2 and t = t1 = t2.

A pair {u, v} of vertices of a connected graph G is a split pair if there exist
two subgraphs G1 = (V1, E1) and G2 = (V2, E2) satisfying the following two
conditions: 1. V = V1 ∪ V2, V1 ∩ V2 = {u, v}; and 2. E = E1 ∪ E2, E1 ∩ E2 = ∅,
|E1| ≥ 1, |E2| ≥ 1. Thus every pair of adjacent vertices is a split pair. A split
component of a split pair {u, v} is either an edge (u, v) or a maximal connected
subgraph H of G such that {u, v} is not a split pair of H . A split pair {u, v} of
G is called a maximal split pair with respect to a reference split pair {s, t} if, for
any other split pair {u′, v′}, vertices s, t, u and v are in the same split component
of {u′, v′}.

Let G be a biconnected series-parallel graph. Let (s, t) be an edge of G. The
SPQ-tree T of G with respect to a reference edge e = (s, t) describes a recursive
decomposition of G induced by its split pairs [GL99]. Tree T is a rooted ordered
tree whose nodes are of three types: S, P and Q. Each node x of T corresponds to
a subgraph of G, called its pertinent graph Gx. Each node x of T has an associated
biconnected multigraph, called the skeleton of x and denoted by skeleton(x). Tree
T is recursively defined as follows.

• Trivial Case: In this case, G consists of exactly two parallel edges e and e′

joining s and t. T consists of a single Q-node x. The skeleton of x is G itself.
The pertinent graph Gx consists of only the edge e′.

• Parallel Case: In this case, the split pair {s, t} has three or more split
components G0, G1, · · · , Gk, k ≥ 2, and G0 consists of only a reference edge
e = (s, t). The root of T is a P -node x. The skeleton(x) consists of k +1 parallel
edges e0, e1, · · ·, ek joining s and t. The pertinent graph Gx = G1 ∪G2 ∪ · · · ∪Gk

is a union of G1, G2, · · · , Gk. (The skeleton of P -node p2 in Fig. 2 consists of
three parallel edges joining vertices e and g. Figure 2(e) depicts the pertinent
graph of p2.)

• Series Case: In this case the split pair {s, t} has exactly two split compo-
nents, and one of them consists of the reference edge e. One may assume that
the other split component has cut-vertices c1, c2, · · ·, ck−1, k ≥ 2, that partition
the component into its blocks G1, G2, · · · , Gk in this order from s to t. Then the
root of T is an S-node x. The skeleton of x is a cycle e0, e1, · · ·, ek where e0 = e,
c0 = s, ck = t, and ei joins ci−1 and ci, 1 ≤ i ≤ k. The pertinent graph Gx of
node x is a union of G1, G2, · · · , Gk. (The skeleton of S-node s2 in Fig. 2 is the
cycle c, d, e, g, h, a, c. Figure 2(d) depicts the pertinent graph Gs2 of s2.)

In all cases above, we call the edge e the reference edge of node x. Except for
the trivial case, node x of T has children x1, x2, · · ·, xk in this order; xi is the root
of the SPQ-tree of graph Gi ∪ ei with respect to the reference edge ei, 1 ≤ i ≤ k.
We call edge ei the reference edge of node xi, and call the endpoints of edge ei

the poles of node xi. The tree obtained so far has a Q-node associated with each
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Fig. 2. (a)A biconnected series-parallel graph G with Δ = 3, (b) SPQ-tree T of G
with respect to reference edge (a, b), and skeletons of P - and S-nodes, (c) the pertinent
graph Gs1 of S-node s1, (d) the pertinent graph Gs2 of S-node s2, (e) the pertinent
graph Gp2 of P -node p2, (f) SPQ-tree T of G with P -node p2 as the root, (g) the
pertinent graph of S-node s2, and (h) the core graph of s2

edge of G, except the reference edge e. We complete the SPQ-tree T by adding
a Q-node, representing the reference edge e, and making it the parent of x so
that it becomes the root of T . An example of the SPQ-tree of a biconnected
series-parallel graph in Fig. 2(a) is illustrated in Fig. 2(b), where the edge drawn
by a thick line in each skeleton is the reference edge of the skeleton.

The SPQ-tree T defined above is a special case of an “SPQR-tree” [DT96,
GL99] where there is no R-node and the root of the tree is a Q-node correspond-
ing to the reference edge e. One can easily modify T to an SPQ-tree T ′ with an
arbitrary P -node as the root as illustrated in Fig. 2(f).

In the remainder of this paper, we thus consider a SPQ-tree T with a P -node
as the root. If Δ = 2, then a biconnected series-parallel graph G is a cycle, and
a cycle G has a no-bend drawing if and only if G has four or more vertices.
One may thus assume that Δ ≥ 3, and that the root P -node of T has three or
more children. Then the pertinent graph Gx of each node x is the subgraph of G
induced by the edges corresponding to all descendant Q-node of x. The following
facts can be easily derived from the fact that each vertex of G has degree at most
three and G has no multiple edges.
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Fact 1. Let (s, t) be the reference edge of an S-node x of T , and let x1, x2, ···, xk

be the children of x in this order from s to t. Then (i) each child xi of x is either
a P -node or a Q-node; (ii) both x1 and xk are Q-nodes; and (iii) xi−1 and xi+1
must be Q-nodes if xi is a P -node where 2 ≤ i ≤ k − 1.

Fact 2. Each non-root P -node of T has exactly two children, and either both
of the two children are S-nodes or one of them is an S-node and the other is a
Q-node.

Let x be an S-node of T , and let u and v be the poles of the pertinent graph
of x. Let x1, x2, · · ·, xk be the children of x in this order from u to v. From
Fact 1, x1 and xk are Q-nodes. Thus x1 and xk correspond to edges (u, u′) and
(v′, v) of G, respectively. Then the core graph for x is a graph obtained from
the pertinent graph of x by deleting vertices u and v. (Figure 2(g) illustrates a
pertinent graph of S-node s1 for T in Fig. 2(f), and Fig. 2(h) illusrates a core
graph for s1.) Vertices u′ and v′ are called the poles of the core graph for x, and
edges (u, u′) and (v′, v) are called hands of the core graph for x. (In Figs. 2(g)
and (h) the poles of the core graph of S-node s1 are vertices d and h.) For a P -
or Q-node x in T , we define the core graph for x as the pertinent graph of x,
and the poles of the core graph for x is the same as the poles of the pertinent
graph of x. The core graph of a P - or Q-node has no hand.

A drawing of a planar graph G is called an orthogonal drawing of G if each
vertex is mapped to a point, each edge is drawn as a sequence of alternate
horizontal and vertical line segments, and any two edges do not cross except at
their common end. We call an orthogonal drawing D of G a no-bend drawing if
D has no bend, that is, each edge is drawn as a single horizontal or vertical line
segment. A polar drawing of a series-parallel graph G is a no-bend drawing of
G in which the two poles u and v of G are drawn on the outer face Fo of the
drawing.

We call a polar drawing D of a series-parallel graph G a diagonal drawing if
D intersects neither the first quadrant with the origin at pole u nor the third
quadrant with the origin at pole v after rotating the drawing and renaming the
poles if necessary, as illustrated in Fig. 3(a). Throughout the paper a quadrant is
considered to be a closed plane region. Both a drawing of a single vertex as a point
and a drawing of a single edge as a straight line-segment are diagonal drawings.

(a) (b) (c) (d)

u

v

u

v

u

v

u

v

Fig. 3. Polar drawings of a graph G with poles u and v: (a) a diagonal drawing, (b) a
side-on drawing, (c) an L-shape drawing, (d) another polar drawing
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We call a polar drawing D of G a side-on drawing if D intersects neither the
first quadrantwith the origin at u nor the fourth quadrantwith the origin at v after
rotating the drawing and renaming the poles if necessary,as illustrated in Fig. 3(b).
A drawingof a single vertex as a point is regardednot to be a side-on drawing,while
a drawing of a single edge as a straight line-segment is a side-on drawing.

A polar drawing D is called an L-shape drawing if D intersects neither the
first quadrant with the origin at u nor the first quadrant with the origin at v
after rotating the drawing and renaming the poles if necessary, as illustrated
in Fig. 3(c). A drawing of a single vertex as a point is regarded not to be an
L-shape drawing. A drawing of a single edge as a straight line-segment is not an
L-shape drawing.

We say that a polar drawing is good if it is a diagonal, side-on or L-shape
drawing. Not every polar drawing D is good. For example, the polar drawing in
Fig. 3(d) is not good, because it is not a diagonal, side-on drawing or L-shape
drawing.

In the next section we give an algorithm for constructing no-bend drawing of
a biconnected series-parallel graph G with Δ = 3.

Our idea is as follows. Let T be an SPQ-tree of G. The core graph of each
leaf-node of T consists of a single edge. For each leaf-node of T we first draw
the core graph by a line segment as a diagonal or side-on drawing. Then, in
bottom up fashion, we find a diagonal drawing, a side-on drawing, and an L-
shape drawing of the core graph for each internal node x of T by merging the
drawings corresponding to the children of x if they exist. The drawing of the
graph corresponding to the root-node of T yields a no-bend drawing of G if G
has a polar drawing with the split pair, corresponding to the root P -node, as the
poles. Our algorithm eventually chooses an appropriate SPQ-tree T of G such
that the drawing of a plane graph corresponding to the root-node of T yields a
no-bend drawing of G if G has. (See Fig. 8 for illustration.)

As we see later, we construct a no-bend drawing of the core graph for a node
x in T by merging the no-bend drawings of the core graphs for the childrens of
x; the no-bend drawing of the core graph for each children of x must be a polar
drawing with the two poles of the core graph. A side-on drawing is found more
suitable for merging than a diagonal drawing, and an L-shape drawing is found
more suitable for merging than a side-on drawing. Intuitively, to connect the two
poles by a sequence of horizontal and vertical line segments, at least three turns
are required for a diagonal drawing, at least two turns are required for a side-on
drawing and only one turn is required for an L-shape drawing. A graph may have
a diagonal drawing although it has no side-on or L-shape drawing and a graph
may have a side-on drawing although it has no L-shape drawing. We call a polar
drawing D of a core graph H(x) for a node x in T a desirable drawing if one
of the following (a), (b) and (c) holds: (a) D is an L-shape drawing; (b) D is a
side-on drawing, and H(x) has no L-shape drawing; (c) D is a diagonal drawing,
and H(x) has neither an L-shape drawing nor a side-on drawing. Throughout
the paper we denote by D(x) a desirable drawing of the core graph H(x) for a
node x in T .
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3 No-bend Drawings of Biconnected Series-Parallel
Graphs

In this section we give an algorithm to construct a no-bend orthogonal drawing
of a biconnected series-parallel graph G whenever G has.

If G is a cycle, then it is easy to find a no-bend drawing of G; G has a no-bend
drawing if and only if G has four or more vertices. We thus assume that G is
not a cycle.

Let T be an SPQ-tree of G whose root is a P -node xp having three children.
(See Fig. 2(f).) We now have the following lemma.

Lemma 3. Let G be a series-parallel graph with Δ ≤ 3, let T be an SPQ-tree
with a P -node xp as the root, and let x be a non-root node in T . If the core
graph H(x) of x has a no-bend drawing, then the following (a) and (b) hold: (a)
H(x) has a side-on or diagonal drawing, and hence H(x) has a desirable drawing
D(x); and (b) if a desirable drawing of H(x) is a diagonal drawing, then every
no-bend drawing of H(x) is a diagonal drawing for the poles of H(x).

Proof. We will prove the claim by induction based on T .
We first assume that x is a leaf-node, that is, a Q-node. In this case H(x)

consists of a single edge e = (u, v), and u and v are the poles of H(x). We thus
draw e as a single vertical line segment, which is a side-on drawing D(x) of H(x).
Since H(x) has no L-shape drawing, D(x) is a desirable drawing. Thus (a) and
(b) hold.

We next assume that x is an inner node other than the root xp and that H(x)
has a no-bend drawing. Let u and v are the poles of H(x). Let x1, x2, · · ·, xk

(k ≥ 2) be the children of x in this order from u to v. Since H(x) has a no-bend
drawing, each H(xi) has a no-bend drawing. Thus we suppose inductively that
(a) and (b) hold for each child of x. We now have two cases to consider.

Case 1: x is an S-node.
Suppose that x has exactly two children. Then H(x) consists of a single vertex.

We draw H(x) as a point. Then the diagonal drawing is a desirable drawing D(x).
Thus (a) and (b) hold.

We thus assume that x has exactly k children and k ≥ 3. Then H(x) =
H(x2)∪H(x3)∪···∪H(xk−1), where H(xi) is the core graph of xi. The hypothesis
implies that, for each i, 2 ≤ i ≤ k−1, (a) and (b) hold for the core graph H(xi).
We now have the following four subcases to consider.
Case 1(a): k = 3.

In this case H(x) = H(x2), hence (a) and (b) hold for H(x).
Case 1(b): k = 4.

In this case H(x) = H(x2) ∪ H(x3). Fact 1(iii) implies that either both x2
and x3 are Q-nodes or one of them is a P -node and the other one is a Q-node.

If x2 and x3 are Q-nodes, then we can construct both an L-shape drawing and
a side-on drawing of H(x), as illustrated in Figs. 4(a) and 5(a). Thus a desirable
drawing of H(x) is an L-shape drawing, and hence (a) and (b) hold. We thus
assume that one of them, say x2, is a P -node and the other is a Q-node.
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Fig. 4. Desirable drawings of the core graph for S-nodes with four children

We first consider the case where a desirable drawing D(x2) of H(x2) is a
diagonal drawing. In this case we can construct a side-on drawing D(x) of H(x)
as illustrated in Fig. 4(b). Since the desirable drawing of H(x2) is a diagonal
drawing, H(x2) has neither an L-shape drawing nor a side-on drawing, and
hence clearly H(x) has no L-shape drawing. Therefore the side-on drawing D(x)
of H(x) is a desirable drawing. Hence (a) and (b) hold.

We next consider the case where the desirable drawing D(x2) of H(x2) is a
side-on drawing. Then we can construct both an L-shape drawing D(x) and a
side-on drawing of H(x) as illustrated in Figs. 4(c) and 5(c). Hence (a) and (b)
hold.

We finally consider the case where the desirable drawing D(x2) of H(x2) is
an L-shape drawing. Then we can construct an L-shape drawing D(x) of H(x)
as illustrated in Fig. 4(d). H(x2) has a side-on or diagonal drawing. From it one
can easily construct a side-on drawing of H(x) as illustrated in Figs. 5(b) and
(c). Therefore (a) and (b) hold.

(b) (c)(a)

x

x

x

xx

x 3

2

3

22

3

Fig. 5. Side-on drawings of the core graph for S-nodes with four children

Case 1(c): k = 5.
In this case, H = H(x2)∪H(x3)∪H(x4). Fact 1(iii) implies that at least one

of x2, x3 and x4 is a Q-node. In this case we can construct a no-bend drawing
of H(x) such that (a) and (b) hold. The details are omitted in this extended
abstract.
Case 1(d): k ≥ 6.

In this case H = H(x2)∪H(x3)∪· · ·∪H(xk−1), k ≥ 6. Fact 1(iii) implies that
there are two or more Q-nodes among x2, x3, · · ·xk−1. Therefore we can easily
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construct both an L-shape drawing and a side-on drawing D of H(x), and hence
(a) and (b) hold.
Case 2: x is a P -node.

In this case k = 2 and x has exactly two children x1 and x2. Then the
hypothesis implies that, for i = 1, 2, (a) and (b) hold for H(xi). By Fact 2 either
both x1 and x2 are S-nodes or one of x1 and x2 is an S-node and the other is
a Q-node. We first assume that one of x1 and x2, say x1, is a Q-node, then we
have the following two subcases.

Case 2(a): The desirable drawing D(x2) of H(x2) is a diagonal drawing.
In this case H(x2) has neither an L-shape drawing nor a side-on drawing.

Furthermore, every no-bend drawing of H(x2) is a diagonal drawing by induction
hypothesis. Then D(x1), D(x2) and the drawings of hands of H(x2) cannot be
merged without bends as illustrated in Fig. 6(a). Therefore H(x) does not have a
no-bend drawing, contrary to the assumption that H(x) has a no-bend drawing.
Therefore this case does not occur.

Case 2(b): The desirable drawing D(x2) of H(x2) is a side-on or L-shape
drawing.

In this case we can construct a no-bend drawing D(x) of H(x) such that (a)
and (b) hold as illustrated in Figs. 6(b)–(i). Q.E .D.

We call the algorithm described in the proof of Lemma 3 for finding a desirable
drawing D(x) of H(x) Algorithm Desirable-Drawing whenever H(x) has a no-
bend drawing. Clearly Algorithm Desirable-Drawing takes linear-time.

In the rest of the section we give Algorithm Biconnected-Draw for finding
a no-bend drawing of G whenever G has. Remember that the root node xp in T
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Fig. 6. Drawings of H(x) for a P -node x �= xp
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has three children as depicted in Fig. 2(f). Let x1, x2 and x3 be the three children
of xp in T . If G has a no-bend drawing, then H(xi), 1 ≤ i ≤ 3, has a no-bend
drawing. For 1 ≤ i ≤ 3, we find a desirable drawing D(xi) of H(xi) by Algorithm
Desirable-Drawing. If G has a polar drawing for the poles corresponding to
xp, then we now find a no-bend drawing of G = H(xp) by merging the drawings
of D(x1), D(x2), D(x3) and the drawings of their hands. Otherwise, we find
appropriate poles for which G has a no-bend polar drawing. Since G is a simple
graph, at most one of x1, x2 and x3 is a Q-node. We now have the following two
cases to consider.

Case 1: one of them, say x3, is a Q-node.
In this case only x3 is a Q-node. If at least one of D(x1) and D(x2) is a

diagonal drawing, Then G does not have a no-bend drawing as illustrated in
Fig. 7(a)-(c). Otherwise, G has a no-bend drawing as illustrated in Fig. 7(d)-(f).
The details are omitted.

drawing
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Fig. 7. Illustration for Case 1 of Algorithm Biconnected-Draw

Case 2: all of x1, x2 and x3 are S-nodes.
If atmost one of D(x1), D(x2) and D(x3) is a diagonal drawing, then we can eas-

ily construct a no-bend drawing of G. If all of D(x1), D(x2) and D(x3) are diagonal
drawings, then one can easily observe that G does not have a no-bend drawing.

We thus consider the case where exactly two of D(x1), D(x2) and D(x3) are
diagonal drawings. If two of D(x1), D(x2) and D(x3) are diagonal drawings and
the other is an L-shape drawing, then clearly we can construct a no-bend drawing
of G. We may thus assume that two of D(x1), D(x2) and D(x3) are diagonal
drawings and the other is a side-on drawing.

We may assume without loss of generality that D(x1) and D(x2) are diagonal
drawings and D(x3) is a side-on drawing. By Lemma 3(b) every no-bend drawing
of each of H(x1) and H(x2) is a diagonal drawing. By merging D(x1) and D(x2)
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Fig. 8. (a)—(d) A no-bend drawing of G cannot be found using tree T , and (e)—(h)
a no-bend drawing of G can be found using tree T ′

we can obtain only a diagonal drawing D′. Since D(x3) is a side-on drawing, D′

and D(x3) cannot be merged to produce a no-bend drawing of G. However, we
can construct a no-bend drawing of G if H(x3) has another appropriate no-bend
drawing.

We give an illustrative example in Figure 8 and omit the details of the proof.
G has no polar drawing with the poles corresponding to xp as illustrated in
Fig. 8(d). However, G may have a no-bend drawing when one considers some
other split pair as poles. We therefore consider an SPQ-tree T ′ of G with xb as the
root, as illustrated in Fig. 8(f), where x3, x4 and x5 are the children of xb. Each of
D(x4) and D(x5) remains same as one obtained for the SPQ-tree T . Considering
T ′, D(x3) is a diagonal drawing D′. We can thus find a no-bend drawing of G
by recursively applying Algorithm Biconnected-Draw regarding D(x3), D(x4)
and D(x5) as new D(x1), D(x2) and D(x3), respectively. (Figure 8(h) shows that
G has a no-bend polar drawing with the poles corresponding to root xb.) If we
cannot draw a no-bend orthogonal drawing of G by repeating the operation
above, then G does not have a no-bend drawing.

Thus Algorithm Biconnected-Draw finds a no-bend drawing of G if G has.
One can efficiently implement Algorithm Biconnected-Draw so that it takes
time O(n). The details are omitted in this extended abstract.

Theorem 1. Let G be a biconnected series-parallel graph of the maximum degree
three. Then Algorithm Biconnected-Draw finds a no-bend drawing of G in
time O(n) whenever G has, where n is the number of vertices of G.
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4 Conclusions

In this paper, we gave a linear-time algorithm to find a no-bend drawing of a
biconnected series-parallel graph G of maximum degree at most three. We also
gave an algorithm to find a no-bend drawing of a series-parallel graph G which
is not always biconnected. However, the algorithm is omitted in this extended
abstract due to page limitation. It is left as a future work to find a bend-minimum
drawing of series-parallel graphs and to find a linear-time algorithm for a larger
class of planar graphs.
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Parallel-Redrawing Mechanisms,
Pseudo-Triangulations and Kinetic Planar

Graphs
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Abstract. We study parallel redrawing graphs: graphs embedded on
moving point sets in such a way that edges maintain their slopes all
throughout the motion.

The configuration space of such a graph is of an oriented-projective
nature, and its combinatorial structure relates to rigidity theoretic pa-
rameters of the graph. For an appropriate parametrization the points
move with constant speeds on linear trajectories. A special type of ki-
netic structure emerges, whose events can be analyzed combinatorially.
They correspond to collisions of subsets of points, and are in one-to-
one correspondence with contractions of the underlying graph on rigid
components. We show how to process them algorithmically via a parallel
redrawing sweep.

Of particular interest are those planar graphs which maintain non-
crossing edges throughout the motion. Our main result is that they
are (essentially) pseudo-triangulation mechanisms: pointed pseudo-trian-
gulations with a convex hull edge removed. These kinetic graph struc-
tures have potential applications in morphing of more complex shapes
than just simple polygons.

1 Introduction

Consider a straight-line drawing of a graph G = (V, E) in the plane. A parallel
redrawing of G is another drawing so that for every edge ij ∈ E, the correspond-
ing line segments in the two drawings are parallel (Fig. 1). A parallel redrawing
is trivial if it is similar to the original drawing (via a rescaling or translation of).
See Fig. 1(A-B). Classical results in Rigidity Theory, see [16], establish combi-
natorial criteria for a graph to admit non-trivial parallel redrawings, generically.
In particular, such a graph has a certain number of degrees of freedom (for the
example in Fig. 1(C-D) this number is one).

A kinetic point set is (for the purpose of this paper) a set of points in the plane
moving with constant velocities, and a kinetic graph is a graph drawn on a kinetic
point set. An illustraton is found in the rightmost example of Fig. 2. As the points
move, the shape of the embedding changes: edges may shrink to zero-length, points
may collide and edges may cross for certain time intervals, and be non-crossing
for others. A natural graph drawing problem is whether these phenomena may be

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 421–433, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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(A) (B) (C) (D)

Fig. 1. A direction network (A) with only similar (trivial) parallel redrawings (B), and
another one (C) with a non-similar parallel redrawing (D)

1 2

 f

1 2

 f

1 2

 f

Fig. 2. The kinetic point set underlying a Laman mechanism: a parallel redrawing, the
point velocities and the linear trajectories of the vertices

predicted from the law of motion of the points (given by their initial positions and
velocities). In this paper, we give a complete answer to this problem under the ad-
ditional constraint that throughout the motion, the graphs are parallel redrawings
of each other. To keep the presentation short, we’ll discuss here only the case when
the graphs have exactly one degree of freedom. Our main algorithmic result is
an efficient technique for predicting the relevant events via a new process called
the parallel redrawing sweep, of which Figure 3 is a preview.

Of particular interest is the planar case. Given a plane embedding of a planar
graph, start moving the points (kinetically): are there graphs which remain non-
crossing throughout the whole duration of the motion?

The answer to this question is intrinsically related to a special class of planar
graphs, the pointed pseudo-triangulation mechanisms. A pseudo-triangulation is
a plane graph with a convex outer face and with all inner faces embedded as
pseudo-triangles: simple polygons with exactly three inner convex vertices (called
the corners of the pseudo-triangle). In a pointed pseudo-triangulation, each vertex
is incident to an angle larger than π. Removing a convex hull edge from such a
graph produces a pointed pseudo-triangulation mechanism (ppt-mechanism), see
Fig. 3. Our main theorem is that these are (essentially) the only one-degree-of-
freedom graphs which maintain planarity throughout a parallel redrawing motion.
Figure 3 gives a preview.

Historical background. Points moving with constant velocities appear in a pop-
ular morphing technique for planar polygonal shapes. It is known that the sim-
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plicity of the shape may be violated during the morph. While there are morphing
techniques which achieve simplicity, e.g. via compatible planar triangulations as
in [5], or by maintaining the slopes of the polygon edges, as in [7], nobody seems
to have analyzed theoretically what this simple paradigm for motion has to say
about edge crossings.
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Fig. 3. A parallel redrawing pointed pseudo-triangulation mechanism: snapshots from
its motion. The second and third snapshot have the same combinatorial structure, but
all the others differ in the convex/reflex angles per face. Note the flips in rigid bodies
between consecutive snapshots with different combinatorial structure.

Pseudo-triangulations are relatively new objects, applied in Computational
Geometry for problems such as visibility [10] and kinetic data structures [1].
The pointed or minimal pseudo-triangulations [14, 15], have interesting rigidity-
theoretical properties and applications in designing efficient motion planning
algorithms for planar robot arms. Recently many papers have investigated their
rich combinatorial, rigidity theoretic and polyhedral properties, e.g. [8, 11, 2, 3]
and applications [12].

The main result of this paper, as stated above, is in fact a new rigidity-
theoretic property of pointed pseudo-triangulation mechanisms. Whereas in the
fixed-edge-length model of rigidity, these graphs are 1-dof expansive mechanisms,
the new result of this paper is that in the fixed-edge-direction model, they capture
the essence of kinetic parallel-redrawing planar graphs. The property is surpris-
ingly simple, has an elementary proof and is entirely new: I am not aware of
anybody even asking such a question before. I am presenting it to the Graph
Drawing community with the expectation that it may find applications beyond
those that originally motivated my investigation.

How to read this extended abstract. To formally state the results (the-
orems and algorithms), I have no choice but to plunge into a fair amount of
definitions: it will take a few pages, since there is no standard reference where
I can send the reader to gather them all (but please skip directly to page 426
if this is familiar material). To help the reader less fluent with all these con-
cepts get faster to the ideas, and especially since many of them have a kinetic
nature which can hardly be conveyed only with static printed images, I have
assembled a web site with animations and interactive applets illustrating them:
http://cs.smith.edu/~streinu/Research/KineticPT/
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2 Preliminaries

A (planar) kinetic point set p(t) = {p1(t), · · · , pn(t)} is a finite collection of time-
dependent points pi(t) ∈ R2 in the Euclidean plane, each one moving on a linear
trajectory at constant speed. The continuous time parameter t runs over the real
line R, but it will become apparent during our proofs and analysis that it is very
useful to think of it sometimes as running over the projective line: R extended
with a point at infinity.

A graph drawing or embedding G(p) is a mapping of the vertices V of a graph
G = (V, E) to a set p = {p1, · · · , pn} of points in the plane, i &→ pi. A planar
graph embedding (or a plane graph) has no crossing edges. A topological plane
graph is the (planar) graph with the additional information regarding its faces
and their incidences, given for instance by the rotations of edges around vertices
(but not necessarily by a concrete embedding).

A kinetic graph G(p(t))t∈I is a graph G embedded on a kinetic point set p(t).
Of particular interest are the kinetic graphs which remain planar throughout the
entire motion t ∈ R. To formally state our results on planar kinetic graphs, we
give now the necessary definitions regarding Parallel Drawings, Rigidity Theory
and Pseudo-triangulations.

A direction network (G, D) is a graph together with a set of directions (slopes)
dij associated to its edges ij ∈ E. A drawing 1 or realization G(p) of (G, D) is
an embedding G(p) of G on a set of points p such that for each edge ij ∈ E, the
direction of the line through pi and pj is dij .

If we denote the coordinates of the unknown points as pi = {xi, yi} and the
known directions as dij = [aij : bij ] (as projective points, expressed with homoge-
neous coordinates), we obtain each realization as a solution of the homogeneous
linear system:

〈pi − pj, d
⊥
ij〉 = 0, ∀ij ∈ E (1)

where d⊥ij = [bij : −aij ] is the vector orthogonal to dij . Since every translation of
a realization yields another realization, we can factor them out by pinning down
a vertex at the origin, e.g. as x1 = y1 = 0. This shows that the set of all the
realizations (modulo translations) is a linear space (of some dimension k), and
contains the trivial realization, where all the points coincide (with the origin).

A parallel redrawing of a graph embedding G(p) is another embedding G(p′)
of the same graph, such that the corresponding edges have parallel directions in
the two drawings. A parallel redrawing is trivial if it is a translation G(p+p0) or
a rescaling G(αp) of G(p). In this case the two figures are similar. See Fig. 1. The
configuration space of a direction network is the space of all possible realizations,
modulo the trivial parallel redrawings.

A direction network is consistent if it has a realization with not all the points
coinciding (i.e. its configuration space is not trivial). It is generic if small per-
1 It is worth alerting the reader at this point that although our graph drawings are

taking place in the Euclidean plane, the resulting space of all possible drawings will
turn out to be a real projective space.



Parallel-Redrawing Mechanisms 425

(A)

j

i

(B)

j

i

Fig. 4. (A) An inconsistent direction network: only the trivial realization matches for
the edge ij the direction of the thick segment. (B) Changing the direction of the
inconsistent edge to a well defined value turns it into a consistent network.

turbations of the directions do not change the dimension of the configuration
space. It is (generically) tight if it is generic and the configuration space contains
exactly one non-trivial embedding (modulo parallel redrawings). Otherwise, it is
called a (generically) loose graph. A graph is tight if for some choice of directions,
it becomes a generic tight network, and it is minimally tight if it is tight, but
the removal of any edge makes it loose. See Fig. 4 for some examples.

A point set is trivial if all the points coincide, pi = pj , ∀i, j ∈ [n], otherwise it
is non-trivial. A point set is degenerate if some of its points coincide. Otherwise,
if all the points are distinct, it is called non-degenerate or sharp.

What is the point of all these definitions? The realizations of direction net-
works are solutions to linear systems, which may or may not have solutions, or
have too many (if they are under-determined). The interesting thing is that the
nature of the linear solution space is controlled by the combinatorial structure
of the graph, generically. For almost all possible choices of slopes, we can read
off whether a network is consistent, tight, etc. using a simple counting criterion
(this is well known from rigidity theory). And where I am trying to get to, even-
tually (and this is one of the results of the paper), is that even questions such
as whether there are realizations where some points coincide, or whether all the
realizations of a direction network are non-crossing (planar) can be answered
combinatorially. To get there, we need two more concepts: Laman graphs and
pseudo-triangulations.

(A) (B) (C) (D)

Fig. 5. A generically minimally tight graph (Laman graph) in a generic (A) and non-
generic (B) embedding. A parallel redrawing is shown for (B), which is loose in this
non-generic embedding. (C) A generically tight graph which is not minimally tight
(Laman-plus-one), and (D) a generically loose graph (a 1dof Laman mechanism).
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In a graph G, a subset of some k vertices satisfies the Laman count if it spans
at most 2k−3 edges. G is a Laman graph if m = 2n−3 and every subset satisfies
the Laman count. See Figure 5(A).

Laman graphs are known in the Rigidity Theory literature as generic min-
imal infinitesimally rigid graphs, due to their rigidity theoretic properties (on
which we won’t elaborate here, since they will not be used in this paper). It
is a well known fact in Rigidity Theory (see [16]) that minimally tight graphs
coincide with the class of Laman graphs. Their configuration space is zero-
dimensional, for generic choices of directions. Removing any subset of k edges
creates a (redrawing) mechanism: a direction network with a k-dimensional con-
figuration space.

In a Laman graph, a subset for which the Laman count is satisfied with equal-
ity is called a block. An independent set of edges2 is a Laman graph with some
edges (possibly none) removed. If at least one edge is missing, it is called a Laman
mechanism. Of special interest is the one-degree-of-freedom (1dof) Laman mech-
anism, with only one missing edge. It has 2n−4 edges and every subset satisfies
the Laman count. See Fig. 5 (D). A maximal block of a Laman mechanism is
called a rigid component (shortly, an r-component).

A pointed planar graph is a non-crossing (planar) graph embedding where
each vertex is incident to an angle larger than π. A pointed pseudo-triangulation
is a pointed planar graph where each face is a pseudo-triangle. In [14] it was
shown that pointed pseudo-triangulations are maximal pointed plane graph em-
beddings (maximal with respect to edge set inclusion), and that they are pla-
nar Laman graphs (and hence generically minimally rigid). When a convex hull
edge is removed, the resulting pseudo-triangulation mechanism has several rigid
components, which are themselves pointed pseudo-triangulations if they contain
more than two vertices.

3 Overview of the Results

We show that generic parallel redrawings of 1-dof Laman mechanisms induce
kinetic point sets and kinetic graphs with a rich inner structure. Although the
definition of configuration space is static and seems to be purely algebraic, it
inherently - and naturally - has motion in it! Our results include a complete
characterization of all the collision situations in such kinetic point sets by relating
them to the rigid components in the associated kinetic graph. In particular, we
prove that, generically, at most 2n − 4 collision events may occur and that this
bound is attained. We also describe how to efficiently predict combinatorially
which clusters of points will collide, and when.

For this purpose, we introduce an algorithmic tool, the parallel redrawing
sweep, which follows the time parameter of the kinetic point set and predicts
combinatorially all the collision events in its configuration space.

2 This terminology relates to the matroidal point of view of rigidity in dimension two,
see [6].
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Finally, we give a characterization of the kinetic parallel redrawing planar
1-dof Laman mechanism graphs which distort linearly 3 for any interval of time
without the occurrence of crossings, except at collision events, which take place
in clusters corresponding to rigid components. Surprisingly, they turn out to be
exactly 4 the pointed pseudo-triangulation mechanisms.

Let us emphasize that the results described in this paper hold generically. One
can always find non-generic situations, resulting in more collisions and other
special types of behavior not addressed in this paper. The set of non-generic
direction networks is described as an algebraic condition (technically, the rank of
the parallel redrawing matrix is not maximum). The complement of this algebraic
set, consisting in all the generic cases, is an open set characterizing most of the
situations one would encounter in a random parallel redrawing kinetic point set.

The following theorems relate the configuration spaces of arbitrary generic
and pseudo-triangulation direction networks of Laman mechanisms to certain
types of kinetic point sets. The inner structure of the configuration space, viewed
as an oriented-projective (defined in the spirit of [13]), rather than as an affine
or projective real space) is captured in Theorem 1. A (collision) cluster is a
maximal set of colliding points.

Theorem 1. Parallel-Redrawing Laman Mechanisms. The oriented-pro-
jective configuration space of a 1-dof Laman mechanism is a (topological) cir-
cle. It contains exactly r antipodal pairs of isolated points (configurations), each
pair corresponding to a colliding cluster of points induced by one of the r rigid
components of the mechanism. The regions obtained by removing the isolated
points are one-dimensional segments, corresponding to classes of collision free
configurations.

Figure 6 illustrates this theorem (and also Theorems 3 and 4) projectively
(rather than oriented-projectively, which would just wrap around the sequence
of events once more and show them rotated around by π). The reader is advised
to use the interactive applet from my web page to get a better sense of what it
actually means for moving points.

The theorem can be extended to k-dof parallel redrawing Laman mechanisms.
We focus now on the 1-dof case. An affine part of the configuration space, ob-
tained by removing one point at infinity, can be described as follows. Pin down
to the origin an arbitrary vertex (called the grounded vertex) of the direction
network. This eliminates translations. Then pin down a whole incident edge.
This eliminates rescalings. By varying the length of another edge incident to the
grounded vertex (i.e. choosing one of its coordinates to act as time-parameter),
we sweep an affine part of the configuration space. The point at infinity corre-
sponds to the scale edge shrinking to zero-length. We show that the underlying

3 A technical detail, not addressed in this extended abstract, is that the kinetic point
set may obey other absolute laws of motion (not necessarily linear). It is their relative
motion that must be linear.

4 Modulo a technical detail. The precise concept is that of a collapsed pseudo-
triangulation mechanism, as in [11].
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Fig. 6. The (projective) configuration space of a 4-bar parallel redrawing Laman mech-
anism. The sweep events and sweep segments are illustrated by a representative em-
bedding. The first image represents the event at infinity: the collapse of the scale
edge 14.

point set of a grounded 1-dof parallel redrawing Laman mechanism, parametrized
by time, behaves like a kinetic point set, and call it the parallel redrawing kinetic
point set. Alternate linear parametrizations, or circular versions sweeping the
entire oriented projective trajectory may also be considered.

Theorem 2. Kinetic Parallel Redrawing Point Sets. The points of a gro-
unded parallel redrawing Laman mechanism with 1-dof move with constant veloc-
ities. As the time parameter changes, all the configurations (modulo translations
and scalings) are encountered, except the one corresponding to the scale edge
being reduced to zero length.

See Fig. 2. The next Theorem 3 refines the previous result for pseudo-triangu-
lation mechanisms.

Theorem 3. Parallel Redrawing Pseudo-Triangulation Mechanisms.
All the realizations with fixed directions of a pseudo-triangulation mechanism
maintain the pseudo-triangulation mechanism property.

All these pseudo-triangulations have the same plane graph structure, but the
combinatorial pseudo-triangulation structure (defined in [8]) varies.

From the algorithmic point of view, we investigated a continuous process,
called the parallel redrawing sweep, which generates (sweeps) the configuration
space of such a one-degree-of-freedom mechanism. This can be seen as an ani-
mation of the kinetic graph in time, with particular attention being paid to the
events, when the combinatorial structure of the graph embedding changes. See
Fig. 3 for an illustration.

Theorem 4. Parallel Redrawing Sweep. As the time parameter sweeps the
real line, the events encountered correspond each to the collapse of a rigid com-
ponent to a single point (and thus capture a collision of an entire cluster in the
kinetic point set).

Each event is characterized combinatorially by a Laman graph, obtained as
the contraction of the Laman mechanism on a rigid component.
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The events and their sequence can be predicted algorithmically as follows:
1. Prediction of all the events. The events can be computed a priori in

O(n2) time using an algorithm for computing rigid components in a Laman
mechanism (see [9] and the references given there).

2. Prediction of the next event. Given a time t and the direction of the
sweep, the time of the next collision event can be computed in linear time.

3. Computing the combinatorial event. Given a collision time t, the collid-
ing cluster can be computed combinatorially in O(n2) time, or algebraically
in the time needed to solve a linear system.

Next section defines the concepts needed to understand the concept of shape
similarity used during the parallel redrawing sweep. The rest of the abstract is
a high level sketch of the proofs.

4 Shape Similarity of Embedded Graphs

Let G(p) be a graph embeddeding. We define and collect several types of combi-
natorial information from the embedding, depending on both p and G. See the
example in Fig. 7.

Signed circular hyperlines. for each vertex index i, the ith hyperline (1 ≤
i ≤ n) is the signed sequence of indices j = i, in the circular order in which a
line rotating through the point pi encounters all the other points pj . See [4].
Unsigned circular hyperlines. same as before, but we ignore the signs.
Signed linear hyperlines. same as the circular ones, but recorded starting
from the vertical direction.
Unsigned linear hyperlines. the unsigned version of the previous ones.

(A)

3

5

4

1

2

(C)

3

5

4

1

2

Fig. 7. (a) The signed linear hyperline is 3 : 2415. (b) A graph embedding, with the
set of signed linear hyperlines 1 : 23, 2 : 314, 3 : 2415, 4 : 532, 5 : 43.

Let G be a graph and let G(p), G(p′) be two non-degenerate embeddings.
We say that the two embeddings are combinatorially equivalent if they have the
same set of signed circular hyperlines. For a fixed graph G, a combinatorial class
of embeddings [G(p)] contains all the embeddings which are combinatorially
equivalent to G(p), and is identified by their common set of signed circular
hyperlines.

This concept suggests the use of the partial signed hyperlines as a combina-
torial criterion for discerning shape similarity of two embeddings of the same
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graph. This measure is invariant under translations, rotations and scalings. For
pseudo-triangulations, roughly the same information is contained in the combi-
natorial pseudo-triangulations defined in [8].

5 The Parallel Redrawing Sweep

Let G be a Laman graph with some edges (possibly none) added or removed.
Let m = 2n − 3 − k be the number of edges, k < 0, = 0 or k > 0. Let (G, D) be
a generic direction network on G.

Lemma 1. (The Dimension Lemma). The projective configuration space of
(G, D) is trivial for extra added edges (k ≤ 0). Otherwise, it is a projective
subspace of dimension equal to the number 0 < k ≤ 2n − 3 of removed edges,
embedded in the projective (2n − 3)-dimensional space P 2n−3.

We can visualize, via a continuous linear motion, an affine part of the projec-
tive configuration space of a 1dof Laman direction network. This is the Parallel
redrawing sweep.

A parallel redrawing mechanism G(p(t))t∈R is a continuously deforming family
of embeddings of a 1dof Laman mechanism direction network (G, D). Out of the
many possible parametrizations, here’s one. An edge gs ∈ E is pinned down,
to eliminate translations and rescalings. This eliminates the point at infinity of
the projective configuration space. The affine part can now be swept through
by the continuous motion of a free vertex f on a linear trajectory by varying
one of its coordinates, the time parameter. All the vertices of the mechanism
(except those that were pinned down) move with constant speed along linear
trajectories. If we lift the arrangement to the third dimension as time, it becomes
a line arrangement in space, which is swept by a plane orthogonal to the time
dimension. Combinatorially, we prove that the sweep events (the vertices of the
arrangement) correspond to a reorientation of the local hyperline sequences at
certain vertices and are in one-to-one correspondence with the rigid components
of the mechanism.

The following lemmas clarify the occurrence of degenerate embeddings in
Laman networks and contribute to the proof of Theorem 1. The proofs are
elementary and make use of basic combinatorial properties of Laman graphs.

Lemma 2. Let (G, D) be a generic Laman direction network. Then all its non-
trivial realizations are non-degenerate.

Lemma 3. Let (G, D) be a generic Laman direction network.

1. For every non-zero scaling factor s = 0 there exists a unique embedding G(p).
For opposite scale factors s and −s, the two embeddings are one the rotation
by π of the other.

2. All the non-trivial realizations of a Laman direction network have the same
signed circular hyperlines. The realizations fall into two classes of signed
linear hyperlines: one for positive and one for negative scale factors, which
are reversal equivalent.



Parallel-Redrawing Mechanisms 431

We introduce now the operation of contracting a rigid component and relate
it the different signed linear hyperlines of realizations G(p) and to degenerate
embeddings of (G, D).

Let G be an arbitrary graph, e = ij ∈ G an edge. The contraction G/e of G
on e is a new graph (possibly not simple) obtained by collapsing the endpoints
i and j into a single vertex i′. In the contraction, every vertex incident to i or
j becomes instead incident to i′ and the edge ij is discarded. The contraction
operation is extended naturally to subsets E′ of edges, which are contracted one
by one in an arbitrary order. The contracted graph is denoted by G/E′.

Lemma 4. Let G be a Laman mechanism and R ⊂ V a subset of vertices span-
ning a rigid component (R, ER). Then the contraction G/ER of a 1dof Laman
mechanism on a rigid component is a Laman graph. The contraction G/ER of a
connected k-dof Laman mechanism on a rigid component is a (k−1)-dof Laman
graph.

Let (G, D) be a direction network, E′ ∈ E a subset of edges, V ′ the set of
endpoints of the edges in E′ and G/E′ the contraction of G on E′. As a result
of the contraction on E′, all the vertices in V ′ have been collapsed into one. We
denote this new vertex by [V ′], when we want to remind the set of vertices that
have been collapsed into one, or shortly by i′.

We define the contracted direction network (G/E′, D′) obtained from (G, D)
by keeping the directions of the edges not touched by the contraction operation,
discarding the deleted edges and giving the direction di′j = dij to a new edge i′j
resulting from an old edge ij, i ∈ E′, j ∈ E′. We are interested in characterizing
the configuration space of the contracted network in terms of the configuration
space of the original network, for Laman graphs and mechanisms. We show first
that the contraction can be realized algebraically by the addition of a single
linear equation.

Lemma 5. Let (G, D) be a direction network. Let e = ij ∈ E. If dij is not
vertical, add the constraint xi = xj to its direction network system, otherwise add
the constraint yi = yj. This is equivalent to asking for an embedding where this
edge has length zero, hence its endpoints are collapsed. Then, the resulting system
has the same realization space as the direction network on the contraction G/e.

The proof follows from elementary linear algebra. We apply now this fact to
Laman graphs and mechanisms, under the same assumptions as in Lemma 5.

Lemma 6. Adding the constraint xi = xj to the direction network system of a
Laman graph produces only trivial realizations.

Lemma 7. Adding the constraint xi = xj to the direction network system of
a Laman mechanism produces a unique realization (up to translations and scal-
ings). This realization is non-trivial, and contains a unique trivial part corre-
sponding to the collapsed vertices of the rigid component to which the edge ij
belongs.

Lemma 8. The only degenerate embeddings of a 1dof Laman mechanism are
those obtained by the collapsing of rigid components.
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The Parallel Redrawing Sweep. The inner structure of the configuration space
of a generic 1dof Laman mechanism consists of:

Events. If G has r rigid components, the (oriented projective) configuration
space contains exactly r pairs of special degenerate embeddings. Each pair cor-
responds to the two antipodal realizations of a contraction of (G, D) on one of
the r rigid components.
Sweep segments. The removal of the points corresponding to the collapsed em-
beddings from the circular configuration space leaves r pairs of connected com-
ponents (antipodal circle, or sweep segments, in the oriented projective space),
each one corresponding to a pair of reversal-equivalent combinatorial classes of
embeddings. By Lemma 8, these realizations are non-degenerate.

Theorem 5. All the embeddings within a sweep segment have the same signed
linear hyperlines. Embeddings in antipodal segments differ by a complete reversal
of signs in their signed linear hyperlines.

6 Parallel Redrawing Pseudo-Triangulation Mechanisms

A parallel redrawing pseudo-triangulation mechanism inherits all the properties
proved in Section 5. Theorem 3 is a consequence of the following lemmas.

Lemma 9. Let G(p) be a generic embedding of a Laman mechanism and let
G(p′) be a parallel redrawing of G(p). Viewing now G(p) as a mechanism with
fixed edge lengths, let V be the linear space of all the infinitesimal motions of
G(p). Let v = {v1, · · · , vn} ∈ V be a non-trivial infinitesimal motion and define
σij(p, v) := 〈pi −pj, vi − vj〉, ∀i, j ∈ [n]. Then σij(p, v) = σij(p′, v), ∀i, j,∀v ∈ V.

Under the same assumptions as in Lemma 9, the following two properties hold:

Corollary 6. When viewed as fixed-edge lengths mechanisms, G(p) and G(p′)
have the same linear space of infinitesimal motions, in particular they have the
same pattern of infinitesimal expansion.

Indeed, the pattern of infinitesimal expansion is given by the signs of σij(p, v).

Corollary 7. If G(p) is a pseudo-triangulation, then G(p′) is a pseudo-triangu-
lation. We pin down an edge and parameterize by the position of a third vertex
k. Then all the resulting parallel redrawings are pseudo-triangulations, and the
plane graph structure doesn’t change.

This completes the high-level sketch of the results and proofs.
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Abstract. A graph is proper k-layer planar, for an integer k ≥ 0, if it
admits a planar drawing in which the vertices are drawn on k horizontal
lines called layers and each edge is drawn as a straight-line segment
between end-vertices on adjacent layers. In this paper, we point out errors
in an algorithm of Fößmeier and Kaufmann (CIAC, 1997) for recognizing
proper 3-layer planar graphs, and then present a new characterization of
this set of graphs that is partially based on their algorithm. Using the
characterization, we then derive corresponding linear-time algorithms for
recognizing and drawing proper 3-layer planar graphs. On the basis of
our results, we predict that the approach of Fößmeier and Kaufmann
will not easily generalize for drawings on four or more layers and suggest
another possible approach along with some of the reasons why it may be
more successful.

Layered graph drawings [16] have applications in visualization [2, 9], DNA map-
ping [17], and VLSI layout [10]. In a layered drawing, the vertices are drawn
on a set of horizontal lines called layers, and edges are drawn as straight-line
segments between their end-vertices. Depending on the purpose of the drawing,
it may also satisfy additional constraints. Common constraints include bounds
on the number of layers in the drawing, and restrictions on the edges that may
intersect one another.

In this paper, we consider layered drawings that are proper and planar; that
is, we consider drawings in which the end-vertices of each edge lie on adjacent
layers, and edges intersect only at common end-vertices. Heath and Rosenberg [8]
show that the problem of recognizing graphs with proper and planar drawings on
layers is NP-complete. In a more restricted version of this problem, the input
is not only a graph but also a number k ≥ 0, and the problem asks whether
or not the graph has a proper and planar drawing on k layers. Though the
NP-completeness of the original problem implies that this problem is also NP-
complete, Dujmović et al. [4] show that it can be solved in polynomial time
when k is bounded by a constant. Unfortunately, the constants in the running
time are impractically large even for k = 3.

The difficulty of this problem seems to increase as the number of layers in-
creases. Consequently, this motivates a study of proper and planar drawings on
a very small number of layers in hopes of obtaining insights for drawings on a
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c© Springer-Verlag Berlin Heidelberg 2005



Proper and Planar Drawings of Graphs on Three Layers 435

larger number of layers. Interestingly, this approach has had some limited suc-
cess for planar layered drawings that are not proper. In particular, Cornelsen,
Schank and Wagner [3] show that a graph G has a planar layered drawing on
three layers if and only if a certain transformation of G has a drawing on two
layers. Using this result, they obtain a linear-time recognition and graph drawing
algorithm for three layers.

Proper planar drawings on up to three layers have also been studied. For one
and two layers, the drawings are quite simple and it is easy to determine in
linear-time whether or not a graph admits such a drawing [5, 7, 15]. For three
layers, Fößmeier and Kaufmann [6] also claim to have a linear-time recogni-
tion algorithm; however, we will show that, even though their algorithm seems
plausible, it contains significant errors.

Following a few preliminary definitions and results in Section 1, we will briefly
describe their algorithm in Section 2, and then discuss its flaws in Section 3. We
will then describe a new characterization of graphs that have proper and planar
drawings on three layers, and derive a corresponding linear-time recognition and
drawing algorithm in Section 4.

The overall purpose of our work is not to correct an error, but rather to
obtain efficient algorithms for layered graph drawing. Therefore, we would like
know if the approach of Fößmeier and Kaufmann [6] can be generalized to ob-
tain recognition and drawing algorithms for four or more layers. The simplicity
of their algorithm seems to suggest a positive answer; however, based on the
complexity of our attempt to correctly handle all cases, such a generalization
would probably be very long and tedious. In Section 5, then, we will conclude
by suggesting another approach that may lead to efficient algorithms for layered
graph drawing.

1 Preliminaries

In this paper, each graph G = (V, E) is simple, undirected and connected. A
graph G = (V, E) is bipartite if its vertices can be partitioned into two disjoint
sets V0 and V1 such that each edge in E has one end-vertex in V0 and the other
in V1. We call V0 and V1 the bipartition classes of G and write G = (V0, V1; E).

A leaf vertex in a graph is a vertex with exactly one neighbor. Any graph that
can be transformed into a path v1, v2, . . . , vp by removing all of its leaves is called
a caterpillar, and the path v1, v2, . . . , vp is called the spine of the caterpillar. The
2-claw is the smallest tree that is not a caterpillar. It consists of a vertex called
the root that has three neighbors, and each neighbor is additionally adjacent to
a leaf. See Figure 1 for a drawing of a caterpillar and a 2-claw.

A cut-vertex in a graph is a vertex whose removal disconnects the graph.
A planar drawing of a graph is a two-dimensional drawing in which each pair

of edges may intersect only at a common end-vertex. A planar embedding of a
graph defines a clockwise order of the neighbors of each vertex that corresponds
to a planar drawing of the graph. A graph is k-layer planar if it has a planar
drawing in which each edge is drawn as a straight-line between its end-vertices
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(a) (b)

Fig. 1. (a) Caterpillar, (b) 2-Claw

and the vertices lie on k horizontal lines called layers. Such a drawing is called
a k-layer planar drawing. A graph is said to be proper k-layer planar if it has
a k-layer planar drawing in which the end-vertices of each edge lie on adjacent
layers. In other words, the edges in such drawings intersect layers only at points
that coincide with the drawings of their end-vertices. Such a drawing is called a
proper k-layer planar drawing.

As mentioned in the introduction, there is a simple characterization of proper
2-layer planar graphs:

Lemma 1 ([5, 7, 15]). Let G be a graph. The following are equivalent:

1. G is proper 2-layer planar;
2. G is a forest of caterpillars;
3. G is acyclic and contains no 2-claw; and
4. The graph obtained from G by deleting all leaves is a forest and contains no

vertex with degree three or greater.

In this paper, we will prove a similar though much more complicated character-
ization theorem for proper 3-layer planar graphs.

2 A Recursive Approach for Recognizing Proper 3-Layer
Planar Graphs

Rather than present the entire algorithm of Fößmeier and Kaufmann [6], we
will describe only the basic approach of the algorithm and then, in the following
section, describe in detail only those steps that contain significant flaws.

The algorithm depends on a few simplifying assumptions. First of all, the
algorithm assumes that the input graph is bipartite. This is because every proper
3-layer planar graph is bipartite (the vertices on the top and bottom layers in a
proper 3-layer planar drawing belong to one bipartition class and the remaining
vertices belong to the other), and it is easy to test whether or not a graph is
bipartite. The algorithm also assumes that the vertices of some given bipartition
class must be drawn on the top and bottom layers. Thus, to recognize all proper
3-layer planar graphs, the algorithm would need to be applied two times, each
time with a different bipartition class selected as the one that must be drawn
on the top and bottom layers. In the algorithm, we will denote the bipartition
classes as V0 and V1 and assume that the vertices of V0 must be drawn on the
top and bottom layers.
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Given these assumptions, the algorithm divides the recognition problem into
several cases and then handles nearly each case recursively. For example, in one
case, the input graph G contains a cut-vertex v ∈ V1 with at least four non-
leaf neighbors. If v has more than four non-leaf neighbors, then it is not too
difficult to see that G does not have a proper 3-layer planar drawing with v
on the middle layer; therefore, the algorithm returns false. Likewise, if v has
exactly four non-leaf neighbors and G− v contains three connected components
that are each not caterpillars (i.e. not proper 2-layer planar), then G is also not
proper 3-layer planar so the algorithm returns false. If G and v pass these two
tests, then v has exactly four non-leaf neighbors and G− v contains at most two
non-caterpillar components. The algorithm then returns true if and only if each
non-caterpillar component (plus v) has a proper 3-layer planar drawing in which
v has the smallest or largest x-coordinate of any vertex in the drawing.

We observe that the previous case is handled recursively but with an addi-
tional constraint on the position of v. In fact, the input to the algorithm consists
not only of a graph but also of a set of vertices called borders . This set may
contain up to two vertices and the algorithm returns true if and only if the
graph has a proper 3-layer planar drawing with one of the vertices in borders , if
|borders | > 0, has the smallest x-coordinate of any vertex in the drawing, and
the other vertex in borders , if |borders | > 1, has the largest x-coordinate of any
vertex in the drawing.

Even without describing the remainder of the algorithm, one can see that
this basic approach appears to be promising and seems to suggest a very simple
algorithm for recognizing proper 3-layer planar graphs. Unfortunately, as we will
show in the next section, the algorithm contains significant flaws in the way it
handles some of the other cases.

3 Shortcomings of the Algorithm

In this section, we describe some of the errors in the algorithm of Fößmeier and
Kaufmann [6] and provide examples of graphs that it either incorrectly accepts
or rejects as a result of these errors.

The algorithm divides the problem into four main cases numbered (a)-(d),
and each main case is divided into two or more subcases numbered 1, 2, and
so on. The cases are handled in alpha-numeric order; thus, for example, the
algorithm handles cases (b)-(d) only if case (a) does not apply to the input. The
algorithm is called test and, as described in the previous section, the input to
the algorithm is a bipartite graph G = (V0, V1; E) and a set of vertices borders .

– Case (a2) states:

if there is a small vertex1v ∈ V1 then
if v ∈ borders then insert v’s neighbor into borders fi;
call test(G \ {v}, borders \ {v});

1 A small vertex is a leaf.
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Consider the following graph G = (V0, V1; E) where the vertices of V0 are
darkened:

v

The algorithm would first remove v from the graph as described in (a2).
The remaining graph G − v is clearly proper 3-layer planar so the recursive
call to the algorithm should return true. However, by our characterization
theorem in Section 4, this graph is not proper 3-layer planar because the
main biconnected component is not safe (see Definition 4).

– Case (c2) does not contain an error, however, we mention it because it is
never fully described anywhere in the literature. This case assumes that V1
contains no vertices with four non-leaf neighbors, contains no vertices that
have three non-leaf neighbors and are cut-vertices, but does contain at least
one vertex with three non-leaf neighbors. Case (c2) states:

we need a more special case analysis involving separator edges2which
is omitted;

Unfortunately, by definition, the separator edge referred to belongs to a cycle.
Based on the fact that the bulk of the complexity in our characterization
theorem in Section 4 relates to cycles, we would be very surprised if there is
a straightforward way to handle this case.

– Case (d3) states (where G is biconnected and the vertices of V1 have degree
equal to 2):

let L be the graph obtained by replacing all v ∈ V1 by edges between
its neighbors. if L is a ladder graph (an outerplanar graph with com-
pletely nested shortcut edges3) then return true else return false;

We assume that the authors mean that, not only must L be a ladder graph,
but it must have a drawing in which one vertex of border, if |border| > 0, has
the smallest x-coordinate in the drawing and the other vertex, if |border| > 1,
has the largest x-coordinate in the drawing.

If this is the case, then the algorithm would reject the following graph
even though it is proper 3-layer planar:

2 A separator edge is an edge (u, v) such that removing u and v from the graph
disconnects the graph.

3 A shortcut edge in a biconnected outerplanar graph does not lie on the external face.
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Since the graph contains four separator vertices in V0, the algorithm would
return false because any attempt to recursively draw the main biconnected
component in the graph would require the parameter borders to contain all
four separator vertices. As mentioned above, borders may contain at most
two vertices.

If this is not the case (i.e. the algorithm ignores borders in case (d3)),
then the algorithm would return true for the following graph even though it
is not proper 3-layer planar:

We address this difficulty in our characterization by defining safe bicon-
nected components (see Definition 4).

4 Characterizing Proper, 3-Layer Planarity

Our characterization of proper 3-layer planar graphs is based on many of the
observations contained in the algorithm of Fößmeier and Kaufmann [6]; however,
as we mentioned earlier, correct handling of all cases can be very tedious.

Our characterization consists of constraints on vertices and biconnected com-
ponents. For the restricted case where the input graph G is a tree, our character-
ization is very similar to their algorithm: roughly it says that G is 3-layer planar
if and only if, for each vertex v in G, at most two connected components of G−v
are not proper 2-layer planar. The reason is that, if there are three components
that are not proper 2-layer planar, then each component in the drawing of G
occupies all three layers. Consequently, one component must be drawn between
the other two components. The problem, however, arises when we want to add
v to the drawing. Since it is adjacent to all three components, its edge incident
on the leftmost component or its edge incident on the rightmost component will
cross an edge of the middle component.

In the more general setting, G may not be a tree because even-length cycles
are proper 3-layer planar. Consequently, to characterize proper 3-layer planar
graphs, we must handle biconnected components containing more than two ver-
tices. As we will show, we can handle biconnected components by generalizing
the way we handle vertices in trees. For example, it is not difficult to see that if
C is a biconnected component in a proper 3-layer planar graph G, then G − C
contains at most two connected components that are not proper 2-layer planar.
Unfortunately, this in itself is not sufficient because not all biconnected com-
ponents are proper 3-layer planar. For an example of one, see Figure 2. Conse-
quently, our characterization must contain additional constraints for biconnected
components.

In the following, we describe the constraints on vertices and biconnected com-
ponents more formally and completely. A vertex or biconnected component that
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Fig. 2. A biconnected graph that is not 3-layer planar

satisfies these constraints will be called safe. We recall that proper 3-layer planar
graphs are bipartite so our definitions will apply to bipartite graphs and be given
with respect to a given bipartition class of the graph.

Definition 1. Let V0 be a bipartition class of a bipartite graph G. A vertex v in
G is safe with respect to V0 if:

1. v ∈ V0 and G− v contains at most two components that are not caterpillars
(e.g see Figure 3(b)); or

2. v ∈ V0 and v has at most four non-leaf neighbors, and:
(a) G−v contains at most two components H1 and H2 such that G(V (H1)+

v) and G(V (H2) + v) are not caterpillars.
(b) if v has four non-leaf neighbors or v belongs to a cycle, then G − v

contains at most two components H1 and H2 such that G(V (H1) + v)
plus a leaf attached to v and G(V (H2) + v) plus a leaf attached to v are
not caterpillars (e.g. see Figure 3(c)).

It is not too difficult to see that if a bipartite graph G = (V0, V1; E) contains a
vertex that is not safe with respect to V0, then G does not admit a proper 3-layer
planar drawing in which the vertices of V0 lie on the top and bottom layers.

A vertex v may be safe but only just “barely safe” because the connected
components H1 and H2 of G−v mentioned above are in fact not caterpillars. As
a result, in every proper 3-layer planar drawing of G, one of these components
must be drawn to the left of v and the other component must be drawn to the

v

H1

H2

H3

v

H1

H2

H3

v

H1

H2

H3

(a) (b) (c)

Fig. 3. (a) Suppose that, for some vertex v in G = (V0, V1; E), G−v has three connected
components H1, H2 and H3. (b) If H3 is a caterpillar and v ∈ V0, then v is safe with
respect to V0. (c) If v �∈ V0 and G(V (H3) + v) plus a leaf attached to v is a caterpillar,
then v is safe with respect to V0.
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right. Thus, we call v a connecting vertex because it “connects” the left part of
the drawing with the right part of the drawing.

Definition 2. A vertex v is a connecting vertex with respect to V0 if:

1. v ∈ V0 and v has four non-leaf neighbors in G; or
2. v does not belong to a cycle and G− v contains two components H1 and H2

such that G(V (H1) + v) and G(V (H2) + v) are not caterpillars; or
3. v belongs to a cycle and G−v contains two components H1 and H2 such that

the graph containing G(V (H1) + v) plus a leaf attached to v and the graph
containing G(V (H2) + v) plus a leaf attached to v are not caterpillars.

To describe the properties of a safe biconnected component, it is necessary to
know how the biconnected component is connected to the remainder of the graph:

Definition 3. Let C be a biconnected component of a bipartite graph G =
(V0, V1; E). The extension of C with respect to vertices v1 and v2 in C and V0,
is a graph obtained from C by attaching leaves and pendant 2-paths to certain
vertices in C. More specifically, if a vertex of C is adjacent to a leaf in G, then,
in the extension of C, this vertex is adjacent to a leaf. If a vertex v in C has
d ≥ 1 non-leaf neighbors in G that do not belong to C, then:

1. If v = v1, v2 or v ∈ V0, then we attach d pendant 2-paths to v in the extension
of C.

2. If v = v1 = v2 ∈ V0 and d ≥ 2, then we attach 2 pendant 2-paths to v in the
extension of C.

3. Otherwise, we attach exactly one pendant 2-path to v in the extension of C.

This definition is illustrated in Figure 4.

v2

v1

(a) (b)

Fig. 4. (a) A biconnected component C in a bipartite graph G = (V0, V1; E) where
the darkened vertices belong to V0, and (b) the extension of C with respect to v1, v2

and V0
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Definition 4. Let C be a biconnected component containing at least three ver-
tices in a bipartite graph G = (V0, V1; E). Biconnected component C is safe with
respect to V0 if there exists a safety certificate for C with respect to V0, namely
at tuple 〈v1, v2, P1, P2, ΨC〉 consisting of two vertices v1 and v2 in C, two simple
paths P1 and P2 in Ce, the extension of C with respect to v1, v2 and V0, and a
planar embedding ΨC of C, such that:

1. The vertices of P1 and P2 in C lie on the external face of ΨC ;
2. P1 and P2 each contain a vertex of V0 on each face of ΨC;
3. If a vertex of C belongs to V0, then it belongs to P1 or P2 but not both;
4. If a vertex v in C has a neighbor outside C, then v belongs to P1 or P2;
5. If a vertex in C is a connecting vertex, then it is equal to v1 or v2;
6. Both v1 and v2 are end-vertices of the subpaths of P1 or P2 in C such that

each path from v1 to v2 on the external face cycle of C in ΨC contains the
subpath of P1 in C or the subpath of P2 in C;

7. If, for some vertex v in C, G − v contains two components H1 and H2
vertex-disjoint with C that are not caterpillars, then v = v1 = v2; and

8. Each pendant 2-path in Ce belongs to P1 or P2.

A safety certificate 〈v1, v2, P1, P2, ΨC〉 is said to be tied if v1 = v2. We note that
the extension of Figure 4(b) does not have a safety certificate because one of the
vertices has three pendant 2-paths; as a result, there are no paths P1 and P2
that contain all pendant 2-paths and each contain a vertex of V0 on each face.
Figure 5, however, shows that the biconnected component of Figure 4(a) is safe.
The safety certificate showing this consists of the vertices labelled v1 and v2, the
two highlighted paths P1 and P2, and the embedding of the component shown
in the drawing.

v2

v1

Fig. 5. The biconnected component of Figure 4(a) has a safety certificate 〈v1, v2,
P1, P2, Ψ〉 where P1 and P2 are the highlighted paths

Based on these definitions, we state our characterization theorem:

Theorem 1. A graph G is proper 3-layer planar if and only if G is bipartite and
each vertex and each biconnected component of G is safe with respect to some
bipartition class of G.
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We prove this theorem in two parts: we first prove the necessity of the con-
ditions, and then we prove their sufficiency. The full proof is several pages long
so we include only a sketch here.

To prove the necessity of the conditions, we consider a proper 3-layer planar
drawing of a graph G. From the drawing, it is easy to see that G is bipartite.
It is also easy though tedious to show that each vertex and each biconnected
component is safe with respect to the bipartition class corresponding to the
vertices drawn on the top and bottom layers. For example, to prove that a bi-
connected component C is safe, we must obtain the necessary safety certificate
〈v1, v2, P1, P2, ΨC〉. This is done first by selecting any simple path P from a left-
most to a rightmost vertex in the drawing. Letting the embedding ΨC of C be
the embedding of C in the given drawing, we let v1 be the first vertex of P in C,
and v2 be the last vertex of P in C. We obtain P1 and P2 by starting with two
subpaths of the external face cycle of ΨC between v1 and v2, and then extending
them as necessary to contain any pendant 2-paths in the extension of C. It is
then straightforward though tedious to prove that 〈v1, v2, P1, P2, ΨC〉 is a safety
certificate for C.

To prove the sufficiency of the conditions, we consider a graph that is bipar-
tite, and for some bipartition class, each vertex is safe and each biconnected
component has a safety certificate. Using this information, we show how to con-
struct a proper 3-layer planar drawing of the graph. We first construct a special
path P in the graph that contains each connecting vertex and, for each bicon-
nected component Ci with safety certificate 〈vi

1, v
i
2, P

i
1, P

i
2, ΨCi〉, P also contains

vi
1 and vi

2. We then obtain the drawing as follows:

(a) We draw each biconnected component Ci according to the embedding ΨCi in
its safety certificate and insert each of these drawings into the main drawing
in the order that they appear in P .

(b) We draw the remaining subpaths of P that connect consecutive biconnected
components.

(c) Finally, we insert drawings of the pendant trees that are attached to vertices
already drawn.

This completes our sketch of the proof of Theorem 1.
Testing whether or not a given graph is proper 3-layer planar is simply an

application of the characterization given in Theorem 1. Many of the definitions
of safety, both for vertices and biconnected components, depend on knowing
whether or not various subgraphs of the input graph G are caterpillars. This
can be computed in linear time by first computing a block-cut tree of G [14]
and then applying a dynamic programming algorithm to the block-cut tree.
A block-cut tree of a graph is a tree whose vertices correspond to cut-vertices
and biconnected components in the graph. Edges in the block-cut tree connect
biconnected components with the cut-vertices that they contain in the graph.
We call the resulting algorithm IsProper3LayerPlanar:
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Theorem 2. Algorithm IsProper3LayerPlanar determines whether or not
a graph is proper 3-layer planar in linear time.

We can transform this recognition algorithm into a drawing algorithm by return-
ing a proper 3-layer planar drawing anytime the recognition algorithm returns
true. The drawing is constructed as described in the sufficiency proof of Theo-
rem 1. To do this, we require the set of connecting vertices and a safety certificate
for each biconnected component. Fortunately, as described above, the recognition
algorithm already computes these things.

5 Conclusions

We have shown how to determine whether or not a graph is proper 3-layer planar
in linear time, and, if it is, we show how to obtain a proper 3-layer planar drawing
in the same asymptotic running time. It is not too difficult to see that our basic
approach is identical to that of Fößmeier and Kaufmann [6]. For example, we
observe that the path mentioned in our algorithm actually contains all vertices
that trigger recursive calls in their algorithm. Unfortunately, as can be seen from
the length of our characterization statement, the effort required to obtain correct
algorithms for three layers is much greater than for two layers. Therefore, we
believe that a new approach will be required to obtain efficient algorithms for
four or more layers.

One possible approach involves applying graph operations that reduce the
graph to an empty graph if and only if the graph has a planar drawing on a
given number of layers. Arnborg and Proskurowski [1] use this type of approach
to recognize graphs of treewidth three, and Matousek and Thomas [11] modify
their set of reductions to obtain an efficient quadratic-time recognition algo-
rithm. Generalizing these results, Sanders [12] shows that this approach can be
used to efficiently recognize graphs with treewidth four. Our hope is to sim-
ilarly find a set reductions for proper 3-layer planar graphs and likewise use
them to obtain reductions for proper 4-layer planar graphs. We believe that
this approach might be successful because Dujmović et al. [4] use pathwidth,
a restricted version of treewidth, to obtain algorithms for recognizing k-layer
planar graphs (inefficient algorithms though they may be). In addition to this,
we show in [13] how to use pathwidth to obtain planar drawings of trees on
an minimum number of layers. These results show that pathwidth and hence
treewidth are closely related to the number of layers in planar layered graph
drawings.
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Abstract. Most diagram editors and graph construction tools provide
some form of automatic connector routing, typically providing orthogo-
nal or poly-line connectors. Usually the editor provides an initial
automatic route when the connector is created and then modifies this
when the connector end-points are moved. None that we know of en-
sure that the route is of minimal length while avoiding other objects in
the diagram. We study the problem of incrementally computing minimal
length object-avoiding poly-line connector routings. Our algorithms are
surprisingly fast and allow us to recalculate optimal connector routings
fast enough to reroute connectors even during direct manipulation of an
object’s position, thus giving instant feedback to the diagram author.

1 Introduction

Most diagram editors and graph construction tools provide some form of auto-
matic connector routing. They typically provide orthogonal and some form of
poly-line or curved connectors. Usually the editor provides an initial automatic
route when the connector is created and again each time the connector end-
points (or attached shapes) are moved. The automatic routing is usually chosen
by an ad hoc heuristic.

In more detail the graphic editors OmniGraffle [1] and Dia [2] provide connec-
tor routing when attached objects are moved, though these routes may overlap
other objects in the diagram. Both Microsoft Visio [3] and ConceptDraw [4]
provide object-avoiding connector routing. In both applications the routes are
updated only after object movement has been completed, rather than as the
action is happening. In the case of ConceptDraw, its orthogonal object-avoiding
connectors are updated as attached objects are dragged, though not if an object
is moved or dropped onto an existing connector’s path. The method used for rout-
ing does not use a predictable heuristic and often creates surprising paths. Visio
offers orthogonal connectors, as well as curved connectors that follow roughly
orthogonal routes. Visio’s connectors are updated when the attached shapes are
moved or when objects are placed over the connector paths, but only in response
to either of these events. Again, connector routing does not use a predictable
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heuristic, such as minimizing distance or number of segments. Visio does up-
date these connectors dynamically as objects are resized or rotated, though if
there are too many objects for this to be responsive Visio reverts to calculating
paths only when the operation finishes. The Graph layout library yFiles [5] and
demonstration editor yEd offers both orthogonal and “organic” edge routing—a
curved force directed layout where nodes repel edges. Both of these are layout
options that can be applied to a diagram, but are not maintained throughout
further editing. We know of no editor which ensures that the connectors are
optimally routed in any meaningful sense.

Automatic connector routing in diagram editors is, of course, essentially the
same problem as edge routing in graph layout, especially when edge routing is a
separate phase in graph layout performed after nodes have been positioned. Like
connector routing it is the problem of routing a poly-line, orthogonal poly-line or
spline between two nodes and finding a route which does not overlap other nodes
and which is aesthetically pleasing, i.e., short, with few bends and minimal edge
crossings. The main difference is that edge routing is typically performed for a
once-off static layout of graphs while automatic connector routing is dynamic
and needs to be performed whenever the diagram is modified.

One well-known library for edge routing in graph layout is the Spline-o-matic
library developed for GraphViz [6]. This supports poly-line and Bezier curve
edge routing and has two stages. The first stage is to compute a visibility graph
for the diagram. The visibility graph contains a node for each vertex of each
object in the diagram. There is an edge between two nodes iff they are mutually
visible, i.e., there is no intervening object. In the second stage connectors are
routed using Dijkstra’s shortest path algorithm to compute the minimal length
paths in the visibility graph between two points. A third stage, actually the
responsibility of the diagram editor, is to compute the visual representation of
the connector This might include adding rounded corners, ensuring connectors
don’t overlap unnecessarily when going around the same object vertex, etc.

Here we describe how this three stage approach to edge routing can be modi-
fied to support incremental shortest path poly-line connector routing in diagram
editors. We support the following user interactions:

– Object addition: This makes existing connector routes invalid if they overlap
the new object and requires the visibility graph to be updated.

– Connector addition: This simply requires routing the new connector.
– Object removal: This makes existing connector routes sub-optimal if there is

a better route through the region previously occupied by the deleted object.
It also requires the visibility graph to be updated.

– Connector removal: This is simple–just delete the connector.
– Direct manipulation of object placement: This is the most difficult since it is

essentially object removal followed by addition.

To be useful in a diagram or graph editor we need these operations to be fast
enough for reasonable size diagrams or graphs with up to say 100 nodes. The
performance requirement for direct manipulation is especially stringent if we
wish to update the connector routing during direct manipulation, i.e., to reroute
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the connectors during the movement of the object, rather than re-routing only
after the final placement. This requires visibility graph updating and connector
re-routing to be performed in milliseconds.

Somewhat surprisingly our incremental algorithms are fast enough to support
this. Two key innovations allowing this are: an “invisibility graph” which asso-
ciates each object with a set of visibility edges that it obscures (this speeds up
visibility graph update for object removal and direct manipulation); and a sim-
ple pruning function which significantly reduces the number of connectors that
must be considered for re-routing after object removal. In addition we investi-
gate the use of an A� algorithm rather than Dijkstra’s shortest path algorithm
to compute optimal paths.

There has been considerable work on finding shortest poly-line paths and
shortest orthogonal poly-line paths. Most of this has focused on finding paths
given a fixed object layout and has not considered the problem of dynamically
changing objects and the need to incrementally update an underlying visibility
structure. The most closely related work is that of Miriyala et. al. [7] who give an
efficient A� algorithm for computing orthogonal connector paths. Like us they
are interested in doing this incrementally and rely on a rectangulation of the
graph and previously drawn edges which is essentially a visibility graph. The
main difference to this paper is that they only consider orthogonal paths. Other
differences are that their algorithm is heuristic and routes are not guaranteed
to be optimal even if minimizing edge crossings is ignored (see e.g. Figure 9
of [7]). They do not discuss object removal and how to maintain optimality of
connectors.

There are several well known algorithms for constructing visibility graphs that
run in less than the naive O(n3) approach. In [8] Lee provided an O(n2 log n)
solution with a rotational sweep. Later, Welzl presented an O(n2) duality-based
arrangements approach [9]. Asano, et. al., presented two more arrangement based
solutions in [10] both running in O(n2) time. Another O(n2) approach was given
by Overmars and Welzl using rotational trees in [11]. Ghosh and Mount showed
an output sensitive solution to the problem in [12] which uses plane sweep tri-
angulation and funnel splits. It runs in O(m + n log n) time, where m is the
number of visibility edges. Only Lee’s algorithm and Asano’s algorithm support
incremental update of a visibility graph.

Given a visibility graph with m edges and n nodes the standard implemen-
tation of Dijkstra’s shortest path algorithm is O(n2) or O(m log n) if a binary
heap based priority queue representation is used. Fredman and Tarjan [13] give
an O(m + n log n) implementation using Fibonacci heaps. The A� algorithm
has similar worst case complexity but in practice we have found it to be faster.
There are techniques based on the continuous Dijkstra method to compute a
single shortest path in O(n log n) time which do not require computation of a
visibility graph [14]. These methods are more complex and so we chose to use a
visibility graph-based approach. In practice we conjecture that they will lead to
similar complexity assuming O(n2) connectors.
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2 Algorithms

We assume that we have objects which have an associated list of vertices and
connector points. For simplicity we restrict ourselves to convex objects and for
the purposes of complexity analysis we assume the number of vertices is a fixed
constant, i.e. say four, since the bounding box can be used for many objects.
The algorithms themselves work for arbitrary convex polygons, so circles can be
approximated by a dodecagon for example.

We also have connectors, these are connected to a particular connection point
on an object and have a current routing which consists of a list of edges in the
visibility graph. Of course, connectors are not always connected to objects, and
may have end-points which are neither object vertices or connection points. In
this case an extra node is added to the visibility and invisibility graphs for this
end-point.

The most important data structure is the visibility graph. Edges in this graph
are stored in a distributed sparse fashion. Each object has a list of vertices, and
each of these vertices has a list of vertices that are visible from it. We treat the
connection points on objects as if they are vertices. They behave like standard
vertices in the visibility graph, but, of course, must occur at the start or end of
a path, not in the middle. They have connectors associated with them.

Actually, not all visibility edges are placed in the visibility graph. As noted
in [15] in any shortest path the path will bend around vertices, making an angle
of less than 180o around each object. This means that we do not need to include
edges to vertices which are visible in the sector opposite to the object. Consider
the vertex v with incoming visibility edge shown in Figure 1. Clearly in any
shortest path the outgoing visibility edge must be to a vertex in the region
indicated. And so, in general, we need not include edges in the visibility graph
that are between v and vertices in either of the two “hidden” regions. Note that
this generalizes straightforwardly for any convex object.

The other important data structure is the “invisibility graph.” This is a new
data structure we have introduced to support incremental recomputation of the
visibility graph when an object is deleted. It associates each non-visible edge
with a blocking object. This should not be confused with the invisibility graph
of [16] which simply represents the visibility graph negatively.

Incoming visibility edge

Region to
consider for out-
going visibility

edge

Object

Hidden region A

Hidden region B

v

Fig. 1. Hidden regions which can be ignored when constructing the visibility graph
and when finding the shortest path
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The invisibility graph consists of all edges between object vertices which could
be in the visibility graph except that there is an object intersecting the edge and
so obscuring visibility. Edges in the invisibility graph are associated with the
obscuring object and with the objects they connect. Thus each object has a list
of visibility edges that it obscures. If the edge intersects more than one object
the edge is associated with only one of the intersecting objects.

2.1 Connector Addition and Deletion

Connector deletion is simple, all we need to do is to remove the connector and
references to the connector from its component edges in the visibility graph.

Connector addition requires us to determine the optimal route for the con-
nector. The simplest approach is use a shortest path algorithm such as Dijk-
stra’s [17]. Dijkstra’s method has O(n2) worst case complexity while a priority
queue based approach has worst case complexity O(m log n) where m is the num-
ber of edges in the visibility graph and n the number of objects in the diagram.

A (hopefully) better approach is to use an A� algorithm which uses the Eu-
clidean distance between the current vertex on the path as a lower bound on
the total remaining cost [14]. The idea is to modify the priority queue based
approach so that the priority for each frontier node x is the cost of reaching
x plus ||(x, v)|| where v is the endpoint of the connector. In practice we would
hope that this is faster than Dijkstra’s shortest path algorithm since the search
is directed towards the goal vertex v rather than exploring all directions from
the start vertex in a breadth-first fashion.

2.2 Object Addition

When we add an object we must first incrementally update the visibility and
invisibility graphs, then recompute the route for any connectors whose current
route has been invalidated by the addition. The precise steps when an object o
is added are

1. Find the set of edges Eo in the visibility graph that intersect o.
2. Find the set of connectors Co that use an edge from Eo.
3. Remove the edges in Eo from the visibility graph and place them in the

invisibility graph, associating them with o.
4. For each vertex (and connection point) v of o and for each vertex (and

connection point) u of each other object in the diagram o′ determine if there
is another object o′′ which intersects the segment (v, u). If there is add (v, u)
to the invisibility graph and associate it with o′′. If not add (v, u) to the
visibility graph.

5. For each connector c ∈ Co find its new route.

The two steps with greatest expected complexity are Step 1, computing the
visibility edges Eo obscured by o, and Step 4, computing the visible and obscured
vertices for each vertex v of o.

The simplest implementation of Step 1 has O(m) complexity since we must
examine all edges in the visibility graph to see if they intersect o. We could
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reduce this to an average case O(log m) using a spatial data structure such as a
PMR quad-tree [18].

Naive computation of the visible and obscured vertices from a single vertex
has O(n2) complexity. However more sophisticated algorithms for computation
of the visibility graph have been developed. One reasonably simple approach
which appears to work well in practice Lee’s rotational sweep algorithm [8] in
which the vertices of all objects are sorted w.r.t. the angle they make with
the original vertex v of o and then these are processed in sorted order. It has
O(n log n) complexity.

2.3 Object Deletion

Perhaps surprisingly, object deletion is potentially considerably more expensive
than object creation. The first stage is to incrementally update the visibility
graph.

Assume initially that we do not have an invisibility graph. We first need
to remove all edges in the visibility graph that are connected to the object
being deleted, o. Then when need to add edges to the visibility graph that were
previously obscured by o. For each vertex (and connection point) v of each object
and for each vertex (and connection point) u of some other object in the diagram
we must check that (u, v) is not in the visibility graph and that it intersects o.
If so we need to check whether there is any other object which intersects the
segment (u, v). If there is not then it must be added to the visibility graph.

Identifying these previously obscured edges is potentially very expensive:
O(n2) to compute the candidate new edges and then an O(n) test for non-overlap
for each edge of which there may be O(n2). Thus the worst case complexity of
this method is O(n3).1

In order to reduce the expected (but not the worst case) cost we have intro-
duced the invisibility graph. By recording the reason for not including an edge
between two vertices in the visibility graph we know almost exactly which edges
we need to retest for visibility. More exactly when we remove o we take the set
of edges Io associated with o in the invisibility graph and then test for each of
these whether they intersect any other objects. Note that Io can be expected
to be considerably smaller than the candidate edges identified above since an
edge (u, v) is only in Io if it intersects o and o was the object first discovered to
intersect (u, v).

Thus, although the invisibility graph does not reduce the worst case cost, we
can expect it to substantially reduce the average cost of updating the visibility
graph. Furthermore, construction of the invisibility graph does not introduce
substantial overhead in any of the other operations, the only overhead is the
space required to store the edges. Note that when we remove an object we also
need to remove edges to it that are in the invisibility graph.

The second stage in object deletion is to recompute the connector routes. This
is potentially very expensive since removing an object means that we could have
1 Based on this one might consider recomputing the entire visibility graph using the

Sweep Algorithm since this has O(n2 log n) complexity.
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to recompute the best route for all connectors since there may be a better route
that was previously blocked by the object just removed.

However, we can use a simple strategy to limit the number of connectors
reconsidered. Let A be the region of the object removed and let u and v be
the two ends of the connector C. We need only reconsider the current route for
C if ∃y ∈ A s.t. ||(u, y)|| + ||(y, v)|| is less than the cost of the current route
since otherwise any route going through A will be at least as expensive as the
current one.

Thus we need to compute miny∈A ||(x, y)|| + ||(y, v)||. Assuming A is convex
we can compute this relatively easily. If the line segment (u, v) intersects A
then the lower bound is ||(u, v)|| and we must reroute C. Otherwise we find for
each line segment (s, t) on the boundary of A the closest point y to A on that
segment. The closest point in A is simply the closest of these. Now consider the
line segment (s, t). We first compute the closest point x on the line st. If x is in
the segment (s, t) it is the closest point, otherwise we set y to s or t whichever is
closest to x. W.lo.g. we can assume that (s, t) is horizontal. Let b and c be the
vertical distance from st to u and v respectively and a the horizontal distance
between u and v, as shown in Figure 2(a). We are finding the value for x which
minimizes

√
x2 + b2 +

√
(x − a)2 + c2. There are two solutions: x = ab

b+c when
b · c ≥ 0 and x = ab

b−c when b · c ≤ 0. In the case b = c = 0, x is any value in [0, a].
Now consider the case when we have determined that there may be a better

path for the connector because of the removal. Instead of investigating all pos-
sible paths for the connector we need only investigate those that pass through
the deleted object. Let A be the region of the object removed and let u and v
be the two ends of the connector C and assume that the current length of the
connector is c. Requiring the path to go through A means that we can use the
above idea to provide a better lower-bound when computing a lower bound on
the remaining length of the connector. The priority for each frontier node x is
the cost of reaching x plus miny∈A ||(x, y)|| + ||(y, v)|| if the path has not yet

u

v

b

x

c

a

y
A

s t

A

C

B

D

(a) (b)

Fig. 2. (a) Computing the closest point y ∈ A to the segment (u, v). (b) Example
recomputation of connectors after deleting object A. Connectors are shown as solid
lines and lower-bound connector paths through A are shown as dotted lines. The re-
exploration to try and find a better path from B to C is shown as dashed lines.
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gone through A. Furthermore we can remove any node whose priority is ≥ c
since this cannot lead to a better route than the current one.

For example consider deleting object A from the diagram in Figure 2(b).The
connector from B to D does not need to be reconsidered since the shortest path
from the connection points (dotted) is clearly longer than the current path.
But the connector from B to C needs to be reconsidered (even though in this
case it will not move). The A∗ algorithm will compute the dashed paths whose
endpoints fail the lower bound test.

2.4 Direct Manipulation of Object Placement

The standard approach in diagram and graph editors for updating connectors
during direct manipulation is to only reroute the connectors once the object
has been moved to its final position. The obvious disadvantage is that the user
does not have any visual feedback about what the new routes will be and may
well be (unpleasantly) surprised by the result. One of the main ideas behind
direct manipulation [19] is that the user should be given visual feedback about
the consequences of the manipulation as they perform it rather than waiting for
the manipulation to be completed. Thus it seems better for diagram and graph
editors to reroute connectors during direct manipulation.

We have identified two possible approaches. In the complete feedback approach
all connectors are rerouted at each mouse move during the direct manipulation.
The advantage is that the user knows exactly what would happen if they left
the object at its current position. The disadvantage is that this is very expen-
sive. Another possible disadvantage is that it might be distracting to reroute
connectors under the object being moved during the direct manipulation—for
positions between the first and final position of the object the user knows that
the object will not be placed there and so it is distracting to see the effect on
connectors that are only temporarily under the object being manipulated. For
these reasons we have also investigated a partial feedback approach in which for
intermediate positions we only update the routes for connectors attached to the
object being manipulated and leave other connectors alone.

The simplest way of implementing complete connector-routing feedback is to
regard each move as an object deletion followed by object addition. Assume that
we move object o from region Rold to Rnew . Then we

1. Find the set of edges Io associated with o in the invisibility graph which do
not intersect Rnew and remove them from the invisibility graph.

2. For each edge (u, v) ∈ Io determine if there is another object o′ ∈ O which
intersects the segment (u, v). If there is add (v, u) to the invisibility graph
and associate it with o′. If not add (v, u) to the visibility graph.

3. Find the set of edges Eo in the visibility graph that intersect Rnew \ Rold

but are not from o.
4. Find the set of connectors Co that use an edge from Eo.
5. Remove the edges in Eo from the visibility graph and place them in the

invisibility graph, associating them with o.
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6. For each vertex (and connection point) u of o and edge (u, v) in the invisi-
bility graph check that the object o′ associated with the edge still intersects
it. If it does not, temporarily add the edge to the visibility graph.

7. For each vertex (and connection point) u of o and edge (u, v) in the visibility
graph check if there is another object o′ ∈ O which intersects the segment
(u, v). If there is add (u, v) to the invisibility graph and associate it with o′.
If not, keep (u, v) in the visibility graph.

8. For each connector c ∈ Co find its new route.
9. For every connector not in Co determine if there is a better route through

Rold \ Rnew .

Note that in the above we can conservatively approximate the regions Rnew \
Rold or Rold \ Rnew by any enclosing region such as their bounding box.

The simplest way of implementing partial connector-routing feedback is per-
form object deletion once the object o has moved and then at each step

1. Compute the vertex and connector points which are visible from a vertex of
o and temporarily add these to the visibility graph

2. Recompute shortest routes for all connectors to/from o

Once the move has finished we perform object addition for o. Clearly this is
substantially less work than required for complete feedback.

3 Evaluation

We have implemented our incremental connector algorithms in the Dunnart
diagram editor and have conducted an experiment to evaluate our algorithms.2

Dunnart is written in C++ and compiled with gcc 3.2.2 at -O3. We ran Dunnart
on a Linux machine (glibc 2.3.3) with 512MB memory and Pentium 4, 2.4GHz
processor.

In our experiment we compared the Spline-o-matic (SoM) connector routing
library of Graph Viz (which is non-incremental) with a static version (Static) of
our algorithm in which the visibility graph and connector routes are recomputed
from scratch after each editor action, and the incremental algorithm (Inc) given
here with various options.

The experiment used various sized grid arrangement of boxes, where each
outside box is connected to the diagonally opposite box by a connector and
each box except those on the right and bottom edge is connected to the box
directly down and right. Figure 3(a) show an example layout for a 6x6 grid.
For an n × n grid we have n2 objects and 2(n − 1) + (n − 1)2 connectors. We
also used a smallish but more realistic diagram bayes from [20] (a Bayesian
network with 35 objects and 61 connectors) shown in Figure 3(b). The exper-
iments were: for each object to delete it from the grid and the add it back

2 Dunnart including this feature is downloadable from http://www.csse.monash.
edu.au/∼mwybrow/dunnart/
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(a) (b)

Fig. 3. (a) 6x6 Grid layout, showing the path taken through grid for Move experiment,
and (b) Layout of the bayes diagram

in. We measured the time for each deletion and each addition giving the av-
erage under the Add and Delete rows. We have separated the time into that
for manipulating the visibility graph (Vis) and that for performing all connec-
tor (re)routing (Paths). We also measured the average time taken to compute
the new layout for each mouse position when moving the marked corner box
through and around the grid as shown in Figure 3(a). The move of bayes
is similar using the top leftmost box. This results are is given in the Move
rows.

Both our static (Static) and incremental (Inc) version use the A� algorithm to
compute connector paths and give complete feedback. The incremental version
computes the invisibility graph while the static one does not since this is not
needed. We also give times for versions of the incremental algorithm which do not
construct the invisibility graph (Inc-noInv). and use Dijkstra’s shortest path al-
gorithm rather than the A� algorithm (Inc-noA*). For the Move sub-experiment
we also give times for an incremental version providing partial feedback (Inc-par)
rather than complete feedback.

The results are shown in Table 1, for grids of size 6, 8, 10 and 12, and bayes.
A “—” indicates that the approach failed to complete the total experiment in
three hours.

We can see from the table that the static version of our algorithm is con-
siderably faster than Spline-O-Matic. The incremental versions are orders of
magnitude faster than static algorithms. While the incremental version is usable
for direct manipulation with complete feedback at least until grid10 (and with
difficulty at grid12), the static algorithms become unusable at grid08. The re-
sults show how important incremental recomputation is. The importance of the
invisibility graph is clearly illustrated by the difference between Inc-noInv and
Inc, improving visibility graph recomputation by orders of magnitude for Delete
and Move. The A� algorithm gives around 50% improvement in path re-routing.
Partial feedback reduces the overhead of movement considerably particularly as
the number of connectors grows.
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Table 1. Average visibility graph and connector routing times (in msec.)

grid06 grid08 grid10 grid12 bayes
Op Algorithm Vis Paths Vis Paths Vis Paths Vis Paths Vis Paths

Add

SoM 152 198 752 881 2449 2831 6669 1166 122 284
Static 40 67 154 313 475 1024 1209 1064 29 87
Inc-noInv 0 13 8 90 15 304 14 761 0 1
Inc-noA* 0 11 9 61 18 195 16 347 0 7
Inc 0 1 9 20 18 58 16 138 0 0

Delete

SoM 146 185 724 853 2385 2779 6542 1149 110 269
Static 40 64 153 296 463 1003 1186 1042 29 80
Inc-noInv 53 16 266 87 1006 298 1146 749 77 3
Inc-noA* 2 38 17 223 49 734 55 1331 7 9
Inc 2 8 18 58 48 204 55 504 8 0

Move

SoM 149 188 742 863 — — — — 114 282
Static 31 69 156 310 461 1004 1214 1026 29 79
Inc-noInv 43 15 230 80 950 289 1167 708 80 0
Inc-noA* 0 25 12 102 34 261 37 449 7 8
Inc 0 10 12 28 34 77 37 213 7 0
Inc-par 0 3 10 7 26 20 28 11 0 3

4 Conclusion

Most diagram editors and graph construction tools provide some form of auto-
matic connector routing, usually providing orthogonal or poly-line connectors.
However the routes are typically computed using ad hoc techniques and updated
in an ad hoc manner with no feedback during direct manipulation.

We have investigated the problem of incrementally computing minimal length
object-avoiding poly-line connector routings. Our algorithms are surprisingly fast
and allow us to recalculate optimal connector routings fast enough to reroute
connectors even during direct manipulation of an object’s position, thus giving
instant feedback to the diagram author.
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Abstract. Well-orderly trees seem to have the potential of becoming a
powerful technique capable of deriving new results in graph encoding,
graph enumeration and graph generation [3, 4]. In this paper, we reduce
the height of the visibility representation of plane graphs from 5n/6 to
(4n − 1)/5, by using well-orderly trees.

1 Introduction

Graph drawing has emerged as an exciting and fast growing area of research in
the computer science community in recent years [1].Among various techniques
for drawing planar graphs, the canonical orderings and canonical ordering trees
of 3-connected plane graphs have served as a fundamental step upon which
drawing algorithms are built [7, 8, 9, 12]. The work by de Fraysseix, Pach and
Pollack [9] is considered to be the first using the canonical orderings to produce
straight-line drawings with polynomial sizes for planar graphs. The technique
of canonical orderings has subsequently been applied to drawing graphs with
respect to a variety of aesthetic constraints, including straight-line, convexity,
orthogonality, visibility representation, 2-visibility, floor-planning, and others.

Later on, Chiang et. al. introduced the concept of orderly spanning tree [6],
which generalizes canonical ordering tree and leads to several improvements in
various styles of graph drawings [6, 5, 16]. In [3], Bonichon, Gavoille and Hanusse
introduced well-orderly trees, which are canonical ordering trees with some spe-
cial properties. These special properties have been successfully used in graph en-
coding, graph enumeration, and graph generation [3, 4]. More importantly, well-
orderly trees are closely related to the concept of Schnyder’s realizers [20, 21],
which has also been widely used in graph drawing. We believe, well-orderly trees
will be a promising technique of unifying known results as well as deriving new
results in various styles in graph drawings. In this paper, we are going to derive
an application of well-orderly trees in graph drawing.

A visibility representation (VR for short) of a plane graph G is a representa-
tion, where the vertices of G are represented by non-overlapping horizontal line
� Research supported in part by NSF Grant CCR-0309953.
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segments (called vertex segment), and each edge of G is represented by a vertical
line segment touching the vertex segments of its end vertices. The problem of
computing a compact VR is important not only in algorithmic graph theory,
but also in practical applications such as VLSI layout. A simple linear time VR
algorithm was given in [19, 22] for a 2-connected plane graph G. It only uses
an st-orientation of G and the corresponding st-orientation of its dual G∗ to
construct a VR of G.

One of the main concerns afterwards for VR is the size of the representation,
i.e., the height and width of VR. Some work has been done to reduce the size
of the VR by carefully choosing a special st-orientation of G. We summarize
related previous results in the following table:

References Plane graph G 4-Connected plane graph G
[19, 22] Width of VR ≤ (2n − 5) Height of VR ≤ (n − 1)
[13] Width of VR ≤ � 3n−6

2 �
[17] Width of VR ≤ � 22n−42

15 �
[14] Width of VR ≤ (n − 1)
[25] Height of VR ≤ � 5n

6 �
[24, 26] Width of VR ≤ � 13n−24

9 � Height of VR ≤ � 3n
4 �

In this paper, we prove that every plane graph G has a VR with height at
most 4n−1

5 , and it can be obtained in linear time.
The present paper is organized as follows. Section 2 introduces preliminaries.

Section 3 presents the construction of a VR with height bounded by 4n−1
5 .

2 Preliminaries

In this section, we give definitions and preliminary results. Definitions not men-
tioned here are standard.

G is called a directed graph (digraph for short) if each edge of G is assigned a
direction. We abbreviate the words “counterclockwise” and “clockwise” as ccw
and cw respectively.

An orientation of a graph G is a digraph obtained from G by assigning a
direction to each edge of G. We will use G to denote both the resulting digraph
and the underlying undirected graph unless otherwise specified. (Its meaning
will be clear from the context.) For a 2-connected plane graph G and an exterior
edge (s, t), an orientation of G is called an st-orientation if the resulting digraph
is acyclic with s as the only source and t as the only sink. For more information
on st-orientation, we refer readers to [18].

Let G be a 2-connected plane graph and (s, t) an exterior edge. An st-
numbering of G is a one-to-one mapping ξ : V → {1, 2, · · · , n}, such that
ξ(s) = 1, ξ(t) = n, and each vertex v = s, t has two neighbors u, w with
ξ(u) < ξ(v) < ξ(w), where u (w, resp.) is called a smaller neighbor (bigger
neighbor, resp.) of v. Given an st-numbering ξ of G, we can orient G by direct-
ing each edge in E from its lower numbered end vertex to its higher numbered
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end vertex. The resulting orientation is called the orientation derived from ξ
which, obviously, is an st-orientation of G. On the other hand, if G = (V, E)
has an st-orientation O, we can define an 1-1 mapping ξ : V → {1, · · · , n} by
topological sort. It is easy to see that ξ is an st-numbering and the orientation
derived from ξ is O. From now on, we will interchangeably use the term an
st-numbering of G and the term an st-orientation of G, where each edge of G is
directed accordingly.

Lempel et. al. [15] showed that for every 2-connected plane graph G and an
exterior edge (s, t), there exists an st-numbering. The following lemma was given
in [19, 22]:

Lemma 1. Let G be a 2-connected plane graph. Let O be an st-orientation of
G. A VR of G can be obtained from O in linear time. The height of the VR is
the length of the longest directed path in O.

Let T be a rooted spanning tree of a plane graph G. Two nodes are unrelated
if neither of them is an ancestor of the other in T . An edge of G is unrelated if
its endpoints are unrelated.

Bonichon et. al. introduced well-orderly trees [3], a special case of orderly
spanning trees defined by Chiang, Lin and Lu in [6], referred as simply orderly
trees afterwards. Let v1, v2, · · · , vn be the ccw preordering of the nodes in T . A
node vi is orderly in T with respect to T if the incident edges of vi in T form
the following four blocks (possibly empty) in ccw order around vi:

– Bp(vi): the edge incident to the parent of vi;
– B<(vi): unrelated edges incident to nodes vj with j < i;
– BC(vi): edges incident to the children of vi; and
– B>(vi): unrelated edges incident to nodes vj with j > i.

A node vi is well-orderly in G with respect to T if it is orderly, and if:

– the first ccw edge (vi, vj) ∈ B>(vi), if it exists, verifies that the parent of vj

is an ancestor of vi.

T is a well-orderly tree of G is all the nodes of T are well-orderly in G, and
if the root of T belongs to the boundary of the exterior face of G (similarly for
simply orderly tree). Note that an orderly tree (simply orderly or well-orderly)
is necessarily a spanning tree.

A plane triangulation is a plane graph where every face is a triangle (including
the exterior face). Let G be a plane triangulation of n vertices with three exterior
vertices v1, v2, vn in ccw order. A realizer R = {T1, T2, Tn} of G is a partition
of its interior edges into three sets T1, T2, Tn of directed edges such that the
following holds:

– for each i ∈ {1, 2, n}, the interior edges incident to vi are in Ti and directed
toward vi.

– For each interior vertex of G, v has exactly one edge leaving v in each of
T1, T2, Tn. The ccw order of the edges incident to v is: leaving in T1, entering
in Tn, leaving in T 2, entering in T1, and entering in T2 (See Fig. 1). Each
entering block could be empty.
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Fig. 1. Edge directions around an interior vertex v

Normally, realizers of a plane triangulation G are not unique. Among all the
realizer of G, there is an unique realizer R0 of G, where according to the edge
directions in R0, there are no ccw-triangles. This realizer of G will be called the
minimum realizer of G. For example, in Fig. 2, the three trees of the realizer are
drawn in solid lines, dashed lines and dotted lines respectively. There are three
cw cyclic faces (marked by empty circles) but no ccw cyclic triangles, so it is the
minimum realizer of G.

Schnyder showed in [20] that each set Ti of a realizer is a tree rooted at
the exterior vertex vi. For each tree Ti of a realizer, we denote by T̄i the tree
composed of Ti augmented with the two edges of the exterior face incident to
the root of Ti, i.e. the vertex vi. For example, in Fig. 2, T̄i is Tn (the tree in
thick solid lines) augmented with edges (vn, v1) and (vn, v2).
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Fig. 2. A plane triangulation G and the minimum realizer R0 of G
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We summarize related results in the following lemma [3, 6, 20, 21]:

Lemma 2. Let G be a plane triangulation of n vertices with three exterior ver-
tices v1, v2, vn in ccw order. Let R = {T1, T2, Tn} be any realizer of G. Then,

1. Each T̄i, i ∈ {1, 2, n} is a simply orderly tree. In addition, if R is the mini-
mum realizer R0, then each T̄i, i ∈ {1, 2, n} is a well-orderly tree.

2. Given the tree T̄1 (T̄2, T̄n resp.), all the first ccw edge (u, vj) ∈ B>(u) for
each node u with respect to T̄1 (T̄2, T̄n resp.) form the tree T̄n. (T̄1, T̄2 resp.)

3. The minimum realizer can be computed in linear time.

For example, in Fig. 2, T̄n is a well-orderly tree for G. And the first ccw edge
(9, 12) in B>(9) for the node 9 is in T̄2.

Let v1, v2, · · · , vn be the ccw preordering of the nodes of a tree T . The subse-
quence vi, · · · , vj is a branch of T if it is a chain (i.e., vt is the parent of vt+1 for
every i ≤ t < j), and if j − i is maximal. Branches partition the nodes of T , and
each branch contains exactly one leaf.

Bonichon et. al. proved the following [3]: The well-orderly tree T̄n of a min-
imum realizer R0 = {T1, T2, Tn} has the branch property: All nodes of a given
branch of T̄n must have the same parent in T̄1 (except the root of T̄n). (Similar
results hold for T̄1 and T̄2.) For example, in Fig. 2, nodes 3, 4 form a branch,
they have the same parent in T̄1.

3 More Compact VR of Plane Graphs

Let T be a tree drawn in the plane. Let t1, t2, · · · , tn be the cw postordering
of the nodes of T . A node of T is a glue node of T if it is right before a leaf
node in the ordering t1, t2, · · · , tn. For example, considering T̄n in Fig. 2, nodes
14, 12, 11, 9, 7, 5, 3 are the glue nodes. Note that, the set of the first node of all
branches of T except the root is the set of glue nodes. Also observe that the
number of glue nodes of T is the number of leaves of T minus 1.

Next, let’s explore another property of a well-orderly tree of a plane triangu-
lation.

Lemma 3. LetR0 = {T1, T2, Tn} be theminimumrealizer of a plane triangulation
G with n vertices. Let ξ1, ξ2, ξn be the number of internal nodes (i.e, non-leaf node)
of T̄1, T̄2, T̄n, l1, l2, ln be the number of the leaves of T̄1, T̄2, T̄n respectively. Then,

1. The internal nodes of T̄2 (T̄n, T̄1 resp.) must be the glue nodes of T̄n (T̄1, T̄2
resp.).

2. ln − 1 ≥ ξ2, l1 − 1 ≥ ξn, l2 − 1 ≥ ξ1.

Proof. According to Lemma 2, each T̄i is a well-orderly tree of G. We only prove
the case of T̄2. The other two cases are similar.

1. Let w be an internal node in T̄2. Therefore, there is an edge (u, w) in T̄2
such that w is the parent of u in T̄2. Applying Lemma 2 2, for the node u
in T̄n, (u, w) is the first ccw edge in B>(u) with respect to T̄n. Since T̄n is
a well-orderly tree, the parent of w must be the ancestor of u in T̄n. So w
must be a glue node of T̄n.
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2. Applying to the observation that the number of glue nodes of T is the number
of leaves of T minus 1, we have ln − 1 ≥ ξ2.

For example, in Fig. 2, the internal nodes of T̄2 are 14, 12, 9, 7, 5, 11. All of
them are glue nodes of T̄n.

Next we use the three well-orderly trees from the minimum realizer to obtain
more compact VR of a plane triangulation G.

Let R0 = {T1, T2, Tn} be the minimum realizer of a plane triangulation G
with n vertices.

Let’s construct an st-numbering of G using T̄n step by step. (The cases of
using T̄1, T̄2 are similar.)

Each step begins from a leaf of T̄n. Suppose the leftmost unassigned leaf is u1,
the second leftmost unassigned leaf is q1. The rightmost unassigned leaf if w1,
the second rightmost unassigned leaf if w′

1. The ordering of vertices of G by ccw
postordering, starting from u1 with respect to T̄n is u1, u2, · · · , ua, q1, · · · , qb.
And qb is the last vertex before the third leaf in this ccw postordering.
The branch of T̄n containing q1 contains qb+c, · · · , qb+1, qb, · · · , q1 (which will
be needed later.). The ordering of vertices of G by cw postordering, start-
ing from w1 with respect to T̄n is w1, w2, · · · , wd, w

′
1, · · · , w′

e. And w′
e is the last

vertex before the third leaf in this cw postordering.
See Fig. 3 for an illustration. Only part of the graph is drawn. Edges and

paths of T̄n are drawn in solid lines. Note that qb+1 must have a child on the
right of qb.

Each step is classified into one of the following two cases:

Case 1: If there is no edge between ua and w1, then we first assign numbers to
u1, u2, · · · , ua by ccw postordering with respect to T̄n, then continue to assign
numbers to w1, · · · , wd by cw postordering with respect to T̄n.
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Fig. 3. (a) There is no edge between ua and w1. (b) There is an edge between
ua and w1. (ua, w1) could be in T̄1 or T̄2. Then there must be edges between
q1, · · · , qb, qb+1, · · · , qb+c with ua and they must be in T̄1.
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Case 2: (ua, w1) is an edge in G. Note that q1 is a leaf in T̄n, and ua is the
only vertex of G in B<(q1). Therefore (ua, q1) must be an edge of G and it
is in T1. According to the branch property for T̄n, all the edges (ua, qi), i =
1, · · · , b, (b + 1), · · · , (b + c) must also be in T̄1. For the vertex qb+c, ua is the
only vertex of G in B<(qb+c), and (qb+c, ua) is in T̄1. Hence, qb+c cannot be an
internal node in the tree T̄2. Also observe that qb+c is a glue node of T̄n. In this
case, we first assign numbers to w1, · · · , wd, w

′
1, · · · , w′

e by cw postordering with
respect to T̄n. Then we assign numbers to u1, u2, · · · , ua by ccw postordering
with respect to T̄n .

Continue to next step if there are leaves left unassigned.

Note: If there are only 1 or 2 leaves left in the end, then we assign the remain-
ing numbers to them either using ccw postordering or using cw postordering
until we finish at the root of T . We do not count this as a step. Note that, for
each node, either it is assigned a number in a cw postordering setting, or it is
assigned a number in a ccw postordering setting.

We have the following two key observations:

Observation 1: For each step, at most three leaves are assigned numbers.

Observation 2: If Case 2 is applied kn times, then kn glue nodes of T̄n cannot
be internal nodes of T̄2. Therefore, according to Lemma 3 (1), ln − kn − 1 ≥ ξ2.

Lemma 4. Let G be a plane triangulation, R0 = {T1, T2, Tn} be the minimum
realizer of G. Then, using T̄i, i = 1, 2, n,
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Fig. 4. An st-numbering of G in Fig. 2, obtained from T̄n by using our numbering
scheme
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1. The numbering of the vertices of G constructed by the above numbering
scheme is an st-numbering of G.

2. If Case 2 is applied ki times for T̄i, then any directed path in the resulting
st-orientation is at most n − li−ki

2 .
3. Any directed path in the resulting st-orientation is at most n− li

3 , i = 1, 2, n.

Proof. We only prove the case i = n. The other two cases are similar.

1. First observe that, for any node other than the root of T̄n, its parent is
assigned a bigger number. And the root of T̄n is assigned n.

For any internal node of T̄n, their children are assigned smaller numbers.
For a leaf u = v1, v2 of T̄n, either it is assigned a number in a ccw setting, then
the non-empty block B<(u) contains its smaller neighbors; or it is assigned a
number in a cw setting, then the non-empty block B>(u) contains its smaller
neighbors. For v1, v2, one of them is assigned 1, and it becomes a smaller neigh-
bor for the other. Therefore, this numbering is an st-numbering for G.

2. Observe that, if Case 1 is applied to a step, then one of ua and w1 has to
be bypassed by any directed path. On the other hand, if Case 2 is applied
to a step, then one of w′

e and u1 must be bypassed by any directed path.
Therefore, from the nodes assigned numbers within the same step, at least
one node has to be bypassed by any directed path.

Suppose Case 2 is applied kn times, then the total number of steps is
at least ln−3kn

2 − 1 + kn. (The subtraction of 1 comes from the last 1 or
2 leaves which do not form a step.) Therefore, any directed path has to
bypass at least ln−3kn

2 − 1 + kn vertices. Therefore, its length is at most
n − ( ln−3kn

2 − 1 + kn) − 1 =n − ln−kn

2 .
3. In the worst scenario, each step assigns numbers to three leaves, then we

have � ln
3 � steps. So any directed path must bypass at least � ln

3 � vertices, so
it length is at most n − � ln

3 � − 1 ≤ n − ln
3 .

For example, Fig. 4 shows an st-numbering of G, using our numbering scheme
to T̄n. The first step numbers 1, 2, 3 by cw postordering, then it numbers 4 by
ccw postordering. The second step numbers 5 by ccw postordering, then it
numbers 6 by cw postordering.

Next we present our main theorem:

Theorem 1. Let G be a plane triangulation with n vertices, then there is a VR
of G whose height is at most 4n−1

5 . And it can be constructed in linear time.

Proof. Let R0 = {T1, T2, Tn} be the minimum realizer of G. Apply our st-
numbering scheme, suppose for T̄1, T̄2, T̄n, the number of their Case 2 steps are
k1, k2, kn respectively. Then we have ξ2 ≤ ln − kn − 1. Symmetrically, we have
ξ1 ≤ l2 − k2 − 1, and ξn ≤ l1 − k1 − 1. Summing them up and moving 3 to the
left side, we have:

ξ1 + ξ2 + ξn + 3 ≤ (l1 + l2 + ln) − (k1 + k2 + kn). (1)

Pick a longest directed path for each st-orientation. By Lemma 4 (2), the sum
of their lengths is at most:
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(n − ln − kn

2
) + (n − l2 − k2

2
) + (n − l1 − k1

2
)

= 3n − l1 + l2 + ln
2

+
k1 + k2 + kn

2

= 3n − (l1 + l2 + ln) − (k1 + k2 + kn)
2

≤ 3n − ξ1 + ξ2 + ξn + 3
2

(2)

The last inequality comes from Equation (1).
By Lemma 4 (3), the sum of their length is at most:

n − l1
3

+ n − l2
3

+ n − ln
3

= 3n − l1 + l2 + ln
3

(3)

Multiply Equation (2) by 2 and multiply Equation (3) by 3. Adding them up,
we have that 5 times the sum of the lengths of the three longest directed paths is
at most:

6n − (ξ1 + ξ2 + ξn + 3) + 9n − (l1 + l2 + ln)
= 15n − (ξ1 + ξ2 + ξn + l1 + l2 + ln) − 3
= 15n − 3n − 3
= 12n − 3. (4)

Therefore, one of the longest directed path from these three paths must be
at most 12n−3

15 ≤ 4n−1
5 . Applying Lemma 1, G admits a VR whose height is at

most 4n−1
5 , and it can be constructed in linear time.
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Abstract. This paper describes the GEOMI system, a visual analysis
tool for the visualisation and analysis of large and complex networks.
GEOMI provides a collection of network analysis methods, graph lay-
out algorithms and several graph navigation and interaction methods.
GEOMI is part of a new generation of visual analysis tools combining
graph visualisation techniques with network analysis methods. GEOMI is
available from http://www.cs.usyd.edu.au/∼visual/valacon/geomi/.

1 Introduction

The GEOMI system is a visual analysis tool for the visualisation and analysis
of large and complex networks such as web-graphs, social networks, biological
networks, sensor networks and transportation networks. Such visual analysis
tools take advantage of the graphics capabilities of computers to support the
analysis of network structure. Using GEOMI, one can visually explore networks
and discover patterns and trends that can provide critical insights. GEOMI is
being developed by VALACON (Visualisation and Analysis of Large and Com-
plex Networks) project team members in the National ICT Australia (NICTA)
IMAGEN program.

Figure 1 briefly describes the architecture of GEOMI. Its core consists of three
main components: network analysis, graph layout and interaction, using an ex-
tended version of WilmaScope [1] as its graph visualisation library. GEOMI can
easily be extended by various types of plug-ins. It integrates the JUNG library [2]
as a plug-in to utilise its many network analysis algorithms. We also have added
many new plug-ins for network analysis, graph layout as well as interaction
methods. In summary, GEOMI currently provides the following functionalities:

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 468–479, 2005.
Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. The system architecture of GEOMI

1. Graph generators: clustered graph, clustered general graph, clustered tree,
GML graph reader, grid, Erd.-Ren. random graph, scale-free graph, stratified
graph, tree, CGF graph reader, random clustered graph converter.

2. Network analysis: shortest path/random walk betweenness centrality, close-
ness centrality, degree centrality, eccentricity centrality, eigenvector central-
ity, uniqueness centrality, 3D parallel coordinates, blockmodel, hierarchical
centrality comparison, orbital centrality comparison, k-means clustering.

3. Graph algorithms: bi-connected components, biggest component, directed
cycle removal, edge weight filter, longest path layering, parallel edge filter.

4. Graph layout: circular, clustered circular, clustered clone tree, clustered force
directed, clustered free tree, clustered rod tree, column, cone tree, force di-
rected, free tree, hierarchical, high-dimensional embedding, multiscale, ran-
dom, rod tree, simulated annealing, spectral, stratified.

5. Interaction: HTML graph generator, head gesture interaction.

This paper is organised as follows: GEOMI’s plug-ins for network analysis,
graph layout, and interaction are presented in Sect. 2, 3, and 4, respectively.
Section 5 concludes the paper.

2 Network Analysis Plug-Ins

2.1 Centrality Analysis

Centrality analysis is an effective tool to study graph nodes. The importance of
nodes is measured by their degree, their neighbouring nodes, or other node/graph
properties. Centrality analysis has found many applications in social and bio-
logical networks. The centralities implemented in GEOMI are listed in Sect. 1.
GEOMI can map the results of centrality analysis to node visual attributes.

2.2 Centrality Comparison

Comparing the relative importance of a node in different centrality measures
provides an overview of the node from different perspectives. Besides mapping
centralities to various visual node attributes, three methods designed specifically
for centrality comparison are implemented in GEOMI. See [3] for details.
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3D Parallel Coordinates. This method treats every node with multiple cen-
trality values as a multivariate data point. To demonstrate nodes sharing the
same value, they are displayed using the third dimension. In Fig. 2, each axis
represents a centrality measure and nodes with the same centrality value are
shown in the third dimension. The graph used here is the “Krackhardt’s High-
tech managers” dataset, which is well-known in social network analysis.

Orbital Comparison. The idea of orbit-based comparison of centralities can
be summarised as follows: copies of the analysed network are stacked, every copy

Fig. 2. 3D parallel coordinates

Fig. 3. The created stack of networks with centralities used for orbital placement of
the nodes. On the bottom left the detail view shows the highlighted plane and on the
right side the layout modification plug-in controls are shown.
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Fig. 4. Hierarchical comparison

is used to visualise one centrality measure and within a copy the nodes are placed
on concentric circles depending on the centrality value of the vertex. Figure 3
shows an example. The dataset used here is the same as the one in Fig. 2.

Hierarchical Comparison. The hierarchal comparison is similar to orbital
comparison, but uses a hierarchical layout instead. For each graph the layering
is based on centrality values, i.e., nodes in the upper layer have larger centrality
values than those in the lower layer. Within each layer nodes are ordered to
reduce edge crossings. Figure 4 shows the result of hierarchical comparison. The
user has the option to show nodes whose centrality value changes significantly
between measures. In this example, edges are shown only if the centrality of the
connected nodes differs by more than 20% in two consecutive measures.

Fig. 5. Blockmodel analysis
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2.3 Group Analysis

While centrality analysis focuses on the properties of individual nodes, group
analysis focuses on the overall graph structure. One of the group analysis meth-
ods implemented in GEOMI is blockmodel [4], which groups nodes according to
the graph structure associated with them. After blockmodel analysis, the nodes
that are structurally equivalent are put into the same cluster. The implementa-
tion in GEOMI is that two nodes are structurally equivalent if they have the
same neighbour set, which is the original definition for structural equivalence.
In Fig. 5, same colour is assigned to nodes that are structurally equivalent.

3 Graph Layout Plug-Ins

3.1 Hierarchical Layout

The Hierarchical Layout plug-in implements the algorithm for drawing directed
graphs in three dimensions [5], a 3D extension to the Sugiyama method which
includes an additional step after the layering step. It further partition the layer
into a set of k > 1 subsets, called walls. For details, see [5].

Currently the following algorithms are available for each step of the algorithm:

– Layer-assignment algorithms: longest-path, longest-path followed by node
promotion, network simplex, minwidth. [6, 7]

– Wall-assignment algorithms: balanced min-cut, zig-zag, dominating wall, k-
wall min-span, k-wall balanced. [8, 5]

– Node-ordering algorithms: layer-by-layer sweep with barycenter heuristic for
two-layer crossing reduction.

– Horizontal assignment: Brandes-Köpf algorithm [9].

Fig. 6. HLP applied to one of the Rome graphs
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An example of one of the Rome graphs with 62 nodes and 79 edges is illus-
trated in Figure 6. The algorithms used for each step of the extended Sugiyama
method are listed in the dialogue box in right-hand side of the screen. The user
can choose a method for each step of the algorithm. Further, the user can also
choose a colour scheme for the hierarchical layout.

3.2 3D Tree Layout Plug-Ins

GEOMI supports three linear time 3D tree drawing algorithms that can support
nodes with different sizes - namely cone tree, rod tree and free tree (see Fig. 7).
This layout is also used for drawing clustered graphs in three dimensions. For
details, see [10].

Fig. 7. Tree layout styles in GEOMI

If the given graph is not a tree, the plug-ins can automatically compute a
spanning tree for the graph and compute the layout of the spanning tree. All
non-tree edges are then added back to the final drawing.

3.3 Circular Layout Plug-In

A circular layout plug-in is implemented for visualisation of social networks using
the two pass crossing reduction algorithm [11].
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3.4 Clustered Graph Layout Plug-Ins

Clustered Graph Generator. A clustered graph in GEOMI can be gener-
ated in three ways. Firstly, it can be randomly generated. Two random clus-
tered graph generators have been implemented to generate clustered trees and
clustered general graphs. In both generators, the user can control the graph
generation process by changing a number of parameters. Secondly, a clustered
graph can be generated by reading from the clustered graph data file. Thirdly,
a normal GEOMI graph can be converted into a clustered graph by applying a
clustering algorithm.

Clustered Graph Layout. A series of six clustered graph layout plug-ins
has been created by combinations of three 3D tree layouts and two 2D cluster
layouts. It implements the four step method for drawing clustered graphs in 3D.
For details, see [10].

The plug-in provides a control panel by using the super graph layout control
panel as a sub-panel. This also consists of a general clustered graph layout control
sub-panel that allow users to control the general clustered graph layout process.
See Fig. 8 for an example.

Fig. 8. A clustered graph layout plug-in. This example shows a layout that draws each
cluster using circular layout and combined the whole clustered graph as cone tree.

3.5 Scale-Free Network Plug-In

The scale-free layout plug-in is an implementation of the FADE fast force di-
rected algorithm allowing for interactive modification of the force parameters.
It also allows for layering based on degree centrality which is particularly useful
for visualisation of scale-free networks, see [12].

The edge force controls allow the user to turn edge forces on or off. It also
allows for the resilience of the edges to be increased or decreased. Other options
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(a) Layered (b) Spherical

Fig. 9. Scale-free plug-in

include the ability to have edges repel instead of attract and to use the weights
associated with an edge in calculating the edge force.

The node force controls allow the user to turn node forces on or off. It also
allows the user to modify the extent of the repulsion force as well as the accuracy
parameter of the FADE algorithm, which allows for an accuracy vs speed trade-
off. An attractive force towards the origin can also be turned on or off and
modified.

The degree layering controls allow the user to restrict nodes to layers based
on degree. The nodes can be restricted to either parallel planes (see Fig. 9(a))
or concentric spheres (see Fig. 9(b)). The nodes are partitioned into layers such
that nodes with degree greater than or equal to 10 are at the highest layer and
nodes with degree less than 5 are on the lowest layer. Single degree nodes are
placed on their neighbour’s level. The user can also select to colour the different
partitions differently and can select to have only incoming edges count towards
the degree total.

3.6 Temporal Network Plug-In

Temporal networks, which describe graph changes over time, attract growing
research interests for their analysis. The 2 D method is one of the solutions
to represent temporal network data. In such a method, a graph snapshot at a
particular time is placed on a 2D plane, in which a layout algorithm can be
applied; a series of such planes are stacked together following time order to show
the changes. In order to identify a particular node in different time plane, same
nodes in different planes are connected by edges. Combined with navigation tools
in GEOMI, users can trace the change of each individual node’s relationship to
others and also can evaluate the evolution of the whole network in general.

This method is implemented in GEOMI as a generator plug-in. It can convert
a series of data files, with one file containing information of one time frame only,
into GEOMI data structure, so that layout methods (force-directed layout by
default) can be used. Potentially, all layout algorithms and analysis methods in
GEOMI can be applied, even with different layout and in different plane.
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Fig. 10. Email connections of a research group represented in time series

As an example, Fig. 10 shows the email connections of a certain research
group. Each plane represents one month while each node is one person. The
edges between nodes in same plate shows the email traffic between person. In
addition, degree centrality is mapped to node size while node colour represents
betweenness centrality.

4 Interaction Plug-Ins

4.1 HTML Graph Generator

The HTML graph generator plug-in generates an undirected web-graph where
web pages are represented by graph nodes and hyper-links are represented by
edges between two nodes. Two nodes are connected by an edge if one is referenced
by a hyper-link in the other. Given a URL and the depth of parsing, a web
crawler is employed starting at the specified URL. A fetched web page is parsed
for hyper-links and their respective web pages are acquired recursively. A graph
node is added for every acquired page and edges are added accordingly. As the
graph is being generated on the fly the force directed layout algorithm is started
by default to calculate the layout of the dynamically growing graph.

The generated graph in conjunction with different centrality analysis tools
may be used to extract website structural information. Various page proper-
ties may be defined and identified. In the initial web-graph, the high degree
of the node indicates the most referencing pages, pages that have the most
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Fig. 11. Anatomy of the http://www.cnn.com page

hyper-links to other pages as shown in Fig. 11A. On the other hand, low de-
gree nodes or pendent nodes, shown in Fig. 11B, may express remote pages
access to them may not be easy or trivial from the root of the web-graph,
or the start URL. The web-graph may be used to categorize pages accord-
ing to some predefined conventions that identify the importance of a page.
For example the page shown in Fig. 11C is considered to be an important
one for if a user misses this page while navigating the website, all the infor-
mation in subgraph in Fig. 11D will be kept hidden from the user, in other
words, the user will not be aware of them. A demo movie is available from
http://www.cs.usyd.edu.au/∼visual/valacon/geomi/movies/.

4.2 Head Gesture Plug-In

The head gesture plug-in allows immersive navigation of the data using 3D
head gestures instead of the classical mouse input. The plug-in relies on two
gesture recognition modules, receiving inputs from two low-cost web cameras
located orthogonally, one in front of the user, one on her/his side. See Fig. 12. A
demo movie is available from http://www.cs.usyd.edu.au/∼visual/valacon/
geomi/movies/.
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(a) Nodding down triggers a view
from above

(b) 3D Gesture detection and correspond-
ing actions

Fig. 12. GEOMI gesture plug-in

The user can literally walk into the network, move closer to nodes or clusters
by simply aiming in their direction. Nodding and tilting the head rotate the
entire network along the X and Y axis respectively. The command mapping is
as follows:

Head movement Navigation
Horizontal sideways Mirrored X translation
Vertical up/down Mirrored Y translation
Horizontal back/forth (towards screen) Zoom out/in
Nodding up/down X rotation
Tilting left/right Y rotation

5 Conclusion

GEOMI is a generic visual analysis tool and can be extended to a special tool
for visual analysis of biological networks or social networks. We will add more
analysis methods, graph algorithms and layout methods including interaction
methods. The analysis methods include social network analysis and graph mining
methods. Layouts methods include implementation of algorithms for various
graph models such as planar graphs and general graphs, and network models
such as evolution networks and dynamic networks. Interaction methods include
navigation methods and various user interactions.
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Abstract. One of the most challenging issues in mining information
from the World Wide Web is the design of systems that can present the
data to the end user by clustering them into meaningful semantic cate-
gories. We envision that the analysis of the results of a Web search can
significantly take advantage of advanced graph drawing techniques. In
this paper we strengthen our point by describing the visual functionali-
ties of WhatsOnWeb, a meta search clustering engine explicitly designed to
make it possible for the user to browse the Web by means of drawings of
graphs whose nodes represent clusters of coherent data and whose edges
describe semantic relationships between pairs of clusters. A prototype of
WhatsOnWeb is available at http://whatsonweb.diei.unipg.it/.

1 Introduction

Increasing attention has been recently devoted to the development of new sys-
tems that support users in searching the Web. Although classical search engines
perform well in many circumstances, there are some practical situations in which
the data that they return as a reply to a user’s query are not structured enough to
easily convey the information that the user may be looking for (see also [6, 10]).
Indeed, the output of a classical search engine consists of an ordered list of docu-
ment links (URLs), where each link comes together with a brief summary (called
snippet) of its associated document. The links are selected and ranked by the
search engine according to some criteria that depend on the user’s query, on the
documents content, and (in some cases, like Google) on the popularity of the
links in the World Wide Web. The list of URLs returned by a search engine
is often very long and the consequence is that users may omit to check URLs
that can be relevant for them, just because these links do not appear in the first
positions of the list. This problem is even more evident when the user’s query
presents polisemy, that is words with different meanings. For example, suppose
that the user submits the query “Jaguar”; is she interested in the “car” or in
the “animal”?

A Web meta-search clustering engine is a system conceived to cope with the
above described limitations of classical search engines. As shown in Figure 1, a
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c© Springer-Verlag Berlin Heidelberg 2005



WhatsOnWeb: Using Graph Drawing to Search the Web 481

Web meta−search 
clustering engine

Web search engine

Web search engine

Web search engine

query

clusters hierarchy

Fig. 1. Schema of the working model of a Web meta-search clustering engine

Web meta-search clustering engine provides a visual interface to the user who
submits a query; it forwards the query to (one or more) traditional search en-
gines, and it displays a set of clusters, also called categories, which are typically
organized in a hierarchy. Each category contains URLs of documents that are
semantically related with each other and is labelled with a string that describes
its content. With this approach, the user has a global view of the different se-
mantic areas involved by her query, and can explore those areas in which she is
mostly interested.

Despite the graphical user interface of a Web meta-search clustering en-
gines plays a fundamental role for efficiently retrieving the wanted information,
the vast majority of Web meta-search clustering engines (see, e.g., Vivisimo,
iBoogie, SnakeT [6] 1 ) have a GUI in which the set of clusters is represented
simply as a tree of directories and subdirectories. We find this type of represen-
tation unsatisfactory for the following reasons.

– A tree of clusters represents inclusion relationships between a cluster and its
sub-clusters. However, nodes that are not in an ancestor/descendant relation
can also have strong semantic connections, which may be underestimated if
not completely lost by following the tree structure. Suppose for example
that the user’s query is “Armstrong” and that the tree of clusters is as the
one depicted in Figure 2(a). Is the category “Biography” related to “Louis”
or to “Lance” or to both (or to neither of them but to the astronaut Neil
Armstrong?). If there were one edge as in Figure 2(b) or if there were two
edges with different weights as in Figure 2(c), the user could decide whether
or not the category “Biography” is of her interest.

– Viewing the clusters as the vertices of a graph can also help the user to detect
communities of clusters which identify a common topic and/or to highlight
isolated clusters which may be pruned if their labels are not meaningful for
the user’s query. This type of analysis is clearly unfeasible if all clusters are
displayed in a tree structure.

– Finally, the visualization paradigm adopted by systems like Vivisimo often
uses basic drawing techniques: The tree is displayed with poor aspect ratio
on the left-hand side of the interaction window. The visual exploration is

1 http://vivisimo.com/; http://www.iboogie.com/;http://snaket.di.unipi.it/
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BiographyLouis

Armstrong

Lance

(c)

Fig. 2. (a) A portion of a tree of categories for the query “Armstrong”. (b)-(c) The
same tree, plus edges that highlight cluster relationships. In (c), each edge is labelled
with a number that represents the strength of the edge.

particularly uncomfortable when the degree of the tree is high: Expanding
a few nodes at the same level can make the rest of the tree no longer visible
on the screen.

We envision that the analysis of the results of a Web meta search cluster-
ing engine can significantly take advantage of advanced graph drawing tech-
niques. In this paper we strengthen our point by describing the user interface of
WhatsOnWeb2. WhatsOnWeb, a meta search clustering engine explicitly designed
to make it possible for the user to browse the Web by means of drawings of
graphs whose nodes represent clusters of coherent data and whose edges de-
scribe semantic relationships between pairs of clusters. The produced diagrams
are in general structurally more complex than trees and the user can interact
with them in a number of different ways. The main visual functionalities and
tools of the GUI of WhatsOnWeb are shortly summarized below.

– WhatsOnWeb adopts a visual paradigm that makes it possible to dynamically
interact with the graph of categories by expanding and/or contracting its
nodes while preserving the user’s mental-map. Particular attention is given
to the area required by the representation, since the graph of the clusters
may become relatively large after the expansion of a few categories.

– WhatsOnWeb emphasizes the relevance of a category with respect to other
categories by using a suitable score function. The relevance (score) of each
category is conveyed in the drawing by using different colors for the vertices
of the graph. It is also possible to visualize the “strength” of a semantic rela-
tionship between two categories expressed as another suitable score function.
Furthermore, the user can analyze the relationship between two categories
c1 and c2 by visualizing a bipartite graph with all URLs that give rise to the
relationship between c1 and c2.

– The user is provided with several automatic or semiautomatic tools to sim-
plify and/or to refine the clustered graph returned by the system. For exam-
ple, the user can ask the system to prune those categories whose relevance
is below a given threshold and that are not connected to any other relevant
categories.

2 A prototype of WhatsOnWeb is available at http://whatsonweb.diei.unipg.it/
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We remark that, to the best of our knowledge, the only other Web meta-search
clustering engine that supports the user with a graph visualization approach is
Kartoo 3. Besides being very appealing from a graphic view point, the graph
visualization offered by Kartoo is however not much more expressive than the
tree of clusters of Vivisimo. The nodes in the graph of Kartoo are the individual
URLs and the clusters are represented as regions of a virtual map. By pointing
the page with the mouse, the system highlights all categories in which the Web
page is contained; by pointing a category, the system highlights all URLs that
form the specified category. Also, every map of Kartoo contains only a limited
number of URLs (about twelve) and a global view of the relationships between
all categories (and thus an enhanced visual analysis) is not possible.

2 Principles of the System WhatsOnWeb

The system WhatsOnWeb computes the clusters hierarchy based on the topology-
driven approach [5], which allows us to define a new visualization paradigm for
representing and browsing the clusters hierarchy. The topology-driven approach
relies on the basic concept of snippet graph. Intuitively, a snippet graph represents
the URLs returned by a search engine in response to a user query, along with
their relationships. The relationships between pairs of URLs are computed by
analyzing the snippet that a search engine returns along with each URL; the
snippet of a URL is a text that represents a brief summary of the document
associated with the URL. Each vertex of the snippet graph is a URL and there
is an edge between two URLs when the associated snippets share some terms.
In the following, we first give a formal definition of snippet graph, which is
refined with respect to that introduced in [5]; then, we recall the principles of a
visualization paradigm related to the definition of a snippet graph.

Let U be a set of URLs returned by a search-engine in response to a user
query. If u ∈ U , we call text of u the concatenation of the title and the snippet
associated with u. In order to construct the snippet graph of U we perform a
sequence of preliminary steps:

Cleaning step. Stop-words and HTML symbols are removed in the text of each
element of U .

Stemming step. A stemming algorithm is applied on the cleaned texts, and
for every computed stem s we associate a word zs chosen among those whose
stem is equal to s; words zs is used later to label the clusters. After this step,
the text of each URL u is viewed as a sequence of stems, denoted by Su.

Scoring step. We assign a score ws to each stem s; ws measures the “relevance”
of s in all URL texts containing s. Several criteria can be used to determine
ws. We adopt a standard function called tf-idf (term frequency-inverse doc-
ument frequency), introduced by Salton in 1989 [9]. Namely, let D be a set
of documents, let s be a term in a document d ∈ D, and let Ds ⊆ D be the
subset of documents containing s. The tf-idf of s with respect to document

3 http://www.kartoo.com/
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d is defined as: t(s , d) = f(s, d) log(|D|/|Ds|), where f(s, d) is the frequency
of s in d. In our case, assuming D as the set of URL texts, we define ws as
the average of the tf-idf of s over all documents of Ds, i.e., ws =

∑
d∈Ds

t(s,d)
|Ds| .

The snippet graph G of U is a labeled weighted graph defined as follows:

– G has a vertex vu associated with each element u ∈ U . The label of vu can
be either the title of u or its description as URL.

– G has an edge e = (vu1 , vu2) (where u1, u2 ∈ U) if the texts of u1 and u2
share some stems, i.e. if Su1 ∩ Su2 is not empty. To determine the weight
and the label of e, the following procedure is applied. Compute the set Se

of all maximal sub-sequences of consecutive stems (each sub-sequence with
single multiplicity) shared by Su1 and Su2 ; each element of Se is also called
a sentence. The score of a sentence σ ∈ Se is defined as wσ =

∑
s∈σ ws, and

the weight of e is we =
∑

σ∈Se
wσ. Finally, the label of e is set equal to Se.

In the snippet graph, the weight of an edge measures the strength of the se-
mantic relationship between their end-vertices. This strength depends both on
the number of sub-sequences of stems shared by their texts and on the rele-
vance (scores) of these sub-sequences. As also pointed out by other authors (see
e.g. [6, 11]), considering sub-sequences of terms (i.e., sentences) shared by two
texts is in general more informative than considering unordered sets of terms,
and it allows better estimation of the strength of the connections between the
two texts. Also, sentences can be used to compute more effective labels for
clusters.

In order to determine clusters in the snippet graph we compute communities of
vertices, i.e. sets of vertices that are strongly connected from a topological point
of view. We adopt a recursive divisive strategy based on graph connectivity (see,
e.g. [2, 7, 8]): The clusters hierarchy is determined by recursively cutting some
edges that disconnect the graph; the algorithms based on this strategy mainly
differ for the criteria used to choose the next edge to be removed. Our algorithm
is a variation of an elegant technique recently proposed by Brinkmeier [2] (see
[5] for details). We remark here that for any pair of categories A and B in the
computed hierarchy, we have that either A and B are disjoint or one of them
includes the other. In fact, in order to simplify the information returned to the
user, we aim at assigning each URL to its most representative category, and
possibly relationships between disjoint categories will be highlighted using the
new visualization paradigm.

To label a category μ of our hierarchy tree, we apply a procedure that takes
advantage of the new definition of the snippet graph. Namely, let Gμ = (Vμ, Eμ)
be the subgraph of G induced by the vertices of G contained in μ, and let Sμ be
the set of all labels of the edges of Gμ, that is Sμ = ∪e∈EμSe. If σ ∈ Sμ occurs
in the label of k edges (k > 0) of Gμ, then kwσ is called the total score of σ in
Gμ. Denoted by σ = s1, s2, . . . , sh (h > 0) any sentence of Sμ with maximum
total score, the label of μ is defined as the concatenation of the (spaced) words
zs1 , zs2 , . . . , zsh

.
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Let G be the snippet graph of a set of URLs, and H(G) its category tree. For
any internal node μ of H(G), we denote by Gμ the subgraph of G induced by the
leaves of the subtree rooted at μ. The drawing approach works in three steps.

Edge sparsification. A preprocessing step is applied on G to remove those
edges that do not provide useful information to the structure of the clusters.
For each internal node μ of H(G), we remove from Gμ every edge whose label
only consists of sentences that, in their unstemmed version, are completely
contained in the label of μ. Denote by G′ the graph obtained from G by
applying this cleaning operation over all sub-graphs Gμ. We maintain on G′

the same clusters hierarchy as G, so that H(G′) = H(G) in the following.
Cluster relationships computation. We transform graph G′ into a new su-

per clustered graph G′′ such that each cluster μ is explicitly represented as a
kind of super node, which we denote by Cμ. Super nodes can be connected
by super edges to emphasize the relationships among clusters. Super edges
can be seen as extra arcs connecting nodes of H(G′). More formally (see also
Figures 3(a) and 3(b)), let μ1 and μ2 be any two internal nodes of H(G′)
that are children of the same node μ, and let E(μ1, μ2) be the subset of
edges of G′ that connect vertices of G′

μ1
to vertices of G′

μ2
. If E(μ1, μ2) is

not empty, we replace this set of edges by a new super edge e connecting
the super nodes Cμ1 and Cμ2 . The label of e is the union of all labels of the
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Fig. 3. (a) A clustered graph G′ with no redundant edges; the edges connecting vertices
in distinct clusters are labelled. (b) The graph G′′ obtained from G′ by representing
clusters with super nodes. (c) A drawing of G′′; the string label-x denotes the label
of object (cluster or vertex) x; cluster A is contracted.(d) A drawing of G′′ where all
clusters are expanded.
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edges in E(μ1, μ2), and the weight of e is the sum of all weights of the edges
in E(μ1, μ2).

Maps Visualization. Let μ be a cluster of G′′. The graph consisting of the
children of μ and their relationships is represented as an orthogonal drawing
with box-vertices; each vertex is drawn as a box with the size required to
host its label or its subclusters, depending on the fact that it is contracted
or expanded. Figures 3(c) and 3(d) show two different maps of the clustered
graph G′′ in Figure 3(b). Details about the algorithms used to compute the
drawings are given in Section 4.

3 User Interface and Graph Visualization Functionalities

The user interacts with the system WhatsOnWeb by means of a Web browser
and a Java applet. The graphic environment consists of two frames (see, e.g.,
Figure 4). In the left frame the clusters hierarchy is presented to the user as a
classical directories tree. In the right frame, the user interacts with a map that
gives a graphical view of the clusters hierarchy at the desired level of abstraction.
Initially, the map shows only the first level categories and their relationships,
according to the principles given in the previous section. The drawing is com-
puted using an orthogonal drawing style, where each category is represented
as a box with prescribed size. The size of each box is chosen as the minimum
required to host the label of the category and/or a drawing of its subclasters.
The user can decide to expand any of these categories, by simply clicking on
the corresponding box, and so on recursively. Expanded categories can also be
contracted by the user successively. Figure 4 shows a snapshot of the interface,
where the results for the query “Armstrong” are presented; in the figure, the
category “Louis Armstrong” has been expanded by the user. During the brows-
ing, the system automatically keeps consistent the map and the tree, i.e., if a
category is expanded in the map, it also appears expanded in the tree, and vice-
versa. Also, in order to preserve the user mental map, WhatsOnWeb preserves the
orthogonal shape of the drawing during any expansion or contraction operation.
For example, Figure 5(a) shows the map obtained by expanding the categories
“Jazz”, “School”, and “Louis Armstrong Stamp” in the map of Figure 4.

Besides the browsing functionalities above described, the interface is equipped
with several facilities that increase the expressiveness of the output and the
interaction between the system and the user. They are listed and described
below:

– Ranking of categories. WhatsOnWeb ranks the semantic categories at each
level, by assigning to each category a relevance score. This score is propor-
tional to these three main parameters: (a) the size of the category, (b) the
maximum rank (returned by Google) of a document in the category, and (c)
the deviation of the score for the label of the category from the average score
of all sentences in the same category. We use this third parameter as an esti-
mate of the reliability of the sentence used to label the category. In the tree
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Fig. 4. A map for the query “Armstrong”; in the map the category “Louis Armstrong”
has been expanded by the user

representation, the categories are ordered from top to bottom according to
their decreasing relevance score. In the map, the relevance score is conveyed
to the user adopting different colors in the red scale; highly red categories
are the most relevant ones, while yellow categories are the least relevant. For
example, in Figure 4, the expanded category “Louis Armstrong” is supposed
to be one of the most relevant categories at the first level. Conversely, the
category “Ride” has a low relevance score for the system, and its label does

(a) (b)

Fig. 5. (a) A map obtained from the one of Figure 4 by expanding the categories “Jazz”,
“School”, and “Louis Armstrong Stamp”; this last category contains two URLs, labeled
with their titles. (b) Another map where isolated categories of little relevance have been
automatically hidden.
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not appear meaningful; this category is even completely unrelated with every
other category.

– Automatic filtering. As the categories have a relevance score, also each
relationship between two categories has an assigned weight that measures
the strength of that relationship (see Section 2). The user can customize a
visibility threshold both for the categories and for their relationships. The
system automatically hides those edges whose weight is less than the given
threshold, and it hides all categories that are isolated and whose score is less
than the specified threshold. For example, in Figure 5(b) several isolated
categories of the map in Figure 4 have been automatically hidden by the
system, after that the user has increased the visibility threshold for the
categories.

– Pruning of categories. The user can select a desired subset of categories
in which she is no longer interested. After this selection, the system can be
forced to only recompute the drawing, without changing the content of the
remaining clusters, or it can be forced to also recompute the whole clusters
hierarchy using the remaining documents. This pruning operation can be
used to progressively reduce the amount of information that the user handles,
and to refine the remaining information if necessary. For example, Figure 6
shows the result of a pruning of the categories “Neil Armstrong”, “School”,
and “Armstrong Williams”, starting from the map of Figure 5(b). After the
pruning only the drawing is recomputed, in order to optimize the occupied
area. In the map of Figure 6, three further categories are selected by the

Fig. 6. The categories “Neil Armstrong”, “School”, and “Armstrong Williams” have
been pruned from the map of Figure 5(b), and only the drawing has been recomputed
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user to be pruned; in this case the user requires to completely recompute
the clusters hierarchy after the pruning operation. The result is depicted in
Figure 7; observe how the set of clusters is changed.

– Edge exploration. The user can explore the information associated with
the edges of the map. If the mouse is positioned on an edge (u, v), a tool-tip
is displayed that shows both the weight and the complete list of strings that
form the labels of the relationship between u and v. Clicking on the edge,

Fig. 7. The result of a further pruning of the categories “Hits”, “Trumpet” and
“Writes”, where also the clustering is recomputed

Fig. 8. A 2-layered drawing that shows the relationships between the URLs of “Louis
Armstrong Stamp” and those of “Jazz”
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a 2-layered drawing is shown to the user, that displays the URLs in u, the
URLs in v, and the relationships between these two sets of URLs, as they
appear in the snippet graph (see Figure 8). This feature makes it possible to
isolate all those documents that give rise to a specific relationship and can
be also used as a tool to evaluate and tune the mechanism adopted by the
system for creating cluster relationships.

– Query refinement. The user can select one or more categories and can ask
the system to repeat the query by adding to the original query string the
labels of the selected categories. In this way it is possible to obtain semantic
categories that are more and more specific for the domain in which the user
is interested.

4 Implementation and Graph Drawing Engine

The GUI environment and the client/server communication layer of WhatsOnWeb
have been implemented using Java technology. From the client side we defined
a Java Applet which interacts with the user and forwards the requests to the
server. From the server side we defined several Java Servlets; one of these Servlets
interacts with a graph drawing engine, which implements engineered versions
of orthogonal graph drawing algorithms and which uses the facilities of the
GDToolkit library 4. During the browsing of the user, the map displayed on
the screen changes dynamically, depending on the expansion or contraction op-
erations required by the user. WhatsOnWeb has two main goals each time a new
drawing must be computed: (i) The preservation of the user mental map, and
(ii) the minimization of the area occupied by the drawing.

The first goal is achieved by computing an orthogonal shape for each subgraph
of the super clustered graph G′′ (see Subsection)and by always using the same
shape each time a drawing of the subgraph must be displayed. To compute this
shape the system first planarizes the subgraph and then uses the simple Kandisky
model and the flow-based algorithm described in [1].

The second goal is achieved by determining the size of each super node in the
map, and by applying the effective compaction algorithm for orthogonal drawings
with vertices of prescribed size described in [3]. The compaction algorithm is
recursively applied to all those orthogonal shapes (computed in the previous
step) that must be visualized. More in detail, during the browsing of the user
each cluster μ maintains a state that informs if it is expanded or contracted. If
μ is contracted, it is represented as a “small” rectangle containing its label; all
its subclusters are hidden. If μ is expanded, its super node Cμ is drawn as a
rectangular region rμ that contains the drawings of its subclusters and the label
of μ. The dimensions of rμ depend on the state of the subclusters of μ, which can
be expanded or not. To determine the dimensions of rμ we apply a procedure
that recursively constructs a drawing Γ of the subclusters of μ and then sets the
height and the width of rμ as the height and the width of the bounding box of
Γ , plus a small area needed to place the label of μ.
4 http://www.dia.uniroma3.it/∼gdt
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Finally, we implemented a standard Sugyiama algorithm (see, e.g., [4]) in
order to construct the 2-layered drawings that show the relationships between
the URLs of two distinct clusters.
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Abstract. Clustered graph is a very useful model for drawing large
and complex networks. This paper presents a new method for drawing
clustered graphs in three dimensions. The method uses a divide and
conquer approach. More specifically, it draws each cluster in a 2D plane
to minimise occlusion and ease navigation. Then a 3D drawing of the
whole graph is constructed by combining these 2D drawings.

Our main contribution is to develop three linear time weighted tree
drawing algorithms in three dimensions for clustered graph layout. Fur-
ther, we have implemented a series of six different layouts for clus-
tered graphs by combining three 3D tree layouts and two 2D graph
layouts. The experimental results with metabolic pathways show that
our method can produce a nice drawing of a clustered graph which
clearly shows visual separation of the clusters, as well as highlighting
the relationships between the clusters. Sample drawings are available
from http://www.cs.usyd.edu.au/∼visual/valacon/gallery/C3D/

1 Introduction

Recent advances in technology have led to many large and complex network mod-
els in many domains such as webgraphs, social networks and biological networks.
Visualisation can be an effective analysis tool for such networks. Scalability, how-
ever, is the most challenging issue, as they may have millions of nodes.

Graph clustering is one of the most efficient approaches to solve the scalability
problem. Good clustering methods can identify clusters and the relationships be-
tween clusters. Further, many real-world networks have an underlying clustered
graph topology.

Recent technological advances in computer graphics hardware made high qual-
ity 3D graphics affordable. Further, HCI researchers have established that 3D
visualisation can be helpful for giving new insights into abstract data by ampli-
fying human cognition [13].

Clustered graphs have been introduced to both the graph drawing and infor-
mation visualisation communities. Methods for visualising clustered graphs in
two and three dimensions have been developed [6, 7]. Good drawings of clustered
graphs should visually separate the clusters effectively as well as reveal the inter-
cluster relationships. However, it seems that existing methods fail to satisfy at
least one of the following criteria for drawing clustered graphs in 3D:

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 492–502, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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– minimum number of edge crossings between intra-cluster edges
– minimum volume of the drawing
– minimum sum of inter-cluster edge length
– minimum occlusion views of the drawing
– no overlap between the drawing area of each cluster
– easy navigation

In this paper, we present a new method for drawing clustered graphs in three
dimensions. Our work concentrates on layout of flat clustered graphs [7], so we
only have to consider one level of clustering. Although this clustered graph model
is less general than the common clustered graph model [6], it appears to be a
useful model in some real-world applications, like visualization of biological net-
works. Our proposed method draws each cluster in a 2D plane using an existing
2D drawing algorithm to minimise occlusion and facilitate ease of navigation.
Then a 3D drawing of the whole clustered graph is constructed by combining
these 2D drawings. For this purpose, we designed three linear time weighted tree
drawing algorithms in three dimensions.

Further, we have implemented a series of six different layouts for clustered
graphs by combining three 3D tree layouts and two 2D graph layouts. The ex-
perimental results with metabolic pathways suggest that it is useful for the visual
analysis of large and complex networks.

This separation of dimensionality can help to achieve some of the criteria for
clustered graph drawing. In our divide and conquer algorithm, the problem of
drawing each cluster in 2D and the problem of arranging each cluster in 3D
are addressed separately. However, in order to ensure the overall aesthetics of
the drawing of the clustered graph, a post-combination step, called inter-cluster
occlusion minimisation, is devised.

Our method also follows Ware’s guideline, a 2 1
2 design attitude that uses 3D

depth selectively and pays special attention to 2D layout can provide the best
match with the limited 3D capabilities of the human visual system” [14].

This paper is organized as follows: the main results of the paper are presented
in Section 2. Here we describe a new method for drawing clustered graphs in
three dimensions. In particular, three 3D tree drawing algorithms are presented
for clustered graph layout. Section 3 presents experimental results and Section 4
concludes.

2 Algorithms for Drawing Clustered Graphs in 3D

First we define our clustered graph model and terminology. We use a flat clus-
tered graph model. That is, we have a set of clusters, G1, G2, . . . , Gk with
Gi = (Vi, Ei). Further, we define a supergraph GG such that each Gi is a node
vi in GG, and if there is an edge between a node in Gi and a node in Gj , then
there is an edge between vi and vj . Note that we can define a weight to each
node and edge in GG depending on the size of the cluster and the number of
edges between the clusters.
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Our algorithm draws a clustered graph using the following four steps:

Algorithm 3D Clustered Graph Drawing
1. Draw each cluster in 2D using a 2D drawing algorithm.
2. Draw the weighted supergraph in 3D.
3. Merge the drawings from Step 1 and 2 to construct a 3D drawing of the

given clustered graph.
4. Apply inter-cluster occlusion minimisation procedure.

The first step of the algorithm is to draw each cluster in a 2D plane using a
2D graph drawing algorithm. Each node in the cluster is assigned a coordinate
in this step. Then the size of each cluster, i.e. the drawing area of the cluster, is
computed and assigned as a weight to the corresponding supernode.

In the second step, the layout of the weighted supergraph is computed. As the
supernodes have different sizes, a weighted graph layout algorithm is required
for this step.

The third step combines the drawings from step 1 and step 2 to construct a
3D drawing of the whole graph. This step is to transform the coordinates of each
node to its final position using the coordinates of the corresponding supernode.

The last step of the algorithm is called the inter-cluster occlusion minimisation
(ICOM) step. This step addresses the occlusion problem caused by the insertion
of inter-cluster edges. We now describe the details of each step.

2.1 Drawing Each Cluster in 2D

The first step is to draw each cluster using any 2D drawing algorithm. One can
choose a method depending on the application [5].

Once each cluster is drawn, its size is calculated. More specifically, the size of
a cluster is defined by the radius of an enclosing circle of the drawing area.

2.2 Drawing the Supergraph in 3D

The second step is to compute the layout of the supergraph in 3D. In general,
any layout algorithm that can draw graphs with different node sizes can be used.
In this paper, we mainly concentrate on drawing the supergraph in 3D, where
it has a tree structure.

There are two main reasons for focusing on 3D tree drawing methods. First, in
general tree layout algorithms are simple and run in linear time. Second, many
real life networks resemble tree-like structures, and sometimes visualising the
spanning tree of a general graph can be desirable.

In order to accomodate nodes with different sizes, we have designed three
linear time 3D tree drawing algorithms, based on the cone tree algorithm [12]: (a)
weighted cone tree drawing algorithm (b) weighted rod tree drawing algorithm,
and (c) weighted free tree drawing algorithm. We now describe the details of the
algorithms.

Weighted Cone Tree Layout. A cone tree [12] is normally computed by a
two-pass algorithm: the first pass computes the cone radius by a post-order tree



Drawing Clustered Graphs in Three Dimensions 495

Fig. 1. (a) cone tree (b) rod tree (c) free tree

traversal. In the second pass, a pre-order traversal is used to assign coordinates
to each node. For our purpose of drawing weighted trees, we mainly modified
the first step.

In a cone tree, each non-leaf node is considered as an apex of a circular cone
with cone radius. Let rh,v be the cone radius of the node v at height h. In
general, rh,v can be computed from the cone radius rh+1,j of its child nodes j
at height h + 1 using the method described in [4]. However, for our purpose, we
need another variable radh,v to represent the radius (that is weight or size) of
the node. In our weighted version of the modified cone tree algorithm, the rh,v

of each node is computed as follows (see Figure 1(a)):

rh,v = max{
∑

j rh+1,j

π
+ maxj(rh+1,j), radh,v} (1)

Weighted Rod Tree Layout. The cone tree algorithm draws all child nodes
on the boundary of the circular base of a cone. There is a drawback of this model:
a drawing of a highly unbalanced tree may require a large volume. Further, in
real world applications, some subtrees may have different levels of importance
and it may be desirable to emphasize those subtrees.

In this section, we describe a variation of the cone tree algorithm, called rod
tree, which chooses one subtree and places it along the z-axis. A similar idea
has been explored in the context of visualisation of state transition graphs [9] or
symmetric tree drawing [11].

In our rod tree algorithm, we choose a child subtree of maximum height as the
center node and then place it on the z-axis. Then, its zero-height siblings form a
inner circle to surround the center node. Finally, all the other non-zero height sib-
lings are placed in the outer circle. Therefore, each cone contains at least one child
subtree on the axis of the cone, surrounded by at most two concentric circles.

In a rod tree, the child nodes of node v at level h can be divided into three
groups: the center node i with the maximum height, a set of nodes j with zero-
height, and a set of nodes k with non-zero height (see Figure 1(b)). The cone
radius rh,v of node v can be computed as:

rh,v = max{base radius(h, v), radh,v} (2)
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The base radius function returns the cone radius. It is computed by first
considering the radius of the node i of maximum height, as the inner circle and
the circle formed by the zero-height nodes j as outer circle. The radius of the
inner circle radinner is defined as rh+1,i. The radius of the outer circle radouter

can be calculated using the normal cone tree method.
Note that the inner and outer circle overlap if radinner > radouter − 2max

(rh+1,j). In this case, we can remove overlapping by increasing the radius of
the outer circle. Therefore, radouter is assigned as radinner +2max(rh+1,j). The
nodes k are then then packed around nodes j. The positions of nodes k are
calculated in the same manner as positioning nodes j around node i.

The coordinate assignment step in the rod tree algorithm is similar to the one
in the cone tree algorithm.

Weighted Free Tree Layout. Both cone tree and rod tree aim to draw a
rooted tree where the hierarchical relationship is important. However, not all
clustered graphs have a hierarchical relationship. To cover this case, we now
present a 3D free tree drawing algorithm that considers nodes of different sizes.

The main idea is to divide the tree into two subtrees, then draw each subtree
in a hemisphere. For each subtree, the layout is computed by placing the child
node with maximum height along the axis of the parent node, surrounded by all
the other siblings on a spherical surface.

The method for computing the size of a cone is quite different from the one
for cone tree and rod tree. In a free tree, each non-leaf node v at level h is an
apex of the spherical cone. The size of the cone is computed by the angle ϕh,v,
an angle between its main axis and the conic surface (see Figure 1(c)).

Let i represent the center node and j represent all other child nodes. Let
l be the edge length between adjacent node. The angle ϕh,v of a leaf node is
defined as:

ϕh,v = tan(
2radh,v

l
) (3)

For all non-leaf nodes, ϕh,v can be computed as:

ϕh,v = max{contribution(h + 1, i), 2maxj[contribution(h + 1, j)]} (4)

where the function contribution() returns a value that contributes to the com-
putation of ϕh,v:

contribution(a, b) = max{arctan
rada,b

l
, arctan

tan ϕa,b

2
} (5)

Note that the previous steps pack the spherical cones as tightly as possible.
In general, a good layout uses the space evenly, therefore a scaling procedure is
applied. Let ϕh,available be the total amount of angle available to draw the tree
at level h. At each level, ϕh,v is scaled according to the function:

ϕh,v = ϕh,available ×
ϕh,v∑
v ϕh,v

(6)

At the next level ϕh+1,available = ϕh,v.
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2.3 Merging the 2D Drawings into a 3D Drawing

This step combines all drawings of the clusters together according to the su-
pergraph layout. The drawings are transformed to the position specified by the
corresponding supernode’s position. We used the following two simple methods.

The first method is a simple translation. Since all clusters are initially drawn
on the xy plane, all the planes are placed in parallel along the z-axis in 3D.

The second method is a combination of translation and rotation. Each drawing
is first translated to the corresponding position, and then rotated towards the
center of the drawing. This method places each plane parallel to each other along
a concentric sphere.

2.4 The Inter-cluster Occlusion Minimisation Step

The last step of our algorithm considers the placement of inter-cluster edges in
order to minimise occlusion and the sum of inter-cluster edge length. A method
for Inter-Cluster Occlusion Minimisation (ICOM) is designed for drawing a clus-
tered graph using a 2D spring algorithm for drawing each cluster and one of the
3D tree drawing algorithms. The main idea is to place the nodes connecting an
inter-cluster edge close to the boundary of the cluster, as close to the adjacent
cluster as possible.

More specifically, our method is based on the spring algorithm with specialized
forces. These forces include spring force, repulsion, planar force, ICOM force, and
boundary force. The ICOM force can be seen as the spring force for inter-cluster
edges. It only pulls nodes that connect to inter-cluster edges along the 2D plane
towards the adjacent cluster.

The ICOM force for each node u ∈ V is defined as follows:

ficom(u) = I
∑

(v∈N)

[‖pv − pu‖ + refl(‖pv − pu‖)] (7)

where I is the ICOM force constant and N is the set of nodes connected to u via
an inter-cluster edge. The function refl() is a reflection function that returns a
vector, a reflection about the cluster plane. Therefore, ‖pv−pu‖+refl(‖pv−pu‖)
is a vector parallel to the cluster plane that points to the direction of a neighbour
node in the adjacent cluster.

In order to prevent this ICOM force from indefinitely enlarging the cluster,
a boundary force is added. The boundary force sets a circular boundary for the
cluster. Inside the boundary, a node can move freely. If a node goes over the
boundary, a strong force is applied to pull the node back. More specifically, the
boundary force for each node u ∈ V is defined as follows. If ‖pu‖ > bound, then:

fboundary(u) = −Bpu (8)

where pu is defined as the position of node u. If u is out of the circular boundary
of radius bound, a force of −Bpu is applied to pull the node back inside the
boundary. B is a positive boundary force constant.
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Fig. 2. Comparison of clustered graph layout (a) without ICOM (b) with ICOM

For example, see Figure 2. A randomly generated clustered graph of 329 nodes,
674 edges and 8 clusters is drawn with the weighted cone tree and spring algo-
rithm. ICOM allows a node that is connected to another node in an adjacent
cluster to be drawn closer along its own 2D plane. This reduces the visual com-
plexity of the whole drawing by less occlusion and shorter inter-cluster edges.
Since the boundary force is applied to restrict the size of the cluster, all result-
ing clusters are circular in shape. The normal spring, repulsion and planar force
allow each cluster to optimise the aesthetic criteria.

2.5 Extension to the General Case

Not all clustered graphs have a supergraph of tree structure. In this case, the
maximum spanning tree of the supergraph can be used. Since the weight of a
superedge is the actual number of edges between the two clusteres it connect to,
the use of a maximum spanning tree ensures most of the inter-cluster edges are
drawn between nodes on different tree levels.

3 Implementation and Experimental Results

Our algorithm has been implemented as a set of plug-in modules for GEOMI, a
visual analysis tool for large and complex networks [1]. More specifically, we have
implemented a series of six different layouts for clustered graphs by combining
three 3D tree layouts (weighted cone tree, weighted rod tree and weighted free
tree) and two 2D graph layouts (force directed layout and circular layout).

For data sets, we have used both randomly generated data sets and real world
data sets. For this purpose, we implement a generator to randomly generate
clustered trees, see [1].

Figure 3, 4, 5 shows three different layouts of clustered graphs. From the
drawing, it is easy to identify each cluster separately. Further, it is easy to
understand the relationship between clusters.

For real world networks, we used metabolic networks. A metabolic network is a
collection of chemical reactions in cells. Visualisation of these networks can help
identify key features and possible malfunctions of cells. The whole metabolic
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Fig. 3. Cone tree layout (a) a tree with 341 vertices, 1269 edges and 30 clusters drawn
with spring layout (b) a tree with 616 vertices, 1636 edges and 31 clusters drawn with
circular layout

Fig. 4. Rod tree layout (a) a tree with 620 vertices, 1769 edges and 47 clusters drawn
with spring layout (b) a tree with 616 vertices, 1636 edges and 47 clusters drawn with
circular layout

Fig. 5. Free tree layout a tree with 616 vertices, 1636 edges and 31 clusters drawn with
(a) circular layout (b) spring layout

network can be divided into many functional units called pathways. Different
pathways are connected by sharing the same chemicals. Existing approaches ei-
ther focus on only visualising individual pathways or the entire network [2, 3, 8].
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Fig. 6. Metabolic Network of eight related pathways

Clearly, these approaches are not sufficient in conveying the biological functional-
ity of the network. A visualisation method that can effectively display the whole
network as well as highlighting the functional independence of the individual
pathway is needed.

In order to address this problem, we use the cluster graph model to visu-
alise the metabolic network. Chemicals are represented by nodes and reactions
are represented by edges. Each pathway is a cluster, and the whole metabolic
network forms a clustered graph. Sharing of chemicals between pathways is rep-
resented by inter-cluster edges.

In our study, we use metabolic network data retrieved from the KEGG
database (http://www.genome.ad.jp/kegg/). GML [10] files containing individ-
ual pathways are read from the Clustered Graph Reader in GEOMI, then the
whole network is constructed by adding inter-cluster edges between the same
chemicals on different pathways. Since the supergraph of the metabolic network
is not a tree, a maximum spanning tree of the original supergraph is used. The
supernode with the highest degree centrality is chosen to be the root of the
spanning tree.

Figure 6 shows a metabolic network of eight related carbohydrate metabolic
pathways. The graph contains 600 nodes and 745 edges. Overall, our approach
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in visualising this metabolic network has a number of advantages. Firstly, the
functional independence of each pathway is emphasized. Since each pathway is
drawn on a different 2D plane, individual pathways can be readily identified,
while retaining the overview of how the pathways are connected in the entire
network in 3D.

Next, the central pathway in the network is identified. For example, both
pyruvate metabolism and the glycolysis pathways are connected to most of the
other pathways in the network. This means that they may have a significant
biological role as the removal of these pathways would essentially disconnect the
network. On the other hand, the Nucleotide Sugars Metabolism pathway is quite
isolated from the rest of the network.

Thirdly, the relative size of the pathway is easily comparable. For example,
the Inosital metabolism pathway is relatively small compared to the other seven
similar-sized pathways.

Finally, the connectivity between adjacent pathways is effectively visualised.
For example, glycolysis and gluconeogenesis share a lot of chemicals with the
TCA cycle as shown by the large number of inter-cluster edges between them.
This infers that these two pathways are probably biologically closely related.

4 Conclusion and Future Work

A new method for drawing clustered graph in 3D is presented. The divide-and-
conquer algorithm draws each cluster separately in a 2D plane and then combines
each drawing of a cluster to construct a drawing of the whole clustered graph
in 3D. For this, we designed three linear time weighted tree drawing algorithms
in 3D.

We have implemented a series of six different layouts for clustered graphs by
combining three 3D tree layouts and two 2D graph layouts. The experimental
results show that the resulting drawing can clearly display the structure of the
cluster and the relationships between the clusters. Further the use of 2D plane
ideas reduces the occlusion problem in 3D and the resulting drawing is easy to
navigate.

In the future, different combination of cluster/supergraph layout algorithms
can be explored. Application of this clustered graph drawing method can be
further explored in the context of other network visualisation applications, for
example social networks, communication networks and web-graphs. Further one
can design efficient navigation methods for the clustered graph layout for user
interaction.
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Abstract. BLer is a prototype tool aiming to automate the boundary
labelling process [1]. It targets the area of technical and medical drawings,
where it is often common to explain certain features of the drawing by
blocks of text that are arranged on its boundary.

1 Introduction

In technical drawings and medical atlases, it is quite common to place the labels
on the boundary of the drawing and to connect them to the features they describe
by non-crossing poly-lines (leaders). To the best of our knowledge, no drawing
software includes support for automated placement of labels on (or near) the
boundary of the drawing. BLer is a prototype tool that supports the boundary
labelling model and facilitates the annotation of drawings with text labels. It
is suitable for the production of medical atlases and technical drawings, where
the basic requirement is large labels. It is entirely written in Java based on the
yFiles class library (http://www.yworks.com).

2 The Labelling Process

BLer enables the user to quickly generate boundary labellings from scratch. Its
environment (see Figure 1) supports multiple views of the labelling and directs
the user through the steps of the labelling process (diagram loading, defini-
tion of enclosing rectangle, definition of point features, production of boundary
labelling).

The labellings produced by the current version are based on algorithms devel-
oped by Bekos et. al. [1]. They minimize the total leader length and contain no
crossings. The resulting drawings are simple, in terms of readability, ambiguity
and legibility.

BLer supports several labelling models. These include: the sides of the enclos-
ing rectangle where labels can be placed, the type of the leaders (opo, po, or s
[1]), the type of the ports.
� This work has been partially founded by the program “Pythagoras” which is co-

funded by the European Social Fund (75%) and Greek National Resources (25%).
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Fig. 1. A snapshot of Bler Fig. 2. A technical drawing of a cb radio

Fig. 3. A technical drawing of a mother-
board

Fig. 4. A medical map of the regions of
a human head

BLer can also be instructed to use a legend (see Figure 2), which is useful
in cases where the labels (due to their size and number) do not all fit on the
boundary of the enclosing rectangle. When a legend is used, labels of appropriate
uniform size are used, each containing a number which refers to a particular line
of the legend. The legend is treated as a floating object and can be manually
placed anywhere around the resulting labelling.

As expected from a labelling tool, it supports storing, reloading and post-
processing of labellings. It provides advanced graphic functionality, including
popup menus, printing capabilities, custom-zoom, fit-in window, selection, drag-
ging and resizing of objects.

Figures 2, 3 and 4 depict some characteristic output examples of BLer.
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Abstract. Graphs describing real world data often contain duplicate
entries for names, cities, or other entities. This paper presents D-Dupe,
an interactive visualization tool designed to help users to discover and
resolve duplicate nodes in a social network. Users can resolve the am-
biguity by merging nodes, or by specifying that the nodes are in fact
distinct. The entity resolution process is iterative; as pairs of nodes are
merged, additional duplicates may become apparent.

1 Introduction

The typical assumption in network visualization is that the underlying data is
clean and the nodes refer to distinct entities while edges represent unique re-
lationships. However, this presumption is rarely true. Networks are extracted
from databases which may contain errors and inconsistencies. As data collection
increases, and the databases themselves are being extended through automatic
extraction techniques, or through the combination of multiple sources, the du-
plicate entries become more common place. This is especially true when the
duplicate entries are not identical but slight variations of one another like ab-
breviations.

Duplicates may lead to inappropriate conclusions when the underlying data is
visualized. Consider the example of a citation graph in which nodes correspond
to authors and the node sizes are drawn in proportional to the number of pub-
lications of each author. If an author’s name had multiple spellings and each of
them were treated as distinct, the true entity will be represented not as one large
node but as many unrelated small nodes. With such data (and representation),
our conclusions about which author is most prolific will be incorrect.

In many cases, using the underlying structure of the network helps in resolving
duplicates. For instance, suppose a bibliographic dataset that consists of four
author references: “James Smith,” “John Smith,” “J. Smith,” and “Mary Ann.”
We are interested in determining if “J. Smith” refers to “James Smith,” to “John
Smith” or it is a distinct author. Given no other information, we have no choice
but to guess. But, if we know that “Mary Ann” collaborates with “John Smith”
and “J. Smith” we are more likely to believe that “J. Smith” and “John Smith”
refer to the same author. D-Dupe utilizes this idea by making such underlying
structures apparent to users.

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 505–507, 2005.
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Potential
Duplicates

Fig. 1. The D-Dupe Interface

2 Overview

D-Dupe consists of three coordinated windows (Fig. 1). The left panel is the
context collaboration graph, main controls are on the right panel, and the bottom
panel displays the details on demand for the nodes.

Context Collaboration Graph (CCG): One novelty of D-Dupe is that the
network visualization is tuned to the deduplication task. The CCG is the relevant
subgraph of the whole network, where one duplicate pair and their immediate
neighbors are displayed at a time. D-Dupe simplifies the graph further by show-
ing only the edges between the possible duplicates and their neighbors. The
potential duplicate pairs are colored in a shade of red in the tool; dark red pairs
are more likely to be duplicates.

Control Panel: D-Dupe allows integration of a variety of machine learning
algorithms for finding possible duplicates. After users select one of the algo-
rithms, a table of potential duplicates is populated for users to inspect. Clicking
on a potential duplicate pair will show the corresponding collaboration graph
in the CCG. After inspecting the CCG, users can decide to either merge these
duplicate records or disambiguate them by marking them as distinct entities. D-
Dupe provides further graph filtering options such as filtering the authors based
on number of publications.

Details on Demand: This panel displays descriptive information about the
potential duplicate pairs; for instance in bibliographic domain, this panel dis-
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plays the publications (the title, the date, the source, other authors, etc.) of the
potential duplicate authors under inspection.

Acknowledgments. The work of Mustafa Bilgic, Louis Licamele, and Lise
Getoor has been supported by the National Science Foundation, the National
Geospatial Agency, and the UMD Joint Institute for Knowledge Discovery.
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1 Introduction

A planar graph visibility representation maps each vertex to a horizontal
segment at a vertical position and each edge to a vertical segment at a horizontal
position such that each edge segment terminates at the vertical positions of its
endpoint vertices and intersects no other horizontal vertex segments. The first
O(n) algorithms for producing visibility representations were presented in [4, 5].
These were based on pre-processing to compute both an st-numbering and the
dual of the planar graph, which were then used with the combinatorial planar
embedding to produce a visibility representation. Greater efficiency is obtained
in [3] by eliminating the need for the planar graph dual and by re-using the
pre-computed st-numbering in the PQ-tree [1] algorithm.

Recently, the Boyer-Myrvold edge addition planarity method was
presented [2]. The benefits relative to many prior methods, including simpler
proof of correctness and O(n) implementation, are due in part to eliminating
the PQ-tree’s st-numbering. Hence, a new approach was required in order to
extend the efficiency and simplicity of edge addition planarity into the realm of
generating visibility representations.

2 Computing Vertical Positions of Vertices

During the execution of the edge addition planarity algorithm, the vertices are
assigned a relative position of ‘between’ or ‘beyond’ the depth first search (DFS)
parent relative to some selected DFS ancestor. Each time a back edge is embed-
ded, if its endpoints are in separate biconnected components of the partial planar
embedding, then all components that become biconnected by the new edge are
merged. Each edge along the external face that is incident to a merge point is
marked so that when the edge is moved off of the external face (by embedding
another back edge around it), the relative position of the merge point and one of
its DFS children can be assigned. Figure 1 shows how the edge marks are made,
and Figure 2 depicts how they are resolved into relative vertex placements.

The relative vertex placements assigned during planar embedding are con-
verted in a post-processing step into a vertical vertex order using pre-order
DFS tree traversal. When a vertex is visited, its ancestors have already been

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 508–511, 2005.
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Fig. 1. When merging biconnected components, the external face edges incident to the
merge points are marked with the identity of a DFS child. The children f and g are
‘tied’ with parent r in vertical placement until these marks are resolved.

Fig. 2. (a) In a step ux of the embedding, traversing from the descendant x of f to
the parent r of f means that f is placed between the parent r and the ancestor ux.
Traversing from the parent r of g to the descendant y of g means that g is placed
beyond parent r relative to ancestor ux. (b) External activity at r can result in both
children f and g being placed between r and some ancestor.

added to the vertex order. The localized information includes a marking of ‘be-
tween’ the DFS parent and a given ancestor or ‘beyond’ the DFS parent relative
to the given ancestor. This is converted to be ‘above’ or ‘below’ the DFS parent,
then the vertex is inserted immediately above or below its parent in the vertex
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order. More information is required to perform this conversion without resorting
to non-linear time techniques like dynamic topological sorting. Each vertex v is
positioned relative to its DFS parent p and an ancestor a, and both are added to
the vertex order beforehand, but the relative positions of a and p in the vertex
order are needed. Fortunately, we already store the placement of each vertex rel-
ative to its parent, and the placement of a vertex relative to its parent controls
the placement of the entire DFS subtree rooted by that vertex relative to the
DFS parent. Hence, the child c of a that roots the subtree containing p and v
is stored during planar embedding when the relationship between v, p and a is
made. Then, during this post-processing step, the relative order of p and a is
obtained by query of the relative order of c and a.

3 Computing Horizontal Positions of Edges

A sweep algorithm is performed on the combinatorial planar embedding, using
the vertical positions of the vertices to advance a horizontal sweep line, a data
structure in which the edge order is developed. Also, each vertex keeps track
of its generator edge in the edge order, which is just the first edge incident
to the vertex that is added to the edge order. The generator edge provides an
insertion point along the horizontal sweep line for the edges emanating from the
vertex to the vertices that are below it (which have a greater vertex position
number).

For starters, each edge e incident to the DFS tree root is added to the edge
order according to the cyclic order in the embedding, and the generator edge
of the child endpoint is set to e. For each vertex v below the DFS tree root in
vertex order, we obtain the generator edge e as the starting point of the cyclic
traversal of the adjacency list. The subset of edges emanating from v to vertices
with greater vertex positions (i.e. below v) are added in cyclic order immediately
after e. Also, for each such edge (v, w) that is added, if w has no generator edge,
then (v, w) becomes the generator edge of w.

4 Conclusion

This research has yielded a new method for generating planar graph visibility
representations. A linear-time reference implementation is available from the au-
thor based on the edge addition reference implementation that accompanies [2].
A pre-computed st-numbering was found to not be necessary, though the ver-
tex ordering method produces an st-numbering as an output. It would be of
theoretical interest to determine whether the notions of visibility representation
and st-numbering could be completely decoupled, but first appearances suggest
there would be little practical benefit as the sweep algorithm for edge ordering
appears to become much more complicated with multiple source vertices. Future
work would more easily find ways to compact the drawings via refinement of the
algorithm presented in this paper.
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Abstract. We present a novel graph drawing algorithm which uses a
spectral decomposition of the distance matrix to approximate the graph
theoretical distances. The algorithm preserves symmetry and node densi-
ties, i.e., the drawings are aesthetically pleasing. The runtime for typical
20, 000 node graphs ranges from 100 to 150 seconds.

1 Introduction

The graph drawing problem is to compute an aesthetically pleasing layout of
vertices and edges so that it is easy to grasp visually the inherent structure of
the graph. A general survey can be found in [4]. We consider only straight-line
edge drawings, which reduces to embedding the vertices in two dimensions.

Spectral graph drawing, which has become popular recently [2, 3], produces a
layout using the spectral decomposition of some matrix related to the vertex and
edge sets. We present a spectral graph drawing algorithm SDE (Spectral Distance
Embedding), in which we use the spectral decomposition of the graph theoret-
ical distance matrix. We present the results of our algorithm through several
examples, including run-times. Compared to similar techniques, we observe that
our results achieve superior drawings, while at the same time not significantly
sacrificing on computation time. The details of the algorithms, implementations
and performance analysis can be found in an accompanying technical report [1].

The two stages in the algorithm are: (i) computing all-pairs shortest path
(APSP) lengths; (ii) finding a rank-2 approximation to the matrix of squared
distances L. Step (i) involves a BFS for each node. For (ii), we use a standard
procedure referred to as the power iteration to compute the eigenvalues and
eigenvectors of M = − 1

2γLγ, where γ = In − 1
n1n1T

n . The complexity of the
algorithm is O(|V ||E|), using O(|V |2) space (to store all the pair-wise distances).
The algorithm is summarized below (PowerIteration returns the final coordinates
specified by the top 2 eigenvectors of the input matrix, to a precision specified
by ε). Let D be the matrix of distances.

SDE(G) 1: Use an APSP algorithm to compute L, where Lij = D2
ij .

2: return Y = PowerIteration(− 1
2γLγ, ε) % epsilon is a tolerance.

� This material is based upon work partially supported by the National Science Foun-
dation under Grant Nos. 0323324, 0324947.
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2 Results and Conclusion

The table below shows that SDE is reasonably fast for graphs up to 20,000 nodes.
As can be seen from the following figures, it also produces aesthetically pleasing
drawings of graphs varying in size, node density and degree of symmetry. Our
algorithm has the advantages of exact (as opposed to iterative) computation
of spectral graph drawing techniques and the quality of slower force-directed
methods.

Graph |V| |E| APSP time Power Iteration time Total time
jagmesh1 936 2664 0.10 0.11 0.21
Grid 50x50 2500 4900 0.65 0.54 1.19
3elt 4720 13722 4.67 3.80 8.47
whitaker3 9800 28989 25.24 8.18 33.42
sphere 16386 49152 106.96 29.73 136.69

The justification for SDE stems from the following (heuristically stated)
theorem,

Theorem 1 (Theorem 3, [1]). When the distance matrix is nearly embedable
and satisfies some regularity conditions, SDE recovers (up to rotation) a close
approximation to the optimal embedding.

(a) Cow (b) Sierpinski 8 (c) Vibrobox
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This poster presents a new framework for drawing graphs in three dimensions,
which can be used effectively to visualise large and complex real world networks.

The new framework uses a divide and conquer approach. More specifically,
the framework divides a graph into a set of smaller subgraphs, and then draws
each subgraph in a 2D plane using well-known 2D drawing algorithms. Finally,
a 3D drawing of the whole graph is constructed by combining each drawing in a
plane, satisfying defined criteria.

The framework is very flexible. Algorithms that follow this framework vary in
computational complexity, depending on the type of graph and the optimisation
criteria that are used. Specific instantiations of the framework require solutions
to optimisation problems. A simple example of the framework is illustrated in
Figure 1.

Our framework generalises some existing methods. For example, PolyPlane
methods draw trees in 3D [6]. Another method is to use two and a half dimen-
sional methods to visualise related networks in parallel planes [3, 4, 9].

Further, the design principle behind the framework also confirms Ware’s
guideline, a 2 1

2 design attitude that uses 3D depth selectively and pays spe-
cial attention to 2D layout may provide the best match with the limited 3D
capabilities of the human visual system [9].

As examined with the PolyPlane methods, the resulting drawing can reduce
visual complexity and occlusion, and ease navigation. While rotating the draw-
ing, some of the planes can be displayed as lines; this both reduce visual com-
plexity and occlusion and allow the user concentrate on their plane of interest.

Preliminary results suggest that the framework can be useful for visual analy-
sis and insight into large and complex networks such as hierarchical graphs and
clustered graphs arising in social networks and biological networks domains.
For details, see [2] for scale-free networks, [7, 8] for directed graphs and [5] for
clustered graphs. Further, these methods are implemented in GEOMI, a visual
analysis tool for large and complex networks [1].

Current work is to further develop the framework for various graph models
and application domains.

� This research has been partially supported by a grant from the Australian Research
Council.
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Fig. 1. The MultiPlane framework

References

1. A. Ahmed, T. Dwyer, M. Forster, X. Fu, J. Ho, S. Hong, D. Koschützki, C. Murray,
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Abstract. TreePlus is a graph browsing technique based on a tree-style
layout. It shows the missing graph structure using interaction techniques
and enables users to start with a specific node and incrementally explore
the local structure of graphs. We believe that it supports particularly
well tasks that require rapid reading of labels.

1 TreePlus: Interface for Visualizing Graphs as Trees

TreePlus1 (Fig. 1) transforms graphs into trees by extracting a spanning tree.
Users can navigate the tree by clicking on nodes in the main tree browser and
preview adjacent nodes of the focus node in the adjacent nodes display (Fig. 2).
Animation, zooming, panning, and integrated searching and browsing help users
understand the graph.

When users move the cursor over a node, the node gets the focus and TreePlus
previews its adjacent nodes on the right. They are left-aligned for readability, as
in the main tree browser. Now node color and arrows are relative to the focus
node, which is represented by the color green. They are duplicated on the right
so that users can focus on one place instead of looking around the whole screen
space; they are grouped and shown in gray.

When users select a node, TreePlus moves all of its adjacent nodes (except
direct ancestors) to be its children by changing the tree structure. Multi-step
animation helps users maintain context. A preview of how fruitful it would be
to go down a path is provided by bar graphs showing how many organisms are
reachable in each level (Fig. 3). TreePlus provides integrated support for search
and lets users choose their own root. By setting a node as a root after search,
users can easily gain access to an area of interest.

1 For more information: see http://www.cs.umd.edu/hcil/graphvis
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Fig. 1. For the selected node “rat” (distinguished by the black border), TreePlus shows
all adjacent nodes as children (on the right), a parent, or an ancestor (both to the left).
Node color and arrows help users see the direction of links; red left-pointing arrows
mean these animals eat the selected node (“rat”), while blue right-pointing arrows
mean the selected node (“rat”) eats these animals.

Fig. 2. On mouse over of the focus node, TreePlus lists adjacent nodes, circled here in
red. Any adjacent nodes that were already displayed are shown in gray. Here the cursor
is hovering over the “stripe-headed tanager,” showing a preview of the connected nodes.
Given the currently selected node “rat” and the focus node “stripe-headed tanager,” the
three gray nodes on the right, “fruits,” “broad-winged hawk,” and “red-tailed hawk”
are connected to both nodes. A tool tip shows the number of links in each direction.
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(a) (b) (c)

Fig. 3. Bars give a preview of how fruitful it would be to go down a path. “broad-
winged hawk” is a start of a chain since it does not have a red bar (nothing eats it)
and “fruits” is an end of a chain since it does not have a blue bar (fruits eat nothing).
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A polygonal chain is a sequence of consecutively joined edges embedded in space.
A k-chain is a chain of k edges. A polygonal tree is a set of edges joined into a
tree structure embedded in space. A unit tree is a tree with only edges of unit
length. A chain or a tree is simple if non-adjacent edges do not intersect.

We consider the problem about the reconfiguration of a simple chain or tree
through a series of continuous motions such that the lengths of all tree edges are
preserved and no edge crossings are allowed. A chain or tree can be straightened
if all its edges can be aligned along a common straight line such that each edge
points “away” from a designed leaf node. Otherwise it is called locked. Graph
reconfiguration problems have wide applications in contexts including robotics,
molecular conformation, rigidity and knot theory. The motivation for us to study
unit trees is that for instance, the bonding-lengths in molecules are often similar,
as are the segments of robot arms.

A chain in 2D can always be straightened [4, 5]. In 4D or higher, a tree can
always be straightened [3]. There exist trees [2] in 2D and 5-chains in 3D that
can lock. Alt et al. [1] showed that deciding the reconfigurability for trees in
2D and for chains in 3D is PSPACE-complete. However the problem of deciding
straightenability for trees in 2D and for chains in 3D remains open.

It is easy to verify that a tree of diameter at most 3 in 2D or 3D can always
be straightened. In this paper, we show that some tree of diameter 4 in 2D or
3D can lock, and a unit tree of diameter 4 in 2D can always be straightened.

In 2D, even a tree with diameter as low as 6 can lock [2] as shown in Fig-
ure 1 (a). We present a locked tree of diameter 4 in Figure 1 (b), which simulates
the tree in (a). It can be shown locked using the same technique as the proof
for (a) by assigning the corresponding equilibrium stresses to the tree edges. In
3D, a 5-chain can lock [2]. We present a 3D locked tree of diameter 4, which is
shown in Figure 1 (c).

We now consider the straightenability of a unit tree T of diameter 4 in 2D.
The center of tree T , denoted by o, is the middle vertex of any 4-chain in T . We
call a path connecting the center to a leaf a branch of T . A direct straightening
of branch B = ouv in T means to rotate v around u until ouv is straightened by
passing through the smaller angle. We denote the sweeping region for directly
straightening B by S(B). The direct straightening of B is interfered by another
branch B′ if S(B) ∩ B′ = ∅. There are two kinds of interferences depending on
whether B and B′ are of the same turn. We say that B′ follows (resp. covers) B

� This research was supported in part by the Netherlands’ Organisation for Scientific
Research (NWO) under project no. 612-065-307.
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Fig. 1. (a), (b) 2D locked trees. (c) A 3D locked tree of diameter 4, where d(o, ui) = 1
& d(ui, vi) ≥ 2. (d) Straightening unit-tree version of (c). (e) B′ follows B. (f) B′

covers B. (g) B′′ covers B′ & B′ covers B. (h) Straightening uncovered branch B and
all its following branches.

if B is interfered by B′ of the same (resp. opposite) turn. See Figure 1 (e), (f)
for illustration.

Our algorithm to straighten T relies heavily on the observation of a nice
nesting structure on covering relation. Suppose B′′ covers B′ which in turn
covers B. Then B is nested inside the area enclosed by B′ and B′′, which is the
shaded area as shown in Figure 1 (g). Therefore the last branch in a maximal
covering sequence is always uncovered. Our algorithm proceeds by successively
straightening an uncovered branch and all its following branches. The procedure
to straighten an uncovered branch is shown in Figure 1 (h). The whole algorithm
can be designed to run in O(n) moves and O(n log n) time, where n is the number
of tree edges.

In 3D, we conjecture that a unit tree of diameter 4 can always be straightened.
In particular, it is not hard to see that the unit-tree version of Figure 1 (c) can
be straightened. We first rotate v1 around u1 until u1v1 is very close to ou3, and
then rotate v3 around u3 until v3 is very close to o. Consequently we can rotate
u2 around o to draw ou2v2 out. We further conjecture that a unit tree of any
diameter in 2D or 3D can always be straightened.

References

1. H. Alt, C. Knauer, G. Rote, and S. Whitesides. The Complexity of (Un)folding.
Proc. 19th ACM Symp. on Comput. Geom. (SOCG), 164–170, 2003.

2. T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke, S. Robbins,
I. Streinu, G. Toussaint, and S. Whitesides. A Note on Reconfiguring Tree Linkages:
Trees can Lock. Disc. Appl. Math., 117:1-3, 293–297, 2002.

3. R. Cocan and J. O’Rourke. Polygonal Chains Cannot Lock in 4D. Comput. Geom.:
Theory & Appl., 20, 105–129, 2001.



On Straightening Low-Diameter Unit Trees 521

4. R. Connelly, E.D. Demaine, and G. Rote. Straightening Polygonal Arcs and Con-
vexifying Polygonal Cycles. Disc. & Comput. Geom., 30:2, 205–239, 2003.

5. I. Streinu. A combinatorial approach for planar non-colliding robot arm motion
planning. Proc. 41st ACM Symp. on Found. of Comp. Sci. (FOCS), 443–453, 2000.



Mixed Upward Planarization - Fast and Robust�

Martin Siebenhaller and Michael Kaufmann
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1 Introduction

In a mixed upward drawing of a graph G = (V, E) all directed edges ED ⊆ E are
represented by monotonically increasing curves. Mixed upward drawings arise in
applications like UML diagrams where such edges denote a hierarchical structure.
The mixed upward planarization is an important subtask for computing such
drawings. We outline a fast and simple heuristic approach that provides a good
quality and can be applied to larger graphs as before in reasonable time. Unlike
other Sugiyama-style [4] approaches, the quality is comparable to the GT based
approach [2] even if there are only few directed edges. Furthermore, the new
approach is particularly suitable for extensions like clustering and swimlanes.

2 Planarization Approach

We assume that the subgraph induced by the directed edges is acyclic. Our
heuristic approach consists of the following three steps:

1. Construction of an upward drawing: We use Sugiyama’s approach [4]
with a special layering strategy to construct an upward drawing of G including all
edges. Common layering strategies are mainly optimized to produce short edges
and involve a lot of crossings. Our new layering stems from the vertex ordering
obtained in the first phase of the GT-heuristic. To calculate the ordering we use
a variant that guarantees a monotonically increasing direction of the directed
edges and runs in O(|V |2) [2]. The layer of a vertex corresponds to its position
in this ordering. The crossing reduction is done by a layer-by-layer sweep. We
apply a fast variant that keeps the number of dummy vertices small and runs in
time O((|V | + |E|) log |E|) [3]. For the horizontal coordinate assignment we use
a linear time approach based on the linear segments model [1].
2. Construction of an upward planar embedding: The embedding of the
upward drawing of G can be constructed by detecting all crossings and replace
them by dummy vertices. This can be done with a sweep-line approach in time
O((|E| + c) log |E|), where c denotes the number of crossings.
3. Rerouting of undirected edges: Undirected edges are handled too re-
strictive because they can be routed non-monotonically. Hence we reroute each
undirected edge with at least one crossing in randomized order using shortest
� This work has been supported by DFG-grant Ka812/8-2.
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path computations in the extended dual graph. The runtime is O((|V |+ c)|E|).
Thus, the overall runtime of our new approach is O((|E|+c) log |E|+(|V |+c)|E|).

3 Experiments

For our experiments we used connected directed acyclic random graphs with
density 2. In the first experiment (Fig. 3(a)) we compared the number of crossings
(using the median heuristic) induced by our new layering to the crossing number
induced by a longest path layering, the popular simplex layering and a layering
based on a topological sorting of the vertices where each vertex is assigned to
exactly one layer. The results indicate that our improvement does not depend
solely on the sparse layers. In the second experiment we compared our new
approach to the GT based approach described in [2] that runs in O(|V ||E|2 +
(|V | + c)2|E|). We compared random graphs where 1/4 (2/3) of the edges were
directed. As the results in Fig. 3(b) show, the quality in terms of crossings is
competitive to the GT based approach. Concerning the required time we clearly
outperform the GT based approach (Fig. 3(c)). All experiments were performed
on a Pentium 4 System, 3 GHz, 1024 MB RAM and Windows XP.

(a) (b) (c)

Fig. 1. Results of our experiments (averaged over 100 passes)
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Abstract. A workshop on Network Analysis and Visualisation was held
on September 11, 2005 in Limerick Ireland, in conjunction with 2005
Graph Drawing conference. This report review the background, progress
and results of the Workshop.

1 Motivation

Recent technological advances produce many large and complex network models
in many domains. Examples include web-graphs, biological networks and social
networks.

Visualisation can be an effective tool for the understanding of such networks.
Good visualisation reveals the hidden structure of the networks and amplifies
human understanding, thus leading to new insights, new findings and possible
predictions for the future.

Analysis methods are available for these networks. However, analysis tools
for networks are not useful without visualisation, and visualisation tools are not
useful unless they are linked to analysis.

This workshop aimed to gather researchers interested in the analysis and
visualisation of large and complex networks. More specifically, the workshop
had the objectives identifying new research opportunities in network analysis
and visualisation, and encouraging collaborative solutions in this area.

2 Workshop Overview

The workshop was chaired by Seok-Hee Hong (National ICT Australia and
University of Sydney, Australia), and organised with Dorothea Wagner (Uni-
versity of Karlsruhe, Germany) and Michael Forster (National ICT Australia,
Australia).

It had the following 35 participants from 10 countries: Radoslav Andreev
(University of Limerick, Ireland), Vladimir Batagelj (University of Ljubljana,
Slovenia), Michael Baur (University of Karlsruhe, Germany),Elena Besussi (Uni-

� This workshop was supported by NICTA (National ICT Australia), funded by the
Australian Government’s Backing Australia’s Ability initiative, in part through the
Australian Research Council.
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versity College London, UK), Ulrik Brandes (University of Konstanz, Germany),
Stina Bridgeman (Hobart and William Smith Colleges, US), Ali Civril (Rens-
selaer Polytechnic Institute, US), Walter Didimo (University of Perugia, Italy),
Tim Dwyer (Monash University, Australia), Jean-Daniel Fekete (INRIA Futurs,
France), Michael Forster (National ICT Australia, Australia), Marco Gaertler
(University of Karlsruhe, Germany), Francesco Giordano (University of Perugia,
Italy), Luca Grilli (University of Perugia, Italy), Martin Harrigan (University
of Limerick, Ireland), Patrick Healy (University of Limerick, Ireland), Nathalie
Henry (INRIA Futurs, France), Joshua Ho (University of Sydney,
Australia), Seok-Hee Hong (National ICT Australia and University of Sydney,
Australia), Tony Huang (National ICT Australia and University of Sydney, Aus-
tralia), Dirk Koschtzki (IPK Gatersleben, Germany), Karol Lynch (University
of Limerick, Ireland), Anila Mjeda (Waterford Institute of Technology, Ireland),
Nikola Nikolov (University of Limerick, Ireland), Andreas Noack (University of
Cottbus, Germany), Aaron Quigley (University College Dublin, Ireland), Aimal
Rextin (University of Limerick, Ireland), Falk Schreiber (IPK Gatersleben, Ger-
many), Matthew Suderman (McGill University, Canada), Antonios Symvonis
(National Technical University of Athens, Greece), Alexandre Tarassov (Univer-
sity of Limerick, Ireland), Ioannis Tollis (University of Crete, Greece), Francesco
Trotta (University of Perugia, Italy), Dorothea Wagner (University of Karlsruhe,
Germany), Michael Wybrow (Monash University, Australia).

3 Invited Talks

The workshop had two invited talks for one hour each as follows.

– Vladimir Batagelj: Some Visualization Challenges from Social
Network Analysis
Network = Graph + Data. The data can be measured or computed/derived
from the network. In traditional graph drawing the goal was to produce
the best layout of given graph. SNA (Social Network Analysis) is a part of
data analysis. Its goal is to get insight into the structure and characteris-
tics of given network. There is no single answer - usually we are trying to
find interesting facts about the network and present them to the users. The
visualization is a tool for network exploration and for presentation of the
final results. This process requires combination of analysis and visualization
techniques.

SNA deals also with multi-relational, temporal and often large networks.
The standard sheet of paper paradigm is often not appropriate for the
amount of information in such networks. It was addressed that one should
develop dynamic interactive layouts, introduce new visualization elements
to represent typical network substructures, and add some artistic touch to
final displays. The slides of the talk are available at:
http://vlado.fmf.uni-lj.si/pub/networks/doc/mix/GDaSNA.pdf.
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– Ulrik Brandes: Visualization of Dynamic Social Networks
Social network visualization is a specific area in the field of information visu-
alization. Models of social structures typically consist of some type of graph
data (where variations are with respect to directedness, multiple edges, bi-
partiteness, etc.) together with an arbitrary set of attributes. While there are
many unsolved problems in visualizing social structures, dynamic changes of
the graph and/or its attributes introduce an additional dimension of com-
plexity. In this talk, an attempt was made to point out directions relevant to
social network analysts and open problems interesting to the graph drawing
community. Several examples from recent social network studies were used
for illustration.

4 Contributed Talks

The workshop had four contributed talks for 30 minutes each as follows.

– Falk Schreiber: Visual Network Analysis for Systems Biology
Systems biology is a new field in biology that aims at the understanding
of complex biological systems, such as a complete cell. It has emerged in
the light of the availability of modern high-throughput technologies, which
result in huge amounts of molecular data regarding life processes. This data
is often related to, or even structured in, the form of biological networks
such as metabolic, protein interaction and gene regulatory networks. Visual
data exploration methods help scientists to extract information out of the
data and thus are very useful for building sophisticated research tools. This
presentation gave a brief introduction into systems biology and molecular
biological processes. It discussed examples of the analysis of fundamental bi-
ological networks and their user-friendly visualisation. These examples range
widely from visualising experimental data in the context of the underlying
biological networks to structural analysis and subsequent visualisation of bi-
ological networks based on motifs, clustering and centralities. Finally new
directions and questions in visualising these large and complex networks were
considered.

– Nathalie Henry: Matrices for Visualizing Social Networks
Visualizing and interacting with large social networks is a challenging task.
Usually, social networks are represented as node-link diagrams. These rep-
resentations are intuitive and effective for filtered or aggregated social net-
works. In this talk it was proposed to use matrix-based representations to
interact and manipulate social networks prior to node-link diagram visual-
ization. Adjacency matrix representations are easier to interact with in term
of navigation and computation such as filtering, clustering or aggregation.
These representations may offer the user a good overview of large and dense
social networks. The main issue when dealing with matrices is their rows and
columns ordering. Ordering is a key to understand a matrix or more gener-
aly a table. An overview of existing methods to reorder tables was presented
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with explanation of how automatic methods work in detail and how to ap-
ply these methods to adjacency matrices. Finally focus on matrix readability
with experimental work was presented.

– Tim Dwyer: New Techniques for Visualisation of Large and
Complex Directed Graphs
To date, the famous Sugiyama algorithm has been the method of choice for
drawing directed graphs. Prime examples are drawings of metabolic path-
ways and UML diagrams. However, when used to draw large and complex
directed graphs - with hundreds or thousands of nodes and a high density of
edges - the method does not produce very readable diagrams. This talk ar-
gued that a method based on techniques from the field of multi-dimensional
scaling coupled with some custom constrained optimisation techniques scales
much better to the visualisation of large and complex directed graphs.

– Michael Wybrow: Visualisation of Constraint-Based
Relationships in Graphs and Diagrams
Constraint-based relationships in diagrams are permanent placement rela-
tionships such as alignment, distribution, left-of, right-of, pinning, etc. They
are maintained by the diagram editor as objects are added, removed or moved
around. It is clear there should be an on-screen representation of such objects,
but in practice these tend to quickly clutter the page and make comprehen-
sion of the graph and the constraint relationships themselves difficult. This
talk demonstrated the problem and offered for discussion some possible so-
lutions using proximity, transparency, time, and knowledge of active/broken
constraints.

5 Discussion

The following open problems were suggested and discussed by the participants:

– Ulrik Brandes: Adapt Sugiyama paradigm (i.e. level assignment, crossing
reduction, x-coordinates) with partially given y-coordinates

– Vladimir Batagelj:
• New drawing styles and conventions
• Interactive network layout
• Matrix Layout
• Generalized blockmodeling
• Visualisation with additional graphical elements
• Visualisation of multi-relational and dynamic networks
• Dense directed network layout

– Jean-Daniel Fekete: Evaluation and usability studies of other network visu-
alisation methods (besides node-link diagrams)
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Abstract. This report describes the Twelfth Annual Graph Drawing
Contest, held in conjunction with the 2005 Graph Drawing Symposium in
Limerick, Ireland. The purpose of the contest is to monitor and challenge
the current state of graph-drawing technology.

1 Introduction

This year’s graph drawing contest had three distinct tracks: the graph draw-
ing challenge, the evolving graph contest, and the free-style contest. The graph
drawing challenge took place during the conference. The challenge was straight-
line crossing minimization of 6 graphs with 20-100 vertices. The contestants were
given one hour and were free to use custom designed software or a provided pro-
gram for manual graph editing, GraphMan. The evolving graph contest asked
for visualizations, including animations and static images of the Internet Movie
Database graph, emphasizing the evolving nature of the data. The free-style
submission offered the opportunity for participants to present their best graph
visualizations. Eight teams of one to three participants submitted graphs to the
challenge. There were four submissions to the evolving graph contest and five
submissions to the free-style contest.

2 Graph Drawing Challenge

Submissions to the challenge were measured by assigning scores between 0 and
6 to each participating team as follows: each of the six submitted graphs Gi was
assigned a score: si = mini

curi
, where mini was the minimal number of crossings

found for the i-th graph and curi was the number of crossings in Gi. The individ-
ual scores for the six graphs were added to obtain the total score for each team.
The contest committee awarded one first prize and three honorable mentions.

The first place winner was the team of Markus Chimani, Carsten Gutwenger
and Karsten Klein using a custom made tool, grapla. The grapla tool was
written by Andrei Grecu from Vienna University of Technology and was also
used by last year’s winning team. Three honorable mentions were given to Daniel
Stefankovic, Michael Bennett, and the team of Michael Spriggs and Josh Liason.
The first two used a combination approach of automated and manual crossing
minimization, while the last used only the GraphMan graph editor.
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3 Evolving Graph Contest

Four submissions for the evolving graph contest were received. The submissions
consisted of papers, animations, SVG-files, and static images. The contest com-
mittee awarded first prize to Vlado Batagelj, Andrej Mrvar, Adel Ahmed, Xioyan
Fu, Seokhee Hong, and Damian Merrick for their submission “Some Approaches
to the Analysis and Visualization of the Internet Movie Database.” They used
(p, q)-cores, 4-rings, islands and time slices to extract interesting subnetworks
of the Internet Movie Database. The densest such cores came from wrestling
and adult movies, and some of the islands showed famous series like Charlie
Brown, Starkes Team and Doña Macabra. Two visualizations were produced
that showed the evolution of collaboration between Hollywood actors, musicians
and even presidents, through animated transitions between force-directed lay-
outs. Nodes and edges were assigned sizes and colors according to their relative
importance in the graph; see Fig. 1.

Honorable mention was given to Ulrik Brandes, Martin Hoefer, and Christian
Pick for their submission “Dynamic Egocentric Layout of Actor Biographies.” It
consisted of a dynamic visualization of the collaboration and work biography of
a single actor, using the collaboration subgraph of that actor. The layouts were
generated by implicitly placing the chosen actor in the middle of the drawing,
while movies starring the actor were placed on annual rings that moved outwards.
Collaborating actors were placed relative to the existing elements with sizes and

Fig. 1. Snapshot from the winning submission of the evolving graph contest
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Fig. 2. Snapshot from the submission by Brandes et al

positions varying based on importance, age, and structural connectivity; see
Fig. 2 for an example using the actor Val Kilmer.

Honorable mention was also given to Michael Baur, Marco Gaertler, and
Robert Görke for their submission “Analyzing the Career of Actors (How to Be-
come Famous Fast).” The submission was a Java3D application allowing interac-
tive exploration of the migration of actors through different genres. Combining
the genre paths of all actors in the database offers insight into the overall genre
migration with an abstracted genre-time graph in space. The nodes and edges of
their graph represent different genres at different points in time and migrations
of actors between them, respectively. The graph is wrapped around a cylinder,
where one axis represents time and the others the different genres; landmarks
corresponding to particular movies are also used for ease of navigation; see Fig 3.

4 Free-Style Contest

Five submissions for the free-style category were received. The submissions con-
sisted of individual drawings, SVG files, papers, and movies. The contest commit-
tee awarded first prize to Marco Gaertler and Markus Krug for their submission
“Flying Through a Graph’s Spectrum.”

Spectral embeddings offer analytic insight into graph structure, e.g., reveal-
ing symmetries. However, traditional representation media restricts spectral em-
beddings to two or three dimensions. The submission consisted of animations,
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Fig. 3. Snapshot from the submission by Baur et al

Fig. 4. Snapshot from the winning submission in the free-style contest

where layouts induced by different eigenvectors were morphed into each other.
The animation showed many different embeddings in a short time, while offering
aesthetically pleasing views. Fig. 4 shows four snapshots of the animation using
a path with 100 nodes.
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Minimum Cycle Bases and Surface
Reconstruction

(Abstract)

Kurt Mehlhorn
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I report on recent work on minimum cycle basis in graphs and their application
to surface reconstruction. The talk is based on joint work with C. Gotsmann,
R. Hariharan, K. Kaligosi, T. Kavitha, D. Michail, K. Paluch, and E. Pyrga. I
refer the reader to [KMMP04, KM05, HKM, GKM+, MM05, Kav05] for details.
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Hierarchy visualization has been a hot topic in the Information Visualization
community for the last 15 years. A number of hierarchy visualization techniques
have been invented, with each having advantages for some applications, but
limitations or disadvantages for other applications. No technique has succeeded
for a wide variety of applications. We continue to struggle with basic problems of
high cognitive overhead (e.g., loss of context), poor fit to the data (e.g., problems
of scale), and poor fit to the users task at hand (e.g., handling multiple points of
focus). At the same time, information access improvements have made available
to us much richer sources of information, including multiple hierarchies. In this
talk, I will review what we know about hierarchy visualization, then describe our
approach to visualization of multiple hierarchies with two techniques (Polyarchy
Visualization and Schema Mapping), and conclude with lessons learned for basic
hierarchy visualization and suggestions for future work.

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, p. 533, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Author Index

Ahmed, Adel 468
Azuma, Machiko 297

Bederson, Benjamin B. 516
Bekos, Michael A. 503
Biedl, Therese 1, 13
Bilgic, Mustafa 505
Bocek-Rivele, Eli 512
Boyer, John M. 508
Brandenburg, Franz J. 1
Brandes, Ulrik 25
Buchheim, Christoph 37

Chimani, Markus 223
Civril, Ali 512
Cortese, Pier Francesco 49

Dean, Alice M. 73
de Berg, Mark 61
Deng, Xiaotie 1
Devillers, Olivier 83
Di Battista, Giuseppe 49, 89
Didimo, Walter 117, 480
Di Giacomo, Emilio 101, 111, 480
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