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Abstract. In this contribution we address two related questions. Firstly,
we want to shed light on the question how to use a representation for-
malism to represent a given problem. Secondly, we want to find out how
different formalizations are related and in particular how it is possible
to check that one formalization entails another. The latter question is
a tough nut for mathematical knowledge management systems, since it
amounts to the question, how a system can recognize that a solution
to a problem is already available, although possibly in disguise. As our
starting point we take McCarthy’s 1964 mutilated checkerboard chal-
lenge problem for proof procedures and compare some of its different
formalizations.

1 Introduction

Mathematical colloquial language as well as languages of formalized mathemat-
ics offer a large variety of ways to formalize a problem. If a problem is given
in an informal way, the first question is, how to formalize it, that is, how to
write it down. While this is already the first question in a mathematical ver-
nacular as well, it is more acute in a formal system, be it a proof development
environment, or a mathematical knowledge representation system. Even within
one such formal system, it is typically possible to represent the same problem
in a large variety of ways. The adequacy of a representation depends of course
on its intended purpose (e.g., information retrieval, tutoring system, automated
problem solving). In this contribution we focus mainly on the representation of
a problem in order to find a proof. The obvious question is then, which represen-
tations are appropriate and which ones not. The choice of a good formalization
depends on the formal language itself as well as the available tools and system
support available for certain representations. In consequence, users of different
proof development systems will use formalizations which are particularly ade-
quate for their system. This leads to the question how we can know that two
different formulations are equivalent, or in a weaker version how we can know
that one formulation entails another.
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We will use the so-called “mutilated checkerboard problem” to study the
relationship between different problem formalizations. This problem was intro-
duced by McCarthy as a challenge problem for proof procedures [I]. While the
challenge was mastered by different proof procedures, it is still a challenge for
mathematical knowledge management.

In McCarthy’s original paper [I] we can find two different formalizations.
McCarthy [2] himself presented at the second QED workshop a different formal-
ization which makes — compared to the original paper — use of set-theoretical
notions and basic integer arithmetic. We will also look at the formalizations in
Isabelle [3] and Coq [].

There are various proofs of the problem available. Some are close to one of
McCarthy’s formalizations (e.g., [5]), others are using formalizations which are
significantly different and need creative thought to understand that they are
related to the original problem. Even the close formalizations of [2] and [5] need
some adaptation in order to see that they can be mapped into each other. While
McCarthy numbers the checkerboard from 0 to 7, Bancerek uses 1 to 8. A shift
of an index in an array by 1 is a trivial re-representation to anybody with math-
ematical training, but it has to be recognized as an index shift. Neither do the
strings directly match, nor will simple unification do, since 0 is not 1 and 7 not 8.

Why would not everybody just take McCarthy’s original formalization? Obvi-
ously, different formal systems have different strengths and limitations. The first
formalization by McCarthy is a first order formalization which does not make
use of equality and function symbols. While this is a very restricted formal-
ism, some systems can deal with just this formalism only. McCarthy’s second
formalism contains function symbols and equality. A reasoner which can deal
with function symbols and equality will have special procedures how to do that
and would probably not live up to its strengths if given the first formalization.
Likewise Isabelle and Coq, which have very powerful representation languages,
have strengths which these systems could not use if they had to stick to one of
the original formalizations. For this reason it should be considered as legitimate
that each system user chooses a representation which suits their system best.
However, when we take a closer look at the formalizations, it is neither trivial
to see that they solve the original problem nor to see that they can be identified
or subsumed by one another.

While problems such as a mutilated checkerboard problem exhibit a big gap
between their informal description in natural language and their various formal
representations, the problem is universal in mathematics. Typically even in a sin-
gle very strict formal system it is possible to say the same thing in a wide variety
of ways and not for all of these possibilities it is obvious that they are equivalent
on some level. The reason why one formalization entails another may involve a
simple syntactic modification, or may rest on a deep semantic connection.

2 The Mutilated Checkerboard Problem(s)

Let us first introduce the problem and proof from McCarthy’s original
memo [I, p.1]:
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“It is impossible to cover the muti-
lated checkerboard shown in the figure
with dominoes like the one in the figure.
Namely, a domino covers a square of
each color, but there are 30 black squares
and 32 white squares to be covered.”

1]

While the original challenge of the problem was the size of the search space in
various formalizations — and still is for a naive usage — the much bigger challenge
for proof procedures is that a good proof contains a creative invention, namely
the colouring of the arrays of the board and the domino so that the squares with
different colours can be counted. For the solution we can differentiate between
the following phases:

1. Formalization of the problem.
2. Formalization of a concept representing the creative invention.
3. Realization of the proof on the basis of the creative invention.

The formulation of step Bldepends on the problem description given in step [,
and that the proof idea consists of both step [2 and step

At each step there are several possibilities, colouring the arrays is only one of
several creative inventions. Most publications which have taken up the challenge
start with the motivation that their problem formalization is adequate with
respect to the informal description and concentrate on steps 2l and Bl

In this contribution, we want to investigate the different possibilities and
choices which can be made in step [l The mathematical problem formalization
assumes certain background knowledge that is available to the reader. Only
with this background knowledge it is possible to understand why the problem
formalization actually covers the original problem. The main objects, notions,
and properties used (explicitly or implicitly) in the proofs are the following.

— Board: a rectangular structure containing squares. The squares are oriented
in vertical/horizontal lines.

— Domino: a domino can be associated with two adjacent squares, either ver-
tically or horizontally.

— Adjacent: for a square the square to the left, to the right, below, or on top.

— Sets: for collecting dominoes.

— Covering: all squares of the board are associated with exactly one domino.

— Numbers: numbers can be used to identify the different squares of the board,
and to express the structure in which the squares are related to each other.

— Pairs and Cartesian product: pairs which contain numbers as representation
of squares, Cartesian product as board.

Later, the creative invention of colouring corresponds to mapping squares,
represented by pairs of numbers, to the set {black,white}. Sets can be counted,
mapped to numbers, so we have cardinality and relations for the comparison of
cardinality.
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2.1 Challenge Problems by McCarthy

McCarthy gives already two problem formalizations in his initial paper [I] and a
set-theoretic description thirty years later [2]. Whereas the early formalizations
describe the problem completely, the latter builds on existing concepts of set
theory, including cardinality, and integer arithmetic.

M64a
The language is a predicate logic without function symbols and without equality.
The signature consists of constants 1,...,8, and the binary relations given here

with their intended meaning.

S(z,y) y=z+1
L(x,y) r<y
E(x,y) r=y

Gl (x,y),...,G*(x,y) square (x,y) and the top/right/bottom/left neighbour
square are covered by a domino
G5(x,y) square (x,y) is uncovered

The problem is stated in form of unsatisfiable axioms.

1.5(1,2) A S(2,3) A S(3,4) A S(4,5)
A S(5,6) A S(6,7) A S(T,8)

2. 8(z,y) = L(z,y .

3 Lgx,y; /\L(;g,z)):> L(z,2) A —S(z, 2) properties of numbers

4. L(z,y) = ~E(z,y)

5. E(x,x)

6. G (2, ) v G2 (2,5) V G¥(z, 1) V G(z, y) V G5 (2, )

7.G (2,y) = (G (z,y) V G (a,y) v Gx,y) v G(z,y) |

8. G*(x,y) = ~(G3(x,y) V G4 (z,) vV G*(z,1)) p acement
9. G3(z,y) = ~(G4x,y) V G3(z, 1)) of dominoes
10. G4z, y) = ~G5(x,vy)
11. G5(1,1) A G5(8,8)
12. G5(z,y) = (E(L,2) A B(1,y)) V (E(8,2) A E(8,y)) } nmcovered squares
13. S(21,2) = (G (w1,) & G3(a, )

= ( adjacency of dominoes
14. S(y1,y2) = (G*(z,31) & Gz, 92)) [V Y
N

15. =G3(1,y) A ~G*(8,y) A =G?(z,8) A ~G*(x,1) } border of the board
M64b
The second problem is formalized in a predicate logic with function symbols

and equality. The five predicates G, ..., G® are represented by the values of the
function g. The problem is again given in form of axioms.

;,' i(;((:((j((;((;)(; )()s(_S)x)))))) =8 } eight distinct numbers

3.g(x,y) =5 x=8Ay=8Ve=1Ay=1}uncovered squares
4. g(z,y) =1 g(s(x),y) =3 . .

5 ZE% z; PN ng(, s)(;;; _y } adjacency of dominoes
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6". g(1,y) #3Ag(8,y) # L Ag(x,1) # 4 A g(x,8) # 2} border of the board
7. 1=350B)A2=s(1)A3=15(2) Ad=5(3) A5 = s(4) } names for numbers
8. g(w,y) =1Vg(z,y) =2V g(z,y) =3V g(r,y) =4Vg(z,y) =5} covering

MI5

The language is predicate calculus and expects a formalization of the set theo-
retical concepts, like operations on sets, Cartesian product, ordered pairs, and
cardinality. Furthermore the formalization uses operations on integers including
the absolute value function. The additional concepts are introduced by defini-
tions, the problem is stated as a formula to be proved.

Definitions
Board = Zg X 7Zsg
mutilated-board = Board \ {(0,0),(7,7)}
domino-on-board(x) < (x C Board) A card(z) = 2
AVzy x2)(x1 A 22 NT1 ETNT2 ET
= adjacent(x1,x2))
< (x C Board) A card(x) =2
A(Vzy 22)(x = {21, 22} = adjacent(z1,x2))
adjacent(z1,22) & |c(z1,1) — c(x2,1)] = 1 Ae(x1,2) = ¢(xe,2)
Vie(z1,2) — e(x2,2)] =1 A ez, 1) = c(xg, 1)
< ez, 1) — c(z2, 1)| + |e(z1,2) — c(z2,2)| =1
(5,9, 1) = @
((z,9),2) =y
partial-covering(z) < (Vz)(z € z = domino-on-board(x))
ANVz y)(z€zNy€z=ax=yVaeny={})
Theorem
—(3z)(partial-covering(z) A z = mutilated-board)

Note that McCarthy defines domino-on-board and adjacent in two equivalent
ways. Which definition to prefer depends on the context of its usage.

2.2 Formalization with Inductive Definitions

Paulson presented his formalization and proof of the checkerboard problem in
the Isabelle system [3].

P96

The language is Isabelle/HOL which allows inductive definitions and supports
reasoning with them. The formalization uses notions from integer arithmetic and
set theory.

Definitions
lessThan(m) := {i € N|i <m}
board := lessThan(2 - s(m)) x lessThan(2 - s(n))
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tiling(A): set(set(a)) = {} €tiling(A) A (a€ ANt € tiling(a) Nant = {})
= a Ut € tiling(a)
domino: set(set(N x N)) := {(i,5), (¢, 5(3))} € domino A
{(i,5), (s(2),4)} € domino

(board \ {(0,0)}) \ {(s(2-m),s(2-n))} ¢ tiling(domino)

Theorem

2.3 Formalization in Second Order Logic

Huet [4] formulates the problem on a level which is more abstract than all the
other formalizations. The formalization is based on properties such as injectiv-
ity and surjectivity of functions, and finiteness (characterized on the basis of
injectivity and surjectivity). The geometry of the board is not considered at all,
numbers or cardinals are not necessary for the argument.

H96

The theorem is formalized in the Coq system, but needs only the expressiveness
of second order logic. Given a signature of sets B and W, two functions Board :
B — W and Domino : W — B representing the board and the dominoes, the
existence of a tiling for the full checkerboard problem is stated as:

injective( Board) A injective( Domino) A finite(B) = surjective( Domino).

We can generate from the full checkerboard a mutilated one by taking B’ as
a proper subset of B. The theorem is then that for an injective function Board’
with Board' : B — W and finite(B’) there is no function Domino : W — B’
which is injective (i.e., a — possibly partial — covering) and surjective (i.e., total).

2.4 A Very Abstract Formalization

Let us add here another formalization which is even more abstract than Huet’s
and just reasons about the cardinality of sets (finite or infinite).

KP05
Two sets B and W cannot at the same time have the same cardinality and a
different cardinality, that is, not |B| = |W| and |B| # |W|.

More concretely we can say, if | B| < |W| (that is, we have strictly fewer black
than white elements) then we cannot have |W| = |B| (that is, equal numbers
which would follow from a covering with 2 x 1-dominoes).

3 Relationships Between Formalizations

Different systems make use of different problem representations. Fig. [] gives an
overview (which is not complete with respect to problem representations as well
as solutions). The initial formalization M64a was verified by the model generator
Mace, only the symbols L and F together with the corresponding axioms were
replaced by built-in concepts [6]. The proof in the TPS system uses exactly
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Informal
checkerboard
7oblem\
M64a M64b M95 P96 H96 KPO05
»
Mace: no TPS Mizar Isabelle Cogq -E
model proof proofs proof proof

Fig. 1. Overview of formalizations of the checkerboard problem and proofs

the formalization given as M64b [7]. There are two proofs in the Mizar system
for M95 [BI§]. Paulson and Huet constructed proofs for their formalizations in
Isabelle [3] and Coq [], respectively. KP05 can be proved in almost any formal
system by calling the corresponding calculus level rule.

Every given solution is a formal proof for the corresponding problem repre-
sentation and thus for the informal representation of the checkerboard problem.
While it is difficult to be more rigorous with respect to the informal statement —
and probably impossible to be fully rigorous — we can ask whether the Coq proof
is a solution for the formalization given as M64a (represented as a dotted line in
Fig. D) and ask for a formal justification. In extreme cases (relationship between
M64a and KPO05), such a formal justification may be as difficult as a proof of
the one problem (here M64a) from first principles. We will come back to the
implications of this observation for mathematical knowledge management, but
first we look at concrete problem transformations.

3.1 Problem Formalizations and Their Generalizability

Each formalization can be looked at from different perspectives. M64a is very
concrete and its proof captures exactly the original problem and is difficult to
generalize. M64b is slightly more general (also capturing tori). M95 although
concrete in the formulation, allows for an easy generalization of the argument.
P96 and H96 are much more general and go beyond the concrete 8 x 8-
mutilated checkerboard. In Paulson’s formulation the problem is shown for any
2m x 2n rectangular structure in which two opposite corners are missing, while
Huet’s formulation entails that arbitrary finite sets of black and white squares
with an injective mapping from black to white sets, which is not surjective, can-
not allow for an injective mapping form the white to the black squares. This proof
is very abstract and many different aspects of the problem are irrelevant: the
relative relationship of black and white squares, how many fewer black squares
than white squares we have, and the shape of the dominoes. Important is only
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that the set is finite and that a domino covers exactly one black and one white
square (actually the problem representation does not speak of coverings, so this
is yet another interpretation).

KPO05 is even more general than H96. We speak only about cardinality of sets
and argue that the cardinality cannot be the same and different at the same
time. We do not require anymore that the sets we speak about are finite. If we
cover, for instance, pairs (a,b) in which the as are rational numbers and the bs
real numbers so that each rational number is covered exactly once by an a then
the bs cannot cover the real numbers since there are more real numbers than
rational numbers.

Even more general than KP05 is the statement true, which is logically equiv-
alent to all true statements.

3.2 Proofs and Formalizations

If we revisit the different representations then the last one, true, does not require
any proof. It is trivially satisfied, but it does not help us anything in understand-
ing the problem Let us imagine the situation of a teacher and a student and
the teacher wants to convince the student that the mutilated checkerboard can-
not be covered by 2 x 1-dominoes. She may say “This is trivial.” to which the
student may answer either “Yes, it is trivial, I learnt to know this problem a
while back already.” or “No, I don’t believe it.”

In the latter case she would need to give him a better argument (based on
KP05) such as “Look at a partition of the checkerboard into two disjoint sets
so that there are arguments that the two sets must have the same number of
elements and at the same time must not have the same number of elements.”
Again the student may now believe the statement and accept this as a proof,
or not.

If the previous argument is not accepted H96 can further refine it, and so on.
Each formulation will get closer to the representation of a concrete checkerboard
on the one hand. On the other hand, the proof of why each statement holds
becomes increasingly more difficult.

3.3 Translations Between Different Formalizations

A more formal way to look at the relationship between the different formaliza-
tions is to see how one can be translated into another. We will discuss now some
of these translations to a varying degree of depth.

M64a—s M64b

Let us assume now that the predicative formulation M64a is given and we want
to generate from this a functional formulation of the type M64b. To this end we
would need to map different objects of the first signature to the second.

! Richard Feynman states only half jokingly that “mathematicians can prove only
trivial theorems, because every theorem that’s proved is trivial.” [0l p.84].
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M64a —  M64b

S(z,y) = s(@) =y (1)
L,2,...,8 = 1,8(1),...,s(s(s(s(s(s(s(1))))))) (2)
G'(z,y) —  g(z,y)=iforie{l,...,5} (3)
E(z,y) =oT=y (4)

Why is this translation justified? (Il) means that we can translate the binary
predicate symbol S into a unary function symbol s. In order to justify such a trans-
lation we need to show that S not only represents a general relation, but a left total
and right unique one. Let us first observe that it suffices to look at the numbers 1
through 8. S is right unique for these numbers since from the axioms 1.-5. follows
that the usual relationships between these numbers hold, for instance, 1 < 3 from
S(1,2) and S(2, 3) with the second and third axiom. With the third axiom follows
also —5(1, 3). Likewise =S(1,4) and so on, that is, S is right unique.

The left totality is a more subtle issue. While it is intentionally clear that we
have to consider only the eight different numbers 1, 2, ..., 8, the formalization
M6/4a does not warrant that only eight different numbers exist. More seriously,
we get from the axioms 1.-5. as a consequence that for all x € {1,2,...,8} holds
-S5(8, x) The argument why S can be translated to a function requires either
to extend the range to all natural numbers or to give up the idea of a strict order
and to consider a cyclic structure in which s(8) = 1.

Both approaches are formally possible and amount to the same covering prob-
lem, assumed we never make use of s(8). Axiom 6’ states that dominoes do not stick
out, that is, that only the dominoes in a range from 1 through 8 are to be consid-
ered. The first approach means we view the mutilated checkerboard as a subset of
the infinite plane. When putting dominoes down, we never cross the boundaries.
The second approach means that we consider the checkerboard as a torus, axiom 6
puts up boundaries between the 8th row and the 1st row (and the columns likewise)
which we may not cross in covering the checkerboard. Strictly speaking, axiom 6’
is not necessary to prove the theorem, since the mutilated torus, that is, the full
torus without the images of the two deleted corners of the checkerboard, cannot be
covered by dominoes either, even if it is possible to cross the invisible boundaries,
since the mutilated torus contains two white squares more than black ones.

In M64b McCarthy chooses the second view (of a torus). The transition from
M64a to M64b cannot be syntactically established at a low level (but only al-
most), since the original binary predicate symbol S is not left-total. This does not
matter, however, since s(8) has never to be used. Formally the second approach
has the advantage that we have only finitely many (eight) different elements
in the Herbrand universe, and hence has a finite search space, while the other
formalization has a potentially infinite search space. Depending on which pro-
cedure one uses, it is advantageous to be more restrictive and to include 6’ (for
instance, when using Mace to show that no model exists), or to allow coverings
of the torus which cross the magic boundary and have no correspondence of cov-

2 If we had S(8, ) for some x we would get with the second axiom L(8,z). Together
with L(z, 8) (which follows from axioms 1.-3. for = # 8, and from L(8,z) for x = 8)
we get L(8,8), hence —E/(8, 8), which contradicts E(z,z).
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erings in a real checkerboard with 2 x 1-dominoes and exclude 6" (for instance,
when proving the theorem with TPS).

As replacing the predicate symbol S by a function symbol s, it is possible to
replace the predicate symbols G* (with i = 1,...,5) by a function symbol g so
that G*(z,y) goes to g(z,y) = i. Note that initially the G* are different names
for binary predicate symbols (and could have been called P, @, R, S, T instead).
Since the names do not matter we can use a single ternary predicate symbol G
instead which takes the index ¢ as an argument, that is, G(z,y,1) insteadd of
G'(z,y). G(z,y,1) corresponds for a left-total and right-unique G to g(z,y) = i.
The left-totality and right-uniqueness of the G(z, y, i) follows from axioms 6.—10.

Axioms 11 and 12 mean that precisely the squares (1,1) and (8,8) are missing.
They are translated as g(1,1) = 5 A ¢(8,8) = 5 and g(z,y) =5 — (E(l,z) A
E(1,y)) V (E(8,z) A E(8,y)) which is with the translation of E(z,y) to x =y
logically equivalent to axiom 3’.

Axioms 13 and 14 can be translated directly to 4’ and 5" (with the simplifica-
tion to rename 7 to z, and get rid of o by replacing it by s(z)). Axiom 6 goes
to 8, and 15 to 6.

Note that the translation from S to s and G to g leads to proof obligations,
namely that the functions s and g, used to represent the relations S and G
are well-defined. While this should be a straightforward syntactical proof and
actually is for G, matters are more subtle with .S, and intuitively need an argu-
ment why a mutilated checkerboard cannot be covered when a mutilated toroid
checkerboard cannot. The translation of F to equality strictly also leads to proof
obligations that the usual properties of reflexivity, symmetry, transitivity, and
substitutivity are satisfied. Only the first of the four is actually formally given
(in axiom 5), since only this one is needed.

M64b— M64a
The reverse transformation is much simpler. Functional expressions such as
f(z1,...,2,) = y are translated to predicative ones such as F(z1,...,%n,Yy).

The additional axioms for the left-totality and right-uniqueness of F' may be
added. Nested functional expressions such as g(s(z),y) = 3 require the intro-
duction of new variables as in S(z1,22) — G(z2,y,3).

M95— HI6

Let us see now how the solution of Huet formalized as H96 can be applied to
the problem formalization given by McCarthy as M95. We start again to relate
the objects in the different formalizations.

MI5 —  H96

{(z,y)|a € Board N0 = (r+y) mod 2} +— B (1)
{(z,y)|la € Board N1 = (z+y) mod 2} +— W (2)
Board — Boardy : B—W  (3)
set D with —  Domino: W — B  (4)

partial-covering(D) A\W C |JD

3 Note also that the order of the arguments does not matter, provided any re-ordering
is done consistently throughout the whole problem description.
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None of the objects in the formalization in H96 exists in M95. The sets B
and W have to be constructed. The mapping representing the board Board g
has to be defined using the set Board and the sets corresponding to B and W.
The same holds for the mapping Domino, which additionally needs the set of
dominoes covering all white squares.

In terms of the three steps describing the process of solving the problem
given in Sec. 2 the formalization M95 is the problem formalization of step 1,
the proof given for H96 corresponds to the realization of the proof in step 3,
and the transformation which identifies objects in M95 with objects in H96 is
the creative invention of step 2.

For the mutilated board of M95 the set B’ = B\ {(0,0),(7,7)} corresponds
to the restriction of Boardy : B — W to Board'H : B" — W, and the theo-
rem of M95 expressed with respect to the notions in H96 translates then to
—(3Domino : W — B’ injective( Domino)).

M95—— P96

The correspondence between the objects in M95 and P95 is more direct. In
both formalizations the board is represented by the Cartesian product of the
integer interval [0,2n — 1], the squares of the board are elements of the Carte-
sian product, and dominoes are sets containing exactly two squares which are
adjacent

We see here that even when there is an agreement how to represent the ob-
jects, there can be a difference how properties of the objects are represented.
For example, the predicate partial-covering in M95 is defined for the given
board, and includes the definition of adjacent dominoes. The predicate tiling
in P96 defines the covering independently from dominoes. Here we see one
dimension in the choice for a formalization: the generality of the introduced
concepts.

In M95 the general concept of tiling is expressed by the formula tiling’(z) <
Ve y)(z € zAy € z = x =y Vany = {}) which is equivalent to tiling in
P96. Even for equivalent concepts there is a choice in the formalization. This
choice may depend on the assistance provided by the different proof systems. Mc-
Carthy supposes a ‘heavy-duty’ set theory prover, whereas the choice of Paulson
is motivated by the support for inductive definitions available in Isabelle.

M64b— M95

When we compare the problem formalizations M64b and M95, then we find that
the latter contains explicit objects to model the board, the squares of the board
as pairs of coordinates, and the dominoes as sets with exactly two pairs. In
MG64b we find a representation which formalizes the different situations for each
square (z,y) of the board as values of the function g(x,y). Abstract concepts,
like dominoes, size of the board, and covering are expressed as restrictions on
the values of g and thus are given only indirectly.

4 Although M95 speaks about a concrete 8 x8 checkerboard, the argument is as general
as for the more general formalization of P96.
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KP05— H96

The most basic argument in KP05 is very simple. If we have two sets, then we
cannot have |B| = |W| and |B| # |W|. The slightly more expanded argument
is: If we have two sets with |B| < |W| then we cannot have |W| < |B| (which is
a slightly stronger version than the original formulation, but maps much better
to Huet’s argument).

How can we apply this statement to the case of H967 We need to know that the
conditions are given, that is, we assume an injective but not surjective mapping
Board : B — W, and the finiteness of B. The injectivity entails |B| < |W|. The
non-surjectivity entails together with the finiteness of B, |B| # |W/|. The two
facts together give us |B| < |W|. Hence KP05 is applicable and we can conclude
= |W| < |B|. Hence there is no injective mapping Domino : W — B.

3.4 Soundness Considerations

The relationship between different formulations can in some cases be easily seen
on the basis of a syntactic transformation. In other cases it may be necessary to
make use of more complicated reasoning. Consider, for instance the relationship
between M64a and M64b. The first describes the mutilated checkerboard as a
subset of the plane, while the second describes it as a mutilated toroid. The
reasoning why the one relationship entails the other is subtle.

In general we can compare the pro-
cess of formalization of a problem to

First order logic

a projection from the problem per se without equality

. . . . . and function symbols .
to different formalizations as in Fig. \ e
Since the problem per se is not given \\ : S

in a formal way, it is difficult to rea-
son about the correctness of a formal- ® -
ization. However, it should always be —_—
possible the establish the relationship

First order logic

between different formalizations such with equality
as F]_ and F2 il'l Flg and function symbols

The relationship between different ‘ ,
formalizations should follow the com- "\., M64a/,/’/

mutative diagram in Fig. [3l Note that
the relationship may be non-trivial
since the different formalizations may
use different formal systems. A proof
for the original problem I' = ¢ will be
obtained by transforming the assumptions I' to IV from which a tranformed the-
orem ¢’ is derived in a potentially different calculus. Then ¢’ is translated back
to the original theorem . Assumed that the translations and the calculus 7 are
sound, then the overall construction is a sound argument why ¢ follows from T'.

Fig. 2. Representation as projection
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Fig. 3. Commutative diagram for proving by reformulation

Note that typically one formalization represents not only a single problem,
but as discussed in Sec. 3] it represents a whole class which can be considered
as the inverse image of different projections as displayed in Fig. @[

X
W

)
<p4) \Q.-a//

Fig. 4. Generalizability as inverse projection

4 Conclusion

It is a standard task when applying mathematical or (more stringently) formal
methods to problems that we have to formalize them within a system. It is
indeed an important aspect in the application of formal systems in safety critical
areas, since any proof can start only once the formalization is given. If different
people formalize the same problem they will typically come up with different
formulations. Assumed the two formulations cannot mapped to each other in a
sound way, then at least one does not capture the original problem adequately.

5 One of the reviewers pointed out the relationship to Benjamin Whorf’s hypothesis
that languages constrain thought. We do not want to go into the deep philosophical
discussion surrounding this hypothesis in general. However, it seems suggestive that
not only languages, but more so formulations within languages may facilitate creative
reasoning and generalizations, or not. While the same problem can be formalized in
various ways, it matters significantly for problem solving which formalization is used.
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In order to study the process of relating different formulations to each other
and to understand how to represent one example we have looked at an old prob-
lem, McCarthy’s mutilated checkerboard problem. This problem is interesting
since it has been represented and proved in a large variety of systems. Of course,
any representation has to abstract from unimportant details, such as the size
of a square on the checkerboard and its material. Other details may or may
not be represented, for instance, whether we speak of a checkerboard of size
8 X 8, or arbitrary size 2n X 2n, or arbitrary finite size, or arbitrary size. Perhaps
astonishingly, this easy problem exemplifies a wide range of problems involved.

Different formalizations are used all the time, and certain standard transla-
tions, such as different versions of relativization in sorted logic, representations
of equality in a logic without equality, reification of higher order expressions in
first order logic, or functional versus predicative formalizations, are used quite
regularly when representing problems formally. Often certain relationships be-
tween different formalizations are proved by a meta-logical argument (e.g., the
sort theorem for the relativization).

There is also a very general mechanism how different representations can be
linked to each other. Farmer et al. [I0IT1] have introduced a theory mapping in
their little theories approach. One representation can be mapped faithfully to
another if the axioms of the one become theorems in the other in a systematic
translation.

Two major challenges follow from the mutilated checkerboard problem for
mathematical knowledge management. Obviously the problem is not restricted
to this particular problem, but a general one.

Firstly, if a system is told that H96 represents a proof for the mutilated
checkerboard problem, how can it automatically check that this is so indeed.
Secondly — even more difficult — if a system is given a problem such as the
mutilated checkerboard problem, how can it find relevant information which
may be given in forms so diverse as M64a, M64b, M95, P96, H96, or KP05.

The second problem may be eased by proper annotations. The first in its
full generality can be arbitrarily hard. While retrieving and relating information
given in different shapes seems a core activity not only in mathematical knowl-
edge processing, the ways in which mathematical information is transformed is
very rich. A good representation is one that is simple and at the appropriate
level so that it captures the main ideas of the proof.

What is appropriate is, however, not independent of the actual user. An argu-
ment about cardinalities, for instance, requires at least some basic knowledge of
the concepts by the user. Huet’s elegant proof remains obscure to somebody who
does not know anything about the relationships between injective and surjective
mappings on finite sets of the same cardinality, and so on.

As Ayer [12, p.85f] puts it “A being whose intellect was infinitely powerful
would take no interest in logic and mathematics. For he would be able to see
at a glance everything that his definitions implied, and, accordingly could never
learn anything from logical inference which he was not fully conscious of already.”
Everything is trivial for such a being. Experts may do with some easy arguments
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on a high level, while beginners need low-level lengthy arguments at a low level.
The relationships between the different levels are often syntactic, but can be
complicated in detail.

A truly helpful system would not only find relevant information but also

present it to a user on an appropriate level. A good understanding of typical
transformations is an important step toward such a system.
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