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Abstract. Defining functions is a major topic when building mathe-
matical repositories. Though relatively easy in mathematical vernacular,
function definitions rise a number of questions and problems in fully
formal languages (see [4]). This becomes even more important for repos-
itories in which properties of the defined functions are not only stated,
but also proved correct. In this paper we investigate function definitions
in the Mizar system. Though most of them are straightforward and follow
the intuition, we also found a number of examples differing from math-
ematical vernacular or where different solutions seem equally reason-
able. Sometimes there even do not seem to exist solutions not somehow
“ignoring mathematical vernacular”. So the question is: Should we seek
for some kind of standard, that is a “formal mathematical vernacular”,
or should we accept that different authors prefer different styles?

1 Introduction

Mathematical knowledge management aims at providing both tools and in-
frastructure supporting the organization, development, and teaching of mathe-
matics on computers. Large repositories of mathematical knowledge are of major
concern since they provide the user with a knowledge base of verified mathe-
matical facts. However, this knowledge is often not easy to access due to the
formal language in which it is presented and verified. On the other hand the
acceptance of repositories and hence of mathematical knowledge management
systems heavily relies on the way mathematics is presented to the user; thus the
closer to “everyday” mathematics the used language is, the more likely users of
the system will be found.

The language actually used by mathematicians, however, is rather vague and
imprecise: working mathematicians use what is called the “mathematical ver-
nacular” [3, 9], a language rather to communicate than to be completely formal.
As stated by Davenport [4] “It turns out to be remarkably hard to write ‘correct’
mathematics in the mathematical vernacular.” The reason is that the knowledge
implicitly used in the vernacular must be made explicit for ‘correct’ mathemat-
ics. The same holds for knowledge repositories, especially if such a repository
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is connected with a theorem prover or checker and is not just a collection of
(textual) definitions and theorems. Here, for example, we do not have “obvious”
special cases that “need not to be taken into accounct”.

On the other hand existing theorem provers and checkers provide languages
successfully used to formalize and prove numerous advanced theorems. The lan-
guages to do so, however, are usually highly specialized and hard to understand
from the viewpoint of working mathematicians. The reason is that here the lan-
guage has to be not only formal but also semantically exact in order to produce
reliable proofs of theorems. As a consequence, there is a clash between what
mathematicians and computers – that is computer scientists who design and
implement theorem provers and checkers – consider comfortable. For theorem
proving it might be reasonable to use languages “bizar” to a mathematician,
as the goal is “simply” to find a (representation and) a computer proof for a
specially chosen theorem.

In mathematical repositories the situation is somewhat different: here we look
for general methods describing (and proving) knowledge from different – if not
all – areas of mathematics. In addition this knowledge is to be accessed and used
by non-specialists also, so that the knowledge should not be hidden by the for-
mal language of the system. Nevertheless the language used has to semantically
exact to produce reliable results. So the question is: Should we develop mathe-
matical knowledge management systems as closely as possible to the vernacular
of working mathematicians in order to please them as potential users? Or should
we include other language elements or slightly different definitions in case they
are more convenient from the theorem proving point of view?

In this paper we discuss this question by inspecting the Mizar language and
the Mizar Mathematical Library. We focus on definitions, in particular func-
tion definitions, which are often given partially or by case distinctions (see [4]).
This “impreciseness” is not further considered by mathematicians: theorems are
stated without really worrying about the “easy special cases”. In mathematical
repositories, however, this is not possible and therefore Mizar provides language
constructs to cope with such situations. However, as we will see, these do not
allow for a one-to-one translation of the “mathematical vernacular”, some deci-
sions remain up to the author. In addition we also present example situations
which a) do not strictly follow the “mathematical vernacular” and b) provide
more elegant proving and reuse in a repository.

The plan of the paper is as follows. After a brief review how functions can be
defined in Mizar in the next section, we start with an investigation of the empty
set and its elements in section 3. This easy example already indicates, that
there exist different possibilities to realize mathematical vernacular in reposito-
ries. That this is no accident is shown in section 4 and 5 where a number of
examples from different areas such as trigonometric functions and arithmetics
are presented. Problems concerning more involved topics such as modularity of
repositories and ambiguities are discussed in section 6. These observations imply
that maintaining and revising of repositories will stay an important topic in the
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future. Section 7 discusses software built for the Mizar Mathematical Library to
support this task.

2 Defining Functions in Mizar

Mathematical functions often cannot be defined uniformly on their domains;
there are defined by case distinctions such as for example the signum function or
even partially by giving additional conditions for the arguments as in the case
of inverse trigonometric functions. Of course one can introduce new domains on
which such functions are then totally defined; this, however, seems to be rather
artificial and in addition would lead to an inflation of domains not acceptable in
a mathematical repository.

The Mizar system basically provides two language constructs to cope with
such situations: the assume-clause to express restrictions of arguments and the
if-clause for defining case distinctions. In this section we give some introduc-
tory examples for using (and abusing) these constructs before we discuss their
implications for mathematical knowledge repositories.

A standard example for restricting domains is the square root functions which
is defined for non-negative real numbers only. The straightforward Mizar defin-
ition is as follows.

definition let a be real number;
assume 0 <= a;
func sqrt a -> real number means

0 <= it & it^2 = a;
end;

Note, however, that this definition implies that for each application of sqrt
a non-negative argument a is necessary, that is one has to show or state as
an assumption that 0 <= a. Things become more puzzled when considering for
example trigonometric functions: tan a is defined only if cos a is not zero, we
thus get

definition let a be real number;
assume not ex k being Integer st a = Pi / 2 + k * Pi;
func tan a -> real number equals

sin(a) / cos(a);
end;

and, given a, to get the value tan a the assumption is evident and has to be
shown explicitly. The situation looks different when it comes to case distinctions
using the if-clause. Though defining functions this way requires proving consis-
tency – the cases need not be distinct, so one has to show that the corresponding
values do not contradict each other – most examples are straightforward and in-
tuitive such as



52 A. Grabowski and C. Schwarzweller

definition let x,y be real number;
func min(x,y) -> real number equals

x if x <= y otherwise y;
end;

Proving theorems involving such functions is rather straightforward and fits to
intuition. A prominent exception, though, is the inverse z" of a complex number
z, which is usually considered as a partial function, 0" being undefined. In Mizar,
however, we find that " is defined as a total function with 0" being equal to 0.

definition let z be complex number;
func z" -> complex number means :: XCMPLX_0:def 7

z * it = 1 if z <> 0 otherwise it = 0;
end;

The point is that defining " as a partial function using assume z <> 0 would
require to prove this each time the definition is used; so in order to avoid this the
author decided to base the development on this “slightly different definition”.
Note that in Mizar division z/y of complex numbers is defined as z*y". This
means that / is a total function too, and in particular that one can prove z/0 = 0
for every complex number z (including z = 0). We will see in section 4 some
more implications of this definition.

Of course it is easy to “abuse” these language constructs by introducing unnec-
essary assumptions, the probably most prominent example is using non-empty
sets where this is not necessary. So the question is not only how to provide as-
sumptions that can be reasonably used later, but also how to avoid unneccessary
assumptions in a repository.

3 How Many Elements Has the Empty Subset?

To start the discussion we present in this section some issues of the empty
set and its elements. Though rather trivial at first sight, this illustrates well
the problems arising when moving from “imprecise” descriptions to “complete
formal” ones. We will see that though the definition is almost trivial, using it in
the environment of a mathematical repository – that is combining the definition
with other notations from set theory – needs some care.

The empty set is the set which contains no elements. Thus it is straightforward
to define something like

definition
func {} -> set means :: XBOOLE_0:def 1

not ex x being set st x in it;
end;

Though not exactly in the scope of defining functions, we like to mention the
following problem here: In mathematical repositories definitions do not stand
alone; they have to be considered in the context of other notations, here for
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example finite and infinite sets. Obviously, the empty set is finite. But in a
repository that is not true in advance, it’s just obvious in the “mathematical
vernacular”. Thus in principle it is possible to have objects such as

let X be infinite empty set;

Generally speaking that’s no harm, because such a phrase is meaningless: it
includes a contradiction, hence everything stated (and proved) for such objects
is of no use. On the other hand the acceptance of a repository in which this is
possible is at least questionable. Thus such “contradictable” objects should be
ruled out. Therefore Mizar does not allow empty types: before using an object of
type infinite empty set its existence has to be shown in an existential cluster
registration.

Now let’s have a look at the elements of the empty set. In Mizar we find
the definition of the type Element of X, where X is a set. It is “clear” that x
is an Element of X, if x ∈ X. There are no problems if X is non-empty: There
exists an element x in X, so the type Element of X is non-empty. If X is empty,
however, there is no x ∈ X. Of course one can define the type Element of X for
non-empty sets X only, ruling out the type Element of {}. But then each time
the type Element of is used, one has to show that its argument is non-empty.
Therefore in Mizar the type Element of {} is defined to be the empty set:

definition let X be set;
mode Element of X means :: SUBSET_1:def 2

it in X if X is non empty otherwise it is empty;
end;

This, however, does not fit to mathematical vernacular, because the empty
set is not an element of the empty set; but has the advantage that the type
Element of X is well-defined for arbitrary sets X, hence usable without any as-
sumptions. We mention that though the empty set {} is of type Element of {},
this does not imply that {} ∈ {} is provable in Mizar, that is {} is still the
empty set. Furthermore, the Mizar checker itself infers that x ∈ X holds if x is
an Element of X and X is non-empty. So we see that even a notion as “obvious”
as the empty set calls for basic decisions – especially concerning types and their
implications for later proving – when being formalized, that is when moving from
mathematical vernacular into a mathematical repository.

4 Special Functions

In this section we consider mainly the definition of trigonometric functions in
Mizar. Interestingly, we can find different approaches, one following the intuition
and another one using that the inverse of 0 is 0. First, the logarithm of real
numbers a and b is defined using exponentiation, in Mizar defined as a functor
to_power (see section 5.3). Here, the usual “problematic” values for a and b
have been ruled out using an assumption:
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definition let a,b be real number;
assume that a > 0 & a <> 1 and b > 0;
func log(a,b) -> real number means :: POWER:def 3

a to_power it = b;
end;

Consequently, theorems have to take these values into account, because the
equality a to_power log(a,b) = b is valid only if the assumptions about a and
b are fulfilled. We thus find theorems of the following kind.

theorem :: POWER:61
a>0 & a<>1 & b>0 & c>0 implies log(a,b) + log(a,c) = log(a,b*c);

This approach follows what Davenport called the “conditional equation ap-
proach” in [4]. The advantage is that it is close to textbook mathematics (though
assumptions in a book are often not stated thoroughly) and makes the necessary
assumptions explicit. On the other hand long lists of assumptions both decrease
readability of theorems and require of course re-stating them when using such
theorems in other proofs.

What can improve things a bit here is the technique using “default values”
as presented in the definition of the inverse function ". Remembering that / is
a total function (compare section 2), the tangent function for real numbers can
be defined simply as follows.

definition let th be real number;
func tan(th) -> real number :: SIN_COS4:def 1

sin(th) / cos(th);
end;

which actually means that tan(Pi/2) is defined to be 0. Note that given th we
can now get the value tan(th) without proving th <> Pi/2. This also implies
that a number of theorems can be stated using no assumptions, so for example

theorem :: SIN_COS4:2
tan(-th) = - tan(th);

This may seem irritating at first sight for a reader not familiar with the
basic definitions of the repository; but has the advantage that this theorem can
be used without further prerequisites to be shown. Of course not all theorems
can be stated this way, because z * z" = 1 holds only if z <> 0. Here Mizar
formalizations fall back to the conditional approach, so for example we find

theorem :: SIN_COS4:8
cos(th) <> 0 implies sin(th) = cos(th) * tan(th);

5 Arithmetics and Related Issues

5.1 The Greatest Common Divisor

As the greatest common divisor GCD(a, b) is the largest number dividing both
integers a and b, according to our intuitions such number does not exist in case
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of a = b = 0. Indeed, a quick tour through mathematical services available via
WWW confirms these convictions: Wolfram’s MathWorld’s1 definition of gcd
takes only positive integer numbers as arguments; according to Wikipedia2 both
should not be zero simultaneously, similarly is the PlanetMath’s3 opinion, but
we can read in Wikipedia that “it is useful to define gcd(0, 0) = 0”.

In the Mizar library, there are two definitions of the greatest common divisor:
hcf for natural numbers and gcd with integer arguments which uses the notion
of hcf and the absolute value in its definiens.

definition let k, n be Nat;
func k hcf n -> Nat means :: NAT_1:def 5

it divides k & it divides n &
for m st m divides k & m divides n holds m divides it;

end;

Based on the above, we can easily prove that

a = 0 ∧ b = 0 ⇐⇒ a hcf b = 0

for all natural a and b, and similarly for integers. Furthermore, claiming such
definition we keep the connectedness with commutative rings, we also obtain a
lattice of naturals with gcd and lcm as binary operations to be both distributive
and complete.

5.2 The Integer Division

When inspecting the integer division in the Pascal programming language, the
FreePascal compiler returns ’division by zero’ error both with div and with
mod. Since the Mizar system itself is coded in Pascal (and as one can easily see,
some Mizar language constructions have been influenced by this programming
language), we could expect a similar behaviour for the functions div and mod in
the MML.

Since both are defined usually (see Wolfram’s MathWorld) as:

m div n = �m/n�, m mod n = m − n�m/n�, (1)

both share the restriction of n �= 0 as usual in the literature.
This is not violation of intuitions, but the MML contains the following defi-

nitions, somewhat closer to Euclid’s Elements:

definition let k, l be natural number;
func k div l -> Nat means :: NAT_1:def 1

( ex t being Nat st k = l * it + t & t < l ) or it = 0 & l = 0;

func k mod l -> Nat means :: NAT_1:def 2
( ex t being Nat st k = l * t + it & it < l ) or it = 0 & l = 0;

end;

1 http://mathworld.wolfram.com
2 http://www.wikipedia.org
3 http://planethmath.org

http://mathworld.wolfram.com
http://www.wikipedia.org
http://planethmath.org
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The above definition is a variant of which we wrote earlier (something like the
if-clause), but with a slightly different (but equivalent classically) formulation.4

There is an agreement in the MML that 0 is an element of N (to have both
functions natural-valued), but there isn’t any within mathematics in general:
MathWorld writes that “Unfortunately, 0 is sometimes also included to the list
of ‘natural’ numbers” (as Bourbaki and Halmos do), quoting Ribenboim’s as the
opposition (“. . . whenever convenient, it may be assumed that 0 ∈ N”).

In [8] they state that extending mod to omit the assumption of the division
by zero is important, but they do not explain explicitly which one should be
taken: the divided number or 0. Inspecting the book we discovered that if we
accept the equations (1) as the new definitions of the integer division functions
in the MML, we obtain x = x mod 0, and this is also claimed in [8] in many
more places than the alternative 0 = x mod 0.

There are contexts in which division by zero can be considered well-justified.
For example, in the extended complex plane C∗ it is defined to be a quantity
known as complex infinity. This definition expresses the fact that, for z �= 0,
limw→0 z/w = ∞ (i.e., complex infinity). However, even though the formal
statement 1/0 = ∞ is permitted in C∗, this does not mean that 1 = 0 · ∞, so
zero does not have a multiplicative inverse. On the other hand, although R ⊆ C,
it is not clear which way to go with the extensions (since to the extended set of
real numbers both +∞ and −∞ are added and this is the case of the MML).

As a good example of the other way of definition extending we can quote min*
as an opposition to an ordinary min function.

definition let A be finite non empty real-membered set;
redefine func min A means :: SFMASTR3:def 1
it in A & for k being real number st k in A holds it <= k;

end;

definition let A be set;
func min* A -> Nat means :: HENMODEL:def 1

(it in A & for k st k in A holds it <= k) if
A is non empty Subset of NAT

otherwise it = 0;
end;

These two objects are defined completely independently, but the latter became
apparent to be useful when proving the Gödel’s Completeness Theorem in Mizar.
Theoretically, generalizing min* we can replace an original min to simplify the
library a bit. Generalizing can be also interesting from a purely scientific point
of view (as e.g., formalizing rough sets with tolerances as described in [7] or [6]
instead of equivalence relations). But usually the loci of a definition cannot be
just generalized because the information contained in it may be necessary to
give the proper meaning of an introduced object.
4 The difference between natural number and Nat (with the latter expanding to
Element of NAT) which has origins in various treatment of element of the empty
set has to be recalled here. All Nats obtain the attribute natural automatically due
to the conditional cluster mechanism.
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5.3 The Power Operator

The consequence of introducing in parallel of similar notions (motivated by the
need of having their definitions close to the literature) can be observed in the
case of the definition of the power function, which is composed with the help
of various power operators defined earlier in MML (#R is defined as the limit of
sequence of rational powers of a given real number – with the assumption of the
positive base, #Z is a integer power, with arbitrary real base).

definition let a, b be real number;
func a to_power b -> real number means :: POWER:def 2

it = a #R b if a > 0,
it = 0 if a = 0 & b > 0,
it = 1 if a = 0 & b = 0,
ex k st k = b & it = a #Z k if a < 0 & b is Integer;

end;

Any efforts to change this definition should be made carefully, because the
article with this definition is referenced in 46 other MML items 1407 times.
Similar data for the other power operators: 415 references in 39 articles.

Note that this definition is an example of a definition of a partial function
(and keyword otherwise is not used there), e.g. according to this definition we
still don’t know which is the value of (−1)−

1
2 , but it gets the type real number.

5.4 Polynomials

Consider polynomials as a last example. The head term (HT) – and hence the
head coefficient (HC) – of a polynomial are usually defined for non zero polyno-
mials only (see for example [2]. From a theorem proving point of view, however,
it seems convenient to define a “head term” for the zero polynomial also as
follows: The head term of the zero polynomial equals the smallest term with
respect to the given order. This is can be seen as an extension of the head term
functor found in the literature.

definition
let n be Ordinal, T be connected TermOrder of n,

L be non empty ZeroStr, p be Polynomial of n,L;
func HT(p,T) -> Element of Bags n means :: TERMORD:def 6
(Support p = {} & it = EmptyBag n) or
(it in Support p &
for b being bag of n st b in Support p holds b <= it,T);

end;

This allows us to formulate theorems about head terms for arbitrary poly-
nomials. As a consequence, when later reusing such theorems the user need not
always bother that the actual polynomial is not equal 0 – just like mathemati-
cians. For example, we get



58 A. Grabowski and C. Schwarzweller

theorem :: TERMORD:22
for n being Ordinal, T being connected TermOrder of n,

L being non trivial ZeroStr, p being Polynomial of n,L holds
term(HM(p,T)) = HT(p,T) & coefficient(HM(p,T)) = HC(p,T);

if also HC(p,T) is defined appropriately (as head monomial HM(p,T) is), e.g.
equals the zero element of the underlying coefficient domain.

6 Modularity and Ambiguity

6.1 Modularity of the Library

Although the fundamentals of set theory in Mizar are established in rather un-
flexible way (some of them are built into the verifier, e.g. the Axiom of Choice can
be proved – and it is in the Mizar article [1]), the user can also modify his/her
(e.g. set-theoretical) framework at very low axiomatic level. At first glance it
is not strictly connected with function definitions, but certain preferences can
substantially change the need of conditional definitions. As a perfect example in
arithmetics of alephs we can cite the Generalized Continuum Hypothesis intro-
duced by Josef Urban in [15].

definition
pred GCH means :: CARD_FIL:def 12

for N being Aleph holds nextcard N = exp(2,N);
end;

theorem :: CARD_FIL:31
GCH implies ( M is inaccessible implies M is strongly_inaccessible );

where M is again of the type Aleph.
This trick may be used, e.g. to state the Brouwer Fix Point Theorem for disks

on the real euclidean plane as an assumption to prove the famous Jordan Curve
Theorem5. As the bright side of this approach to the development of the library
we can point out the possibility of development of the authors’ favorite parts
of mathematics in which they are experts, instead of spending most time on
bridging the gap between the current and the desired state of the formalization
of the theory. This could attract more mathematicians and as we believe it is
one of the vital aims of math-assistants and also of the MKM project. Also the
research frontier could be so reached faster – which could make the machine
codification of recent mathematics more egalitarian.

The modular maintenance of systems could be a solution for someone’s wishes
to have some meta-assumptions, but the care is advised (e.g., the Axiom of
Determinacy contradicts the Axiom of Choice which is proven in the MML, so
the earlier should not be accepted as such an assumption). Probably something
5 Actually it is meaningless since Korni�lowicz and Shidama proved this version of the

Brouwer Fix Point Theorem in February 2005 as the BROUWER article accepted to the
MML. The one-dimensional case is pretty old.
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like the requirements directive with more human-friendly access and giving
possibility of defining author’s own modules of this type could be an attractive
solution.6

Clearly, this can also have some impact on the knowledge exchange between
different systems, according to the Sacerdoti Coen’s advice in [14]: “Make im-
plicit information explicit”. Note however that the logical system standing be-
hind the Mizar system is fixed, and Mizar developers rather do not anticipate
change of this policy (e.g. from the classical into the constructive logic) in the
future. Another drawback is that stating some significant or influential theorems
without proofs and using them later as a starting point for further computer-
checked reasoning we allow for a gray area of practically machine-unverified
mathematics. This is hardly acceptable if we aim at building a knowledge repos-
itory as a block, not as a loose collection of solved problems.

Having this idea in mind one might understand the encoding of the solution
of the Robbins problem just as proving set of equations given by Huntington can
be derived from those of Robbins. Similarly, the problem of Sheffer-stroke-based
short single axiomatization of Boolean algebras can be seen as such, involving
only “|” operator and showing the equivalence with the 3-axiom system given
by Sheffer.

In informal mathematics it is natural to explain that both approaches for
Boolean algebras, this using disjunction and negation, and that with the Sheffer
stroke are equivalent with the classical one, in terms of two binary operators and
a unary complement. Authors can have different ideas for the same concept just
as various books on the same topic do. But in the Mizar Mathematical Library,
and – as we imagine – in an arbitrary large formal repository of mathemati-
cal knowledge it requires some work to provide a proper justification for this
equivalence.

6.2 Ambiguities

In a distributed knowledge repository it is hard to establish a high unification
level (compare 1/0 = 0, which is provable in HOL/Mizar, its negation is provable
in IMPS, both the formula and its negation are not provable in Coq, or being not
a correct formula in PVS), so there is a need to exchange information about the
mathlore (as in QED Manifesto they wanted to call “knowledge that is neither
taught in classes nor published in monographs”) which is accepted (or rather
where it was rejected). As a mathlore we understand here not only basic facts
which are commonly accepted, but also the formulation of definitions of basic
notions.

But what to do with freshmen which are not acquainted well with the math-
lore? Anyone remembers from the school that the division by zero is not allowed
as a rule, and no one complained, so why think about the motivation to have
6 As of version 7.0.04 of the Mizar system, there are five modules of this type available:
BOOLE, SUBSET, HIDDEN, ARITHM, NUMERALS, REAL, where first two introduce autom-
atization of boolean operations on sets, the latter three – calculations on numbers.
The detailed exposition of the topic is included in [10].
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some value for 0 divided by 0? The answer given in the MML is not obligatory
in didactics: the recent policy of computer-aided instruction with Mizar is not
to use the whole repository (MML), but to prepare small working environments
built from scratch as described in [11], in which decisions do not depend on the
Library Committee taking care of the MML. The reason is also that in this way
it is independent from the Mizar library which evolves rapidly so the update
during a semester could be hardly acceptable.

One of the conservative choices is to keep different definitions (and theorems,
consequently) of the same notion in parallel, not to favour any distinct approach.
Even then we can measure how often each of them is taken and – based on this
quantitative measures – let researchers develop only the one which is used most
often (as it can be done e.g. in case of min and min*) via consequently replacing
other undesirable occurrences.

7 Improving the Library

As mathematics assistance systems are designed as a tool offering machine help
for human researchers, many of the decisions about chosen approach are taken on
the user’s side depending on the various (subjective as a rule) criteria: elegancy,
faithfulness to mathematical standards, feasibility, etc.

However, especially if the cooperation between various systems is taken into
account, much improvement of a repository can be done in a highly automatic
way. The quality is to be measured by statistical, so quantitative means. As it
is clear however, “short” does not mean “readable” and this is a serious draw-
back when thinking about reusability of proofs and their clarity for people. The
de Bruijn factor, which is defined by Wiedijk as the quotient of a size of formal
representation by its informal original can be a dead end sometimes.

All Mizar distributions contain the bunch of programs aiming at reviewing
a Mizar article and which hence may lead to the enhancing of a human work
done by hand. The Library Committee of the Association of Mizar Users uses a
collection of editing versions of the mentioned programs.

The software inspects a Mizar text focusing on three main activities:

– shortening and clarifying proofs;
– improving definitions’ and theorems’ level of generality;
– marking block and items which are just not used anymore.

Since the Mizar Mathematical Library contains knowledge which is not only
declared but its correctness is also proved, there is a need for controlling of the ne-
cessity of some parts of the proofs written by human. Conditional definitions can
be introduced to reflect closely the sense of the original (as the aforementioned
division by zero), in many cases additional assumptions may be consequence of
too weak formulation of the theorems used in the proof of its correctness, some-
times unnecessary clauses are just left accidentally (and so, polishing proofs can
detect them). In all above cases, enhancing proofs can affect also the formulation
of definitions via bottom-up stepwise refinement. There are few stages on which



Translating Mathematical Vernacular into Knowledge Repositories 61

such control (hence improvement) can be performed (and this is the case of the
Mizar library):

Irrelevant premises
This is the most unproblematic and the most popular control which can be
performed when writing a Mizar article. relprem reviews which references
are not needed for the justification of a sentence.

Checking unused labels
Very often removed unused premises are just library references (for defini-
tions and theorems proven in MML already), but sometimes the calling by
a local fact is written accidentally. If any other sentence also does not use
this labelled item, after the chklab pass such label is marked as unnecessary.
Still though, the sentence can be needed in a proof via simple linking by the
next one (the reserved word ‘then’ in such a case).

Inaccessible part of proofs
The program inacc points out sentences which are neither labelled nor linked
(elements of a proof skeleton are not marked as erroneous).

Finding trivial proofs
Although Mizar proofs are hierarchical (in the sense considered e.g., by Lam-
port), sometimes after the aforementioned transformations nested proofs can
be simplified by the program trivdemo to a simple justification, that is to a
list of references preceded by the keyword ‘by’.

Irrelevant suppositions
As unnecessary assumptions (in the sense of elements of proof skeleton, not
just as premises) are not marked by any of the programs mentioned before
as vital element of proofs, this software operates on the stage of theorem
formulation than proof transformation.

This program (relsup) is not freely available in the distribution. Explicit
formulation of some assumptions in a proof may be forced by the so-called
definitional expansions and hence not used directly. They are needed however
and their automatic removal could result in an error in the proof skeleton
and marking them as erroneous can be highly confusing, especially for an
unexperienced author.

The above ordering of these programs reflects their preferred calling sequence.
The only controversial exception of the reviewing software is relinfer pro-

gram (so it was excluded from our enumeration), which points out the unnec-
essary steps in a proof (and the references should be added to the next step).
It can exceptionally shorten proofs but it may result in poor readability of the
text:

– some sentences which are important for the proof technically are marked as
irrelevant steps, but their removal may force the user to repetition of the
same library reference;

– the removal may be accidental in some sense, that is steps which are crucial
for human understanding of the idea of a proof, but are still unnecessary
for machine (e.g., unwinding definitions – definitional expansions). Here the
tendencies to reduce the de Bruijn factor can be misleading.
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We also have software which detects unused variable occurrences, irrelevant
private predicates and functions, marks unnecessary type changing statements,
etc.

Besides the aforementioned proof transformations which are performed very
often, some other checkouts are done occasionally. There is a software which
checks if there are equal theorems in the library, and what’s more interesting, if
a theorem is a consequence of another (although due to the large library, both
use a lot of resources). The latter one is often not very unlikely: to formulate
statements as equivalences is the usual mathematical practice, very often though
some assumptions are needed only for one of the implications.

We still do not have any automatic control if the definitions are repeated
(authors would have like to introduce independently e.g. closure operators using
different structures), so we can speak about the detection of ‘equal theorems’
rather than ‘equivalent’ ones. So the role of careful peer-reviewing of a repos-
itory is very important, especially if we take into account a large repository
of mathematics, written by many authors, so rather not much unified in style.
Quantitative parameters of the MML (some 40 thousand of theorems and lem-
mas, nearly 8 thousand definitions authored by more than 170 authors) justify
the necessity of continuously revising of Mizar articles.

8 Conclusions

In this paper we have considered how the mathematical vernacular can be real-
ized in mathematical repositories, thereby focusing on function definitions. The
inspection of the Mizar Mathematical Library has shown that its authors used a
number of different styles such as the “conditional” style using partial functions
or the “extension” style as used in the definition of ". Sometimes even more than
one definition is available. It seems to us that these different styles exist due to
a clash between (a) working in a formal language close to the mathematical ver-
nacular which (b) is also used to prove the theorems stated. Strictly following
the mathematical vernacular sometimes leads to rather tedious formal proofs, so
that some authors decide to modify their definitions in order to ease the proving
task.

The problem becomes more evident in a repository with a large number of
developers and users: here, of course, it is impossible to have an open system
without ending up with different realizations of the mathematical vernacular.
Hence, should we seek for a kind of standard, that is a “formal mathematical
vernacular”? Though we believe that this can be done in general, it seems hardly
possible to fix all the details theorem proving introduces into our repositories.
Allowing for different realizations, on the other hand, could of course decrease the
acceptance of users by confusing them. Also, extending or reusing developments
by other authors gets more complicated in case the vernacular of the new author
does not fit to the first author’s one.

What we can try to do is organize our repositories in such a way that both
authors and potential users have the possibility to identify the basic decisions
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theories and developments rely on. As we have illustrated this also includes the
definition of functions. This is not a trivial task, because as already mentioned
the large number of Mizar authors has even led to duplication of definitions
or theorems. Consequently, we always have to keep track of the development
by permanently revising and cleaning up our repositories. The goal must be
to automate this as far as possible. A step into this direction are the Mizar
tools presented in section 7. They are, however, in most cases still working on
the proof transformation level, so that their further development into a “more
intelligent direction” is desirable. As we understand the mathematical vernacular
not only as a syntactic language, but also as the way how to shape the real
mathematics (the stress on the formalized content, not only on the form – see
[16]), we find it hard to establish strict guidelines (and so the question stated
in the abstract remains open, although there are known direct formalizations
of the traditional approach to undefinedness in the literature, e.g. [5]) for a
mathematical vernacular to be feasible. We should, however, always keep in
mind – especially if we try to develop systems for working mathematicians – that
if we break rules accepted widely by mathematicians, this has to be sufficiently
justified.
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