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Abstract. The use of diagrammatic representations as catalogues of
cases is analyzed using an example of the catalogue of types of the ba-
sic interval equation a · x = b. The procedure of finding and describing
the types is outlined and a number of different diagrammatic and tabu-
lar catalogues are presented and their drawbacks and merits discussed.
Suggestions for other solutions, like different forms of the catalogue and
interactive catalogue are included. Some preliminary guidelines for de-
signing such catalogues are formulated as well.

1 Introduction

As advocated in the previous MKM Conference paper [6], diagrams can be used
for efficient representation of complex mathematical knowledge. They offer read-
able general comprehension of some part of knowledge“at a glance,”allowing also
for representation of precise structural relationships. One of the several kinds of
uses of mathematical diagrams proposed in that paper is a catalogue of cases.
The purpose of such a catalogue is to group a number of similar objects, types of
objects, or reasoning cases, with the main emphasis on comparing the listed ob-
jects and delineate differences and similarities between them. The current state
of research on mathematical diagrams does not provide any ready for use guide-
lines for the design of such catalogues. Thus, this paper is structured as a case
study—a detailed exposition of problems and experiences with some particular
set of mathematical data and various approaches to catalogue them. On the
basis of these experiences, an attempt is made to formulate some preliminary
guidelines for the design of such catalogues.

In general graphic design practice [15, 16] a notion of multiples is used,
meaning structures built from similar repeating components. Multiples allow
representation of a number of similar objects, facilitating their comparison end
enhancing the dimensionality of otherwise flat diagramming medium [16]. Some
kinds of catalogues of cases can be designed as such multiples. Other forms are
also possible, like region maps or graphs (networks).
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In this paper, various forms of the catalogue of structural types of the interval
equation a ·x = b are presented and discussed. The detailed analysis of solutions
of this simple interval equation was first conducted in [3] and its basic types were
listed there diagrammatically. Another, simplified form of this basic catalogue
was included as an example in [6] as well. However, there is a much greater
number of intermediate and degenerate types of this equation. That makes com-
piling, handling and use of the complete catalogue of types rather troublesome
without more attention to proper design, as discussed in this paper. Several basic
forms of the complete catalogue were listed for reference in the report [7], but
the design issues were not discussed either there or in other works that included
various versions of the catalogues [3, 5, 8]. This paper is devoted to the design
issues of the catalogues. Further extensions and improvements of the catalogues
(like an interactive version) are also proposed, and some general design guide-
lines are formulated. Several issues are only sketched, as work on them is still
under way.

To make the paper self-contained, basic material on intervals, interval linear
equations and interval space diagrams is also included, together with the di-
agrammatic procedure of solving the basic equation and finding its structural
types. These details are needed to fully understand the structure and contents of
the catalogues and relative merits and usability of their various versions. How-
ever, some of the details can be skipped by the reader not interested in the exact
meaning of data items included in the catalogues.

The importance of the basic equation a · x = b itself and its solutions comes
from the fact that, as was shown in [4, 5, 8], various characterizations of solution
sets of the general many-dimensional system of interval equations A · x = b are
provided by solution sets of that simple one-dimensional equation with coeffi-
cients a and b obtained as functions of appropriate coefficients of the general
system of equations.

2 Real Intervals and Interval Equations

Interval analysis, a new approach to reliable numerical computing allowing for
proper tackling of inexact data and rounding errors, is based on the notion of
a real interval. Generally, a (proper) real interval, say u, is defined as a pair of
real numbers u = [u, u], so that its endpoints (beginning u and end u) obey the
inequality u ≤ u. For most purposes, real intervals can be identified with the
closed set of numbers u = {x | u ≤ x ≤ u} ⊂ R. For real intervals, two other
parameters are in use, namely midpoint ∨

u and radius ∧
u, so that ∨

u = (u + u)/2
and ∧

u = (u − u)/2. That leads to the centred notation for intervals (see e.g. [9]),
namely ∨

u± ∧
u = [∨

u− ∧
u,

∨
u+ ∧

u]. An interval is called thick if u < u (or ∧
u > 0); thin

(or point) interval if u = u (or ∧
u = 0). Point intervals can be for most purposes

identified with the corresponding real number, i.e., [x, x] = x ∈ R. An interval
for which u = −u (or ∨

u= 0) is called zero-symmetric or just symmetric. Intervals
not containing zero can be positive or negative, according to the relations u >
0 ⇔ u > 0 and u < 0 ⇔ u < 0.
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Occasionally, a concept of an exterval will be also used here. A real exterval e
is a sort of interval-like object that contains infinity,i.e., the set ]e, e[= (−∞, e]∪
[e, +∞) ⊆ R (with e < e). A one-sided exterval is the set ]e, ∞[ = (−∞, e] or
]−∞, e[ = [e, +∞). When e ≥ e, then ]e, e[ = R.

An important parameter of an interval is the function rex (for relative extent),
first introduced in [2] and defined as rexu = ∧

u/
∨
u. Its variant named κ (kappa)

in [9] is sometimes more convenient: κ u = ∧
u/ |∨u| = |rexu| (for proper intervals).

For u containing 0 we have κ u ≥ 1 while 0 ≤ κ u < 1 for u without 0. It is
assumed to equal infinity for symmetric intervals (including 0).

When coefficients of the matrices A and b in the system of linear equations
A · x = b are allowed to be intervals, the formula is usually called a system
of interval linear equations [10, 12]. Precisely speaking, however, it is not linear
(as the space of intervals is not a linear space), and usually is not treated as
a system of equations either. The name “equation” is justified in the situation
when one considers the interval solution (called also algebraic solution, or formal
solution [14]) to the system. This solution is defined as an interval xI which
fulfills the equation A · xI = b in the sense of interval arithmetic. In most cases,
other definitions of a solution are considered, usually as sets of real vectors (not
necessarily intervals), defined as follows (see e.g. [14]):

United Solution Set: Ξ(A, b) = {x ∈ R
n | A · x ∩ b 
= ∅} =

= Ξ∃∃(A, b) = {x ∈ R
n | (∃Ã ∈ A)(∃b̃ ∈ b)Ã · x = b̃},

Control Solution Set: Ξ⊇(A, b) = {x ∈ R
n | A · x ⊇ b} =

= Ξ∃∀(A, b) = {x ∈ R
n | (∀b̃ ∈ b)(∃Ã ∈ A)Ã · x = b̃},

Tolerance Solution Set: Ξ⊆(A, b) = {x ∈ R
n | A · x ⊆ b} =

= Ξ∀∃(A, b) = {x ∈ R
n | (∀Ã ∈ A)(∃b̃ ∈ b)Ã · x = b̃}.

None of the above is actually a solution to the original equation. They are
sets of real solutions to a system of interval relational expressions, with different
relations put in the place of the equal sign, namely :

A · x ⊃⊂ b for the set Ξ(A, b),
A · x ⊇ b for the set Ξ⊇(A, b),
A · x ⊆ b for the set Ξ⊆(A, b), respectively.

The relation symbol “⊃⊂,” meaning S ⊃⊂ T ⇐⇒ S ∩ T 
= ∅ was introduced
here for convenience. With this meaning of the interval relational expressions, the
equation A ·x = b will define the solution set Ξ= equal to Ξ⊇ ∩Ξ⊆, different than
the interval solution. From the definitions it follows also that Ξ⊆ ⊆ Ξ and Ξ⊇ ⊆ Ξ.

In the one-dimensional case, the matrix A shrinks to a single interval a, as
does the vector b. The relational expression becomes thus one of a · x♦ b, where
♦ ∈ {⊃⊂, ⊇, ⊆, =}. Diagrammatic analysis of solution sets for this case proves to
be indispensable for diagrammatic analysis of the general multidimensional case.
That analysis is based on the one-dimensional radial and parallel cuts through
the solution space. As demonstrated in [4, 5, 8], the arrangement of solution sets
along these cuts is provided by solutions of some one-dimensional equation whose
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λ

Fig. 1. The MR-diagram representation of the space of real intervals (a); interval axis,
negation of intervals, and multiplication by real numbers (b)

coefficients are determined by the general equation coefficients and the direction
of the cut.

3 Interval Space Diagram

The basis for the diagrammatic approach to interval analysis is the two-dimen-
sional representation of the space of real intervals IR called the MR-diagram
[1], see Fig. 1(a). In this diagram, an interval is represented by a point with its
centred coordinates: midpoint ∨

u and radius ∧
u. Besides midpoint and radius, one

can also easily obtain the endpoints u and u of the interval using the diagonal
lines. In this way, the MR-diagram combines conveniently all three common rep-
resentations of intervals—midpoint-radius, endpoint, and the one-dimensional
representation as a segment of the real number line (here on the Om axis).

The main diagonals lb0 and ub0 constitute a dividing line between intervals
containing zero (they all lie on or above the diagonals) and those without zero
(below the diagonals). The interval axis Ou of the interval u consists of a positive
half Ou+ going through the interval u, and the negative half Ou– through the
interval −u, see Fig. 1(b). Note how negation (change of sign) of an interval
is obtained by reflection in the Or axis. All intervals v lying on the interval
axis Ou of the interval u have the same value of the κ function: κ v = κ u, i.e.,
have the same relative extent. When κ v 
= κ u, u and v have different axes. An
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interval v is called more extended than u if it lies above the interval axis Ou .
Symmetric intervals (including 0) are considered more extended than all other
intervals. Their axis coincides with the Or+ coordinate axis.

Multiplication of an interval u by a scalar (real number) m ∈ R is defined by
m · u = {mũ | ũ ∈ u} = m

∨
u ± |m| ∧

u. The interval axis Ou groups all products
of the interval u and all real numbers, symbolically: Ou = R · u. To find the
product of an interval u and a real number m, it suffices to map appropriately
the point on the Om axis with the coordinate m onto the interval axis Ou . The
diagrammatic construction for that is shown in Fig. 1(b). The mapping lines are
parallel to the lines from the points of value +1 and −1 on the Om axis to u and
−u, respectively (Fig. 1(b)). It is convenient to define the mapping as a function
called lambda mapping: λu(m) = m ·u. Its inverse allows to find the real number
(a point on the Om axis) by which the interval u has been multiplied to obtain
the given point on the axis Ou .

4 The Basic Equation and Its Structural Types

The basic one-dimensional equation can be solved diagrammatically. The expres-
sion a · x♦ b tells us that first we need a representation of all points that are in
relation ♦ to the right-hand side interval b. Thus, we will need a diagrammatic
representation of coimages of the coefficient b under the relations defining the so-
lution sets. They are defined in Fig. 2(a), see [3, 5, 8] for more details. Borders of
the coimages represent the border relations , , , and that group intervals
one of whose endpoints coincides with one of the endpoints of the coefficient b, as
indicated in the figure.

∩
⊆ ∩

λ

λ

Ξ
Ξ⊇ ∅
Ξ⊆

⊇
⊆
∩ ≠ ∅

Fig. 2. Coimages of an interval b under interval relations ⊃⊂, ⊇ and ⊆, and the defini-
tions of border relations , , , and (a), and diagrammatic solution example of
the a · x = b equation (b)
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For the given interval a and all possible real numbers x, the set of products
a · x coincides with the axis Oa . Thus, to find all values of x that fulfill the
expression a · x♦ b for the given ♦ ∈ {⊃⊂, ⊇, ⊆, =}, we must first find the subset
of Oa whose member intervals are related to b by the relation ♦. It is obviously
the intersection Oa ∩(♦ b) of Oa with the coimage ♦ b. Since a ·x = λa(x), then
x = λ−1

a (a·x) and the solution set Ξ♦ is the result of the inverse lambda mapping
of the said intersection onto the Om axis, that is, Ξ♦ = λ−1

a (Oa ∩ (♦ b)). An
example diagrammatic construction for one of the cases is shown in Fig. 2(b),
together with the resulting definitions of the three solution sets for this case.

The endpoints of the solution sets are thus given by the points Qi = λ−1
a (wi),

where wi denotes one of the points of intersection (marked by ⊗ in Fig. 2) of Oa
with one of the border relations. As it was derived in [3, 5], the points Qi, called
quotients of the expression a · x♦ b, are obtained according to the rule shown in
Fig. 3(a), depending on the border relation whose intersection with the Oa axis
generates the quotient and its sign (the position of the quotient with respect
to the Or axis in the diagram). The shorthands L, S, Z, and T were chosen on
a mnemonic principle, as they mimic the graphical structure formed by dashes
and a division operator in the quotient expressions.

When for the given coefficients a and b we sort the quotients Qi in an
increasing order of their numerical values and then list their names Ni ∈
{“L”,“S”,“Z”,“T”} in the same order Ni1Ni2Ni3Ni4 , (Nij 
= Nik

for j 
= k) we
obtain the characteristic quotient sequence for these coefficients (and hence for
the type of the equation with these coefficients). The sequence will be denoted
by Q(a, b). Characteristic quotient sequences are usually augmented by the in-
dications of the position of zero, equality, and special values of some quotients
(like infinity or undefined values), see the examples further on.

After arranging quotients in a two-dimensional array as in Fig. 3(b), the
sequence can be represented as a quotient sequence diagram. Solution sets de-
termined by the given sequence will be indicated with the graphical annotation
explained by the two examples in Fig. 3(b).

Diagrammatic analysis sketched above revealed that there are only 16 differ-
ent basic quotient sequences, grouped into 6 structural types corresponding to
different possible configurations of the interval axis Ob and the coefficient a,

a)
border sgn Qi Qi ∈ {L, S, Z, T},
relation + – Qαβ = bβ/aα:

S L L =Q− − = b /a

L S S =Q+ − = b /a

T Z Z =Q− + = b/a

Z T T =Q+ + = b/a

b)

∅

Fig. 3. Notation for quotients of the a ·x ♦ b relation and correspondence between them
and intersections with border relations (a); quotient sequence diagram and graphical
notation for solution sets (b). It is assumed that α, β ∈ {−, +} and u− = u, u+ = u.
Small circles “◦” denote the position of zero.
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Fig. 4. The catalogue of all basic subtypes of interval equation a · x = b. Defining
conditions for the (sub)types explicitly exclude intermediate cases.

as shown in the catalogue of basic types in Fig. 4. Letter names for the types
were chosen to mimic the shape of the quotient sequence diagram for the type.
Concerning the names V and Y, see the remark in Section 5.

An important property of quotient sequences [3] says that they are invariant
with respect to radial moves of the coefficients a and b along their respective
positive interval semi-axes (excluding zero), i.e., Q(a, b) = Q(sa, tb) for any s, t ∈
R

+. As a consequence, the solution types (hence their qualitative configurations)
depend only on the values of rex a and rex b. Therefore, regions with the same
types have the shape of angular wedges in the MR-diagram and are independent
of the scale of the diagram. That property allows for convenient diagrammatic
representation of conditions for coefficients a and b defining the type of the
equation as shown in Fig. 4.

The six basic types (without subtypes) are also explained in [7, 8] in the form
of a set of solution diagrams like that for the type N in Fig. 2(b).

5 Catalogues of Types

5.1 A Multiple for Basic Types

The catalogue in Fig. 4 is a two-level multiple whose six high-level components
(cells) describe individual basic types. Every cell is a hybrid (partially diagram-
matic, partially propositional) representation of basic data about the type:
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– The name of the type (a bold-face capital letter).
– The formula providing condition on the coefficients a and b for the type.
– A diagram illustrating the condition diagrammatically. It depicts the

MR-diagram showing regions in which the coefficients a (the dashed area)
and b (with its axis, as indicated by arcs with arrows) should lie.

– The next level of the multiple indicates subtypes of the given type. They
are defined by signs of the coefficients, or, for types V and Y, signs of their
midpoints. Every small cell gives the following information:

• A quotient sequence diagram indicating diagrammatically the sequence
of quotients for the subtype.

• The condition for the subtype, indicated by a pair of signs of the coeffi-
cients, or a single sign for one of the coefficients indicated.

• The quotient sequence in textual form, with graphical annotations defin-
ing solution sets for the subtype, according to the rules given in Fig. 3(b).

The catalogue in this form gives an excellent general view of the whole space
of basic types, but it has a number of drawbacks that indicate a need for other
representations of the space of types. It is type-oriented, that is, the cells on both
levels correspond to individual basic (sub)types. However, the arrangement of
cells conveys little information about relations between different types, that is,
the structure of the space of types is not well represented.

The main problem is that the catalogue contains only basic types (6 main
types with 16 subtypes). A considerable number of intermediate and degenerate
types is not shown here. These types in principle can be generated from the data
provided, but the process is rather tedious and error-prone, and it is easy to miss
some of the possibilities. On the other hand, some information, namely quotient
sequence diagrams, seems superfluous for the end user. These diagrams encode
only part of the data included anyway in the textual quotient sequence below
them. They are useful at the stage of enumeration of the basic types, providing
a visual classification criterion based on shapes of the diagrams which led to the
choice of letter names of the types. Even in this role, these diagrams proved to
be somewhat misleading, as they suggested a single type X for κ b > 1. When
the classification was extended to multidimensional equations (see [4, 5, 8]) it was
found more convenient to split this type into two, as indicated in the diagram
(with old type names provided in parentheses).

5.2 Diagrammatic Catalogue of All Types

As a result of these considerations, a new form of the catalogue was developed.
It disposes of quotient sequence diagrams and is complete, listing all types, in-
cluding intermediate and degenerate ones. It combines only diagrammatic rep-
resentation of conditions for coefficients with textual representation of quotient
sequences, augmented by diagrammatic annotations defining solution sets. An
additional convention concerning quotient sequences is used here, namely quo-
tients that are equal to zero are omitted. The full diagram occupies a single page;
for brevity, in Fig. 5 only a part of it is shown. Note that the original letter labels
of cells (c, d, e, f) were retained to provide easy reference to the full catalogue
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Fig. 5. Part of the diagrammatic catalogue of all subtypes of interval equation a ·x = b
for a, b �= 0, and b: thick without zero (c, d), and with zero at endpoint (e, f)

of [7]. Two upper cells in this multiple provide data for all 10 basic subtypes of
types N, Z, and C, as well as 12 intermediate types connected with them. The
other two cells list 14 intermediate types obtained when b = 0 or b = 0.

This form of the catalogue is no longer type-oriented like that in Fig. 4.
Instead, the cells here correspond to different conditions on the coefficient b.
Possible positions of this coefficient in the MR-diagram are indicated by the
position of the interval axis Ob. When the axis is placed within some region,
the coefficient b is allowed to vary within the region occupied by the positive
semi-axis of the axis Ob. When it coincides with some characteristic line of the
diagram (main diagonal, Om or Or axes), the coefficient b can vary along the
positive semi-axis Ob only. The regions of the MR-diagram delineated by axes
and main diagonals, as well as the axes and diagonals themselves, are labelled
by annotated quotient sequences obtained when the coefficient a falls within the
indicated region or on the indicated axis. Due to space limitations, only the re-
gions are additionally labelled by names of subtypes. Thus, the basic information
provided by this form of the catalogue is the definition of solution sets for all
cases. The degenerate types (for a = 0 or b = 0) are depicted by separate cells
of a slightly different design (not shown here). The complete catalogue in this
form is provided in [7]; its older versions with different, less convenient layout
were published in [3, 5].

A dual a-oriented form of the catalogue can be constructed as well. In it the
cells would correspond to appropriate conditions on the coefficient a, while the
types would be selected by the position of the coefficient b in the MR-diagram.
It may be more convenient for certain purposes. In fact, in the form provided in
[7], the degenerate types for a = 0 are grouped in a separate cell and represented
in that a-oriented form. That, however, violates the b-oriented structure of the
whole catalogue. A possible solution, assuring uniformity of the catalogue, is
used in the construction of the restricted catalogue in Fig. 6.
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Fig. 6. Diagrammatic catalogue of tolerance solution set configurations for various
conditions on the coefficient b

Despite its completeness and compactness, this form of the catalogue has its
drawbacks. First, the lack of formulae defining conditions for types is incon-
venient in some situations, forcing the user to translate from formulae to the
situation in the diagram and back. That can be corrected for the conditions
on the coefficient b by adding appropriate formulae as headers of the cells, as
in the version in Fig. 6 (see [8] for such improvement). Second, although the
representation is aimed at describing solution sets, it does not provide a good
view of the distribution of solution set structures depending on positions of the
coefficients in the MR-diagram. As information about all basic solution sets is
lumped together into annotations of quotient sequences, it is easy to read out
locally the particular definition of the solution sets for any single type. E.g., in
Fig. 5(e) one may easily read that solution sets for the subtype intermediate
between CY+ and UN++ (with a = 0), are Ξ = R, Ξ⊇ = [T, ∞), Ξ⊆ = [0, T],
and thus Ξ= = {T}. However, the overall picture is hard to comprehend.

5.3 Catalogues for Individual Solution Sets

For providing an overall view of possible structures of a single given solution
set, useful in finding conditions for occurrence of interesting structures for that
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set, a specialized catalogues for individual sets may be more useful. Such a
catalogue for the tolerance solution set is shown in Fig. 6. Analogous catalogues
for control and united solution sets can be found in [7, 8]. The catalogue shown
here (in Fig. 6) is additionally augmented with formulae describing conditions
on the coefficient b for every cell, as it was discussed above. This catalogue is
significantly smaller and simpler than the full catalogue whose part is shown
in Fig. 5. This is due to omission of quotient sequences and replacing exact
definitions of solution sets by qualitative codes (see [7] for their explanation).
That, with the fact that the structure of only a single solution set is represented,
allows for aggregation of the cases into a smaller number of cells. The price
for that is losing exact definitions of solution sets and losing the possibility to
directly compare structures of different sets.

In this version the degenerate cases for a = 0 are not depicted with a separate
cell of different kind. Instead, descriptors of solution sets for these cases are put
at the point (0, 0) in the b-oriented cells. Such a solution can be also adopted in
the full catalogue of Fig. 5, though with some difficulties due to a rather large
size of quotient sequence descriptors for this case (see [7]).

5.4 Tabular Catalogue

For certain regular structures of information it may be convenient to represent
the catalogue in a tabular form. A small part of the table of types, containing
6 intermediate types shown in top parts of Fig. 5(e) and 5(f), from among 73
subtype entries in the complete catalogue, is provided in Table 1. The data in the
cells are represented only propositionally. Solution sets are described with both
exact definitions in terms of quotients, and with qualitative descriptors used
in Fig. 6. The fourth column links table entries to corresponding cells of the

Table 1. Part of a detailed table of descriptions of solution sets for intermediate
subtypes

Quotient Conditions Fig. Solution setsType
sequence a �=0, b �=0 5 Ξ⊆ Ξ⊇ Ξ= Ξ

· · · · · ·
CY κ b = 1 < κ a

– S◦L ∨
b < 0 f 0 ±∞: ]S, L[ ∅ ⊇

+ Z◦T ∨
b > 0 e 0 ±∞: ]Z, T[ ∅ ⊇

· · · · · ·
CU κ a = κ b = 1
– + %SZ◦T∞

∨
a < 0,

∨
b > 0 e −0: [Z, 0] −∞: ]Z, ∞[ −t: Z R

+ – ∞LS◦Z% ∨
a > 0,

∨
b < 0 f −0: [S, 0] −∞: ]S, ∞[ −t: S R

– – ∞S◦LT% ∨
a < 0,

∨
b < 0 f 0+: [0, L] +∞: ]∞, L[ +t: L R

++ %L◦TZ∞
∨
a > 0,

∨
b > 0 e 0+: [0, T] +∞: ]∞, T[ +t: T R

· · · · · ·
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diagrammatic catalogue in Fig. 5. Although most convenient for some purposes,
these tables have their drawbacks too. First, they tend to be large—the complete
catalogue in [7, 8] uses four pages (for 73 subtype entries), compared to the single
page of the diagrammatic catalogue in Fig. 5. Second, the overall picture of
relations between different types and structures of their solution sets is almost
completely lost.

5.5 RR-Diagram Maps and Graphs of Types

New forms of the catalogue can be based on the RR-diagram, introduced in
[3, 5]. In this diagram, values of rexa and rex b (or their reciprocals) are put on
the coordinate axes. Because types do not change when extent functions of the
coefficients a and b do not change, to every point in the RR-diagram corresponds
some type. It is unique except when one of the coefficients is thin, because then
the value of the extent function is zero, independently of the sign of the interval.
Thus, the sign of a thin interval cannot be distinguished by its position in the
RR-diagram. Labelling appropriate regions in the diagram by the type of its
points we obtain a sort of map, partitioning the diagram into typed regions
as in Fig. 7(a) and 7(b). Intermediate and degenerate types (not shown in the
figure) correspond to borders and vertices of the regions. Obtaining the complete
catalogue in this way is, however, troublesome, as some different intermediate
types involving thin intervals of different signs (that includes also all degenerate
types) fall on the same points and segments of the rexa and rex b axes.

Representing regions as nodes and neighbourhood relations between them
as edges, we can obtain various graphs (networks) of types. Two such graphs
are shown in Fig. 7(c) and 7(d). The second graph is useful for enumerating
types of multidimensional equations, see [4, 5, 8]. The RR-diagram and graph
representations of the catalogue combine the catalogue aspect with another usage
type of diagrams, namely showing the structure of the space of types, see [6–Fig.
2(a)], the feature lacking in the multiple-like catalogues.

6 Discussion

Design of a diagrammatic catalogue of types of the basic interval equation a·x = b
presented several nontrivial problems, leading to the development of various
forms of the catalogue and searching for new ways of structuring them. The
nontrivial, though not overwhelming complexity of the catalogue has made it a
convenient case study of the problem of designing catalogues of various pieces of
mathematical knowledge. The main obstacle here is the lack of general guidelines
for designing such catalogues. On the basis of this case study one may try to
formulate some preliminary design guidelines.

Catalogues of cases serve as reference databases, but also as research tools
for searching patterns of differences and similarities between the cases and their
various constituent parameters, in this case especially the structure and defini-
tions of solution sets for every type. As observed by Tufte [15]: “Comparisons
must be enforced within the scope of the eyespan.” Therefore, the catalogue
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Fig. 7. Type catalogues on the RR-diagram (a), 1/RR-diagram (b); and in the form
of graphs (c, d)

should be, if possible, not larger than a single page of paper or a single computer
screen. The considerable number of types and their parameters makes such an
attempt rather hopeless in this case (and in many others, unfortunately). Ei-
ther the catalogue becomes too cluttered and unreadable, or it must occupy
larger area, or it must omit a substantial amount of information. All these out-
comes occurred in the catalogues discussed in the paper. A possible solution is
to produce different catalogues for different purposes, differing by the selection
of represented data and the form of their presentation. Such catalogues can be
generated (semi-)automatically from some underlying complete database, or pre-
pared separately beforehand and then browsed through (as it is currently the
case with the catalogues of equation types [7]). Such a solution, however, blocks
or makes troublesome some possible comparisons of data, hence other solutions
should still be searched for, like interactive catalogues.

The observation of our case shows that there seem to be three basic types of
such catalogues: multiples (including tables), maps, and graphs (or networks).
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Multiples. These are regular structures (usually rectangular) of similar cells con-
taining chunks of data (including diagrams) pertaining to the particular case
(Figs. 4, 5, and 6). Essentially, tables can be also considered as multiples. They
are usually distinguished from more general multiples by an explicit use of the
two dimensions to structure the multiple. Namely, cells occupying the same col-
umn contain the same type of data (described by column headers, Table 1), while
rows contain attribute descriptions of individual objects or cases (the equation
types in our case). The roles of columns and rows can be sometimes interchanged.
Multiples (including tables) can be structured hierarchically, with cells struc-
tured as lower-level multiples, Fig. 4 and Table 1. The division of data between
different levels of the hierarchy is usually dictated by the intrinsic structure of
the data, but often can be varied depending on the intended use (see below)
of the catalogue (compare catalogues in Figs. 4 and 5). The main drawback
of multiples is that they do not provide adequate means for representing more
complex structural relations between cases (represented by data in the cells).
The hierarchical grouping and grouping by data type in columns (or rows) are
practically the only possibilities that are available in pure multiples. See hierar-
chical grouping in Fig. 4, typed columns in Table 1, and two-column multiples
(corresponding to signs of the coefficient b) in Figs. 5 and 6.

Maps. They are arrangements of regions on a plane (usually; sometimes other
arrangements, e.g. three-dimensional, can be used). Regions contain data per-
taining to individual cases, and their shapes and relative positions encode addi-
tional data about properties and relations between the cases. Multiples can be
also considered a special case of maps. Another special case can be distinguished,
let us call it constructions, where cases are distinguished by diagrammatic con-
structions placing the results belonging to different cases in different regions of
the space. An example is provided by the catalogue of definitions of means in
[6–Fig. 4]. The appropriate division of a plane into regions is often obtained with
the help of a coordinate system whose coordinates correspond to parameters dis-
tinguishing the cases. The maps used within cells of multiples in Figs. 4, 5, and 6
use the MR-diagram midpoint-radius coordinate system, while the RR-diagram
based catalogues in Figs. 7(a) and (b) use the values of the function rex for the
coefficients a and b. The advantage of maps comes from a richer layout structure
that can be used to represent relations between cases, especially when the intrin-
sic structure of the set of cases conforms well to the structure of the Euclidean
plane. Otherwise, the structure must be “planarized”, for the price of losing in-
formation or introducing information noise. This is the case with our catalogue
of types which is essentially at least three-dimensional, see Fig. 7(c).

Graphs (networks). In this form, nodes of a graph represent cases, and edges
relations between them. That allows for representation of arbitrary systems of
relations between cases, but often for the price of making them hard to compre-
hend, especially for more complex systems. The proper layout of complex graphs
of relations is a nontrivial problem—it has given rise to the whole discipline of
graph drawing [11]. Sometimes the proper layout can be obtained by using an
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appropriate map as a guide for placing the nodes. The graph in Fig. 7(d) is
superimposed over a partition of the plane generated by different conditions for
the coefficients a and b. Note another hybrid element in this graph—the data
within the nodes are arranged as small multiples of subtypes.

Hybrid solutions and user’s goals. In practice, as was indicated above, hybrid
solutions are used, with different presentation means used for different portions
of a catalogue. This includes combining different types of representations, like
multiples containing maps (Figs. 4, 5, and 6) or graphs containing multiples and
superimposed on maps (Fig. 7(d)). To some extent this depends on the structure
of data, but in most part on the intended use (user’s goals) of the catalogue. The
importance of user’s goals for proper design of information presentation has been
recognized some time ago (see e.g. [13]). Like for the presentation graphics of
quantitative (statistical) data, the design of mathematical diagrams should also
be based of the analysis of user’s goals and selecting the way of presentation
appropriate for them, possibly in a similar way as developed in [13].

Interactive catalogues. The use of many catalogues for different purposes solves
some of the problems but makes relating of different pieces of information con-
tained in different catalogues difficult. A possible solution would be to make
the set of catalogues interactive. In such a system, selection of certain piece
of information in some catalogue may either highlight the corresponding piece
of information in another catalogue, or provide that information in a separate
small window or “balloon” near the place pointed to. That may not solve all the
problems, especially as proper organization of such interaction, when there are
several differently structured catalogues, can be a considerable problem in itself.

A useful addition to such a catalogue is an algorithmic component, namely a
program producing for any given numerical values of coefficients the type data
(including location in the catalogue) and solution sets for the equation with
this coefficient. Besides allowing the user of the catalogue to browse the space
of possibilities also quantitatively, such a subroutine is a necessary component
of any program using solutions of this equation to characterize solution sets of
a general multidimensional equation (e.g., calculating radial and parallel cuts
through its solution space, see [8]). Such a subroutine was developed and is
available for interested users, see [7].
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