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Preface

This volume contains the proceedings of the Fourth International Conference on
Mathematical Knowledge Management MKM 2005 held July 15–17, 2005 at In-
ternational University Bremen, Germany. Previous conferences have been at the
Research Institute for Symbolic Computation (RISC) Linz, Austria (September
2001), at Bertinoro, Italy (March 2003), and Bialowiecze, Poland (September
2004).

Mathematical knowledge management (MKM) is a field in the intersection of
mathematics and computer science, providing new techniques for managing the
enormous volume of mathematical knowledge available in current mathematical
sources and making it available through the new developments in information
technology.

The annual MKM Conference brings together mathematicians, software de-
velopers, publishing companies, math organizations, math users, and educators
to exchange their views and approaches, current activities and new initiatives.

For the first time, MKM 2005 chose to have post-conference proceedings, as
otherwise the submission deadline would have collided with other conferences
and crimped time since MKM 2004 in September 2004. The decision also facili-
tated keeping the conference open to new ideas as well as keeping up the maturity
of the papers necessary for inclusion into archival proceedings. With a May 15
deadline, MKM 2005 received 38 submissions. Each submission was reviewed by
at least three programme committee members. The committee decided to ac-
cept 27 papers for presentation at the conference. Out of these, 26 papers were
accepted for publication in the conference proceedings after re-evaluation by the
Programme Committee since they included significant improvements triggered
by the referee reports and the discussions at the conference.

As MKM is a small conference with a tightly knit community of authors,
submissions by Programme Committee members were allowed: six submissions
included committee members, but the review process was kept inaccessible to
them. One submission was co-authored by the Program Chair; its review process
was organized independently by Bill Farmer.

The papers in this volume cover the whole area of mathematical knowl-
edge management. Topics range from foundations and the representational and
document-structure aspects of mathematical knowledge, over process questions
like authoring, migration, and consistency management by automated theorem
proving to applications in eLearning and case studies.

I am grateful to Tom Hales for agreeing to give an invited talk at MKM 2005,
to the Programme Committee, and the external reviewers for their excellent
work and dedication to the MKM 2005 program. The work of the Programme
Committee and the preparation of the proceedings were greatly simplified by
Andrei Voronkov’s excellent EasyChair system.

October 2005 Michael Kohlhase
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A Proof-Theoretic Approach to Hierarchical
Math Library Organization

Kamal Aboul-Hosn and Terese Damhøj Andersen

Department of Computer Science, Cornell University, Ithaca, New York, USA
kamal@cs.cornell.edu, katten@kattens.dk

Abstract. The relationship between theorems and lemmas in mathe-
matical reasoning is often vague. No system exists that formalizes the
structure of theorems in a mathematical library. Nevertheless, the deci-
sions we make in creating lemmas provide an inherent hierarchical struc-
ture to the statements we prove. In this paper, we develop a formal
system that organizes theorems based on scope. Lemmas are simply the-
orems with a local scope. We develop a representation of proofs that
captures scope and present a set of proof rules to create and reorga-
nize the scopes of theorems and lemmas. The representation and rules
allow systems for formalized mathematics to more accurately reflect the
natural structure of mathematical knowledge.

1 Introduction

The relationship between theorems and lemmas in mathematical reasoning is
often vague. What makes a statement a lemma, but not a theorem? One might
say that a theorem is “more important,” but what does it mean for one statement
to be “more important” than another? When writing a proof for a theorem, we
often create lemmas as a way to break down the complex proof, so perhaps
we expect the proofs of lemmas to be shorter than the proofs of theorems. We
also create lemmas when we have a statement that we do not expect to last in
readers’ minds, i.e., it is not the primary result of our work. The way we make
these decisions while reasoning provides an inherent hierarchical structure to
the set of statements we prove. However, no formal system exists that explicitly
organizes proofs into this hierarchy.

Theorem provers such as NuPRL, Coq, and Isabelle provide the ability to cre-
ate lemmas. But their library structures are flat, and no formal distinction exists
between lemmas and theorems [1, 2, 3]. The reasons to distinguish lemmas from
theorems in these systems is the same as the reasons in papers: to ascribe various
levels of importance and to introduce dependency or scoping relationships.

We seek to formalize these notions and provide a proof-theoretic means by
which to organize a set of proofs in a hierarchical fashion that reflects this natural
structure. Our thesis is that the qualitative difference between theorems and
lemmas is in their scope. Scope already applies to mathematical notation. Never
in a paper would one need to define the representation of a set ({. . .}) nor
operators such as union and intersection. Set notation is standard, thus has a

M. Kohlhase (Ed.): MKM 2005, LNAI 3863, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 K. Aboul-Hosn and T. Damhøj Andersen

global scope that applies to any proof. However, one often defines operators that
are only used for a single paper; the author does not intend for the notation
to exist in other papers with the same meaning without being defined again.
Similarly, a theorem is a statement that can be used in any other proof. Its
scope is global, just as set notation. A lemma is a statement with a local scope
limited to a particular set of proofs. We want a system that represents and
manipulates scope formally through the structure of the library of proofs.

In this paper, we propose such a system. First, we propose a formal definition
of scoping for proof libraries. Next, we describe a representation of proofs that
is able to capture this definition of scope based on work by Kozen and Rama-
narayanan [4]. We provide a set of formal rules to create and reorganize the
scopes of theorems and lemmas.

We believe that the ability to create and manage complex scoping and depen-
dency relationships among proofs will allow systems for formalized mathematics
to more accurately reflect the natural structure of mathematical knowledge.

2 A Motivating Example

Consider reasoning about a Boolean algebra (B, ∨, ∧, ¬, 0, 1). Boolean algebra
is an equational theory, thus contains the axioms of equality:

ref : x = x (1)
sym : x = y → y = x (2)

trans : x = y → y = z → x = z (3)
cong∧ : x = y → (z ∧ x) = (z ∧ y) (4)
cong∨ : x = y → (z ∨ x) = (z ∨ y) (5)
cong¬ : x = y → ¬x = ¬y (6)

All variables are implicitly universally quantified in these axioms. Suppose we
wanted to prove the following elementary fact:

Theorem 1.

∀a, b, c, z.a = b → a = c → z ∨ (a ∧ b) = z ∨ (a ∧ c) (7)

Here is how a proof might go. First, we could prove a lemma.

Lemma 1.
∀x, y, z.x = y → z ∨ (x ∧ x) = z ∨ (x ∧ y) (8)

Using a = b and a = c from the statement of our theorem, we could apply the
lemma under the substitutions [x/a, y/b, z/z] and [x/a, y/c, z/z] to deduce

z ∨ (a ∧ a) = z ∨ (a ∧ b) (9)
z ∨ (a ∧ a) = z ∨ (a ∧ c) (10)
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Next, we know from applying symmetry to (9) that

z ∨ (a ∧ b) = z ∨ (a ∧ a) (11)

Finally we conclude from transitivity, (9), and (11) that

z ∨ (a ∧ b) = z ∨ (a ∧ c)

which is what our theorem states.
We may decide that (8) does not apply to theorems other than (7), and conse-

quently, should only have a scope limited to the proof of (7). Our representation
of proofs makes explicit the limited scope of (8).

Another important observation is that in all places we use (8), the variable
z from (7) is always used for the variable z in the lemma. We may wish not to
universally quantify z for both (7) and (8) individually, but instead universally
quantify z once and for all so that it can be used by both proofs:

∀z, ∀a, b, c, a = b → a = c → z ∨ (a ∧ b) = z ∨ (a ∧ c)
and ∀x, y, x = y → z ∨ (x ∧ x) = z ∨ (x ∧ y) (12)

Moving the quantifier for z looks like a simple task, applying the first order
logic rule

(∀z.ϕ) ∧ (∀z.ψ) ≡ ∀z.(ϕ ∧ ψ)

However, the proof of the lemma itself must also change, as must any proof that
is dependent on this lemma.

Although either version of the lemma can be used to prove the theorem,
note that their meanings are subtly different because of the placement of the
quantification. Placing a separate quantification of z as in (8) makes the lemma
read: “Lemma 1: For all x, y, and z,...” In this case, z is a variable in the lemma
for which we expect there to be a substitution whenever the lemma is used in
a proof. Using one quantification for both the theorem and the lemma as in
(12) makes the lemma read: “Let z be an arbitrary, but fixed boolean value.
Lemma 1: For all x and y...” In this case, z is a fixed constant for the lemma.

In this simple example, using (8) or (12) does not matter. However, in other
cases, the choices made for quantification may reflect a general style in one’s
proofs. One may like lemmas to be as general as possible, universally quantifying
any variables that appear in the lemma and relying on no constants. On the other
hand, one may want to make lemmas as specific as possible, applying only in a
select few proofs in order to minimize the number of quantifications. We want to
capture this subtle difference formally in our representation of proofs in order to
allow the user to choose the representation that best fits the intended meaning.

3 Proof Representation

For representing theorems and lemmas like those in Section 2, we use proof terms
similar to those defined in a paper by Kozen and Ramanarayanan [4]. Their
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paper presents a publish-cite system, which uses proof rules with an explicit
library to formalize the representation and reuse of theorems. The system of [4]
uses universal Horn equational logic, and we do as well, since it is a good vehicle
for illustrating the organization and reuse of theorems. There is no inherent
limitation in the system that requires the use of this logic; it could be extended
to work with more complex deductive systems.

We use the word “theorem” to mean a theorem, lemma, or axiom. We build
theorems from terms and equations. Consider a set of individual variables X =
{x, y, . . .} and a first-order signature Σ = {f, g, . . .}. An individual term s, t, . . .
is either a variable x ∈ X or an expression ft1 . . . tn, where f is an n-ary function
symbol in Σ and t1 . . . tn are individual terms. An equation d, e, . . . is between
two individual terms, such as s = t.

A theorem is a universally quantified Horn formula of the form

∀x1, . . . xm.ϕ1 → ϕ2 → · · · → ϕn → ψ (13)

where the ϕis are equations representing premises, ψ is an equation represent-
ing the conclusion, and x1 . . . xm are the variables that occur in the equations
ϕ1, . . . , ϕn, ψ. A formula may have zero or more premises. These universally
quantified formulas allow arbitrary specialization through term substitution. An
example of this is the use of (8) with substitutions to get (9) and (10).

Let P be a set of proof variables p, q, . . .. A proof of a theorem is a λ-term
abstracted over both the proof variables for each premise of a theorem proven
by the proof and the individual terms that appear in the proof. A proof term is:

– a variable p ∈ P
– a constant, referring to the name of a theorem
– an application πτ , where π and τ are proof terms
– an application πt, where π is a proof term and t is an individual term
– an abstraction λp.τ , where p is proof variable and τ is a proof term
– an abstraction λx.τ , where x is an individual variable and τ is a proof term

When creating proof terms, we have the typing rules seen in Table 1. These
typing rules are what one would expect for a simply-typed λ-calculus. The typing
environment Γ maps variables and constants to types. According to the Curry-
Howard Isomorphism, the type of a well-typed λ-term corresponds to a theorem
in constructive logic and the λ-term itself is the proof of that theorem [5]. For
example, a theorem such as (13) viewed as a type would be realized by a proof
term representing a function that takes an arbitrary substitution for the variables
xi and proofs of the premises ϕi and returns a proof of the conclusion ψ.

In [4], a library of theorems is represented as a flat list of proof terms. All of
the theorems have global scope, i.e., they are able to be cited in any other proof
in the library.

The goal of this paper is to provide a scoping discipline so that naming and
use of variables can be localized. The proof term itself should tell us in which
proofs we can use a lemma. We use a construct similar to the SML let expression,
which limits the scope of variables in the same way we wish to limit the scope
of lemmas.
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Table 1. Typing rules for proof terms

Γ, p : e � p : e Γ, c : ϕ � c : ϕ

Γ � π : e → ϕ Γ � τ : e

Γ � πτ : ϕ

Γ � π : ∀x.ϕ

Γ � πt : ϕ[x/t]

Γ, p : e � τ : ϕ

Γ � λp.τ : e → ϕ

Γ � τ : ϕ

Γ � λx.τ : ∀x.ϕ

In order to represent theorems in a hierarchical fashion, we add two kinds of
proof terms:

– a sequence τ1; . . . ; τn, where τ1, . . . , τn are proof terms. This allows several
proofs to use the same lemmas. Sequences cannot occur inside applications.

– an expression let L1 = τ1 . . . Ln = τn in τ end. This term is meant to express
the definition of a set of lemmas for use in a proof term τ . The τis are proof
terms, each bound to an identifier Li. With the existence of the sequences,
each τi may define the proof for more than one lemma. The identifiers Li

are arrays, where the jth element, denoted Li[j], is the name of the lemma
corresponding to the jth proof in τi not bound to a name in τi, denoted τi[j].
The let expression binds names to the proofs and limits their scope to proof
terms that appear later in the let expression. In other words, a lemma Li[j]
can appear in any proof τk, k > i, or in τ . The name of a lemma has the same
type as the proof to which it corresponds. This scoping discipline for lemmas
corresponds exactly to the variable scoping used in SML let expressions.

These new rules have corresponding typing rules, in Table 2.

Table 2. Typing rules for proof terms

Γ � τ1 : ϕ1 . . . Γ � τn : ϕn

Γ � τ1; . . . ; τn : ϕ1 ∧ . . . ∧ ϕn

Γ � τ1 : ϕ1

Γ, L1 : ϕ1 � τ2 : ϕ2

. . .
Γ, L1 : ϕ1, . . . , Ln−1 : ϕn−1 � τn : ϕn

Γ, L1 : ϕ1, . . . , Ln : ϕn � τ : ϕ

Γ � let L1 = τ1 . . . Ln = τn in τ end : ϕ1 → . . . → ϕn → ϕ

The rule for a sequence of proof terms is relatively straightforward; the type
of a sequence is the conjunction of the types of the proof terms in the sequence.
The typing rule for the let expression is based on the scoping of the proofs. We
must be able to prove that each proof τk has type ϕk under the assumption that
all variables Li, i < k have the type ϕi, where τi is assigned to Li. Finally, we
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must be able to prove that τ has the type ϕ under the assumption that every
Li has type ϕi.

As an example, we represent the proofs of (7) and (8) as

thm =
let lem= λxλyλzλP.(Proof of lemma)
in

λaλbλcλzλQλR.trans (sym (lem Q)) (lem R)
end

where thm is the name assigned to (7) and lem is the name assigned to (8). For
ease of reading, we have omitted the applications of proof terms to individual
terms, which represent the substitution for individual variables. P , Q, and R are
proofs of type x = y, a = b, and a = c, respectively.

If we choose to universally quantify z only once as in (12), we represent the
proof as

thm =
λz.let lem= λxλyλP.(Proof of lemma)

in
λaλbλcλQλR.trans (sym (lem Q)) (lem R)

end

As we can see, there is a one-to-one correspondence between the positions of
λ-abstractions and where individual variables are universally quantified. We for-
mally develop the proof terms for thm and lem in Section 5.

4 Proof Rules

We provide several rules for creating and manipulating proofs. The rules allow
one to build proofs constructively. They manipulate a structure of the form
L; C; T , where

– L is the library of theorems, T1 = π1, . . . , Tn = πn, where Ti is an array of
identifiers with the jth element denoted Ti[j], naming the jth proof in πi,
denoted πi[j],

– C is the list of lemmas currently in scope, L1 = τ1, . . . , Lm = τm, with
components defined as they are for L, and

– T is a list of annotated proof tasks of the form A � π : ϕ, where A is a list
of assumptions, π is a proof term, and ϕ is an unquantified Horn formula.

In these rules, we use the following notational conventions:

– α and β are proof variables or individual variables.
– X is a set of elements {X1, . . . , Xn}, where Xi can be an individual variable

or a proof variable.
– T = π binds a proof term π to an identifier T . The term π may define the

proof for more than one theorem. Therefore, the identifier T is an array,
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where the jth element, denoted T [j], is the name of the theorem correspond-
ing to the jth proof in π not bound to a name in π, denoted π[j].

– T = π is a sequence of bindings T1 = π1, . . . , Tn = πn.
– T : ϕ is a sequence of type bindings T1 : ϕ1, . . . , Tn : ϕn, where ϕ = ϕ1 →

. . . → ϕn.
– π[x/t] means for all i, replace element xi ∈ x in π with ti ∈ t.
– Given a binding T = π, X [T/π] means for all i, replace T [i] with π[i] in X ,

where X is a proof term, a list of theorems, or a list of proof tasks.
– For a proof term π, a sequence of identifiers T = T1 . . . Tn, and a variable α,

π[T/T α] means for all i and j, replace Ti[j] with Ti[j] α, where juxtaposition
represents functional application.

– Given a binding T = . . . λαiλαj . . . π, C[T (i, j)/T (j, i)] means for all k, swap
the ith and jth term or proof to which T [k] is applied in C.

– FV (ϕ) is the set of free individual variables in the Horn formula ϕ.

The structure L; C; T must also be well typed, according to the rules in
Table 3. The typing rules enforce an order on the list of theorems and lemmas.
The rules look very similar to the rules for the let expression.

Table 3. Typing rules for proof library

Γ � π1 : ϕ1

Γ, T1 : ϕ1 � π2 : ϕ2

. . .
Γ, T1 : ϕ1, . . . , Tn−1 : ϕn−1 � πn : ϕn

Γ � T = π : ϕ1 → . . . → ϕn

Γ � T = π : ϕT1 → · · · → ϕTn

Γ, T : ϕT � L = τ : ϕL1 → · · · → ϕLm

Γ, T : ϕT , L : ϕL � T : ψ

Γ � T = π; L = τ ; T : ϕT1 → · · · → ϕTn → ϕL1 → · · · → ϕLm → ψ

We must also have a typing rule for the proof tasks T . The rule is a meta-
typing rule on deductions of the form A � π : ϕ, which we omit for brevity.

The proof rules fit into two categories: rules that manipulate the proof tasks
and rules that manipulate the structure of proof terms that appear in C.

4.1 Rules for Manipulating Proof Tasks

The first set of rules is in Table 4. Note that the (reorder) rule has a side con-
dition (∗) explained below. The first four rules are the same as the rules in [4].

The (collect) rule works on a set of tasks with no further assumptions, i.e.,
tasks with completed proofs. The rule

1. gives the collection of the tasks a new name L that does not appear in the
library or the current list of lemmas,
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Table 4. Rules for manipulating proof tasks

(assume)
L ; C ; T , A � τ : e

L ; C ; T , A, p : d � τ : e

(ident)
L ; C ; T
L ; C ; T , p : e � p : e

(mp)
L ; C ; T , A � π : e → ϕ A � τ : e

L ; C ; T , A � π τ : ϕ

(discharge)
L ; C ; T , A, p : e � τ : ϕ

L ; C ; T , A � λp.τ : e → ϕ

(collect)
L ; M = π ; � τ1 : ϕ1 . . . � τn : ϕn

L ; L = let M = π
in λx1.τ1; . . . ; λxn.τn end

;
xi = FV (ϕi)

(publish)
L ; L = τ ;

L, L = τ ; ;

(tcite)
L1, T = π, L2 ; C ; T
L1, T = π, L2 ; C ; T , � T [j] t : ϕ[x/t]

T [j] : ∀x.ϕ

(lcite)
L ; C1, L = π, C2 ; T
L ; C1, L = π, C2 ; T , � L[j] t : ϕ[x/t]

L[j] : ∀x.ϕ

(tforget)
L1, T = π, L2 ; C ; T
L1, L2[T/π] ; C[T/π] ; T [T/π]

(lforget)
L ; C1, L = π, C2 ; T
L ; C1, C2[L/π] ; T [L/π]

(promote)
L ; L1, L = let M = τ in π end, L2 ;

L ; L1, M = τ, L = π, L2 ;

(reorder)
L ; C1, L = λα1 . . . λαiλαj . . . λn.π, C2 ;

L ; C1, L = λα1 . . . λαjλαi . . . λn.π, C2[L(i, j)/L(j, i)] ;
(∗)

2. forms the universal closures of the ϕis and the corresponding λ-closures of
the τis, and

3. moves the proofs to the list of lemmas currently in scope.

Any lemmas that were in scope for the proof tasks are explicitly made lemmas
with the let statement. These lemmas are no longer immediately available to
proof tasks. However, one can access a lemma moved into a let by using the
(promote) rule. If no lemmas currently exist, a let expression is not created
and instead the name L is bound to the λ-closures of the τis.

The (publish) rule moves the current lemmas to the library, at which point
they become theorems.



A Proof-Theoretic Approach to Hierarchical Math Library Organization 9

The (tcite) rule is the elimination rule for the universal quantifier for theo-
rems in the library. This rule specializes the theorem with a given substitution
[x/t]. It is important to note that the proof πi[j] of Ti[j] is not copied into the
proof tasks. If this were the case, then β-reduction on the proof could make it
impossible to distinguish between a proof that cited Ti[j] and a proof that devel-
oped πi[j][x/t] explicitly. Instead, the name of the theorem serves as a citation
token, with the same type as the proof itself. The (lcite) rule does the same for
lemmas from C.

The (tforget) rule removes all citations of the forgotten theorems and re-
places them with the proofs of the theorems. With the proof instead of the ci-
tation token, β-reduction on citations of a theorem can take place during proof
normalization, creating the specialized version of the proof we did not create in
the tcite rule. All citations of the theorems T are replaced with a specialized
version of the proof π. The (lforget) rule does the same for lemmas in C.

The (promote) rule moves a set of lemmas from inside a let expression to
the list of lemmas currently in scope. This makes these lemmas again available
to be cited.

The (reorder) rule changes the order of abstractions in a proof term. Corre-
spondingly, citations of any lemmas defined by that proof term must be changed
to have the order of their applications changed. The condition (∗) is that if αi

is an individual variable and αj is a proof variable with type ϕ, then αi does
not occur anywhere in ϕ. If αi did occur in ϕ and we performed (reorder), ϕ
would contain an unbound variable.

4.2 Rules for Manipulating Proof Terms

The set of rules for manipulating proof terms that appear in C is in Table 5.
These rules do not change any proofs of theorems currently in scope for the
proof tasks, so we know that any changes in proofs do not have to be reflected
in the current tasks. Some of these rules have side conditions, which are marked
with a symbol in (·) and explained below.

The (push) rule moves an abstraction from the front of a sequence to each
proof in the sequence. This rule does not change the types of the proofs; it
only duplicates λα. One would anticipate using this rule after performing a
(generalize).

The (pull) rule is the inverse of the (push) rule. It moves an abstraction
from the front of every proof in a sequence to the front of the entire sequence.
This rule would most likely be used before a (specialize).

The (generalize) rule moves an abstraction from the outside of a let state-
ment to each proof term in the list of defined lemmas and to the proof term τ .
This does not change any theorem whose proof is in τ . The proofs and types of
the lemmas L do change, because they are now abstracted over another variable.

Correspondingly, we have to change any citations of the lemmas. From the
scoping discipline, we know exactly where these citations can be: in the proofs
of the lemmas, π, or in the proof τ . Before performing (generalize), all the
lemmas and τ referred to the same α. Now, the first abstraction for any of the
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Table 5. Rules for manipulating proof terms in C

(push)
λα.(π1; . . . ; πn)

λα.π1; . . . ; λα.πn

(pull)
λα.π1; . . . ; λα.πn

λα.(π1; . . . ; πn)

(generalize)
λα.let L = π in τ end

let L = λα.π[L/L α] in λα.τ [L/L α] end

(specialize)
let L = λα.π in λα.τ end

λα.let L = π[L α/L] in τ [L α/L] end
(∗∗)

(split)
let L = πL, M = πM in τ end

let L = πL in let M = πM in τ end end

(merge)
let L = πL in let M = πM in τ end end

let L = πL, M = πM in τ end

(rename)
λα.π

λβ.π[α/β]
(#)

lemmas is over α. Consequently, any citation of the lemmas must be changed to
have the first application be to a term that matches α explicitly. Since all of the
proofs referred to the same α before the operation, we can simply use the α in
the applications and replace all occurrences of Li[j] with Li[j] α.

The types of the Lis and πis also change. If α is an individual variable, we add
another universal quantification to the front of the type. If α is a proof variable,
we add another implication, corresponding to a premise.

The (specialize) rule does the opposite of (generalize). A variable that was
universally quantified for the lemmas L now becomes a constant for them when
we move α to the outside of the let. As stated, the rule requires λα to precede
every proof π. This is not actually a requirement for correctness, but it makes
stating the side condition easier. The side condition (∗∗) is that any citation of
a lemma Li[j] is of the form Li[j] α. In other words, the same variable used in
the λ-abstraction for the lemma must be the first variable to which the lemma
is applied. Otherwise, the proof may no longer be correct, since another term
used in the place of α may have different assumptions than those of α. Given
this condition and the scoping discipline, we know exactly which citations need
to change: those of the form Li[j] α that appear in the πis or in τ .

The (split) rule takes a list of lemma definitions and separates them into two
sets of definitions, one in the same place and one nested in a new let expression
within the in part of the original let. The proofs of the lemmas do not change
at all, so no citations need to change. The (merge) rule is the inverse of the
(split) rule.
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The (rename) rule changes the name of a single variable. The side condition
(#) is that the new name β must not occur anywhere in π. This corresponds to
α-conversion.

Soundness for the proof system requires that a sequence of applications of
the rules transforms a proof term of a type ϕ into a new proof term of a type
ψ that is equivalent modulo first-order equivalence. Let π ⇒ τ mean that the
proof term τ is derivable from π using our proof rules in one step.

Theorem 2. If π ⇒ τ and Γ � π : ϕ, then Γ � τ : ψ, where ϕ and ψ are
equivalent modulo first-order equivalence.

Proof. The proof is by induction on the proof terms.

In order to prove the cases for (generalize), we need a couple lemmas about
substitution. We state the lemmas as meta-typing rules.

Lemma 2.
Γ, p : ϕp, L : ϕ � τ : ψ

Γ, p : ϕp, L : ϕp → ϕ � τ [L/L p] : ψ

where L = π does not appear in τ .

Lemma 3.
Γ, L : ϕ � τ : ψ

Γ, L : ∀x.ϕ � τ [L/L x] : ψ

where L = π does not appear in τ .

Proof. The proof for both lemmas is by induction on proof terms.

We need similar lemmas for the (specialize) rule as well. The details of the
proof are omitted due to space constraints. It is interesting to note, however,
that the proof of soundness demonstrates that the types for let expressions and
our environment L, C, T are correct.

5 A Constructive Example

To demonstrate the use of the proof rules, we develop the proofs of (8) and (7).
Recall, we wish to prove

∀a, b, c, z.a = b → a = c → z ∨ (a ∧ b) = z ∨ (a ∧ c) (14)

using the lemma

∀x, y, z.x = y → z ∨ (x ∧ x) = z ∨ (x ∧ y) (15)

We use the following axioms

sym : ∀x, y.x = y → y = x (16)
trans : ∀x, y, z.x = y → y = z → x = z (17)

cong∧ : ∀x, y, z.x = y → (z ∧ x) = (z ∧ y) (18)
cong∨ : ∀x, y, z.x = y → (z ∨ x) = (z ∨ y) (19)
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The library L initially contains all of our axioms. Until we need them, we omit
both L and C for readability. We also omit term substitutions when performing
cites.

First, we prove the lemma. By (ident), we have

P : x = y � P : x = y (20)

We use (tcite) with the substitutions [x/x, y/y, z/x] and (assume) to add

P : x = y � cong∧ : x = y → (x ∧ x) = (x ∧ y) (21)

Applying (mp) to (20) and (21) gives

P : x = y � cong∧P : (x ∧ x) = (x ∧ y) (22)

We use (tcite) with the substitutions [x/x ∧ x, y/x ∧ y, z/z] and (assume) to
add

P : x = y � cong∨ : (x ∧ x) = (x ∧ y) → z ∨ (x ∧ x) = z ∨ (x ∧ y) (23)

Applying (mp) to (22) and (23) gives

P : x = y � cong∨cong∧P : z ∨ (x ∧ x) = z ∨ (x ∧ y) (24)

Now we apply (discharge) to (24) to get

� λP.cong∨cong∧P : x = y → z ∨ (x ∧ x) = z ∨ (x ∧ y) (25)

We can use the (collect) rule to add (25) to our current term, given it the name
lem. Our entire state is

L; lem = λxλyλzλP.cong∨cong∧P : ∀x, y, z.x = y → z ∨ (x ∧ x) = z ∨ (x ∧ y);

Now we start on the proof of the theorem. First we use (ident) to add the task

Q : a = b � Q : a = b (26)

Next, we use (lcite) with the substitutions [x/a, y/b, z/z] and (assume) to get
our lemma from the current term

Q : a = b � lem : a = b → z ∨ (a ∧ a) = z ∨ (a ∧ b) (27)

Applying (mp) to (26) and (27) gives

Q : a = b � lem Q : z ∨ (a ∧ a) = z ∨ (a ∧ b) (28)

We now use (cite) with the substitutions [x/z ∨ (a ∧ a), y/z ∨ (a ∧ b)] and
(assume) to introduce

Q : a = b � sym : z ∨ (a ∧ a) = z ∨ (a ∧ b) → z ∨ (a ∧ b) = z ∨ (a ∧ a) (29)
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Applying (mp) to (28) and (29) gives

Q : a = b � sym (lem Q) : z ∨ (a ∧ b) = z ∨ (a ∧ a) (30)

Next, we use (ident) to introduce

R : a = c � R : a = c (31)

Next, we use (lcite) with the substitutions [x/a, y/c, z/z] and (assume) to get
our lemma from the current term again

R : a = c � lem : a = c → z ∨ (a ∧ a) = z ∨ (a ∧ c) (32)

Applying (mp) to (31) and (32) gives

R : a = c � lem R : z ∨ (a ∧ a) = z ∨ (a ∧ c) (33)

Applying (tcite) with the substitutions [x/z∨ (a∧ b), y/z∨ (a∧a), z/z∨ (a∧ c)]
allows us to add

� trans : z∨(a∧b) = z∨(a∧a) → z∨(a∧a) = z∨(a∧c) → z∨(a∧b) = z∨(a∧c)
(34)

Applying (assume) to (30), (33), and (34) gives

Q : a = b, R : a = c � sym (lem Q) : z ∨ (a ∧ b) = z ∨ (a ∧ a) (35)
Q : a = b, R : a = c � lem R : z ∨ (a ∧ a) = z ∨ (a ∧ c) (36)
Q : a = b, R : a = c � trans : (a ∧ b) = z ∨ (a ∧ a) (37)

→ z ∨ (a ∧ a) = z ∨ (a ∧ c) → z ∨ (a ∧ b) = z ∨ (a ∧ c)

Two applications of (mp) using (35), (36), and (37) gives

Q : a = b, R : a = c � trans (sym (lem Q)) (lem R) : z∨ (a∧ b) = z∨ (a∧ c) (38)

We use (discharge) on each assumption in (38) to get

� λQ.λR.trans (sym (lem Q)) (lem R) : a = b → a = c → z ∨ (a∧ b) = z ∨ (a∧ c) (39)

We can use the (collect) rule to add (39) to our current term, give it the name
thm, and make lem a lemma by introducing a let expression. Our new C term is

thm =
let lem = λxλyλzλP.cong∨cong∧P : ∀x, y, z.x = y → z ∨ (x∧ x) = z ∨ (x∧ y)
in

λaλbλcλzλQ.λR.trans (sym (lem Q)) (lem R) : ∀a, b, c, z.a = b → a = c
→ z ∨ (a ∧ b) = z ∨ (a ∧ c)

end

At this point, we could apply (publish) to add thm to the library. However,
we may first wish to make thm and lem use the same z. To do this, we apply
(reorder) to the term several times to get
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thm =
let lem = λzλxλyλP.cong∨cong∧P : ∀z, x, y.x = y → z ∨ (x∧ x) = z ∨ (x∧ y)
in

λzλaλbλcλQ.λR.trans (sym (lem Q)) (lem R) : ∀z, a, b, c.a = b → a = c
→ z ∨ (a ∧ b) = z ∨ (a ∧ c)

end

We now apply (specialize) to move λz to the front of the let expression

thm =
λz.let lem = λxλyλP.cong∨cong∧P : ∀x, y.x = y → z ∨ (x ∧ x) = z ∨ (x ∧ y)
in

λaλbλcλQ.λR.trans (sym (lem Q)) (lem R) : ∀z, a, b, c.a = b → a = c
→ z ∨ (a ∧ b) = z ∨ (a ∧ c)

end

6 Related Work

Several people have looked at the problem of proof reuse and library organiza-
tion. Limiting the scope of variables and assumptions is handled by Isabelle’s
locales, which limit the use of a set of local variables and assumptions to a current
theory [6, 7]. In fact, the system allows one to create nested locales and move
them outward in the nesting, corresponding to our (specialize) rule. However,
theorems themselves are not a part of these locales and cannot be moved in the
same way; the library of theorems is still a flat structure, without a complete
notion of scope for theorems.

Melis and Schairer have looked at proof reuse in formal software verification
[8]. In their proofs, subgoals are often very similar, so the reuse of completed
proofs is instrumental in reducing the time required to verify programs. They
have a notion of a lemma, where a proof used in an earlier subgoal can be
reused within later subgoals of the same proof. The system can attempt to detect
these similar proofs automatically or the user can specify them. However, the
relation between these subgoals is never stored in the proof, so a later analysis
of the proof would not reflect the fact that similar subgoals were found and
reused. Moreover, lemmas are not stored or reusable in different theorems. Given
the similarities within proofs, one can imagine that there would also be several
similarities between proofs for which storage of some of the more fundamental
lemmas could be justified.

Lorigo et al. have worked on applying WWW search techniques to obtain
information about the structure of libraries of proofs and theorems. In [9],
they describe how this can be used to find the structure of mathematical top-
ics and categories of theorems in libraries depending on inter theorem usage.
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The approach is meant to be used with already existing libraries of formal math-
ematics, and work one way, in the sense that it gathers information from the
library and presents it to the user, but does not re-order the theorems in the
library itself into the discovered relationships. In contrast, our approach intrinsi-
cally groups related theorems and lemmas already during their proof and keeps
them together unless specifically moved by the user.

7 Future Work

We see many benefits to an automated theorem prover using a library with such
a formal hierarchical structure. First of all, we would expect the structure of
the library to indicate which theorems are more closely related–theorems that
use the same variables, assumptions, or lemmas would be grouped together in let
expressions and share abstractions. Large mathematical libraries could naturally
be broken down into smaller parts based on these groupings.

One can imagine several heuristics that could be improved by the structure
of the library. A system could first look at citing lemmas currently in scope
before searching the entire library. The number of lemmas in scope is likely to
be smaller than the number of theorems. Heuristics that automatically detect
similar subproofs and create lemmas from them should also be possible. Given
the formal structure of proofs, finding shared lemmas is a form of common
subexpression elimination. In discovering these lemmas automatically, the library
takes on the structure natural to the theorems proven. It could also provide
guidance to a user proving a new theorem, knowing that the current proof being
worked on and other theorems already proven share a few lemmas.

Currently, we have a basic implementation of all of the operations in a system
that works on Kleene algebra with tests [10]. The system, written in Java, has
a command line interface that allows one to create, manipulate, and save proofs
in a tree structure, which corresponds naturally to the let expressions and local
scoping. We hope to add to the system the ability to view and manipulate the
library as a figure, given that the tree structure lends itself well to direct graphical
depiction. One would easily be able to see and to alter the relationship between
theorems while their manipulations would be guided by a strong underlying
formalism.
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Abstract. Although knowledge is a central topic for MKM there is lit-
tle explicit discussion on what ‘knowledge’ might actually be. There are
specific intuitions about form and content of knowledge, about its struc-
ture, and epistemological nature that shape the MKM systems, but a
conceptual model is missing.

In this paper we try to rationalize this discussion to give MKM a
firmer footing, to start a discussion among MKM researchers and help
relate the MKM intuitions and discourses to other communities.

Starting from the observation that many concrete realizations of
mathematical knowledge objects are considered equivalent, we propose
a conceptual model of the space of (mathematical) knowledge objects
graded by levels of abstraction and presentational explicitness and draw
conclusions for MKM markup formats.

1 Handles on (Mathematical) Knowledge

The concept of ‘knowledge’ is investigated by many scientific disciplines, some
take a microscopic, ontological view, some a macroscopic, epistemological view
and still others a pragmatic view. The latter seems to be the dominant one in
the field of Mathematical Knowledge Management (MKM), but ever so often we
find pragmatic limits and have to cross the border. There are multiple ways of
looking at mathematical knowledge; for instance there is much discussion about
whether we should focus on the essence or the visual appearance of mathematical
objects and where to determine the borders between these as they seem to be
fluctuating.

In this paper, we start an exploration into the world of mathematical knowl-
edge. Reflections on this mathematical space were inspired in part by an article
by Seymour Papert, called “An Exploration in the Space of Mathematics Educa-
tions” [Pap96]. There, he investigates different math educational approaches, but
instead of contrasting them he relates them by interpreting them as axes in an n-
dimensional space. Here, we investigate essence/appearance approaches concern-
ing knowledge objects and are interested in the resulting knowledge space, hoping
that this perspective yields new and unexpected dependencies and relations.
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1.1 Knowledge and Context

Information theory assumes that the fundamental concepts of data, information,
and knowledge are not interchangeable concepts. In particular, the transitive
combination of “Lots of available data” and “Information are good data” and
“Knowledge is created with information” readily accepted in the Internet Bubble
cannot be held.

As data are visually accessible, we need to consider yet another concept:
a ‘glyph’ is an arrangement of pixels on a screen (or dots of ink on a sheet of
paper) into a recognizable shape. In contrast to the usage of data (which contain
something even if we don’t know what), the usage of ‘glyphs’ emphasizes the
pure presentation of a single character without any underlying semantics. In
order to close in on ‘knowledge’, we want to take a closer look at the meaning
of glyphs, data, and information and their relationships and differences based
on an established knowledge management model. Probst et al. (see [PRR97])
posit that glyphs, data, information, and last but not least knowledge can be
seen as stages of a pipeline that is shown in Figure 1.

Fig. 1. From Mere Glyphs To Valuable Knowledge

In particular, glyphs are just a set of characters or symbols like {0;9;5;,}
without any structure. A first set of rules imposed on the glyphs — the
syntax — yields data which can be handled by machines. For obtaining meaning
from such data we still need another component: the context. Usually, we discern
data from information by viewing information as data with a message or data
with an intention. Davenport and Prusak think of information “as data that
makes a difference” [DP98]. Data becomes information if a user can interpret
the data in regard to a specific goal (or a local context) e.g. using the string
’0,95’ as number in an equation concerning exchange rates in our example. In
contrast, information becomes knowledge, if a user can interpret the informa-
tion in regard to a global context like understanding the exchange rate equation
in the area of specific market behavior with respect to change of exchange rates.

1.2 Communities of Practice as Knowledge Context

We described in Section 1.1 how knowledge in the field of Knowledge Manage-
ment is dealt with. In 1991, Brown and Duguid investigated more closely the
global context which transforms information into knowledge (see “The Social



An Exploration in the Space of Mathematical Knowledge 19

Life of Information” [BD00]). In [BD91] they identify Lave and Wenger’s in-
fluential concept of “Community of Practice” [LW91–p. 98] as the social life of
information, i.e. they link Communities of Practice with organizational learning
and hence with knowledge. A Community of Practice (CoP) is

“a group of people (e.g. professionals) informally bound to one another through
exposure to a common class of problems, common pursuit of solutions, and
thereby themselves embodying a store of knowledge.” [WMS02]

In mathematical terms, scientific groups can only build a CoP if their mem-
bers agree on the validity of certain equivalence relations (which we will call
“substance equivalences” in 2.1).

CoPs are considered as the locus of knowledge as opposed to the learner’s
mind. The process of obtaining knowledge (learning) is described as “a process
that takes place in a participation framework” [LW91–p. 14] where “participation
is always based on situated negotiation and renegotiation of meaning in the
world” [LW91–p. 51]. So far, the assignment of meaning is done in MKM via
semantic annotations, but the necessary agreement on CoP-dependent substance
equivalences are not yet paid attention to, even though they seem to play a
decisive role in the Mathematical Knowledge Space.

1.3 The Pragmatics of Mathematical Knowledge

In order to make knowledge amenable to management, it has to be ‘captured’.
More specifically, it has to be reified, so that it can be stored, transfered, or
retrieved as knowledge object. But even if we set aside for the moment the
problem of explicit and implicit (tacit) knowledge that is well-studied in learn-
ing theories, we have to look at the relationship between a knowledge object
and the represented knowledge itself. Therefore, we need to look at the question
what knowledge is made of and whether or what part of it ‘exists’. We focus
on the philosophy of Mathematics that is concerned with this question and find
that it has occupied many famous people like Carnap, Bernays, Benacerraf, or
Putnam (see for example “The existence of mathematical objects” in [BP64–pp.
241-311]). An important distinction in this consideration is the one of substance
and accidence1. Substance is the unchanging essence of an object, whereas acci-
dence is the object’s appearance. These terms form a dialectic pair : even though
an object’s substance and appearance can be differentiated, they are insepara-
ble, they form a unity, so that one cannot think of one without the other. The
question whether a knowledge object (especially a mathematical object) exists
in “’being’ or ’thinking’ ” [Isr79–7] is mostly irrelevant to mathematicians as
long as it can be described. Its answer depends on a person’s underlying on-
tological belief (see for example Benacerraf’s essay “What numbers could not
be” [BP64–pp. 272-295]). But in real life, mathematicians are pragmatists, they
use abstract objects independent from their existence. Analogously, epistemo-
logical issues are pragmatically ignored by (most) MKM systems.
1 This distinction was used by Kant, there are many similar ones, including:

essence/appearance (Hegel), matter/form (Aristoteles), content/form (MKM).
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However, the differentiation between content and form found its way into the
general MKM discourse. It is consensus in MKM that for a mathematical object
we can distinguish its form from its content and express both aspects in markup
systems. For instance, the MathML format [ABC+03] has two sub-languages:
presentation-MathML describes the two-dimensional layout in an expression
like 3

√
x + 2, and content -MathML, which can express its functional structure

as the application of the cubic root function to a sum with the variable x and
the number 2.

In general, it could be argued, that it makes no difference whether we take
the symbol ‘R’ for the real numbers or maybe simply ‘R’. We could just call it
“different notation”. But do you really believe that your personal selection of
symbols is a matter of accident? Especially mathematicians do take great care in
this selection out of coherence and consistence reasons [Hei00], but also because
they know that different presentations and conceptualizations do have different
associations and they make pragmatic use of it. In philosophic terms, we might
call this the dialectic character of the substance/accidence aspects of a knowledge
object. In many cases, the choice of conceptualization and presentation can make
the difference whether a problem is solvable at all; see e.g. [Rob91] for a collection
of striking examples.

In the following, if we use the pair substance/accidence we want to stress
the different perspectives one can take looking at objects. This view is concerned
with the relevance and the timeliness of the respective objects. In contrast, if
we look at concrete objects, i.e. manifestations of knowledge, we can speak of
their content and form. Here, we can think of content and form as the object’s
constitutive elements. They give rise to a knowledge space spanned by substance
and accidence, inhabited by knowledge objects with certain “content and form
coordinates”.

2 A Conceptual Model for Knowledge Spaces

The fundamental observation is that knowledge can only be observed or commu-
nicated, if it is in a concrete form, e.g. written down in a book or uttered by a
colleague or teacher. For this realization — which we can consider as knowledge
object — a lot of conceptual and presentational aspects have to be fixed. Some
seem to contribute to the meaning of the object, while others are thought of as
rather personal choices like the page size of the book that contains the knowl-
edge. In this section, we have a closer look at what the mathematical community
deems substantial, yielding substance of knowledge as the totality of traits (which
can be modeled as equivalence classes) that constitute the meaning.

We will use the following group definitions as a running example in this paper.
It is well-known that groups can alternatively be described in two ways:

Definition 1 [KM79]. A group1 is a set G together with an associative binary
operation ◦: G× G → G, such that there is a unit element e for ◦ in G, and
all elements have inverses.
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Definition 2 [Hal59]. A group2 is a set G, together with a (not necessarily
associative) binary operation /: G×G → G, such that a/a = b/b, a/(b/b) =
a, (a/a)/(b/c) = c/b, and (a/c)/(b/c) = a/b for all a, b, c ∈ G.

For any group1 (G, ◦), we can define a binary operation /◦ by a/◦b: = a ◦ b−1

that shows that (G, /◦) is a group2, and vice versa (using a ◦/ b: = a/b−1
/ with

b−1
/ : = ((b/b)/b)). So we see that the two definitions are isomorphic (which we
could capture as a structure G: = (G, ◦, e, ·−1, /◦) = (G, ◦/, a/a, ·−1

/ , /); see [CS98]
for a formal account). In Mathematics it is usual to represent a structure like a
group simply as the pair G1: = (G, ◦) or a pair G2: = (G, /), since in a group1 the
unit e and the inverse operation ·−1 are uniquely determined by G and ◦ (and
similarly for a group2). So, we can view G as the substance of group and G1 and
G2 as its accidences.

Mathematicians frequently speak of G1 and G2 as different representations.
Note, that there often is a mix-up between the terms ‘presentation’ and ‘repre-
sentation’. Principally, ’presentation’ is used to describe an explicit realization
whereas ‘representation’ is used to describe an implicit formalization2. In the ex-
ample, instead of the usage of the symbols {(G, ◦); e; ·−1} just as well the symbols
{〈S, +〉; 1; −} respectively could have been used in the presentation. In order
to avoid confusions and for the purposes of the discussion in this paper we pre-
fer to phrase these representations as “conceptualizations” to mark them off
their “presentations”. The term ’representation’ is therefore freed and serves
as superordinated expression for conceptualizations as well as presentations.

2.1 Substance Equivalence

In Mathematics and in the natural sciences it is customary to consider presen-
tational aspects like the (natural) language to be irrelevant for the meaning of a
mathematical text. In this view, any document can be translated to any natural
language without loss of meaning. As we have seen in the groups example above,
Mathematics knows an even stronger equality notion — isomorphism. These dis-
tinct notions of equality of representations give rise to equivalence relations like
=lang or =log which we will call substance equivalences.

In particular, we can consider the relationship model of G as knowledge reifi-
cation along equivalence relations (Figure 2). The oval nodes are knowledge
objects, whereas the various edges in the triangular graph signify the relations
between the objects. Starting the description in a bottom-up way from right to
left, the nodes Gi,∗ where ∗ ∈ {e, g} and 1 ≤ i ≤ 2 stand for concrete variants
of Definition groupi in English (e) and German (g). As Mathematics consid-
ers translations between natural languages to be meaning-preserving, these are
2 In German, this connection is exemplified in the language itself: presentation trans-

lates to ‘Darstellung’ whereas representation translates to ‘Darstellungsweise’, i.e.
the mode of presentation. This corresponds to the frequent usage of the term ‘presen-
tation’ in combination with the preposition ‘for’ in contrast to ‘representation’-usage
concentrating on the ‘of’-object. In other words, presentation is targeted with re-
spect to the potential audience, whereas representation is focused on the content
and its structure.



22 A. Kohlhase and M. Kohlhase

G

G1

G1,g

G1,e

G2

G2,g

G2,e

=log

=lang

=lang

Fig. 2. Knowledge Reification in Mathematics

considered to be “conceptually equal” (see the dotted line between them). This
allows us to obtain the knowledge objects Gi for the two conceptualizations
of groups discussed above, which we model as the equivalence classes of Gi,∗:
Gi: = [Gi,e]=lang

= [Gi,g]=lang
. These are logically equivalent, so they give rise to

another knowledge object given as the equivalence class of all logically equiv-
alent conceptualizations of groups, which we denote with G: = [G1]=log

3 (that
corresponds to the structure G above).

We can see the diagram in Figure 2 as a visualization of the passage from
implicitly represented knowledge objects on the left to explicitly presented ones
on the right, making representation choices along the way.

2.2 Substance Equivalences and MKMarkup Formats

The substance equivalences we discussed above are generally accepted in Math-
ematics. If we look at other disciplines, e.g. in the Arts or Humanities, the as-
sumption that representations can be translated without loss of substance would
be highly controversial; there are literary texts (e.g. poems) that are considered
“un-translatable”. Hence, the diagram in Figure 2 would look completely differ-
ent for e.g. literary science4. As Communities of Practice are marked by their
collective value judgments about knowledge, we argue that substance equiva-
lences are the defining characteristics of CoPs. Moreover, we have to assume that
at least some are (implicitly) inscribed into the representation formats used by
a CoP. But exactly how are the mathematical substance equivalences inscribed
into the MKM formats? We differentiate between the well-known formula, state-
ment, and theory level of mathematical knowledge objects and give examples in
several MKMarkup formats.

We will start our analysis with the simplest case: the formula level and have
a look at various MKM formats. In TEX/LATEX, we can specify the exact sizes,
3 Note, that the equivalence class construction of G is independent of the order of

intermediate layers, i.e. the equivalence relations commute and therefore it is done
modulo the transitive closure of =log ∪ =lang.

4 We suspect that it would be a left-right-inverted (dual) version of the triangle for
Mathematics, but leave the investigation of this to further research.
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colors, or fonts of the glyphs that make up the two-dimensional layout of a math-
ematical formula. Since we are given handles how to specify all these, we have
to assume that these parameters matter, and therefore that the format does
not inscribe equivalence of formulae where the glyphs differ in size, color, or
font. In presentation MathML, the specification of these traits is not possible
in the prime vocabulary, but relegated to a CSS style system (which allows the
specifications to be overridden in the client by standard means) which we take
as a hint that stronger substance equivalences are in effect than in TEX/LATEX.
OpenMath [BCC+04] is of course the most radical in the substance equalities it
assumes. It is impossible to specify the presentation of an OpenMath object, as
this format is geared towards communication of mathematical objects between
systems. Communication with humans will be done via OpenMath editors and
presentation systems; which are free to choose any presentation suitable. Obvi-
ously, any two presentational variants e.g.

(
n
k

)
, nCk, Cn

k , and Ck
n are substance

equivalent, since they all mean the same: n!
k!(n−k)! (see [Koh05b] for a discussion).

At the level of mathematical statements , where e.g. our groups example is
located, things are more complicated. We have already seen that, here, issues
like the (natural) language employed in a definition, or the conceptualization
play a major role. This leads us to another way, in which substance equivalences
can be inscribed into MKMarkup formats. For instance, our own OMDoc for-
mat [Koh05a] has an explicit concept of language variants e.g. in the definition
element (which represents a definition such as the one for group1): it can incor-
porate a multilingual collection of CMP elements that contain definitional text
fragments that are explicitly considered language variants of each other. So, the
substance equivalence =lang from our example in Figure 2 is inscribed into OM-
Doc. We can see that the substance equivalence =log is inscribed into OMDoc
as well. It is provided by the alternative element, which in our example would
allow to phrase the definition of group2 as an alternative definition to group1
as long as we have proofs for the equivalence. In this situation, OMDoc only
provides one concept for a group, a clear sign that =log is assumed in OMDoc.

At the level of theories, OMDoc has still another way of inscribing substance
equalities into the format as it supports theory morphisms, i.e. structures that
allow to prove that one theory is included in (or even isomorphic to) another
modulo a variety of translations. In particular, isomorphic theories are considered
as logically interchangeable (even if they are pragmatically different), another
materialization of =log.

2.3 The Conceptual Model of MKS

We will now take a look at how the reified knowledge (text fragments marked up
in an MKM format) fit into a conceptual model of the Mathematical Knowl-
edge Space (MKS). We develop the intuition for MKS by constructing the
MKS for groups. Its generalization we leave to the gentle reader.

It is a central observation, that — even though we may actually want to write
down an abstract object like G1 or even G in Figure 2 — we only can write down
a leaf. Given the discussion in the last section, we have to assume that when we
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express mathematical knowledge in an MKM format, we actually write down a
markup pair consisting of a concrete realization and the assumed substance
equivalence relation. For instance, to formulate the conceptualization group1, we
can either type the markup pair 〈G1,e, =lang〉 or 〈G1,g, =lang〉. Note, that these
markup pairs contain enough information to reconstruct G1 as [G1,e]=lang

or
[G1,g]=lang

. We can consider G1 as their substance and G1,∗ as their accidences.
We can lift =lang to an markup equivalence relation =̂lang by setting

〈x, R〉=̂lang〈y, R〉 iff x =lang y. As G1,g =lang G1,e the pairs 〈G1,e, =lang〉 and
〈G1,g, =lang〉 are =̂lang-equivalent, giving rise to an equivalence class G1

lang , which
we consider to be the “language-independent markup object for a group”. For
example, G1

lang is naturally represented by the multilingual definition element
in OMDoc.

G

G1

G1,g

G1,e

G2

G2,g

G2,e

Glog

G1
lang

G2
lang

G lang
log

=log

=lang

=lang

=̂log

sub
acc

acc

sub
acc

acc

sub
acc

acc

sub
acc

acc

Fig. 3. The Mathematical Knowledge Space for Groups

In Figure 3 we picture the substance and accidence relations sub and acc resp.
with dashed lines, interpreting the triangle from Figure 2 as the base face of a
tetrahedral graph and positioning G1

lang in the first level above it. An analogous
construction yields G2

lang . This gives us license to construct a knowledge object
Glog as the equivalence class of the Gi

lang modulo =̂log, on the first level just as
we did for the lower level in Section 2.1. Note, that

Glog: =
[
G1

lang

]
=̂log

=
[[〈

G1,e, =lang

〉]
=̂lang

]
=̂log

≡
[〈[

G1,e
]
=̂lang

, =lang

〉]
=̂log

The right-hand side of this is again an equivalence class of markup pairs, so we
can consider G as the substance of Glog and the Gi as its accidences, making Glog

the “conceptualization-independent conceptualizations of group”. In particular,
all the relations in the lower part of Figure 3 commute. Note, that just as in
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the lower level, the objects become more explicit from left to right. Finally, we
complete the picture by iterating the construction to obtain a knowledge object
G lang

log
for the group that is “independent of everything ‘relevant’” , where the

relevance is determined by the knowledge object’s author’s CoP, in our example
the conceptualizations with respect to log and lang.

In particular, we obtain a knowledge object that no longer contains anything
that the given Community of Practice deems substance-irrelevant.

3 Interpretations of MKS

In Section 2.1 we have presented a model of the reification of knowledge based
on substance equivalences. We can interpret Figure 2 — i.e. the base face of
the MKS tetrahedron — as the perspective of an author who writes down her
knowledge with an audience in mind. Naturally, her membership in a Community
of Practice (see 2.2) determines the employed implicit substance equivalences.

In 2.3, we completed this picture by extending the analysis with an account of
markup processes resp. markup formats, yielding the mathematical knowledge
space in Figure 3. Here, we can interpret the right face of the MKS tetrahedron
(i.e. the triangle area between G lang

log
, G1,g, and G2,e) as the markup process,

starting out with concrete materialization of knowledge, ending with a knowledge
object in a markup format with explicit or inscribed substance equivalences.

3.1 MKS and the Content/Form Distinction

Let us now consider the front face of the MKS tetrahedron (i.e. the triangle area
between G lang

log
, G, and G1,g)5. Starting at the top with G lang

log
which we call the

Knowledge Object, we can distinguish its content from its form arriving at
what we call the “Form Object” and the “Content Object” — which can be
recurrently subjected to the same analysis (see Figure 4 for the resulting view
of the front face of the MKS). With the substance perspective on the Content
Object we arrive at what we call the “Platonic Object”6. Successively looking
down the substance branch of the tree, we arrive at more and more fundamental,
abstract objects. In particular, these are increasingly liberated from their con-
ceptualization as well as presentation. In contrast, looking down the accidence
branch we arrive at more and more concrete and tangible objects. In detail, the
accidence view on the Content Object leads to its conceptualization level (the
“Conceptualized Object”), where we have a representation of the content in
which certain decisions of how to think about it have been taken (e.g. do we

5 Note, that the front face of the MKS tetrahedron is the only surface conceptually
left as the back face’s interpretation is analogous as it is just a variant.

6 The existence of such an object is not discussed, since either ontological assumption
has no consequences for the conceptual model. As soon as we start reifying implicit
knowledge (independent from the underlying ontology) we have to choose a form
which in turn materializes the object.
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Fig. 4. The Analysis Triangle of a Knowledge Object

want to think about a group as an object, where the associative operation ◦ is
the primary concept or not?).

Now, let us look at the accidence aspect of the Form Object. As it becomes
more and more concrete, we are lead to a presentation level and therefore to the
concrete “Presented Object”. The substance perspective on the Form Object
reveals again a conceptualization level, which by our analysis above is the Con-
ceptualized Object. Let us clarify this with the group example: if we want to
talk about what ‘the group’ really is (i.e. the Platonic Object) we have to de-
cide on a representation (otherwise communication is impossible). This selection
determines which of the above definitions will be applied. In other words, the
choice of the definition fixes the conceptualization of a group. The MKM com-
munity seems to concentrate on conceptualizations as semantic representations
(accidence of the content = substance of the form).

Interestingly, so far capturing knowledge has always aimed at those knowledge
objects that are “independent of everything” and not at the Platonic Objects
themselves (possibly because we mistook them for the same).

3.2 MKS and the MKM User

Now we want to look at the MKS from the perspective of the recipient of knowl-
edge, i.e. the user or learner who starts with the concrete materialization of
knowledge like a certain document. The user heads for the knowledge itself —
the Platonic Object — which is a Knowledge Object’s author’s point of depar-
ture. A reader has to differentiate between the potential content and the concrete
form of a document. Depending on her personal choice what content and what
form is, she understands and builds up her own knowledge. In contrast to the
sender of knowledge, who knows the used equivalence relations (and more) and
actively chooses the representation of content, the recipient of knowledge has to
infer the applicable equivalence relations.

We claim that the user perspective is already present in the analysis trian-
gle that we have studied in the last section: let us look at a student confronted
with a book. It contains the knowledge in its final presented representation (Pre-
sented Object), but the student is aiming at an understanding of the underlying
substance (Platonic Object). In order to decide what the content or the form is
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in the Presented Object, the student has to envisage a Knowledge Object , i.e.
a potential model of the real knowledge to be learned. From this hypothetical
Knowledge Object she can infer the Content Object and the Form Object . This
dramatically reduces the search space of possible interpretations of the Presented
Object to the presentations of the Form Object. Here, “understanding” means
that the student is able to distinguish between the content of the Form Object
(Conceptualized Object) and the Presented Object as its form.

Again, interestingly, the user generally is thought of as either modeling the
Platonic Object (e.g. in case of a lecture) or the Knowledge Object (e.g. in
case of an MKM system), whereas we conjecture that the user is building a
Conceptualized Object as approximation of the Platonic Object. Taking this
seriously might help to understand how MKM systems need to be positioned in
a learning cycle.

3.3 MKS and Narratives

In the discussion of knowledge/document markup formats on the level of theo-
ries, it is always difficult to decide what to mark up; the underlying knowledge
or the structure of the document that conveys it. Note, that the underlying
structures depend on the choice of conceptualization and therefore can be quite
different.

Take for instance a didactically enhanced document that introduces a new
concept by first presenting a naive, reduced approximation N of the real theory
F , only to show an example EN of where this is insufficient. Then the document
proposes a first (straw-man) solution S, and shows an example ES of why this
does not work. Based on the information gleaned from this failed attempt, the
document builds the eventual version F of the concept and demonstrates that

N

EN FS

EFES

lecture

sl1 sl2 sl3 sl4 sl5 sl6 sl7

n1 n2 . . . n3

Fig. 5. An Introduction of a Concept via Straw-Man
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this works on EF . Let us visualize the narrative- and content structure in Fig-
ure 5. The structure with the solid lines and boxes at the bottom of the diagram
represents the content structure, where the boxes N , EN , S, ES , F , and EF sig-
nify theories for the content of the respective concepts and examples. The arrows
mark the conceptual dependency structure, e.g. theory F imports theory N .

The top part of the diagram with the dashed lines stands for the narrative
structure, where the arrows mark up the document structure. For instance, the
slides sli are grouped into a lecture. The dashed lines between the two docu-
ments are pointers into the content structure. In the example in Figure 5, the
second slide of “lecture” presents the first example: the text fragment n1 links
the content EN , which is referenced from the content structure to slide 1. The
fragment n2 might say something like “this did not work in the current situation,
so we have to extend the conceptualization. . . ”.

If we look carefully, we can see that the lower level of the diagram represents
the content of the knowledge (structured by the inherent semantic relations of
the objects involved), and the upper part the form (structured, so that hu-
mans are motivated to concern themselves with the material, understand why
some definitions are stated in just this way, and get the new information in
easily digestible portions). For instance, the OMDoc format [Koh05a] contains
theory-level content- and presentation markup infrastructure for these aspects.
The theory-level content markup contains the constitutive representations struc-
tured by OMDoc theories and their semantic relations (e.g. inheritance), and
the narrative markup contains the document structure (e.g. that of a course di-
vided into lectures and further into slides), motivating narrative, course-specific
information (“When is the final exam?”), etc.

Just as for content-based systems on the formula level, there are now MKM
systems that generate presentation markup from content markup, based on gen-
eral presentation principles, also on this level. For instance, the ActiveMath
system [SBF+00] generates a simple narrative structure (the presentation; called
a personalized book) from the underlying content structure (given in OMDoc)
and a user model. However, a systematic analysis as we have attempted for the
formula and statement levels above yielding the MKS is still missing. We do not
even have a good understanding what the substance equivalences (and conse-
quently the markup primitives) at the theory level might be. We conjecture that
a thorough understanding of the substance/accidence aspects of the theory level
(and a theory-level MKS) could eventually lead to a new generation of MKM
systems, that can dynamically play with the content/form distinction to the
benefit of the individual user.

4 Consequences for Mathematical Knowledge
Management

Let us now speculate about the consequences of the suggested conceptual model
for the field of mathematical knowledge management and the knowledge repre-
sentation formalisms employed there.
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The first consequence is that we have to extend the MKM representation
formats with an explicit representation of substance equivalence relations. First
steps into this direction have already been taken in [MKB04, KBHL+03], where a
mathematical knowledge base was extended by a concept of “variants” to model
language, verbosity, formalism, and partially also versioning variants. Our model
here suggests that this approach needs to be systematized and explicit represen-
tations for ‘higher-level’ objects need to be introduced. Furthermore, we have to
take stock of the various (sub)-relations of the substance equivalences. In [KA03],
we have studied how (rather low-level, technical) substance equivalences interact
with distribution and versioning of mathematical knowledge and documents. We
will have to extend this to the semantic substance equivalences discussed here;
[Hut04] goes first steps into this direction.

Another obvious consequence is that we will have to model Communities of
Practice together with the mathematical knowledge in order to make the CoP-
dependencies explicit. However, it is not directly obvious how to model CoPs and
their relations to each other. There are large CoPs, like the CoP shared by all the
STEM fields7, and small ones whose members agree on particular mathematical
objects and differ on others. For instance, it is a matter of CoP in Mathematics
whether you accept the law of excluded middle or the axiom of choice. Such CoP
differences can already be modeled in MKM formalisms that have a notion of
theories that are ordered by inclusion or inheritance. But inclusion of accepted
theories is not the only relation between CoPs. For instance, there are two CoPs
in theoretical physics, one standardizing the Ricci tensor to twice the other. To
model the equivalence (modulo renormalization), we need rich theory structure
with theory morphisms like the ones assumed in [Far00, Koh05a]. The differing
group conceptualizations can be handled in the same way.

But as we have seen, the influence of the CoP reaches much farther: Even
the set of substance equivalences is determined by the CoP. Currently, the as-
sumptions about these seem to be hardwired into the representation formats
discussed and utilized in MKM. Depending on how extensive such influences
turn out to be, we may have to make representation formats parametric to be
able to model such influences explicitly. This also begs the question, whether
future MKM knowledge bases will be CoP-specific (severely limiting their use-
fulness) or whether we will be able to have CoP-spanning knowledge bases. In
the latter case, we could annotate documents with new kind of metadata, e.g.
the CoP (or CoPs) of the author, or of the intended audience. This has been
studied informally by projects that attempt large-scale multi-disciplinary knowl-
edge collections like the Connexions project (see [CNX05, HBK03]) and turned
out to be of central relevance for integration, navigation, and quality assurance.

5 Conclusion and Further Work

We have explored the space of (mathematical) knowledge MKS spanned by
the substance/accidence distinction (with some philosophical excursions) that
7 STEM — Sciences, Technology, Engineering and Mathematics.



30 A. Kohlhase and M. Kohlhase

triggers content/form coordinates of a knowledge object which are discussed in
various communities (like Artificial Intelligence, Logic & Foundations of Mathe-
matics, document markup, or MKM). We have extended or contrasted the discus-
sion there with cognitions in other scientific disciplines, specifically Knowledge
Management and Social Sciences. In the former, the relevance of the context
of knowledge is understood, whereas in the latter, the context of knowledge is
studied and identified as Community of Practice. Based on this broadened view,
we propose a more fine-grained, multi-layered model of the content/form dis-
tinction, which explains the apparent multi-faceted nature of the content/form
debate. This model is based on two assumptions:

(i) the existence of a CoP-determined set of substance equivalences that identify
the substance of a knowledge object by equating accidental representation
commitments, and

(ii) the dialectic property of the substance and accidence aspects of a knowledge
object

In our view, assumption (i) is very natural in the field of Mathematics and
neighboring disciplines, and the CoP-dependency is often neglected, since it
seems to hold for the large CoP shared by the STEM disciplines. This CoP also
delineates the applicability of MKM techniques (which currently seem to hard-
wire the substance equivalences into the representation formats) to the STEM
fields. Turned positively, we conjecture that

MKM techniques can go wherever the substance equivalences of Mathe-
matics hold!

On the technological side, our fine-grained knowledge space and its CoP-
dependence open whole areas of applications. CoP-information would allow to
personalize presentations that are generated from content without assuming total
knowledge about the user’s preferences. Knowledge about the substance equiv-
alences will (in principle) allow automatic translation (generation of variants
tailored to the user and situation).

We hope that the musings presented in this paper will be taken up by others
and contribute to a consensus about the foundations of mathematical knowledge,
so that we can better manage it. In particular, we have to leave to further
investigations the tasks of coming up with a content-oriented model of CoPs
and their interrelations (we have only been able to motivate the necessity of this
and identify some guiding questions in Section 4) and that of fully exploring the
consequences for Mathematical Knowledge Management.

Unfortunately, the model of the knowledge space we have presented opens
up as many questions as it helps answer, e.g. what does the knowledge space
look like where other forms of substance equivalences are involved. For instance,
in the Arts and Humanities, a similar model might be applicable, only that
form of an artifact or representation is considered its substance, e.g. in a poem,
whereas the meaning is considered its accidence. After all, we ‘interpret a poem’
giving it multiple possible meanings. This suggests the existence of a tetrahedral
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knowledge space that is ‘dual’ to the one depicted in Figure 3. This could help
solve the riddle that knowledge is considered “objective” in some communities
and “subjective” by others.
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P. Meier, A. Poetzsch-Heffter, M. Roggenbach, G. Russell, J.-G. Smaus,
and M. Wirsing. Multimedia instruction in safe and secure systems.
In Recent Trends in Algebraic Development Techniques, volume 2755 of
LNCS, pages 82–117. Springer Verlag, 2003.

[KM79] M. I. Kargapolov and J. I. Merzljakov. Fundamentals of the Theory of
Groups. Graduate Texts in Mathematics. Springer Verlag, 1979.

[Koh05a] Michael Kohlhase. OMDoc an open markup format for math-
ematical documents (version 1.2), 2005. Manuscript, http://www.
mathweb.org/omdoc/omdoc1.2.ps to appear in Springer LNAI.

[Koh05b] Michael Kohlhase. Semantic markup for TEX/LATEX. Manuscript, avail-
able at http://kwarc.eecs.iu-bremen.de/software/stex, 2005.

[LW91] Jean Lave and Etienne Wenger. Situated Learning: Legitimate Peripheral
Participation (Learning in Doing: Social, Cognitive and Computational
Perspectives S.). Cambridge University Press, 1991.

[MKB04] Armin Mahnke and Bernd Krieg-Brückner. Literate ontology develop-
ment. In Robert Meersman, Zahir Tari, and Angelo Corsaro et al., ed-
itors, On the Move to Meaningful Internet Systems 2004: OTM 2004
Workshops, number 3292 in LNCS, pages 753–757. Springer Verlag, 2004.

[Pap96] Seymour Papert. An Exploration in the Space of Mathematics Educa-
tions. International Journal of Computers for Mathematical Learning,
1(1):95–123, 1996.

[PRR97] G. Probst, St. Raub, and Kai Romhardt. Wissen managen. Gabler
Verlag, 4 (2003) edition, 1997.

[Rob91] J. A. Robinson. Formal and informal proofs. In R. S. Boyer, editor,
Automated Reasoning: Essays in Honor of Woody Bledsoe, pages 267–
282. Kluwer, London, 1991.

[SBF+00] Jörg Siekmann, Christoph Benzmüller, Armin Fiedler, Andreas Franke,
George Goguadze, Helmut Horacek, Michael Kohlhase, Paul Libbrecht,
Andreas Meier, Erica Melis, Martin Pollet, Volker Sorge, Carsten Ullrich,
and Jürgen Zimmer. Adaptive course generation and presentation. In
P. Brusilovski, editor, Proceedings of the Fifth International Conference
on Intelligent Tutoring Systems—Workshop W2: Adaptive and Intelligent
Web-Based Education Systems, pages 54–61, Montreal, 2000.

[WMS02] E. Wenger, R.A. McDermott, and W. Snyder. Cultivating of Communi-
ties of Practice. Harvard Business School Press, 2002.



Authoring Presentation for OpenMath

Shahid Manzoor, Paul Libbrecht, Carsten Ullrich, and Erica Melis

Deutsches Forschungszentrum für Künstliche Intelligenz
{manzoor, paul, cullrich, melis}@activemath.org

Abstract. Some mathematical objects can have more than one no-
tation. When a system compiles mathematical material from multiple
sources, a management effort to maintain uniform and appropriate no-
tations becomes necessary. Additionally, the need arises to facilitate the
notations editing of the mathematical objects with authoring tools. In
this paper, we present our work towards those needs. We have designed
a framework that defines an authoring cycle supported by series of tools,
which eases the creation of notations for the symbols in the process of
publishing mathematics for the web.

1 Introduction

ActiveMath [MAB+01] is an adaptive and interactive web-based learning en-
vironment for mathematics. It dynamically generates content adapted to the
students profile i.e. goals, preferences (e.g. personalized presentation and field of
interest etc), capabilities, and knowledge. The mathematical content in Active-
Math is represented in OMDoc [Koh04] and are stored in a knowledge base. The
motivation for our work comes from a number of problems we experienced with
authors when they write mathematical course material in the ActiveMath en-
vironment. For instance, in different languages, different mathematical notations
for a symbol are used: the slope symbol in English is written as slope(F, p), or
steigung(F, p) in German. Moreover, different authors want to use different no-
tations for the same mathematical objects such as 1

2 or 1 : 2, a ∗ b or ab, d
dxf

or f ′x.
However, authors are challenged when writing the presentation of the math-

ematical expression. The current approaches provide a meta stylesheet (an xml
encoding to represent the notations for the symbols) as an authoring support,
which is converted into xslt-templates. That is, the authors lack authoring tools
which ease their notations editing and tools to ease the publishing tasks.

We propose a framework that defines an authoring cycle for the editing of
symbols’ notations which involves a series of tools that support the process
from editing to previewing the notations. This framework simplifies the symbols’
notation authoring process.

We start with a description of the current approaches for authoring Open-
Math symbols’ notations. Thereafter, we describe problems in these authoring
processes. In Sec. 4, we explain the xml encoding for the notation and annota-
tions. We discuss our authoring tools and environment for the notations editing.

M. Kohlhase (Ed.): MKM 2005, LNAI 3863, pp. 33–48, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Finally we describe how the notations are processed in the presentation archi-
tecture of ActiveMath.

2 Previously Existing Approaches to Presentation
Generation for OpenMath

MathML is a W3C standard for representing 2-dimensional mathematical for-
mulæ on the web. It has been embedded inside xhtml. It comes with two lan-
guages, Presentation MathML (PMML) and ContentMathML-content. The
PMML concentrates on the presentation of the expression. On the other hand,
MathML-content organizes mathematical formulæ in trees of operators, vari-
ables, and numbers with well defined semantics. Its set of possible symbols is,
however, fixed.

OpenMath’s primary goal is to serve as a communication of mathematical
objects between applications. Similarly to MathML-content, it organizes for-
mulæ in trees of mathematical symbols. Contrary to MathML-content,
OpenMath has a well defined extensibility mechanism: one can write content-
dictionaries (CD) to provide a description of new symbols.

Generally, xslt is used to transform the OpenMath objects into the output
formats, such as html or TEX. In [Car00] and [Koh04], an xslt based algorithm
is described to generate the presentation. There, an template rule is required for
each symbol. Each template generates the notation in output format recursively.
The match rule for each template is built with name and cd attributes. Below is
an example of an xslt template for the divide symbol.

<xsl:template match=”om:OMA[om:OMS[position()=1 and
@name=’divide’\break and @cd=’arith1’]]”>

<mfrac>
<xsl:apply−templates select=”∗[2]” />
<xsl:apply−templates select=”∗[3]” />

</mfrac>
</xsl:template>

OMDoc [Koh04] provides a <presentation> element to write notations aiming
to facilitate the authoring support, as hand written xslt templates are tedious
and error-prone. The <presentation> element points to the symbol for which
the presentation is being written. It uses the <style>, <xslt> and <use> ele-
ments to generate a particular presentation of a symbol. For complex notations
such authoring requires is defining the body of an xslt template. For simple
notation binary operators, subscripts, list, and fraction, the easy syntax of the
<use> element is sufficient. This approach supports the xslt templates genera-
tion for multiple output formats. But, authors have to specify the notation for
each output format.

In Fig. 1, the example of <presentation> element represents the notation for
the divide OpenMath symbol in three output formats. Each <use> element
represents the notation, specified as character data for html (/) and LATEX
(\frac) or element attribute for MathML (mfrac).
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<presentation role=”applied” for=”divide” theory=”arith2”>
<use format=”html”>/</use>
<use format=”mathml” element=”mfrac” />
<use format=”latex”>\frac</use>

</presentation>

Fig. 1. Example of presentation tag in OMDoc

Another approach is discussed in [NW01], in which Naylor and Watt have
introduced the concept meta stylehseet that generates the xslt stylesheet auto-
matically for PMML and MathML-content formats. They proposed the meta
stylesheet as an extension to Content Dictionaries, in which the notation of the
symbol in PMML and TEX along with the OpenMath expression is repre-
sented together. An example for the divide symbol is shown below. The no-
tation is represented in <version> element and the OpenMath expression in
<semantic_template>.

<Notation>
<version precedence=”200” style=”1” >

<math>
<mfrac>

<mi xref=”arg1”>a</mi>
<mi xref=”arg2”>b</mi>

</mfrac>
</math>

</version>
<semantic template>
<OMOBJ>

<OMA>
<OMS cd=”arith1” name=”divide” />
<OMV id=”arg1” name=”a” />
<OMV id=”arg2” name=”b” />

</OMA>
</OMOBJ>
</semantic template>

</Notation>

Fig. 2. An example of the notation of the divide symbol following [NW01]

In this approach, the XPath of the arguments in the generated xslt templates
is determined by linking the symbols and the notations with their attributes as
in Fig. 2: the elements with id attribute represent arguments in the OpenMath
expression) and xref indicates the argument in PMML.

3 Symbols Presentation Authoring Problems

Although meta stylesheet approaches discussed in the previous section provide a
basic authoring support, authors may experience difficulty in writing notations
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Fig. 3. An example of a mathematical expression with annotations

for the OpenMath symbols. The problems are as follows: first, some mathe-
matical symbols can be presented in many ways. The automatic adaptation of a
notation (from many notations for a symbol) in different contexts such as class,
book and student is an issue, especially when different materials are presented or
merged. For instance, in ActiveMath, materials may be compiled by merging
the contents from different authors or collections. Secondly, authors, who have
little or no background in programming, are required to write presentation in
complex xml or xslt structures. And last, but not least, authors may wish to
highlight mathematical expressions by (a) making a box around the contents,
(b) changing the background color, or, (c) labeling etc (See Fig. 3).

Most authors need an easy to use authoring environment, where they can edit
the notations for the OpenMath symbols as well as preview it in the target
presentation.

4 Solving Authors’ Problems

Generally, authors use specialized editors for content authoring, which provide
facilities that are best suited to their task. The editor selection depends on
the content type or format. For instance, for xml documents editing there are
specialized editors that understand the structural behavior and grammar of the
documents in general. If an editor is aware of the usage of the xml document,
for example when editing OMDoc documents for ActiveMath, it is possible to
make the editing easier and more productive.

jEditOQMath [Lib04] is such an authoring environment: it is a package dis-
tributed to the authors of content for the ActiveMath learning environment. It
is based on the open-source text-editor jEdit and its rich support for the editing
of xml documents allows the easy creation and maintenance of valid xml doc-
uments. It adds several search facilities specialized for OMDoc and is integrated
with the ActiveMath server of the author: it hosts publishing routines which,
report consistency errors; it provides quick-open and quick-link facilities using
the drag-and-drop paradigm. jEditOQMath is freely available.1

Editing mathematical formulæ is done in the OQMath language2 which is
converted to OpenMath formulae. It converts a highly readable, linear, syntax
1 Please see http://www.activemath.org/projects/jEditOQMath/.
2 Please see http://www.activemath.org/projects/OQMath/.
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to OpenMath expressions (thanks to the usage of Unicode characters such as
∃ or Ω) in a way that authors can extend with new (input-level) notations. The
experience with jEditOQMath thus far has proven that the OQMath verbosity
is acceptable for mathematical documents. It has also proven that error feedback
is important when using an environment where such a rich presentation process
is applied.

Our solution provides a framework that defines an authoring process for no-
tation editing to the publishing in ActiveMath. The framework consists of 2
phases. The Phase I deals with OpenMath and notation editing. The nota-
tions are edited by our tool called OpenMath Presentation Editor (OMPE).
OMPE is run as a plug-in of jEditOQMath providing the notation authoring
facility within the same environment where the authors edit their mathematical
documents. Phase II is initiated passively, when the contents are previewed in
ActiveMath. In this phase the notations can be adapted according to contex-
tual information such as language, class/group, student and book. The whole
process utilizes a <symbolpresentation> element, which we discuss in the next
section.

4.1 Knowledge Representation of the Symbols Notations

In order to define different notations of a symbol, we have introduced the el-
ement <symbolpresentation>. It encapsulates the data to generate the xslt
templates for multiple output formats, currently html, MathML and LATEX.
The grammar of the <symbolpresentation> element is shown in the table
below.

tag attributes children
symbolpresentation xref, id (notation)+
notation notation, precedence, format,

language, lbrack, rbrack, style
(math,OMOBJ)

symbolpresentation: represents notations for a symbol. Its xref attribute
points to the symbol for which notation is being written. It can contain
multiple notations of a symbol, and each notation is represented by the
<notation> element.

notation: Each notation element represents one notation of the symbol. For
this purpose, it contains two structures, ie. PMML and OpenMath. Its
format attribute contains a list of output formats for the symbol. Three
attributes, precedence, lbrack and rbrack, control the bracket printing
around the symbol. The left bracket is only printed, if the symbol precedence
is less than the parent symbol. The same algorithm works with the right
bracket with the corresponding attributes. Its style and language attributes
are used to define selectors for a symbol that will be used at rendering time
to choose the appropriate notation.

OMOBJ: The OMOBJ element represents the OpenMath expression
containing the prototype of the symbol for which a presentation is being
written. The OpenMath symbols in this expression are used in three pos-
sible ways: 1) as function, applied to its arguments represented inside the
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OMA element, 2) standalone, or 3) having an attribute inside the attribution
object (OMATTR). This expression allows the production of xslt-templates
applied to symbols or more complex expressions. The arguments are repre-
sented by <OMV> elements.

math: This element contains Presentation MathML (PMML) expression rep-
resenting the notation for a symbol. The arguments in the notation (PMML)
is represented by an <mi> element. The arguments in both PMML and Open-
Math expression are mapped by pairing the name attribute of the <OMV> el-
ement and content of the <mi>. The XPath expression in the xslt template
is calculated by matching the arguments in both the expressions.

An example of the plus notation in <symbolpresentation> element is shown
in Fig. 4.

<symbolpresentation xmlns=”http://www.activemath.org/namespaces/am content”
id=”arith1plus 77 24” xref=”mbase://openmath−cds/arith1/plus”>

<notation format=”html |pmathml |TeX” precedence=”110” lbrack=”(”rbrack=”)”>
<math xmlns=”http://www.w3.org/1998/Math/MathML”>

<mrow>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>

</mrow>
</math>
<OMOBJ xmlns=”http://www.openmath.org/OpenMath”>

<OMA>
<OMS cd=”arith1” name=”plus” />
<OMV name=”a” />
<OMV name=”b” />

</OMA>
</OMOBJ>

</notation>
</symbolpresentation>

Fig. 4. Example of <symbolpresentation> element for the plus symbol

4.2 Dealing with Different Notations for the Same Symbol

Our structure allows the authors to define different notations for a symbol. For
each notation, a new definition of <notation> element is required. Below are
contexts we have identified to influence the adaptation in symbol notation.

Language: This deals with internationalization for the symbols. Some sym-
bols have different notations depending on the languages, e.g. the great-
est common divisor symbol is written gcd(a, b) in English but is written
kgV(a, b) in German. Using our notation infrastructure allows to solve the
internationalized symbol presentation in LeActiveMath as discussed in
the report [LW05]. To associate a notation with a language, we are using the
language attribute of the <notation> element.
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Different patterns of the arguments: One of the variations in the symbol
rendering occurs when it has a different organization or number of the argu-
ments. Consider the two notations,

∑n
x=1 x and

∑
x∈m x , of the sum symbol.

In the example, both sum symbols differ in their first arguments, i.e. be it
the interval 1 to n or the set m. For each case like this, an author has to
define a <notation> element.

Authors Styles: There are situations in which the symbol notation differs
depending on the authors’ styles even though the symbols are alike in all
respects. Example of such presentations are: 1

2 or 1 : 2, a ∗ b or a·b or ab, df
dx

or f ′x. For this, we provide a style attribute of the notation which allows
the authors to define their own specific style notation for a symbol.

This multiple styles notations raise the question of the selectivity of a
particular notation especially, when a material is compiled by merging the
contents from different sources. We defined the following priorization for
a consistent material presentation in ActiveMath from least to highest
priority:

– System Defaults has the least priority in the system. All collections
xslt templates are merged into one, the import order of xslt rules is
used to manage this priority.

– Author/Collection This is the authors’ default notation defined for
a particular collection. It is automatically selected, if no other priority
level is defined.

– Book A book can be generated by selecting a list of learning concepts
from different content collections. At this priority level and other follow-
ing levels, priority should be assigned by the notation selector tool which
should store the priority information in the book configuration.

– Group The group represents a group of learners, for example a class,
studying a common course. We expect, for example, teachers responsible
of a course to adapt notations for their classes.

– Individual The students himself may be able to assign the priority to
a notation. His choices, which we expect to be rare, have the highest
priority level.

Within the Same Collection: In this context, the authors want to define
different notations of the same symbol within the same collection. Take, for
example, the associativity law of the plus symbol, i.e a+(b+c) = (a+b)+c.
The default notation for the plus symbol will not print the bracket, but ex-
plicit brackets are required to explain the law. This kind of cases is handled
with OpenMath attribution object. We have introduced a type attribute
for the application OpenMath object to define for multiple notations of the
same symbol. The type attribute abstractly defines a class of the symbols
for which special treatment is made during the presentation generation. So,
whenever an author wants a special notation other than the default in his
book, he can assign this attribute to the instance of the application object
containing the particular symbol. In Fig. 5, an example of the plus notation
for a specific occasion is shown.
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<symbolpresentation id=”arith1plus 3 88” xref=”mbase://openmath−cds
/arith1/plus”>

<notation format=”html|pmathml|TeX” precedence=”110” lbrack=”
(” rbrack=”)”>

<math xmlns=”http://www.w3.org/1998/Math/MathML”>
<mrow><mo>(</mo>

<mi>a</mi>
<mi>+</mi>
<mi>b</mi>
<mo>)</mo></mrow>

</math>
<OMOBJ xmlns=”http://www.openmath.org/OpenMath”>

<OMATTR>
<OMATP>

<OMS cd=”am.presentation” name=”type”/>
<OMV name=”associative”/>

</OMATP>
<OMA>

<OMS cd=”arith1” name=”plus” />
<OMV name=”a” />
<OMV name=”b” />

</OMA>
</OMATTR>

</OMOBJ>
</notation>

</symbolpresentation>

Fig. 5. Example of the plus symbol notation with type attribute

4.3 Knowledge Representation for the OpenMath Objects
Annotations

Sometimes the authors wish to emphasize a sub-expression to elaborate a con-
cept by annotating it with styles such as colors, borders, fonts etc or by adding
a label. We have built a mechanism for attaching mathematical expressions to
styles of a stylesheet using the attribution elements. The stylesheet contains the
style definitions like color, background color, border, etc. Additional informa-
tion can be stored in an attribution object. For instance, an author can assign
an attribute error to OpenMath expression (as in Fig. 6) to highlight a mis-
take in an exercise step by rendering the background in the red color as is
described Fig. 9.

We use the attribution object to define the additional information for the
presentation systems. Adding attributes to the OpenMath objects does not
change the meaning of the object. Moreover, OpenMath applications can ignore
the attributes, if they do not know its meaning. Therefore attributes are the ideal
place to store the data about the specialized presentation.

Presentation Attributes. In the following we propose a list of attributes to
be used for storing the information about annotations:
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<OMOBJ xmlns=”http://www.openmath.org/OpenMath”>
<OMA>

<OMS name=”plus” cd=”arith1” />
<OMV name=”a”/>
<OMATTR>

<OMATP>
<OMS name=”type” cd=”am.presentation”>

<OMV name=”error” />
</OMATP>
<OMV name=”b” />

</OMATTR>
</OMA>

</OMOBJ>

Fig. 6. An example of stylistic annotation using an OpenMath attribution

type: This attribute assigns a type to an OpenMath object. The value of
this variable can be any string in the name attribute of <OMV>. In our ap-
proach, we use the type attribute for defining multiple notations of a symbol
(see Fig. 5).

The type attribute is also used to invoke the stylesheet for the presenta-
tion of a symbol; as in Fig. 6, error identifier is attributed to an OpenMath
object.

label: Labels attach media information (images, text and math expression)
with the mathematical sub-expressions to illustrate its underlying meaning.
This attribute arranges labels into eight logical positions around the
mathematical expressions as shown in the Fig. 7.

The logical position is assigned via the orientation attribute assigned to
the value object of the label attribute. In the Fig. 8, the label attribute is
assigned to the variable object x. The position of the text Variable is set down.

Stylesheet: A stylesheet stores style attributes, i.e color, font-size, font-style,
background, border and border-color. These attributes are common for each
output formats (html, MathML and LATEX). The style attributes are grouped
under <styleset> element with a logical name represented in id attribute, e.g.
The <styleset id=‘‘error’’> style contains border and red background in the

Fig. 7. Various positions for the presentation of labels
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$label(orientation (down),”Variable”,x)$

<OMOBJ xmlns=”http://www.openmath.org/OpenMath”>
<OMATTR>

<OMATP>
<OMS name=”label” cd=”am.presentation”>
<OMATTR>

<OMATP>
<OMS name=”orientation” cd=”am.presentation”>
<OMV name=”down” />

</OMATP>
<OMSTR>Variable</OMSTR>

</OMATTR>
</OMAT>
<OMV name=”x” />

</OMATTR>
</OMOBJ>

Fig. 8. An example OpenMath formula with attribution to denote a label. Above it
is the OQMath formula that produces it: this is what we expect the author to input.

<Styles>
<styleset id=”error”>

<style name=”border” value=”solid” />
<style name=”background” value=”red” />

</styleset>
</Styles>

Fig. 9. Definition of Error Style

stylesheet (an example is shown in Fig. 9). The xslt presentation system of
each output format applies these logical styles to the mathematical expression
by translating the attributes into their native implementations. For example,
the background attribute , MathML has the mathbackground attribute of the
<style> element, in html, it has background-color in CSS and in LATEX it is
implemented via the colorbox macro. The style definition (<styleset>) is only
instantiated by matching id of the style definition with the type attribute of
the OpenMath objects.

From the authoring point of view, the stylesheet offers an easy way to write
stylistic information by only requiring the definition of the <styleset> element
and the assignment of the type attribute to the OpenMath objects.

4.4 OpenMath Presentation Editor (OMPE)

OMPE is an authoring tool for the symbol notation (<symbolpresentation>)
editing. It accpets a linear syntax for both OpenMath and PMML expressions,
and, reduces the burden of writing long complex xml expressions: the syntax
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Fig. 10. Screenshot of OMPE editor

for the OpenMath input is based on OQMath and the PMML input is similar
to LATEX.

The editor also provides a tool bar, containing buttons for the maths nota-
tions, operators and symbols to help in editing the linear expression for PMML.

OMPE is developed on top of the Java OpenMath Editor (JOME).3 Origi-
nally, JOME was capable of producing a limited set of OpenMath symbols and
content MathML from a linear syntax. We have extended it to produce PMML,
and the notation of the symbol in the <symbolpresentation> tag. OMPE runs
as a plug-in of jEditOQMath as shown in Fig. 10.

To build a new notation, an author has to invoke the editor from an OQMath
document where mathematical input notations are already defined. There, he
provides the required information in the input boxes and then saves it. The new
notation is pasted at the location of the cursor in the document. Alternatively,
the author has to move his cursor inside the <symbolpresentation> element in
the document and then invoke the OMPE editor from the plug-in menu. The
editor loads the notation in its environment and gives the author the opportunity
to edit it. After editing, the author saves the notation, OMPE replaces the old
notation with the edited one.

5 Automatic Presentation Generation

The content presentation process in ActiveMath consists of series of steps mak-
ing a presentation pipeline [ULWM04]. It is a 2-stage process. In the first stage,

3 Please see http://jome.sourceforge.net/ .
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Initiated at ActiveMath startup

XSLT Templates Sources
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Fig. 11. Phase II: Presentation generation for the symbols

contents fragments are fetched from the knowledge base, with some intermediate
preprocessing, and then transformed into output format by using xslt; no adap-
tivity information is known, at this stage, except language. In the second stage,
the fragments are combined to form a complete output page and enriched with
user and context-specific information with the help of velocity code (Velocity4

is a high performance template language to generate dynamic web pages).
The presentation generation comes in the phase II of our authoring process.

It is started automatically in the ActiveMath environment. This phase deals
with the adaptation that consists in selecting a notation among the several ones
available using contextual information. It is made of the following two processes:

5.1 xslt Generation for the Notations

The generation of the xslt code from <symbolpresentation> element is a three
step process (illustrated in Fig. 11). In the first step, the merger extracts all the
<symbolpresenttion> elements from the knowledge base and groups the no-
tations in one <symbolpresentation> element for each symbol. In the second
step, the merged file is passed to the pre-processor, which decorates the no-
tations code with styles, XPath and conditions if required. In the last step, the
decorated notations are passed to the xslt-maker, which finally generates xslt
templates for the three output formats. The blue box in the figure represents,
the generated xslt code for the symbols.

Below are examples of xslt code generated depending on the <notation>
elements for each symbol available in the system.

Example 1. The xslt code for the plus symbol for two cases: 1) having
associative attribute for explicit brackets printing, 2) or default.

<xsl:template match=”om:OMA[om:OMS[@name=’plus’ and @cd=’arith1’]]”>
<xsl:choose>

<xsl:when test=”om:OMATTR[om:OMATP[om:OMS[@name=’type’ and
cd=’am.presentation’and following−sibling::om:OMV[position() =1

and @name=’associative’]]]]”>

4 Please see http://jakarta.apache.org/velocity/.
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<mrow>
<mo>(</mo>
<xsl:apply−templates select=”∗[2]” />
<mo>+</mo>
<xsl:apply−templates select=”∗[3]” />
<mo>)</mo>

</mrow>
</xsl:when>
<xsl:otherwise>

<mrow>
<xsl:apply−templates select=”∗[2]” />

<mo>+</mo>
<xsl:apply−templates select=”∗[3]” />

</mrow>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

Example 2. In this example, the language adaptivity (German, i.e. de, on
line 3) is checked at xslt level. Further adaptation is made for the author style
(m-notation) in the default language case (on line 11). This xslt template
produces Velocity code (e.g. on lines 12, 19 and 27) where branching between
the notations is done by an #if condition.

1 <xsl:template match=”om:OMA[om:OMS[@name=’slope’ and @cd=’calc1’]]”>
2 <xsl:choose>
3 <xsl:when test=”$language=’de’”>
4 <mrow><msub><mo>steigung</mo>
5 <xsl:apply−templates select=”∗[2]” /></msub>
6 <mrow><mo>(</mo>
7 <xsl:apply−templates select=”∗[3]” />
8 <mo>)</mo></mrow>
9 </mrow>

10 </xsl:when>
11 <xsl:otherwise>
12 <xsl:text>#if ($style.contains(”m−notation”)) then </xsl:text>
13 <mrow><msub><mo>m</mo>
14 <xsl:apply−templates select=”∗[2]” /></msub>
15 <mrow><mo>(</mo>
16 <xsl:apply−templates select=”∗[3]” />
17 <mo>)</mo></mrow>
18 </mrow>
19 <xsl:text> #else</xsl:text>
20 <mrow><mo>slope</mo>
21 <mo>(</mo>
22 <xsl:apply−templates select=”∗[2]” />
23 <mo>,</mo>
24 <xsl:apply−templates select=”∗[3]” />
25 <mo>)</mo>
26 </mrow>
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27 <xsl:text> #end</xsl:text>
28 </xsl:otherwise>
29 </xsl:choose>
30 </xsl:template>

Example 3. The example for the sum symbol with different arguments patterns,
i.e set and default.

<xsl:template match=”om:OMA[om:OMS[@name=’sum’ and @cd=’arith1’]]”>
<xsl:choose>

<xsl:when test=”om:OMA[position()=2 and om:OMS[@name=’integer interval’
and @cd=’interval1’]]”>
−

</xsl:when>
<xsl:otherwise>

−
</xsl:otherwise>

</xsl:choose>
</xsl:template>

5.2 Notation Generation in Output Formats

Current approaches for the notation generation that we reviewed in Sec. 2 only
deal with xslt generation. In order to adaptively present mathematical nota-
tions, information from the context is needed which can only be acheived by
server side scripting languages such as Servelts, PHP and Velocity. In Active-
Math, this context information is available at Velocity interpretation time, i.e.
in the personalization phase.

The presentation generation pipeline (shown in Fig. 11) is initiated with a
user request from the browser. At the stage of transformation, the annotation
interpreter (a set of xslt templates, shown in green box in the Fig. 11) checks
whether the OpenMath objects (in the contents) are attributed. In that case, it
applies the <styleset> from the stylesheet document or generate supporting
code for the labels. The interpreter implementation is specific to each output
format. The labeling annotation can not be fully handled at the xslt level, be-
cause xslt does not know about the dimension and position of the expression.
For this, we have written output format-specific routines that executes at final
rendering level: for html & MathML, they are executed in the client browser,
for LATEX-based output-formats (currently pdf), a LATEX package was written.
The labeling, in MathML, requires a DOM facility and thus is restricted to the
Mozilla browser currently. At the stage of Personalization in the pipeline, the
Velocity code for multiple notations (discussed in Sec. 5.1) is executed by match-
ing the styles list returned from our ContextExtractor. The ContextExtractor
should retrieve the styles list based on the priority of the context. Currently, it
only extracts style at the collection level.
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6 Conclusion and Future Work

In this paper, we have described a solution to the authoring problems that we
have identified in our work with the ActiveMath learning environment. We
believe that other mathematical web presentation systems could benefit from
our work as well.

We are polishing the tools so that authors adopt it as soon as possible, in
particular in the LeActiveMath EU project.5 Further work is also being done
in order to make notations user-visible aside of the description of a symbol.

Currently, adaptivity of a notation is only acheived at the collection level.
Using a notation selection tool similar to6 we intend to offer the management
of notations to a system: it will be of use to authors and editors to edit their
books’ notations, to teachers to edit the classes’ notations, and, potentially, to
individual users. This will allow the adaptation of a notation as discussed in
Sec.4.2.

Moreover, the notations selected for a presentation have to be synchronized
with presentation of mathematical tools. For instance, an input editor will be
integerated into LeActiveMath; it will enable learners to input mathematical
formulæ into, e.g, the search interface or exercise interactions. The Wiris input
editor7 chosen for this task allows the definition of domain files which describe
the notations for each symbol: an export from the <symbolpresentation> ele-
ments to domain files is under work. The integeration of the input editor within
ActiveMath will take advantage of the notations available for the context and
will, thus, enable learners to input mathematical formulæ using notations con-
sistent with the mathematical content that is presented to them.
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Abstract. Defining functions is a major topic when building mathe-
matical repositories. Though relatively easy in mathematical vernacular,
function definitions rise a number of questions and problems in fully
formal languages (see [4]). This becomes even more important for repos-
itories in which properties of the defined functions are not only stated,
but also proved correct. In this paper we investigate function definitions
in the Mizar system. Though most of them are straightforward and follow
the intuition, we also found a number of examples differing from math-
ematical vernacular or where different solutions seem equally reason-
able. Sometimes there even do not seem to exist solutions not somehow
“ignoring mathematical vernacular”. So the question is: Should we seek
for some kind of standard, that is a “formal mathematical vernacular”,
or should we accept that different authors prefer different styles?

1 Introduction

Mathematical knowledge management aims at providing both tools and in-
frastructure supporting the organization, development, and teaching of mathe-
matics on computers. Large repositories of mathematical knowledge are of major
concern since they provide the user with a knowledge base of verified mathe-
matical facts. However, this knowledge is often not easy to access due to the
formal language in which it is presented and verified. On the other hand the
acceptance of repositories and hence of mathematical knowledge management
systems heavily relies on the way mathematics is presented to the user; thus the
closer to “everyday” mathematics the used language is, the more likely users of
the system will be found.

The language actually used by mathematicians, however, is rather vague and
imprecise: working mathematicians use what is called the “mathematical ver-
nacular” [3, 9], a language rather to communicate than to be completely formal.
As stated by Davenport [4] “It turns out to be remarkably hard to write ‘correct’
mathematics in the mathematical vernacular.” The reason is that the knowledge
implicitly used in the vernacular must be made explicit for ‘correct’ mathemat-
ics. The same holds for knowledge repositories, especially if such a repository
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is connected with a theorem prover or checker and is not just a collection of
(textual) definitions and theorems. Here, for example, we do not have “obvious”
special cases that “need not to be taken into accounct”.

On the other hand existing theorem provers and checkers provide languages
successfully used to formalize and prove numerous advanced theorems. The lan-
guages to do so, however, are usually highly specialized and hard to understand
from the viewpoint of working mathematicians. The reason is that here the lan-
guage has to be not only formal but also semantically exact in order to produce
reliable proofs of theorems. As a consequence, there is a clash between what
mathematicians and computers – that is computer scientists who design and
implement theorem provers and checkers – consider comfortable. For theorem
proving it might be reasonable to use languages “bizar” to a mathematician,
as the goal is “simply” to find a (representation and) a computer proof for a
specially chosen theorem.

In mathematical repositories the situation is somewhat different: here we look
for general methods describing (and proving) knowledge from different – if not
all – areas of mathematics. In addition this knowledge is to be accessed and used
by non-specialists also, so that the knowledge should not be hidden by the for-
mal language of the system. Nevertheless the language used has to semantically
exact to produce reliable results. So the question is: Should we develop mathe-
matical knowledge management systems as closely as possible to the vernacular
of working mathematicians in order to please them as potential users? Or should
we include other language elements or slightly different definitions in case they
are more convenient from the theorem proving point of view?

In this paper we discuss this question by inspecting the Mizar language and
the Mizar Mathematical Library. We focus on definitions, in particular func-
tion definitions, which are often given partially or by case distinctions (see [4]).
This “impreciseness” is not further considered by mathematicians: theorems are
stated without really worrying about the “easy special cases”. In mathematical
repositories, however, this is not possible and therefore Mizar provides language
constructs to cope with such situations. However, as we will see, these do not
allow for a one-to-one translation of the “mathematical vernacular”, some deci-
sions remain up to the author. In addition we also present example situations
which a) do not strictly follow the “mathematical vernacular” and b) provide
more elegant proving and reuse in a repository.

The plan of the paper is as follows. After a brief review how functions can be
defined in Mizar in the next section, we start with an investigation of the empty
set and its elements in section 3. This easy example already indicates, that
there exist different possibilities to realize mathematical vernacular in reposito-
ries. That this is no accident is shown in section 4 and 5 where a number of
examples from different areas such as trigonometric functions and arithmetics
are presented. Problems concerning more involved topics such as modularity of
repositories and ambiguities are discussed in section 6. These observations imply
that maintaining and revising of repositories will stay an important topic in the
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future. Section 7 discusses software built for the Mizar Mathematical Library to
support this task.

2 Defining Functions in Mizar

Mathematical functions often cannot be defined uniformly on their domains;
there are defined by case distinctions such as for example the signum function or
even partially by giving additional conditions for the arguments as in the case
of inverse trigonometric functions. Of course one can introduce new domains on
which such functions are then totally defined; this, however, seems to be rather
artificial and in addition would lead to an inflation of domains not acceptable in
a mathematical repository.

The Mizar system basically provides two language constructs to cope with
such situations: the assume-clause to express restrictions of arguments and the
if-clause for defining case distinctions. In this section we give some introduc-
tory examples for using (and abusing) these constructs before we discuss their
implications for mathematical knowledge repositories.

A standard example for restricting domains is the square root functions which
is defined for non-negative real numbers only. The straightforward Mizar defin-
ition is as follows.

definition let a be real number;
assume 0 <= a;
func sqrt a -> real number means

0 <= it & it^2 = a;
end;

Note, however, that this definition implies that for each application of sqrt
a non-negative argument a is necessary, that is one has to show or state as
an assumption that 0 <= a. Things become more puzzled when considering for
example trigonometric functions: tan a is defined only if cos a is not zero, we
thus get

definition let a be real number;
assume not ex k being Integer st a = Pi / 2 + k * Pi;
func tan a -> real number equals

sin(a) / cos(a);
end;

and, given a, to get the value tan a the assumption is evident and has to be
shown explicitly. The situation looks different when it comes to case distinctions
using the if-clause. Though defining functions this way requires proving consis-
tency – the cases need not be distinct, so one has to show that the corresponding
values do not contradict each other – most examples are straightforward and in-
tuitive such as
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definition let x,y be real number;
func min(x,y) -> real number equals

x if x <= y otherwise y;
end;

Proving theorems involving such functions is rather straightforward and fits to
intuition. A prominent exception, though, is the inverse z" of a complex number
z, which is usually considered as a partial function, 0" being undefined. In Mizar,
however, we find that " is defined as a total function with 0" being equal to 0.

definition let z be complex number;
func z" -> complex number means :: XCMPLX_0:def 7

z * it = 1 if z <> 0 otherwise it = 0;
end;

The point is that defining " as a partial function using assume z <> 0 would
require to prove this each time the definition is used; so in order to avoid this the
author decided to base the development on this “slightly different definition”.
Note that in Mizar division z/y of complex numbers is defined as z*y". This
means that / is a total function too, and in particular that one can prove z/0 = 0
for every complex number z (including z = 0). We will see in section 4 some
more implications of this definition.

Of course it is easy to “abuse” these language constructs by introducing unnec-
essary assumptions, the probably most prominent example is using non-empty
sets where this is not necessary. So the question is not only how to provide as-
sumptions that can be reasonably used later, but also how to avoid unneccessary
assumptions in a repository.

3 How Many Elements Has the Empty Subset?

To start the discussion we present in this section some issues of the empty
set and its elements. Though rather trivial at first sight, this illustrates well
the problems arising when moving from “imprecise” descriptions to “complete
formal” ones. We will see that though the definition is almost trivial, using it in
the environment of a mathematical repository – that is combining the definition
with other notations from set theory – needs some care.

The empty set is the set which contains no elements. Thus it is straightforward
to define something like

definition
func {} -> set means :: XBOOLE_0:def 1

not ex x being set st x in it;
end;

Though not exactly in the scope of defining functions, we like to mention the
following problem here: In mathematical repositories definitions do not stand
alone; they have to be considered in the context of other notations, here for
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example finite and infinite sets. Obviously, the empty set is finite. But in a
repository that is not true in advance, it’s just obvious in the “mathematical
vernacular”. Thus in principle it is possible to have objects such as

let X be infinite empty set;

Generally speaking that’s no harm, because such a phrase is meaningless: it
includes a contradiction, hence everything stated (and proved) for such objects
is of no use. On the other hand the acceptance of a repository in which this is
possible is at least questionable. Thus such “contradictable” objects should be
ruled out. Therefore Mizar does not allow empty types: before using an object of
type infinite empty set its existence has to be shown in an existential cluster
registration.

Now let’s have a look at the elements of the empty set. In Mizar we find
the definition of the type Element of X, where X is a set. It is “clear” that x
is an Element of X, if x ∈ X. There are no problems if X is non-empty: There
exists an element x in X, so the type Element of X is non-empty. If X is empty,
however, there is no x ∈ X. Of course one can define the type Element of X for
non-empty sets X only, ruling out the type Element of {}. But then each time
the type Element of is used, one has to show that its argument is non-empty.
Therefore in Mizar the type Element of {} is defined to be the empty set:

definition let X be set;
mode Element of X means :: SUBSET_1:def 2

it in X if X is non empty otherwise it is empty;
end;

This, however, does not fit to mathematical vernacular, because the empty
set is not an element of the empty set; but has the advantage that the type
Element of X is well-defined for arbitrary sets X, hence usable without any as-
sumptions. We mention that though the empty set {} is of type Element of {},
this does not imply that {} ∈ {} is provable in Mizar, that is {} is still the
empty set. Furthermore, the Mizar checker itself infers that x ∈ X holds if x is
an Element of X and X is non-empty. So we see that even a notion as “obvious”
as the empty set calls for basic decisions – especially concerning types and their
implications for later proving – when being formalized, that is when moving from
mathematical vernacular into a mathematical repository.

4 Special Functions

In this section we consider mainly the definition of trigonometric functions in
Mizar. Interestingly, we can find different approaches, one following the intuition
and another one using that the inverse of 0 is 0. First, the logarithm of real
numbers a and b is defined using exponentiation, in Mizar defined as a functor
to_power (see section 5.3). Here, the usual “problematic” values for a and b
have been ruled out using an assumption:
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definition let a,b be real number;
assume that a > 0 & a <> 1 and b > 0;
func log(a,b) -> real number means :: POWER:def 3

a to_power it = b;
end;

Consequently, theorems have to take these values into account, because the
equality a to_power log(a,b) = b is valid only if the assumptions about a and
b are fulfilled. We thus find theorems of the following kind.

theorem :: POWER:61
a>0 & a<>1 & b>0 & c>0 implies log(a,b) + log(a,c) = log(a,b*c);

This approach follows what Davenport called the “conditional equation ap-
proach” in [4]. The advantage is that it is close to textbook mathematics (though
assumptions in a book are often not stated thoroughly) and makes the necessary
assumptions explicit. On the other hand long lists of assumptions both decrease
readability of theorems and require of course re-stating them when using such
theorems in other proofs.

What can improve things a bit here is the technique using “default values”
as presented in the definition of the inverse function ". Remembering that / is
a total function (compare section 2), the tangent function for real numbers can
be defined simply as follows.

definition let th be real number;
func tan(th) -> real number :: SIN_COS4:def 1

sin(th) / cos(th);
end;

which actually means that tan(Pi/2) is defined to be 0. Note that given th we
can now get the value tan(th) without proving th <> Pi/2. This also implies
that a number of theorems can be stated using no assumptions, so for example

theorem :: SIN_COS4:2
tan(-th) = - tan(th);

This may seem irritating at first sight for a reader not familiar with the
basic definitions of the repository; but has the advantage that this theorem can
be used without further prerequisites to be shown. Of course not all theorems
can be stated this way, because z * z" = 1 holds only if z <> 0. Here Mizar
formalizations fall back to the conditional approach, so for example we find

theorem :: SIN_COS4:8
cos(th) <> 0 implies sin(th) = cos(th) * tan(th);

5 Arithmetics and Related Issues

5.1 The Greatest Common Divisor

As the greatest common divisor GCD(a, b) is the largest number dividing both
integers a and b, according to our intuitions such number does not exist in case
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of a = b = 0. Indeed, a quick tour through mathematical services available via
WWW confirms these convictions: Wolfram’s MathWorld’s1 definition of gcd
takes only positive integer numbers as arguments; according to Wikipedia2 both
should not be zero simultaneously, similarly is the PlanetMath’s3 opinion, but
we can read in Wikipedia that “it is useful to define gcd(0, 0) = 0”.

In the Mizar library, there are two definitions of the greatest common divisor:
hcf for natural numbers and gcd with integer arguments which uses the notion
of hcf and the absolute value in its definiens.

definition let k, n be Nat;
func k hcf n -> Nat means :: NAT_1:def 5

it divides k & it divides n &
for m st m divides k & m divides n holds m divides it;

end;

Based on the above, we can easily prove that

a = 0 ∧ b = 0 ⇐⇒ a hcf b = 0

for all natural a and b, and similarly for integers. Furthermore, claiming such
definition we keep the connectedness with commutative rings, we also obtain a
lattice of naturals with gcd and lcm as binary operations to be both distributive
and complete.

5.2 The Integer Division

When inspecting the integer division in the Pascal programming language, the
FreePascal compiler returns ’division by zero’ error both with div and with
mod. Since the Mizar system itself is coded in Pascal (and as one can easily see,
some Mizar language constructions have been influenced by this programming
language), we could expect a similar behaviour for the functions div and mod in
the MML.

Since both are defined usually (see Wolfram’s MathWorld) as:

m div n = �m/n�, m mod n = m − n�m/n�, (1)

both share the restriction of n �= 0 as usual in the literature.
This is not violation of intuitions, but the MML contains the following defi-

nitions, somewhat closer to Euclid’s Elements:

definition let k, l be natural number;
func k div l -> Nat means :: NAT_1:def 1

( ex t being Nat st k = l * it + t & t < l ) or it = 0 & l = 0;

func k mod l -> Nat means :: NAT_1:def 2
( ex t being Nat st k = l * t + it & it < l ) or it = 0 & l = 0;

end;

1 http://mathworld.wolfram.com
2 http://www.wikipedia.org
3 http://planethmath.org
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The above definition is a variant of which we wrote earlier (something like the
if-clause), but with a slightly different (but equivalent classically) formulation.4

There is an agreement in the MML that 0 is an element of N (to have both
functions natural-valued), but there isn’t any within mathematics in general:
MathWorld writes that “Unfortunately, 0 is sometimes also included to the list
of ‘natural’ numbers” (as Bourbaki and Halmos do), quoting Ribenboim’s as the
opposition (“. . . whenever convenient, it may be assumed that 0 ∈ N”).

In [8] they state that extending mod to omit the assumption of the division
by zero is important, but they do not explain explicitly which one should be
taken: the divided number or 0. Inspecting the book we discovered that if we
accept the equations (1) as the new definitions of the integer division functions
in the MML, we obtain x = x mod 0, and this is also claimed in [8] in many
more places than the alternative 0 = x mod 0.

There are contexts in which division by zero can be considered well-justified.
For example, in the extended complex plane C∗ it is defined to be a quantity
known as complex infinity. This definition expresses the fact that, for z �= 0,
limw→0 z/w = ∞ (i.e., complex infinity). However, even though the formal
statement 1/0 = ∞ is permitted in C∗, this does not mean that 1 = 0 · ∞, so
zero does not have a multiplicative inverse. On the other hand, although R ⊆ C,
it is not clear which way to go with the extensions (since to the extended set of
real numbers both +∞ and −∞ are added and this is the case of the MML).

As a good example of the other way of definition extending we can quote min*
as an opposition to an ordinary min function.

definition let A be finite non empty real-membered set;
redefine func min A means :: SFMASTR3:def 1
it in A & for k being real number st k in A holds it <= k;

end;

definition let A be set;
func min* A -> Nat means :: HENMODEL:def 1

(it in A & for k st k in A holds it <= k) if
A is non empty Subset of NAT

otherwise it = 0;
end;

These two objects are defined completely independently, but the latter became
apparent to be useful when proving the Gödel’s Completeness Theorem in Mizar.
Theoretically, generalizing min* we can replace an original min to simplify the
library a bit. Generalizing can be also interesting from a purely scientific point
of view (as e.g., formalizing rough sets with tolerances as described in [7] or [6]
instead of equivalence relations). But usually the loci of a definition cannot be
just generalized because the information contained in it may be necessary to
give the proper meaning of an introduced object.
4 The difference between natural number and Nat (with the latter expanding to
Element of NAT) which has origins in various treatment of element of the empty
set has to be recalled here. All Nats obtain the attribute natural automatically due
to the conditional cluster mechanism.
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5.3 The Power Operator

The consequence of introducing in parallel of similar notions (motivated by the
need of having their definitions close to the literature) can be observed in the
case of the definition of the power function, which is composed with the help
of various power operators defined earlier in MML (#R is defined as the limit of
sequence of rational powers of a given real number – with the assumption of the
positive base, #Z is a integer power, with arbitrary real base).

definition let a, b be real number;
func a to_power b -> real number means :: POWER:def 2

it = a #R b if a > 0,
it = 0 if a = 0 & b > 0,
it = 1 if a = 0 & b = 0,
ex k st k = b & it = a #Z k if a < 0 & b is Integer;

end;

Any efforts to change this definition should be made carefully, because the
article with this definition is referenced in 46 other MML items 1407 times.
Similar data for the other power operators: 415 references in 39 articles.

Note that this definition is an example of a definition of a partial function
(and keyword otherwise is not used there), e.g. according to this definition we
still don’t know which is the value of (−1)−

1
2 , but it gets the type real number.

5.4 Polynomials

Consider polynomials as a last example. The head term (HT) – and hence the
head coefficient (HC) – of a polynomial are usually defined for non zero polyno-
mials only (see for example [2]. From a theorem proving point of view, however,
it seems convenient to define a “head term” for the zero polynomial also as
follows: The head term of the zero polynomial equals the smallest term with
respect to the given order. This is can be seen as an extension of the head term
functor found in the literature.

definition
let n be Ordinal, T be connected TermOrder of n,

L be non empty ZeroStr, p be Polynomial of n,L;
func HT(p,T) -> Element of Bags n means :: TERMORD:def 6
(Support p = {} & it = EmptyBag n) or
(it in Support p &
for b being bag of n st b in Support p holds b <= it,T);

end;

This allows us to formulate theorems about head terms for arbitrary poly-
nomials. As a consequence, when later reusing such theorems the user need not
always bother that the actual polynomial is not equal 0 – just like mathemati-
cians. For example, we get
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theorem :: TERMORD:22
for n being Ordinal, T being connected TermOrder of n,

L being non trivial ZeroStr, p being Polynomial of n,L holds
term(HM(p,T)) = HT(p,T) & coefficient(HM(p,T)) = HC(p,T);

if also HC(p,T) is defined appropriately (as head monomial HM(p,T) is), e.g.
equals the zero element of the underlying coefficient domain.

6 Modularity and Ambiguity

6.1 Modularity of the Library

Although the fundamentals of set theory in Mizar are established in rather un-
flexible way (some of them are built into the verifier, e.g. the Axiom of Choice can
be proved – and it is in the Mizar article [1]), the user can also modify his/her
(e.g. set-theoretical) framework at very low axiomatic level. At first glance it
is not strictly connected with function definitions, but certain preferences can
substantially change the need of conditional definitions. As a perfect example in
arithmetics of alephs we can cite the Generalized Continuum Hypothesis intro-
duced by Josef Urban in [15].

definition
pred GCH means :: CARD_FIL:def 12

for N being Aleph holds nextcard N = exp(2,N);
end;

theorem :: CARD_FIL:31
GCH implies ( M is inaccessible implies M is strongly_inaccessible );

where M is again of the type Aleph.
This trick may be used, e.g. to state the Brouwer Fix Point Theorem for disks

on the real euclidean plane as an assumption to prove the famous Jordan Curve
Theorem5. As the bright side of this approach to the development of the library
we can point out the possibility of development of the authors’ favorite parts
of mathematics in which they are experts, instead of spending most time on
bridging the gap between the current and the desired state of the formalization
of the theory. This could attract more mathematicians and as we believe it is
one of the vital aims of math-assistants and also of the MKM project. Also the
research frontier could be so reached faster – which could make the machine
codification of recent mathematics more egalitarian.

The modular maintenance of systems could be a solution for someone’s wishes
to have some meta-assumptions, but the care is advised (e.g., the Axiom of
Determinacy contradicts the Axiom of Choice which is proven in the MML, so
the earlier should not be accepted as such an assumption). Probably something
5 Actually it is meaningless since Korni�lowicz and Shidama proved this version of the

Brouwer Fix Point Theorem in February 2005 as the BROUWER article accepted to the
MML. The one-dimensional case is pretty old.
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like the requirements directive with more human-friendly access and giving
possibility of defining author’s own modules of this type could be an attractive
solution.6

Clearly, this can also have some impact on the knowledge exchange between
different systems, according to the Sacerdoti Coen’s advice in [14]: “Make im-
plicit information explicit”. Note however that the logical system standing be-
hind the Mizar system is fixed, and Mizar developers rather do not anticipate
change of this policy (e.g. from the classical into the constructive logic) in the
future. Another drawback is that stating some significant or influential theorems
without proofs and using them later as a starting point for further computer-
checked reasoning we allow for a gray area of practically machine-unverified
mathematics. This is hardly acceptable if we aim at building a knowledge repos-
itory as a block, not as a loose collection of solved problems.

Having this idea in mind one might understand the encoding of the solution
of the Robbins problem just as proving set of equations given by Huntington can
be derived from those of Robbins. Similarly, the problem of Sheffer-stroke-based
short single axiomatization of Boolean algebras can be seen as such, involving
only “|” operator and showing the equivalence with the 3-axiom system given
by Sheffer.

In informal mathematics it is natural to explain that both approaches for
Boolean algebras, this using disjunction and negation, and that with the Sheffer
stroke are equivalent with the classical one, in terms of two binary operators and
a unary complement. Authors can have different ideas for the same concept just
as various books on the same topic do. But in the Mizar Mathematical Library,
and – as we imagine – in an arbitrary large formal repository of mathemati-
cal knowledge it requires some work to provide a proper justification for this
equivalence.

6.2 Ambiguities

In a distributed knowledge repository it is hard to establish a high unification
level (compare 1/0 = 0, which is provable in HOL/Mizar, its negation is provable
in IMPS, both the formula and its negation are not provable in Coq, or being not
a correct formula in PVS), so there is a need to exchange information about the
mathlore (as in QED Manifesto they wanted to call “knowledge that is neither
taught in classes nor published in monographs”) which is accepted (or rather
where it was rejected). As a mathlore we understand here not only basic facts
which are commonly accepted, but also the formulation of definitions of basic
notions.

But what to do with freshmen which are not acquainted well with the math-
lore? Anyone remembers from the school that the division by zero is not allowed
as a rule, and no one complained, so why think about the motivation to have
6 As of version 7.0.04 of the Mizar system, there are five modules of this type available:
BOOLE, SUBSET, HIDDEN, ARITHM, NUMERALS, REAL, where first two introduce autom-
atization of boolean operations on sets, the latter three – calculations on numbers.
The detailed exposition of the topic is included in [10].
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some value for 0 divided by 0? The answer given in the MML is not obligatory
in didactics: the recent policy of computer-aided instruction with Mizar is not
to use the whole repository (MML), but to prepare small working environments
built from scratch as described in [11], in which decisions do not depend on the
Library Committee taking care of the MML. The reason is also that in this way
it is independent from the Mizar library which evolves rapidly so the update
during a semester could be hardly acceptable.

One of the conservative choices is to keep different definitions (and theorems,
consequently) of the same notion in parallel, not to favour any distinct approach.
Even then we can measure how often each of them is taken and – based on this
quantitative measures – let researchers develop only the one which is used most
often (as it can be done e.g. in case of min and min*) via consequently replacing
other undesirable occurrences.

7 Improving the Library

As mathematics assistance systems are designed as a tool offering machine help
for human researchers, many of the decisions about chosen approach are taken on
the user’s side depending on the various (subjective as a rule) criteria: elegancy,
faithfulness to mathematical standards, feasibility, etc.

However, especially if the cooperation between various systems is taken into
account, much improvement of a repository can be done in a highly automatic
way. The quality is to be measured by statistical, so quantitative means. As it
is clear however, “short” does not mean “readable” and this is a serious draw-
back when thinking about reusability of proofs and their clarity for people. The
de Bruijn factor, which is defined by Wiedijk as the quotient of a size of formal
representation by its informal original can be a dead end sometimes.

All Mizar distributions contain the bunch of programs aiming at reviewing
a Mizar article and which hence may lead to the enhancing of a human work
done by hand. The Library Committee of the Association of Mizar Users uses a
collection of editing versions of the mentioned programs.

The software inspects a Mizar text focusing on three main activities:

– shortening and clarifying proofs;
– improving definitions’ and theorems’ level of generality;
– marking block and items which are just not used anymore.

Since the Mizar Mathematical Library contains knowledge which is not only
declared but its correctness is also proved, there is a need for controlling of the ne-
cessity of some parts of the proofs written by human. Conditional definitions can
be introduced to reflect closely the sense of the original (as the aforementioned
division by zero), in many cases additional assumptions may be consequence of
too weak formulation of the theorems used in the proof of its correctness, some-
times unnecessary clauses are just left accidentally (and so, polishing proofs can
detect them). In all above cases, enhancing proofs can affect also the formulation
of definitions via bottom-up stepwise refinement. There are few stages on which



Translating Mathematical Vernacular into Knowledge Repositories 61

such control (hence improvement) can be performed (and this is the case of the
Mizar library):

Irrelevant premises
This is the most unproblematic and the most popular control which can be
performed when writing a Mizar article. relprem reviews which references
are not needed for the justification of a sentence.

Checking unused labels
Very often removed unused premises are just library references (for defini-
tions and theorems proven in MML already), but sometimes the calling by
a local fact is written accidentally. If any other sentence also does not use
this labelled item, after the chklab pass such label is marked as unnecessary.
Still though, the sentence can be needed in a proof via simple linking by the
next one (the reserved word ‘then’ in such a case).

Inaccessible part of proofs
The program inacc points out sentences which are neither labelled nor linked
(elements of a proof skeleton are not marked as erroneous).

Finding trivial proofs
Although Mizar proofs are hierarchical (in the sense considered e.g., by Lam-
port), sometimes after the aforementioned transformations nested proofs can
be simplified by the program trivdemo to a simple justification, that is to a
list of references preceded by the keyword ‘by’.

Irrelevant suppositions
As unnecessary assumptions (in the sense of elements of proof skeleton, not
just as premises) are not marked by any of the programs mentioned before
as vital element of proofs, this software operates on the stage of theorem
formulation than proof transformation.

This program (relsup) is not freely available in the distribution. Explicit
formulation of some assumptions in a proof may be forced by the so-called
definitional expansions and hence not used directly. They are needed however
and their automatic removal could result in an error in the proof skeleton
and marking them as erroneous can be highly confusing, especially for an
unexperienced author.

The above ordering of these programs reflects their preferred calling sequence.
The only controversial exception of the reviewing software is relinfer pro-

gram (so it was excluded from our enumeration), which points out the unnec-
essary steps in a proof (and the references should be added to the next step).
It can exceptionally shorten proofs but it may result in poor readability of the
text:

– some sentences which are important for the proof technically are marked as
irrelevant steps, but their removal may force the user to repetition of the
same library reference;

– the removal may be accidental in some sense, that is steps which are crucial
for human understanding of the idea of a proof, but are still unnecessary
for machine (e.g., unwinding definitions – definitional expansions). Here the
tendencies to reduce the de Bruijn factor can be misleading.
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We also have software which detects unused variable occurrences, irrelevant
private predicates and functions, marks unnecessary type changing statements,
etc.

Besides the aforementioned proof transformations which are performed very
often, some other checkouts are done occasionally. There is a software which
checks if there are equal theorems in the library, and what’s more interesting, if
a theorem is a consequence of another (although due to the large library, both
use a lot of resources). The latter one is often not very unlikely: to formulate
statements as equivalences is the usual mathematical practice, very often though
some assumptions are needed only for one of the implications.

We still do not have any automatic control if the definitions are repeated
(authors would have like to introduce independently e.g. closure operators using
different structures), so we can speak about the detection of ‘equal theorems’
rather than ‘equivalent’ ones. So the role of careful peer-reviewing of a repos-
itory is very important, especially if we take into account a large repository
of mathematics, written by many authors, so rather not much unified in style.
Quantitative parameters of the MML (some 40 thousand of theorems and lem-
mas, nearly 8 thousand definitions authored by more than 170 authors) justify
the necessity of continuously revising of Mizar articles.

8 Conclusions

In this paper we have considered how the mathematical vernacular can be real-
ized in mathematical repositories, thereby focusing on function definitions. The
inspection of the Mizar Mathematical Library has shown that its authors used a
number of different styles such as the “conditional” style using partial functions
or the “extension” style as used in the definition of ". Sometimes even more than
one definition is available. It seems to us that these different styles exist due to
a clash between (a) working in a formal language close to the mathematical ver-
nacular which (b) is also used to prove the theorems stated. Strictly following
the mathematical vernacular sometimes leads to rather tedious formal proofs, so
that some authors decide to modify their definitions in order to ease the proving
task.

The problem becomes more evident in a repository with a large number of
developers and users: here, of course, it is impossible to have an open system
without ending up with different realizations of the mathematical vernacular.
Hence, should we seek for a kind of standard, that is a “formal mathematical
vernacular”? Though we believe that this can be done in general, it seems hardly
possible to fix all the details theorem proving introduces into our repositories.
Allowing for different realizations, on the other hand, could of course decrease the
acceptance of users by confusing them. Also, extending or reusing developments
by other authors gets more complicated in case the vernacular of the new author
does not fit to the first author’s one.

What we can try to do is organize our repositories in such a way that both
authors and potential users have the possibility to identify the basic decisions
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theories and developments rely on. As we have illustrated this also includes the
definition of functions. This is not a trivial task, because as already mentioned
the large number of Mizar authors has even led to duplication of definitions
or theorems. Consequently, we always have to keep track of the development
by permanently revising and cleaning up our repositories. The goal must be
to automate this as far as possible. A step into this direction are the Mizar
tools presented in section 7. They are, however, in most cases still working on
the proof transformation level, so that their further development into a “more
intelligent direction” is desirable. As we understand the mathematical vernacular
not only as a syntactic language, but also as the way how to shape the real
mathematics (the stress on the formalized content, not only on the form – see
[16]), we find it hard to establish strict guidelines (and so the question stated
in the abstract remains open, although there are known direct formalizations
of the traditional approach to undefinedness in the literature, e.g. [5]) for a
mathematical vernacular to be feasible. We should, however, always keep in
mind – especially if we try to develop systems for working mathematicians – that
if we break rules accepted widely by mathematicians, this has to be sufficiently
justified.
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Abstract. Recently, significant advances have been made in formalised
mathematical texts for large, demanding proofs. But although such large
developments are possible, they still take an inordinate amount of effort
and time, and there is a significant gap between the resulting formalised
machine-checkable proof scripts and the corresponding human-readable
mathematical texts. We present an authoring system for formal proof
which addresses these concerns. It is based on a central document for-
mat which, in the tradition of literate programming, allows one to extract
either a formal proof script or a human-readable document; the two may
have differing structure and detail levels, but are developed together in a
synchronised way. Additionally, we introduce ways to assist production of
the central document, by allowing tools to contribute backflow to update
and extend it. Our authoring system builds on the new PG Kit architec-
ture for Proof General, bringing the extra advantage that it works in a
uniform interface, generically across various interactive theorem provers.

1 Introduction

While computer-supported proof assistants are increasingly accepted in com-
puter science, in particular in the field of formal methods, their potential for
mathematical practice is only beginning to be recognised [20]. Several substan-
tial proofs reaching hundreds or thousands of pages like the Four Colour Prob-
lem [6] or the Prime Number Theorem [11] have been formalised with the aid of
systems like Coq or Isabelle, and others like the Kepler Conjecture are currently
under development [13]. It has been suggested that computer assistants could be
generally accepted in mathematical practice if authors with no prior expertise
in theorem could formalise mathematical proof texts at an effectivity estimated
at one page of mathematical text per day [6].

This formalisation rate is not reached by contemporary systems, and there are
two important areas that need work. First, we need to provide systems with a
higher degree of automation so that more trivialities can be discharged with less
work. Second, we need to increase the user’s productivity by making it easier to
construct formal proofs, assisting the writing process. The first point has been
a focus for theorem prover development in the last few years, but the second
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point has received less attention. In general, interface technology has been quite
neglected; many interfaces still use arcane command line syntax and basic text
editors, which do not reach the same levels of productivity as e.g., integrated
development environments (IDEs) used in software development. Modern IDEs
for programming provide sophisticated mechanisms to assist writing code, for
example, constructing templates automatically from graphical models or helping
the user to search for library functions and documentation very swiftly. Clearly,
much more could be done to assist the user in proof document authoring.

We start by taking a single proof document as the central purpose of the
development: so-called document-centred authoring. In our sense, an author-
ing system is a set of tools which assist the user in constructing the central
document, maintaining the consistency of the development and documentation
under change, and generating the views which allow fine-grained interactive
exploration of the proof detail, animating proof checking in various ways. A
machine-checkable proof script and a human-readable document describing its
content are just two different views of one document. The authoring assistance
should allow powerful graphical user interface techniques such as drag-and-drop
and point-and-click [7, 18, 1], going beyond mere text editing. Moreover, an au-
thoring system assists the user by allowing other tools, in particular the prover
itself, to edit the document as well, thus increasing productivity. We call the
mechanism for this backflow.

The context of this work is a software framework for conducting interactive
proof called the Proof General Kit (PG Kit). The main new contribution, as
presented in this paper, is the extension for assisted authoring with backflow.

Outline. Sect. 2 motivates document-centred authoring and backflow. In Sect. 3
we describe the PG Kit architecture, and its extensions for authoring. To demon-
strate the viability of our approach, we develop use cases for literate proving and
script generation in Sect. 4 and Sect. 5 respectively. Sect. 6 concludes with a sur-
vey of related work and an outlook on future work.

2 Document-Centred Authoring and Backflow

A proof script is a formal text which can be run through a proof assistant to
mechanically check the validity of the proofs therein. A proof script usually does
not contain the proofs themselves, just enough information to construct them.
Some formal proof languages do contain structuring mechanisms inspired by
human proofs, but, unfortunately, the formal syntax and in particular the level
of detail required by a proof assistant usually still precludes a proof written in
such a language to be accepted as a “textbook proof” by non-expert human
readers. In contrast, we call a proof document human-readable if it is aimed
at a presentation close to textbook proofs or journal papers; typically it may
contain a higher level of abstraction, leave out repetitive arguments, and even
omit logical steps considered distracting.

Considerable effort has been devoted to bridging the gap between human-
readable and machine-checkable proof, either by making practical mathematical
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Fig. 1. Control and document flow for document-centred authoring

language more strict and hence machine-checkable, or by making prover input
languages less formal, more abstract, and hence more human-readable (see the
related work in Sect. 6.1). But the principal dilemma of different requirements
from both human readers and proof assistants remains.

An alternative approach is to accept the dichotomy of presentation levels, and
adapt techniques similar to those of literate programming [16] to weave struc-
tured, human-readable annotations into formal proof scripts. This has already
been used, for example, in literate specification environments such as HOL-Z [8]
and Isar’s integrated LATEX output mechanism [24], where terms, formulas or
proof-states can be generated into the output during the LATEX-rendering phase.

The underlying idea of these and other approaches, which also underlies our
own, is that we have one central document from which we can extract both
human-readable text and a machine-checkable proof script. This is the document-
centred approach as depicted in Fig. 1. The user edits the document in a suitable
editing environment, and the document can be evaluated by various tools, such
as the proof assistant which checks that the document contains valid proofs,
a renderer (e.g., LATEX) which typesets or renders the document into human-
readable documentation readable outwith the system, or other tools, for example
a code generator to construct executable versions of specifications.

Our main contribution to this setting is to allow the possibility of backflow
from each tool into the central document, i.e. each tool can generate text which
in turn becomes part of the document. In contrast to the mentioned Isar mech-
anism, backflow is supported during editing and not during LATEX-rendering. In
the case of the prover, the backflow can generate parts of the central proof docu-
ment to assist in writing the proof script. We concentrate on this case in Sects. 4
and 5 below, but note that the backflow can equally well originate from tools
other than the prover. For example, the LATEX component may have generated
cross-references in previous runs which were offered in a context sensitive way
when editing the central document.

Importantly, in contrast to classical literate programming, the backflow as-
sistance has to be interactive. The user needs an immediate reaction from the
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system, such as searching for applicable lemmas or inspecting terms and their
types. Interactive development also means that authors can annotate their proofs
while developing them, which is easier than to annotate them afterwards.

Thus, the technical challenges we face when implementing a system to support
assisted document-centred proof document authoring are interactivity, with the
document being developed incrementally, synchronisation of the different views
of the document, and the coordination of information flow between the different
views. Our system architecture is designed to meet these challenges.

3 PGIP and the PG Kit Architecture

The Proof General Kit (PG Kit) is a software framework for conducting interac-
tive proof. It evolved from the Proof General project, which constructed a generic
interface to numerous interactive theorem provers in a piecemeal approach, by
individual customisation for communication with each proof assistant. PG Kit
is instead based on a uniform mechanism, specifying the syntax of messages
exchanged between components and the protocol governing message exchanges.
This section introduces just what is needed; full details are elsewhere [2, 3, 4].

Fig. 2 shows the component-based PG Kit architecture, which closely mirrors
the document flow of Fig. 1. The broker middleware component handles the
central document; it is responsible for managing the synchronisation between
different views. The display components on the left-hand side interact with the
user. On the right side, we have proof assistants or other tools. Each display may
implement a different interaction paradigm: a text editor (e.g., Emacs) based on
textual input and cryptic key sequences; a GUI (e.g., PGWin [3]) using graph-
ical techniques such as drag-and-drop and point-and-click to construct proofs,
or a generic IDE (e.g., Eclipse [26]) with sophisticated navigation and project
management, using both graphical and textual interaction.

3.1 The Message Protocol PGIP

The mechanism for directing proof used by PG Kit is known as the PGIP
protocol, for Proof General Interactive Proof. The order of message exchanges is
given by an informal specification [2] and enforced dynamically by the central
broker component. The syntax of PGIP messages is defined by an XML schema

Broker

PGIP

PGIP

PGIP

PGIP
Text Editor

Graphical User
Interface PGIP

IDE

Other tool

Proof Assistant

Fig. 2. PG Kit System Architecture
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written in RELAX NG [21]. There is a secondary schema called PGML, for
Proof General Markup Language, which is used for annotating concrete syntax
within messages (for example, to generate clickable regions) and to represent
mathematical symbols.1 To define the protocol, we distinguish several kinds of
messages, including: display commands which are sent from the display to the
broker, arising from user input; display messages sent to the display from the
prover or broker, which contain output for the user, and prover commands which
are sent to the prover and affect the internal (proof-relevant) state of the prover.

Messages are exchanged over channels implemented as Unix pipes or sock-
ets. Compared with simple RPC mechanisms like XML RPC, PGIP message
exchange is more permissive, allowing multiple responses. We need this because
interactive provers may send a lot of information while a proof proceeds, and a
proof may be slow or even diverge (e.g., in proof search). It is essential that this
feedback is displayed eagerly so the user can take action as soon as possible.

3.2 The Central Document

The central document is the main artefact of the system. The two principal
views on the central document are the machine-checked proof script consisting of
prover commands, and the human-readable documentation. These are extracted
from relevant parts of the central document. Note that all document content is
in principle free-form and manually generated, but the backflow concept allows
tools to assist the user in constructing both proof script and documentation.

PGIP manipulates the central document in an unspecified concrete syntax
(subject to a few constraints) by marking up the contents with PGIP commands
that give the document the structure needed. Fig. 3 shows a proof script in a
fictional simple tactical language and its markup in PGIP.2

goal "length (tl xs) = length xs - 1"
/* proof by case distinction, then it’s trivial */
case_tac "xs" THEN simp_tac THEN simp_tac
qed "Simple"

<opengoal>goal ”length (tl xs) = length xs − 1”</opengoal>
<comment> /∗ proof by case distinction, then it’s trivial ∗/</comment>
<proofstep> case tac ”xs” THEN simp tac THEN simp tac</proofstep>
<closegoal> qed ”Simple”</closegoal>

Fig. 3. A proof script and its PGIP markup

The proof script mark-up is more fine-grained than the documentation, be-
cause it needs to be evaluated interactively. Typical proof script markup are the
elements <opengoal>, <proofstep> and <closegoal>, which start a proof,

1 MathML is another possibility, but PGML should be easier for existing systems.
2 To save head scratching: this is provable with tl []=[] and (0-1)::nat=0.
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perform a proof step, and end a proof, but also markup for the start and end
of a theory etc. Documentation is marked up as a <litcomment> element (not
yet shown), and proper comments, for the author’s eyes only, are marked up as
<comment>. The corresponding (trivial) proof document could read:

Lemma 3.14 (Simple): ”length (tl xs) = length xs - 1”.
Proof: trivial.

It is not very enlightening for the human reader, neither revealing the main
argument, the proof structure, nor the lemmas and definitions used in the proof.
We will show refinements of this running example later on.

3.3 Interaction and Authoring

When the broker reads a document or when the user edits the document, it
is first parsed, causing the PGIP markup to be inserted. On the marked up
document, we can perform the following operations:

– Interactive evaluation by the prover. The broker does this on user request,
by sending parts of the script to the prover for evaluation (using a simple
linear notion of dependency, or a more fine grained dependency analysis if
supported by the prover); it corresponds to ‘stepping through the proof’,
and supports the incremental development of proof scripts.

– Extracting the proof script by removing all annotation comments and PGIP
markup. We obtain a proof script which we can feed directly to the prover,
without broker intervention, to validate it.

– Extract the documentation by extracting all literate comments and (possibly)
interleaving formatted prover commands. We obtain a document which we
can render to produce a human-readable documentation.

The document may be updated by user editing as usual, or by the backflow
mechanism. Backflow is characterised by what part of the document it targets:
documentation backflow contains documentation content, e.g. a display of the
current proof state or a named theorem or constant definition, which becomes
part of the documentation; whereas script backflow contains proof script content,
which is provided to assist the user in constructing a proof (typically by the
prover itself), and which in turn becomes prover input.

Documentation backflow is treated specially. To help with synchronisation
we want to record requests for documentation backflow in the document itself.
Then we can regenerate those parts of documentation when the proof is rerun
or adjusted: the proof state display which we have inserted previously might
have changed, for example. In the same way that the broker tracks the status of
prover commands (described in [4]), it can track the status of those parts of the
document generated by backflow to see if they are up-to-date or not.

3.4 Proof Commands and Operations

The proof script part of a document contains a sequence of prover commands in
PGIP, but not all prover commands can appear in a proof script. We distinguish
proper commands which can appear from improper commands which cannot.
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The broker does not know about the concrete syntax of the system, so we
provide a way to construct them by filling in configurable templates with identi-
fiers and raw text. An <operationsconfig> configuration message provides a
prover-specific set of prover types and prover operations. The prover types (not
to be confused with the theorem prover’s logical notion of type, if it has one!)
are used to provide context menus, icons, and drag-and-drop actions (cf [18]).
Prover operations may be used to build up commands by textual substitution.
They can be bound to input events, and may then be invoked by a menu item
or drag-and-drop.

The improper commands are used for controlling and inspecting the prover’s
state, and cannot appear in the proof script being developed. A standard im-
proper command is <undostep> which undoes the last proof step in a de-
velopment. In the next section we introduce the idea of allowing configurable
improper commands to generate backflow for feeding back into the document.
This is a much more powerful way of generating prover commands than the
<operationsconfig> templates because it can be context sensitive and involve
arbitrary external tools.

3.5 Extending PGIP: Interactions for Authoring

The extensions for assisted authoring comprise the <litcomment> element and
the backflow. They are not part of the original design, but backwards compatible.

As mentioned above, the documentation is generated from parts of the doc-
ument which the prover does not see. We call these parts literate comments
to distinguish them from ordinary comments which are not part of the docu-
mentation. A literate comment contains either text or documentation backflow-
generating directives. A directive contains the PGIP command which generates
the documentation (these exist already in PGIP as the proofctxt entity),
and the resulting markup in PGML. An example of a proofctxt element is
<showproofstate> which embeds the current proofstate in the document. Here
is a fragment of the RELAX grammar for the new commands:3

litcomment = element litcomment { format attr?, (text | directive)∗ }
directive = element directive { (proofctxt, pgml) }
format attr = attribute format { token }

The format attribute can be used to specify the output format if the prover
supports more than one output format, e.g. LATEX, HTML or plain text. We also
allow all proper proof commands to have an optional nodisplay attribute, e.g.
for <opengoal>:

opengoal = element opengoal { display attr?, thmname attr?, text }
display attr = attribute nodisplay { xsd:boolean }

The nodisplay attribute allows us to suppress proof commands for document
output (e.g., to replace “by simp tac” with “Proof is obvious”).

3 See [21] to better understand the format of these rules.
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...
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</opengoal>

cmd

Proof Document

Fig. 4. Backflow

The other new element is <scriptinsert>, for script backflow:

scriptinsert = element scriptinsert { metavarid attr?, text }
metavarid attr = attribute metavarid { token }

To see how <scriptinsert> works, consider the usual PGIP protocol: after
a prover command is sent to the prover, the prover may send a number of prover
messages such as <normalresponse> or <proofstate>, followed by a final
<ready> message to indicate its availability. A <scriptinsert> sent by the
prover causes the text of the message to be inserted into the central document
at the current point of processing, after being parsed. Fig. 4 illustrates this. The
optional metavarid attribute specifies an alternative location in the document.

Having described PGIP and its extensions, we next show use cases which
demonstrate the extensions at work, to clarify their use and show their viability.

4 Literate Proving Made Easy

This section demonstrates how documentation backflow can provide literate
proving facilities in a generic system architecture.

Consider a prover with a simple tactic language used to write the proof in
Fig. 3 shown previously. Neither the structure nor the relevant definitions and
lemmas are obvious from this script, and, as typical for LCF-style provers, the
intermediate proof states of the underlying reasoning are completely implicit.

We are now going to add literate proving facilities to this prover, based on
LATEX. First, proofs are enclosed in a proof environment, and \com marks lit-
erate comments (inside proofs). The content of literate comments is just usual
LATEX code. We also need concrete syntax for the directives, e.g. \proofstate.
Finally, there are pragmas (comments which have a side-effect while processing
the script), such as:

%% declare_config cname [= expr]
%% hide [cname]
%% show [cname]
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\begin{document}
Here follows a stunning insight from the 

Central document with PGIP markup:

<litcomment>
\begin{document} ...
\begin{proof}
</litcomment>
<opengoal> goal "length (tl xs) = length xs − 1"<opengoal>

Parsing

Intial user input:

\begin{document}
Here follows a stunning insight from the 
weird and wonderful world of mathematics:
\begin{proof}
 goal "length (tl xs) = length xs − 1"
 \com{The proof proceeds by case distinction:}
%% hide
 case_tac "xs"

 \com{Otherwise, we have: \proofstate{}}
 \com{which is a consequence of \thm[List.tl_def.2]{}
      and arithmetic calculations.}
 THEN simp_tac
%% show

\end{proof}
\end{document}

<litcomment>\com{The proof proceeds by case distinction:}</litcomment>
<proofstep display="false">case_tac "xs"</proofstep>

goal "length (tl xs) = length xs − 1"

  THEN simp_tac
  case_tac "xs"

  qed "simple"
  THEN simp_tac

weird and wonderful world of mathematics:

DocumentationProof script

Prover

<litcomment>\com{If the list is empty, we have to show: 

 qed "Simple"

<directive><showproofstate/><proofstate>...</proofstate></directive>
which follows by simplification from <directive><showid name="List.tl_def.1"
<thm>tl []= []</thm></directive> and 
<directive><showid name="Nat.diff_0_eq_0"/><thm>0− 1= 0</thm></directive>.}

\end{proof} \end{document} </litcomment>

</litcomment>
<proofstep display="false">THEN simp_tac</proofstep>
<litcomment> . . . </litcomment>
<proofstep display="false">THEN simp_tac</proofstep>
<closegoal>qed "simple"</closegoal>
<litcomment>

\begin{proof}
goal "length (tl xs) = length xs − 1"
\com{The proof proceeds by case distinction:}
\com{If the list is empty, we have to show: 

 \com{If the list is empty, we have to show: \proofstate{}}
  which follows by simplification from \thm[List.tl_def.1]{}
  and \thm[Nat.diff_0_eq_0]{}.}
 THEN simp_tac

\com{Otherwise, we have: 
      \proofstate{length(tl(x::xs’))=length(xs’)−1}}

  \thm[List.tl_def.2]{tl (x::xs)=xs}.}
\com{which is a consequence of

  which follows by simplification
  from \thm[List.tl_def.1]{tl [] = []}
  and \thm[Nat.diff_0_eq_0]{0−n=0}.}

  \proofstate{length (tl ([])) = length ([])− 1}

\end{proof}
qed "simple"

\end{document}

LaTeX

Fig. 5. Literate proving

These can be used to set or reset the nodisplay attribute. The hide and show
pragmas may optionally have a configuration name like short or detailed
that allows for the generation of different versions of a proof document during
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rendering. Configuration names may be expressed in terms of other previously
declared configuration names, e.g.

%% declare_config both = short or detailed

The resulting LATEX document and the concrete document flow is shown in Fig. 5.
As we can see, the parsing adds the necessary markup to the central document.
The proof is run in the broker by just stepping through it, skipping over com-
ments, and filling in the proofstate or the references to lemmas in the literate
comment. After that, the second literate comment in the proof reads (we have
elided the actual proofstate and displayed theorems):

<litcomment>\com{If the list is empty, we have to show:
<directive><showproofstate/><proofstate>...</proofstate></directive>
which follows by simplification from
<directive><showid name="List.tl_def.1"/><term>...</term></directive> and
<directive><showid name="Nat.diff_0_eq_0"/><term>...</term></directive>.

Notice that the proofstate (the elided part) is encapsulated by the <proofstate>
element, such that if we rerun the script, it will be replaced by the then cur-
rent proofstate. The same holds for lemmas or theorems like <thm>. From this
document, we can extract both a proof script and LATEX documentation easily.

Our approach is quite generic: we just need to integrate the parser for some
concrete syntax; in principle, it should be possible to generate the XML-formats
used by OpenOffice, for example. Of course, this kind of literate programming is
enhanced if the prover can generated typeset output to embed in the document.

5 Script Backflow

Here is our sample proof again, this time in Isabelle/Isar, which makes the
structure of the case distinction quite explicit:

lemma ”length (tl xs) = length xs − 1”:
proof (cases xs)

case Nil thus ?thesis by simp
txt{∗ If the list is empty, we have to show: @{proofstate}

which follows from simplification with @{thm Nat.diff 0 eq 0}
and @{thm{List.tl def.1}.∗}

next
case (Cons y ys) thus ?thesis by simp txt{∗ ... ∗}

qed

However, the text is much longer than the tactical proof above, and even though
this verbosity is exactly what makes Isar proofs easier to read and more sta-
ble to maintain, proofs become laborious to type at the outset. The only input
inherently required of the user (after starting the proof) is the decision to per-
form a case distinction (cases), and the name of the variable ”xs”. Given this,
the prover can choose the right case distinction rule according to the type of
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the variable; this results in the patterns, their local variables, etc., which are
transferred to the PG broker as a template via backflow:

proof (cases xs)
case Nil thus ?thesis <proof>

next
case (Cons y ys) thus ?thesis <proof>

done
Afterwards, the user can continue to fill in the two actual proofs (for the place-
holder <proof>) in the case branches. For the subproof shown, the prover can
also yield the list of lemmas used in the simplifications included in the template:

txt{∗ which follows from simplification with @{thm Nat.diff 0 eq 0}
and @{thm{List.tl def.1}. ∗}

(the prover could even be more clever and try to fill in obvious proofs by checking
whether simplification or other automatic proof patterns would succeed, and
documenting appropriately). In a graphical interface, the proof template above
would be generated by a mouse-click for the selection of the proof method cases
and two keystrokes to type xs. These three user actions replace the tedious typing
of the complete text. Other proof methods such as proof by induction could be
generated using the same backflow mechanisms.

The protocol for script backflow. In detail, the above interaction between prover,
broker and display proceeds as follows. Suppose a user event such as a menu
select, mouse click or drag-and-drop has occurred. The prover operation (as
described in Sect. 3.4) triggered by this event causes the display to send a prover
command, which is marked as proper or improper, to the broker. If it is a proper
prover command, the broker inserts it into the proof script; if it is an improper
prover command, it is transferred to the prover directly.

We need the prover to configure the displays to bind events to prover opera-
tions; this is done once, in the initial startup phase (operation configurations in
PGIP are intended for displays). Then whenever the event occurs, the display
evaluates the operation. This may require more input from the user, e.g. the
variable name in the case distinction example above; to this end, operations can
have inputforms configured which describe this additional input, e.g. here a one-
line string input with prompt “Name of variable”. Finally, the prover evaluates
the command, which results in a backflow to the broker.

Fig. 6 shows the resulting flow of messages, slightly abridged. In the config-
uration phase, the prover sets up an operation casedist op, which requires a
string (the name of the variable) as user input. The operation is bound to a
menu entry Case distinction in the menu Prove by (there will be other menus
and sub-menus). When users activate that menu, the operation is executed and
they will be asked to input the variable name, e.g. by typing in an input form
or by pointing to it in the proofstate display. The placeholder %casevar in the
operation command is replaced with the input, and the command is sent to the
broker. According to the configuration (the attribute improper), it is marked
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...

Prover analyses
type of variable,
produces template
for case distinction
over lists.

<displayconfig>

  <inputform>

   <pgipstring>
   <prompt>Name of variable</prompt>
  </inputform>

 </opn>
</displayconfig>
<menuadd path="Prove by/Case Distinction"

Prover

Broker relays
display configuration

Display Broker

<displayconfig>...

<inputcmd improper="true"
 casedist "xs"</inputcmd>

P
hase 1: initialisation

P
hase 2: runtim

e

menu entry.
User selects 

   <field name="casevar">

  <opcmd improper="true">casedist "%casevar"</opcmd>

<dostep>casedist "xs"</dostep>

<scriptinsert>proof (cases "xs") 
 case Nil ...</scriptinsert>

Add new text to proof script.

 <opn name="casedist_op">

         opn="casedist_op"></menuadd>

Fig. 6. Message exchange for backflow in the case distinction situation

as an improper command, so the broker relays the command to the prover. The
prover analyses the type of the variable, decides case distinction on lists is ap-
propriate, with one case for the empty and non-empty lists each, and generates
the corresponding backflow. The generated proof template text is inserted into
the proof script.

PGIP has a generic display model, where simpler displays (e.g. text-based
ones) are free to ignore configurations which only make sense for graphical dis-
plays. The only adjustment needed here over the description in [3] is to allow
improper commands as well as proper ones. Note how only the prover needs
knowledge about the logical structure of the proof, the types involved and so on;
from the broker’s and displays’ point of view, the protocol is completely generic.

5.1 Calculational Proof

Calculational proof is probably the most well-known proof presentation para-
digm as it is taught in school mathematics. Here is an example in Isar (which
uses Isabelle’s axiomatic type class mechanism to restrict instances of the type
variable ’a to those satisfying the group axioms):

theorem group right one: ”x ∗ one = (x::’a::group)”
proof −

have ”x ∗ one = x ∗ (inverse x ∗ x)”
by (simp only: group left inverse)

also have ”... = x ∗ inverse x ∗ x”
by (simp only: group assoc)

also have ”... = one ∗ x”
by (simp only: group right inverse)



Assisted Proof Document Authoring 77

also have ”... = x”
by (simp only: group left one)

finally show ?thesis .
qed

This is already quite readable, and the generation of proof presentations that
abstract the proof technical details fully or up to the names of the used lemmas in
each step are straightforward. As an Isar proof text, this proof pattern requires
the user to type all the intermediate proof stages; they may be abbreviated by
meta-variables ?X1,. . . , ?Xn, but it is still cumbersome. GUI-supported backflow
helps here substantially: the user states only the overall goal, selects calculational
proof, and sets a focus on a subterm (e.g., x * inverse x) serving as the redex
of a theorem, and a theorem (e.g., group left inverse).

In this scenario, the construction of backflow is quite complex and requires the
development of specialised tactic support. The main problem is to generate proof
scripts that are as general and reusable as possible, ideally avoiding positional
referencing by using general methods such as

by (simp only: group assoc)

instead of a left-to-right one-step application such as

by (rule tac P=% x. x ∗ (inverse x ∗ x) = x in subst[OF group assoc.assoc]).

The technique of proof abstraction is based on generate-and-test heuristics for
successful proof attempts with the fall-back of the least general proof method.

5.2 Window Inferencing

Logically, calculational proof depends on the transitivity of equality which allows
us to string together a sequence of lemmas the form ti = ti+1 for i = 1, . . . , n to
one theorem t1 = tn+1. Window inferencing [12] is a generalisation of calcula-
tional proof where instead of an equation we have a non-disjoint family of binary
relations. Window inferencing also allows us to apply rules to subterms of the
current proof state; this is referred to as opening a window on that subterm, and
it may produce additional assumptions (e.g. opening a window on the positive
branch of a conditional adds the condition as an assumption). When closing a
window, implicit monotonicity reasoning is executed to validate replacing a focus
with the result of the sub-derivation in a window at the next higher level.

Previous work has shown how window inferencing can be implemented as a
tactic in Isabelle, using a dedicated GUI for window inferencing [19]. Here, we
can achieve the same thing using annotated terms in PGML and backflow in
PGIP. The special input field %selected can be used in operations to denote
the selected subterm (on displays that do not support subterm selection, these
operations will be ignored). The operation to open a window then sends the
command open_win %selected, which causes the command open win p to be
sent to prover (via the broker, as in Fig. 6), and the prover constructs the relevant



78 D. Aspinall, C. Lüth, and B. Wolff

subterm and context from p. The path p is in the prover’s internal abstract syntax
representation of the term, it only makes sense to the prover and needs to be
post-processed to render a PGML string. Again, with only modest support from
the prover, we can add a very useful high-level feature for assisting document
authoring.

6 Conclusions

We have presented a new component-based system architecture for authoring
mathematical documents together with formal proofs. It extends the generic PG
Kit infrastructure for interactive proof. The novel concept in extending proof
script editing to authoring is the support of component backflow on the protocol
level PGIP as well as in its implementation in the broker.

The implementation of our design is ongoing. The broker architecture, with an
Emacs-based and an Eclipse-based display, has been developed and is available
as a prototype [3, 4]. The authoring extensions have been added to this proto-
type and support from provers (in particular, Isabelle) is anticipated in future
development versions.

6.1 Related Work

The basic idea of the document-centred approach can be traced back to Knuth’s
work on literate programming [16]. In the context of formal proof and formali-
sation of mathematics, the field can be divided into two fundamentally different
approaches: one tries to make formal proofs more human-readable, or one tries
to make textbook-proofs more formal or at least intuit their underlying formal
structure. In the former line of research stands Automath [9], Mizar [23], and
its descendants like Isabelle/Isar [25] or Coq’s integrated documentation facil-
ity coqdoc that can extract a document offline in various formats. Théry’s ap-
proach [22] bridges the gap by defining an XML format for manually annotating
statements in mathematical papers to link them to formal counterparts, wherein
proofs must be supplied; consistency is checked in a prover. Similar approaches
include Weak Type Theory [15], MathLang [14]), or the Dialog project [5]. In a
sense in the opposite direction, Kohlhase [17] works on the existing mathematical
corpus of LATEX papers and tries to capture their semantic content automatically
with additional markup.

Although we take formal proof as the starting point, our document-centred
approach eases the task of reconstructing a human-readable format during formal
proof development, using the information available via backflow from the presen-
tation of terms and proofstates, or the information from certain automated proof
strategies or advanced techniques like proof planning [10]. Of course, the result-
ing annotations are merely organised text, kept consistent by using references to
theorems, etc., which are resolved late in the presentation process. Integrating
with the complementary approach of [15] with respect to these annotations is
worth investigating.
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6.2 Outlook and Future Work

This paper describes authoring facilities on the document level. An important
future direction is to study large and richly connected developments, spanning
multiple proof script files and proof modules, and supporting reordering in pro-
ducing the human-readable documentation. The framework partly addresses this
at the moment because there are PGIP elements describing file-level commands
and dependencies between prover commands (relying on information from the
theorem prover), so to extend the example in Sect. 4 we can add commands
like \openscriptfile{example.thy} and \closescriptfile to indicate desti-
nation script files; several files may then be produced on processing.

Another interesting use case for our architecture would be to have the prover
insert proof objects into the document via backflow. Here, a proof object would
just be formal object which can be reconstructed by the prover on demand to
show the validity of the proof. This would allow a proof to be more or less
completely informal except for the embedded proof objects, which could be used
to validate the formal content.

Finally, we want to conduct usability studies to substantiate the claim that
assisted authoring increases productivity compared to unassisted editing. A good
evaluation methodology would be to investigate usability for mid-sized proofs
using well-known HCI techniques (e.g., keystroke-measures), as well as to collect
subjective experience reports from larger proof authoring projects.
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8. A. D. Brucker, F. Rittinger, and B. Wolff. HOL-Z 2.0: A proof environment for
Z-specifications. Journal of Universal Computer Science, 9(2):152–172, 2003.

9. N. G. de Bruijn. A survey of project AUTOMATH. In J. P. Seldin and
J. R. Hindley, editors, To H. B. Curry: Essays in Combinatory Logic, Lambda
Calculus and Formalism, p. 589– 606. Academic Press, 1980.

10. L. Dixon and J. Fleuriot. A proof-centric approach to mathematical assistants.
Journal of Applied Logic: Special Issue on Mathematics Assistance Systems, 2005.
To appear.

11. G. Gonthier. A computer-checked proof of the four colour theorem. Techni-
cal report, Microsoft Research Cambridge, 2004. http://research.microsoft.
microsoft.com/ gonthier/4colproof.pdf.

12. J. Grundy. Transformational hierarchical reasoning. Computer Journal, 39:291–
302, 1996.

13. T. C. Hales. The Flyspeck project page. http://www.math.pitt.edu/ thales/
flyspeck/index.html.

14. F. Kamareddine, M. Maarek, and J. B. Wells. Flexible encoding of mathematics
on the computer. In A. t. Asperti, editor, Mathematical Knowledge Management
MKM 2004, LNCS 3119, p. 160– 174. Springer Verlag, 2004.

15. F. Kamareddine and R. Nederpelt. A refinement of deBruijn’s formal language of
mathematics. Journal of Logic, Language and Information, 13(3):287– 340, 2004.

16. D. E. Knuth. Literate programming. The Computer Journal, 27(2):97–111, 1984.
17. M. Kohlhase. Semantic markup for TEX/LATEX. In Informal Proc. Mathematical

User Interfaces, Math UI ’04, 2004.
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Abstract. In this contribution we address two related questions. Firstly,
we want to shed light on the question how to use a representation for-
malism to represent a given problem. Secondly, we want to find out how
different formalizations are related and in particular how it is possible
to check that one formalization entails another. The latter question is
a tough nut for mathematical knowledge management systems, since it
amounts to the question, how a system can recognize that a solution
to a problem is already available, although possibly in disguise. As our
starting point we take McCarthy’s 1964 mutilated checkerboard chal-
lenge problem for proof procedures and compare some of its different
formalizations.

1 Introduction

Mathematical colloquial language as well as languages of formalized mathemat-
ics offer a large variety of ways to formalize a problem. If a problem is given
in an informal way, the first question is, how to formalize it, that is, how to
write it down. While this is already the first question in a mathematical ver-
nacular as well, it is more acute in a formal system, be it a proof development
environment, or a mathematical knowledge representation system. Even within
one such formal system, it is typically possible to represent the same problem
in a large variety of ways. The adequacy of a representation depends of course
on its intended purpose (e.g., information retrieval, tutoring system, automated
problem solving). In this contribution we focus mainly on the representation of
a problem in order to find a proof. The obvious question is then, which represen-
tations are appropriate and which ones not. The choice of a good formalization
depends on the formal language itself as well as the available tools and system
support available for certain representations. In consequence, users of different
proof development systems will use formalizations which are particularly ade-
quate for their system. This leads to the question how we can know that two
different formulations are equivalent, or in a weaker version how we can know
that one formulation entails another.
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We will use the so-called “mutilated checkerboard problem” to study the
relationship between different problem formalizations. This problem was intro-
duced by McCarthy as a challenge problem for proof procedures [1]. While the
challenge was mastered by different proof procedures, it is still a challenge for
mathematical knowledge management.

In McCarthy’s original paper [1] we can find two different formalizations.
McCarthy [2] himself presented at the second QED workshop a different formal-
ization which makes – compared to the original paper – use of set-theoretical
notions and basic integer arithmetic. We will also look at the formalizations in
Isabelle [3] and Coq [4].

There are various proofs of the problem available. Some are close to one of
McCarthy’s formalizations (e.g., [5]), others are using formalizations which are
significantly different and need creative thought to understand that they are
related to the original problem. Even the close formalizations of [2] and [5] need
some adaptation in order to see that they can be mapped into each other. While
McCarthy numbers the checkerboard from 0 to 7, Bancerek uses 1 to 8. A shift
of an index in an array by 1 is a trivial re-representation to anybody with math-
ematical training, but it has to be recognized as an index shift. Neither do the
strings directly match, nor will simple unification do, since 0 is not 1 and 7 not 8.

Why would not everybody just take McCarthy’s original formalization? Obvi-
ously, different formal systems have different strengths and limitations. The first
formalization by McCarthy is a first order formalization which does not make
use of equality and function symbols. While this is a very restricted formal-
ism, some systems can deal with just this formalism only. McCarthy’s second
formalism contains function symbols and equality. A reasoner which can deal
with function symbols and equality will have special procedures how to do that
and would probably not live up to its strengths if given the first formalization.
Likewise Isabelle and Coq, which have very powerful representation languages,
have strengths which these systems could not use if they had to stick to one of
the original formalizations. For this reason it should be considered as legitimate
that each system user chooses a representation which suits their system best.
However, when we take a closer look at the formalizations, it is neither trivial
to see that they solve the original problem nor to see that they can be identified
or subsumed by one another.

While problems such as a mutilated checkerboard problem exhibit a big gap
between their informal description in natural language and their various formal
representations, the problem is universal in mathematics. Typically even in a sin-
gle very strict formal system it is possible to say the same thing in a wide variety
of ways and not for all of these possibilities it is obvious that they are equivalent
on some level. The reason why one formalization entails another may involve a
simple syntactic modification, or may rest on a deep semantic connection.

2 The Mutilated Checkerboard Problem(s)

Let us first introduce the problem and proof from McCarthy’s original
memo [1, p.1]:
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“It is impossible to cover the muti-
lated checkerboard shown in the figure
with dominoes like the one in the figure.
Namely, a domino covers a square of
each color, but there are 30 black squares
and 32 white squares to be covered.”

While the original challenge of the problem was the size of the search space in
various formalizations – and still is for a naive usage – the much bigger challenge
for proof procedures is that a good proof contains a creative invention, namely
the colouring of the arrays of the board and the domino so that the squares with
different colours can be counted. For the solution we can differentiate between
the following phases:

1. Formalization of the problem.
2. Formalization of a concept representing the creative invention.
3. Realization of the proof on the basis of the creative invention.

The formulation of step 2 depends on the problem description given in step 1,
and that the proof idea consists of both step 2 and step 3.

At each step there are several possibilities, colouring the arrays is only one of
several creative inventions. Most publications which have taken up the challenge
start with the motivation that their problem formalization is adequate with
respect to the informal description and concentrate on steps 2 and 3.

In this contribution, we want to investigate the different possibilities and
choices which can be made in step 1. The mathematical problem formalization
assumes certain background knowledge that is available to the reader. Only
with this background knowledge it is possible to understand why the problem
formalization actually covers the original problem. The main objects, notions,
and properties used (explicitly or implicitly) in the proofs are the following.

– Board: a rectangular structure containing squares. The squares are oriented
in vertical/horizontal lines.

– Domino: a domino can be associated with two adjacent squares, either ver-
tically or horizontally.

– Adjacent: for a square the square to the left, to the right, below, or on top.
– Sets: for collecting dominoes.
– Covering: all squares of the board are associated with exactly one domino.
– Numbers: numbers can be used to identify the different squares of the board,

and to express the structure in which the squares are related to each other.
– Pairs and Cartesian product: pairs which contain numbers as representation

of squares, Cartesian product as board.

Later, the creative invention of colouring corresponds to mapping squares,
represented by pairs of numbers, to the set {black, white}. Sets can be counted,
mapped to numbers, so we have cardinality and relations for the comparison of
cardinality.
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2.1 Challenge Problems by McCarthy

McCarthy gives already two problem formalizations in his initial paper [1] and a
set-theoretic description thirty years later [2]. Whereas the early formalizations
describe the problem completely, the latter builds on existing concepts of set
theory, including cardinality, and integer arithmetic.

M64a
The language is a predicate logic without function symbols and without equality.
The signature consists of constants 1, . . . , 8, and the binary relations given here
with their intended meaning.

S(x, y) y = x + 1
L(x, y) x < y
E(x, y) x = y
G1(x, y), . . . , G4(x, y) square (x, y) and the top/right/bottom/left neighbour

square are covered by a domino
G5(x, y) square (x, y) is uncovered

The problem is stated in form of unsatisfiable axioms.

1. S(1, 2) ∧ S(2, 3) ∧ S(3, 4) ∧ S(4, 5)
∧ S(5, 6) ∧ S(6, 7) ∧ S(7, 8)

2. S(x, y) ⇒ L(x, y)
3. L(x, y) ∧ L(y, z) ⇒ L(x, z) ∧ ¬S(x, z)
4. L(x, y) ⇒ ¬E(x, y)
5. E(x, x)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
properties of numbers

6. G1(x, y) ∨ G2(x, y) ∨ G3(x, y) ∨ G4(x, y) ∨ G5(x, y)
7. G1(x, y) ⇒ ¬(G2(x, y) ∨ G3(x, y) ∨ G4(x, y) ∨ G5(x, y))
8. G2(x, y) ⇒ ¬(G3(x, y) ∨ G4(x, y) ∨ G5(x, y))
9. G3(x, y) ⇒ ¬(G4(x, y) ∨ G5(x, y))

10. G4(x, y) ⇒ ¬G5(x, y)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
placement
of dominoes

11. G5(1, 1) ∧ G5(8, 8)
12. G5(x, y) ⇒ (E(1, x) ∧ E(1, y)) ∨ (E(8, x) ∧ E(8, y))

}
uncovered squares

13. S(x1, x2) ⇒ (G1(x1, y) ⇔ G3(x2, y))
14. S(y1, y2) ⇒ (G2(x, y1) ⇔ G4(x, y2))

}
adjacency of dominoes

15. ¬G3(1, y) ∧ ¬G1(8, y) ∧ ¬G2(x, 8) ∧ ¬G4(x, 1)
}

border of the board

M64b
The second problem is formalized in a predicate logic with function symbols
and equality. The five predicates G1, . . . , G5 are represented by the values of the
function g. The problem is again given in form of axioms.

1′. s(s(s(s(s(s(s(s(8)))))))) = 8
2′. ¬s(s(s(s(x)))) = x

}
eight distinct numbers

3′. g(x, y) = 5 ⇔ x = 8 ∧ y = 8 ∨ x = 1 ∧ y = 1
}

uncovered squares
4′. g(x, y) = 1 ⇔ g(s(x), y) = 3
5′. g(x, y) = 2 ⇔ g(x, s(y)) = 4

}
adjacency of dominoes
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6′. g(1, y) �= 3 ∧ g(8, y) �= 1 ∧ g(x, 1) �= 4 ∧ g(x, 8) �= 2
}

border of the board
7′. 1 = s(8) ∧ 2 = s(1) ∧ 3 = s(2) ∧ 4 = s(3) ∧ 5 = s(4)

}
names for numbers

8′. g(x, y) = 1 ∨ g(x, y) = 2 ∨ g(x, y) = 3 ∨ g(x, y) = 4 ∨ g(x, y) = 5
}

covering

M95
The language is predicate calculus and expects a formalization of the set theo-
retical concepts, like operations on sets, Cartesian product, ordered pairs, and
cardinality. Furthermore the formalization uses operations on integers including
the absolute value function. The additional concepts are introduced by defini-
tions, the problem is stated as a formula to be proved.

Definitions
Board = Z8 × Z8

mutilated-board = Board \ {(0, 0), (7, 7)}
domino-on-board(x) ⇔ (x ⊂ Board) ∧ card(x) = 2

∧(∀x1 x2)(x1 �= x2 ∧ x1 ∈ x ∧ x2 ∈ x
⇒ adjacent(x1, x2))

⇔ (x ⊂ Board) ∧ card(x) = 2
∧(∀x1 x2)(x = {x1, x2} ⇒ adjacent(x1, x2))

adjacent(x1, x2) ⇔ |c(x1, 1) − c(x2, 1)| = 1 ∧ c(x1, 2) = c(x2, 2)
∨|c(x1, 2) − c(x2, 2)| = 1 ∧ c(x1, 1) = c(x2, 1)

⇔ |c(x1, 1) − c(x2, 1)| + |c(x1, 2) − c(x2, 2)| = 1
c((x, y), 1) = x
c((x, y), 2) = y

partial-covering(z) ⇔ (∀x)(x ∈ z ⇒ domino-on-board(x))
∧(∀x y)(x ∈ z ∧ y ∈ z ⇒ x = y ∨ x ∩ y = {})

Theorem
¬(∃z)(partial-covering(z) ∧

⋃
z = mutilated-board)

Note that McCarthy defines domino-on-board and adjacent in two equivalent
ways. Which definition to prefer depends on the context of its usage.

2.2 Formalization with Inductive Definitions

Paulson presented his formalization and proof of the checkerboard problem in
the Isabelle system [3].

P96
The language is Isabelle/HOL which allows inductive definitions and supports
reasoning with them. The formalization uses notions from integer arithmetic and
set theory.

Definitions
lessThan(m) := {i ∈ N|i < m}

board := lessThan(2 · s(m)) × lessThan(2 · s(n))
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tiling(A) :set(set(α)) := {}∈tiling(A) ∧ (a∈A ∧ t ∈ tiling(a) ∧ a ∩ t = {})
⇒ a ∪ t ∈ tiling(a)

domino :set(set(N × N)) := {(i, j), (i, s(j))} ∈ domino ∧
{(i, j), (s(i), j)} ∈ domino

Theorem
(board \ {(0, 0)}) \ {(s(2 · m), s(2 · n))} /∈ tiling(domino)

2.3 Formalization in Second Order Logic

Huet [4] formulates the problem on a level which is more abstract than all the
other formalizations. The formalization is based on properties such as injectiv-
ity and surjectivity of functions, and finiteness (characterized on the basis of
injectivity and surjectivity). The geometry of the board is not considered at all,
numbers or cardinals are not necessary for the argument.

H96
The theorem is formalized in the Coq system, but needs only the expressiveness
of second order logic. Given a signature of sets B and W , two functions Board :
B → W and Domino : W → B representing the board and the dominoes, the
existence of a tiling for the full checkerboard problem is stated as:

injective(Board) ∧ injective(Domino) ∧ finite(B) ⇒ surjective(Domino).

We can generate from the full checkerboard a mutilated one by taking B′ as
a proper subset of B. The theorem is then that for an injective function Board ′

with Board ′ : B → W and finite(B′) there is no function Domino : W → B′

which is injective (i.e., a – possibly partial – covering) and surjective (i.e., total).

2.4 A Very Abstract Formalization

Let us add here another formalization which is even more abstract than Huet’s
and just reasons about the cardinality of sets (finite or infinite).

KP05
Two sets B and W cannot at the same time have the same cardinality and a
different cardinality, that is, not |B| = |W | and |B| �= |W |.

More concretely we can say, if |B| < |W | (that is, we have strictly fewer black
than white elements) then we cannot have |W | = |B| (that is, equal numbers
which would follow from a covering with 2 × 1-dominoes).

3 Relationships Between Formalizations

Different systems make use of different problem representations. Fig. 1 gives an
overview (which is not complete with respect to problem representations as well
as solutions). The initial formalization M64a was verified by the model generator
Mace, only the symbols L and E together with the corresponding axioms were
replaced by built-in concepts [6]. The proof in the TPS system uses exactly
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Informal
checkerboard

problem

M64a

Mace: no
model

M64b

TPS
proof

M95

Mizar
proofs

P96

Isabelle
proof

H96

Coq
proof

KP05

¬E

Fig. 1. Overview of formalizations of the checkerboard problem and proofs

the formalization given as M64b [7]. There are two proofs in the Mizar system
for M95 [5,8]. Paulson and Huet constructed proofs for their formalizations in
Isabelle [3] and Coq [4], respectively. KP05 can be proved in almost any formal
system by calling the corresponding calculus level rule.

Every given solution is a formal proof for the corresponding problem repre-
sentation and thus for the informal representation of the checkerboard problem.
While it is difficult to be more rigorous with respect to the informal statement –
and probably impossible to be fully rigorous – we can ask whether the Coq proof
is a solution for the formalization given as M64a (represented as a dotted line in
Fig. 1) and ask for a formal justification. In extreme cases (relationship between
M64a and KP05 ), such a formal justification may be as difficult as a proof of
the one problem (here M64a) from first principles. We will come back to the
implications of this observation for mathematical knowledge management, but
first we look at concrete problem transformations.

3.1 Problem Formalizations and Their Generalizability

Each formalization can be looked at from different perspectives. M64a is very
concrete and its proof captures exactly the original problem and is difficult to
generalize. M64b is slightly more general (also capturing tori). M95 although
concrete in the formulation, allows for an easy generalization of the argument.

P96 and H96 are much more general and go beyond the concrete 8 × 8-
mutilated checkerboard. In Paulson’s formulation the problem is shown for any
2m× 2n rectangular structure in which two opposite corners are missing, while
Huet’s formulation entails that arbitrary finite sets of black and white squares
with an injective mapping from black to white sets, which is not surjective, can-
not allow for an injective mapping form the white to the black squares. This proof
is very abstract and many different aspects of the problem are irrelevant: the
relative relationship of black and white squares, how many fewer black squares
than white squares we have, and the shape of the dominoes. Important is only
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that the set is finite and that a domino covers exactly one black and one white
square (actually the problem representation does not speak of coverings, so this
is yet another interpretation).

KP05 is even more general than H96. We speak only about cardinality of sets
and argue that the cardinality cannot be the same and different at the same
time. We do not require anymore that the sets we speak about are finite. If we
cover, for instance, pairs (a, b) in which the as are rational numbers and the bs
real numbers so that each rational number is covered exactly once by an a then
the bs cannot cover the real numbers since there are more real numbers than
rational numbers.

Even more general than KP05 is the statement true, which is logically equiv-
alent to all true statements.

3.2 Proofs and Formalizations

If we revisit the different representations then the last one, true, does not require
any proof. It is trivially satisfied, but it does not help us anything in understand-
ing the problem.1 Let us imagine the situation of a teacher and a student and
the teacher wants to convince the student that the mutilated checkerboard can-
not be covered by 2 × 1-dominoes. She may say “This is trivial.” to which the
student may answer either “Yes, it is trivial, I learnt to know this problem a
while back already.” or “No, I don’t believe it.”

In the latter case she would need to give him a better argument (based on
KP05 ) such as “Look at a partition of the checkerboard into two disjoint sets
so that there are arguments that the two sets must have the same number of
elements and at the same time must not have the same number of elements.”
Again the student may now believe the statement and accept this as a proof,
or not.

If the previous argument is not accepted H96 can further refine it, and so on.
Each formulation will get closer to the representation of a concrete checkerboard
on the one hand. On the other hand, the proof of why each statement holds
becomes increasingly more difficult.

3.3 Translations Between Different Formalizations

A more formal way to look at the relationship between the different formaliza-
tions is to see how one can be translated into another. We will discuss now some
of these translations to a varying degree of depth.

M64a−→M64b
Let us assume now that the predicative formulation M64a is given and we want
to generate from this a functional formulation of the type M64b. To this end we
would need to map different objects of the first signature to the second.

1 Richard Feynman states only half jokingly that “mathematicians can prove only
trivial theorems, because every theorem that’s proved is trivial.” [9, p.84].
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M64a �→ M64b
S(x, y) �→ s(x) = y (1)
1, 2, . . . , 8 �→ 1, s(1), . . . , s(s(s(s(s(s(s(1))))))) (2)
Gi(x, y) �→ g(x, y) = i for i ∈ {1, . . . , 5} (3)
E(x, y) �→ x = y (4)

Why is this translation justified? (1) means that we can translate the binary
predicate symbol S into a unary function symbol s. In order to justify such a trans-
lation we need to show that S not only represents a general relation, but a left total
and right unique one. Let us first observe that it suffices to look at the numbers 1
through 8. S is right unique for these numbers since from the axioms 1.–5. follows
that the usual relationships between these numbers hold, for instance, 1 < 3 from
S(1, 2) and S(2, 3) with the second and third axiom. With the third axiom follows
also ¬S(1, 3). Likewise ¬S(1, 4) and so on, that is, S is right unique.

The left totality is a more subtle issue. While it is intentionally clear that we
have to consider only the eight different numbers 1, 2, . . ., 8, the formalization
M64a does not warrant that only eight different numbers exist. More seriously,
we get from the axioms 1.–5. as a consequence that for all x ∈ {1, 2, . . . , 8} holds
¬S(8, x).2 The argument why S can be translated to a function requires either
to extend the range to all natural numbers or to give up the idea of a strict order
and to consider a cyclic structure in which s(8) = 1.

Both approaches are formally possible and amount to the same covering prob-
lem, assumedwe never makeuse of s(8). Axiom 6′ states that dominoes do not stick
out, that is, that only the dominoes in a range from 1 through 8 are to be consid-
ered. The first approach means we view the mutilated checkerboard as a subset of
the infinite plane. When putting dominoes down, we never cross the boundaries.
The second approach means that we consider the checkerboardas a torus, axiom 6′

puts up boundaries between the 8th row and the 1st row (and the columns likewise)
which we may not cross in covering the checkerboard. Strictly speaking, axiom 6′

is not necessary to prove the theorem, since the mutilated torus, that is, the full
torus without the images of the two deleted corners of the checkerboard, cannot be
covered by dominoes either, even if it is possible to cross the invisible boundaries,
since the mutilated torus contains two white squares more than black ones.

In M64b McCarthy chooses the second view (of a torus). The transition from
M64a to M64b cannot be syntactically established at a low level (but only al-
most), since the original binary predicate symbol S is not left-total. This does not
matter, however, since s(8) has never to be used. Formally the second approach
has the advantage that we have only finitely many (eight) different elements
in the Herbrand universe, and hence has a finite search space, while the other
formalization has a potentially infinite search space. Depending on which pro-
cedure one uses, it is advantageous to be more restrictive and to include 6′ (for
instance, when using Mace to show that no model exists), or to allow coverings
of the torus which cross the magic boundary and have no correspondence of cov-
2 If we had S(8, x) for some x we would get with the second axiom L(8, x). Together

with L(x, 8) (which follows from axioms 1.–3. for x �= 8, and from L(8, x) for x = 8)
we get L(8, 8), hence ¬E(8, 8), which contradicts E(x, x).
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erings in a real checkerboard with 2 × 1-dominoes and exclude 6′ (for instance,
when proving the theorem with TPS).

As replacing the predicate symbol S by a function symbol s, it is possible to
replace the predicate symbols Gi (with i = 1, . . . , 5) by a function symbol g so
that Gi(x, y) goes to g(x, y) = i. Note that initially the Gi are different names
for binary predicate symbols (and could have been called P, Q, R, S, T instead).
Since the names do not matter we can use a single ternary predicate symbol G
instead which takes the index i as an argument, that is, G(x, y, i) instead3 of
Gi(x, y). G(x, y, i) corresponds for a left-total and right-unique G to g(x, y) = i.
The left-totality and right-uniqueness of the G(x, y, i) follows from axioms 6.–10.

Axioms 11 and 12 mean that precisely the squares (1,1) and (8,8) are missing.
They are translated as g(1, 1) = 5 ∧ g(8, 8) = 5 and g(x, y) = 5 → (E(1, x) ∧
E(1, y)) ∨ (E(8, x) ∧ E(8, y)) which is with the translation of E(x, y) to x = y
logically equivalent to axiom 3′.

Axioms 13 and 14 can be translated directly to 4′ and 5′ (with the simplifica-
tion to rename x1 to x, and get rid of x2 by replacing it by s(x)). Axiom 6 goes
to 8′, and 15 to 6′.

Note that the translation from S to s and G to g leads to proof obligations,
namely that the functions s and g, used to represent the relations S and G
are well-defined. While this should be a straightforward syntactical proof and
actually is for G, matters are more subtle with S, and intuitively need an argu-
ment why a mutilated checkerboard cannot be covered when a mutilated toroid
checkerboard cannot. The translation of E to equality strictly also leads to proof
obligations that the usual properties of reflexivity, symmetry, transitivity, and
substitutivity are satisfied. Only the first of the four is actually formally given
(in axiom 5), since only this one is needed.

M64b−→M64a
The reverse transformation is much simpler. Functional expressions such as
f(x1, . . . , xn) = y are translated to predicative ones such as F (x1, . . . , xn, y).
The additional axioms for the left-totality and right-uniqueness of F may be
added. Nested functional expressions such as g(s(x), y) = 3 require the intro-
duction of new variables as in S(x1, x2) → G(x2, y, 3).

M95−→H96
Let us see now how the solution of Huet formalized as H96 can be applied to
the problem formalization given by McCarthy as M95. We start again to relate
the objects in the different formalizations.

M95 �→ H96
{(x, y)|a ∈ Board ∧ 0 = (x + y) mod 2} �→ B (1)
{(x, y)|a ∈ Board ∧ 1 = (x + y) mod 2} �→ W (2)
Board �→ BoardH : B → W (3)
set D with �→ Domino : W → B (4)
partial-covering(D) ∧ W ⊂

⋃
D

3 Note also that the order of the arguments does not matter, provided any re-ordering
is done consistently throughout the whole problem description.
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None of the objects in the formalization in H96 exists in M95. The sets B
and W have to be constructed. The mapping representing the board BoardH

has to be defined using the set Board and the sets corresponding to B and W .
The same holds for the mapping Domino, which additionally needs the set of
dominoes covering all white squares.

In terms of the three steps describing the process of solving the problem
given in Sec. 2, the formalization M95 is the problem formalization of step 1,
the proof given for H96 corresponds to the realization of the proof in step 3,
and the transformation which identifies objects in M95 with objects in H96 is
the creative invention of step 2.

For the mutilated board of M95 the set B′ = B \ {(0, 0), (7, 7)} corresponds
to the restriction of BoardH : B → W to Board ′

H : B′ → W , and the theo-
rem of M95 expressed with respect to the notions in H96 translates then to
¬(∃Domino : W → B′ injective(Domino)).

M95←→P96
The correspondence between the objects in M95 and P95 is more direct. In
both formalizations the board is represented by the Cartesian product of the
integer interval [0, 2n − 1], the squares of the board are elements of the Carte-
sian product, and dominoes are sets containing exactly two squares which are
adjacent.4

We see here that even when there is an agreement how to represent the ob-
jects, there can be a difference how properties of the objects are represented.
For example, the predicate partial-covering in M95 is defined for the given
board, and includes the definition of adjacent dominoes. The predicate tiling
in P96 defines the covering independently from dominoes. Here we see one
dimension in the choice for a formalization: the generality of the introduced
concepts.

In M95 the general concept of tiling is expressed by the formula tiling′(z) ⇔
(∀x y)(x ∈ z ∧ y ∈ z ⇒ x = y ∨ x ∩ y = {}) which is equivalent to tiling in
P96. Even for equivalent concepts there is a choice in the formalization. This
choice may depend on the assistance provided by the different proof systems. Mc-
Carthy supposes a ‘heavy-duty’ set theory prover, whereas the choice of Paulson
is motivated by the support for inductive definitions available in Isabelle.

M64b−→M95
When we compare the problem formalizations M64b and M95, then we find that
the latter contains explicit objects to model the board, the squares of the board
as pairs of coordinates, and the dominoes as sets with exactly two pairs. In
M64b we find a representation which formalizes the different situations for each
square (x, y) of the board as values of the function g(x, y). Abstract concepts,
like dominoes, size of the board, and covering are expressed as restrictions on
the values of g and thus are given only indirectly.

4 Although M95 speaks about a concrete 8×8 checkerboard, the argument is as general
as for the more general formalization of P96.
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KP05−→H96
The most basic argument in KP05 is very simple. If we have two sets, then we
cannot have |B| = |W | and |B| �= |W |. The slightly more expanded argument
is: If we have two sets with |B| < |W | then we cannot have |W | ≤ |B| (which is
a slightly stronger version than the original formulation, but maps much better
to Huet’s argument).

How can we apply this statement to the case of H96? We need to know that the
conditions are given, that is, we assume an injective but not surjective mapping
Board : B → W , and the finiteness of B. The injectivity entails |B| ≤ |W |. The
non-surjectivity entails together with the finiteness of B, |B| �= |W |. The two
facts together give us |B| < |W |. Hence KP05 is applicable and we can conclude
¬ |W | ≤ |B|. Hence there is no injective mapping Domino : W → B.

3.4 Soundness Considerations

The relationship between different formulations can in some cases be easily seen
on the basis of a syntactic transformation. In other cases it may be necessary to
make use of more complicated reasoning. Consider, for instance the relationship
between M64a and M64b. The first describes the mutilated checkerboard as a
subset of the plane, while the second describes it as a mutilated toroid. The
reasoning why the one relationship entails the other is subtle.

with equality
First order logic

and function symbols

First order logic

and function symbols
without equality

M64b

M64a

F1

F2

Fig. 2. Representation as projection

In general we can compare the pro-
cess of formalization of a problem to
a projection from the problem per se
to different formalizations as in Fig. 2.
Since the problem per se is not given
in a formal way, it is difficult to rea-
son about the correctness of a formal-
ization. However, it should always be
possible the establish the relationship
between different formalizations such
as F1 and F2 in Fig. 2.

The relationship between different
formalizations should follow the com-
mutative diagram in Fig. 3. Note that
the relationship may be non-trivial
since the different formalizations may
use different formal systems. A proof
for the original problem Γ |= ϕ will be
obtained by transforming the assumptions Γ to Γ′ from which a tranformed the-
orem ϕ′ is derived in a potentially different calculus. Then ϕ′ is translated back
to the original theorem ϕ. Assumed that the translations and the calculus π are
sound, then the overall construction is a sound argument why ϕ follows from Γ.
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Γ
!

�πϕ◦π◦πΓ ϕ�
π
Γ � π

ϕ

Γ′ �π ϕ′

Fig. 3. Commutative diagram for proving by reformulation

Note that typically one formalization represents not only a single problem,
but as discussed in Sec. 3.1 it represents a whole class which can be considered
as the inverse image of different projections as displayed in Fig. 4.5

P3

F

P1

P2

P4

Fig. 4. Generalizability as inverse projection

4 Conclusion

It is a standard task when applying mathematical or (more stringently) formal
methods to problems that we have to formalize them within a system. It is
indeed an important aspect in the application of formal systems in safety critical
areas, since any proof can start only once the formalization is given. If different
people formalize the same problem they will typically come up with different
formulations. Assumed the two formulations cannot mapped to each other in a
sound way, then at least one does not capture the original problem adequately.
5 One of the reviewers pointed out the relationship to Benjamin Whorf’s hypothesis

that languages constrain thought. We do not want to go into the deep philosophical
discussion surrounding this hypothesis in general. However, it seems suggestive that
not only languages, but more so formulations within languages may facilitate creative
reasoning and generalizations, or not. While the same problem can be formalized in
various ways, it matters significantly for problem solving which formalization is used.
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In order to study the process of relating different formulations to each other
and to understand how to represent one example we have looked at an old prob-
lem, McCarthy’s mutilated checkerboard problem. This problem is interesting
since it has been represented and proved in a large variety of systems. Of course,
any representation has to abstract from unimportant details, such as the size
of a square on the checkerboard and its material. Other details may or may
not be represented, for instance, whether we speak of a checkerboard of size
8×8, or arbitrary size 2n×2n, or arbitrary finite size, or arbitrary size. Perhaps
astonishingly, this easy problem exemplifies a wide range of problems involved.

Different formalizations are used all the time, and certain standard transla-
tions, such as different versions of relativization in sorted logic, representations
of equality in a logic without equality, reification of higher order expressions in
first order logic, or functional versus predicative formalizations, are used quite
regularly when representing problems formally. Often certain relationships be-
tween different formalizations are proved by a meta-logical argument (e.g., the
sort theorem for the relativization).

There is also a very general mechanism how different representations can be
linked to each other. Farmer et al. [10,11] have introduced a theory mapping in
their little theories approach. One representation can be mapped faithfully to
another if the axioms of the one become theorems in the other in a systematic
translation.

Two major challenges follow from the mutilated checkerboard problem for
mathematical knowledge management. Obviously the problem is not restricted
to this particular problem, but a general one.

Firstly, if a system is told that H96 represents a proof for the mutilated
checkerboard problem, how can it automatically check that this is so indeed.
Secondly – even more difficult – if a system is given a problem such as the
mutilated checkerboard problem, how can it find relevant information which
may be given in forms so diverse as M64a, M64b, M95, P96, H96, or KP05.

The second problem may be eased by proper annotations. The first in its
full generality can be arbitrarily hard. While retrieving and relating information
given in different shapes seems a core activity not only in mathematical knowl-
edge processing, the ways in which mathematical information is transformed is
very rich. A good representation is one that is simple and at the appropriate
level so that it captures the main ideas of the proof.

What is appropriate is, however, not independent of the actual user. An argu-
ment about cardinalities, for instance, requires at least some basic knowledge of
the concepts by the user. Huet’s elegant proof remains obscure to somebody who
does not know anything about the relationships between injective and surjective
mappings on finite sets of the same cardinality, and so on.

As Ayer [12, p.85f] puts it “A being whose intellect was infinitely powerful
would take no interest in logic and mathematics. For he would be able to see
at a glance everything that his definitions implied, and, accordingly could never
learn anything from logical inference which he was not fully conscious of already.”
Everything is trivial for such a being. Experts may do with some easy arguments
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on a high level, while beginners need low-level lengthy arguments at a low level.
The relationships between the different levels are often syntactic, but can be
complicated in detail.

A truly helpful system would not only find relevant information but also
present it to a user on an appropriate level. A good understanding of typical
transformations is an important step toward such a system.
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Abstract. Unlike computer algebra systems, automated theorem
provers have not yet achieved considerable recognition and relevance in
mathematical practice. A significant shortcoming of mathematical proof
assistance systems is that they require the fully formal representation
of mathematical content, whereas in mathematical practice an informal,
natural-language-like representation where obvious parts are omitted is
common. We aim to support mathematical paper writing by integrating
a scientific text editor and mathematical assistance systems such that
mathematical derivations authored by human beings in a mathemati-
cal document can be automatically checked. To this end, we first define
a calculus-independent representation language for formal mathematics
that allows for underspecified parts. Then we provide two systems of rules
that check if a proof is correct and at an acceptable level of granularity.
These checks are done by decomposing the proof into basic steps that
are then passed on to proof assistance systems for formal verification.
We illustrate our approach using an example textbook proof.

1 Introduction

Unlike computer algebra systems (CASs), mathematical proof assistance sys-
tems have not yet achieved considerable recognition and relevance in mathe-
matical practice. Clearly, the functionalities and strengths of these systems are
generally not sufficiently developed to attract mathematicians on the edge of re-
search. For applications in e-learning and engineering contexts their capabilities
are often sufficient, though. However, current systems suffer from several major
drawbacks. First, instead of supporting the language the mathematician is used
to, most systems impose their own formal language on the user and require a
machine-oriented formalization of the mathematical content to allow for pow-
erful automatic inference capabilities. As a result, the line of reasoning is often
unnatural and obscured. Next, the proofs are at a level of excruciating detail
spelling out many logically necessary steps, which a human would nevertheless
consider trivial or obvious. Thus, the proofs are often illegible and incompre-
hensible. Finally, the acceptance of mathematical assistant systems would be
increased by integrating them with scientific WYSIWYG text editors. Indeed,
current word processors regularly employ spell checkers to check the correct
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spelling of the words and sometimes grammar checkers to check the correct
application of the grammar rules in the sentences. Our aim is to support the
practice of mathematical paper writing in the scientific text editor by employ-
ing proof assistance systems that provide definitions, lemmas and theorems from
mathematical databases and automatically check the derivations spelled out in a
mathematical document. The vision is to achieve the possibility to verify math-
ematical documents fully automatically. We envision a scientific text editor that
allows the author to write semantically annotated mathematical content. The
semantic annotations can then be exploited to generate a formal representation
of the mathematical content (cf. Autexier et al. [2]), which allows for further
automatic processing. The first step towards this end is to provide the formal
language that can represent human-authored mathematical content.

Since the 1960ies, the Automath project [9] has been addressing the problem
of developing a formal language with a natural-language-like syntax that allows
both for the exact formalization of mathematical content and for the easy read-
ing and authoring of the documents by mathematicians [8]. Whereas the original
Automath language is very mechanical and thus tedious to author, its deriva-
tives Mathematical Vernacular [4], Weak Type Theory [10] and MathLang [7]
are close to a natural language. Since the 1970ies, the Mizar1 project aims at
supporting mathematical publications by means of a formal language that al-
lows for automatic consistency checks of documents and for references to other
articles published in the same formal language. A similar, more recent approach
is taken in Isabelle/Isar [11], where proofs can be entered in a formal language of
mathematics, which are readable for both human and machine (in fact, the Isar
language is very similar to Mizar’s language [14]). In another approach in the
same tradition, Abel and colleagues [1] present a formal language for first-order
intuitionistic logic used in a tutorial system for intuitionistic logic. The student
writes proofs directly in this language, which are then automatically checked
using a system of proof checking rules for intuitionistic logic.

A more sophisticated approach with respect to human readability is taken in
the grammatical framework [12], a formalism based on a typed λ-calculus that al-
lows for the definition of context-free grammars for fragments of natural language.
However, only simple linguistic structures can be captured in this approach.

The major drawback of these approaches is that they do not sufficiently suc-
ceed in combining two diverging requirements, namely automatic processibility
and readability. Automatic processing requires exact formalization, which in turn
requires many details that humans consider obvious or trivial. Whereas detailed
steps can be abstracted from in formal proofs by using lemmas, all steps must be
included in the formal proof, even if they are easily inferable by the human user.
Conversely, because of the omission of easily inferable steps, human-authored
derivations often turn out to have gaps when scrutinized formally. The men-
tioned systems sacrifice the readability in favor of the processibility.

Therefore, we suggest a formal representation language for human-authored
proofs where the gaps are filled in by underlying proof assistance systems

1 http://www.mizar.org
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(without committing ourselves to a specific prover or proof procedure). This
formal language mediates between the semantically-annotated natural language
representation of the mathematical document in the scientific text editor, where
the user enters his input, and the logic representation required by proof assis-
tance systems that check the mathematical content of the documents and fill in
gaps. The core idea is to define a formal language that allows for underspecified
parts and two systems of rules that check if a proof is correct and at an accept-
able level of granularity. These checks are done by decomposing the proof into
basic steps that are passed on to proof assistance systems for formal verification.

Clearly, which level of granularity is acceptable depends on many factors, the
most prominent ones being the knowledge and skills of the intended audience,
the mathematical theory the proven theorem belongs to and the personal style of
the author. We do not cope with these factors in this paper, but define one spe-
cific level of granularity based on Hilbert’s ideas [5] to demonstrate how a specific
notion of granularity can be captured by constraining the proof checking rules.

This paper is organized as follows: We start with an overview of our approach.
Then, we introduce our formal language for human-oriented proofs, and define
a proof checking system for the proofs in that language. Finally, we experiment
with means to formally capture notions of granularity. More specifically, we
investigate how granularity can be defined as a restriction of the proof checking
system.

2 Our Approach

Since many details of a proof, although logically required for a correct deriva-
tion, are considered obvious or trivial by human beings, they should be omitted
from the proof. For our purposes, we capture the level of granularity using the
following two distinct aspects:

First, the level of concept, at which a proof is done, can be described in terms
of the definitions and theorems that can be used in the proof. More precisely, we
can identify a mathematical theory, to which the theorem that is being proved
belongs, as a logical collection of axioms, assumptions, definitions, lemmas and
theories (collectively called assertions) as well as proofs. We consider a whole
hierarchy of theories maintained in a mathematical database, where one theory
draws on underlying theories. Now, if the theorem we want to prove belongs to
some theory T , then we define the level of concept of the proof as the collection
of assertions in theories underlying T plus the assertions of T that logically come
before the theorem to be proved.

Second, the amount of detail in a proof refers to all facts and inference rules
that are explicitly mentioned in the proof. Human-authored proofs are often
imprecise in several respects, namely the used inference rule is not mentioned,
some of the premises needed for a step in the derivation are not mentioned, and
some steps of the derivation are completely omitted. That natural language texts
and utterances are inherently imprecise (i.e., several readings of a sentence are
possible) is a well-known phenomenon in linguistics, called underspecification.
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Thus, automated processing of the content of human-authored texts requires
the resolution of underspecification by singling out one possible reading.

Our work has been inspired by the work of Abel and colleagues [1], who worked
on a tutorial system for intuitionistic logic. In their approach, they defined a
linear syntax to represent first-order natural deduction proofs at the assertion
level in intuitionistic logic and combined it with a deductive system of proof
checking rules for that logic. Thus, the student can write proofs directly in
this language and the proofs are automatically checked for correctness. The
representation language, however, allows for one possible reading only.

In our approach, we adopt this idea of separating the representation lan-
guage from the set of checking rules. However, we extend the approach in two
dimensions:

First, we suggest a formal representation language for mathematical content
detached from any particular logic or calculus. This allows us to represent arbi-
trary content regardless of the underlying logic. Moreover, the language allows
us to represent both different levels of concept and underspecification and is thus
particularly well-suited to represent proofs that are authored in a natural way
by humans.

Second, we add two deductive systems, namely one for checking the correct-
ness of proofs and one for checking the level of concept. The former decomposes
the proof into basic steps, which either can be verified directly by one of the
rules of the system or is passed on to an external proof assistance system that
checks its correctness, and, if it is successful, provides a correctness proof. As
a side effect, underspecified parts of such a basic proof step are resolved. The
second deductive system similarly decomposes the proof into basic steps, but
now checks if the steps are justified using acceptable inference rules.

We envision that our approach can serve as a first step towards an integra-
tion of a scientific text editor with mathematical proof assistance systems. In
particular, the deductive systems show how mathematical proof assistance sys-
tems can be employed. To achieve the overall goal, however, many additional
problems must be tackled, most notably a natural language analysis component
that transforms the human-authored proofs into proofs in our representation
language. Thus, we require for the time being that the author enter semantically
annotated text by using LATEX-style macros. These macros can then be expanded
into a formal representation (cf. [2]), such as our representation language.

3 A Formal Representation Language

In this section we present the formal representation language for proofs (cf.
Fig. 1). The language accommodates the mostly linear structure of textual proofs
by representing complete proofs as a “;”-separated sequence of proof steps. In
order to account for the internal structure of the proofs, the language allows
for complex structures such as the introduction of subgoals or hypotheses, case
analysis and induction. In each proof step, which either introduces subgoals or
derives a fact, we distinguish in the syntax between the used concepts to justify
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S ::= A; S | Trivial | ε
A ::= Fact N : F by R∗ from R∗

| Subgoals (N : F)+ in S+ to obtain N : F by R∗ from R∗

| Assume H∗ in S to obtain N : F by R∗ from R∗

| Assign (VAR := TERM | CONST := TERM)
| Or(S‖ . . . ‖S)
| Cases F+ : (Case N : F : S End)+ to obtain N : F

H ::= N:F CONST ::= const N
| CONST: TYPE? VAR ::= var N
| VAR: TYPE?

R ::= (N, F, P) N ::= STRING | .
F ::= FORMULA | . P ::= POSITION | .

Fig. 1. The grammar of the formal proof language

that proof step (denoted by the keyword by in the language) and to which
premises or goals the concepts have been applied (denoted by from). Finally,
in order to support the linguistic analysis of mathematical documents, which
is not always able to uniquely categorize a given text fragment, we introduce a
nondeterministic branching over possible proofs (Or) to represent the different
alternative interpretations.

For the definition of the language we assume languages for formulas, terms,
and types referred to by the nonterminal grammar symbols FORMULA, TERM,

If A and B are sets such that x ∈ A implies that x ∈ B (that is, every element
of A is also an element of B), then we shall say that A is contained in B, or that
B contains A, or that A is a subset of B, and we shall write A ⊆ B or B ⊆ A.
[. . . ]
1.1.1 Definition Two sets A and B are equal if they contain the same elements.
If the sets A and B are equal, we write A = B.
[. . . ]
1.1.4 Theorem Let A, B, C, be any sets, then
[. . . ]
(d) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), [. . . ]
[. . . ]

In order to give a sample proof, we shall prove the first equation in (d). Let x be
an element of A ∩ (B ∪ C), then x ∈ A and x ∈ B ∪ C. This means that x ∈ A, and
either x ∈ B or x ∈ C. Hence we either have (i) x ∈ A and x ∈ B, or we have (ii)
x ∈ A and x ∈ C. Therefore, either x ∈ A∩B or x ∈ A∩C, so x ∈ (A∩B)∪(A∩C).
This shows that A ∩ (B ∪ C) is a subset of (A ∩ B) ∪ (A ∩ C).

Conversely, let y be an element of (A∩B)∪(A∩C). Then, either (iii) y ∈ A∩B,
or (iv) y ∈ A ∩ C. It follows that y ∈ A, and either y ∈ B or y ∈ C. Therefore,
y ∈ A and y ∈ B ∪ C so that y ∈ A ∩ (B ∪ C). Hence (A ∩ B) ∪ (A ∩ C) is a subset
of A ∩ (B ∪ C).

In view of Definition 1.1.1, we conclude that the sets A∩ (B ∪C) and (A∩B)∪
(A ∩ C) are equal.

Fig. 2. A textbook example
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and TYPE, respectively. In the proof language, ε denotes an empty (sub)proof
while Trivial indicates that the (sub)proof should be completed now, for in-
stance, if there is a formula that occurs both as a goal and a hypothesis. The
step “Fact N : F by R∗ from R∗” indicates that a fact F has been derived
from the objects referenced in the from slot using the objects referenced in
the by slot and has been assigned the name N. A reference consists of three
parts: the name of a formula, a formula and a position denoting a sub-object
of that formula or the one referenced by the name; each component of the
reference can be left open, which is made explicit by a period (“.”). Thus,
the sub-language for references explicitly allows for underspecification. A proof
step “Subgoals (N : F)+ in S+ to obtain N : F by R∗1 from R∗2” represents
the fact that we introduced a list of subgoals (N : F)+ for some previous goals
R∗2 and the proofs in S+ are the subproofs for these subgoals. Note that the
facts used to perform that goal reduction may be given in R∗1. A proof step
“Assume H∗ in S to obtain N : F by R∗1 from R∗2” is used to decompose goals R∗2
into the new hypotheses H∗ and the new goal F of name N. The hypotheses can be
either named formulas N : F, or new constants and variables, possibly with some
type. A proof step “Assign var x := t” allows us to assign a value t to some
variable x and “Assign const c := t” encodes the introduction of an abbrevi-
ation c for some expression t. The expression “Or(S1 ‖ . . . ‖ Sn)” describes a
situation, where the linguistic analysis identifies several possible interpretations
resulting in different possible proofs. Finally, case distinctions can be introduced
by the Cases construct, where for each formula ϕ in F+ there is exactly one
case n : ϕ. However, we consider case analysis as a derived construct that can
be encoded by Subgoals and Assume proof steps. Analogously, induction proof
steps can be defined.

To examine an example, let us consider an excerpt from Chapter 1 of the un-
dergraduate analysis textbook Introduction to Real Analysis [3], which is shown
in Fig. 2. For the purposes of this paper, we neglect the representation of the
notation, the definition and the theorem, and focus only on the given proof,

1. Assume . : x ∈ A ∩ (B ∪ C) in
1.1 Fact . : x ∈ A ∧ x ∈ B ∪ C by . from .;
1.2 Fact . : x ∈ A ∧ (x ∈ B ∨ x ∈ C) by . from .;
1.3 Fact . : (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C) by . from .;
1.4 Fact . : (x ∈ A ∩ B) ∨ (x ∈ A ∩ C) by . from .;
1.5 Fact . : x ∈ (A ∩ B) ∪ (A ∩ C) by . from .;
to obtain . : A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C) by . from .;

2. Assume . : y ∈ (A ∩ B) ∪ (A ∩ C) in
2.1 Fact . : y ∈ A ∩ B ∨ y ∈ A ∩ C by . from .;
2.2 Fact . : y ∈ A ∧ (y ∈ B ∨ y ∈ C) by . from .;
2.3 Fact . : y ∈ A ∧ (y ∈ B ∪ C) by . from .;
2.4 Fact . : y ∈ A ∩ (B ∪ C) by . from .;
to obtain . : (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C) by . from .;

3. Fact . : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) by Def1.1.1 from .;
4. Trivial

Fig. 3. An example representation
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which starts with “Let x be an element. . . ” The proof can then be represented
in our language as depicted in Fig. 3. Note that the labels of the proof steps are
only added for convenience and are not part of the representation language.

4 Proof Checking

Now, having a means of representing proofs, we also want to check the correctness
of the represented proofs. To this end, we propose a deductive system consisting
of eight rules that allow us to check the encoded proofs by recursively checking
each individual proof step starting from the first. For each individual proof step
we need to know all declared types and constants, collected in the signature, all
declared variables, collected in the context, and all visible hypotheses and pre-
vious goals, which both are lists of named formulas. The result of a successfully
checked proof step S is a set of facts derived by the subproof with S as its root.

The deductive system does not directly encode any specific calculus, but col-
lects proof obligations, called lemmas, for proof steps. These lemmas need to be
verified in order to establish the validity of the corresponding steps. For example,
a Trivial proof step gives rise to a lemma Γ =⇒Triv Δ, which states that from the
hypotheses Γ some goal in Δ follows “trivially”. Thus, we also have to provide
a specific proof strategy that decides if a proof step is trivial or not. An example
would be a simple check if some goal in Δ also occurs in Γ . In general, we allow
for specific strategies strat to establish the validity of a lemma Γ =⇒strat Δ.
For the purposes of this paper, however, we will not go into the details of the
strategies, but consider them as given (e.g., by a call of an automated theorem
prover such as the proof planner Ωmega [13]).

Formally, a signature Sig consists of a list of type declarations const τ : type
and constant declarations const c : τ :

Sig ::= ε | const τ : type,Sig | const c : τ,Sig

A context Ctx consists of a list of variable declarations:

Ctx ::= ε | var x : τ,Ctx

Now let Sig be a signature, Ctx a context, and S a proof. Furthermore, Γ and
Δ denote sequences consisting of named formulas N : F , abbreviations c ≡ t
and substitutions x ← t. The judgments are:

– Sig;Ctx; Γ 〈S〉Δ ↪→ Γ ′

Given the signature Sig, the context Ctx, the hypotheses in Γ and the open
goals in Δ, the (partial) proof S derives the facts Γ ′.

– P (Γ ′; Δ′) : Γ =⇒strat Δ
The proof strategy strat proves the lemma Γ =⇒strat Δ and returns the proof
object P (Γ ′; Δ′). This notation for the proof object indicates that the proof
requires the subsequences Γ ′ and Δ′ of Γ and Δ, respectively.

The deductive system for proof checking is given in Fig. 4, where an expres-
sion e means a sequence of expressions e1, . . . , en and � stands for the disjunctive
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union. Note that we explicitly refrain from fixing a specific logic in these rules,
as we envision the use of our language in different domains. Therefore, we pa-
rameterize the proof checking system over the calculus for the specific logic. The
connection to the calculus is established via the strategies for the lemmas arising
during proof checking.

The individual kinds of lemmas are Triv to establish proof steps considered
as trivial by the author, Fact to ensure the validity of derived facts, Subgoal to
prove valid goal reductions, Ass to show that the stated fact can be inferred
from some assumptions, Type to verify type correctness, and Subst to ensure the
admissibility of a substitution.

To illustrate some of the lemmas arising during proof checking, let SigG de-
note the general signature, which contains, among others, the symbols const A :
set, const B : set, const C : set, const ∪ : set × set → set, const ∩ : set × set →
set, and const ⊆: set × set → o. The initial context Ctx is empty, ΓG denotes
the logical context, in which the proof takes place, and contains, among others,
the Definition 1.1.1, the definitions of ∪ and ∩ (Def(∪), Def(∩)), and the abbre-
viating notation ⊆, which we denote by Abbrv(⊆)2. Furthermore, let ΔG be the
conclusion A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) of Theorem 1.1.4.

In order to check Step 1 of the proof, the rule Assume requires to first check the
subproof 1.1–1.5 where the context is augmented by the local variable x of type
elem and the local set of assertions contains the hypothesis . : x ∈ A ∩ (B ∪ C).
The proof checking of Step 1.1 is then as follows: Assume S′ are the proof steps
1.2-1.5, then the Fact proof checking rule is invoked as

SigG; const x : elem; ΓG, . : x ∈ A ∩ (B ∪ C)
〈Fact . : x ∈ A ∧ x ∈ (B ∪ C) by . from .; S′〉ΔG

Checking that proof step requires to check the following judgments (cf. the
rule Fact from Fig. 4):

1. We first have to check whether the given fact formula is actually deriv-
able from the current assertions (ΓG, . : x ∈ A ∩ (B ∪ C)) and the current
goal (ΔG). We pass the corresponding lemma to the strategy (indicated by
=⇒Fact) which we use to establish that lemma. The lemma is:

ΓG, . : x ∈ A ∩ (B ∪ C) =⇒Fact . : x ∈ A ∧ x ∈ (B ∪ C), ΔG

From the strategy (for instance a prover or a tactic) we require not only
to prove that lemma, but also to return a proof object P . From that proof
object we require that it must “rely” on the named formulas provided by the
references in the “by” and “from” (denoted as ΓR and ΔR) slots as well as
on the given fact (. : x ∈ A∧x ∈ (B ∪C)). The fact that they must occur in
the proof object is indicated by making them part of the arguments of P , i.e.

P (ΓR, Γ̃ ; , ΔR, Δ̃)
2 Assuming, for instance, a higher-order logic language for formulas and terms, the

abbreviation ⊆ could be written as ⊆≡ λA,B : set . ∀x : elem . x ∈ A ⊃ x ∈ B.
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In the present case there are no references, and hence ΓR and ΔR are empty.
The list Γ̃ (resp. Δ̃) denotes all further assertions from ΓG (resp. goals from
ΔG) on which the proof object P relies. Those lists provide us with the miss-
ing references. In our case the proof object is P (Def(∩), . : x ∈ A∩(B∪C); . :
x ∈ A∧x ∈ B∪C) which provides the non-specified reference to the definition
of ∩.

2. After checking the lemma, the proof checking recurs over the proof steps S′

by adding the new fact to the list of usable assertions, which is expressed by
SigG;CtxG, const x : elem; ΓG, . : x ∈ A ∧ x ∈ (B ∪ C) 〈S′〉ΔG. This returns
a list of facts Γ ′ derived in that subproof S′, which is denoted by ↪→ Γ ′. In
our case Γ ′ is . : x ∈ (A∩B)∪ (A∩C), . : (x ∈ A∩B)∨ (x ∈ A∩C), . : (x ∈
A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C), . : x ∈ A ∧ (x ∈ B ∨ x ∈ C) (in that order).

From that last list the result of the proof checking of the fact Step 1.1 are all the
named formulas derived in the subproof S′ plus . : x ∈ A ∧ x ∈ B ∪ C. This is
expressed by ↪→ N : F, Γ ′, which in the present case is . : x ∈ A ∧ x ∈ B ∪ C, . :
x ∈ (A ∩ B) ∪ (A ∩ C), . : (x ∈ A ∩ B) ∨ (x ∈ A ∩ C), . : (x ∈ A ∧ x ∈ B) ∨ (x ∈
A ∧ x ∈ C), . : x ∈ A ∧ (x ∈ B ∨ x ∈ C). This list is the result of the subproof
inside the Assume part and we denote this list by Γs. Validating the Assume
step then requires to prove the lemma

ΓG, . : x ∈ A ∩ (B ∪ C) ⊃

⎛⎜⎜⎜⎜⎝
. : x ∈ A ∧ x ∈ B ∪ C
∧. : x ∈ (A ∩ B) ∪ (A ∩ C)
∧(. : (x ∈ A ∩ B) ∨ (x ∈ A ∩ C))
∧(. : (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C))
∧. : x ∈ A ∧ (x ∈ B ∨ x ∈ C

⎞⎟⎟⎟⎟⎠
=⇒Ass . : A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C), ΔG.

The proof object for that lemma is P (. : x∈A∩(B∪C)⊃(
∧

F∈Γs
F ), Abbrv(⊆); . :

A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C)), and provides the missing references to the
abbreviation of ⊆ and the used premise . : x ∈ A ∩ (B ∪ C) ⊃ (

∧
F∈Γs

F ). The
result of proof checking this Assume-proof step consists of (1) the result Γ ′ ob-
tained from checking the remaining proof, (2) the obtained (named) formula . :
A∩ (B ∪C) ⊆ (A∩B)∪ (A∩C), and (3) all formulas derived in the subproof of
Assume, which are not dependent on any local variables. The latter is expressed
by the (schematic) formula (

∧
F∈Fm

var xk F ) ⊃ (
∧

F∈Γ
var xk
s

F ), where Γ var xk
s

expresses the filtering.3

Proof checking of the next Assume-proof step 2—inclusive its subproof—also
succeeds using the rules in Fig. 4. The set of derived facts up to before Step 3 is

– From Assume-proof step 1 we obtain Γ1 := . : A∩ (B ∪C) ⊆ (A∩B)∪ (A∩
C), ΓG.

– From Assume-proof step 2 we obtain Γ2 := . : (A∩B)∪ (A∩C) ⊆ A∩ (B ∪
C), Γ1.1.

3 Note that this way any substitution—expressed by an equation x = t—for a local
variable x inside the subproof of Assume is also removed.
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Checking the Fact -proof step 3 requires to establish the lemma

Γ2 =⇒Fact . : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), ΔG

Furthermore, we require from the proof of this lemma which is returned by the
strategy, that (i) it uses the goal formula . : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
and (ii) it uses the indicated Definition 1.1.1. This is expressed by

P (Def1.1.1, Γ̃ ; . : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), ΔR, Δ̃)

In this case, the used facts from Γ2 are those obtained in the Assume-proof steps,
i.e. Γ̃ is . : A∩ (B ∪C) ⊆ (A∩B)∪ (A∩C), . : (A∩B)∪ (A∩C) ⊆ A∩ (B ∪C)
(note that Δ̃ is empty). Checking the final Trivial -proof step reduces to establish
the lemma

Γ2, . : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) =⇒Triv ΔG

The lemma is trivially provable, since ΔG := Thm(1.1.4) : A ∩ (B ∪ C) =
(A ∩ B) ∪ (A ∩ C), which completes the proof checking of our example proof.

5 Granularity

In this section we investigate the problem how we can check that a proof is at a
specific level of granularity. Our focus here is how at all notions of granularity
could be captured formally, in order to design proof procedures that not only
check the correctness of a (partial) proof, but also if it is at a given level of
granularity. Knowing how granularity can be defined is a necessary prerequisite
before we can move on to analyze which level of granularity is appropriate in
which context and how it could be made user-adaptive.

In general, proof sketches can be at some specific, appropriate level of gran-
ularity, without being correct proofs. Conversely, a proof sketch can be correct,
but not at a desired level of granularity. In other words, the notion of granular-
ity and correctness do only overlap, but there is not necessarily a subsumption
relation in whichever direction. Comparing both notions with respect to the ex-
isting means for their formalization, there is a long tradition and a large class of
formalisms to represent correct proofs — one of them has been presented in the
previous section. On the contrary, there are to our knowledge neither formal-
izations to check whether a proof is at some specific level of granularity (aside
from, for instance, being a calculus-level proof), nor any other means to reduce
the inspection of the granularity to computation.

As we pointed out earlier, there is an overlap between correctness and granu-
larity. In this section we consider this overlap, since there we can hope to exploit
the available formalisms for correctness and adapt them to accommodate some
notion of granularity. However, it is not obvious a priori, whether any notion of
granularity can be captured simply by refining the notion of correctness. With
the work presented in the following we explore some aspects of that problem by
defining a notion of granularity through restricting the notion of correctness.
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Sig;Ctx; Γ 〈ε〉Δ � .
Empty

N ′ : F ∈ Γ or F is True.
Sig;Ctx; Γ 〈Trivial〉Δ � N : F

Trivial
Sig; Ctx; Γ Si, S′ Δ � Γ ′

i

Sig;Ctx; Γ Or(S1 ‖ . . . ‖ Sn); S′ Δ � Γ ′
i

Or

P (ΓR; N : F, ΔR) : ΓR =⇒Fact N : F, ΔR

Sig;Ctx; Γ, N : F 〈S〉Δ � Γ ′

Sig;Ctx; Γ Fact N : F by R from R′; S Δ � N : F, Γ ′
Fact

where ΓR and ΔR are respectively the subsets
of Γ and Δ denoted by R and R′ extended by
all substitutions and abbreviations.

var x : τ ∈ Ctx
Sig;Ctx =⇒Type t : τ
P : Γ =⇒Subst x ← t, Δ
Sig;Ctx; Γ, . : x ← t 〈S〉Δ � Γ ′

Sig;Ctx; Γ 〈Assign var x := t; S〉Δ � x ← t, Γ ′ Assign

P (ΓR, . : (F1 ∧ . . . ∧ Fk); N : F, ΔR)
: ΓR, . : (F1 ∧ . . . ∧ Fk) =⇒Subgoal N : F, ΔR

Sig;Ctx; Γ 〈S1〉N1 : F1, Δ � Γ1
. . .
Sig;Ctx; Γ 〈Sk〉Nk : Fk, Δ � Γk

Sig;Ctx; Γ, N : F S′ Δ � Γ ′

Sig;Ctx; Γ
Subgoals N1 : F1 | . . . | Nk : Fk

in S1 | . . . | Sk

to obtain N : F by R from R
′; S′

Δ

�N : F, Γ ′

Subgoals

where ΓR and ΔR are respectively the sub-
sets of Γ ∪ Γ1 ∪ . . . ∪ Γk and Δ denoted by
R and R′ extended by all substitutions and
abbreviations.

Sig;Ctx =⇒Type t : τ
const c : τ /∈ Sig

Sig;Ctx; Γ, c ≡ t 〈S〉Δ � Γ ′

Sig;Ctx; Γ 〈Assign const c := t; S〉Δ � Γ ′ Abbrv

xk /∈ Ctx
cl /∈ Sig
S, const cl : τl; C, var xk : τk; Γ, Nm : Fm 〈S〉Δ � Γs

P (ΓR, . : ( m
i=1 Fi) ⊃ ( F ∈Γs

F ); N : F, ΔR) :
ΓR, . : ( m

i=1 Fi) ⊃ ( F ∈Γs
F ) =⇒Ass N : F, ΔR

Sig;Ctx; Γ, N : F S′ Δ � Γ ′

Sig;Ctx; Γ
Assume var xk : τk, const cl : τl, Nm : Fm in S

to obtain N : F by R from R
′; S′ Δ � N : F, Γ ′

Assume

where ΓR (resp. ΔR) is the subset of Γ (resp. Δ) denoted by R and R
′

extended by all substitutions and abbreviations.

Fig. 5. What-You-Need-Is-What-You-Stated Granularity Checking Rules

The set of proofs which are accepted by the proof checking rules strongly
depends on the strength of the strategies used to discharge the arising lemmas
and on the knowledge, that is, facts and subgoals, the strategies can use during
the proof attempt. However, the strength of the strategies can not be controlled
at the level of our proof representation language. Moreover, finding and imple-
menting the right strategies is difficult as it strongly depends on the individual
authors. The only information we can control is which knowledge is actually
passed to the strategies, which in turn can be influenced via two criteria: (1)
The selection of locally available knowledge for the strategies and (2) the global
flow of knowledge between different parts of the proof. So far in the proof check-
ing rules (1) all locally visible assumptions and subgoals are used, and (2) all
possible derived facts from earlier proof steps are passed to subsequent proof
steps.

We now show how a specific, intuitive notion of granularity can be formalized
by imposing restrictions for (1) and (2). The notion of granularity we define here
is inspired by the assertion level proofs by Huang [6] and by a description of what
a proof is by Hilbert [5]. This level of granularity can intuitively be described
by What-You-Need-Is-What-You-Stated Granularity, that is, all necessary facts,
assertions and rules are stated explicitly in the proof and the proof is performed
at the assertion level. For instance, when we use some fact, we should have stated
it before explicitly and not assume it is inferable from the context.

To formally define granularity, we introduce the judgment

Sig;Ctx; Γ 〈S〉Δ � Γ ′

which intuitively means that given the signature Sig, the context Ctx, the hy-
potheses in Γ and the open goals in Δ, the proof S derives the facts Γ ′ at the
given level of granularity.
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The deductive system to check the granularity (cf. Fig. 5) is derived from
the proof checking system, by imposing restrictions with respect to criterion (1)
for Trivial, Fact, and Subgoals proof steps, and restrictions with respect to both
criteria (1) and (2) for Assume proof steps.

For the Fact and Subgoals proof steps, we restrict the rules by selecting from
Γ and Δ only those formulas that are explicitly referenced in the proof step
description, as well as all substitutions x ← t and abbreviations c ≡ t. Further-
more, we require that the proof object P returned by the strategy strat rely on
all the referenced formulas, that is, the deletion of any of these formulas renders
the lemma unprovable.

For instance, the Fact and Subgoals rules are strengthened by requiring that
the references R and R′ denote exactly the set of assumptions and conclusions
necessary to derive the new fact. Note that this requires all references to be
defined.

The Assume rule is strengthened similarly, but in addition we restrict the in-
formation flow to subsequent proof parts by omitting the formula . : (

∧m
i=1 Fi) ⊃

Γ var xk
s , as it is only implicitly known and not explicitly stated, and thus violates

the intuitive What-You-State-Is-What-You-Need condition.
The Trivial rule is restricted by removing the call to the Triv strategy. Instead

we require that either there is a trivially valid formula N : F in the accumulated
goals or one of the goal formulas occurs as an assumption. This makes this rule
analogous to an Axiom rule in a sequent-style calculus.

Let us consider again our example proof to illustrate the checking of the
granularity. If we check the granularity of the proof object given in Fig. 3,
the check fails. For instance, in Step 1.1, a reference to the definition of ∩ is
missing, and in Step 3 the references to the two derived subgoals are miss-
ing. Note that in Step 1 and 2 no information about ⊆ is needed, since Bartle
and Sherbert [3] introduced ⊆ as an abbreviating notation and not as a defined

In order to give a sample proof, we shall prove the first equation in (d). Let x
be an element of A ∩ (B ∪ C), then x ∈ A and x ∈ B ∪ C by the definition of
∩. This means that x ∈ A, and either x ∈ B or x ∈ C by the definition of ∪.
Hence we either have (i) x ∈ A and x ∈ B, or we have (ii) x ∈ A and x ∈ C by the
distributivity of “and” over “or”. Therefore, either x ∈ A ∩ B or x ∈ A ∩ C by
the definition of ∩, so x ∈ (A∩B)∪ (A∩C) by the definition of ∪. This shows
that A ∩ (B ∪ C) is a subset of (A ∩ B) ∪ (A ∩ C). (1)

Conversely, let y be an element of (A∩B)∪(A∩C). Then, either (iii) y ∈ A∩B,
or (iv) y ∈ A ∩ C by the definition of ∪. It follows that y ∈ A, and either y ∈ B
or y ∈ C by the definition of ∩ and the distributivity of “and” over “or”.
Therefore, y ∈ A and y ∈ B ∪ C by the definition of ∪ so that y ∈ A ∩ (B ∪ C)
by the definition of ∩. Hence (A ∩ B) ∪ (A ∩ C) is a subset of A ∩ (B ∪ C). (2)

In view of Definition 1.1.1, we conclude from (1) and (2) that the sets A ∩
(B ∪ C) and (A ∩ B) ∪ (A ∩ C) are equal.

Fig. 6. The patched textbook proof example
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concept, and abbreviations are globally visible to prove the lemmas arising during
granularity check.

Patching the proof object from Fig. 3 by including the missing references as
suggested by the granularity checker consists of: (1) the inclusion of the references
to the definitions of ∪ and ∩ for all but the last Fact proof steps, and (2) for
the last Fact proof step the inclusion of the references to the used premises.
Exploiting the relationship of the proof steps to individual sentences in the text,
we can propagate the additional information back into the textual representation.
The resulting proof is shown in Fig. 6, where the added text fragments are set
in boldface italics font.

6 Conclusion

In this paper, we presented a calculus-independent formal representation lan-
guage for human-authored proofs and two deductive systems that allow for
checking the correctness and the level of granularity of the proofs. This formal
language mediates between the semantically-annotated natural language repre-
sentation of the mathematical document in a scientific text editor, where the
user enters his input, and the logic representation required by proof assistance
systems that check the mathematical content of the documents and fill in gaps.
Using an example textbook proof, we showed how this proof is represented in our
language and checked its correctness and granularity. We based a first notion of
granularity on Hilbert’s approach that demands that everything that is needed
in the proof must be stated explicitly. This, however, resulted in the failure of
the granularity check of the example textbook proof, such that a patch was re-
quired that added missing references to used definitions and previously derived
facts.

Putting the patched proof under scrutiny, we see that it is now easier to
follow the line of reasoning in the proof. However, one could argue that the
proof now contains too many details. Therefore, we plan to enhance our notion
of granularity in order to allow for implicit references as well. To do so, we need
a flexible model of granularity that captures when a reference must be explicit
and when it can be implicit, which can only be obtained via empirical studies.

In addition to granularity, a notion of conciseness would be desirable, which
could be used to check if a proof is more involved than necessary. It is unclear,
though, how such a notion could be captured formally.

Yet, we envision the approach presented in this paper to be a first step to-
wards an integration of a scientific text editor with mathematical proof assistance
systems. In particular, the deductive systems show how mathematical proof as-
sistance systems can be employed via the strategies to prove raised lemmas. To
achieve the overall goal, however, many additional problems must be tackled,
among them the connection to a scientific text editor, and, most notably, a nat-
ural language analysis component that transforms the human-authored proofs
into proofs in our representation language.
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pages 37–50. Universitá degli studi di Siena, 2001.

2. Serge Autexier, Christoph Benzmüller, Armin Fiedler, and Henri Lesourd. Inte-
grating proof assistants as reasoning and verification tools into a scientific WYSI-
WYG editor. In David Aspinall and Christoph Lüth, editors, User Interfaces for
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Abstract. In mathematical textbooks matrices are often represented as
objects of indefinite size containing abbreviations. To make the knowl-
edge implicitly given in these representations available in electronic form
they have to be interpreted correctly. We present an algorithm that pro-
vides the interface between the textbook style representation of matrix
expressions and their concrete interpretation as formal mathematical ob-
jects. Given an underspecified matrix containing ellipses and fill symbols,
our algorithm extracts the semantic information contained. Matrices are
interpreted as a collection of regions that can be interpolated with a
particular term structure. The effectiveness of our procedure is demon-
strated with an implementation in the computer algebra system Maple.

1 Introduction

Mathematical texts often employ intuitive and diagrammatic representations to
adequately describe mathematical objects. Correctly interpreting these mathe-
matical representations and making them available to electronic mathematical
knowledge management is a crucial task for bridging the gap between informal
and formal mathematics. For instance in every day mathematical practice, ma-
trices are often not given as fully specified objects, but rather are of indefinite
dimension and are depicted with abbreviations and underspecified parts such as
ellipses. In this paper, we give an algorithm that enables the semantic interpre-
tation of a large class of underspecified matrices, and facilitates their translation
into a formal logical representation as well as their use in symbolic computation.

Our work is inspired by [7], which gives a taxonomy of different types of
matrices occurring in the literature with a treatment of some of them in an
automated reasoning context. While [7] focuses mainly on the proper represen-
tation of diverse matrix representations as formal lambda-calculus expressions
it also contains a preliminary study on how a limited number of elliptical con-
structs can be correctly interpreted as lambda expressions. In this paper we now
show how a much more general class of underspecified matrices can be repre-
sented as a mutually constrained set of linearly interpolated regions. We present
a novel parsing algorithm that can handle elliptical expressions, which reflect
those that can be found in mathematical textbooks. It returns a data structure
called an Abstract Matrix that captures the constraints implied by the textbook
representation. The resulting data structure can subsequently be used to gen-
erate a corresponding formal term in lambda-calculus. We have implemented

M. Kohlhase (Ed.): MKM 2005, LNAI 3863, pp. 111–125, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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our approach as a package in the computer algebra system Maple [1, 4]. As an
example of the kind of matrices our method can handle, consider the two ma-
trices below. While matrix (1) is relatively straightforward to deal with, matrix
(2) poses slightly more complicated challenges for its correct interpretation. In
particular, our algorithm will deduce that the matrix is, indeed, square and that
the diagonally opposite triangles are of equal size.

⎡⎢⎢⎢⎣
a1 b · · · b

0
. . .

. . .
...

...
. . .

. . . b
0 · · · 0 an

⎤⎥⎥⎥⎦ (1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 · · · a1,m e1,w b1,1 · · · · · · · · · · · · b1,s

... . .
.

. .
. . . .

. . .
...

an,1 . .
. . . .

. . .
...

ev,1
. . .

. . .
...

c1,1
. . .

. . .
. . .

...
...

. . .
. . .

. . . br,s

...
. . .

. . . ez,k

...
. . .

. . . . .
.

d1,u

...
. . .

. . . . .
.

. .
. ...

cp,1 · · · · · · · · · · · · cp,q ex,y dt,1 · · · dt,u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

The paper is structured as follows: We further motivate the particular is-
sues arising when interpreting abstract matrices in Sec. 2. We then give a brief
overview of the elliptical constructs and the input syntax we support (Sec. 3).
The algorithm described in Sec. 4 performs the initial parsing and uses a weighted
directed graph to construct a set of constraints on the lengths of the ellipses. A
second algorithm identifies all closed polyline regions bounded by ellipses and
concrete terms (Sec. 5). These in turn can be expressed by a set of constraints
and often be made more precise by taking into account information that can be
gained from terms defining endpoints of ellipses. The information is extracted
using a unification-like algorithm to generate generalised terms for the terms
on the boundaries of each region (Sec. 6). Finally, in Sec. 7 we present how
the results of our algorithm can be employed for constructing formal lambda
expressions.

2 Analysing Abstract Matrices

While computing with only partially specified matrices is mathematically rou-
tine, there is very limited automated support for this. Computer algebra systems
very efficiently deal with numerical or symbolic computations on concrete ma-
trices of nearly arbitrary size, but they offer little functionality in the area of
specifying matrices in terms of their general patterns without supplying all the
concrete values immediately. Maple [1, 4], for instance, provides functionality to
easily specify matrices with some predefined shapes, such as anti-symmetrical or
hermitian. However, their dimension has to be concretely given and the arbitrary
specification of shapes or combinations of shapes is not possible.

We introduce a new data type, which we call an Abstract Matrix that extends
the usual matrix data types to the style of matrix objects and expressions that
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frequently appear in mathematical texts: namely the dimensions of the matrices
may be unknown and the matrix may include ellipses and fill terms. An abstract
matrix, therefore, can be seen as a template for a class of concrete matrices that
could be instantiated from the abstract matrix. For example matrix (1) can be
considered as a template of the class of all square matrices of the above shape.
The concrete instantiations for dimension n where 1 ≤ n ≤ 4 are then

(a1),
a1 b
0 a2

,
a1 b b
0 a2 b
0 0 a3

,

a1 b b b
0 a2 b b
0 0 a3 b
0 0 0 a4

.

It is not sufficient to attempt to capture the nature of the expandability of
an abstract matrix merely by considering the ellipses in isolation. The regions
bounded by the ellipses must also be dealt with. We therefore choose a repre-
sentation for abstract matrices that consists of a set of regions. These regions
correspond to the expandable triangles or rectangles that are commonly seen in
matrix terms in mathematical text books. However, for full generality, we allow
regions to correspond to arbitrary closed polylines in the input matrix expres-
sion and support the degenerate cases of single ellipsis (i.e., one-dimensional)
and single term (i.e., no ellipsis) regions.

The defining characteristic of a region is that there is a single template, which
we call a generalised term, for the terms that can fill the region as it is expanded.
If the generalised term is a simple constant, it can be entered in all the matrix
cells created as the region is expanded. However, the situation is more complex
if the contents varies over the region. Here, common mathematical practice is to
specify a sequence of terms, following a simple pattern, by specifying the terms
at either end of an ellipsis, e.g., 1, . . . , n, or a1

n, . . . , an
1 . These patterns are almost

always in the form of a general term with sub-terms which vary linearly as the
ellipsis is expanded.

To cope with such patterns, we allow generalised terms to contain variables
called unification variables. These generalised terms must be unifiable with the
concrete terms at the ends of the ellipsis. Thus, as an ellipsis is expanded, the
resulting cell contents can be filled with a generalised term whose unification
variables are instantiated by interpolating values for them from the relative
position of the cell in the expanded ellipsis and the corresponding values that
the unification variables must have at the start and end of the ellipsis in order
to match the pattern specified.

This is satisfactory for individual ellipses, but there remains a problem for
regions enclosed by a closed polyline of ellipses. Here the same generalised term
should be used to fill in the expanding region as fills in the cells along each
boundary ellipsis. This is only possible if the generalised term is unifiable with
all concrete terms on the boundaries of the region and, furthermore, if all the
ellipses along the boundary are mutually compatible with the generalised term.
Since we restrict these patterns to linear sequences, this corresponds to requir-
ing, for each unification variable in a region, all 3-dimensional points defined
by the row number and column number of the expanded matrix cell and the
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interpolated value of the unification variable, to fit on a common plane. Deter-
mining if the boundary ellipses of a region are mutually compatible consists of
checking, for each unification variable in the generalised term for the region, that
the 3-dimensional points obtained as described above for the terms on the ends
of the boundary ellipses do, in fact, sit on the same plane.

In an abstract matrix, not only do we not know the length of the ellipses, but
we often do not concretely know the location of either of the end cells of an ellipsis
because those locations will typically depend on the length of other ellipses in the
matrix. For this reason, our cell locations have to be defined as integer expressions
on ellipsis length variables. These locations we call generalised positions.

Thus our regions have three parts: (a) a closed polyline of generalised posi-
tions, (b) a generalised term with a number (possibly 0) of unification variables,
and (c) for each concrete term on the boundary of the region, a structure con-
taining the generalised position of the term and the list of instantiation values
that corresponds to each unification variable of the generalised term.

We have implemented a parsing algorithm that constructs the abstract matrix
data structure from the input syntax defined in the next section. The algorithm
has to (a) identify the ellipses in the input matrix, (b) construct the generalised
positions of each concrete term in the input matrix as functions of the lengths of
the ellipses, (c) identify regions by finding minimal closed polylines in the graph
of ellipses and concrete terms, (d) apply a unification-like algorithm to all the
concrete terms on the region boundary to construct disagreement sets from which
the generalised terms and corresponding instantiation values can be derived, and
(e) package the results up into an abstract matrix object. The lambda calculus
expression generation algorithm then takes an abstract matrix, finds appropriate
interpolation functions for its regions and generates a lambda calculus expression
suitable for use in other mathematical knowledge management tools such as
theorem provers, mathematical knowledge bases etc.

3 Syntax for Abstract Matrices

In this section we define our concept of an abstract matrix by specifying what
types of ellipses are valid in our context. In the literature, there are many incon-
sistent ways of describing classes of matrices by patterns involving ellipses and
concrete terms. For our algorithm, and in particular for its Maple implemen-
tation, we have chosen one that is general enough to allow us to express most
matrix classes we have seen in a variety of texts on linear algebra and matrix
analysis (see [5] for example). However, it is restricted enough to allow for as
little ambiguity in the interpretation of the input as possible.

More formally we define an Abstract Matrix input term to be a rectangular
arrangement of symbols in rows and columns, where each symbol is either

1. an ordinary, or concrete term
2. a vertical, horizontal, diagonal, or anti-diagonal ellipsis
3. a single dot, or
4. a fill term.
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We generally refer to symbols of the type 2–4 as elliptic constructs. Ellipses of
type 2 are the ordinary suspension points “. . . ”. Every ellipsis must be termi-
nated at both ends by a concrete term within the confines of the input matrix.
Furthermore, the line of ellipsis symbols separating the two terminating concrete
terms of an ellipsis must all be the same and compatible with the direction of
the said line (e.g., a set of horizontal ellipsis suspension points could not be
followed directly by those of a vertical ellipsis). Any diagonal or anti-diagonal
ellipsis must be instantiated to a sequence of cells which have the same vertical
and horizontal extent.

A single dot can occur in exactly two different situations: (a) Inside a closed
polyline of ellipses and concrete terms it signifies that the region is filled homo-
geneously with terms determined by the boundary of that region. (b) If it occurs
next to a fill term or is only separated from a fill term by other single dots, it
denotes the expansion of that fill term into the region occupied by single dots.

A fill term, finally, denotes that a certain region in a matrix contains only this
particular term as elements. In the literature it is usually denoted as an enlarged
term. Fill terms can fill entire regions without explicit boundaries or can fill a
region that is bounded by terms dissimilar to the fill term. It is illegal to have
two different fill terms within the same region.

As examples for the different forms of elliptical constructs allowed in our
syntax we consider the following three matrices, where matrix (3) is the same
as matrix (1), only written with fill terms.

⎡⎢⎣a1 b
. . .

0 an

⎤⎥⎦ (3)

⎡⎢⎢⎢⎢⎣
1 · · · · · · 1
... . .

.
0

... . .
.

. .
. ...

1 0 · · · 0

⎤⎥⎥⎥⎥⎦ (4)

⎡⎢⎢⎢⎢⎣
1 · · · · · · 1
... 0 . .

.
0

... . .
.

. .
. ...

1 0 · · · 0

⎤⎥⎥⎥⎥⎦ (5)

In a concrete implementation we have to fix the syntax of our elliptical con-
structs as well as to impose certain requirements on the overall form of the
matrix. For our Maple implementation we still require the input matrix to be
rectangular but it may contain concrete terms as well as distinguished ellip-
sis symbols. The ellipsis symbols are hdots, vdots, ddots, and adots, which
correspond, respectively, to horizontal, vertical, diagonal and anti-diagonal el-
lipses. The single dot can be given by dot and a fill term such as 0 is specified
by the distinguished fill function: fill(0). Thus the above matrices could be
respectively entered in Maple as:

[[a(1) ,dot ,fill(b)],
[dot ,ddots,dot ],
[fill(0),dot ,a(n) ]]

[[1 ,hdots,hdots, 1 ],
[vdots, dot ,adots, 0 ],
[vdots,adots,adots,vdots],
[1 , 0 ,hdots, 0 ]]

[[1 , hdots ,hdots, 1 ],
[vdots,fill(0),adots, 0 ],
[vdots, adots ,adots,vdots],
[1 , 0 ,hdots, 0 ]]

4 Ellipsis Lengths

Initial parsing will have checked that the input abstract matrix is well formed
and will have identified all ellipses. However, we need to determine the lengths
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of all ellipses as functions of each other and of the dimensions of the intended
concrete instantiations of the abstract matrix. For example, the 3 ellipses in the
upper left triangular region of abstract matrix (4) are of length which is the
same as the width of the matrix, which is the same as height of the matrix. The
other ellipses are of length one less than the width of the matrix.

We call these equations structural constraints, as they involve equations on
ellipsis length and matrix dimension variables only and not on sub-terms of terms
in the cells of the matrix.

To discover this set of structural constraints, we consider all paths through
the matrix. Each path can traverse an ellipsis, paying a cost represented by the
length of the ellipsis, or can traverse a concrete term, paying a cost of 1. There
may be more than one sub-path found between any two positions in the matrix
and the equation extracted by identifying the costs on these different paths
contribute to a set of equations which, when simplified, provide the constraints
we seek.

The process works in two phases. The first phase is to construct a weighted
directed graph which represents all possible paths, as described above, through
the abstract matrix. In the second phase we analyse the graph to find pairs of
different paths between the same vertices.

4.1 Phase 1: Graph Construction

Consider the topmost row in abstract matrix (2). One might be tempted to
write the horizontal path across that row as a1,1 → a1,m → e1,w → b1,1 → b1,s

and define the horizontal cost of the path as e1 + 1 + 1 + e2 where e1 and
e2 are constraint variables representing the costs of traversing the two ellipses.
However, then the cost, when the constraint variables are eventually bound to
integers, would not correspond to the number of cells in the row because, for
concrete terms, we have counted the number of transitions from one cell to the
next instead of the number of cells (i.e. 1 for a non-expandable cell). Hence we
need to consider the costs as those of traversing between edges or corners of cells
instead of between centres of cells.

We construct a graph whose vertices represent the corners of the cells in the
input matrix. Thus cell (i, j) in the matrix has its upper left corner associated
with vertex 〈i, j〉 in the graph and its lower right corner associated with vertex
〈i + 1, j + 1〉. In our implementation we create the vertices lazily and do not
create any that have no edges incident on them. Each edge in the graph will
carry two weights: the horizontal cost of traversing the edge and the vertical
cost of traversing it. We then add edges as follows:

1. For each cell (i, j) in the input matrix containing a concrete term, we add
four edges: from top left to top right and from bottom left to bottom right,
both with horizontal weights 1 and vertical weights 0, and from top left to
bottom left and from top right to bottom right, both with horizontal weights
0 and vertical weights 1.

2. For each horizontal or vertical ellipsis, we add two edges: For a horizontal
ellipsis (i, j), . . . , (i, k) where k > j, we add the edges: 〈i, j〉 → 〈i, k + 1〉 and
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1,1

eWidth

eHeight

e1,1→1,4

e1,1→4,1

1,2

e1,1→4,1

1,3 1,4 1,5

e1,4→4,1

1 · · · · · · 1

2,1

e1,1→1,4

2,2 2,3 2,4

e2,4→4,4

2,5

e2,4→4,4

e2,4→4,2

.

.

.
·

. .
. 0

3,1 3,2 3,3 3,4 3,5

.

.

. . .
.

. .
. .

.

.

4,1 4,2

e4,2→4,4

4,3 4,4 4,5

1 0 · · · 0

5,1 5,2

e4,2→4,4

5,3 5,4 5,5

Fig. 1. Graph constructed for ellipsis length analysis for (4) (Edge weights not shown)

〈i + 1, j〉 → 〈i + 1, k + 1〉, both with vertical weight 0 and horizontal weight
encoded as a fresh variable ei,j→i,k.

For a vertical ellipsis (i, j), . . . , (k, j) we construct two edges 〈i, j〉 →
〈k + 1, j〉 and 〈i, j + 1〉 → 〈k + 1, j + 1〉, both with vertical weight 0 and
horizontal weight encoded as a fresh variable ei,j→k,j .

3. For each diagonal or anti-diagonal ellipsis, we add a single edge: For a diag-
onal ellipsis (i, j), . . . , (m, n) where m > i and n > j, we add a single edge
connecting the extreme vertices: 〈i, j〉 → 〈m + 1, n + 1〉 with both vertical
and horizontal weights encoded as the same fresh variable ei,j→m,n.

The anti-diagonal is constructed similarly as an edge from the extreme
top right corner to the bottom left corner except that the horizontal weight
is the negative of the vertical weight.

4. We add two extra edges to capture the width and height of the matrix.
If the input matrix has n rows and m columns, we add the edge 〈1, 1〉 →
〈1, m + 1〉 with horizontal weight eWidth and vertical weight 0 and another
edge 〈1, 1〉 → 〈n + 1, 1〉 with horizontal weight 0 and vertical weight eHeight .

In Figure 1, we show the graph constructed for the abstract matrix input (4).
The vertices are labelled with their names inside ovals. To show the relationship
with the original input matrix, the matrix cell terms are shown in their appropri-
ate position relative to their cell corners (which correspond to the graph vertices).
To improve readability, we have not shown the weights on the edges but simply
labelled the edges with their variable names if they have variable names. However,
edge weights are easily recoverable by applying the steps of the graph construc-
tion. Thus if we describe the weights as a pair (v, h) where v is the vertical weight
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and h the horizontal, then edge 1, 1 → 1, 2 has weights (0, 1), edge 1, 2 → 2, 2
has weights (1, 0), edge 1, 2 → 5, 2 has weights (e1,2→5,2, 0), edge 1, 5 → 5, 1 has
weights (e1,5→5,1,−e1,5→5,1) etc.

4.2 Phase 2: Graph Analysis

The resulting directed graph contains no directed loops; although it is not a tree
as it will contain paths that bifurcate only to rejoin further on.

We next perform a transitive closure on the relation. For each new edge we
produce in the operation, we compute a corresponding weight by accumulating
the weights of the component edges. For example, we combine the edge 1, 5 →
5, 1 with weight (e1,5→5,1,−e1,5→5,1) and edge 5, 1 → 5, 2 with weight (0, 1) to
produce a new edge 1, 5 → 5, 2 with weight (e1,5→5,1, 1 − e1,5→5,1). Similarly,
we combine the edge 1, 5 → 2, 5 with weight (1, 0) and edge 2, 5 → 5, 2 with
weight (e2,5→5,2,−e2,5→5,2) to produce a new edge 1, 5 → 5, 2 with weight (1 +
e2,5→5,2,−e2,5→5,2).

We then produce equations on the ellipsis lengths and matrix dimensions
by identifying the weights on different edges between the same pair of vertices.
From the previous example, we have two edges 1, 5 → 5, 2 so we obtain the two
equations e1,5→5,1 = 1 + e2,5→5,2 and 1 − e1,5→5,1 = −e2,5→5,2 by equating the
respective vertical and horizontal weights.

Finally we simplify the resulting set of equations to get our required con-
straints on the relative lengths of all the ellipses and the dimensions of the matrix.

5 Ellipsis Regions

As described in Sec. 2, an abstract matrix is a collection of regions where a
region is a closed polyline of generalised positions, with a generalised term,
possibly containing unification variables, and, for each concrete term on the
boundary of the region, the generalised position of the term and the instantiation
values, corresponding to each unification variable. In this section we describe the
algorithm to construct regions given the graph analysis results of the previous
section.

The polylines of a region correspond to the minimal ellipsis cycles that ap-
pear in the input matrices. For example, in abstract matrix (4), there are two
regions: the upper left 1 triangle and the lower right 0 triangle. We also inter-
pret single cells that are not terminal cells of any ellipsis as regions as well as
any single ellipsis that is not part of a closed polyline such as, for example,
the major diagonal ellipsis of abstract matrix (1). The size and position of a
concretised instantiation of a region can (and usually does) vary with the size
and other parameters specified when an abstract matrix is concretised. A re-
gion corresponding to a cell that is not a terminal cell to an ellipsis can not
vary in size, but can vary in position. A single ellipsis region can vary in size
only along its ellipsis direction whereas other regions can vary in size in two
dimensions.
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The algorithm starts by identifying, for each cell containing a concrete term,
a generalised position in the abstract matrix input. The generalised position is
simply a pair of expressions over integers, ellipsis length and dimension variables
(essentially one half of a structural constraint) that define the row and column
position index of the cell. The algorithm is essentially the same for finding the
row and for finding the column components of the generalised position, with
the obvious modifications, so we describe only that for the row. There are three
cases we must consider for the algorithm:

First — the column component of the generalised position is normally ob-
tained by finding, in the graph relation, any edge from a vertex on the left
boundary of the matrix to a vertex on the left boundary of this cell. The hori-
zontal weight on the edge is the required column component.

Second — under some circumstances, there may be no such edge: consider,
for example, a matrix consisting of two rectangular blocks side by side, where
the left block is defined by a fill term. In this situation, there may be no path in
the graph from the left edge of the matrix to a concrete term of the right hand
block in the matrix. In such a case, we can use any edge from a vertex on the
left boundary of the cell to a vertex on the right boundary of the matrix and
subtract the associated horizontal weight from the width of the matrix (which
is always available as the variable eWidth ).

Finally — there is one case where there might be no suitable edge at all, e.g., 3
side by side rectangular blocks where the two outside blocks are fill terms: in this
case the inner block “floats” horizontally in the matrix. Thus we need to introduce
a new unknown to capture the horizontal location of the cell. We do this in the
same way we introduced the eWidth and eHeight variables which capture the width
and height of the matrix: add a new edge to the graph terminating at the top left
vertex of the cell and with horizontal width set to a fresh variable. This edge is
slightly unusual, however, because it can not be anchored at any specific vertical
position. Otherwise it imposes constraints on the relative vertical position of this
cell and other cells in the matrix for whom no such constraint should be imposed.
Hence we provide a vertical weight of null on the edge, which is interpreted by the
graph transitive closure algorithm as a non-existent vertical edge. Now we can
safely anchor the source of the edge on the vertex 〈1, 1〉. Finally, we have to re-
execute the transitive closure operation and consequent constraint extraction and
simplification as described in Sec. 4 to integrate this new variable into our system
of equations and associate any other cells in the same floating section of cells with
the new variable.

Once we have obtained the required generalised positions, we need to identify
all regions in the input matrix. This is done by, for each ellipsis in the input
matrix, traversing the path obtained by taking the anti-clockwise-most sequence
of ellipses until we return to the starting point, then doing the same for the
clockwise-most path. The resulting collection of paths must have duplicate paths
removed and then form the set of region boundaries. Some ellipses may not
participate in closed paths and, instead, form one-dimensional regions.
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One final complication is that of regions defined by fill terms. Here we simply
start from a cell containing a fill term and proceed along a single direction until
we find a region boundary or the edge of the input matrix. We then use the
above path traversal algorithm to find the region boundaries as before but with
two modifications. The first is that, in the absence of an ellipsis along an edge of
the matrix which bounds the region, the edge of the matrix itself is taken as a
valid region boundary: this is not the case for non-fill regions where the absence
of a suitable bounding ellipsis is considered to be an error.

The second modification is that a fill region extends up to but not includ-
ing its boundary ellipses, unlike normal regions which share ellipses along their
boundaries. In the latter case a shared ellipsis belongs to both regions. This,
of course, does not cause a conflict because both regions would interpolate the
same terms for the cells instantiated from such an ellipsis. Finally it is an input
error if any region contains more than one fill term.

6 Generalised Terms

Regions contain a generalised term which may contain unification variables and
which must be unifiable with all concrete terms on the boundaries of the region.

Generalised terms are constructed using a unification-like algorithm, which
is an extended version of the one already mentioned in [7]. We impose certain
restrictions on generalised terms that are in line with those already mentioned in
Sec. 3. In particular, generalised terms are created purely with respect to syntac-
tical similarity in order to avoid the ambiguity of more sophisticated conditions.

The construction of generalised terms is based on a general unification algo-
rithm for first order logic [3, 9]. But, unlike regular unification, our algorithm
does not try to compute a most general unifier, but rather produces a mini-
mal disagreement set for the terms under consideration. Given a list of input
terms [t1, . . . , tn] (i.e., all the boundary terms of a given region) the algorithm
recursively constructs a disagreement set D and a generalised term t.

We first initialise the disagreement set D = ∅. We then recursively and simul-
taneously traverse the terms [t1, . . . , tn] as follows:

1. If ti = x for all i = 1, . . . , n and some term x, return x and D.
2. If t1 = x1, . . . , tn = xn where all the xi, i = 1, . . . , n are either integers or

variables (i.e., not functional terms), return a new variable symbol α and
D := D ∪ {α �→ [x1, . . . , xn]}.

3. If t1 = f(x11 , . . . , x1m), . . . tn = f(xn1 , . . . , xnm) for some function symbol
f of arity m and terms xij , i = 1, . . . , n, j = 1, . . . , m, then compute
generalised terms y1, . . . , ym together with disagreement sets D1, . . . , Dn

for the term lists [x11 , . . . , xn1 ], . . . , [x1m , . . . , xnm ], respectively, and return
f(y1, . . . , ym) and D := D ∪ D1 ∪ . . . ∪ Dm.

4. In all other cases fail.

If the algorithm succeeds, the returned generalised term can contain new variable
symbols of the form α, which we call unification variables. Each of these unifi-
cation variables has a corresponding mapping in the disagreement set, relating



Processing Textbook-Style Matrices 121

it to the different instantiations for the original terms. We call this mapping the
range of the unification variable. Note that we implicitly assume our unification
variables to be of integer type.

As an example, suppose we want to compute the generalised terms for the
following triangular region:

a1,1 · · · a1,m

... . .
.

an,1

The boundary terms a1,1, a1,m, an,1 would be given in our term representation as
a(1,1), a(1,m), and a(n,1). When applying our algorithm to these terms it first
considers case 3, since all terms are of functional type and have the same head
symbol a. Thus in the next recursion the algorithm tries to compute generalised
terms for the two sets [1, 1, n] and [1, m, 1]. For the former set we can apply
case 2, which introduces a new unification variable α. and the disagreement set
D1 = {α �→ [1, 1, n]}. Similarly, for the latter set we get a unification variable
β and a disagreement set D2 = {β �→ [1, m, 1]}. Thus the algorithm yields the
generalised term a(α,β) and D = D1 ∪ D2 as result.

The algorithm automatically also provides us with information on how to
instantiate the unification variables in order to regain the original boundary
terms. We call these the instantiation values for a particular term. For instance,
the instantiation values for a(1,m) would be [1, m].

After the generalised term for a region has successfully been computed, the
resulting disagreement set is checked for trivial inconsistencies, that is ranges
of unification variables in the disagreement set that are purely numerical and
would lead to non-integer indices for interpolating terms. For example, an ellip-
sis of the type a(1,2) · · · a(3,1) would be considered not valid, since the α of
an interpolated a(2,α) could not be integral. If any inconsistency is found the
matrix is rejected as invalid. If there are no inconsistencies, we take the instan-
tiation values for each boundary term and associate them with the generalised
position for the respective term.

Case 2 of our algorithm determines what kind of terms are allowed for the
range of an ellipsis. In its current form it only allows integers and single vari-
ables but no functional terms, even those containing only arithmetic operations.
For instance, we do not allow ellipses of the form x1 . . . xn+m. In the future, it
could be desirable to extend case 2 in order to allow a larger spectrum of terms.
However, the extensions would have to be done carefully in order to avoid ambi-
guities that could make it impossible to compute the actual size of ellipses and
regions.

7 Formal Interpretation of Abstract Matrices

At this point, the structure we have is a complete, fully analysed abstract matrix.
It contains a set of structural constraints and a set of regions, where each region
has been refined to include the instantiation values of the generalised term.
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If we now want to transform the matrix into a formal expression we have to
interpret the semantics of an abstract matrix by specifying the actual content of
each region. We do this by interpolating the terms of each regions in a manner
consistent with the terms along the boundary of the region and the generalised
positions in the matrix. This is trivial in the case where a region consists of
only a single (constant) term. However, in the case when the region has term
constraints attached (i.e., the generalised term has actual unification variables
that have to be instantiated correctly), interpolation is a non-trivial affair. The
result of the interpretation process is an expression in lambda calculus involving
if-then-else, which are of the general form presented in [7]. While the expressions
produced by our algorithm are simply typed, for clarity we explain them here
in untyped form. For instance, matrix (1) can be translated into the lambda
term:

λiλj if i = j then a(i)
if i < j then b
else 0

Thus the matrix is a function in the index variables i and j, the main diagonal
consists of a expressions, where a is a function in one index variable, and above
and below the diagonal we have the terms b and 0, respectively.

While the above representation of matrix (1) is relatively simple, in the general
case both the restrictions of the index function (the conditions in the if-then-else
expression) and the functions in the index variables (representing the terms of
the region) are far more complicated. Both can be treated independently. In the
following we describe the general idea of these algorithms using the upper left
triangle of matrix (2) as an example. The parsing algorithm constructs a graph
with 48 vertices and 82 edges and subsequently discovers that the diagonally
opposite triangles in the matrix are of the same size and that the matrix is
square. The relevant part of the shape structure for the triangle in question
consists of the following set of structural and sub-term constraints:

e1,1→1,3 = e1,1→3,1,
e1,3→3,1 = e1,1→1,3

(6)
[ [1, 1], [α, β] �→ [1, 1] ],
[ [1, r], [α, β] �→ [1, m] ],
[ [q, 1], [α, β] �→ [n, 1] ]

(7)

Here q, r represent the end points of the horizontal and vertical ellipses in the
respective generalised positions. In fact, from the structural constraints it imme-
diately follows that q = r and we can therefore restrict ourselves to only using q
in both expressions from now on. e1,1→1,3, etc. stand for the length of the ellipses
involved as explained in Sec. 4.

Restricting the index function: For each ellipsis we can give the index func-
tion for the regions on either side of it with respect to the generalised positions
for the endpoints of that ellipsis. The following diagram depicts the correspond-
ing general inequalities for our four different ellipses. The generalised positions
are denoted by the variables q1, q2, r1, r2:
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i−q1≥(j−r1)

i−q1≤(j−r1)

q2, r2

q1, r1

(i−q1)+(j−r1)≥(q2−q1)

(i−q1)+(j−r1)≤(q2−q1)

q2, r1

q1, r2

j≤r1

j≥r1

i≤q1

i≥q1

q1, r1

q2, r1

q1, r1

q1, r2

The index function can then be restricted to the region of a convex closed
polygon by simply conjoining the single inequalities on the interior of all ellipses
on the boundary (concave closed polygons pose other problems discussed below).
For our example region we can combine the inequalities for the three enclosing
polygons to obtain the condition j ≥ 1 ∧ i ≥ 1 ∧ i + j − 2 ≤ q − 1.

Interpolating the region: There still remains the question of how to inter-
polate over a two dimensional region. In our example, we have a triangle, but
we might have an arbitrarily shaped region with an arbitrary number of terms
specified on its boundary. We use a plane fitting algorithm to interpolate the
values independently for each unification variable of the generalised term. More
precisely, we treat each point of the region shape as a point in 3-d space, where
the row and column expressions correspond to the x and y dimensions and the
difference sub-term corresponds to the z dimension. We then solve for any three
non-colinear points of our shape the following standard plane equation:∣∣∣∣∣∣

x − x1 y − y1 z − z1
x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
i − x1 j − y1 p − z1

x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣∣ = 0

Solving this equation for p yields an interpolation function in the two index
variables i and j. In the case when we have more than one unification variable,
we have to find a different interpolation function for each variable by solving the
corresponding equations. If we have a shape that is determined by more than
three points, we compute interpolation functions using 3 non-colinear points and
see if they are consistent with the remaining points. If not, the given abstract
matrix is not valid.

In our example region we have three points given and have to compute two
interpolation functions, one for each of the unification variables α and β. Below,
the table on the left relates the x and y coordinates to the values of the unification
variables. Solving the equation of the plane on the right then yields the first
interpolation function p1(i, j).

x y α β
1 1 1 1
1 q 1 m
q 1 n 1

for α:

∣∣∣∣∣∣
i − 1 j − 1 p1 − 1
1 − 1 q − 1 1 − 1
q − 1 1 − 1 n − 1

∣∣∣∣∣∣ = 0 ⇒ p1 =
in − i − n + q

q − 1

Similarly we can compute an interpolation function p2(i, j) = jm−j−m+q
q−1 for the

unification variable β. This then gives us the part of the lambda expression for
the matrix that describes the upper left triangle in our matrix (2)
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λiλj if (j ≥ 1 ∧ i ≥ 1 ∧ i + j − 2 ≤ q − 1) then a( in−i−n+q
q−1 , jm−j−m+q

q−1 )
if . . .

Here q and n are free variables. Note that n = q does not necessarily hold since
we could, for instance, set q = 3 and n = −1 and would then get indices 1, 0,−1.
Subsequently we can compute the entire lambda term but omit it here to preserve
space. The computed lambda term is the most general function characterising
the given abstract matrix and contains all possible interpretations of the elliptical
constructs with respect to the variables given in the sub-term constraints. It is
therefore entirely possible that not all instantiations of q and n in the expression
will be meaningful in an intuitive sense (e.g., some instantiations might lead to
fractions as indices).

The algorithm can return a lambda expression for most matrices accepted
by our parsing algorithm, specifically, for all those where the non-degenerate
regions are convex. The interpolation function for a concave region is not a
problem as it depends only on being able to find 3 non-colinear points. However,
the expression for describing the interior of such a region does pose difficulties
because of the implied disjunctions which may depend on under-constrained
generalised positions. Our algorithm currently handles a number of cases for
concave regions. For example, if there is only one concave region, it can be left
to an else clause of the expression. We also handle some other special cases but
a general solution awaits further work.

Even if we cannot generate lambda expressions for every possible abstract
matrix, we can exploit our ability to interpolate over arbitrary regions by using
abstract matrices as templates for concrete matrices in Maple. This process,
called concretisation, consists of stepwise constraining the free variables and
interpolation function until a set of fully solved constraints is obtained. The set
is consistent if all regions can be interpolated such that all unification variables
are only instantiated by integer values of increment or decrement of one. For
more detail on the concretisation see [8].

8 Conclusion and Future Work

We have presented an approach to interpreting textbook style matrix expressions
to make them available for electronic mathematical knowledge management. Our
algorithm extracts the semantic information of abstract matrix expressions by
analysing the patterns formed by ellipses in the matrix and the terms that they
connect. This results in a set of constraints on the relative positions of regions
in a matrix, which can be exploited to construct lambda expressions for the
abstract matrix for further formal treatment and to compute concrete instances.
The implementation of our ideas in Maple demonstrates the feasibility of our
approach. It can handle matrices in a syntax that already very closely resembles
ordinary mathematical notation. Nevertheless, we do not allow for all possible
notational variations that can be found in the literature. One strand of future
work will be to extend the input syntax as to allow for more freedom combining
ellipsis. More significantly, our system can handle simple block matrices, but
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matrices where ellipses range over blocks rather than just terms, such as the
Jordan normal form, will require further work.

We believe that our work can then serve as a bridge between the direct in-
put of mathematical text via OCR methods and its computational treatment
in mathematical software systems such as computer algebra systems or theo-
rem provers. In this respect related to our work is the network based parsing
algorithm presented by Kanahori and Suzuki in [6] for the analysis of matrix
structures in the context of optical character recognition of mathematical texts.
It can analyse structural elements of a matrix, detect separate regions and com-
pute their size relative to each other using a system of simultaneous equations.
The algorithm does not, however, use any semantical information given in the
concrete elements of the matrix in order to further constrain the size of regions
and therefore does not lend itself easily to the type of concretisation of abstract
matrix objects as presented in this paper.

We have implemented the abstract matrix data type as well as the algorithm
to create concrete instances in a Maple package. The package is intended as
a first step towards more comprehensive computational treatment of abstract
matrices. In particular we intend to develop the algorithms for elementary op-
erations on and with abstract matrices, such as matrix addition, multiplication,
etc. Some preliminary work in this direction has been done by Fateman in Mac-
syma [2], in which indefinite matrices can be subjected to some basic algebraic
manipulations. While his matrices are indefinite in size, their elements are fixed
to one particular functional expression and cannot be of arbitrary composition.
Although Fateman presents some ideas how to exploit elliptic notation to en-
hance the display of indefinite matrices by using ellipses, the work does not deal
with having unspecified elements and ellipses as input in the first place.
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Abstract. A practically useful mathematical assistant system requires
the sophisticated combination of interaction and automation. Central in
such a system is the proof data structure, which has to maintain the
current proof state and which has to allow the flexible interplay of vari-
ous components including the human user. We describe a parameterized
proof data structure for the management of proofs, which includes our
experience with the development of two proof assistants. It supports and
bridges the gap between abstract level proof explanation and low-level
proof verification. The proof data structure enables, in particular, the
flexible handling of lemmas, the maintenance of different proof alterna-
tives, and the representation of different granularities of proof attempts.

1 Introduction

A careful and objective inspector of the history of automated theorem proving
in the last fifty years would come to the following hypothesis:

Stand-alone automated theorem provers will never develop into practi-
cally useful mathematical assistant systems.

To achieve the original design goal of a practically useful mathematical assistant
system, we aim at interactive systems with a high degree of automated sup-
port. To combine interaction and automation into a synergetic interplay and to
bridge between abstract level proof explanation and low-level proof verification
is an enormous task. It requires sophisticated achievements from logic, tactics
programming, proof planning, agent-based architectures, graphical user inter-
faces, and integration of other reasoning tools on the one hand, and a deeper
experience in informal and formal human proof construction on the other hand.

The main task of the proof data structure in the center of such a system is
to maintain the current states of the proof attempts with their open goals and
available lemmas. To further the communication between a theorem proving
system on the one hand and a human user, another system, or a proof archive
on the other hand, an appropriate representation and transformation of proof
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attempts is necessary. In this paper we describe a new proof data structure
(PDS ) for this purpose. It generalizes both the existing PDS (with its features
for granularity) of the Ωmega system [8, 16, 5] and the proof forests (with their
alternative proof attempts and lemmatization) of the QuodLibet system [3]
and incorporates the experience gained in the last dozen years.

The basic ideas are:

– Each conjectured lemma gets its own proof tree (actually a directed acyclic
graph (dag)).

– In this proof forest, each lemma can be applied in each proof tree; either as
a lemma in the narrower sense, or as an induction hypothesis in a possibly
mutual induction process, see [18].

– Inside its own tree, the lemma is a goal to be proved reductively. A reduction
step reduces a goal to a conjunction of sub-goals w.r.t. a justification.

– Several reduction steps applied to the same goal result in alternative proof
attempts, which either represent different proof ideas or the same proof idea
with different granularity (or detailedness).

Although the application of a lemma of one tree (generative step) results in a
reductive step inside another tree, we do not overemphasize reduction by this:

– For purely generative abstract theory expansion we may assume some trivial
reductions, which can later be refined to the reductions that will be neces-
sarily involved in this generation on the concrete level of a logical calculus.

– All steps in a traditional sequent or tableau calculus as well as backward and
forward steps in Natural Deduction can be realized as reduction steps.

A parallel representation of different granularities of proof attempts is necessary
for increasing granularity from proof sketches to the actual elaboration of the
concrete proofs, and for decreasing the granularity from huge automatically gen-
erated proofs to tactical descriptions of a size that can be stored and archived.
Moreover, the inspection of proof attempts by human users requires different
granularities and the possibility to switch between them for size management
and modular focusing according to their varying intentions and different exper-
tise. An important new feature compared to the existing PDS of the Ωmega
system is that granularity does not have to be linearly ordered: there may be
two incomparable subtrees that both represent a more fine-grained version of a
reduction step. Note that we do not have well-defined levels of granularity be-
cause we have no means (yet?) to define such levels from our experience, neither
as mathematicians nor as theorem-proving engineers.

Our novel data structure is generic insofar as it is parameterized in both the
justifications of the reductions (ranging from tentative hopes based on insecure
knowledge to inference steps in a formal logic calculus) and in the data type
of the goals, which may reach from sentences in natural languages to the proof
task data structure of the CORE system [10]. Note, however, that we cannot
distinguish yet between levels of abstraction realized by different data types for
goals. For example, we do not distinguish between different levels of abstraction
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in the language of our goals and have no means for signature morphisms at the
level of our PDS.

Although the above-mentioned tasks of the CORE system are not the subject
of this paper, they may help (in form of a concrete instance) to describe the form
of our novel PDS: Roughly speaking, a task is simply a disjunctive list of formulas
(i.e. the simplest form of a sequent in classical logic) with some augmentations
for different purposes, such as—among others—a distinction on one formula as
the focus, rendering the conjugates of the other formulas as context formulas to
be assumed when reasoning on the focus, such as a weight term for generating
the ordering constraints in applications of induction hypotheses, and such as
colorings for heuristic guidance.

The paper is structured as follows. We start in Section 2 with a brief summary
of the old data structures of the Ωmega and the QuodLibet systems and
motivate their unification and generalization in the new data structure. Section 3
provides a formal description of the new generic proof data structure. Its usage
is illustrated in Section 4 by a sample proof development. In Section 5 we give
our answer to the question on fundamental design alternatives and Section 6
concludes the paper.

2 Ωmega’s and QuodLibet’s Old Proof Data Structures

Ωmega’s Proof Data Structure. Ωmega (see [16] for an overview and a
list of further literature) is a mathematical assistant tool that supports proof
development in mathematical domains at a user-friendly level of abstraction.
It is a modular system in which supplementary subsystems are placed around a
central proof data structure (PDS) such that the subsystems can work together
to construct a proof whose status is stored in the PDS. The facilities provided
by the subsystems include support for interactive and mixed-initiative theorem
proving incorporating the user, proof planning, access to external systems such as
automated theorem provers and computer algebra systems, and proof expansion
to and proof checking at the basic level of an underlying logic calculus (which,
however, is of no interest to the human user of Ωmega). These facilities require,
in particular, the representation of proof steps at different granularities ranging
from abstract human-oriented justifications to logic-level justifications.

Technically speaking, the old PDS [5] is a dag consisting of nodes, justifica-
tions and hierarchical edges. Each node represents a sequent and can be open or
closed. An open node corresponds to a sequent that is to be proved and a closed
node to a sequent which is already proved or reduced to other sequents using an
inference rule R := A1...Ak

B . Such a rule says that from A1, . . . , Ak we can con-
clude B or reading it the other way round that B can be reduced to A1, . . . Ak.
Such an inference step is represented by a justification which connects sequents
A1, . . . Ak stored in nodes n1, . . . nk with a node nb containing B. If a node has
more than one outgoing justification, each of them represents a proof attempt
of the sequent stored in the source node, but at different granularity. These
have to be ordered with respect to their granularity using hierarchical edges.
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Fig. 1. Possible views of proofs at different granularities inside a PDS

A hierarchical edge connects two justifications j1 and j2 with the meaning that
justification j1 represents a more detailed proof attempt than justification j2.

If proofs of different granularity are linked together by hierarchical edges, the
user normally just wants to see one proof at a specific granularity. By selecting
the granularity for each node he gets a view onto the graph, called PDS-view.

An example is given in Fig. 1: It shows a node n which has two outgoing jus-
tifications j1 and j2, which are connected by an hierarchical edge from j1 to j2.
The user can decide whether to see the more detailed version of the proof given
by j1 (and its subtree t1) or the more abstract version given by j2 (and its
subtree t2). The different possible views are indicated by shading the respective
nodes and justifications.

QuodLibet’s Proof Data Structure. Although Ωmega’s old PDS can rep-
resent proofs at different granularity within one data structure, it still has some
weaknesses compared to QuodLibet’s PDS:

– Alternative proof steps cannot be represented. That is, it is not possible for
the user to tackle different proof ideas in parallel within the same proof data
structure. This holds for both the reduction of a goal to some sub-goals as
well as for the expansion of a complex proof step to a lower granularity. For
both cases different alternatives may exist whose parallel inspection should
be supported.

– An explicit handling of lemmas is not supported by Ωmega’s old PDS. That
is, it is one monolithic dag and lemmas cannot be maintained in separated
DAGs.

QuodLibet [3] is a tactic-based inductive theorem proving system for first-order
clauses. It does not pursue the push-bottom technology for inductive theorem
proving, but it manages more complicated proofs by an effective interplay be-
tween interaction and automation. Basically, the system does all the routine
work and asks the user as early as possible if intelligence or semantic knowl-
edge is needed. QuodLibet has been applied mostly successfully to nontrivial
mathematical research, e.g. the comparison of different formalizations of the
lexicographic path ordering and their properties.

The difference compared to the new PDS of the following sections is that the
proof forests of QuodLibet consist of real trees instead of dags and there are
no means for changing granularity. Although the user interface admits powerful
tactic programming, the proofs are always represented on the calculus level.
A decade ago, this seemed reasonable: The calculus was carefully developed over
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years of practical evaluation to meet the requirement of being as human-oriented
as possible, some of its inference steps would take ten to a hundred steps of other
calculi implemented for inductive theorem proving, and the system programmer’s
interface admits the addition of new inference rules for further coarse grain
inference steps, such as computation and decision procedures. In the current
improvement phase, however, it became obvious that the system’s restriction to
the finest grain is a problem growing with the power of the system, and that we
need the possibility for vast changes in granularity in the proof data structure.

3 Generic Proof Data Structure

The described features of the proof data structures successful in Ωmega and
QuodLibet are obviously orthogonal. Their combination and further gener-
alization, including a relaxation of the granularity restrictions—following the
guidelines of Section 1—result in a new proof data structure whose features ex-
ceed the features of its origins. In particular, the new data structure supports:

– the representation of alternative proof steps for both the reduction of a goal
as well as for the expansion of a complex proof step to lower granularity

– the structuring of proof parts (i.e. lemmatization) into separate but con-
nected parts of the data structure

– the generic representation of proof statements and justifications, biased nei-
ther to any specific calculus nor to any specific formalism for representing
abstract proof plans.

In the remainder of the section, we give a formal definition of the new generic
proof data structure. We start with a formal definition of the basic PDS. We then
formally define PDS-views and finally we extend a single PDS to conglomerates
of PDSs, so-called forests. Note that the major technical challenge to devise a
mathematically sound formulation was to consistently integrate alternative proof
steps for both alternatives for the reduction of goals as well as alternatives for
the expansion of a complex proof step to a lower granularity.

3.1 The PDS

Our basic PDS essentially is a directed acyclic graph (dag) whose nodes contain
the proof statements. The representation to be chosen for the latter is by no
means constrained in our framework. The PDS has two sorts of links: justifica-
tion hyper-links describe a relation of goal nodes to their sub-goal nodes, and
hierarchical edges point from justifications to other justifications they refine.

Definition 1 (PDS). A PDS is composed of nodes, justifications and hierarchi-
cal edges. Each such component x of a PDS is labeled with a pair label(x) = (c, t),
where c maintains arbitrary content and t ∈ N is a timestamp. The time infor-
mation enables us to define an order in which the objects have been created.
The content of the labels can be freely instantiated, for instance, with proof
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statements in the case of proof nodes or with names of proof rules, tactics, and
methods in the case of justifications. That is, our approach is parameterized over
this sort of information that is typically very specific to different proof assistants.
Formally, a PDS is defined as a triple P := 〈N ,J ,H〉 where
– N is a nonempty finite set of nodes. Each node n ∈ N has a label l, denoted

as label(n).
– J is a finite set of justifications. Each justification j ∈ J is a triple (s, T, l).

s ∈ N , T ⊆ N , and l specify the source, the targets, and the label of j.
They are denoted as source(j), targets(j), and label(j), respectively. We will
also denote justifications as s

l→ T . Generally, a justification s
l→ T rep-

resents a proof step in which proof node s is reduced to the nodes T by
application of the operator l. For each node n ∈ N , we define the set of
incoming justifications by In := {j ∈ J |n ∈ targets(j)}, and the set of out-
going justifications by On := {j ∈ J |source(j) = n}. The graph of J is
{(source(j), n)|j ∈ J ∧ n ∈ targets(j)}; we require it to be acyclic.

– We require that there exists exactly one node nr ∈ N with Inr = ∅, called
the root node.

– H is a finite set of hierarchical edges on J . Each hierarchical edge h ∈ H
is a triple (j1, j2, l). j1 ∈ J , j2 ∈ J , and l specify the source, the target
and the label of h. They are denoted as source(h), target(h), and label(h),
respectively. We will denote hierarchical edges also as j1

h→lj2. The graph of
H is defined as the set of pairs {(source(h), target(h))|h ∈ H}; we require it
to be acyclic. For all hierarchical edges j1

h→lj2 we require:

• source(j1) = source(j2) (i.e. hierarchical edges may only connect justifi-
cations sharing the same source node), and

• for each n2 ∈ targets(j2) there exists an n1 ∈ targets(j1) such that
(n1, n2) is in the reflexive and transitive closure of the graph of J (i.e.
j1 is the first proof step of a derivation that refines the proof step char-
acterized by j2).

As opposed to Ωmega’s old PDS, this definition supports alternative justifica-
tions and alternative hierarchical edges. In particular, several outgoing justifi-
cations of a node n, which are not connected by hierarchical edges, are OR-
alternatives. That is, to prove a node n, only the targets of one of these justi-
fications have to be solved. Hence they represent alternative ways to tackle the
same problem n. This describes the horizontal structure of a proof. Note fur-
ther that we allow sharing of refinements; i.e., two abstract justifications may be
refined by one and the same justification at lower levels. Sharing justifications
in refinements is motivated, for instance, as follows: Consider a justification j
which represents the call to an external system that generates a set of n dif-
ferent solutions, all represented in a single successor node of j with outgoing
alternative subproofs starting with j1 . . . jn, one for each solution. Then, for any
i ∈ {1, . . . , n}, we may abstract a coarse-grain justification ai corresponding
to a path starting with 〈j, ji〉, represented by a hierarchical edge from j to ai.
Not supporting the sharing of justifications would in this scenario require the
duplication of the justification j, which is both cumbersome and not adequate.
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From the problem-solving point of view we need to know if a problem—
including all its related subproblems—has already been solved or which sub-
problems still need to be solved. We introduce the following terminology to
distinguish the different situations:

Definition 2 (Open/Closed Nodes). Let P = 〈N ,J ,H〉 be a PDS and n ∈
N be a node of P . n is called locally closed if and only if there exists a j ∈ J
with source(j) = n and target(j) = ∅; i.e. n is justified without reducing it to
new subproblems. n is called tree-wide closed if it is locally closed or if there is
a j ∈ On such that all m ∈ targets(j) are tree-wide closed. The latter says that
n is justified by a reduction to subproblems m ∈ targets(j) which are all already
(recursively tree-wide) closed. A node is called locally/tree-wide open if it is not
locally/tree-wide closed.

3.2 PDS-View

Hierarchical edges construct the vertical structure of a proof. They distinguish
between upper layer proof steps and related derivations which refine them at a
more granular layer. This mechanism supports both recursive expansion and ab-
straction of proofs. A proof may be conceived at a high level of abstraction and
then expanded to a finer grain. As opposed thereto, abstraction means the process
of successively contracting fine-grain proof steps to more abstract proof steps.1

Furthermore, the PDS generally supports alternative and mutually incomparable
refinements of one and the same upper layer proof step. This horizontal struc-
turing mechanism—together with the possibility to represent OR-alternatives at
the vertical level—provides very rich and powerful means to represent and main-
tain proof attempts. In fact, such multidimensional proof attempts may easily
become too complex for humans to keep an overview as a whole. In particular,
since a human does not have to work simultaneously on different granularities
of a proof, elaborate functionalities to access only selected parts of a PDS are
useful. They are required, for instance, for user-oriented presentation of a PDS,
in which the user should be able to focus on the parts of the PDS he is cur-
rently working at, while being always able to choose whether he wants to see
more details for some proof step or, on the contrary, needs to be shown a coarse
structure when he is lost in the details.

We define in this subsection the notion of a PDS-view. A PDS-view extracts
from a given PDS only a horizontal structure of the represented proof attempt
at chosen granularities, but with all its OR-alternatives. As an example consider
the PDS fragments in Fig. 2. In the fragment on the left-hand side, the node n1
has two alternative proof attempts and each at alternative granularities. The
1 An application of recursive expansion in the Ωmega system is, for instance, proof

planning [14]. Proof planning first establishes a proof at an abstract level. After-
wards, to be proof checked, this proof plan may have to be expanded to a (very
granular) underlying calculus. An application of recursive abstraction in Ωmega is,
for instance, the abstraction of Natural Deduction proofs to assertion level proofs
which are better suited for presentation [9].
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Fig. 2. (a) PDS-node with all outgoing partially hierarchically ordered justifications,
and j1, j4 in the set of alternatives. Justifications are depicted as boxes. (b) PDS-node
in the PDS-view obtained for the selected set of alternatives j1, j4.

fragment on the right-hand side gives a PDS-view which results by selecting a
certain granularity for each alternative proof attempt, respectively. The sets of
alternatives may be selected by the user and define the granularity on which he
currently wants to inspect the proof. The resulting PDS-view is a slice plane
through the hierarchical PDS and is—from a technical point of view—also a
PDS, but without hierarchies, i.e. without hierarchical edges.

In the remainder of this subsection, we give a formal definition of a PDS-view.
First, we introduce some technical prerequisites.

Definition 3 (H-Induced Orderings < and ≤). Given a PDS S = 〈N ,J ,H〉
we define < to be the transitive closure of the graph of H and ≤ to be the reflexive
closure of <.

Note that < and > are well-founded orderings because the graph of H is acyclic
and finite.

A PDS-node can have multiple outgoing justifications, representing alterna-
tive proof attempts or proofs at different granularity. During the proof construc-
tion or presentation, we want to restrict this set of justifications to get a complete
set of alternatives at some specific granularity:

Definition 4 (Set of Alternatives). Let 〈N ,J ,H〉 be a PDS, n ∈ N , and
A ⊆ On a set of justifications for n.

– A is adequate if there are no k, k′ ∈ A such that k<k′.
– A is complete if for all k ∈ On there is a k′ ∈ A such that k≤k′ or k′≤k.

A is a set of alternatives for n if it is adequate and complete. Given j1, j2 ∈ On,
j1 and j2 are comparable, if j1≤j2 or j2≤j1; otherwise they are not comparable.

The adequacy property ensures that at most one descendant is selected for each
alternative, whereas the completeness property says that there must be at least
one.

For instance, the node n1 on the left-hand side of Fig. 2 has five outgoing
justifications. ≤ splits these justifications into 2 classes: {j1, j2} and {j3, j4, j5},
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where the elements of a class represent the same proof alternative but at a
different granularity. A set of alternatives for n is, for instance, {j1, j4}.

Definition 5 (PDS-View). Let P := 〈N ,J ,H〉 be a PDS, N = {n1, . . . , nm}
and let An1 , . . . , Anm be sets of alternatives for the nodes n1, . . . , nm respectively.
A PDS-view is a PDS 〈N ′,J ′, ∅〉 such that N ′ ⊂ N and J ′ ⊂ J are the smallest
sets with: (1) The root node nr of P is in N ′, (2) if n ∈ N ′ then An ⊆ J ′, and
(3) if s

l→ T ∈ J ′ then T ⊆ N ′.

From a procedural point of view the computation of a PDS-view is a recursive
process that starts at the root node nr of a given PDS. For each node contained
in the PDS-view, its set of alternatives are introduced as justifications of the
PDS-view. The target nodes of these introduced justifications are then added
to the nodes of the PDS-view etc. As an example consider the PDS-node and
justifications on the right-hand side of Fig. 2 which are the corresponding part
of the PDS-node on the left-hand side in the PDS-view.

Note that this definition of a PDS-view is not the only possible one. An alter-
native would be, for instance, to choose not only among hierarchical alternatives
but also among the vertical alternatives. The result would be a PDS-view that
contains neither hierarchical nor vertical alternatives.

3.3 Forests

We now extend the structure of a single PDS to a so-called PDS-forest, i.e. a
set of PDSs which can be interdependent, indicated by special links between
their graphs. The intuition is as follows: to prove a conjecture, further axioms,
lemmas and theorems—uniformly called lemmas—can be used. The lemmas are
either already proved or have been synthesized during proof search and are not
yet proved. To accommodate either situation, new PDSs which live in the same
forest as the PDS of the conjecture are introduced for the lemmas. A proof step
in some PDS can then be justified by a lemma by linking the justification link
to the root node the PDS for that lemma.

Definition 6 (Forest). Let I be an index set. A forest is a pair 〈(PDSi)i∈I ,F〉
where

– (PDSi)i∈I = (〈Ni,Ji,Hi〉)i∈I is a family of disjoint PDSs.
– F is a finite set of forest edges between PDSs. Each forest edge f ∈ F is

a pair (j, nr) consisting of the source source(f) = j, which is a justification
from some Ji, i ∈ I, and the target target(f) = nr, which is the root node
of some PDS PDSi′ , nr ∈ Ni′ , i′ ∈ I. We denote a forest link (j, nr) by
j nr.

Given a justification j ∈ Ji for some i ∈ I, the set of outgoing forest links for
that justification is denoted by Fj := {f ∈ F|source(f) = j}.

Applying a new lemma on some justification j in a PDS p results in introducing a
new PDS p′ with root node nr and a forest edge that connects j to nr. Although



A Generic Modular Data Structure for Proof Attempts 135

we intuitively apply lemmas to a goal stored in a node, a forest edge starts at
a justification of this node. This is necessary to determine in which alternative
the lemma is to be applied. The node n is eventually tree-wide closed by the
justification j, but n remains forest-wide open until the nr in the PDS p′ (just
as the target nodes targets(j)) are (forest-wide) closed.

Note that forest edges can produce cycles. This allows us to apply a lemma to
itself, which is needed to represent induction in the form of descente infinie [18].
Moreover, due to our AND-OR proof trees these cycles may refer to different
choices of AND proofs.

We now extend the notion of a PDS-view to the notion of a forest.

Definition 7 (Forest-View). Let 〈PDS,F〉 be a forest. A forest-view with
respect to some p ∈ PDS is a forest 〈PDS′,F ′〉, such that PDS ′ and F ′ are the
smallest sets with:

– The PDS-view for p is in PDS′.
– For all justifications j in some PDS-view from PDS ′ and for all forest edges

j nr ∈ F , nr ∈ p′:
j nr and the PDS-View for p′ are contained in F ′ and PDS′, respectively.

4 Sample Application

Our application of the proof data structure presented in this paper within the
Ωmega project instantiates the framework with so-called proof tasks ; i.e. they
become the nodes of our proof data structure. Tasks were developed originally to
represents proof situations in Ωmega’s proof planner Multi [13]. We extended
tasks as a general technique for “natural” reasoning with abstract steps [10].
That is, the task framework allows for all kinds of steps with tasks ranging
from formal steps like rewrite steps or definition expansion/contraction steps to
abstract steps involving computations of external systems or merely sketching
proof ideas and their flexible combination.

Proof tasks can be seen as sequents ϕ1, . . . ϕn � ψ1, . . . , ψm where there is
always one formula—the so-called focus—annotated as the currently active one.
The focus may be an antecedent or a succedent formula. For example, ϕ1, . . . ϕn �
ψ1, ψ2, . . . , ψm describes a task where we have the context ϕ1, . . . ϕn � ψ2, . . . , ψm

available for showing the focus � ψ1. In a user-interface we may want to present
tasks as

ϕ1, . . . ϕn

ψ1, . . . , ψm

and use colors to further distinguish antecedent and succedent formulas, e.g. the
negative formulas in red and the positive ones in black.

In the remainder of this section, we discuss the construction of a PDS with
tasks for the example theorem “

√
12 is irrational”. The general proof technique

we shall apply to this problem works as follows: Given is the conjecture “ j
√

l is
irrational”. Assume that j

√
l is rational. Then there are integers n, m, which have
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¬rat(
√

12) ¬rat(
√

12)
Island

rat(
√

12)

⊥

Fig. 3. PDS trees respectively after step 0 and step 1

no common divisor and for which holds that j
√

l = n
m . Derive a contradiction to

the assumption by showing that, indeed, n, m have a common divisor. Potential
candidates for the common divisor are the prime factors of l.

4.1 Proof Construction in a PDS

In a first step, we construct a PDS in the way a human mathematician would
like to prove the given conjecture; see the proof sketch above. This is supported
by so-called interactive island planning (see [17, 16] for details), a technique
that expects an outline of the proof and has the user provide main subgoals,
called islands. The details of the proof, eventually down to the logic level, are
postponed. Hence, the user can write down his proof idea in a natural way with
as many gaps as there are open at this first stage of the proof. Technically, in
our framework the islands are tasks and all justifications between islands state
island, i.e., they just indicate the intention that an island should follow from
several other islands.

Step 0. The proof starts with the initial task � ¬rat(
√

12) and the initial PDS
show on the left of Fig. 3.

Step 1. In the first step we introduce the indirect argument and reduce the ini-
tial task to rat(

√
12) � ⊥ in which we assume that rat(

√
12) holds and the basic

contradiction ⊥ is to be proved. This action extends the PDS to one viewed on
the right of Fig. 3 where the justification Island states that the action introduces
a new island node.

Step 2. In the second step we derive from the assumption rat(
√

12) that there
exist two integers n, m, which have no common divisors and for which

√
12 = n

m
holds. This action further refines the PDS to

¬rat(
√

12)
Island

rat(
√

12)

⊥ Island
rat(

√
12), int(n), int(m),

¬commondiv(n, m),
√

12 = n
m

⊥

with the new task rat(
√

12), int(n), int(m),¬commondiv(n, m),
√

12 = n
m �⊥.

Step 3 + 4. To complete the proof a common divisor is needed. Since 12 has
the prime factors 2 and 3 there are two potential candidates. Moreover, for each
candidate we have to show that both n and m are divided by it. This results
in the PDS (shown below) with OR-branches (outgoing edges of PDS-nodes, e.g.
rat(

√
12), int(n), int(m),¬commondiv(n, m),

√
12 = n

m � ⊥ ) and AND-branching (outgoing

links of justification nodes, e.g. Island ), where Σ abbreviates all so far available
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� ¬rat(
√

12)

Island

rat(
√

12) � ⊥

Island

rat(
√

12), int(n), int(m),¬commondiv(n, m),
√

12 = n
m � ⊥

Island

Σ � div(n, 3) ∧ div(m, 3)

Island

Σ � div(n, 3) Σ � div(m, 3)

Island

Σ � div(n, 2) ∧ div(m, 2)

Island

Σ � div(n, 2) Σ � div(m, 2)

assumptions: rat(
√

12), int(n),
int(m), ¬commondiv(n, m),√

12 = n
m . To accomplish a proof

we have now 2 possibilities:
either we solve the two tasks
Σ � div(n, 3) and Σ � div(m, 3),
which demand to prove that
both n and m have divisor
3, or we solve the two tasks
Σ � div(n, 2) and Σ � div(m, 2),
which demand to prove that
both n and m have divisor 2.

Step 5 + . . .. We omit the further construction of the PDS in detail and just
sketch the missing steps to derive a proof. We cannot show that both n and m
have divisor 2 in the given context. Hence, the right branch of the PDS does not
represent any progress. However, both n and m have divisor 3. From

√
12 = n

m
follows that m2 ∗ 12 = n2. Hence, n2 has divisor 12 and thus also divisor 3.
Then n also has divisor 3, since 3 is a prime number. This implies that n = 3 ∗ k
for an integer k. Substituting n by 3 ∗ k in the equation m2 ∗ 12 = n2 results
in m2 ∗ 12 = 9 ∗ k2. This equation can be simplified to m2 ∗ 4 = 3 ∗ k2. This
implies that m2 has divisor 3, from which follows that m has divisor 3 since 3 is
a prime number. The introduction of all these steps closes the left branch, i.e.
one alternative, of the last PDS and results in a closed PDS.

We want to remark that a proof along this idea can also be automatically
proof planned in Ωmega; for further details we refer to [16].

4.2 Proof Expansion in a PDS

So far, our proof has been developed and sketched only at an intuitive, abstract
level and logical details have been neglected. Verification of this proof requires
expanding it to a logic-calculus layer. How much “effort” this expansion causes
and whether it succeeds depends on the island steps and the gaps they represent.
In general, an island step can be arbitrarily difficult, so that each island step may
again represent a proof problem in its own right. Nevertheless, the expansion can
be supported by automated tools. For instance, automated theorem provers can
try to solve subproblems, computer algebra systems can perform computations,
and model generators can create counterexamples, which can point out missing
facts in the proof. We omit a detailed discussion of automated expansion support
here and refer the interested reader to [17] and [16]. Rather, we briefly discuss
the expansion of two steps in our current example PDS and sketch the resulting
extended and refined PDS.

¬rat(
√

12)
Island

rat(
√

12)

⊥

Expansion 1. Consider the first step in
the current PDS, which reduces the task
� ¬rat(

√
12) to the task rat(

√
12) � ⊥:
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� ¬rat(
√

12)

Island

rat(
√

12) � ⊥

Island

rat(
√

12), int(n), int(m),¬commondiv(n, m),
√

12 = n
m
� ⊥

Island

Σ � div(n, 3) ∧ div(m, 3)

Island

Σ � div(n, 3) Σ � div(m, 3)

Island

Σ � div(n, 2) ∧ div(m, 2)

Island

Σ � div(n, 2) Σ � div(m, 2)

ApplyLemma(Rat-Criterion)

rat(
√

12),∃y:int, z:int
√

12 = y
z
∧ ¬commondiv(y, z) � ⊥

Decomposition

h

¬I
h

� ¬rat(
√

12)

Island

rat(
√

12) � ⊥

ApplyLemma(Rat-Criterion)

rat(
√

12),∃y:int, z:int
√

12 = y
z
∧ ¬commondiv(y, z) � ⊥

Decomposition

rat(
√

12), int(n), int(m),¬commondiv(n, m),
√

12 = n
m
� ⊥

Island

Σ � div(n, 3) ∧ div(m, 3)

Island

Σ � div(n, 3) Σ � div(m, 3)

Island

Σ � div(n, 2) ∧ div(m, 2)

Island

Σ � div(n, 2) Σ � div(m, 2)

Fig. 4. (Left) Complete PDS for the running example with alternative proof attempts
and different layers of granularities. (Right) A possible PDS-View determined by se-
lection of a set of alternatives for each PDS-node in the complete PDS.

¬rat(
√

12)
¬I

rat(
√

12)

⊥

This step is already an instance of a proof
step on calculus level. Indeed, it is a nega-
tion introduction step (¬I). Hence, an ex-
pansion of this step simply results in a jus-
tification with ¬I deriving � ¬rat(

√
12) from task rat(

√
12) �⊥ by a calculus

step. The resulting PDS fragment is shown above.

rat(
√

12)

⊥ Island
rat(

√
12), int(n), int(m),

¬commondiv(n, m),
√

12 = n
m

⊥

Expansion 2. The second
step in the proof reduced
the task rat(

√
12) � ⊥ to

the task rat(
√

12), int(n),
int(m),¬commondiv(n, m),

√
12 = n

m � ⊥, which is represented by the PDS
fragment above. This step implicitly encapsulates the application of the theo-
rem that each rational number equals the fraction of two integers that have no
common divisor. In the database of Ωmega this theorem is called Rat-Criterion:

Rat − Criterion ::= ∀x : Rat. ∃y, z : int.
(
x = y

z ∧ ¬commondiv(y, z)
)

It says that for all rational x there exists integers y,z, which have no common
divisor and furthermore x = y

z .
The expansion of the abstract step makes the application of the Rat-Criterion

theorem explicit. This works as follows: The application of Rat-Criterion to the
assumption rat(

√
12) in the task rat(

√
12) � ⊥ derives the new assumption

∃y, z : int.
(√

12 = y
z ∧ ¬commondiv(y, z)

)
, which results in the corresponding

new task rat(
√

12), ∃y, z : int.
(√

12 = y
z ∧ ¬commondiv(y, z)

)
� ⊥. Decom-

position of the composed new assumption then derives the task

rat(
√

12), int(n), int(m), ¬commondiv(n, m),
√

12 =
n

m
� ⊥
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rat(
√

12) � ⊥

ApplyLemma(Rat-Criterion)

rat(
√

12), ∃y:int, z:int
√

12 = y
z ∧ ¬commondiv(y, z) � ⊥

Decomposition

rat(
√

12), int(n), int(m),¬commondiv(n, m),
√

12 = n
m � ⊥

Altogether the resulting ex-
panded PDS fragment at a lower,
more granular level has the form
viewed on the right. Depending
on the underlying basic calculus
these steps either present already
calculus steps or they can be fur-
ther expanded. For instance, in
the CORE system lemma appli
cation is already a basic step.

As opposed thereto, in the old Ωmega system lemma applications have to be
further expanded to derive Natural Deduction proofs.

The complete PDS maintaining simultaneously the initial abstract, less gran-
ular proof sketch and the lower, more granular verification of it is shown on the
left-hand side in Fig. 4. It also contains the hierarchical edges .

h→. which connect
the different vertical layers. It supports four different PDS-views which result
from alternative levels of granularity of the outgoing justifications of the initial
node � ¬rat(

√
12) and of the outgoing justifications of the node rat(

√
12) � ⊥ . Selecting

the upper justification for the set of alternatives for the first node and the lower
justification for the latter node results in the PDS-view shown on the right-hand
side in Fig 4.

5 Fundamental Alternatives for Modeling a PDS?

On a first glance, our modeling of a PDS may seem arbitrarily chosen among
fundamentally different possibilities and dual or isomorphic structures. After
deeper consideration, however, we believe that this is not quite the case:

Just as tasks are structured into proof attempts by recursive reduction to sub-
tasks, alternative proof attempts result from multiple reduction of the same task.
These can be considered as a hierarchy (Fig. 5): (1) multiple proof attempts, (2)
task reduction to subtasks within one proof attempt, and (3) task composition
from formulas.

Contrary to forms of political or juristic argumentation where total evidence
is the sum of the evidences of alternative “proofs”, in our area of application it
typically suffices to establish a task only once, simply because a second proof
does not give more evidence (under the current set of axioms) than a single one.

level subject subunits
connection
of subunits

reason for the modus of
the logical connection

1st Alternative Proof parallel reductions disjunctive area of application

2nd Reduction subtasks conjunctive
disjunctive normal form

together with level 1

3rd Task [signed] formulas disjunctive
conjunctive normal form

together with level 2

Fig. 5. Why the Logical Connections are not Arbitrary in Duality
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As multiple mathematical proofs (1st level, Fig. 5) are thus connected dis-
junctively, it is advantageous to connect the subtasks resulting from a reduction
(2nd level, Fig. 5) conjunctively, because the two levels together further the nor-
malization of proof constructions to disjunctive normal form, resulting in a cer-
tain style. On the one hand, this style helps human beings to understand foreign
proofs and maintain their own ones, and, on the other hand, makes it easier for
automatic proof heuristics to recognize the triggering structures and applicable
lemmas.

For the same reasons, it is advantageous to connect formulas inside a task
(3rd level, Fig. 5) disjunctively. Indeed, we do not know of the dual choice of a
conjunctive instead of a disjunctive connection of the formulas of a task in the
literature. By tradition, both in informal human mathematical practice (starting
form Aristotle’s syllogisms and ending with lemmas in a modern textbook) and
in formal logic calculi (Hilbert, resolution, Natural Deduction, tableau, sequent,
and matrix calculi), tasks have a disjunctive structure.

6 Conclusion

This paper describes the PDS, a new generic proof data structure, which orig-
inates from and extends the successful data structures of the Ωmega and
QuodLibet systems. Among its key features are:

– the representation of alternative proof steps for both the reduction of a goal
as well as for the expansion of a complex proof step to lower granularity

– the structuring of proof parts (i.e. lemmatization) into separate but con-
nected parts of the data structure

– the generic representation of proof statements and justifications, biased nei-
ther to any specific calculus nor to any specific formalism for representing
abstract proof plans.

The explicit introduction of hierarchical levels within one data structure sup-
ports the bridging between intuitive, abstract level proof development, proof
explanation and proof verification. Whereas proofs are typically developed and
presented at an abstract and intuitive level, proof verification typically requires
some underlying calculus at a very low granularity. The PDS provides, for in-
stance, the flexibility to perform alternative expansions of some abstract proof
steps to represent the same proof idea in different underlying calculi. Maintain-
ing simultaneously the proof at different levels of granularity accommodates, for
instance, proof explanation systems, which can start with a presentation of the
high-level proof, and on-demand generate presentations for expansions of some
chosen proof steps [7]. Furthermore, the hierarchies represent the parts of the
search space taken by automatic proof techniques, like for instance proof plan-
ning methods, tactics, and methodicals. Representing the search space as well as
explored alternatives to represent the branches of the search space is well suited
for debugging new proof techniques [6].

The PDS provides a flexible and general framework for storing and represent-
ing proofs under construction. However, the proof manipulations and refinements
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manipulating the PDS have to be determined and controlled by the proof system
making use of the PDS. This proof system has to handle and control operations
such as backtracking, instantiation of variables, collection of constraints etc.
Moreover, it has to decide about whether to allow and how to realize features
such as local definitions and cyclic structures in the PDS.2

Many proof assistants actually provide proof data structures, e.g. Coq [4],
Inka [11], Isabelle [15], NuPrl [12], TPS [1], and VSE [2] to mentioned only
a few. However, to the best of our knowledge none of them has been designed to
support such a horizontal and vertical representation mechanism for proofs as
presented in this paper.

We implemented the generic PDS described in this paper in Allegro Lisp
and defined a content independent XML format for exporting and importing
forests, trees, or parts of them. Furthermore, we are able to visualize our three-
dimensional graphs. For the interaction with the user, however, PDS-views are
essential.
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Abstract. In a problem solving process, a step may not result in the ex-
pected progress or may not be applicable as expected. Hence, knowledge
how to overcome and react to impasses and other failures is an important
ingredient of successful mathematical problem solving. To employ such
knowledge in a proving system requires a variety of behaviors and a flexi-
ble control. Multi-strategy proof planning is a knowledge-based theorem
proving approach that provides a variety of strategies and knowledge-
based guidance for search at different levels. This paper introduces rea-
soning about impasses as a natural ingredient of meta-reasoning at a
strategic level and illustrates the use of knowledge about failure han-
dling in the proof planner Multi.

1 Introduction

The typical proof search in automated theorem provers relies upon local search
criteria mostly referring to syntactic features of the current goal and assumptions
rather than analyzing a proof situation more globally. However, in order to find a
mathematical proof, more often than not the global context has to be observed,
e.g., the theory, the proof history, and different proof strategies.

Humans are able to employ such information in their theorem proving. When
an expected progress does not occur or when the proof process gets stuck, then
an intelligent problem solver analyzes the failure and attempts a new strategy.
As Schoenfeld suggests in his book on mathematical problem solving [15] “mon-
itoring the state of a solution as it evolves and taking appropriate action in the
light of new information” is a key skill for succeeding. This means, intelligent
humans do not rely upon pre-determined control only to guide their problem
solving. Instead, they draw upon a repertoire of heuristic knowledge how to deal
with different situations and to dynamically guide the solution construction.

Similarly, an automated theorem proving system can monitor the solution
process and can employ heuristic knowledge to reason about failed proof at-
tempts. This requires the system to have several problem solving strategies and
a flexible control, which can be guided by meta-reasoning about the overall prob-
lem solving situation.

The multi-strategy proof planner Multi offers such a knowledge-based meta-
reasoning and handles failed proof attempts as we will show in this paper. We
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describe several examples of meta-reasoning rules that analyze and exploit fail-
ures to guide proof plan manipulations and refinements. Conceptually, the fail-
ure reasoning is supported by the architecture of Multi, which clearly separates
reasoning at different levels and provides refinement and modification strategies
that can be flexibly combined. In Multi, failure reasoning is a natural ingredient
of control reasoning at a strategic level.

The paper is organized as follows. First, we briefly describe proof planning
with multiple strategies and its realization in the Multi system. Afterwards, we
motivate the research on failure reasoning with an example. Section 4 introduces
failure reasoning captured in general meta-reasoning rules. The role and use of
failure reasoning in Multi is illustrated for ε-δ-proofs in section 5. Although
we use ε-δ-proofs for illustration throughout the paper and explain the failure
reasoning with ε-δ-proofs, this meta-reasoning is general and applicable to other
domains as well as our empirical results in section 6 evidence. Section 7 concludes
the paper with a discussion of related work.

2 Background: Proof Planning with Multiple Strategies

Proof planning [4] is a theorem proving technique, which plans a proof at the ab-
stract level of methods, i.e., tactics enriched by explicit pre- and postconditions.
Methods result from the analysis of the common structure or common proce-
dures of a family of proofs. They can encode not only general proof steps but also
steps particular to a mathematical domain. Mathematically motivated heuristics
how to proceed are encoded in the control knowledge needed to search for the se-
quence or hierarchy of methods that results in a solution plan. Knowledge-based
proof planning [14] declaratively represents control knowledge as control rules.
They are evaluated at choice points in the planning process (choice of method,
choice of goal, etc.).

Knowledge-based proof planning also allows to integrate (theory-specific) con-
straint solving [16] and other (theory-specific) external solvers, among others for
the construction/instantiation of mathematical objects (e.g., the construction of
a real number that satisfies certain restrictions). For instance, proof planning
for ε-δ-proofs delegates simple equations and inequalities containing variables to
the constraint solver CoSIE , which checks the (in)consistency of the constraints
and collects consistent constraints. Thereby, the variables act as place holders
for still unknown terms, and CoSIE can compute instantiations for the variables
that satisfy the collected constraints. Such place holder variables are marked
with a superscript p throughout the paper.

Simple proof planning searches at the level of methods, i.e., it searches for
applicable methods and introduces the instantiated methods in the proof plan
under construction until all goals are closed. Typically, the planning is mono-
lithic in the sense that functionalities such as backtracking and instantiation of
variables are part of the planning and their control is hard-coded:

Backtrack one step in the plan, if and only if no method is applicable.
Instantiate variables only at the end, when all goals are closed.
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Multi-Strategy proof planning [13] extends proof planning by the additional
hierarchical level of strategies as well as by strategic control. It allows to flexibly
combine refinement and modification algorithms. The instantiation of the algo-
rithms’ parameters produces strategies, which can realize different behaviors of
the algorithm. Typical strategies are those running the algorithms for method
introduction, variable instantiation, and backtracking, i.e., decoupled and para-
meterized functionalities of the simple proof planning, realizing different kinds
of method introduction, backtracking and variable instantiation.

The parameters of the algorithm for method introduction include a set of
methods and a set of control rules. When such a strategy is executed, then the
algorithm introduces only steps that use the methods specified in the strategy.
The method-level control belongs to the strategy. That is, its choices are guided
by the control rules specified in the strategy. A parameter of the instantiation
algorithm is the function that determines how the instantiation for a variable is
computed. A parameter of the backtrack algorithm is the function that computes
a set of refinement steps that will be deleted from the partial proof plan.

Let us explain some strategies frequently occurring in ε-δ-proofs, i.e., in proofs
of conjectures about the limit or the continuity of a function f at a point a.

The standard definitions of limit, continuity, and the derivative of a function
postulate the existence of a real number δ, which may depend on an arbitrarily
chosen real number ε:

lim
x→a

f = l ≡ ∀ε(0 < ε ⇒ ∃δ(0 < δ ∧ ∀x(|x− a| > 0 ∧ |x− a| < δ ⇒ |f(x)− l| < ε)))

cont(f, a) ≡ ∀ε(0 < ε⇒ ∃δ(0 < δ ∧ ∀x(|x− a| < δ ⇒ |f(x)− f(a)| < ε))).

A mathematical ε-δ-proof of such a problem constructs a real number δ de-
pending on ε that satisfies certain (in)equalities.1 A systematic procedure for
discovering a suitable δ is the incremental restriction of its range. This includes
the reduction of complex (in)equalities to less complex ones, the simplest of
which can be propagated to range restrictions, and the determination of terms
which satisfy all the restrictions.

The mathematical strategies are mirrored for proof planning. The method-
introduction strategy SolveInequality corresponds to the reduction of complex
inequalities to simple ones. It successively produces simpler (in)equalities un-
til it reaches (in)equalities that are accepted by the constraint solver CoSIE .
Its methods ComplexEstimate, FactorialEstimate, and Solve* reduce
(in)equality goals of different kinds. The connection to CoSIE is established by
the method TellCS, which closes inequalities and passes them to CoSIE .

1 The construction of a δ is a non-trivial task for students as well as for traditional,
resolution-based automated theorem provers. Bledsoe proposed several versions of
the problem LIM+ (see next section) as a challenge problem for automated theorem
proving [3]. The simplest versions of this problem (problem 1 and 2 in [3]) are at
the edge of the capabilities of traditional automated theorem provers but the harder
versions are beyond their capabilities. More difficult problems such as Cont-If-Deriv
(see next section) cannot be proved by traditional provers.
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ComplexEstimate reduces inequality goals of the form |b| < e. It exploits
the triangle inequality by rewriting b = k∗a+ l for an a for which an assumption
of the form |a| < e′ is in the proof context and postulates for the existence of a
real number vp serving as an auxiliary variable. The resulting simpler goals are
|l| < e

2 , e′ < e
2∗vp , |k| ≤ vp, and 0 < vp.

The method FactorialEstimate reduces inequality goals of the form
| t
t′ | < e. It also postulates for the existence of a real number vp serving as

an auxiliary variable and creates three simpler goals: 0 < vp, vp < |t′|, and
|t| < e ∗ vp.

Applications of Solve* exploit the transitivity of <, >,≤,≥ and reduce a
goal of the form a1 < b1 to a new goal b2σ ≤ b1σ in case an assumption of the
form a2 < b2 can be used and a1, a2 can be unified by the substitution σ.

Two other domain-independent method introduction strategies prepare com-
posed conjectures and proof assumptions to make relevant subformulas available
for the methods of SolveInequality.

The instantiation strategy ComputeInstFromCS corresponds to the actual con-
struction of mathematical objects (real numbers). It instantiates variables that
occur in the constraints collected by the constraint solver CoSIE . ComputeInst-
FromCS is applicable, when CoSIE can compute an instantiation for a variable
that is consistent with the constraints collected so far.

The domain-independent backtrack strategy BackTrackStepToGoal realizes a
simple goal-triggered backtracking. When applied wrt. to a goal it removes the
step that introduced this goal.

The Implementation in Multi
The implementation of proof planning with multiple strategies in Multi [11]
works with two blackboards, a (object-level) proof plan blackboard and a control
blackboard. During their execution, the strategies change the proof plan black-
board content and a Meta-Reasoner changes the control blackboard to guide
the selection of strategies. To do so, it evaluates the strategic control knowl-
edge, which is declaratively represented by strategic control rules. Hence, there
is no need to hard-code the sequence of strategies. In a nutshell, Multi operates
according to the following cycle:

Job Offers. Applicable strategies post their applicability (for the current par-
tial plan) as ‘job offers’ onto the control blackboard.

Guidance. Strategic control rules are evaluated to rank the job offers in the
light of situation information.

Invocation. The strategy with the highest ranked job offer is invoked.
Execution. The strategy is executed and works on the proof plan blackboard.

3 Motivating Examples

We contrast the proof planning for two ε-δ-proofs: for LIM+ (without impasse)
and for Cont-If-Deriv, which encounters an impasse.
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LIM+ states that the limit of the sum of two functions f and g equals the sum
of their limits:

if lim
x→a

f(x) = l1 and lim
x→a

g(x) = l2, then lim
x→a

(f(x) + g(x)) = l1 + l2.

When the definition of lim is expanded, the proof planning problem consists
of two assumptions

∀ε1(0 < ε1 ⇒ ∃δ1(0 < δ1 ∧ ∀x1(|x1 − a| > 0 ∧ |x1 − a| < δ1
⇒ |f(x1) − l1| < ε1)))

and

∀ε2(0 < ε2 ⇒ ∃δ2(0 < δ2 ∧ ∀x2(|x2 − a| > 0 ∧ |x2 − a| < δ2
⇒ |g(x2) − l2| < ε2)))

and the conjecture

∀ε(0 < ε ⇒ ∃δ(0 < δ ∧ ∀x(|x − a| > 0 ∧ |x − a| < δ
⇒ |(f(x) + g(x)) − (l1 + l2)| < ε))).

Proof planning LIM+ first decomposes the conjecture and assumptions. This
results, among others, in the two new assumptions |f(x1

p) − l1| < ε1
p and

|g(x2
p)− l2| < ε2

p and the new goals 0 < δp and |(f(cx)+g(cx))− (l1 + l2)| < cε,
where cx and cε are constants that replace x and ε, respectively.2 ε1, x1, ε2, x2,
and δ become place holder variables (labeled with the p superscript) for which
CoSIE can collect constraints. Both goals are tackled by the SolveInequality
strategy. The goal 0 < δp is closed by TellCS and passed to CoSIE . The
second goal |(f(cx) + g(cx)) − (l1 + l2)| < cε requires further decomposition by
ComplexEstimate, which employs the new assumption |f(x1

p)− l1| < ε1
p and

yields five new goals:

ε1 <
cε

2 ∗ vp
(1)

|1| ≤ vp (2)
0 < vp (3)

|g(cx) − l2| <
cε

2
(4)

x1
p = cx. (5)

(1), (2), (3), and (5) can be closed by TellCS and are passed to CoSIE . Goal
(4) is reduced by Solve* wrt. the assumption |g(x2

p) − l2| < ε2
p to the goals

ε2
p ≤ cε

2 and x2
p = cx, which can both be closed by TellCS. The decomposition

of the assumptions on f and g results in some further goals, which are all solved
by SolveInequality.

When all goals are closed, the constraint solver CoSIE computes instantia-
tions for the variables that are consistent with the collected constraints.

2 During the decomposition of the assumptions further goals are created and during
the decomposition of the conjecture further assumptions are derived. However, in
order to illustrate the basic proof planning approach we ignore these additional goals
and assumptions.
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Cont-If-Deriv states that, if a function f has a derivative f ′ at point a, then f
is continuous at a:

if lim
x→a

f(x)−f(a)
x−a = f ′, then cont(f, a).

When the definitions of lim and cont are expanded, the proof planning prob-
lem consists of the assumption

∀ε1(0 < ε1 ⇒
∃δ1(0 < δ1 ∧ ∀x1(|x1 − a| < δ1 ∧ |x1 − a| > 0 ⇒ | f(x1)−f(a)

x1−a − f ′| < ε1)))

and the conjecture

∀ε(0 < ε ⇒ ∃δ(0 < δ ∧ ∀x(|x − a| < δ ⇒ |f(x) − f(a)| < ε))).

Proof planning for Cont-If-Deriv fails because of a typical exception. More
detailed, the proof planning goes as follows: As for LIM+ the initial conjecture
and assumption are decomposed. The main resulting goal is

|f(cx) − f(a)| < cε (6)

and a new assumption is

|f(x1
p) − f(a)

x1
p − a

− f ′| < ε1
p. (7)

Using this assumption the goal (6) can be proved in several steps.3 However,
when decomposing the initial assumption, the goal |cx − a| > 0 was created as
a side goal and cannot be proved. This gives rise to an impasse because the
goal-triggered backtracking with strategy BackTrackStepToGoal does not lead to
a solution. This impasse is not a problem of missing methods. Rather, since the
condition |cx − a| > 0 is not always true, mathematically it is necessary to con-
sider the cases |cx−a| > 0 and |cx−a| ≤ 0. That is, |f(cx)−f(a)| < cε has to be
proved twice, once under the condition |cx−a| > 0 and once under the condition
|cx − a| ≤ 0. Because the impasse information is surfaced only at a later stage
of the proof planning, its analysis should lead to a conclusion on how to modify
(i.e., not just refine) the overall proof plan in order to circumvent the exception.

4 Meta-reasoning About Failed Proof Attempts

This and many other examples show that proof planning may encounter im-
passes, i.e., situations in which an open goal cannot be closed because there are
no applicable methods or strategies or in which no instantiation for a variable
can be found.

Impasses in multi-strategy proof planning may occur at two levels, inside
strategies or at strategy choice points. When an impasse occurs during the

3 That is, ComplexEstimate is applied to (6) with assumption (7) and all resulting
goals can again be solved by proof planning.
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execution of a strategy, the strategy interrupts and the failure is recorded. When
the next strategy has to be selected for execution, the strategic control rules can
reason about the failures. When an impasse occurs at strategy choice, then the
failing applicability of a strategy is recorded together with the failure reasons
and the strategic control rules can reason upon.

Most systems have a default behavior that is called, when such errors oc-
cur. So has Multi. For instance, the default behavior to deal with failures in
the method introduction algorithm is the goal-triggered backtracking with the
strategy BackTrackStepToGoal (i.e., to backtrack the step that introduced the
goal for which no applicable method can be found). However, the default reac-
tion is only one of a variety of possible reactions to failures that is evaluated in
Multi. An evaluation of a repertoire of alternative reactions to failures is useful
for many reasons, two of which are:

(1) Theorem proving may require refinements, modifications, or additional in-
formation, which are hard to predict from common proof patterns since they
are exceptions. Some heuristics can exploit failures since in some cases these
failures hold information that is necessary in order to discover a solution
plan at all.

(2) A (knowledge-based) search and backtracking procedure that is generally
suitable for different mathematical domains including domains that require
higher-order formalizations is difficult to devise. Rather, knowledge of suit-
able failure handling and backtrack points in different domain-dependent
proof situations can be used to organize the search.

Hence, in Multi failure handling is not hard-coded once and forever. Rather,
the analysis of frequent failures and possible reactions results in general (and
informal) meta-reasoning rules, which can be formalized in control rules that
Multi can use. These control rules analyze information about the failure situ-
ation, the current proof plan, the history, etc. and suggest suitable proof plan
modifications and refinements. In the remainder of this section, we shall in-
troduce three general meta-reasoning rules. In the subsequent section, we shall
illustrate their encoding in control rules in Multi as well as their application to
ε-δ-proofs.

4.1 Case Split Introduction

Case split is well-known in mathematics. More often than not, it is not obvious
in advance, when it is useful to apply a case split and which cases to consider.
The following rule describes the need for a case split at an abstract level.

A main goal can be solved by some methods which introduces side goals, called
‘conditions’. In a situation where one of these conditions cannot be proved (while
the main goal is solved), an impasse is reached. The impasse can be removed by
introducing a case split on the failing condition and its negation earlier in the
plan. The modification requires to prove the main goal in each of the cases.
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This description is represented by the general meta-reasoning rule

Case-Split Introduction:
IF failing condition C while some methods solve main goal
THEN introduce case split C ∨ ¬C before application of methods

In section 5, we shall explain how this meta-reasoning rule is encoded into
control rules and how the main goal and the side goals are determined.

4.2 Analysis of Variable Dependencies

Goals sharing the same variable but belonging to different proof plan branches
are dependent. The instantiations and constraints of those variables may cause
failures. Take, e.g., two goals g and g′ that both contain a variable vp. Lets
assume that a partial proof plan for g is created, which binds vp in such a way
that g′ cannot be proved anymore. The default reaction – standard goal-triggered
backtracking – would remove g′. However, if the problem for the failure is not g′

but the selection of an appropriate instantiation for vp, then this backtracking
will not lead to a solution proof plan. Rather, part of the subplan for g has to
be removed to introduce another subplan that constrains vp differently.

This heuristic gives rise to the general meta-reasoning rule:

Analyze VarDependencies:
IF failure on goal caused by variable instantiation/constraints
THEN backtrack variable instantiation/constraints

Again, this rule can be represented by declarative control rules. Its application
to ε-δ-proofs is illustrated in section 5.

4.3 Unblock Desirable Steps

Often classes of proofs exhibit a common proof pattern, which suggests a par-
ticular hierarchy or combination of proof steps. This implies that during the
solution process particular proof steps become ‘desirable’, i.e., the proof pat-
tern suggests to apply these steps next. If such a desirable step is blocked, then
meta-reasoning can analyze how to unblock the application of the desirable step.
In its most general form, this meta-reasoning rule can be formulated as

Unblock Desirable Steps:
IF step S is desirable but blocked
THEN perform other steps to enable S

In section 5, we shall discuss two instances of this general rule, which both
rely on the common proof pattern for ε-δ-proofs introduced in section 2 (i.e.,
their determination of desirable steps is wrt. to the proof pattern for ε-δ-proofs).
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The first instance analyzes a blockage of the instantiation strategy Compute-
InstFromCS caused by insufficiently constrained variables. To overcome this im-
passe the meta-reasoning suggests actions to enable the collection of further con-
straints. The second instance analyzes failing method applications and suggests
the speculation of a lemma that would make a desirable method applicable.

5 Examples from the Domain of ε-δ-Proofs

To illustrate the failure reasoning we detail some of it for ε-δ-proofs – a domain of
mathematics for which up to now the proofs are not trivially automated. As the
empirical results in section 6 show, the same meta-reasoning is also applicable
to other domains.

5.1 Guiding the Introduction of Case Splits

The proof of Cont-If-Deriv is an example in which the introduction of a case
split is necessary. As described in section 3 proof planning fails to prove the
condition |cx − a| > 0 that was created as a side goal when decomposing the
initial assumption. At this point the meta-reasoning rule Case Split Introduction
suggests the introduction of a case split earlier in the proof plan.

Technically, the meta-reasoning rule Case Split Introduction is formalized in two
control rules in Multi that guide suitable backtracking and the introduction of
the case split. This works as follows: if SolveInequality fails to prove a condition
of an assumption that was used to prove the main goal, then a strategic control
rule triggers the backtracking of all steps following the introduction of the failing
condition. Afterwards, another control rule introduces the case split with the
failing condition and its negation.

When proof planning encounters the impasse for Cont-If-Deriv (see section 3),
the case split is introduced before the main goal |f(cx) − f(a)| < cε is tack-
led. Then, SolveInequality continues and has to prove |f(cx) − f(a)| < cε once
enriching the context with |cx − a| > 0 and once enriching the context with
¬(|cx − a| > 0). In the first case the failing condition |cx − a| > 0 follows from
the context of the case. The second case is proved differently by SolveInequality:
First, it simplifies the hypothesis ¬(|cx − a| > 0) to cx = a. Afterwards, it uses
this equation to simplify the goal |f(cx) − f(a)| < cε to 0 < cε, which follows
from the context.

Other ε-δ-proofs also require this kind of failure reasoning and the same failure
handling can also be used to introduce case splits in other mathematical domains
(see section 6).

5.2 Analyzing Variable Dependencies

The meta-reasoning rule Analyze VarDependencies analyzes dependencies of goals
that share some variables – either directly in their formulas or in the assumptions
in their contexts. The meta-reasoning rule is encoded in the strategic control
rule analyze-varfailure. When a goal with shared variables cannot be closed,
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analyze-varfailure analyses whether sub-plans for other goals with these vari-
ables introduce constraints on the variables. If this is the case, it guides the back-
tracking of those steps that introduced such constraints rather than to employ
the standard goal-triggered backtracking, which would backtrack the goal that
cannot be solved. Afterwards, re-opened goals can be solved differently.

As example for an ε-δ-proof that needs the analysis of variable dependencies
consider the following problem:

If lim
x1→0

f(x1) = l and a > 0, then lim
x→0

f(a ∗ x) = l.

The decomposition of the initial goal and the initial assumption yield the goal
|f(a ∗ cx) − l| < cε and the new assumption |f(x1

p) − l| < ε1
p. SolveInequality

solves the goal with this assumption by an application of the method Solve*.
The decomposition of the initial assumption also results in the two goals

|a ∗ cx| > 0 (8)
|a ∗ cx| < cδ1 (9)

These two goals can be solved with two assumptions from their context

|cx| > 0 (10)
|cx| < δp (11)

which were created during the decomposition of the initial theorem.
When tackling these two goals SolveInequality first proceeds as follows: It

applies Solve* to goal (8) wrt. the assumption (11). This is possible since |cx| <
δp equals δp > |cx| and δp can be trivially unified with |a∗cx|. The application of
Solve*, however, introduces the constraint δp �→ |a∗cx| on δp, which affects the
assumption (11) in the context of goal (9). Next, SolveInequality tackles goal (9)
but fails, since with the constraint on δp no solution is possible (i.e., assumption
(11) cannot be used as necessary, see below).

Guided by analyze-varfailure Multi first backtracks the application of
Solve* to goal (8). Afterwards, SolveInequality solves this goal differently: It
applies the method ComplexEstimate with the assumption (10) to the goal
and passes the resulting inequality goals with TellCS to CoSIE . With this
solution proof plan for goal (8) SolveInequality can also solve goal (9) by applying
the method ComplexEstimate with assumption (11) and passing the resulting
inequality goals with TellCS to CoSIE .

More ε-δ-proofs as well as problems from other domains require this failure
reasoning to analyze and overcome variable dependencies (see section 6).

5.3 Meta-reasoning for Insufficiently Determined Constraints

Remember the Unblock Desirable Steps rule from section 4.3. One of its instances
unblocks the instantiation strategy ComputeInstFromCS.

To illustrate this failure reasoning we detail the proof planning process for the
problem Lim-Div, which states that the limit of the function 1

x at point c �= 0 is
1
c , i.e., for c �= 0
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∀ε(0 < ε ⇒ ∃δ(0 < δ ∧ ∀x(x �= 0 ∧ |x − c| < δ ∧ |x − c| > 0 ⇒ | 1x − 1
c | < ε))).

The proof planning works as follows: Decomposition of the initial goal results
in the two goals 0 < δp and | 1

cx
− 1

c | < cε. SolveInequality closes the goal 0 < δp

by TellCS and simplifies the second goal to | c−cx

cx∗c | < cε. It continues with the
application of FactorialEstimate, which reduces this goal to three simpler
subgoals 0 < vp, |cx ∗ c| > vp, and |c − cx| < vp ∗ cε with a new variable vp.
SolveInequality closes these three goals with TellCS. Since all goals are closed
the strategy ComputeInstFromCS becomes a highly desirable strategy that should
return instantiations for the variables δp and vp computed by CoSIE .

Now, CoSIE fails to determine instantiations because the constraints collected
so far

|cx−c|
cε

< vp 0 < vp vp < |cx ∗ c|
0 < δp c �= 0 0 < cε

are insufficient to compute a solution.4 Hence, also the application of the desir-
able strategy ComputeInstFromCS is blocked.

A possibility to overcome this problem is to create further constraints by
further proof planning. An instance of the meta-reasoning rule Unblock Desirable
Steps suggests this “repair”:

IF a constraint solver fails to provide instantiations because of
insufficient constraints while all goals are closed

THEN consider actions to create and pass further constraints

Technically, the idea to overcome highly desirable but blocked variable instan-
tiations by a constraint solver is encoded in the strategic control rule unblock-
constr. When all goals are closed, but instantiation strategies are not
applicable since connected constraint solvers fail to compute instantiations, then
unblock-constr analyzes the current proof plan for possible further constraints.

One possibility to derive further constraints is the refinement of existing
constraints closed by applications of TellCS. If unblock-constr detects such
constraints that likely can be refined to simpler constraints, it triggers the back-
tracking of the corresponding TellCS applications (only these selected applica-
tions).5 Afterwards, the re-opened goals can be tackled again and can be refined.
Note that this backtracking serves the applicability of methods uncovering fur-
ther constraints rather than the traversal of the search space.

4 This is a common situation in constraint solving: A set of constraints has been
accepted since no inconsistency could be detected, so far. Nevertheless, the collected
constraints are not sufficient to compute a solution for the constrained variables. The
critical constraints here are the constraints on vp, which state that |cx−c|

cε
has to be

less than vp, which has to be less than |cx ∗c|. These constraints are not inconsistent,
but a solution for vp exists only, if |cx−c|

cε
< |cx ∗ c| holds. This, however, does not

follow from the constraints collected so far.
5 Currently, the critical constraints are chosen by heuristics encoded in the control

rule. We are enhancing CoSIE to return the critical constraints directly.
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In proof planning of Lim-Div, unblock-constr (successively) triggers the
backtracking of the applications of TellCS that close |c − cx| < vp ∗ cε and
|cx ∗ c| > vp. SolveInequality reduces the re-opened goals with applications of the
method ComplexEstimate and passes the resulting constraints by applications
of TellCS to CoSIE . This leads to the following constraint store (the variables
v1

p and v2
p are introduced by the applications of ComplexEstimate):

cε > 0 c �= 0 vp ≥ v1
p ∗ δp v1

p > c

vp > 0 v2
p > 1 cε∗vp

2 > 0 δp > 0
δp ≤ cε∗vp

2∗v2p vp ∗ 2 ≤ c2

Now the following instantiations consistent with these constraints can be com-
puted: v2

p→2, v1
p→c + 1, vp→ c2

2 , and δp→min( cε∗c2

8 , c2

2∗(c+1) ).
This example is not an isolated one. More ε-δ-proofs require this failure rea-

soning (see section 6). Moreover, the meta-reasoning rule is generally applicable
also to other domains in which constraints solvers are used.

5.4 Lemma Speculation

Another typical instance of the Unblock Desirable Steps rule in section 4.3 un-
blocks method applications whose matching with the proof situation requires
additional information. It reads as follows

IF the application of a desirable method fails because of a unification residuum
and the residuum is likely to be provable in the current context

THEN speculate residuum as lemma and apply it to unblock the desirable method

Since lemma speculation may open a Pandora’s box, the restriction the
residuum is likely to be provable in the current context needs to be defined. For
instance, in proof planning that uses a constraint solver the constraint solver
can be exploited to decide whether a residuum is a promising lemma. For ε-
δ-proofs, the meta-reasoning queries CoSIE whether it accepts the residuum
and only then meta-reasoning suggests the speculation of the lemma. This way,
we combine the domain-independent unification and matching with the domain
knowledge in CoSIE .6 Technically, this lemma speculation is encoded by the
control rule unblock-method.

To illustrate this failure reasoning we detail planning for the problem

If lim
x→0

f(x + c) = l, then lim
x1→c

f(x1) = l.

The decomposition of the initial goal results, among others, in the goal
|f(cx1) − l| < cε1 . Decomposition of the initial assumption yields the new as-
sumption |f(xp + c) − l| < εp. SolveInequality should apply the method Solve*
6 Alternatively, theory unification incorporates domain-specific axioms and theorems

into the unification procedures. However, the decidability of theory unification is
difficult to determine and depends on the concrete set of domain equations (e.g.,
see [2]). Undecidable unification and matching, however, could block the complete
proof planning process.
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to tackle the new goal with the new assumption. However, this fails since the
application-conditions of Solve* request the unification of |f(xp + c)− l| and
|f(cx1)− l|, which fails. Since no other applicable method or assumption are
available, Multi’s default control would backtrack, which would not lead to a
solution proof plan.

When SolveInequality fails to tackle |f(cx1) − l| < cε1 with the assumption
|f(xp + c) − l| < εp, then the analysis of the failure by unblock-method yields
the residuum xp + c = cx1 , which is accepted by CoSIE . Hence, the control rule
fires and introduces xp + c = cx1 as lemma and guides the rewriting of the goal
|f(cx1)− l| < cε1 with this equation. This results in the goal |f(xp + c)− l| < cε1 .
The application of Solve* to this goal and the assumption |f(xp + c) − l| < εp

is now possible, and SolveInequality can solve all resulting goals.
For other ε-δ-proofs the same meta-reasoning can overcome blocked unifica-

tions and matchings. For the application in other domains the only prerequisite
is that a means exists that can decide whether a lemma is promising.

6 Empirical Results

The meta-reasoning rules in section 4 describe general situations in mathemati-
cal proof processes. Although our contribution is fundamentally conceptual and
architectural, we had to show whether it is empirically relevant as well. There-
fore, we tested the benefit in three domains, the ε-δ-proofs from the analysis
textbook [1], the residue class domain, and inductive proofs. Table 1 gives sam-
ple problems from all three domains and the failure-reasoning they require. The
numbered colons denote (i) case split introduction, (ii) unblock constraint solv-
ing, (iii) unblock by lemma speculation, (iv) analyze variable dependencies. Note
that x → a− and x → a+ denote the left-hand limit and the right-hand limit,
respectively.

The relevance of failure reasoning is not only demonstrated by Table 1. Its
figures alone are underestimating because many similar problems can be formu-
lated. Moreover, the relative frequency of failure reasoning is also important.
Therefore, the fact that 25 out of 70 ε-δ-proofs constructed by Multi from the
systematically explored testbed [1] involve failure reasoning evidences the crucial
role of failure reasoning.

Residue Class Problems. The residue class conjectures classify given residue class
structures wrt. their algebraic category. An example theorem is “the residue class
structure (ZZ5, +̄) is associative”. Other problems from this domain concern the
isomorphy of two algebraic structures. An example is “the residue class structures
(ZZ5, +̄) and (ZZ5, (x+̄y)+̄1̄5) are isomorphic”.

To tackle residue class problems we developed several techniques encoded in
four different method-introduction strategies in Multi. In one of these strate-
gies, the TryAndError strategy (see [12]), the Analyze VarDependencies rule is
crucial since Multi has to deal with nested existential quantifiers, which result
in ‘nested’ variables shared by several goals. Hence, dependencies among the
variables and the goals have to be analyzed.
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Table 1. Sample proofs whose solution requires meta-reasoning about failures

Conjecture (i) (ii) (iii) (iv)
ε-δ-Proofs
lim
x→0

(f(a + x)− f(a)) = 0 ⇒ cont(f, a) x x x

lim
x→a−

f(x) = l ∧ lim
x→a+

f(x) = l ⇒ lim
x→a

f(x) = l x

lim
x→a−

f(x) = f(a) ∧ lim
x→a+

f(x) = f(a)⇒ cont(f, a) x

lim
x→2

1
1−x

= −1 x

lim
x→a

f(x) = lf ∧ lim
x→a

g(x) = lg ∧ ∀x g(x) = 0 ⇒ lim
x→a

f(x)
g(x) = lf

lg
x

lim
x→∞

f(x) = l ⇒ lim
x→∞

f(x)
x

= 0 x

lim
x→0

f(x + a) = l ⇒ lim
x→a

f(x) = l x

lim
x→0+

f( 1
x
) = l ⇒ lim

x→∞
f(x) = l x

lim
x→0

f(x) = l ∧ a > 0⇒ lim
x→0

f(a ∗ x) = l x

lim
x→a

f(x) = l ⇒ lim
x→0

f(x + a) = l x

Residue Class Problems
closed(ZZ3\{0̄3}, ∗̄) x
¬closed(ZZ3\{0̄3}, +̄) x
¬∃e:ZZ9unit(ZZ9, −̄) x
¬inverses(ZZ6, ∗̄, 1̄6) x
¬divisors(ZZ6, ∗̄) x
¬commutative(ZZ8, −̄) x
¬distibutive(ZZ4, −̄, −̄) x
Inductive Proofs
∀x:item∀y, z:list x ∈ y ⇒ x ∈ concatenate(y, z) x
∀x:item∀y, z:list (x ∈ y ∨ x ∈ z)⇒ x ∈ concatenate(y, z) x
∀x:item∀y:list x ∈ insert(x, y) x
∀y:list length(y) = length(isort(y)) x x
∀x:item∀y:list x ∈ isort(y)⇒ x ∈ y x x
∀x:item∀y:list count(x, isort(y)) = count(x, y) x x
∀y:list reverse(reverse(y)) = y x
∀x:nat even(x + x) x

We proved about 19.000 residue class conjectures with Multi. About half of
these theorems, in particular, theorems refutating a property, could be proved
with the TryAndError strategy only (see [12] for the detailed description of the
experiments). Some representative examples occur in Table 1.

Inductive Proofs. So far, we did not apply Multi to inductive proofs. The induc-
tive theorems in Table 1 are taken from [9], which describes failure reasoning by
so-called critics in the proof planner CLaM. Since the critics employed in CLaM
are a special case bound to a particular method (see related work in section 7),
our general failure reasoning rules for case-split introduction and lemma spec-
ulation are applicable for inductive proofs as well. For a more complete list of
inductive proofs that require failure reasoning see [9].
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7 Conclusions and Related Work

We presented a novel conceptual and architectural contribution to knowledge-
based automated theorem proving. We demonstrated how Multi’s novel theo-
rem proving architecture supports failure reasoning and the automatic discovery
of heureka steps such as introduction of case splits and speculation of lemmas.
As evidenced by empirical results, the discussed failure reasoning is generally
applicable rather than overly specific.

Proof planning may fail because of an exception from proof structures and
procedures captured by proof planning methods, strategies and heuristic con-
trol. Such failures can be analyzed automatically and this analysis gives rise to
applying proof planning strategies, which can revise the proof plan or invent new
knowledge that is needed to complete a proof, e.g., case splits or new conjectures.
That is, often failures hold the key to the construction of a solution proof plan.

The failure reasoning and the subsequent proof plan modifications are possible
in Multi, since Multi’s architecture does not enforce a pre-defined backtracking
or other pre-defined control. Rather, when a failure occurs, then strategic control
rules, which declaratively encode failure handling heuristics, can analyze the
failure and dynamically guide promising refinements and modifications of the
proof plan. Further meta-reasoning that contributes to this flexible control in
Multi is discussed in [10].

Related Work
Unblocking desirable steps in Multi is related to the control reasoning in elab-
orate blackboard systems, see [5] and [6]. When a highly desirable knowledge
source is not applicable, then reasoning on the failure can suggest the invocation
of knowledge sources that unblock the desired knowledge source.

The speculation of residuum lemmas is related to constrained resolution [7],
which intertwines resolution with unification. We also intertwine unification with
the main proof process by speculating unification residues as lemmas. As opposed
to constrained unification, our meta-reasoning controls the speculation of lemmas
since it suggests only lemmas that are directly accepted by CoSIE .

In their interesting work described in [8, 9] Andrew Ireland and Alan Bundy
extended proof planning by so-called critics as a means to patch failed proof at-
tempts in proof planning inductive proofs. Their proof planner CLaM is special-
ized for proving theorems by mathematical induction and employs the so-called
rippling technique that is mainly encoded in the wave method. The critics in
CLaM are associated with the wave method and capture patchable exceptions to
the application of this method. A critic can, e.g., introduce a case split directly
preceding the wave method, in order to make a conditional wave rule applicable,
in case the wave method is blocked because of this condition.

The failure reasoning in Multi considerably differs from the critics mech-
anism in CLaM in its conceptual design. Critics are method-like entities that
are bound to failing preconditions of a particular method. Moreover, the critic’s
patch is a special procedure that changes the proof plan. In contrast, failure rea-
soning in Multi is represented by declarative control rules. These control rules
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are not associated with a particular method but can reason about the current
proof plan and about other information such as the proof planning history. The
patch of a failure is not implemented into special procedures but is carried out
by methods and strategies whose application is suggested by the control rules.

To summarize, because of its flexible proof construction at the strategy level,
Multi can realize a more general failure reasoning approach not bound to par-
ticular methods.
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Abstract. Literate proving is the analogue for literate programming in
the mathematical realm. That is, the goal of literate proving is for hu-
mans to produce clear expositions of formal mathematics that could even
be enjoyable for people to read whilst remaining faithful representations
of the actual proofs. This paper describes maze, a generic literate prov-
ing system. Authors markup formal proof files, such as Mizar files, with
arbitary XML and use maze to obtain the selected extracts and trans-
form them for presentation, e.g. as LATEX. To aid its use, maze has built
in transformations that include pretty printing and proof sketching for
inclusion in LATEX documents. These transformations challenge the con-
cept of faithfulness in literate proving but it is argued that this should be
a distinguishing feature of literate proving from literate programming.

1 Introduction

Whilst formal languages, such as those used in formalised mathematics and pro-
gramming, are ideal for communicating with a computer, they are far removed
from the natural discourses that take place between humans in natural languages.
Indeed, it can be argued that overcoming the distinction between human-human
discourse and human-computer discourse is the entire basis for the discipline of
human-computer interaction.

In formal mathematical proofs, humans may rapidly become lost in the detail
and fail to understand the proof [19] or even to recognise them as a proof [4]. The
corresponding difficulty of understanding programming languages has long been
recognised. Documentation is considered to be a valuable resource for communi-
cating the purpose and concepts embodied in the formal code [9]. However, it is
also recognised that coding and documenting code are quite different activities
and that the documentation of code is rarely of a high, readable standard.

To help overcome the division between program and documentation, Knuth
devised the notion of literate programming [8]. Here the code and its explana-
tion are combined together in a single document. Knuth’s hope was that in doing
so, programs would be faithfully described because when changes were made to
the code, corresponding changes could be made to the documentation located
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in the same place. Of course, this is what people normally do with code com-
ments. However, a commented program does not make for easy reading for a
human. Knuth’s further step was to transform the single document in two dif-
ferent ways — one way to produce the compilable version of the code, the other
to produce a human readable document. In this way, documentation would not
only be faithful to the code but might even become an enjoyable literary work
in its own right.

Formal mathematics shares many of the features of programming languages.
In recent years, large repositories of formal mathematics such as the Mizar [10]
and Coq libraries are being developed (and more are planned with on-going
MKM). Whilst these libraries are not expected to change in the same manner as
program code, there is nonetheless a need to document the formal language to
help guide a reader through ideas, notation and even the trickier parts of formal-
isation [7]. In fact, Cruz-Filipe et al. (ibid.) recognise that some form of literate
proving, that is, the weaving together of formal proofs and documentation, would
be valuable.

This paper describes maze, a working system that implements literate prov-
ing. It deviates from Knuth’s original implementation, instead following more
modern versions of literate programming [14], as will be discussed in the next
section. The way maze provides literate proving functionality is based on three
key principles:

1. No changes made to the proof tool being used.
2. Minimal interference with the proof source files.
3. Minimal restrictions on the form of the proof or its presentation.

This is achieved by allowing the author to use arbitary XML markup to struc-
ture their proof source files and using comment syntax to ’hide’ the markup
from the proof tool. For instance, using maze an author of a Mizar article can
extract parts of the article for ready inclusion in a LATEX document, whilst
still writing a normal, checkable Mizar article. The principles embodied in maze
are quite general, making it widely applicable. We have so far used it to pro-
duce literate versions of proofs from the Mizar, Isabelle and Phox systems.
The key point is that regardless of the underlying formal system, maze
provides a good level of presentation with very little effort on the part of the
author.

In order to aid discussion, the maze system will be described before we expand
on the principles behind the system and literate proving in general. Most of the
examples provided are taken from Mizar, specifically [18], as Mizar represents
a substantial library of formal mathematics that could conceivably benefit from
being presented via maze. Examples are also given for other proving systems to
demonstrate the flexibility of this approach. Also, we have included as an appen-
dix a short article presenting the proof of the irrationality of e as presented in
the Mizar library. The maths in the article was generated entirely automatically
from the original Mizar article [15]1 using maze.

1 http://www.mizar.org/JFM/
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2 From Programming to Proving

In Knuth’s conception of literate programming, the source code for a program
and the documentation of a program would be written jointly in a single docu-
ment. This document could then be transformed one of two ways to give either
the executable version of the program code or the typeset version of the docu-
mentation, as depicted in Figure 1. In this way, the source code as described in
the documentation and the source code as compiled were one and the same —
there was no duplication through cut-and-paste and no slightly different versions
between that presented and that compiled. Morever, the original document did
not need to follow the logical structure of the code at all but instead the docu-
mentation and the code were interleaved and interlinked as best fitted a literary
exposition. For this reason, Knuth called his system web.

Fig. 1. The structure of Knuth’s web

The drawback with this was that the program was actually written through a
series of macros and that macro language needed to be learned. In addition, web
and subsequent literate programming systems, such as cweb [13], tend to impose
their own formatting. Though these native formats could no doubt be changed,
they would require some intimate knowledge of the workings of the system.

Thus, the tightly coupled documentation and code of web imposes its own
limitations. With regard to say the Mizar library, a literate proving system of
this sort would also require refactoring significant parts of the Mizar library to
be able to generate the original articles and their corresponding documentation.

Also, it must be noted that though the motivations of literate proving are
similar to those of literate programming, the goals of literate proving are not.
For example, the same piece of mathematics may be used in different ways. For
instance, a description of the real line may strongly vary depending on whether
it is to be used in developing the theory of fields or as a prototypical metric
space. It is unlikely that similar concerns would arise in program description.

This suggests that a literate proving system would require rather looser cou-
pling between the proofs and their documentation. A more recent literate pro-
gramming system, Warp, shows a possible way forward [14]. With warp, the
literate programming system is essentially a way of extracting code from a pro-
gram and into manageable chunks. These chunks can be incorporated, in any
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Fig. 2. The structure of maze

order, into a larger document that describes what they are and also typesets
them appropriately. This is precisely the model used in maze and is shown in
Figure 2.

With maze then, the principles of literate programming are maintained. That
is, there is only one version of the formal mathematics and there is a freely flexible
relationship between the description of the mathematics and its logical structure.
This clearly comes at the cost of a separation between the formal mathematics
and the documentation. The risk then is of course that the source mathematics
could change independently of its description. However, the author who cared
about the description would still be obliged to update the documentation if it
were to make sense.

The next section gives details of how maze extracts chunks of Mizar articles.
The interested reader is refered to Thimbleby’s paper on warp for a deeper
discussion of the various types of literate programming systems and their relative
merits and drawbacks [14].

3 maze

For maze to extract the required parts of a formal proof script, it is necessary
to insert markers in the proof. Of course, any markers will necessarily stand
out from the formal language. To prevent the markers from interfering in the
validation of the proof, the comment tags for the article are used to hide the
maze instructions from the formal system. The instruction to maze, within a
comment, is in the form of an XML tag. For example, in Mizar, the comment
tag is :: and so the tags marking the beginning and end of a portion to extract
would be:

::<maze id="extract">
...Mizar article...
::</maze>

As you might expect, when maze encounters this pair of tags, everything between
(and including) the tags is written to the file extract.xml.
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Note that apart from the comment tags for the particular formal language,
maze requires no other knowledge of the underlying language. This makes adapt-
ing it to other formal languages relatively straightforward.

The XML style, following Warp [14], seems a natural choice. A model of maze
is that it extracts any portion of an article between such tags and in the process
drops the comment markers from any such tags. Any non-XML comments are
marked with <comment> tags. From this simple process, to use the extracts in
documents such as LATEX or HTML, further transformations of the extracted
parts are optionally performed using XSL. For example from the marked up
section of Mizar as follows:

::<maze id="demo">
::<theorem><statement>
theorem Th21:
-K = -Q implies K = Q
::</statement><proof>
proof

::Uses the natural property of inverses
--K = K & --Q = Q
::<ref>
by PRE_TOPC:20;
::</ref>

hence thesis;
end;

::</proof></theorem></maze>

maze produces the following:

<maze id="demo">
<theorem>
<statement>
theorem Th21:
-K = -Q implies K = Q
</statement>
<proof>
proof

<comment>
Uses the natural property of inverses
</comment>
--K = K & --Q = Q

<ref>
by PRE_TOPC:20;

</ref>
hence thesis;
end;

</proof>
</theorem>
</maze>
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However, rather than require an author to also have knowledge of XSL or to
spend time on developing an appropriate stylesheet, maze has certain transfor-
mations built-in. These are described in the following subsections.

3.1 maze for LATEX

The simplest method for getting text into LATEX is to have maze produce plain
text extracts within the LATEX verbatim environment. If the target, though,
is truly readable LATEX then of course a verbatim version of text falls short
of nicely presented mathematics in several ways. Specifically concentrating on
Mizar, the Mizar language is entirely in standard ASCII text and so lacks the
finesse of the rich character sets and symbols that LATEX has. For this reason,
maze is also able to produce a pretty version of the output from Mizar articles
suitable for LATEX. For example, here is a theorem and its proof that has been
pretty printed from [18]:

Theorem Th20 :
Kc = Q iff K misses −Q
Proof
A1 : −Q = Q′ by STRUCT 0 :def 5;
hereby assume Kc = Q; then
K \ Q = by XBOOLE 1 : 37; then
K/ \ Q′ = by SUBSET 1 : 32;
hence K misses −Q by A1, XBOOLE 0 :def 7;
end;
assume K misses −Q; then
K/ \ −Q = by XBOOLE 0 :def 7; then
K \ Q = by A1, SUBSET 1 : 32;
hence thesis by XBOOLE 1 : 37;
end;

The pretty printing follows some simple heuristics to produce this output.
These are as follows. First, single characters have been interpreted as variables
and so are put into the math environment. Trailing numerals after a string
of letters are assumed to be subscripts. Thirdly, keywords such as “theorem”
have been put into the small caps font. Finally, characters that would normally
correspond to LATEX control codes have been appropriately converted to appear
correctly in the final document.

Though the output is obviously more “latex-y”, it could not really be called
pretty. Symbols that are a natural feature of Mizar such as c= for subset, appear
peculiar in LATEX as c =. Though heuristics could also be developed to handle
these, they would begin to require more detailed parsing of the Mizar source and
this is not without hazard or even always possible [5]. Instead, a lighter method
has been chosen that places the control in the hands of the author. When ex-
tracting text for pretty LATEX, maze is also able to consult what we have called
a match file. In this, strings from the Mizar article appearing in the match file
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have replacement LATEX code that is used instead of the string. The match file
takes priority over any of the other heuristics. The result appears like this:

Theorem Th20 :
K ⊆ Q iff K misses −Q
Proof
A1 : −Q = Q′ by struct 0 :def 5;
hereby assume K ⊆ Q; then
K \ Q = ∅ by xboole 1 : 37; then
K ∩ Q′ = ∅ by subset 1 : 32;
hence K misses −Q by A1, xboole 0 :def 7;
end;
assume K misses −Q; then
K ∩ −Q = ∅ by xboole 0 :def 7; then
K \ Q = ∅ by A1, subset 1 : 32;
hence thesis by xboole 1 : 37;
end;

In this example, the ASCII representations of some symbols have been re-
placed with the corresponding LATEX symbols. Other symbols have been replaced
with a more usual one such as the replacement of {} with ∅. Also, the match
file need not be confined to mathematical symbols and here has been used to
make the references to other articles appear in a different font. The match file
that was used here consisted of only eight lines of text, one line per match and
its replacement, and so could easily be produced by an author.

The example in appendix A uses the match file extensively to help produce
a version of the Mizar proof that uses the standard summation notation for
series. The appendix also uses skip tags to help present the proof — these work
as described in the next section but for pretty printing insert ellipsis to show
omitted material.

3.2 Proof Sketching with maze

Literate proving, like literate programming, should strive to be about producing
a document that not only elucidates the proofs presented but also makes that
experience enjoyable to the human reader. However, as is well known, formal
mathematics of the sort found in the Mizar library has a tendency to be verbose
and for key insights to be lost in the detail [16, 6]. To aid in exposition and
enjoyment, some form of simplification is often necessary.

For this reason, maze is able to automatically generate proof sketches. The
form chosen was that proposed by Wiedijk as a way to aid constructing formal
proofs in Mizar [17]. The two things that distinguish a formal proof sketch from
a completed Mizar proof are: references in support of proofs steps are always
omitted; some proof steps are also omitted. The sketch should therefore be a
summary of the most salient proof steps of the formal proof.

The omission of references is easily achieved automatically in maze since all
references are indicated by the keyword by. In contrast, the assessment of which
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proof steps are most salient can only be made by the author. For this reason,
a second maze specific tag was introduced, namely skip. Where skip tags are
placed within maze tags, all of the text except the text marked up to be skipped is
placed in the file specified by the maze tag. The result is put in the verbatim en-
vironment. Here is an example of a complete Mizar proof that has been sketched
to appear in this article:

theorem
P is dense & Q is dense & Q is open implies P /\ Q is dense
proof
assume that A1:P is dense and A2:Q is dense and A3:Q is open;

[#] TS c= Cl(P /\ Q)
proof
now let C be Subset of TS; assume A7: C is open;
assume x in C;
then Q meets C then
A8:Q /\ C <> {}
Q /\ C is open
then P meets (Q /\ C) then

hence (P /\ Q) meets C
end;

hence thesis
end;
then Cl(P /\ Q) = [#] TS
hence thesis

end;

Of course, this output could also be pretty printed if required. Any automation
of the proof sketching necessarily needs to know something about the structure
of the formal language. Currently, therefore, maze only does proof sketching for
Mizar.

3.3 Tactic-Style Proof Assistants

Having illustrated maze’s functionality using Mizar, we now briefly show the
versatility of the system with example based on the Phox system [12]. Phox is a
proof assistant with a tactic-style form of interaction: the user specifies how the
system should transform the proof state, in a similar fashion to Isabelle, HOL
and many other proof tools. This is a very different form of interaction to the
declarative proof style of Mizar — nonetheless, maze can still be used for literate
proving.

As with Mizar, a section of Phox proof file can be marked up freely by the
author, as follows:

(* <maze id="square"><theorem> *)
(* Product of squares equal to square of the product. *)
(* <statement> *)
fact square.mult /\x,y (square x * square y = square (x * y)).
(* </statement><proof><skip> *)
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intros.
(* </skip><rewrite> *)
unfold square.
(* </rewrite> *)
(* (x.x).(y.y) = (x.y).(x.y) *)
(* <calc> *)
rewrite -p 1 mult.assc.R.
rewrite -p 4 mult.comm.R.
(* </calc> *)
(* = (x.(x.y)).y *)
(* <final> *)
rewrite mult.assc.R.
(* <skip> *)
trivial.
(* </skip></final></proof></theorem></maze> *)

Here the author has chosen to mark up the short six-line proof as three steps:
two <rewrite> steps (one line each) and a <calc> step (two lines), with the
trivial first and last lines skipped over. They have also annotated the script with
comments that declarative describe some of the proof states. This is transformed
into the following XML:

<maze id="square">
<theorem>
<comment>
Product of squares equal to square of the product.
</comment>
<statement>
fact square.mult /\x,y (square x * square y = square (x * y)).
</statement>
<proof>
<rewrite>
unfold square.
</rewrite>
<comment>(x.x).(y.y) = (x.y).(x.y)</comment>
<calc>
rewrite -p 1 mult.assc.R.
rewrite -p 4 mult.comm.R.
</calc>
<comment>= (x.(x.y)).y</comment>
<final>
rewrite mult.assc.R.
</final>
</proof>
</theorem>
</maze>

This example illusrates how maze allows the author to freely annotate and
structure their proofs, and consequently to present them in any way they like.
This freedom requires the author to design their own presentations (or to use
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others designs), but allows them to design and present literate formal proofs,
where the structure is tailored to suit their presentation needs.

3.4 Implementation Details

maze is implemented in Java with the formal source being either passed as a
command line parameter or through the standard input. A single source file
may have multiple <maze> sections extracted, each going to an individual file as
specified in the id attribute. If id has value foo the output file is foo.xml, if it
is omitted the output is sent to the standard output.

The system can configured for a particular proof tool by providing it with
a simple description of the system’s comment syntax. The different transforms
described in the paper are produced by engaging various modes via command
line options. These modes are:

Raw: Extracts data without any changes.
Text: XML tags are not shown in output.
All: Data within of skip tags is extracted.
Verb: Places a LATEX verbatim environment around the output.
Suffix: changes the filename suffix of the output file.
Help: produces a summary of the flags and match file structure.

maze is freely available along with all the source code used in the production of
this article from the author or from the web-site: www.uclic.ucl.ac.uk/paul.

4 The Principles of Literate Proving

First and foremost, it is worth noting that maze embodies a generic set of prin-
ciples, like the Warp literate programming system [14], that are not specific to
this particular implementation. These are:

1. The use of “commenting out” for maze instructions so that they are ignored
by a proof checker

2. Proof extracts being XML marked up for further transformations
3. The match file concept to aid pretty printing without deep semantic knowl-

edge of the formal language
4. The use of skip to aid proof sketching
5. A small and simple instruction set (currently two commands).

Of course, there are specific features such as the pretty printing of keywords
in small caps and how proof sketching is performed that are specific to Mizar.
Even then, it should be noted that Mizar, as a large body of formal mathe-
matics, is being used to demonstrate literate proving but maze is not deeply
entangled in that particularly library. maze can be trivially reconfigured to work
with other proof tools — we have so far also used it with Phox and Isabelle.
Where literate proving differs across these systems is not in the nature of the tool
but actually what it means to make the different sorts of formal proofs literate:
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contrast the use of maze with Mizar’s declarative proofs against Phox’s proce-
dural proof scripts. Literate proving allows us to attach some structured declar-
ative information to selected procedural steps, greatly improving proof presen-
tation for these systems.

The general concept of literate proving though does seem to have separate
concerns from literate programming. Literate programming is concerned with
producing programmes that are enjoyable for human readers to read. Likewise,
literate proving is about producing formal proofs that are enjoyable for humans
to read. Literate programming has the goal also to be faithful to the actual
program, hence the close coupling of the code and the documentation. In maze,
it is possible to have entirely faithful presentations of proofs but in fact it pro-
duces more readable documents if they are pretty printed and also sketched.
Thus, the presentation of the proof can differ significantly from the original.
This could have consequences where a person reading both literate proofs and
the original proofs is unable to easily make a connection between the two. The
impact of the superficial differences may be not be so superficial and only time
will tell.

Tools such as maze provide a guarantee that faithfulness is preserved — the
presented proof is automatically generated from the original. Of course, the
author defines any match file used in pretty printing but it is to be hoped that
an author would make logical or at least acceptable choices for ensuring that
Mizar symbols are replaced with suitable LATEX symbols. Where unusual choices
of matching symbol have been used, the author should have some responsibility
to explain their choice.

Another difference between literate programmming and proving is that the
description of a program is deliberately quite specific to the tasks of that par-
ticular program. The documentation is therefore aimed at explaining how the
program meets the overall tasks or how subtasks lead to the completion of the
tasks. Standard algorithms such as quick sort would not be the most interesting
ones to explain in a program’s documentation. In contrast, literate proving could
have a number of goals.

A literate proof could be along the lines of a literate program to explain how
a particular formal proof represents a more traditional proof or how particular
features of the formal language were used. Unlike programs though, proofs are
objects of interest to mathematicians in and of themselves not just the tasks they
achieve [19]. They are communication acts that lead to other ideas and mathe-
maticians may wish to explain a proof in different ways depending on how that
proof is used in a particular domain. For example, a diagonalisation proof may
be explained very differently for a mathematician than for a computer scientist.
Moreover, there can be no sense in which a given explanation that is not merely
about language specifics could be sufficient for all time. Fortunately, maze’s im-
plementation is such that there is no constraint to have only one explanation but
it provokes interesting questions as to the role of literate proving in the wider
realm of mathematical knowledge management.
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5 Related Work

Several proof tools already provide some form of document generation. With the
Coq system [3] comes the CoqDoc tool to transform Coq proof files into LATEX
and HTML. CoqDoc allows pretty printing of formal objects, explanatory text
in comments (including LATEX/HTML commands) and hiding of subparts of the
document. maze reproduces this functionality, and with an appropriate stylesheet
could produce identical presentations. However, although some presentation de-
tails may be specified, CoqDoc produces documents of a roughly fixed structure
and style. In contrast, with maze the author is free to choose both the structure
and style: any form of XML markup may be used and transformed to a range
of presentation formats and styles. While CoqDoc is well suited to producing
more readable versions of proof files in a standard LATEX or HTML format, maze
allows much more flexible document generation.

We believe literate proving to be better supported by systems that give the
author freedom to markup and present formal proofs as she sees fit, rather than
imposing a standard structure that is bound to the underlying proof files. Apart
from CoqDoc, all other systems we are aware of suffer from similar drawbacks.
For example, Isabelle/Isar allows generation of LATEX and HTML, but of a prede-
termined structure and style [11]. The HELM project [2] has developed an XML
generation tool for Coq, but the structure is that of the underlying proof terms,
and does not provide support of a more free-form development of literate proofs.

6 Conclusion

Literate proving is the analogue of literate programming for formal proof lan-
guages and maze is a system that implements literate proving as demonstrated
on the Mizar library. It is clear from maze that some straightforward principles
can be used to do literate proving for any formal mathematical language but
that some form of pretty printing and sketching is likely to be desirable. It is
also worth noting that literate proving is not entirely a mathematical version of
literate programming but rather literate descriptions of proofs could be manifold
and need updating as more mathematics is learned. Quite how literate proofs
may fit into the wider body of mathematical knowledge remains to be seen.
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A Example: The Irrationality of e

As an extended example we present a short article based on Freek Wiedijk’s
Mizar proof of the irrationality of e [15]. Here maze has been used to provide
pretty printed extracts from a marked-up copy of the original Mizar article. Some
of the extracts are sketches of the underlying formal proofs.

A.1 Overview

Theorem
e is irrational

In the Mizar library, e is defined as the usual infinite sum. More explicitly, e
is the sum of the sequence, eseq, where:
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Definition
func eseq − > Real Sequence means
: Def5 : for k holds it.k = 1/(k!);

Briefly, the proof mainly considers the terms of eseq multiplied by n! for some
appropriately chosen n. In this case, if e were rational, the sum of the final
n terms of eseq×n! would have to be an integer. However, this expression can
be bounded by a geometric series and hence must be a positive integer strictly
between 0 and 1 — a contradiction.

A.2 Bounds on the Terms of eseq ×n!

First we require two lemmas on the terms of eseq. The proof of the first lemma
is a straightforward induction on k and tells us that each term of the sequence
eseq ×n! is bounded by a corresponding term in the geometric series.

Theorem Th39
x = 1/(n + 1) implies (n!)/((n + k + 1)!) <= x ↑ (k + 1)

The second lemma gives us a bound for the tail of the series for e. Note that the
bound is in fact the sum of the geometric series from the previous lemma.

Theorem Th40 :
n > 0&x = 1/(n + 1) implies n! ×

∑∞
n+1(eseq) <= x/(1 − x)

Proof
...
A4 : 0 < x&x < 1 by A1, A2,Real 2 : 127,Square 1 : 2;
deffunc F (Nat) = x ↑ ($1 + 1);
consider seq being Real Sequence such that
A5 : for k holds seq.k = F (k) from Seq 1 :sch 1;
...
then A10 : seq is summable &

∑
(seq) =seq.0/(1− x) by A4, A7,Series 1 : 29;

A11 :
∑

(seq) = x/(1 − x) by A6, A8, A9,Series 1 : 29;
A12 : (eseq)∞k=n+1 is summable by Th24,Series 1 : 15;
now let k;
A13 : (n!(#)((eseq)∞k=n+1)).k = n! × (((eseq)∞k=n+1).k) by Seq 1 : 13
. = n!×eseq.(n + 1 + k) by Seqm 3 :def 9
. = n! × (1/((n + k + 1)!)) by Def5
. = n!/((n + k + 1)!) by Xcmplx 1 : 100;
hence (n!(#)((eseq)∞k=n+1)).k >= 0 by Th34;
seq.k = x ↑ (k + 1) by A5;
hence (n!(#)((eseq)∞k=n+1)).k <=seq.k by A1, A13, Th39;
end;
then

∑
(n!(#)((eseq)∞k=n+1)) <=

∑
(seq) by A10,Series 1 : 24;

hence n! ×
∑∞

n+1(eseq) <= x/(1 − x) by A11, A12,Series 1 : 13;
end;
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A.3 The Proof of the Irrationality of e

Proof
assume e is rational;
then consider n such that A1 : n >= 2&n!× e is integer by Th32;
A2 : n! × e = n! × ((

∑n
1 (eseq) ) +

∑∞
n+1(eseq))

by Def6, Th24,Series 1 : 18
. = n! × (

∑n
1 (eseq) ) + n! ×

∑∞
n+1(eseq);

reconsider N = n! × e as Integer by A1;
reconsider N ′ = n! ×

∑n
1 (eseq) as Integer by Th38;

A3 : n! ×
∑∞

n+1(eseq) = N − N ′ by A2;
set x = 1/(n + 1);
A4 : x/(1 − x) < 1 by A1, Th41;
n > 0 by A1;
then n! ×

∑∞
n+1(eseq) <= x/(1 − x) by Th40;

then n! ×
∑∞

n+1(eseq) < 0 + 1 by A4,Axioms : 22;
then n! ×

∑∞
n+1(eseq) <= 0 by A3, Int 1 : 20;

hence contradiction by Th36;
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Abstract. The amount of machine oriented data on the web as well as the de-
ployment of agent/Web Services are simultaneously increasing. This poses a
service-discovery problem for client agents wishing to discover Web Services
to perform tasks. We discuss a prototype mathematical service broker and look at
an approach to circumventing the ambiguities arising from alternative but equiva-
lent mathematical representations occurring in mathematical descriptions of tasks
and capabilities.

1 Introduction

The amount of machine-oriented data on the Web is increasing rapidly as semantic Web
technologies achieve greater up-take. At the same time, the deployment of agent/Web
Services is increasing and together they create a problem for software agents that is the
analog of the human user searching for relevant HTML pages. In this paper we dis-
cuss the problem of reasoning about the semantics of the description of a mathematical
query and how it relates to descriptions of services that may be suitable for solving it.
This discussion takes place in the context of a broker architecture (shown in figure 1),
specifically targeted at the discovery of mathematical services.

If a service is to be found and used, it must advertise itself. There are many generic
aspects of a service and several specific to mathematical services, but for the purposes
of this paper, we will concentrate on four, viz. the (i) signatures of inputs, (ii) signatures
of outputs, (iii) pre-conditions and (iv) post-conditions, which specify the service’s re-
quirements and capabilities.

The role of the broker is to act as an intelligent mediator between clients and ser-
vices, selecting services that match the client’s problem statement (task). This task de-
scription must specify the signatures of inputs, outputs and the pre- and post-conditions
that characterise the service that is sought. The broker’s job is to identify service(s) or
combinations of services satisfying the attributes given in the task. One of the major
problems we address here is how to deal with the alternative but equivalent representa-
tions that occur in mathematical descriptions of task and capability.

The remainder of this paper is laid out as follows: In Section 2 we summarise the
various XML schemas used in MONET/GENSS, focusing on Mathematical Service
Description Language (MSDL), then in Sections 3 and 4 we address the question of how
to canonicalise the mathematical descriptions in order to deal with the differences that
arise from the many alternative but equivalent representations. Having established how
to restructure the mathematical information for ease of comparison, Section 5 defines a
similarity measure on which to base a ranking of matching services. Section 6 discusses
the matching process.

M. Kohlhase (Ed.): MKM 2005, LNAI 3863, pp. 174–189, 2006.
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Fig. 1. MONET/GENSS – Brokerage Architecture

2 Encodings for Mathematical Services

In the MONET [15, 5] and GENSS [21] projects the objective was and is (respectively)
mathematical problem solving through service discovery and composition by means
of intelligent brokerage [1]. Various ontologies were defined as part of the MONET
project which are utilised in our brokerage mechanism. Schemas using these ontologies
include the following:

– Mathematical Service Description Language (MSDL), see [3], is an extension of
WSDL that incorporates more (mathematical) information about a service, in par-
ticular pre- and post-conditions, taxonomic references etc.. An example MSDL
document describing a factorisation service for square-free integers is shown in
Figure 21. It is this language which we shall be mostly concerned with in this
paper, as it allows representation of all of the concepts we require for service
discovery.

– Mathematical Problem Description Language (MPDL) see [4]. This schema allows
a client to pose a mathematical problem by specifying an MSDL element, which
embodies the problem, as part of the output or post-condition element,

1 The prefix monet is used to denote the namespace:
http://monet.nag.co.uk/monet/ns

whilst the prefix om is used to denote the namespace:
http://www.openmath.org/
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<monet:definitions
targetNamespace=

"http://monet.nag.co.uk/problems/">
<monet:problem

name ="Factorisor">
<monet:header>

<monet:taxonomy
taxonomy=
"http://gams.nist.gov"

code="GamsB"/>
</monet:header>
<monet:body>

<monet:input name ="n">
<monet:signature>
<om:OMOBJ>

<om:OMS cd ="setname1"
name ="Z"/>

</om:OMOBJ>
</monet:signature>

</monet:input>
<monet:output

name ="list_factors">
<monet:signature>
<om:OMOBJ>

<om:OMA>
<om:OMS cd ="sts2"

name ="list"/>
<om:OMS

cd ="setname1"
name ="Z"/>

</om:OMA>
</om:OMOBJ>

</monet:signature>
</monet:output>
<monet:pre-condition>

<om:OMOBJ>
<om:OMBIND>

<om:OMS cd ="quant1"
name ="forall"/>

...
OpenMath markup for n
must be square free
...

</monet:pre-condition>
<monet:post-condition>

<om:OMOBJ>
<om:OMA>

<om:OMS cd ="relation1"
name ="eq"/>

<om:OMV name ="n"/>
...
OpenMath markup for the
product of the items in
list factors
...

</monet:body>
</monet:problem>
</monet:definitions>

The name attribute to the monet:problem element
may be used to identify the particular service descrip-
tion. In the MSDL file given in figure 2 the name of the
service is Factorisor. The MSDL file may be held
on a publicly (or restricted) visible Web server. So that
the MSDL may be accessed via a URL.

The monet:taxonomy references an ontology via a
URL, e.g. in figure 2 the GAMS taxonomy is referred to.
It also has a code attribute which gives the position in
the taxonomy of the service, in figure 2 code B is given
which refers to numerical computations.

Each monet:input element refers to an input, i.e. a
parameter to the service. The content of the element is
a signature, i.e. the type of the parameter, this signature
may be specified using OpenMath. The input element
has a name attribute by which it may be referred to. In
figure 2 the service takes one input which must have type
referred to by the OpenMath Symbol (OMS) with name
Z from the CD setname1. By referring to this CD, one
may see that this type is the integers.

Each monet:output element refers to an output,
i.e. a return value from the service. The content is again
a signature, which may be expressed in OpenMath. The
output element has a name attribute by which it may
be referred to. In figure 2 the OpenMath signature rep-
resents a list, where each element must be an integer.

Each monet:pre-condition specifies some con-
dition on the inputs which the service is allowed
to assume is true. For example, a factorisor which
can only factorise square free numbers may have a
pre-condition which states that the input is a
square free number.

Each monet:post-condition specifies some con-
dition on the outputs from the service. This specifies a
relationship between the inputs and the outputs of the
service. For example a factorisation service might have
a post-conditionwhich says that the product of its
outputs is equal to the input.

Fig. 2. MSDL description of a factorisation service

perhaps along with a directive specifying what to do with the problem (evaluate,
lookup, prove, etc.). A service may then receive this message and perform the prob-
lem posed.

– Mathematical Explanation Language (MEL) see [7]. With this schema the service
is able to return the results of a calculation to a client. Facilities also exist for re-
turning an explanation of the results, this may be a trace of execution, the proof
of a result, supporting evidence, a reference to a formulae evaluated etc.. A re-
quired element in this ontology is a reference to identify which problem this is
replying to.

Naturally, documents using the above schemas must refer to mathematical objects
at various points. The schemas are agnostic on how these objects should be described
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or what ontologies should be used. In practice there are two main contenders: (i) Con-
tent MathML [24] and (ii) OpenMath [22]. One of the advantages of MathML over
OpenMath, is that it is more widely known, hence more tools have been written which
understand it. Also it has a close association with Presentation MathML which makes
the rendering of objects trivial. OpenMath has the advantage that it is an extensible
language, whereas MathML only covers a fixed dialogue of concepts and requires an
external definition mechanisms to define other concepts. Indeed, the MathML specifi-
cation suggests OpenMath as this definition mechanism.

3 Normal Form

There are many equivalent ways to describe mathematical conditions: for example if
i, j ∈ ZZ, then i ≤ j and i − 1 < j are equivalent. This implies that the descriptions
of mathematical services may not be unique, and consequently creates a significant
problem for the broker in identifying mathematical services, as the descriptions must
necessarily often contain complex mathematical objects. This is the problem we cur-
rently face and we will now describe how we are tackling it. We have observed that
most expressions take the form of Q(L(R)) where:

– Q is a quantifier block e.g. ∀x∃y s.t. · · ·
– L is a block of logical connectives e.g. ∧,∨,⇒, · · ·
– R is a block of relations. e.g. =,≤,≥, �=,∈ · · ·
The block Q along with the input and output elements serve to define the scope of

variables within the document. This will be relevant for steps 4 and 5 of our method.
The block L consists of logical connectives which are relevant to step 1. The block R
consists of relations which will restrict the value of one or more variables. Examples
of relations are equalities or inequalities between expressions, or boolean valued set
operators (⊂,⊆,∈, · · ·).

Despite the fact there can be no absolute normal form [17], we can nevertheless carry
out a sequence of transformations to construct a normal form suited to our brokerage
task, thus:

1. The logical parts of the task and capability are rewritten in Disjunctive Normal
Form (DNF) (see for example [19]), which is convenient for the calculation of simi-
larity values (see §5). It also proves convenient for deducing dependencies allowing
service composition, mentioned in Section 8. The transformations use a number of
basic re-write rules, for example de Morgan’s rule, distributivity of ∧, over ∨, etc..

Example 1.
(a ∧ b) ⇒ ¬(c ∨ ¬d) rewrites to the equivalent expression ¬a ∨ ¬b ∨ (¬c ∧ d)

2. Associativity. Various operations are n-associative e.g.+, ∗,∪,∩,∧,∨, this means
the operation takes n arguments and if the operation is denoted by ⊗, then: a ⊗
(b ⊗ c) = (a ⊗ b) ⊗ c. A natural form is to flatten the arguments, i.e.provide each
argument as an argument of the operation at the first level. i.e.

a ⊗ (b ⊗ c) → ⊗(a, b, c) and (a ⊗ b) ⊗ c → ⊗(a, b, c)
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3. The numerous domain specific mathematical equivalences that exist, e.g. the ex-
ample mentioned in the first paragraph of Section 3, are addressed by means of a
database of context sensitive rules.
We use a number of techniques for deducing context information:

(i) Performing a prior pass of the document and looking for constructs such as
x ∈ ZZ ⇒ · · ·.

(ii) Scanning the sts (Small Type System [8]) files which record information
about the signatures of OpenMath symbols.

(iii) Scanning signatures from the input and output variables given in the MSDL.
An important consideration is that cycles must not exists whilst applying these rules
i.e.we must not have the two rules A → B and B → A concurrently in our system
(or any generalisation of this case).

4. α conversion2 addresses the situation where there are bound variables in the
description as a result of quantification or a differential operator etc.. There is no
reason for task and capability parameter (or result) names to coincide, but a straight-
forward transformation ensures they do, making subsequent manipulations simpler.

Example 2. Consider the situation where a capability exists, which knows how to
integrate univariate functions. The description of the capability in the MSDL is
likely to be expressed in terms of anonymous functions as:

R =
∫

λ : x → f(x)dx (1)

here x is an anonymous variable and its name is independent of the meaning. The
approach we use is to normalise the variables so that the normalised variable is
dependent on the position in the document, for example if it is the 1st variable
encountered in a pre-order traversal of the document tree, it might be normalised to
n1. In which case equation 1 would be normalised to:

R =
∫

λ : n1 → f(n1)dn1 (2)

5. Commutative, like associative, operators offer opportunity for confusion since there
will be a number of ways to represent an expression involving them. Our solution
is to define an ordering on the elements of OpenMath objects, then when a ca-
pability is registered, the children of any commutative operations will be stored
in order. A similar sorting is performed on task descriptions. As long as the sort-
ing is structurally based this means that regardless of the ordering (as long as it
is well founded), capability and task will be identical down to their leaves. There
is, however, a problem with identifying variables which are direct descendants of
a commutative operation; we deal with this by constructing equivalence classes of
documents that are structurally identical modulo variable differences.

We have defined a syntactic ordering relation on two OpenMath objects o1 and
o2 as described in Algorithm 1, which may be used to enable this transformation.

2 By which we mean consistent variable renaming.
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Algorithm 1. OpenMath Ordering
if o1 and o2 have different element tags then
OMI < OMF < OMSTR < OMB < OMS < OMA < OMBIND < OMV

else if if o1 and o2 are OMI elements then
order on their content (an integer)

else if o1 and o2 are OMF elements then
order on the numerical value of the dec or hex attribute3

else if o1 and o2 are OMSTR elements then
order lexicographically on their content (a string)

else if o1 and o2 are OMB elements then
order on the base64 (defined in reference [10]) content of the OMB elements

else if o1 and o2 are OMS elements then
order lexicographically on the value of the cd attribute followed by the value of the name
attribute

else if o1 and o2 are OMA elements then
recursively order on their children (in document order)

else if o1 and o2 are both OMBIND elements then
recursively order on:

1) first child
2) number of variables in the OMBVAR child
3) the third child

else
o1 and o2 are OMV elements, these are treated equally.

end if

3.1 Complexity of Algorithm 1

If the result returned by algorithm 1 is true, its time complexity is O(n) (worst case)
where n is the size of the smallest OpenMath object. The best and average case are
O(1) coinciding with a false result.

An example which displays our method for overcoming the commutativity problem
is the following:

Example 3. Consider a capability which can integrate piecewise functions, of the fol-
lowing form:

f(x) =
{

x < a f(x) = g(x)
x ≥ a f(x) = h(x) (3)

where the inputs are a, g and h. The restriction given by equation 3, where the right
hand side is a piecewise construct, may be given as a pre-condition specified by the
capability. Perhaps a task has specified that f is of the form:

f(x) =
{

x ≥ a f(x) = h(x)
x < a f(x) = g(x) (4)

This specifies the same condition, but in a different form i.e. piecewise is com-
mutative. The pre-condition must be normalised, which results in the children of the

3 We need not be concerned with the incomparability of floating point values as these are IEEE
floating point values and thus a finite subset.
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piecewise descendant of the pre-condition element being ordered using the
ordering given in algorithm 1. We see that (in this ordering),

<om:OMS cd="relation1" name="geq"/>

is smaller than

<om:OMS cd="relation1" name="lt"/>

and thus the part of the function f(x):

x ≥ a f(x) = h(x)

is less than
x < a f(x) = g(x)

so the normal form chosen (before variable normalisation) for f(x) is that given by
equation 4.

3.2 Complexity of the Normalisation Process

The complexity of performing the above steps is clearly the sum of the complexity of
performing each one of them, viz.

total complexity = CL + CA + CMeq + Cα + Ccom

where:

i) CL is the cost for performing the conversion to DNF. The worst case is O(2n+1)
[19] where n is the number of terms.

ii) CA is the cost for flattening every associative operation

CA = na × |e|

where: na, e denote the number of associative operators, and the expression (the
output from step 1), respectively and |e| denotes the length of expression e.

iii) CMeq is the cost for applying the theorems. This is independent of the number of
theorems, as we use a hashing technique for applying the theorems. In fact

CMeq = Mth × Cap

where: Mth, Cap is the number of matched theorems and the cost for applying a
specific theorem respectively. The time cost for application of a theorem will be
dependent on the size of the sum of reduct and redex for this particular theorem,
whilst the size cost will be dependent on the redex alone.

iv) Cα is the cost for performing the α-conversion

Cα = nv × |ST |

where: nv, |ST | is the number of variables and the size of the subtree over which
the α-conversion is being applied, respectively.
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v) Ccom is the time cost for resolving commutative operators

Ccom = nc(st + oc × ot)

where: nc, st, oc, and ot are the number of commutative operators, the search
time (time complexity only), the number of occurrences of this particular operator
and the order time for ordering the children of this operator (dependent on the
number of children and the time taken for the OpenMath order).

Since na, Mth, nv and nc are constants and in most cases we expect Cap, |ST |, st, oc

and ot to be small the overall worst case complexity will be O(2n+1).

4 Dealing with Inputs and Outputs

Users must necessarily specify inputs and outputs to any problem they wish to solve.
This is so that the variables can be given names and referenced in the pre- and post-
conditions. The user will know what type of inputs they have, so we can require them
to provide the types. The user, however, will not know the name that the service uses or
the order that the service specifies them in. This gives us a combinatorial (in the number
of inputs/outputs with the same signatures) number of possible orderings for the inputs
and outputs. Another way to deal with this problem is to impose a restriction on the
user; that is to fix the names of the variables, or the order in which they occur. These two
approaches need not be incompatible, as we may keep trying different orderings until a
match has been found, or the required number of matches have been found. This may be
made part of the normalisation scheme by adding a conjunction of set inclusions to the
pre-conditions for the inputs, and post-conditions for the outputs. With each conjunction
of set inclusions, a different order of normalised names must be forwarded to the α
renaming process.

Example 4. If the MSDL of the query specifies the following:

inputs: x ∈ ZZ outputs: R ∈ ZZ
y ∈ ZZ
z ∈ Q

pre-condition: Ppre(x, y, z) post-condition: Ppost(x, y, z, R)

where x, y, z are the names of the inputs, R is the name of the output and Ppre, Ppost

are predicates specifying the pre- and post- conditions respectively. This will be nor-
malised to the following pair of conjunctions:

pre-condition: n1 ∈ ZZ ∧ n2 ∈ ZZ ∧ n3 ∈ Q ∧ Ppre(n1, n2, n3)

and

post-condition: n1 ∈ ZZ ∧ n2 ∈ ZZ ∧ n3 ∈ Q ∧ ñ1 ∈ ZZ ∧ Ppost(n1, n2, n3, ñ1)

where n1, n2, n3 and ñ1 are the normalised forms of x, y, z and R respectively. A
second alternative may be appropriate for this query, viz.:
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pre-condition: n1 ∈ ZZ ∧ n2 ∈ ZZ ∧ n3 ∈ Q ∧ Ppre(n2, n1, n3)

and

post-condition: n1 ∈ ZZ ∧ n2 ∈ ZZ ∧ n3 ∈ Q ∧ ñ1 ∈ ZZ ∧ Ppost(n2, n1, n3, ñ1)

Example 5. To consider a more concrete example, there may be a capability with
MSDL:

inputs: x ∈ ZZ outputs: d ∈ ZZ
y ∈ ZZ r ∈ ZZ

post-condition: Ppost(x, y, r, d) ≡ d ∗ y + r = x

A client issues the following task MSDL to the broker:

inputs: x ∈ ZZ outputs: d ∈ ZZ
y ∈ ZZ r ∈ ZZ

post-condition: Ppost(x, y, r, d) ≡ d ∗ x + r = y

Now even though these MSDL documents are different, the broker must determine that
the capability is relevant, and it may do this by trying different permutations of variables
with the same types, during the normalisation process, until a match is found.

5 Calculating a Similarity Measure

Once the task description has been normalised, it can be compared with the capability
descriptions registered with the broker, with the objective of calculating a similarity
value. We denote the pre- and post-conditions of task and capability descriptions by
Tpre, Tpost, Cpre and Cpost. We express the matching requirement between them as:

Tpre ⇒ Cpre ∧ Cpost ⇒ Tpost

That is to say, the pre-conditions of the capability must be satisfied by the pre-
conditions of the task and the post-conditions of the task must be satisfied by the post-
conditions of the capability. In all the following , we consider pre- and post- conditions
in DNF, so x ∈ Cpre means x is a conjunct in the DNF for the capability pre-condition.
Superfluous capability pre-conditions (task post-conditions) do not effect whether the
function may be performed. It is necessary, however, that there are no extra task pre-
conditions (capability post-conditions) as this might allow the client to provide condi-
tions incompatible with the capability pre-condition (capability post-condition). This
may be formalised in the following:

∀x1 ∈ Tpre ∃y1 ∈ Cpre s.t. x1 ⇒ y1 (5)

and
∀x2 ∈ Cpost ∃y2 ∈ Tpost s.t. x2 ⇒ y2 (6)

One way of proceeding is to treat the pre- and post-conditions separately in or-
der to get two similarity values Spre and Spost. If it so happens that the pre- and
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post-conditions are equally important, then the average of these values will provide
a good measure for the similarity value, however this will not always be the case, and
other feasible measures are to weight Spre and Spost linearly with the number of match-
ing disjuncts in the pre-condition match as opposed to the post-condition match. This
can be justified by observing that there are a linear number of different ways for the
conditions to match.

We shall denote the DNF for Cpre (or Tpost) by R = R1 ∨ · · · ∨ Rn and for Cpost

(or Tpre) by S = S1 ∨ · · · ∨ Sñ. To calculate a value ∈ [0.0, 1.0] indicating how well
equations 5, 6 are satisfied, we shall use the formula:

similarity(R, S) =
∑

i=1..ñ

M1(R, Si)
1
ñ

(7)

where M1 is a function which indicates how well the expression Si ⇒ R holds. This
is equivalent to stating how well Si matches with one of the conjuncts making up R. A
good formula to calculate this is:

M1(R, Si) = max
j=1··n

{M2(Rj , Si)} (8)

where M2 is a similarity function for conjuncts. We may calculate a value for
M2(Ri, Sj) as:

M2(Rj , Si) =
∑

k=1··δ
m(Rj , Si,k)

1
δ

(9)

where δ is the number of terms in Si, Si,k are terms in Si and:

m(Rj , Si,k) returns 1.0 if Si,k matches a term in Rj ,
0.0 otherwise.

(10)

The term matches which must be performed in order to evaluate the function given
by expression 10 may be achieved in a variety of ways, some more effective than others.
Two of these methods algebraic match and value substitution match are expounded
in [13]. A third rather simplistic method is simply to perform a syntactic equivalence
test on the XML. An important principle which must never be disregarded is that the
term matches must be relatively cheap to perform, it is clearly ridiculous to perform an
equivalence test once for every service (in the repository) which is as expensive as the
service to be discovered!

5.1 Complexity of the Similarity Calculation

Theorem 1. If the terms in each conjunct in the DNF are stored in order, then the
average complexity for calculating the similarity value defined in Section 5 is:

O(n2m log2(m))

where n, m are the average number of conjuncts in the DNF, average number of terms
in each conjunct respectively.

If the terms are unordered, then the complexity is: O(n2m2)
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Algorithm 2. Register a capability

input: CMSDL {MSDL of capability}
: CURL {URL of capability}

NMSDL ←Normalise MSDL
{normalise the service MSDL, following Section 3}
Store < NMSDL, CMSDL, CURL > tuple in registry database
{we store the normalised form as this will save calculating it every time we have a look up, we
must still store the original MSDL (for reference) and the capability URL (for access)}

The following abuse of notation shall be used. we shall say O(f(x)) when we mean the
(time) complexity of the calculation of f(x).

Proof. The complexity of calculation of similarity(R, S) =

O

( ∑
i=1..ñ

M1(R, Si)
1
ñ

)
= O(ñ) × O(M1(R, Si)) (11)

= O(ñ) × O

(
max

j=1··n
{M2(Rj , Si)}

)
(12)

= O(ñ × n) × O(M2(Rj , Si)) (13)

where n, ñ are the number of conjuncts in the DNF for R, S respectively. Then:

O(M2(Rj , Si)) = O

( ∑
k=1··δ

m(Rj , Si,k)
1
δ

)
= O(δ) × O(m(Rj , Si,k)) (14)

We see that if the terms are stored in order (using perhaps the ordering defined in Al-
gorithm 1) a binary chop technique may be used to determine if Si,k occurs in Rj ,
its complexity is O(log2 m̃) where m̃ is the number of terms in Rj . To get a general
complexity value, fix n = ñ = n, the average number of conjuncts in each DNF and
δ = m̃ = m, the average number of disjuncts in each DNF respectively. Then:

average complexity = O(n2m log2(m))
If the terms are not stored in order, then the search will take O(m̃) time, so:

average complexity = O(n2m2)

6 Overall Matching Algorithm

Our matchmaking architecture is based around two main algorithms: The first is for
registering capabilities in the database, this is detailed in algorithm 2.

The second takes the description of a task, it then returns an ordered list of the
capabilities in the database ordered on their similarity as defined in section 5.

6.1 Scalability

The problem with the approach taken in algorithms 2 and 3 is that algorithm 2 is rela-
tively cheap, the main cost being conversion to normal form, while algorithm 3 is not.
It must execute the following steps:
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Algorithm 3. Task Capability comparison

input: TMSDL {MSDL of task}
output: Collection of triples, {consisting of:

MSDL and URL of capability,
the similarity value of TMSDL to the capabilities MSDL}

TN(MSDL) ←normalised MSDL of the task
ret←new Collection()
{This loop will accumulate the values to be returned}
for each entry in the registry database do

CMSDL ←this capabilities MSDL
CN(MSDL) ←this capabilities normalised MSDL
CURL ←this capabilities URL
SV al ←similarity(TN(MSDL), CN(MSDL)) {The similarity value of the normalised task
MSDL and the normalised capability MSDL}
add(< CMSDL, CURL, SV al > to ret {add the capabilities MSDL, URL and its similarity
value to the task, to the collection to be returned}

end for
sort ret by the similarity values
return ret

1 Convert the query to normal form
2 Compare the query with every item in the registry
3 Sort the similarity values

This algorithm does not scale well because as the registry becomes large steps 2 and 3 be-
come the overriding factors, as they depend on the size of the registry. Also the ordered list
returned will be of length equal to the size of the registry, most of which will be irrelevant.

A better approach would be only to return the best match (or best few matches). An
efficient implementation of this approach is not possible using the present data struc-
tures. A promising approach is centred on storing the terms in some well-founded order
on OpenMath objects (perhaps that defined in Algorithm 1). The major cost then be-
comes registering a service, this is only done once. Looking up a service will then have
the advantage that fast O(log2(n)) algorithms may be utilised to look up terms. This
is not a straightforward look up of the service, however, due to the non-bijective corre-
spondences between task and capability descriptions.

7 Approaches to Matchmaking

Conventional service matching techniques [20], which mostly seem to rely on subsump-
tion reasoning, view services in terms of pre-conditions and effects. Although this could
be applicable to the domain we are exploring, it appears to lack the necessary precision
and for the present we are investigating the use of pre- and post-conditions that define
a functional relationship between the inputs and outputs.

It is quite natural to develop a specification of a mathematical service in terms of in-
puts, outputs, pre-conditions and post-conditions, where the post-condition may express
quite complex mathematical relationships between the inputs and outputs. Although we
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have yet to explore fully the practicality of the conventional service matching approach,
it seems that it might be possible to cast each such type as a concept in an ontological
hierarchy—in effect not unlike hashing—assuming one could reason sufficiently accu-
rately about inclusion relationships over the type information to locate the type correctly
in the hierarchy. Consequently a problem description could be recast in the same man-
ner and Description Logic (DL) reasoning applied to determine the applicability of a
service or otherwise. This, however seems questionable, for two reasons:

(i) The richness of mathematical expression means that two equivalent descriptions
may appear very different so that it is not clear how readily two equivalent descrip-
tions (task and capability) might result in the identification of the correct nodes in
the ontological hierarchy.

(ii) The work involved in determining equivalence—essentially using mathematical
reasoning—to identify the above nodes effectively appears to offer the means to
resolve the issue anyway if carried through to conclusion, such that using a DL
reasoning step may be unhelpful and even misleading.

These two observations may appear to conflict, in that in each case apparently op-
posing arguments rest on the work involved in comparing the descriptions of the task
and the capability. A resolution of this point is that in case (i) mathematical reasoning is
only used so far as it enables DL reasoning to be applied, while in case (ii) mathematical
reasoning is carried through to the conclusion of the process.

We also note that an approach in which each set of input, output, pre- and post-
conditions has the potential to induce a new node in the ontological hierarchy may
result in a very large number of nodes, the benefit of which is not yet clear.

7.1 Review of Related Work

A variety of matchmaking systems have been reported in the literature, and we review
some related systems below.

The SHADE (SHAred Dependency Engineering) matchmaker [12] operates over
logic-based and structured text languages. The aim is to dynamically connect informa-
tion sources. The matchmaking process is based on KQML (Knowledge Query and Ma-
nipulation Language) communication [9]. Content languages of SHADE are a subset of
KIF (Knowledge Interchange Format) [11] as well as a structured logic representation
called MAX (Meta-reasoning Architecture for “X”). Matchmaking is carried out solely
by matching the content of advertisements and requests. There is no knowledge base
and no inference performed.

COINS (COmmon INterest Seeker) [12] is a matchmaker which operates over free
text. The motivation for the COINS is the need for matchmaking over large volumes
of unstructured text on the Web or other Wide Area Networks and the impracticality
of using traditional matchmakers in such an application domain. Initially the free text
matchmaker was implemented as the central part of the COINS system but it turned out
that it was also useful as a general purpose facility. As in SHADE the access language is
KQML. The System for the Mechanical Analysis and Retrieval of Text (SMART) [18]
information retrieval system is used to process free text.

LARKS (Language for Advertisement and Request for Knowledge Sharing) [20]
was developed to enable interoperability between heterogeneous software agents and
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had a strong influence on the DAML-S specification. The system uses ontologies de-
fined by a concept language ITL (Information Terminology Language). The technique
used to calculate the similarity of ontological concepts involves the construction of
a weighted associative network, where the weights indicate the belief in relationships.
While it is argued that the weights can be set automatically by default, it is clear that the
construction of realistically weighted relationships requires human involvement, which
becomes a hard task when thousands of agents are available.

InfoSleuth [16] is a system for discovery and retrieval of information in open and dy-
namically changing environments. The brokering function provides reasoning over the
advertised syntax and the semantics. InfoSleuth aims to support cooperation among sev-
eralsoftwareagentsfor informationdiscovery,whereagentshaverolesascore, resourceor
ontologyagents.Acentralservice is thebrokeragentwhich isequippedwithamatchmaker
which matches agents that require services with agents that can provide those services.

The GRAPPA [23] (Generic Request Architecture for Passive Provider Agents)
system allows multiple types of matchmaking mechanisms to be employed within a
system. It is based on receiving arbitrary matchmaking offers and requests, where each
offer and request consist of multiple criteria. Matching is achieved by applying distance
functions which compute the similarities between the individual dimensions of an offer
and a request. Using particular aggregate functions, the similarities are condensed to a
single value and reported to the user.

MathBroker ([14] and [2]) is a project at RISC-Linz with some elements in
common with those described here, including providing semantic descriptions of math-
ematical services. Caprotti et al.[6] note that MathBroker uses ebXML for service
registration and discovery, while [2] suggests that most of the matchmaking is achieved
through traversing taxonomies and states that actual understanding of the pre- and post-
conditions is still an open problem.

The matchmaking mechanism demonstrated in the MONET project, as described
in [6], was based on description logic reasoning over OWL service descriptions, where
the query term is a concept or an expression over concepts. Some illustrative examples
in [6] involve terms such as the GAMS class of the service, the name of the kind of
algorithm, properties of the service platform, etc. Thus, the MONET broker represents
a significant step forward in searching for services, by moving from syntax (keywords)
to semantics (concepts), but the user must still then be in a position to select between the
matches, which will typically require comparison of pre- and post-conditions. Indeed,
as [6] state in their conclusions:

Matching on pre- and post-conditions would be a very powerful technique,
partly because it would give the user much more freedom in formulating prob-
lems but also because it would help automate service orchestration. Services
whose post- and pre-conditions matched could be plugged-into each other.
However it is a well-known fact that proving that two mathematical expressions
are identical is in theory undecidable [17] (although there are many mecha-
nisms which will solve a large class of cases in practice). Given that we have
access to general purpose computer algebra systems such as Maple within the
MONET framework it would not be too difficult for a broker to use them as
oracles to decide whether two statements were equivalent.
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That is the task that we are examining here.
Most of the projects above have focused on providing a generic matchmaker, capable

of being adapted for a particular application. The motivation, however, for many such
projects has primarily been e-commerce (as a means to match buyers with sellers, for
instance). Some projects are also focused on the use of a particular multi-agent inter-
action language (such as KQML), to enable communication between the matchmaker
and other agents. Our approach, however, is centred on the implementation of a match-
maker that is specific to mathematical relations. Similar to GRAPPA, our matchmaker
can support multiple comparison techniques.

8 Future Directions

The above method for semantic matching of mathematical capabilities may be extended
in a natural way to discover a composition of capabilities that may be used to perform
some task. The algorithm required for calculating the similarity value for conjuncts
given by expression (9) in section 5 requires determining a match between individual
terms, this allows us to determine which conditions have and which conditions have
not been satisfied (by the capability) or required (by the task). Future work involves
designing effective methods for determining compositions of services where overall the
task post-conditions are met and where the pre-conditions may be satisfied by a conjunct
of the task pre-conditions and post-conditions of other services (whose pre-conditions
have been met).

9 Conclusion

In this paper, we have considered some of the issues involved in mathematical service
matching. We point out the ambiguities occurring in mathematics and suggest a way in
which these may be circumvented by converting expressions occurring in the descrip-
tive pre- and post-conditions into a normal form. We suggest a similarity value which
measures how similar two services are to each other and analyse how the pre- and post-
conditions of the task and the capability contribute to this similarity value. Finally we
take a brief look at composition of services and how this ties into the above work.

Acknowledgements. The work reported here is partially supported by the Engineering
and Physical Sciences Research Council of the United Kingdom under the Semantic
Grids call of the e-Science program (grant reference GR/S44723/01).
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Abstract. Mathematical OCR (Optical Character Recognition) sys-
tems retrieve character sequences and the structure of mathematical for-
mulae from raster images scanned from mathematical documents. In this
paper a method for detecting hyperlinks, e.g. formula links, from mathe-
matical OCR output is described. We also experimentally demonstrated
the effectiveness of the method. By using the method we implemented a
prototype system of a mathematical knowledge browser that helps people
read mathematical articles.

1 Introduction

An important activity in mathematics is the reading of articles or books. Re-
cently mathematical knowledge has started to be stored and browsed in com-
puters, but most mathematical knowledge is still stored and browsed in printed
media. Computer assistance can help the reading activity by effective function-
alities, e.g. navigation with hyperlinks, which are not possible in printed media.
In [5] we presented the idea of a ‘mathematical knowledge browser’ that helps
people read mathematical articles.

For the implementation of a mathematical knowledge browser we need a
method of extracting the logical structure from mathematical articles and a
method of detecting hyperlinks. The method of extracting logical structure was
shown to be achieved in [5], and in this paper we propose a method to automat-
ically detect hyperlinks, which then enable effective browsing of mathematical
articles. Detection of hyperlinks from OCR output for general documents was
achieved in [4]. However an attempt to achieve this in mathematical documents
has not been realized. Mathematical documents have more intricate structures
and more types of hyperlinks, e.g. formula links, than other documents.

In Section 2 we describe the functionalities of the mathematical knowledge
browser and discuss hyperlink types. By using the hyperlink detection and
the automatic logical structure extraction methods we implement a prototype
mathematical knowledge browser. The implemented prototype is explained in
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Fig. 1. Mathematical Knowledge Browser (Sketch)

Section 3. In Section 4 the hyperlink detection method is presented. An exper-
imental result of the proposed method is described in Section 5. Finally, we
conclude in Section 6.

2 Mathematical Knowledge Browser

The mathematical knowledge browser helps people read mathematical articles.
One of the inputs for this mathematical knowledge browser is the printed mathe-
matical document. Initially, the printed mathematical document can be scanned
and processed by OCR. Then the logical structure and some hyper links are
automatically extracted and shown to users.

2.1 User Interface

The mathematical knowledge browser consists of three panes: structure, refer-
ence and browser panes (Fig. 1). In the structure pane located on the left side,
structural information is shown as a tree that shows the logical structure and
links to mathematical components such as theorems or propositions. The browser
pane at the right bottom and the reference pane at the right top show the same
mathematical text, but can show different positions of the text.

While reading an article one is often tempted to view different parts of the
article at the same time, e.g. by looking back at definitions, propositions, or
formulae. By clicking on a source of a hyperlink in the browser pane, the text
pointed to by the hyperlink will be shown in the reference pane. By browsing
this way while reading one does not lose ones attention and so can better focus
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on the content. For example in Fig. 1, by clicking the hyperlink ‘Lemma 2.1’ of
the browser pane the content of ‘Lemma 2.1’ appears in the reference pane.

2.2 Hyperlink Types

Hyperlinks facilitate browsing activities and enhance the readability of a doc-
ument by effective navigation. There are two types of hyperlinks, internal and
external. In an article an internal link points to a position within the article,
while an external link points to a position in another information source. Fig. 2
shows some examples of hyperlinks. Here are possible internal and external hy-
perlinks.

Internal Hyperlinks

– formulae number
In mathematical papers formulae are often numbered for reference purposes.
A formula number is located at the left or right of a formula. For example in
Fig. 2, ‘(0.1)’ is an example of a formula number. Hyperlinks to the formula
should be made in places where the string sequence ‘(0.1)’ appears.

– citation
An article cites other documents usually by bracketed strings, e.g. ‘[12]’ or
‘[BR2]’. Detailed information of the cited documents is shown in the reference
list at the end of the article. A hyperlink can be made from the place where
the bracketed string is to the corresponding entry in the reference list.

– mathematical components
One of distinct characteristics of mathematical articles is that there are
mathematical components (e.g. Definition, Lemma and Theorem). Also in
an article these mathematical components are often mainly referred to in
proofs. For example, in text “By Lemma 2.4 it suffices to prove ...” the
string ‘Lemma 2.4’ should link to the place where the description of ‘Lemma
2.4’ is.

– headings (e.g. chapter, section, subsection)
In text, chapters or sections are sometimes referred to. For example, the
sentence “This concept will be described in Section 2.” can appear in the
text. Then the string ‘Section 2’ should have a link to the description of
‘Section 2’.

– technical terms
If some new notions are introduced, they are named by special keywords. It
is also convenient to have a hyperlink from the place where such a keyword
appears to the place where the corresponding notion is introduced. However,
it is difficult to recognize automatically those items. It should be solved in
a different way.

– footnote
A footnote identifier is usually written in the upper-script of a word at the
end of a line of text. A link can be made from the footnote identifier to the
footnote within the same page. See the example in Fig 2.
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Fig. 2. Examples of Internal Links

– figure, table
A figure or a table can be identified by numbers separated by dots. Then a
link should be made from a keyword such as ‘Figure 2.3’ or ‘Table 1.2’ to
the place where the figure or the table is.

External Hyperlinks

– common mathematical technical terms
There are common mathematical technical terms such as ’real number’,
’group’ or ’ring’. It would be useful to have links from these terms to online
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Fig. 3. Screenshot of Prototype Implementation

mathematical dictionaries, e.g. MathWorld1, so that one can easily under-
stand or recall the notions without having to physically look up books. Since
it may happen that a common term can mean different concepts in differ-
ent areas of mathematics, the link destination should be search pages of
mathematical dictionaries.

– reference linking
Cited articles are listed in a reference list. It is possible to create hyperlinks
from articles of the reference list to the information of the cited articles. The
technology to identify articles is called ‘reference linking’[1, 3]. The destina-
tion of such a hyperlink can be an entry of a mathematical review site2 or
the place where the article is.

3 Prototype Implementation

We implemented a prototype of our mathematical knowledge browser using ordi-
nary functionalities of standard web browsers (Fig. 3). Here the article is shown
as a sequence of bitmap images. Sources and destinations of hyperlinks are shown
1 http://www.mathworld.com
2 http://www.ams.org/mathscinet
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Fig. 4. Process Flow of Prototype Implementation

as surrounding boxes overlapping the bitmap images. The source of a hyperlink
is colored red, and the destination green.

The process flow of the prototype implementation is shown in Fig. 4. At first,
printed materials are scanned and then converted into raster image files. Then
these images are processed by an OCR engine. We use an integrated OCR system
for mathematical documents called INFTY3[6]. INFTY reads the scanned page
images of a mathematical document and provides character recognition results.
One of the important characteristics of INFTY is that it can recognize two-
dimensional mathematical expressions. The recognition result can be saved in a
XML format called KML, which includes the results of logical structure analysis.
A KML file is analyzed by a link detection program that produces the result
in KMLLink format. From KMLLink and KML files some HTML files can be
produced by a conversion program and browsed by ordinary web browsers.

The contributions this paper makes are the link detection program and the
program for conversion into HTML. These programs are written in Python[8],
which is a script language that conveniently handles XML.

3.1 KML: An OCR Result Format with Meta-information and
Logical Structure

INFTY produces output in a XML format called KML. For example, Fig. 5 shows
the output results in KML for the scanned image shown in Fig. 2. The top ele-
ment is ‘Doc’ which contains some ‘Sheet’ elements representing pages. A ‘Sheet’
3 INFTY is freely available from http://www.inftyproject.org/en/
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<Doc version="1.1" language="English" ...>
<Sheet id="1" doc_file_name="Arkiv_1997.kml"

image_file_name="Arkiv_1997_185.tif" height="4438" width="3015" ...>
<Area rect="148,129,1801,266" id="1" ...>
<Text rect="148,129,1801,266" tag="PageHeader" ...>
<Field base_char_size="16,30,13,41" sub_char_size="11,20,9,28">
<Line id="1" rect="148,129,1086,195">
<Char code="0141" rect="148,133,195,180" ...>A</Char>
<Char code="0172" rect="200,151,223,180" ...>r</Char>
...
</Line>
<Line id="2" rect="149,200,1801,266">
...

</Area>
<Area rect="279,948,3022,1239" id="2" ...>
<Text rect="279,948,3022,1239" tag="Title" ...>
...

</Area>
...

</Sheet>
<Sheet id="2" doc_file_name="Arkiv_1997.kml"

image_file_name="Arkiv_1997_186.tif" height="4432" width="3002" ...>
<Area rect="229,169,326,215" id="1">
<Text rect="229,169,326,215" tag="PageNumber" ...>
<Field base_char_size="16,28,12,39" sub_char_size="11,19,8,26">
<Line id="1" rect="229,169,326,215">

...
</Text>

</Area>
<Area rect="1088,168,2358,228" id="2">
<Text rect="1088,168,2358,228" tag="PageHeader" ...>
<Field base_char_size="16,29,12,40" sub_char_size="11,20,8,27">
<Line id="1" rect="1088,168,2358,228">

...
</Area>
<Area rect="231,405,3224,701">
<Text tag="Theorem">
<Field>
<Line id="1" rect="392,405,3224,486">
<Char code="2154" rect="392,410,452,467" bold="1"...>T</Char>
<Char code="2168" rect="458,409,506,467" bold="1"...>h</Char>
...

</Area>
<CharInfo>... </CharInfo>
</Doc>

Fig. 5. Example of KML Output from an INFTY OCR Engine
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<KMLLink verion="1.0" page="23">
<anchor type="destination" kind="mathcomp" label="THEOREM 2.1"

page="3" rect="106,3290,137,3340" />
...
<anchor type="source" kind="mathcomp" label="THEOREM 2.1"

page="10" rect="2462,1734,2495,1789" />
...
</KMLLink>

Fig. 6. Example of KMLLink Format

element contains some ‘Area’ elements whose positions and sizes are indicated
by ‘rect’ attributes. The value of the ‘rect’ attribute "left,up,right,down" indi-
cates the positions of left, up, right, down borders, respectively, of the rectangle.
An ‘Area’ element contains a ‘Text’ element having a ‘Field’ element. A ‘Field’
element has several ‘Line’ elements that again have several ‘Char’ elements.

To satisfy the need to put additional information for meta-information and
logical structure, the ‘tag’ attribute for the ‘Text’ element exists to represent the
type of the text field. The values of the ‘tag’ attribute are ‘PageHeader’, ‘Pa-
geNumber’, ‘Caption’, ‘Title’, ‘AuthorInfo’, ‘AbstractHeader’, ‘Abstract’,
‘Keywords’, ‘Heading1’, ‘Heading2’, ‘Heading3’, ‘Heading4’, ‘Heading5’, ‘Text’,
‘Bibitem’, ‘Definition’, ‘Axiom’, ‘Theorem’, ‘MainTheorem’, ‘Proposition’,
‘Corollary’, ‘Lemma’, and ‘Footnote’.

3.2 KMLLink: Link Description Language for KML

The link detection program takes a KML file as input and produces results
in the KMLLink format. Fig. 6 shows an example in KMLLink. The top ele-
ment is ‘KMLLink’ that contains only ‘anchor’ elements. There are two types
of ‘anchor‘: ‘source’ and ‘destination’ specified by the ‘type’ attribute. The
‘kind’ attribute takes one of three values: ‘citation’, ‘formula’, or ‘mathcomp’
(mathematical component). The ‘page’ and ‘rect’ attributes specify a rectan-
gle in a page. The ‘label’ attribute specifies the identifier of a link. A pair of
‘source’ and ‘destination’ anchors that have the same label indicate a link.
For example, in Fig. 6 a pair of two anchors indicate a ‘Theorem 2.1’ link from
a place in page ‘10’ to a place in page ‘3’.

3.3 Conversion from KMLLink to HTML

The conversion program takes a KMLLink file and a KML file as input, and
produces three HTML files:

– frame file,
– navigation file,
– content file.

The frame file forms the outline that contains three panes by using the
‘FRAME’ element of HTML. The content of the navigation pane is described
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<div style="position:relative;top: 0px; left:0px;...">
<img src="/images/InvM_1970_121_134-0.jpg">
<a href="#Theorem 2.4" style="position:absolute;

left:397px; top:262px; width:5px; height:9px;
border: 1px solid red;" target="reference"></a>

...
<a name="Theorem 2.4" style="position:absolute;

left:27px; top:528px; width:386px; height:80px;
border: 1px solid green;"> ...</a>

</div>

Fig. 7. HTML Realization of Hyperlinks over a Raster Image for a Page

in the navigation file. Production of the navigation file needs the result of the
logical structure analysis that is stored in the KML file. Both the reference and
the browse panes show the same content file in which scanned images are verti-
cally allocated and browsed by scroll bars. (As images used for OCR are large
for browsing, the size of scanned images is decreased by 15%.)

It is also possible to show the content in MathML(+HTML), since the INFTY
OCR engine can recognize mathematical formulae. However, we chose raster
images for showing pages because there are some miss-recognitions by OCR and
it is not always the case that web browsers can display MathML properly.

In a content file, destinations and sources of hyperlinks are indicated by sur-
rounding boxes that are realized by specifying the ‘style’ attribute of HTML.
For example, a page is represented in Fig. 7. An image is shown by the ‘img’ ele-
ment. The source of a hyperlink is realized by the ‘a’ element with the ‘href’ at-
tribute. The ‘target’ attribute specifies the target window "reference", which
represents the reference pane. The destination of a hyper link is realized by the
‘a’ element with the ‘name’ attribute. In the ‘style’ attribute, the positions and
sizes of surrounding boxes are specified by ‘left’,‘top’, ‘width’, and ‘height’
with ‘border’.

4 Automatic Link Detection Method

In this paper we focus on the detection of three internal link types: formula,
citation, and mathematical components; because these are especially useful in
browsing. Other links will be the subject of future work. Automatic link detection
can be achieved by looking for specific string patterns. A link is specified by its
source and its destination. In most cases, the string pattern of the source and
the destination of a link are the same.

Although we can not expect string patterns that will work for all articles, in
this paper we use fixed patterns that should work in most cases. Fig. 8 shows the
fixed patterns (regular expressions) used for detecting destinations and sources
of links. Basically the algorithm looks for these fixed patterns line by line, and
decides whether what it finds is a destination or a source.

For there to be more accurate recognition of links, there needs to be some
mechanisms by which one can specify the string patterns of links. For example, in



Mathematical Knowledge Browser with Automatic Hyperlink Detection 199

kind regular expression example
formula \([0-9]+(\. ?[0-9]+)*\’?\) (2) (1.2) (3’)
citation \[([^\[^\]]*)\] [2] [Mar80,Buc99]
mathcomp Theorem( [0-9]+(\. ?[0-9]+)*’?| [a-zA-Z]+|) Theorem 3.2

Lemma( [0-9]+(\. ?[0-9]+)*’?| [a-zA-Z]+|) Lemma II
· · ·

Fig. 8. Used Regular Expressions

[4] they define a link specification language called LITHP (Link Type description
language for HyperText Processing) by which one can define link patterns.

Here the detailed algorithm is explained for each link.

4.1 Formula Link

Link Destination Detection. Sometimes a formula has a label written in
a parenthesized number, or numbers separated by dots, e.g. ‘(2)’ or ‘(2.1)’ or
‘(2.2.3)’, at the left or right of the formula. However all such labels do not nec-
essarily become formula link destinations. For example:

Here ‘(19)’ must not be recognized as a formula link destination. To avoid this
problem, only the first occurrences of such labels are considered to be destina-
tions of formula links, because in most cases these labels that are not destinations
come after the formula is labeled.

Link Source Detection. All strings that match the regular expression for
‘formula’ in Fig. 8, and are the same as link destinations’ labels are link sources.

4.2 Citation Link

Link Destination Detection. Destinations of citation links can be detected
from the reference section. Usually an reference entry starts with either a bracket
string (e.g. ‘[Buc2004]’) or numbers with a dot (e.g. ‘12.’).

Link Source Detection. A citation link source is usually written in the form of
‘[str1, · · · , strn]’. However all str1, · · · , strn do not always indicate the source of
citation links. For example, ‘[8, Theorem 3]’ indicates ‘Theorem 3’ of the paper
that is indicated by the citation number ‘8’. The label ‘[7, pp. 38]’ indicates that
it refers to the 38th page of the article cited by the number ‘7’. Another example
is an interval notation ‘[a,b]’.

Here, the way to distinguish is that strings occurring in the reference list
(link destinations) are considered to be citation sources. Then the examples
‘Theorem 3’ and ’pp. 38’ are not strings of a citation source. Additionally after
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the first occurrence of a non-citation string, all such strings are considered to be
non-citation strings. Namely suppose we have ‘[str1, · · · , stri−1, stri, · · · , strn]’
and the strings from str1 to stri−1 appear in the reference list, but stri does
not appear in the reference list, the strings from stri to strn are not considered
to be citation sources. For example, let us consider the case ‘[8, Theorems 3,
4]’. Suppose ‘4’ and ‘8’ appear in the reference list. In this case ‘8’ is considered
to be a citation label, but ‘4’ is not because a non-citation string ‘Theorems 3’
appears before ‘4’.

4.3 Mathematical Component Link

Link Destination Detection. Destinations can easily be detected after log-
ical structure extraction, because in KML the ‘Text’ elements are tagged by
keywords, e.g. ‘Theorem’. The beginnings of such ‘Text’ elements are mathe-
matical component link destinations. For example, in Fig. 2 ‘Theorem 1’ is a
mathematical component link destination.

Table 1. Experimental Result of Detecting Hyperlinks

paper ID formula citation math. comp.
source dest. source dest. source dest.

ActaM 1970 37 63 92/92[2] 54/55[1] 18/18[1] 7/7[0] 54/54[2] 16/16[0]
ActaM 1998 283 305 0/0[23] 0/0[5] 33/33[0] 12/12[0] 38/38[3] 30/34[4]
AIF 1970 493 498 0/0[0] 0/0[1] 6/6[0] 2/2[0] 4/7[0] 1/1[0]
AIF 1999 375 404 4/4[18] 1/4[3] 18/18[0] 12/12[0] 44/46[0] 34/34[0]

AnnMS 1971 157 173 2/2[3] 0/2[3] 17/18[0] 6/6[0] 6/12[3] 11/11[0]
AnnM 1970 550 569 55/55[0] 29/29[0] 24/24[0] 20/20[0] 40/46[0] 6/6[0]
Arkiv 1971 141 163 0/0[0] 3/3[0] 24/24[0] 7/7[0] 41/42[0] 24/24[0]
Arkiv 1997 185 199 53/53[4] 42/42[2] 24/24[0] 12/12[0] 30/32[2] 16/16[0]

ASENS 1970 273 284 0/0[0] 0/0[0] 32/32[0] 14/14[0] 9/9[2] 7/7[0]
ASENS 1997 367 384 0/0[13] 1/1[2] 33/33[0] 15/15[0] 34/41[3] 18/18[0]
BAMS 1971 157 159 7/7[0] 9/9[0] 7/7[0] 6/6[0] 6/6[0] 3/3[0]
BAMS 1971 160 163 0/5[0] 0/3[0] 6/6[0] 6/6[0] 1/1[0] 6/6[0]

BAMS 1974 1219 1222 0/0[0] 0/0[0] 6/6[0] 2/2[0] 0/4[0] 9/9[0]
BAMS 1998 123 143 0/0[0] 0/0[0] 113/113[0] 48/48[0] 33/35[0] 34/34[0]
BSMF 1970 165 192 18/18[0] 15/15[0] 71/71[0] 8/8[0] 41/50[0] 16/16[0]
BSMF 1998 245 271 50/50[0] 34/34[0] 41/41[0] 21/21[0] 37/48[0] 19/20[0]
InvM 1970 121 134 46/46[1] 19/19[1] 30/30[0] 7/7[0] 0/0[2] 2/2[0]
InvM 1999 163 181 31/31[26] 18/18[5] 0/18[0] 0/6[0] 0/3[21] 17/19[0]
JMKU 1971 181 194 16/16[8] 14/14[0] 10/11[0] 9/9[0] 16/20[10] 8/12[3]
JMKU 1971 373 375 0/0[4] 0/0[6] 6/6[0] 4/4[0] 1/1[1] 3/3[0]
JMS 1975 281 288 10/10[0] 6/6[0] 18/18[0] 11/11[0] 19/19[0] 16/16[0]
JMS 1975 289 293 3/3[0] 6/6[0] 6/6[0] 3/3[0] 1/2[0] 3/3[0]
JMS 1975 497 506 43/43[0] 43/43[0] 19/19[0] 10/10[0] 4/5[1] 7/7[0]
KJM 1999 17 36 42/42[2] 27/27[5] 22/22[0] 7/7[0] 40/40[5] 21/24[1]
MA 1977 275 292 38/39[0] 29/30[0] 24/24[0] 14/14[0] 11/13[2] 12/12[0]
MA 1999 175 196 39/39[1] 37/37[2] 36/36[0] 27/27[0] 13/15[1] 6/6[0]
TMJ 1973 317 331 0/0[0] 0/0[0] 19/22[0] 12/12[0] 17/17[0] 11/11[0]
TMJ 1973 333 338 0/0[0] 0/0[0] 6/9[0] 6/6[0] 6/6[0] 5/5[0]
TMJ 1990 163 193 109/116[53] 41/44[6] 57/65[0] 31/31[0] 51/64[0] 25/26[0]

Sum 658/671[158]428/441[42]726/760[1]339/345[0]597/676[58]386/401[8]
98.1% 97.1% 95.5% 98.3% 88.3% 96.3%
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Link Source Detection. Strings that are the same as the strings of mathe-
matical component link destinations are mathematical component link sources.

5 Experiment

To show the effectiveness of the link detection method we set up an experiment.
A large-scale database of mathematical articles [6, 7] stored in KML was utilized.
We randomly chose 29 English articles on pure mathematics (issued in 1970 -
1999) from different journals. Basically, an old and a new paper are chosen for
each journal.

From the database in KML we made a correct KMLLink database and initi-
ated the experiment (Table 1). A table entry is in the form ‘success/all[excess]’.
‘all’ is the number of all correct elements. ‘success’ is the number of elements
successfully detected by the method presented in this paper. ‘excess’ is the num-
ber of elements excessively detected by the method. Note that the decrease of
the number of ‘excess’ means better result. In total, the result achieved a 95.1%
success rate with 267 excessively detected elements, which was 8.1% of all correct
elements.

6 Conclusion

A method to detect several types of hyperlinks from printed mathematical doc-
uments was proposed. Using the method, we implemented a prototype math-
ematical knowledge browser. The authors believe that automatically detected
hyperlinks make browsing of mathematical articles more effective. We intend
to improve our hyperlink detection method and apply the improved version to
larger scale databases.

In general, the style assumptions described in this paper do not work for
mathematical documents whose styles are completely different. For example for
citations some articles use a parenthesized form, e.g. ‘(Buc 2000)’. To adapt the
system to such cases, a mechanism by which one can specify string patterns by
regular expressions is needed. With such a mechanism, the system will work for
exceptional cases.

For the prototype implementation of the mathematical knowledge browser
we used standard web browsers, but for greater functionality we will need to
implement standalone software. The following improvements can be considered
for our mathematical knowledge browser:

– Elaborate Search
Automatic detection of internal hyperlinks of technical keywords is a difficult
task. A practical solution would be to provide an elaborate search function-
ality in the browser. By selecting a keyword in the browser and pressing a
button, all words that are the same as the keyword in the paper will be
marked and they can then be browsed sequentially.
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– Showing Overview
An article can be shown in an overview mode. For example, it is possible to
show only the numbered mathematical formulae that appear in an article.
In this way, one may be able to get the general idea of the paper.

Mathematical knowledge needs to be stored in a content-base format rather
than a presentation-base format so that it can be used for various purposes.
Mathematical knowledge should be store in a higher level format, because at
this higher level practical usage is enhanced. However, currently most mathe-
matical knowledge is stored in printed media and the situation will not change
much without some action been undertaken. The technologies presented here
support converting lower level formatted knowledge into higher level formatted
knowledge. We hope that in the future people will store mathematical knowledge
in a content-base format such as OMDoc[2].
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Abstract. Automatic document analysis tools for mathematical texts
are necessary to enlarge the pool of mathematical knowledge available
in electronic form. However, development of such tools is currently hin-
dered by the weakness of optical character recognition systems in dealing
with the large range of mathematical symbols and the often subtle but
important distinctions in font usage in mathematical texts. Research on
developing better systems for mathematical optical character recognition
crucially depends on having an extensive, high quality database of glyphs
used in mathematical texts for training and test purposes. We present
such a database of symbols constructed from a large set of characters
available in the LATEX document preparation system that can serve as
a basis mathematical text recognition. We describe its integration into
a prototypical system optical character recognition system for mathe-
matics that enables the construction of LATEX source documents from
mathematical documents available as images. From the lessons learned
in this work we derive a road map for further research into the area of
mathematical text analysis.

1 Introduction

There is a conspicuous need to translate the knowledge locked in the existing
large body of printed scientific documents into a more accessible, searchable
and versatile electronic form. A critical component in the document analysis
technology required to fill this need is effective and accurate optical charac-
ter recognition for type-set mathematics. However, optical character recognition
(OCR) of mathematical texts poses some special problems. Unlike non-scientific
text, there is a very large range of symbols commonly used. The Comprehensive
Latex Symbol List [5], for example, presents 2,826 different symbols available
in LATEX. More than that, while it is not uncommon to meet a mixture of only
upright, italic and bold font faces in a non-mathematical text, the situation in
mathematics is very different with a large number of font variants not only be-
ing common, but crucial to an understanding of the text because of significant
semantic information being carried by often relatively subtle distinctions in font
faces. Possibly because of the low current demand in the mass market for such
functionality and the high cost in processing and memory overheads to pro-
vide it, commercial suppliers have not, to date, devoted a great deal of effort to
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the problems of these areas. Nevertheless, the automatic processing of scientific
texts is highly desirable as their availability in electronic form would make their
content more widely accessible by specialist audiences or by users with special
needs.

Academic work on mathematical OCR (MOCR) and document analysis has
developed since Anderson’s initial work in 1968 [1], but the INFTY system [4],
which is possibly the most advanced mathematical document analysis system
currently extant, still relies on a mixture of a standard commercial OCR system
for normal text and a custom mathematical symbol OCR system that caters for
only 564 symbols (including the various alphabets) in mathematical sections.
One of the problems that hinders development in MOCR is the lack of a suitable
database of glyphs and symbols to use to train MOCR systems and upon which
to base experimental development of scientific document analysis systems.

We have developed such a database by extracting symbols from a specially
fabricated document containing approximately 5,300 different mathematical, sci-
entific and textual symbols. This document is originally based on [5] and has been
extended to cover most of the mathematical and textual alphabets and symbols
currently freely available in LATEX. We have integrated the database into our
own experimental MOCR system, which derives from a metric based technique
for font recognition [7]. In spite of the fact that it is still only in prototype form,
the system already enables us already to process mathematical documents given
as images and use the database to construct LATEX source files that reproduce
the input documents.

Our work could be seen as approaching the same goal as [8] but from the
opposite direction. [8] aims at building a ground truth set of mathematical sym-
bols by compiling a database of characters from a selected set of mathematical
articles. While our database may not enjoy the same authority as a full ground
truth set, it has more breadth in that it contains most supported LATEX symbols
rather than just the necessarily limited set contained in the publications consid-
ered. In particular, we can deal with the rapidly growing number of symbols used
in diverse scientific disciplines such as computer science, logics, and chemistry.

We continually use the terms character, symbol and glyph in this document.
We use the first two interchangeably to refer to the most elementary indivisible
graphical element from a font directly available to a writer. A glyph, however,
is more elementary in that it is a single connected component of a graphical
element, one or more of which are required to make a symbol. Thus the three
symbols “a”, “%” and “≡” can be seen to be composed of 1, 2 and 3 glyphs,
respectively.

In Sect. 2 we discuss some of the issues that must be addressed in the design
of an MOCR system and their consequences for a glyph database. We describe
the actual database and its contents in in Sect. 3. Section 4 discusses, using an
example, the process that our experimental MOCR system applies in using the
database to analyse the image of a document and reconstruct it from the data-
base. We address some lessons learned and future work in Sect. 5 and summarise
the final conclusions in Sect. 6.



A Database of Glyphs for OCR of Mathematical Documents 205

2 Design Issues

The aim of our work is to design a database of symbols that can be used as a
basis for a wide range of research in the field of MOCR. In particular, we wish
to facilitate research on MOCR without prejudicing possible approaches to the
problems involved. Hence we would like our database to be as neutral as possi-
ble with respect to the pattern recognition technologies that may be employed
on its contents. Furthermore, we would like to make the system such that writ-
ing code to manipulate, analyse and process the database is relatively simple
so that even inexperienced users can use it for worthwhile OCR and MOCR
projects. In this way, we believe, we lower the barrier to entry to research in the
field.

For this reason, we have designed a simple, if rather wasteful, LATEX file, where
symbols are listed with identification and calibration markings. The layout of the
file is designed for easy processing and our code base provides a tool to extract
all the glyphs from the symbols in the file and save them as separate tiff images
in a directory structure that allows easy access. An index file is also generated
that, for each symbol, identifies its component glyphs and relevant information
about them.

There are a number of issues that must be taken into consideration both
directly for the design of the database and indirectly because of the effect they
have on consequent MOCR pattern matching strategies.

Base points: The base point of a character is a distinguished position relative
to the image of the symbol (but not necessarily within the bounding box of
the image) that is used to align it with other symbols in a text. A document
processing system aligns symbols on a line by placing them so that their base
point lies on a common base line and that two neighbouring symbols are placed
so the base point of the second is placed in a horizontal position relative to a
point calculated as the horizontal component of the base point of the first plus
the width of the first. This horizontal position can be adjusted depending on the
needs for filling lines or adjusting spacing.

The base point of a symbol bears no automatic relationship to the bounding
box of the symbol. For example, a symbol with a descender such as “g”, “j”,
“p”, “q” or “y”, will have its base point positioned above the lower limit of its
bounding box. Many symbols such as “-” or “=”, have their base point positioned
below the lower limit of their bounding boxes.

Thus a symbol has to be identified before its base point can be found, although
the knowledge of where the baseline is together with a database of symbol base-
lines can be used to constrain the choice of possible matching symbols. Our
database must therefore relate the base point for each symbol, and indeed, of
each glyph of each symbol, to the bounding box of the symbol.

Multi-glyph symbols: Some symbols are composed of multiple glyphs. For non-
mathematical OCR, this does not pose significant problems because there are
relatively few such cases (mostly accents, a few punctuation symbols and an
occasional symbol such as “=”) and there are obvious approaches that can be



206 A. Sexton and V. Sorge

used to deal with such exceptions. For MOCR, however, there are many more
cases and, frequently, cases where different symbols share common components
e.g., ∪, �,� or

∫
,
∫∫

,
∫∫∫

,
∫∫∫∫

or �, �, �,≺, �,&.
This presents a choice for a MOCR system: should it try to directly recognise

symbols as a whole or should it try to recognise individual glyphs and reconstruct
symbols from glyphs at a different level in the system? Since it is quick and easy
to reconstruct a symbol from the component glyphs, but not to do the reverse,
the database should store glyphs rather than symbols, but with the necessary
information so that symbols can be conveniently reconstructed.

Duplicate glyphs: In LATEX, there are often multiple different fonts which have
symbols which render to precisely the same graphical object at some resolution.
For example there are many different instances of simple squares or circles in
different fonts which are graphically indistinguishable when rendered (although
they may have different base points). From the pure graphical pattern match-
ing point of view, such objects are representatives of equivalence classes and it
is the class that matters. Nonetheless, it can be significant to higher levels of
mathematical document analysis as to precisely which representative it is, so
the information about all such representatives must be maintained in the data-
base with the actual final choice being made on the basis of, possibly, further
contextual evidence.

Scanning resolution: Commercial, mass market OCR systems tend to be tuned
to work best on relatively low resolution (200-400 dpi) images. This is possibly
because of the time, memory and processing power demands that handling higher
resolutions images would place on customer’s resources. For normal OCR, this
appears to be adequate given the relatively small symbol sets that need to be
recognised and the relatively low demands for type face discrimination that
current customers appear willing to put up with.

For MOCR, given the large symbol sets and the large number of fonts and
typefaces that must be reliably distinguished, it seems unlikely that such resolu-
tions will suffice. Our preliminary studies indicate that 600dpi may be adequate
for MOCR and Suzuki has reported in [4] excellent recognition accuracy at this
resolution. This is fortunate as mid to high volume scanning devices are cur-
rently readily available at this resolution but become extremely expensive at
higher resolutions.

Many publishers, libraries and other organisations are currently working on
digitising their collections and back catalogues. As with JSTOR [3], there seems
to be a consensus on scanning at 600dpi. Therefore, for at least the foresee-
able future, MOCR systems will need to be able to handle documents at this
level of resolution. Nonetheless, we would like our database to be adaptable to
researchers who wish to experiment with different, or even multiple resolutions.

Whatever the resolution, there will be issues of aliasing due to the limits of
both the printing and the scanning technologies.

Point size: Merely scaling a symbol from one point size to match the appropriate
dimensions of the glyph at a different point size can have the effect of upsetting
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its weight1. For this reason, the same symbol rendered at different point sizes
often have different shapes, and different approaches have been taken in OCR
systems to deal with it. Some systems try to use features invariant in the type
of shape changes that occur between different point sizes. Others train their
systems on collections of symbols that include glyphs at a few, or even at many
different point sizes. All such options should be available to users of our glyph
database.

Scaling: Irrespective of the point size the symbols of the target documents were
originally rendered in, the document may have been scaled via photocopying or
the printing process before being scanned. This complicates the issue of correctly
identifying glyphs if different point sizes are being explicitly catered for.

Unknown symbols: Whatever the extent of a glyph database, it can never be
complete. Not only will obscure symbols arise from the past that have not been
included, but new symbols will be designed — sometimes by an author delib-
erately positioning multiple symbols onto overlapping locations, sometimes by
design of new fonts and symbols. A MOCR glyph database has to be easily
extensible and must provide support for allowing an MOCR system to decide
correctly that there is no glyph in the database that is a significant match to a
target glyph in a document.

3 A Database of Glyphs

Our database currently consists of a set of LATEX formatted documents (one
per point size for 8, 9, 10, 11, 12, 14, 17 and 20 points) and rendered to tiff
format (multi-page, 1 bit/sample, CCITT group 4 compression) at 600dpi, and
an annotation text file, automatically generated from the LATEX sources during
formatting, containing one line for each symbol described in the LATEX documents
which associates the identifier of the symbol with the LATEX code necessary to
generate the symbol together with the information on what extra LATEX packages
or fonts, if any, are required to process the code and whether the symbol is
available in math or text mode. Together with the documents, we provide Java
programs to process them to extract the glyphs from the documents and store
them in a suitable directory structure with one tiff file per glyph, and no more
than 100 symbols per directory, and an index file containing the requisite extra
information such as bounding box to base point offsets, identification of sibling
glyphs in a symbol etc. We render the tiff images from the formatted LATEX
documents using ghostview to obtain the cleanest possible images devoid of
the kind of noise, skew, distortion, scaling and machine dependent incidental
problems that printing and scanning would introduce. We do not currently use a
relational database to store the images and related information. However that is
1 The weight of a symbol refers to the thickness of the strokes used to draw it. If the

weights of the symbols in a font are badly matched, as, for example, you might get in
a poorly designed font, the overall effect of a block of text in that font is unaesthetic
and looks “unbalanced”.
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Fig. 1. Sample image from the database document

953,\ABXprecdot,ABX,math
954,\ABXVvdash,ABX,math

Fig. 2. Sample entries from the database annotation file

merely for ease of experimental development and switching to such an approach
presents no difficulties.

Implementation of an MOCR program requires implementation of a glyph
matching algorithm which normally requires analysing the glyphs in the database
to construct a configuration set for the matcher. Use of the matcher normally
requires access to the configuration set (usually quite small) but not to the actual
glyphs. For our own metric based matcher [6], we generate a feature vector set
from the database which can be quickly and efficiently loaded. It is intended
that researchers could choose to use their own matcher and compile their own
configuration set from the glyphs or, if their focus is on different levels of the
mathematical document analysis process, simply use our provided matcher.

The LATEX documents of the database enumerates all the symbols and ho-
mogenises their relative positions and sizes with the help of horizontal and ver-
tical calibrators. The single symbols are then extracted by recognising all the
glyphs a symbol consists of as well as their relative position to each other and
to the calibrators. Each entry in the database thus consists of a collection of
one or more glyphs together with the relative positions and the code for the ac-
tual LATEX symbol they comprise. A sample of two symbol entries from a LATEX
database document is shown in Fig. 1 and the corresponding excerpt from the
annotation file in Fig. 2. The sans-serif “L” symbols above and to the left of the
target symbols serve to identify the horizontal and vertical components respec-
tively of the base point of the symbol. The four digit number to the left is the
identification number of the target symbol which is used to relate the symbol to
the appropriate line in the annotation file.

The first page of the LATEX document contains only the 10 digits and the
calibration “L” symbol as registration data for a simple mini OCR matcher that
is used to match the calibration and identification symbols while processing the
rest of the document.

Among its approximately 5,300 symbols, the database contains about 1,600
mathematical symbols and 1,500 characters from different mathematical alpha-
bets. The remaining symbols are mostly regular textual characters, accents, as
well as additional scientific symbols, such as chemical or meteorological symbols.
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As well as all the symbols from the standard teTeX distribution [10], we cur-
rently include the symbols from the following fonts and packages in the database:
accents, amssymb, ar, bbding, bbm, bbold, bm, chemarr, chemarrow, dingbat,
dsfont, esint, esvect, eurosym, euscript, fclfont, ifsym, latexsym, manfnt, math-
abx, mathdots, mathrsfs, mbboard, nath, nicefrac, overrightarrow, phonetic, pi-
font, schwell, skak, skull, stmaryrd, suet, textcomp, tipa, trfsigns, trsym, txfonts,
ulsy, undertilde, universa, upgreek, wasysym, wsuipa, yfonts, yhmath, zapfchan.

4 Assembling LATEX Documents

At the moment we have essentially two algorithms available to produce docu-
ments with our OCR system. The first one recognises the glyphs in the input
document and matches them against the glyphs in the databases. It then takes
the closest matching glyph from the database, possibly applies some scaling to
it, and places it at the position in the new document that corresponds to the
position of the recognised glyph in the original file. While the results of this
technique are visually nearly optimal and may have applications in the area of
compression of images of scientific documents, the produced file is still not very
useful for further processing, such as semantic text analysis or translation of
mathematical expressions into the formal input syntax of other software sys-
tems. Nonetheless, it does provide an excellent basis for testing the efficacy of
our glyph matching algorithm by providing an image which we can compare
with the original image via an XOR based differencing function.

The resulting document provides us with information as to where and what
(equivalence classes of) glyphs have to be placed and therefore provides con-
straints on which symbols are involved in the document. However, since the
glyphs used can also be just parts of more complex symbols and can moreover
be scaled, a significant amount of extra processing is required before the actual
mathematical expression that is rendered can be reconstructed.

The aim of the second algorithm is to use the LATEX commands associated
by the database to the matched glyphs to assemble the final document. The
algorithm roughly works in three steps:

1. The glyphs in the original document are identified.
2. an appropriate symbol is chosen from the database,
3. the LATEX command for that symbol is put at the correct position in the

output document.

The algorithm is identical to our first one up to the point where a matching glyph
is chosen. Then there are essentially two cases to consider: (a) If the glyph matches
with a symbol that consists of that one glyph alone we can simply pick it (the result
may not be the correct symbol from a semantic point of view but the formatted
output should be visually indistinguishable). (b) In the case that the best match
for a recognised glyph is a glyph in the database that belongs to a symbol that
is composed of multiple glyphs we cannot simply take that symbol since it might
introduce glyphs into the result that have no counterpart in the original document.
In this case we can consider two possible conflict resolution strategies:
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1. We search all closely matching glyphs for one that is the only glyph of its
associated symbol.

2. We search all closely matching glyphs for one whose sibling glyphs in its
symbol are also matched in the appropriate relative position.

While approach 1 might not deliver necessarily the best matching glyph, it def-
initely will not introduce superfluous information into the document. But in
some cases it will not be possible to find a symbol that matches acceptably well
with the original glyph and approach 2 might be preferable (and in general, ap-
proach 2 is, of course, more correct from a semantic perspective), which forces
a search over sets of glyphs of the particular area under consideration. In our
current (first) implementation we have chosen to follow approach 1 by allowing
for a small error threshold when matching glyphs and giving a preference to
matching single glyph symbols over multi-glyph symbols within that threshold.

Once our algorithm has decided on an appropriate symbol, it retrieves the cor-
responding LATEX command from the database and places it at the right position
in the resulting document. Thereby it constructs a LATEX picture environment
whose measurements essentially corresponds to the bounding box given by the
original document. The symbols are placed with single \put commands and, if
necessary, put into math mode. In order to display symbols in the right size the
algorithm uses the information provided by the database on the font size (from
5 to 20 points) of retrieved symbols. Depending on the desired point size of the
final document, the command for a symbol is prefixed by the appropriate LATEX
command for changing font sizes. For instance, in the case when the algorithm

Fig. 3. Original mathematical expression image

Fig. 4. Difference between Fig. 3 and Fig. 5 using XOR rendering

Fig. 5. Generated mathematical expression image
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retrieves a symbol of 11 point size and we assemble a 12 point document, the
prefix will be \small. In the case when it retrieves a 14 point symbol, \large will
be attached. This approach somewhat limits the number of available font sizes
to those made available by LATEX’s sizing commands. Moreover, it does not ad-
dress the problem that symbols may need to be scaled horizontally and vertically
differently in order to match the original glyphs. The second algorithm therefore
does not give the same optimal results as the first algorithm which could insert
the images with proper scaling. The right scaling for the LATEX commands will
have to be addressed in future work.

We demonstrate the results of our algorithm with an example from a pa-
per [11] we have experimented with that offers a large number of complex math-
ematical expressions. The particular expression we are interested in is given in
Fig. 3 as it appears in the paper. The result of our OCR algorithm, as a compar-
ison, is displayed in Fig. 5. Since the results are difficult to distinguish with the
naked eye, we have combined both images using exclusive-or rendering, which
is given in Fig. 4. Here, all pixels that show up in only one of the two images
appear as white pixels. The difference in the rendering of the two expressions
can be more easily explained when looking at the LATEX sources of the two
expressions.

The source for the original expression is given in Fig. 6 whereas as the source
for the output expression is displayed in Fig. 7. The latter is the input for the
picture environment of dimension 3000× 300 points in 12 point font size, where
the unitlength is .12 points, which corresponds to 600 dpi.

If we now take a look at the symbols that are responsible for the differences
in the two expressions we can see that they are caused by symbols that have not
been recognised as the correct symbol or that are not properly scaled. In the
latter category we have the two brackets, because large brackets in \large font
size render slightly differently than in displaymath mode.

For the incorrectly recognised symbols the most obvious one is the small v
on the righthand side of the arrow in the subscript of the second summation
sign, which is recognised as an \upsilon. The arrow in this expression is also
not recognised as an arrow in math mode but rather as one in text mode. The
subscript 1 in the exponent s1 is not recognised as a symbol from the mathrm font
but as a symbol from a special text font with the \textoneoldstyle command.
Furthermore, we can see that the equality sign, the only symbol here that is made
up from more than one glyph, is not recognised as such but instead replaced by
two vertical bar commands \HBar stacked on top of each other. Note that the

\begin{displaymath}
\lambda_u = \sum_{v \in V} \lambda_v \sum_{e \in E_{u \to v}}
\left(r_{\kappa(e)}\right)^{s_1}, \ \ \ \
\sum_{u \in V} \lambda_u =1, \ \ \ \
\lambda_u > 0.

\end{displaymath}

Fig. 6. LATEX source for expression in Fig. 3
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\put(51,-145){\normalsize$\lambda$}
\put(105,-160){\scriptsize$\mathnormal{u}$}
\put(176,-152){\footnotesize\HBar}
\put(176,-172){\footnotesize\HBar}
\put(284,-144){\normalsize$\displaystyle\sum$}
\put(445,-145){\normalsize$\lambda$}
\put(499,-160){\scriptsize$\mathnormal{v}$}
\put(620,-144){\normalsize$\displaystyle\sum$}
\put(846,-150){\large$($}
\put(887,-145){\normalsize$\mathnormal{r}$}
\put(928,-160){\scriptsize$\kappa$}
\put(969,-160){\scriptsize$($}
\put(996,-160){\scriptsize$\mathnormal{e}$}
\put(1029,-160){\scriptsize$)$}
\put(1063,-150){\large$)$}
\put(1107,-87){\scriptsize$\mathnormal{s}$}
\put(1140,-104){\small\textoneoldstyle}
\put(1198,-204){\normalsize\textquoteright}
\put(1372,-144){\normalsize$\displaystyle\sum$}
\put(1533,-145){\normalsize$\lambda$}
\put(1587,-160){\scriptsize$\mathnormal{u}$}
\put(1657,-152){\footnotesize\HBar}
\put(1657,-172){\footnotesize\HBar}
\put(1766,-145){\normalsize$\mathrm{1}$}
\put(1815,-204){\normalsize\textquoteright}
\put(1988,-145){\normalsize$\lambda$}
\put(2042,-160){\scriptsize$\mathnormal{u}$}
\put(2118,-145){\normalsize\textgreater}
\put(2221,-145){\normalsize$\mathrm{0}$}
\put(2270,-197){\small\.{}}
\put(283,-262){\scriptsize$\mathnormal{v}$}
\put(319,-262){\scriptsize$\in$}
\put(366,-262){\scriptsize$\mathnormal{V}$}
\put(556,-262){\scriptsize$\mathnormal{e}$}
\put(589,-262){\scriptsize$\in$}
\put(636,-262){\scriptsize$\mathnormal{E}$}
\put(689,-278){\scriptsize$\mathnormal{u}$}
\put(725,-277){\scriptsize\textrightarrow}
\put(787,-278){\scriptsize$\upsilon$}
\put(1368,-262){\scriptsize$\mathnormal{u}$}
\put(1409,-262){\scriptsize$\in$}
\put(1456,-262){\scriptsize$\mathnormal{V}$}

Fig. 7. LATEX source for the expression in Fig. 5

\textoneoldstyle command belongs to the textcomp package and that the
command \HBar is from the package ifsym package, which is not included in
the standard LATEX distribution.
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5 Discussion and Future Work

Besides working with documents that are already compiled from actual LATEX
source files we are currently experimenting with scanned images of documents.
In particular, we have started experimenting with articles from the Transactions
of the American Mathematical Society [9]. Within the repository of the JSTOR
archive [2], images of all the back issues of this journal — starting 1900 — have
been made available electronically. While the results of our approach for actual
LATEX documents are already nearly optimal, the reproduced files for scanned
articles are still some way from a perfect translation.

Partly this is due to the fact that our implementation is new and time has not
yet been available for tuning the system. In particular, we have not yet added the
standard image preparation algorithms that one would expect in such a system
(e.g., noise reduction filters, global and local deskewing algorithms etc.).

More seriously, our matcher is a metric based one and was originally developed
on a much smaller database of glyphs. With such a small database the density of
the occupied region of the metric space was low so that slightly distorted or noisy
glyphs obtained from scanned images of non-LATEX documents were still closer
to an excellently matching glyph in the database (if there was an appropriate
match at all) than to any other glyph. With the much higher density of the metric
space region we now have (because the number of entries has vastly increased
but the metric distance between the furthest separated objects and the effective
dimensionality of the space has not), there is a much higher probability that
a disturbance in the shape of a glyph will move it into the neighbourhood of
a different glyph in the database. This is an indication of the importance of
having a high quality database of glyphs when designing matchers for MOCR.
Now that we have such a database, we intend to investigate refinements of our
feature design and matcher implementation.

It is still our central hypothesis that, because of the range and coverage of
symbols available from LATEX, there will be few symbols in mathematical doc-
uments, from at least the last century, that will not be matched reasonably
well by a corresponding LATEX symbol. Furthermore, that a metric based sym-
bol recogniser that works well on distorted or damaged LATEX documents, will
also work well on moderately high quality images from non-LATEX mathematical
documents such as can be found in the JSTOR repository [2]. This hypothesis
requires proper testing.

As a first experimental implementation of an MOCR glyph database and an
MOCR system, there are many missing features that need to be added and
issues that need to be addressed. Some of these issues may require changes to
the database, to the precompiled MOCR configuration information or just to
the MOCR algorithm. As it is not yet clear which issue will require which type
of change, we simply list the issues below:
– As first experiments with papers from the American Mathematical Soci-

ety suggest, we need more fonts for ordinary alphanumeric symbols. Since
our database is easily extensible, adding more fonts should not be a
problem.
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– We currently do not have a satisfactory strategy for handling symbols of
variable size which do not expand in a simple scaling based manner, e.g.,
square root symbols. We are currently investigating the application of affine
transformation invariants in dealing with the problem.

– We do not currently have a strategy for handling touching or broken glyphs
in our MOCR system. Any solution that we arrive at may require extra
information obtainable from the database.

– We need to add an image pre-processing front end for noise filtering, deskew-
ing etc.

– Currently, our MOCR system identifies what it considers to be a best match
for each target glyph and reports that. This is not satisfactory for a full
featured system as there may be many excellent matches at the raw glyph
comparison level and it may only be higher levels of the system that can dis-
ambiguate them. For this reason we intend to replace the current behaviour
with returning a lazy list, filterable on annotation information such as point
size and font family, in best match order. Hence higher levels of the system
could choose easily between good matches to find one more suitable to the
context.

– A longer term goal is to recognise complex mathematical objects from
arrangements of single symbols in order to combine them to expressions
that can be stated as the sort of commands that normally appear in LATEX
documents. There are a number of technologies, such as graph grammar
rewriters, tree transformers etc., that may be required in such tasks.

– We do not currently deal with any aspect of diagrams, even basic ones such
as line or curve identification.

More generally, symbol recognition is only one part of a full document analysis
system for scientific texts. There are many pairs of symbols which are visually
very similar (or even identical) but which are used with different intentions.
These intentions can not be disambiguated by the symbol recogniser. At best,
the recogniser can return a list of symbols which, from a purely visual point of
view, are credible matches for the target symbol. Ideally this list can be ordered
by visual similarity to the target symbol. A näıve document analysis system
might simply choose the first element in the list as the matched symbol. A more
sophisticated system would choose the best match based on contextual infor-
mation, visual similarity as evidenced by the ordering in the match list, and
resolution of the system of constraints that arise from the possible interdepen-
dent sets of choices of surrounding symbols. The design of the interface between
the recogniser and other levels of the document analysis system will be critical
in obtaining a high quality and efficient result. In particular, we believe that
information transfer should not be unidirectional from the recogniser to the syn-
tax and semantic analysis subsystems. Instead there should be a flow of data
in both directions so that processing on both sides of the interface can be in-
formed by (partial) results on the other. Our future work will include research on
such an interface with particular emphasis on avoiding compromising acceptable
processing performance.
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6 Conclusion

We have developed a large database of glyphs used in mathematical texts, which
we propose as a training set for OCR systems for scientific document analysis.
Together with the database, we have developed an initial, if still basic, MOCR
system that demonstrates the utility of the database. We have applied it to
construct LATEX processable source files from given images. It produced excellent
results on papers formatted in LATEX and we are currently conducting similar
experiments with scanned original documents.

The database is easily extensible in terms of dealing with new characters and
fonts as well as multiple occurrences of effectively the same characters. We have,
however, not yet fully resolved the problems arising from multi-glyph symbols.

We deal with different point sizes of characters by translating them into ap-
propriate LATEX commands. While this approach does not fully solve the problem
of scaling glyphs to the right size and is therefore not yet optimal, it already
leads to acceptable results.

We consider the sensitivity of the recogniser to the precise shapes of the same
symbol at different point sizes to be a success of the system: it is highly sensitive
but, even when it chooses the wrong symbol, it chooses one which is visually very
similar to the correct one. In general, it is our position that over-sensitivity can
be tuned down and managed with appropriate syntactic and semantic feedback
from other levels in a full document analysis system. However, we believe that
under-sensitivity is much more difficult to compensate for.

Although the current database and associated software is still under active
development, and in particular the MOCR system is still only a prototype, we
already have promising results in our experiments and expect later versions of
the system to be a valuable tool for the transcription of traditional mathematical
documents into electronically managed knowledge.

Availability. The experimental version of the database is available upon request
from the authors.
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Abstract. Computerizing mathematical texts to allow software access
to some or all of the texts’ semantic content is a long and tedious process
that currently requires much expertise. We believe it is useful to support
computerization that adds some structural and semantic information,
but does not require jumping directly from the word-processing level
(e.g., LATEX) to full formalization (e.g., Mizar, Coq, etc.). Although some
existing mathematical languages are aimed at this middle ground (e.g.,
MathML, OpenMath, OMDoc), we believe they miss features needed to
capture some important aspects of mathematical texts, especially the
portion written with natural language. For this reason, we have been
developing MathLang, a language for representing mathematical texts
that has weak type checking and support for the special mathematical
use of natural language. MathLang is currently aimed at only capturing
the essential grammatical and binding structure of mathematical text
without requiring full formalization.

The development of MathLang is directly driven by experience en-
coding real mathematical texts. Based on this experience, this paper
presents the changes that yield our latest version of MathLang. We have
restructured and simplified the core of the language, replaced our old
notion of “context” by a new system of blocks and local scoping, and
made other changes. Furthermore, we have enhanced our support for the
mathematical use of nouns and adjectives with object-oriented features
so that nouns now correspond to classes, and adjectives to mixins.

1 Introduction

From Euclid to Bourbaki, mathematicians have written their texts meticulously,
in a precise, structured, and coherent form of natural language mixed with sym-
bolic formula, which we call the Common Mathematical Language (CML). Is
CML accurately reflected in current approaches to computerizing mathematics?
If not, how can we make an improvement?

Approaches to computerizing mathematics. Computerizing mathematics
is being done in various ways, each of which has advantages and disadvantages.

Mathematical word processing. The examples in figure 1 were included in this
paper through the most basic kind of computerization. We typed the letters
of the words of the text, and inserted LATEX commands like \begin{definition}

M. Kohlhase (Ed.): MKM 2005, LNAI 3863, pp. 217–233, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Definition 20. Of trilateral figures, an equilateral triangle is that which has
its three sides equal, an isosceles triangle that which has two of its sides alone
equal, and a scalene triangle that which has its three sides unequal.

Euclid [7–Book I]

Definition 1. A set with an associative law of composition, possessing an
identity element and under which every elements is invertible, is called a
group. [...] A group G is called finite if the underlying set of G is finite [...]
A group [with operators] G is called commutative (or Abelian) if its group
law is commutative. N. Bourbaki [2–Chapter I, §4]

Fig. 1. Two examples of CML

and \end{definition} to guide the output. In this approach, a computer program
can produce a visual representation of the CML, but a computer program will
have great difficulty in automatically recognizing the semantic content of the
LATEX encoding even if the TEX macros are being carefully chosen as proposed
by Kohlhase [13]. Even in the best case, LATEX can not be expected to capture the
semantic content of natural language text any better than OMDoc (see below).

Semantic markup languages. A more advanced solution is computerization of
CML that records more semantic content. In the semantic markup languages
MathML-Content (http://www.w3.org/Math/) and OpenMath (http://www.
openmath.org/), symbolic formulas are encoded using a library of predefined
symbols. OMDoc (http://www.mathweb.org/omdoc/) adds a theory level. There
are many ways to write our examples from figure 1 in OpenMath/OMDoc using
a mixture of structural and symbolic XML elements and chunks of natural lan-
guage. A possible encoding of our examples in OpenMath/OMDoc is sketched1

here:
<!-- First example -->
<theory name="Euclid -book -1">

<symbol id=" equilateral -triangle ">
<CMP >An equilateral triangle is [. . .]

<!-- Second example -->
<theory name=" Group">

<symbol id="∗">
<symbol id="E">

<CMP >A set with <OMOBJ >∗</OMOBJ >, associative
law of composition .

<FMP >(a ∗ b) ∗ c = a ∗ (b ∗ c)
<symbol id="e"> [. . .]

<theory name=" FiniteGroup ">
<imports from=" Group"> [. . .]

Natural language can only be stored in OMDoc in CMP elements as uninterpreted
“blobs”, while precise mathematical structure requires using symbolic encoding

1 For readability and brevity, we show only the opening tag of each XML element for
most elements; instead we use indentation to express nesting. We also use traditional
mathematical output for OpenMath formulas instead of showing the XML tree.
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(e.g., in FMP elements). Thus, for natural language mathematics, one must choose
between retaining knowledge of the precise phrasing and presentation chosen by
the mathematician, or capturing more of the structure via conversion to symbolic
formula. Of course, one could do both like in our example above, keeping the
uninterpreted natural language “blob” while adding a symbolic formula, but then
the format does not support verifying they are mutually consistent. Generally,
one does not expect formal checking of mathematics encoded in OMDoc.

Full formalization. Theorem Provers (TPs) such as Mizar (http://www.mizar.
org/), Isabelle (http://www.cl.cam.ac.uk/Research/HVG/Isabelle/), and Coq
(http://coq.inria.fr/) have made a tremendous contribution to computeriz-
ing mathematics, providing frameworks in which a full formalization can be
written and verified automatically. However, they do not support important is-
sues of mathematical text, such as control over presentation and phrasing and
processing of the semantic structure. Furthermore, because full formalization is
very expensive in human time, most mathematical texts are unlikely to be fully
formalized, but might still benefit from some form of computerization.

Semi-formalization. Lighter TPs have been proposed, such as the work by
Wiedijk [17] defining Formal Proof Sketches (FPS) as light Mizar proofs. An
FPS article is a basically a Mizar article with holes. This approach reduces the
expense of computerization via formalization (and also loses the certainty of full
formalization), but does not appear to greatly improve control over presentation
and phrasing and support for semantics-based manipulation.

Computerizing the mathematical vernacular. N. G. de Bruijn, founder of the Au-
tomath project [4], suggested capturing the essence of CML through his Math-
ematical Vernacular (MV) [5], a language with substantives (nouns), adjectives,
and flags. Weak Type Theory (WTT) [12] adapted the ideas from MV in a type-
theoretical fashion. To evaluate the practicality of MV and weak types for math-
ematical texts, we developed MathLang-WTT [11, 10].2 (In related work, others
have investigated translating from WTT into type theory [9, 8].) MathLang-
WTT improved over WTT by internalizing flags and blocks and by implement-
ing a type checker and various automated output views of MathLang documents
which are faithful to CML. See [10] for a description (which is still applicable to
MathLang) of these MathLang-WTT features.

Limitations of MathLang-WTT. Despite the features of MathLang-WTT,
our plan to closely follow the expressiveness of CML in a computerized language
was still not fully satisfied. Limitations of MathLang-WTT (and hence also of
MV and WTT) appeared during the translation of Euclid’s Elements [7] in de-
scribing mathematical entities such as triangles and lines. Consider the example
from Euclid in figure 1. A triangle is intrinsically related to the three lines it is
formed by, but encoding it in MathLang-WTT was unsatisfactory. One approach
was for each triangle to define the three lines and the triangle separately and
then to state their relation. This was awkward, and more importantly there was

2 We call the old version MathLang-WTT to distinguish it from this paper’s version.
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clearly a missed opportunity to do some simple type checking, like complaining
if there was an attempt to define some triangle as consisting of four surfaces
(like a tetrahedron) instead of three lines. Another approach was to define a
triangle-constructing function, but then the type system could not check that
the result was a valid triangle and could be used where a triangle was required.
Description of mathematical objects needed improvement.

In trying to solve these problems, we noticed that (a) N. G. de Bruijn’s in-
formal definition of substantives and adjectives could be better formalised in
MathLang and (b) work in object-oriented programming carries useful clues.

Object-oriented concepts. Some programming language research has focused
on allowing organizing programs in the way that seems most natural to the
programmers. Classes are a way of packaging definitions so that it is easy to
obtain not only instances (objects) but also multiple distinctly modified and
extended variants (subclasses) via inheritance. Mixins [3] are abstract subclass
generators that allow reusing modifications and extensions.

Classes and objects. In object-oriented programming, a class is usually defined
by a set of fields and methods. An object is an encapsulated sub-program with
an internal state that is an instance of a particular class. Classes define the
common behavior of a group of objects. Fields are named values associated with
each instance, while methods are named operations on the instances.

Inheritance. Class inheritance avoids repeating the definition of fields and meth-
ods shared by several classes. A new class can be defined by inheriting from an
existing parent class, and the child’s set of fields and methods will by default
contain those of the parent.

Mixins. With simple class inheritance, to make two classes share a common set
of new methods without duplicating the method definitions, the classes must
inherit from an ancestor class containing the new methods. This may require
radical rearrangement of an existing class hierarchy. To alleviate this problem,
mixins are subclass definitions that are parameterized on their superclass, and
thus act as functions from classes to classes. When a mixin is applied to a class,
this makes a new subclass that adds or redefines fields and methods.

Contributions of this paper. The needs of encoding mathematical texts led
to the design of the following new features for MathLang reported in this paper.

1. Lighter abstract syntax and an accessible type system. We simpli-
fied the syntax and type system of MathLang-WTT. The new syntax of
MathLang contains only one kind of identifier in contrast to the variables/
constants/binders of both WTT and MathLang-WTT (section 2 and 4).

2. Generalised reasoning structure. This paper refines MathLang-WTT’s
blocks to a simpler yet more general notion and replaces MathLang-WTT’s
flags and contexts by a more flexible and general local scoping. Our new block
and local scoping constructs are cases of steps, which are MathLang’s generic
structuring concept (section 2).
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3. Turning nouns into classes. We combine MV’s substantives (inherited
via the nouns of WTT and MathLang-WTT) and object-oriented classes
to make MathLang’s nouns (section 3.1). Nouns are conceptually similar to
classes, terms are objects, and sets can be defined from nouns.

4. Turning adjectives into mixins. We combine MV’s mathematical adjec-
tives with object-oriented mixins to make MathLang’s adjectives, which can
be used in different ways with nouns, adjectives, sets, and terms (section 3.2).

2 A More Generic and Structured MathLang

This section shows how MathLang improved over MathLang-WTT by defining
more generic and structured constructions.

One class of identifiers. In MathLang’s predecessors WTT and MathLang-
WTT, identifiers are separated into three disjoint sets: variables, constants, and
binders. The rest of this paragraph briefly describes how identifiers work in
the older MathLang-WTT: All three kinds of identifiers have a weak type, and
this is all that variables have. Constants also have a definition and parameters
(each parameter being a variable declaration). Each use of a constant is applied
to arguments of the right weak type. Binders have parameters like constants,
and one additional special parameter for the bound variable. Unlike variables
and constants, binders can not be defined inside a document but can only be
declared in the preface. Binders can not be given definitions; a statement using
a binder can act as a definition but there is no way to indicate this.

In encoding texts, we found these restrictions of the different identifier kinds
problematic, so MathLang instead now has just one kind of identifiers and dis-
tinguishes the uses via types. To fit binders in our new scheme and to allow
declaring/defining new binders in documents, we replace the old single spe-
cial parameter of each binder with a new kind of parameter with a declaration
type usable with any identifier. For example, the binder ∀ might be declared
as forall (dec(a), stat) : stat, making it an identifier with output type
stat and two parameters: a declaration of an identifier of arbitrary type a and
an expression of type stat (statement). An example using this identifier is the
translation forall (n:N, >=(n,0)) of the proposition ∀n ∈ N.n ≥ 0 (assuming
N, >= and 0 are already declared). Similarly, Russell’s definite description binder
ι (iota) could be declared with two parameters, a declaration and a statement.
The first parameter is a variable that stands for the entire expression, and which
should therefore have the same type: iota (dec(a), stat) : a. The expres-
sion ι n ∈ N. (3 < n < 5) (meaning, “the unique n ∈ N s.t. 3 < n < 5”) would
then be encoded as iota (n:N, and(<(3,n),<(n,5))).

Simpler grouping and scoping. A fundamental idea of MathLang (inherited
from MV) is capturing the grammatical and binding structure of a mathematical
text. In MV and WTT, each line of a book has a context representing the set of
assumptions about types of variables (“let x be a natural number”) and truths
(“suppose x = y2 for some natural number y”) used in the definition or statement
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made by the line. MV allows using flags as a secondary graphical 2-dimensional
way of writing the current context in a book; an element repeated in the contexts
of consecutive lines can be written as a flag whose head contains the repeated
element and whose flagstaff goes through all the lines repeating the element. MV
also has a secondary notion of blocks derived from flag nesting. (WTT could have
used flags and blocks like MV, but this was never done.)

Unlike MV, MathLang-WTT directly supports flags and blocks rather than
treating them as secondary syntax-sugaringnotions derived from the contexts [11].
Upon careful examination of MathLang-WTT’s flags and blocks, we found that
they overlapped in function. MathLang-WTT’s blocks allow grouping lines and
sub-blocks and limiting to a block the scope of some of the constants defined in the
block. MathLang-WTT’s flag allow identifying a group of lines in which a context
element is active.

In MathLang, we instead merged similar functionality. A block, written
{step1, . . . , stepn}, is a sequence of statements. The local scoping construct step1 �
step2 makes the declarations, definitions, and assertions inside step1 assumptions
usedby step2 and restricts declarations anddefinitions inside step1 to bevisible only
in step2. Both blocks and local scoping constructs are steps, as are declarations, de-
finitions, and assertions. Steps can be of various sizes, such as the declaration of a
variable, the definition of a function, a proof, or an entire book.

Example 1. Sequences of statements in a proof are represented by a block.

{ x.(y+1) = x.y’;
x.y’ = x.y+x;
x.y+x = x.y+x.1 }

Similarly each different sub-part of a proof as well as the overall proof is rep-
resented by a block. Sections and chapter are also blocks in MathLang as they
decompose the text. For example, a proof by induction could be a block with two
sub-blocks (note that the second sub-block carries a local scoping which holds
the inductive hypothesis):

{ --A proof of P by induction--
{ --Proof of the base-- [. . .]; P(0) };
{ --Proof of the induction--

{ n:N; P(n) } |> { [. . .]; P(n+1) } } }

An entire proof (e.g., a proof by contradiction) can be contextualised in a local
scoping.

{ --Proof of the contradiction-- [. . .] }
|> { --Statement proved by contradiction-- [. . .] }

Note that we write a block in braces { and } , the elements of the block are
separated by a semi-colon ; . We write a local scoping with a step (which is the
context), followed by the symbol |> (ASCII representation of �), followed by a
step (in which the elements of the context will be available). In these examples
we added some comments in between -- and cut some pieces of code ([. . .]). For
readability, we make use of infix notation.
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3 Abstraction with Nouns and Adjectives

3.1 Nouns as Classes

If we say that p is a demisemitriangle, one does not think of the set or the
class of all demisemitriangles in the first place, but rather thinks of
“demisemitriangle” as a type of p. It says what kind of things p is. [...] MV
does not take sets as the primitive vehicles for describing elementhood but
substantives (in the above example semidemitriangle is a substantive).

N. G. de Bruijn [5]

Nouns are abstractions that classify objects according to their common fea-
tures. Nouns have an important place in some previous systems of represen-
tations of mathematics, such as WTT and MathLang-WTT, in which one of
the weak types is noun. Nouns have used in translations of the first chapter
of E. Landau’s Foundation of Analysis [14] into WTT [16] and MathLang-
WTT [11].

As already mentioned in section 1, we encountered limitations of the expres-
siveness of WTT-style nouns when we started translating Euclid’s Elements [7].
Euclid starts his first chapter by defining basic geometric objects such as points,
lines, figures, triangles, angles, etc. The definition of a line is as follows: A line is
breadthless length. In MathLang-WTT, one way to write this is by defining line
by forming a noun characterized by two statements: one that line “has length”,
the other that line is breadthless (does not “have breadth”). This uses a con-
stant “has” which takes two nouns and returns a statement. This constant was
unsatisfactory because it is hard to define its semantics precisely and because
MathLang-WTT could not make any use of it for checking well-formedness. Be-
cause “has” deeply characterises the noun line and by consequence any concrete
line — weak typed as “term” — created as a line instance, we felt it should be
replaced by something that informs the language that lines have length, to allow
approving of statements about the length of a line and disapproving of those
about nonsense properties like its breadth, angle, weight, etc.

We found a solution in the concept of classes and objects in programming.
A line is a class with one field length. Any instance of line is an object with a
length. We characterise a line as breadthless in our translation with the absence
of such a field. Table 1 gives more examples.

Consider the first definition in figure 1. Definition 20 of Euclid’s example
uses the noun figure (we see in section 3.2 how we encode the other nouns of

Table 1. Examples of noun definitions

Euclid’s Elements MathLang translation
A point is that which has no parts point := Noun
A line is breadthless length line := Noun {length:term}
A surface is that which has length
and breadth only

surface := Noun {length:term; breadth:term}
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this example). In the preceding definitions in [7], figures (rectilinear figures)
are defined as those contained by straight lines. Therefore we define the noun
figure with one field being the set of straight lines (we shorten it to lines in
this example) and a statement precising that the figure is contained by this
set of lines. The Noun constructor describes the noun with a step (in between
braces { and }). The first unit of this step defines the field sides. Sides is a
set of lines. The second unit of this step is a statement which uses an identifier
contained_by. This identifier (declared earlier) takes a term and a set and
returns a statement (contained_by (term,set): stat). The two parameters
passed to this identifier are the future instance of the figure itself (encoded by
the keyword self) and by the sides of the figure (field sides of self).

figure := Noun { sides : set(line);
contained_by(self ,self.sides) }

Our second example in figure 1 is the definition of group by N. Bourbaki. We
define group as a noun, The fields of this noun are identifiable in the text. The
set E, the compositional law ∗ and the neutral element e. Two statements also
define a group: the associativity of ∗ and the existence of an inverse of any
element of E (we use an infix notation for =).

group := Noun { E:set; { a:E; b:E } |> *(a,b):E; e:E;
forall (a:E, forall (b:E, forall (c:E,

*(*(a,b),c) = *(a ,*(b,c)))));
forall (x:E, invertible (e,x)) }

3.2 Adjectives as Mixins

An adjective belongs to a substantive, and serves a double purpose: (i) to
form a new substantive, and (ii) to form a new sentence.

N. G. de Bruijn [5]

According to (i), an adjective is a function from noun to noun. An adjective,
like isosceles, when applied to a noun like triangle creates a new noun isosceles
triangle. In our system where nouns are classes, the adjectives will be mixins [6].
Intuitively, a mixin is a function from class to class. As in mixin calculi, an
adjective can also be applied to an adjective to form a new adjective, to a term
to form a new term, and to a set to form a new set (mapping the adjective across
all members of the set). In MathLang, we call these constructions refinements.
Following (ii), we also incorporate the possibility that an existing term has the
properties held by an adjective. For example one can describe a triangle ABC
and demonstrate that this triangle is isosceles. The last line of this demonstration
can be written in MathLang as the statement: ABC << isosceles (read ABC is
isosceles). In our syntax we join this adjective statement to a sub-noun statement.
The sub-noun statement A ' B, given by N. G. de Bruijn in MV, states that
“every A is a B”. For example, triangle << trilateral figure. We kept this
notation in MathLang.
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Let us see the use of these notions in our two examples. In the example taken
from Euclid’s Elements, several adjectives are defined. The noun triangle is de-
fined as a refinement of the noun figure using the adjective trilateral. We define
the adjective trilateral with the constructor Adj. The Adj constructor takes
as a parameter the noun to be extended to form the new noun. In the case
of our example, trilateral could only be applied to figures as it requires the
field sides. The body of Adj is a step (similarly to the Noun constructor). In
this step two specific objects are available. self which refers to the instances of
the noun being defined (see section 3.1) and super which refers to the instance
of the noun being refined (only needed when a component of the old noun is
hidden by a component with the same name of the new noun). After the defin-
ition of trilateral, triangle is simply defined as a trilateral figure. We
similarly define the adjectives equilateral, isosceles and scalene (We use an in-
fix notation for the identifiers = (term,term):stat and != (term,term):stat
and and (stat,stat):stat).

trilateral := Adj (figure ) { card(self.sides ) = 3 };
triangle := trilateral figure
equilateral := Adj (triangle ) {

forall (side1:self.sides ,
forall (side2 :self.sides ,

side1 .length = side2 .length )) }
isosceles := Adj (triangle ) {

exists (side1:self.sides ,
exists (side2 :self.sides ,

side1 != side2
and side1.length = side2.length )) }

scalene := Adj (triangle ) {
forall (side1:self.sides ,

forall (side2:self.sides ,
side1.length != side2.length )) }

3.3 Multi Adjective Refinements

With adjectives we have an operation of simple inheritance between nouns. Let
us see with this last example how multi adjective refinements work.
Our group example defines two adjectives. These adjectives for groups are finite
and Abelian. Finite states that the set E of the group is finite. Abelian (or com-
mutative) states that the operator of the group is commutative. In MathLang,
we write the definitions of these adjectives as follow.
finite := Adj (group ) { finite_set (self.E) }
Abelian := Adj (group) {

forall (x:self.E, forall (y:self.E, self .*(x,y) = self .*(y,x))) }

We could combine these two adjectives to obtain either Abelian finite group
or finite Abelian group. In MathLang both expressions share the same
type. Their meaning may differ as the statements introduced by the adjectives
may overlap. It is for instance possible to define an isosceles equilateral
scalene triangle. This expression is perfectly typable but of course would be
considered as inconsistent even by pupils in primary schools. This reflects exactly
the purpose of this first layer of MathLang which is to capture the structure of
the text and its elements to allow, in a later stage, semantical analysis.
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Table 2. Syntax of MathLang

ident, i = denumerably infinite set of identifiers
label, l = denumerably infinite set of labels
cvar, v = denumerably infinite set of category variables

category, c ::= term(exp) | set(exp) | noun(exp) | adj(exp, exp)
| stat | dec(category) | cvar

cident, ci ::= ident | exp.cident Identifiers anf fields
step, s ::= phrase Basic unit

| label label step Labelling
| step � step Local scoping
| {−−→step} Block

phrase, p ::= exp
| cident(−−−→ident) := exp Definition
| ident(−→exp) := exp Definition by matching case
| ident� cident Sub-noun and adjective statement

exp, e ::= cident(−→exp) Instance
| ident(−−−−−→category) : exp Elementhood declaration
| ident(−−−−−→category) : category Declaration
| Noun {step} Noun
| Adj(exp) {step} Adjective
| exp exp Refinement
| self | super Self and super
| ref label Referencing

group
finite−−−−−→ finite group

Abelian Abelian

Abelian group −−−−−→
finite

Abelian finite group
finite Abelian group

4 Language Description

Abstract syntax. The syntax of MathLang is given in Table 2. An arrow on
top of a meta-variable represents a sequence of 0 or more meta-variables. For
example −→exp is a sequence of exp. The elements of the sequence are separated
with a comma “,” in ident, category and exp and a semi-colon “;” in step.

Note the existence of a category constructor noun which describes a category
expression and of a noun constructor Noun which describes a noun expression.
In the following example, three identifiers with field a are defined: p is a noun,
p’ is a term instance of a noun, p’’ is defined as a noun.

{ p:noun(Noun {a:term });
p’: Noun {a:term };
p’’ := Noun{a:term} }
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We use the following notational conventions in this document:

1. When an identifier has no parameters we omit the (). E.g., we write ident in
place of ident() and ident : c in place of ident() : c.

2. We do not leave double braces in noun and adjective expressions defined
with a block step. E.g., we write Noun {s1; . . . ; sn} and Adj (e) {s1; . . . ; sn}
instead of Noun {{s1; . . . ; sn}} and Adj (e) {{s1; . . . ; sn}}.

3. We abbreviate category expressions to shorten the syntax of some term,
noun and set categories. E.g., we write noun (resp. set and term) in place
of noun(Noun {{}}) (resp. set(Noun {{}}) and term(Noun {{}})).

Example 2. The following illustrate this syntactic sugaring:

1. We write x in place of x().
2. We write x:term in place of x():term.
3. We write Noun {x:term; >(x,0)} in place of Noun {{x:term; >(x,0)}}.
4. We write point:noun in place of point:noun(Noun{{}}).

Type system. We now present the typing rules of our language. Each typing
rule has the form: context � construction •• type judgement where:

– A context of typing is a step of the language (with two additional markers
that hold the type of self and super and the labels). It represents the
previous steps of reasoning in which the expression is to be typed.

– A type judgement is either an atomic type or a type where:
atomic type = Term(T ) ∪ Set(T ) ∪ Stat ∪ Noun(T ) ∪ Adj (T , T ) ∪ Step ∪
cvar ∪ Dec(type) ∪ Def (type)
T is the set of mappings from ident to type.
type is the set of mapping from sequences of atomic type to atomic type.
T (resp. at and t) ranges over T (resp. atomic type and type).

Here are some functions used in the derivation rules of our type system.

I : step �→ ident Gives the set of declared, defined and updated (sub-noun statement)
identifiers in a step.

dI : step �→ ident Gives the set of declared identifiers in a step.
DI : step �→ ident Gives the set of defined identifiers in a step.
L : step �→ label Gives the set of defined labels in a step.
dom(f) Being the domain of the function f .
T � T ′ T ∪ { (i,T ′(i)) | i ∈ dom(T )}
T �T ′ { (i,T (i)) | i ∈ dom(T ′)}

And here is the subtyping relation between types and atomic types.

– Term(T ) ≤ Term(T ′) if ∀i ∈ dom(T ),T (i) ≤ T ′(i).
– Set(T ) ≤ Set(T ′) if ∀i ∈ dom(T ),T (i) ≤ T ′(i).
– Stat ≤ Stat and Step ≤ Step.
– Dec(t) ≤ Dec(t ′) if t ≤ t ′.
– Def (t) ≤ Def (t ′) if t ≤ t ′.
– Noun(T ) ≤ Noun(T ′) if ∀i ∈ dom(T ),T (i) ≤ T ′(i).
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� s •• Step s � e •• Term(T ) i ∈ dom(T )

s � e.i •• T (i)
ident-field

� {−→s ; p} •• Step {−→s } � p •• Dec(t) dI (p) = {i}
{−→s ; p} � i •• t

ident-dec

� {−→s ; p} •• Step {−→s } � p •• Def (t) DI (p) = {i}
{−→s ; p} � i •• t

ident-def

� {−→s ; i1 	 ci2} •• Step
{−→s } � i1 •• Term(T1) {−→s } � ci2 •• Adj (T2,T ′

2) T2 ≤ T1

{−→s ; i1 	 ci2} � i1 •• Noun(T1 � T2)
ident-adj-term

� {−→s ; s′ � s′′} •• Step i ∈ I (s′′) {−→s ; s′; s′′} � i •• t
{−→s ; s′ � s′′} � i •• t

ident-local-scoping

� {−→s ; s′} •• Step i �∈ I (s′) {−→s } � i •• t
{−→s ; s′} � i •• t

ident-skip-step

These rules indicate how we retrieve the type of an identifier from the context. They
decompose the step as context of typing to find the declaration ident-dec, definition
ident-def or the adjective statement ident-adj-term. In the case of a field of a term
(e.i) the ident-field rule applies first.

Fig. 2. Identifiers

– Adj (T1,T2) ≤ Adj (T ′
1,T ′

2)
if ∀i ∈ dom(T2),T2(i) ≤ T ′

2(i) and ∀i ∈ dom(T ′
1),T ′

1(i) ≤ T1(i).
– v ≤ v .
– (at1, . . . , atn)→ at ≤ (at ′

1, . . . , at ′
n)→ at ′ if at ≤ at ′ and ∀j ∈ [[1 . . . n]], atj ≤ at ′j

(after renaming of the category variables).
– T ≤ T ′ if ∀i ∈ dom(T ),T (i) ≤ T ′(i).

Figures 2, 3, 4, 5, 6 and 7 compose MathLang type system. According
to these typing rules the group identifier defined in section 3.1 has type
Noun( {(E,Set), (∗, (Term,Term) → Term), (e,Term)} ). Similarly the noun
triangle and the adjective isosceles have respective types:

Noun( {(sides,Set({(length,Term)})} ) and
Adj ({(sides,Set({(length,Term)})}, {(sides,Set({(length,Term)})}).

The type system prevents any misuse of identifiers’ fields. For instance, let ABC
be a declared triangle (ABC:triangle). This triangle is therefore a term with
type Term( {(sides, Set({(length,Term)})} ). According to our definition of
triangle, the only defined field is sides, the set of lines composing a triangle. The
expression ABC.sides refers to the sides of our triangle ABC. The set ABC.sides
has type Set({(length,Term)}).

The scopes of the identifiers depends on the location of the declaration or defi-
nition. Declarations could occur anywhere in an expression or could be an atomic
step. We explain here the three possible cases: a declaration/definition in the flag
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� s •• Step s � e •• Noun(T )

s � term(e)/set(e)/noun(e) •• Term(T )/Set(T )/Noun(T )
categ-term/set/noun

� s •• Step s � e •• Noun(T ) s � e′ •• Noun(T ′) T ≤ T ′

s � adj(e, e′) •• Adj (T ,T ′)
categ-adj

� s •• Step
s � stat •• Stat

categ-stat
� s •• Step s � c •• at
s � dec(c) •• Dec(() → at)

categ-dec

� s •• Step
s � v •• v

categ-var

Category expressions are used in declarations. These category expressions set the category
of the parameters and of the output of an identifier. Some category constructors (term,
noun,adj and set) are parametrised by a noun expression.

Fig. 3. Categories (we use the symbol / to group the three similar rules)

part of a local scoping, a declaration/definition as atomic step in the body of a lo-
cal scoping, a declaration as a parameter of an identifier. The first two are shared
by definitions and declarations. The third one is declaration specific.

1. The first case is the presence of a declaration or a definition inside the flag
of a local scoping. The introduced identifier is available in the step (and its
sub-steps) covered by the flag-context. Here, an identifier x is declared in
the context part of a local scoping. x is available in the part of this context
that follows the declaration (3), and also in the body part (4) of the local
scoping. But x is not available before being declared, in the preceding steps
(1) as well as in the preceding part of the context (2) of the local scoping. x
is also not available in the steps that follow the local scoping (5).

{ (1);
{ (2);

x:term;
(3) } |> { (4) };

(5) }

2. The second case is a declaration or a definition as atomic step. The identifier
is therefore available for all the following steps of the MathLang document.
A declaration of a triangle is an atomic step of the sub-block of a block. The
identifier triangle is not available before being declared (1) and (2) but is
available in all what follows (3) an (4). The availability of triangle would
have been identical if the declaration had been replaced by a definition.

{ (1);
{ (2);

triangle :noun;
(3) };

(4) }

3. The last case is declarations as parameters of identifiers. If an identifier
takes a declaration as a parameter, then the declared identifier is available
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� s •• Step
s � ci •• (at1, . . . , atn) → at ∀j ∈ [[1 . . . n]], {s; e1; . . . ; ej−1} � ej

•• at ′
j

at ′ �∈ cvar (at1, . . . , atn) → at ≤ (at ′
1, . . . , at ′

n) → at ′ satisfiable
s � ci(e1, . . . , en) •• at ′ instance

� s •• Step
{s; self : Term(T )} � s′ •• Step ∀i ∈ I (s′), {s; self : Term(T ); s′} � i •• T (i)

s � Noun {s′} •• Noun(T )
noun

� s •• Step
s � e •• Noun(T ) T ≤ T ′ {s; super : Term(T ); self : Term(T ′)} � s′ •• Step

∀i ∈ I (s′), {s; super : Term(T ); self : Term(T ′); s′} � i •• T ′(i)
s � Adj (e) {s′} •• Adj (T ,T ′)

adj

� s •• Step s � e1
•• Adj (T1,T ′

1)
s � e2

•• Noun(T2)/Set(T2)/Term(T2) T1 ≤ T2

s � e1e2
•• Noun(T ′

1 � T2)/Set(T ′
1 � T2)/Term(T ′

1 � T2)
refinement

� s •• Step s � e1
•• Adj (T1,T ′

1)
s � e2

•• Adj (T2,T ′
2) T1 ≤ T ′

2 T ′
1 ≤ T2

s � e1e2
•• Adj (T1 � (T2 � T ′

1), T ′
1 � T ′

2)
adj-refinement

� s •• Step s � i1 •• Noun(T1) s � ci2 •• Noun(T2) T2 ≤ T1

s � i1 	 ci2 •• Stat
sub-noun

� s •• Step s � i1 •• Term(T1) s � ci2 •• Adj (T2,T ′
2) T2 ≤ T1

s � i1 	 ci2 •• Stat
adj-term

� {−→s ; self : at} •• Step
{−→s ; self : at} � self •• () → at

self

� {−→s ; super : at} •• Step
{−→s ; super : at} � super •• () → at

super
� s •• Step l ∈ L(s)

s � ref l •• Step
ref

The typing of the parameter expressions should satisfy the type of the identifier for the
instantiation of the identifier (instance rule). In the noun rule, self is added to the
context for the typing of the step defining the noun. In adj, both self and super are
added. A refinement creates a noun expression from an adjective and a noun. The set of
components required to use the adjective should be a subset of the set of components of
the noun.

Fig. 4. Expressions (we use the symbol / to group the similar refinement rules)

for the following parameters. Let us illustrate this with the encoding of an
expression with the universal quantifier. We declare an identifier binderwith
a declaration as second parameter. We also declare an identifier operator
with three parameters. In an expression using these two identifiers, a variable
x is declared. This identifier x is not available before being declared (1) and
(2). x is available in the parameters of the binder that follows the declaration
of x (3). Finally x is neither available in the remaining part of the expression
(4) nor in the steps that follow (5).
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� s •• Step s � i1 •• Noun(T1) s � ci2 •• Noun(T2)
dom(T2) ⊆ dom(T1) ∀i ∈ dom(T2), T1(i) ≤ T2(i)

s � i1 	 ci2 •• Stat
sub-noun

� s •• Step s � i1 •• Term(T1) s � ci2 •• Adj (T2,T ′
2)

dom(T2) ⊆ dom(T1) ∀i ∈ dom(T2), T1(i) ≤ T2(i)
s � i1 	 ci2 •• Stat

adj-term

Fig. 5. Phrases

� s •• Step
i �∈ I (s) ∀j ∈ [[1 . . . n]], s � cj

•• atj s � e •• Noun(T )/Set(T )

s � i(c1, . . . , cn) : e •• Dec((at1, . . . , atn) → Term(T ))
dec-1

� s •• Step i �∈ I (s) ∀j ∈ [[1 . . . n]], s � cj
•• atj s � c •• at

s � i(c1, . . . cn) : c •• Dec((at1, . . . , atn) → at)
dec-2

� s •• Step i �∈ DI (s) ∀j, k ∈ [[1 . . . n]], j �= k ⇒ ij �= ik
∀j ∈ [[1 . . . n]], s � ij •• () → atj ∪j∈[[1...m]]ij = dI (s) \ {i}
s � e •• at if i ∈ dI (s) then s � i •• (at1, . . . , atn) → at

s � i(i1, . . . , in) := e •• Def ((at1, . . . , atn) → at)
def

� s •• Step if i ∈ I (s) then s � i •• (at1, . . . , atn) → at
∀j ∈ [[1 . . . n]], s � ej

•• atj s � e •• at
s � i(e1, . . . , en) := e •• Def ((at1, . . . , atn) → at)

def-case

Declarations and definitions introduce new identifiers. For a declaration, the category of
the identifier could be explicitly expressed (dec-2 rule) or an expression could be given that
represents the elementhood of the identifier (dec-1 rule). For a definition, the parameters
could either identifiers (def rule) or expressions for definition by matching (def-case
rule).

Fig. 6. Declarations and definitions

{ binder (term , dec(term), term ): term;
operator (term , term , term ): term;
[. . .] a((1), binder ((2), x:term , (3)), (4)) [. . .];
(5) }

5 Conclusion and Future Work

To have MathLang being adopted by mathematicians is our aspiration. We are
convinced that providing yet another concrete syntax will never make a math-
ematical language widely used. We are therefore focusing on interfacing Math-
Lang with user-friendly tools. We are currently embedding MathLang concepts
and type checking in the scientific editor TEXmacs with the development of a
MathLang-plugin. This plugin is making full reuse of the mechanisms for ren-
dering MathLang texts in their original CML forms. These mechanisms were
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� s1
•• Step s1 � s2

•• Step {s1; s2} � {−→s } •• Step
s1 � {s2;−→s } •• Step

step-composition

� s •• Step s � s′ •• Step {s; s′} � s′′ •• Step
s � s′ � s′′ •• Step

local-scoping

� s •• Step s � p •• Stat/Dec(t)/Def (t)
s � p •• Step

atomic-step

� s •• Step
s � self : t •• Step

self-marker
� s •• Step

s � super : t •• Step
super-marker

� {} •• Step
empty-step

� s •• Step {s; l : Label} � s′ •• Step
s � label l s′ •• Step

label

Only well typed statements, declarations or definitions could be phrases (atomic-step
rule). Phrases stand for atomic steps Blocks. Each element of a block should be a valid
step in the context formed by the preceding elements of this particular element (block
rule). As presented in section 2, a local scoping builds a step as a context for another step
(local-scoping rule). See example 1 for examples of steps.

Fig. 7. Steps

presented in [10]. In parallel, we are implementing the MathLang’s new features
presented in this paper. These new features will be tested on already realised
translations. New translations will benefit from the assistance of the editor and
will gain in expressiveness with the new object oriented features of the language.

Concerning the language definition part, we believe that more flexible ab-
straction mechanisms could be added. For this purpose we will investigate the
possibility to integrate in our system the notion of traits, a new member of the
object-oriented programming. We would also like to relate our low level en-
coding of groups to a previous work. In the computer algebra system Focal [15],
species and collections are object oriented structures that have been used to
create an algebraic hierarchy. Finally we would be interested in comparing
MathLang’s nouns and adjectives with concepts and roles of Deductive Logics
(DLs) [1] and in investigating existing research in mixin extension of DLs.

In this paper we proposed to capture the structure of mathematical with
object-oriented features. We exposed the relevance of this approach with two
examples and presented a type system for MathLang that incorporates these
features. This work is a step of our larger aim to consider the encoding of the
natural language parts when computerizing mathematical text.
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Abstract. The λ̄μμ̃-calculus, introduced by Curien and Herbelin, is a
calculus isomorphic to (a variant of) the classical sequent calculus LK
of Gentzen. As a proof format it has very remarkable properties that we
plan to study in future works. In this paper we embed it with a rendering
semantics that provides explanations in pseudo-natural language of its
proof terms, in the spirit of the work of Yann Coscoy [3] for the λ-calculus.
The rendering semantics unveils the richness of the calculus that allows
to preserve several proof structures that are identified when encoded in
the λ-calculus.

1 Introduction

An important topic of Mathematical Knowledge Management (MKM) is the
definition of standards for the representation of mathematical documents at dif-
ferent semantical levels (presentation, content, semantics using the terminology
of [1]). The current situation for mathematical expressions is almost satisfac-
tory: MathML Presentation is a W3C standard for the presentation level, and
the lack of MathML rendering engines has been solved; OpenMath is a de facto
standard for the content level, and several tools already integrate phrasebooks for
communicating formulae in OpenMath according to a given content dictionary;
the interactive theorem proving community is slowly starting to consider open
formats for replacing the proprietary semantic encodings or just for communica-
tion with external tools. On the contrary, there is no mature format for proofs at
the content level. The only candidate is the OMDoc standard, that integrates a
module for proofs since its first version. However, the original format was not ex-
pressive enough for describing in a natural way the proofs of the HELM1 library.
Thus the proof module was redesigned almost from scratch in the MoWGLI2 Eu-
ropean Project, and the new proposal will be part of the forthcoming OMDoc 1.2
standard [7]. A rendering semantics (i.e. a default explanation of the proofs in
a pseudo-natural language) is also provided by MoWGLI [2]. However, a serious
third party evaluation of the new proposal has not been done and there exists
no test suite of proofs that can be used to assess the flexibility of the format.

� Partially supported by ‘MoWGLI: Math on the Web, Get it by Logic and Interfaces’,
EU IST-2001-33562.

1 http://helm.cs.unibo.it
2 http://mowgli.cs.unibo.it

M. Kohlhase (Ed.): MKM 2005, LNAI 3863, pp. 234–249, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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To try to improve the situation the first step consists in fixing a few require-
ments that a proof format for the content level must satisfy. Here is our list:

1. Flexibility. It must be possible to encode both rigorous, human provided,
proofs and proofs that are generated from their semantics level. The encod-
ing should respect the structure of the proof, avoiding the identification of
proofs that differ in their structure. What the structure of a proof is is al-
ready a non trivial question. For instance, proof nets or natural deduction
identify more proofs than sequent calculus. For presentational purposes we
are interested in identifying as few proofs as possible, up to their structure
only. For instance, a top down proof should not be identified with its bottom
up counterpart. However, a content encoding must identify proofs that have
the same structure and that differ only up to rhetorical text.

2. Annotations. It must be possible to decorate the proof structure with
rhetorical text. The rhetorical text is the presentational counterpart of the
proof content. It is requested only for consumption by humans.

3. Explanation in Natural Language. The format must have a rendering
semantics associated to it. That is, it must be possible to generate rhetorical
text that describes the proof structure. The generated text is not required
to be nice to read or close to the text that a mathematician would choose.
Annotations are explicitly provided to deal with the situation where a nice
presentational proof is required. The rendering semantics is useful, for in-
stance, when the proof is automatically generated from a semantics proof
— say, created using a proof assistant by mimicking a pen&paper proof —
and the user needs to check whether the pen&paper proof that she wants
to formalize and the proof generated by the proof assistant are actually the
same proof.

4. A Clear Semantics. This is surely the most controversial point. On the
one hand we are talking about a content level format, that should not be
restricted to the proof steps that are correct in just one foundation and
one logic; on the contrary it should capture the usual rigorous but informal
style of the proofs of real world mathematicians. On the other hand it must
describe a proof, and not a document with an arbitrary structure; it must
allow for simple checks, as for references to hypotheses out of scope or for the
well nesting of subproofs; it must allow for proof transformations, such as
cut elimination. In other words, it must be as close as possible to a calculus
without becoming a semantic encoding instead of a content level encoding.

The OMDoc 1.2 proof module strives to achieve the points 1–3. However, its
semantics is someway defined a posteriori and it is not fully understood nor
made explicit.

Via the Curry-Howard isomorphism, several λ-calculi can be seen as proof
formats at the semantic level for the logics they are isomorphic to. As proof
formats they can be equipped with a rendering semantics [3] and extending
them with annotations is also a trivial exercise. However, they lack flexibility. A
partial reason is that, being at the semantics level, they are bound to a precise
logic. However, there are deeper reasons that are illustrated in Sect. 2 and that
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are not related to their focus on a particular logic. Thus they are not a good
model to build a content level proof format on.

In a seminal paper in 2000 [5] Curien and Herbelin proposed the λ̄μμ̃-calculus
that is isomorphic to (a variant of) the classical sequent calculus LK of Gentzen.
I claim that this calculus is a perfect proof format at the semantics level and
that it is inherently very flexible. To obtain a content level calculus from it it
is just necessary to relax a bit its interpretation by decoupling it from its logic.
Moreover, I also claim that it has several remarkable similarities with OMDoc
1.2 and in a future work I plan to make this relation explicit by providing a
bisimulation of OMDoc into the λ̄μμ̃-calculus that respects the rendering se-
mantics. As a preliminary step in that direction, in this paper I will provide a
rendering semantics to the λ̄μμ̃-calculus that is extremely intuitive and unveils
all the good features of the calculus as a proof format.

2 A λ̄μμ̃-Calculus Primer

The λ̄μμ̃-calculus [5] is an extremely elegant synthesis of the λ̄-calculus of Her-
belin [6] and the λμ-calculus of Parigot [9]. The λ̄-calculus of Herbelin is a
λ-calculus that is isomorphic to (a variant of) the intuitionistic sequent calculus
LJ of Gentzen. The λμ-calculus of Parigot is a λ-calculus that is isomorphic to
classical, multi conclusions, natural deduction. The λ̄μμ̃-calculus is isomorphic
to (a variant of) the classical sequent calculus LK of Gentzen. However, the in-
terest of the calculus is that it is not a simple merge of two existing calculi; on
the contrary, it is greatly superior to both of them since it makes explicit for the
first time at the syntactic level two fundamental dualities of the computation:

1. Terms vs Contexts
2. Call-by-name vs Call-by-value

We will explain the two dualities in detail. Before that, however, we notice that
this result is, a posteriori, not very surprising. Indeed the classical sequent cal-
culus is well known for its meta-theoretical properties, since it reveals the deep
symmetries of the logical connectives that are hidden in natural deduction and
since it can also be seen as a fine grained analysis of natural deduction, especially
for cut elimination. Thus it is natural that a λ-calculus isomorphic to LK should
be the best framework for the study of the symmetries of computation. What is
not absolutely obvious, however, is that these two dualities are deeply connected
with the flexibility of the proof format. Let’s explain this.

Terms vs Contexts. A context is an expression with exactly one placeholder
� for a “missing’ term. The placeholder can be filled with a term to obtain a
placeholder-free expression. The placeholder can be typed with the type of the
expected term, and only terms of the expected type can fill the placeholder. A
context can apply its placeholder to arguments (� t) or it can bind a name to
it (let x := � in c) to refer to it later on, for instance to pass it to a function.

Dually, a term can be seen as an expression with exactly one placeholder ] [
for a “missing context” that is “all around” the term. The placeholder can be
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filled with a context to obtain a placeholder-free expression. The placeholder can
be typed with the type of the term, and only contexts that expects a term of the
expected type can fill the placeholder. A term can wait for inputs from its con-
text (]λx.t[) or — in languages with control operators like Scheme’s CALL/CC
— it can bind a name to it (]μα.c[, μ is the binder and α the bound name) to
refer to it later on.

Now consider an expression without placeholders and imagine it to be isomor-
phic to a proof of some thesis from some set of hypotheses. The expression can be
broken to be seen as the composition of a term and a context whose placeholders
are given “the same type” T (actually, a dual type; we will be more precise later).
The term and the context can be thought respectively as “a proof of T from the
hypothesis” and “a proof of the thesis from T ”. Thus in the term the type of the
placeholder represents what must be proved as a first step in the proof, and the
placeholder is the rest of the proof. In the context the type of the placeholder
represents what was proved so far and the placeholder is the proof so far. The
operators that are used to bind the placeholder in a term and in a context can
be thought as ways of stating or manipulating the (local) conclusion(s) (for a
term), or as ways of stating or manipulating the (local) hypotheses (for a con-
text). This kind of manipulation is very frequent in pen&paper proofs, where an
intermediate result can be claimed (binding a context), a label can be associated
to intermediate results for further reference (binding a term), a proof of an inter-
mediate result can be postponed (a context that binds its term is displayed before
the term), or the current thesis can be reduced to another one by anticipating
the rest of the proof (a term that binds a context is displayed after the context).

Call-by-name vs Call-by-value. What are the dynamics of call-by-value and
call-by-name? The first strategy processes the arguments before processing the
function; the second strategy processes the function until it needs to process
the arguments. If you substitute “explains” or “prove” with “process” you will
obtain the definition of the bottom-up and top-down proof styles. A bottom-up
proof proves (process the argument) a result (the type of the argument) before
using it later on (processing the function). A top-down proof prooves the thesis
(process the function) until it has reduced the thesis to an easier one (the type
of the argument) that is then proved (the argument is processed).

Usually, call-by-name and call-by-value are global strategies that are applied
in the reduction of a functional program (a λ-expression). In the λ̄μμ̃-calculus,
instead, there exists at the syntactic level both call-by-value related and call-by-
name related redexes (and a third form of redexes whose strategy is not yet fixed
and that can non-deterministically reduce towards one of the other two redexes,
but this is not important in our discussion). Thus the λ̄μμ̃-calculus is flexible
enough to distinguish between top-down and bottom-up proof steps, while this is
not possible in the plain λ-calculus (unless we play tricks, as using β-expansion
to “mark” bottom-up steps or we extend the calculus with a let . . . in construct
that is native of the λ̄μμ̃-calculus).

Since we think that the intuition we just provided is someway deeper than the
gory technical details we are shortly going to present, we prefer to reinforce it by
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explaining it again along a different axis. As we already said, the λ̄μμ̃-calculus
is a beautiful synthesis of the λ̄-calculus and the λμ-calculus, made completely
symmetric by adding a μ̃ operator (the let . . . in in a more usual syntax). We
give now the intuition about what is the contribution for flexibility (as a proof
format) of each component.

λ̄. The λ̄-calculus establishes a Curry-Howard isomorphism with a sequent cal-
culus. A sequent calculus identifies far fewer proofs than natural deduction,
which is Curry-Howard isomorphic to the λ-calculus. In particular, top-down
and bottom-up proofs are distinguished in a sequent calculus derivation (where
it is recorded if the user eliminates a rule on the left hand side first or on the
right hand side first). In natural deduction, instead, top-down vs bottom-up cor-
responds to the order of construction of the derivation (from the leafs to the root
or from the root to the leaves), but both procedures at the end produce exactly
the same tree (unless cuts are artificially introduced to mark the bottom-up
steps). This is one reason why the sequent calculus provides a more fine-grained
analysis of the process of construction of the derivation and, in our context, it
gives more flexibility in proof representation.

μ̃. The let x : T := � in c (that we will soon write μ̃x : T.c to show the
beautiful symmetries of the calculus) gives a label (x) to the last result proved
(�) and it makes explicit its type T . The label is used later on to refer to the
result. The type makes explicit what is the conclusion of the last proof step (the
“last” proof step of �).

This construct is necessary for a proof format since it allows to reuse a sub-
proof more than once, without replicating a proof, and since it is used to asso-
ciate to a subproof its thesis. In the λ-calculus a redex can be used for sharing a
proof, partially simulating the μ̃. Moreover, since the semantics of μ̃ is that of a
bottom-up proof (since it gives a label to the previous proof step), redexes can
be rendered as bottom-up proofs. Notice that in a typed calculus the binder in a
redex also associates to the proof (the argument of the application in the redex)
its thesis (its type). If we manage to avoid the redex trick, however, we have to
guess the type that is no longer recorded by the binder. If the type system is
decidable, the type can be automatically inferred. However, since we do not ex-
pect applications that adopt a proof format to integrate a type inference engine
and since we want to impose no semantics (no choice of any type system) to our
proof format, we need to pre-compute the type of the argument and explicitly
store it in the proof format. Actually, we need to store the type of each subterm
(we call this an inner-type in [1]).

The need for inner-types is evident when we recall that a λ-term is isomorphic
to a derivation in natural language in the sense that you can obtain the λ-term
from the derivation by erasing from the tree all the conclusions of the rule (i.e.
what a user would keep in a pen&paper proof) since they can be inferred from
the rules themselves (i.e. what a user throws away in a pen&paper proof) and
the tree structure. Thus in our proof format we are obliged to reconstruct from
the λ-term every inner-type, we need to keep the structure of the term, but
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we can throw away the term! (When the actual terms, i.e. the justifications of
each proof step, are thrown away, we obtained a proof sketch in the terminology
proposed by Wiedijk [10]).

Thus the λ̄μμ̃-calculus is superior to the λ-calculus since recording of the
inner-types and the μ̃ (or let . . . in) is already part of the calculus, while it
needs to be introduced in the λ-calculus.

Just to be precise, notice also that the μ̃ construct can be simulated in the λ-
calculus as a redex only from the point of view of the reduction. On the contrary,
the typing rule for μ̃ is not equivalent since in let x : T := t in c we can type c
under the assumption that x is equal to t, which is stronger than the assumption
x has type T (for instance, when the type system admits dependent types).

μ. The control operator μ that binds the context of a term to reuse it later has a
surprising role. It is introduced in the calculus to capture classical logic and, when
the calculus is seen as a proof format, it is used to give a label and to state explic-
itly what is the thesis that is going to be proved next. The relation with classical
logic is obvious: when multiple μ are in scope the expression has visibility of
several possible conclusions at once, and it can dynamically choose to conclude
any one of them. This clearly corresponds to a sequent with several conclusions.

However, a pen&paper proof, even a classical one, never uses multiple con-
clusions. Indeed, natural deduction with several conclusions (the logic the λμ-
calculus of Parigot is Curry-Howard isomorphic to) is not natural at all, as the
classical sequent calculus is not. Most mathematicians prefer to work in an in-
tuitionistic natural deduction setting augmented with one or more equivalent
classical axiom such as excluded middle or double negation elimination.

Thus we can easily argue that a proof format is not requested to support
proofs with multiple conclusions, if not for completeness reasons. Thus we can
argue that we will not need the ability of the μ constructor of associating a label
to the thesis we want to prove next. Indeed in pen&paper proofs a thesis is never
labelled. However a proof format does need a way to state what the user is going
to prove next, since this construct is often used by mathematicians to clarify the
proof or to postpone parts of it. Once again, this construct is already native in
the λ̄μμ̃-calculus, and in the λ-calculus it can only be simulated with a redex.
Notice, however, that too many different things must already be simulated with a
redex in the λ-calculus. In other words, once again we realise that the λ-calculus
is not expressive enough to be a reasonable proof format.

Hoping to have transmitted all of our intuitions to the reader, we are now
ready to briefly dive into the details of the calculus. The syntax is described
first. The reduction and typing rules can be found in the appendixes. For the
metatheory and the proof of its remarkable properties the reader can consult the
literature, starting from [5] where the calculus has been defined.

2.1 Syntax

The λ̄μμ̃-calculus has three syntactic categories: terms (that include term
variables x, y, z, . . .); environments — or contexts — (that include context or
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continuation variables α, β, γ, . . .); and commands obtained by replacing the
placeholder of an environment with a term (or, dually, by replacing the place-
holder of a term with an environment, as already explained).

For each syntactic category we give both the λ̄μμ̃-calculus and the usual
syntax in λ-calculus notation.

λ̄μμ̃-syntax usual syntax
Term v ::= x x

| λx : T.v λx : T.v
| μα : T.c

Environment E ::= α
| v ◦ E E[(� v)]
| μ̃x : T.c let x : T := � in c

Command c ::= 〈v||E〉 E[v]

The term variable x is bound by λ in v and by μ̃ in c; the environment variable
α is bound by μ in c. Notice the (syntactic for now) duality between μ and μ̃.
The only two constructors that have no syntactic dual are λ and ◦ (pronounced
“cons”). In [5] the calculus is made perfectly symmetric by adding duals for λ
and ◦. This extended version of the calculus is Curry-Howard isomorphic with
classical subtractive sequent calculus [4]. We do not consider the subtractive case
now, but we will comment on that in Sect. 4.

The “intuitionistic” fragment of the calculus, i.e. the fragment that is Curry-
Howard isomorphic to the intuitionistic sequent calculus, is obtained by a simple
syntactic restriction: only one environment variable is allowed (we denote it by
� instead of using a Greek letter to make explicit that it is unique). Since only
one variable is available, every μ constructor will override �, so that only the
latter continuation is in scope. This corresponds to the fact that the intuition-
istic sequent calculus is obtained by restricting the sequents to have just one
conclusion.

For the sake of completeness we give the reduction and typing rules of the cal-
culus in App. A and B. They are taken without modification from [5]. The typing
and reduction rules will not play any major role in the rest of the paper. How-
ever, we will exploit the possibility of inferring a type for each λ̄μμ̃-expression
(by means of the typing rules) and of recording it directly in the term (by means
of a μ or μ̃-expansion rule, see App. A). In the λ-calculus it is also possible to
infer the type of a subexpression, but the type cannot be recorded in the term
without introducing explicit type assignment operators.

3 Structural Natural Language Rendering

We are now ready to provide (pseudo-)natural language rendering rules for the
λ̄μμ̃-calculus. Before that we present similar rules for the λ-calculus, inspired
by [3].

In both cases we attempt a structural translation, i.e. we try to associate
to a term t its pseudo-natural language rendering �t� by structural recursion
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over t. We will also struggle to perform recursion over the direct subterms of t
only and we will avoid processing the result of the recursive calls. Forcing the
usual terminology, we will call structural a translation that respects all these
properties.

Ideally, we would also require the translation to preserve the order of the
subterms: if A and B are two sibling subterms in the proof and if A precedes B,
than the rendering of A must precede that of B. This additional constraint —
that surprisingly is satisfied for the λ̄μμ̃-calculus — makes extremely easy for a
human being to “invert the transformation”, building by hand the term from its
rendering.

Our interest in a structural translation derives from our interest in the prop-
erties of the calculus as a proof format. For sure with complex, non-structural
translations we can improve the generated text, aiming at more natural sen-
tences. However, we claim that a good proof format must have a simple render-
ing semantics: if generating natural language for the proofs encoded in the proof
format requires major proof transformations we consider this a serious fault of
the proof format. Moreover, especially when we are interested in generating ex-
planations of formal proofs proved with an interactive or automatic theorem
prover, we do require the rendering semantics to be simple and structural to
avoid loosing confidence on the correctness of the proof we are examining.

For technological reasons, every proof format should be equipped with an
XML concrete syntax, imposing XSLT as the standard language for describing
transformations on the document. Notice that the expressive power of XSLT (1.0)
is, in practice, extremely close to our second definition of structural transforma-
tion. Indeed XSLT does not allow to process the result of a recursive call (a
Result Tree Fragment) and only simple recursive functions can be described in
a concise way3.

3.1 λ-Calculus

�x� := consider x

�λx : T.t� := suppose T (x)
�t�

�(. . . (t t1) . . . tn)� := �t1�
we proved T1 (H1)
. . .
�tn�
we proved Tn (Hn)
�t�
we proved T (H)
by H , H1, . . . , Hn

3 XSLT is a Turing complete purely functional language. However, Turing complete-
ness derives from the fact that a Result Tree Fragment (a tree) can be converted to
a string for further processing and that every data type (e.g. the state of a Turing
machine) can be encoded in a string and manipulated with general recursion. In
practice, however, working with strings is quite cumbersome in an ad-hoc language
designed to transform trees.
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At first we observe that the transformation is not really structural since for the
case of application we process the inner term t1 before the outer term tn. Notice
that in the λ̄μμ̃-calculus the application (. . . (t t1) . . . tn) is turned inside out,
becoming 〈t||t1 ◦ (. . .◦ (tn−1 ◦ tn) . . .)〉 and making the transformation structural!

We can now repeat several of the observations we already made when
discussing the intuitions about the λ̄μμ̃-calculus. In every rule one or more
inner-types T are lacking and type inference is required to reconstruct them
beforehand. Since there is just one construct, application, to derive new facts,
bottom-up and top-down proofs are identified. Thus we need to represent all
the proofs in the same way. The rule we provided renders every proof step in
a bottom-up way, processing the ti before using them to conclude T ′. In this
case, not only inner-types Ti are missing for the ti, but also fresh labels Hi. A
structural rule to render applications in a mixed bottom-up/top-down way can
be easily provided:

�(t t1)� := �t�
we proved T (H)
by H we reduce the thesis to T1
�t1�

where T and T1 are the inner types of t and t1.
However, the latter rule does not solve the lack of flexibility that derives from

having to choose a uniform style of rendering every applications (bottom-up vs
top-down). Notice also that the latter rule introduces a mixed proof style since
t is rendered as a bottom-up step. This cannot be avoided unless an ad-hoc rule
is provided for redexes.

The solution that provides more flexibility by forcing a particular interpreta-
tion of redexes can be obtained adding the rule

�(λx : T.t t1)� := �t1�
we proved T (x)
�t�

and by replacing the rule for application with

�(x t1)� := by x we reduce the thesis to T1
�t1�

Notice that in this way we impose a normal form on the λ-terms: every ap-
plication (t t1) where t is not a variable must be β-expanded to (λx : T.(x t1) t),
that is semantically equivalent (according to our rendering semantics) to the
mixed top-down bottom-up rule for application given before. We will not spend
more time on improvements for the rendering semantics of the λ-calculus, since
in the λ̄μμ̃-calculus these problems simply disappear.

We conclude by showing as a small example the λ-term that corresponds to
a proof of A ⇒ (A ⇒ B) ⇒ (B ⇒ C) ⇒ C and its structural natural language
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rendering. We use superscripts to record in the λ-term the inner-type and label
of a sub-term.

λH : A.λAB : A → B.
λBC : B → C.

(BC (ABAB′:A⇒B HH′:A)K:B):C

suppose A (H), suppose A ⇒ B (AB)
suppose B ⇒ C (BC)
consider H ; we proved A (H ′)
consider AB; we proved A ⇒ B (AB′)
by AB′, H ′ we proved B (K)
consider BC; we proved B ⇒ C (BC′)
by BC′, K

Notice again that, due to lack of structurality, it is difficult to transform
the λ-term to its textual counterpart looking at the λ-term only. Building the
λ-term from the text — a plausible operation if we consider the calculus a
proof format — is even more complex. Indeed, the natural language really
corresponds to the equivalent (up to β-expansions) λ-term λH : A.λAB :
A → B.λBC : B → C.(λH ′ : A.(λAB′ : A → B.(λK : B.(λBC′ : B →
C.(BC′ K) BC) (AB′ H ′)) AB) H) that is simpler for a human to render in
natural language, but still quite annoying since the eyes must wonder back and
forth between the λ-abstractions and their arguments in redexes. Only introduc-
ing let . . . in and replacing redexes with them it becomes possible to read the
term in natural language (and to produce the term by hand from the natural
language!) without any major effort.

3.2 λ̄μμ̃-Calculus

We provide now a similar but completely structural rendering semantics for the
λ̄μμ̃-calculus. According to the intuitions we provided, we should associate one
or more sentences to a term, a textual context (i.e. a text with a placeholder) to
an environment and we should render a command by filling the placeholder of its
environment with the text obtained by its term. However, we anticipate that our
semantics is so well behaved that the placeholder (that we will leave implicit) is
always at the beginning of the text. Thus rendering a command simply amounts
to concatenating the two generated texts.

�〈v||E〉� := �v� �E�
�x� := by x
�λx : T.t� := suppose T (x)

�t�
�μα : T.c� := we need to prove T

↪→ �c�

�α� := ←↩ done
�t ◦ E� := and �t�

�E�
�μ̃x : T.c� := we proved T (x)

�c�

The symbols ↪→ and ←↩ stand for the increase/decrease of the indentation.
We provide as an example two λ̄μμ̃-terms that correspond to two different

proofs of A ⇒ (A ⇒ B) ⇒ (B ⇒ C) ⇒ C.
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Fully bottom-up proof:
μ	 : A → (A → B)→ (B → C)→C we need to prove A⇒ (A⇒B)⇒ (B⇒C)⇒C
〈λH : A.λAB : A → B. suppose A (H); suppose A ⇒ B (AB)
λBC : B → C. suppose B ⇒ C (BC)
μ	 : C. we need to prove C
〈AB||H ◦ μ̃K : B. by AB and by H we proved B (K)
〈BC||K◦ by BC and by K

	〉〉 done
||	〉 done

Fully top-down proof:
μ	 : A → (A → B)→ (B→C)→C we need to prove A⇒ (A⇒B)⇒ (B⇒C)⇒C
〈λH : A.λAB : A → B. suppose A (H); suppose A ⇒ B (AB)
λBC : B → C. suppose B ⇒ C (BC)
μ	 : C. we need to prove C
〈BC|| by BC
μ	 : B. and we need to prove B
〈AB|| by AB
μ	 : A. and we need to prove A
〈H || by H
||	〉 done
||	〉 done
||	〉 done
||	〉 done

As made obvious by the two examples, all the rendering rules are not only
structural, but they also preserve the order of the subterms. Thus it is very easy
to read a λ̄μμ̃-term from left to right mentally producing the corresponding nat-
ural language. Dually, it is very easy to translate a proof sketch or a pen&paper
proof to a λ̄μμ̃-term, a fundamental property for a proof format.

Notice also that indentation directives are “already present” in the term:
indentation must be incremented when a μ is found and it must be decremented
when a � is met. Moreover, an indented sub-proof can easily be hidden to the
user by an interactive interface, showing only its thesis. The HELM library4

adopts this strategy to increase usability by giving to the user a partial form of
control over the level of details. The user can simply click on a hidden proof to
unfold it, requesting more details.

In Sect. 3.1 we did not consider indentation directives. However, indentation
rules cannot be avoided in the transformation to make explicit the scope of the
hypotheses. Indeed the user can be deceived by the too simplified rendering se-
mantics proposed for the λ-calculus. This does not happen for the λ̄μμ̃-calculus.

While the proof of the first example seems very readable, that of the second
example is not. However, if you replace “and we need to prove” with the more
appealing (and equally semantically faithful) sentence “we reduce the thesis to”
you will get a totally reasonable text: “. . . we need to prove C; by BC we reduce
the thesis to B; by AB we reduce the thesis to A; by H done . . . ”. This and

4 http://helm.cs.unibo.it
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other similar improvements can be implemented by trading off a little bit the
property of the transformation being structural.

4 Generalization and Improvements

The structural rendering semantics provided in the previous section confirms
our intuitions about the fact that the λ̄μμ̃-calculus is a natural candidate for
being a good proof format. Indeed it satisfies properties 1 (flexibility), 3 (expla-
nation in natural language) and 4 (a clear semantics) given in the introduction.
Property 2 (annotations) can be easily obtained by associating rhetorical text to
each constructor of an expression. Since expressions are rendered in a structural
way from left to right, associating placeholders in the rhetorical text to subex-
pressions is often as simple as matching the i-th placeholder with the i-th direct
subexpression (instead of permutating the direct subexpressions or picking a
subexpression that is deeper in the term).

As Yann Coscoy did for the λ-calculus [3] and as it has been done in a more
incisive way in the MoWGLI project, we can trade the naturality of the generated
text with the complexity of the rendering semantics. Since we are already starting
from a much more structural and simple semantics and since the language is
much richer, we can hope to obtain better results.

As we did for the λ̄μμ̃-calculus, it is also possible to get rid of expressions that
have a weird explanation in natural language by imposing a normal form on the
terms. An example is the renaming μ̃ redex: 〈H ||μ̃K : T.c〉 (“by H we proved
T (K); �c�”) can be reduced to c{K/H}. More generally, redexes correspond to
cuts and cuts are detours in the proof. Cut elimination (i.e. reduction) can be
applied to get rid of the unwanted detours. Due to lack of space we omit the
analysis of the weird redexes associated to the semantics we provide and of the
associated normal form that solves the problem. We only remark that to reach
the normal form it is sufficient to either reduce the redexes or η-like-expand one
subexpression of the redex according to the reduction rules of the calculus.

Of course, a calculus that is Curry-Howard isomorphic to the implicative frag-
ment of the propositional calculus is not very interesting. The λ̄μμ̃-calculus can
be easily extended to be in correspondence with stronger logics. In particular,
we modified Fellowship5, an experimental sequent calculus based proof assis-
tant for first order logic developed by Florent Kirchner, to produce extended
λ̄μμ̃-calculus proof terms. We have also already defined and implemented the
structural rendering semantics for the extended calculus and we plan to enhance
the generated text in the near future. The extension to the constructors that
are related to the other connectives (negation, conjunction, disjunction and first
order universal and existential quantification) have reserved no surprises and
have not broken any good property of the calculus.

According to our initial claim, we can exploit the λ̄μμ̃-calculus in two different
ways. Either as a format for proof terms in a proof assistant or as a general
proof format. In the first case we should ask whether the non-standard sequent
5 http://www.lix.polytechnique.fr/Labo/Florent.Kirchner/fellowship
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calculus the calculus is isomorphic too is reasonable to develop proofs in. Our
short experience with Fellowship shows that as a sequent calculus it is indeed very
interesting and pleasant to work with, especially for automation purposes. Indeed
the distinguished formula acts as the linear hypothesis/continuation that must
be eliminated next, reducing the search space. As a result Fellowship exposes only
three tactics, axiom, cut and elim. The latter does not need as an argument the
formula that must be eliminated, since it always act on the current distinguished
(or focused) formula. More on this subject can be found in the literature about
the calculus.

With respect to natural deduction, we remark that sequent calculus is always
clumsier to work with interactively. We can easily adapt a natural deduction based
system to produce λ̄μμ̃-calculus proof terms, since the sequent calculus is more
fine grained than natural deduction. However, according to our initial remarks,
we need to do it very carefully to obtain proof terms that record all the details
of the process of construction of the proof, without identifying, for instance, top
down and bottom up proofs. Concretely doing it by adapting an existent proof
assistant based on natural deduction is other future work we plan to start.

We already remarked that classical proofs are usually presented in an intu-
itionistic logic extended with classical axioms, and not by handling multiple con-
clusions at once. Thus, to render classical proofs in Fellowship, we implemented
a simple translation from classical λ̄μμ̃-expressions (i.e. expressions were there
are occurrences of continuation variables that are not bound from the inner-
most enclosing μ binder) to intuitionistic λ̄μμ̃-expressions. Of course, to do so
we need to introduce in the calculus a family of distinguished constants EMT

that inhabits the excluded middle for each type T . The translation can be easily
implemented by structural recursion over the λ̄μμ̃-expressions:

Fσ(μα : T.c) := μα : T.Fσ(c) if α is used intuitionistically
Fσ(μα : T.c) := μα : T.〈EMT ||λH : T.H ◦ λH : ¬T.F(α,T,H)::σ(c) otherwise
Fσ(α) := μ̃x : ¬T.〈H ||x ◦ ξ〉 if (α, T, H) ∈ σ
Fσ(α) := α otherwise

All the other cases call Fσ recursively over each subexpression. The distin-
guished constant EMT has type (T → T ′) → (¬T → T ′) → T ′ for each type T ′,
and ξ (“ex falso sequitur quodlibet”) is a distinguished continuation of type ⊥
(i.e. a continuation that expects a term of type ⊥ to conclude the proof). When
the calculus is extended with disjunction, EMT can be typed as T ∨¬T and Fσ

must be slightly modified to use the λ̄μμ̃-calculus constructor that corresponds
to case analysis (elimination of ∨ on the left hand side of a sequent).

Notice that the translation is purely syntactical and it does not depend on
the typing judgement or on the reduction rules.

The translation is particularly effective, allowing to unveil the mathematical
intuition that underlies a proof developed in a multi-conclusion sequent calculus
(and that is usually extremely complex to grasp looking at the derivation only).
However, the translation often introduces lots of redexes that complicate the
proof. Automatic elimination of weird redexes is probably mandatory as a post-
processing step to obtain natural proofs.
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5 Conclusions and Perspectives

We have found yet another remarkable property of the λ̄μμ̃-calculus: it admits
a very simple and structural rendering semantics, i.e. a translation from expres-
sions (that are Curry-Howard isomorphic to proofs) to pseudo-natural language
text. The calculus is so rich that it is able to differentiate between bottom-up
and top-down proof steps, and it permits to label each intermediate result, also
stating its thesis. Translating by hand a pen&paper proof sketch into a λ̄μμ̃-
expression preserving the natural language (up to the rhetorical text) is also
quite simple. Annotations can be added later on to the term to retrieve the
original language.

Our impression is that, as a proof format, the λ̄μμ̃-calculus is as flexible as
OMDoc. We plan to make this statement more precise in a forthcoming paper by
providing a mutual translation between OMDoc and the λ̄μμ̃-expressions that
respects the rendering semantics provided to both calculi in this work and in the
MoWGLI project (for OMDoc).

We have also extended Fellowship, a proof assistant prototype developed by
Florent Kirchner for first order logic, to record proofs as λ̄μμ̃-expressions, and
we have equipped it with natural language rendering of the proofs. The ren-
dering semantics implemented, being almost the one described in this paper,
already produces readable explanations, but we plan to improve them in the
near future by introducing new normal forms for λ̄μμ̃-expressions that avoid
unnatural proof constructions. We have also implemented a translator of λ̄μμ̃-
expressions to Coq proof terms and we are implementing a similar translator to
Mizar and Isabelle/ISAR scripts. Automatic generation of OMDoc documents
is also planned. In all these cases the aim is not only that of showing that a
translation is possible, but also understanding the relative expressivity of these
languages as proof formats by trying to preserve the rendering semantics of the
λ̄μμ̃-expressions. Fellowship can be downloaded from

http://www.lix.polytechnique.fr/Labo/Florent.Kirchner/fellowship
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A λ̄μμ̃-Calculus Reduction Rules

We present the reduction rules both in λ̄μμ̃-calculus syntax and in the usual λ-
calculus syntax, omitting the contextual rules to propagate reduction everywhere
in an expression. As usual, the reduction rules correspond to cut elimination.

λ̄μμ̃-syntax usual syntax
〈μα : T.c||E〉 � c{E/α} E[μα : T.c] � c{E/α}
〈v||μ̃x : T.c〉 � c{v/x} let x : T := v in c � c{v/x}
〈λx : T.v1||v2 ◦E〉 � 〈v2||μ̃x :T.v1 ◦ E〉 E[(λx : T.v1 v2)] � E[let x :T :=v2 in v1]

We report just a few standard observations on the calculus that can be found
and are explained in [5]. First of all notice that the μ and μ̃ reduction rules are
perfectly dual, whereas the rule for λ is asymmetric. Its dual rule is present in the
subtractive system. Secondly, notice that the μ and μ̃ rules form a critical pair.
Giving priority to the μ rule imposes a call-by-value strategy to the calculus; the
dual priority leads to call-by-name. Finally, observe that any redex is a command,
but that there are commands that are not redexes. There exists a variant of the
calculus where every command is a redex [8]. We have not investigated yet the
property of these as proof formats.

The rules we have just presented are similar (and related) to β-reduction
rules in the λ-calculus. The λ̄μμ̃-calculus can also be extended with rules that
correspond to η-expansion. These rules are important for us since we can use
them to put expressions in a normal form before rendering them in pseudo-
natural language.

μ-expansion: v ⇒ μα : T.〈v||α〉
μ̃-expansion: E ⇒ μ̃x : T.〈x||E〉

In the previous two rules T is the type of v (respectively of E). Type inference
is required in the general case to compute T . However, for each term v (or
environment E) we can always precompute its type once and for all, recording
it explicitly in the expression by means of a μ-expansion (a μ̃-expansion). This
property is exploited when the calculus is used as a proof format.
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B λ̄μμ̃-Calculus Typing Rules

A typing judgement is associated to each syntactic category of the calculus:

Γ � v : T |Δ, Γ |E : T � Δ, c : (Γ � Δ)

In all three kind of judgements the context Γ is a list of assumptions (i.e. a
list of typed term variables xi : Ti) and Δ is a list of continuations (i.e. a list
of typed context variables αi : Ti). Notice that types associated to terms are
differentiated from types associated to environments (i.e. the type expected for
the term that will fill the placeholder). The former are written on the left hand
side of the turnstile, whereas the latter are written on the right hand side.

A command is typed with the sequent Γ � Δ that associates a type to every
free variable in the command. Terms and environments are typed with sequents
that associate types to every free variable and that are “enriched” with a distin-
guished formula, on the right hand side for terms and on the left hand side for
environments. The distinguished formula is the type of the term or, dually, the
type of the placeholder.

Table 1. Typing rules

(cut)
Γ � v : T |Δ Γ |E : T � Δ

〈v||E〉 : (Γ � Δ)

(Ax-r)
Γ ;x : T � x : T |Δ Γ |α : T � α : T ; Δ

(Ax-l)

(Impl-r)
Γ ;x : T � v : T ′|Δ

Γ � λx : T.v : T → T ′|Δ
Γ � v : T |Δ Γ |E : T ′ � Δ

Γ |v ◦ E : T → T ′ � Δ
(Impl-l)

(μ̃)
c : (Γ � α : T ; Δ)
Γ � μα : T.c : T |Δ

c : (Γ ; x : T � Δ)
Γ |μ̃x : T.c : T � Δ

(μ)

The Curry-Howard correspondence with classical sequent calculus should be
evident from the typing rules given in Table 1 (where the distinguished formula
can be considered at first just as a normal formula).

Observe that the symmetries of the calculus are perfectly respected at the
typing level. For instance a term is given type A → B (on the right hand side
of the sequent) when it waits for an input of type A to provide an output of
type B. Dually an environment is given type A → B (on the left hand side of
the sequent) when it provides an input of type A and waits for an output of
type B.
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Abstract. Due to their rapidly increasing amount, maintaining math-
ematical documents more and more becomes an engineering task. In
this paper, we combine the projects MMiSS1 and CDET.2 That way, we
achieve major benefits for mathematical knowledge management: (1) Se-
mantic annotations relate mathematical constructs. This reaches beyond
mathematics and thus fosters integration of mathematical content into a
broader context. (2) Fine-grained version control enables change manage-
ment and configuration management. (3) Semi-formal consistency man-
agement identifies violations of user-defined consistency requirements
and proposes how they can be best resolved.

1 Introduction

The corpus of electronically available mathematical knowledge increases rapidly.
Usually, mathematical objects are embedded in and related to different kinds
of documents like articles, books, or lecture material, the domain of which can
be different from mathematics, e.g., engineering or computer science. Therefore,
maintaining high-quality mathematical knowledge becomes a non-trivial engi-
neering task for teams of authors that must be supported.

In this paper, we combine MMiSS, a general-purpose approach for main-
taining structured documents that are semantically annotated, and CDET, a
general-purpose approach for semi-formal consistency management. That way,
we achieve major benefits for mathematical knowledge management (MKM),
which pay particularly for teams of authors:

1. Ontology-driven semantic annotations relate mathematical constructs, which
reaches beyond mathematics and thus fosters automatic analysis and inte-
gration of mathematical content into a broader context.

2. Fine-grained version control enables sophisticated change management and
configuration management.

1 MMiSS: Multimedia in Safe and Secure Systems – see www.mmiss.de
2 CDET: The Consistent Document Engineering Toolkit – see www.unibw.de/inf2/

CDET
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3. Consistency management identifies violations of user-defined requirements
and proposes how these violations can be best resolved, i.e., repaired.

MMiSS supports semantic markup for structured LATEX documents and
modeling of semantic dependencies through the integration of formal domain
knowledge representation methods (ontologies) into the process of authoring
mathematical documents. Using ontologies to structure semantic markup
makes our approach highly adaptable to the application at hand and avoids
ambiguities that can arise from overloading mathematical symbols or leav-
ing such symbols implicit. MMiSS provides a repository, which keeps track
of document revisions and which facilitates the explicit reuse and sharing of
document parts.

During the development of semantically related documents, quality control
w.r.t. user-defined requirements has proven crucial in a range of applications;
see, e.g., [1, 2]. This kind of consistency management is particularly useful for
teams of authors.3 Inconsistencies (i.e., violations of user-defined requirements)
are natural during the editing process and must be tolerated (at least tem-
porarily). CDET (1) provides automated consistency checking of user-defined
consistency requirements, (2) tolerates inconsistencies, and (3) suggests prior-
itized repairs [3]. CDET can check consistency at various granularity levels of
formal, informal, and semi-structured content and integrates fully with authors’
established practices. The MMiSS repository supports easy process integration,
efficient consistency checking, and temporal consistency rules (which restrict the
development of documents over time). Although CDET can work on MMiSS
documents only, employing ontologies results in highly configurable and flexible
consistency management.

This paper proceeds as follows: First, we discuss related work. In Sect. 3 we
give a short survey of MMiSS and illustrate the benefits for MKM. In Sect. 4
we present typical consistency requirements. In Sect. 5 we illustrate consistency
management by CDET. In Sect. 6 we evaluate our approach and outline future
research directions.

2 Related Work

MKM systems often concentrate on the representation of mathematical ob-
jects themselves, which facilitates the exchange of core mathematical content
(formulas, theories etc.), the use of mathematical tools like computer algebra
systems, and the management of change for these objects (e.g., [4, 5, 6, 7, 8]).
Approaches for representing and formalizing the dependencies between formal
parts of mathematical documents and their informal counterparts are needed
but rarely found (the HELM approach described in [4] does this to a limited
extent).

3 Our notion of “consistency” means to fulfill user-defined requirements; as opposed
to the mathematical term, which means that a theory has a model. Consistency
checking roughly corresponds to model checking.
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With respect to structuring and interrelation of document objects, MMiSS
is comparable to OMDoc [9] – in fact, MMiSS documents can be translated to
OMDoc and vice versa. The main difference lies in the ontological layer, which
allows authors of MMiSS documents to create new structural elements or
semantic relations by inheriting the predefined ones. Our import and export
facility for OMDoc supports exchanging documents that adhere to the OM-
Doc standard. The translation includes the mapping of element types (like defi
nition, lemma etc.) and most of OMDoc’s basic relations between these
elements.4

In contrast to systems managing the consistency and change of mathematical
objects themselves (e.g., doing theorem proving) [8, 10], we provide consistency
management on structured documents. Therefore, our approach cannot be used
for theorem proving. Instead, we can use theorem provers in order to check
semantic relations on embedded mathematical objects. For example, we can
require that every theorem is proven; then CDET can use a theorem prover to
detect whether a potential proof really holds.

Ontologies have been used to formalize the semantics of mathematical
objects in a number of approaches, but they either concentrate on the pure
mathematical contents [11] or they exploit ontological representations for
certain functionalities only, e.g., Web services or search facilities [12, 13]. Seman-
tic annotations for LATEX documents rely on naming only [14, 15]. In order to
foster integration of mathematical documents into a broader context and to
support automated reasoning over mathematical documents by different tools,
semantic annotations themselves should be defined and structured by means of
ontologies.

The CPoint [16] system addresses the problem of creating semantical an-
notated mathematical documents and is very similar to MMiSS in its goals.
The main difference to MMiSS is that CPoint is an invasive editor for Pow-
erPoint, whereas MMiSS is built for LATEX authoring. CPoint exports
OMDoc documents, which can be viewed as instance documents according to the
(fixed) ontology OMDoc provides for mathematical documents. MMiSS authors
are creating knowledge on the instance (or fact) level, too, but the underlying
ontology can be extended if necessary. During the MMiSS project, a tool for
visualizing ontologies has been developed, which is similar to the CPointGraphs
module.

Despite of its importance, consistency management w.r.t. user-defined re-
quirements appears rarely addressed in MKM systems, which severely hinders
collaborative maintenance of mathematical documents. Regarding formal consis-
tency checking, we find a lot of related work in the field of software engineering,
e.g., the consistency management tool xlinkit [2] (for further details see [3]).
In contrast to xlinkit, which checks distributed documents, CDET employs a
repository for better process integration and temporal consistency checks.

4 Formulas are not converted to MathML or OpenMath, but MMiSS contains a pack-
age with a restricted set of macros for mathematical symbols and operators, called
MathLight, which could be translated to MathML.
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3 Writing Mathematical Documents Using MMISS

MMiSS is a general-purpose editing environment, mostly used for preparing
lectures [17]. Here, we use MMiSS for maintaining mathematical documents.

MMiSS provides a LATEX package with environments and commands for creat-
ing cleanly structured documents. Their high-level structure is given by sections,
which can be nested to an arbitrary depth. For formal content (like mathematics
or programs), a set of environments has been defined; e.g., a structural entity
called “theory” groups constituent formal units like assertions (theorems, lem-
mas, corollaries etc.). Fig. 1 shows a portion of a theory document written with
MMiSSLATEX that includes several environments containing mathematical con-
tent: definitions for the concepts of “Signature” and “Algebra” (lines 6–8 and
10–13), a conjecture (lines 15–18), and its proof (lines 20–22). Using these en-
vironments, the author states, which parts of his document bear mathematical
content.

3.1 Ontologies

Ontologies provide the means for establishing a semantic structure. An ontology
is a formal explicit description of concepts in a domain of discourse [18]. The

MMiSSLATEX
1 \Class{Algebra}{algebra}{}

2 \Class{Signature}{signature}{}

3 \Class{TermAlgebra}{term algebra}{Algebra}

4

5 \begin{Section}[Label=AlgSpec, Title={Signatures, Terms and ...}]

6 \begin{Definition}[Label=DefSignature, Title=Signature]

7 A \Def{Signature} \SigmaSig{} is given by ...

8 \end{Definition}

9

10 \begin{Definition}[Label=DefAlgebra, Title={$\Sigma$-Algebra}]

11 An algebra $A= (S_A, \Omega_A)$ for a \Reference{Signature} ...

12 \Relate{requires}{DefAlgebra}{DefSignature}

13 \end{Definition}

14

15 \begin{Conjecture}[Label=TermAlgebra, Title={The Term Algebra}]

16 \Def{TermAlgebra}

17 \Ref[Terms]{TermsOverSets} ... form an~\reference{SigmaAlgebra}.

18 \end{Conjecture}

19

20 \begin{Proof}[Label=TermAlgebraProof]

21 \Relate{proves}{TermAlgebraProof}{TermAlgebra} For each sort ...

22 \end{Proof}

23 \end{Section}

Fig. 1. Abridged example of the MMiSSLATEX document theory.tex



254 A. Mahnke and J. Scheffczyk

MMiSSLATEX package for ontologies provides a set of easy-to-use macros for
the declaration of ontologies. Within the prelude of each MMiSS document, the
author builds up an ontology, which covers the domain of this document. The
ontology is used by the author to place semantic annotations and thereby build
semantic relations between document elements.

The first two lines of our example (Fig. 1) show the declaration of concepts
(as ontology classes) that should be defined within the document. The concept
Signature is defined by the command \Def{Signature} in line 7. MMiSS can,
therefore, derive that the surrounding definition environment forms the definition
for this concept. References to the concept of a signature thus link to this element
(e.g., line 11 shows such a reference).

MMiSS provides relation types, which capture deeper meaning than such
references, e.g., the proves relation. The conjecture labeled TermAlgebra (line 15)
is proven by the proof TermAlgebraProof (line 20), thus changing the state of the
conjecture into a theorem. We express the proves relation by the MMiSSLATEX
statement \Relate{proves}{TermAlgebraProof} {TermAlgebra} (in line 21),
which creates a proves-link between these two objects. The proves relation is
predefined in the so-called MMiSS systems ontology and is a subrelation of
reliesOn. The reliesOn relation reflects that two structural entities semantically
rely on each other. Relations are important for consistency management: If there
are changes to entities which others rely on, the consistency is suspicious to be
violated; deletion of such an entity breaks consistency. In our example, if the
proves relation is broken, the theorem turns into a conjecture again.

3.2 Benefits for Maintaining Mathematical Documents

One must not underestimate the effort of developing an ontology. Particularly
for teams of authors, the benefits of using ontologies clearly outweigh these costs.

Without ontologies we often encounter difficulties when we reuse or share
material: The exact meaning of a concept is unclear, or different terms are used
for the same semantic concept, or the same term is used for different semantic
concepts. For example, consider the term “algebra”, which is frequently used
in different contexts. Whereas a human user can often discriminate from the
context, a tool must have unambiguous information: we would certainly expect a
hyperlink to lead to the correct target definition. In MMiSSLATEX ontologies, the
author associates a default phrase to each declared class, object, or relation. If the
same phrase is attached to different semantic concepts, the user is presented with
the appropriate term; the author states which concept he means by referencing
the corresponding class or object in his domain ontology.

Using ontologies to represent authors’ knowledge is domain independent, so
it is easy to associate mathematical facts with aspects of other domains, e.g.,
computer science, engineering science, or pedagogics. Particularly, relationships
to pedagogical knowledge can be useful in the preparation of eLearning material
– recent trends in the field of eLearning put strong emphasis on rich pedagogical
metadata for Learning Objects. MMiSS provides the relation type illustrates,
which can be used to link examples or illustrations to the concepts they explain.



Engineering Mathematical Knowledge 255

These links can be explored to support pedagogically motivated consistency
rules – see R 4 in Sect. 4.

Since domain ontologies developed along with the documents can be trans-
lated to Semantic Web standards like OWL, mathematical MMiSS documents
can easily be converted into resources for the Semantic Web.5 Existing tools like
semantics-aware search engines or visualization tools can be utilized.

Besides of using ontologies,maintainingmathematical documents benefits from
unique features of the MMiSS repository. Fine-grained (XML-based) version
control on the object level supports concurrent changes of documents by provid-
ing merge functions. The repository can store variants of objects, so that differ-
ent presentations (variants like natural language or slides and scripts etc.) can be
generated out of the same document. MMiSS provides a sophisticated editing
environment, which respnects the rich structure of mathematical documents and
semantic relations between mathematical (and non-mathematical) contents.
Therefore,MMiSSprovides a goodbasis for fine-grained consistency requirements,
which in turn are fundamental prerequisites to automated consistency
management.

4 Example Consistency Requirements

In practice, the most important step towards automated consistency manage-
ment is to define a notion of “consistency,” i.e., to develop consistency require-
ments based on the structure and semantics of the documents. These consistency
requirements are informal and thus tool independent. They will be formalized
once the tool for actually managing consistency has been chosen.

The advantages of our approach can be shown best in a scenario where a team
of authors is creating and maintaining highly interrelated documents stored in
the MMiSS repository. Let the repository contain a significant amount of math-
ematical documents of various kinds (books, articles, lecture material, scripts
etc.), which is very likely to exist in a community of practice. In this paper,
we use the particular scenario of two mathematicians, one of them (lets say A)
has written a paper in which he develops a theory about Signatures and Terms
(theory.tex in Fig. 1). A colleague (B) is preparing lecture material explaining
parts of this work (lecture.tex in Fig. 2). Both documents are structured using
the MMiSS facilities and are stored in the repository along with other material
(papers, scripts etc.) referencing A’s theory.

In this scenario, several consistency requirements arise. Usually, the require-
ments below will be broken during the development of MMiSS documents, even
if only one author is editing the documents. In fact, for teams of authors con-
sistency management is particularly helpful. Here, the additional formal effort
produces multiple payoffs. Most of the requirements are considered “weak” – we
explicitly permit violations. Some requirements are, however, so important that

5 In MMiSS ontologies relations can be specified with properties like ’is a strict order
relation’ – not all of them can be expressed in OWL.
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MMiSSLATEX
1 \begin{Section}[Label=sec1, Title={Algebras}]

2 \begin{Example}[Label=ExampleAlgebra, Title=An Algebra Example]

3 \Def{ExampleAlgebra} An Example (in CASL): the natural numbers ...

4 \Relate{illustrates}{ExampleAlgebra}{DefAlgebra}

5 \end{Example}

6

7 \begin{Definition}[Label=DefSigmaAlgebra, Title=SigmaAlgebra]

8 A \Def{SigmaAlgebra} ...

9 \Relate{requires}{DefSigmaAlgebra}{TermAlgebra}

10 \end{Definition}

11 \end{Section}

12

13 \begin{Section}[Label=sec2, Title={Signatures}]

14 \begin{Example}[Label=ExampleSignature, Title=A Signature Example]

15 \Def{ExampleSignature} ...

16 \Relate{illustrates}{ExampleSignature}{DefSignature}

17 \end{Example}

18 \end{Section}

Fig. 2. Abridged example of the MMiSSLATEX document lecture.tex

authors must not check in documents violating these requirements – such re-
quirements are “strong”. As a means of quality control, some weak requirements
become strong for released documents.

The local domain ontology is a kind of signature stating the concepts which
the author “promises” to define and to explain in this document. Therefore, it
is natural to require:

R 1. (weak – strong for released documents) All objects promised in the local
ontology of a document are defined in the document body.

“Deeper-level” consistency requirements are imposed by the interaction be-
tween references to ontology components within the document and the structural
document entities themselves. For example, consider the proves link between
the proof TermAlgebraProof and the conjecture TermAlgebra in theory.tex. The
proves relation is predefined in the systems ontology and is a subrelation of
reliesOn. Thus, we require:

R 2. (weak) A proven assertion should not change its formulae significantly.
By “significant” we mean, e.g., that the wording of a theorem may change

without affecting its proof; also, the formula of an assertion may be weakened
(i.e., the formula of the old version implies the formula of the new version). We
should not expect too much from this requirement, just clear pointers to possible
inconsistencies. Still, it is mathematicians who re-validate the proofs.

In MMiSS the author indicates the status of an assertion by using the appro-
priate element type, e.g., a conjecture (see Fig. 1). By proving this conjecture
somewhere in his document, author A promotes it to a theorem. Authors, ref-
erencing this theorem trust in its status when using it for developing their theory.
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If – at a later stage – the theorem is demoted to a conjecture again, because the
proof turned out to be wrong, the mathematical objects relying on this theorem
are suspicious to be broken. Thus, it is reasonable to require:

R 3. (weak) The status of a relied-on assertion should not be demoted.
In lectures, it is good practice to connect an example explicitly to the il-

lustrated concept (see lines 4, 16 in Fig. 2). Often, these concepts correspond
to symbols defined in the context of a certain theory. Theories use other the-
ories, thus inducing a dependency relationship on the corresponding symbols
(concepts) which should be denoted by the originating author by means of the
ontology (see line 12 in Fig. 1).6

In his lecture, author B can explore this knowledge by requiring that the
examples he is developing are ordered according to the dependencies of the
explained concepts, i.e., if concept x (somehow) reliesOn concept y, and he is
going to explain both, than the example for y should be given first. If the course
is developed by a group of lecturers (an often found situation), this requirement
is likely to be broken.

R 4. (weak – strong for released documents) Examples should be ordered
according to the dependencies of the addressed concepts.

5 Pragmatic Consistency Management

For managing user-defined consistency of (mathematical) MMiSS documents we
employ CDET, a general-purpose consistency management approach. In Sect. 5.1
we introduce our consistency management architecture, combining MMiSS and
CDET. In Sect. 5.2 we formalize the consistency requirements from the previ-
ous section, in order to enable consistency management (shown in Sect. 5.3).
CDET considerably benefits from MMiSS, i.e., fine-grained version control and
semantic annotations that are structured by an ontology. Technical details about
CDET are beyond the scope of this paper, see [3] and the CDETWeb site.

5.1 The CDET Consistency Management Approach

Fig. 3 illustrates the CDET consistency management approach. In their day-
to-day work, mathematicians check out documents, edit them, and check them
in again via one of the methods offered by MMiSS. Consistency requirements
are formalized by consistency rules in a variant of first-order predicate logic.
Strong rules must be adhered to, weak rules may be violated. Rules can be cus-
tomized to specific projects, e.g., lectures or courses. Since users can formalize
their own rules, consistency management is tunable to the application at hand.
In order to ensure well-formedness, rules are type-checked against the functions
6 The reliesOn relation seems appropriate for these symbol dependencies, but further

analysis may show that a subrelation of reliesOn suits better. In our example we use
the subrelation requires.
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Fig. 3. Consistency management by CDET – simplified overview

and predicates they use. Functions and predicates are implemented in the func-
tional programming language Haskell [19]. That way, we can handle document
properties inexpressible by first-order rules like traversing recursive document
structures, which we encounter in MMiSS XML document structures. More-
over, Haskell’s Foreign Function Interface supports to integrate mathematical
tools like theorem provers for sophisticated content evaluation.

At a check-in, CDET checks the MMiSS repository for consistency and gen-
erates appropriate repairs, from which mathematicians can choose. Repairs are
generated in two steps, in order to avoid exponential computational complexity
of repair enumeration: (1) during consistency checking CDET generates for each
rule an S-DAG (Suggestion-carrying D irected Acyclic Graph); (2) on demand
CDET derives one repair collection from all S-DAGs. The MMiSS repository is
locked during step (1) only, which is performed incrementally. An S-DAG visu-
alizes inconsistencies and plausible repair actions for one rule. S-DAGs do not
include all possible repairs but only a few repairs that require the least changes
to the repository. S-DAG reduction is a major benefit in practice. The repair
collection contains alternative repair sets, each of which includes repairs for all
rules. Since the repair collection can grow large (hundreds of alternatives), it is
sorted w.r.t. a user-defined preference metric.

5.2 Formalizing Consistency Rules

In order to check consistency across document versions, CDET employs a variant
of temporal predicate logic, which explicitly quantifies over repository states.7

That way, we can formalize rules that restrict the development of documents
over time. Annotations guide repair generation by supplying domain
knowledge.

7 A repository state represents the accumulated check-ins up to a given point in time.
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R 1. At all repository states t, we require for all MMiSS documents doc that each
object obj promised in the local ontology is defined; i.e., in doc there exists a
definition def equal to obj.
∀ tKEEP ∈ repStates • ∀docKEEP ∈ repMMiSSDocs(t) • ∀obj ∈ objects(Odoc) •

∃def ∈ allDefs(doc) • cont(def) = name(obj)
{False: def.cont � name(obj)},
{False: obj.name � cont(def)}

R 1 first quantifies over all repository states t, provided by repStates. Sec-
ond, we parse all MMiSS documents with the help of repMMiSSDocs(t). We
determine all objects declared in the local domain ontology Odoc of a docu-
ment doc by objects(Odoc). For all these objects we require a suitable de-
finition (\Def{...} in MMiSSLATEX), where cont(def) returns the content
of the definition def. We get all definitions in a MMiSS document doc by
allDefs(doc), which also identifies their locations, comparable to XPath axes.
Notice that the definition def may occur anywhere in the document doc. In-
consistencies can be resolved by either changing the definition content to-
wards the object name or vice versa. This is expressed by the hint collection
{{False: def.cont � name(obj)}, {False: obj.name � cont(def)}}.

A predicate can be annotated by a hint collection. Each hint set within a hint
collection is an alternative. A user-supplied hint indicates how the truth value of
a predicate can be flipped. That way, hints provide domain knowledge for repair
generation. A hint b: v.f � e proposes to change the field f of the variable v
to the term e if the predicate evaluates to the truth value b. Notice that any
well-typed term e can be used here. Therefore, hints provide great flexibility to
react to inconsistencies; e.g., the current repository state of the violation can
be evaluated, which supports repair strategies that change over time. Due to
static typechecking of hints, repairs that change document content respect the
document structure. In addition, we can annotate quantified variables by KEEP

in order to avoid repairs for these variables.

R 2. At all repository states, we require for all theory documents thD with previous
version thDp the following: If the previous version assertp of an assertion assert has
been proven then all formulae of assert are implied by the formulae of assertp.
∀ tKEEP ∈ repStates • ∀thDKEEP ∈ repTheoryDocs(t) •
∀thDKEEP

p ∈ repTheoryDocs(prevState(t)) • dId(thD) = dId(thDp) ⇒
∀assertKEEP ∈ allAssertions(thD) • ∀assertKEEP

p ∈ allAssertions(thDp) •
label(assert) = label(assertp) ∧
∃prKEEP

p ∈ allProofs(thDp) • ∃rKEEP
prp

∈ allRelates(prp) •
∃relKEEP

Pp
∈ subRels(OprevState(t) ∪ OthDp

, proves) •
relation(rprp

) = name(relPp) ∧ target(rprp
) = label(assert)

⇒

∀ fDEL ∈ formulae(assert) • formulae(assertp) |⇒ f

R 2 relates consecutive versions of theories. We get the current version thD by
repTheoryDocs(t) and the previous version thDp by repTheoryDocs(prevState(t)).
For each assertion (theorem, conjecture, proposition etc.) assert in thD we re-
trieve its previous version assertp in thDp. R 2 only affects assertions that have
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been proven previously, i.e., there exists a proof prp with a proves relation rprp

targeting the assertion assertp. We determine all proves relations by first join-
ing the systems ontology at the previous state OprevState(t) and the local domain
ontology OthDp

. Then subRels(OprevState(t) ∪ OthDp
, proves) returns the reflexive

transitive closure of all subrelations of the proves relation. If for the previous
version assertp there exists a proof then each formula f of assert should be logi-
cally implied by all formulae of assertp, in order to ensure validity of the proof.
Inconsistencies can be resolved by deleting formulae f that are not implied, which
we express by annotating the variable f by DEL. We denote logical implication
by the predicate |⇒, which currently is implemented as a simple “element of”
relation. For specific applications this implementation can be replaced by a more
sophisticated variant since predicates are implemented in Haskell. Other tools,
e.g., theorem provers, can be employed via Haskell’s Foreign Function Interface.

R 3. At all repository states, we require for all theory documents thD with previous
version thDp the following: If an assertion assert is relied on by any MMiSS
document and the previous version assertp was proven then the new version
assert should be proven, too.
∀ tKEEP ∈ repStates • ∀thDKEEP ∈ repTheoryDocs(t) •
∀thDKEEP

p ∈ repTheoryDocs(prevState(t)) • dId(thD) = dId(thDp) ⇒
∀assertKEEP ∈ allAssertions(thD) • ∀assertKEEP

p ∈ allAssertions(thDp) •
label(assert) = label(assertp) ∧
∃docKEEP ∈ repMMiSSDocs(t) • ∃ rKEEP ∈ allRelatesDoc(doc) •
∃relKEEP

R ∈ subRels(Ot ∪Odoc, reliesOn) •
relation(r) = name(relR) ∧ target(r) = label(assert)

∧

∃prKEEP
p ∈ allProofs(thDp) • ∃rKEEP

prp
∈ allRelates(prp) •

∃relKEEP
Pp

∈ subRels(OprevState(t) ∪OthDp
, proves) •

relation(rprp
) = name(relPp) ∧ target(rprp

) = label(assertp)

⇒

∃pr ∈ allProofs(thD) • ∃rpr ∈ allRelates(pr) •
∃relKEEP

P ∈ subRels(Ot ∪OthD, proves) •
relation(rpr) = name(relP ) {{False: rpr.relation � name(relP )}} ∧
target(rpr) = label(assert) {{False: rpr.target � label(assert)}}

R 3 relates multiple documents at consecutive repository states. For each asser-
tion (theorem, conjecture, proposition etc.) assert in a theory document thD we
retrieve its previous version assertp in thDp. R 3 only affects assertions that are
relied on by any formal construct in any MMiSS document doc. We require any
reliesOn relation r within doc, which particularly includes the requires relation.
Therefore, r must be equal to a subrelation of the reliesOn relation in the joined
ontology Ot ∪Odoc. Also, R 3 only affects assertions that have been proven pre-
viously — again, we require any proves relation relPp within the proof prp. If for
the previous version assertp there exists a proof and the new version assert is
relied on then the new version assert should be proven, too. The assertion assert
may be proven by a different proof or by a different proof strategy (expressed
by a different proves subrelation). We propose to adapt the relation type and
target of the current proof to resolve inconsistencies.
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R 4. At all repository states, we require for all examples ex1 and ex2 in a lecture leD:
If ex1 illustrates a formal construct def of a theory document thD and def relies on a
formal construct that is illustrated by ex2 then ex2 should appear before ex1.
∀ tKEEP ∈ repStates • ∀leDKEEP ∈ repLectDocs(t) •
∀exKEEP

1 ∈ allExamples(leD) • ∀exKEEP
2 ∈ allExamples(leD) •

∃ rDEL
ex1 ∈ allRelates(ex1) • ∃relKEEP

I1 ∈ subRels(Ot ∪OleD, illustrates) •
∃ thDKEEP ∈ repTheoryDocs(t) • ∃defKEEP ∈ allFormalConstr(thD) •
relation(rex1) = name(relI1) ∧ target(rex1) = label(def) ∧
∃ rKEEP

def ∈ allRelates(def) • ∃relKEEP
R ∈ subRels(Ot ∪OthD, reliesOn) •

relation(rdef) = name(relR) ∧
∃ rDEL

ex2 ∈ allRelates(ex2) • ∃relKEEP
I2 ∈ subRels(Ot ∪OleD, illustrates) •

relation(rex2) = name(relI2) ∧ target(rex2) = target(rdef)

⇒

num(ex2) ≤ num(ex1) {{False: ex2.loc � loc(ex1)}, {False: ex1.loc � loc(ex2)}}

In R 4 we parse all lectures by repLectDocs(t). The example ex2 should ap-
pear before the example ex1 if ex1 illustrates a definition that relies on a formal
construct illustrated by ex2. Examples are consecutively numbered by the num
attribute. If they appear in wrong order we propose to switch their locations.

Formalizing consistency rules is due to experts in the field of formal logic.
Employing the MMiSS ontologies alleviates the effort of formalization; e.g.,
subrelations do not need to be hard-coded inside the rules. The systems ontology
and the local domain ontology can be seen as parameters to a consistency rule.

5.3 Managing Inconsistencies

Inconsistencies in our example and repairs are visualized by S-DAGs. A repair
proposes an action that resolves an inconsistency, e.g., by changing document
content.

The structure of an S-DAG resembles that of a consistency rule in miniscope
form (i.e., negations and quantifiers are pushed inwards, implications are re-
placed by disjunctions). Nodes represent logical connectives or atomic formulae;
edges target the subformulae of a connective. Universal nodes and existential
nodes represent universal and existential quantification, respectively. Outgo-
ing edges carry value bindings to the quantified variable and alternative repair
actions. A value represents a repository state, a document, or document content,
blamed for inconsistencies. An action proposes to either add a value to (Add), or
change a value within (Chg), or delete a value from the domain of the quantifier
node (Del). Conjunction nodes stand for conjunctions; disjunction nodes
stand for disjunctions. Negation nodes are omitted for brevity. A predicate leaf
contains an atomic formula that causes inconsistencies and its truth value.

S-DAGs only include repairs that require little modifications to the reposi-
tory. Generating all possible repairs has proven infeasible. Also, S-DAGs include
individual repairs only; i.e., repairs are not combined. CDET derives a repair
collection for all inconsistencies of all rules in a second step (see below). We sep-
arate S-DAG generation from the computationally expensive derivation of the
repair collection, in order to lock the repository during S-DAG generation only
(which is done incrementally).
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S−DAG for rule R 3
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{name = theory.tex, state = 2,  ...}

{name = lecture.tex,  ...}

{name = requires}

{name = proves}

{name = theory.tex, state = 1,  ...}

{label = TermAlgebraProof, loc = [Sect "AlgSpec"]}

{label = TermAlgebraProof, loc = [Sect "AlgSpec"]}

{label = TermAlgebra, loc = [Sect "AlgSpec"]}

{label = TermAlgebra, loc = [Sect "AlgSpec"]}

relation = requires
source = DefSigmaAlgebra

loc = [Sect "sec1"]
target = TermAlgebra{ }

False: name (thD) = name (thD )

True: target (r) = label (assert)

True: label (assert) = label (assert )

True: target (r   ) = label (assert )

True: relation (r) = name (rel )
True: relation (r  ) = name (rel  )

domain is empty!

Add relation = proves,
target = TermAlgebra{ }

prr
p

{relation = proves, target = TermAlgebra}

S−DAG for rule R 4

t     2

t     1 leD

thD

def

ex

rel

rel

r

r

r

ex

ex

def

def

ex

def

ex

ex
I

R

I

R

ex

2

1

2

2

1

2
2

2

2

1

1

{name = lecture.tex, ...}

{name = theory.tex, ...}

label = DefAlgebra,

{label = ExampleSignature, loc = [Sect "sec2"], ...}

{name = illustrates}

{name = requires}

{relation = illustrates, target = DefAlgebra, ...}

{relation = illustrates, target = DefSignature, ...}

{relation = requires, target = DefSignature, ...}

{label = ExampleAlgebra, loc = [Sect "sec1"], ...}

loc = [Sect "AlgSpec"]

Chg

Del

Del

Chg

{label = ExampleSignature, loc = [Sect "sec1"], ...}

{label = ExampleAlgebra, loc = [Sect "sec2"], ...}

{ }

False: num (ex ) <= num (ex )

True: relation (r   ) = name (rel   )

True: relation (r    ) = name (rel  )

True: target (r   ) = label (def)

True: target (r    ) = target (r    )

rel

ex

I

I1

1

1

{name = illustrates}

True: relation (r   ) = name (rel   )

Fig. 4. Generated S-DAGs for the rules R 3 and R 4 (other rules are fulfilled)
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Fig. 4 shows the S-DAGs generated by CDET for our example rules. The
S-DAG for R 3 represents an inconsistency in the documents theory.tex and
lecture.tex at state 2. That is because the assertion TermAlgebra is required
by the lecture (left part), the assertion TermAlgebra has been proven at state 1
(middle part) and at state 2 there is no proof for TermAlgebra (lower right part).
By the lower right leaf “domain is empty” the S-DAG informs that the proof
TermAlgebraProof is lacking a proves relation. Consequently, CDET proposes to
Add a proves relation targeting TermAlgebra.

R 4 is violated at state 1 and state 2. Within lecture.tex the example Exam-
pleAlgebra appears before ExampleSignature. ExampleAlgebra illustrates the
definition DefAlgebra and ExampleSignature illustrates the definition DefSigna-
ture both of which we find within theory.tex. This is an inconsistency because
DefAlgebra requires DefSignature. Therefore, the examples should be reversed
(upper right part of the S-DAG) or the illustrates relations should be deleted.
CDET proposes to delete the illustrates relations due to our explicit request.

From all S-DAGs, CDET derives one repair collection on demand. The repair
collection contains alternative repair sets; within each set, all repairs together
resolve all inconsistencies for all rules. CDET guarantees that (1) each repair set
is a real alternative that is not expressed by other repair sets and (2) the repairs
within each set do not contradict each other.

A repair consists of four components: (1) affected rules and variables (a repair
can affect multiple rules), (2) the domain term of the variables (as given by the
rules), (3) variable bindings necessary to calculate the domain of the repair, and
(4) the proposed repair action.8 Naturally, repairs might violate consistency,
which we can determine only after a new consistency check.

For our example, CDET derives a repair collection containing three alternative
repair sets. Below you find the top-ranked repair collection at the repository
state 2.

Rep {R 3(rpr)} allRelates(pr)
pr �→ {label = TermAlgebraProof , loc = [Sect AlgSpec], . . .},
thD �→ {name = theory.tex, . . .}, t �→ 2

Add {relation = proves, target = TermAlgebra}
Rep {R 4(ex2)} allExamples(leD) {leD �→ {name = lecture.tex, . . .}, t �→ 2}

Chg {label = ExampleSignature, loc = [Sect sec2]}.loc � [Sect sec1]
Rep {R 4(ex1)} allExamples(leD) {leD �→ {name = lecture.tex, . . .}, t �→ 2}

Chg {label = ExampleAlgebra, loc = [Sect sec1]}.loc � [Sect sec2]

CDET proposes to add a proves relation to the proof TermAlgebraProof in the
document theory.tex, in order to resolve an inconsistency for R 3. In the doc-
ument lecture.tex the locations of the examples ExampleSignature and Exam-
pleAlgebra should be switched, in order to resolve the inconsistencies of R 4. Of
course, there are many more repairs possible, e.g., to delete the illustrates rela-
tion of either example. This is, however, considered “too expensive”. Users can
express their preferences by further annotating hints by repair costs and defin-
ing a metric for sorting the repair collection (see [3] for details). Here, we have
8 Repairs also contain a rating, which we omit here for brevity.
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preferred changing content to adding content, which is preferable to deleting
content or even whole documents.

6 Evaluation, Conclusion, Outlook

In this paper, we propose an approach to engineering mathematical knowl-
edge by combining MMiSS and CDET. MMiSS provides a sophisticated en-
vironment for maintaining mathematical documents fostering reuse, sharing,
and ontology-structured semantic interrelation also to non-mathematical con-
tent. Besides other benefits, ontologies alleviate consistency management w.r.t.
user-defined requirements by CDET. Formal consistency rules define consistency,
leaving no room for misinterpretations. CDET shows how inconsistencies can be
best resolved by S-DAGs and the repair collection.

The major efforts for our approach are the definition of an ontology and
distilling and formalizing consistency rules.

To our experience, the commands for building domain ontologies are easy to
learn. The biggest effort is to structure the domain knowledge and to express
it by ontological means. But so far, our experiences suggest that – for the task
of preparing eLearning content – this step leads to clearer course structures
and lecture material of higher quality. We suppose that this also applies to the
preparation of mathematical documents. Although we have feedback of more
than 20 authors of MMiSS courses,9 the task of formally evaluating our approach
with a larger set of authors is on our agenda.

The cost of user-defined consistency management is influenced mostly by de-
termining the actual consistency requirements informally and defining document
structures. Formalizing consistency rules requires technical effort of experts in
the domain of formal logic.

Since consistency rules can be reused for many projects, the advantages of
our combined approach outweigh its costs, particularly for teams of authors.
Document engineering benefits from clear document structures. Formal rules
and automatic consistency checks give precious insights and lead to fruitful dis-
cussions about “consistency”. CDET benefits from semantic annotations and
their structuring by an ontology. For example, by employing ontologies to deter-
mine subrelations, consistency rules become quite flexible. They can be reused
without adaptations if the ontology changes, e.g., new subrelations are intro-
duced. Version control by MMiSS supports efficient consistency checking and
the formalization of temporal consistency rules, which relate different document
versions.

Our idea of engineering mathematical documents can be transferred to any
mathematical editing environment. For example, we find a large amount of
quality requirements in the current OMDoc specification [9] that cannot be
checked using native XML methods. For example, such requirements involve
multiple documents, demand a specific structure based on specific attribute val-
ues, or are just best practices that should hold but may be violated from time
9 During the MMiSS project more than 20 lectures have been prepared.
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to time. We conjecture that many cases can be handled by CDET. Also, OMDoc
could benefit from structuring semantic relations as we do in MMiSS. We look
forward to transferring our experiences to OMDoc.

A field to be addressed is the integration of different ontologies: Upper ontolo-
gies, emerging mathematical ontologies, and the local ontologies created within
the documents. MMiSS provides an import mechanism with hiding, revealing,
and renaming of ontology components. Although this solves many problems on
the syntactical level, integration on the logical level is a research area itself.

Moreover, we plan to enhance our approach as follows: (1) We reduce its for-
mal overhead (e.g., formalization of hints and definition of preference metrics).
(2) We improve usability of CDET’s output (e.g., converting repairs to natural
language or employing interactive graph viewing tools such as uDraw(Graph)10

for handling S-DAGs). (3) We integrate mathematical tools such as theorem
provers. (4) By further experiments, we want to determine a set of basic consis-
tency rules for MKM that can be refined and adapted to specific MKM projects.
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Abstract. We present a computational origami construction of Mor-
ley’s triangles and automated proof of correctness of the generalized
Morley’s theorem in a streamlined process of solving-computing-proving.
The whole process is realized by a computational origami system being
developed by us. During the computational origami construction, geo-
metric constraints in symbolic and numeric representation are generated
and accumulated. Those constraints are then transformed into algebraic
relations, which in turn are used to prove the correctness of the con-
struction. The automated proof required non-trivial amount of computer
resources, and shows the necessity of networked services of mathematical
software. This example is considered to be a case study for innovative
mathematical knowledge management.

1 Introduction

Computational origami1 is a scientific discipline to study origami systematically
using computers. It includes, among others, the mathematical study of paper
folds, e.g. modeling of origami by algebraic and symbolic means, simulation
of origami, and proving the correctness of geometric properties of constructed
origami.

In the framework of computational origami we studied the construction of a
Morley’s triangle and automated proofs of Morley’s theorem. Morley’s theorem
states that the three points of intersection of the adjacent interior trisectors of
the angles of any triangle form an equilateral triangle. Morley’s theorem can be
generalized by taking into account the intersections of the exterior trisectors as
well. For a given angle α (0 < α < π), we have one pair of interior trisectors
(primary trisectors) producing the pair of angles (α/3, 2α/3), and two pairs of
exterior trisectors producing the pairs of angles ((π + 2α)/3, (2π + α)/3) and
((2π + 2α)/3, (4π + α)/3). Therefore, we have 33 triangles formed by the inter-
sections of the adjacent trisectors. The generalized Morley’s theorem states that

� This research is supported by the JSPS Grants-in-Aid for Scientific Research No.
17300004 and No. 17700025.

1 Origami is a Japanese word meaning a piece of folding paper or methodology of
folding paper.

M. Kohlhase (Ed.): MKM 2005, LNAI 3863, pp. 267–282, 2006.
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out of the 27 triangles constructible by the intersections of the adjacent trisec-
tors, 18 triangles are equilateral. Proofs of (generalized) Morley’s theorem were
published by several researchers since Morley gave his construction in 1898. Bo-
gomolny provides in his web page various information about Morley’s theorem
including its historical accounts and proofs [2].

In this paper, we present a computational origami construction of Morley’s
triangles and prove automatically the correctness of the generalized Morley’s
theorem in a streamlined process of solving-computing-proving. The process is
realized by the computational origami system (in this paper we denote our sys-
tem by Computational Origami) [16] which is being developed by us. The auto-
mated proof of the generalized Morley’s theorem was first published by Wu [18],
and a concise explanation of his proof is given in [17]. What are new in our study
are the computational origami construction and streamlined automated proof.
Seemingly different kinds of knowledge in mathematical sciences, i.e. origami
and automated theorem proving, are integrated in a common framework and,
moreover, processed coherently. In the case of automated proof, mathematical
knowledge about origami represented symbolically as a set of equalities is sys-
tematically transformed into a system of polynomials. The generated system of
polynomials is sent to the theorem prover Theorema [4], which then establishes
the theorem by using the Gröbner bases method.

The rest of the paper is organized as follows. After briefly explaining the
principles of origami construction in Sect. 2, in Sect. 3 we show a stepwise origami
construction of Morley’s triangle. In Sect. 4 we give our automated proof of the
generalized Morley’s theorem. In Sect. 5 we discuss a method of connecting
Computational Origami to Theorema. In Sect. 6 we summarize our results and
indicate directions for future research.

2 Principles of Origami Construction

An origami is to be folded along a specified line on the origami called fold
line. The line segment of a fold line on the origami is called a crease, since the
consecutive operations of fold and unfold along the same fold line create crease(s)
of the fold line on the origami. In Subsection 2.1 we recall the six basic origami
axioms proposed by Huzita [13, 12] to fold origami. Each of his axioms prescribes
a rule for constructing a fold line, which can be determined by either points,
lines or a combination of them. It is known that Huzita’s origami axiom set is
more powerful than the ruler-and-compass method in Euclidean geometry [9].
Namely, origami can not only construct geometric objects constructible by the
ruler-and-compass method, but also geometric objects that are impossible by
the ruler-and-compass method. One of them is a trisector of an angle [5]. From
this fact it is clear that Morley’s triangles can not be constructed by the ruler-
and-compass method.

Now let us see how to construct a geometric object with origami. First, we
have some notational convention in this paper. We denote points by single capital
letters A, B, C, . . . , possibly subscripted, the line passing through points X and
Y by XY , and the segment between points X and Y by XY .
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We define an origami2 �ABCD together with the set Π of constructed points
{A, B, C, D} and the set Γ of constructed lines {AB, BC, CD, DA}. We then
start the origami construction from the initial origami. We make a fold on the
origami by applying one of the axioms given below, possibly followed by unfold-
ing. A fold of the origami gives rise to a set of points of coincidence of the fold
line and the lines in Γ , resulting in new Π and Γ .

2.1 Huzita’s Axioms

In [13], Huzita proposes the following axioms for origami geometry:

(O1) Given two points in Π , we can make a fold along the fold line that passes
through them.

(O2) Given two points in Π , we can make a fold to bring one of the points onto
the other.

(O3) Given two lines in Γ , we can make a fold to superpose the two lines.
(O4) Given a point P in Π and a line m in Γ , we can make a fold along the

fold line that is perpendicular to m and passes through P .
(O5) Given two points P and Q in Π and a line m in Γ , either we can construct

the fold line that passes through Q and we can make a fold along this fold
line to superpose P and m, or we can decide that the construction of a
fold line is impossible.

(O6) Given two points P and Q in Π and two lines m and n in Γ , either we can
construct a fold line and make a fold along this fold line to superpose P and
m, and Q and n, simultaneously, or we can decide that the construction
of a fold line is impossible.

The axiom set gives the principles of origami based on an operational view
of paper folds, hence the axioms would be better termed as basic constructions.
Hatori proposed an additional axiom [11]:

(O7) Given a point P in Π and two lines m and n in Γ , we can construct the
fold line that is perpendicular to n and we can make a fold along this fold
line to superpose P and m.

He further showed that (O6) is sufficient to make all the folds by (O1)-(O5)
and (O7). Indeed, (O1)-(O5) and (O7) are the degenerate cases of (O6). This
does not imply, however, that (O6) is enough in practice. (O6) will produce
at most three fold lines, and we would need to specify an additional para-
meter to select the desired fold line. Mathematical models of the set of con-
structed points by the folds by the applications of the axiom set are studied by
Alperin [1].

2 Note that we abuse the word origami to mean the methodology, the piece of paper,
and the geometric object that is being constructed by means of paper folds, as we
do in Japanese.
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2.2 Implementation of Origami Axioms

The constructions described by axioms (O1)-(O7) are realized by function OFold
of Computational Origami, which is implemented in Mathematica. Function
OFold needs, as arguments, several constructed lines and points to compute
the fold line(s) and to determine the face to be moved. Note that the types of
the arguments and the argument keywords can discriminate the operations to
be performed unambiguously. The figures that we will show in the next section
are generated by the calls of OFold.

(O1) OFold[X, Along→ PQ]
(O2) OFold[P, Q]
(O3) OFold[RS, UV ]
(O4) OFold[X, AlongPerpendicular → {P, RS}]
(O5) OFold[P, RS, Through → Q]
(O6) OFold[P, RS, Q, UV ]
(O7) OFold[P, RS, AlongPerpendicular → UV ]

OFold[X, Along → PQ] in (O1) makes a fold along the line PQ. The words
Along, AlongPerpendicular and Through to the left of → are keywords. All the
faces containing the value of X (i.e., the coordinate of point X) are to be moved.
In all the cases we have hidden optional parameters which tell the system which
faces of the origami should be moved (with keyword Move ) and which directions
(mountain or valley). For instance, in (O2), Move → P is implicit.

3 Origami Construction of a Morley’s Triangle

Our origami construction of a Morley’s triangle is depicted in Figures 1 – 6.
We construct a Morley’s triangle inside the triangle ΔABE (step 5) in the

following way:

1. trisection of 	EAB (step 6 ... step 14)
2. trisection of 	EBA (step 15 ... step 21)
3. trisection of 	AEB (step 22 ... step 32)

Then, the Morley’s triangle inside ΔABE can be observed easily (step 33).
Each step of the origami construction is performed by the call of function OFold
and function Unfold. For the construction of the trisector we use Abe’s method
[8, 10].

Abe’s Method

We first assume that the initial origami is a square paper �ABCD (Step 1).
Let E be an arbitrary point on segment CD. Later we will extend this formu-
lation, which will allow us to put point E to be on the line that extends the
segment CD. Note that even this extension is not general enough to claim the
correctness of the construction and the proof of the generalized Morley’s theorem
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Fig. 1. Origami construction of a Morley’s triangle: Steps 1–5

thereafter. We will further allow the initial origami to be an arbitrary rectangle.
Then our claim will be justified. However, we will, for the moment, stick to the
above configuration for the sake of the clarity of explanation and of the ease of
computation in the automated proof.

The steps 1-5 are preliminary steps for constructing the triangle ΔABE. In
these steps we apply (O1) at steps 2 and 4, and we unfold the origami at steps
3 and 5.

At step 6, we apply (O2). Note that in the figures we show only the constructed
points that are necessary for later constructions.

Step 8 is the crucial step of Abe’s method. We apply (O6). We make a fold to
superpose points D and A to line AE and line GF , respectively. Finding a fold
line in (O6) amounts to solving a cubic equation that describes the geometric
constraints among the involved points. Hence we have the (at most) three fold
lines as shown in step 8. At this step we need to interact with the system to
specify which fold line we want to use. In our example we choose the one indicated
as 3 in the figure. It is easily seen that the other fold lines also trisect the angle:
line 1 for angle (π − 	EAB) and line 2 for angle (2π − 	EAB).

At steps 9 and 10, we make a fold along the fold line 3 and unfold. Let the
points at which points G and A are placed in step 9 be I and H , respectively.
This means that I and H are in Π at step 10. Now we can observe that 	EAI
and 	HAB trisect 	EAB. This can be proved automatically using the same
technique that we are going to expound in Sect. 4. See paper [14] for details.

The trisector of 	EBA is similarly constructed. Finding the trisector of
	AEB is more involved, but the construction can be easily read off from the
figures. The final origami is shown in step 33. We see the triangle ΔWLU , which
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Fig. 2. Origami construction of a Morley’s triangle: Steps 6–14

turns out (and is proved) to be equilateral for any E on segment CD excluding
C and D. Note that Abe’s method is not applicable to the cases where E is on
point C or on D.

4 Proof of Morley’s Theorem

4.1 Algebraic Formulation of Morley’s Theorem

After we perform the construction steps described in the previous section, we
switch the mode of computation from construction to proof and obtain the figure
shown in Figure 7. We generate it by the proof-support tool, in order to facilitate
geometric reasoning with constructed points. Note that the Morley’s triangle in
Figure 7 is ΔV LT instead of ΔWLU . Points T and V overlap with points U
and W , respectively, and hence they are not visible in Figure 6. We use points
T and V since they will lead to less number of variables in the proof.
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Fig. 3. Origami construction of a Morley’s triangle: Steps 15–21

To avoid unnecessary clutter, we display only the creases and points which are
relevant for stating the assumptions and conclusion of the generalized Morley’s
theorem. We already proved in [14] that Abe’s construction makes the segments
A1A8 and A1V28 trisect 	E1A1B1, B1B14 and B1T26 trisect 	A1B1E1, and
E1E24 and E1V28 trisect 	B1E1A1. Therefore, Morley’s triangle is ΔV28L16T26.
We will prove that ΔV28L16T26 is equilateral by showing that

(|V28L16| = |L16T26|) ∧ (|L16T26| = |T26V28|)

where |XY | denotes the distance between points X and Y . To achieve this, we
represent both the assumptions and the conclusion as systems of polynomial
equalities which capture the algebraic properties of the origami construction.
The conclusion can be specified by:

(|V28L16|2 = |L16T26|2) ∧ (|L16T26|2 = |T26V28|2) (1)

which lends itself to polynomial equalities over Q.
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Fig. 4. Origami construction of a Morley’s triangle: Steps 22–27

Fig. 5. Origami construction of a Morley’s triangle: Steps 28–32

However, the specification of the hypotheses requires careful analysis. With
Computational Origami we can retrieve automatically the geometric constraints
of the objects of interest, and transform them into algebraic form. This is possible
because Computational Origami keeps the algebraic properties of the origami
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Fig. 6. Morley’s triangle: final step

Fig. 7. Morley’s triangle for support of proof

during the whole origami construction process. The collected constraints are
then transformed to polynomial equalities.

It turns out that thus-obtained set of the polynomial equalities, however, is
too general, and hence it is too weak as the premise of the proof. Namely, it
allows the generation of 27 triangles, 9 out of which are not equilateral. One
may attribute this to the fact that our system does not record the selection of
the primary trisectors in steps 8, 15 and 26. However, even if we did so, we would
not be able to prove with the algebraic method based on Gröbner bases that one
Morley’s triangle inside the given triangle is equilateral.
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An illustration of the possible 27 triangles is given in Appendix A. The figures
in Appendix A indicate that 18 triangles out of 27 are equilateral. We can single
out these 18 triangles, by imposing the condition

	A8A1B1 ± 	B14B1A1 ± 	E24E1B1 = ±π/3 (mod 2π) (2)

which is equivalent to

Cos[	A8A1B1 ± 	B14B1A1 ± 	E24E1B1]2 −
1
4

= 0 (3)

Let us denote

p1 := Cos[	A8A1B1], p2 := Cos[	B14B1A1], p3 := Cos[	E24E1B1],
q1 := Sin[	A8A1B1], q2 := Sin[	B14B1A1], q3 := Sin[	E24E1B1],
d1 := |A1A8|, d2 := |A1B1|, d3 := |B1B14|,
d4 := |B1A1|, d5 = |E1E24|, d6 := |E1B1|.

Then, by straightforward trigonometric manipulations, we obtain the set of al-
gebraic constraints

CX = { (−1
4

+ (p1p2p3 − p3q1q2 − p2q1q3 − p1q2q3)2)

(−1
4

+ (p1p2p3 − p3q1q2 + p2q1q3 + p1q2q3)2)

(−1
4

+ (p1p2p3 + p3q1q2 − p2q1q3 + p1q2q3)2)

(−1
4

+ (p1p2p3 + p3q1q2 + p2q1q3 − p1q2q3)2) = 0} ∪
{p2

1 + q2
1 − 1 = 0, p2

2 + q2
2 − 1 = 0, p2

3 + q2
3 − 1 = 0} ∪

{d2
1 − |A1A8|2 = 0, d2

2 − |A1B1|2 = 0, d2
3 − |B1B14|2 = 0,

d2
4 − |B1A1|2 = 0, d2

5 − |E1E24|2 = 0, d2
6 − |E1B1|2 = 0} ∪

{ |A8B1|2 − (d2
1 + d2

2 − 2d1d2p1) = 0,

|B14A1|2 − (d2
3 + d2

4 − 2d3d4p2) = 0,

|E24B1|2 − (d2
5 + d2

6 − 2d5d6p3) = 0}

In this way, we reduce the generalized Morley’s theorem to the following state-
ment:

If the origami satisfies the algebraic constraints C ∪CX , where C is the set of
constraints generated automatically, then it satisfies the constraints (1).

Let D be an arbitrary set of polynomial equalities, PD be the set of the
polynomials {h | h = 0 ∈ D}, and Ideal(S) be the ideal generated by all the
elements in polynomial set S. According to the ideal-variety correspondence,
the proof of the above statement amounts to proving that the polynomials for
|V28L16|2−|L16T26|2 and |L16T26|2−|T26V28|2 are in the radical of Ideal(PC∪CX ).
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Thus the problem is equivalent to the following ideal membership problem (cf.
[6–Chapter 4, §2]):

1 ∈ Ideal(S) (4)

where

S = PC∪CX ∪ {(k1(|V28L16|2 − |L16T26|2) − 1)(k2(|L16T26|2 − |T26V28|2) − 1)}

and k1 and k2 are new variables introduced with Rabinowitch trick.

The ideal membership problem can be solved constructively by computing the
Gröbner basis of S. Namely, according to the theory of Gröbner bases [3], the
statement (4) is true iff the reduced Gröbner basis of S is {1}.

4.2 Proof by Computational Origami

What follows in this subsection is the illustration of how we can realize this proof
plan with Computational Origami.

First, we gather all geometric constraints that were accumulated during the
33 steps of the origami construction.

allprops = GatherProperty[ ]

Next, we select only the relevant properties of the objects for proving the gen-
eralized Morley’s theorem:

props = SelectProperty[allprops, {{”L”, 16}, {”T”, 26}, {”V”, 28}},
AddBase→ {{”E”, 1}}]

Recall that points L16, T26 and V28 form the Morley’s triangle and point E1 is
an arbitrarily given point. The search for relevant constraints to be used in the
proof starts from these points.

In order to translate these constraints into algebraic form, we fix the coordi-
nate system to be Cartesian with point A being the origin, by calling the function
CoordinateMapping. The call

cmap = CoordinateMapping[props,
InitialShape→ SquareP[{Point[0, 0], 1}, {”A”, ”B”, ”C”, ”D”}],
InitialPoints→ {{{”E”, 1}, Point[u, 1]}}]

returns a mapping table, which is stored in cmap and will be used to translate
props into algebraic form. Variable u denotes the x-coordinate of point E1.

The call of function ToAlgebraic returns the set of polynomials in premise0,
i.e. the set of all the polynomials of the left-hand side of the equalities in set C
explained before:

premise0 = ToAlgebraic[props, cmap]
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Then, we compute premise:
premise = premise0 ∪ {

(− 1
4 + (p1p2p3 − p3q1q2 − p2q1q3 − p1q2q3)2)

(− 1
4 + (p1p2p3 − p3q1q2 + p2q1q3 + p1q2q3)2)

(− 1
4 + (p1p2p3 + p3q1q2 − p2q1q3 + p1q2q3)2)

(− 1
4 + (p1p2p3 + p3q1q2 + p2q1q3 − p1q2q3)2),

p2
1 + q2

1 − 1, p2
2 + q2

2 − 1, p2
3 + q2

3 − 1,
d2
1 − Distance[A1, A8]2, d2

2 − Distance[A1, B1]2,
d2
3 − Distance[B1, B14]2, d2

4 − Distance[B1, A1]2,
d2
5 − Distance[E1, E24]2, d2

6 − Distance[E1, B1|2,
Distance[A8, B1]2 − d2

1 − d2
2 + 2d1d2p1,

Distance[B14, A1]2 − d2
3 − d2

4 + 2d3d4p2,
Distance[E24, B1]2 − d2

5 − d2
6 + 2d5d6p3}

Finally, we compute the set of polynomials
S = premise∪ { (k1(Distance[V28, L16]2 − Distance[L16, T26]2) − 1)

(k2(Distance[L16, T26]2 − Distance[T26, V28]2) − 1)}
and check whether the (reduced) Gröbner basis of S is {1}. For this purpose, we
call the Mathematica function GroebnerBasis:

GroebnerBasis[S, vars,
CoefficientDomain→ RationalFunctions,
MonomialOrder→ DegreeReverseLexicographic]

(5)

In this call, vars is a subset of the variables in S. The Gröbner basis computation
will be carried out in the domain of polynomials whose variables are in vars and
whose coefficients are in Q(u1, . . . , un) of rational functions, where u1, . . . , un

are the variables of S− vars. The variables u1, . . . , un are independent variables
and the variables in vars are dependent variables. In this case, variable u which
is the x-coordinate of E1 is only the independent variable.

The polynomial set S has 102 polynomials and the number the variables is
88. The computation of the above Gröbner basis is highly sensitive to the mono-
mial ordering. With degree-lexicographic ordering3, the call (5) returned {1} in
1653.57 seconds on a Linux server with AMD Athlon 64 processor, 2.4 MHz
CPU, and 4 GB RAM.

4.3 Proof of the General Case

The construction of a Morley’s triangle and the proof can be easily generalized.
We need to discuss the generalization in two separate issues. As for the construc-
tion, an initial triangle (ABE similar to arbitrary shapes of a triangle can be
constructed by changing relative positions of the two edges of the triangle inside
the initial square origami. We have to distinguish the two cases:

1. A(0, 0), B(u1, 0), E(u2, 1)
2. A(0, 0), B(1, 0), E(u1, u2)
3 We changed all the subscripted variables vi for arbitrary v explained in the paper

by vi for running the program.
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Either by taking the initial origami to be a rectangular of u1 by 1 or taking
the initial origami to be a square and taking the first step construction by
applying (O5) with parameters D, AD and E, we can construct an arbitrary
initial triangle (ABE in both cases. To enable the first type of construction,
Computational Origami has the functionality to specify a rectangle as the initial
origami. All the Mathematica program code for this general case is published
in [15].

As for the proof, the first case is sufficient to establish the proof since the
generated algebraic specification covers the general case. The computation of
the Gröbner basis is carried out in the domain of polynomials whose coefficients
are in Q(u1, u2) of rational functions. With degree-lexicographic ordering, the
computation of the Gröbner basis took 58136.1seconds (over 16 hours) on the
same server.

5 Communication with Theorema

We envisage that in the near future mathematical software will be running inde-
pendently in a networked environment, offering services to a community of com-
mon interest, say symbolic computation community, in the grid. We can receive
the service from the grid, instead of loading packages in the same machine or
establishing manually connections to remote servers. Our work presented in this
paper would need such an infrastructure that provides access to mathematical
software. Computational Origami may comfortably run on a laptop computer,
but automated proof of the generalized Morley’s theorem is beyond the power
of ordinary laptop computers.

To make a further step to realize such a vision, we have developed a sim-
ple interface to Theorema that is running on a remote server. To establish
communication with the Theorema server, we first establish a link with The-
orema through some available port, say 8000, at the machine whose name is
thmserver.score.cs.tsukuba.ac.jp (in this illustration). An appropriate
arrangement on the remote thmserver side is necessary. This arrangement is
not shown in this paper.

thma = LinkConnect[ ”8000@thmserver.score.cs.tsukuba.ac.jp”,
LinkProtocol→ ”TCPIP”];

We define

concl = {Distance[V28, L16]2 − Distance[L16, T26]2,
Distance[L16, T26]2 − Distance[T26, V28]2}

We then send the data stored in the variables vars, premise and concl via
the link thma, and wait for the proof to come from the Theorema server:

SendTheoremaFormula[thma, vars, premise, concl, ”Morley”];

When the proof text arrives, we save it in the file MorleyTriangleProof.nb.
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NotebookSave[LinkRead[thma], ”MorleyTriangleProof.nb”];

Finally, we close the link:

LinkClose[thma];

The generated proof text in file MorleyTriangleProof.nb is a human read-
able sequence of statements and formulas. The proof is structured into two inde-
pendent proof problems, each of which is reduced to computing reduced Gröbner
basis. Since most of the formulas in the two proofs generated automatically by
the prover are quite lengthy, we do not include the proof text in this paper.

6 Conclusion

We have shown the origami construction of a Morley’s triangle and the auto-
mated proof of Morley’s theorem. Computational Origami not only performs the
simulation of origami construction, but also proves the correctness of the con-
struction by communicating with Theorema, which has the implementation of
the Gröbner basis algorithm [3].

While studying Morley’s theorem, we see the following challenges. The first
is the heavy requirement of computer resources, i.e., CPU time and memory.
The computation is not only time-consuming, but also very sensitive to the
monomial ordering that we have to specify for the Gröbner bases computation.
The problem remains unsolved.

To view the problem indifferent perspective, we are convinced of the necessity
of a computing environment such as symbolic computing grid on which we can
easily access mathematical knowledge services such as Gröbner bases compu-
tation and perform experimental computation without paying much attention
to internal mathematical representation. For the present study, both Compu-
tational Origami and Theorema are implemented in Mathematica. Hence, both
systems can share the common mathematical knowledge base. We are working
to generalize the communication outlined in the previous section by shifting to a
service oriented framework with advanced mechanisms to discover mathematical
services, control their life cycle, and guarantee a certain quality of service[7].
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A Triangles Generated by All Trisectors

The triangles drawn in the bold lines are given triangles, and those in the thinner
lines (red in color) are the triangles formed by the intersections of neighboring
trisectors. Although the sizes of the given triangles are different, they are similar.
Eighteen of the constructed triangles are Morley’s triangles.
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Abstract. The use of diagrammatic representations as catalogues of
cases is analyzed using an example of the catalogue of types of the ba-
sic interval equation a · x = b. The procedure of finding and describing
the types is outlined and a number of different diagrammatic and tabu-
lar catalogues are presented and their drawbacks and merits discussed.
Suggestions for other solutions, like different forms of the catalogue and
interactive catalogue are included. Some preliminary guidelines for de-
signing such catalogues are formulated as well.

1 Introduction

As advocated in the previous MKM Conference paper [6], diagrams can be used
for efficient representation of complex mathematical knowledge. They offer read-
able general comprehension of some part of knowledge“at a glance,”allowing also
for representation of precise structural relationships. One of the several kinds of
uses of mathematical diagrams proposed in that paper is a catalogue of cases.
The purpose of such a catalogue is to group a number of similar objects, types of
objects, or reasoning cases, with the main emphasis on comparing the listed ob-
jects and delineate differences and similarities between them. The current state
of research on mathematical diagrams does not provide any ready for use guide-
lines for the design of such catalogues. Thus, this paper is structured as a case
study—a detailed exposition of problems and experiences with some particular
set of mathematical data and various approaches to catalogue them. On the
basis of these experiences, an attempt is made to formulate some preliminary
guidelines for the design of such catalogues.

In general graphic design practice [15, 16] a notion of multiples is used,
meaning structures built from similar repeating components. Multiples allow
representation of a number of similar objects, facilitating their comparison end
enhancing the dimensionality of otherwise flat diagramming medium [16]. Some
kinds of catalogues of cases can be designed as such multiples. Other forms are
also possible, like region maps or graphs (networks).

� The paper was supported by the grant No. 5 T07F 002 25 (for years 2003-2006) from
the KBN (State Committee for Scientific Research).

M. Kohlhase (Ed.): MKM 2005, LNAI 3863, pp. 283–298, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



284 Z. Kulpa

In this paper, various forms of the catalogue of structural types of the interval
equation a ·x = b are presented and discussed. The detailed analysis of solutions
of this simple interval equation was first conducted in [3] and its basic types were
listed there diagrammatically. Another, simplified form of this basic catalogue
was included as an example in [6] as well. However, there is a much greater
number of intermediate and degenerate types of this equation. That makes com-
piling, handling and use of the complete catalogue of types rather troublesome
without more attention to proper design, as discussed in this paper. Several basic
forms of the complete catalogue were listed for reference in the report [7], but
the design issues were not discussed either there or in other works that included
various versions of the catalogues [3, 5, 8]. This paper is devoted to the design
issues of the catalogues. Further extensions and improvements of the catalogues
(like an interactive version) are also proposed, and some general design guide-
lines are formulated. Several issues are only sketched, as work on them is still
under way.

To make the paper self-contained, basic material on intervals, interval linear
equations and interval space diagrams is also included, together with the di-
agrammatic procedure of solving the basic equation and finding its structural
types. These details are needed to fully understand the structure and contents of
the catalogues and relative merits and usability of their various versions. How-
ever, some of the details can be skipped by the reader not interested in the exact
meaning of data items included in the catalogues.

The importance of the basic equation a · x = b itself and its solutions comes
from the fact that, as was shown in [4, 5, 8], various characterizations of solution
sets of the general many-dimensional system of interval equations A · x = b are
provided by solution sets of that simple one-dimensional equation with coeffi-
cients a and b obtained as functions of appropriate coefficients of the general
system of equations.

2 Real Intervals and Interval Equations

Interval analysis, a new approach to reliable numerical computing allowing for
proper tackling of inexact data and rounding errors, is based on the notion of
a real interval. Generally, a (proper) real interval, say u, is defined as a pair of
real numbers u = [u, u], so that its endpoints (beginning u and end u) obey the
inequality u ≤ u. For most purposes, real intervals can be identified with the
closed set of numbers u = {x |u ≤ x ≤ u} ⊂ R. For real intervals, two other
parameters are in use, namely midpoint ∨

u and radius ∧
u, so that ∨

u = (u + u)/2
and ∧

u = (u− u)/2. That leads to the centred notation for intervals (see e.g. [9]),
namely ∨

u± ∧
u = [∨

u− ∧
u,

∨
u+ ∧

u]. An interval is called thick if u < u (or ∧
u > 0); thin

(or point) interval if u = u (or ∧
u = 0). Point intervals can be for most purposes

identified with the corresponding real number, i.e., [x, x] = x ∈ R. An interval
for which u = −u (or ∨

u= 0) is called zero-symmetric or just symmetric. Intervals
not containing zero can be positive or negative, according to the relations u >
0 ⇔ u > 0 and u < 0 ⇔ u < 0.
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Occasionally, a concept of an exterval will be also used here. A real exterval e
is a sort of interval-like object that contains infinity,i.e., the set ]e, e[= (−∞, e]∪
[e, +∞) ⊆ R (with e < e). A one-sided exterval is the set ]e,∞[ = (−∞, e] or
]−∞, e[ = [e, +∞). When e ≥ e, then ]e, e[ = R.

An important parameter of an interval is the function rex (for relative extent),
first introduced in [2] and defined as rexu = ∧

u/
∨
u. Its variant named κ (kappa)

in [9] is sometimes more convenient: κ u = ∧
u/ |∨u| = |rexu| (for proper intervals).

For u containing 0 we have κ u ≥ 1 while 0 ≤ κ u < 1 for u without 0. It is
assumed to equal infinity for symmetric intervals (including 0).

When coefficients of the matrices A and b in the system of linear equations
A · x = b are allowed to be intervals, the formula is usually called a system
of interval linear equations [10, 12]. Precisely speaking, however, it is not linear
(as the space of intervals is not a linear space), and usually is not treated as
a system of equations either. The name “equation” is justified in the situation
when one considers the interval solution (called also algebraic solution, or formal
solution [14]) to the system. This solution is defined as an interval xI which
fulfills the equation A · xI = b in the sense of interval arithmetic. In most cases,
other definitions of a solution are considered, usually as sets of real vectors (not
necessarily intervals), defined as follows (see e.g. [14]):

United Solution Set: Ξ(A, b) = {x ∈ Rn |A · x ∩ b �= ∅} =
= Ξ∃∃(A, b) = {x ∈ Rn | (∃Ã ∈ A)(∃b̃ ∈ b)Ã · x = b̃},

Control Solution Set: Ξ⊇(A, b) = {x ∈ Rn |A · x ⊇ b} =
= Ξ∃∀(A, b) = {x ∈ Rn | (∀b̃ ∈ b)(∃Ã ∈ A)Ã · x = b̃},

Tolerance Solution Set: Ξ⊆(A, b) = {x ∈ Rn |A · x ⊆ b} =
= Ξ∀∃(A, b) = {x ∈ Rn | (∀Ã ∈ A)(∃b̃ ∈ b)Ã · x = b̃}.

None of the above is actually a solution to the original equation. They are
sets of real solutions to a system of interval relational expressions, with different
relations put in the place of the equal sign, namely :

A · x ⊃⊂ b for the set Ξ(A, b),
A · x ⊇ b for the set Ξ⊇(A, b),
A · x ⊆ b for the set Ξ⊆(A, b), respectively.

The relation symbol “⊃⊂,” meaning S ⊃⊂ T ⇐⇒ S ∩ T �= ∅ was introduced
here for convenience. With this meaning of the interval relational expressions, the
equation A ·x = b will define the solution set Ξ= equal to Ξ⊇ ∩Ξ⊆, different than
the interval solution. From the definitions it follows also that Ξ⊆ ⊆ Ξ and Ξ⊇ ⊆ Ξ.

In the one-dimensional case, the matrix A shrinks to a single interval a, as
does the vector b. The relational expression becomes thus one of a · x♦ b, where
♦ ∈ {⊃⊂,⊇,⊆, =}. Diagrammatic analysis of solution sets for this case proves to
be indispensable for diagrammatic analysis of the general multidimensional case.
That analysis is based on the one-dimensional radial and parallel cuts through
the solution space. As demonstrated in [4, 5, 8], the arrangement of solution sets
along these cuts is provided by solutions of some one-dimensional equation whose
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λ

Fig. 1. The MR-diagram representation of the space of real intervals (a); interval axis,
negation of intervals, and multiplication by real numbers (b)

coefficients are determined by the general equation coefficients and the direction
of the cut.

3 Interval Space Diagram

The basis for the diagrammatic approach to interval analysis is the two-dimen-
sional representation of the space of real intervals IR called the MR-diagram
[1], see Fig. 1(a). In this diagram, an interval is represented by a point with its
centred coordinates: midpoint ∨

u and radius ∧
u. Besides midpoint and radius, one

can also easily obtain the endpoints u and u of the interval using the diagonal
lines. In this way, the MR-diagram combines conveniently all three common rep-
resentations of intervals—midpoint-radius, endpoint, and the one-dimensional
representation as a segment of the real number line (here on the Om axis).

The main diagonals lb0 and ub0 constitute a dividing line between intervals
containing zero (they all lie on or above the diagonals) and those without zero
(below the diagonals). The interval axis Ou of the interval u consists of a positive
half Ou+ going through the interval u, and the negative half Ou– through the
interval −u, see Fig. 1(b). Note how negation (change of sign) of an interval
is obtained by reflection in the Or axis. All intervals v lying on the interval
axis Ou of the interval u have the same value of the κ function: κ v = κ u, i.e.,
have the same relative extent. When κ v �= κ u, u and v have different axes. An
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interval v is called more extended than u if it lies above the interval axis Ou .
Symmetric intervals (including 0) are considered more extended than all other
intervals. Their axis coincides with the Or+ coordinate axis.

Multiplication of an interval u by a scalar (real number) m ∈ R is defined by
m · u = {mũ | ũ ∈ u} = m

∨
u ± |m| ∧

u. The interval axis Ou groups all products
of the interval u and all real numbers, symbolically: Ou = R · u. To find the
product of an interval u and a real number m, it suffices to map appropriately
the point on the Om axis with the coordinate m onto the interval axis Ou . The
diagrammatic construction for that is shown in Fig. 1(b). The mapping lines are
parallel to the lines from the points of value +1 and −1 on the Om axis to u and
−u, respectively (Fig. 1(b)). It is convenient to define the mapping as a function
called lambda mapping: λu(m) = m ·u. Its inverse allows to find the real number
(a point on the Om axis) by which the interval u has been multiplied to obtain
the given point on the axis Ou .

4 The Basic Equation and Its Structural Types

The basic one-dimensional equation can be solved diagrammatically. The expres-
sion a · x♦ b tells us that first we need a representation of all points that are in
relation ♦ to the right-hand side interval b. Thus, we will need a diagrammatic
representation of coimages of the coefficient b under the relations defining the so-
lution sets. They are defined in Fig. 2(a), see [3, 5, 8] for more details. Borders of
the coimages represent the border relations , , , and that group intervals
one of whose endpoints coincides with one of the endpoints of the coefficient b, as
indicated in the figure.

∩
⊆ ∩

λ

λ

Ξ
Ξ⊇ ∅
Ξ⊆

⊇
⊆
∩ ≠ ∅

Fig. 2. Coimages of an interval b under interval relations ⊃⊂, ⊇ and ⊆, and the defini-
tions of border relations , , , and (a), and diagrammatic solution example of
the a · x = b equation (b)
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For the given interval a and all possible real numbers x, the set of products
a · x coincides with the axis Oa . Thus, to find all values of x that fulfill the
expression a · x♦ b for the given ♦ ∈ {⊃⊂,⊇,⊆, =}, we must first find the subset
of Oa whose member intervals are related to b by the relation ♦. It is obviously
the intersection Oa ∩(♦ b) of Oa with the coimage ♦ b. Since a ·x = λa(x), then
x = λ−1

a (a·x) and the solution set Ξ♦ is the result of the inverse lambda mapping
of the said intersection onto the Om axis, that is, Ξ♦ = λ−1

a (Oa ∩ (♦ b)). An
example diagrammatic construction for one of the cases is shown in Fig. 2(b),
together with the resulting definitions of the three solution sets for this case.

The endpoints of the solution sets are thus given by the points Qi = λ−1
a (wi),

where wi denotes one of the points of intersection (marked by ⊗ in Fig. 2) of Oa
with one of the border relations. As it was derived in [3, 5], the points Qi, called
quotients of the expression a · x♦ b, are obtained according to the rule shown in
Fig. 3(a), depending on the border relation whose intersection with the Oa axis
generates the quotient and its sign (the position of the quotient with respect
to the Or axis in the diagram). The shorthands L, S, Z, and T were chosen on
a mnemonic principle, as they mimic the graphical structure formed by dashes
and a division operator in the quotient expressions.

When for the given coefficients a and b we sort the quotients Qi in an
increasing order of their numerical values and then list their names Ni ∈
{“L”,“S”,“Z”,“T”} in the same order Ni1Ni2Ni3Ni4 , (Nij �= Nik

for j �= k) we
obtain the characteristic quotient sequence for these coefficients (and hence for
the type of the equation with these coefficients). The sequence will be denoted
by Q(a, b). Characteristic quotient sequences are usually augmented by the in-
dications of the position of zero, equality, and special values of some quotients
(like infinity or undefined values), see the examples further on.

After arranging quotients in a two-dimensional array as in Fig. 3(b), the
sequence can be represented as a quotient sequence diagram. Solution sets de-
termined by the given sequence will be indicated with the graphical annotation
explained by the two examples in Fig. 3(b).

Diagrammatic analysis sketched above revealed that there are only 16 differ-
ent basic quotient sequences, grouped into 6 structural types corresponding to
different possible configurations of the interval axis Ob and the coefficient a,

a)
border sgn Qi Qi ∈ {L, S, Z, T},
relation + – Qαβ = bβ/aα:

S L L =Q− − = b /a

L S S =Q+ − = b /a

T Z Z =Q− + = b/a

Z T T =Q+ + = b/a

b)

∅

Fig. 3. Notation for quotients of the a ·x ♦ b relation and correspondence between them
and intersections with border relations (a); quotient sequence diagram and graphical
notation for solution sets (b). It is assumed that α, β ∈ {−, +} and u− = u, u+ = u.
Small circles “◦” denote the position of zero.
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Fig. 4. The catalogue of all basic subtypes of interval equation a · x = b. Defining
conditions for the (sub)types explicitly exclude intermediate cases.

as shown in the catalogue of basic types in Fig. 4. Letter names for the types
were chosen to mimic the shape of the quotient sequence diagram for the type.
Concerning the names V and Y, see the remark in Section 5.

An important property of quotient sequences [3] says that they are invariant
with respect to radial moves of the coefficients a and b along their respective
positive interval semi-axes (excluding zero), i.e., Q(a, b) = Q(sa, tb) for any s, t ∈
R+. As a consequence, the solution types (hence their qualitative configurations)
depend only on the values of rex a and rex b. Therefore, regions with the same
types have the shape of angular wedges in the MR-diagram and are independent
of the scale of the diagram. That property allows for convenient diagrammatic
representation of conditions for coefficients a and b defining the type of the
equation as shown in Fig. 4.

The six basic types (without subtypes) are also explained in [7, 8] in the form
of a set of solution diagrams like that for the type N in Fig. 2(b).

5 Catalogues of Types

5.1 A Multiple for Basic Types

The catalogue in Fig. 4 is a two-level multiple whose six high-level components
(cells) describe individual basic types. Every cell is a hybrid (partially diagram-
matic, partially propositional) representation of basic data about the type:
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– The name of the type (a bold-face capital letter).
– The formula providing condition on the coefficients a and b for the type.
– A diagram illustrating the condition diagrammatically. It depicts the

MR-diagram showing regions in which the coefficients a (the dashed area)
and b (with its axis, as indicated by arcs with arrows) should lie.

– The next level of the multiple indicates subtypes of the given type. They
are defined by signs of the coefficients, or, for types V and Y, signs of their
midpoints. Every small cell gives the following information:
• A quotient sequence diagram indicating diagrammatically the sequence

of quotients for the subtype.
• The condition for the subtype, indicated by a pair of signs of the coeffi-

cients, or a single sign for one of the coefficients indicated.
• The quotient sequence in textual form, with graphical annotations defin-

ing solution sets for the subtype, according to the rules given in Fig. 3(b).

The catalogue in this form gives an excellent general view of the whole space
of basic types, but it has a number of drawbacks that indicate a need for other
representations of the space of types. It is type-oriented, that is, the cells on both
levels correspond to individual basic (sub)types. However, the arrangement of
cells conveys little information about relations between different types, that is,
the structure of the space of types is not well represented.

The main problem is that the catalogue contains only basic types (6 main
types with 16 subtypes). A considerable number of intermediate and degenerate
types is not shown here. These types in principle can be generated from the data
provided, but the process is rather tedious and error-prone, and it is easy to miss
some of the possibilities. On the other hand, some information, namely quotient
sequence diagrams, seems superfluous for the end user. These diagrams encode
only part of the data included anyway in the textual quotient sequence below
them. They are useful at the stage of enumeration of the basic types, providing
a visual classification criterion based on shapes of the diagrams which led to the
choice of letter names of the types. Even in this role, these diagrams proved to
be somewhat misleading, as they suggested a single type X for κ b > 1. When
the classification was extended to multidimensional equations (see [4, 5, 8]) it was
found more convenient to split this type into two, as indicated in the diagram
(with old type names provided in parentheses).

5.2 Diagrammatic Catalogue of All Types

As a result of these considerations, a new form of the catalogue was developed.
It disposes of quotient sequence diagrams and is complete, listing all types, in-
cluding intermediate and degenerate ones. It combines only diagrammatic rep-
resentation of conditions for coefficients with textual representation of quotient
sequences, augmented by diagrammatic annotations defining solution sets. An
additional convention concerning quotient sequences is used here, namely quo-
tients that are equal to zero are omitted. The full diagram occupies a single page;
for brevity, in Fig. 5 only a part of it is shown. Note that the original letter labels
of cells (c, d, e, f) were retained to provide easy reference to the full catalogue
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Fig. 5. Part of the diagrammatic catalogue of all subtypes of interval equation a ·x = b
for a, b = 0, and b: thick without zero (c, d), and with zero at endpoint (e, f)

of [7]. Two upper cells in this multiple provide data for all 10 basic subtypes of
types N, Z, and C, as well as 12 intermediate types connected with them. The
other two cells list 14 intermediate types obtained when b = 0 or b = 0.

This form of the catalogue is no longer type-oriented like that in Fig. 4.
Instead, the cells here correspond to different conditions on the coefficient b.
Possible positions of this coefficient in the MR-diagram are indicated by the
position of the interval axis Ob. When the axis is placed within some region,
the coefficient b is allowed to vary within the region occupied by the positive
semi-axis of the axis Ob. When it coincides with some characteristic line of the
diagram (main diagonal, Om or Or axes), the coefficient b can vary along the
positive semi-axis Ob only. The regions of the MR-diagram delineated by axes
and main diagonals, as well as the axes and diagonals themselves, are labelled
by annotated quotient sequences obtained when the coefficient a falls within the
indicated region or on the indicated axis. Due to space limitations, only the re-
gions are additionally labelled by names of subtypes. Thus, the basic information
provided by this form of the catalogue is the definition of solution sets for all
cases. The degenerate types (for a = 0 or b = 0) are depicted by separate cells
of a slightly different design (not shown here). The complete catalogue in this
form is provided in [7]; its older versions with different, less convenient layout
were published in [3, 5].

A dual a-oriented form of the catalogue can be constructed as well. In it the
cells would correspond to appropriate conditions on the coefficient a, while the
types would be selected by the position of the coefficient b in the MR-diagram.
It may be more convenient for certain purposes. In fact, in the form provided in
[7], the degenerate types for a = 0 are grouped in a separate cell and represented
in that a-oriented form. That, however, violates the b-oriented structure of the
whole catalogue. A possible solution, assuring uniformity of the catalogue, is
used in the construction of the restricted catalogue in Fig. 6.
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Fig. 6. Diagrammatic catalogue of tolerance solution set configurations for various
conditions on the coefficient b

Despite its completeness and compactness, this form of the catalogue has its
drawbacks. First, the lack of formulae defining conditions for types is incon-
venient in some situations, forcing the user to translate from formulae to the
situation in the diagram and back. That can be corrected for the conditions
on the coefficient b by adding appropriate formulae as headers of the cells, as
in the version in Fig. 6 (see [8] for such improvement). Second, although the
representation is aimed at describing solution sets, it does not provide a good
view of the distribution of solution set structures depending on positions of the
coefficients in the MR-diagram. As information about all basic solution sets is
lumped together into annotations of quotient sequences, it is easy to read out
locally the particular definition of the solution sets for any single type. E.g., in
Fig. 5(e) one may easily read that solution sets for the subtype intermediate
between CY+ and UN++ (with a = 0), are Ξ = R, Ξ⊇ = [T,∞), Ξ⊆ = [0, T],
and thus Ξ= = {T}. However, the overall picture is hard to comprehend.

5.3 Catalogues for Individual Solution Sets

For providing an overall view of possible structures of a single given solution
set, useful in finding conditions for occurrence of interesting structures for that
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set, a specialized catalogues for individual sets may be more useful. Such a
catalogue for the tolerance solution set is shown in Fig. 6. Analogous catalogues
for control and united solution sets can be found in [7, 8]. The catalogue shown
here (in Fig. 6) is additionally augmented with formulae describing conditions
on the coefficient b for every cell, as it was discussed above. This catalogue is
significantly smaller and simpler than the full catalogue whose part is shown
in Fig. 5. This is due to omission of quotient sequences and replacing exact
definitions of solution sets by qualitative codes (see [7] for their explanation).
That, with the fact that the structure of only a single solution set is represented,
allows for aggregation of the cases into a smaller number of cells. The price
for that is losing exact definitions of solution sets and losing the possibility to
directly compare structures of different sets.

In this version the degenerate cases for a = 0 are not depicted with a separate
cell of different kind. Instead, descriptors of solution sets for these cases are put
at the point (0, 0) in the b-oriented cells. Such a solution can be also adopted in
the full catalogue of Fig. 5, though with some difficulties due to a rather large
size of quotient sequence descriptors for this case (see [7]).

5.4 Tabular Catalogue

For certain regular structures of information it may be convenient to represent
the catalogue in a tabular form. A small part of the table of types, containing
6 intermediate types shown in top parts of Fig. 5(e) and 5(f), from among 73
subtype entries in the complete catalogue, is provided in Table 1. The data in the
cells are represented only propositionally. Solution sets are described with both
exact definitions in terms of quotients, and with qualitative descriptors used
in Fig. 6. The fourth column links table entries to corresponding cells of the

Table 1. Part of a detailed table of descriptions of solution sets for intermediate
subtypes

Quotient Conditions Fig. Solution setsType
sequence a =0, b =0 5 Ξ⊆ Ξ⊇ Ξ= Ξ

· · · · · ·
CY κ b = 1 < κ a

– S◦L ∨
b < 0 f 0 ±∞: ]S, L[ ∅ ⊇

+ Z◦T ∨
b > 0 e 0 ±∞: ]Z, T[ ∅ ⊇

· · · · · ·
CU κ a = κ b = 1
– + %SZ◦T∞ ∨

a < 0,
∨
b > 0 e −0: [Z, 0] −∞: ]Z, ∞[ −t: Z R

+ – ∞LS◦Z% ∨
a > 0,

∨
b < 0 f −0: [S, 0] −∞: ]S, ∞[ −t: S R

– – ∞S◦LT% ∨
a < 0,

∨
b < 0 f 0+: [0, L] +∞: ]∞, L[ +t: L R

++ %L◦TZ∞ ∨
a > 0,

∨
b > 0 e 0+: [0, T] +∞: ]∞, T[ +t: T R

· · · · · ·
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diagrammatic catalogue in Fig. 5. Although most convenient for some purposes,
these tables have their drawbacks too. First, they tend to be large—the complete
catalogue in [7, 8] uses four pages (for 73 subtype entries), compared to the single
page of the diagrammatic catalogue in Fig. 5. Second, the overall picture of
relations between different types and structures of their solution sets is almost
completely lost.

5.5 RR-Diagram Maps and Graphs of Types

New forms of the catalogue can be based on the RR-diagram, introduced in
[3, 5]. In this diagram, values of rexa and rex b (or their reciprocals) are put on
the coordinate axes. Because types do not change when extent functions of the
coefficients a and b do not change, to every point in the RR-diagram corresponds
some type. It is unique except when one of the coefficients is thin, because then
the value of the extent function is zero, independently of the sign of the interval.
Thus, the sign of a thin interval cannot be distinguished by its position in the
RR-diagram. Labelling appropriate regions in the diagram by the type of its
points we obtain a sort of map, partitioning the diagram into typed regions
as in Fig. 7(a) and 7(b). Intermediate and degenerate types (not shown in the
figure) correspond to borders and vertices of the regions. Obtaining the complete
catalogue in this way is, however, troublesome, as some different intermediate
types involving thin intervals of different signs (that includes also all degenerate
types) fall on the same points and segments of the rexa and rex b axes.

Representing regions as nodes and neighbourhood relations between them
as edges, we can obtain various graphs (networks) of types. Two such graphs
are shown in Fig. 7(c) and 7(d). The second graph is useful for enumerating
types of multidimensional equations, see [4, 5, 8]. The RR-diagram and graph
representations of the catalogue combine the catalogue aspect with another usage
type of diagrams, namely showing the structure of the space of types, see [6–Fig.
2(a)], the feature lacking in the multiple-like catalogues.

6 Discussion

Design of a diagrammatic catalogue of types of the basic interval equation a·x = b
presented several nontrivial problems, leading to the development of various
forms of the catalogue and searching for new ways of structuring them. The
nontrivial, though not overwhelming complexity of the catalogue has made it a
convenient case study of the problem of designing catalogues of various pieces of
mathematical knowledge. The main obstacle here is the lack of general guidelines
for designing such catalogues. On the basis of this case study one may try to
formulate some preliminary design guidelines.

Catalogues of cases serve as reference databases, but also as research tools
for searching patterns of differences and similarities between the cases and their
various constituent parameters, in this case especially the structure and defini-
tions of solution sets for every type. As observed by Tufte [15]: “Comparisons
must be enforced within the scope of the eyespan.” Therefore, the catalogue
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Fig. 7. Type catalogues on the RR-diagram (a), 1/RR-diagram (b); and in the form
of graphs (c, d)

should be, if possible, not larger than a single page of paper or a single computer
screen. The considerable number of types and their parameters makes such an
attempt rather hopeless in this case (and in many others, unfortunately). Ei-
ther the catalogue becomes too cluttered and unreadable, or it must occupy
larger area, or it must omit a substantial amount of information. All these out-
comes occurred in the catalogues discussed in the paper. A possible solution is
to produce different catalogues for different purposes, differing by the selection
of represented data and the form of their presentation. Such catalogues can be
generated (semi-)automatically from some underlying complete database, or pre-
pared separately beforehand and then browsed through (as it is currently the
case with the catalogues of equation types [7]). Such a solution, however, blocks
or makes troublesome some possible comparisons of data, hence other solutions
should still be searched for, like interactive catalogues.

The observation of our case shows that there seem to be three basic types of
such catalogues: multiples (including tables), maps, and graphs (or networks).



296 Z. Kulpa

Multiples. These are regular structures (usually rectangular) of similar cells con-
taining chunks of data (including diagrams) pertaining to the particular case
(Figs. 4, 5, and 6). Essentially, tables can be also considered as multiples. They
are usually distinguished from more general multiples by an explicit use of the
two dimensions to structure the multiple. Namely, cells occupying the same col-
umn contain the same type of data (described by column headers, Table 1), while
rows contain attribute descriptions of individual objects or cases (the equation
types in our case). The roles of columns and rows can be sometimes interchanged.
Multiples (including tables) can be structured hierarchically, with cells struc-
tured as lower-level multiples, Fig. 4 and Table 1. The division of data between
different levels of the hierarchy is usually dictated by the intrinsic structure of
the data, but often can be varied depending on the intended use (see below)
of the catalogue (compare catalogues in Figs. 4 and 5). The main drawback
of multiples is that they do not provide adequate means for representing more
complex structural relations between cases (represented by data in the cells).
The hierarchical grouping and grouping by data type in columns (or rows) are
practically the only possibilities that are available in pure multiples. See hierar-
chical grouping in Fig. 4, typed columns in Table 1, and two-column multiples
(corresponding to signs of the coefficient b) in Figs. 5 and 6.

Maps. They are arrangements of regions on a plane (usually; sometimes other
arrangements, e.g. three-dimensional, can be used). Regions contain data per-
taining to individual cases, and their shapes and relative positions encode addi-
tional data about properties and relations between the cases. Multiples can be
also considered a special case of maps. Another special case can be distinguished,
let us call it constructions, where cases are distinguished by diagrammatic con-
structions placing the results belonging to different cases in different regions of
the space. An example is provided by the catalogue of definitions of means in
[6–Fig. 4]. The appropriate division of a plane into regions is often obtained with
the help of a coordinate system whose coordinates correspond to parameters dis-
tinguishing the cases. The maps used within cells of multiples in Figs. 4, 5, and 6
use the MR-diagram midpoint-radius coordinate system, while the RR-diagram
based catalogues in Figs. 7(a) and (b) use the values of the function rex for the
coefficients a and b. The advantage of maps comes from a richer layout structure
that can be used to represent relations between cases, especially when the intrin-
sic structure of the set of cases conforms well to the structure of the Euclidean
plane. Otherwise, the structure must be “planarized”, for the price of losing in-
formation or introducing information noise. This is the case with our catalogue
of types which is essentially at least three-dimensional, see Fig. 7(c).

Graphs (networks). In this form, nodes of a graph represent cases, and edges
relations between them. That allows for representation of arbitrary systems of
relations between cases, but often for the price of making them hard to compre-
hend, especially for more complex systems. The proper layout of complex graphs
of relations is a nontrivial problem—it has given rise to the whole discipline of
graph drawing [11]. Sometimes the proper layout can be obtained by using an
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appropriate map as a guide for placing the nodes. The graph in Fig. 7(d) is
superimposed over a partition of the plane generated by different conditions for
the coefficients a and b. Note another hybrid element in this graph—the data
within the nodes are arranged as small multiples of subtypes.

Hybrid solutions and user’s goals. In practice, as was indicated above, hybrid
solutions are used, with different presentation means used for different portions
of a catalogue. This includes combining different types of representations, like
multiples containing maps (Figs. 4, 5, and 6) or graphs containing multiples and
superimposed on maps (Fig. 7(d)). To some extent this depends on the structure
of data, but in most part on the intended use (user’s goals) of the catalogue. The
importance of user’s goals for proper design of information presentation has been
recognized some time ago (see e.g. [13]). Like for the presentation graphics of
quantitative (statistical) data, the design of mathematical diagrams should also
be based of the analysis of user’s goals and selecting the way of presentation
appropriate for them, possibly in a similar way as developed in [13].

Interactive catalogues. The use of many catalogues for different purposes solves
some of the problems but makes relating of different pieces of information con-
tained in different catalogues difficult. A possible solution would be to make
the set of catalogues interactive. In such a system, selection of certain piece
of information in some catalogue may either highlight the corresponding piece
of information in another catalogue, or provide that information in a separate
small window or “balloon” near the place pointed to. That may not solve all the
problems, especially as proper organization of such interaction, when there are
several differently structured catalogues, can be a considerable problem in itself.

A useful addition to such a catalogue is an algorithmic component, namely a
program producing for any given numerical values of coefficients the type data
(including location in the catalogue) and solution sets for the equation with
this coefficient. Besides allowing the user of the catalogue to browse the space
of possibilities also quantitatively, such a subroutine is a necessary component
of any program using solutions of this equation to characterize solution sets of
a general multidimensional equation (e.g., calculating radial and parallel cuts
through its solution space, see [8]). Such a subroutine was developed and is
available for interested users, see [7].
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Abstract. We argue that for building mathematical knowledge reposi-
tories a broad development of theories is of major importance. Organizing
mathematical knowledge in theories is an obvious approach to cope with
the immense number of topics, definitions, theorems, and proofs in a
general repository that is not restricted to a special field. However, con-
crete mathematical objects are often reinterpreted as special instances of
a general theory, in this way reusing and refining existing developments.
We believe that in order to become widely accepted mathematical knowl-
edge management systems have to adopt this flexibility and to provide
collections of well-developed theories.

As an example we describe the Mizar development of the theory of
Gröbner bases, a theory which is built upon the theory of polynomials,
ring (ideal) theory, and the theory of rewriting systems. Here, polyno-
mials are considered both as ring elements and elements of rewriting
systems. Both theories (and polynomials) already have been formalized
in Mizar and are therefore refined and reused. Our work also includes a
number of theorems that, to our knowledge, have been proved mechani-
cally for the first time.

1 Introduction

One major goal of mathematical knowledge management is to design and con-
struct large repositories containing a wide range of different topics, such as al-
gebra, analysis, topology and many more. To be as broad as possible seems
reasonable in order to explore the use of such repositories for distributing math-
ematics over the internet and extracting introductory courses, among others. On
the other hand, to be attractive for professional mathematicians also, more ad-
vanced mathematics must be taken into account. As has been pointed out at the
last MKM-meetings by Andrzej Trybulec ”We should try to reach the research
frontier”.

Advanced, contemporary mathematics, however, cannot be brought onto the
computer by simply choosing one theory and formalizing it ”to its end”. More
advanced mathematics usually uses a number of theories to develop its results.
Different theories are reused or combined to get new ones. Moreover, modern
mathematics lives from the fact that one and the same object can be considered
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as a special instance of different theories. For example the integers can be con-
sidered as a group (generated by 1), as an Euclidean ring, as an ordered domain
or even as (the ring of) coefficients for polynomials rings. In each case the in-
stantiation, or refinement as we shall also call it, of the general theory with the
integers allows for both reusing results of the general theory and deducing new
results for the particular case.

We believe that mathematical repositories should reflect this way of ”working”
with mathematical theories. Continuing the work of [GS04] where combination
of theories has been investigated, we focus in this paper on theory refinement
in the Mizar system [Miz05, RT01]. We consider the theory of Gröbner bases
[Buc98] as an example. Gröbner bases are a method to decide among other
things the ideal membership problem in polynomial rings: Via computing normal
forms of polynomials with respect to a given ideal — a reduction in the sense
of rewriting systems — ideal membership can be decided by syntactic equality,
if the polynomials generating the ideal form a Gröbner base. We thus have
polynomials as basic objects, usually defined as lists of elements from a coefficient
ring or as functions from terms into a coefficient ring. Note that the definition of
polynomials already uses a theory, the theory of rings. In the theory of Gröbner
bases, however, polynomials are also used as special elements for different, more
general theories:

1. Polynomials are considered as elements of a ring, that is addition and multi-
plication of polynomials coincide with ring addition and multiplication.

2. Polynomials are considered as elements of ideals, that is, though almost triv-
ial, polynomials coincide with elements of sets while still obeying their addi-
tion and multiplication.

3. Polynomials are considered as elements of a relation, the reduction relation,
that is polynomials coincide with the elements of relations.

Not taking into account the second item from above, we thus get the theory
structure illustrated in figure 1. Of course one can define polynomials and all
the concepts necessary for Gröbner bases from scratch without even employing
theories for rings and reduction systems (see for example [The01]), but in reposi-
tories for mathematical knowledge management we should — if possible — build
new theories by reusing and refining older ones.

The plan of the paper is as follows. After an introduction to the Mizar lan-
guage we briefly recall polynomials, rings, ideals, and rewriting systems by re-
viewing their Mizar formalization as done in [RT99, BRS00,Ban95]. Section 4
and 5 describe the development of Gröbner bases based on these theories. In the
last two sections we discuss the Mizar approach for refining and reusing theories
and compare it to other approaches in the literature. Conclusions for the design
of mathematical knowledge repositories are also drawn.

2 The Mizar System

Mizar’s [RT01, Miz05] logical basis is classical first order logic extended with
so-called schemes. Schemes allow for free second order variables, in this way
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Fig. 1. Theory structure for the development of Gröbner bases

enabling, for example, the definition of induction schemes. The current develop-
ment of the Mizar Mathematical Library (MML) is based on Tarski-Grothen-
dieck set theory — a variant of Zermelo Fraenkel set theory using Tarski’s axiom
on arbitrarily large, strongly inaccessible cardinals [Tar39] which can be used to
prove the axiom of choice —, though in principle the Mizar language allows for
other axiom systems also. Mizar proofs are written in natural deduction style
similar to the calculus of [Jaś34]. The rules of the calculus are connected with
corresponding (English) natural language phrases so that the Mizar language
is close to the one used in mathematical textbooks. The Mizar proof checker
verifies the individual proof steps using the notion of obvious inferences [Dav81]
to shorten the rather long proofs of pure natural deduction.

Mizar objects are typed, the types forming a hierarchy with the fundamen-
tal type set [Ban03]. New types are constructed using type constructors called
modes. Modes can be decorated with adjectives — given by so-called attribute
definitions — in this way extending the type hierarchy: For example, given the
mode Ring and an attribute commutative a new mode commutative Ring can
be constructed, which obeys all the properties given by the mode Ring plus
the ones stated by the attribute commutative. Furthermore, a variable of type
commutative Ring then is also of type Ring, which implies that all notions
defined for Ring are available for commutative Ring. In addition all theorems
proved for type Ring are applicable for objects of type commutative Ring; in-
deed the Mizar checker itself infers subtype relations in order to check whether
theorems are applicable for a given type.
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3 Polynomials, Rings, Ideals, and Rewriting Systems

In this section we briefly review the theories used to define Gröbner bases —
polynomials, rings and ideals, and reduction systems. The main purpose is to
present the basics of their Mizar formalization needed later to develop the theory
of Gröbner bases.

3.1 Mizar Formalization of Rings and Ideals

In Mizar rings, or more generally algebraic domains, are defined as attributed
structures, see [RST01]. That is, based on a structure mode giving carriers and
operations of the domain properties of these operations, e.g. commutativity of
addition or multiplication, are introduced by Mizar attributes. For rings the
underlying structure mode is called doubleLoopStr:

struct (LoopStr, multLoopStr_0) doubleLoopStr
(# carrier -> set,

add, mult -> BinOp of the carrier,
unity, Zero -> Element of the carrier #);

and the mode Ring is nothing else than this structure mode decorated with
attributes describing the ring axioms. Note that doubleLoopStr is a descendant
of two other structure modes LoopStr and multLoopStr_0, and thus a subtype
of these. Now given a subset F of a structure mode L one can easily define an
attribute describing that F is closed with respect to addition, left- and right-
multiplication, for example

definition
let L be non empty LoopStr, F be Subset of L;
attr F is add-closed means
for x,y being Element of L st x in F & y in F holds x+y in F;

end;

Combination of these properties then gives the definition of ideals. Note that
using the already defined attributes it is trivial to additionally define left and
right ideals. Also ideals generated by a subset F can be easily defined as a functor
from subsets of the domain into ideals.

definition
let L be non empty doubleLoopStr;
mode Ideal of L is
add-closed left-ideal right-ideal (non empty Subset of L);

end;

definition
let L be non empty doubleLoopStr, F be Subset of L;
assume F is non empty;
func F-Ideal -> Ideal of L means
F c= it & for I being Ideal of L st F c= I holds it c= I;

end;
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Note that both definitions actually do not use the mode Ring, but only the
underlying structure mode doubleLoopStr: The existence of ideals and gener-
ated ideals does not depend on algebraic properties of the ring (just take the
whole domain). Hence such objects should be defined without using these. Nev-
ertheless, due to Mizar’s type system, the so-defined notions of (and theorems
proved for) ideals are available for rings in Mizar, because the mode Ring is
based on and thus a subtype of doubleLoopStr.

3.2 Mizar Formalization of Polynomials

Polynomials are defined as functions from terms (called bags in Mizar) into coef-
ficients, see [RST01, RT99]. Thus a polynomial is a subytype of Series of n,L,
where n gives the number of indeterminates used to build terms and L the struc-
ture mode describing the coefficients. The attribute finite-Support ensures
that the Support of a polynomial, that is the set of terms with a non zero
coefficient, is finite.

definition
let n be Ordinal, L be non empty ZeroStr;
mode Polynomial of n,L is finite-Support Series of n,L;
end;

In the theory of Gröbner bases terms are assumed to be ordered. In Mizar
we can use the mode Order of X, where X is an arbitrary set to do so. This
will enable us to develop Gröbner bases for arbitrary orderings on terms and is
actually another example for reusing theories in Mizar: The set of all terms for
a given set of variables — remember that n gives the number of variables — is
denoted by Bags n. Thus we get term orders, that is orders on terms, by just
defining

definition
let n be set;
mode TermOrder of n is Order of Bags n;
end;

A term order is admissible, if the empty term — in Mizar denoted by
Empty Bag n — is the smallest one and the order respects multiplication of
terms, that is if we have for all terms t, t1, t2 both Empty Bag n ≤ t and
t1 ≤ t2 implies t1 · t ≤ t2 · t. In Mizar this can be straightforwardly formal-
ized as an attribute admissible for the mode TermOrder. Thus the Mizar type
admissible TermOrder describes arbitrary admissible term orders. Note, that
an admissible term order is well-founded.

Given an order T on terms, the head term of a polynomial p is the biggest
term in Support p with respect to T; head coefficients and head monomials are
defined analogously. In order to develop Gröbner bases for arbitrary term orders,
we defined functors HT(p,T), HC(p,T) and HM(p,T) taking the (admissible) term
order T as an additional argument. Note that in order to define head terms the
order T must be total (called connected in Mizar), but not admissible.
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3.3 Mizar Formalization of Rewriting Systems

Rewriting systems are an approach to handle structures defined via equivalence
relations. The idea is to decide a given equivalence by computing (unique) nor-
mal forms for the objects of concern: The objects are reduced until no more
rewrite rules are applicable. Then, if the set of rules is ”suitable”, deciding the
equivalence relaton is no more than syntactical comparison. Rewriting systems
have various applications in such different fields as specification and verification,
algebraic computation or pure theorem proving, see [DJ90]. In the following we
recall the basic definitions of general rewriting systems as defined in [Ban95].
Given a relation R a reduction sequence is a sequence over R in which each two
neighboured elements are in R. Thus the theory of rewriting systems actually is
an extension of the theory of relations.

definition
let R be Relation;
mode RedSequence of R -> FinSequence means
len it > 0 &
for i being Nat st i in dom it & i+1 in dom it
holds [it.i, it.(i+1)] in R;

end;

Then we have that a can be reduced to b (R reduces a,b), if there exists
a reduction sequence of R with a being the first and b the last element in the
sequence. Based on these definitions it is straightforward to introduce other
basic concepts of rewriting systems, such as confluence, local confluence or the
Church-Rosser property, for example

definition
let R be Relation;
attr R is locally-confluent means
for a,b,c being set st [a,b] in R & [a,c] in R
holds b,c are_convergent_wrt R;

end;

where are_convergent_wrt means that there exits an element d ∈ R such that
both b and c can be reduced to d. Termination properties such as strongly-
and weakly-normalizing are also introduced in [Ban95]. Finally, a complete
rewriting system is a strongly-terminating confluent one, that is a rewriting
system in which in particular for every element a unique normal form exists.

4 Reinterpreting Polynomials

In this section we describe how the general theories of rings and rewriting sys-
tems are refined with polynomials. This allows to use notations and theorems of
these theories for the special case of polynomials as well as further properties of
polynomials themselves when later developing the theory Gröbner bases. Note
that no special care has to be taken for ideals of polynomials; these are given
automatically because ideals have been defined for general rings.
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4.1 Polynomials as Rings

To get the theory of rings available for polynomials (the domain and) the opera-
tions of polynomials have to be interpreted as the ring (domain and) operations.
This is done by defining a functor Polynom-Ring(n,L) into the underlying struc-
ture mode of rings (see [RT99]), called doubleLoopStr in Mizar. Here, n gives
the number of indeterminates and L the structure mode describing the coeffi-
cient domain; note that the number of indeterminates need not be finite. In the
definition the components of the structure, that is the domain and the opera-
tions of the ring, are simply identified with polynomials and the corresponding
operations on polynomials.

definition
let n be Ordinal,

L be right_zeroed add-associative right_complementable
unital distributive non trivial (non empty doubleLoopStr);

func Polynom-Ring(n,L) -> strict non empty doubleLoopStr means
(for x being set holds

x in the carrier of it iff x is Polynomial of n, L) &
(for x,y being Element of it, p,q being Polynomial of n, L

st x = p & y = q holds x+y = p+q) &
(for x,y being Element of it, p,q being Polynomial of n, L

st x = p & y = q holds x*y = p*’q) &
0.it = 0_(n,L) & 1_ it = 1_(n,L);
end;

Now, to apply theorems proved for general rings we need not only that
Polynom-Ring(n,L) is a doubeLoopStr, but also that the attributes establish-
ing the type Ring hold. It turns out that for different attributes to hold different
properties of the coefficient domain are necessary. Therefore each attribute is
proved in a cluster registration stating exactly the properties of the coefficient
ring necessary to prove it (see [RT99]), for example

registration
let n be Ordinal,

L be Abelian right_zeroed add-associative right_complementable
unital distributive non trivial (non empty doubleLoopStr);

cluster Polynom-Ring(n,L) -> Abelian;
end;

The effect is that properties of Polynom-Ring(n,L) are automatically bound
to properties of the coefficient domain L: If L obeys the properties stated in
the registration, the Mizar checker itself infers that Polynom-Ring(n,L) has the
concluding property, hence is a subtype of Ring. This supports reusing theorems
of the general ring theory for the special case of polynomials.

4.2 Polynomial Reduction

Polynomial reduction establishes a generalization of polynomial division for the
univariate case: Each reduction step describes a single step in the division pro-
cess. Thus a non-zero polynomial f reduces to a polynomial g using polynomial
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p by eleminating term (bag) t if there exists a term s such that s · HT(p,T) = t
and g = (f - f.t/HC(p,T)) * s *’ p, which in Mizar can be easily defined
as a predicate f reduces_to g,p,b,T. Note that the reduction depends on the
term order T used to define head terms and head monomials.

Now, to introduce polynomial reduction as a special case of general rewriting
we have to define the reduction relation, that is the relation R which contains
all pairs (p1 , p2) such that p1 reduces (in one step) to p2 with respect to a given
set of polynomials P. This is done with a functor PolyRedRel(P,T) returning an
object of type Relation of. Note that the ring of polynomials which is available
according to section 4.1 is used to describe the domain of the relation.

definition
let n be Ordinal, T be connected TermOrder of n,

L be Field, P be Subset of Polynom-Ring(n,L);
func PolyRedRel(P,T) ->
Relation of (the carrier of Polynom-Ring(n,L)) \ {0_(n,L)},

the carrier of Polynom-Ring(n,L) means
for p,q being Polynomial of n,L holds [p,q] in it iff p reduces_to q,P,T;
end;

Now, PolyRedRel(P,T) being of type Relation — the type Relation of
widens to Relation — allows reuse of the whole theory, that is both nota-
tions and theorems developed for rewriting systems, for polynomial reductions.
For example, to show that polynomial reduction is terminating we just use the
attribute strongly-terminating defined for arbitrary reduction systems and
prove in a cluster registration that PolyRedRel(P,T) fulfils it for an arbitrary
set P of polynomials and an arbitrary term order T:

registration
let n be Nat, T be connected admissible TermOrder of n,

L be Field, P be Subset of Polynom-Ring(n,L);
cluster PolyRedRel(P,T) -> strongly-normalizing;
end;

Also, showing that polynomial reduction with respect to a set of polynomials
P describes the congruence given by the ideal generated by P — a necessary
precondition to decide ideal membership with reduction techniques — needs no
further preparations: The reflexive symmetric transitive closure of the reduction
relation is given by the predicate are_convertible_wrt from rewriting theory,
whereas generated ideals and their congruences — the functor P-Ideal and the
predicate are_congruent_mod — are reused from general ideal theory. We thus
get the following

theorem
for n being Nat, T being admissible connected TermOrder of n,

L being Field, P being non empty Subset of Polynom-Ring(n,L),
f,g being Element of Polynom-Ring(n,L)

holds f,g are_congruent_mod P-Ideal
iff f,g are_convertible_wrt PolyRedRel(P,T);
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5 Mizar Formalization of Gröbner Bases

We start with a brief introduction to Gröbner bases, see also [BW93, CLO’S96].
Let K[X1, . . .Xn] be the ring of polynomials over a field K with n indetermi-
nates. For P ⊆ K[X1, . . .Xn] the ideal generated by P — the minimal ideal
including P — is given by <P> = {

∑n
i=0 fi · pi | fi ∈ K[X1, . . .Xn], pi ∈ P}.

The basic problem that can be algorithmically solved using Gröbner bases is the
following: Given f ∈ K[X1, . . . Xn] and P ⊆ K[X1, . . . Xn], does f ∈ <P> hold?
Denoting the reduction for polynomials introduced in section 4.3 by −→P it is
easy to show that f

∗−→P 0 implies f ∈ <P >. The other direction, however,
does not hold in general and can actually serve as a definition for Gröbner bases.
In our formalization we use the equivalent definition, that G ⊆ K[X1, . . .Xn] is
a Gröbner base if and only if −→G is locally confluent. Note again, that −→G

is terminating.
To check whether a given (finite) set P ⊆ K[X1, . . . Xn] is a Gröbner base it

is sufficient to consider the (finite set of) s-polynomials generated by P , that is

spoly(p1, p2) = HC(p2) ·
t

HT(p1)
· p1 − HC(p1) ·

t

HT(p2)
· p2

where t = lcm(HT(p1), HT(p2)) for all p1, p2 ∈ P : G is a Gröbner base if we have
spoly(p1, p2)

∗−→G 0 for all p1, p2 ∈ P , which in the view of general rewriting
can be interpreted as checking critical pairs. This gives rise to a completion
algorithm: If spoly(p1, p2) not reduces to 0, its normal form is added to P — note
that p1, p2 ∈ P implies spoly(p1, p2) ∈ <P>, so that the generated ideal <P>
is not changed — and s-polynomials are recursively computed. This is the basic
version of Buchberger’s Algorithm transforming a set P ⊆ K[X1, . . . Xn] into a
set G ⊆ K[X1, . . .Xn] such that <P> = <G> and −→G is locally confluent.
Further investigations and improvements of the algorithm can be found in the
literature (see for example [Buc79]).

In the following we present the main results of our formalization in Mizar so
far. Besides the definition of Gröbner bases and the usual characterization using
s-polynomials, we also considered other characterizations and the existence of
both ordinary and reduced Gröbner bases.

5.1 Definition and Characterizations

A Gröbner base for a given ideal I is a set G of polynomials such that the in-
duced reduction relation PolyRedRel(G,T) is locally confluent (hence a complete
rewriting system) and the ideal generated by G equals I. Note again, that the
term order T is a parameter of the reduction relation.

definition
let n be Ordinal, T be connected TermOrder of n,

L be Field, G,I be Subset of Polynom-Ring(n,L);
pred G is_Groebner_basis_of I,T means
G-Ideal = I & PolyRedRel(G,T) is locally-confluent;

end;
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We proved a number of further characterizations of Gröbner bases from [BW93],
so for example, that G is a Gröbner base if each polynomial in G-Ideal is top-
reducible with respect to G, if each polynomial in G-Ideal is reducible to the zero
polynomial 0_(n,L) or if each head term of a polynomial in G-Ideal is divided by
a head term of a polynomial in G. The main property of Gröbner bases G — ideal
membership of a polynomial p is decidable by reducing p with respect to G — can
be formulated as follows.

theorem
for n being Nat, T being connected admissible TermOrder of n,

L being Field, p being Polynomial of n,L,
G being non empty Subset of Polynom-Ring(n,L)

st G is_Groebner_basis_wrt T
holds p in G-Ideal iff PolyRedRel(G,T) reduces p,0_(n,L);

A completely different characterization of Gröbner bases, that is often used
to prove more involved theorems, relies on so-called standard representations of
polynomials [BW93]. A standard representation of a polynomial p with respect
to a set of polynomials P is a linear combination p =

∑k
i=1 mipi where the mi

are arbitrary monomials, the pi are from the set P and the head terms of the
mipi are bounded by HT(p,T), or more general by a given term t. The concept
of linear combinations again can be reused from ring theory [BRS00]:

definition
let L be non empty multLoopStr, S be non empty Subset of L;
mode LeftLinearCombination of S -> FinSequence of the carrier of L means
for i being set st i in dom it
ex u being Element of L, s being Element of S st it/.i = u * s;

end;

A standard representation of a polynomial f is then straightforwardly defined
as a LeftLinearCombination of P with the two additional conditions from
above. Now one can show that a set G is a Gröbner base if and only if there
exists a standard representation for each polynomial in the ideal generated by G.
Defining a predicate f has_a_Standard_Representation_of G,t,T with the
obvious meaning we thus get

theorem
for n being Nat, T being connected admissible TermOrder of n,

L being Field, G being non empty Subset of Polynom-Ring(n,L)
holds G is_Groebner_basis_wrt T

iff for p being Polynomial of n,L st p in G-Ideal
holds p has_a_Standard_Representation_of G,HT(f,T),T;

5.2 Construction of Gröbner Bases

The key point in the construction of Gröbner bases is the observation that
there exists a finite test to check whether a set of polynomials G is locally con-
fluent, hence a Gröbner base. Critical situations that have to be checked are
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given by s-polynomials describing the ”difference” between two polynomials p1
and p2. The Mizar definition is as follows. Note again that p1,p2 ∈ G implies
S-Poly(p1,p2,T) ∈ G-Ideal.

definition
let n be Ordinal, T be connected TermOrder of n,

L be Field, p1,p2 be Polynomial of n,L;
func S-Poly(p1,p2,T) -> Polynomial of n,L equals
HC(p2,T) * (lcm(HT(p1,T),HT(p2,T))/HT(p1,T)) *’ p1 -
HC(p1,T) * (lcm(HT(p1,T),HT(p2,T))/HT(p2,T)) *’ p2;

end;

Now, if for a given set G of polynomials we have that PolyRedRel(G,T) reduces
S-Poly(g1,g2,T) to 0_(n,L) for all p1,p2 ∈ G, then G is a Gröbner base. Note
that if G is finite there exist only finitely many s-polynomials. Using the transition
lemma, basically stating that if a polynomial p1-p2 is reducible to 0_(n,L)
with respect to G, then there exists a polynomial q such that PolyRedRel(G,T)
reduces both p1 and p2 to q, we proved the following

theorem
for n being Nat, T being admissible connected TermOrder of n,

L being Field, G being Subset of Polynom-Ring(n,L)
holds (for p1,p2 being Polynomial of n,L st p1 in G & p2 in G

holds PolyRedRel(G,T) reduces S-Poly(p1,p2,T),0_(n,L))
implies G is_Groebner_basis_wrt T;

This theorem gives rise to a completion algorithm to compute Gröbner bases
(see [Buc98]). Note, that the proof of the theorem’s opposite direction is almost
trivial using the characterizations from the section 5.1.

For the construction of Gröbner bases, however, not all s-polynomials need
to be considered, hence detecting such s-polynomials saves a number of re-
ductions in the construction process. In the literature theorems characterizing
such situations can be found (see e.g. [Buc79]). We formalized a first theorem
into this direction stating that s-polynomials of polynomials p1 and p2 with
lcm(HT(p1,T),HT(p2,T)) = HT(p1,T) · HT(p2,T), in other words the head
terms of p1 and p2 have no variables in common, need not be considered, they
always reduce to the zero polynomial:

theorem
for n being Ordinal, T being connected admissible TermOrder of n,

L being Field, p1,p2 being Polynomial of n,L
st HT(p1,T),HT(p2,T) are_disjoint
holds PolyRedRel({p1,p2},T) reduces S-Poly(p1,p2,T),0_(n,L);

5.3 Existence of Gröbner Bases

Finally we consider the existence and uniqueness of Gröbner bases. It is a theo-
retically interesting fact that a finite Gröbner base exists for any given ideal I; or
from a rewriting point of view that there exists a (finite) completion for every set
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G of polynomials. Using the characterization of section 5.1 — that G is a Gröbner
base if each head term of a polynomial in G-Ideal is divided by a head term of a
polynomial in G — and Dickson’s lemma from [LR02] it is easy to prove the fol-
lowing

theorem
for n being Nat, T being connected admissible TermOrder of n,

L being Field, I being Ideal of Polynom-Ring(n,L)
ex G being finite Subset of Polynom-Ring(n,L)
st G is_Groebner_basis_of I,T;

which actually is another formulation (and another proof) of the Hilbert basis
theorem. Note that the theorem states even more, namely that a Gröbner base
for a given ideal exists for any total admissible term order T.

We also considered reduced Gröbner bases. In general a Gröbner base is of
course not uniquely determined by the ideal I, even if we choose a fixed term or-
der T. However, introducing the concept of reduced Gröbner bases, the situation
looks different. A set G of polynomials is called reduced, if every p ∈ G is monic,
that is HC(p,T) = 1 for all p ∈ G, and every p ∈ G is irreducible with respect to
G\{p}. Note that only the second condition can be reused from rewriting theory,
the other being a property of polynomials. Using a predicate is_reduced_wrt
we proved the following theorems showing existence and uniqueness of reduced
Gröbner bases.

theorem
for n being Nat, T being connected admissible TermOrder of n,

L being Field, I being Ideal of Polynom-Ring(n,L) st I <> {0_(n,L)}
ex G being finite Subset of Polynom-Ring(n,L)
st G is_Groebner_basis_of I,T & G is_reduced_wrt T;

theorem
for n being Nat, T being connected admissible TermOrder of n,

L being Field, I being Ideal of Polynom-Ring(n,L),
G1,G2 being non empty Subset of Polynom-Ring(n,L)

st G1 is_Groebner_basis_of I,T & G1 is_reduced_wrt T &
G2 is_Groebner_basis_of I,T & G2 is_reduced_wrt T

holds G1 = G2;

6 Mathematical Knowledge Repositories

6.1 Mizar Mathematical Library

The Mizar Mathematical Library [Miz05] is a long term project that aims at
developing both a comprehensive library of mathematical knowledge and a for-
mal language for doing so. At the time of writing the library consists of 904
articles stating about 40000 theorems and 8000 definitions. Also because of the
huge number of covered areas Mizar is well-suited for our experiments concern-
ing building up new developments on existing ones. In the following we discuss
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some issues of our formalization which we consider of general interest for the
development of mathematical repositories.

As a first point, we want to stress that adopting notations is a crucial is-
sue when building mathematical repositories. By ”adopting” we mean not only
reusing notations in a more specialized situation, but also slightly changing and
extending these. We illustrate this with reduced sets of polynomials already
mentioned in section 5.3. Irreducibility of sets stems from rewriting and can be
defined as follows.

definition
let R be Relation, A be set;
pred A is_irreducible_wrt R means
for a being Element of A holds a is_a_normal_form_wrt R;

end;

Reduced sets of polynomials, though based on this notion, are somewhat
different: Each polynomial must be irreducible with respect to all other poly-
nomials. Furthermore only monic polynomials are considered here. Hence, the
predicate concerning reduction has not only to be refined but also to be extended.
In Mizar this can be straightforwardly done as follows.

definition
let n be Ordinal, T be connected TermOrder of n,

L be Field, P be Subset of Polynom-Ring(n,L);
pred P is_reduced_wrt T means
for p being Polynomial of n,L st p in P
holds p is_monic_wrt T & {p} is_irreducible_wrt PolyRedRel(P\{p},T);

end;

Note, that the reduction relation PolyRedRel is used with the argument P\{p}
rather than P. We believe, that it is this flexibility that we need to built up large
repositories covering not only few theories.

Equivalence proofs are often cyclic, that is actually given by a number of
implications. Of course this can be easily mirrored in Mizar (or other repositories)
by stating each implication as a theorem. However, using such equivalences then
becomes rather tedious, because to get an equivalent formulation more than one
theorem is necessary. In [BW93], for example, theorem 5.35 gives 10 equivalent
characterizations of Gröbner bases, so that using these equivalences requires up
to 9 theorems in Mizar. Here, it might be helpful to extend the language of
mathematical repositories to also include ”equivalence theorems”.

A last point we want to mention concerns the general development of reposito-
ries. Most projects are concerned with the formalization of a particular theorem
to illustrate the usability of a certain approach. Therefore, for obvious reasons,
often parts or theorems actually belonging to the theory considered are ignored
just because they are not really necessary to prove the goal. We believe that the
development of a general mathematical repository as necessary for mathemati-
cal knowledge management has to go another way: Often it turns out that the
parts left out would enable a better development beyond the theorem originally
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chosen. So we should seek for completeness in the sense that when formalizing
a theory we should bear alternative characterizations in mind. An example here
are standard representations. Of course one can define Gröbner bases and their
construction by s-polynomials without using standard representations. To prove
more involved results on s-polynomials, however, one finds that in the litera-
ture often standard representations are used, which implies that the definition
of standard representations cannot be left out.

6.2 Other Formalizations

Gröbner bases and polynomials have been defined in other systems; we first men-
tion [The01], where Buchberger’s algorithm is formalized using the Coq proof as-
sistant. From this development an implementation of the algorithm in Ocaml has
been extracted. In [MPAR04] a Common Lisp implementation of Buchberger’s
algorithm is presented that has been verified in Acl2. This is part of a larger
project that aims at the computational formalization of polynomial algorithms in
the spirit of combining computer algebra and theorem proving. Harrison [Har01]
presents a Gröbner base algorithm for complex polynomials in HOL and uses it
as a semi-decision procedure for polynomial equations in his work on quantifier
elimination. Focusing on the algorithm, however, the notations of both rings and
rewriting are not introduced, but defined from scratch for polynomials only.

C-CoRN [CGW04] also includes polynomials as a result of the ”Fundamental
Theroem of Algebra”-Project. Here a real number structure is used is used to
develop polynomials in Coq so that an instantiation with a construction of the
real numbers results in a full constructive proof. Polynomials have been defined
in other repositories such as for example IMPS [FGT93] and Theorema [Buc01].
However, none of these approaches has been used to develop Gröbner bases so
far. It would be interesting to do so and to compare these developments with
our experiences in Mizar.

7 Conclusions and Further Work

We believe that mathematical repositories serves at least two goals. Firstly, of
course, repositories form the basis for other Mathematical Knowledge Manage-
ment activities by providing the knowledge to deal with. Secondly, it seems to us
that mathematical repositories are also the key for attracting mathematicians
and other users: The more knowledge we include in our repositories, the more
likely will be the acceptance of both mathematical repositories and its attached
software. Therefore developing mathematical repositories should

– be broadly based, that is a large number of different fields of mathematics
has to be covered.

– be highly reusable and refinable to impress possible users how easily one can
adopt existing developments, in particular basic theories.

– aim at describing (basic) theories as completely as possible — and not only
at developing the proof a special theorem — in order to increase the number
of possible users.
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We also believe that such development techniques will lead to the formaliza-
tion of contemporary mathematics easier just because a broad basic repository
supports — and is necessary for — more involved mathematics.

In this paper we have presented a case study in Mizar to illustrate what
such a broad theory development may look like. The Mizar type mechanism,
especially the possibility to extend types with adjectives to describe additional
properties, elegantly supports the refinement and reuse of existing developments
and theories: Adjectives allow not only to refine theories as a whole. In addi-
tion theorems itself can be formulated using only properties, that is adjectives,
necessary to prove them and can therefore be reused in every theory fulfilling
these adjectives. Because this kind of reasoning is present in nearly all areas of
mathematics, we claim that such a flexible type system is of major importance
for the development of mathematical repositories.

The work presented in this paper can be continued in two ways. Firstly, the
theory of Gröbner bases in Mizar should be further developed: Theorems con-
cerning avoiding s-polynomials should be formalized, also to explore the use of
”non-standard characterizations”, here by standard representations. Also, in the
spirit of section 6.1, the characterization of Gröbner bases by division with re-
mainder and of course generalizations of the topic such as for example syzygies
are of further interest. Secondly, it would be interesting to transform the formal-
ized material into an introductionary course on Gröbner bases. The main point
here would be to take into account both the underlying ring and rewrite theories
and the proofs as they have been written in the Mizar language. We think that
this would not only give insights in how to use Mizar for generating teaching
material, but also — due to the number of theories involved — how to structure
courses with larger number of prequisites.
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[Jaś34] S. Jaśkowski, On the Rules of Suppositon in Formal Logic; in: Studia
Logica, vol. 1, 1934.

[LR02] G. Lee and Piotr Rudnicki, Dickson’s Lemma; Formalized Mathematics,
2002, available in JFM from [Miz05].

[Miz05] The Mizar Home Page, http://mizar.org.
[MPAR04] J. Medina-Bulo, F. Paloma-Lozano, J. Alonzo-Jiménez, and J.-L. Ruiz-
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Abstract. We describe a case-study of the application of web-
technology (Helm [2]) to create web-based didactic material out of a
repository of formal mathematics (C-CoRN [5]), using the structure of
an existing course (IDA [4]). The paper discusses the difficulties related
to associating notation to a formula, the embedding of formal notions
into a document (the “view”), and the rendering of proofs.

1 Introduction

One of the aims of the recently concluded European IST Project MoWGLI was
the development of a suitable technology supporting the creation of web-based
didactic material out of repositories of formal mathematical knowledge.

In particular, the validation activity reported in this paper consists of the
application of the Helm [2] technology, developed at the University of Bologna,
to the C-CoRN [5] repository of constructive mathematics of the University of
Nijmegen and aiming at the creation of an interactive algebra course.

The Helm system [2] provides tools and techniques for displaying formalised
mathematics on the web. It uses XML technology for rendering repositories of
formal mathematics, supporting hyperlinks, browsing and querying functional-
ities, as well as a sophisticated stylesheet mechanism for the notational recon-
struction of the symbolic content.

The C-CoRN system [5] is a repository of constructive mathematics, for-
malised in Coq, covering a considerable body of basic algebra and analysis.

Potentially, Helm and C-CoRN produce a large body of formalised mathe-
matics, which can be viewed and browsed through standard web tools. In order
to exploit this potentiality, Helm must be suitably instantiated to the particular
case of C-CoRN. This instantiation essentially takes place at two levels:

notational defining (directly or indirectly) a set of XSLT transformations pro-
viding the required notational rendering for the formal notions coded in
C-CoRN;
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structural providing the didactic organisation and the natural language glue
of the course notes

This paper is a report of the work. The final result is available at http://
helm.cs.unibo.it/. The structure of the paper is the following. Sect. 2 and 3
introduce respectively the Helm system and the C-CoRN repository; in Sect. 4 we
discuss the association of notation to a formula and Sect. 5 is about documents
as views; the rendering of proofs is addressed in Sect. 6. Finally we draw some
general conclusions about this validation activity.

2 Helm

The process of transforming a Coq proof to a XHTML or MathML-Presentation
proof is shown in Fig. 1. The process is essentially split in two parallel pipelines,
respectively dealing with proof objects, i.e. single mathematical items such as the-
orems, definitions, examples and so on, and views that are structured collections
of (links to) objects, possibly intermixed with text and pictures.
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Fig. 1. Transformation process in Helm

From the Coq files, the lambda-term is exported to an XML-language,
CICML. Similarly, from scripts we export a sort of minimal, canonical view,
that is essentially the index of theorems in the order they have been defined by
the user, plus some special comments possibly added to the script. The XML
exportation module is currently a standard component of the Coq distribution.

An alternative, simple way to produce a view is by starting from some legacy
documents, for instance using a traditional latex to HTML converter (links to the
repository have to be added manually). In Section 5 we shall describe in detail
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this job, adopting, as a view, the HTML material of the Interactive Algebra
Course [4] on algebra of the Eindhoven University of Technology (NL).

The raw XML encoding used by Helm to store the information in the repos-
itory is transformed into a presentational markup by a suitable set of style-
sheets. This transformation process is split, for modularity reasons, in two main
parts, passing through an intermediate “content” markup, which is provided by
Content-MathML for statements, and OMDoc for Views. The idea is that dif-
ferent foundational dialects may be mapped to a same content description, and
on the other side, the same content can be translated to different presentational
markups.

The choice of using XSLT for performing the transformation (see also [1])
is mainly motivated by the XML framework of the project (MoWGLI was ex-
plicitly conceived as a major validation test for XML technology). However, the
limited expressive power of XSLT also combines well with a major philosophi-
cal commitment of the Helm project, namely that rendering must be a simple
operation, not involving major transformations on the proof. The point is that
if the rendering operation is too sophisticated we may loose confidence in what
has been actually proved in the machine.

3 The C-CoRN Repository

The C-CoRN repository [5] consists of a Coq formalisation of basic algebra and
basic constructive analysis. The algebra covers an algebraic hierarchy consisting
of semi-groups, monoids, groups, rings, fields, ordered fields and metric spaces.
Apart from algebra, there is a large amount of analysis, including real numbers,
complex numbers, polynomials, real valued functions, differentiation / integra-
tion and basic results from analysis like the intermediate value theorem, Taylor’s
theorem up to the fundamental theorem of calculus and the fundamental theo-
rem of algebra (using both algebra and analysis).

4 Mathematical Notation

Part of the descriptive power of mathematics derives from its ability to represent
and manipulate ideas in a complex system of two-dimensional symbolic notations
refined during centuries of use and experience.

Especially for didactic reasons it is important to adopt a mathematical no-
tation as close as possible to the usual notation in textbooks. As we will see in
Sect. 5.2, this notation is much more dynamic and context dependent than it
appears at first sight, posing very interesting and challenging problems not yet
solved by the current technology.

A friendly and concise mathematical notation is also required during the
formal development of the proofs in Coq. In particular, the syntax and the nota-
tional expressivity of Coq have greatly changed in the last releases of the system.
However, the priorities are different with respect to a course. In particular, Coq
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requires notation to be perfectly unambiguous in every situation, severely lim-
iting overloading. It also restricts notation to a mono-dimensional language. As
a consequence the notation adopted for the development of C-CoRN and the
one that is used in the electronic course will not be the same, preventing an
automatic translation in the general case.

4.1 Notation in Helm

The process of associating notation to a formula during rendering is made of
two phases. The two phases are both XSLT transformations, since the formula,
expressed as a term of the logic of Coq, the Calculus of (Co)Inductive Con-
struction (CIC), is stored in XML. The first transformation is a semantically
lossy operation that maps the formula to a MathML Content expression that
captures its intended meaning. The second one maps MathML Content to ei-
ther XHTML or MathML Presentation, only the latter giving access to the most
complex bidimensional notations.

The stylesheet to MathML Presentation is quite standard, but for the han-
dling of the layout. Indeed the stylesheet automatically breaks long formulae
on multiple lines, exploiting the MathML Content expression to decide where
to break the lines and how to indent the expression. Greatly suboptimal with
respect to the most natural layout a human can provide, our strategy is supe-
rior to the trivial algorithms implemented in the browsers that cannot exploit
the content expression. However, layouting greatly increases the complexity of
the stylesheet: every time a notation can be applied a template is invoked to
estimate the size of the subexpressions and decide if line breaking and conse-
quent indentation are necessary. For instance, detecting and rendering the “less
than” relation requires respectively 7, 139 and 142 lines of XSLT for the CIC
to MathML Content, MathML Content to XHTML and MathML Content to
MathML Presentation transformations.

Providing a new notation, especially in those cases where the notation is quite
standard, should not require more than a few seconds, nor any major knowledge
from the user, who is not supposed to write about 300 lines of XSLT for each
mathematical operator. Since the stylesheets have a very simple and repetitive
structure it is possible to automatically generate them from a concise descrip-
tion of the operator, including, for instance, its arity, associativity and type
(infix/prefix/postfix) for non binding operators that have a mono-dimensional
notation.

To automatically generate stylesheets, Helm provides two intermediate XML
languages to describe notation and a set of transformations (in XSLT) which
translate the first simplified language in the second, and the second to the
three stylesheets CIC to MathML Content, MathML Content to XHTML and
MathML Content to MathML Presentation (see [7]). Moreover, links are auto-
matically added from one level — say, XHTML — to the generating expression
at the previous level — MathML Content —, and from the occurrence of the
operator (in MathML Presentation or XHTML) to the CIC document where it
is defined. Describing the notation for the “less than” operator in the simplified
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language simply amounts in giving: 1) its arity; 2) its type; 3) its associativity;
4) its URI (unique identifiers) of the operator at the CIC level; 5) the name
of the MathML Content element that it must be mapped to; 6) the Unicode
symbol that it must be mapped to for presentation. This information can eas-
ily be provided by the user by directly editing the XML file. Trusted Logic has
also implemented a tool to generate this information from the corresponding one
used by Coq to describe notations [6]. The simplified language also recognises
binding operators, operators that have arguments that must be left implicit and
operators that are rendered as the negation of other operators.

When the simplified language is not expressive enough to describe the nota-
tion, the user can directly use the intermediate language, writing the expected
representation directly in MathML Presentation (or HTML) extended with spe-
cial macros to suggest desired positions for line breaking, to insert the required
links, to process recursively the sub expressions and so on.

At first the automatic generation of notational stylesheets seems to defini-
tively solve in an elegant way the problem of defining new notations. However,
in Sect. 5.2 we will consider the problem of making notations evolve within a
document, facing the current limitations of the Helm technology.

4.2 Notation in Natural Language for Predicates

Automatic stylesheet generation has been conceived to translate CIC expressions
to their usual mathematical symbolic rendering, for instance to replace “plus”
by “+”. The same technology can be exploited to provide a natural language
like notation for predicates. For instance, a generated stylesheet can transform
“(commutes plus nat)” into “+ is commutative on N”, with links from “+”
to the definition of “plus”, from “N” to the definition of “nat” and from “is”,
“commutative” and “on” to the definition of “commutes”.

Even if the descriptions generated for large formulae are far from being as
fluent as those that a human would write, the results are pretty satisfactory and
the statements are much easier to understand. The Mizar language has already
successfully adopted a similar notation for predicates for years.

From the point of view of the user who must provide the notation, treating
words in the same way as symbols is rather onerous. Moreover, the algorithm that
automatically breaks a formula into several lines does not produce the expected
output for natural language notations, where we would expect long sentences
to simply continue on the next line. An improvement of the Helm technology is
required to handle this kind of notation in a completely successful way.

5 Documents as Views

A course is much more than a set of definitions and theorems. It has its own
buildup, which is directed by the rules of didactics and clarity of mathematical
exposition. It may sometimes sacrifice formality to provide intuitions in the most
direct way, or it may provide the intuitions first and the formal counterpart later
on. It contains plenty of examples, exercises and rhetorical text, while omitting
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technical lemmas and results that will not be necessary or that will be presented
only when used.

Thus, to develop our course notes from C-CoRN, it is not a reasonable idea
to start from the script, the Coq development where definitions and proofs are
given in their order of definition, and integrate it with examples and the rest.
On the contrary we decided to start from the buildup of the course, seen as a
huge hypertextual electronic “document” (divided into chapters, sections and
the like) in which we embed formal definitions, lemmas, exercises and references
to definitions and lemmas in the middle of informal sentences.

The embedding does not need to be done statically. On the contrary we may
imagine a document — called view in the Helm terminology — where special
elements are put where formal notions need to be embedded. The view can
be written in any XML language we like, and XML namespaces are used to
avoid confusion with the special elements. To visualise a view, the document is
processed on the fly by the Helm processor and mapped to a standard XHTML
page (eventually embedding MathML Presentation islands and made dynamic
by means of JavaScript). All the special elements are expanded by the processor
which embeds in the document the requested rendering of the formal notions.

To speed up the development time and to be sure of the didactic quality of the
course obtained we decided to exploit the course organisation, the rhetorical text
and all the exercises and examples (the latter to be first formalised in C-CoRN
that used to lack examples completely) from IDA.

IDA [4] is an interactive course on algebra, which has been developed at the
Eindhoven University of Technology (NL), for first year mathematics students.
The IDA course notes have been developed over the years in the context of a
first year class on algebra. It consists of a book with a CD-ROM. (Before the
book + CD-ROM were published by Springer, β-versions of the material were
available through the web.) The material on the CD-ROM is the same as in the
book, but there is additional functionality:

– Alternative ways of browsing through the book.
– Hyperlinks to definitions and lemmas. However, since the hyperlinks have

been inserted manually, many of them are missing, in particular in the tex-
tual flow.

– Applets that show algorithms (e.g. Euclid’s algorithm).
– Multiple choice exercises.

IDA does not provide a formal treatment of proofs. Proofs in IDA are like
proofs in ordinary mathematical text books: plain text, so we couldn’t reuse any
proof from IDA. However it is very instructive to compare the proofs in IDA,
targeted at an audience of students (and developed in classical mathematics),
with the formalised (constructive) ones in C-CoRN. Because the structures in
IDA, like monoids and groups, are not as rich as the ones in C-CoRN, which
include also an apartness relation, the C-CoRN proofs are in general a bit more
involved than the original IDA ones. However, we have only come across one
theorem that was false constructively.
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Fig. 2. Comparison between our course notes and IDA

Concretely, our goal was to obtain electronic course notes from the C-CoRN
repository having the same look and feel as IDA, using Helm-tools to render
mathematical objects (definitions, statements and their proofs) and to create
hyperlinks between them.

Fig. 2 compares the page that defines a monoid in our course notes (on the
left hand side) with the corresponding page in IDA (on the right hand side). The
two pages are similar and the interactivity of the IDA page has been preserved:
the lower frame is used to navigate in the notes and the drop down boxes give
access to examples and exercises which are the same in the two courses. Our
page is richer in functionality. First of all it adds another navigation frame on
top which provides a breadcrumb trail and a link to the Whelp search engine.
Whelp [3] is a search engine developed in MoWGLI to index and retrieve proofs
and definitions in a formal library by means of powerful queries over the mathe-
matical expressions in the statements. As IDA does not have any search or index
facilities, this is a pure gain from the formalisation. We also observe that our
course offers many more links to definitions than IDA. Indeed every occurrence
of a formal concept is given its own link, both in the formal statements and
definitions that are automatically generated from C-CoRN and in the free text
that comes from IDA.

Finally we notice remarkable differences between C-CoRN and IDA for the
statement of uniqueness of a unit and the definition of a monoid. One of the
reasons for the increased verbosity of the formal definitions is that the formal
library lacks or does not exploit a few notions that help to make the statements
more concise. For instance, it would be possible to define the notion of uniqueness
over a type T and a property over T , using it to state the lemma of uniqueness
of the unit element. This is not normally done when working in Coq since Coq
unification does not automatically expand this kind of general notions, making
proofs much more cumbersome for the user. The same phenomenon appears in
the definition of a monoid. Instead of relying on the notion of unit, in C-CoRN
it is preferred to explicitly state that Zero is both a left and a right unit, since
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in Coq the constituents of a conjunction are not automatically derived from the
conjunction when appropriate.

If the general notions were used, we believe that the differences between the
formal and informal versions would be less relevant and a bit of extra nota-
tion would provide a rendering that is not more cumbersome than the human
provided counterpart (even if the latter would remain much more natural).

5.1 In-Line Rendering

A typical mathematical document will not only contain raw, precise, rigor-
ous mathematics, but also sentences whose meaning is more fuzzy or non-
mathematical, somewhere in the range between normal English text and rig-
orous mathematics. This “free text” can contain for example historical remarks
or remarks such as (this is an actual excerpt from IDA)

Most binary operations in which we are interested distinguish themselves
from arbitrary ones in that they have the following property.

The meaning of “in which we are interested” cannot be expressed in a theorem
prover and escapes its checking framework, but that kind of text is still an
important part of a mathematical document. However, it still speaks about and
refers to formally defined mathematical notions (“binary operations”). It is thus
desirable to be able to have free-form (non proof assistant checked) text that
nevertheless uses names and notations of the proof assistant checked “library of
mathematics” the document is about.

The initial implementation of the Helm system only allowed to refer to a
mathematical notion by embedding its whole definition, as a separate paragraph,
right there in the document. To complete our task we have implemented the
possibility to have a rendering that

– integrates in a sentence, as a word or phrase, instead of being its own para-
graph. We call this the in-line rendering.

– removes (or adds) some parts of the definition of the object that are included
(or not included) by default, such as the name of the object, the body of the
definition or the notation for the object.

These choices must be made by specifying attributes to the XML element that
is used to provide a link to the formal notion and to ask for the embedding of
its rendering in place of the element. Even if in principle all these choices are
orthogonal, not every combination makes sense and gives a reasonable result.

To represent the free text of IDA in our course notes we have also sometimes
explicitly chosen to avoid references to formal objects even if they were available.
This was done in cases where some particular translation of the formal expression
was necessary for the general flow of the document, to rise from the level of
“sequence of mathematical statements” to the level of “document that tells a
story”. For example, the very first sentence of the chapter we have treated:

The map that takes an element of Z to its negative is a unary operation
on Z, while addition and multiplication are binary operations on Z in
the following sense.
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Mathematically, this says the same as “−Z is a unary operation on Z and +Z is
a binary operation on Z and ∗Z is a binary operation on Z” (which is approxi-
mately how Helm would have rendered the corresponding formal mathematical
statement). For a human reader, however, “while” does not just express a con-
junction, as far as quality (e.g. ease of reading, clarity of point) of the document
is concerned, even though “while” and “and” are equivalent mathematically. A
document making absolutely no use of this kind of subtleties of language would
be quite “dry” and hard to read for a human. Also notice the contraction of “+Z

is a binary operation on Z and ∗Z is a binary operation on Z” into “+Z and ∗Z

are binary operations on Z”.

5.2 Context Depending Rendering

In Sect. 4 we have described the Helm facilities to provide mathematical notation
easily, and we claimed that at first sight— when considering the rendering of
a single definition or theorem at a time in a sort of vacuum — the machinery
seems to be expressive enough. As soon as we started to consider the rendering of
views, however, we realised that mathematical notation is much more dynamic
and context dependent than what it seems to be at first sight. We will examine a
few examples where the current context-free machinery of Helm is not sufficient.

Notations Depending on Lemmas. Stating a lemma can implicitly change
the notation used in the rest of the view. The most well known example is
proving the associativity of a binary operation. Until associativity is proved,
every expression involving the operator must be fully parenthesised. However,
once associativity is known, parentheses are omitted. Since “most of the time”
associativity is known (i.e. the majority of the theorems depend logically on
the lemma of associativity), we could have decided to always omit parentheses.
However, this solution is not satisfactory since we sometimes face statements that
in this way are reduced to trivialities. For instance, the lemma of associativity
for ◦ would become ∀x, y, z.x ◦ y ◦ z = x ◦ y ◦ z.

Another similar annoying example can be found in the theory of semi-groups
where first the notion of being a unit is defined and only after that the uniqueness
of the unit in semi-groups is proved. So when we state the uniqueness of the unit,
we would like to speak about “a unit”, because the uniqueness has not yet been
established:

Lemma 1. ∀S:CSemiGroup.∀e:S.∀f:S. e is a unit of S∧f is a unit of S→e=f

But after we have proved the uniqueness, we would like to see “the unit” in all
following uses.

It has also been argued that this is not really a problem, because differences
in the English language — like “a” and “the” here — reflect also a difference
in the mathematical meaning: “a unit” would denote a relation and “the unit”
would denote a function. So, it has been proposed to use “a” whenever we see the
relation, and to use “the” whenever we see the function. However, it is not clear
that the correspondence between the English language and the mathematical
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meaning is as straightforward as suggested here. It is not a mistake to use the
relation even after uniqueness has been established, but to use the indefinite
article in English while we know the uniqueness, seems highly unusual.

Overloaded Notations. It is pretty common in mathematics to overload nota-
tions. However, sometimes the two semantics attached to a notation are needed
at the same time and the context may not be sufficient to disambiguate. Then,
the notation for at least one of the semantics must be changed, for example by
further qualification. In Helm we can easily overload a notation and we can also
provide qualified notations. However, the choice of using a qualified notation
depends heavily on the context and cannot be made automatically.

Multiple Notations for (Instances of) Abstract Notions. When defining
an abstract notion, say a group, a default notation is also usually defined to
state the general theorems about the abstract notion. For instance, we could
choose a multiplicative notation as the default for an abstract group. Later on
abstract notions are instantiated to concrete ones and different notations should
be applied to the different instances. For instance, for particular groups we often
prefer an additive notation.

In the formalisation, a group becomes a record (a tuple with named pro-
jections) whose first element is the carrier and whose second element is the
operation on the carrier. Thus an occurrence of the operation of a group is for-
mally represented as the projection π2 applied to the group G: (π2 G). The
operation applied to two arguments x and y becomes (π2 G x y). In Helm no-
tations must be associated to constants and are independent of the arguments
the constants are applied to. In this case we can associate a notation to π2
— say the additive notation — by saying that π2 is a binary infix operator
with an implicit argument. Thus (π2 G x y) is represented as x + y. We could
make the implicit argument explicit, representing the previous expression as
x +G y equally easy (notice, however, that G can be a huge expression). How-
ever, we have no way of saying that + must be replaced by ∗ for some particular
groups G.

Having seen a few examples where the notation depends on the context,
we will now discuss a possible enhancement of Helm to allow dynamic
notation.

5.3 Extending Helm with Context Dependent Notation

As we have seen in the previous sections, there are several different kinds of
dependencies on the context. Here we discuss the ways these could possibly be
dealt with in Helm.

The first one is the case of temporary dependencies on lemmas and definitions,
where a lemma or definition that occurs in the view, i.e. in a single page in our
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electronic notes, activates or changes a notation. Since the order of appearance
in a view is different from “logical causality” (i.e. the partial order induced when
a lemma refers to previously defined lemmas and definitions), we need to search
for a solution by associating extra information to a view. In particular we may
apply a batch process to a view that collects for each formal notion referred in
the view all the formal notions that occur before it. Notice that a view can follow
other views in the intentions of the authors, i.e. all the pages that precede it.
Thus the batch process should visit all the views in their order of dependencies
to collect the information to associate to objects. Once the information has been
collected, we can identify for each object the notations that are active when
presenting it and store this as metadata in the Helm database, associating it to
the occurrence of an object in a particular view. The notational stylesheets can
retrieve from the database the metadata (in RDF format) and apply only the
templates supposed to be active.

Even if the previous solution seems satisfactory at first, it induces a new
problem, e.g. when the user follows a hyperlink from an occurrence of a notion
in a view to the definition of the notion. This definition exists in a vacuum with
respect to the view that contains the hyperlink: a notion is not required to be
defined in the views it is used in and it can be used in multiple views unrelated
to the current one. This precludes any contextual metadata from being used
in the decision of which notation to apply. Theoretically, the solution consists
in considering the vacuum as a new view generated on the fly that inherits its
metadata from the view the user is coming from. Practically, the Helm tools
cannot handle this operation right now and implementing the new functionality
requires a significant overhaul of the design of the tools.

The second case of contextual dependency, overloading, can be handled in a
similar way. Indeed we can just give the user the possibility to associate to each
lemma or definition metadata that says that some overloaded notation needs to
be qualified. The main difference with the previous case is that the metadata
is likely to be associated to the object in any possible view, and not to the
occurrence of the object in a particular view.

The third case is the dependency of the notation on the arguments of the
operator, which is much harder. Currently we have no practical solution. The
problem becomes particularly complex when the user follows a hyperlink to the
proof of a general statement. Since the statement was applied to an argument in
the current view, its notation is supposed to depend on the argument. However,
in the new window that shows the statement the actual arguments are univer-
sally quantified and the notation is likely to change accordingly to a default value
(e.g. from additive to multiplicative). While this behaviour can be confusing, the
situation on this point is exactly the same as with classical paper documents:
The reference text book about a notion may use a notation that is different from
a particular instance of the notion in another document. One would hope, how-
ever, that semantically rich electronic documents would improve the situation
here.
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6 Proofs

6.1 What Is a Formal Proof?

Rendering of formal proofs is a complex task. The first issue that arises when
rendering formal proofs is: what kind of “object” is a formalised proof? This
very much depends on the proof assistant used. The user interacts with a proof
assistant via a so called proof script, the sequence of input commands that a user
enters to prove a result. An important difference between proof assistants lies
in the style of the language used in these scripts. Roughly speaking there exists
two styles: procedural and declarative. In the procedural style (Coq, NuPRL,
HOL, Isabelle), a user inputs tactics, commands that modify the state of the
system (e.g. by applying a logical rule or a hypothesis or calling an automation
procedure). So in a procedural proof style the user tells the system what to do. In
the declarative style (Mizar, Isabelle/Isar) a proof script is essentially a sequence
of intermediate results that tell the system what our knowledge state is. These
go together with hints (known lemmas) on why the alleged intermediate result
should hold. In a declarative proof style, the user tells the system where we are,
and the built-in automation should verify that that’s indeed the case.

In procedural proof assistants there may be another notion of proof, which is
a proof object or proof term. This is a mathematical object (typically a typed
lambda term) composed of only the very primitive logical rules. A tactic script
creates a proof object, which is usually quite big, but has the advantage that it
is directly verifiable by a small and trusted kernel. The Coq system, which we
use in C-CoRN, has these proof objects.1

6.2 What Proof Do We Store and What Proof Do We Render?

The problem of procedural scripts is that the syntax and semantics of tactics
is very system dependent and changes rapidly together with the overall system
evolution. Declarative scripts are more robust, but similarly changes in the au-
tomation engine of the system can break a declarative script. As a consequence,
scripts cannot be reasonably used for long term preservation of the information,
and are also hardly reusable by any external, third party tool. Proof objects
have a very clean and formal semantics, defined by the underlying foundational
system (that is usually quite stable, even along the evolution of the tool). The
main drawback of proof objects is that they are quite verbose and could be far
away from the original proof of the user (which is usually better reflected by the
tactic macrosteps of the proof script).

The Helm Project is particularly focused on the long term preservation and
management of repositories of formal knowledge. To this aim, as explained above,
the most relevant information is provided by proof objects. In the framework of
the MoWGLI project we have developed an exportation module able to extract
1 In systems like HOL and Isabelle no proof object is created, but in principle one

could let the tactics create a proof object on the fly. In Mizar, the declarative proof
itself is seen as the proof.
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from the Coq proof assistant the raw lambda terms encoded into a suitable
XML dialect2. Helm also provides stylesheets attempting a natural language
reconstruction of the proof object; since the lambda term is isomorphic to a
natural deduction proof, the result is, if not really appealing, surely readable.

In line with to the philosophy described in section 2, we make no major trans-
formation on the input lambda term (the proof object) before presenting it. It
is obvious that with a little effort we could easily improve the presentation by
suppressing (or removing) a lot of detail. A typical example are proof objects
that are found by an automatic decision procedure: these are usually extremely
verbose and complex proofs that humans don’t want to read. Not showing these
subproofs’ details by default would probably work well. However, in the proof
object as such we can’t trace the application of an automation tactic, so this
would require a major transformation of the term before rendering it. A partic-
ularly fortunate case of an automation tactic in Coq is that of a reflexive tactic.
This is not the place to go into detail about the nature of reflexive tactics, but
the crucial point is that it does not create a huge proof term. Instead it encodes
the goal to be proved as a syntactic object and then applies a generic lemma to
an argument that solves the goal by mere computation. (And in Coq, computa-
tion does not require a proof.) So, to detect a reflexive tactic it is sufficient to
recognise (in the stylesheets) an application of the generic lemma and hide its
rendering.

6.3 The Actual Rendering of the Proofs

Thanks to the Helm exportation module we have produced proof terms for each
C-CoRN theorem and we have use the standard Helm technology to render in
our course the natural language generated from them. This uses the standard
well-known transformation of typed lambda terms to natural deduction proofs. If
rendering the proof term has not required major changes in the Helm technology,
on the contrary we had to sensibly augment our library to match the textual
flow of IDA. Below we give an example of a proof in C-CoRN, as rendered by
the Helm tools. We observe that the C-CoRN proof is much more verbose than
the one from IDA, which just reads

e = e + f = f.

On the other side, the C-CoRN proof gives the full formal details. Some of the
details are “hidden” under a green link: clicking this link unfolds the details on
request. In the black-and-white printout: these links are the crossed box before
“Assumptions”, which unfolds explicitly the local assumptions of the lemma,
and the “Proof of e = e + f”, which gives an explicit proof of this fact.
2 We have also attempted to define a similar exportation functionality for Coq proof

trees, which integrate information from the proof script with the proof objects, but
we eventually failed. This failure was due to the complexity of the data structures
(e.g. handling of bound variables) and the fact that the proof trees are much more
subject to changes from one version of the system to the next.
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7 Conclusions

This research has been a test case for the use of a formal library, especially C-
CoRN, in a mathematical document. It has also been a test case for the Helm
tools in supporting the creation of such a document. This has led to interesting
refinements of the Helm tools, as described in Section 5.

The use of the mathematics in the formal library has some huge advantages:
one can use everything that is already in the library. In our case, not much from
what we needed was present in C-CoRN when we started: only about 20% of
the definitions, lemmas and examples we have used in formal form in our final
document. Considering that the document covered about ten pages of basic
mathematics and that we have not replaced every definition, lemma or example,
that seems a bit disappointing. But it has been very useful to us anyway, because
many items that were missing in the library were fairly easy to formalise from
lemmas that were present. And by adding items to the library, we have made a
contribution to future use. So, in short, it is beneficial to use a library because it
is economical : if something has been defined or proved, it can be used over and
over again. Nothing has to be done more than once.

It should also be noted that, using a formal library within an existing math-
ematical document (IDA) by putting references to it does note guarantee the
coherence of the document. A mathematical document aims at satisfying a strict
requirement: objects and lemmas are not to be used before they have been de-
fined or proved. Of course, sometimes a lemma is used and is only proved later at
a more suitable place, but this is mostly announced in the surrounding text and
this can be seen as the use of a local assumption, instead of premature use of a
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lemma. But using an object or a lemma that is unfamiliar to the reader without
any explanation, can be seen as a mistake. Because we use an existing library
(C-CoRN) and in the (IDA) document we just put references to the library, we
have paid no attention to this kind of logical coherence in the IDA document.
It could well be that the order of the references does not meet the logical order
of the corresponding items in the library. The fear for logical mistakes between
items, as opposed to logical mistakes within items (proofs and definitions), is not
imaginary. In the ten pages of IDA that we have looked at, the logical coherence
has been violated several times. A positive aspect of our development is that the
Helm-links from IDA provide the possibility to track the formal dependencies
(inside C-CoRN) of the statements that we find in IDA.

The order in which the Helm system forces the user to make the document,
i.e. first formalise the mathematics and only after that describe its rendering
can sometimes be inconvenient. In Helm the link from the informal description
to the formal object is made by the user, who writes (in the XML description)
explicitly where the object can be found. This means that whenever an object
in the library moves, the user has to alter its XML description. And objects do
move, because the library is not a static object: theory files are reorganised and
are being split up when they become very large. One may expect these libraries
to stabilise at a certain point, but C-CoRN is still very much a dynamic library.

Acknowledgements. We thank the anonymous referees for their useful comments.
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Abstract. A variety of problems in mathematical calculus can be solved
by recursively applying a finite number of rules. Often, a generic solv-
ing strategy can be extracted and an interactive exercise system that
emulates a tutor can be implemented.

In this paper we show how software developed by us can be used to
realize this interactivity. In particular, an implementation of a generic ex-
ercise for computing the derivative of elementary functions is presented.

1 Introduction

This paper deals with mathematical interactive learning. In most implementa-
tions of multi-step exercises for interactive learning the exercises are completely
authored for each instance of the problem. Here we discuss an implementa-
tion of generic exercises for specific mathematical problems. This means that
the exercise system provided will depend on the type of problem and not on
the particular instance of the problem. In our example, the generic problem is
computing derivatives of elementary functions while a particular instance of the
problem is computing the derivative of x �→ x2 +3. (From here on, we shall omit
the binding operation ‘x �→’ when referring to a function in x.)

For the design of automated exercises we use mathematical knowledge com-
ing from two sources. Firstly, many problems in mathematical calculus can be
solved by applying recursively a finite number of rules. The rules used for solving
mathematical problems in a particular domain will be called domain rules. In
our example, these will be the differentiation rules of composed functions (sum,
product, quotient, chain rule) and the formulas for derivation of elementary
non-composed functions (for instance, the derivative of sin equals cos).

Secondly, we need information on the particular instance of the problem, like
the type of mathematical object we deal with and its definition. This information
can be immediately deduced from its OpenMath [10] representation and it is
typically sufficient to infer the domain rule(s) to be used for solving the problem
in this particular instance. In fact, what we need is the map assigning to a
mathematical (OpenMath) object the domain rule which needs to be applied.
We will call this map a domain reasoner.
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In an interactive exercise, the student is required to solve a problem. Our
strategy is to decompose the original problem into simpler sub-problems, so as
to obtain a multi-step exercise. An interactive exercise can be seen as a collection
of problems together with the order in which they are executed. An exercise
always has a first step, corresponding to the original question. According to the
student’s answer and a predefined strategy, the next step is selected. In this
way, the student is guided in solving the initial question. The correctness of the
student’s answer is evaluated by the use of a computer algebra system (CAS)
connected to the exercise. There are quite a few interactive exercise systems
which check automatically the correctness of the student’s answer (such as [11],
[7], [5]) but they are not as concerned with tutoring. These exercises consist
of a single evaluation step. Some systems (like [7]) also provide automatically
generated hints.

The novelty of our approach is that we produce generic exercises for certain
mathematical problems by using the semantic information encoded in the Open-
Math expression. Our approach can be applied to any mathematical problem for
which a complete set of domain rules and a map from the OpenMath expression
to the set of domain rules can be defined. We believe that this is possible for
many problems in mathematical calculus.

The structure of the paper is as follows. In section 2 we present our general
approach to interactive exercises, exemplified for the computation of derivatives.
It shows how we use the domain rules and the OpenMath tree structure of the
instance to generate the interactive exercise. Sections 3 and 4 contain details on
the design of the interactive exercises, respectively on the set-up of the system
running the exercise and some of the tools developed for this type of interactive
exercise. In Section 5 we show our implementation for computing the derivative
of an arbitrary (differentiable) univariate function. Section 6 discusses the ap-
plicability of the method to other problems in mathematical calculus. Section 7
presents ways to enhance the interactive exercise into detecting misconceptions
of the student and other errors. Conclusions are presented in Section 8.

2 Interactive Exercises

Let us analyze the problem of computing the inverse of a given matrix using
Cramer’s rule. Here, a possible sub-problem is computing the determinant of
the matrix. This helps for example to determine whether the inverse exists or
not. Another sub-problem involves computing the elements of the inverse using
Cramer’s rule, as the fraction of two determinants. This exercise will consist of
several steps, namely the original question, the problem of computing the deter-
minant of a matrix, the problem of computing an element of the inverse (repeated
n2 times, where n is the size of the matrix) and, at last, an acknowledgment of
the result.

There are however more complicated examples of calculus problems in which,
although there is a finite number of procedures that can be applied, the order in
which they are executed is not the same for any instance of the problem. In case
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few alternatives are possible, an interactive exercise should allow the students
to choose the course of action they want to pursue.

The choice of the rules to apply depends in general on the particular in-
stance of the problem. For example, in differentiating sin(x2 + 1) one applies
the chain rule and the elementary differentiation rules for sin and polynomials,
while differentiating x+log(x) requires applying the sum rule and the elementary
differentiation rules for the logarithm and the identity.

Still, a generic exercise can be implemented in such cases. Using the Open-
Math tree structure of the expression of the function, the system can recog-
nize the rule to be applied. Here we concentrate on derivatives, although in
Section 6 we discuss the applicability of the method to other fields in mathe-
matical calculus.

Derivatives are the case study considered by the European project LeActive-
Math [2] for interactive, user-adapted e-learning. Much of the work reported in
the present paper is carried out within the context of this project.

2.1 Derivatives

The domain rules in the case of derivatives are easy to derive. They are the
differentiation rules of composed functions and the formulas for differentiation
of elementary non-composed functions.

– sum: (f + g)′ = f ′ + g′.
– product: (fg)′ = f ′g + g′f .
– quotient: (f/g)′ = (f ′g − g′f)/g2.
– chain rule: (f ◦ g)′ = (f ′ ◦ g) g′.
– c′ = 0, where c is a constant.
– id′ = 1, where id denotes the identity function.
– elementary non-composed functions: sin′ = cos, exp′ = exp, etc.

The OpenMath expression of a function contains all necessary information for
computing the derivative of the respective function according to the above rules.
One can determine whether the elementary function is composed or not, by
the fact that a composed function has at least two OMAs in its OpenMath
expression. In case the function is composed one can easily decide which one of
the rules for composed functions needs to be applied. Let us consider for example
the OpenMath expression of sin(x2 + 1).

<OMOBJ>
<OMA><OMS cd=’transc1’ name=’sin’/>
<OMA><OMS cd=’arith1’ name=’plus’/>
<OMA><OMS cd=’arith1’ name=’power’/>
<OMV name=’x’/> <OMI>2</OMI>

</OMA>
<OMI>1</OMI>

</OMA>
</OMA>

</OMOBJ>
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By looking at the root operator (the first OMS) it is clear that we either need to
apply the chain rule if the function is composed or, otherwise, a differentiation
rule for elementary functions. For x+log(x) the root of the OpenMath expression
is the ’plus’ symbol which suggests applying the sum rule. In this way we define
a map matching the root of the OpenMath tree to the particular domain rule.

In Section 5, we discuss this generic exercise in greater detail.

3 The Design of an Interactive Exercise

This section explains the structure of an interactive exercise. Each exercise cor-
responds to a particular area in mathematical calculus. Specifically, we will have
one interactive exercise for computing derivatives, one for computing limits, etc.
Such an exercise is applicable to any instance of the problem (under some general
assumptions) and it is in this sense generic.

We decompose a given problem into several sub-problems. Then we construct
a directed graph having a source (start node) and a sink (end node). Each node
of the graph corresponds to a sub-problem. Each arc shows a possible succession
from one sub-problem to another one. The graph is constructed in such a way
that each path from the source to the sink is a possible solution of the original
problem. Therefore, we call the graph a solution graph and a path from the
source to the sink a solution-path.

Each sub-problem has a text field, containing for example a question, and a
user-input field, in which the student types the answer. The only exception is
the sink which contains only the text field, to acknowledge the result. According
to the input of the user or to the state in which the system finds itself, an arc is
chosen and implicitly the next step/sub-problem to be solved.

An abstract solution graph is depicted in Figure 1. Each node represents a
subproblem. The source, denoted by 1 contains the original question. In case
condition c1 is satisfied, the student is directed to a a different question 2. In
case another condition is satisfied, c1′, the student is redirected for example to 1.
In case neither c1 nor c1′ are satisfied, the student is directed to the sink, rep-
resented by n.

Fig. 1 An abstract solution graph

The arcs leaving a node must represent exclusive conditions and must cover
all possibilities. The conditions can be imposed for example on the student input,
leading for example to a specific sub-problem if the answer to a question is correct
and to another one if the answer is incorrect. The conditions can be imposed
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on other parameters as well, like a maximum allowed number of trials, previous
performance of the student, etc.

The solution graph is characteristic for a mathematical problem. It is designed
to take into consideration the domain reasoner of the problem and aspects of
a teaching methodology. There is no unique design for the solution graph of a
specific mathematical problem.

4 Implementation of the Interactive Exercises

This section explains the implementation of the interactive exercises. More de-
tails on the general set-up and tools necessary to run the interactive exercises
can be found in [6].

The exercises are implemented as a web-application. They are written in an
XML based language that offers mark-up support for interactivity enriched with
OpenMath for handling mathematics.

4.1 XML Representation of the Solution Graph

XML trees are ideal for capturing the structure of the solution graph of an
exercise. Our examples use the following principal XML tags: step, message,
userinput and choice. Each step corresponds to one sub-problem in the solu-
tion graph. The step/sub-problem has an attribute id by which it can be called.
Each step has the following components: message, userinput and choice. The
only exception is the last step, the sink, which has only message. The message
contains the text or mathematical question posed to the student. That is, for
example in Figure 2, Please input a function in x whose derivative you would like
to compute. In Figure 2, the user input is a text-box having the label Function.
The tag choice implements the arcs of the solution graph, and redirects to the
next step. The choice and redirect option are further explained in the following
section. The choice is hidden from the user.

4.2 Variables and Flow Control

The interactivity is catered by a Java based server (e.g. JSP [4]) which also
provides a basic programming-like language for setting and retrieving variables,
performing tests, flow control, etc. The interactivity consists of walking through
the solution graph and the exchange of information with the user. The path one
takes is determined by various parameters which can be determined by queries
but also by previously set variables.

4.3 Mathematical Queries

Mathematics is represented according to the OpenMath standard ([10]). Open-
Math encoded objects can be displayed by browsers (through conversion to
MathML) and interpreted by computer algebra systems via OpenMath
phrasebooks. Moreover, we use here the OpenMath expression of a mathematical
object for interactivity in order to determine the domain rule to be applied (see
Sections 2.1 and 6).
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Within the frame provided by the Java based server we construct custom
tags. Examples are provided below.

Query to a CAS. It is necessary for the automatic evaluation of the student’s
input. A standard for mathematical queries was defined by MONET (see [8]).
See also the OpenMath webpage, Software and Tools, for some implementations
of query services ([10]).

Query to a taglib. The following queries to the OpenMath tree structure of a
mathematical expression turn out to be very useful in our interactive examples:
extraction of a node, extraction of the root (operator) of a node, navigation
in the tree (e.g., move to parent/next sibling/first child), rewriting the tree
(e.g., mathematically x + x2 equals x(x + 1), but the corresponding OpenMath-
expressions are different), keeping track of the current node (a query of the type
What is the parent of x in (1+x)2/x is ambiguous). The use of these operations
will be made clear in Section 5.

The list of queries above is not exclusive and may need to be extended in case
an interactive exercise for a different mathematical problem is considered.

5 The Example for Computing Derivatives

We present here an implementation of a generic exercise for computing the deriv-
ative of a function, see [3]. As a back-engine for checking the student’s answer we
use Mathematica. Expressions like (x − 1)/(x2 − 1) and 1/(x + 1) are therefore
considered equal.

Students are allowed to choose a (univariate) function. Then they are asked
to compute the derivative. In case they give a wrong answer they are guided
through decomposing the function into simpler ones and then apply differenti-
ation rules. In this implementation the next step is determined in interaction
with the student. The student receives hints automatically, as shown in Step 3.

We present below snapshots taken while running the exercise. The exercise
consists of a finite set of interactions, one asking the student to compute the
derivative of a function, one asking the student to decompose the function, etc.
This ’modularization’ of the exercise allows us to reuse parts of the exercise.
Note that each module is largely humanly authored but that parts of it are
automatically updated by means of variables as described in Section 4. Note
that the path taken for solving the exercise is decided in interaction with the
student.

We describe below a possible scenario.

Step 1. The student introduces a function on which they want to practice. Al-
ternatively, the function can be drawn from a database or randomly drawn from
a particular class of functions such as polynomials, trigonometric, transcendental
or any composition of functions belonging to these classes.

Step 2. The student is asked to submit the elementary function that is the
derivative of the function.
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Fig. 2

Fig. 3

Step 3. The student’s answer is checked by Mathematica. If the student’s
answer is not correct, they are asked to choose a differentiation rule they want
to apply. The button Hint, when pressed, displays the text: ’Use the chain rule’.
Here the word chain is determined automatically by the system by analyzing the
OpenMath expression of the function whose derivative we are computing at this
step. The system finds the rule to be applied by using the special tools described
in Section 4, namely the extraction of the root operator.

Step 4. After having typed the rule, the student is redirected accordingly.
If the rule chosen by the student matches the rule corresponding to the main

operator, the system can also suggest the two functions g and h. This is not
implemented in the current version.

Step 5. The student introduces the two functions and the CAS verifies that by
composing the two, one obtains indeed the original function. If that is correct,
the student is directed to the first function and asked for its derivative. The
expression of the first child is obtained using the tools of Section 4, namely the
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Fig. 4

Fig. 5

navigation in the tree and the extraction of a node. Note that we reuse here the
interaction from Step 2, for a different function.

Step 6. Since the answer at Step 5 is correct, we compute the derivative of
the next sibling (reusing interaction from Steps 2 and 5). The next sibling is also
found using the tools of Section 4.

Step 7. Since the second answer is correct and there are no more siblings we
are redirected to compute the derivative of the parent (interaction of Steps 2, 5
and 6). If the answer were not correct at this point the student would have been
asked to decompose further x2 + x. (Students are allowed to decompose it both
as a sum of x and x2 and as a product of x and x + 1).

Note that the hint, when pressed, displays the sum rule for derivation.
Step 8. The answer is correct and this is acknowledged in the last page.

The complete solution graph of this problem is illustrated in Figure 10. In
the graph, the subproblem 1 corresponds to Figure 2. From subproblem 1 we
are always redirected to subproblem 2 which corresponds to Figure 3. Here
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Fig. 6

Fig. 7

depending on the student’s answer and on previous knowledge we choose the
next step. Let us explain the arcs. C11 is taken if the answer is incorrect and the
derivative for the children are known. C12 is taken when the answer is correct
and there is a next sibling, as it happens for example at Step 6. In this case,
the current function is also updated. C13 is taken if the answer is incorrect and
the derivatives of the children have not yet been computed. C14 is taken in case
the answer is correct and there is no parent of the current node as it happens
in Step 8. C15 is taken if the answer is correct, the derivatives of all children
have been computed and the current node has a parent. This situation occurs
at Step 7.

The subproblem of 3 corresponds to Figure 4. The subproblem of 4 corresponds
to Figure 5, while subproblem 5 corresponds to a different rule. The arcs C21,
C22 correspond to the choice the student is making. Arc C31 corresponds to an
incorrect decomposition of the function into simpler ones, while the arc C32 corre-
sponds to a correct decomposition. Note that if the choice is correct, the function
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Fig. 8

Fig. 9

we work with (the current node) is updated and takes the value of the first child
as it happens at Step 5. The sub-problem 7 corresponds to Figure 8. Arc C51
corresponds to a correct answer. In this case the function we work with (current
node) is updated to the parent. Arc C52 corresponds to an incorrect answer.

6 Other Applications

In this section we discuss the domain reasoners for the problem of computing
limits, respectively the problem of computing indefinite integrals of elementary
functions. Recall that the domain reasoner is the map from the mathematical
knowledge on the instance of the problem (typically available in its OpenMath
expression) to the set of domain rules.

6.1 Limits

The limit of a univariate elementary function when its argument goes to a speci-
fied value is in general obtained by taking the limits of its parts. In other words,
taking the limit commutes with the composition of continuous functions. There
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Fig. 10. solution graph for the derivative problem

are a few exceptions: in case the result of applying the above mentioned rule is
one of the undecided cases 00, 1∞, 0∞,∞0, 0/0, 0 × ∞,∞ − ∞, rewriting rules
are applied.

Example 1. Consider

lim
x→1

(
1
x

) 1
1−x

which results in the undecided situation 1∞. To solve the problem we reduce it
to the undetermined case 0/0 by applying the rewriting rule(

1
x

) 1
1−x

= exp log
(

1
x

) 1
1−x

= exp
− log x

1 − x
,

and then apply l’Hôpital rule; we conclude that the original will equal

explimx→1
1
x = e.

L’Hôpital rule says that in the undecided cases where lim f(x)/g(x) is either 0/0
or ±∞/±∞ and lim f ′(x)/g′(x) exists, we have lim f(x)/g(x) = lim f ′(x)/g′(x).
L’Hôpital rule can be applied repeatedly and is equivalent to the method based
on Taylor series expansions. Other undecided cases can be reduced to the 0/0,
∞/±∞ cases using rewriting rules. For example, the ’power’ cases 00, 0±∞, 1±∞

are rewritten using the equivalence f(x) = exp(log(f(x))) while for the ’differ-
ence’ cases ∞−∞ we can use f(x) = log(exp(f(x))). However, when the expres-
sion of f(x) contains radicals, a different rewriting rule may need to be applied.
As shown by the example, limx→∞ x/

√
x2 + 1, l’Hôpital’s rule occasionally fails
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to yield useful results. In certain cases, the limit of a ’part’ of the function does
not exist, although the limit of the whole function exists.

Example 2. Consider

lim
x→∞

sin(x)
x

.

In such a case the sandwich rule is applied:

− 1
x
≤ sin(x)

x
≤ 1

x
implies lim

x→∞
sin(x)

x
= 0.

The domain rules for computing limits are the rewriting rules, l’Hôpital/Taylor
series rule and the sandwich rule.

– l’Hôpital rule: if limx→a f(x) and limx→a g(x) are both 0 or are both ±∞
and lim f ′(x)/g′(x) exists, then limx→a f(x)/g(x) = limx→a f ′(x)/g′(x).

– sandwich rule: if g(x) ≤ f(x) ≤ h(x), for all x in (a− ε, a+ ε) ( x in (M,∞),
x in (−∞,−M), when a = ∞, respectively a = −∞ and M > 0 large) and
limx→a g(x) = limx→a h(x) = L, then limx→a f(x) = L.

– rewriting rules: f(x) = exp(log(f(x))), f(x) = log(exp(f(x))), rewriting
rules for radicals, etc.

Computing the limit of a composed function is based on computing the limits
of its sub-functions. Again, the OpenMath expression of a function is very useful
for identifying the sub functions. Let us consider the OpenMath expression of
limx→1( 1

x)
1

1−x (Example 1).

<OMOBJ>
<OMA><OMS cd="limit1" name="limit"/>
<OMI> 1 </OMI>
<OMS cd="limit1" name="both_sides"/>
<OMBIND><OMS cd="fns1" name="lambda"/>
<OMBVAR><OMV name="x"/></OMBVAR>

<OMA><OMS name=’power’ cd=’arith1’/>
<OMA><OMS name=’divide’ cd=’arith1’/>
<OMI>1</OMI><OMV name=’x’/>

</OMA>
<OMA><OMS name=’divide’ cd=’arith1’/>
<OMI>1</OMI>
<OMA><OMS name=’minus’ cd=’arith1’/>
<OMI>1</OMI><OMV name=’x’/>

</OMA>
</OMA>

</OMA>
</OMBIND>

</OMA>
</OMOBJ>
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As in the case of differentiation, we can start by asking the student to compute
the limit of the function. In case of a wrong answer we ask the student to
decompose the function. The hint is given according to the OpenMath expression
of the function. By doing this recursively, at the end of this procedure we have
either computed the limit or identified the undecided case.

According to the undecided case we find, a rewriting rule (from the domain
rule) is applied in order to bring the function to a case in which l’Hôpital can
be applied as described in Section 6.1.

As remarked in Example 2, it is possible that evaluating a sub-function at
some point we obtain a whole ’interval’. In this case, the rule (of the domain
rule) to be applied is the sandwich rule.

In general the mathematical knowledge contained in the OpenMath expression
is sufficient for defining the domain reasoner. An exception is the computation of
limits in which knowledge on the range of the function is necessary for applying
the sandwich rule.

6.2 Indefinite Integrals

Computing indefinite integrals (also called primitives) of elementary functions
is in general much harder than computing derivatives or even limits. However a
lot of progress has been made in the area of symbolic integration (see e.g. [1])
and many computer algebra systems have an integrated module for symbolic
integration. Powerful algorithms have been developed which compute the indef-
inite integral of an elementary function in case it exists or prove that there is no
elementary primitive.

Nevertheless our problem is in some sense simpler. We do not want to compute
the primitive of a given function or to establish whether the primitive exists. To
make sure that a primitive of f exists, we will randomly generate an elementary
function F and compute its derivative f . Knowing F , we can guide the student
through finding F as shown below.

Example 3. Consider the function f : R → R given by f(x) = 1/(1 + 2x + 2x2)
and a primitive F (x) = arctan(x/(x + 1)) of it. From the OpenMath expression
of F (x) we see that F equals arctan(y) for some function y of x. Knowing that
(arctan(y))′ = y′/(y2 + 1), a helpful suggestion to the student is:

Can you write the function f as y′/(y2 + 1) for a suitably chosen function y
of x?

Note that the answer is not unique. Besides F , other primitives of f are

F1(x) = − arctan
(

x + 1
x

)
obtained by rewriting f(x) as − (1/x)′

1 + (1/x)2

and

F2(x) = − arctan(1 + 2x) obtained by rewriting f(x) as
(2x + 1)′

1 + (2x + 1)2
.
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All answers are correct and it can be checked that F , F1 and F2 all differ from
each other by a constant.

There are several differences between our problem, which is teaching rules for
computing integrals and the problem of computing integrals using state-of-the-
art algorithms for symbolic integration described for example in [1]. We know
the answer and want to deduce the steps that were taken in order to solve the
problem. In some cases, as shown in Example 3, this is trivial. However other
rules, like the integration by parts, are hard to recognize. Also, the algorithms
described in [1] can be very different from the methods taught in schools, like
the sum, chain, partial fractions, integration by parts rules and the elementary
rules for integration.

The first implementations of algorithms for computing indefinite integrals are
closer to the methods taught in school. To make our job easier, we can simply take
over the domain reasoner of such a computer algebra system, for example the one
described in [9]. There, the domain reasoner is based on ’pattern recognition’ of
a sub-function like sin, exp, etc., which is trivial from the OpenMath expression
of the given function and uses heuristics for determining the rule to be applied.
A multi-step interactive exercise for symbolic integration will have to implement
the domain reasoner of a computer algebra system, for example of [9].

The alternative for us would be to write a domain reasoner ourselves, using
the knowledge we have on the primitive F and on the function f , as suggested
in Example 3. However we do not pursue this idea here.

7 Enhanced Interactive Exercises

The work presented in the previous sections can be easily extended in a few
directions.

7.1 Detecting Errors and Misconceptions

A common error the student can make is forgetting brackets. If the number of
opened brackets does not equal the number of closed brackets, the error can be
detected at the moment of parsing the answer to OpenMath. Otherwise, for-
gotten brackets can still be detected in simple expressions, by extensive trials,
although that would involve a number of computations which increases expo-
nentially with the size of the expression.

Another interesting way of using the computer power for educational pur-
poses, namely for detecting the misconceptions of the student, is by introducing
the so-called buggy rules. Experienced teachers know what are the most fre-
quent errors that a student makes when solving a particular type of problem.
For example, a common mistake (buggy rule) when computing derivatives is
(xn)′ = xn−1. This knowledge can be formalized and the system can compare
the student’s answer against a list of buggy rules, in case the answer is not cor-
rect. In this way, the computer algebra system can make a guess as to what the
student did wrong.
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7.2 Simplifications

The student may often give a correct result which is however not simplified, as in
(x − 1)/(x2 − 1). Most computer algebra systems have implemented simplifica-
tion procedures to bring an expression to a normal form. At the moment we only
distinguish between two cases, namely between a correct answer and a wrong
answer. For pedagogical purposes, a third case would be interesting, namely ’cor-
rect but not fully simplified’. For this we would have to compare the student’s
answer with the normal form(s) available in the computer algebra system. How-
ever, this is a tricky issue since a normal form is not uniquely defined (e.g.,
both forms x(x+ 1) and x2 + x are acceptable). Also different computer algebra
systems will have different implementations of simplification procedures, leading
to different normal forms. Nevertheless, computer algebra systems often have a
complexity measure of an expression which may be used to detect very elaborate
answers.

7.3 Solution Generators

In this paper we have proposed implementing the domain reasoner for each
particular problem in order to identify a possible next step. An alternative would
be to use already existing tools, such as [12], which generate a detailed solution
for a particular instance of the problem. For example [12] can display the solution
of practically any instance of a variety of calculus problems among which we
find computing derivatives and computing limits. This is achieved by using the
domain reasoner implemented in Mathematica. The fact that [12] is an extension
of Mathematica is in our view a disadvantage since this may restrict its use. At
the moment the only interactivity [12] provides is in choosing the problem to be
solved, hence it cannot be directly applied for interactive exercises. However, it
is an innovative use of computer algebra systems and it may turn out to be very
useful for interactive exercises.

8 Conclusion

The paper describes a method for implementing multi-step interactive exercises
for certain problems in mathematical calculus. This is possible by exploiting the
mathematical knowledge available in the OpenMath expression of the mathe-
matical objects we deal with, by deriving the domain rules corresponding to the
problem and constructing a domain reasoner for solving the problem.

As a first approximation, in the case of differentiation, the necessary prop-
erties of the mathematical object are deducible from its OpenMath expression.
However, we have noticed already an exception in Example 2 where extra knowl-
edge (about bounds of the function) is necessary in order to be able to compute
certain limits.

Our set-up for the particular case of computing derivatives for functions is a
first attempt, made possible within the LeActiveMath project [2].
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Abstract. Since version 7.2 the Mizar system produces quite detailed
XML-based semantic description of Mizar articles during their verifica-
tion. This format is now used natively for most of the processing done
by Mizar, e.g., also for the whole Mizar internal database. The main
motivation for switching to this XML-based representation is to make
semantic communication with Mizar and presentation of the MML more
accessible to a variety of external tools and systems. This article briefly
describes this format and its current implementation, and shows exam-
ples of its usage. These examples include presentation of linked Mizar
articles in modern XML-capable browsers like Mozilla, authoring assis-
tance in the Mizar mode for Emacs, and experiments with XML-based
querying languages like XQuery over the Mizar Mathematical Library
loaded into a native XML databases like eXist. This work makes the
currently largest repository of formal mathematics available to many
kinds of presentational, data-mining, and automated reasoning applica-
tions and experiments, and the goal of this article is also to encourage,
facilitate and provide recipes for the development of such applications.

1 Motivation

The Mizar1 [Rud92, RT99] system is today probably the longest living proof
checker of the world. There have been several re-implementations of this system
during the previous decades [MR04], the current version is Mizar 7. These re-
implementations were usually triggered by changes in the Mizar language or in
the core proof-checking algorithms, coming from Mizar-based research on for-
malization of mathematics. Unlike these changes, the XML-ization of Mizar de-
scribed here was triggered and also largely made possible by external influences.
In this section we state the reasons that motivated this work.

1.1 Standard Format for External Semantic Processing of MML

First, a number of Mizar-external tools working with the semantic content of the
Mizar Mathematical Library (MML) have been implemented in the recent years:
MML Query [BR03], MoMM [Urb05b], MPTP and Mizar Proof Advisor [Urb04],
1 http://mizar.uwb.edu.pl
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semantic browsing in Emacs [BU04, Urb05a], etc. Such projects have shown
the general interestingness and usefulness of Mizar-external semantic processing
of the MML. However, since the Mizar language attempts to be very close to
mathematical vernacular, the raw Mizar articles are difficult to process without
a good knowledge of the Mizar parser. That is why all the above mentioned
systems are not completely Mizar-external. They usually have to include some
kind of a Mizar exporter, i.e. a tool written on top of the Mizar parser that
exports various parts of the Mizar texts into the format used by these systems.
Having to write such a tool can however be a “showstopper” for a number of
people interested in the semantic processing of MML. It already requires some
effort to get to know the Mizar language, and it requires even more effort to gain
some working knowledge of the Mizar implementation. The obvious remedy is to
export the semantic content of MML into an easily parsable and well-described
format. The first effort that largely succeeded in this was the ILF project [Dah98],
for which Czeslaw Bylinski wrote a tool exporting Mizar articles into a well-
described Prolog format. Today, XML seems more suitable for such an export,
because of its large-scale adoption throughout the software industry, resulting in
the availability of a number of standards and tools for its description, validation,
parsing, transforming, presentation, storage and indexing, etc.

1.2 Better Format for Internal Mizar Processing

The second reason for XML-izing Mizar comes from the Mizar implementation
itself. The fast progress in the computer industry has exponentially increased
the amounts of memory and storage space available to current systems, when
compared with the situation thirty years ago. It is no longer necessary to devise
as succinct formats as possible for storing internal information. More attention
can be paid to the maintainability, extendability, standardization, and ease of
use of such formats. Modern computer languages have gone as far as having
default procedures for storage/loading complex data in XML.

The old Mizar format for internal data storage suffered from the deficien-
cies mentioned above. It was so succinct that it was quite hard to extend, and
therefore changes to the Mizar language usually meant painful low-level work
on data-storage. Only as little information as necessary for the basic verification
was often stored. It meant that utilities needing more information were hard
to implement, or entirely impossible without a large-scale duplication of code.
While the verbosity has to be controlled even today, we can afford to have much
more complete information at any time of the Mizar processing with no signif-
icant impact on its speed, and thus allow an easy implementation of a number
of new Mizar utilities.

1.3 Putting It Together

The distinction between external and internal reasons for this work is not perfect.
It has become quite clear during the years of Mizar development that various
special-purpose Mizar-exporting tools written for external processing of MML
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usually become very quickly outdated. The only working way how to avoid it is
to maintain one common and well-described format both for internal Mizar pro-
cessing and for the external tools. Additionally, the distinction between internal
and Mizar-external tools is not perfect either. Some tools (e.g., the MizarMode
[Urb05a]) eventually became a standard part of the Mizar distribution, while
some other Mizar utilities are no longer distributed. It is quite realistic to pre-
dict that in some time e.g. more searching tools might be distributed with Mizar,
especially now that the internal Mizar database is already queryable using XML
standards like XPath and XQuery.

2 Description of the Mizar XML Implementation

The code-base of the Mizar kernel is quite large (ca. 50000 lines). Since Mizar is
a “production” system used by many people around the world, the switch had
to be done in a conservative way, introducing as little user-visible changes to
Mizar as possible. The work has been done in three smaller phases, making the
transition smoother and better controlled. After each phase, regression testing
on both the MML and randomly created incorrect articles was carried out before
releasing the new Mizar version. The first two phases done in 2004 dealt with
the old information passing in Mizar. As noted above, these old formats were
devised in times when memory and storage space were expensive, and therefore
a lot of useful information was not present in them. Additionally, different I/O
procedures were used for the same data-structures in different contexts, again in
order to save memory and storage. In the third phase the actual switch to XML
format was carried out.

2.1 Providing Semantic Form of Mizar Articles

In the first phase the interface between semantic analysis and proof checking was
completely rewritten. The output of semantic analysis is now a complete seman-
tically disambiguated form of a Mizar article, while earlier it included only the
information that was absolutely necessary for proof checking. The additional in-
formation includes, e.g., the description of the Jaskowski-style natural deduction
steps used in the proofs, the modified thesis after each deduction step, defini-
tional macros (definientia) used for silent unfolding of thesis, etc. The semantic
analysis and proof checking became completely separated, and they can now
even be run as separate programs. Though this is not very important for Mizar
at the moment, it documents well the conceptual separation that was carried
out: on one hand we have the parser for the natural-language-like Mizar articles,
and on the other hand we have the Mizar verifier and other utilities working on
the easily machine-processable format produced by the parser. It is interesting to
observe that such a split is becoming more and more common in many “author-
ing” areas, and various human-friendly compact representations (e.g. wiki for
HTML, compact syntax for RELAX NG, etc.) are increasingly used to produce
richly annotated machine-processable data. In this aspect, the Mizar language
might be thought of as a similar compact syntax for human-authored formal
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mathematics, and the detailed output produced by the Mizar parser (including
semantic analysis) as its machine-processable equivalent.

This first step has already allowed to rewrite more cleanly a number of Mizar
utilities, and to produce some interesting new utilities. It is now possible to
collect statistics about the usage of definitional macros in MML, or to eas-
ily compute all the suppositions done along the Jaskowski-style proof path to
some lemma. The latter can be used e.g. in the MoMM data-miner [Urb05b]
as another method of exporting internal lemmas from their proof context. As
noted in the Motivation section, a big incentive for this step was also the
need for processing of complete Mizar proofs in external systems like MPTP,
MML Query, Mizar Proof Advisor and others. However once the first step was
finished, it became clear that the complete XML-ization is really feasible in
quite a short time, and work on these external systems was largely postponed
after that.

2.2 XML-izing Mizar

Mizar can be used on a number of computer architectures, and can be com-
piled with all major objective Pascal compilers (FPC, GPC, Delphi, Kylix).
This variety makes it quite difficult to use some external XML-parsing library
for Mizar. So the starting point that triggered further work on XML in Mizar
was the implementation of a native “Tiny XML” Pascal parser by Czeslaw
Bylinski. This fast parser now implements just a subset of XML needed by
Mizar, more advanced features like parsing of XML entities are not yet sup-
ported (and probably not necessary for our purpose at all). One thing that
still prevented the switch to XML was the number of memory-optimized ver-
sions of essentially the same data-structure in Mizar. During the second phase
a large unification of such Mizar data-structures was done and the Mizar code-
base thus simplified quite a lot (about 3000 lines were pruned). The effects of
both the first and this second phase on the speed, memory, and storage require-
ments of Mizar processing were (according to current standards) really negligi-
ble. For instance, the slowdown caused by having the detailed information after
semantic analysis was about 1-2 percent. Most of the Mizar processing time is
today used for the proof checking, and various modifications of the proof check-
ing module usually cause much higher deviations (in both directions) than this
number.

In the third phase, an XML representation was suggested for most of the
Mizar data-structures, and most of the I/O procedures have been rewritten for
this representation. The initial task of the XML format2 was just to allow the
switch to XML, and it will probably go through some more changes in the
future. The applications that we describe below are already giving quite a lot of
feedback about the usability of this format for Mizar-external purposes, and some
of that feedback already resulted in changes in the XML format. The general
policy concerning such changes is to incrementally improve the clarity of the
2 Since Mizar version 7.4, the Mizar XML documentation is distributed with Mizar.

It can be also viewed at http://lipa.ms.mff.cuni.cz/~urban/Mizar.html
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XML representation, so that it is more useful for various external applications,
however this has to be done without serious influence on the Mizar processing.
A lot of information can now be added to the XML representation by external
processing via simple XSLT stylesheets (we give an example below). If a really
rich format is required by some external tool, the developers of such a tool should
use XSLT to produce such a rich format from the basic Mizar XML. On the other
hand, most of the Mizar XML texts is now occupied by Mizar terms, formulas
and types, so adding markup to other Mizar constructs is usually quite cheap
and with negligible influence on the speed, memory and storage requirements of
the Mizar processing.

The description of the Mizar XML format is (following Knuth ideas on literate
programming) now given directly in the Mizar code, as specially tagged Pascal
comments. They are written in the RELAX NG compact syntax3 which is (unlike
other XML-based specification formats4) natural, human-friendly, and actually
useful even as an internal description of the Pascal data-structures. It would not
be feasible to fully produce the I/O routines automatically from the RELAX NG
descriptions (or vice-versa), however, at least a part of the Mizar XML parsing
code is now produced automatically from them. This, together with validation
by the resulting schemata, should reasonably guarantee that the descriptions
will be maintained when Mizar changes, and will always faithfully represent the
Mizar XML format. These descriptions are then very simply (by a Perl one-
liner) collected into the file Mizar.rnc, which is now distributed with Mizar.
The particular RELAX NG schemata for each XML file produced by Mizar are
then created just by stating the starting element, and including Mizar.rnc. For
instance, the file article.rnc describing the complete semantic content of Mizar
articles looks this way:

include "Mizar.rnc"
start = Article

2.3 Speed and Space Considerations

The switch to XML had its effects on the speed and storage requirements of
Mizar processing. The following table 1 compares the speed of verification and
accommodation5 on complete MML and on average article before and after
XML-ization. The verification time of MML increased from ca. 47 minutes to
ca. 78 minutes, i.e., about 1.67 times. This is the most important number for
Mizar users, because verification is carried out very frequently during author-
ing Mizar articles. The accommodation time grew quite considerably, from ca. 2
minutes to about 15 minutes. Accommodation is however quite rare operation,

3 http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
4 “XML combines all the inefficiency of text-based formats with most of the unread-

ability of binary formats.” – Oren Tirosh, comp.lang.python.
5 Accommodation extracts from the internal Mizar database the Mizar items used for

processing a new article, and creates a local environment for that article.
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Table 1. Comparison of Mizar processing times (in seconds) before and after XML

Action MML bef. XML MML after XML avrg. bef. XML avrg. after XML
verification 2832 4723 3.2 5.34
accommodation 145 906 0.16 1.02

Table 2. Comparison of the sizes of exported Mizar files (in Kb) before and after XML

MML bef. XML MML after XML avrg. bef. XML avrg. after XML
12270 78080 14 89

and in absolute numbers it is still much below the verification times. Since ac-
commodation spends most of its time in I/O procedures, its time increase cor-
responds quite faithfully to the growth in the size of processed data, i.e. to the
size of the internal database. These sizes are compared in table 2. This increase
is considerable (636 percent), and it is obviously caused by the greater verbosity
of the XML representation. It would be possible to compress the XML format
quite a lot (and therefore also decrease the processing times) by choosing much
shorter names of elements and attributes, but it would make the XML format
less understandable. Today (spring 2005), one gigabyte of storage costs about
0.75 USD, so from this point of view, an increase by tens of megabytes is really
negligible, and should pose no problems to users. The most sensitive value is
therefore the verification time, and this is the reason why the verbosity of the
XML format needs to be controlled. On the other hand, the Moore’s law will
take care of the current verification time increase in one year, and as mentioned
above, the deviations caused by modifications of the proof checking module are
quite frequent and at about the same scale.

2.4 Short Description of the Mizar XML Format

Long before XML and XML-based mathematical formats were devised, Mizar
had strict internal division between the presentation layer and the semantic
layer. The current Mizar XML format captures only the semantic content of
Mizar articles, which is used for Mizar verification and also in practically all
the above mentioned Mizar-external tools. As in e.g. MathML, it is possible to
construct the presentation from the Mizar semantic layer, and e.g. MML Query
has been doing this for several years. However, such reconstructed presentation
often differs from the original presentation used by authors of the articles. So
the current XML format cannot be used yet for exact presentation purposes,
like the Journal of Formalized Mathematics6. Therefore the Mizar presentation
layer will probably also be XML-ized in the future, it has been already discussed
among Mizar developers several times.

6 http://mizar.uwb.edu.pl/JFM/
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As noted above, most of the markup is now occupied by Mizar terms, formulas
and types. Terms and formulas are now just named patterns representing the
various elements:

Term =
( Var | LocusVar | FreeVar | LambdaVar | Const | InfConst | Num
| Func | PrivFunc | Fraenkel | QuaTrm | It | ErrorTrm)

Formula =
( Not | And | For | Pred | PrivPred | Is | Verum | ErrorFrm )

These particular term and formula elements are described in more detail in the
RELAX NG documentation7. Note that the logical connectives used in the Mizar
semantic layer are only Not, And and For, all other connectives are transformed
to them. The markup for Mizar types looks this way:

## Adjective is a possibly negated (and paramaterized) attribute
Adjective = element Adjective {

attribute nr { xsd:integer },
attribute value { xsd:boolean }?,
Term*}

## Cluster of adjectives
Cluster = element Cluster {Adjective*}

## Parameterized type - either mode or structure
## First goes the LowerCluster, then UpperCluster
Typ = element Typ {

attribute kind { "M" | "G" | "errortyp" },
attribute nr { xsd:integer }?,
Cluster*, Term* }

The building blocks of Mizar proofs are Jaskowski-style [Jas34, Pel99] natural de-
duction steps8. Those modifying the currently proved thesis are SkeletonItems
and the rest are called AuxiliaryItems. Again, these are just named patterns,
the particular elements are described in the documentation:

SkeletonItem =
( ( Let | Conclusion | Assume | Given | Take | TakeAsVar ), Thesis? )

AuxiliaryItem =
(JustifiedProposition | Consider | Set |Reconsider | DefFunc | DefPred)

The top-level Article element describes the semantic content of a whole Mizar
article. It contains various Mizar blocks, introducing definitions, theorems,
schemes, etc.:

7 http://lipa.ms.mff.cuni.cz/~urban/Mizar.html
8 Actually, a new name like Mizar-Jaskowski or Jaskowski-Trybulec ND style might

be more proper, since the Jaskowski style was reinvented and augmented in Mizar.
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## The complete article after analyzer, aid specifies its name in uppercase.
Article = element Article {

attribute aid { xsd:string },
( DefinitionBlock | RegistrationBlock |
NotationBlock | Reservation | SchemeBlock |
JustifiedTheorem | DefTheorem | Definiens |
Canceled | Pattern | AuxiliaryItem )* }

This semantic description of an article is now automatically constructed during
the verification, so the way to produce such description for the whole MML from
installed Mizar distribution is e.g. following9:

mkdir tmp; cp -r $MIZFILES/mml tmp; cd tmp/mml
for i in ‘cat $MIZFILES/mml.lar‘; do accom $i; verifier $i; done

The Mizar distribution also includes the Mizar internal database (directory
$MIZFILES/prel), which is now also fully XML-ized. This database contains all
the MML items that can be re-used in other articles, i.e., theorems, definientia,
schemes, notations, registrations and constructors10. Again, all these files can be
validated by setting a suitable starting element (i.e., Theorems, Definientia,
Schemes, Notations, Registrations and Constructors) and including the ba-
sic schema Mizar.rnc. Despite the large-scale code unification described in 2.2,
the markup used for higher-level structures in the internal database is not yet
completely the same as the markup used for the description of whole articles.
E.g., the Scheme element used in the internal database differs quite considerably
from the scheme description used in whole articles inside SchemeBlocks. Com-
plete reconciliation of all such differences would be too time-consuming, and
the plan is to reconcile them gradually in the future, also using the feedback
obtained from various applications building on the XML format.

3 Applications

3.1 Stylesheet Processing

XSL Transformations (XSLT11) is a high-level declarative language used today
very frequently for transforming XML documents. A number of fast XSLT pro-
cessors are now publicly available, e.g., xsltproc12 or xalan13. XSLT is often
used for producing customized HTML from XML documents, and state-of-the-
art browsers like Mozilla and Firefox are shipped with built-in XSLT processors.
Useful compact syntaxes exist for human-friendly authoring of XSLT stylesheets,
the XSLTXT14 compact syntax is used to produce the stylesheets presented here.
9 This will take ca. 1-2 hours on standard hardware.

10 Just for completeness, the XML-ized form of the file $MIZFILES/mml.vct containing
MML symbols will be probably added to Mizar distribution.

11 http://www.w3.org/TR/xslt
12 http://xmlsoft.org/XSLT/xsltproc2.html
13 http://xml.apache.org/xalan-c/
14 http://www.zanthan.com/ajm/xsltxt/
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Some of these stylesheets are now distributed with Mizar, others are available
from the author’s site15.

A typical task easily achieved by XSLT is to produce a richer XML description
of an article from the description supplied by the Mizar parser. During accommo-
dation, Mizar collects from the internal database various resources required for a
new Mizar article. Such resources (theorems, schemes, constructors, etc.) are or-
ganized into arrays for fast lookup, and the current XML format only uses their
positions in these arrays (one integer) instead of their absolute MML address.
Using the absolute MML addresses makes the resulting XML files almost twice
as big, and as described above, this has negative effect on the speed of Mizar
verification and accommodation. The shortened and the absolute description of
the basic Mizar type set (with no adjectives) are shown below:

<Typ kind="M" nr="1">
<Cluster/>

</Typ>

<Typ kind="M" nr="1" aid="HIDDEN" absnr="1">
<Cluster/>

</Typ>

The additional attributes aid and absnr encode (together with the attribute
kind) the absolute MML address of this resource, i.e. it is the first mode type
introduced in article HIDDEN.

On the other hand, having the absolute addresses directly inside the XML
is often very useful, and it is indispensable e.g. when one wants to uniformly
process multiple articles and their resources. For instance, provided that we use
the absolute addresses, the following XPath expression will return all adjectives
defined in article ORDINAL1 used in generalizations (Let-items) in articles CARD 1
and CARD 2.

/Article[(@aid="CARD_1")or(@aid="CARD_2")]//Let//Adjective[@aid="ORDINAL1"]

Addition of the absolute addresses e.g. to Mizar adjectives can be done using
the following XSLTXT piece of code:

tpl [Adjective] { <Adjective
{ copy-of ‘@*‘; abs(#k="V", #nr=‘@nr‘); apply; }}

The XSLT function abs(#k,#nr) just looks up the absolute address (in the file
containing the lookup table) using the serial number as a key. The complete
transformation adding absolute addresses to all Mizar resources takes about 100
lines of XSLTXT16.

3.2 Browsing Semantic Form of Articles in XSLT-Capable Browsers

One of the original design goals of XML was to “become a better HTML”. Several
popular internet browsers are able to apply XSLT stylesheets to a given XML file
15 http://kti.ms.mff.cuni.cz/cgi-bin/viewcvs.cgi/xsl4mizar/
16 http://kti.ms.mff.cuni.cz/cgi-bin/viewcvs.cgi/xsl4mizar/addabsrefs.xsltxt
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and display the result as if it was a normal HTML document. Since the XML
is now produced after each verification run, direct browsing of the semantic
form of the currently authored Mizar article is just a matter of specifying a
suitable stylesheet. If such a stylesheet is present, no other XML tools need to
be installed, the only necessary step is to open the XML file in a browser like
Mozilla or Firefox after the verification.

An initial stylesheet miz.xsltxt serving this purpose has been developed17,
and since Mizar version 7.4 it is also distributed with Mizar. The default in-
stallation location of this stylesheet is written to the XML output of the Mizar
parser, which means that the XML output can be displayed locally, without in-
ternet connection. The default linking of Mizar resources is however done to the
internet address of MML Query, so for looking up these resources in the default
way an internet connection is necessary. There are several other experimental
linking possibilities, including linking to “self”, i.e. to the collection of XML files
produced by the verification of MML. Another good linking possibility would
arise if we (the Mizar developers) decided to distribute a richer version of the
internal Mizar database, containing the absolute MML addresses as described
above. This version is about twice as big (ca. 100 MB), which would cause fur-
ther slowdown of accommodation, but the Mizar distribution would then also
directly serve as a self-sufficient HTML documentation of the semantic form of
MML abstracts, similar to the MML Query generated abstracts [BU04].

All the HTML files produced by applying the default miz.xsltxt stylesheet to
the XML description of MML articles can be now browsed at the author’s site18.
Adding number of presentational features like e.g. JavaScript hiding/showing of
subproofs to miz.xsltxt should be very easy, and users and developers are
encouraged to use miz.xsltxt as a building block for such richer presentations.

3.3 Disambiguating in MizarMode

External tools are not the only uses of the semantic representation of Mizar
articles. In more advanced mathematical domains, notation from several other
domains are combined, sometimes causing ambiguities. It is often nontrivial to
guess how certain terms and formulas are parsed by Mizar, especially in more
complex Mizar articles.

In [BU04, Urb05a] we describe a solution (called Constructor Explanations) to
this problem in the Emacs authoring environment for Mizar (MizarMode), using
the MML Query generated abstracts and the old-style Mizar parser output. As
noted above, the old output contained only as little information as was absolutely
necessary for proof checking, and also complete parsing of its custom format
would require detailed rewrite of the Pascal I/O procedures into Emacs Lisp.
Both these reasons had lead to a middle-way approach: only Mizar propositions
with SimpleJustification (XML element By) were parsed by Emacs from the
Mizar parser output and made available for semantic disambiguation.

17 http://kti.ms.mff.cuni.cz/cgi-bin/viewcvs.cgi/xsl4mizar/miz.xsltxt
18 http://lipa.ms.mff.cuni.cz/~urban/xmlmml/
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Both these reasons have now disappeared: a complete semantic representa-
tion of an article is now available, and it is in XML. Emacs is distributed with a
default XML-parsing module since version 21.1. The Constructor Explanations
are now therefore applicable virtually to any Mizar construct. In practice, the
Constructor Explanations however use the mechanism of Emacs text properties,
to couple pieces of text with their disambiguated form. This coupling is easily
done for all XML constructs that remember their original position in the article,
so it now covers all Mizar Propositions. Many other XML constructs remem-
ber their position too, so Constructor Explanations can be easily extended to
them. The only additional work needed for this is to specify presentation of
the XML fragments in a stylesheet-like manner. Displaying the whole seman-
tic representation inside Emacs will be also feasible (exactly as the MML Query
generated abstracts), and it can be done with very similar methods as the HTML
presentation.

3.4 Using the XML Technology for Indexing and Querying

The large-scale adoption of XML in the software industry has another benefit
for formal mathematics: it brings new tools for storage and indexing of tree-like
structures which typically represent mathematical proofs, formulas and terms.
Storing such structures directly e.g. in relational databases is often cumbersome,
relying e.g. on full-text indexing of formulas represented as strings, or explicit
Parent/Children tables. Several native XML databases centered around tree-
like structures are being developed today, e.g. X-Hive19, Berkeley DB XML20

or eXist21. Berkeley DB XML and eXist are probably the most mature freely
available systems.

For experimenting with Mizar XML, eXist was chosen. It provides a wider
functionality, mainly a working implementation of structural auto-indexing of
XML [Mei02] which makes XPath queries efficient without the necessity of
low-level manual work on indexing. A very experimental eXist server accepting
XQuery queries has been set up22 for the Mizar XML data. Due to limited re-
sources, only the internal Mizar database (with added absolute MML addresses)
is now available there. This basically means that all proofs are omitted. The
auto-indexing in eXist is based on a numbering scheme which assigns unique
identifiers to all nodes in an XML tree. This has to be done in a regular way, so
that Ancestor/Descendant and other XPath axes between two nodes (expressed
as numbers) were quickly computable. For that purpose the XML tree needs to
be “regularized”, i.e. some identifiers are spent on nonexistent nodes. On large or
irregular XML documents this can cause that eXist runs out of node identifiers.
This limitation made direct eXist storage of practically all XML files with Mizar
theorems impossible. The Mizar internal database XML files were therefore split
before inserting into eXist, and a separate document was created for each Mizar
19 http://www.x-hive.com/
20 http://www.sleepycat.com/products/xml.shtml
21 http://exist.sourceforge.net/
22 http://lipa.ms.mff.cuni.cz/~urban/existdemo.html
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resource (theorem, scheme, constructor, etc.). About 90000 smaller XML doc-
uments were thus created and loaded into eXist quite successfully: only 332 of
these documents were still too irregular for the current eXist auto-indexing. The
loading (and indexing which is done on the fly) takes about 30 minutes on an
Intel Pentium 4 3.4GHz computer. The size of the resulting database files is
about 0.5 GB.

Preliminary experiments show that the Mizar database is still quite large
for the eXist server. Particularly, even with the XPath auto-indexing, the path
joins done for frequent elements can require portions of memory which are not
available on our server. Queries like //Func (yields 731154 elements) or //Typ
(yields 281998 elements) are very fast, and even queries like //Func/Func (yield-
ing 327007 elements) and //Typ//Func (308399 elements) are fast (below 1 sec-
ond) and executable within the current memory limit, but e.g. //Func//Func is
already aborted because of the memory limit. While part of these problems can
be solved by having a dedicated server with several GB of memory, generally
the eXist system would also have to be augmented to trade some of its speed for
lower memory usage in very large XML collections.

Native storage and auto-indexing of XML is a very young field, and while
it may be already fully usable for smaller mathematical libraries than MML,
custom solutions like MML Query will probably still be necessary for several
following years for MML. The functionality provided by languages like XQuery
is quite different from the current MML Query language, which has much lower
support for tree-like queries, but adds qualifiers like atmost and exactly. The
combination of both should be useful, and building custom search engines like
MML Query on top of a native XML database should make a lot of the low-
level work on such custom system unnecessary. On the other hand, for very
specialized mathematical operations like matching and unification, the ATP-
based indexing methods [RSV01] like discrimination trees (used now in the
MoMM system) will probably remain superior to the more general XML in-
dexing schemes.

3.5 Data-Mining Queries

Here we give examples of simple XML processing pieces of code that can be
used to extract input for various AI tools from MML. First the XSLTXT and
then the XQuery version are shown. XSLT and XQuery will be usable for most
of these task, and obviously they can be complemented or embedded into other
programming languages for more complex tasks.

a) Get sequences of top-level proof steps for various natural-language-like (e.g.
Markov model) learnings:

tpl [Proof] { <Proof { for-each [*] { name(); } } }

for $i in //Proof
return <Proof> { for $j in $i/* return name($j) } </Proof>



358 J. Urban

This will yield sequences of rule names like:

<Proof>Let Let Assume Consider Take IterEquality Conclusion</Proof>

b) For each theorem get all theorems and definitions used in its proof, (should
be executed on the richer XML with absolute MML addresses):

tpl [JustifiedTheorem] { <Refs
{ for-each [.//Ref[@kind]] { ‘@aid‘; ":"; ‘@kind‘; ‘@absnr‘; }}}

for $i in //JustifiedTheorem return
<Refs>
{ for $j in $i//Ref[@kind] return

concat(string($j/@aid),":",string($j/@kind),string($j/@absnr))}
</Refs>

This will yield sequences of references like:

<Refs>CARD_1:T64 ORDINAL1:T19 ORDINAL1:T23 ORDINAL1:T26</Refs>

c) For each theorem get all constructors in it (should be executed on the richer
XML with absolute MML addresses):

tpl [JustifiedTheorem/Proposition] { <Constrs
{ for-each [.//(Pred|Func|Typ|Adjective)]

{ ‘@aid‘; ":"; ‘@kind‘; ‘@absnr‘; }}}

for $i in //JustifiedTheorem/Proposition return
<Constrs>
{ for $j in $i//(Pred|Func|Typ|Adjective) return

concat(string($j/@aid),":",string($j/@kind),string($j/@absnr))}
</Constrs>

This will yield sequences of constructors like:

<Constrs>CARD_1:V1 HIDDEN:M1 HIDDEN:R2 ORDINAL2:K5</Constrs>

The previous two queries put together are actually the input to the Mizar Proof
Advisor training (now a Bayesian classifier implemented by the SNoW [CCRR99]
system).

4 Conclusions and Future Work

We believe that the switch to XML representation in Mizar was carried out
at about the right time. Though still advancing very fast, the XML and de-
rived technologies like XSLT have matured, and have been implemented in many
mainstream applications like internet browsers. Standard XML parsers exist for
a number of programming languages, implementations of XPath and XQuery
standards are becoming quite common, and both relational and native XML
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storage and indexing models are being developed quite actively. We have de-
scribed above several initial Mizar-related applications taking advantage of this
new technology. For many simple applications, XSLT processing of Mizar data
will be sufficient, and writing a couple of lines in a high-level declarative language
like XSLTXT should be much easier than building on the Pascal implementation
of Mizar. Quite an important difference between this work and earlier Mizar-
exporting tools is that the XML format is now also used internally by Mizar. It
means that the XML format will follow the changes introduced during the fast
development of Mizar. Third-party developers will therefore no longer be stuck
with outdated exporting tools that no longer work on the newest MML, they
can easily detect recent XML changes with tools like xmldiff, and keep their
external tools as much up-to-date as they wish. The user-visible increase in the
verification time is not negligible, however it is neither dramatic, especially in
the view of the drop that occurred in the past years thanks to the general growth
of computing power.

The largest future extension of the work presented here should be the above
mentioned inclusion of the Mizar presentation layer. This should allow simple
reimplementation of presentation tools like the Journal of Formalized Mathe-
matics, and improve the current content-derived presentation methods used for
direct browsing or in MML Query. Another possible extension is detailed report-
ing about the smallest verification steps done by Mizar, e.g., in a way similar to
the Otter [McC94] proof objects. Some preliminary work has been done in this
direction, however this practically amounts to a large-scale reimplementation of
the Mizar proof-checking module. A cheaper (though less elegant) alternative
how to do this can be e.g. using external automated theorem provers like Otter
to re-prove the Mizar verification steps, and get these detailed proof objects from
them. This would have the additional cross-verification benefit, and is planned
as a part of the MPTP project.

The Mizar XML format is now very fresh, and is likely to go through some
more changes, particularly in order to unify the remaining redundancies and to
make it more compact. We hope that this article will also stimulate feedback
from potential users of the Mizar library, which is a unique source for a number
of data-mining, automated reasoning, presentational, and information retrieval
experiments.
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Abstract. Many processes in mathematical computing try to use knowl-
edge of the most desired forms of mathematical expressions. This occurs,
for example, in symbolic computation systems, when expressions are sim-
plified, or mathematical document recognition, when formula layout is
analyzed. The decision about which forms are the most desired, however,
has typically been left to the guess-work or prejudices of a small number
of system designers.

This paper observes that, on a domain by domain basis, certain ex-
pressions are actually used much more frequently than others. On the
hypothesis that actual usage is the best measure of desirability, this pa-
pers begins to quantify empirically the use of common expressions in the
mathematical literature. We analyze all 20,000 mathematical documents
from the mathematical arXiv server from 2000-2004, the period corre-
sponding to the new mathematical subject classification. We report on
the process by which these documents are analyzed, through conversion
to MathML, and present first empirical results on the most common
aspects of mathematical expressions by subject classification. We use
the notion of a weighted dictionary to record the relative frequency of
subexpressions, and explore how this information may be used for fur-
ther processes, including deriving common patterns of expressions and
probability measures for symbol sequences.

1 Introduction

Most software that deals with symbolic mathematical information have some
pre-defined notion of when expressions are well-formed and, of the well-formed
expressions, which are the most desirable. Which forms are deemed most desir-
able is usually decided by the software system designers, through their experi-
ence or preference, and hard-coded into the application’s logic. This has made
symbolic mathematical software more natural to use in some areas than others,
depending on the compatibility of the system designer’s choices with the user’s
needs. As we move toward more sophisticated, knowledge-based mathematical
software, this methodology becomes increasingly problematic.

M. Kohlhase (Ed.): MKM 2005, LNAI 3863, pp. 361–375, 2006.
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In this paper we argue that it is important to understand what forms of
expressions are deemed most desirable in the actual practice of mathematics.
We believe that empirical knowledge of which forms of expressions are used
most often will lead to more effective mathematical software. For example, this
information could be used to guide simplification in computer algebra systems,
or to provide disambiguation criteria in mathematical document recognition.

Our initial motivation for this work comes from the area of mathematical
handwriting recognition. We note that today’s acceptable recognition rates for
natural language handwriting is achieved with the aid of dictionary-based meth-
ods. For example, if the feature analysis of a stroke could yield either Hdb or
Hello, then Hello is chosen because it is in the dictionary. At first considera-
tion, such an approach is not suitable for mathematical handwriting recognition
for several reasons: Mathematical expressions are trees, not strings. There is no
fixed vocabulary from which to build a dictionary. The set of symbols alone is
insufficient, and the set of possible expressions is infinite.

Nevertheless, any mathematically sophisticated person can take an arbitrary
volume from a mathematical library, leaf through the pages, and, in a few sec-
onds, have a very good idea of the precise mathematical subject area, in part,
simply be noticing some characteristics of the formulae. We therefore claim that
there is, in fact, usage knowledge that can and should be used by mathemat-
ical software packages. In the mathematical handwriting recognition case, this
knowledge could be used to disambiguate between sinωt and sinwt, since the
former occurs much more often in practice. In the computer algebra case, this
knowledge could be used to order one polynomial as x2 +1 and another as 1+ε2.

The goals of this present line of work are to understand how

– to capture and represent empirical mathematical usage information
– to employ this information in mathematical software packages
– to analyze and organize this knowledge so as to be most useful.

We report here on our initial results toward these long-term goals. As stated
earlier, we see immediate applicability to mathematical handwriting recognition
and to symbolic mathematical computing. Other potential applications include
mathematical searching, automated classification of mathematical documents,
and mathematical data mining.

The contributions of this work are

– the identification of empirical mathematical usage as an important source of
information for mathematical software design

– an approach to empirical analysis of mathematical expressions
– specific findings on symbol usage, on a subject-by-subject basis
– specific findings on most common expression usage
– methods to derive pattern expressions, and symbol-sequence Markov chains,

based on analysis of instances.

The rest of the paper is organized as follows: We present the methodology
of the current study in Section 2. As part of this study, we rely on a TEX to
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# Subject Classification
19 00 General
39 01 History and biography

228 03 Math. logic and foundations
1212 05 Combinatorics
164 06 Order, lattices, ordered alg. struct.
48 08 General algebraic systems

1383 11 Number theory
108 12 Field theory and polynomials
667 13 Commutative rings and algebras

2445 14 Algebraic geometry
240 15 Lin. and multilin. alg.; matrix thy
861 16 Associative rings and algebras
760 17 Nonassociative rings and algebras
404 18 Category theory; hom. algebra
239 19 K-theory

1169 20 Group theory and generalizations
472 22 Topological groups, Lie groups
185 26 Real functions
123 28 Measure and integration
308 30 Functions of a complex variable
59 31 Potential theory

797 32 Several complex var. & anal. spaces
312 33 Special functions
295 34 Ordinary differential equations
746 35 Partial differential equations
706 37 Dyn. systems and ergodic theory
52 39 Difference and functional eqns
21 40 Sequences, series, summability
88 41 Approximations and expansions

290 42 Fourier analysis
143 43 Abstract harmonic analysis
43 44 Integral transforms, op. calculus

# Subject Classification
34 45 Integral equations

1066 46 Functional analysis
543 47 Operator theory
164 49 Calculus of var.; optimization
171 51 Geometry
435 52 Convex and discrete geometry

1717 53 Differential geometry
226 54 General topology
627 55 Algebraic topology

1618 57 Manifolds and cell complexes
920 58 Global analysis, an. on manifolds
877 60 Prob. theory and stoch. processes
105 62 Statistics
209 65 Numerical analysis
237 68 Computer science
113 70 Mechanics of particles and systems
34 74 Mechanics of deformable solids
69 76 Fluid mechanics
13 78 Optics, electromagnetic theory
6 80 Classical thermodyn., heat xfer

553 81 Quantum theory
260 82 Stat. mechanics, struct. of matter
48 83 Relativity and gravitational theory
6 85 Astronomy and astrophysics

15 86 Geophysics
96 90 Operations research, math. prog.
42 91 Game thy, econ., soc. & behav. sci.
35 92 Biology and other natural sciences

115 93 Systems theory; control
128 94 Info. and comm., circuits
12 97 Mathematics education

Fig. 1. Count of articles by MR Subject Classification

MathML conversion. Section 3 describes this process and extensions we have
had to make for the present work. Results on frequency of symbols, as identifiers
and operators, are reported in Sections 4 and 5. We present some initial results
on expression analysis in Section 6. Section 7 concludes the paper.

2 Methodology

To study the empirical usage of mathematical expressions, the first step was
to identify a suitable source of mathematical input. A number of possibilities
existed, including

– to use logged input from a software system, such as Maple,
– to use a collection of documents from a set of cooperative authors,
– to use the articles from a particular journal

Although any of these avenues would have been easy to follow, each had its own
problems: Logged input from a software system would heavily influenced by the
characteristics of the system, and thus be riddled with artifacts. Articles from a
small set of authors, or from a particular journal, would likely be heavily slanted
in their usage and could not be taken as representative.

Instead, we chose to use the collection of articles available on the widely
used, public e-Print server, arXiv.org [2], as our corpus of mathematical usage.
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This has the advantage of broad coverage by mathematical area. It also has the
disadvantages that:

– Some areas are disproportionately represented.
– The mathematical material is at a research level, and this may not be rep-

resentative of usage at more elementary levels.
– The material is relatively new, and is not representative of historical usage.

Bearing this in mind, we decided that the collection of articles was sufficiently
representative of current mathematical usage to be useful, and that developing
a collection that was more balanced by area, level, historical period, etc, was a
long-term project.

One of the attractive properties of arXiv.org is its organization of articles
according to the Mathematics Subject Classification, which is used to categorize
items covered by the two reviewing databases, Mathematical Reviews (MR) and
Zentralblatt MATH (Zbl). The current classification system, MSC 2000 [3], is
a revision of the classification scheme that had been used previously by these
databases. It consists of more than 5,000 two-, three-, and five-character classifi-
cations, corresponding to increasingly finely defined disciplines of mathematics.
For example, “11” represents Number theory; “11B” Sequences and sets, and
“11B05” Density, gaps, topology.

We followed the following steps to obtain our corpus of expressions to analyze:
The first step was to obtain all articles from arXiv.org from the five year period
2000–2004. This data range contained all articles since the new subject classifi-
cation was introduced. To understand area-specific usage patterns, while having
a sufficient number of articles in each category, we grouped articles according to
their top-level, two-digit MSC classification. The count by classification of arti-
cles considered is shown in Figure 1. Altogether 22,289 articles were accessed.
Of these 21,677 came with TEX source. This comprised 4.65GB of PDF files and
794 MB of TEX source.

The second step was to extract mathematical expressions from the articles. It
was helpful that the articles had TEX source, but this was not usable directly
for our analysis. The problems with TEX source include:

– Mathematical expressions typically use author-defined macros.
– Mathematical expressions my be hidden in macros, and not be visible in the

source text.
– TEX expressions typically have only as much structure as is needed to give

proper visual grouping. For example $(ad-bc)^2$ consists of a single row
of 7 items, (, a, d, -, b, c and )^2. Note that there is no notion that ad and
bc are subexpressions, while d− b is not, and note that it is only the closing
parenthesis that is squared.

We used our TEX to MathML [1] converter, described in [8], to resolve these
difficulties, and performed our analysis on the resulting MathML expressions.
The benefit of this approach was that the expressions treated were (for the most
part) complete, well formed, and grouped appropriately. The difficulty with the
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approach was that not all the complexities of TEX were handled, and some
expressions were incorrectly translated. However, since we are interested in the
most frequently occurring expressions, the incomplete handling of infrequently
occurring expressions is not, in principle, a problem. We describe the conversion
process in more detail in Section 3. The overall conversion process required about
three days of computer time on a personal workstation.

The third step was to examine the MathML expressions for each area, and
to build three frequency tables. The first two tables contained counts of all
identifier symbols (typically single letter operands) and all operator symbols.
The third table counted the number of occurrences in the classification of each
sub-expression. These tables were built using syntactic comparison of XML ele-
ments. For example, <mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow> would
be treated as inequivalent to <mfenced><mi>a</mi></mfenced>. We therefore
preprocessed the MathML to remove multiple representations for what would
appear as syntactically equivalent mathematical expressions. This consisted of a
number of simple conversions, including

– for <mi> and <mo>, normalizing the use of the mathvariant attribute
– for <mfrac>, eliminating any non-zero linethickness attribute
– for <mfenced>, convert to <mrow> with explicit open and close operators
– for trivial <mmultiscripts>, convert to <msub> or <msup>
– elimination of a number of attributes and elements related to presentation,

such as spacing.

3 TEX to MathML Conversion

The conversion of TEX to MathML is not a straightforward process. There is
not yet a standard tool that completely solves this problem. TEX documents
are, in general, programs with the computational power of a Turing machine. In
practice, TEX macros are usually used to perform simple substitutions, with a
smaller number performing heavy computations and transformations.

There are two principal approaches to TEX to MathML conversion: The first
approach is to use alternative style files with modified definitions for the stan-
dard mathematical macros. These modified macros leave special markers in the
generated dvi file, which are then used to generate the MathML. This approach
has the advantage that all TEX files can be handled. The disadvantage is that
all the high-level structure implicit in the TEX markup is discarded. This is the
approach taken by TeX4ht [10] and the Hermes project [4].

The second approach is have a (partial) implementation of a TEX processor
handle the input, and to generate MathML from the higher-level TEX operators.
This has the advantage that implicit semantics in TEX markup (e.g. grouping
information from braces,“{” and “}”) is available to the MathML generation.
The disadvantage is that, in principle, a complete TEX re-implementation is
needed.

For this study, we used a TEX to MathML converter, developed within the
ORCCA research group. This converter adopts the second approach. It has a
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partial implementation of the TEX programming language sufficient to expand
the macros of interest in mathematics. Source for a TEX document may be given
as a single file, or as a tree of files and using external macro packages. The
correspondences between TEX and MathML are given by a set of bi-directional
mapping files. These mapping files are intended to allow high-level semantic map-
pings between TEX and XSLT style sheets [8]. Because complex TEX macros are
almost always given in style files, rather than being specified at top-level by
authors, the mapping files may almost always be used to eliminate any short-
comings arising from the incomplete implementation of TEX. This translator is
available on-line [5].

The conversion of all TEX source documents in the five year arXiv.org collec-
tion served as heavy test for the MathML converter, and a number of problems
were encountered. Initially only 14,354 of the 21,677 articles could be handled
automatically. First, we discovered that there were a number of TEX constructs
that were not handled by the converter. The most important of these were (1)
the handling of explicit positioning commands, e.g. for kerning symbols, and
(2) the ability to handle arbitrary external macro packages from a search path.
Dealing with these difficulties proved to be fairly easy.

The second major difficulty in the TEX to MathML translation was that
a significant number of the TEX source files did not contain valid TEX. The
TEX converter had been constructed assuming valid input, the idea being that
an author would first produce a correct file by debugging with TEX and then,
possibly long afterward, generate MathML. This assumption proved invalid —
authors do not always correct their TEX errors if TEX’s error recovery gives
a desired output. We therefore were required to extend the TEX to MathML
converter to simulate TEX error handling.

With user error handling in place, we were able to process 19,137 of the articles
automatically. Of these, 19,063 were able to have their MathML canonicalized,
and it is from these that we have extracted the expressions for analysis.

4 Identifiers

Our first analysis determines the most frequently occurring symbols used as
identifiers in mathematical expressions. By this we mean letter-like symbols that
occur as operands or function names, rather than as operators.

We counted all symbols occurring in expressions and recorded the results both
for the global analysis and independently for each category. The first observation
is that in each classification some symbols occur much more frequently than
others, and which symbols are the most frequent differs from classification to
classification.

Figure 2 shows the most frequently occurring identifiers for all the classifica-
tions taken together, as well as the most frequently occurring identifiers for three
typical classifications, Logic, Number Theory and Partial Differential Equations.
For detailed information on all classifications see [7].
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All
Ucode Id Freq
006E n 48,150
0069 i 43,280
0078 x 36,240
006B k 32,060
0074 t 25,967
0058 X 23,369
006A j 23,038
0070 p 22,832
0041 A 22,791
0061 a 21,435
0064 d 19,457
006D m 19,263
0066 f 18,235
004D M 18,135
0073 s 17,659
0072 r 17,248
0043 C 16,915
0053 S 16,487
0047 G 16,074
03B1 α 15,943

03
Ucode Id Freq
0069 i 51,565
006E n 48,239
0078 x 41,042
0058 X 33,862
0041 A 29,845
0070 p 26,292
03B1 α 24,604
006B k 24,374
0066 f 22,671
0061 a 22,030
0047 G 21,983
006D m 19,893
006A j 18,062
03C9 ω 18,015
004D M 17,256
0053 S 17,122
0043 C 17,107
0046 F 16,773
0079 y 16,764
0074 t 15,693

11
Ucode Id Freq
006E n 58,186
0070 p 40,302
006B k 38,230
0078 x 35,294
0069 i 35,100
0061 a 25,301
006D m 23,642
0064 d 22,302
0071 q 21,797
0073 s 21,319
006A j 21,153
0072 r 19,695
0074 t 19,654
0047 G 19,620
0058 X 19,535
0041 A 19,107
004B K 18,905
0066 f 18,126
0046 F 16,524
004C L 15,921

35
Ucode Id Freq
0078 x 51,773
0074 t 49,859
0075 u 39,841
006E n 35,705
006B k 29,924
0069 i 28,941
0073 s 25,234
006A j 24,968
0064 d 24,095
004C L 21,094
03B5 ε 20,740
03BB λ 20,189
0070 p 19,107
0043 C 17,450
03B1 α 17,087
0072 r 16,834
0076 v 16,820
0061 a 15,931
0079 y 15,920
0066 f 15,215

Fig. 2. The most frequent identifiers (per million) in all classifications (All), Logic (03),
Number Theory (11) and Partial Differential Equations (35)

03
Ucode Id Freq
03C9 ω 18,015
0046 F 16,773
0079 y 16,764
0054 T 15,605
0062 b 15,270
004B K 15,144
0042 B 15,002
0063 c 14,586
0050 P 14,582
03BA κ 13,285
004C L 13,280
0056 V 12,004
0055 U 11,916
0048 H 11,452
0071 q 11,385
03B2 β 11,305
0068 h 10,369
03B3 γ 10,196
0067 g 10,104
0059 Y 9,918

11
Ucode Id Freq
0071 q 21,797
004B K 18,905
0046 F 16,524
004C L 15,921
004E N 15,537
0076 v 14,380
0054 T 14,126
0067 g 13,683
0050 P 13,479
007A z 13,333
0079 y 12,880
0063 c 12,383
0048 H 12,238
0044 D 12,056
0062 b 11,867
0045 E 11,714
03C0 π 11,348
0068 h 10,550
0042 B 10,309
0075 u 10,291

35
Ucode Id Freq
0075 u 39,841
004C L 21,094
03B5 ε 20,740
03BB λ 20,189
0076 v 16,820
0079 y 15,920
03BE ξ 15,154
007A z 14,459
0054 T 14,333
004E N 13,906
0048 H 13,575
0052 R 12,421
0068 h 12,392
03A9 Ω 12,305
0077 w 11,562
03B4 δ 11,120
0067 g 10,933
0044 D 10,809
0071 q 10,380
03BC μ 10,356

Fig. 3. Most frequent identifiers (per million) in Logic (03), Number Theory (11) and
Partial Differential Equations (35), after excluding the 20 globally most frequent
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Fig. 4. Most frequent identifiers in all expressions (upper left), Logic (upper right),
Number Theory (lower left), and Partial Differential Equations (lower right). The hor-
izontal axis gives the symbol (from most to least frequent), and the vertical axis gives
the number of occurrences per million symbols in the classification.

This information could be used for disambiguation in mathematical handwrit-
ing recognition. In Number Theory, for example, we see that the letter n occurs
more than twice as frequently as the letter r. By feature analysis alone, these
two letters are difficult to distinguish. This frequency information is therefore
useful in disambiguation.

We have arrived at a generalization of the dictionary used for disambigua-
tion in handwriting recognition: we have constructed here, with symbols (and,
in Section 6, with expressions) a weighted dictionary. This structure carries in-
formation about the vocabulary of potential results, together with empirically
determined weights.

Figure 3 shows the most frequently occurring identifiers for the same clas-
sifications after excluding the 20 identifiers that appear most frequently in all
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classifications together. We see these lists are less similar than those of Figure 2.
We might use this information to aid in automatic document classification, to-
gether with word-frequency and citation analysis. Information such as this could
also be used by an interactive system as a heuristic aid to determine the math-
ematical area in which a user is working.

Figure 4 shows, for the same classifications, the number of occurrences of
identifier symbols, with the symbols ordered from most frequent to least frequent.
While this will obviously be a monotonically decreasing curve, it is remarkable
the degree of similarity in the shapes of these curves. We observe that although
which symbols are used most varies quite a bit from mathematical area to area,
the distribution of use of symbols is remarkably similar. In particular, after the
10% most popular identifiers, the frequency of appearance ordered by identifier
decays approximately linearly.

Although, for space reasons, we have presented here the tabular results and
graphs for only three classifications, and for the aggregate, the overall picture is
similar for the other classifications.

5 Operators

An analogous analysis to that for identifiers was performed for operator symbols.
We counted as operators anything occurring in an <mo> element, excluding the
characters “(”, “)”, “[”, “]”, “{”, “}”, thinspace and underscore. We excluded the

All
Ucode Op Freq
003D = 128,715
002D − 116,064
002C , 112,818
2061 103,090
002B + 79,404
2208 ! 43,942
002A ∗ 29,210
2192 → 23,818
002F / 23,405
2264 ≤ 20,088
02DC 16,875
2297 14,242
2211 13,560
003E > 13,528
221E ∞ 13,138
00AF ¯ 12,451
003C < 12,058
22EF · · · 12,005
2202 ∂ 11,940
00D7 × 11,294

03
Ucode Op Freq
003D = 121,806
2061 115,262
002C , 100,880
2208 ! 77,021
002D − 60,732
002B + 60,121
002A ∗ 32,796
003C < 28,345
02C9 ¯ 25,805
2192 → 24,370
2264 ≤ 24,242
002F / 14,626
2026 . . . 13,495
222A ∪ 12,654
2229 ∩ 12,483
2286 ⊆ 12,330
003E > 11,784
2223 | 9,883
22EF · · · 9,781
02DC 9,428

11
Ucode Op Freq
003D = 130,735
002D − 128,330
2061 112,484
002C , 104,964
002B + 94,172
002F / 40,239
2208 ! 39,319
2211 20,165
2264 ≤ 19,574
2192 → 18,481
002A ∗ 17,757
00AF ¯ 14,708
221E ∞ 14,627
003E > 12,926
22EF · · · 12,358
02DC 12,209
2265 ≥ 11,963
2113 � 10,997
003C < 10,151
00D7 × 10,144

35
Ucode Op Freq
002D − 138,603
002C , 111,176
2061 103,527
003D = 103,376
002B + 97,579
2208 ! 38,370
2264 ≤ 34,575
2202 ∂ 28,815
002F / 25,985
221E ∞ 23,460
222B 23,196
02DC 19,545
003C < 16,453
2207 ∇ 15,387
003E > 15,256
002A ∗ 14,470
2192 → 14,381
22C5 � 12,669
2211 12,394
2265 ≥ 11,531

Fig. 5. The most frequent operators (per million) in all classifications (All), Logic (03),
Number Theory (11) and Partial Differential Equations (35). The Unicode point 2061
is the invisible “ApplyFunction” operator.
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bracket forms because they were so frequent their occurrence masked the details
of the other operators. Thinspace is often used for adjusting appearance, and
underscores were an artifact of incomplete TEX translation. With this, Figure 5
shows the most frequently occurring operators for the same classifications as for
the identifiers. Figure 6 shows the most frequently occurring operators, excluding
from each category the 20 most globally common operators.

Figure 7 shows the count of operator symbols, by category, sorted from most
to least popular. We note that the shape of the operator distribution is roughly
similar among categories, although there are some evident differences, and even
though it is different operators that are occurring most frequently. The shape of
the distribution is quite different from the distribution for identifiers: generally,
a few operators are used very frequently.

We see that in all areas there are a few (1-5) operator symbols that occur
very frequently followed by a rapid decay in use. In particular see that more
than half the symbol occurrences are from the top 10% most popular operators,
and almost all occurrences are from the top 40% most popular operators.

We note that the shape of the distribution for the most popular operators
varies by category. For example, in Number Theory and Partial Differential
Equations, the first few most popular operators occur with similar frequency,
followed by a sharp drop, whereas in Logic there there is a more gradual decline
in frequency of use.

03
Ucode Op Freq
02C9 ¯ 25,805
2026 . . . 13,495
222A ∪ 12,654
2229 ∩ 12,483
2286 ⊆ 12,330
2223 | 9,883
2218 ◦ 8,894
2265 ≥ 8,252
2329 〈 7,348
232A 〉 7,072
2260 = 6,885
2200 ∀ 6,390
0022 ” 6,177
2227 ∧ 5,978
02C6 5,825
2282 ⊂ 5,552
2113 � 5,467
2216 \ 5,282
2203 ∃ 4,990
22C5 � 4,745

11
Ucode Op Freq
2265 ≥ 11,963
2113 � 10,997
2223 | 9,474
02C9 ¯ 8,750
2026 . . . 7,829
22C5 � 7,728
02C6 7,464
222B 5,719
220F 5,287
2282 ⊂ 4,938
2032 ′ 4,681
2260 = 4,626
224D & 4,534
2229 ∩ 4,238
0021 ! 3,692
2218 ◦ 3,550
2295 ⊕ 3,062
0022 ” 2,849
00B1 ± 2,796
226A � 2,644

35
Ucode Op Freq
222B 23,196
2207 ∇ 15,387
22C5 � 12,669
2265 ≥ 11,531
02C9 ¯ 9,349
02C6 8,170
2223 | 6,379
2113 � 6,074
232A 〉 5,583
2329 〈 5,559
00B1 ± 4,556
2282 ⊂ 4,130
2229 ∩ 3,728
2272 � 3,635
002E . 3,375
2216 \ 3,239
2260 = 2,843
0022 ” 2,767
2026 . . . 2,397
2032 ′ 2,328

Fig. 6. Most frequent operators (per million) in Logic (03), Number Theory (11) and
Partial Differential Equations (35), after excluding the 20 globally most frequent
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Fig. 7. Most frequent operators in all expressions (upper left), Logic (upper right),
Number Theory (lower left), and Partial Differential Equations (lower right). The hor-
izontal axis gives the symbol (from most to least frequent), and the vertical axis gives
the number of occurrences per million symbols in the classification.

6 Expressions

We have performed a similar analysis for non-trivial subexpressions, counting the
number of times each distinct subexpression occurs in each subject classification.
The analysis of the results is more complex, however.

A large subexpression that occurs a certain number of times is more significant
than an smaller subexpression that occurs as often, for two reasons. The first
reason is that, in absolute terms, there tend to be fewer subexpressions of large
size. The second reason is that there are exponentially more potential expressions
of the larger size.

With the idea that the size of an expression should be part of determining the
significance of its occurrences, we have analyzed each subject classification for
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the number of expressions. The results for subject classifications 03, 11 and 35
are shown in Figure 8. For each of these classifications and for each size, the figure
shows (i) the number of subexpressions of that size that occurred in the articles,
(ii) the number of distinct subexpressions occurring of that size, and (iii) the
number of distinct subexpressions as a percentage of the number of expressions.
We measure the size of an expression as the count of the following MathML tags
that produce output, as opposed to providing structure. In our case, because of

03
Sz # distinct %
2 169,302 10,612 6
3 63,952 11,868 18
4 31,485 8,850 28
5 16,688 6,377 38
6 9,726 4,035 41
7 6,271 3,258 51
8 3,878 2,082 53
9 3,395 1,887 55
10 2,196 1,255 57
11 1,977 1,222 61
12 1,229 798 64
13 1,049 782 74
14 868 652 75
15 776 577 74
all 318,000 58,555 18

11
Sz # distinct %
2 1,118,829 39,729 3
3 513,041 73,095 14
4 253,320 69,937 27
5 169,908 59,286 34
6 87,256 42,085 48
7 68,645 34,438 50
8 40,907 23,445 57
9 33,558 19,803 59
10 22,060 14,254 64
11 18,614 12,562 67
12 13,216 9,341 70
13 11,692 8,430 72
14 8,690 6,533 75
15 7,857 5,969 75
all 2,436,305 480,023 19

35
Sz # distinct %
2 844,311 24,032 2
3 398,139 48,962 12
4 188,363 46,826 24
5 132,814 40,389 30
6 73,267 30,059 41
7 58,787 26,036 44
8 36,283 18,593 51
9 28,560 15,960 55
10 19,930 11,894 59
11 16,770 10,287 61
12 12,159 8,084 66
13 10,811 7,284 67
14 8,407 5,883 69
15 7,056 5,268 74
all 1,908,150 363,746 19

Fig. 8. Number of subexpressions and of distinct subexpressions by classification and
by subexpression size

Size 2
# expression

19,752 −1
14,565 L2

8,098 dx

5,634 t0

4,735 x0

4,628 ∂t

4,607 ij

4,572 u0

4,183 dt

4,142 (t,x)

Size 4
# expression

2,111 −1/2
955 − 1

2

660 d
dt

427 W 1,p

397
∞

−∞
394 −3/2
358 ∂

∂t

352 Sn−1

340 δx,λ

337 HN−1

Size 7
# expression

445 n+2
n−2

194 n+4
n−4

110 (x′, ξ′, μ)
96 p− 1, q − 1
90 −(a + 1)p + c

88
n

i,j=1

75 j1, j2 ≥ 0
75 (g(t), K(t))
70 u

2n
n−2

69 (t, x; τ, ξ)

Fig. 9. Most frequent subexpressions of size 2, of size 4 and of size 7 in subject classi-
fication classification Partial Differential Equations (35)
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the nature of the TEX to MathML conversion, the tags we counted were <mi>,
<mo>, <mn>, <mroot>, <msqrt>, <mfrac>, <menclose>, and <ms>.

We observe two phenomena: First, as expected, the number of expressions
occurring decreases as size increases. There are many more small expressions
than large expressions. Secondly, we note that as expressions become larger,
the fraction that are distinct increases. The proportion of unique subexpressions
seems to depend strongly on the classification.

This analysis provides a weighted dictionary for each subject classification,
providing the frequency that expressions occur in each subject classification.
Space limitations preclude giving a detailed accounting of the particular expres-
sions which occur most frequently in each classification, but we give a sample
from the classification 35, Partial Differential Equations. These are shown in
Figure 9. More details are available in [7].

An important question is how dependent is the weighted dictionary of subex-
pressions on the choice of TEX to MathML converter. Since each conversion
program will have its own choices for MathML output idioms, there is a clearly
dependency. However, for each expression there is a well defined collection of
symbols and an intended grouping. Provided the TEX to MathML converter is
consistent and provided it correctly identifies the intended groupings, the dis-
tribution of entries in the weighted dictionary should be stable under choice of
converter. The application using the entries must be aware, however, that the
choice of the exact way to represent a particular expression may be arbitrary.

The information in these weighted dictionaries may be used directly by appli-
cations, or may be used for further analysis. Two such directions of further analy-
sis are deriving expression patterns, and deriving common writing sequences.
We foresee many additional uses of this kind of empirical data on expression
frequency.

Expression Patterns

We note that very similar subexpressions may occur frequently, for example√
A2 + B2 and

√
x2 + y2. While it is possible to maintain a weighted dictionary

keeping track of both of these expressions, it would be more desirable to deter-
mine that

√
α2 + β2 was a frequently occurring pattern, with suitable choices

of α and β.
“Antiunification” provides an elegant framework to define such patterns. An-

tiunification is a process dual to unification. Rather than taking expressions and
determining the most general expression to which they all can be specialized,
antiunification takes a number of instance expressions and finds the least general
expression which may be specialized to each instance expression. The syntactic
form of antiunification has been studied since the 1970s [6].

We may determine the set of patterns from a weighted dictionary by consider-
ing all pairs of expressions. Each pair will give an antiunifier. We then consider all
pairs of antiunifiers with expressions from the dictionary. These may give more
antiunifiers, which are added to the set of antiunifiers. We continue to consider
pairs of antiunifiers with expressions until no new antiunifiers are generated.
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Since antiunification is associative, this generates a complete set of antiunifiers
for the dictionary. For each antiunification, we may use the one pass algorithm
of [9].

We may associate weights with these patterns simply: for each antiunifier,
attempt a unification with each expression in the weighted dictionary. Then
the weight of the antiunifier is the sum of the weights of the expressions with
which it unifies. We note that since we are interested in syntactic expressions,
this entire process of antiunification and unification is syntactic. An empirically
derived, weighted dictionary of antiunifiers would provide an interesting measure
to select among possibilities for “simplified” forms in a computer algebra system.

Tree-Order Symbol Sequencers

The second direction we wish to discuss for deriving expression patterns is the
use of ordered tree traversals. We examine this in support of mathematical hand-
writing recognition. For each type of tree node, we define a traversal order cor-
responding to the most common writing order. For example, with

∞∑
i=0

i2

the summation sign is usually written first, followed by the equation i = 0, then
∞, and finally i2. Ideally the information on writing order for each node type
should be determined with user experiments. Without these experiments, it is
still possible to have writer-specific traversal order.

Given one or more traversal orders for each node type, we may then examine
the weighted dictionary of expressions, traversing each expression, to determine
Markov chains for symbol sequences. If the expression

∑
i=0 ... occurs twice as

frequently as
∑

j=0 ..., then the symbol sequence 〈Σ, i〉 gets twice the weight
of 〈Σ, j〉. If there is not a unique traversal order for a node type, then the
alternatives may be weighted.

7 Conclusions

We have proposed the idea of empirical analysis of mathematical literature as a
new technique to be used in the design of sophisticated mathematical software.
This is a break from the tradition of system designers using their own preferences
or prejudices in determining which forms of expressions will be deemed most
preferable by their systems.

We have taken presented an approach to performing empirical analysis of a
body of mathematical literature. We have developed a suite of tools to convert
raw TEX source to well-formed MathML, and to build weighted dictionaries of
symbols and expressions.

We have made an analysis of all articles from arXiv.org since the new MSC
2000 subject classification. From this, we have observed that the use of mathe-
matical symbols varies considerably from area to area and have produced usage
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frequency tables for all MSC 2000 classification areas. We have observed that,
while the specifics of which symbols are most used varies from area to area,
the overall distribution of symbol use is very similar between areas. This is true
both for symbols used as identifiers (function names and arguments), and as
operators. We have also analyzed the collection of subexpressions present in the
arXiv.org data. As well as developing a weighted dictionary for each classifica-
tion area, we have observed some general properties of the frequency of distinct
expressions. We are currently investigating how to best make these dictionaries
available to other research projects.

Beyond these practical experiments, we have explored the potential use of
information derived from symbol and expression weighted dictionaries. These
have included particular applications to computer algebra, mathematical hand-
writing recognition and document analysis. We have also shown how weighted
expression dictionaries may be used to determine further useful information, in-
cluding weighted pattern dictionaries (by antiunification) and Markov chains for
symbols in writing-order traversal of expression trees.

The applicability of these results depends on how representative the empirical
data is. It is likely that different tables would be obtained from high-school math-
ematics texts, for example. Therefore, the overall approach we have taken is just
as important as the specific results for this particular mathematical database.

We are excited and hopeful that the use of empirically gained knowledge may
make mathematical software systems more powerful and more natural to use.
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Abstract. The main goal of most systems for formalizing mathematics
is creating the database of formalized knowledge. Every system uses its
own way of storing that knowledge. Pieces of the information stored in
such a database are something more than just elements of that database
– we may also look at it from another perspective. Namely, the informa-
tion is the reflection of some text and that text is the representation of
some logical reasoning. Therefore every such piece of information may be
treated as an element of some set and then we may analyze the relation-
ships between all these elements. This article describes such an approach
to one of the systems for formalizing mathematics.

1 Motivation and Main Ideas

One of the oldest systems for computer-aided formalization of mathematics is the
Mizar system created by Andrzej Trybulec [1], [9], [3], [4], [5], [6]. The knowledge
which is formalized with this system is stored in the Mizar Mathematical Library
(MML). This database has been developed since 1989, and currently it contains
more than 900 articles, with over 39 000 theorems, over 7 500 definitions and
over 700 schemes. The articles are authored by over 150 people from more than
10 countries. All articles stored in the MML as text files occupy more than 65
Mb of disk space. Freek Wiedijk in his paper [7] devoted to 15 main systems for
formalizing mathematics stated that the Mizar system has one of the biggest
databases (MML) among all of the analyzed systems.

Mizar Mathematical Library, like the databases of other systems for formal-
izing mathematics, is usually treated mainly as a whole structure storing for-
malized knowledge. But there is another way of looking at this database. The
formalized texts may be considered as individual elements – this allows for ana-
lyzing the MML database (or the set of formalized texts in some other system) on
the basis of mutual comparisons of its elements, and searching for relationships
between them. Determining these relationships allows us to compare the results
produced by applications which modify formal texts with their original form.
Such comparisons allow us to classify these applications. Examining the appli-
cations, MML maintainers can decide how useful the application is for database
maintenance tasks. This was the main reason for defining relationships between
formalized texts and analyzing the levels of equivalence of the applications men-
tioned above.

M. Kohlhase (Ed.): MKM 2005, LNAI 3863, pp. 376–388, 2006.
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2 The Relationships Between Mizar Texts

When we treat Mizar articles as elements of such a set of Mizar texts, it is
obvious that the first defined relationship should be some kind of equivalence
between the articles (whatever it means). The research on the data-mining and
the robustness of the Mizar system, which started a few years ago [2] and gave
rise to many utilities modifying articles in the Mizar database, confirmed the
need to define these relationships to check whether a given application does not
change the original text significantly.

But there appears the problem of proper understanding the concept of the
equivalence between Mizar articles. That equivalence may have many meanings,
from total identity to some kind of semantic equivalence. Therefore we can de-
termine many such relationships. To start with the most strongest relationship,
we may define:

A1r0A2 ⇔ A1 and A2 are equivalent on the text level.

This equivalence is a very restrictive concept, because it is satisfied only by
identical texts (considering also white spaces and line breaks).

When we slightly weaken the relation r0, we can define another relation as
follows:

A1r1A2 ⇔ A1 and A2 are syntactically equivalent.

The syntactic equivalence means that both texts are identical with respect to
the relation r0, but there is no control of repeated white spaces and line breaks.

Going further in this direction, we define another relation:

A1r2A2 ⇔ A1 and A2 are “weakly” syntactically equivalent.

The “weak” syntactic equivalence means that the conditions of r1 are ful-
filled, with the exception of consistent changes of the names of constants, vari-
ables and adding or removing labels and other keywords connected to references
(e.g. “then”) if such an operation does not destroy the structure of references
(e.g. it is unacceptable to remove a label which occurs later in some inference).
But even a change of the order of references in some inference may cause the
lack of equivalence with respect to relationship r2.

Yet another relation:

A1r3A2 ⇔ A1 and A2 are “weakly” syntactically equivalent excluding justifi-
cations is similar to the relation r2, but is weaker than r2 because it permits some
alterations to the justification of reasoning steps. The structure of proofs remains
the same, but there is a possibility of changing the organization of inferences,
sometimes also changing the tree of references. Of course it is unacceptable to
change the organization of inferences to such an extent so that a correct text is
not accepted by the VERIFIER anymore.

Another relationship looks this:

A1r4A2 ⇔ the abstracts of the articles A1 and A2 are “weakly” syntactically
equivalent.
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A Mizar abstract is the Mizar text with all proofs and justifications removed
[8], [11], [10]. Checking the equivalence of Mizar abstracts is a specific form of
syntactic equivalence, because it permits for full liberty in justifying proved facts
if the weak syntactical equivalence is preserved.

A1r5A2 ⇔ A1 and A2 are semantically equivalent.

The relation r5 stands for the semantic equivalence of justified contents. The
way that facts are justified is not important, and neither is their order nor
the structure of their notations. Every theorem justified in the first text must
have a semantic equivalent in the second text, and vice versa. Here the semantic
equivalence of theorems is understood as the mutual justifiability of the theorems
by one another.

A1r6A2 ⇔ A1 and A2 are “weakly” semantically equivalent.

The relation r6 holds when every theorem from one Mizar text can be justified
by some theorems taken from the other text, and vice versa.

There are, of course, other levels of equivalence, e.g. the tautological equiva-
lence of theorems. However for my considerations it was enough to focus mostly
on the 7 defined (mostly syntactic) ones.

All the relations defined above are of course equivalence relations, and they
form a sequence as below:

r0 ⊆ r1 ⊆ r2 ⊆ · · · ⊆ r6

Since the relations are contained in one another, if texts are equivalent with
respect to ri, then for every j such that i ≤ j ≤ 6 the relation rj holds too.
However if two text are not equivalent with respect to ri, they are not equiv-
alent with respect to rj (0 ≤ j ≤ i) either. Therefore to determine which of
the seven relations occur between two texts and which do not, it is enough to
find a number i (0 ≤ i < 6) such that the relation ri + 1 is occurs between
these texts, but the relation ri does not. In such a situation we say that both
texts are equivalent on the i + 1 level. In the extreme cases both texts may be
equivalent with respect to the relationship r0 (it means that all seven relations
hold and texts are equivalent on the zero level) or may be not equivalent with
respect to the relationship r6, what means that any of the relations does not hold
at all.

3 Examples of Equivalent Texts

Below I show fragments of Mizar texts equivalent with respect to all of the
seven relations to better represent the essence of the relations described above.
They show the modifications that preserve the relation with the original text.
The fragment of the Mizar text presented below is taken from the article called
XBOOLE 1 (from the MML database) and it shows an elementary theorem from
set theory. For simplification of further descriptions, the fragment below will be
called TH0:
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theorem
for X,Y,Z be set holds X c= Y implies X \/ Z c= Y \/ Z

proof
let X,Y,Z be set;
assume A1: X c= Y;
let x be set; assume x in X \/ Z;
then x in X or x in Z by XBOOLE_0:def 2;
then x in Y or x in Z by A1,TARSKI:def 3;
hence thesis by XBOOLE_0:def 2;

end;

Beginning with the strongest relation, the text that should be in the relation
r0 with TH0 has to look exactly like TH0.

The relation r1 requires the syntactic equivalence, so for example the text
which is in the relation r1 with TH0 may look as follows:

theorem
for X , Y , Z be set holds
X c= Y implies X\/Z c= Y\/Z

proof
let X , Y , Z be set;
assume A1: X c= Y;
let x be set;
assume x in X\/Z;
then x in X or x in Z by XBOOLE_0:def 2;
then x in Y or x in Z by A1,TARSKI:def 3;
hence thesis by XBOOLE_0:def 2;
end;

According to the definition, differences may concern only white spaces between
consecutive words, and the line breaks. It is obvious that the text above is not
in the relationship r0 with TH0.

The text which is equivalent with TH0 with respect to the relation r2 (but is
not equivalent with respect to r1) may look as follows:

theorem
for A , B , C be set holds
A c= B implies A\/C c= B\/C

proof
let A , B , C be set;
assume et1: A c= B;
let a be set;
assume et2: a in A\/C;
a in A or a in C by et2,XBOOLE_0:def 2;
then et3: a in B or a in C by et1,TARSKI:def 3;
thus thesis by et3,XBOOLE_0:def 2;
end;
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As you can see the names of variables changed (A, B, C instead of X, Y, Z)
as well as the references to local statements. All local references in the text TH0
were realized with the aid of the keywords “then” and “hence”. In this case,
however, we have references through labels. It is obviously in accordance with
the definition of r2 relationship.

The text below is not in the relation r2 with the text TH0, but it is so with
respect to the next relation – r3:

theorem
for A , B , C be set holds
A c= B implies A\/C c= B\/C

proof
let A , B , C be set;
assume et1: A c= B;
let a be set;
assume et2: a in A\/C;
a in A or a in C by XBOOLE_0:def 2,et2;
then et3: a in B or a in C by TARSKI:def 3,et2,et1;
thus thesis by et3,XBOOLE_0:def 2;
end;

It is the “weak” syntactic equivalence excluding justifications. The differences
in justifications lie in the change of the order of references in two cases, and in one
case (in the sentence labeled et3) in the adding of the redundant reference labeled
et2. It causes the change of the reference tree (there appears the extra edge linked
the sentences et2 and et3; this edge is not necessary to justify sentence et3), but
the proof is accepted by the Mizar VERIFIER all the time. As you can see the
conditions given in the definition of the relation r3 are fulfilled. It is possible to
imagine (although the example above does not show that situation) that instead of
some – local or external – references there can appear another one, to a completely
different sentence (for example to some other theorem from the MML database).
But the inference with that reference is sufficient to justify current sentence. In
that situation the tree of references is changed more significantly than previously.
Instead of an edge, there appears another one which can lead to the theorem from
other article from the MML database. However it does not affect the r3 relation
between given text and the text TH0.

The text below does not show the relation r3. It does show the relationship
r4, which requires “weak” syntactic equivalence between the abstracts of the
Mizar texts:
theorem
for A , B , C be set holds
A c= B implies A\/C c= B\/C

proof
let A , B , C be set;
assume that
et1: A c= B and
et2: not A\/C c= B\/C;
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consider a be set such that
et3: a in A\/C and
et4: not a in B\/C by et2,TARSKI:def 3;

a in A or a in C by et3,XBOOLE_0:def 2;
then a in B or a in C by et1,TARSKI: def 3;
then a in B\/C by XBOOLE_0:def 2;
hence contradiction by et4;
end;

After removing all proofs from both above texts, they are equivalent with re-
gard to the relation r2, therefore the whole texts are equivalent with regard
to the relation r4. The equivalence r3 does not occur, because there was a
completely different kind of proof used (proof by contradiction). In the tree
of references, not only edges are changed, but also the points. However this
relation allows to change proofs freely, i.e. the form, the length and also the
concepts used.

In the definition of r5 the word “syntactic” does not occur anymore. In its
place there occurs the word “semantic” (as we mentioned before, the semantic
equivalence of theorems is understood here as the mutual justifiability of the
theorems by one another). In the case of the relation r4 the changes of the form
of proofs constitute significant weakening of the relation. However considering
the texts’ semantics instead of their syntax gives a completely different (much
weaker) meaning to the essence of the texts equivalence. The text below is in
the relation r5 (not in the relation r4) with the text TH0:

reserve A,B,C for set;

theorem
not (A\/C c= B\/C) implies not (A c= B)
proof
assume that
et1: not A\/C c= B\/C and
et2: A c= B;

consider a be set such that
et3: a in A\/C and
et4: not a in B\/C by et1,TARSKI:def 3;

a in A or a in C by et3,XBOOLE_0:def 2;
then a in B or a in C by et2,TARSKI: def 3;
then a in B\/C by XBOOLE_0:def 2;
hence contradiction by et4;
end;

Here we can see the change in the statement of the theorem and its proof,
the type of variables A, B, C is reserved before the beginning of the theorem
block. However the information carried by this theorem is the same as the in-
formation carried by TH0. It means that every reference to the above theorem
may be replaced with a reference to TH0 (and vice versa) without the loss of
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the correctness of the proved sentences. In more complex contexts, it is also
possible that the order of proved theorems in some article can be changed. It
is only required that every correctly checked theorem should have its equiva-
lent in the second text, and vice versa. Please note that it does not necessarily
entail the same number of theorems in both texts, e.g. when there are, say,
two equivalent theorems in the first text, and there is just one of them in the
second text.

There is a problem with illustrating the relation r6 using the same example,
because it is rather indistinguishable from the relation r5 with reference to TH0
since the text TH0 consists of one theorem only. It means that a lot of texts that
are equivalent with respect to r6, are also equivalent with respect to r5. However
we can consider a text which consists of n theorems, where all theorems have the
form of equivalences, and the second text which includes 2 · n theorems (every
equivalence is changed into two implications). Obviously, the relation r5 does
not hold in this case, but r6 does. This is one of the simplest cases. There are
situations in which there are two semantically equivalent texts in which the first
text has n theorems, the second text has m (n �= m), and any two theorems
from those texts are not semantically equivalent (and they are not semantically
included in one another).

4 Article Transformations Corresponding to the
Equivalence Relations

Having described the above definitions of equivalence relations, we can look at
the auxiliary software used for the management of the MML database. Through
the analysis of the equivalence between the original and the resulting text we
can determine which level of equivalence connect both texts and which relations
hold there. The level of equivalence indicates how high is the level of alteration of
the modifying software to the original text. When this level is closer to zero, the
alteration of that application to the original text gets smaller. The equivalence
on the zero level means that the application does not change the original text
at all.

Below I will describe the level of alteration for several existing auxiliary ap-
plications which are used to modify the Text-Proper part of Mizar articles
from the MML database. Most auxiliary Mizar applications only determine
the parameters which characterize specific transformations – other software is
used to actually modify the text of articles on the basis of previously deter-
mined parameters. For example, the application called CHKLAB writes to a
file the coordinates of unused labels, and then the application called EDTFILE
removes those labels from the original text (using the file made by CHKLAB as
input). For simplicity, we may assume that it is the auxiliary application that
itself modifies the original text (for example the application CHKLAB removes
unused labels). That simplification makes much clearer the considerations of
equivalences between the original and the resulting text. It certainly should not
cause ambiguity.
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5 Auxiliary Software Used for Managing the MML
Database as Transformations Corresponding to the
Equivalence Relations

The CHKLAB application mentioned above checks the use of labels and removes
labels which are not used. The text after removing redundant labels does not
have to be syntactically equivalent to the original text (it is not in the relation
r1 with the original text). However they are in the relation r2 (weak syntactic
equivalence). A similar situation takes place in the case of application called
RENTHLAB. It is the application which “normalizes” the names of labels by
changing them by means of a fixed pattern (theorems receive names Th1, Th2...
local labels A1, A2... etc.). The change of label names is carried out consistently,
new names appear in the place the original labels occurred, as well as in the places
where there are references leadings to these labels. All the changes concern only
the names of labels, so (similarly as in the case above) the level of alteration of
that application to the original text is 2.

The situation in the case of applications like RELPREM or SORTREF is dif-
ferent. The first application removes redundant references from every inference.
The relation r2 is not fulfilled in this case, because even the removing of one
reference causes the change of the references structure. It is not significant in
the case of the relation r3 which allows differences in justifications. The situation
with the application called SORTREF is similar. It does not change the number
and the kind of references, but it can change their order. Its purpose is the al-
phabetical sorting of references in every justification. As the result, we have the
lack of equivalence on the second level. In this case the level of alteration to the
original text is 3.

The level of alteration to the original text showed by applications like INACC,
RELINFER, RELITERS or TRIVDEMO is even higher. The first program is
designed to enable the elimination of redundant sentences. In this case redun-
dant means that a sentence is not necessary for the proof skeleton and there are
not any references that point to that sentence. After removing these sentences
the proof becomes significantly different – the relation r3 does not hold, now we
can think only about equivalence of abstracts of the Mizar texts (the relation
r4 is fulfilled). The application called RELINFER removes proof steps which
are unnecessarily stated as individual steps (all reference lists referring to the
removed sentence are extended by all references used in the removed statement).
The application called RELITERS works in a similar way to RELINFER, but it
analyzes only consecutive steps of the iterative equality. Both applications can
change proofs essentially, but both do not destroy the image of abstracts (it is the
fourth level of alteration to the original text). A similar situation takes place in
the case of the application called TRIVDEMO. It is aimed at finding situations
where reasoning in a given proof-end block can be replaced with a simple justifi-
cation. Such a significant alteration to the form of justification (whole proof-end
block containing many steps may be removed) does not violate the form of the
abstract of the article.
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The table below presents the levels of alteration to the original text of the
applications discussed above:

r0 r1 r2 r3 r4 r5 r6

CHKLAB - - + + + + +
INACC - - - - + + +
RELINFER - - - - + + +
RELITERS - - - - + + +
RELPREM - - - + + + +
RENTHLAB - - + + + + +
SORTREF - - - + + + +
TRIVDEMO - - - - + + +

It is obvious that any useful application does not return text which is equiva-
lent to the original text on the zero level. An example of an application with the
first level of alteration will be described in the next section (as the new auxiliary
software). Basic tools used for the development of the MML database do not
change the essence of abstracts, all the more they do not change the seman-
tics of proved sentences, so in the table above all applications have the level of
alteration to the original text not bigger than four.

6 New Auxiliary Applications as the Transformations
Corresponding to the Equivalence Relations

As it was mentioned above, the research on data-mining and the robustness of
the Mizar system [2] have given rise to new auxiliary applications. Some of them
may be used to improve the existing texts (for example REMEQTH). Others
may prepare text for carrying out additional experiments or for using them with
yet other applications (e.g. DELINKER).

The routine use of applications introducing changes to formalized text de-
pends on their level of alteration to the original text. The higher the level,
the more different the resulting text is from the original text and the decision
whether to apply that application (e.g. on the whole MML database) seems for
the maintainers more difficult to make.

Below I will describe the level of alteration to the original text of new auxil-
iary applications which were created during the testing of the robustness of the
Mizar system.

Two simple applications: UNHEREBY which changes all occurrences of the
word “hereby” into “thus now”, and TOHEREBY which realizes the opposite
operation by changing all phrases “thus now” (but only the ones that are not
separated by a label) into “hereby”, are applications which do not change the
tree of references. But they change the content of proofs outside justifications,
therefore the text which is the result of their work is not equivalent to the
original text with respect to the relation r4. The comparison of abstracts of
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both texts (before and after running these applications) does not show dif-
ferences, therefore both applications have the fourth level of alteration to the
original text.

The problem with shortened form of external references [2] is solved by two
applications: SEPREF and UNSEPREF. SEPREF changes all short forms into
full forms, and UNSEPREF realizes the opposite operation – changes full into
shortened forms. Both applications can change the syntactic image of justified in-
ferences, but they do not have any influence on the shape of the references tree.
Therefore they fulfill the conditions given in the definition of the r2 relation,
which means that they alter the original text on the second level.

Another pair of applications was created to solve the problem of changing
references realized through the keywords “then” and “hence” into the references
realized through labels (and vice versa). The application called LINKER finds
all references by a label into the directly preceding sentences and changes them
into references by “then” (or “hence” in the case when the thesis is affirmed).
This operation concerns only the organization of the given inference, but it
can lead to the change in the order of references in the given inference. The
reference realized by “then” or “hence” is treated as the first reference in the
given inference. If the label which pointed to the directly preceding statement
before running the application LINKER was not in the first place in the infer-
ence, then after running LINKER the order of references will be changed. Just
this situation is the cause of classifying LINKER as an application which alters
the original text on the third level. The second application called DELINKER
removes references by the words “then” and “hence” and changes them into
references by a label. DELINKER alters the original text even on the higher
level than LINKER. It is possible that in a justification there exists a reference
by the keyword “then” into the block of local reasoning, which begins with the
keyword “hereby”. It is not possible to label that block in the current version
of the Mizar system. The solution to this problem is to change the occurrences
of keyword “hereby” into the phrase “thus now” (it is the task carried out
by the application called UNHEREBY), and set the label between “thus” and
“now”. All these operations must be executed by DELINKER and it is the rea-
son why it is considered among applications which alter the original text on the
fourth level.

The following applications: FORMATER and LINE80 do not change the text
syntactically. FORMATER reorganizes the text according to specific rules, with-
out changing its syntax. There are two things that can be changed. There are:
the number of white spaces between consecutive words and the place of breaking
the lines. This application is not used to edit the official version of the MML
database, but it is useful for carrying out various experiments. Thanks to FOR-
MATER it is possible to determine precisely how many changes to the text size
are introduced by a certain experiment (by invoking that application before and
after the experiment). It is possible that after executing FORMATER the length
of some lines will be more than 80 characters. The Mizar system in the standard
mode restricts the line length to 80 characters. This problem is solved by the
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application called LINE80 which breaks all lines which are too long. Because of
their very editorial character, the alteration to the original text of both these
applications is on the first level.

There is also an application which has somewhat larger level of alteration to
the original text. It is called EVERYLAB and it changes names of all labels
and adds labels everywhere where it is possible. EVERYLAB is used for some
experiments. It does not violate the tree of references, so it satisfies the conditions
described in the definition of r2.

Some applications were created solely with the aim to perform certain ex-
periments on the MML database. There is for example an application called
PERMREF. It is the application which establishes the order of references at
random. PERMREF is used in the experiment of testing permutability of ref-
erences in the Mizar system [2]. Similarly to the PERMREF there is an ap-
plication called MONOTONE which adds one random reference from among
all references available at that moment of parsing the document. That process
allows for carrying out the experiment of testing monotonicity of references in
the Mizar system. Thanks to these experiments it was possible to find out and
to correct several situations in which the Mizar system was not robust (it was
not permutable or monotone) [2]. Another application called CHKLPREM re-
moves redundant references (it starts checking from the first element of the list
of references). It is used in the experiment which adds redundant references at
the end of the list of references, and next “cleans” this list with the help of the
CHKLPREM application. That experiment shows some situations in which af-
ter adding one reference, more than one reference can be removed from the list
instead. All these three applications described above change only the organiza-
tion of inferences, but they may influence the tree of references. Therefore their
alteration to the original text is on the third level.

Another application which is designed for testing the robustness of the Mizar
system is REMEQTH. It finds out and removes all repetitions of the semanti-
cally equivalent sentences. It is possible that there are justified two or more
semantically equivalent sentences in one article or in one proof (unfortunately
it is quite a frequent situation in the MML database). The application REME-
QTH removes all of them, except the first one of course. It is possible that this
operation will cause differences in abstract of both texts, and it classifies the
REMEQTH as application with alteration to the original text on the fifth level
(but it is still true that every statement justified in one of these texts has a
semantic equivalent in the second one).

The last application that I wish to discussed is DELOCAL, which moves
every justified sentence onto as high as possible level of the proof. Every sen-
tence is pulled out of its original block and moves onto the higher level when
it does not depend on any variable and any label defined in the current block.
This process finally allows for finding a larger number of semantically equiva-
lent sentences while using the REMEQTH utility. Some sentences are located in
different sub-blocks and therefore they are not comparable. It is possible that
after delocalization (the output of DELOCAL) such sentences may be located
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on a common level and it will make it possible to remove all repetitions. The
structure of proofs may be changed during this process, but it cannot change
the abstracts of processed texts. Therefore the application DELOCAL alters the
original text on the fourth level.

The table below presents the levels of alteration to the original text of the
applications discussed in this section:

r0 r1 r2 r3 r4 r5 r6

CHKLPREM - - - + + + +
DELINKER - - - - + + +
DELOCAL - - - - + + +
EVERYLAB - - + + + + +
FORMATER - + + + + + +
LINE80 - + + + + + +
LINKER - - - + + + +
MONOTONE - - - + + + +
PERMREF - - - + + + +
REMEQTH - - - - - + +
SEPREF - - + + + + +
TOHEREBY - - - - + + +
UNHEREBY - - - - + + +
UNSEPREF - - + + + + +

7 The Final Remarks

Relations described in this paper and various levels of alteration to the orig-
inal text determined for some auxiliary applications used for modifying the
MML database elements determine a classification of these applications. The
higher the level of alteration, the more serious modifications of the text, and
then the greater difference in comparison to the original text. This factor shows
how useful the auxiliary applications are. But on the other hand, the applica-
tion which appears to be more useful, has a smaller chance of being practically
used in the revision process or in modification of the whole MML database. It
is caused by the respect for the original content and form created by the au-
thors of articles. This principle is not obeyed only if the Library Committee of
MML decides that there are really serious reasons for such actions. Therefore
the characterization of the level of alteration to the original text for auxiliary
applications which take part in a planned modification of the MML database
will allow to make a more well-thought-out decision: “to do that modification
or not?”. It is also crucial because the number of auxiliary applications con-
stantly rises, certainly it is motivated by a constant growth of the interest
in research on the data-mining and the robustness of systems for formalized
mathematics.
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1 Introduction

One of the main application areas of interactive proof assistants is the formal-
ization of mathematical texts. This formalization not only allows mathematical
texts to be handled electronically, but also to be checked for correctness. Due
to the level of detail required in the formalization, formalized texts eliminate
ambiguities that may be present in an informally presented mathematical texts.

The process of formalization begins with such an informal text given either on
paper or kept in the author’s mind. Then this text needs to be written down in
a computer-processable formal language and fed into a theorem prover. In this
theorem prover all the details of the proofs in the text need to be fully worked
out. Once this is done, we have a completely formalized version of the original
mathematical text. The main problem when formalizing is how to manage the
complexity of the details needed for a completely formal proof while at the same
time ensuring maximum reliability of the whole formalization process.

This paper is a part of an ongoing effort to study the whole process of formal-
ization starting from the informal document and ending with the full formaliza-
tion. Our approach to formalization is to use several intermediate steps designed
to reduce the possibility of introducing errors during formalization and at the
same time to explore the opportunities for computer assistance.

The contribution of this paper is the description of a set of formal rules that
allow us to automatically make one of these steps - namely the step from our
vernacular language Weak Type Theory (WTT) to the language of a theorem
prover (Type Theory). We also present an implementation of these rules and
report some early results from experiments with it.

1.1 The Formalization Path

We refer to the stages one goes through while formalizing a piece of mathematical
text as the formalization path. It is clear that this path in real situations may
pass through some of the stages several times due to finding and correcting errors
made in earlier stages. But since the iterative nature of the formalization path
is not the focus of attention in this article, we assume the simplest case when
the path goes through each stage only once.

M. Kohlhase (Ed.): MKM 2005, LNAI 3863, pp. 389–403, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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At the first stage we start with the informally presented mathematical text
and write it down in a formal language called Weak Type Theory (see sec-
tion 1.2). This language is designed to express a rich mathematical base while
imposing minimal correctness and well-formedness criteria on the texts written in
it. The advantage is that we have the text in a formal (i.e. machine-processable)
form while remaining close to the original text because we didn’t have to satisfy
strict correctness criteria. Being close to the original is very important because
it helps the author find any errors in this crucial (with respect to reliability)
first stage. This first formalization stage is interesting subject of study by itself
(see [6]).

The second stage on the path that we consider in this paper is to translate
a text written in Weak Type Theory into Type Theory with open terms. The
Type Theory with open terms is an extension of the target theorem prover’s
type theory with meta-variables that represent unknown terms. The open terms
are needed to represent the parts of the proofs that are implicit in the informal
text and which need to be provided to get a full formalization.

This second stage in effect gives semantics to the expressions in WTT by
translating them into type theory. At this stage one needs to make many “for-
malization choices”, i.e. choices that may otherwise be irrelevant to the proof
(for example whether to use unary or binary representation of the naturals) but
need to be made in order to get a full formalization.

The contribution of this paper is to provide a set of rules that allow automatic
translation of a fragment of WTT into a type theory with open terms.

The last stage of the formalization path is to provide instantiations for all
meta-variables (open places) in the incomplete formalization produced by the
second stage. This process is exactly in the application domain of (interactive)
theorem provers – we have a text in the language of the prover and we need
to construct terms of known types in given contexts. Therefore a conventional
theorem prover based on type theory is an excellent tool to conduct this last
phase of the formalization path.

1.2 Formalizing Mathematical Texts Using Weak Type Theory

Weak Type Theory (abbreviated WTT) is a formal language proposed by Ned-
erpelt [8] (its meta-theory was worked out by Kamareddine and Nederpelt in
[4]) based on principles derived from the Automath Project of De Bruijn [9]. In
WTT a mathematical text is structured in books consisting of lines and each
line can be a definition or a statement. As suggested by its name, WTT has a
very weak typing system. It is based not on a particular logic, but rather on the
linguistic structure of the text. The weak types are set for sets, noun for nouns,
adj for adjectives, term for terms and stat for statements (propositions).

An example of a mathematical text written in WTT (using the flag notation
for contexts) is given in Figure 1. In WTT one forms terms from variables,
constants, binders, applications of adjectives to nouns and from the sorts SET
and STAT. Constants are either atomic (provided with their weak types in a
preface of the book) or defined in a definition line. The scope of the defined
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Positive := Adjx:nat0 < x

p, q:nat

divides(p, q) := ∃k:nat(kp = q)

q:nat

divisor(q) := Nounp:natdivides(p, q)

proper(q) := Adjp:divisor(q)p = q

perfect := Adjn:nat( p:(proper(n) divisor(n)) p) = n

prime := Adjn:nat(1 < n) ∧ ∀p:divisor(n)(p = 1 ∨ p = n)

∀k:(Positive nat)((2k − 1) is prime)⇒(2k−1(2k − 1) is perfect)

Fig. 1. An example of a mathematical text written in WTT

constants starts after the line in which they are defined and extends to the end
of the book (in practical applications one would like of course to have the freedom
to introduce constants locally, but here we do not consider this option). Below
we present the grammar of the fragment of WTT that we consider in this paper.

term T ::= x | c[�P ] | λZT
adjective A ::= AdjZ(Sp) | c[�P ]

noun N ::= c[�P ] | NounZ(Sp) | AN
set Ss ::= x | c[�P ] | SetZ(Sp)

statement Sp ::= x | c[�P ] | Sp→Sp | ∀Z(Sp) | ∃Z(Sp) | T is A

argument P ::= Ss | Sp | T
declaration Z ::= x:SET | x:STAT | x:N | x:Ss

context Γ ::= ∅ | Γ,Z | Γ,Sp

definition D ::= c[�x] := (T /Sp/Ss/A/N )
line l ::= Γ � D | Γ � Sp

book B ::= ∅ | B ◦ l

The binders have the general form BZM where B is the name of the binder,
Z is a declaration and M is a term, adjective, noun, set or a statement. WTT
introduces a number of binders like the usual ∀x:A(Px), ∃x:A(Px), λx:A(Px),
but also binders to create adjectives Adjx:A(Px), nouns Nounx:A(Px) and sets
Setx:A(Px), etc. For an extensive presentation of WTT and more examples we
refer the reader to [4]. Unless explicitly stated otherwise, the word ’term’ in the
context of WTT refers to any expression of the categories T , A, N , Ss or Sp. If
we want to say that t is in T we will write that t has weak type term.

1.3 Type Theory with Open Terms

As we mentioned in Section 1.1 our goal is to translate (a fragment of) WTT
into a type theory with open terms. In order to fix the setting, we will assume
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that our target type theory is λHOL which is a type-theoretic presentation of
higher-order logic. The introduction of open terms to λHOL is done by allowing
meta-variables in the syntax of the terms. Each meta-variable is declared by a
name m, a list of its parameters x1:A1 . . . xn:An and a type A and the declaration
is denoted by m[x1:A1 . . . xn:An]:A. Instances of meta-variables are formed by
providing actual arguments M1 . . . Mn for the formal parameters x1 . . . xn that
match the declared types: m[M1 . . . Mn].

The intuition is that a meta-variable m[x1:A1 . . . xn:An]:A represents an un-
known term of type A in a context x1:A1 . . . xn:An. When a solution for the
meta-variable is found, its declaration can be converted to a definition ([7]):
m[x1:A1 . . . xn:An]:=M :A.

The term language of λHOL is given by the following

T ::= x | Prop | Type | Kind | m[�T ] | TT | λx:T.T | Πx:T.T

Due to space restrictions, we refer the reader to [2, 3] for more examples, the
typing rules and the properties of the extension with open terms. Here we will
only mention that all standard properties of the typing system extend without
great problem to the case of open terms.

2 The Translation

In this section we discuss the translation of a fragment of WTT into λHOL with
open terms. As we already mentioned this means giving semantics of the different
elements (terms, declarations, lines, etc.) of WTT by providing meaning for them
in the type theory. We need to state here however that such a translation can
never be complete in the sense that every weakly well-typed term is translated
into a strongly well-typed term. This is natural because the weak typing of
WTT cannot reject all (strong) typing errors like for example the application of
a non-function to an argument.

2.1 Semantic Model

In a translation we need to specify how each WTT element is interpreted in
Type Theory. This can be done in different ways and choosing the right one
is not straightforward since it may depend on external factors like for example
libraries of the theorem prover, etc.

The model chosen in this article is as follows:

A book is translated into a context containing declarations of the global
symbols from the preface of the book, followed by declarations of meta-variables
and definitions. These are added consecutively to the context by translating the
lines in the book.

A definition line Γ � c:= M is translated into a definition c[Δ]:=N :A where
Δ is the translation of the context Γ and N is the translation of M and A is
its type. A statement line Γ � φ is translated into a meta-variable declaration



Translating a Fragment of Weak Type Theory 393

m[Δ]:ψ where Δ is the translation of Γ and ψ is the translation of φ. During the
translation of the contexts and terms in a line we may need to introduce new
meta-variables that are also added to the context.

The translation of a WTT context is not reduced to translating the type of
the declared variables, or at least this is not straightforward. Instead, we declare
by mutual induction the translation of WTT terms and declarations. The
reason for the separation is that λHOL does not support comprehension on the
level of types. This means that expressions like Positive nat or Setx:nat0 < x
cannot be translated into λHOL types. Fortunately, declarations of variables
of those types can be translated. For example x:Positive nat is translated into
x:nat, h:(Positive x) and x:(Sety:nat0 < y) is translated into x:nat, h:(0 < x).

A WTT context contains variable declarations of the form x:A and assump-
tions of the form φ where φ is a statement (i.e. has a weak type stat). As the
examples above show the translation of a declaration may result in more than
one λHOL-declaration.

Furthermore, the translation of WTT-terms may require the introduction of
extra meta-variables. An example when we need to introduce a meta-variable
during the translation is given in Figure 2. In general, meta-variables appear

m, n : nat

m = 0

divides(m,n) := ∃k:nat(n = km)

positive := Adjn:nat(0 < n)

y : positive nat

divides(y, 2y)

Fig. 2. The translation of the last line requires the introduction of a meta-variable for
the proof-obligation in the context of divides

because some of the declarations in contexts are split into multiple declaration
in type theory during the translation. Most of the meta-variables will turn out
to be standing for unknown proof objects, but this is not always the case.

The rules for the translation of declarations and terms define by mutual in-
duction two relations:

Γ1 � x:A −→ Γ2 � �y: �B

and
Γ1 � M −→ Γ2 � N

where thefirst judgment shouldbe readas:The translationof theWTT-declaration
x:A in the λHOL-context Γ1 results in the λHOL-declarations �y: �B in λHOL-
contextΓ2.The second judgement similarly states that the translationof theWTT-
term M (in Γ1) is the λHOL-term N (in Γ2).
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The following section describes the rules defining the translation of declara-
tions and terms.

2.2 Rules for the Translation of Declarations and Terms

The Set binder. The Set binder creates a set by restricting a given set with a
predicate. A declaration x:(Setz:Nφ) intuitively means that x belongs to the set
of all those z of type N for which φ holds. The rule below translates declarations
of variables with Set as a main constructor in their type.

Γ1 � x:N −→ Γ2 � x:A, �y: �B
Γ2, x:A, �y: �B � φ[z/x] −→ Γ3, x:A, �y: �B � C

Γ1 � x:(Setz:Nφ) −→ Γ3 � x:A, �y: �B, h:C

As usual, this rule says that we can conclude

Γ1 � x:(Setz:Nφ) −→ Γ3 � x:A, �y: �B, h:C

if we have already inferred that

Γ1 � x:N −→ Γ2 � x:A, �y: �B

and
Γ2, x:A, �y: �B � φ[z/x] −→ Γ3, x:A, �y: �B � C

To summarize, a declaration x:(Setz:Nφ) is translated into a series of decla-
rations x:A, �y: �B, h:C where A will turn out to be a type representing a set and
the rest are assumptions on x.

The Noun binder. The Noun binder creates nouns from existing ones using
comprehension (restricting predicate) very much like the Set binder.

Γ1 � x:N −→ Γ2 � x:A, �y: �B
Γ2, x:A, �y: �B � φ[x/z] −→ Γ3, x:A, �y: �B � C

Γ1 � x:(Nounz:Nφ) −→ Γ3 � x:A, �y: �B, h:C

If x is to be of type Nounz:Nφ, it needs to be of type N (which gives rise to the
first premise of the rule) and then it needs to satisfy the predicate φ[x/z] (the
second premise).

Function declaration. The → constant of WTT can be used to introduce
(non-dependent) function types. It has two arguments A and B of weak type
set and the type of A→B is also set. Therefore we are allowed to form function
types that use sets constructed by comprehension. As we have already seen,
those do not have direct translations, but can only be translated when used in
declarations.
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The rule for declarations of functional variables is the following:

Γ1 � x:M −→ Γ2 � �x: �A
Γ2, �x: �A � y:N −→ Γ3, �x: �A � �y: �B

Γ1 � f :M→N −→ Γ3 � fi:Π�x: �A.Bi[(fj�x)/yj]j<i

Example: Let positive be an adjective on the natural numbers. Suppose we
want to declare a function f :(nat→positive nat). Since y:positive nat maps to
y:nat, h:(positive y), we have the following diagram:

� x:nat −→� x:nat
� x:nat � y:positive nat −→ x:nat � y:nat, h:(positive y)

� f :nat→positive nat −→� f :Πx:nat.nat
f1:Πx:nat.(positive (f x))

Other declarations. Except for the case of an application of an adjective
to a noun (see below), the rest of the term constructors in declarations we
can give compositional translation. This means that if A translates to B, then
the declaration x:A translates to the declaration x:B. This is captured by the
following rule:

Γ1 � A −→ Γ2 � B

Γ1 � x:A −→ Γ2 � x:B

Hence, in the rest of this section we will only describe rules that define the
translations of terms (i.e. the relation Γ1 � M −→ Γ2 � N).

The ∀ binder. The rule for the ∀ binder is the following:

Γ1 � x:N −→ Γ2 � �y: �B
Γ2, �y: �B � A −→ Γ3, �y: �B � φ

Γ1 � ∀x:N.A −→ Γ3 � Π�y: �B.φ

This means that to translate ∀x:N.A, we first translate the declaration x:N into
a series of declarations �y: �B. Then in a context extended with those declarations
we translate the body A. The resulting term φ is the body of the Π abstraction
to which the ∀ binder is translated.

Variables and sorts. The rules for translating variables and sorts are straight-
forward. The sort STAT in WTT is mapped to the Prop in the type theory and
SET is mapped into Type.

Γ � STAT −→ Γ � Prop Γ � SET −→ Γ � Type Γ � x −→ Γ � x

The fact that STAT and SET are not weakly typable ensures that their only use
will be in declarations since we assume that the book we translate is weakly
well-typed.
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Constants. As we already mentioned, due to the fact that in λHOL we cannot
represent all sets directly as terms we allow set/noun comprehension only in
variable declarations. However in WTT one may introduce a definition that
gives a name for a set/noun and the use it later in the book. It is clear that
such definitions cannot be directly represented by terms and for that reason we
expand any occurrences of such definitions that occur later in the book.

Hence we may either assume that the book we are translating does not contain
such definitions or we can introduce a rule like the one below to handle defined
constant sets/nouns.

Γ1 � M [M1/x1 . . . Mn/xn] −→ Γ2 � N

Γ1 � c[M1 . . .Mn] −→ Γ2 � N

where the constant c is defined to be the set/noun M in context containing the
variables x1 . . . xn. The disadvantage of this rule is that it is only sound for sets
and nouns that are defined in a context that contains no assumptions (see the
treatment of assumptions in the other cases below).

Let c be an atomic constant (i.e. non-defined constant from the preface) or
a defined constant that is not a set/noun. Let Δ be the context of length k
describing the parameters of c and let x1:A1, Δ1, . . . , xk:Ak, Δk be a sequence
of declarations obtained by translating Δ. Each group xi:Ai, Δi corresponds to
the ith element of Δ. Then the declaration of c in λHOL will be

c[x1:A1, Δ1, . . . , xk:Ak, Δk]:A

for some A (if c is defined, A is found by inferring the type of the defining term,
in case c is in the preface, it has to be provided externally). The rule below shows
how constant instances are translated:

Γ0 � M1 −→ Γ1 � N1
. . .
Γn−1 � Mn −→ Γn � Nn

Γ0 � c[M1 . . . Mn] −→ Γn+1 � c[t1, �s1[�y], . . . , tk, �sk[�y]]

Note that n ≤ k because in WTT we do not provide arguments for the as-
sumptions in the context. Here ti is either a term Nj when the ith component
of Γ is a declaration or an instance of a fresh meta-variable rj [�y] if it was an
assumption. The terms �si[�y] are also fresh meta-variables introduced to stand
for the unknown arguments. The context of each of these meta-variables is the
current context and their types are computed from the corresponding Ai or
Δi by substituting the previous arguments in them. More formally, the context
Γn+1 is computed in the following way: assume that Γn ≡ Γ M , Γ V where Γ M

declares only meta-variables and Γ V declares the variables �y. Then Γn+1 is Γ M

followed by declarations of meta-variables rj or sj standing for the elements of
x1:A1, Δ1, . . . , xk:Ak, Δk that do not have a corresponding Nj . After that we
concatenate the context with the declarations of the variables Γ V .

To illustrate this rule we show the following example: Let divides be a predi-
cate defined in context Γ ≡ x:nat, 0 < x, y:positive nat where positive is an adjec-
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tive on the naturals. Then the translation of Γ yields the context x:nat, h1:0 <
x, y:nat, h2:(positive y). To show how this relates to the rule above, we present
the instantiation of the variables from the rule:

x:nat x1 = x A1 ≡ nat Δ1 ≡ ∅
h1:0 < x x2 ≡ h1 A2 ≡ 0 < x Δ2 ≡ ∅
y:nat, h2:(positive y) x3 ≡ y A3 ≡ nat Δ3 ≡ h2:(positive y)

Suppose we need to translate the occurrence divides[2, 4]. Then M1 = 2,
M2 = 4. According to the rule, t1 = 2, t2 = r1, t3 = 4 where r1 is a fresh
meta-variable of type (0 < x)[2/x] which after the substitution is 0 < 2. Since
Δ1 and Δ2 are empty, there are no meta-variables �s1 and �s2. However Δ3 is
non-empty and we introduce a fresh meta-variable s1

3 for its single component.
The type of this meta-variable is computed by substituting 2 for x and 4 for y
in Δ3. Hence it is (positive y)[2/x][4/y] which of course is (positive 4).

To sum up, the constant occurrence divides[2, 4] will be translated into
divides[2, r1[ ], 4, s1

3[ ]] where r1[ ]:(0 < 2) and s1
3[ ]:(positive 4) are fresh meta-

variables standing for the proof obligations 0 < 2 and (positive 4) as expected
by the declaration of the arguments of divides in Γ . The [ ] in r1[ ] denote the
fact that (in this particular case) the local context in which the proof of 0 < 2
needs to be found is empty.

Adjectives. Adjectives can be created using the Adj binder. We choose to
model adjectives as predicates (i.e. as terms of type A1→ . . .→An→Prop).

Γ1 � x:N −→ Γ2 � �y: �B
Γ2, �y: �B � A −→ Γ3, �y: �B � φ

Γ1 � Adjx:N .A −→ Γ3 � λ�y: �B.φ

Adjectives can be applied to nouns to produce other nouns. We cannot trans-
late directly such applications of adjectives to nouns, but this is possible if they
occur in a declaration:

Γ1 � x:N −→ Γ2 � �x: �B
Γ2, x: �B � A −→ Γ3, �x: �B � E

Γ3, �x: �B � E : Πz:P.Π�y: �C.Prop

Γ1, x:AN −→ Γ4, �x: �B, h:(E x �m)

In this rule �m are fresh meta-variables standing for the arguments y whose
declarations are added to Γ3 in order to obtain Γ4. Here we also use type inference
in λHOL in order to obtain the type of E. As an example of this rule consider
the declaration

x:(Adjy:prime nat0 < y)nat

First, the declaration y:prime nat is translated into y:nat, h:(prime y). Since
0 < y is mapped to itself, the adjective Adjy:prime nat0 < y is mapped into

λy:nat.λh:(prime y).0 < y

which is of type Πy:nat.Πh:(prime y).Prop
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Since nat is a variable, it is translated to itself and the whole application
x:(Adjy:prime nat0 < y)nat is hence mapped (after β-reduction) to

x:nat, h:(0 < x)

with an extra proof obligation (prime x) added to the context.
There are two more term constructions in WTT that involve adjectives. These

are (t isA) saying that the term t has the property A and (t is N) saying that t is
a term of type N where N is a noun. Examples of such terms are (1+3) is positive
or (2 + 2) is positive nat.

We didn’t include is as a term constructor in WTT since we can model it
with two constants that take a term and an adjective or a noun to produce a
statement. Their semantics is however a bit different from the one of constants
and for that reason we give the rules for is here:

Γ1 � t −→ Γ2 � s
Γ2 � A −→ Γ3 � E

Γ3 � E : Πx:U.Π�y: �B.Prop

Γ1 � t isA −→ Γ4 � (E s �m)

Γ1 � t −→ Γ2 � s

Γ2 � x:N −→ Γ3 � x:U, �y: �B

Γ1 � t isN −→ Γ4 � (λ�x:U.λ�y: �B.true)(s)(�m)

where in both rules Γ4 is obtained from Γ3 by adding the declarations of the
metavariables �m of types �B[s/x] with local contexts containing the variables
in Γ3. The first diagram shows the rule for (t is A) where t is a term and A
is an adjective. After translating t we translate A to a term E whose type
should be of the form Πx:U.Π�y: �B.Prop. We introduce meta-variables for each
of the arguments �y with appropriate types and the result of the translation is
an application of the predicate E to s and the meta-variables representing the
assumptions on s required by the adjective A.

The case (t is N) is handled in a very similar way. In this case after translating
t to s we translate a declaration x:N (for a fresh x) to a list of declarations
x:U, �y: �A. Then we introduce meta-variables �m of types �A[s/x]. As a result the
translation of (t is N) is a redex that β-equals true. This “trick” is necessary to
ensure that the translation of t has the right type U .

3 Example

To illustrate the rules for the translation we will show how they apply to the
WTT text shown on Figure 1. The first two lines are rather straightforward, we
need not do much. The WTT line

Positive := Adjx:nat0 < x
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is mapped into

Positive := (λx:nat.0 < x) : (Πx:nat.Prop)

Since the declaration x:nat in the binder Adj contains only the “simple” type
nat, all we have to do is apply the rule for the Adj binder and translate it to a
λ-binder.

The following line: divides(p, q) := ∃k:nat(kp = q) is also easy to translate, we
only map the WTT-binder ∃ into its type-theoretical version:

divides(p, q) := ∃k:nat(kp = q) : Prop

The next line is a definition of a the noun divisor. As we mentioned earlier,
nouns can only be translated in declaration positions. We cannot translate de-
fined complex nouns and instead we unfold the definition in the places where it
occurs in the book. Therefore, the next line from the example is

proper(q) := Adjp:Nounp:natdivides(p,q)p �= q

According to the rules for translating adjectives, we first have to translate the
declaration p:Nounp:natdivides(p, q) in context q:nat.

� p:nat −→� p:nat
p:nat � divides(p, q) −→ p:nat � divides(p, q)

� p:Nounp:natdivides(p, q) −→� p:nat, h:divides(p, q)

� p:Nounp:natdivides(p, q) −→� p:nat, h:divides(p, q)
p:nat, h:divides(p, q) � p �= q −→ p:nat, h:divides(p, q) � p �= q

� Adjp:Nounp:natdivides(p,q)p �= q −→� λp:natλh:divides(p, q)p �= q

Here we have skipped the application of the rule for constants that does the
trivial translation of divides(p, q) into divides(p, q). The rules above show the
translation of the whole adjective once we have computed the translation of the
declaration.

The translation of the next line is the most complicated one in the example.
We see on Figure 3 that the line

perfect := Adjn:nat(
∑

p:(proper(n) divisor(n)) p) = n

generates four output lines. This has to do with the way we have chosen to
formalize the

∑
binder. (sum f φ M D L) computes the sum of those f(i) for

which the decidable predicate φ holds. ?M is a natural number that is an upper
bound on those numbers for which φ holds (?L) and ?D is a proof that φ is
decidable. See Section 5.2 for more details.

The last two lines are also straightforward and we will not go into further
detail, except to say that the last line, which is a statement, is translated into a
declaration of a meta-variable standing for the unknown proof of that statement.
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Positive := λx:nat.0 < x : Πx:nat.Prop

p, q:nat

divides(p, q) := ∃k:nat(kp = q) : Prop

q:nat

proper(q) := λp:nat.λh:divides(p, q).p = q

?M : nat

?D : Πp:nat.(divides(p, n) ∧ (proper(n) p)) ∨ ¬(divides(p, n) ∧ (proper(n) p))

?L : Πp:nat.(divides(p, n) ∧ (proper(n) p))⇒p ≤?M

perfect := λn:nat.(sum λp.p λp.divides(p, n) ∧ (proper(n) p) ?M ?D ?L) = n

prime := λn:nat.(1 < n) ∧Πp:nat.Πh:divides(p, n).(p = 1 ∨ p = n)

?Stm1 : Πk:nat.Πh:(Positive k)(prime (2k − 1))⇒(perfect 2k−1(2k − 1))

Fig. 3. The translation of the WTT text from Figure 1. Some types in the definitions
are omitted for readability. See Section 5.2 for explanation of the translation of .

4 Properties

As we already mentioned in Section 2, we cannot hope that every well-typed
WTT-book is translatable into a well-typed context of type theory. We could
strengthen the rules above to produce only typable translations and rejecting
books that do not translate to a typable context, but this will ammount to
adding a typechecker for type theory to the translation rules. This approach
may well be more efficient in a practical implementation, but here we separate
the translation from the typechecking.

There are however properties that hold for the translation:

Property 1 (Context property).
Let Γ1 � M −→ Γ2 � N or Γ1 � x:A −→ Γ2 � �y: �B. Then

1. (Preservation of variables) (x:A) ∈ Γ1 if and only if (x:A) ∈ Γ2.
2. (Weakening with meta-variables) if (m[Δ]:A) ∈ Γ1 then (m[Δ]:A) ∈ Γ2.

One can show (1) by induction on the generation of the relation −→. (2)
holds since none of the rules removes or changes meta-variable declarations in
the context. A rule may only add new ones.

5 Implementation and Experiments

The rules describing the translation in this article have been implemented in
OCAML. The implemented program can read a WTT book from file and type-
check it, after which it performs the translation into a context containing meta-
variables and declarations in λHOL. Such a context can then be exported into
a Coq [1] script file. The prototype also includes a type inference algorithm for
λHOL with open terms as such an algorithm is used in the translation rules.
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5.1 Export to Coq

The export of a context to a Coq script is rather trivial. Every variable is trans-
lated in a variable declaration, every definition is mapped to a Coq definition and
every meta-variable is mapped into a lemma without proof. The local variables in
the definitions and the meta-variables are abstracted away, so the meta-variables
m[x1:A1, x2:A2]:B and m[x1:A1]:Πx2:A2.B will be mapped to lemmata stating
the same proposition.

For the sake of using the Coq library, some variables with special names are
mapped into the corresponding Coq notion. Examples are the type of the natural
numbers nat and operations and relations on it (plus, mult, le, etc.).

5.2 Introducing a
∑

Binder

Early experiments with the implementation point to some problems with this
way of exporting of contexts to Coq however. One such experiment was to add a
new binder

∑
for summation so that one is able to write down statements like:⎛⎝ ∑

p:divisor(2k−1(2k−1))

p

⎞⎠ =

⎛⎝ ∑
t:divisor(2k−1)

⎛⎝ ∑
s:divisor(2k−1)

.ts

⎞⎠⎞⎠
where p:divisor(n) means that p is a divisor of n (belongs to the type of all
divisors of n).

To be able to handle the general case
∑

x:N .t where N is any term of weak
type set, we define in Coq (using fixpoints) a function with the following type:

sum:
forall f:nat->nat,
forall phi:nat->Prop,
forall M:nat,
forall dec:(forall n:nat, {phi n}+{~phi n}),
forall lim:(forall n:nat, (phi n)-> n<= M),
nat

The idea is that (sum f φ M D L) represents
∑

{x:nat|φ(x)} f(x) where φ is a
decidable predicate (D is a proof of that) and M is an upper bound on the values
for which φ holds (L is a proof of that).

Apart from the question of whether this is a good way to formalize the
∑

binder, we observed the following. Every time the
∑

binder is encountered we
introduce new meta-variables for the bound and the two proof obligations. This
implies that if the same term occurs twice as a subterm in a formula, it will
be translated to applications of sum with different meta-variables as arguments.
The meta-variables however are exported into lemmata in Coq and this leads to
non-unifiable terms in Coq. Since in Coq one cannot work directly with meta-
variables, this implies that to resolve this problem we need to employ unification
during the translation process. Another open path to explore in this direction
is to see whether the mechanism of implicit arguments that is present in Coq
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can be utilized in some way to resolve the problem without having to build
unification into the translation procedure.

6 Conclusions, Related and Further Work

By its nature, the translation does not produce terms that are always strongly
typable. Integrating a type-checker may make an implementation of the rules
more efficient, but the rules will become much more complicated.

As the reader may have noticed, we show only one property of the translation
given in Property 1. There is a conceptual problem here that lies behind this
apparently lack of some other ’expected’ properties. Normally, when translating
from one system to another, one formulates a correctness lemma for the trans-
lation which usually states that the semantics is preserved in some form. Here
however we are in the case when we actually give semantics to our fragment of
WTT by the presented translation.

As a future work, we need to test the implementation on more and big-
ger practical examples in order to evaluate and if necessary refine the trans-
lation presented in this paper. As noted by one of the referees, it might also
be interesting to look at the possibilities of exporting the translated terms to
Isabelle [11, 15] since there is better support for explicit manipulation of meta-
variables.

Many different aspects of the problem of the transition between formal and
informal presentations of mathematical texts has been studied in many different
contexts. For example, Wiedijk [16] proposes to use formal proof sketches which
are machine checkable presentations of math texts in which (some) proofs are
omitted and Thery [14] proposes colourings as way to present the structure of
proofs. Kamareddine, Maarek and Wells [5, 6] also study the process of formal-
izing mathematical texts and propose sophisticated extensions of WTT suitable
for practical applications and show how the initial step from informal to a formal
language can be facilitated by a computer. Another aspect of the same prob-
lem is which language is a good vernacular for expressing mathematics on the
computer. Here we use WTT, but there are other approaches as for example the
declarative proof styles of Mizar [13] and Isar [10]. We are aware of the work on
translations between different formal systems in the Grammatical Framework
(GF) of Ranta [12]. The main conceptual difference of what we do here is that
GF performs semantics-preserving translations, while in our case the translation
actually gives the semantics of the WTT text.
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