
Formalized Metatheory with Terms Represented
by an Indexed Family of Types

Robin Adams

Royal Holloway, University of London
robin@cs.rhul.ac.uk

Abstract. It is possible to represent the terms of a syntax with binding
constructors by a family of types, indexed by the free variables that may
occur. This approach has been used several times for the study of syntax
and substitution, but never for the formalization of the metatheory of
a typing system. We describe a recent formalization of the metatheory
of Pure Type Systems in Coq as an example of such a formalization. In
general, careful thought is required as to how each definition and theorem
should be stated, usually in an unfamiliar ‘big-step’ form; but, once the
correct form has been found, the proofs are very elegant and direct.

1 Introduction

In [1], Bellegarde and Hook show how the terms of a language with binding
constructors can be represented as a nested datatype — a type constructor that
takes types (including possibly its own values) as arguments. This idea has since
been used several times for the study of the syntax of such languages, for example
in Altenkirch and Reus [2], and Bird and Paterson [3]. However, to the best of the
author’s knowledge, it has never been used in a formalization of the metatheory
of a formal system.

We present here a formalization in Coq of the metatheory of Pure Type
Systems (PTSs) using this representation for the set of terms. We prove all
of the results about arbitrary PTSs given in Barendregt [4], including Subject
Reduction and Uniqueness of Types for functional PTSs. The formalization also
includes van Bentham Jutting’s proof of Strengthening [5].

There have been several formalizations of the metatheory of formal systems
in the past, two of the largest being McKinna and Pollack [6] and Barras [7]; and
so we shall be able to compare the strengths and weaknesses of this approach
with those of the previous.

The indexed family approach proves to have quite limited expressive power.
We cannot define all the operations nor state all the results in the form we
are used to. Careful thought was often needed as to what form a definition
or theorem could take. In general, it was found that operations involving all
variables simultaneously were easy to represent in this formalization, while those
involving single variables were difficult to represent. For example, we can define
the operation of substituting for every variable simultaneously, but not that of

J.-C. Filliâtre et al. (Eds.): TYPES 2004, LNCS 3839, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 R. Adams

substituting a given term for an arbitrary single variable. The author found
himself calling operations of the first kind ‘big-step’ operations, and those of the
second kind ‘small-step’. These are as good names as any, and we shall continue
to use them.

To set against this, it was found that, once the correct form for each definition
and theorem had been arrived at, the proofs themselves were simple, short,
elegant and easily constructed. We find ourselves spending much less time on
technical details than in most formalizations of metatheoretic work. Perhaps
most importantly, those technicalities that we do have to deal with have a more
type-theoretic flavour: the objects with which one deals are those one would
expect to find in the metatheory of a type theory, rather than low-level aspects
of the mechanisms of the formalization.

In particular, each specific instance of a small-step operation we need (such
as the substitution involved in β-reduction) is definable as a special case of a
big-step operation. The results that we need about it are likewise derivable as
special cases of results about the big-step operations.

There were two maxims that, at several points in this work, it proved wise to
follow, and which would seem to be more widely applicable to the formalization
of mathematics in general. They can be stated briefly as: favour recursive defi-
nitions over inductive ones, and avoid arithmetic in types. We discuss them in
Section 2. We proceed in Section 3 to a description of the formalization itself,
showing how the two maxims are applied, and showing the big-step form of each
definition and theorem.

For those who wish to examine the formalization, the source code and docu-
mentation is available at http://www.cs.rhul.ac.uk/~robin/coqPTS.

2 Maxims for Formalization

There were three general principles that it proved wise to follow in this work. One
— that ‘big-step’ definitions should be preferred to ‘small-step’ — is peculiar to
this work, and we shall discuss it in Section 3. We wish here to discuss the other
two maxims, which should be more generally applicable to other formalizations.

2.1 Recursive Definitions Versus Inductive Families

Our first maxim is:

When defining a family of types F : I → Set over an inductive type I, if
possible define F by recursion over I, rather than as an inductive family

or more briefly, favour recursive definitions over inductive ones.
The difficulties of using inductive families are well known among the Coq

community. The standard example is the family Vn of vectors of length n (over a
given type A). We can define this either as an inductive family, with constructors:

〈〉 : V0

a : A v : Vn

(a :: v) : Vn+1

Formalized Metatheory with Terms 3

or by recursion on the index n, as follows:

V0 = 1 Vn+1 = A × Vn

(Here, 1 is the type with a single canonical object, called unit in the Coq library,
and × of course denotes the non-dependent product of two types.)

The practical difference between these two definitions lies in how easy it is to
deduce information about an object of type Vt from the shape of the term t : N.
In particular, we frequently want to use the fact that a term s : V0 must be equal
to 〈〉, and that a term s : Vt+1 must have the form a :: v for some a : A and
v : Vt. This can be deduced immediately if we are using the recursive definition,
but not with the inductive definition.

There is a standard technical trick for overcoming this difficulty that is known
as folklore among the Coq community. It appears unattributed in Letouzey’s
message [8]. To the author’s knowledge, this technique has never before been
put into print, and Letouzey may well be its inventor.

It can be summarised as follows:

– Define a function which should be the identity function on the inductive
family.

– Prove that the function is indeed the identity function.
– Deduce from this fact theorems allowing case analysis on the objects of the

inductive family.

In the case of Vn, we provide ourselves with the destructors head : Πn :
N.Vn+1 → A and tail : Πn : N.Vn+1 → Vn:

head n (a :: v) = a tail n (a :: v) = v

(These are two instances where case analysis on Vn can be applied successfully.)
We can then define our ‘pseudo-identity’ function pseudoid : Πn : N.Vn → Vn

by recursion on n as follows:

pseudoid 0 v = 〈〉 (v : V0)
pseudoid n + 1 v = (head n v) :: (tail n v) (v : Vn+1)

We can prove the following result by induction on v:

(∀n : N)(∀v : Vn)pseudoid n v = v . (1)

From this, the following case analysis theorems can be easily deduced:

(∀v : V0) v = 〈〉 (2)
(∀n : N) (∀v : Vn+1) v = (head n v) :: (tail n v) (3)

One way of viewing this construction is as building a bijection between the
inductively defined family and the recursively defined family. More precisely, we
have built a bijection between V0 and 1, and between Vn+1 and A × Vn. The

4 R. Adams

constructors form one half of the bijection: the ‘cons’ constructor :: is a (Curried)
mapping A × Vn → Vn+1, and 〈〉 can be seen as a mapping 1 → V0. Our
destructors form the other half: head and tail together give a mapping Vn+1 →
A × Vn, and we take the trivial mapping V0 → 1.

The function pseudoid is the composition of these two halves: pseudoid 0 is
the composition

V0 → 1
〈〉→ V0 ,

and pseudoid n + 1 is the composition

Vn+1
〈head,tail〉−→ A × Vn

::→ Vn+1 .

Our theorem (1) then verifies that these compositions do produce the identity
mapping; that is, that cons and emp are left inverses to 〈head, tail〉 and the
trivial mapping, respectively. (That they are also right inverses is immediate
from the definitions of head and tail.) In theorems (2) and (3), we then use
the fact that case analysis is possible on 1 and A × Vn to prove it is possible on
V0 and Vn+1.

Conversely, we can see intuitively that any way of performing case analysis on
the elements of Vn would yield appropriate functions V0 → 1 and Vn+1 → A×Vn.
So we make the following, as yet rather imprecise, conjecture:

Case analysis is possible on the objects of an inductively defined family
of types if and only if the family is isomorphic to a recursively defined
family.

2.2 Arithmetic Within Types

Our second maxim is:

When using a family of types indexed by nat, make sure that the index
term never involves plus or times

or, more briefly, avoid arithmetic within types.
Let us continue with our example of the family Vn of types of vectors that we

have introduced. A natural operation to define is the action of appending two
vectors:

u : Vm v : Vn

û v : Vm+n

〈〉̂ v = v, (a :: u)̂ v = a :: (û v)

We now try to prove that this operation is associative:

û (v̂ w) = (û v)̂w

We have a problem. The left-hand side of this equation has type Vm+(n+p), while
the right-hand side has type V(m+n)+p. These two types, while provably equal,
are not convertible, so the proposition as we have written it is not well-formed.

Formalized Metatheory with Terms 5

We are trying to treat two terms with different types as if they had the same
type.

We can also meet the converse problem, where we require one term to have
two different types within the same formula; say type Vm+Sn at one point and
type VSm+n at another.

Should these two maxims ever conflict, the second maxim should take pri-
ority over the first. The first involves a known quantity of work: once the case
analysis lemmas have been proven by the known method described above, then
we can forget about the fact the family was defined inductively. Our two maxims
conflicted at only one point in this formalization: the definition of the family of
types of strings. We shall say more about this in Section 3.3.

3 Description of the Formalization

We proceed to a description of the formalization of the metatheory of PTSs.
Most of the formalization shall not be described in any detail; we shall concen-
trate instead on the parts that are novel to this formalization, particularly those
definitions and theorems which need to be stated in an unfamiliar form owing
to the fact that we are working with the indexed family representation of terms.
A detailed description of the formalization can be found at [9].

We have already discussed two themes that occurred several times in this
work: the preference for recursive definitions of families of types over inductive
ones, and the need to avoid arithmetic within types. A third is that, when terms
are defined as an indexed family, it is easier to define operations and prove
theorems that deal with all variables simultaneously, than those that deal with
a single variable. For example, it is easier to define the operation of substituting
for every variable simultaneously, than that of substituting for a single given
variable. We shall give the name of ‘big-step’ operations and theorems to the
first kind, and ‘small-step’ to the second.

Our definitions of replacement (substitution of variables for variables), substi-
tution, and the subcontext relation all get big-step definitions, and we also find
ourselves needing a satisfaction relation, which can be seen as a big-step version
of the typing relation. We found it easiest to base the definition of reduction and
conversion on parallel reduction, rather than one-step reduction; this again could
possibly be seen as a big-step/small-step distinction. (In this choice, we follow
McKinna and Pollack [6].) The Weakening, Substitution, Subject Reduction and
Context Conversion results were all found to be easier to state and prove in a
big-step form. The small-step instances of these operations, relations and results
that we later need can all be derived as special cases of the big-step forms.

3.1 Grammar

Terms as a Nested Datatype. The idea of representing terms as a nested
datatype first appeared in Bellegarde and Hook [1]. It has been used several
times for the study of syntactic properties and operations, such as substitution

6 R. Adams

and β-reduction; see for example Altenkirch and Reus [2] or Bird and Paterson
[3]; the latter even deals with the simply-typed lambda calculus. However, this
representation of syntax seems never before to have been used in the metatheory
of a typing system where the typing judgements are given by a set of rules of
deduction.

We wish to represent, in some type theory, the terms of some formal system
whose syntax involves one or more binding constructor. Rather than defining
one type whose objects are to represent these terms, we define a family of types
TV for every type V in some universe. The objects of type TV represent those
terms that can be formed using the objects of type V as free variables.

For example, suppose we wish to represent the terms of the untyped lambda
calculus. Let us assume we have, for every type X , a type X⊥ consisting of a copy
↑ x of each x : X , together with one extra object, ⊥. (In Coq, this would be the
type option X provided by the Coq library.) We can then represent the terms
of the untyped lambda calculus by the inductive family TV whose constructors
are as follows.

x : V

var x : TV

M : TV⊥

λM : TV

M : TV N : TV

MN : TV

The constructor λ takes a term M whose free variables are taken from V⊥, binds
the variable ⊥, and returns a term λM whose free variables are taken from V .

The definition of substitution takes the following form. We aim to define,
for every term M : TU and every substitution function σ : U → TV , the term
M [σ] : TV , the result of substituting for each variable u : U the term σ(u) : TV .
The definition that we would naturally write down is as follows.

x[σ] ≡ σ(x)
(MN)[σ] ≡ M [σ]N [σ]

(λM)[σ] ≡ λM

[
⊥ �→ ⊥

↑ x �→ σ(x)[y �→↑ y]

]

(Here and henceforth, we are omitting the constructor var.)
It is possible to prove that this recursion terminates. However, this definition

cannot be made directly in Coq, as it is not a definition by structural recursion.
But we can define directly the special case where σ always returns a variable. We
thus define the operation of replacement ; given a term M : TU and a renaming
function ρ : U → V , we define the term M{ρ} : TV , the result of replacing each
variable u : U with ρ(u) : V , thus:

x{ρ} ≡ ρ(x)
(MN){ρ} ≡ M{ρ}N{ρ}

(λM){ρ} ≡ λM

{
⊥ �→ ⊥

↑ x �→ ↑ ρ(x)

}

Formalized Metatheory with Terms 7

Substitution can then be defined as follows: for σ : U → TV ,

x[σ] ≡ σ(x)
(MN)[σ] ≡ M [σ]N [σ]

(λM)[σ] ≡ λM

[
⊥ �→ ⊥

↑ x �→ σ(x){y �→↑ y}

]

Altenkirch and Reus [2] show how the type operator T , the constructor var,
and the substitution operation [] form a Kleisli triple, a concept closely related
to that of a monad.

Bird and Paterson [3] give the monadic structure explicitly. The substitution
operation can be split into a mapping TU → TTV , followed by a folding opera-
tion TTV → TV . The type operator T , together with the constructor var, the
replacement operation { } and this folding operation, form a monad.

Terms as an Indexed Family. For our formalization, we modify this constuc-
tion slightly. Rather than allowing any type V : Set to be used as the type of
variables, we only use the members of a family Fn of finite types, Fn having n
distinct canonical members. We then define the type Tn of terms that use the
objects of Fn as free variables. We shall refer to these as “nat-indexed terms”.

We define a family of finite types Fn (n : N), Fn having exactly n distinct
canonical objects. Following our first maxim (see Section 2), we define F , not as
an inductive family of types, but as a recursive function thus:

F0 = ∅, Fn+1 = (Fn)⊥ .

Here, ∅ (empty) is the empty type, and X⊥ (option X) is a type consisting of a
copy ↑ x of each object x of X together with one extra object ⊥. Both of these
types are provided by the Coq library.

We now define the family of types Tn (term n) of terms using the objects of
type Fn as free variables, for n : N:

x : Fn

x : Tn

s : S
s : Tn

M : Tn N : Tn

MN : Tn

A : Tn B : Tn+1

ΠAB : Tn

A : Tn M : Tn+1

λAM : Tn

We proceed to define the replacement and substitution operations, as dis-
cussed in the previous section. We can then prove the following various forms of
the Substitution Lemma:

M{ρ}{ρ′} ≡ M{ρ′ ◦ ρ} M{ρ}[σ] ≡ M [σ ◦ ρ]
M [σ]{ρ} ≡ M [x �→ σ(x){ρ}] M [σ][σ′] ≡ M [x �→ σ(x)[σ′]]

Reduction Relation. We define the relation of parallel one-step reduction, �,
which has type Πn : N.Tn → Tn → Prop, thus:

x : Fn

x � x

s : S
s � s

M � M ′ N � N ′

MN � M ′N ′

8 R. Adams

A � A′ B � B′

ΠAB � ΠA′B′

A � A′ M � M ′

λAM � λA′M ′

M � M ′ N � N ′

(λAM)N � M ′
[

⊥ �→ N ′

↑ x �→ x

]

Note, in particular, the way that substitution of N ′ for ⊥ is defined in terms of
our big-step substitution in the final clause.

The relation of reduction, �, is defined to be the transitive closure of �,
and the relation of convertibility, �, is defined to be the symmetric, transitive
closure of �. We prove that � satisfies the diamond condition, and deduce the
Church-Rosser Theorem.

Contexts. We now define the type Cn of contexts with domain Fn. As with
variables, to make case analysis easier, we do not define this as an inductive
family, but rather by recursion on n as follows:

C0 = 1 Cn+1 = Cn × Tn

Here, 1 (unit) is a type with a unique canonical element ∗ (tt), and A × B
(prod A B) is the Cartesian product of A and B, both provided by the Coq
library.

We can define the function typeof, with type Πn : N.Fn → Cn → Tn, which
looks up the type of the variable x : Fn in the context Γ : Cn. We shall write
Γ (x) for typeof x Γ in this paper. Thus, the situation that we would describe
on paper by “x : A ∈ Γ” is expressed in our formalization by Γ (x) ≡ A.

The typeof function is defined by recursion on n as follows (the case n = 0
being vacuous):

〈Γ, A〉(⊥) ≡ A{↑}
〈Γ, A〉(↑ x) ≡ Γ (x){↑}

3.2 Typing Relation

We declare the axioms A : S → S → Prop and rules R : S → S → S → Prop of
the arbitrary PTS with which we are working as parameters, and we are then
finally able to defined the typing relation � of the PTS. This relation has type

Πn : N.Cn → Tn → Tn → Prop

When given a context Γ : Cn and terms M, A : Tn, it returns the proposition
“The judgement Γ � M : A is derivable”. It is defined as an inductive relation,
and its constructors are simply the rules of deduction of a PTS (see Figure 1).

Subcontext Relation. The definition of the subcontext relation is the first
place where our formalization differs significantly from the informal development
of the metatheory.

When we use named variables, the subcontext relation is defined as follows:

Formalized Metatheory with Terms 9

axioms : ∗ � s : t
(A s t)

start :
Γ � A : s

Γ, A � ⊥ : A{↑}

weakening :
Γ � A : B Γ � C : s

Γ, C � A{↑} : B{↑}

product :
Γ � A : s1 Γ, A � B : s2

Γ � ΠAB : s3

(R s1 s2 s3)

application :

Γ � M : ΠAB Γ � N : A

Γ � MN : B

�
⊥ �→ N

↑ x �→ x

�

abstraction :
Γ, A � M : B Γ � A : s1 Γ, A � B : s2

Γ � λAM : ΠAB
(R s1 s2 s3)

conversion :
Γ � M : A Γ � B : s

Γ � M : B
(A � B) .

Fig. 1. Rules of Deduction of a Pure Type System

The context Γ is a subcontext of ∆ iff, for every variable x and type A,
if x : A ∈ Γ then x : A ∈ ∆.

We could think of a function giving, for each entry x : A in Γ , the position at
which x : A occurs in ∆. If Γ is of length m and ∆ of length n, then we can
write the definition in the following form:

Γ is a subcontext of ∆ iff there exists a function ρ : {1, . . . , m} →
{1, . . . , n} such that, if the ith entry of Γ is x : A, then the ρ(i)th entry
of ∆ is x : A.

In our formalization, we cannot use the same definition, as the variables of
Fn come in a fixed order: ⊥, ↑ ⊥, ↑↑ ⊥, But we can still talk of functions
mapping positions in one context to positions in another. In fact, we have met
these functions before: they are the renaming functions ρ : Fm → Fn used by
the replacement operation.

We therefore define the relation: “Γ is a subcontext of ∆ under the renaming
ρ”. This means that, if we identify each variable x in Γ with the variable ρ(x)
in ∆, then the entry with subject x in Γ is the same as the entry with subject
ρ(x) in ∆. More precisely:

Definition 1. Let Γ : Cm, ∆ : Cn, and ρ : Fm → Fn. Γ is a subcontext of ∆
under ρ, Γ ⊆ρ ∆, iff (∀x : Fm)∆(ρ(x)) ≡ Γ (x){ρ}.

10 R. Adams

Note that the relation we have defined allows contraction: ρ may map two
different variables x and y to the same variable in Fn (in which case x and y
must have the same type in Γ). If we wish to exclude contraction, we shall use
the relation “Γ ⊆ρ ∆ ∧ ρ is injective”.

With this definition, the Weakening result becomes:

Theorem 1 (Weakening). If Γ ⊆ρ ∆, Γ � M : A, and ∆ is valid, then
∆ � M{ρ} : A{ρ}.

This is a big-step version of the Weakening property: the small-step version
would be

If Γ, ∆ � M : A and Γ � B : s then Γ, x : B, ∆ � M : A.

Apart from the definition of the subcontext relation, the big-step version of the
Weakening Lemma is not particularly novel: it appears in many informal and
formal developments, including McKinna and Pollack [6]. The form that the next
result takes is probably more surprising:

Substitution. What form should the Substitution result take, given that we
are using substitution mappings σ : Fm → Tn? A moment’s thought will show
that, with named variables, the result would read as follows:

If x1 : A1, . . . , xm : Am � M : B and

Γ � σ(x1) : A1[σ], Γ � σ(x2) : A2[σ], · · · , Γ � σ(xm) : Am[σ]

then Γ � M [σ] : B[σ].

(For the case m = 0, we would need to add the hypothesis “Γ is valid”.)
It is then clear how the result should read with nat-indexed variables. Let us

first introduce a definition to abbreviate the hypotheses.
Let us define the relation Γ |= σ :: ∆ (σ satisfies the context ∆ under Γ) to

mean
(∀x : Fm)Γ � σ(x) : ∆(x)[σ] .

Then our big-step version of the Substitution property reads:

Theorem 2 (Substitution). If ∆ � M : B, Γ |= σ :: ∆, and Γ is valid, then
Γ � M [σ] : B[σ].

This is proven by induction on the derivation of ∆ � M : B.

Subject Reduction. Subject Reduction similarly takes a big-step form. Sub-
ject Reduction is traditionally stated in the form:

If Γ � M : A and M � N , then Γ � N : A.

In our formalization, the most convenient form in which to prove Subject Re-
duction is as follows. We extend the notion of parallel one-step reduction to
contexts, by making the following definition:

Formalized Metatheory with Terms 11

Definition 2. Define the relation of parallel one-step reduction, �, on Cn as
follows: Γ � ∆ iff (∀x : Fn)Γ (x) � ∆(x).

We can now prove:

Theorem 3 (Subject Reduction). If Γ � M : A, Γ � ∆ and M � N , then
∆ � N : A.

This is proven by induction on the derivation of Γ � N : A. The usual form of
Subject Reduction follows quite simply.

Other Results. The formalization also contains proofs of Context Conversion,
the Generation lemmas, Type Validity (that if Γ � M : A then either A is a
sort or Γ � A : s for some sort s), Predicate Reduction and the Uniqueness of
Types result for functional PTSs. Apart from Context Conversion, which takes
the expected big-step form, these results take the same form, and the proofs
follow the same lines, as the paper development.

3.3 Strings of Binders

The proof of the Strengthening Theorem in van Bentham Jutting’s paper [5] is
a technically complex proof, and a very good, tough test of any formalization of
the theory of PTSs.

Perhaps surprisingly, the feature that makes the proof most difficult to for-
malize when using nat-indexed terms is the use of terms of the form Λ∆.M and
Π∆.M , where ∆ is a string of abstractions

∆ ≡ 〈x1 : A1, . . . , xn : An〉

We shall need to build the type of strings in such a way that these operations
Λ and Π can be defined. A closer look at the proofs in [5] reveals that we shall
also need an operation for concatenating a context with a string; that is, given
a context Γ and a string ∆, producing a context Γ ∆̂. We must also be able to
apply a substitution to a string.

Several different approaches to these definitions were tried before the ones
described below were found. As we have discussed, it was found to be important
to avoid arithmetic within types at all costs. This proved impossible to do without
violating our first maxim, to prefer recursive definitions to inductive ones. Even
then, it was difficult to find a set of definitions that avoids the need for addition,
particularly within the type of the substitution operation.. A subtle solution was
eventually found, and is described below.

Strings. We define the inductive family of types string. If n ≤ m, the type
string m n is the type of all strings

∆ ≡ 〈Am, Am+1, Am+2, . . . , An−1〉

such that Am : Tm, Am+1 : Tm+1, . . . , An−1 : Tn−1. If n = m, the type.has only
one member (the empty string); and if n > m, string m n is empty.

12 R. Adams

m : N n : N

string m n : Set

n : N

〈〉 : string n n

A : Tm ∆ : string m + 1 n

A :: ∆ : string m n

Using the standard technical trick described above in Section 2.1, we can prove
that 〈〉 is the only object of type string n n, and every object ∆ in string m n
has the form A :: ∆′ if m < n.

We define the operations Π and Λ that operate on strings and terms, and
the operation of concatenation that appends a string to a context. The types for
these operations are as follows:

∆ : string m n A : Tn

Π∆.A : Tm

∆ : string m n A : Tn

Λ∆.A : Tm

Γ : Cm ∆ : string m n

Γ ∆̂ : Cn

These operations can all be defined by recursion on the string ∆.

Substitution in Strings. The definition of substitution on strings is very
tricky. One natural suggestion would be to define an operation with type

Πm, n, p : N.string m n → (Fm → Tm+p) → string (m + p) (n + p) .

However, as mentioned above, it proved necessary to find a definition that would
not involve addition within any type.

After many such false starts, the following solution was arrived at. We define
a relation on pairs of natural numbers, which we call matching:

〈m, n〉 ∼ 〈p, q〉

(read: “〈m, n〉 matches 〈p, q〉”). This relation is equivalent to

n ≤ m ∧ m − n = p − q .

If 〈m, n〉 ∼ 〈p, q〉, then it is possible to apply a substitution Fm → Tp to a string
in string m n to obtain a string of type string p q.

(We actually place the type 〈m, n〉 ∼ 〈p, q〉 in Set, as we shall need to define
substitution by recursion on the proof that 〈m, n〉 ∼ 〈p, q〉.)

Definition 3. Define the relation 〈m, n〉 ∼ 〈p, q〉 inductively as follows:

m : N p : N

〈m, m〉 ∼ 〈p, p〉
〈m + 1, n〉 ∼ 〈p + 1, q〉

〈m, n〉 ∼ 〈p, q〉

We can now define the substitution operation on strings:

Definition 4. Suppose 〈m, n〉 ∼ 〈p, q〉. We define, for each ∆ : string m n
and ρ : Fn → Tq, the string ∆[ρ] : string p q, by recursion on the proof of
〈m, n〉 ∼ 〈p, q〉 as follows:

– The base case is 〈m, m〉 ∼ 〈p, p〉. For ∆ : string m m and σ : Fm → Tp,

∆[σ] ≡ 〈〉 : string p p

Formalized Metatheory with Terms 13

– Suppose 〈m, n〉 ∼ 〈p, q〉 was deduced from 〈m + 1, n〉 ∼ 〈p + 1, q〉. For ∆ :
string m n and σ : Fm → Tp,

∆[σ] ≡ (head ∆)[σ] :: (tail ∆)[σ⊥] : string p q

Now that these operations are in place, it is a straightforward, albeit lengthy,
task to formalise van Bentham Jutting’s proof of Strengthening. We omit the
details here; we refer the interested reader to [9]. We note in passing only that,
as is by now to be expected, the Strengthening Theorem itself takes a big-step
form:

Theorem 4 (Strengthening). If Γ ⊆ρ ∆, ρ is injective, ∆ � M : A, and Γ
is valid, then Γ � M : A.

4 Systems with Judgemental Equality

The author’s original motivation for this work was to check a technically complex
proof of a result of his in the theory of PTSs [10], in order to obtain a guarantee
of its correctness. It is worth stating briefly how the formalization of the system
with judgemental equality proceeds, as the metatheory of these systems have
not often been formalized.

We use the same types Tn of terms and Cn of contexts that we have already
constructed. The system with judgemental equality has two judgement forms:

Γ � M : A and Γ � M = N : A .

We build these using a mutual inductive definition:

Inductive PTS’ :
forall n, context n -> term n -> term n -> Prop :=

...
with PTSeq :
forall n, context n -> term n -> term n -> term n -> Prop :=

...

We define the notion of a valid context of type Cn, by induction on n:

(〈〉 is valid) ≡ �
(〈Γ, A〉 is valid) ≡ ∃s : S.Γ � A : s

We also need the notion of equality of contexts : we define the proposition
Γ = ∆ for Γ and ∆ both of the same type Cn.

(〈〉 = 〈〉) ≡ �
(〈Γ, A〉 = 〈∆, B〉) ≡ Γ = ∆ ∧ ∃s : S.Γ � A = B : s

The definition of satisfaction is similar to the one we used in PTSs: for Γ : Cn,
∆ : Cm, and σ : Fm → Tn, we define

(Γ |= σ :: ∆) ≡ ∀x : Fm.Γ � σ(x) : ∆(x)[σ]

14 R. Adams

We also need the notion of two substitutions, each of which satisfies ∆ under
Γ , being equal. For Γ : Cn, ∆ : Cm, and σ, σ′ : Fm → Tn, we define

(Γ |= σ = σ′ :: ∆) ≡ ∀x : Fm.Γ � σ(x) = σ′(x) : ∆(x)[σ] .

We then prove:

Theorem 5.

1. Context Validity If Γ � J , then Γ is valid.
2. Context Conversion If Γ � J , Γ = ∆, and ∆ is valid, then ∆ � J .
3. Substitution If Γ |= σ :: ∆, ∆ � J , and Γ is valid, then Γ � J [σ].
4. Weakening If Γ � J , Γ ⊆ρ ∆, and ∆ is valid, then ∆ � J{ρ}.
5. Functionality If Γ |= σ = σ′ :: ∆, ∆ � M : A, and Γ is valid, then

Γ � M [σ] = M [σ′] : A[σ].

In each case, J stands for either of the judgement bodies M : A or M =
N : A. In the formalization, each of these statements (except Functionality) is
therefore two theorems. They are proven simultaneously — that is, we prove
their conjunction by a simultaneous induction on the derivation of the premise.

We note that Weakening is not needed in the proof of Substitution. Weakening
can either be proven by an induction on its premise, or as a special case of
Substitution.

The Start, Generation and Type Validity lemmas can also be proven; these
all take the expected form.

The form that the statement of Subject Reduction takes is:

If Γ � M : A and M � N , then Γ � M = N : A.

This is a very difficult property to prove for systems with judgemental equality,
either on paper or formally. Its proof can be seen as the main result in the paper
[10]. The formalization of this proof is not yet complete.

5 Related Work

McKinna and Pollack [6] produced a large formalization of many results in the
theory of PTSs, based on a representation of syntax that uses named variables.
They use two separate types: V for the bound variables, and P for the free
variables, or parameters. It was a concern of theirs not to gloss over such matters
as α-conversion, as is usually done in informal develpoments — to ‘take symbols
seriously’, in their words. If one shares this concern, or one wishes to stay close
to a particular implementation, then this is an excellent formalization to look at.

However, if one’s concern is solely to obtain a guarantee of the correctness of a
metatheoretic result, this formalization has two principal disadvantages. Firstly,
we are often dealing with operations renaming variables, or replacing a variable
with a parameter or vice versa; we would prefer not to have to deal with these
technicalities. Secondly, we have objects that do not correspond to any term

Formalized Metatheory with Terms 15

in the syntax — namely, those in which objects of type V occur free. We need
frequently to check that every object of type V is bound in the terms with which
we are dealing — that they are closed, in McKinna and Pollack’s terminology.

Barras produced a formalization in Coq of the metatheory of the Calculus
of Constructions, , entitled “Coq in Coq” [7, 11], in the hope of certifying Coq
itself — or, at least, certifying a proof checker that is as close to Coq as Gödel’s
Theorem allows. As terms are represented internally in Coq with de Bruijn
notation, so does Barras’s formalization, using Coq’s natural numbers for the
free and bound variables.

Again, this formalization quickly becomes technically complex. It involves
operations such as ↑n

k , which raises every de Bruijn index after the kth by n
places. We are frequently using lemmas about how these operations interact with
each other, or with substitutions. Proofs often proceed by several case analyses
involving comparisons of natural numbers, or arithmetical manipulation of the
sub- and super-scripts of these operators.

Also worthy of mention is higher-order abstract syntax [12], which embeds the
object theory one is studying within the type theory in which one is working,
then takes advantage of the type theory’s binding and substitution operations.
This did not seem suitable for our purposes; the author thought it important to
maintain the separation between object theory and metatheory for this work.

Several other approaches to the representation of syntax have been developed
more recently, including Gabbay and Pitts’ work [13], which develops variable
binding as an operation in FM-set theory, and CINNI [14], a formal system which
contains both named variable syntax and de Bruijn notation as subsystems. It
would be very interesting to see a similar formal development of the metatheory
of some system based on either of these.

6 Conclusion

Which formalization of a given piece of mathematics one prefers depends, of
course, on what one intends to use the formalization for, and simply on personal
taste. If one’s sole concern is to obtain a guarantee of the correctness of the
proof of a metatheoretic result, then one has free choice of which representation
of terms one uses. We have seen that, if one chooses this indexed family represen-
tation, then careful thought is needed over the form of definitions and theorems;
but, once the correct forms have been found, the proofs are short, simple, direct
and elegant.

The technicalities in our formalizations mostly involve the replacement and
substitution functions, how they interact with each other and with reduction,
conversion and so forth. These are quite natural objects to find in the metatheory
of a type theory, so we feel this work has a more ‘type-theoretic’ flavour than is
the case with many other formalizations.

One’s time is spent thinking about the most convenient form for definitions
and theorems, rather than proving many technical lemmas. This suits the au-
thor’s preferences nicely; others may prefer an approach that, for example, lends

16 R. Adams

itself better to automation of the technical parts. Nevertheless, it shall hope-
fully be useful to see what shape formalized metatheory takes when the indexed
family representation of terms is used.

References

1. Bellegarde, F., Hook, J.: Subsitution: A formal methods case study using monads
and transformations. Sci. Comput. Program. 23 (1994) 287–311

2. Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized
inductive types. In: CSL ’99. Volume 1683 of LNCS., Springer-Verlag (1999) 453–
468

3. Bird, R.S., Paterson, R.: de Bruijn notation as a nested datatype. J. Functional
Programming 9 (1999) 77–91

4. Barendregt, H.: Lambda calculi with types. In Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E., eds.: Handbook of Logic in Computer Science. Volume II. Oxford
University Press (1992)

5. van Benthem Jutting, L.S.: Typing in pure type systems. Information and Com-
putation 105 (1993) 30–41

6. McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. J.
Autom. Reasoning 23 (1999) 373–409

7. Barras, B.: Auto-validation d’un sysème de preuves avec familles inductives. PhD
thesis, Université Paris 7 (1999)

8. Letouzey, P.: Vectors. Message to Coq-Club mailing list (2004) http://pauillac.
inria.fr/pipermail/coq-club/2004/001265.html.

9. Adams, R.: A formalization of the theory of PTSs in Coq. Available online at
http://www.cs.rhul.ac.uk/~robin/coqPTS/docu.dvi (2005)

10. Adams, R.: Pure type systems with judgemental equality. (Accepted for publication
in the Journal of Functional Programming)

11. Barras, B.: A formalization of the calculus of constructions. (Web page) http://
coq.inria.fr/contribs/coq-in-coq.html

12. Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: PLDI ’88: Proceedings
of the ACM SIGPLAN 1988 conference on Programming Language design and
Implementation, New York, NY, USA, ACM Press (1988) 199–208

13. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable
binding. Formal Aspects of Computing 13 (2002) 341–363

14. Stehr, M.O.: CINNI: A generic calculus of explicit substitutions and its application
to lambda-, sigma- and pi-calculi. In: Third International Workshop on Rewriting
Logic and its Applications (WRLA’2000), Kanazawa, Japan, September 18 – 20,
2000. Volume 36 of Electronic Notes in Theoretical Computer Science., Elsevier
(2000)

http://pauillac.inria.fr/pipermail/coq-club/2004/001265.html
http://pauillac.inria.fr/pipermail/coq-club/2004/001265.html
http://coq.inria.fr/contribs/coq-in-coq.html
http://coq.inria.fr/contribs/coq-in-coq.html

	Introduction
	Maxims for Formalization
	Recursive Definitions Versus Inductive Families
	Arithmetic Within Types

	Description of the Formalization
	Grammar
	Typing Relation
	Strings of Binders

	Systems with Judgemental Equality
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

