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Preface

These proceedings contain a selection of refereed papers presented at or related
to the Annual Workshop of the TYPES project (EU coordination action 510996),
which was held from December 15 to 18, 2004, in Jouy en Josas, France.

The topic of this workshop was formal reasoning and computer programming
based on type theory: languages and computerized tools for reasoning, and appli-
cations in several domains such as analysis of programming languages, certified
software, formalization of mathematics and mathematics education.

The workshop was attended by more than 100 researchers and proposed
more than 50 presentations. Out of 33 post-workshop submitted papers, 17 were
selected after a reviewing process. The final decisions were made by the editors.

This workshop followed a series of meetings of the TYPES working group
funded by the European Union (IST project 29001, ESPRIT Working Group
21900, ESPRIT BRA 6435). The proceedings of these workshop were published
in the LNCS series:

TYPES 93 Nijmegen, The Netherlands, LNCS 806
TYPES 94 B̊astad, Sweden, LNCS 996
TYPES 95 Torino, Italy, LNCS 1158
TYPES 96 Aussois, France, LNCS 1512
TYPES 98 Kloster Irsee, Germany , LNCS 1657
TYPES 2000 Durham, United Kingdom, LNCS 2277
TYPES 2002 Berg en Dal, The Netherlands, LNCS 2646
TYPES 2003 Torino, Italy, LNCS 3085

ESPRIT BRA 6453 was a continuation of ESPRIT Action 3245, Logical Frame-
works: Design, Implementation and Experiments. Proceedings for annual meet-
ings under this action were published by Cambridge University Press in the
books Logical Frameworks and Logical Environments, edited by G. Huet and
G. Plotkin.

We are very grateful to INRIA for supporting the TYPES meeting. We es-
pecially want to thank Catherine Girard and Catherine Moreau (organization),
Chantal Girodon (registration) and Laurent Steff (technical support). Hugo Her-
belin was in charge of the programme in the organizing committee. Finally,
Marie-Carol Lopes took care of the organization of the post-workshop proceed-
ings and carefully prepared the final composition of the volume.

November 2005 Jean-Christophe Filliâtre
Christine Paulin-Mohring

Benjamin Werner



Organization

Referees

P. Aczel
M. Baaz
C. Ballarin
B. Barras
S. Berardi
S. Berghofer
Y. Bertot
F. Blanqui
S. Boulmé
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Formalized Metatheory with Terms Represented
by an Indexed Family of Types

Robin Adams

Royal Holloway, University of London
robin@cs.rhul.ac.uk

Abstract. It is possible to represent the terms of a syntax with binding
constructors by a family of types, indexed by the free variables that may
occur. This approach has been used several times for the study of syntax
and substitution, but never for the formalization of the metatheory of
a typing system. We describe a recent formalization of the metatheory
of Pure Type Systems in Coq as an example of such a formalization. In
general, careful thought is required as to how each definition and theorem
should be stated, usually in an unfamiliar ‘big-step’ form; but, once the
correct form has been found, the proofs are very elegant and direct.

1 Introduction

In [1], Bellegarde and Hook show how the terms of a language with binding
constructors can be represented as a nested datatype — a type constructor that
takes types (including possibly its own values) as arguments. This idea has since
been used several times for the study of the syntax of such languages, for example
in Altenkirch and Reus [2], and Bird and Paterson [3]. However, to the best of the
author’s knowledge, it has never been used in a formalization of the metatheory
of a formal system.

We present here a formalization in Coq of the metatheory of Pure Type
Systems (PTSs) using this representation for the set of terms. We prove all
of the results about arbitrary PTSs given in Barendregt [4], including Subject
Reduction and Uniqueness of Types for functional PTSs. The formalization also
includes van Bentham Jutting’s proof of Strengthening [5].

There have been several formalizations of the metatheory of formal systems
in the past, two of the largest being McKinna and Pollack [6] and Barras [7]; and
so we shall be able to compare the strengths and weaknesses of this approach
with those of the previous.

The indexed family approach proves to have quite limited expressive power.
We cannot define all the operations nor state all the results in the form we
are used to. Careful thought was often needed as to what form a definition
or theorem could take. In general, it was found that operations involving all
variables simultaneously were easy to represent in this formalization, while those
involving single variables were difficult to represent. For example, we can define
the operation of substituting for every variable simultaneously, but not that of

J.-C. Filliâtre et al. (Eds.): TYPES 2004, LNCS 3839, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 R. Adams

substituting a given term for an arbitrary single variable. The author found
himself calling operations of the first kind ‘big-step’ operations, and those of the
second kind ‘small-step’. These are as good names as any, and we shall continue
to use them.

To set against this, it was found that, once the correct form for each definition
and theorem had been arrived at, the proofs themselves were simple, short,
elegant and easily constructed. We find ourselves spending much less time on
technical details than in most formalizations of metatheoretic work. Perhaps
most importantly, those technicalities that we do have to deal with have a more
type-theoretic flavour: the objects with which one deals are those one would
expect to find in the metatheory of a type theory, rather than low-level aspects
of the mechanisms of the formalization.

In particular, each specific instance of a small-step operation we need (such
as the substitution involved in β-reduction) is definable as a special case of a
big-step operation. The results that we need about it are likewise derivable as
special cases of results about the big-step operations.

There were two maxims that, at several points in this work, it proved wise to
follow, and which would seem to be more widely applicable to the formalization
of mathematics in general. They can be stated briefly as: favour recursive defi-
nitions over inductive ones, and avoid arithmetic in types. We discuss them in
Section 2. We proceed in Section 3 to a description of the formalization itself,
showing how the two maxims are applied, and showing the big-step form of each
definition and theorem.

For those who wish to examine the formalization, the source code and docu-
mentation is available at http://www.cs.rhul.ac.uk/~robin/coqPTS.

2 Maxims for Formalization

There were three general principles that it proved wise to follow in this work. One
— that ‘big-step’ definitions should be preferred to ‘small-step’ — is peculiar to
this work, and we shall discuss it in Section 3. We wish here to discuss the other
two maxims, which should be more generally applicable to other formalizations.

2.1 Recursive Definitions Versus Inductive Families

Our first maxim is:

When defining a family of types F : I → Set over an inductive type I, if
possible define F by recursion over I, rather than as an inductive family

or more briefly, favour recursive definitions over inductive ones.
The difficulties of using inductive families are well known among the Coq

community. The standard example is the family Vn of vectors of length n (over a
given type A). We can define this either as an inductive family, with constructors:

〈〉 : V0

a : A v : Vn

(a :: v) : Vn+1
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or by recursion on the index n, as follows:

V0 = 1 Vn+1 = A× Vn

(Here, 1 is the type with a single canonical object, called unit in the Coq library,
and × of course denotes the non-dependent product of two types.)

The practical difference between these two definitions lies in how easy it is to
deduce information about an object of type Vt from the shape of the term t : N.
In particular, we frequently want to use the fact that a term s : V0 must be equal
to 〈〉, and that a term s : Vt+1 must have the form a :: v for some a : A and
v : Vt. This can be deduced immediately if we are using the recursive definition,
but not with the inductive definition.

There is a standard technical trick for overcoming this difficulty that is known
as folklore among the Coq community. It appears unattributed in Letouzey’s
message [8]. To the author’s knowledge, this technique has never before been
put into print, and Letouzey may well be its inventor.

It can be summarised as follows:

– Define a function which should be the identity function on the inductive
family.

– Prove that the function is indeed the identity function.
– Deduce from this fact theorems allowing case analysis on the objects of the

inductive family.

In the case of Vn, we provide ourselves with the destructors head : Πn :
N.Vn+1 → A and tail : Πn : N.Vn+1 → Vn:

head n (a :: v) = a tail n (a :: v) = v

(These are two instances where case analysis on Vn can be applied successfully.)
We can then define our ‘pseudo-identity’ function pseudoid : Πn : N.Vn → Vn

by recursion on n as follows:

pseudoid 0 v = 〈〉 (v : V0)
pseudoid n + 1 v = (head n v) :: (tail n v) (v : Vn+1)

We can prove the following result by induction on v:

(∀n : N)(∀v : Vn)pseudoid n v = v . (1)

From this, the following case analysis theorems can be easily deduced:

(∀v : V0) v = 〈〉 (2)
(∀n : N) (∀v : Vn+1) v = (head n v) :: (tail n v) (3)

One way of viewing this construction is as building a bijection between the
inductively defined family and the recursively defined family. More precisely, we
have built a bijection between V0 and 1, and between Vn+1 and A × Vn. The
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constructors form one half of the bijection: the ‘cons’ constructor :: is a (Curried)
mapping A × Vn → Vn+1, and 〈〉 can be seen as a mapping 1 → V0. Our
destructors form the other half: head and tail together give a mapping Vn+1 →
A× Vn, and we take the trivial mapping V0 → 1.

The function pseudoid is the composition of these two halves: pseudoid 0 is
the composition

V0 → 1
〈〉→ V0 ,

and pseudoid n + 1 is the composition

Vn+1
〈head,tail〉−→ A× Vn

::→ Vn+1 .

Our theorem (1) then verifies that these compositions do produce the identity
mapping; that is, that cons and emp are left inverses to 〈head, tail〉 and the
trivial mapping, respectively. (That they are also right inverses is immediate
from the definitions of head and tail.) In theorems (2) and (3), we then use
the fact that case analysis is possible on 1 and A×Vn to prove it is possible on
V0 and Vn+1.

Conversely, we can see intuitively that any way of performing case analysis on
the elements of Vn would yield appropriate functions V0 → 1 and Vn+1 → A×Vn.
So we make the following, as yet rather imprecise, conjecture:

Case analysis is possible on the objects of an inductively defined family
of types if and only if the family is isomorphic to a recursively defined
family.

2.2 Arithmetic Within Types

Our second maxim is:

When using a family of types indexed by nat, make sure that the index
term never involves plus or times

or, more briefly, avoid arithmetic within types.
Let us continue with our example of the family Vn of types of vectors that we

have introduced. A natural operation to define is the action of appending two
vectors:

u : Vm v : Vn

û v : Vm+n

〈〉̂ v = v, (a :: u)̂ v = a :: (û v)

We now try to prove that this operation is associative:

û (v̂ w) = (û v)̂w

We have a problem. The left-hand side of this equation has type Vm+(n+p), while
the right-hand side has type V(m+n)+p. These two types, while provably equal,
are not convertible, so the proposition as we have written it is not well-formed.
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We are trying to treat two terms with different types as if they had the same
type.

We can also meet the converse problem, where we require one term to have
two different types within the same formula; say type Vm+Sn at one point and
type VSm+n at another.

Should these two maxims ever conflict, the second maxim should take pri-
ority over the first. The first involves a known quantity of work: once the case
analysis lemmas have been proven by the known method described above, then
we can forget about the fact the family was defined inductively. Our two maxims
conflicted at only one point in this formalization: the definition of the family of
types of strings. We shall say more about this in Section 3.3.

3 Description of the Formalization

We proceed to a description of the formalization of the metatheory of PTSs.
Most of the formalization shall not be described in any detail; we shall concen-
trate instead on the parts that are novel to this formalization, particularly those
definitions and theorems which need to be stated in an unfamiliar form owing
to the fact that we are working with the indexed family representation of terms.
A detailed description of the formalization can be found at [9].

We have already discussed two themes that occurred several times in this
work: the preference for recursive definitions of families of types over inductive
ones, and the need to avoid arithmetic within types. A third is that, when terms
are defined as an indexed family, it is easier to define operations and prove
theorems that deal with all variables simultaneously, than those that deal with
a single variable. For example, it is easier to define the operation of substituting
for every variable simultaneously, than that of substituting for a single given
variable. We shall give the name of ‘big-step’ operations and theorems to the
first kind, and ‘small-step’ to the second.

Our definitions of replacement (substitution of variables for variables), substi-
tution, and the subcontext relation all get big-step definitions, and we also find
ourselves needing a satisfaction relation, which can be seen as a big-step version
of the typing relation. We found it easiest to base the definition of reduction and
conversion on parallel reduction, rather than one-step reduction; this again could
possibly be seen as a big-step/small-step distinction. (In this choice, we follow
McKinna and Pollack [6].) The Weakening, Substitution, Subject Reduction and
Context Conversion results were all found to be easier to state and prove in a
big-step form. The small-step instances of these operations, relations and results
that we later need can all be derived as special cases of the big-step forms.

3.1 Grammar

Terms as a Nested Datatype. The idea of representing terms as a nested
datatype first appeared in Bellegarde and Hook [1]. It has been used several
times for the study of syntactic properties and operations, such as substitution
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and β-reduction; see for example Altenkirch and Reus [2] or Bird and Paterson
[3]; the latter even deals with the simply-typed lambda calculus. However, this
representation of syntax seems never before to have been used in the metatheory
of a typing system where the typing judgements are given by a set of rules of
deduction.

We wish to represent, in some type theory, the terms of some formal system
whose syntax involves one or more binding constructor. Rather than defining
one type whose objects are to represent these terms, we define a family of types
TV for every type V in some universe. The objects of type TV represent those
terms that can be formed using the objects of type V as free variables.

For example, suppose we wish to represent the terms of the untyped lambda
calculus. Let us assume we have, for every type X , a type X⊥ consisting of a copy
↑ x of each x : X , together with one extra object, ⊥. (In Coq, this would be the
type option X provided by the Coq library.) We can then represent the terms
of the untyped lambda calculus by the inductive family TV whose constructors
are as follows.

x : V

var x : TV

M : TV⊥

λM : TV

M : TV N : TV

MN : TV

The constructor λ takes a term M whose free variables are taken from V⊥, binds
the variable ⊥, and returns a term λM whose free variables are taken from V .

The definition of substitution takes the following form. We aim to define,
for every term M : TU and every substitution function σ : U → TV , the term
M [σ] : TV , the result of substituting for each variable u : U the term σ(u) : TV .
The definition that we would naturally write down is as follows.

x[σ] ≡ σ(x)
(MN)[σ] ≡ M [σ]N [σ]

(λM)[σ] ≡ λM

[
⊥ 	→ ⊥
↑ x 	→ σ(x)[y 	→↑ y]

]

(Here and henceforth, we are omitting the constructor var.)
It is possible to prove that this recursion terminates. However, this definition

cannot be made directly in Coq, as it is not a definition by structural recursion.
But we can define directly the special case where σ always returns a variable. We
thus define the operation of replacement ; given a term M : TU and a renaming
function ρ : U → V , we define the term M{ρ} : TV , the result of replacing each
variable u : U with ρ(u) : V , thus:

x{ρ} ≡ ρ(x)
(MN){ρ} ≡ M{ρ}N{ρ}

(λM){ρ} ≡ λM

{
⊥ 	→ ⊥
↑ x 	→ ↑ ρ(x)

}
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Substitution can then be defined as follows: for σ : U → TV ,

x[σ] ≡ σ(x)
(MN)[σ] ≡ M [σ]N [σ]

(λM)[σ] ≡ λM

[
⊥ 	→ ⊥
↑ x 	→ σ(x){y 	→↑ y}

]

Altenkirch and Reus [2] show how the type operator T , the constructor var,
and the substitution operation [ ] form a Kleisli triple, a concept closely related
to that of a monad.

Bird and Paterson [3] give the monadic structure explicitly. The substitution
operation can be split into a mapping TU → TTV , followed by a folding opera-
tion TTV → TV . The type operator T , together with the constructor var, the
replacement operation { } and this folding operation, form a monad.

Terms as an Indexed Family. For our formalization, we modify this constuc-
tion slightly. Rather than allowing any type V : Set to be used as the type of
variables, we only use the members of a family Fn of finite types, Fn having n
distinct canonical members. We then define the type Tn of terms that use the
objects of Fn as free variables. We shall refer to these as “nat-indexed terms”.

We define a family of finite types Fn (n : N), Fn having exactly n distinct
canonical objects. Following our first maxim (see Section 2), we define F , not as
an inductive family of types, but as a recursive function thus:

F0 = ∅, Fn+1 = (Fn)⊥ .

Here, ∅ (empty) is the empty type, and X⊥ (option X) is a type consisting of a
copy ↑ x of each object x of X together with one extra object ⊥. Both of these
types are provided by the Coq library.

We now define the family of types Tn (term n) of terms using the objects of
type Fn as free variables, for n : N:

x : Fn

x : Tn

s : S
s : Tn

M : Tn N : Tn

MN : Tn

A : Tn B : Tn+1

ΠAB : Tn

A : Tn M : Tn+1

λAM : Tn

We proceed to define the replacement and substitution operations, as dis-
cussed in the previous section. We can then prove the following various forms of
the Substitution Lemma:

M{ρ}{ρ′} ≡ M{ρ′ ◦ ρ} M{ρ}[σ] ≡M [σ ◦ ρ]
M [σ]{ρ} ≡ M [x 	→ σ(x){ρ}] M [σ][σ′] ≡M [x 	→ σ(x)[σ′]]

Reduction Relation. We define the relation of parallel one-step reduction, �,
which has type Πn : N.Tn → Tn → Prop, thus:

x : Fn

x � x

s : S
s � s

M � M ′ N � N ′

MN � M ′N ′
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A � A′ B � B′

ΠAB � ΠA′B′

A � A′ M � M ′

λAM � λA′M ′

M � M ′ N � N ′

(λAM)N � M ′
[
⊥ 	→ N ′

↑ x 	→ x

]

Note, in particular, the way that substitution of N ′ for ⊥ is defined in terms of
our big-step substitution in the final clause.

The relation of reduction, �, is defined to be the transitive closure of �,
and the relation of convertibility, �, is defined to be the symmetric, transitive
closure of �. We prove that � satisfies the diamond condition, and deduce the
Church-Rosser Theorem.

Contexts. We now define the type Cn of contexts with domain Fn. As with
variables, to make case analysis easier, we do not define this as an inductive
family, but rather by recursion on n as follows:

C0 = 1 Cn+1 = Cn × Tn

Here, 1 (unit) is a type with a unique canonical element ∗ (tt), and A × B
(prod A B) is the Cartesian product of A and B, both provided by the Coq
library.

We can define the function typeof, with type Πn : N.Fn → Cn → Tn, which
looks up the type of the variable x : Fn in the context Γ : Cn. We shall write
Γ (x) for typeof x Γ in this paper. Thus, the situation that we would describe
on paper by “x : A ∈ Γ” is expressed in our formalization by Γ (x) ≡ A.

The typeof function is defined by recursion on n as follows (the case n = 0
being vacuous):

〈Γ, A〉(⊥) ≡ A{↑}
〈Γ, A〉(↑ x) ≡ Γ (x){↑}

3.2 Typing Relation

We declare the axioms A : S → S → Prop and rules R : S → S → S → Prop of
the arbitrary PTS with which we are working as parameters, and we are then
finally able to defined the typing relation � of the PTS. This relation has type

Πn : N.Cn → Tn → Tn → Prop

When given a context Γ : Cn and terms M, A : Tn, it returns the proposition
“The judgement Γ � M : A is derivable”. It is defined as an inductive relation,
and its constructors are simply the rules of deduction of a PTS (see Figure 1).

Subcontext Relation. The definition of the subcontext relation is the first
place where our formalization differs significantly from the informal development
of the metatheory.

When we use named variables, the subcontext relation is defined as follows:
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axioms : ∗ � s : t
(A s t)

start :
Γ � A : s

Γ, A � ⊥ : A{↑}

weakening :
Γ � A : B Γ � C : s

Γ, C � A{↑} : B{↑}

product :
Γ � A : s1 Γ, A � B : s2

Γ � ΠAB : s3

(R s1 s2 s3)

application :

Γ �M : ΠAB Γ � N : A

Γ � MN : B
⊥ �→ N
↑ x �→ x

abstraction :
Γ, A �M : B Γ � A : s1 Γ, A � B : s2

Γ � λAM : ΠAB
(R s1 s2 s3)

conversion :
Γ �M : A Γ � B : s

Γ �M : B
(A � B) .

Fig. 1. Rules of Deduction of a Pure Type System

The context Γ is a subcontext of Δ iff, for every variable x and type A,
if x : A ∈ Γ then x : A ∈ Δ.

We could think of a function giving, for each entry x : A in Γ , the position at
which x : A occurs in Δ. If Γ is of length m and Δ of length n, then we can
write the definition in the following form:

Γ is a subcontext of Δ iff there exists a function ρ : {1, . . . , m} →
{1, . . . , n} such that, if the ith entry of Γ is x : A, then the ρ(i)th entry
of Δ is x : A.

In our formalization, we cannot use the same definition, as the variables of
Fn come in a fixed order: ⊥, ↑ ⊥, ↑↑ ⊥, . . . . But we can still talk of functions
mapping positions in one context to positions in another. In fact, we have met
these functions before: they are the renaming functions ρ : Fm → Fn used by
the replacement operation.

We therefore define the relation: “Γ is a subcontext of Δ under the renaming
ρ”. This means that, if we identify each variable x in Γ with the variable ρ(x)
in Δ, then the entry with subject x in Γ is the same as the entry with subject
ρ(x) in Δ. More precisely:

Definition 1. Let Γ : Cm, Δ : Cn, and ρ : Fm → Fn. Γ is a subcontext of Δ
under ρ, Γ ⊆ρ Δ, iff (∀x : Fm)Δ(ρ(x)) ≡ Γ (x){ρ}.
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Note that the relation we have defined allows contraction: ρ may map two
different variables x and y to the same variable in Fn (in which case x and y
must have the same type in Γ ). If we wish to exclude contraction, we shall use
the relation “Γ ⊆ρ Δ ∧ ρ is injective”.

With this definition, the Weakening result becomes:

Theorem 1 (Weakening). If Γ ⊆ρ Δ, Γ � M : A, and Δ is valid, then
Δ � M{ρ} : A{ρ}.

This is a big-step version of the Weakening property: the small-step version
would be

If Γ, Δ �M : A and Γ � B : s then Γ, x : B, Δ � M : A.

Apart from the definition of the subcontext relation, the big-step version of the
Weakening Lemma is not particularly novel: it appears in many informal and
formal developments, including McKinna and Pollack [6]. The form that the next
result takes is probably more surprising:

Substitution. What form should the Substitution result take, given that we
are using substitution mappings σ : Fm → Tn? A moment’s thought will show
that, with named variables, the result would read as follows:

If x1 : A1, . . . , xm : Am � M : B and

Γ � σ(x1) : A1[σ], Γ � σ(x2) : A2[σ], · · · , Γ � σ(xm) : Am[σ]

then Γ � M [σ] : B[σ].

(For the case m = 0, we would need to add the hypothesis “Γ is valid”.)
It is then clear how the result should read with nat-indexed variables. Let us

first introduce a definition to abbreviate the hypotheses.
Let us define the relation Γ |= σ :: Δ (σ satisfies the context Δ under Γ ) to

mean
(∀x : Fm)Γ � σ(x) : Δ(x)[σ] .

Then our big-step version of the Substitution property reads:

Theorem 2 (Substitution). If Δ � M : B, Γ |= σ :: Δ, and Γ is valid, then
Γ �M [σ] : B[σ].

This is proven by induction on the derivation of Δ � M : B.

Subject Reduction. Subject Reduction similarly takes a big-step form. Sub-
ject Reduction is traditionally stated in the form:

If Γ �M : A and M � N , then Γ � N : A.

In our formalization, the most convenient form in which to prove Subject Re-
duction is as follows. We extend the notion of parallel one-step reduction to
contexts, by making the following definition:
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Definition 2. Define the relation of parallel one-step reduction, �, on Cn as
follows: Γ � Δ iff (∀x : Fn)Γ (x) � Δ(x).

We can now prove:

Theorem 3 (Subject Reduction). If Γ � M : A, Γ � Δ and M � N , then
Δ � N : A.

This is proven by induction on the derivation of Γ � N : A. The usual form of
Subject Reduction follows quite simply.

Other Results. The formalization also contains proofs of Context Conversion,
the Generation lemmas, Type Validity (that if Γ � M : A then either A is a
sort or Γ � A : s for some sort s), Predicate Reduction and the Uniqueness of
Types result for functional PTSs. Apart from Context Conversion, which takes
the expected big-step form, these results take the same form, and the proofs
follow the same lines, as the paper development.

3.3 Strings of Binders

The proof of the Strengthening Theorem in van Bentham Jutting’s paper [5] is
a technically complex proof, and a very good, tough test of any formalization of
the theory of PTSs.

Perhaps surprisingly, the feature that makes the proof most difficult to for-
malize when using nat-indexed terms is the use of terms of the form ΛΔ.M and
ΠΔ.M , where Δ is a string of abstractions

Δ ≡ 〈x1 : A1, . . . , xn : An〉

We shall need to build the type of strings in such a way that these operations
Λ and Π can be defined. A closer look at the proofs in [5] reveals that we shall
also need an operation for concatenating a context with a string; that is, given
a context Γ and a string Δ, producing a context Γ Δ̂. We must also be able to
apply a substitution to a string.

Several different approaches to these definitions were tried before the ones
described below were found. As we have discussed, it was found to be important
to avoid arithmetic within types at all costs. This proved impossible to do without
violating our first maxim, to prefer recursive definitions to inductive ones. Even
then, it was difficult to find a set of definitions that avoids the need for addition,
particularly within the type of the substitution operation.. A subtle solution was
eventually found, and is described below.

Strings. We define the inductive family of types string. If n ≤ m, the type
string m n is the type of all strings

Δ ≡ 〈Am, Am+1, Am+2, . . . , An−1〉

such that Am : Tm, Am+1 : Tm+1, . . . , An−1 : Tn−1. If n = m, the type.has only
one member (the empty string); and if n > m, string m n is empty.
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m : N n : N

string m n : Set

n : N

〈〉 : string n n

A : Tm Δ : string m + 1 n

A :: Δ : string m n

Using the standard technical trick described above in Section 2.1, we can prove
that 〈〉 is the only object of type string n n, and every object Δ in string m n
has the form A :: Δ′ if m < n.

We define the operations Π and Λ that operate on strings and terms, and
the operation of concatenation that appends a string to a context. The types for
these operations are as follows:

Δ : string m n A : Tn

ΠΔ.A : Tm

Δ : string m n A : Tn

ΛΔ.A : Tm

Γ : Cm Δ : string m n

Γ Δ̂ : Cn

These operations can all be defined by recursion on the string Δ.

Substitution in Strings. The definition of substitution on strings is very
tricky. One natural suggestion would be to define an operation with type

Πm, n, p : N.string m n → (Fm → Tm+p) → string (m + p) (n + p) .

However, as mentioned above, it proved necessary to find a definition that would
not involve addition within any type.

After many such false starts, the following solution was arrived at. We define
a relation on pairs of natural numbers, which we call matching:

〈m, n〉 ∼ 〈p, q〉

(read: “〈m, n〉 matches 〈p, q〉”). This relation is equivalent to

n ≤ m ∧m− n = p− q .

If 〈m, n〉 ∼ 〈p, q〉, then it is possible to apply a substitution Fm → Tp to a string
in string m n to obtain a string of type string p q.

(We actually place the type 〈m, n〉 ∼ 〈p, q〉 in Set, as we shall need to define
substitution by recursion on the proof that 〈m, n〉 ∼ 〈p, q〉.)

Definition 3. Define the relation 〈m, n〉 ∼ 〈p, q〉 inductively as follows:

m : N p : N

〈m, m〉 ∼ 〈p, p〉
〈m + 1, n〉 ∼ 〈p + 1, q〉

〈m, n〉 ∼ 〈p, q〉

We can now define the substitution operation on strings:

Definition 4. Suppose 〈m, n〉 ∼ 〈p, q〉. We define, for each Δ : string m n
and ρ : Fn → Tq, the string Δ[ρ] : string p q, by recursion on the proof of
〈m, n〉 ∼ 〈p, q〉 as follows:

– The base case is 〈m, m〉 ∼ 〈p, p〉. For Δ : string m m and σ : Fm → Tp,

Δ[σ] ≡ 〈〉 : string p p
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– Suppose 〈m, n〉 ∼ 〈p, q〉 was deduced from 〈m + 1, n〉 ∼ 〈p + 1, q〉. For Δ :
string m n and σ : Fm → Tp,

Δ[σ] ≡ (head Δ)[σ] :: (tail Δ)[σ⊥] : string p q

Now that these operations are in place, it is a straightforward, albeit lengthy,
task to formalise van Bentham Jutting’s proof of Strengthening. We omit the
details here; we refer the interested reader to [9]. We note in passing only that,
as is by now to be expected, the Strengthening Theorem itself takes a big-step
form:

Theorem 4 (Strengthening). If Γ ⊆ρ Δ, ρ is injective, Δ � M : A, and Γ
is valid, then Γ � M : A.

4 Systems with Judgemental Equality

The author’s original motivation for this work was to check a technically complex
proof of a result of his in the theory of PTSs [10], in order to obtain a guarantee
of its correctness. It is worth stating briefly how the formalization of the system
with judgemental equality proceeds, as the metatheory of these systems have
not often been formalized.

We use the same types Tn of terms and Cn of contexts that we have already
constructed. The system with judgemental equality has two judgement forms:

Γ � M : A and Γ �M = N : A .

We build these using a mutual inductive definition:

Inductive PTS’ :
forall n, context n -> term n -> term n -> Prop :=

...
with PTSeq :
forall n, context n -> term n -> term n -> term n -> Prop :=

...

We define the notion of a valid context of type Cn, by induction on n:

(〈〉 is valid) ≡ �
(〈Γ, A〉 is valid) ≡ ∃s : S.Γ � A : s

We also need the notion of equality of contexts : we define the proposition
Γ = Δ for Γ and Δ both of the same type Cn.

(〈〉 = 〈〉) ≡ �
(〈Γ, A〉 = 〈Δ, B〉) ≡ Γ = Δ ∧ ∃s : S.Γ � A = B : s

The definition of satisfaction is similar to the one we used in PTSs: for Γ : Cn,
Δ : Cm, and σ : Fm → Tn, we define

(Γ |= σ :: Δ) ≡ ∀x : Fm.Γ � σ(x) : Δ(x)[σ]
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We also need the notion of two substitutions, each of which satisfies Δ under
Γ , being equal. For Γ : Cn, Δ : Cm, and σ, σ′ : Fm → Tn, we define

(Γ |= σ = σ′ :: Δ) ≡ ∀x : Fm.Γ � σ(x) = σ′(x) : Δ(x)[σ] .

We then prove:

Theorem 5.

1. Context Validity If Γ � J , then Γ is valid.
2. Context Conversion If Γ � J , Γ = Δ, and Δ is valid, then Δ � J .
3. Substitution If Γ |= σ :: Δ, Δ � J , and Γ is valid, then Γ � J [σ].
4. Weakening If Γ � J , Γ ⊆ρ Δ, and Δ is valid, then Δ � J{ρ}.
5. Functionality If Γ |= σ = σ′ :: Δ, Δ � M : A, and Γ is valid, then

Γ �M [σ] = M [σ′] : A[σ].

In each case, J stands for either of the judgement bodies M : A or M =
N : A. In the formalization, each of these statements (except Functionality) is
therefore two theorems. They are proven simultaneously — that is, we prove
their conjunction by a simultaneous induction on the derivation of the premise.

We note that Weakening is not needed in the proof of Substitution. Weakening
can either be proven by an induction on its premise, or as a special case of
Substitution.

The Start, Generation and Type Validity lemmas can also be proven; these
all take the expected form.

The form that the statement of Subject Reduction takes is:

If Γ �M : A and M � N , then Γ �M = N : A.

This is a very difficult property to prove for systems with judgemental equality,
either on paper or formally. Its proof can be seen as the main result in the paper
[10]. The formalization of this proof is not yet complete.

5 Related Work

McKinna and Pollack [6] produced a large formalization of many results in the
theory of PTSs, based on a representation of syntax that uses named variables.
They use two separate types: V for the bound variables, and P for the free
variables, or parameters. It was a concern of theirs not to gloss over such matters
as α-conversion, as is usually done in informal develpoments — to ‘take symbols
seriously’, in their words. If one shares this concern, or one wishes to stay close
to a particular implementation, then this is an excellent formalization to look at.

However, if one’s concern is solely to obtain a guarantee of the correctness of a
metatheoretic result, this formalization has two principal disadvantages. Firstly,
we are often dealing with operations renaming variables, or replacing a variable
with a parameter or vice versa; we would prefer not to have to deal with these
technicalities. Secondly, we have objects that do not correspond to any term
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in the syntax — namely, those in which objects of type V occur free. We need
frequently to check that every object of type V is bound in the terms with which
we are dealing — that they are closed, in McKinna and Pollack’s terminology.

Barras produced a formalization in Coq of the metatheory of the Calculus
of Constructions, , entitled “Coq in Coq” [7, 11], in the hope of certifying Coq
itself — or, at least, certifying a proof checker that is as close to Coq as Gödel’s
Theorem allows. As terms are represented internally in Coq with de Bruijn
notation, so does Barras’s formalization, using Coq’s natural numbers for the
free and bound variables.

Again, this formalization quickly becomes technically complex. It involves
operations such as ↑n

k , which raises every de Bruijn index after the kth by n
places. We are frequently using lemmas about how these operations interact with
each other, or with substitutions. Proofs often proceed by several case analyses
involving comparisons of natural numbers, or arithmetical manipulation of the
sub- and super-scripts of these operators.

Also worthy of mention is higher-order abstract syntax [12], which embeds the
object theory one is studying within the type theory in which one is working,
then takes advantage of the type theory’s binding and substitution operations.
This did not seem suitable for our purposes; the author thought it important to
maintain the separation between object theory and metatheory for this work.

Several other approaches to the representation of syntax have been developed
more recently, including Gabbay and Pitts’ work [13], which develops variable
binding as an operation in FM-set theory, and CINNI [14], a formal system which
contains both named variable syntax and de Bruijn notation as subsystems. It
would be very interesting to see a similar formal development of the metatheory
of some system based on either of these.

6 Conclusion

Which formalization of a given piece of mathematics one prefers depends, of
course, on what one intends to use the formalization for, and simply on personal
taste. If one’s sole concern is to obtain a guarantee of the correctness of the
proof of a metatheoretic result, then one has free choice of which representation
of terms one uses. We have seen that, if one chooses this indexed family represen-
tation, then careful thought is needed over the form of definitions and theorems;
but, once the correct forms have been found, the proofs are short, simple, direct
and elegant.

The technicalities in our formalizations mostly involve the replacement and
substitution functions, how they interact with each other and with reduction,
conversion and so forth. These are quite natural objects to find in the metatheory
of a type theory, so we feel this work has a more ‘type-theoretic’ flavour than is
the case with many other formalizations.

One’s time is spent thinking about the most convenient form for definitions
and theorems, rather than proving many technical lemmas. This suits the au-
thor’s preferences nicely; others may prefer an approach that, for example, lends
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itself better to automation of the technical parts. Nevertheless, it shall hope-
fully be useful to see what shape formalized metatheory takes when the indexed
family representation of terms is used.
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Abstract. The prototype of a content based search engine for mathe-
matical knowledge supporting a small set of queries requiring matching
and/or typing operations is described. The prototype — called Whelp —
exploits a metadata approach for indexing the information that looks far
more flexible than traditional indexing techniques for structured expres-
sions like substitution, discrimination, or context trees. The prototype
has been instantiated to the standard library of the Coq proof assistant
extended with many user contributions.

1 Introduction

The paper describes the prototype of a content based search engine for math-
ematical knowledge — called Whelp — developed inside the European Project
IST-2001-33562 MoWGLI [4]. Whelp has been mostly tested to search notions
inside the library of formal mathematical knowledge of the Coq proof assis-
tant [8]. Due to its dimension (about 40,000 theorems), this library was adopted
by MoWGLI as a main example of repository of structured mathematical in-
formation. However, Whelp — better, its filtering phase — only works on a
small set of metadata automatically extracted from the structured sources, and
is thus largely independent from the actual syntax (and semantics) of the infor-
mation. Metadata also offer a higher flexibility with respect to more canonical
indexing techniques such as discrimination trees [16], substitution trees [13] or
context trees [12] since all these approaches are optimized for the single oper-
ation of (forward) matching, and are difficult to adapt or tune with additional
constraints (such as global constraints on the signature of the term, just to make
a simple but significant example).

Whelp is the final output of a three-year research work inside MoWGLI which
consisted in exporting the Coq library into XML, defining a suitable set of meta-
data for indexing the information, implementing the actual indexing tools, and
finally designing and developing the search engine. Whelp itself is the result of
a complete architectural re-visitation of a first prototype described in [14], inte-
grated with the efficient retrieval mechanisms described in [3] (further improved
as described in Sect. 5.2), and integrated with syntactic facilities borrowed from
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the disambiguating parser of [19]. Since the prototype version described in [14],
also the Web interface has been completely rewritten and simplified, exploiting
most of the publishing techniques developed for the hypertextual rendering of
the Coq library (see http://helm.cs.unibo.it/) and described in Sect. 6.

The Whelp search engine is located at http://helm.cs.unibo.it/whelp.

2 Syntax

Whelp interacts with the user as a classical World Wide Web search engine, it ex-
pects single line queries and returns a list of results matching it. Whelp currently
supports four different kinds of queries, addressing different user-requirements
emerged in MoWGLI: Match, Hint, Elim, and Locate (described in Sect. 5).
The list is not meant to be exhaustive and is likely to grow in the future.

The most typical of these queries (Match and Hint) require the user to
input a term of the Calculus of (co-)Inductive Constructions — CIC — (the
underlying calculus of Coq), supporting different kinds of pattern based queries.
Nevertheless, the concrete syntax we chose for writing the input term is not
bound to any specific logical system: it has been designed to be as similar as
possible to ordinary mathematics formulae, in their TEX encoding (see Table 1).

Table 1. Whelp’s term syntax

term ::= identifier
| number
| Prop | Type | Set sort
| ? placeholder
| term term application
| binder vars . term abstraction
| term \to term arrow type
| ( term ) grouping
| term binop term binary operator
| unop term unary operator

binder ::= \forall | \exists | \lambda
vars ::= names variables

| names : term typed variables
names ::= identifier | identifier names
binop ::= + | - | * | / | ^ arithmetic operators

| < | > | \leq | \geq | = | \neq comparison operators
| \lor | \land logical operators

unop ::= - unary minus
| \lnot logical negation

As a consequence of the generality of syntax, user provided terms do not
usually have a unique direct mapping to CIC term, but must be suitably inter-
preted in order to solve ambiguities. Consider for example the following term
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input: \forall x. 1*x = x. in order to find the corresponding CIC term we
need to know the possible meanings of the number 1 and the symbol *.1

The typical processing of a user query (depicted in Fig. 1) is therefore a
pipeline made of four distinct phases: parsing (canonical transformation from
concrete textual syntax to Abstract Syntax Trees, ASTs for short), disambigua-
tion (described in next section), metadata extraction (described in Sect. 4), and
the actual query (described in Sect. 5).

It is worth observing that while the preliminary phases (disambiguation and
metadata extraction) of Whelp are not logic independent, the query engine is.

Fig. 1. Whelp’s processing

3 Disambiguation

The disambiguation phase builds CIC terms from ASTs of user inputs (also
called ambiguous terms). Ambiguous terms may carry three different sources of
ambiguity: unbound identifiers, literal numbers, and literal symbols. Unbound
identifiers are sources of ambiguity since the same name could have been used
to represent different objects. For example, three different theorems of the Coq
library share the name plus assoc (locating them is an exercise for the interested
reader. Hint: use Whelp’s Locate query).

Numbers are ambiguous since several different encodings of them could be
provided in logical systems. In the Coq standard library for example we found
naturals (in their unary encoding), positives (binary encoding), integers (signed
positives), and reals. Finally, symbols (instances of the binop and unop syntactic
categories of Table 1) are ambiguous as well: infix + for example is overloaded
to represent addition over the four different kinds of numbers available in the
Coq standard library. Note that given a term with more than one sources of
ambiguity, not all possible disambiguation choices are valid: for example, given
the input 1+1 we must choose an interpretation of + which is typable in CIC
according to the chosen interpretation for 1; choosing as + the addition over
natural numbers and as 1 the real number 1 will lead to a type error.

A disambiguation algorithm takes as input an ambiguous term and return a
fully determined CIC term. The naive disambiguation algorithm takes as input
an ambiguous term t and proceeds as follows:

1. Create disambiguation domains {Di|i ∈ Dom(t)}, where Dom(t) is the set
of ambiguity sources of t. Each Di is a set of CIC terms.

1 Note that x is not undetermined, since it is a bound variable.
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2. Let Φ = {φi|i ∈ Dom(t), φi ∈ Di} be an interpretation for t. Given t and
an interpretation Φ, a CIC term is fully determined. Iterate over all possible
interpretations of t and type-check them, keep only typable interpretations
(i.e. interpretations that determine typable terms).

3. Let n be the number of interpretations who survived step 2. If n = 0 signal
a type error. If n = 1 we have found exactly one CIC term corresponding
to t, returns it as output of the disambiguation phase. If n > 1 let the user
choose one of the n interpretations and returns the corresponding term.

The above algorithm is highly inefficient since the number of possible inter-
pretations Φ grows exponentially with the number of ambiguity sources. The
actual algorithm used in Whelp is far more efficient being, in the average case,
linear in the number of ambiguity sources.

The efficient algorithm can be applied if the logic can be extended with
metavariables and a refiner can be implemented. This is the case for CIC and
several other logics. Metavariables [17] are typed, non linear placeholders that
can occur in terms; ?i usually denotes the i-th metavariable, while ? denotes a
freshly created metavariable. A refiner [15] is a function whose input is a term
with placeholders and whose output is either a new term obtained instantiating
some placeholder or ε, meaning that no well typed instantiation could be found
for the placeholders occurring in the term (type error).

The efficient algorithm starts with an interpretation Φ0 = {φi|φi =?, i ∈
Dom(t)}, which associates a fresh metavariable to each source of ambiguity. Then
it iterates refining the current CIC term (i.e. the term obtained interpreting t

Fig. 2. Disambiguation: interpretation choice
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with Φi). If the refinement succeeds the next interpretation Φi+1 will be created
making a choice, that is replacing a placeholder with one of the possible choice
from the corresponding disambiguation domain. The placeholder to be replaced
is chosen following a preorder visit of the ambiguous term. If the refinement fails
the current set of choices cannot lead to a well-typed term and backtracking is
attempted. Once an unambiguous correct interpretation is found (i.e. Φi does no
longer contain any placeholder), backtracking is attempted anyway to find the
other correct interpretations.

The intuition which explain why this algorithm is more efficient is that as soon
as a term containing placeholders is not typable, no further instantiation of its
placeholders could lead to a typable term. For example, during the disambigua-
tion of user input \forall x. x*0 = 0, an interpretation Φi is encountered
which associates ? to the instance of 0 on the right, the real number 0 to the
instance of 0 on the left, and the multiplication over natural numbers (mult for
short) to *. The refiner will fail, since mult require a natural argument, and no
further instantiation of the placeholder will be tried.

If, at the end of the disambiguation, more than one possible interpretations
are possible, the user will be asked to choose the intended one (see Fig. 2).

Details of the disambiguation algorithm of Whelp can be found in [19], where
an equivalent algorithm that avoids backtracking is also presented.

4 Metadata

We use a logic-independent metadata model for indexing mathematical notions.
The model is essentially based on a single ternary relation Ref p(s, t) stating
that an object s refers an object t at a given position p. We use a minimal set
of positions discriminating the hypotheses (H), from the conclusion (C) and the
proof (P) of a theorem (respectively, the type of the input parameters, the type of
the result, and the body of a definition). Moreover, in the hypothesis and in the
conclusion we also distinguish the root position (MH and MC, respectively) from
deeper positions (that, in a first order setting, essentially amounts to distinguish
relational symbols from functional ones). Extending the set of positions we could
improve the granularity and the precision of our indexing technique but so far,
apart from a simple extension discussed below, we never felt this need.

Example 1. Consider the statement:

∀m, n : nat .m ≤ n → m < (S n)

its metadata are described by the following table:

Symbol Position
nat MH
≤ MH
< MC
S C
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All occurrences of bound variables in position MH or MC are collapsed under a
unique reserved name Rel, forgetting the actual variable name. The occurrences
in other positions are not considered. See Sect. 5.3 for an example of use.

The accuracy of metadata for discriminating the statements of the library is
remarkable. We computed (see [1]) that the average number of mathematical
notions in the Coq library sharing the same metadata set is close to the actual
number of duplicates (i.e. metadata almost precisely identify statements).

If more accuracy is needed, further filtering phases can be appended to the
Whelp pipeline of Fig. 1 to prune out false matches. For instance, since the
number of results of the query phase is usually small, very accurate yet slow
filters can be exploited.

According to the type as proposition analogy, the metadata above may be
also used to index the type of functions. For instance, functions from nat to R
(reals) would be identified by the following metadata:

Symbol Position
nat MH
R MC

in this case, however, the metadata model is a bit too rough, since for instance
functions of type nat → nat , nat → nat → nat , (nat → nat) → nat → nat and
so on would all share the following metadata set:

Symbol Position
nat MH
nat MC

To improve this situation, we add an integer to MC (MH), expressing the number
of parameters of the term (respectively, of the given hypothesis). We call depth
this value since in the case of CIC is equal to the nesting depth of dependent
products2 along the spine relative to the given position. For instance, the three
types above would now have the following metadata sets:

nat → nat
Symbol Position
nat MH(0)
nat MC(1)

nat → nat → nat
Symbol Position
nat MH(0)
nat MC(2)

(nat → nat)→ nat → nat
Symbol Position
nat MH(1)
nat H
nat MH(0)
nat MC(2)

The depth is a technical improvement that is particularly important for re-
trieving functions from their types (we shall also see a use in the Elim query,
2 Recall that in type theory, the function space is just a degenerate case of dependent

product.
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Sect. 5.3), but is otherwise of minor relevance. In the following examples, we
shall always list it among the metadata for the sake of completeness, but it may
be usually neglected by the reader.

5 Whelp Queries

5.1 Match

Not all mathematical results have a canonical name or a set of keywords which
could easily identify them. For this reason, it is extremely useful to be able to
search the library by means of the explicit statement. More generally, exploiting
the well-known types-as-formulae analogy of Curry-Howard, Whelp’s Match
operation takes as input a type and returns a list of objects (definition or proofs)
inhabiting it.

Example 2. Find a proof of the distributivity of times over plus on natural num-
bers. In order to retrieve those statements, Whelp need to be fed with the dis-
tributivity law as input: \forall x,y,z:nat. x * (y+z) = x*y + x*z. The
Match query will return 4 results:

1. cic:/Coq/Arith/Mult/mult plus distr l.con
2. cic:/Coq/Arith/Mult/mult plus distr r.con
3. cic:/Rocq/SUBST/comparith/mult plus distr r.con
4. cic:/Sophia-Antipolis/HARDWARE/GENE/Arith compl/mult plus distr2.con

Each result locates a theorem in the Coq library that is organized in a hiearchi-
cal fashion. For example (4) identifies the mult plus distr2 theorem in the
Arith compl.v file that is part of a contribution on hardware circuits developed
at the university of Sophia-Antipolis.

(1), (3), and (4) have types which are α-convertible with the user query;
(2) is an interesting “false match” returned by Whelp having type ∀n, m, p ∈
N.(n+m) ∗ p = n ∗ p+m ∗ p, i.e. it is the symmetric version of the distributivity
proposition we were looking for.

The match operation simply amounts to revert the indexing operation, looking
for terms matching the metadata set computed from the input. For instance, the
term \forall x,y,z:nat. x * (y+z) = x*y + x*z has the following meta-
data:

Symbol Position
nat MH(0)
= MC(3)
nat C
∗ C
+ C

Note that nat occurs in conclusion as an hidden parameter of equality; the
indexed term is the term after disambiguation, not the user input.
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Searching for the distributivity law then amounts to look for a term s such
that :

Ref MH(0)(s, nat) ∧ Ref MC (3)(s, =) ∧ Ref C(s, nat) ∧ Ref C(s, ∗) ∧ Ref C(s, +)

In a relational database, this is a simple and efficient join operation.

Example 3. Suppose we are interested in looking for a definition of summation
for series of natural numbers. The type of such an object is something of the
kind (nat → nat) → nat → nat → nat , taking the series, two natural numbers
expressing summation lower and upper bound, and giving back the resulting sum.
Feeding Whelp’s Match query with such a type does give back four results:

1. cic:/Coq/Reals/Rfunctions/sum nat f.con
2. cic:/Sophia-Antipolis/Bertrand/Product/prod nm.con
3. cic:/Sophia-Antipolis/Bertrand/Summation/sum nm.con
4. cic:/Sophia-Antipolis/Rsa/Binomials/sum nm.con

Although we have a definition for summation in the standard library, namely
sum nat f , its theory is very underdeveloped. Luckily we have a much more
complete development for sum nm in a contribution from Sophia, where:

sum nm n m f =
n+m∑
x=n

f(x)

Having discovered the name for summation, we may then inquire about the
proofs of some of its properties; for instance, considering the semantics of
sum nm, we may wonder if the following statement is already in the library:

∀m, n, c : nat.(sum nm n m λx : nat.c) = (S m) ∗ c

Matching the previous theorem actually succeed, returning the following:
cic:/Sophia-Antipolis/Bertrand/Summation/sum nm c.con.

Matching Incomplete Patterns. Whelp also support matching with partial
patterns, i.e. patterns with placeholders denoted by ?. The approach is essentially
identical to the previous one: we compute all the constants A appearing in the
pattern, and look for all terms referring at least the set of constants in A, at
suitable positions.

Suppose for instance that you are interested in looking for all known facts
about the computation of sin on given reals. You may just ask Whelp to Match
sin ? = ?, that would result in the following list (plus a couple of spurious results
due to the fact that Coq variables are not indexed, at present):

1. cic:/Coq/Reals/Rtrigo/sin 2PI.con
2. cic:/Coq/Reals/Rtrigo/sin PI.con
3. cic:/Coq/Reals/Rtrigo/sin PI2.con
4. cic:/Coq/Reals/Rtrigo calc/sin3PI4.con
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Fig. 3. Match results

5. cic:/Coq/Reals/Rtrigo calc/sin 2PI3.con
6. cic:/Coq/Reals/Rtrigo calc/sin 3PI2.con
7. cic:/Coq/Reals/Rtrigo calc/sin 5PI4.con
8. cic:/Coq/Reals/Rtrigo calc/sin PI3.con
9. cic:/Coq/Reals/Rtrigo calc/sin PI3 cos PI6.con

10. cic:/Coq/Reals/Rtrigo calc/sin PI4.con
11. cic:/Coq/Reals/Rtrigo calc/sin PI6.con
12. cic:/Coq/Reals/Rtrigo calc/sin PI6 cos PI3.con
13. cic:/Coq/Reals/Rtrigo calc/sin cos5PI4.con
14. cic:/Coq/Reals/Rtrigo calc/sin cos PI4.con
15. cic:/Coq/Reals/Rtrigo def/sin 0.con

Previous statements semantics is reasonably clear by their names; Whelp,
however, also performs in-line expansion of the statements, and provides hyper-
links to the corresponding proofs (see Fig. 3).

5.2 Hint

In a process of backward construction of a proof, typical of proof assistants, one
is often interested in knowing what theorems can be applied to derive the current
goal. The Hint operation of Whelp is exactly meant to this purpose.

Formally, given a goal g and a theorem t1 → t2 → · · · → tn → t, the problem
consists in checking if there exists a substitution θ such that:

tθ = g (1)
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A necessary condition for (1), which provides a very efficient filtering of the
solution space, is that the set of constants in t must be a subset of those in g.
In terms of our metadata model, the problem consists to find all s such as

{x|Ref(s, x)} ⊆ A (2)

where A is the set of constants in g. This is not a simple operation: the naive
approach would require to iterate, for every possible source s, the computation of
its forward references, i.e. of {x|Ref(s, x)}, followed by a set comparison with A.

The solution of [3] is based on the following remarks. Let us call Card(s) the
cardinality of {x|Ref(s, x)}, which can be pre-computed for every s. Then, (2)
holds if and only if there is a subset A′ of A such that A′ = {x|Ref(s, x)}, or
equivalently:

A′ ⊆ {x|Ref(s, x)} ∧ |A′| = Card(s)

and finally: ∧
a∈A′

Ref(s, a) ∧ |A′| = Card(s)

The last one is a simple join that can be efficiently computed by any relational
database. So the actual cost is essentially bounded by the computation of all
subsets of A, and A, being the signature of a formula, is never very large (and
often quite small).

The problem of matching against a large library of heterogeneous notions
is however different and far more complex than in a traditional theorem prov-
ing setting, where one typically works with respect to a given theory with a
fixed, and usually small signature. If e.g. we look for theorems whose conclu-
sion matches some kind of equation like e1 = e2 we shall eventually find in the
library a lot of injectivity results relative to operators we are surely not inter-
ested in: in a library of 40,000 theorems like the one of Coq we would get back
about 3,000 of such silly matches. Stated in other words, canonical indexing
techniques specifically tailored on the matching problem such as discrimination
trees [16], substitution trees [13] or context trees [12] are eventually doomed to
fail in a mathematical knowledge management context where one cannot assume
a preliminary knowledge on term signatures.

On the other side, the metadata approach is much more flexible, allowing
a simple integration of matching operation with additional and different con-
straints. For instance in the version of hint described in [14] the problem of
reducing the number of silly matches was solved by requiring at least a minimal
intersection between the signatures of the two matching terms. However, this ap-
proach did sometimes rule out some interesting answers. In the current version
the problem has been solved imposing further constraints of the full signature
of the term (in particular on the hypothesis), essentially filtering out all solu-
tions that would extend the signature of the goal. The actual implementation
of this approach requires a more or less trivial extension to hypothesis of the
methodology described in [3].
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5.3 Elim

Most statements in the Coq knowledge base concern properties of functions and
relations over algebraic types. Proofs of such statements are carried out by struc-
tural induction over these types. In particular, to prove a goal by induction over
the type t, one needs to apply a lemma stating an induction principle over t
(an eliminator of t [15]) to that goal. Since many different eliminators can be
provided for the same type t (either automatically generated from t, or set up
by the user), it is convenient to have a way of retrieving all the eliminators of
a given type. The Elim query of Whelp does this job.3 To understand how it
works, let’s take the case of the algebraic type of the natural numbers: one feeds
Whelp with the identifier nat , which denotes this type in the knowledge base,
and expects to find at least the well-known induction principle nat ind :

∀P : nat → Prop.(P 0)→ (∀n : nat .(P n)→ (P (S n))) → ∀n : nat .(P n)

A fairly good approximation of this statement is based on the following obser-
vations: the first premise (nat → Prop) has an antecedent, a reference to Prop
in its root and a reference to nat ; the forth premise has no antecedents and
a reference to nat in its root; the conclusion contains a bound variable in its
root (i.e. P ). Notice that we choose not to approximate the major premises of
nat ind (the second and the third) because they depend on the structure of nat
and discriminate the different induction principles over this type.

Thus, a set of constraints approximating nat ind is the following (recall that
Rel stands for an arbitrary bound variable):

Symbol Position
Prop MH(1)
nat H
nat MH(0)
Rel MC

The Elim query of Whelp simply generalizes this scheme substituting nat for
a given type t and retrieving any statement c such that:

Ref MH (1)(c,Prop) ∧ Ref H (c, t) ∧ Ref MH (0)(c, t) ∧ Ref MC (c, Rel)

In the case of nat , Elim returns 47 statements ordered by the frequency of
their use in the library (as expected nat ind is the first one).

5.4 Locate

Whelp’s Locate query implements a simple “lookup by name” for library no-
tions. Once fed with an identifier i, Locate returns the list of all objects whose
3 Of course it is possible to let the author state what are the elimination principles,

storing this information as metadata accessible to Whelp. The technique we present
consists in automatically guessing the intended usage of a theorem from its shape.
Moreover, this is the only possible technique for legacy libraries that lack classifica-
tion information.
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name is i. Intuitively, the name of an object contained in library is the name
chosen for it by its author.4

This list is obtained querying the specific relational metadata Name(c, i) that
binds each unit of knowledge c to an identifier i (its name). Unix-shell-like wild-
cards can be used to specify an incomplete identifier: all objects whose name
matches the incomplete identifier are returned.

Even if not based on the metadata model described in Sect. 4, Locate turns
out to be really useful to browse the library since quite often one remembers the
name of an object, but not the corresponding contribution.

Example 4. By entering the name gcd , Locate returns four different versions
of the “greatest common divisor”:

1. cic:/Orsay/Maths/gcd/gcd.ind#xpointer(1/1)
2. cic:/Eindhoven/POCKLINGTON/gcd/gcd.con
3. cic:/Sophia-Antipolis/Bertrand/Gcd/gcd.con
4. cic:/Sophia-Antipolis/Rsa/Divides/gcd.con

6 Web Interface

The result of Whelp is, for all queries, a list of URIs (unique identifiers) for
notions in the library. This list is not particularly informative for the user, who
would like to have hyperlinks or, even better, in-line expansion of the notions.

In the MoWGLI project we developed a service to render on the fly, via a
complex chain of XSLT transformations, mathematical objects encoded in XML
(those objects of the library of Coq that Whelp is indexing). XSLT is the stan-
dard presentational language for XML documents and an XSLT transformation
(or stylesheet) is a purely functional program written in XSLT that describes a
simple transformation between two XML formats.

The service can also render views (misleadingly called “theories” in [2]), that
is an arbitrary, structured collection of mathematical objects, suitably assembled
(by an author or some mechanical tool) for presentational purposes. In a view,
definitions, theorems, and so on may be intermixed with explanatory text or fig-
ures, and statements are expanded without proofs: a link to the corresponding
proof objects allows the user to inspect proofs, if desired.

Providing Whelp with an appealing user interface for presenting the answers
(see Fig. 3) has been as simple as making it generate a view and pipelining
Whelp with UWOBO,5 the component of our architecture that implements the
rendering service.

UWOBO is a stylesheet manager implemented in OCaml6 and based on
LibXSLT, whose main functionality is the application of a list of stylesheets
(each one with the respective list of parameters) to a document. The stylesheets
4 In the current implementation object names correspond to the last fragment of object

URIs, without extension.
5 http://helm.cs.unibo.it/software/uwobo/
6 http://caml.inria.fr/
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are pre-compiled to improve performance. Both stylesheets and the document
are identified using HTTP URLs and can reside on any host. UWOBO is both
a Web server and a Web client, accepting processing requests and asking for the
document to be processed. Whelp is a Web server, accepting queries as process-
ing requests and returning views to the client.

The Whelp interface is thus simply organized as a HTTP pipeline (see Fig. 4).

Fig. 4. Whelp’s HTTP pipeline

7 Conclusions

Whelp is the Web searching helper developed at the University of Bologna as
a part of the European Project IST-2001-33562 MoWGLI. HELP is also the
acronym of the four operations currently supported by the system: Hint, Elim,
Locate and Pattern-matching.

Much work remains to be done, spanning from relatively simple technical im-
provements, to more complex architectural re-visitations concerning the indexing
technique and the design and implementation of the queries.

Among the main technical improvements which we plan to support in a near
future there are:

1. the possibility to confine the search to sub-libraries, and in particular to the
standard library alone (this is easy due to the paths of names);

2. skipping the annoying dialog phase with the user during disambiguation for
the choice of the intended interpretation, replacing it with a direct investi-
gation of all possibilities;

3. interactive support for advanced queries, allowing the user to directly ma-
nipulate the metadata constraints (very powerful, if properly used).

The current indexing politics has some evident limitations, resulting in unex-
pected results of queries.

The most annoying problem is due to the current management of Coq vari-
ables. Roughly, in Coq, variables are meant for declarations, while constants are
meant for definitions. The current XML-exportation module of Coq [18] does
not discharge section variables, replacing this operation with an explicit substi-
tution mechanism; in particular, variables may be instantiated and their status
look more similar to local variables than to constants. For this reason, variables
have not been indexed; that currently looks as a mistake.
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A second problem is due to coercions. The lack of an explicit mechanism for
composition of coercions tends to clutter the terms with long chains of coercions,
which in case of big algebraic developments as e.g. C-Corn [9], can easily reach
about ten elements. The fact that an Object r refers a coercion c contains very
little information, especially if coercions typically come in a row, as in Coq. In
the future, we plan to skip coercions during indexing.

Notice that the two previous problems, both logic dependent, only affect meta-
data extraction and not the metadata model that is logic independent.

The final set of improvements concerns the queries. A major issue, for all kinds
of content based operations, is to take care, at some extent, of delta reduction.
For instance, in Coq, the elementary order relations over natural numbers are
defined in terms of the less or equal relation, that is a suitable inductive type.
Every query concerning such relations could be thus reduced to a similar one
about the less or equal relation by delta reduction. Even more appealing it looks
the possibility to extend the queries up to equational rewriting of the input (via
equations available in the library).7

Similarly, the Hint operation, could and should be improved by suitably tun-
ing the current politics for computing the intended signature of the search space
(for instance, “closing” it by delta reduction or rewriting, adding constructors
of inductive types, and so on).

Different kind of queries could be designed as well. An obvious generalization
of Hint is a Auto, automatically attempting to solve a goal by repeated ap-
plications of theorems of the library (a deeper exploration of the search space
could be also useful for a better rating of the Hint results).

A more interesting example of content-based query that exploits the higher
order nature of the input syntax is to look for all mathematical objects provid-
ing examples, or instances, of a given notion. For instance we may define the
following property, asserting the commutativity of a generic function f

is commutative := λA : Set.λf : A → A→ A.∀x, y : A.(f x y) = (f y x)

Then, an Instance query should be able to retrieve from the library all com-
mutative operations which have been defined.8

To conclude, we remark that the only two components of Whelp that are
dependent on CIC, the logic of the Coq system, are the disambiguator for the
user input and the metadata extractor. Moreover, the algorithm used for disam-
biguation depends only on the existence of a refiner for mathematical formulae
extended with placeholders and the metadata model is logic independent. Thus
Whelp can be easily modified to index and search other mathematical libraries
provided that the statements of the theorems can be easily parsed (to extract the
metadata) and that there exists a service to render the results of the queries.

7 The possibility of considering search up to isomorphism (see [10, 11]) looks instead
less interesting, because our indexing policy is an interesting surrogate that works
very well in practice while being much simpler than search up to isomorphisms.

8 Match is in fact a particular case of Instance where the initial sequence of lambda
abstractions is empty.
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In particular, the Mizar development team has just released version 7.3.01 of
the Mizar proof assistant that provides both a native XML format and XSLT
stylesheets to render the proofs. Thus it is now possible to instantiate Whelp
to work on the library of Mizar, soon making possible a direct comparison on
the field between Whelp and MML Query, the new search engine for Mizar ar-
ticles described in [6, 5]. Another interesting comparison is with the approach
described in [7], which has been tested on the Mizar library.
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Abstract. Most approaches to the formal analysis of cryptography pro-
tocols make the perfect cryptographic assumption, which entails for ex-
ample that there is no way to obtain knowledge about the plaintext per-
taining to a ciphertext without knowing the key. Ideally, one would prefer
to abandon the perfect cryptography hypothesis and reason about the
computational cost of breaking a cryptographic scheme by achieving such
goals as gaining information about the plaintext pertaining to a cipher-
text without knowing the key. Such a view is permitted by non-standard
computational models such as the Generic Model and the Random Ora-
cle Model. Using the proof assistant Coq, we provide a machine-checked
account of the Generic Model and the Random Oracle Model. We ex-
ploit this framework to prove the security of the ElGamal cryptosystem
against adaptive chosen ciphertexts attacks.

1 Introduction

Cryptographic mechanisms provide a fundamental mechanism to ensure secu-
rity, and are used pervasively in numerous application domains, including dis-
tributed systems and web services. However, designing secure cryptographic
mechanisms is extremely difficult to achieve [1]. Therefore, there is an increasing
trend to study provable security of cryptographic schemes, whereby one provides
a clear specification of the security requirements, and establish with complexity-
theoretic arguments that the proposed scheme meets the requirements [18]. Typ-
ically, the security of the scheme is established by showing that the attacker has
a negligible advantage, i.e. that its chance of succeeding in launching an at-
tack that exploits its capabilities is not significantly higher than its chance of
breaking the scheme by brute force. While provable cryptography has become
an important tool, it is not unusual to see attacks against cryptographic schemes
that were deemed sound using methods from provable security; in most cases,
such attacks will exploit an hidden assumption, e.g. that some event occurs with
negligible probability.

The objective of our work, initiated in [4], is to machine-check results from
provable cryptography. In [4], we use the proof assistant Coq [7] to establish
the security of cryptographic schemes, using the Generic Model or GM for
short [16, 11], which provides a non-standard computational model for reason-
ing about the probability and computational cost of breaking a cryptographic
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scheme. Our work demonstrates that the benefits of machine-checking results
from provable cryptography are two-fold: firstly, we are able to give a precise de-
scription of the models that underlie proofs in provable cryptography. Secondly,
we are able to provide accurate statements about the security of cryptographic
schemes, and to highlight hidden assumptions or approximations of the attacker’s
advantage in published proofs. However, the formalization of [4] only focuses on
non-interactive attacks where the attacker tries to break a cryptographic scheme
without any interaction with oracles that perform cryptographic operations. This
is an important restriction since in most practical scenarios the attacker is able
to interact with oracles that provide useful information for launching an attack.
Different forms of oracles include hash oracles, which allow the attacker to hash
a message, decryption oracles or decryptors for short, which allow the attacker to
retrieve the plaintext from (correct) ciphertexts, and signature oracles or signers
for short, which allow the attacker to sign messages.

The main contribution of this paper is to extend our security proofs to an
interactive setting, building on a combination of the GM and of the Random
Oracle Model or ROM for short [5, 9] that assumes the hash function to be
collision resistant (i.e. that collisions of random functions have negligibly small
probability). As an application of our results, we prove the security of signed
ElGamal encryption against strong adaptive chosen ciphertext attacks. Follow-
ing [4], the key insight in our formalization is a distinction between the symbolic
execution of an attack that specifies the behavior of the attacker, and the con-
crete execution of the attack that can lead the attacker to gain information about
the secrets.

In the case of the Generic Model, the attacker tries to gain knowledge about
secrets by trying to find so-called collisions, which establish a correlation between
two different outputs produced during the (concrete) execution of the attack. In
this setting, the distinction between the symbolic level and concrete level takes
the following form:

– at the symbolic level, secrets are treated symbolically and the execution
of the attack outputs polynomials p1 . . . pt whose indeterminates are the
secrets used in the cryptographic scheme. At his level, and the attacker
constructs polynomials that will be used at the concrete level for gaining
some information about secrets;

– at the concrete level, secrets are interpreted and the attacker checks whether
collisions occur, i.e. the secrets are a root of some polynomial pi − pj (with
i �= j) where pi and pj are taken from the polynomials p1 . . . pt that were
constructed at the symbolic level.

In the setting of the Random Oracle Model, we must also account for interactions
with oracles. We do so with the same methodology, i.e. we consider symbolic
outputs that are built performing symbolic hash computations, and concrete
outputs where the symbolic results of hash computations are interpreted.

Contents of the Paper. The remainder of the paper is organized as follows. Sec-
tion 2 provides an account of the Generic Model and of the Random Oracle
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Models and of their application to ElGamal. Section 3 discusses our formaliza-
tion of discrete probabilities and polynomials, which are required to prove our
main results. Section 4 reviews our formalization of GM. Section 5 deals with
interactive attacks using a hash oracle and a decryptor, and shows an application
of our results to ElGamal. We conclude in Section 6.

2 A Primer on Cryptography

2.1 Public-Key Cryptography

In public key cryptosystems, each participant gets a pair of keys, a public key and
a private key. The public key is published, while the private key is kept secret. All
communications involve only public keys, and no private key is ever transmitted
or shared. The only requirement is that public keys to be associated with their
users in a trusted (authenticated) manner (for instance, in a trusted directory).
Anyone can send a confidential message by just using public information, but
the message can only be decrypted with the right private key, which is in the sole
possession of the intended recipient. Furthermore, public-key cryptography can
be used not only for privacy (encryption), but also for authentication (digital
signatures) and other various techniques [13].

In a public key cryptosystem, the private key is always linked mathematically
to the public key. Therefore, it is always possible to attack a public-key system by
deriving the private key from the public key. The typical defense against this is
to make the problem of deriving the private key from the public key as difficult
as possible. For example, ElGamal cryptosystem assume the intractability of
the Decisional Diffie Hellman problem, or DDH-problem [8] i.e., given gx [p] and
gy [p], it is hard to tell the difference between gxy [p] and gr [p] where r is random
and p is a prime number.

The Diffie-Hellman key exchange algorithm is usually described as an active
exchange of keys by two parties A and B, who have a (publicly known) prime
number p and a generator g:

– party A selects a random number x, and transmits gx [p] to B, symbolically
A −→ B : gx [p];

– party B selects a random number y, and transmits gy [p] to A, symbolically
B −→ A : gy [p];

– both parties communicate using gxy [p] as their session key.

ElGamal [10] can be considered as a special case of the Diffie-Hellman key ex-
change algorithm. In ElGamal, to send a message to a party whose public key
is gy [p], we send our own public key, gx [p], and in addition the message is
enciphered by multiplying it by gxy [p] i.e., an ElGamal ciphertext has the form
(gy [p], mgxy [p]) for a plaintext m; the multiplication also being modulo p.

To sign an ElGamal ciphertext, we add a Schnorr signature to the ciphertext
(gy [p], mgxy [p]): pick random s, compute c = H(gs, gy, mgxy) where H is a
random function chosen at randon over all functions of that type with uniform
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probability distribution, and compute z = s + cy, then (gy, mgxy, c, z) is the
signed ciphertext.

In this paper, we prove the security of ElGamal encryption against strong
adaptive chosen ciphertext attacks CCA, as described e.g. by C.Rackoff and
D.Simon [12]. CCA security means that indistinguishability against an adversary
that has access to a decryption oracle which it can freely use except for the target
ciphertext.

2.2 The Generic Model

The generic model, or GM for short, was introduced by Shoup [16], building
upon Nechaev [11], and can be used to provide an overall guarantee that a
cryptographic scheme is not flawed [14, 15, 18]. For example, GM is useful for
establishing the complexity of the discrete logarithm or the decisional Diffie-
Hellman problem, which we describe below.

The GM focuses on generic attacks, i.e. attacks that do not exploit any spe-
cific weakness in the underlying mathematical structures, which in the case of
GM is a cyclic group G of prime order q. More concretely, the GM focuses on
attacks that work for all cyclic groups, and that are independent of the encoding
of group elements; in practice, this is achieved by leaving the group G unspec-
ified. Furthermore, the GM constrains the behavior of the attacker so that he
cannot access oracles, and can only gain information about the secret through
testing group equalities (a.k.a. collisions). In order to test group equalities, the
attacker performs repeatedly modular exponentiations of the program inputs,
using coefficients that are chosen randomly and with uniform distribution over
the probability space Zq.

More precisely, a generic attacker A over G is given by its list of secrets, say
s1, . . . , sk ∈ Zq, its list of inputs, say gl1 , . . . , glt′ ∈ Zq, which depends upon
secrets, and a run, which is a sequence of t multivariate exponentiation (mex)
steps. For the latter, the attacker selects arbitrarily, and independently of the
secrets, the coefficients ai,1, . . . , ai,t′ ∈ Zq and computes for t′ < i ≤ t the group
elements fi = mex(ai,1, . . . , ai,t′ , (gl1 , . . . , glt′ )) =

∏t′

j=1 gljai,j , where fj = glj

for 1 ≤ j ≤ t′. The output of the run is the list f1, . . . , ft, from which the attacker
will test for collisions, i.e. equalities fj = fj′ i.e., fj−fj′ = 0 with 1 ≤ j < j′ ≤ t.

Considering s1, . . . , sk as formal variables over Zq, fj − fj′ is a polynomial
in Zq[s1, . . . , sk]. The random s1, . . . , sk are statistically independent of the co-
efficients aj,1, . . . , aj,t′ and aj′,1, . . . , aj′,t′ . The attacker can obtain information
about the secrets by solving the equation fj − fj′ .

The objective of the GM model is to establish upper bounds for the probability
of a generic attacker to be successful. To this end, the GM assumes that a generic
attackerA is successful if it finds a non-trivial collision, i.e. a collision that reveals
information about secrets (those collisions which do not reveal information are
called trivial, and are defined as collisions that hold with probability 1, i.e. for all
choices of secret data), or if not, if it guesses the secrets at random. Rather than
considering the probability of an attacker to be successful, it is convenient to
consider its advantage, which is the probability to be successful with respect to
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an attacker who would try to guess secrets at random. Indeed, modeling explicitly
the probability of finding secrets requires an implicit assumption about what the
attacker wants to find, e.g. that he is only interested in one specific secret or in
all secrets. Focusing on the attacker advantage is more general, because we do
not need to specify whether the attacker is interested in finding parts or all of
the secrets.

Note that the GM also makes the implicit assumption that the advantage
of the attacker is reduced to the probability of finding non-trivial collisions.
This assumption incurs a loss of precision in the bounds one gives (since finding
a non-trivial collision may not be sufficient to reveal all secrets); however, it
allows to show that the advantage of the attacker is negligible for a sufficiently
large order q of the group G and a reasonable number of steps t of the run.

2.3 The Random Oracle Model

Interactive generic algorithms are an extension of generic algorithms in which
the attacker is able to interact with oracles through interactive steps. Such in-
teractive algorithms can be modeled using the Random Oracle Model, or ROM
for short, that was introduced by Bellare and Rogaway [5] but its idea originates
from earlier work by Fiat and Shamir [9].

For the purpose of our work, we do not need to develop a general framework
for interactions; instead we focus on two typical oracles with whom the attacker
can interact: queries to hash functions and decryptors. These forms of interaction
are used in particular in the signed ElGamal encryption protocol.

To sign a message, we do an interaction with a hash oracle i.e., a hash function
H : G→M → Zq where M is the set of messages. Cryptographic hash functions
are used in various contexts, for example, to compute the message digest when
making a digital signature. A hash function compresses the bits of a message
to a fixed-size hash value in a way that distributes the possible messages evenly
among the possible hash values. A cryptographic hash function does this in a
way that makes it extremely difficult to come up with a message that would hash
to a particular hash value. The ROM assumes a random hash function and is a
stronger assumption that assuming the hash function to be collision resistant;
the fundamental assumption of ROM is that the hash function H : G→M → Zq

is chosen at random with uniform probability distribution over all functions of
that type. Note that interactions provide the algorithm with values, and that, in
this setting, mex-steps perform computations of the form fi =

∏
1≤j≤t′ gljai,j ,

where for 1 ≤ j ≤ t′, glj is an input of the algorithm, and where ai,1, . . . , ai,t′

are arbitrary but may depend on values that the algorithm received through
interactions; for 1 ≤ i ≤ t′′, fi is a group output of the algorithm so we assume
it to do t′′ mex-steps. Like in the non interactive case, we consider that the
interactive generic adversary takes a list of secrets s1, . . . , sk and a list of inputs
gl1 , . . . , glt′ .

Example 1. Let x ∈ Zq and h = gx be the private and public keys for encryption,
m ∈ G the message to be encrypted. For encryption, pick random r ∈ Zq,
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(gr, mhr) is the ElGamal ciphertext. To add Schnorr signatures, pick random
s ∈ Zq, compute c = H(gs, gr, mhr) and z = s + cr, then (gr, mhr, c, z) is the
signed ciphertext. A decryptor Dec takes a claimed ciphertext (h̄, f̄ , c, z) and
computes

F = (if H(gzh̄−c, h̄, f̄) = c then h̄x else ?)

where ? is a random value, and then returns f̄
F which is the original message, if

(h̄, f̄ , c, z) is a valid ciphertext.

A decryptor should not decrypt the target ciphertext because if the attacker
sends to the decryptor the target ciphertext, the equality H(gzh̄−c, h̄, f̄) = c is
always verified and so the attacker obtains immediately the original message.

As in the non-interactive model, an attacker is a generic algorithm that seeks
to gain knowledge about secrets through testing equalities between the group
elements it outputs, possibly through interactions. However, the attacker has
now access to oracles for computing hash values and for decryption. Note that
each operation performed by the attacker, i.e. reading an input, performing an
interaction, or taking a mex-step, counts as a step in the run. However, as in
the non-interactive case, testing equality is free. The adversary’s advantage is
the probability that the adversary finds non-trivial collisions among computed
group elements plus the probability that the adversary obtains information on
secrets through an interaction with the decryptor.

In the remaining of this subsection, we explain more precisely how the attacker
can get information about the secrets by an interaction with the decryptor. Each
interaction with the decryptor yields a polynomial and we can obtain information
on the secrets if we find the zero of this polynomial.

Recall that a Schnorr signature on a message m is a triple (m, c, z) ∈ M ×Z2
q

such that H(gzh−c, m) = c and let (fi, fj, c, z) be the claimed ciphertext that
A transmits to the decryptor. In the ROM, the equation c = H(gzh−c, fi, fj)
required for a valid signature, necessitates that A selects c from the given hash
values H(fσ, fi, fj) for given group elements fσ, fi, fj .The attacker gets c =
H(gzh−c, fi, fj) from the hash oracle and must compute z so that gzh−c = fσ,
i.e., it must compute z = logg(fσf c

j ). The computed z i.e., the element z used
for an interaction with the decryptor (recall that a decryptor takes as input
a quadruple (fi, fj , c, z)), does not depend on the secrets s1, . . . , sk whereas
z′ = logg(fσf c

j ) = loggfσ + c loggfi, which denotes the value required for a
signature, may depend on it.

The group steps of the interative generic algorithm refer to the given group
elements l1, . . . , lt′ . The adversary computes fi :=

∏
1≤j≤t′ gljai,j for i = 1, . . . , t

using exponents ai,1, . . . , ai,t′ ∈ Zq that arbitrarily depend on values that the
algorithm received through interactions but not on the secrets s1, . . . , sk. Hence
z′ is of the form:

z′ = logg(fσf c
j )

= < aσ + caj, (l1, . . . , lt′) > (1)

where < ., . > is a scalar product i.e., < (a1, . . . , an), (c1, . . . , cn) >=
∑n

j=1 ajcj .
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Considering s1, . . . , sk as formal variables over Zq, z′ is a polynomial in
Zq[s1, . . . , sk] (as the inputs l1, . . . , lt′ are polynomials in Zq[s1, . . . , sk]). The
random c, s1, . . . , sk are statistically independent of the coefficients aσ,1, . . . , aσ,t′

and aj,1, . . . , aj,t′ . A can obtain information about the secrets by solving the
equation z′ = z i.e., the polynomial z′ must be equal to the computed group
element z, so we must have z′ − z = 0. Let us notice that the value required for
a signature i.e., z′ depends on the secrets, so we note z′(s1, . . . , sk) instead z′

to make the difference with the value computed by the algorithm i.e., z which
is a constant in Zq[s1, . . . , sk]. The equation z′ − z = 0 is seen as a polynomial
equality z′(s1, . . . , sk)−z ≡ 0 for the secrets s1, . . . , sk. Each interaction with the
decryptor provides a polynomial z′(s1, . . . , sk)− z, thus after l interactions with
the decryptor, we have a list of l polynomials z′(s1, . . . , sk)−z, so we can obtain
informations about the secrets if we can find a zero of a polynomial that belongs
to this list. In fact, an interaction with the decryptor succeeds if the equation
z′(s1, . . . , sk) − z = 0 holds; and by applying Schwartz lemma (see Section 3.3)
to the polynomial z′(s1, . . . , sk)− z, we get a bound to the probability of finding
the secrets s1, . . . , sk. To conclude, we eliminate interactions with the decryptor
by computing extractor for each interaction with the decryptor.

2.4 Applications of GM+ROM

We consider the application to the signed ElGamal encryption; let the attacker be
given the generator g, the public key h = gx, distinct messages m0, m1, a target
signed ciphertext cipb = (gr, mbg

rx, c, z) corresponding to mb for a random bit
b ∈ {0, 1} and oracles for the hash function H and for decryption. Then an
interactive generic adversary using t generic steps including t′′ operations on
group elements and l interactions with the decryptor, can not predict b with a

better probability than 1
2 +

2(t
2)

q−2(t
2)

. The probability space consists of the random

x, b, H and the key of the encipherer r.
To prove this, we use Schwartz lemma (see Section 3.3), the bound of the

probability of finding collisions among the computed group elements i.e., non

trivial collisions occur with no better probability than
2(t′′

2 )
q−2(t′′

2 )
if we compute

t′′ group elements. For this bound, the probability space refers to the random
b, r, x; and we use the bound of the probability of finding information on the
plaintext by having l interactions with the decryptor: 3l

q .

3 Remarks on the Formalization of Algebra

This section provides a brief discussion on some issues with the formalization of
the mathematical concepts that underlie the generic and random oracle mod-
els. We focus on two particularly important issues, namely the formalization of
discrete probabilities and of multivariate polynomials.
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3.1 Sets and Algebra

Standard presentations of the generic model involve a cyclic group G of order
q, and formalizing the generic model directly in Coq would therefore require
that we use a formalization of groups. Although several such formalizations are
already provided by the Coq contributions, we find it convenient to exploit the
canonical isomorphism between the group G and the ring Zq (assuming that g
is a generator of the group, the function x 	→ gx is an isomorphism from Zq

to G) and work directly with Zq instead of G. Thus, instead of considering an
element ga of the group, we will always consider the exponent a, and instead
of considering multivariate exponentiation mex : Zd

q → Gd → G as done in the
generic model (a1, . . . , ad), (g1, . . . , gd) 	→

∏d
i=1 gai

i we use the function mex :
Zd

q → Zd
q → Zq defined as (a1, . . . , ad), (s1, . . . , sd) 	→

∑d
j=1 ajsj where it is

assumed that gi = gsi .
Dispensing with the formalization of groups does not allow us to dispense

with the formalization of sets, which are represented using setoids [3, 2]. For the
sake of readability, we avoid in as much as possible mentioning setoids in our
presentation, although they are pervasive in our formalizations.

3.2 Probabilities

There are several possible formalizations of probabilities in Coq. Our choice
of formalization was influenced by two important factors. The first factor is
a simplifying factor, namely for our purposes we only need to consider discrete
probabilities, i.e. probabilities over finite sets. The second factor is a complicating
factor, namely for our purposes we need to consider probabilities over setoids.

On this basis, we have found convenient to define probabilities w.r.t. an ar-
bitrary type V and a finite subset E of V , given as a (non-repeating and non-
empty) V -list; intuitively, E is meant to contain exactly one representative from
each equivalence class generated by the setoid underlying equality. Then the
probability of an event A, i.e. of a predicate over V , is defined as the ratio be-
tween the number of elements in E for which A holds and the total number of
elements in E, i.e.

Definition Event:=V → Prop
Definition PrE(A:Event):=length (filter E A)/(length E).

One can check that PrE satisfies the properties of a probability measure, and
define derived notions such as conditional probabilities. In the sequel, E will
often be omitted to adopt the notation Pr(A).

3.3 Polynomials

There have been several formalizations of polynomials in Coq. Our choice of
formalization was guided by the proof of Schwartz Lemma (see below), which
requires to view a polynomial in n + 1 variables as a polynomial in n or 1
variables. Our current formalization (which is different from the formalization
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used in [4] and in our opinion more elegant) uses the Horner representation of
polynomials for polynomials in one variable, and define polynomials in n + 1
variables recursively from polynomials in n variables. Formally, we consider a
ring R with underlying carrier C and define R[X ] as the inductive type:

Inductive R[X]:Type:=
|Pc : C→ R[X]
|PX : R[X] → C → R[X].

where Pc is the constructor for constant polynomials and PX Q d =Q*X+d. Once
monovariate polynomials have been formalized, polynomials in n + 1 variables
are built recursively from polynomials in n-variables, using the canonical iso-
morphism between R[X1, . . . , Xn+1] and (R[X1, . . . , Xn])[Xn+1].

Then one can define equality ≡ between polynomials using an appropriate
inductive relation, and endow R[X ] and R[X1, . . . , Xn+1] with a ring structure
under the usual operations of polynomial addition, substraction, multiplication,
etc. Using this formalization, we have proved the following lemma, which pro-
vides an upper bound on the probability of a vector to be a root of a polynomial
of degree d over Zq[X1, . . . , Xn], and which is the key result that enables security
proofs in the Generic Model.

Lemma 1 (Schwartz Lemma).

∀ (p : Zq[X1, . . . , Xn]), q 
= 0 → p 
≡ 0 →
Prx1,...,xn∈Zn

q
(p(x1, . . . , xn) = 0) ≤ (degree p)/q.

The lemma requires that q is not null and that p is not identically null, and
establishes that the probability that an element x ∈ Zn

q is a zero of a polynomial
p is smaller than the degree of the polynomial divided by q. The proof proceeds by
induction on the number n of variables. Note that we slightly abuse notation and
write Prx1,...,xn∈Zn

q
( p(x1, . . . , xn)= 0) for PrV ar→Zq(λf:Var→Zq.(p f) = 0),

where V ar is the finite set with inhabitants X1, . . . , Xn.
We now state corollaries of Schwartz lemma that are used in Section 5. The

first corollary follows rather directly from Schwartz lemma, while the second
corollary is proved by induction.

Lemma 2. ∀ (d:N)( p1, . . . , pn : Zq [X1, . . . , Xn]), q 
= 0 →
(∀ 1≤j≤n, (degree pj)≤d ∧ pj 
≡ 0) →
Prx1,...,xn∈Zn

q
(pn(x1, . . . , xn)=0| ∀ j<n, pj(x1, . . . , xn)
=0)≤d/(q-nd).

Lemma 3. ∀ (d:N)( p1, . . . , pn : Zq [X1, . . . , Xn]), q 
= 0 →
(∀ 1≤j≤n, (degree pj)≤d ∧ pj 
≡ 0) → nd<q →
Prx1,...,xn∈Zn

q
(p1(x1, . . . , xn) = 0 ∨ . . . ∨pn(x1, . . . , xn) = 0)≤nd/(q-nd).

4 A Review of the Formalization of the Generic Model

The main difficulty in formalizing generic algorithms is to pinpoint the notion
of secret. As mentioned in the introduction, we take advantage of the expres-
siveness of our framework and introduce an abstract type Sec of secrets together
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1 Parameter Sec:Set.
2 Parameter input:list Zq[Sec].
3
4 Inductive GA:Type:=
5 nostep:GA
6 |step:GA→(list Zq)→GA.
7
8 Fixpoint SymbOutput(A :GA):(list Zq[Sec]):=
9 match A with nostep ⇒ nil

10 | (step A ’ e) ⇒(mex e input)::(SymbOutput A ’)
11 end.
12
13 Definition ConcrOutput(A :GA)(σ:Sec→Zq):list Zq:=
14 map λx:Zq [Sec].[|x|]σ (SymbolicOuput A ).
15
16 Definition CO (A :GA)(σ:Sec →Zq):=
17 ∀ e e’:Zq [Sec], e ∈ (SymbOutput A ) ∧
18 e’ ∈ (SymbOutput A ) ∧ e-e’
≡0 ∧ [|e − e|]σ=0.

Fig. 1. Formalization of the GM

with an interpretation function from Sec to Zq. In order to fix terminology, we
refer to elements of Sec as symbolic secrets and to their interpretation in Zq as
(concrete values of) secrets. Then, we define generic algorithms which describe
the behavior of the attacker at an abstract level; being defined at an abstract
level, the behavior of the attacker is independent of the concrete values of the
secret, as required by the GM.

Generic algorithms may be executed symbolically, producing symbolic outputs
in the form of polynomials. Further, abstract runs are interpreted into concrete
runs; the latter correspond to executing an attack and may or not be successful,
depending on whether a non-trivial collision is found.

The formal definition of a generic algorithm is given in Figure 1. In order to
model the notion of secrets, we introduce a type Sec of formal secret parameters
(see line 1) and model inputs as a list of non-repeating polynomial expressions
over secrets (see line 2); note that inputs are determined by the cryptographic
system under consideration, and are known to the attacker. In the above we
implicitly assume that the set Sec is modeled as a finite type with k secrets
s1, . . . , sk and we use Zq[Sec] as a shorthand for Zq[s1, . . . , sk].

Then, we consider generic algorithms (see line 4) in which the attacker selects
arbitrarily and independently of the secrets a list of coefficients ai,1, . . . , ai,t′ ∈
Zq. Generic algorithms can be executed to produce symbolic outputs (see line
8), and concrete outputs (see line 13) are obtained from the symbolic outputs by
using the extension of an interpretation function σ from polynomial expressions
to elements in Zq, more precisely, [| |]σ : Zq[Sec]→ Zq returns the evaluation of
a polynomial in Zq[Sec] by using an interpretation function σ. An interpretation
function σ : Sec → Zq maps formal secret parameters to actual secrets in Zq.
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Now we can define a non-trivial collision (see line 16) as a pair of polynomials
e and e’ (found in (SymbOutput r)) that are non identically equal and such
that the interpretation of the polynomial e-e’ under σ is 0. By considering only
polynomials non identically equal, we eliminate trivial collisions.

In order to give an upper bound for the probability of finding non-trivial
collisions, one relies on Schwartz Lemma (see Section 3.3). In the sequel, we let
d be the maximal degree of the inputs i.e., the polynomials lj for 1 ≤ j ≤ t′, let
t be the number of steps A performs.

Proposition 1. ∀A : GA, Advantage(A) = Pr(CO(A)) ≤
(

t
2

)
d

q −
(

t
2

)
d

In the non-interactive setting, we consider that the advantage of the attacker
is bounded by the probability of finding non-trivial collisions. Such an over-
approximation is quite coarse since we consider the attacker to be successful
whenever he gains some informations about the interpretation function σ. In
principle, one could try to be more precise and estimate the probability of the
attacker to find the function σ (i.e. its value for all inputs). However, we only
want to show that the advantage is negligible if the number of steps performed
by the attacker is reasonable, and hence the over-approximation is justified.

In [4], we instantiate the proposition to specific cryptographic schemes.

5 Formalization of the Random Oracle Model

5.1 Formalization

The main difficulty in formalizing interactive algorithms is to capture the idea
of random hash function. Following the idea of the generic model, we consider a
symbolic representation of the interactions with the hash oracle by introducing
a type Val of random variables that will represent the results of the interactions
with the hash oracle. In addition, we define an interpretation function from Val
to Zq. In order to fix terminology, we will refer to elements of Val as symbolic
hash values and to their interpretation as hash results.

The formal definition of interactive generic algorithms is given in Figure3. As
explained above, we introduce a type Val of symbolic hash results and a type
Sec of symbolic secrets (see line 1). Then, we model inputs as a non-repeating
list of polynomial expressions over secrets (see line 2).

In order to model ciphertexts, we introduce a type of symbolic group elements
SymbG, defined as the type of Zq-lists (see line 4). Symbolic group elements are
intuitively assumed to have a length that matches the length of the list of inputs
(l1, . . . , lt′), and the list (a1, . . . , at′) represents the polynomial

∑t′

j=1 aj lj . In
other words, symbolic group elements correspond to linear combinations of the
inputs. Then we define symbolic ciphertexts as pairs of symbolic group elements,
by analogy with ElGamal ciphertexts that have the form (gr, mgrx) where gr and
mgrx are group elements (see line 5). Finally, symbolic hash queries are defined
as triples of the form (g, m, v) where g is a group element, m is a message, and
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v is the symbolic hash result, by analogy with hash queries that have the form
H(a, (b, d)).

Interactive generic algorithms are defined inductively (see line 8) and may
consist of an empty step, or a mexstep i.e., a computation of group elements
using the function mex, or an hashstep i.e., a query to the hash oracle, or a
decstep i.e., an interaction with the decryptor. A few words are in order to explain
the type of the constructor decstep: first of all, observe that in analogy with
ElGamal decryptor that takes a claimed ciphertext (h̄, f̄ , c, z), our formalization
considers that an interaction with the decryptor requires a symbolic hash query
I = (fj, h̄, f̄ , c) and an element z of Zq.

Interactive algorithms have two kinds of outputs:

– symbolic hash outputs (see line 14) are just a list of elements of type SymbH.
Then we can derive the list of concrete hash outputs (see line 22) by applying
an interpretation function τ ;

– symbolic group outputs (see line 25) are polynomials constructed as linear
combinations of inputs in the same way of non-interactive generic algorithms.
Concrete group outputs (see line 33) are obtained from the symbolic out-
puts by using the extension of an interpretation function σ from secrets to
elements in Zq.

In an interactive generic algorithm, the attacker might gain knowledge about
secrets either through collisions, or through interactions with the decryptor.
Thus its advantage will be bounded by the probability of finding a collision
plus the probability of performing a successful interaction. In the latter case, we
show that the attacker can only obtain information if the interpretation function
is solution to a polynomial equation derived from the equality tested by the
decryptor, i.e. c = H(gzh̄−c, h̄, f̄), where (h̄, f̄ , c, z) is the claimed ciphertext
received by the decryptor. Note that we do not need to formalize the result
returned by the decryptor, which is random in case the claimed ciphertext does
not verify the above equality, since we are only interested in the probability to
learn information about secrets.

To eliminate interactions with the decryptor, we formalize an extractor (see
Figure 2). Let us remenber that we can obtain information on the secrets by an
interaction with the decryptor if z′(s1, . . . , sk)−z = 0 holds, where z′(s1, . . . , sk)
is the value required for a signature and z is the computed group element (see
the explications in the section 2.3). More precisely, A gets the hash value c =
H(gzh−c, fi, fj) from the hash oracle and must compute z′ so that gz′

h−c = fσ,
i.e., it must compute z′ = logg(fσf c

j ) (see line 1). For each decstep, A can obtain
informations about the secrets s1, . . . , sk by finding a zero of the polynomial
z′(s1, . . . , sk)−z (see line 7). After l interactions with the decryptor, we have a list
of l polynomials z′(s1, . . . , sk)−z (see line 9). So we can find informations about
the secrets (see line 16) if there exists a polynomial p in the list of l polynomials
z′(s1, . . . , sk) − z such that its interpretation under the interpretation function
σ is 0.

Let us notice that in our model, as we do not formalize the result of the
decryptor but we consider an extractor that tries to find informations on secrets
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1 Definition z’(h:SymbH)(τ:Val→Zq):Zq[Sec]:=
2 let h:=(fσ, fi, fj , c) in
3 let loggfσ :=(mk_pol fσ input) in
4 let loggfi :=(mk_pol f_i input) in
5 loggfσ +(τ c)* loggfi .
6
7 Definition Extract(h:SymbH)(z:Zq)(τ:Val→Zq):Zq[Sec]:=(z’ h τ)-z.
8
9 Fixpoint list_Extract(A :IGA)(τ:Val→Zq):list Zq[Sec]:=

10 match A with nostep ⇒ nil
11 | mexstep A ’ _ ⇒ list_Extract A ’ τ
12 | hashstep A ’ _ ⇒list_Extract A ’ τ
13 | decstep A ’ h z⇒(Extract h z τ)::(list_Extract A ’ τ)
14 end.
15
16 Definition Extractor(A :IGA)(τ:Val→Zq)(x:Sec→Zq):Prop:=
17 ∀ p:Zq[Sec], p ∈ (list_Extract A τ) ∧ [|p|]σ≡0.

Fig. 2. Formalizatiom of an Extractor

by finding the zeros of the polynomial z′(s1, . . . , sk)−z ≡ 0, if the attacker sends
the target ciphertext to the decryptor, in fact this leads to a trivial polynomial
equality z′(s1, . . . , sk) ≡ z and so we do not obtain informations on secrets.

5.2 Properties of Interactive Generic Algorithm

In this section, we prove the security of cryptographic protocols like ElGamal
against a strong adaptive chosen ciphertexts attack by giving an upper bound
of the probability for an interactive adversary to find information about secrets.

We consider an interactive generic algorithmA with inputs polynomials l1,. . . ,
lt′ with maximal degree d. Furthermore we assume that A performs t generic
steps including t′′ mex-steps and l interactions with the decryptor.

Proposition 2. ∀A : IGA, Pr(CO(A)) ≤ (t′′
2 )d

q−(t′′
2 )d

Proof. All outputs are of the form pi =
∑

1≤j≤t′ ai,j lj(s1, . . . , sk), where pi is
a polynomial of degree d. Hence there exists a collision fi = fi′ iff (s1, . . . , sk)
is a root of pi − pi′ . There are

(
t′′

2

)
equalities of the form fi = fi′ to test, hence(

t′′
2

)
polynomials of the form pi−pi′ , each of which is not identical to 0 (as there

are non-trivial collisions), and has degree ≤ d. So we can apply Lemma 3 (the
extension of Schwartz Lemma) to deduce the expected result.

Proposition 3. ∀A : IGA, Pr(Extractor(A)) ≤ (d+1)l
q

Proof. The proof is by induction of the interactive generic algorithm A. The
only interesting case is when the algorithm interacts with the decryptor. In this
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case, the interaction is successful iff τ is a solution of the extracted polynomial,
which is of degree d.

In the interactive setting, we consider that the advantage of the attacker is
bounded by the probability of finding non-trivial collisions plus the probability
of finding a zero of a polynomial resulting on an interaction with the decryptor.

Proposition 4. ∀A : IGA, Advantage(A) = Pr(CO(A)) + Pr(Extractor(A))

≤ (t′′
2 )d

q−(t′′
2 )d

+ (d+1)l
q

5.3 Application to Signed ElGamal Encryption

We can instantiate the propositions to specific cryptographic schemes. For ex-
ample, we prove the security of signed ElGamal encryption against a strong
adaptive chosen ciphertexts attack. We consider ElGamal protocol, be given in
input: the generator g, the public key h, distinct messages m0, m1, a target
ciphertext cipb corresponding to mb for a random bit b ∈ 0, 1 i.e., the concrete
inputs are the list (g, gx, gr, mbg

rx), so the formal inputs are the logarithm of the
elements of the list of concrete inputs, i.e the list (1, x, r, loggmb+rx). Therefore,
the secrets are b ∈ {0, 1} and r, x ∈ Zq. By consequent, the maximal degree of
the inputs is d := 2. In this example, the advantage of the attacker is bounded

by
2(t

2)
q−2(t

2)
because Pr(CO(A)) ≤ 2(t′′

2 )
q−2(t′′

2 )
and Pr(Extr(A)) ≤ 3l

q .

5.4 Remarks on the Formalization

The results of this paper have been formalized and proved in Coq. The formal-
ization is available from:

http://www-sop.inria.everest/proofs/acces/

The formalizations, proofs and applications represent 17, 515 lines of code which
are split as follows:

– discrete probabilities: 4, 077 lines of code. This includes the lots of useful
lemmas e.g. for rewriting probabilities;

– polynomials: 4, 196 lines of code. This includes the representation of polyno-
mials and the proof that they form a ring;

– basic libraries: 4, 545 lines of code. This includes libraries for lists over type,
Zq, etc.

– GM+ROM: 6, 253 lines of code. This includes the formalization of GM and
ROM, a proof of Schwartz lemma, its extensions, and its applications to GM
and ROM.
Our development is modular, and can be instantiated to other cryptosystems
based on cyclic groups. To prove the security of such systems, we just have
to give the list of inputs, a generator and a set of secrets, as illustrated by
the instantiation of our results to ElGamal.
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1 Parameter Sec Val:Set.
2 Parameter input:list Zq[Sec].
3
4 Definition SymbG:=list Zq.
5 Definition SymbM:=SymbG * SymbG.
6 Definition SymbH:=SymbG * SymbM * Val.
7
8 Inductive IGA : Type :=
9 | nostep : IGA

10 | mexstep : IGA → (list Zq) → IGA
11 | hashstep: IGA → SymbH → IGA
12 | decstep: IGA → SymbH→Zq → IGA.
13
14 Fixpoint SymbHashOutput(A :IGA):(list SymbH):=
15 match A with
16 | nostep ⇒nil
17 | mexstep A ’ e ⇒ SymbHashOutput A ’
18 | hashstep A ’ h ⇒ h::(SymbHashOutput A ’)
19 | decstep A ’ _ ⇒ SymbHashOutput A ’
20 end.
21
22 Definition ConcrHashOutput(A : IGA)(τ:Val→Zq):(list Zq):=
23 map λ(x,y,z,t).τ t (SymbHashOutput A ).
24
25 Fixpoint SymbMexOutput(A :IGA): list Zq[Sec]:=
26 match A with
27 | nostep ⇒nil _
28 | mexstep A ’ e ⇒ (mex e input)::(SymbMexOutput A ’)
29 | hashstep A ’ _ ⇒ SymbMexOutput A ’
30 | decstep A ’ _ ⇒ SymbMexOutput A ’
31 end.
32
33 Definition ConcrMexOutput(A : IGA)(σ:Sec→Zq):(list Zq):=
34 map λx:Zq [Sec].[|x|]σ (SymbMexOutput A )).

Fig. 3. Formalizatiom of ROM

6 Conclusion

Provable cryptography aims at establishing rigorous security proofs for cryp-
tographic schemes and appeals to involved complexity-theoretic arguments to
show that the advantage of an attacker (over an attacker that proceeds by brute
force) is negligible. Whereas provable cryptography provides an overall guaran-
tee of the correctness of cryptographic schemes, it is not unusual for security
proofs to contain glitches or to rely on hidden assumptions which open the way
for attacks. In this perspective, it is very important to provide machine-checked
proofs of the main results in provable cryptography. Dually, formalizing provable
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cryptography is interesting from the perspective of machine-checked mathemat-
ics because it relies on many mathematical theories of interest, including discrete
probabilities, polynomials, and linear algebra.

In this paper, we have extended our previous machine-checked account of the
GM to include the ROM and to establish security bounds for interactive algo-
rithms. In another related work [19], we provide a machine-checked treatment
of signature forgery attacks, as reported in [14]. These results generalize previ-
ous work, and give more rigorous bounds than those present in the literature.
Nevertheless, machine-checked proofs of provable cryptography has barely been
scratched, and much work remains to be done. For example, we would like to
exploit our formalization to prove the security of realistic protocols, following
e.g. [6, 17], and eventually perhaps to provide a machine-checked account of a
formalism that integrates the computational view of cryptography, and provable
cryptography.

Acknowledgments. We are grateful to the anonymous referees for their construc-
tive and detailed comments.
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Abstract. We present a formalization of a constructive proof of weak
normalization for the simply-typed λ-calculus in the theorem prover Is-
abelle/HOL, and show how a program can be extracted from it. Unlike
many other proofs of weak normalization based on Tait’s strong com-
putability predicates, which require a logic supporting strong elimina-
tions and can give rise to dependent types in the extracted program, our
formalization requires only relatively simple proof principles. Thus, the
program obtained from this proof is typable in simply-typed higher-order
logic as implemented in Isabelle/HOL, and a proof of its correctness can
automatically be derived within the system.

1 Introduction

The past years have seen an increasing interest in machine-assisted formaliza-
tions of the metatheory of programming languages. As a recent example, consider
the PoplMark Challenge by Pierce et al. [3], which has as a goal the formal-
ization of the basic metatheory of System F<: in a theorem prover, including
the definition of an evaluation relation and a proof of type safety. One impor-
tant aspect of this challenge is executability. In particular, it should be possible
to generate an executable function computing the normal form of a term from
the formalized definition of the evaluation relation, which allows “real” language
implementations to be tested against the formalization.

A particularly elegant way of obtaining executable code from a formalization
is the extraction of programs from proofs. In this article, we focus on a proof of
weak normalization for the simply-typed λ-calculus (λ→) using the proof assis-
tant Isabelle/HOL [16]. Weak normalization means that each well-typed term
can be reduced to a term in normal form, whereas strong normalization means
that each reduction sequence starting from a well-typed term is guaranteed to
terminate. Although weak normalization follows from strong normalization as a
corollary, proofs of weak normalization are interesting in their own right. If done
constructively, a proof of weak normalization contains a particular reduction
algorithm, which can be uncovered using program extraction.

Admittedly, the idea of extracting normalization algorithms from proofs is not
completely new. It already dates back to the work of Berger [8], who describes an
experiment in extracting a program from a strong normalization proof, which was

J.-C. Filliâtre et al. (Eds.): TYPES 2004, LNCS 3839, pp. 50–65, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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formalized using the Minlog theorem prover [7]. Like many other normalization
proofs to be found in the literature, Berger’s proof is based on so-called strong
computability predicates originally introduced by Tait [18]. A term t is called
strongly computable if

– t is of base type and t is strongly normalizing, or
– t is of type σ ⇒ τ , and for all strongly computable terms s of type σ, the

term t s of type τ is strongly computable

Formalizing this notion of strong computability in a theorem prover poses a
number of problems. Due to the negative occurrence of “strongly computable”
in the second clause, the above characterization of strong computability is not
admissible as an inductive definition. A way out of this problem is to define
strong computability by recursion on the type of the term t. Unfortunately, the
definition of predicates by recursion on datatypes, which is sometimes called
strong elimination, exceeds the expressive power of theorem provers such as
Minlog. For this reason, Berger does not completely formalize his proof inside the
theorem prover, but performs the induction on types “on the meta level”. Strictly
speaking, this proof therefore does not yield a single normalization function,
but a whole family of functions, which then have to be put together manually.
Although Isabelle/HOL is powerful enough to define predicates such as strong
computability by recursion, this is still problematic for program extraction. Since
predicates in a proof become types in the extracted program, predicates defined
by recursion on datatypes give rise to programs using dependent types. Such
programs can neither be expressed inside Isabelle/HOL, nor can they easily be
translated to functional programming languages such as ML.

As an alternative to Tait-style normalization proofs, Matthes and Joachimski
[12] have given a very elegant paper proof of weak normalization for the simply-
typed λ-calculus using only relatively simple proof principles. Instead of strong
computability predicates, their proof uses a simple inductive characterization
of β-normal terms, which turns out to be quite well suited for the purpose of
program extraction.

In this article, we present a complete formalization of Matthes’ and Joachim-
ski’s weak normalization proof in the theorem prover Isabelle/HOL. We show
how a provably correct program can automatically be extracted from this proof
using Isabelle’s framework for program extraction [9, 10].

Similar machine-checked formalizations have been carried out by Altenkirch
[1, 2], who proved strong normalization for System F using the LEGO proof
assistant [13], as well as Barras and Werner [5, 4] who proved decidability of type
checking for the Calculus of Constructions and extracted a type checker from
this proof using the Coq [6] theorem prover. A formalization of substantial parts
of the metatheory of Pure Type Systems, also using the LEGO proof assistant,
has been done by Pollack [17]. Coquand [11] has formalized a normalization
function for the simply-typed λ-calculus using the proof editor ALF.

The rest of this article is structured as follows: in §2, we give the basic defi-
nitions of untyped λ-calculus. On top of this calculus, a system of simple types
is introduced in §3. In §4 a definition of normal forms of λ-terms is given, which
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serves as a basis for the proof of the normalization theorem presented in §5. An
analysis of the program extracted from this proof is contained in §6.

2 Basic Definitions

We start by introducing basic concepts such as terms and substitutions. The
following definitions are due to Nipkow [14], who used them as a basis for a
proof of the Church-Rosser property for β-reduction. They are reproduced here
in order to make the exposition self-contained. λ-terms are modelled by the
datatype dB using de Bruijn indices, which are encoded by natural numbers.

datatype dB = Var nat | App dB dB | Abs dB

We use t ◦ u as an infix notation for App t u. When substituting a term for a
variable inside an abstraction, the indices of all free variables in the term have
to be incremented. This is taken care of by the lift function

consts lift :: dB ⇒ nat ⇒ dB
primrec

(Var i) ↑ k = (if i < k then Var i else Var (i + 1 ))
(s ◦ t) ↑ k = s ↑ k ◦ t ↑ k
(Abs s) ↑ k = Abs (s ↑ (k + 1 ))

where t ↑ k is an infix notation for lift t k. Using op ↑, we can now define the
substitution t [s/k ] of a term s for a variable k in a term t as follows:

consts subst :: dB ⇒ dB ⇒ nat ⇒ dB
primrec

(Var i)[s/k ] = (if k < i then Var (i − 1 ) else if i = k then s else Var i)
(t ◦ u)[s/k ] = t [s/k ] ◦ u[s/k ]
(Abs t)[s/k ] = Abs (t [s ↑ 0 / k+1 ])

Since the substitution function will be used to specify β-reduction, it actually
does not only substitute the term u for the variable i, but also decrements the
indices of all other free variables by 1, to compensate for the disappearance of
abstractions during β-reduction. The definition of β-reduction, which is denoted
by s →β t, is as usual:

consts beta :: (dB × dB) set
inductive beta
intros
beta: Abs s ◦ t →β s [t/0 ]
appL: s →β t =⇒ s ◦ u →β t ◦ u
appR: s →β t =⇒ u ◦ s →β u ◦ t
abs : s →β t =⇒ Abs s →β Abs t

We also use →β
∗ to denote the transitive closure of →β . The following congru-

ence rules for →β
∗ are occasionally useful in proofs:
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lemma rtrancl-beta-Abs: s →β
∗ s ′ =⇒ Abs s →β

∗ Abs s ′

lemma rtrancl-beta-AppL: s →β
∗ s ′ =⇒ s ◦ t →β

∗ s ′ ◦ t
lemma rtrancl-beta-AppR: t →β

∗ t ′ =⇒ s ◦ t →β
∗ s ◦ t ′

lemma rtrancl-beta-App: s →β
∗ s ′ =⇒ t →β

∗ t ′ =⇒ s ◦ t →β
∗ s ′ ◦ t ′

We will also need the following theorems, asserting that →β and →β
∗ are com-

patible with lifting and substitution. The first two of these properties are called
substitutivity in [12].

theorem subst-preserves-beta: r →β s =⇒ (
∧

t i . r [t/i ] →β s [t/i ])
theorem subst-preserves-beta ′: r →β

∗ s =⇒ r [t/i ] →β
∗ s [t/i ]

theorem lift-preserves-beta: r →β s =⇒ (
∧

i . r ↑ i →β s ↑ i)
theorem lift-preserves-beta ′: r →β

∗ s =⇒ r ↑ i →β
∗ s ↑ i

theorem subst-preserves-beta2 :
∧

r s i . r →β s =⇒ t [r/i ] →β
∗ t [s/i ]

theorem subst-preserves-beta2 ′: r →β
∗ s =⇒ t [r/i ] →β

∗ t [s/i ]

In addition to the usual binary application operator s ◦ t, it is often convenient
to also have an n-ary application operator t ◦◦ ts for applying a term t to a list
of terms ts. To this end, we introduce the abbreviation

translations t ◦◦ ts � foldl (op ◦) t ts

The following equations, describing how lifting and substitution operate on such
n-ary applications, are easily established by induction on the list ts :

lemma lift-map:
∧

t . (t ◦◦ ts) ↑ i = t ↑ i ◦◦ map (λt . t ↑ i) ts
lemma subst-map:

∧
t . (t ◦◦ ts)[u/i ] = t [u/i ] ◦◦ map (λt . t [u/i ]) ts

3 Typed Lambda Terms

In this section, we introduce the type system for simply-typed λ-calculus. The
typing judgement usually depends on some environment (or context), assigning
types to the free variables occurring in a term. Since variables are encoded using
de Bruijn indices, it seems convenient to model environments as functions from
natural numbers to types. In order to insert a type T into an environment e at
a given position i, we define the function

constdefs
shift :: (nat ⇒ ′a) ⇒ nat ⇒ ′a ⇒ nat ⇒ ′a
e〈i :T 〉 ≡ λj . if j < i then e j else if j = i then T else e (j − 1 )

where e〈i :T 〉 is syntactic sugar for shift e i T. The types of variables with indices
less than i are left untouched, whereas the types of variables with indices greater
than i are shifted one position up. Instead of working directly with the above
definition, we will use the following characteristic theorems for shift.

lemma shift-eq: i = j =⇒ (e〈i :T 〉) j = T
lemma shift-gt : j < i =⇒ (e〈i :T 〉) j = e j
lemma shift-lt : i < j =⇒ (e〈i :T 〉) j = e (j − 1 )
lemma shift-commute: e〈i :U 〉〈0 :T 〉 = e〈0 :T 〉〈Suc i :U 〉
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Note that the above definition is actually a bit more polymorphic than necessary.
We now come to the definition of types. In simply-typed λ-calculus, a type can
either be an atomic type or a function type:

datatype type = Atom nat | Fun type type

In the sequel, we use T ⇒ U as an infix notation for Fun T U. In analogy to
the concept of an n-ary application, it is also useful to have an n-ary function
type operator, which is characterized as follows:

translations Ts � T � foldr Fun Ts T

Intuitively, Ts � T denotes the type of a function whose arguments have the
types contained in the list Ts and whose result type is T. The definition of the
typing judgement e � t : T is rather straightforward:

inductive typing
intros
VarT : e x = T =⇒ e � Var x : T
AbsT : e〈0 :T 〉 � t : U =⇒ e � Abs t : (T ⇒ U )
AppT : e � s : T ⇒ U =⇒ e � t : T =⇒ e � (s ◦ t) : U

In the typing rule for abstractions, the argument type T of the function is
inserted at position 0 in the environment e when checking the type of the body
t. The above typing judgement naturally extends to lists of terms. We write
e �� ts : Ts to mean that the terms ts have types Ts. Formally, this extension
of the typing judgement to lists of terms is defined as follows:

primrec
(e �� [] : Ts) = (Ts = [])
(e �� (t # ts) : Ts) =

(case Ts of [] ⇒ False | T # Ts ⇒ e � t : T ∧ e �� ts : Ts)

Using the above typing judgement for lists of terms, we can prove the following
elimination and introduction rules for types of n-ary applications:

lemma list-app-typeE : e � t ◦◦ ts : T =⇒
(
∧

Ts . e � t : Ts � T =⇒ e �� ts : Ts =⇒ P) =⇒ P
lemma list-app-typeI :

∧
t T Ts. e � t : Ts � T =⇒

e �� ts : Ts =⇒ e � t ◦◦ ts : T

Before we come to the subject reduction theorem, which is the main result of this
section, we need several additional results about lifting and substitution. The
first two of these lemmas state that lifting preserves the type of a term:

lemma lift-type: e � t : T =⇒ (
∧

i U . e〈i :U 〉 � t ↑ i : T )
lemma lift-types:

∧
Ts . e �� ts : Ts =⇒ e〈i :U 〉 �� (map (λt . t ↑ i) ts) : Ts

The first lemma is easily proved by induction on the typing derivation, whereas
the second one, which is just a generalization of the first lemma to lists of terms,
can be proved by induction on the list ts using the first result. The other two
lemmas state that well-typed substitution preserves the type of terms:
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lemma subst-lemma: e � t : T =⇒
(
∧

e ′ i U u. e ′ � u : U =⇒ e = e ′〈i :U 〉 =⇒ e ′ � t [u/i ] : T )
lemma substs-lemma:

∧
Ts . e � u : T =⇒

e〈i :T 〉 �� ts : Ts =⇒ e �� (map (λt . t [u/i ]) ts) : Ts

Again, the proof of the first lemma is by induction on the typing derivation,
while the second one is proved by induction on ts. We are now ready to prove
the subject reduction property, i.e. that →β preserves the type of a term:

lemma subject-reduction: e � t : T =⇒ (
∧

t ′. t →β t ′ =⇒ e � t ′ : T )

The proof is by induction on the typing derivation, where the cases for vari-
ables and abstractions are fairly trivial. The case dealing with applications
s ◦ t can be proved using elimination on s ◦ t →β t ′ followed by an applica-
tion of subst-lemma. This theorem easily extends to the transitive closure →β

∗

of →β :

theorem subject-reduction ′: t →β
∗ t ′ =⇒ e � t : T =⇒ e � t ′ : T

4 Terms in Normal Form

The definition which is central to the proof of weak normalization is, of course,
that of a term in normal form. Intuitively, a term is in normal form, if it is either
a variable applied to a list of terms in normal form, or an abstraction whose body
is a term in normal form.

consts NF :: dB set
inductive NF
intros
AppN : listall (λt . t ∈ NF ) ts =⇒ Var x ◦◦ ts ∈ NF
AbsN : t ∈ NF =⇒ Abs t ∈ NF

In the above definition, we write listall P xs to denote that a predicate P holds
for all elements in the list xs. We conclude this section by stating some properties
of NF, which will be of particular importance for the main proof presented in the
next section. As a trivial consequence of the above definition of normal forms, a
term consisting of just a variable is in normal form.

lemma Var-NF : Var n ∈ NF

By substituting a variable i for a variable j in a normal term t, we obtain a term
which is still in normal form:

lemma subst-Var-NF : t ∈ NF =⇒ (
∧

i j . t [Var i/j ] ∈ NF )
The above lemma is easily proved by induction on the derivation of t ∈ NF. If
t is in normal form, the term t ◦ Var i possesses a normal form, too:

lemma app-Var-NF : t ∈ NF =⇒ ∃ t ′. t ◦ Var i →β
∗ t ′ ∧ t ′ ∈ NF

Again, this result can be proved by induction on the derivation of t ∈ NF ,
using the previous lemma subst-Var-NF in the abstraction case. Finally, lifting
a normal term t again yields a normal term:
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(main ind.)

(u↑0 ◦ Var 0 )[a[u/i ]/0 ] →β
∗ (u↑0 ◦ Var 0 )[a ′/0 ] →β

∗ u ′[a ′/0 ] →β
∗ ua

(side ind.) a[u/i ] →β
∗ a ′

� �

(lift-NF / app-Var-NF ) u↑0 ◦ Var 0 →β
∗ u ′

� �

(Var 0 ◦◦ map (λt . t ↑ 0 ) as ′)[u ◦ a[u/i ]/0 ] →β
∗ (. . .)[ua/0 ] →β

∗ r

���������

�������

(Var 0 ◦◦ map (λt . (t [u/i ]) ↑ 0 ) as)[u ◦ a[u/i ]/0 ]

� (side ind.)
β

∗
(main ind.)

Fig. 1. Overview of proof for application case

lemma lift-NF : t ∈ NF =⇒ (
∧

i . t ↑ i ∈ NF )

As usual, the proof is by induction on the derivation of t ∈ NF.

5 Main Theorems

We are now just one step away from our main result, the weak normalization
theorem. Actually, the main difficulty is to prove a central lemma, from which
weak normalization then follows by a relatively simple argument. The essence of
this lemma can be summarized by the slogan “well-typed substitution preserves
the existence of normal forms”. More formally, if we have a well-typed term t in
normal form containing a variable i of type U, then the term t [u/i ] obtained by
substituting a term u in normal form of type U for the variable i can be reduced
to a normal form t ′. The proof of this statement, which we will now discuss in
detail, is by main induction on the type U, followed by a side induction on the
derivation of t ∈ NF . An interesting point to note is that the main induction
hypothesis is used only in one case of the proof, whereas all the other cases are
proved using the side induction hypothesis. In the following, we will give the
proof of the lemma in the form of a commented script in the Isar proof language
due to Markus Wenzel [19, 15].

lemma subst-type-NF :∧
t e T u i . t ∈ NF =⇒ e〈i :U 〉 � t : T =⇒ u ∈ NF =⇒ e � u : U =⇒

∃ t ′. t [u/i ] →β
∗ t ′ ∧ t ′ ∈ NF

We start the proof by performing induction on the type U.

proof (induct U )
fix T t

We proceed by side induction on the derivation of t ∈ NF :
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assume t ∈ NF
thus

∧
e T ′ u i . e〈i :T 〉 � t : T ′ =⇒

u ∈ NF =⇒ e � u : T =⇒ ∃ t ′. t [u/i ] →β
∗ t ′ ∧ t ′ ∈ NF

proof induct
fix e T ′ u i assume uNF : u ∈ NF and uT : e � u : T
{
case (AppN ts x e- T ′- u- i-)
assume e〈i :T 〉 � Var x ◦◦ ts : T ′

then obtain Us
where varT : e〈i :T 〉 � Var x : Us � T ′

and argsT : e〈i :T 〉 �� ts : Us
by (rule var-app-typesE)

In the application case, we have to distinguish whether or not the variable x in
the head of the term coincides with the variable i to be substituted.

from nat-eq-dec show ∃ t ′. (Var x ◦◦ ts)[u/i ] →β
∗ t ′ ∧ t ′ ∈ NF

proof
assume eq: x = i
show ?thesis

In this case, we do a case analysis on the argument list ts. If the argument list
is empty, the claim follows trivially.

proof (cases ts)
case Nil
with eq have (Var x ◦◦ [])[u/i ] →β

∗ u by simp
with Nil and uNF show ?thesis by simp rules

next
case (Cons a as)
. . .

The most difficult case of the proof is the one where the argument list is
nonempty, i.e. the term on which the substitution is performed has the form
Var x ◦◦ (a # as). The overall structure of the argument for this case is shown
in Figure 1. Substitution and normalization will be performed in several steps.
As a first step, we apply substitution and normalization to the tail as of the
argument list. To this end, we prove the following intermediate statement:

from AppN and Cons have listall ?SI as
by simp (rules dest : listall-conj2 )

with lift-preserves-beta ′ lift-NF uNF uT argsT ′

have ∃ as ′. ∀ j . Var j ◦◦ map (λt . (t [u/i ]) ↑ 0 ) as →β
∗

Var j ◦◦ map (λt . t ↑ 0 ) as ′ ∧
Var j ◦◦ map (λt . t ↑ 0 ) as ′ ∈ NF by (rule norm-list)

then obtain as ′ where
asred : Var 0 ◦◦ map (λt . (t [u/i ]) ↑ 0 ) as →β

∗

Var 0 ◦◦ map (λt . t ↑ 0 ) as ′

and asNF : Var 0 ◦◦ map (λt . t ↑ 0 ) as ′ ∈ NF by rules
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The desired normal forms are guaranteed to exist due to the side induction
hypothesis listall ?SI as. Since we later on want to substitute another term for
the head variable Var 0, we also have to lift the argument terms, in order to
avoid that they are affected by the substitution. In other words, the head variable
has to be new. The above statement is proved by “reverse induction” on as, i.e.
elements are appended to the right of the list in the induction step. From the
computational point of view, the existentially quantified variable as ′ acts as a
kind of accumulator for the normalized terms. The proof relies on the fact that
→β

∗ is a congruence wrt. application and that →β
∗ is compatible with lifting.

By using the side induction hypothesis one more time, we can also apply
substitution and normalization to the head a of the argument list.

from AppN and Cons have ?SI a by simp
with argT and uNF and uT have ∃ a ′. a[u/i ] →β

∗ a ′ ∧ a ′ ∈ NF
by rules

then obtain a ′ where ared : a[u/i ] →β
∗ a ′ and aNF : a ′ ∈ NF

by rules
In order to show that the application of u to a[u/i ] has a normal form, too, we
first note that the term u applied to a new variable again has a normal form.
Since the argument type T ′′ of u is smaller than the type T = T ′′ ⇒ Ts � T ′

of i, we can use the main induction hypothesis, together with the previous result
and compatibility of →β

∗ with substitution, to show that also u ◦ a[u/i ] has a
normal form.

from uNF have u ↑ 0 ∈ NF by (rule lift-NF )
hence ∃ u ′. u ↑ 0 ◦ Var 0 →β

∗ u ′ ∧ u ′ ∈ NF by (rule app-Var-NF )
then obtain u ′ where ured : u ↑ 0 ◦ Var 0 →β

∗ u ′

and u ′NF : u ′ ∈ NF by rules
from T and u ′NF have ∃ ua. u ′[a ′/0 ] →β

∗ ua ∧ ua ∈ NF
proof (rule MI1 )

. . .
qed
then obtain ua where uared : u ′[a ′/0 ] →β

∗ ua
and uaNF : ua ∈ NF by rules

from ared have (u ↑ 0 ◦ Var 0 )[a[u/i ]/0 ] →β
∗ (u ↑ 0 ◦ Var 0 )[a ′/0 ]

by (rule subst-preserves-beta2 ′)
also from ured have (u ↑ 0 ◦ Var 0 )[a ′/0 ] →β

∗ u ′[a ′/0 ]
by (rule subst-preserves-beta ′)

also note uared
finally have (u ↑ 0 ◦ Var 0 )[a[u/i ]/0 ] →β

∗ ua .
hence uared ′: u ◦ a[u/i ] →β

∗ ua by simp
Finally, since the type Ts � T ′ of u ◦ a[u/i ] is also smaller than T = T ′′ ⇒
Ts � T ′, we may again use the main induction hypothesis, together with the
previous result, the above intermediate statement concerning the application of
substitution and normalization to the argument list as, as well as compatibility
of →β

∗ with substitution, to show that also u ◦ a[u/i ] ◦◦ map (λt . t [u/i ]) as
has a normal form.
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from T have
∃ r . (Var 0 ◦◦ map (λt . t ↑ 0 ) as ′)[ua/0 ] →β

∗ r ∧ r ∈ NF
proof (rule MI2 )

. . .
qed
then obtain r
where rred : (Var 0 ◦◦ map (λt . t ↑ 0 ) as ′)[ua/0 ] →β

∗ r
and rnf : r ∈ NF by rules

from asred have
(Var 0 ◦◦ map (λt . (t [u/i ]) ↑ 0 ) as)[u ◦ a[u/i ]/0 ] →β

∗

(Var 0 ◦◦ map (λt . t ↑ 0 ) as ′)[u ◦ a[u/i ]/0 ]
by (rule subst-preserves-beta ′)

also from uared ′ have
(Var 0 ◦◦ map (λt . t ↑ 0 ) as ′)[u ◦ a[u/i ]/0 ] →β

∗

(Var 0 ◦◦ map (λt . t ↑ 0 ) as ′)[ua/0 ] by (rule subst-preserves-beta2 ′)
also note rred
finally have

(Var 0 ◦◦ map (λt . (t [u/i ]) ↑ 0 ) as)[u ◦ a[u/i ]/0 ] →β
∗ r .

with rnf Cons eq show ?thesis
by (simp add : map-compose [symmetric] o-def ) rules

qed

This concludes the proof for the case where x = i.

next
assume neq: x �= i
. . .

qed

The proof for this case is much easier than the previous one, although it is not
completely trivial. As in the previous case, the side induction hypothesis has to
be applied to all terms in the argument list ts. Again, the fact that →β

∗ is a
congruence wrt. application is required. This time, no lifting is involved, but the
head variable may be decremented as a side effect of substitution (see §2) if i <
x. This concludes the proof for the application case. The abstraction case follows
by an easy application of the side induction hypothesis, using the fact that →β

∗

is a congruence wrt. abstraction.

next
case (AbsN r e- T ′- u- i-)
assume absT : e〈i :T 〉 � Abs r : T ′

then obtain R S where e〈0 :R〉〈Suc i :T 〉 � r : S
by (rule abs-typeE) simp

moreover have u ↑ 0 ∈ NF by (rule lift-NF )
moreover have e〈0 :R〉 � u ↑ 0 : T by (rule lift-type)
ultimately have ∃ t ′. r [u ↑ 0/Suc i ] →β

∗ t ′ ∧ t ′ ∈ NF by (rule AbsN )
thus ∃ t ′. Abs r [u/i ] →β

∗ t ′ ∧ t ′ ∈ NF
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by simp (rules intro: rtrancl-beta-Abs NF .AbsN )
}

qed
qed

Before we can embark on the proof of the main theorem of this section, stating
that each well-typed λ-term has a normal form, there is another problem to
solve. In the proof of the central lemma subst-type-NF, all the required typing
information was easy to reconstruct even without inspecting the typing deriva-
tion, since the terms supplied as an input to the algorithm underlying the proof

theorem type-NF : assumes T : e �R t : T
shows ∃ t ′. t →β

∗ t ′ ∧ t ′ ∈ NF using T
proof induct
case VarRT
show ?case by (rules intro: Var-NF )

next
case AbsRT
thus ?case by (rules intro: rtrancl-beta-Abs AbsN )

next
case (AppRT T U e s t)
from AppRT obtain s ′ t ′ where

sred : s →β
∗ s ′ and sNF : s ′ ∈ NF

and tred : t →β
∗ t ′ and tNF : t ′ ∈ NF by rules

have ∃u. (Var 0 ◦ t ′ ↑ 0 )[s ′/0 ] →β
∗ u ∧ u ∈ NF

proof (rule subst-type-NF )
have t ′ ↑ 0 ∈ NF by (rule lift-NF )
hence listall (λt . t ∈ NF ) [t ′ ↑ 0 ] by (rule listall-cons) (rule listall-nil)
hence Var 0 ◦◦ [t ′ ↑ 0 ] ∈ NF by (rule AppN )
thus Var 0 ◦ t ′ ↑ 0 ∈ NF by simp
show e〈0 :T ⇒ U 〉 � Var 0 ◦ t ′ ↑ 0 : U
proof (rule AppT )
show e〈0 :T ⇒ U 〉 � Var 0 : T ⇒ U
by (rule VarT ) simp

from tred have e � t ′ : T
by (rule subject-reduction ′) (rule rtyping-imp-typing)

thus e〈0 :T ⇒ U 〉 � t ′ ↑ 0 : T
by (rule lift-type)

qed
from sred show e � s ′ : T ⇒ U
by (rule subject-reduction ′) (rule rtyping-imp-typing)

qed
then obtain u where ured : s ′ ◦ t ′ →β

∗ u and unf : u ∈ NF by simp rules
from sred tred have s ◦ t →β

∗ s ′ ◦ t ′ by (rule rtrancl-beta-App)
hence s ◦ t →β

∗ u using ured by (rule rtrancl-trans)
with unf show ?case by rules

qed

Fig. 2. Proof of main theorem
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were already in normal form. This is no longer the case for the main theorem,
of course, since its very purpose is the normalization of terms. As these terms
do not contain any typing information themselves, this information has to be
obtained from the typing derivation. In order be able to formalize the main the-
orem, we therefore define a computationally relevant copy e �R t : T of the
typing judgement e � t : T, where the subscript R stands for Relevant. The
introduction rules characterizing this judgement are the same as for the original
one. In order to plug the previous lemma into the proof of the main theorem,
we will need the following rule, stating that the computationally relevant typing
judgement implies the computationally irrelevant one:

lemma rtyping-imp-typing: e �R t : T =⇒ e � t : T

This rule is easily proved by induction on e �R t : T. Note that the other direc-
tion would be provable as well, although, from the program extraction point of
view, this would not make much sense, since there cannot be a program corre-
sponding to the proof of a computationally relevant statement by induction on
a computationally irrelevant statement. Note that instead of a computationally
relevant typing judgement, we could as well have used a “Church-style” encoding
of λ-terms, where variables in abstractions are decorated with types.

We are now ready to prove weak normalization, which will be done by induction
on the typing derivation e �R t : T. All cases except for the application case are
trivial. In order to normalize a term of the form s ◦ t, we first use the induction
hypothesis to compute the normal forms s ′ and t ′ of s and t, respectively. To show
that also s ′ ◦ t ′ has a normal form, we first note that the application of a new
variable to the term t ′ is in normal form, so the term obtained by substituting the
term s ′ for this variable has a normal form according to lemma subst-type-NF. By
transitivity, we can then put together the reduction sequences found in this way,
to yield a normal form of s ◦ t. The whole proof is shown in Figure 2.

6 Extracted Programs

We conclude this case study with an analysis of the programs extracted from
the proofs presented in the previous section. The programs corresponding to the
proof of the main theorem type-NF, as well as the central lemma subst-type-NF,
which performs substitution and normalization, is shown in Figure 3. The outer
structure of the function subst-type-NF consists of two nested recursion combi-
nators type-induct-P and NFT-rec corresponding to induction on types and the
derivation of normal forms, respectively. The datatype representing the compu-
tational content of the inductive definition of normal forms is

datatype NFT =
Dummy

| AppN (dB list) nat (nat ⇒ NFT )
| AbsN dB NFT

The universal quantifier over list indices in the definition of the predicate listall,
which is used in the first introduction rule of NF shown in §4, gives rise to the
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function type nat ⇒ NFT in the list of argument types for the constructor AppN
in the above datatype definition. Since the constructors AppN and AbsN both
refer to the type NFT to be defined recursively, another Dummy constructor is
required in order to ensure non-emptiness of the datatype. This datatype comes
with a so-called realizability predicate NFR, which establishes a connection be-
tween terms in normal form and elements of the above datatype. This predicate
is inductively defined by the rules

∀ i<length ts. (nfs i , ts ! i) ∈ NFR =⇒ (AppN ts x nfs, Var x ◦◦ ts) ∈ NFR
(nf , t) ∈ NFR =⇒ (AbsN t nf , Abs t) ∈ NFR

which are derived in a canonical way from the introduction rules of the predicate
NF. Intuitively, we can think of (nf , t) ∈ NFR to mean that nf is a witness of the
fact that the term t is in normal form. Note that (nf , t) ∈ NFR =⇒ t ∈ NF ,
which is easily proved by induction on the derivation of (nf , t) ∈ NFR.

subst-type-NF ≡
λx xa xb xc xd xe H Ha.

type-induct-P xc
(λx H2 H2a xa xb xc xd xe H .

NFT-rec arbitrary
(λts xa xaa r xb xc xd xe H .

var-app-typesE-P (xb〈xe:x〉) xa ts
(λUs. case nat-eq-dec xa xe of

Left ⇒
case ts of [] ⇒ (xd, H )
| a # list ⇒

case Us of [] ⇒ arbitrary
| T ′′ # Ts ⇒

let (x , y) =
norm-list (λt. t ↑ 0 ) xd xb xe list Ts
(λt. lift-NF 0 ) H
(listall-conj2-P-Q (λi. (xaa (Suc i), r (Suc i))));

(xa, ya) = snd (xaa 0 , r 0 ) xb T ′′ xd xe H ;
(xd, yb) = app-Var-NF 0 (lift-NF 0 H );
(xa, ya) = H2 T ′′ (Ts � xc) xd xb (Ts � xc) xa 0 yb ya

in H2a T ′′ (Ts � xc) (Var 0 ◦◦ map (λt. t ↑ 0 ) x) xb xc xa
0 (y 0 ) ya

| Right ⇒
let (x , y) =

norm-list (λt. t) xd xb xe ts Us (λx H . H ) H
(listall-conj2-P-Q (λz . (xaa z , r z)))

in case nat-le-dec xe xa of
Left ⇒ (Var (xa − Suc 0 ) ◦◦ x , y (xa − Suc 0 ))
| Right ⇒ (Var xa ◦◦ x , y xa)))

(λt x r xa xb xc xd H .
abs-typeE-P xb
(λU V . let (x , y) = r (xa〈0 :U 〉) V (xc ↑ 0 ) (Suc xd) (lift-NF 0 H )

in (Abs x , AbsN x y)))
H xb xc xd xe)

x xa xd xe xb H Ha

type-NF ≡
λH . rtypingT-rec (λe x T . (Var x , Var-NF x))

(λe T t U x r . let (x , y) = r in (Abs x , AbsN x y))
(λe s T U t x xa r ra.

let (x , y) = r ; (xa, ya) = ra
in subst-type-NF (Var 0 ◦ xa ↑ 0 ) e 0 (T ⇒ U ) U x

(AppN [xa ↑ 0 ] 0 (listall-cons-P (lift-NF 0 ya) listall-nil-P)) y)
H

Fig. 3. Programs extracted from main theorem and subst-type-NF
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The recursion combinator NFT-rec occurring in the program shown in Figure
3 has three functions as arguments, corresponding to the constructors of the
above datatype. The first function corresponds to the Dummy constructor. Since
this constructor may never occur, we may supply an arbitrary function as an
argument, which, when generating executable code, may be implemented by a
function raising an exception on invocation. The second function corresponds to
the application case of the proof. It contains a case distinction (using function
nat-eq-dec) on whether the variable xa coincides with the variable xe1. The first
case (labelled with Left), which is the more difficult one, contains another case
distinction on the structure of the argument list. The second case (labelled with
Right) is the easier one. It contains another case distinction (using function
nat-le-dec) on whether xe < xa. In the “Left” case, the variable in the head of
the term is decremented, whereas it remains unchanged in the “Right” case. In
both the case for xa = xe and xa �= xe the function norm-list is used to apply the
normalization function to a list of terms. The last lines of the program shown
in Figure 3 contain the relatively trivial program corresponding to the proof
for the abstraction case. The correctness theorem corresponding to the program
subst-type-NF is

x . (x , t) ∈ NFR =⇒
e〈i :U 〉 � t : T =⇒
( xa. (xa, u) ∈ NFR =⇒

e � u : U =⇒
t [u/i ] →β

∗ fst (subst-type-NF t e i U T u x xa) ∧
(snd (subst-type-NF t e i U T u x xa),
fst (subst-type-NF t e i U T u x xa))
∈ NFR)

The function type-NF is defined by recursion on the datatype

datatype rtypingT =
VarRT (nat ⇒ type) nat type

| AbsRT (nat ⇒ type) type dB type rtypingT
| AppRT (nat ⇒ type) dB type type dB rtypingT rtypingT

representing the computational content of the typing derivation. The correctness
statement for the main function type-NF is

ty . (ty , e, t , T ) ∈ rtypingR =⇒
t →β

∗ fst (type-NF ty) ∧ (snd (type-NF ty), fst (type-NF ty)) ∈ NFR

where rtypingR is the realizability predicate corresponding to the computation-
ally relevant version of the typing judgement. In analogy to NFR, we can think
of (ty, e, t , T ) ∈ rtypingR to mean that ty is a witness of the fact that t has
type T in environment e. The reduction relation →β

∗ has been chosen to have
no computational content, since we are only interested in the normal form of a
term, and not the actual reduction sequence leading to it.
1 Due to the numerous transformations, which are performed on the proof before

extraction, variable names in the extracted programs may often differ from those in
the original Isar proof document.
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Compared to the programs which are extracted “manually” by Matthes and
Joachimski [12–§2.3], the automatically extracted programs presented in this
section may look a bit more complicated and harder to read. This is due to the
fact that, although (according to the proof) the main recursion in the program
given by Matthes and Joachimski should be over types, no type information is
mentioned in the extracted program at all. Moreover, the program looks as if it
were defined by recursion over terms, whereas, strictly speaking, it should involve
recursion over the datatype NFT representing the computational content of the
inductive characterization of normal forms.

In order to test the performace of the extracted normalization function, we
compile it to ML and use it to compute multiplication on Church numerals:

2 =def (λf. λx. f (f x))
� =def (λm. λn. λf. m (n f))

The time required for computing the normal form of x�2 on a Pentium III with
1 GHz is as follows:

x 2 4 8 16 32 64 128 256 512
runtime [s] 0.002 0.016 0.012 0.036 0.096 0.430 2.615 27.786 364.193

7 Conclusion

In this article, we have presented a fully-formalized, readable proof of a fairly
complex result for simply-typed λ-calculus. All the definitions, theorems and
proofs shown in this article have been directly generated from the Isabelle proof
scripts. The whole formalization is quite compact. It consists of three main mod-
ules, one containing basic results about untyped λ-calculus, in particular the de-
finition and properties of β-reduction, another one containing results about the
type system, and one containing properties of normal forms, as well as proofs
of the main theorems. Each of these modules takes up about 400 lines of Is-
abelle code. Using Isabelle’s built-in code generator, it is possible to generate
executable ML code from the extracted normalization function presented in §6,
which performs reasonably well on medium-size λ-terms.
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λ-calculus, permutative conversions and Gödel’s T. Archive for Mathematical Logic,
42(1):59–87, 2003.

13. Z. Luo and R. Pollack. The LEGO proof development system: A user’s manual.
Technical Report ECS-LFCS-92-211, University of Edinburgh, May 1992.

14. T. Nipkow. More Church-Rosser proofs (in Isabelle/HOL). Journal of Automated
Reasoning, 26:51–66, 2001.

15. T. Nipkow. Structured Proofs in Isar/HOL. In H. Geuvers and F. Wiedijk, editors,
Types for Proofs and Programs (TYPES 2002), volume 2646 of LNCS, pages 259–
278. Springer-Verlag, 2003.

16. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

17. R. Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus of
Constructions. PhD thesis, University of Edinburgh, 1994.

18. W. W. Tait. Intensional interpretations of functionals of finite type I. Journal of
Symbolic Logic, 32(2):198–212, June 1967.

19. M. Wenzel. Isabelle/Isar — a versatile environment for human-readable for-
mal proof documents. PhD thesis, Institut für Informatik, TU München, 2002.
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html.



A Structured Approach to Proving Compiler
Optimizations Based on Dataflow Analysis

Yves Bertot1, Benjamin Grégoire2, and Xavier Leroy3
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Abstract. This paper reports on the correctness proof of compiler op-
timizations based on data-flow analysis. We formulate the optimizations
and analyses as instances of a general framework for data-flow analyses
and transformations, and prove that the optimizations preserve the be-
havior of the compiled programs. This development is a part of a larger
effort of certifying an optimizing compiler by proving semantic equiva-
lence between source and compiled code.

1 Introduction

Can you trust your compiler? It is generally taken for granted that compil-
ers do not introduce bugs in the programs they transform from source code to
executable code: users expect that the generated executable code behaves as
prescribed by the semantics of the source code. However, compilers are complex
programs that perform delicate transformations over complicated data struc-
tures; this is doubly true for optimizing compilers that exploit results of static
analyses to eliminate inefficiencies in the code. Thus, bugs in compilers can (and
do) happen, causing wrong executable programs to be generated from correct
source programs.

For low-assurance software that is validated only by testing, compiler bugs
are not a major problem: what is tested is the executable code generated by
the compiler, therefore compiler bugs should be detected along with program
bugs if the testing is sufficiently exhaustive. This is no longer true for critical,
high-assurance software that must be validated using formal methods (program
proof, model checking, etc): here, what is certified using formal methods is the
source code, and compiler bugs can invalidate the guarantees obtained by this
certification. The critical software industry is aware of this issue and uses a
variety of techniques to alleviate it, such as compiling with optimizations turned
off and conducting manual code reviews of the generated assembly code. These
techniques do not fully address the issue, and are costly in terms of development
time and program performance.

It is therefore high time to apply formal methods to the compiler itself in
order to gain assurance that it preserves the behaviour of the source programs.

J.-C. Filliâtre et al. (Eds.): TYPES 2004, LNCS 3839, pp. 66–81, 2006.
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Many different approaches have been proposed and investigated, including proof-
carrying code [6], translation validation [7], credible compilation [8], and type-
preserving compilers [5]. In the ConCert project (Compiler Certification), we
investigate the feasibility of performing program proof over the compiler itself:
using the Coq proof assistant, we write a moderately-optimizing compiler from
a C-like imperative language to PowerPC assembly code and we try to prove a
semantic preservation theorem of the form

For all correct source programs S, if the compiler terminates without
errors and produces executable code C, then C has the same behaviour
(up to observational equivalence) as S.

An original aspect of ConCert is that most of the compiler is written directly
in the Coq specification language, in a purely functional style. The executable
compiler is obtained by automatic extraction of Caml code from this specifica-
tion.

In this paper, we report on the correctness proof of one part of the com-
piler: optimizations based on dataflow analyses performed over an intermediate
code representation called RTL (Register Transfer Language). Section 2 gives an
overview of the structure of the compiler. Section 3 defines the RTL language
and its semantics. Section 4 develops a generic framework for dataflow analyses
and transformations. Section 5 instantiates this framework for two particular op-
timizations: constant propagation and common subexpression elimination. We
discuss related work in section 6 and conclude in section 7.

The work outlined in this paper integrates in a more ambitious project that
is still in progress and is therefore subject to further modifications. A snapshot
of this work can be found on the project site1.

2 General Scheme of the Compiler

The compiler that we consider is, classically, composed of a sequence of code
transformations. Some transformations are non-optimizing translations from one
language to another, lower-level language. Others are optimizations that rewrite
the code to eliminate inefficiencies, while staying within the same intermediate
language. Following common practice, the transformations are logically grouped
into three phases:

1. The front-end : non-optimizing translations from the source language to the
RTL intermediate language (three-address code operating on pseudo-
registers and with control represented by a control-flow graph).

2. The optimizer : dataflow analyses and optimizations performed on the RTL
form.

3. The back-end : translations from RTL to PowerPC assembly code.

In the following sections, we concentrate on phase 2: RTL and optimizations.
To provide more context, we give now a quick overview of the front-end and
back-end (phases 1 and 3).
1 http://www-sop.inria.fr/lemme/concert/
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Cminor �� RTL ��

CP

��

CSE

�� LTL �� Linear �� PowerPc

Fig. 1. Scheme of the compiler

The source language of the front-end is Cminor: a simple, C-like imperative
language featuring expressions, statements and procedures. Control is expressed
using structured constructs (conditionals, loops, blocks). We do not expect pro-
grammers to write Cminor code directly; rather, Cminor is an appropriate target
language for translating higher-level languages such as the goto-less fragment
of C. The translation from Cminor to RTL consists in decomposing expressions
into machine-level instructions, assigning (temporary) pseudo-registers to Cminor
local variables and intermediate results of expressions, and building the control-
flow graph corresponding to Cminor structured control constructs.

The back-end transformations start with register allocation, which maps
pseudo-registers (an infinity of which is available in RTL code) to actual hard-
ware registers (in finite number) and slots in the stack-allocated activation record
of the function. We use Appel and George’s register allocator based on color-
ing of an interference graph. The result of this pass is LTL (Location Transfer
Language) code, similar in structure to RTL but using hardware registers and
stack slots instead of pseudo-registers. Next, we linearize the control-flow graph,
introducing explicit goto instructions where necessary (Linear code). Finally,
PowerPC assembly code is emitted from the Linear code.

3 RTL and Its Semantics

3.1 Syntax

The structure of the RTL language is outlined in figure 2. A full program is
composed of a set of function definitions PF represented by a vector of pairs
binding a function name and a function declaration, one of these function names
should be declared as the main function Pmain. It also contains a set of global
variable declarations represented by a vector of pairs binding global variable
names and their corresponding memory size.

Each function declaration indicates various parameters for this function, like
the arguments (args), or the size of the stack memory that is required for local
usage (space). Important ingredients are the function code (C) and the entry
point (ep). The record also contains “certificates”: the field (in) contains a proof
that the entry point is in the code, while the field (WC) contains a proof that
the code is a well-connected graph.

The code itself is given as a partial function from a type s of program locations
to a type I of instructions. To encode this partial function, we view it as the
pair of a total function and a domain predicate. Each instruction combines an
instruction description and a vector of potential successors.
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global variable x
program point c | s
comparison cmp ::= = | 
= | < | ≤ | > | ≥
condition cnd ::= Ccomp cmp | Ccompu cmp | Ccomp imm cmp i

| Ccompu imm cmp i | Ccompf cmp | Cnotcompf cmp
| Ccompptr cmp | Cmaskzero i | Cmasknotzero i

operation op ::= Omove | Oconstint i | Oconstfloat f
| Oaddrglobal x | Oaddrstack i
| arithmetic operations
| pointer arithmetic
| specific operations
| Ocomp cnd

memory chunk mc ::= int8 | uint8 | int16 | uint16 | int32 | float32 | float64 | addr
addressing mode am ::= Aindexed | Aindexed imm i | Abased x i | Abased imm x i

| Ainstack i

instruction d ::= Inop | Iop op r r
description | Iload mc am r r | Istore mc am r r

| Icall r r r | Icall imm x r r
| Icond cnd r | Iswitch r ı
| Ireturn r

instruction I ::= d ∗ s
code C ::= s �→ I

Function declaration F ::= { space : size; args : r;
C : C; ep : c;
in : ep ∈ C;
WC : ∀c s, s ∈ Succ(c)⇒ s ∈ C }

Program declaration P ::= {PF : (x,F ); Pmain : x; Pvars : (x, size)}

Fig. 2. RTL syntax

Instruction descriptions really specify what each instruction does: memory
access, call to other functions, conditional and switch, or return instructions. A
“no-operation” instruction is also provided: this instruction is useful to replace
discarded instructions without changing the graph shape during optimizations.

Instruction descriptions do not contain the successor of instructions, this in-
formation is given at the upper level I by the list of successors. This organization
makes it easier to describe some analyses on the code in an abstract way. For
most instruction descriptions, exactly one successor is required, except for the
Ireturn instruction, which takes no successor, the Icond instruction, which takes
two successors and for the Iswitch instruction which takes one successor for each
defined label (ı) and one for the default branch.

The syntactic categories of comparison (cmp), condition (cnd) and operation
(op) are used to give a precise meaning to the various instructions. Note that
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the language makes a distinction between several kinds of numbers: integers, un-
signed integers, floating point numbers, and pointers. This distinction appears
in the existence of several kinds of comparison and arithmetic operations. Op-
erations of each kind are distinguished by the suffix u, f, or ptr, or no suffix
for plain integers. The arithmetic on pointers makes it possible to compare two
pointers, to subtract them (this return a integer), and to add an integer to a
pointer. The way pointers are handled in the language is also related to the way
memory is handled in the store and load instructions.

Memory access instructions (Iload and Istore) take a memory chunk (mc)
parameter that indicates the type of data that is read or written in memory.
It also indicates how data is to be completed: when reading an 8-bit integer into
a 32-bit register, it is necessary to choose the value of the remaining 24 bits. If
the integer is considered unsigned, then the extra bits are all zeros, but if the
data is signed, then the most significant bit actually is a sign bit and one may
use complement to 2 representation. This way of handling numbers is common to
most processors with 32-bit integer registers and 64-bit floating point registers.

A second parameter to load and store operations is the addressing mode.
This addressing mode always takes two arguments: an address and an offset.
The addressing modes given here are especially meaningful for the Power-PC
micro-processor.

The language contains two instructions for function calls, Icall imm repre-
sents the usual function call where the function name is known at compile-time,
whereas Icall represents a function call where the function is given as a loca-
tion in a register2. This capability is especially useful if we want to use Cminor
or RTL as an intermediate language for the compilation of functional program-
ming languages, where the possibility to manipulate and call function pointers
is instrumental.

3.2 Values and Memory Model

To describe the way memory is handled in our language, we use a model that
abstracts away from some of the true details of implementation. This abstraction
has two advantages. First, it preserves some freedom of choice in the design
of the compiler (especially with respect to stack operations); second it makes
the correctness proofs easier. This abstraction also has drawbacks. The main
drawback is that some programs that could be compiled without compiling errors
and run without run-time error have no meaning according to our semantics.

The first point of view that one may have on memory access is that the
memory may be viewed as a gigantic array of cells that all have the same size.
Accessing a memory location relies on knowing this location’s address, which
can be manipulated just as any other integer. The stack also appears in the
memory, and the address of objects on the stack can also be observed by some
programs. If this memory model was used, then this would leave no freedom to
the compiler designer: the semantics would prescribe detailed information such

2 As in C, when a pointer to a function is taken as argument.
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as the amount of memory that is allocated on the stack for a function call,
because this information can be inferred by a cleverly written C program.

In practice, this point of view is too detailed, and the actual value of addresses
may change from one run of the same program to another, for instance because
the operating system interferes with the way memory is used by each program.
The compiler should also be given some freedom in the way compiled programs
are to use the stack, for instance in choosing which data is stored in the micro-
processor’s registers and which data is stored in the stack.

The abstract memory model that we have designed relies on the following
feature: memory is always allocated as “blocks” and every address actually is
the pair of a block address and an offset within this block. The fact that we use
an offset makes it possible to have limited notions of pointer arithmetic: two ad-
dresses within the same block can be compared, their distance can be computed
(as an integer), and so on. On the other hand, it makes no sense to compare
two addresses coming from two different blocks, this leaves some freedom to the
compiler to choose how much memory is used on the stack between two allocated
chunks of memory. For extensions of the language, this also makes it possible
to have memory management systems that store data around the blocks they
allocate.

From the semantic point of view, this approach is enforced by the following
features. First, our RTL language has a specific type of memory address for
which direct conversion to integer is not possible, but we can add an integer to
an address (we enforce the same restriction in our formal semantics of Cminor).
Second, any memory access operation that refers to a block of a given size with
an offset that is larger than this size has no semantics.

All the syntactic structures used for values and memory are described in
Figure 3.

Our memory model relies on block allocation. Some of the blocks are long-
lived and stored in the main memory. Other blocks are short lived and correspond
to local memory used in C functions (the memory allocated on a stack at each
function call is often referred to as a frame). These blocks are “allocated” when
the function is called and “deallocated” when the function returns the control to
its caller. It is relevant to make sure that different blocks used for different call
instances of functions are really understood as different blocks. To achieve this
level of abstraction, we consider that there is an infinity of blocks with different
status. Memory is then considered as a mapping from an infinite abstract type
of head pointers to a collections of block.

Memory modifications correspond to changing the values associated to these
head pointers. In the beginning, most head pointers are mapped to a NotYetAl-
located block. When a function is called and a block of memory is allocated for
this function, a head pointer is updated and becomes mapped to a vector of
elementary memory cells (corresponding to bytes). When the block is released,
the head pointer is updated again and becomes mapped to a Freed block. Our
semantics description of the language gives no meaning to load and store oper-
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head pointer p
memory address a ::= (p, n)
value v ::= n | f | a | ⊥

basic block b ::= ⊥ | c | a
block B ::= C | b | Freed | NotYetAllocated
memory m ::= p �→ B
load load : m → mc→ a → v

loadF : m → a → F
store store : m → mc→ a → v → m⊥

storeF : m → mc→ a → v → m⊥

Fig. 3. Value and memory

ation in NotYetAllocated and Freed blocks. In this way, we are able to account
for the limited life-span of some memory blocks.

To ensure the clean separation between memory addresses and integer values,
we only specify that a memory address requires four bytes for storage3. We allow
writing bytes into a location where an address was previously stored, but this
has the side effect of storing an “unknown” value in all the other bytes of the
address. We use the symbol ⊥ to denote these unknown values.

Blocks may also contain some code. This feature makes it possible to pass
function pointers around and to implement function calls where the function is
given by pointer. The level of abstraction is simple to state here: there is no way
to know what size a piece of code is taking and only the head pointer of a block
containing code may be used in a function call. Of course, reading an integer or
an address from a block that contains code simply returns the unknown value ⊥.

3.3 Semantics

Figure 4 outlines the semantics of RTL. Some parts are given by inductively
defined relations, while other parts are given by functions. Important data for
these relations and functions is collected in a structure named a state. The
component named Sr is a function that gives the value of all registers. The
component Sstk indicates the current position of the stack top; this position
can be used as a head-pointer for access in the memory allocated for the current
function call instance. The component Smem contains the description of the whole
memory state. The component Sid indicates the values associated to all the global
variables (identifiers).

The semantics of individual instructions is described as an inductive relation
using a judgment of the form (S, I) 	−→ (S′, s), where S is the input state,
I is the instruction to execute, S′ is the result state, and s is the location of
the next instruction. In Figure 4, we include a few of the inference rules for this
judgment. Each rule contains a few consistency checks: for instance, instructions
expecting a single successor should not receive several potential successors, the
3 This will allow to use integers for encoding pointers.
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state S ::= {Sr : r → v; Sstk : p; Smem : m; Sid : x → v }
condition evalcnd : S → cnd→ r → v
operation evalop : S → op → r → v
addressing mode evalam : S → am→ r → a⊥

Evaluation of one instruction (selected rules)

(S, (Inop, [s])) �−→ (S, s)
evalop(S, op, r) = v CheckType(rd, v)
(S, (Iop op r rd, [s])) �−→ (S[rd := v], s)

Sid(x) = a loadF (Smem, a) = f InitFun(f, S, r) = S1

(S1, fep)
f�−→ (S2, v) Return(S, S2) = S3 CheckType(rd, v)

(S, (Icall imm x r rd, [s])) �−→ (S3[rd := v], s)

Evaluation of several instructions

fC(c1) = I (S1, I) �−→ (S2, c2) (S2, c2)
f�−→ (S3, v)

(S1, c1)
f�−→ (S3, v)

fC(c) = (Ireturn r, ∅)
(S, c)

f�−→ (S, S.(r))

Evaluation of a program

InitProg(p) = S pF (pmain) = f InitFun(f, S, ∅) = S1

(S1, fep)
f�−→ (S2, v) Return(S, S2) = S3

p
P�−→ (S3, v)

Fig. 4. Semantics of RTL

registers providing the input for an arithmetic operation should contain values
of the right type, and the register for the output value should also have the right
type.

To describe the execution of several instructions, we use a judgment of the
form (S, c)

f	−→ (S′, v), where f is a function, c is the location of an instruction in
the code graph of f , S′ is the result state when the function execution terminates
and v is the return value. So while the judgment (S, I) 	−→ (S′, s) is given in a

style close to small step operational semantics, the judgment (S, c)
f	−→ (S′, v)

describes a complete execution as we are accustomed to see in big step operational
semantics or natural semantics. The two styles actually intertwine in the rule
that describes the execution of the Icall imm instruction: to describe the behavior
of the single Icall imm instruction, this rule requires that the code of the callee
is executed completely to its end.

The rule for the Icall imm instruction first states that the function code must
be fetched from memory, then that some initialization must be performed on
the state. This initialization consists of allocating a new memory block for
the data that is local to the function and moving the Sstk field. Then, ver-
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ifications must be performed: the registers that are supposed to contain the
inputs to the called function must contain data of the right type. The regis-
ters that are used internally to receive the input arguments must be initial-
ized. Then the function code is simply executed from its entry point, until it
reaches a Ireturn statement, which marks the end of the function execution.
An auxiliary function, called Return then modifies the state again, restoring
the Sstk field to its initial value and freeing the memory block that had been
allocated.

Evaluating a program is straightforward. Some initialization is required for
the global variables and the main function of the program is executed to its end.

When proving the correctness of optimizations, we intuitively want to prove
that an optimized function performs the same computations as the initial func-
tion. A naive approach would be to express that the resulting state after exe-
cuting the optimized function is the same as the resulting state after executing
the initial function. However, this approach is too naive, because optimization
forces the state to be different: since the function code is part of the program’s
memory, the optimized program necessarily executes from an initial state that
is different and terminates in a state that is different. Our correctness statement
must therefore abstract away from the details concerning the code stored in the
memory.

4 A Generic Proof for the Optimizations

In the sequel, we consider two optimization phases from RTL to RTL, the first
one is constant propagation (CP) and the second is common subexpression
elimination (CSE). Both are done procedure by procedure and follow the same
scheme.

The first step is a data-flow analysis of the procedures. The result of this
analysis is a map that associates to each program point the information that is
“valid” before its execution. By “valid information” we mean that any execution
would reach this program point in a state that is compatible with the value
predicted by the analysis.

The second step is the transformation of the code. This transformation is
done instruction by instruction and only requires the result of the analysis for
one instruction to know how to transform it. Naturally, the power of the trans-
formation depends directly on the analysis.

We wrote a generic program and its proof to automatically build the analyses,
the transformations, and their proofs.

4.1 Analysis Specification

A data-flow analysis is given by a set D (the domain of the analysis) representing
abstractions of states and an analysis function AF that takes as input a function
declaration and returns a map from program points to D. These two parameters
represent the computation part of the analysis. For CP and CSE the domain is
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a mapping from registers to abstract values, e.g. a concrete value or “unknown”
for CP, or a symbolic expression for CSE.

An analysis is correct when it satisfies some extra properties. In particular,
we need an analysis property AP that describes when a concrete state in S is
compatible with an abstract state in D. The result of the analysis should have
the property that every reachable instruction can only be reached in a state that
is compatible with the abstract state that is predicted by the analysis.

The first part of the correctness statement expresses that every state should
be compatible with the abstract point that is computed for the entry point; this
statement is called Aentry.

The second part of the correctness statement expresses that every computa-
tion state should map a state compatible with the abstract state for an instruc-
tion to states that are compatible with the abstract states of all the successor;
this statement is called Acorrect.

All the components of a valid analysis are gathered in a module type for Coq’s
module system.

Module Type ANALYSIS.
Parameter D : Set.
Parameter AF : F → Map.T D.
Parameter AP : D → S → Prop.
Parameter Aentry : ∀f S, AP(AF (fep), S).
Parameter Acorrect : ∀f c1 c2 S1 S2,

c1 ∈ fC ⇒ (S1, fC(c1)) 	−→ (S2, c2)⇒ AP(AF (c1), S1)⇒
AP(AF (c2), S2).

End.

Correct analyses can be obtained in a variety of ways, but we rely on a generic
implementation of Kildall’s algorithm [2]: the standard solver for data-flow equa-
tions using a work list. To compute an analysis, Kildall’s algorithm observes each
instruction separately. Given a program point c, it computes the value of the
analysis for the instruction c using a function Ai. Then it update the abstract
state of every successor of c with an upper bound of itself and the value of Ai at
c. The function Ai is the analysis of an instruction, it takes what is known before
the instruction as argument and returns what is known after it. The termination
of this algorithm is ensured because the code graph for a function is always finite
and the domain of the analysis is a well-founded semi-lattice : a set D with a
strict partial order >D, a decidable equality, a function that returns an upper
bound of every pair of elements, and the extra property that the strict partial
order is well-founded.

We don’t give more details about Kildall’s algorithm, for lack of place, but in
our formal development, it is defined using Coq’s module system as a functor (a
parameterized module) taking as arguments the well-founded semi-lattice, the
analysis function, and a few correctness properties. This functor is in turn used
to define a generic functor that automatically builds new analyses. This functor
takes as argument modules that satisfy the following signature:
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Module Type ANALYSIS ENTRIES.
Declare Module D : SEMILATTICE.
Parameter Ai : F → c → D.T → D.T .
Parameter AP : D.T → S→ Prop.
Parameter topP : ∀S, AP(D.top, S).
Parameter Acorrect : ∀f c, c ∈ fC ⇒
∀c′ S S′, (S, fC(c)) 	−→ (S′, c′) ⇒ ∀d, AP(d, S)⇒ AP(Ai(d, c), S′).

Parameter A≥D : ∀d1 d2, d2 ≥D d1 ⇒ ∀S, AP(d1, S)⇒ AP(d2, S).
End.

Module Make Analysis (AE : ANALYSIS ENTRIES) <: ANALYSIS.

First, the semi-lattice’s top element should be compatible with any state
(topP). At the entry point we make the assumption that nothing is known,
hence the initial abstract state of the analysis is top. This property ensures that
any initial state will satisfy the analysis property at the entry point. Second,
the parameter Acorrect ensures that each time the Kildall algorithm analyzes
an instruction the result will be compatible with the states occurring in the
concrete execution. Then, the last property A≥D expresses that the order relation
on abstract states should be compatible with the subset ordering on S. This
ensures that each time Kildall’s algorithm computes a new upper bound, the
result remains compatible.

4.2 Program Transformations

The second part of an optimization is a transformation function that uses the
results of the analysis to change the code, instruction per instruction. Here again,
there is a generic structure for CP and CSE. First, a transformation is given by
two functions TF and TP to transform function declarations and whole programs,
respectively. The correctness of this transformation is expressed by saying that
executing a program to completion should return the same result and equivalent
states, whether one executes the original program or the optimized one (Tcorrect).
Two states are equivalent when all locations in the memory have the same value,
except that unoptimized code is replaced with optimized code, using a generic
replacement map called Tstate.

Module Type TRANSFER.
Parameter TF : F → F .
Parameter TP : P → P .

Parameter Tcorrect : ∀p S v, p
P	−→ (S, v) ⇒ TP (p) P	−→ (Tstate(TF , S), v).

End.

Here again, correct transformations can be obtained in a variety of ways,
but we rely on a generic implementation that takes a correct instruction-wise
transformation as a parameter.

We actually describe instruction-wise transformations that rely on an analy-
sis A. The transformation itself is given by a function Ti, which takes as in-
put an instruction and the abstract state capturing what the compiler knows
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about the state before executing this instruction, and returns a new instruction.
The correctness of this transformation is then expressed by a few extra con-
ditions. First, the successors of the new instruction should be a subset of the
original successors (Tedges). Second the execution of the transformed instruc-
tion in a state that is compatible with the abstract state obtained from the
analysis should lead to the same new state and the new location in the code
(Tcorrect). Third, a return instruction should be left unchanged (Treturn). Fourth,
the compatibility of a state with respect to an abstract state should not de-
pend on the actual code functions that is stored in memory. All these aspects
of an instruction-wise transformation are gathered in a module type TRANS-
FER ENTRIES.

Correct instruction-wise transformations never remove any instruction from
the code graph. On the other hand, they may remove edges, if the analysis makes
it possible to infer that these edges are never traversed during execution. This
treatment also means that dead code is optimized at the same time as useful
code. The actual removal of dead code is not part of these optimizations, it is
just a side effect of the later translation from the LTL language to the Linear
language.

Module Type TRANSFER ENTRIES.
Declare Module A : ANALYSIS.
Parameter Ti : A.D → I → I.
Parameter Tedges : ∀d i s, s ∈ Succ Ti(d, i)⇒ s ∈ Succ i.
Parameter Tcorrect : ∀i s S S′ d, AP(d, S)⇒

(S, i) 	−→ (S′, s)⇒ (S, Ti(d, i)) 	−→ (S′, s).
Parameter Treturn : ∀d r s, Ti(d, (Ireturn r, s)) = (Ireturn r, s).
Parameter Amem : ∀(g : F → F ) d S, AP(d, S)⇒ AP(d, Tstate(g, S)).

End.

Transformations are thus obtained through an application of a functor that
takes modules of type TRANSFER ENTRIES as input and returns modules of
type TRANSFER. Some parts of the correctness proofs are done once and for all
in this functor, but other parts are specific and done when establishing the facts
Tedges, Tcorrect, Treturn, and Amem, which represent a big part of the proof (in
number of lines) but are usually easy.

5 Instantiation

In this section we describe how we instantiate our functors to obtain the CP
and CSE optimizations. The term optimization is a misnomer because there is
no guarantee that the result code is the best possible. It is only the best that we
can obtain using the information gathered by the analysis.

5.1 Constant Propagation

The role of constant propagation is to replace some operations by a more efficient
version: for example, by a “load constant” instruction when the result of the
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operation is known at compile time, or by an immediate operation when only
one argument is known.

To use our predefined functor for analysis and transformation, the most diffi-
cult part is to define the semi-lattice corresponding to the domain of the analysis.
Here, the goal of the analysis is to collect the known values associated to each
register.

The domain of the analysis is the set of maps that associate to each register a
numerical value when it is known. The set of maps from A to B is a semi-lattice
if B itself is a semi-lattice and if A is a finite set. Therefore, we need to limit the
number of registers. This is done using a dependent type: a register is a pair of
a number (its identifier) and a proof that this identifier is less than a parameter
map limit.

We define the semi-lattice corresponding to the codomain of the maps as the
flat semi-lattice build upon the type of values that we can associate to registers
at compile time :

v ::= n | f | (x, n)

that is, an integer, a float or the address of a known global variable plus an offset.
Such a construction is possible since the equality on the type v is decidable.

The analysis of an instruction consists in evaluating its result value and up-
dating the register where the result is stored with this value. Naturally, this
evaluation is only possible if all the arguments of the instruction have known
values. Otherwise, the result register is set to top. The correctness criterion for
this analysis is that if it claims that a register has a known value at some point,
the actual value of the register at this point in every execution is equal to the
claimed value.

Then, the transformation of an instruction first tries to evaluate the instruc-
tion and replaces the instruction by an instruction that directly stores the result
in a register, when this is possible. For example, if r1 = 1 and r2 = 3 the
instruction Iop Oadd r1 r2 rd will be replaced by Iop (Oconstint 4) rd.

If only some of the arguments are known, then the transformation tries
to replace the instruction by a more efficient one. For example, if r2 = n,
then Iop Omul r1 r2 rd will be replaced by Iop (Oconstint 0) rd if n = 0, by
Iop Omove r1 rd if n = 1, by a left shift over r1 if n a is a power of two, or by a
immediate multiplication Iop (Omul imm n) r1 rd otherwise.

Memory access is also optimized using a based addressing mode if the address
is known at compile time. Finally, conditional branches are replaced by an Inop
instruction, actually implementing an unconditional branch to the appropriate
successor, if the result of the test is statically evaluable.

5.2 Common Subexpression Elimination

A program will frequently include multiple computations of equivalent expres-
sions, e.g. array address calculations. The goal of common subexpression elim-
ination is to factor out these redundant computations. An occurrence of an
expression E is called a common subexpression if E was previously calculated
and the values associated with the register that appear in E have not changed
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since the previous computation. In this case the compiler can replace the second
occurrence of E by an access to the register containing the result of the first
occurrence of E, thus saving the cost of recomputing E.

For example the sequence :

r3 = r1 + r2; r4 = r1; r5 = r4 + r2

will be replaced by :

r3 = r1 + r2; r4 = r1; r5 = r3

Here the result of the analysis of an instruction is a map that associates to each
register a symbolic expression corresponding to the operation that is stored in
it. More precisely, the values associated to registers are a pair of a symbolic
expression (the expression whose result is contained in the register) and a set of
registers which contain the same value. The latter set is useful to keep track of
multiple registers containing the result of the same computation, as often occurs
following Imove instructions, and determine equivalence of symbolic expressions
up to Imove instructions. For instance, in the code fragment above, it is known
that the symbolic expressions r1 + r2 and r4 + r2 are equivalent because r1 and
r4 contain the same value. Futhermore, we want to keep track that r3 and r5
contain the same value, even after a modification of r2 that will invalidate the
expression associated to both registers.

A concrete register set matches the result of the analysis at a given program
point if the actual values of the registers satisfy the equalities between registers
stated in the abstract values. The mappings of registers to symbolic expressions
can be equipped with a well-founded semi-lattice structure, with the least upper
bound operation corresponding roughly to the intersection of constraints. This
semi-lattice construction is complex and we omit it here due to lack of space.

The analysis of an instruction that computes E and stores its result in a
register rd first erases all references to rd in the map. If the register rd is not
used as arguments of the instruction then the analysis tries to find a register
containing an expression equivalent to E. In this case, the analysis updates the
value associated to rd with the expression and the set of registers that contain
the equivalent expression. It also adds the fact that registers in the set are all
equal to rd. In all other cases, the value associated with rd is set to the expression
E and an empty set of equal registers.

The transformation of an instruction rd = E is refreshingly simple: it becomes
rd = r (a Imove instruction) if there exists a register r that contains the value
of E, and is left unchanged otherwise. The Imove instructions thus introduced
can disappear later during register allocation, if the register allocator manages
to assign the same hardware register or stack location to both r and rd.

6 Related Work and Conclusions

In parallel with our work, several other teams developed machine-checked proofs
of data-flow analyses and transformations. For instance, Cachera et al [1] develop
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in Coq a general framework for lattices and data-flow equations over these lat-
tices. Their framework is more general than ours, but they do not consider pro-
gram transformations. Proofs of Kildall’s work-list algorithm can also be found
in machine-checked formalizations of Java byte-code verification such as [3].

Lerner et al [4] propose Rhodium, a domain-specific language to express
data-flow analyses and transformations exploiting the results of these analyses.
Rhodium generates an implementation of both the analysis and the transforma-
tion and proof obligations that, once checked, imply the semantic correctness of
the transformation. Rhodium specifications are definitely more concise than in-
stantiations of our generic framework. However, the generated proof obligations
do not appear significantly simpler than the proofs we have to provide for our
functor applications. Moreover, the Rhodium tools must be trusted to generate
correct implementations and sufficient proof obligations, while we obtain these
guarantees by doing everything directly in Coq.

In summary, by exploiting the Coq module system, we have been able to factor
out a significant part of specifications and correctness proofs for forward data-
flow analyses and optimizations that exploit the results of these analyses. While
the application of this framework to constant propagation is fairly standard,
we believe we are the first to develop a mechanically verified proof for common
subexpression elimination using the “Herbrand universe” approach.

While this is not described in this paper, backward data-flow analyses is
handled by a simple extension of our framework (basically, just reversing the
control flow graph before using the forward analysis framework). We used this
to prove correct liveness analysis as used in our register allocation phase.

A limitation of our approach, also found in Rhodium, is that we prove the
correctness of transformations using simulation arguments that apply only when
every instruction of the source code is mapped to zero, one or several instructions
of the transformed code, and the states “before” and “after” the source instruc-
tion must match the states “before” and “after” the sequence of transformed
instructions. This is not sufficient to prove some optimizations such as code
motion, lifting of loop-invariant computations, or instruction scheduling, where
computations occur in a different order in the source and transformed code. Be-
cause of this limitation, we envision to perform some optimizations such as loop
optimizations not on the unstructured RTL intermediate code, but on the struc-
tured Cminor source code, whose big-step semantics makes it easier to reorder
computations without worrying about intermediate computational states that
do not match.
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Abstract. We discuss two complete formalisations of bitonic sort in
constructive type theory. Bitonic sort is one of the fastest sorting al-
gorithms where the sequence of comparisons is not data-dependent. In
addition, it is a general recursive algorithm. In the formalisation we face
two main problems: only structural recursion is allowed in type theory,
and a formal proof of the correctness of the algorithm needs to consider
quite a number of cases. In our first formalisation we define bitonic sort
over dependently-typed binary trees with information in the leaves and
we make use of the 0-1-principle to prove that the algorithm sorts inputs
of arbitrary types. In our second formalisation we use notions from lin-
ear orders, lattice theory and monoids. The correctness proof is directly
performed for any ordered set and not only for Boolean values.

1 Introduction

Bitonic sort [3] is one of the fastest sorting networks [3, 13]. A sorting network is a
sorting algorithm performing only comparison-and-swap operations on its data.
As a consequence, the sequence of comparisons in a sorting network is not data-
dependent. This makes sorting networks, and hence bitonic sort, very suitable
for implementation in hardware or in parallel processor arrays. The algorithm
consists of O(m ∗ log(m)2) comparisons in O(log(m)2) stages and it works on
sequences of length 2n (hence the m above should be a power of 2).

Bitonic sort is a general recursive algorithm, that is, the recursive calls are
performed on arguments that not necessarily are structurally smaller than the
input. Although the algorithm is short and computationally simple, it is not
intuitive to understand why the algorithm works. Furthermore, formally proving
its correctness is not an easy task. The only machine-checked formal proof of
bitonic sort we are aware of was performed in PVS by Couturier [7]. In his proof,
Couturier needed to consider a maximum of 54 cases. In addition, the type of
some of the properties in [7] are rather complex, making the whole formal proof
difficult to follow.

In this work, we discuss two implementations of bitonic sort in constructive
type theory (see for example [14, 6]), and we describe a formal correctness proof
for each of the two implementations, namely, that the result of applying bitonic
sort to a sequence of elements of the correct length is a sorted permutation of
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the original one. The two formalisations we present here were performed using
the proof assistant Agda [1]. In addition, in our first implementation and in its
correctness proof (Section 4) we also use Agda’s graphical interface Alfa [2].

When formalising the algorithm and its correctness proof we face two main
problems. First, only structural recursion is allowed in type theory, that is, re-
cursive definitions in which each recursive call is performed on arguments struc-
turally smaller than the input. In this way, the termination of a recursive defin-
ition can be ensured by its syntax. As a consequence, bitonic sort as commonly
expressed cannot be directly translated into type theory. Second, a formal proof
of the correctness of the algorithm might need to consider quite a number of dif-
ferent cases (see [7]). The challenge here is to find a suitable way of formalising
the notion of bitonic sequence such that the properties associated with it can be
easily proved and understood, without requiring too many cases.

In our first implementation we define the bitonic sort algorithm over depen-
dently typed binary trees, that is, binary trees indexed by their height, with in-
formation in the leaves. In this way, a dependent binary tree of height n contains
exactly 2n elements. In addition, the algorithm becomes structurally recursive
on the height of the tree and it can be straightforwardly defined in the theory.

To prove that the algorithm sorts its input we use the 0-1-principle [13].
It states that if a sorting algorithm sorts sequences of 0’s and 1’s using only
comparison-and-swap operations on its data, it will also sort sequences of arbi-
trary types. The proof of the sorting property that we present here considers
a maximum of 24 cases grouped in six main cases plus 23 cases leading to a
contradiction (empty cases). Each case is easy to prove and understand.

In our second implementation we use notions from linear orders, lattice theory
and monoids, and we directly proved the correctness theorem for any ordered
set. Here, we consider a maximum of three cases plus five empty cases.

The rest of the paper is organised as follows. Section 2 contains a brief de-
scription of the Agda notation for those not familiar with this proof assistant.
In Section 3 we introduce bitonic sort and we explain how it works. In Section
4 we present our dependently-typed version of the algorithm and we describe
its correctness proof. Section 5 uses notions from linear orders, lattice theory
and monoids to formalise the algorithm and to prove its correctness. Finally, in
Section 6 we discuss some conclusions and related work.

2 Brief Description of the Agda Notation

If A is a type and B is a family of types over A, we write (x::A) -> B(x) for
the type of functions from A to B. If B does not depend on A, we might simply
write A -> B for the function type. If f is a functions from A to B, we write f ::
(x::A) -> B(x). Function types have abstractions as canonical elements which
we write \(x::A) -> e(x), for e an element of the right type. Alternatively, f
can be defined as f (x::A) :: B(x). In this case, the variable x is known in
the body of the function without the need of introducing it with an abstraction
in the body of f.
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In what follows, False represents the empty set (absurdity), True is the set
containing only the element tt, and T and F are functions lifting boolean val-
ues into sets such that T false = False, T true = True and F b = T(not b)
(where not is the boolean negation). In addition, && and || represent logical
conjunction and disjoint on sets, respectively, and (x) and (+) represent con-
junction of sets and disjoint union of the sets, respectively. Canonical elements
in the set A x B have the form <a,b> for a::A and b::B.

In Section 5 we make use of Agda’s implicit arguments and signature types.
To indicate that x is an implicit argument in a function type we indistinctly
write (x::A) |-> B or f (|x::A) :: B(x). The corresponding notation for
abstractions is \(x::A) |-> e(x). Signatures define unordered labelled depen-
dent products. If S is an element in a signature type containing a label x, S.x
selects the x field from S. The operator (.) is called projection.

To make the reading of the Agda code that we present here a bit easier, we
might not transcribe it with its exact syntax but with a simplified version of it.

3 Functional Bitonic Sort

The bitonic sort algorithm that we take as our starting point is the Haskell [12]
algorithm presented in Figure 1. Notice that the recursive calls in the function
merge are performed on non-structurally smaller arguments.

This algorithm works on complete binary trees with information on the leaves
and where both left and right subtrees have the same height. Since the Tree
structure do not guaranty these conditions, the algorithm in Figure 1 is unde-
fined on trees that do not satisfy them. It is possible to construct Haskell trees
satisfying the above conditions with the following nested recursive data type:
data Tr a = Lf a | Bin (Tr (a,a)). However, it is not easy to work with
such structure. As we will see on the following two sections, dependent types
provides the means to organise the data exactly as we need it for this example.

Before explaining how the algorithm works, we introduce the notion of bitonic
sequence. Essentially a bitonic sequence is the juxtaposition of two monotonic
sequences, one ascending and the other one descending, or it is a sequence such
that a cyclic shift of its elements would put them in such a form.

Definition 1. A sequence a1, a2, . . . , am is bitonic if there is a k, 1 � k � m,
such that a1 � a2 � · · · � ak � · · · � am, or if there is a cyclic shift of the
sequence such that this is true.

The main property when proving that the algorithm sorts its input is that, given
a bitonic sequence of length 2n, the result of comparing and swapping its two
halves gives us two bitonic sequences of length 2n−1 such that all the elements
in the first sequence are smaller than or equal to each of the elements in the
second one.

So, if bitonicSortT sorts its input up, then the first call to the function
merge is made on a bitonic sequence. This is simple because the left subtree is
sorted up and the right subtree is sorted down. Now, merge calls the function
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data Tree a = Lf a | Bin (Tree a) (Tree a)

bitonic_sortT :: Tree Int -> Tree Int
bitonic_sortT = bitonicSortT cmpS

where cmpS x y = if x <= y then (x,y) else (y,x)

bitonicSortT:: (a -> a -> (a,a)) -> Tree a -> Tree a
bitonicSortT cmp (Lf x) = Lf x
bitonicSortT cmp (Bin l r) = merge (Bin (bitonicSortT cmp l)

(reverseT (bitonicSortT cmp r)))
where reverseT (Lf x) = Lf x

reverseT (Bin l r) = Bin (reverseT r) (reverseT l)

merge (Lf x) = Lf x
merge (Bin l r) = Bin (merge l1) (merge r1)

where (l1,r1) = min_max_Swap l r

min_max_Swap (Lf x) (Lf y) = (Lf l,Lf r)
where (l,r) = cmp x y

min_max_Swap (Bin l1 r1) (Bin l2 r2) = (Bin a c, Bin b d)
where (a,b) = min_max_Swap l1 l2

(c,d) = min_max_Swap r1 r2

Fig. 1. Haskell version of the bitonic sort on binary trees

min max Swap on its two subtrees, which will pairwise compare and swap the
elements. If the bitonic sequence had length 2n, then min max Swap returns two
bitonic sequences of length 2n−1 such that all the elements in the first sequence
are smaller than or equal to each of the elements in the second one. Next, we
call the function merge recursively on each of these two bitonic sequences, and
we obtain four bitonic sequences of length 2n−2 such that all the elements in the
first sequence are smaller than or equal to each of the elements in the second
sequence, which in turn are smaller than or equal to each of the elements in the
third sequence, which in turn are smaller than or equal to each of the elements in
the fourth sequence. This process is repeated until we have 2n bitonic sequences
of one element each, where the first element is smaller than or equal to the
second one, which in turn is smaller than or equal to the third one, and so on.

4 Dependently-Typed Bitonic Sort

This section describes a formalisation of bitonic sort using dependent types. A
more detailed presentation of such formalisation can be found in [5].

Let us assume we have a set A and an inequality relation on A
((<=) :: A -> A -> Bool). Both A and (<=) will act as global parameters
in Agda. We define the type-theoretic datatype of binary trees indexed by its
height and two functions constructing elements in this type.
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DBT (n :: Nat) :: Set = case n of (zero) -> A
(succ n’) -> DBT n’ x DBT n’

DLf (a :: A) :: DBT zero = a

DBin (n :: Nat)(l, r :: DBT n) :: DBT (succ n) = <l,r>

Elements of this datatype are complete binary trees where both subtrees are of
the same height; thus a tree of height n contains exactly 2n elements.

Using this datatype we can straightforwardly translate the Haskell version
of the bitonic sort algorithm from Figure 1 into type theory. We present the
dependently typed bitonic sort in Figure 2. Observe that all the functions in
Figure 2 are structurally recursive on the height of the input tree. For the sake
of simplicity, in what follows, we might omit the height of the tree in calls to
any of these functions.

reverse (n :: Nat) (t :: DBT n) :: DBT n
= case n of (zero) -> t

(succ n’) -> case t of <l,r> -> DBin n’ (reverse n’ r)
(reverse n’ l)

min_max_Swap (cmp::A -> A -> AxA)(n::Nat)(l,r::DBT n) :: DBT n x DBT n
= case n of (zero) -> cmp l r

(succ n’) -> case l of <l1,r1> ->
case r of <l2,r2> ->

let <a,b> = min_max_Swap cmp n’ l1 l2
<c,d> = min_max_Swap cmp n’ r1 r2

in <DBin n’ a c, DBin n’ b d>

merge (cmp::A -> A -> AxA) (n::Nat) (t::DBT n) :: DBT n
= case n of (zero) -> t

(succ n’) -> case t of <l,r> ->
let <a,b> = min_max_Swap cmp n’ l r
in DBin n’ (merge cmp n’ a) (merge cmp n’ b)

bitonicSort (cmp::A -> A -> AxA) (n::Nat) (t::DBT n) :: DBT n
= case n of (zero) -> t

(succ n’) -> case t of <l,r> ->
merge cmp (succ n’) (DBin n’ (bitonicSort cmp n’ l)

(reverse n’ (bitonicSort cmp n’ r)))

cmpS (a, b :: A) :: A x A = if (a <= b) then <a,b> else <b,a>

bitonic_sort (n :: Nat) (t :: DBT n) :: DBT n = bitonicSort cmpS n t

Fig. 2. Dependently-typed Bitonic sort
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4.1 The Permutation Property

Proving that the resulting sequence is a permutation of the original one is rather
easy. In our proof, we convert trees into lists (defined as expected in type theory)
and we prove the permutation property on lists rather than on trees. For our
purposes, a permutation on lists is any equivalence relation on lists of the same
length (although this is not a formal part of the definition, it could be easily
derived from it) that is both commutative and a congruence with respect to
concatenation.

4.2 The Sorting Property

We start by defining when a tree is sorted. Given the element a :: A and the
trees t1 and t2, we define the relations t1 /<= a and t1 /<=\ t2 by recursion
on t1 and t2, respectively, such that t1 /<= a is satisfied if all the elements
in t1 are smaller than or equal to a, and t1 /<=\ t2 is satisfied if all the ele-
ments in t1 are smaller than or equal to each of the elements in t2. Finally we
define:

Sorted (n :: Nat) (t :: DBT n) :: Set
= case n of (zero) -> True

(succ n’) -> case t of <l,r> ->
Sorted n’ l && Sorted n’ r && l /<=\ r

Proving that the resulting sequence is sorted is not trivial. To start with, we
need to formalise the notion of bitonic sequence in such a way that it allows
proving the necessary properties in a nice way. To this end, we fix the set A
of elements in the tree to the set Bool and we make use of the 0-1 princi-
ple to generalise our result. In what follows we identify 0 with false and 1
with true. The 0-1 principle states that if a sorting algorithm sorts sequences
of 0’s and 1’s performing only comparison-and-swap operations on its data,
then it also sorts sequences of arbitrary types. We use Reynolds parametric-
ity theorem [15] to prove the 0-1 principle, whose proof follows those in [8]
and [10]. The reader is referred to [5] for more details on our proof of this
principle.

Bitonic Sequences and Bitonic Labels. Since we now consider only boolean
sequences, our definition of a bitonic sequence becomes simpler.

Definition 2. A 0-1-sequence a1, . . . , am is called bitonic, if it contains at most
two changes between 0 and 1.

To determine if the sequence in a binary tree is bitonic we assign bitonic labels
to the trees. We introduce one label for each of the six possible bitonic sequence
and one extra label W that will be assigned to trees whose sequences are not
bitonic.
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BitLb :: Set = data O | I | OI | IO | OIO | IOI | W

In addition, we define an equivalence relation (==) (l1, l2 :: BitLb) :: Set
on bitonic labels, along with the property notW (l :: BitLb) :: Set of not
being the label W, and a function bin label (ll, lr :: BitLb) :: BitLb that
combines two labels into a new one. The combined label is W in many cases, for
example bin label OI OIO = W.

Since we have seven labels, many binary functions on labels need to consider
up to 49 cases (sometime we do not need to consider all cases, for example, for
any l, bin label W l = W). All the functions we need on labels are quite trivial.

Below we show how to assign labels to binary trees and we define the property
of being a bitonic sequence.

label (n :: Nat) (t :: DBT n) :: BitLb
= case n of (zero) -> case t of (true) -> I

(false) -> O
(succ n’) -> case t of <l,r> ->

bin_label (label n’ l) (label n’ r)

Bitonic (n :: Nat) (t :: DBT n) :: Set = notW (label n t)

We use the information given by the labels to reason about the results of
the operations we perform on a tree. For example, the following lemma gives us
information about the result of the min max Swap operation.

label_O_x2min_max_Swap_label_O_x (cmp:: Bool-> Bool-> Bool x Bool)
( ... ) (n :: Nat) (l, r :: DBT n) (label l == O)
:: (label (fst (min_max_Swap cmp l r)) == O) &&

(label (snd (min_max_Swap cmp l r)) == label r)

The lemma is proved by induction on the height of the trees. Here, we use
the fact that if the label of l is O, then either l is simply false, or it is a binary
tree whose both subtrees also have label O. In the lemma, we need to assume
that the operation cmp behaves as we want it to with respect to labels. Here we
write ( ... ) for such assumptions. These assumptions are used to prove the
base cases in the lemma.

Tree labels can also give information about the order of the trees. Below we
show a couple of lemmas that can be easily proved by induction on m.

label_O2leq (n, m :: Nat) (t1 :: DBT n) (t2 :: DBT m)
(label t1 == O) :: t1 /<=\ t2

leq_label_OI_O (n, m :: Nat) (t1 :: DBT n) (t2 :: DBT m)
(label t1 == OI) (label t2 == O) (t1 /<=\ t2) :: False

We also need lemmas relating the label of the trees to the result of reverse as:

reverse_label_OI2label_IO (n :: Nat) (t :: DBT n)
(label (reverse t) == OI) :: label t == IO

which can be easily proved by induction on the height of the tree.
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Finally, we relate labels to the property of being a sorted tree.

sorted2label_O_OI_I (n :: Nat) (t :: DBT n) (Sorted t)
:: (label t == O) || (label t == OI) || (label t == I)

sortedDown2label_O_IO_I (n::Nat) (t::DBT n) (Sorted (reverse t))
:: (label t == O) || (label t == IO) || (label t == I)

Bitonic Properties. We can now prove the two main properties concerning
bitonic sequences. The first property is as follows:

sorted_sortedDown2bitonic (n :: Nat) (t1, t2 :: DBT n)
(Sorted t1) (Sorted (reverse t2)) :: Bitonic (DBin t1 t2)

This proof is straightforward after considering all possible combinations in
the results of sorted2label O OI I and sortedDown2label O IO I.

Next we state the second property.

bitonic2min_max_Swap (cmp :: ...) ( ... ) (l ,r :: DBT n)
(Bitonic (DBin l r))
:: Bitonic (fst (min_max_Swap cmp l r)) &&

Bitonic (snd (min_max_Swap cmp l r)) &&
fst (min_max_Swap cmp l r) /<=\ snd (min_max_Swap cmp l r)

The proof is performed by cases both on label l and on label r. We con-
sider 43 cases, two of them containing three subcases each; hence 47 cases in total.
Only 24 cases were valid ones in the sense that no contradiction could be derived
from the hypotheses and the labels of the trees. An example of an invalid case is
when we have label l == O, label r == IOI and Bitonic (DBin l r). The
24 valid cases can be divided into six groups: either the left or right tree has
label O or label I, or the trees have labels OI and IO, or IO and OI. Each of these
cases are proved by applying previous lemmas.

Sorted Properties. Before proving that our algorithm sorts sequences of
booleans, we prove some auxiliary lemmas.

leq2min_max_Swap_leqL (cmp :: ...) (...) (n,m :: Nat)
(t1,t2 :: DBT n) (t :: DBT m) (t1 /<=\ t) (t2 /<=\ t)

::fst(min_max_Swap t1 t2) /<=\ t && snd(min_max_Swap t1 t2) /<=\ t

leq2merge_leqL (cmp :: ...) ( ... ) (n,m :: Nat) (t1 :: DBT n)
(t2 :: DBT m) (t1 /<=\ t2) :: merge t1 /<=\ t2

We also prove symmetric lemmas leq2min max Swap leqR and leq2merge leqR,
where the operations min max Swap and merge appear to the right of the symbol
/<=\. All these lemmas are proved by induction on the height of the trees.

We can now prove that the result of merging a bitonic tree is sorted.
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mergeSorted (cmp :: ...) (...) (n :: Nat) (t :: DBT n) (Bitonic t)
:: Sorted (merge t)

The interesting case is when t has the form <l,r>. Let <a,b> be the result of
min max Swap cmp l r. The result of merge t is DBin (merge a) (merge b).

Using bitonic2min max Swapwe know Bitonic a, Bitonic b and a /<=\ b.
By the inductive hypotheses, we have Sorted (merge a) and Sorted (merge b).

Using the lemmas leq2merge leqL and leq2merge leqR, and the fact that
a /<=\ b, we get merge a /<=\ merge b. This concludes the proof. �

We now prove that our bitonic sort returns a sorted tree.

bitonicSortSorted (cmp :: ...) ( ... ) (n :: Nat) (t :: DBT n)
:: Sorted (bitonicSort t)

Again, the interesting case is when t has the form <l,r>. By the inductive
hypotheses we know Sorted (bitonicSort l) and Sorted (bitonicSort r).
Hence, reverse (bitonicSort r) is sorted down.

Using the property sorted sortedDown2bitonic, we obtain that
Bitonic (DBin (bitonicSort l) (reverse (bitonicSort r))).

The premises of mergeSorted are now satisfied. Hence we can conclude that
Sorted (merge (DBin (bitonicSort l) (reverse (bitonicSort r)))). �

It only remains to prove that the specific function cmpS satisfies all the prop-
erties (six) that we have assumed for the argument function cmp (in the lemmas
above we just refereed to them as ( ... )). They are all trivial when the ele-
ments we consider are of type Bool.

We can now establish that our bitonic algorithm sorts sequences of booleans
by applying the lemma bitonicSortSorted to our specific operation cmpS and
to the proofs that cmpS behaves as needed.

5 Bitonic Sort Using Lattice Theory

5.1 Motivations

In this section we use notions from lattice theory, linear orders and monoids for
the formalisation of bitonic sort and its correctness proof. We first give some
heuristic motivations for this approach.

The 0-1 principle is reminiscent of Birkhoff representation theorem [4] that
states that any distributive lattice is a sublattice of a power of the lattice {0, 1}.
Another way to formulate this is to say that an identity between lattice ex-
pressions hold in all lattices if and only if it holds in the lattice {0, 1}. The 0-1
principle can be reformulated as the fact that a sequence of elements in a linear
order D is bitonic if and only if its image by any representation map D → {0, 1}
is bitonic. Now, to say that a sequence of elements xi, i < n in {0, 1} is bitonic
can be formulated as the fact that whenever i < j < k < l < n, we cannot
have neither xi = xk = 1 and xj = xl = 0 nor xj = xl = 1 and xk = xi = 0,
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that is the two sequences . . . 0 . . . 1 . . . 0 . . . 1 . . . and . . . 1 . . . 0 . . . 1 . . . 0 . . . are
not allowed. We can express purely lattice theoretically this in the following way

xi ∧ xk ≤ xj ∨ xl xj ∧ xl ≤ xk ∨ xi (∗)

and we can now take this as a characterisation of bitonic sequences in general:
a sequence of elements xi, i < n in a linear order D is bitonic if and only
if whenever i < j < k < l < n the relations (∗) hold. Here, we have used the
notation x∧y (respectively x∨y) to denote the minimum (respectively maximum)
of x and y. Notice that the above definition makes sense in any distributive
lattice D. (The generalisation of sorting to elements in a distributive lattice is
also considered in exercises in [13].) In this way, we find a direct definition of
being a bitonic sequence which does not refer to the consideration of cyclic shift
of a sequence like in Definition 1. Notice that this new definition of bitonic is
invariant in a cyclic permutation of i, j, k, l.

We explain now how to represent mathematically the notion of permutation of
a sequence. We want to formalise the idea that a sequence y1, . . . , yn is obtained
from a sequence x1, . . . , xn only by doing comparison-and-swap operations. It
is actually clearer, to consider the more general case of distributive lattices. A
comparison-and-swap operation consists in replacing elements xi, xj with i < j
by the elements xi ∧ xj , xi ∨ xj . We formalise this using ideas from universal
algebra. We represent that y1, . . . , yn is obtained from a sequence x1, . . . , xn

only by doing comparison-and-swap operation by the equality Σμ(xi) = Σμ(yi)
for all maps μ : D →M in a commutative monoid satisfying

μ(x ∧ y) + μ(x ∨ y) = μ(x) + μ(y) (∗∗)

Such maps, called valuation maps, are important in the theory of distributive
lattices and in measure theory [11, 16]. In the case where D is a linear order, it
can be shown that to have Σμ(xi) = Σμ(yj) for all such maps is equivalent to
the fact that y1, . . . , yn is a permutation of x1, . . . , xn. Usually, for instance in the
reference [16], M is fixed and taken to be the free commutative monoid generated
by the elements μ(x), x ∈ D and the relation (∗∗). However instead of working
with this fixed monoid, it is equivalent and more convenient to work with all
commutative monoids and maps μ satisfying (∗∗). This turns out to be also well-
suited for the formalisation in type theory: to express the notion of “arbitrary”
commutative monoid and “arbitrary” map satisfying (∗∗), we simply introduce
a new variable M , with the axioms that this forms a commutative monoid, and
a new variable μ with the axioms that this satisfies the relation (∗∗). Even in
the case where D is a linear order, this appears to be the right mathematical
way to express that y1, . . . , yn is a permutation of x1, . . . , xn.

5.2 Formalisation in Type Theory

In order to carry out the actual representation of these mathematical definitions
in type theory, it is simpler to work with sequences as being functions from
a (finite) decidable linear order to an ordered set. (Intuitively, we represent a
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sequence as an array of elements.) A decidable linear order DLO consists of a set I
and an inequality relation (<) :: I -> I -> Bool that is irreflexive, transitive
and linear. We denote I0 the linear order whose set contains only one element
tt and such that tt < tt evaluates to false. Given two linear orders L and
R, we define the linear order L + R as the linear order whose set is the disjoint
sum of the sets in L and R, and such that any element in the set of L is smaller
than any element in the set of R. We can now define a function IN from the
Natural numbers into decidable linear order in such a way that IN n contains
2n elements.

IN (n :: Nat) :: DLO = case n of (zero)-> I0
(succ n’)-> IN n’ + IN n’

A lattice consists of a set D, an inequality relation (<=) :: D -> D -> Set
that is reflexive and transitive, and a minimum (/\) :: D -> D -> D and a
maximum (\/) :: D -> D -> D operations with the expected properties. The
lattice is distributive if (/\) and (\/) satisfies the distributive laws.

A monoid consists of a set M, an equivalence relation (==):: M -> M -> Set,
and an associative and congruent operation (+) :: M -> M -> M. The monoid
is commutative is (+) is commutative.

Linear orders, lattices and monoids are defined as signature types in Agda.
Hence, selecting their components is performed with the projection operator (.).

We define sequences as functions from linear orders to distributive lattices

Sequence (DI::DLO) (f::DI.I -> D) :: Set
= (i,j::DI.I) -> i == j -> f i == f j

where the equality relations over linear order and over lattices are defined as
expected.

The predicates that state if a sequence is increasing Incr or decreasing Decr,
and the relation (<<=) stating that all the elements in the first sequence are
smaller than or equal to any element in the second sequences are defined as
expected. For example, (<<=) is defined as:

(<<=) (|DI::DLO) (|DJ::DLO) (|f::DI.I -> D) (|g::DJ.I -> D)
(seqf::Sequence DI f) (seqg::Sequence DJ g) :: Set

= (i::DI.I)-> (j::DJ.I)-> (f i <= g j)

Bitonic sequences are defined as follows:

Bitonic (|DI::DLO) (|f::DI.I -> D) (seqf::Sequence DI f) :: Set
= (i,j,k,l::DI.I) -> (ls_ij::T (i < j)) ->
(ls_jk::T (j < k)) -> (ls_kl::T (k < l)) ->
(f i /\ f k <= f j \/ f l && f j /\ f l <= f i \/ f k)

If seqf is a sequence over the linear order IN (succ n), then selecting the
left and the right sequences of the tree domain produce sequences as a result.
These operation are called leftSeq and rightSeq respectively. In addition,
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mergeF (n::Nat) (f::(IN n).I -> D) :: (IN n).I -> D
= case n of (zero)-> f

(succ n’)->
let inlf = leftF n’ f; inrf = rightF n’ f
in conF (IN n’) (IN n’) (mergeF n’ (minF (IN n’) inlf inrf))

(mergeF n’ (maxF (IN n’) inlf inrf))

mergeSeq (n::Nat) (|f::(IN n).I -> D) (seqf::Sequence (IN n) f)
:: Sequence (IN n) (mergeF n f)

= case n of (zero)-> seqf
(succ n’)->

let leftS = leftSeq n’ seqf; rightS = rightSeq n’ seqf
in mergeSeq n’ (leftS /+\ rightS) *

mergeSeq n’ (leftS \+/ rightS)

bitonicSort (n::Nat) (f::(IN n).I -> D) :: (IN n).I -> D
= case n of (zero)-> f

(succ n’)->
let inlf = leftF n’ f; inrf = rightF n’ f
in mergeF (succ n’)

(conF (IN n’) (IN n’) (bitonicSort n’ inlf)
(revF n’ (bitonicSort n’ inrf)))

bitonicSortSeq (n::Nat) (|f::(IN n).I -> D) (seqf::Sequence (IN n) f)
:: Sequence (IN n) (bitonicSort n f)

= case n of (zero)-> seqf
(succ n’)->

let leftS = leftSeq n’ seqf; rightS = rightSeq n’ seqf
in mergeSeq (succ n’) (bitonicSortSeq n’ leftS *

revSeq n’ (bitonicSortSeq n’ rightS))

Fig. 3. Bitonic sort using linear orders and lattices

revSeq seqf produces a sequence in the reverse order. The underneath func-
tions in the definition of the sequences are called leftF, rightF and revF
respectively.

If seqf and seqg are sequences over the same linear order domain DI with
functions f and g, respectively, then, seqf /+\ seqg and seqf \+/ seqg pro-
duce sequences such that, for all i in DI.I, we have that f i /\ g i and
f i \/ g i, respectively. The underneath functions are called minF and maxF
respectively.

If DI and DJ are linear orders, and if sf is a sequence over DI and sg is a
sequence over DJ then, sf * sg is a sequence over the linear order DI + DJ with
conF as underneath function.

Let DL be a distributive lattice with set D. Figure 3 presents the formalisation
of bitonic sort using the notions we describe above.
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5.3 The Permutation Property

Let L be a lattice with set D and CM be a commutative monoid with set M. Let
mu :: D -> M be a function such that for all a,b::D then
mu a + mu b == mu (a /\ b) + mu (a \/ b) is satisfied. We then define

Sigma (n::Nat) (f::(IN n).I -> D) :: M
= case n of

(zero)-> mu (f tt)
(succ n’)-> Sigma n’ (leftF n’ f) + Sigma n’ (rightF n’ f)

If f,g::(IN n).I -> D, the following properties can be easily proved by in-
duction on n and transitivity of equality:

Sigma n f == Sigma n (revF n f)

Sigma n f + Sigma n g ==
Sigma n (minF (IN n) f g) + Sigma n (maxF (IN n) f g)

It is also immediate to prove that

Sigma (succ n) (conF (IN n) (IN n) f g) == Sigma n f + Sigma n g

We can finally prove that

mergeSigma (n::Nat) (f::(IN n).I -> D)
:: Sigma n f == Sigma n (mergeF n f)

bitonicSortSigma (n::Nat) (f::(IN n).I -> D)
:: Sigma n f == Sigma n (bitonicSort n f)

by induction on n, transitivity of equality and the properties we mentioned above.

5.4 The Sorting Property

Let L be a lattice with set D.
Most of the properties needed on sequences in order to prove that the bitonic

algorithm sorts its input are very easy to prove by induction, case analysis or
almost straightforwardly. A couple of examples of such properties are:

incr2decr_rev (n::Nat) (|f::(IN n).I -> D)
(seqf::Sequence (IN n) f) (up::Incr seqf)
:: Decr (revSeq n seqf)

min_seq_LEq_max_seq (|DI::DLO) (|f,|g::DI.I -> D)
(seqf::Sequence DI f) (seqg::Sequence DI g)
(bit_fg::Bitonic (seqf * seqg))
:: seqf /+\ seqg <<= seqf \+/ seqg
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The proof that the result of concatenating an increasing sequence with a
decreasing sequences is a bitonic sequence requires looking into three cases plus
five empty cases (that is, we can derive absurdity from them).

incr_decr2bitonic (|DI::DLO) (|DJ::DLO) (|f::DI.I -> D)
(|g::DJ.I -> D) (seqf::Sequence DI f) (seqg::Sequence DJ g)
(up::Incr seqf) (dw::Decr seqg) :: Bitonic (seqf * seqg)

The proof goes as follows. Given i,j,k,l::(DI + DJ).I such that
ls ij::T (i < j), ls jk::T (j < k) and ls kl::T (k < l) we need to prove
i /\ k <= j \/ l and j /\ l <= i \/ k. We have the following three cases:

– k::DI.I and hence i,j::DI.I: Here i /\k <= i <= j <= j \/ l and
j /\ l <= j <= k <= i \/ k

– k::DJ.I and j::DI.I; hence i::DI.I and l::DJ.I: Here we have that
i /\ k <= i <= j <= j \/ l and that j /\ l <= l <= k <= i \/ k

– k::DJ.I and j::DJ.I; hence l::DJ.I: Here i /\ k <= k <= j \/ l and
j /\ l <= l <= k <= i \/ k �

The properties that show that if a sequence seqf * seqg is bitonic then
both the sequences seqf /+\ seqg and seqf \+/ seqg are bitonic require some
inequality reasoning with easy results from lattice theory. The proofs are not
difficult to perform but they are not too nice either due to the fact that Agda
has no support for inequality reasoning. The type of the first such property is
as follows:

bitonic_min_seq (|DI::DLO) (|f,|g::DI.I -> D)
(seqf::Sequence DI f) (seqg::Sequence DI g)
(bit_fg::Bitonic (seqf * seqg)) :: Bitonic (seqf /+\ seqg)

After a few easy inductive proofs concerning the result of the merge operation,
we are able to establish that both the result of merge and of the bitonic sort are
increasing sequences.

mergeIncr (n::Nat) (|f::(IN n).I -> D) (seqf::Sequence (IN n) f)
(btf::Bitonic seqf) :: Incr (mergeSeq n seqf)

bitonicSortIncr (n::Nat) (|f::(IN n).I -> D)
(seqf::Sequence (IN n) f) :: Incr (bitonicSortSeq n seqf)

Both proofs are performed by induction on n.

6 Conclusions and Related Work

The major challenge and difficulty in this work was to find a suitable represen-
tation of a bitonic sequence that would allow us to prove the needed properties
in a nice way and without the need of considering too many cases.
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In our first formalisation (see Section 4), we define labels on the boolean
binary trees to formalise the notion of bitonic sequences. We believe that this
representation gives us a lot of intuition about the properties we will or we will
not be able to prove, since the label of a tree gives us enough information about
the kind of tree we are working with. A disadvantage of this representation is
that, when considering cases on the label of the trees, we must deal with many
cases that do not make sense, as it was explained before.

We believe one might be able to overcome this problem by working in a proof
assistant such as Epigram [9], which provides a more powerful pattern matching
facility than the one implemented in Agda. If this is the case, we could define an
inductive predicate over dependent trees which exactly characterises those trees
that are bitonic. When doing pattern matching on a proof that a tree is bitonic,
we will then only obtain the non-empty cases.

Our second formalisation (see Section 5) used notions from linear orders,
lattice theory and monoids. In general, this formalisation was shorter and more
elegant than the first one.

Finally, it is interesting to point out that, despite of the different approaches
we used in the two formalisations, some of the lemmas we used for proving the
sorting property were needed in the two correctness proofs that we presented.

Related Work

To the best of our knowledge, there are not many formal proofs of bitonic sort.
Couturier [7] performed a formal proof of the sorting property of bitonic sort

in PVS [17] that does not use the 0-1 principle. In his work, Couturier formalised
the general notion of bitonic sequences with an array (represented by a function
from Natural numbers to Natural numbers) and three indexes: the indexes for
the left-most and right-most elements, and the index for the maximum element.
Most of the properties proved in [7] involve multiple indexes and several for-all
statements. He also had to deal with many cases in some of his proofs, in one
proof he deals with 54 cases. In our opinion, it is rather difficult to closely follow
the process in [7] because of the complexity in the type of some of the properties.

The reader is refereed to [5] for a more complete description of the literature
about bitonic sort.
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Abstract. We propose a simple theory of monotone functions that is
the basis for the implementation of a tactic that generalises one step
conditional rewriting by “propagating” constraints of the form x R y
where the relation R can be weaker than an equivalence relation. The
constraints can be propagated only in goals whose conclusion is a syntac-
tic composition of n-ary functions that are monotone in each argument.
The tactic has been implemented in the Coq system as a semi-reflexive
tactic, which represents a novelty and an improvement over an earlier
similar development for NuPRL.

A few interesting applications of the tactic are: reasoning in type the-
ory about equivalence classes (by performing rewriting in well-defined
goals); reasoning about reductions and properties preserved by reduc-
tions; reasoning about partial functions over equivalence classes (by per-
forming rewriting in PERs); propagating inequalities by replacing a term
with a smaller (greater) one in a given monotone context.

1 Introduction

Equalities are pervasive in mathematics. They are also very easy to reason about
since they enjoy the substitution property: for each P , whenever x = y and P
holds for x, P also holds for y. In type theory, the substitution property is a
trivial consequence of the definition of Leibniz equality.

Sometimes in mathematics it is necessary to consider equivalence relations
that are not equalities. The usual mathematical practice is to immediately quo-
tient the carrier w.r.t. the equivalence relation in order to use equality between
classes and obtain substitutivity. Extensions of intensional type theories to ac-
commodate quotient types have been proposed in the literature [7], but they are
not used in practice. Sometimes the problem can be avoided by defining a nor-
malisation function that picks a canonical representative for each class, replacing
the equivalence relation with Leibniz equality over the representatives [3]. More
often, however, the user avoids building the quotient sets and explicitly works
with the equivalence relation. This approach is called the setoid approach [1].

The more serious drawback of working with setoids and equivalence relations
is that the substitutivity property does not always hold for each context P .
When it holds, the context is usually called compatible or equality preserving
and the equivalence relation is said to be a congruence w.r.t. the context. When
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the relation is generalized to be an order, the contexts are usually called order
preserving or monotone and no standard terminology exists when no assump-
tion is made on the relation. Thus I prefer to call substitutive the context the
substitutivity property holds for independently of the properties of the relations
considered. Basin, in a related work [2], calls them functional.

In the setoid approach, to substitute y for x in (P x) the user needs to prove
that P is substitutive. In practice, much of this task can be easily automated [9]:
since the composition of substitutive functions is substitutive, it is possible to
build a tactic that automatically proves that a context is substitutive when-
ever the context is syntactically a composition of functions whose substitutive
property has been previously shown by the user.

In this paper we provide a generalisation of the setoid approach by consid-
ering relations that are weaker than equivalence relations, and we characterise
corresponding classes of substitutive contexts. As a result we develop a tactic
that from the hypotheses x R y and P x deduces P y whenever the context P ,
seen as a syntactic composition of functions, can be automatically proved to be
substitutive.

Our idea is not original: the theory we develop is a reformulation of a restric-
tion of Window Inferencing [6] and an equivalent tactic has been available for
years in the NuPRL [2, 8] and HOL systems. However our implementation is the
first one to be semi-reflexive and our formulation of the theory paves the way to
reflexive implementations. Moreover we take non reflexive relations seriously.

In Sect. 2 we present a few scenarios that motivate the study of the substitu-
tivity property for relations weaker than equivalence relations. Sect. 3 details the
relation with previous work, in particular with Windows Inferencing. In Sect. 4
we present a small theory of monotone functions, called morphisms. Sect. 5 de-
scribes the semi-reflexive tactic that is based on that theory. The tactic has been
already integrated in the code base of the proof assistant Coq, and it will be dis-
tributed as soon as the next major version of the system is released. To use it
now, a user needs to switch to the development version of Coq, available only
via anonymous CVS. A sample application of the tactic is given in Sect. 6. We
draw a few conclusions in Sect. 7.

2 Motivations

We present now a few scenarios for equational and sub-equational reasoning.

2.1 Equivalence Relations

The classical scenario is the one of equivalence relations. Given the goal

H : x ≡ y

(P (f x))

the user wants to replace x with y in the conclusion, obtaining

H : x ≡ y

(P (f y))
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The substitution can be performed iff (P (f �)) is a substitutive context. To
prove that (P (f �)) is substitutive it is sufficient (but not necessary!) to prove
that there exists an equivalence relation ≡′ defined on the codomain of f such
that: (1) f is substitutive w.r.t. ≡ and ≡′ (i.e. if ∀x, x′ x ≡ x′ ⇒ (f x) ≡′ (f x′))
and (2) P is substitutive w.r.t. ≡′ and ⇐⇒ (i.e. if ∀x, x′ x ≡′ x′ ⇒ (P x) ⇐⇒
(P x′)). The properties (1) and (2) are usually proved by the user once and for
all when f and P are defined.

2.2 Dropping Symmetry: Preorders

The second scenario considers relations that are transitive and reflexive, but not
symmetric. For instance, multi-steps reduction relations belong to this scenario.
As an example, the user could be developing a theory of the λ-calculus, and she
could face the goal

H : ((λx.x) M) �β M

(Q (f M))

where Q ◦ f is a property preserved by reduction. Thus substituting ((λx.x) M)
in place of M in the goal is a sound operation that yields the new goal

H : ((λx.x) M) �β M

(Q (f ((λx.x) M)))

At first glance, the example given looks similar to the one in the previous
scenario. However, the fact that the reduction relations are not symmetric intro-
duce subtle consequences for substitutive contexts: a context C is still substitu-
tive w.r.t. two reduction relations � and �′ iff ∀x, x′ x � x′ ⇒ (C x) �′ (C x′).
This means that now C is substitutive iff it is a monotone increasing function.
Now let⇒ be the reflexive, transitive and asymmetric relation considered on the
set of all propositions. In order to substitute x with y in (C x) it is necessary
to prove that (C y)⇒ (C x) and, C being a substitutive context by hypothesis,
this can be done iff y � x. The conclusion is that only the right hand side of the
relation can be replaced by the left hand side in the goal! In order to be able
to substitute the right hand side for the left hand side the context C must be a
monotone decreasing function.

From the previous observation we deduce that in the case of asymmetric
relation the definition of substitutive context (an increasing vs a decreasing
monotone function) depends on the direction chosen for the rewriting of the
hypothesis.

As in the previous scenario, monotonicity is preserved by function composi-
tion. Moreover, it is easy to deduce whether the compound function is increasing
or decreasing from the same knowledge on the arguments of the composition.
Thus a tactic can automatically decide if a context is substitutive provided that
the functions that syntactically compose the context have been already shown
to be monotone.

A different example that belongs to the same scenario is the one of “rewriting”
of large inequalities. For instance, given the goal
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H : ε ≥ 0
−2 ∗ 0 ≥ −2 ∗ ε

the user can use the tactic to propagate the hypothesis H by replacing ε with 0
in the goal, obtaining:

H : ε ≥ 0
−2 ∗ 0 ≥ −2 ∗ 0

From the usual arithmetic properties an automatic tactic should be able to
deduce that the context −2 ∗ 0 ≥ −2 ∗ � is substitutive (i.e. it is a monotone
decreasing predicate w.r.t. the order ⇒).

2.3 Dropping Reflexivity: PERs

The third scenario that we consider is about irreflexive relations. For instance,
irreflexive, symmetric and transitive relations (also called Partial Equivalence
Relations or simply PERs) can be used in type theory to reason about functions
over equivalence classes over a subset of a given set X : let (X,≡) be a set
together with a PER over it. We say that an element x ∈ X is proper if x ≡ x.
The subset of the proper elements of X forms a setoid. To represent a setoid-
compatible unary function over the elements of the setoid we can use a function
F whose domain is X such that F respects the relation ≡ on the proper elements
only. In other words, F is compatible iff ∀x, x′ x ≡ x∧x ≡ x′ ⇒ (F x) = (F x′).
All the theorems that deal with F will have the hypothesis that all the elements
of X are proper.

Alternative solutions to the PER approach (also called Partial Setoid Ap-
proach) is to first construct the subset of X as a sigma-type and then define an
equivalence relation over the sigma-type elements. This alternative approach is
strictly more expressive [1], but in practice it can be more cumbersome.

With respect to the previous scenarios the definition of substitutive context
must not be changed. Moreover, the composition of substitutive functions (if
the relation is symmetric) and the composition of strictly monotone functions
(if the relation is asymmetric) preserves the property. However, the property is
no longer granted for 0-ary functions (the constants that occur in the goal). An
example should easily explain the remark. Consider the context (f x �). We
know by hypothesis that f is substitutive in each argument, i.e. ∀x, x′, y, y′ x ≡
x′ ∧ y ≡ y′ ⇒ (f x y) ≡ (f x′ y′) and we want to prove that the whole context
is substitutive. The proof is trivial provided that we can show that x is a proper
element, i.e. x ≡ x. The latter proof cannot be fully automated. Thus we will
leave it to the user.

3 Related Work

(Sub-)equational reasoning is closely related to Window Inferencing (WI) [6], a
style of reasoning proposed by Robinson and Staples [10]. Like natural deduction
and sequent calculus, WI is a way of forming and validating proofs in a given
logic. A proof is built by manipulating a stack of windows. Each window is a



102 C. Sacerdoti Coen

triple Γ,R, E where E is a formula in a context Γ and R is a binary relation
over the type of E. The goal of the user is to transform the window Γ,R, E in a
new window Γ,R, E′ such that Γ 	 ERE′. The only actions the user can take
are: 1) closing the window (equivalent to say that E′ = E, requires ERE); 2)
opening a new window Γ ′,R′, E′ where E′ is a subterm of E such that for all E′′,
if E′R′E′′ under the hypotheses Γ ′ then ERE{E′′/E′} under the hypotheses Γ ;
3) transforming the window to Γ,R, E′ in an atomic step (requires ERE′). In the
initial proposal for WI all relations R in the windows needed to be equivalence
relations; however it was soon observed that symmetry is not required.

WI is surely an interesting style for proof development, expecially for equa-
tional proofs, and it can be applied very naturally to some special domains such
as program refinement. Moreover effective ad-hoc user interfaces have been de-
veloped for WI tools [4]. However, WI is a departure from more traditional proof
styles such as natural deduction and sequent calculus and it is surely interesting
to accomodate the basic ideas of WI in a more traditional setting.

In particular, we can consider a restriction of WI, equivalent to the original
formulation, obtained by restricting the available actions to the sequence: 1)
recursively open new windows as needed; 2) apply exactly one transformation;
3) recursively close all the opened windows. The sequence can be applied as
many times as needed. Notice that this equivalent formulation does not require
the relations to be transitive (since only one transformation can be applied before
closing the windows): only the topmost relation must be transitive if the user
wants to iterate the sequence more than once.

This alternative formulation can be better understood as a natural language
deduction proof by generalized rewriting, where a term is substituted for an
equivalent (but not necessaritly congruent) one. The terminoly “generalized
rewriting” was introduced by Basin in [2]; in the rest of the paper we will adopt
equational reasoning. To an application of the sequence corresponds the following
proof by equational reasoning: the initial goal is Γ � ER? where ? is a metavari-
able to be instantiated during the proof search and E = C1[. . . [Cn[En+1]] . . .]
where Ei = Ci[. . . [Cn[En+1]] . . .] is the expression of the i-th opened win-
dow; in a context Γn+1 it is possible to prove the lemma En+1R′E′

n+1; the
proof proceeds by rewriting the lemma, replacing En+1 with E′

n+1 obtaining
the new goal Γ � E′R? where E′ = C1[. . . [Cn[E′

n+1]] . . .] that is proved by
reflexivity of R instantiating ? with E′. To complete the proof a new goal
Γi+1 ⇒ Ei+1Ri+1Ei+1{En+1/E′

n+1}; Γn � EiRiEi{En+1/E′
n+1} is opened for

i = 1, . . . , n and it is solved (hopefully automatically) using the side condition
for opening a new window in WI.

We can now see that a usual proof by rewriting is a special case of WI where
all the relations are equivalence relations that are congruences w.r.t. the contexts
Ci[ ]. In particular all the new goals generated by the rewriting step can be closed
by using the fact that the appropriate relation is a congruence. Notice that, in
this case, Γi = Γ for each window.

Finally we define a proof by sub-equational reasoning as the generalization
of a proof by equational reasoning where the relations are not required to be
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equivalence relations. Thus a proof by sub-equational reasoning is a special case
of WI where each window opening does not change the context Γ , i.e. where
Γi = Γ for each window.

Observation 1. To summarise the requirements over the relations in WI (the
restricted formulation), every relation but that of the initial window does not
need to be either symmetric or transitive. Reflexivity is also not required, but
it is often necessary to prove the side conditions for opening a window. Thus
the implementations of WI usually require the relations to be reflexive (or even
pre-orders) [11].

Observation 2. (Sub-)equational reasoning is strictly less expressive than WI
because of the restriction on the contexts. For instance, when proving Γ � (A ∧
B → C) ⇐⇒ ? in classical propositional calculus using WI it is possible to
open a new window at A adding to Γ the two new hypotheses ¬C and B and
then exploiting them to prove A ⇐⇒ E for concluding Γ � (A ∧B → C) ⇐⇒
(E∧B → C). To prove the same result using (sub-)equational reasoning only the
user needs first of all to prove the lemma A ⇐⇒ E in the context Γ , without
the two additional hypotheses ¬C and B.

Although (sub-)equational reasoning is less expressive than WI, it is however
a very useful generalization of rewriting and it has been exploited for years in
the NuPRL system [2, 8] under the name of generalized rewriting. In this paper
we present a tactic for (sub-)equational reasoning that is functionally equivalent
to the tactic proposed in NuPRL. However, it differs from the NuPRL tactic in
a few important aspects:
1) The NuPRL tactic is completely implemented at the meta-level. The meta
level is responsible for finding a proof that the rewriting context is substitutive
and generating the corresponding proof term. The latter is huge, its size being
at least quadratic in the size of the initial expression. The well known problem,
already existent for proofs based on simple rewriting, is that each rewriting step
requires an explicit term that is the predicate obtained by abstracting the goal
over the term to replace, the term to be replaced and the term to be substitued.
Our implementation solves the problem by adopting a semi-reflexive approach.
The meta level is still responsible for finding a proof that the rewrite context is
substitutive, but instead of generating a proof term that details every step of the
proof it generates a proof term that applies a correctness theorem to a trace of
the proof found. The trace is roughly linear in the size of the initial expression,
being an annotation of it (see Sect. 5 and 6). The correctness theorem says that
from each well typed trace there exists a proof of the statement.

The semi-reflexive approach does not hinder flexibility in proof search: since
the proof search is done at the meta level it is easy to implement backtracking
and heuristics, and it is easy to invoke already existent tactics for proving side
conditions. A completely reflexive approach (i.e. implementing proof search in the
logic) would be much more difficult to maintain and less computationally efficient.
Moreover, the proof terms generated by (semi-)reflexive tactics are not only more
compact, but they also have additional advantages for proof rendering purposes.



104 C. Sacerdoti Coen

2) The tactic for NuPRL described by Basin [2] does not search the whole space
for possible proofs of substitutivity, using an heuristic to avoid backtracking but
possibly failing to find a proof. The motivation given for the heuristic is the
complexity of the complete method, that is exponential in the depth of the
rewritten subterms. However, since in practice the goal is small and not very
deep, the exponential complexity is not really a problem and we decided to
implement the complete method.

A stronger motivation for a simpler implementation is surely that the proof
search is quite a complex operation that can be extremely difficult to debug
(since a bug results in a complex not well typed proof term). This motivation
becomes much less critical in our approach, since the proof term generated is
just a trace of the proof — an annotation of the term to be rewritten — that
can be inspected much more easily.
3) Finally in our theory we introduce the notion of variance for the argu-
ments of a substitutive function. This notion is missing in the WI approach
since it can be simulated by adding to the library of the system the inverse
relation R−1 for each relation R. However, we argue that our approach is some-
way more natural since it fits better with the notion of monotone functions
we are going to develop and for sure it avoids augmenting the library with
redundant relations that should later on be considered equivalent during unifi-
cation, proof search, etc. Just to make a simple example, our approach avoids
1) having to introduce reverse implication A ⇐ B in the system; 2) proposing
to the user confusing goals that mix the two implications, e.g. ¬A ⇐ ¬B ⇒
B ⇐ A; 3) introducing in the system automatic conversions to normalise the
goals by expanding every definition of ⇐ in a goal during unification and proof
search.

4 Morphisms and Signatures

The scenarios provided in Sect. 2 should have convinced the reader that replacing
one side of a relation with the other in a goal is a natural operation even when
the relation is not an equivalence. To perform the replacement the system has to
show that the replacement context is substitutive. This can easily be automated.
However, we have seen that according to the properties of the relation the steps
required to prove substitutivity slightly change. Thus the implementation of the
tactic can become quite tricky in practice. In this section we will present a small
theory of monotone functions that will be the basis for a semi-reflexive tactic
implementation described in Sect. 5.

4.1 Basic Definitions

We characterise n-ary functions that are simultaneously monotone in each ar-
gument not only by the types of their arguments and by their output type, but
also by the relations associated to each type and by flags that state whether a
function is increasing or decreasing in each argument:
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Definition 1 (Signature). A signature is an expression

R1 ⇒d1 . . .⇒dn−1 Rn ⇒dn R

where (T1,R1), . . . , (Tn,Rn), (T,R) are pairs whose first component is a type and
whose second component is a binary relation1 over it and d1, . . . , dn ∈ {�, 
}.

Notice that each relation R in a signature uniquely identifies its carrier T .

Definition 2. Let R be a binary relation. R� def
= R and R� def

= R−1 (i.e.

R� def
= λxy.yRx)

Definition 3 (Morphism). A morphism of signature

R1 ⇒d1 . . .⇒dn−1 Rn ⇒dn R

is a function
f : T1 → . . .→ Tn → T

that is simultaneously monotone in its arguments:

∀x1x
′
1, x1Rd1

1 x′
1 → . . .→ ∀xnx′

n, xnRdn
n x′

n → (f x1 . . . xn)R(f x′
1 . . . x′

n)

To state that a function f is a morphism of signature Σ we will write f : Σ.

Definition 4 (Covariance and contravariance). Let

f : R1 ⇒d1 . . .⇒dn−1 Rn ⇒dn R

We say that f is covariant (respectively contravariant) in the i-th argument if
di is equal to � (respectively 
).

Fact 1. If the i-th relation Ri of a signature Σ is symmetric, then every mor-
phism of signature Σ has also signature Σ′ where Σ′ is obtained from Σ by
changing the variance of the i-th argument.

4.2 Morphism Properties

Morphisms can be composed:

Fact 2 (Morphism composition). Given

f : R1 ⇒d1 . . .⇒dn−1 Rn ⇒dn R

and
fi : Ri

1 ⇒di
1 . . .⇒di

ni−1 Rni ⇒di
ni Ri for i = 1, . . . , n

1 We do not require the relations to be orders, even if we still adopt the corresponding
terminology talking of monotone functions.
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the compound function
f ◦ 〈f1, . . . , fn〉

is a morphism of signature

R1
1 ⇒d1

1=d1 . . .⇒d1
n1−1=d1 R1

ni
⇒d1

n1
=d1

. . .

Rn
1 ⇒dn

1 =dn . . .⇒dn
nn−1=dn Rn

nn
⇒dn

nn
=dn R

where d = d′ is � when d and d′ are the same variance, and 
 when they are
not.

Let R be a binary relation over T . The following facts hold.

Fact 3 (Identity morphism). The identity function λx : T.x is a morphism
of signature R ⇒� R.

Fact 4 (0-ary morphism). The 0-ary constant function t of type T is a mor-
phism of signature R if and only if tRt.

Fact 5. If R is a reflexive relation than every 0-ary function of type T is a
morphism of signature R.

Notice that if (T, R) is a partial setoid, then the 0-ary morphisms T are the
proper elements of the setoid.

Fact 6 (Contraction (basic case)). Given a morphism

f : R ⇒� . . .⇒� R ⇒� R ⇒� . . .R ⇒� R′

the function λxy.(f x . . . x y . . . y) is a morphism of signature

R ⇒� R ⇒� R′

The generalisation to an arbitrary interleaving of the covariant and contravari-
ant arguments are left as a trivial exercise to the reader.

In the general case using contraction we can always obtain a new morphism
equivalent to a given one such that each relation occurs in the signature at most
twice, once in covariant and the other in contravariant position.

As a first step towards a semi-reflexive implementation of our tactic in the Coq
system we have formalised in Coq the definition of signature and (an equivalent
version of) all the previous facts. To obtain a non-reflexive implementation of
the tactic such formalisation is not required.

In the formalisation we have heavily exploited dependent types and internal
computation to make the formalisation simpler and more elegant. For example,
it is possible to define in Coq two functions signature to type : signature→
Type and signature to compatibility :ΠΣ : signature, signature to type
Σ → Prop that, given a signature

R1 ⇒d1 . . .⇒dn−1 Rn ⇒dn R

compute respectively the function type



A Semi-reflexive Tactic for (Sub-)Equational Reasoning 107

f : T1 → . . .→ Tn → T

and the proposition

λf : T1 → . . .→ Tn → T,

∀x1x
′
1, x1Rd1

1 x′
1 → . . .→ ∀xnx′

n, xnRdn
n x′

n → (f x1 . . . xn)R(f x′
1 . . . x′

n)

Another example consists in the function that automatically computes the sig-
nature of a morphism composition from the signatures of the arguments and the
output type (and relation and variance) of the head function. In this way we
reduce the problem of checking whether morphisms have a given signature or
whether morphism can be composed to a type-checking problem, that is auto-
matically decided by Coq. Moreover, we obtain proof terms that are relatively
small, since we often provide just the signatures in place of long lists of con-
straints that must be satisfied for instance to compose morphisms.

The current formalisation in Coq is about 664 lines long and required just a
few days, despite the fact that Coq automation vis a vis of dependent types (e.g.
generation of elimination predicates and unification) is often unsatisfactory.

5 The Tactic

Let us focus now on the implementation of the tactic. We define an applicative
context to be a term generated by the following grammar:

t ::= � | x | (f t . . . t)

An applicative context is a term with a non-linear placeholder � that is a syn-
tactic composition of constants applications. The constants f can be n-ary or
0-ary. Unbound variables x can also occur in the applicative context (but they
can not be applied to arguments).

We restrict ourselves to those applicative contexts C such that:

– all the constants have first order non-dependent types
– the constants are fully applied
– the term λx.C{x/�} is well-typed

Since we are avoiding dependent types we can also deal with function spaces and
implications: a formula A→ B can be seen as an applicative context (Impl A B)
where Impl is defined as λAB.A → B.

We suppose that there exists a way for the user to specify for each constant f a
set of signatures Σ1, . . . , Σn such that f is a morphism of signature Σi for each i.
Of course the user must provide a proof pi of the fact that f is a signature of type
Σi. Notice that the set of signatures is never empty, since every constant f is at
least a morphism of signature ΣL where ΣL is the signature =⇒� . . .⇒�=⇒�=
where = is Leibniz equality. Fact 1 can be used to reduce the number of registered
signatures: if a morphism is both covariant and contravariant in an argument
only one of the two signatures must be declared.
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We also suppose that there exists a way for the user to register for each type
a set of binary relations over it.

We can now describe the specification of our tactic:

Input A well-behaved propositional applicative context C, a relation R over T
and a rewrite direction d ∈ {�, 
}.

Output A proof of λx : T.C{x/�} : R ⇒d Impl where Impl is propositional
implication. The tactic fails if it is not able to produce such a proof.

Before proceeding in describing the implementation, let us see how the tactic
is concretely used. Facing the goal

H : E1RE2

G

the user can ask to replace either E1 with E2 or E2 with E1 in G. In the first
case our tactic is invoked with the arguments C = G{�/E1}, R and 
; in the
second case with the arguments C = G{�/E2}, R and �. In both cases the
proof built by the tactic can be applied to the hypothesis H to obtain the new
goal G{E2/E1} (respectively G{E1/E2}).

We describe now a naive implementation of the tactic based on the facts given
in the previous section. We will then sketch the more efficient implementation
that is now integrated in the Coq development release.

Step 1: the first steps output a set of applicative contexts annotated in each
possible way according to the following rules:
– annotate each constant with one of its declared signatures; use fact 1

and the proof of symmetry of the appropriate relation to generate every
correct signature w.r.t. variance constraints together with the proof that
the constant respects the signature

– annotate each placeholder with the identity signature R ⇒� R. This
corresponds to interpreting a placeholder as the identity morphism (cfr.
fact 3)

– annotate each variable with the appropriate signature for a a 0-ary con-
stant (cfr. fact 4); generate one annotation for each relation declared over
the type of the variable; prove that the variable is a 0-ary morphism by
using fact 5 (if the relation is reflexive) or by asking the user to prove
that the variable is a proper element for the relation

An annotated applicative context is a syntactic description of a (possibly
wrongly typed) hereditary morphism composition where each placeholder is
interpreted as the identity morphism (cfr. fact 3).

Step 2: prune out from the set those morphism compositions that are not well-
typed according to the constraints given in fact 2 (i.e. the relation associated
to each formal argument must match the output relation the actual argument
is annotated with).

Step 3: prune out the morphisms whose conclusion is not the relation Impl
(propositional implication).
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Step 4: compute the signature of the obtained morphisms according to the rules
given in fact 2.

Step 5: apply contraction to each morphism in the set (fact 6); filter out those
morphisms whose signature is not R ⇒d Impl

Step 6: if the set is empty than fail; otherwise pick one morphism from the set
and build a proof of the fact that the morphism has the expected signature
by visiting the annotated applicative context and applying the appropriate
fact for each node.

The previous implementation is obviously highly inefficient, since it builds
a huge search space first and then prunes it. Better implementations can be
obtained by constructing and pruning the search space at the same time. This
is roughly the strategy we implemented in the Coq system2:

let rec decorate C R’ d’ =
match C with

[] -> if d=d’ && R = R’ then ok else error
|x -> if type x = carrier R’ && (reflexive R’||ask-user R’ x)

then ok else error
| (f C) ->

let sigset = signatures-of f in
let sigset’ = filter (fun S -> output S = R’) sigset in
exists sigset’ (fun S ->
decorate C (relation (input S))
(compose-dir R’ (variance (input S))))

The function decorate must be initially called on the context C, relation Impl
and direction 
. Then it proceeds recursively over the applicative context re-
membering what is the expected output relation of the morphism C and whether
the morphism C is supposed to be increasing or decreasing. The function exists
performs the necessary backtracking over the set of signatures that have the ex-
pected output type. When a placeholder is met it is checked whether the expected
relation and variance are coherent with the one the user is interested in. The
function ask-user is supposed to open a new goal to ask the user to prove that
its second argument is proper w.r.t. the relation that is the first argument.

We decided to implement the tactic in the Coq system in a semi-reflexive
way (i.e. proof search is implemented at the meta-level; a trace of the proof
found is reified at the term level and it is used by the type-checker of Coq to
reconstruct the whole proof as a typing problem). The proof-search part (roughly
the strategy described by the function decorate) is implemented in OCaml
and it returns a decorated applicative context. Then the decorated applicative
context is reified in a Coq term. Finally a Coq function checks that the decorated
2 To keep the code short only the case of unary morphisms is shown. The n-ary case

is more complicated due to the need of backtracking the computation on all the
arguments of the application whenever one branch fail. The actual code must also
compute the well-typed annotated applicative context to produce the final proof. It
is written in OCaml and it is 229 lines long.
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applicative context is well-typed, interprets it as a morphism and produces a
proof that the morphism respects its signature. In Sect. 6 we present an example
of usage of the tactic and we show the decorated applicative context and the
proof term generated for that example.

Thanks to dependent types and internal computation in the Coq logic, check-
ing that the decorated applicative context is well-typed boils down to a checking
problem that is decided by the system. The construction of the proof is also
done on-the-fly by the Coq system during type-checking. Thus the actual proof
term generated by the tactic is just the application of a constant to the term
that describes the decorated applicative context, that is linear in the size of the
goal. If the tactic was written entirely in OCaml, instead, the generated proof
goal would have been much bigger and definitely non linear in the size of the
goal.

Implementing the tactic as a fully reflexive one would have meant implement-
ing also the proof-search part in Coq. Since execution of code in Coq is made
by an interpreter while OCaml code is compiled, this would have meant a much
slower tactic.3 Moreover, it is simpler to add heuristics and optimisations to the
OCaml code without having to prove all of them correct: the Coq part of the
tactic is responsible of verifying the correctness of the generated solutions and
helps in detecting bugs in the OCaml code. Finally, when a 0-ary morphism over
a non reflexive relation is found, our tactic needs to open a new goal. To the best
of our knowledge, it is impossible for a fully reflexive implementation to open
a new goal, whereas this is easy in the semi-reflexive setting: it is sufficient to
reify a trace that contains fresh metavariables.

6 An Example

The following example shows a situation where the tactic really shines.
Let =− be the smallest reflexive relation over negative integer numbers (i.e.

x =− y iff x = y and x < 0) and =+ be the smallest reflexive relation over pos-
itive integer numbers. Suppose that the user has already proved and registered
the following signatures for less than, negation and multiplication:

signature: corresponding compatibility statement:
<:<⇒�<⇒� Impl ∀x, x′, y, y′ x′ < x ∧ y < y′ ⇒ (x < y ⇒ x′ < y′)

− :<⇒�< ∀x, x′ x′ < x⇒ −x < −x′

∗ :<⇒�=−⇒�< ∀x, x′, y, y′ x =− x′ ∧ y′ < y ⇒ x ∗ y < x ∗ y′

∗ :<⇒�=+⇒�< ∀x, x′, y, y′ x =+ x′ ∧ y < y′ ⇒ x ∗ y < x ∗ y′

Notice how the compatibility statements are usual preliminary statements found
in every arithmetic library about integer numbers, up to the strange notation
x =− y that must be unfolded to obtain x < 0 and x = y.

3 The next version of the Coq system will be equipped with a compiler [5] that should
allow to implement complex proof search procedures as reflexive tactics.
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Notice also that the transitivity of < — that is never used by the tactic —
can be exploited to prove that < is a morphism of signature <⇒�<⇒� Impl.
Indeed this is automated in the system for each relation declared to be transitive.

Now consider the goal

n, m, c1, c2 : Z
H : c1 < c2

c1 ∗ n ∗m < −c1 ∗ n ∗m

If the user asks to replace c1 with c2 by hypothesis H the tactic is automatically
able to generate the new goal

n, m, c1, c2 : Z
H : c1 < c2

c2 ∗ n ∗m < −c2 ∗ n ∗m

asking the user to prove either the first two following side conditions (i.e. both
n and m are negative numbers) or the last two (i.e. both n and m are positive
numbers):

n, m, c1, c2 : Z

n =− n

n, m, c1, c2 : Z

m =− m

n, m, c1, c2 : Z

n =+ n

n, m, c1, c2 : Z

m =+ m

Suppose that the user chooses the first possibility (both n and m negative
numbers). Then the part of the tactic implemented at the meta level — that
implements the annotation function declare in Sect. 5 — produces the following
annotated applicative context C:

C def
=

(< (∗ (∗ �<�
n=−�

?1
)<�

m=−�
?2

)<�

(∗ (∗ (− �<�
)<�

n=−�
?1

)<�
m=−�

?2
)<�

)Impl
�

that is just an annotation of (< (∗ (∗ �) n) m) (∗ (∗ (− �) n) m)) (the ap-
plicative context in prefix form obtained by abstracting the goal over c1). The
semantics of the annotations is described in Table 1. The annotation �<�

says
that � is a monotone increasing context (w.r.t. <), according to the user wish
to replace the left hand side of the hypothesis H with its right hand side; thus
(∗ �<�

n=−�
)<�

says that (∗ � n) is a monotone decreasing context (since
n =− n); thus (∗ (∗ � n)<�

m=−�
)<�

says that (∗ (∗ � n) m) is a monotone
increasing context (since m =− m); and so on until we find that the whole
applicative context is monotone decreasing (w.r.t. logical implication).

The annotated context is reified as a CIC term and given as an argument to
the correctness theorem, obtaining the following proof term t:

t
def
= (generalised rewrite ok Z <� C c1 c2 H)

Since the annotated context C is linear in the size of the goal, the proof term t is
linear in the size of the goal plus the size of the type of the term to be rewritten
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Table 1. Annotated applicative contexts

f every function f is annotated with (a reference to) the
proof of its compatibility statement; i.e. f = (f, p) for some
previously user-provided proof term p

�Rd

each placeholder is annotated with its relation and the
rewrite direction chosen by the user

xRd

?i
each constant is annotated with its relation Rd and a
proof that xRx; a metavariable ?i stands for the proof
of a new goal that will be proposed to the user

(f C
Rd1

1
1 . . . C

Rdn
n

n )R
d

every application is annotated with its relation R and
a rewrite direction and it is well typed iff the relations
and rewrite directions of its arguments and of the whole
application are coherent with the signature of f

(that must be R1 ⇒d1=d . . . Rn ⇒dn=d R)

(i.e. Z). The correctness theorem generalized rewrite ok has type

ΠT : Type.ΠR :T →T →Prop.Πd.ΠC : (reified annotated context T R d).
Πc1c2 : T.ΠH : c1 Rd c2.

(signature to compatibility (R ⇒d Impl)(deannotate context T R d C))

where reified annotated context is the concrete data type for reified anno-
tated contexts of the specified signature (i.e. an inductive type with one construc-
tor for each line of Table 1) and deannotate context returns the (deannotated)
Coq term described by a reified annotated context. The kernel of Coq will type-
check the reified annotated context and the proof term and it will infer for t the
type

∀c1, c2 : Z.c1 < c2 ⇒ c2 ∗ n ∗m < −c2 ∗ n ∗m ⇒ c1 ∗ n ∗m < −c1 ∗ n ∗m

that asserts that the current goal is substitutive for c1. Notice also that since t
is not a closed term (because the two meta-variables ?1 and ?2 occurs in C) Coq
will accept the proof under the condition that the user will later on instantiate
the two metavariables (i.e. she will close the two new sub-goals).

7 Conclusions

We described a small theory of monotone functions closed under composition.
The theory can be used to study the properties of applicative contexts – a
syntactically restricted term with non-linear occurrences of a placeholder. It
leads to the implementation of a tactic that can semi-decide whether a given
applicative context is a monotone function when interpreted as a function over
the argument marked with a placeholder. The tactic exploits predefined proofs of
monotonicity for each constant that are user-provided. The tactic can be applied
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to the problem of replacing one side of an hypothesis E1RE2 with the other side
in the current goal, where R is a general relation. The stronger the properties
of the relations considered (i.e. reflexivity and symmetry), the fewer the user
provided proofs required by the tactic.

The tactic has been implemented as a semi-reflexive one in the Coq proof
assistant. It can be applied in several useful situations, such as rewriting in total
and partial setoid theories; contraction or expansion of terms according to given
reduction relation; propagation of large or strict arithmetical inequalities.

The actual status of the tactic is currently satisfactory. It has been used so far
in a few test cases about reductions, greatly reducing the size of the proof script.
As a tactic that supports the setoid approach both Lionel Mamane and Bas Spit-
ters have used it in yet unpublished works, respectively about the formalization
of surreal numbers and for handling implicit and non-computational arguments
using monads. It is also being used by Marco Maggesi in the development of a
theory of categories based on the partial setoid approach. Whether it can really
be useful in the development of arithmetical libraries (using the approach given
in Sect. 6) is still to be understood and currently under investigation.

The current implementation as a semi-reflexive tactic is also satisfactory due
to the reasonably small size of the generated proof term. However, the tactic
can be fully implemented in any other system for Higher Order Logic using the
meta-language only. A fully reflexive implementation of the whole tactic seems
difficult because of the need of opening new goals when the relations considered
are not reflexive.

The only extension of the tactic and of the underlying theory that seems to
be worth considering is that of subrelations. A relation R is a subrelation of a
relation R′ whenever xRy implies xR′y. Subrelations can be used as coercions
by the “type-checking” algorithm for signatures. The interesting case is that
of a morphism whose signature output is R found as an actual argument of a
function that expects an argument whose output is R′. Instead of failing, the
checker could just verify if R is registered as a subrelation of R′, using the witness
of the subrelation to build the proof of compatibility for the morphism.

In theory the declaration of subrelations does not add any expressive power to
the tactic. In practice it could highly reduce the number of signatures to declare
for a given constant. For instance, the “less than” and the equality relations
can be both defined as subrelation of “less than or equal”. Subrelations are
implemented in the NuPRL system [8, 2].

To conclude, the proposed tactic can be an important building block for more
complex tactics. Iterating a one step rewriting tactic and backtracking in case
of failure yields a powerful simplification tactic for the Coq system, named au-
torewrite. Since autorewrite uses the rewriting tactic as a black box, it was easy
to make autorewrite use our new tactic for performing rewriting of hypotheses
that are not equalities. As an application, autorewrite is now able to reduce
lambda-terms to their normal forms in a development of the theory of residuals
for the lambda-calculus that we have used as a test case for the tactic. Once
again, the reduction of the proof script size can be remarkable.
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Abstract. We give a formal model for a first order functional language
to be executed on a stack machine and for a bytecode verifier that per-
forms two kinds of static verifications : a type analysis and a shape
analysis, that are part of a system used to ensure resource bounds. Both
are instances of a general data flow analyzer due to Kildall. The generic
algorithm and both of its instances are certified with the Coq proof
assistant.

1 Introduction

Over the last decade, research on mobile code has been a hot topic and intensive
efforts have been made to reduce the risk of malicious (Java) applets performing
a security attack. For this, a crucial functionality of the Java Platform is the
bytecode verifier which performs a static type analysis on programs. This kind
of analysis ensures integrity properties of the execution environment such as the
absence of memory faults. Consequently, there has been considerable interest in
specifying formally the Java Virtual Machine and proving the correctness of its
bytecode verifier (see for instance [4, 5, 8, 10, 11, 13] . . . ).

More recently, these investigations have been extended to establishing an
additional property that contributes to guarantee the safety of bytecode by en-
suring bounds on the computational resources needed by its execution. Within
this context, a project has been undertaken [2] which focuses on a rather stan-
dard first-order functional programming language with inductive types, pattern
matching, and call-by-value, to be executed on a simple stack machine. The
language comes with various bytecode static analyses: a standard type analysis,
an analysis on the algebraic shape of the values in the stack, an analysis of the
size of these values, and an analysis that insures the termination. The last three
analyses, and in particular their combination, are instrumental in predicting the
space and time required for the execution of a program.

This paper deals with the formal specification of the virtual machine (VM)
related to this language and the certification in the Coq proof assistant of an
extended bytecode verifier which performs the first two phases of the analysis,
that is the type and shape verifications. Our contribution is threefold. First, we
present a verifier designed in a uniform way, so as both verification processes
become special cases of a general framework for data flow analysis based on

J.-C. Filliâtre et al. (Eds.): TYPES 2004, LNCS 3839, pp. 115–137, 2006.
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the well known algorithm due to Kildall [9]. Second, we propose a functional
specification in Coq of Kildall’s algorithm and we prove its correctness. This
is related to Klein and Nipkow’s work with the system Isabelle/HOL [13, 10].
However our formalization differs from theirs by the heavy use of Coq dependent
types and the way of encoding a recursive function which is not structurally
recursive. With this approach, properties common to both analyses are establish!
ed once and for all. Note that this approach also suits size analysis, although
this remains work to be done in future. Third, these generic properties are used,
for proving not only the correctness of type verification, but also, and this is the
novelty, that of algebraic shape verification.

The paper is organized as follows. The first section is a quick description of
the problem: we present the language, the bytecode instructions, and both kinds
of analyses. Section 3 is dedicated to encoding Kildall’s algorithm in Coq and
proving its correctness. Section 4 is related to both type and shape analyses which
are formally specified and proved correct. In section 5 we make a comparison
with related work and give a conclusion. Some proofs are detailed in appendix.

2 The Functional Language and the Bytecode
Instructions

A formal and rigorous description of the source language, the bytecode instruc-
tions, their operational semantics, and of the type and shape analyses can be
found in [2]. For lack of space, we have chosen to give here an informal but intu-
itive presentation that we illustrate by examples to give a quick understanding of
the problem. The source language is a first order functional language, with (mu-
tually) inductive types. Functions are defined by a sequence of pattern matching
rules of the form f(p1, . . . , pn) = e, where e is an expression and p1, . . . , pn are

type bool = T | F ;;
type nat = Z | S of nat ;;
type env = Nil | C of nat * env ;;
type form =

Var of nat| Not of form | Or of form * form | Ex of nat * form ;;

not (T) = F or (T,y) = T eq (Z,Z) = T eq (S(x),Z) = F
not (F) = T or (F,T) = T eq (S(x),S(y)) = eq (x,y) eq (Z,S(x)) = F

or (F,F) = F
member (x,Nil) = F
member (x,C(y,l)) = or(eq(x,y),member(x,l))

check (Var(x), l) = member (x,l) qbf (f) = check(f,Nil)
check (Not(f1), l) = not (check(f1,l))
check (Or(f1,f2), l) = or (check(f1,l),check(f2,l))
check (Ex(x,f1), l) = or (check(f1,l),check(f1, C(x,l)))

Fig. 1. A program for evaluating boolean formulae



A Uniform and Certified Approach for Two Static Analyses 117

member:
0: load(1); [l x] Id
1: branch("Nil",4); [l l x] Id
2: build("F",0); [Nil x] l=Nil
3: return; [F Nil x] l=Nil
4: branch("C",13); [l l x] Id
5: load(0); [t h C(h,t) x] l=C(h,t)
6: load(2); [x t h C(h,t) x] l=C(h,t)
7: call("eq",2); [h x t h C(h,t) x] l=C(h,t)
8: load(0); [eq(x,h) t h C(h,t) x] l=C(h,t)
9: load(3); [x eq(x,h) t h C(h,t) x] l=C(h,t)
10: call("member",2); [t x eq(x,h) t h C(h,t) x] l=C(h,t)
11: call("or",2); [member(x,t) eq(x,h) t h C(h,t) x] l=C(h,t)
12: return; [or(eq(x,h),member(x,t)) t h C(h,t) x] l=C(h,t)
13: stop; [l l x] Id
14: return; ⊥

Fig. 2. Symbolic execution of function member

linear patterns (a variable occurs at most once). As an illustration, Fig.1 dis-
plays a program that evaluates boolean expressions. Each function is compiled
to bytecode to be executed by a VM. At run time, a frame (f, pc, P) is created
at each function call: f is the function’s name, pc is the program counter that
indicates the index of the current instruction (initially 0), and P is a stack of
values that is initialized by the arguments of the function. This frame is pushed
on the top of the current configuration, that is the stack constituted by all the
frames of the functions currently active. Fig.2 shows a possible bytecode program
for function member in Fig.1, as well as a symbolic execution of the function
on natural number x and environment l. Each line shows the value pc of the
program counter, the related instruction, and the expression stack on which the
instruction of index pc is executed (the top of the stack is on the left). Let us
describe the operational semantics of the instructions that appear in this piece
of bytecode.

– Instruction load(j) pushes on top of P the element of index j, counting from
the bottom of the stack. pc is incremented. Note that the bottom of P is
index 0.

– Instruction branch(c, j) matches element e on the top of the stack with
constructor c of arity m. If the matching succeeds, e is popped out from the
stack, it is deconstructed and its m arguments are pushed on the stack. pc
is incremented. If the matching fails, the stack is left unchanged and pc is
set to j.

– Instruction build(c, m), where c is a constructor of arity m, discards the m
values v1, . . . , vm on the top of P and pushes c(v1, . . . , vm). Program counter
pc is incremented.
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– Instruction return returns to the environment the result on the top of the
stack. The current function is deactivated, that is its frame is popped out
from the current configuration.

– Instruction stop stops the execution.
– Instruction call(g, m) pushes, over the frame of the calling function, a new

frame for executing function g of arity m. In this new frame, the program
counter is set to 0 and the value stack is constituted by m values, popped
out from the value stack of the calling function.

Shape Analysis as a Symbolic Execution. Fig.2 is nothing but the result
of a symbolic execution of function member in the sense that the stack contains
algebraic expressions, built with constructors, functions names and variables,
instead of values built from constructors only (as in a true execution). In partic-
ular, the arguments of the function have been replaced by two variables x and
l. Within this context of symbolic execution, each instruction branch(c, j) gives
rise to a substitution that matches the expression on the top of the stack with a
pattern c(x1, . . . , xm). Here, m is the arity of constructor c and x1, . . . , xm are
fresh variables. Substitutions in the last column of Fig.2, keep track of these pat-
tern matchings. The current substitution is updated when encountering a branch
instruction, by composing it with that resulting from the new pattern matching.
Symbolic execution furnishes information on the shape of the values in the stack
during an actual execution. Although it is out of the scope of this paper, let us
mention that this kind of analysis can be used to ensure bounds on the resources
required by a program execution. For that, it is assumed that the bytecode comes
with polynomial annotations for the constructors and the functions. These poly-
nomials (introduced by Marion [12] under the name of quasi-interpretations) are
intended to provide bounds on the size of the values built with the constructors
or returned by the functions. A bound on the overall memory used by the pro-
gram is then deduced from considerations on termination. One can refer to [2]
for more details.

Type Analysis as an Abstract Execution. The bytecode is also supposed
to be accompanied by type annotations, that is functions’ and constructors’ sig-
natures. Type analysis comes before shape analysis. It consists in an abstract
execution of the bytecode, in which the values are replaced by their types. The
type verification checks the compatibility between the types in the stack and the
current instruction, with respect to the signatures. When executing an instruc-
tion branch(c, j) for instance, one checks that the value on the top of the stack
is the type of constructor c. In case of error, an error state � is produced. One
proves that if the bytecode is correctly typed, there will be no out of bounds
access to the value stack, all function calls will apply to well typed arguments,
and each new value is built with a constructor and arguments the types of which
are consistent.

Both abstract and symbolic executions can be viewed as instances of a generic
data flow analyzer (DFA) due to Kildall ([9]) that we present in the next section.
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Notations. In the sequel, we will use the following notations :
–e :: l is the list with head e and tail l
–l@l′ is the concatenation of lists l and l′

–|l| is the size of list l
–[v0; . . . ; vk] is the list of elements v0, . . . , vk. So [ ] is the empty list.
–l[i] the ith element of the list, elements being indexed from 0
–e ∈ l means e is an element of list l

3 Kildall’s Algorithm

3.1 Parameterizing the Generic Data Flow Framework

Kildall’s algorithm traverses the control flow graph of a function. It is a graph
whose vertices are the instructions’ indices in the bytecode program. There is
an edge between p and q if instruction of index q can be executed immediately
after that of index p. This graph has an only source, 0, that corresponds to the
entry point of the function. The generic data flow framework is parameterized
by:

– the number n of instructions of the bytecode, that characterizes the set
{0, . . . , (n− 1)} of the vertices also called instructions when it is clear from
the context.

– a function succs, which associates with each instruction in {0, . . . , (n − 1)}
the list of instructions that can immediately follow it. It characterizes the
set of the edges.

Moreover, with each vertex of the graph is associated a state, which generalizes
the symbolic stack facing each instruction in Fig.2, or a type stack in case of the
type analysis. Thus, we introduce:

– σ, the type of the states. σ is equipped with a relation >σ, a supremum
function supσ, and a top element �. Moreover, we assume that all ascending
chains in σ are finite. Intuitively, the states can be seen as constraints on
the value stacks handled by the VM during the evaluation of a function.
Relation >σ compares constraint strength: if instruction p can be executed
in state s, it has to be so for every state s′ such that s >σ s′.

The length-n lists ss of elements of σ are called function states. In the case of
symbolic analysis for example, they correspond to the lists of n symbolic stacks
as those displayed in Fig.2.

The algorithm also relies on a flow function step that takes as arguments
an instruction p and a state s. (step p s) is the list of all states (one for each
possible successor of instruction p) resulting from the execution of p in state s.
Functions step and succs are combined to define function step′ such that, if
(step p s) = [t1, . . . , tk] and (succs p s) = [q1, . . . , qk] then (step′ p s) =
[(q1, t1), . . . , (qk, tk)].
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3.2 Description of the Algorithm

As already mentioned, the algorithm traverses the function’s flow graph. A func-
tion state ss associates state ss[p] in σ with each vertex p. In practice, initially
all the vertices except 0 will have a special state that represents a constraint al-
ways satisfiable. It is encoded as the least element of σ (which is not mentioned
in the previous section since it is not used for specifying and proving the algo-
rithm). For vertex 0, the initial constraint depends on the kind of analysis that
is performed. When an instruction p is reached, a call (step′ p ss[p]) computes
a new state t for each successor q of p. The current state ss[q] is updated by
(supσ t ss[q]). If ss[q] has actually been modified, q is moved to the working list
of the instructions to be examined again. The process goes on until stability.
Therefore, the stability of an instruction p with respect to a function state ss is
defined as follows:

(stable ss p) := ∀(q, t) ∈ (step′ p ss[p]), ss[q] ≥σ t

Kildall’s algorithm starts with any function state ss and the list (called (worklist
ss)) of all instructions p that are not stable for ss. It calls a main loop, iterate,
which takes as arguments a function state ss and a working list w. Iterate ex-
amines each element p in w to make it stable. This is achieved through a call
to the propagation function propagate, which, for all successors q of p, updates
ss[q] and adds q to w if ss[q] has been changed.

(kildall ss) := (iterate (ss, (worklist ss)))
(iterate (ss, w)) := match w with

[ ]⇒ ss|
p :: w′ ⇒ (iterate (propagate ss w′ (step′ p ss[p])))

(propagate ss w l) := match l with
[ ]⇒ (ss, w)|
(q, t) :: l′ ⇒ if (supσ t ss[q]) = ss[q] then (propagate ss w l′)

else (propagate ss[q ← (supσ t ss[q])] q :: w l′)

It can be noticed that the propagation function is defined by recursion on the
structure of its third argument. In contrast, function iterate is not defined by
structural recursion. This requires us to exhibit a well-founded order on pairs
(ss, w), and a non-trivial building of iterate from a termination proof. This is
detailed in the second part of section 3.3. Lastly, remark that although quite
straightforward, the definition of propagate requires the equality to be decidable
on σ.

3.3 Encoding in Coq Kildall’s Algorithm

As far as the algorithm’s specification in Coq is concerned, and comparatively
to Klein and Nipkow’s work with Isabelle [13, 10], two main points must be
emphasized: the use of dependent types and the way of encoding function iterate.
These are the essential differences and we shall briefly discuss the advantages of
each approach.
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Specifying with dependent types. As we have seen, function states are lists
of states whose length is meant to remain constant and equal to the number
n of instructions in the function’s bytecode. This data type is encoded quite
naturally in Coq by a dependent type:

Inductive sized_list : nat -> Set: sd_nil : (sized_list 0)|
sd_cons : (∀ n:nat), α -> (sized_list n)-> (sized_list (S n)).

Notice that these lists are polymorphic: they depend on set α that is supposed
to be declared as a parameter in the current section. Outside the section, α is
discharged and thus must appear explicitly in the type (as in the definition of
propagate below in this section or in the definition of bytecode in section 4.1).
This specification avoids the presence of hypotheses of the form |ss| = n in a
great number of lemmas, all throughout the development. Similarly, we define
inductively the lexicographic order and the componentwise order on lists with a
type that expresses that only same-length lists can be compared:

lexn, <n : (sized_list n) -> (sized_list n) -> Prop

With this approach, we can prove by induction on parameter n that the lexico-
graphic order is well-founded provided the underlying order on the elements is
well-founded. Since for all natural numbers n, lexn is weaker than <n, we can
conclude that <n is well-founded too.

Function succs computes the list of the successors of an instruction p. Instruction
p and its successors all must be natural numbers less than n. Instead of taking
the hypothesis:

(∀p : nat), p < n → (∀q : nat), q ∈ (succs p)→ q < n (*)

we define the type dep list of the lists the elements of which satisfy a certain
predicate:

dep_list : (∀ α: Set)(α -> Prop) -> Set.

So, we obtain the type d list of the lists of natural numbers less than n as an
instance of this data type :

d_list : =λn:nat.(dep_list nat λp:nat.p<n)

Consequently, the types of functions succs, step, and step′ are the following:

succs : (∀ p : nat), p<n -> (d_list n)
step : (∀ p : nat), p<n -> σ -> (list σ)
step’ : (∀ p : nat), p<n -> σ -> (dep_list nat*σ λ(q,t):nat*σ.q<n)

As an example, a version without dependent types leads to establishing

propagate(ss, w, l) = (ss′, w′)→ |ss′| = |ss|
while this is implicitly stated in the type of function propagate in our develop-
ment.
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propagate: (sized_list σ n) -> (d_list n)->
(dep_list nat*σ λ(q,t):nat*σ.q<n) ->
(sized_list σ n) * (d_list n)

To be fair, this has been achieved through an increased effort on preliminary
results, mainly concerning lists (consequent libraries on lists with dependent
types have been built). But doing so, we “factorize” some proofs by moving them
from specialized parts of the development to generic ones. Thus they become
reusable and they are performed once and for all. Moreover, let us point out
that not only the statements of the lemmas are simplified but also the proofs
and the use of the lemmas, since in their applications, fewer hypotheses must be
shown to be satisfied. However, using dependent types raises some difficulties.
In such specifications there is a strong interdependence between logical parts,
namely proof terms elegantly expressing constraints on data types, and purely
computational parts. In practice one has to establish that these logical parts are
irrelevant as far as computational aspects are concerned. For example, as the
elements of lists of type dep list are pairs made of an element and a certificate,
one must define a projection :

dep_list_to_list : (∀ α:Set)(∀P: α -> Prop)
(dep_list α P) -> (list α).

and an equivalence on dependent lists by:

l ≡ l’ := (dep_list_to_list l) = (dep_list_to_list l’)

The specification and the verification of Kildall’s algorithm are performed under
the following hypotheses:

(H1): (∀ p :nat)(∀ C: p < n)(∀ s:σ), |(succs p C)|=|(step p C s)|
(H2): (∀ p :nat)(∀ C,C’: p < n), (succs p C) ≡ (succs p C’)
(H3): (∀ s :σ) (∀ p: nat) (∀ C,C’: p < n),

(step p C s) = (step p C’ s)
(H4): (∀ p :nat)(∀ C: p < n)(∀ s, t:σ),

s≤σt -> (step p C s)≤(step p C t)

In (H4), ≤ stands for the componentwise relation on the standard lists. This
hypothesis expresses the monotonicity of function step. One could argue that
dependent typing leads to extra hypotheses such as (H2). But, with a standard
specification style, we would have instead hypothesis (*) in the previous page.
We have compared the verifications of Kildall’s algorithm with both specification
styles. Using dependent types decreases of about 25% the number of lemmas.
This does not take into account the libraries related to lists.

This case study is an ideal example where dependent types are of interest.
Indeed, it is well known that dependent typing may offer difficulties due to the
fact that types depending on terms that are provably equal but not convertible
are distinct. But here, all the lists we handle have a fixed length n which para-
meterizes all the development. So, we are certain to never do arithmetic on the
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length of the lists. Moreover, parameter n plays an essential role and is referred
to continuously in the definitions and the lemma statements. Thus, as we hope
to have demonstrated, integrating it into the type of the lists, leads to concise
and elegant programming.

Defining function iterate by well-founded induction. The specification of
function iterate in Coq is not straightforward since this system only supports
total functions defined by structural recursion. This specification must include
a proof of termination within its structure. The approach that we take here is
similar to Bertot and Balaa’s [3]. The term is built by approximations in a style
inspired by Tarski’s fixpoint theorem. Here are the main steps for constructing
the term iterate.

1. We define a family of relations ≺n, that we prove to be well-founded, on the
set of pairs

(ss, w): (sized list σ n)*(d list n)
by: (ss’,w’)≺n(ss,w) := (ss’>nss) ∨ (ss=ss’ ∧ (|w’| < |w|)

2. We prove that for all n-length function states ss, instructions p, proofs
C : p < n, and instruction lists w:

(propagate ss w (step’ p C ss[p])) ≺n(ss, p::w)
Thus, the recursive call in the evaluation of (iterate (ss, w)) is on an argu-
ment strictly less than (ss, w) with respect to the well-founded relation ≺n.

3. Let F be the functional defined by:
(F f) = λ(ss,w) if w = [] then ss else

let (p, C)::w’ = w in (f (propagate ss w’ (step’ p C ss[p]))).

We prove that for any function bot on pairs (ss, w)

∀(ss, w) ∃v (∃k0:nat)(∀k> k0) (Fk bot (ss, w)) = v
For a given pair (ss, w) the proof is performed by induction on the fact that
this pair is accessible for relation≺n, which follows from the well-foundedness
of the relation.

4. A proof term of such a statement is a pair (f, h) where:
– f is a function which associates with each argument (ss, w) value v
– h is a proof that (∃k0:nat)(∀k> k0) (Fk bot (ss, w)) = v
By deconstructing such a pair, it is possible to forget the logical comment h
and to get the computational part of the term, that is program f .

5. This function f is in fact the function iterate that we intend to define.
Indeed, we prove that f satisfies the fixpoint equation (F f)=f.

This is to be compared with the specification in Isabelle. In an early version
of their work [13], Klein and Nipkow used an opaque well-founded recursion
whereas in a more elaborate version [10] they express the function in terms of
the predefined while-combinator of type : (α ⇒ bool) ⇒ (α ⇒ α) ⇒ α ⇒ α
which satisfies the equation
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while b c s = (if (b s) then (while b c (c s)) else s)

This equation is a directly executable functional program. It makes it possible
to define functions without proving any well-foundedness. However, to reason
on such functions, establishing their termination is mandatory. As a matter of
fact, proving that a certain property Q holds on a returned value (while b c s)
is achieved through the following while-rule:

P s ∧ (∀s, P s ∧ b s ⇒ P (c s)) ∧ (∀s, P s ∧ ¬ b s ⇒ Q s) ∧ wf r ∧
(∀s, P s ∧ b s ⇒ (c s, s) ∈ r) ⇒ Q (while b c s)

Moreover, this approach only applies to tail recursive functions. Of course, this
covers a large class of functions.

3.4 Correctness of Kildall’s Algorithm

We mentioned that the greatest element � of σ stands for the error state. There-
fore, all the bytecodes whose analysis generates a function state containing �
will be rejected. In order to prove that only erroneous programs are rejected, we
establish that Kildall’s algorithm produces the least stable function state, greater
than its argument (for relation <n). This is done by using the monotonicity of
function step. Now, how can this DFA be used for bytecode verification? And
first of all what does it mean that the bytecode is correct with respect to a certain
kind of analysis? This is expressed by a parameter wi to be later instantiated
by a compatibility relationship between the instructions and a function state ss.
For instance, in case of type verification, if instruction of index p is the return
instruction, (wi ss p ) holds if and only if the element on the top of stack ss[p]
is less than or equal to the return type of the function. Assuming the following
relationship between predicates wi and stable:

(H5): ∀ss, � /∈ ss ->
((∀p: nat)(∀C: p<n), (wi ss p C) <-> (stable ss p C))

we can deduce the following two propositions:

� /∈ (Kildall ss) → (∀p : nat) (∀C : p < n), (wi (Kildall ss) p C) (1)

((∃ ts ≥n ss) (∀p : nat) (∀C : p < n), (wi ts p C)) → � /∈ (Kildall ss) (2)

We do not detail the proofs here. They are similar to that in [13]. The differences
are not in the proof schemes themselves, but rather in the specification style.

4 Application to Two Static Analyses

Let us now apply this algorithm to perform type and shape analyses on the
function bytecodes for the language introduced in section 2. We start by encoding
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in Coq the bytecode instructions and the VM. This part of the development is
parameterized by the set name of the names of types, functions, and constructors.
The only axiom set on name is the decidability of equality over it.

4.1 The Virtual Machine

Instructions. It is assumed that every function in the program passed the
following preliminary verifications : for each instruction p, successors of p are
valid indices in the function’s bytecode. That condition falls into two parts :

– last instruction of a bytecode is not one of load j, call g ar, build c ar or branch
c j (whose successors contain the instruction which immediately follows it in
the bytecode)

– jump indices j in branch c j instructions are less than the length of the
bytecode

We choose to represent the bytecode programs by using the dependent type of
lists of fixed length n. This allows us to force the second condition directly in the
instruction definition, by adding a third argument of type j < n to instruction
branch. Therefore, type instruction itself depends on n. It is defined as follows:

Inductive instruction (n:nat) : Set : return : instruction n|
stop : instruction n|
load : nat -> instruction n|
call : name -> nat ->instruction n|
build : name -> nat -> instruction n|
branch : name -> forall (j:nat), j<n -> instruction n.

We can now introduce the following definition:

Definition bytecode:= (∀ n: nat), (sized list (instruction n) n).

As expected, the successors set of an instruction of index p is [p] for a return
instruction, [ ] for a stop instruction, [p + 1; j] for (branch c j), and [p + 1]
otherwise. The function that computes successors is encoded so as to produce
lists of natural numbers less than n. It has type:

Succs: (∀ n: nat), (bytecode n) -> (∀ p: nat), p<n -> d list n.

We can easily prove that function succs:=(Succs n bc) fulfills condition (H2)
in section 3.3.

Functions. Type function is that of records of the form
f̃ = mkfun(f, sigf , |f |, bcf), where

– f , of type name, is the name of the function.
– sigf , of type name*(list name), is the signature of the function. It is a pair

made of the return type, and the list of the arguments’ types.
– |f | is an integer that denotes the bytecode’s length.
– bcf is the bytecode of the function, of type (bytecode |f |).
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For clarity, we describe record types in a simplified notation. For instance, if
we denote by f̃ a term of type function, f is an abbreviation for f̃.fun name.
Similarly, sigf stands for f̃.fun sig, |f | stands for f̃.fun size, and bcf stands
for f̃.fun bytecode.
Another parameter in this part of the development is functions:(list
function) that represents the list of the functions the program is made of.
Elements of this list are assumed to fulfill the following hypotheses :

(H6) : (∀~f : function), ~f ∈ functions → |f| > 0
(H7) : (∀~f : function), ~f ∈ functions → last return or stop bcf

Here, last return or stop is a predicate on lists of instructions that expresses
that the last instruction of bcf (i.e. element at index |f | − 1) is either a return
or a stop instruction.

Function Get function: name → (Opt function) will be used to find in
list functions the first record with name field f . Get function’s return type is
optional to handle the case where no function named f appears in the program.

Constructors. The type, constructor is that of records
c̃ = mkcons(c, retc, argsc), where

– c, of type name, is the constructor’s name.
– retc, of type name, is the name of the type built by c̃.
– argsc, of type (list name), is the list of the types of its arguments.

As for functions, parameter constructors: (list constructor) contains all
the constructors declared in the program. Get constr plays for constructors a
role similar to Get function for functions.

Frames. Their type frame is that of records
f̄ = mkfr(f, pcf , stackf , argsf ), where

– f is the name of the function being evaluated in f̄ .
– pcf is the index of the current instruction.
– stackf , of type (list value), is the value stack.
– argsf , of type (list value), is the initial stack, i.e. the arguments on which

function f̃ is evaluated.

Type value is that of trees the nodes of which are elements of type name.
The fourth component in a frame does not appear in the description of the
VM as given in section 2. It must be considered as a dummy field without any
computational relevance. It will only be used to achieve proofs. Let us point
out that with these simplified notations, given a term f̄ of type frame, f is
an abbreviation for f̄.frm name. Similarly bcf will stand for x.fun bytecode
where (Get function f̄.frm name) = (Some x). Therefore, invoking bcf given
a frame f̄ implicitly induces the presence of a function named f̄.frm name in
parameter functions.
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Configurations. Type configuration aliases (list frame) and it represents the
machine states at runtime. The top frame (i.e. the most recent one) is the head
of this list. The empty configuration [ ] represents an erroneous configuration.
The instructions’ semantics (see section 2) is encoded by an inductive predicate
reduction on the configurations, which is easier to work with than a functional
definition. Let us take instruction call as illustrative example. Its formal seman-
tics is expressed by the rule:

pcf < |f | bcf [pcf ] = (call g ar) g ∈ functions stackf = args@l |args| = ar

(f, pcf , stackf , argsf ) :: M → (g, 0, args, args) :: (f, pcf , l, argsf ) :: M
(3)

Predicate reduction is defined inductively in Coq. Here is the constructor for
instruction call :

red call : (∀ M : configuration) (∀ f̄ : frame) (∀ x,y : function)
(∀ g : name) (∀ ar:nat) (∀ args, l : list value),
Get_function f = Some x ->
x.fun_bytecode[pcf] = Some (call x.fun_size g ar) ->
Get_function g = Some y ->
split_k_elements ar stackf = Some (args, l) ->
(reduction f̄:: M

(mkfr(g,0,args,args)::mkfr(f,pcf,l,argsf)::M).

Here, (split k elements k l) returns an optional pair Some (lk, lr), with l = lk@lr
and |lk| = k if |l| ≥ k, None otherwise. Condition pcf < |f | is implicitly ex-
pressed by the fact that the pcth

f element of the bytecode of f is of the form
(Some . . . ). We can now express that a predicate is invariant by reduction :

(invariant P):=
(∀ M M’: configuration), (P M) → (reduction M M’) → (P M’)

Well-formed configurations. Predicate wellformed configuration holds on
all configurations M that satisfy both conditions wf1 and wf2:

(wf1) for each frame f̄ in M , (Get function f̄ �= None) and pcf < |f |
(wf2) for each pair of consecutive frames (f̄ , h̄) in M , frame f̄ has been created
by the last evaluated instruction in h̄, i.e. bch[pch] = Some (call |h| f |argsf |)

This predicate enjoys the following property, proved by case analysis on the
reduction rule applied:

Lemma 1. Predicate wellformed configuration is invariant by reduction.

Executions are defined by an inductive predicate
execution: name -> (list value) -> (list configuration) -> Prop

such that (execution f args L) holds if and only if L is an initial segment of
the history of the configurations met when running the program that computes
function f on arguments args. It is introduced by two constructors:
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ex1 : (∀f: name)(∀args: (list value)),
(execution f args [mkfr(f,0,args,args)])

ex2 : (∀f: name)(∀args: (list value)) (∀ L: (list configuration))
(∀ M, M’: configuration), (execution f args (M:: L)) ->
(reduction M M’) ->(execution f args (M’:: M:: L))

It is shown that all properties P preserved through reduction are satisfied by all
the configurations of an execution, provided P is true on the initial configuration :

Lemma 2. (∀P: configuration -> Prop) (∀f: name)
(∀args: (list value)),
(P [mkfr(f,0,args,args)]) -> (invariant P) ->
(∀L: (list configuration)), (execution f args L)->
(∀M: configuration), M ∈ L -> (P M)

This statement is proved by induction on term (execution f args L).

Results and errors. By definition, (config result M v) is satisfied if and
only if
– configuration M contains a sole frame f̄ ,
– the instruction of index pcf in the bytecode of function named f is a return
instruction,
– value v is the top element of value stack stackf .
Similarly, an erroneous configuration is either the empty configuration, or a con-
figuration on which no reduction can be performed and such that
∀v : value, ¬(config result M v).

4.2 Type Verification

Type instantiation. We instantiate Kildall’s generic algorithm in order to
obtain a type verification algorithm called KildallT. This is done inside a Coq
section parameterized by a function f̃ : function. Therefore, in the terms
introduced now, parameter f̃ will be either implicit (inside the Coq section)
or explicit (when they are referred to outside the Coq section). As usual, bcf

denotes the bytecode of f̃ and Rt = (fst sigf) denotes its return type. Terms
of type σT may be either abstract stacks encoded as lists of type names, or a
special element �T that stands for an erroneous state, or ⊥T that reflects the
absence of constraints.

Inductive σT : Set := �T : σT | ⊥T : σT |
Types : (list name) -> σT .

Relation >σT is the flat order:�T is the greatest element, ⊥T is the least element,
and all the other elements are incomparable. KildallT will be run on the initial
function state

(initT f̃) := (Types (reverse(snd sigf)))::[⊥T; . . . ;⊥T]

since, when starting the analysis, the only constraint is to call the function with
well typed arguments. The flow function step is instantiated by a function StepT



A Uniform and Certified Approach for Two Static Analyses 129

defined by cases on bc[p]. For lack of space we only present the case of instruction
return.

(StepT p C s) :=
match bcf[p] with
return => match s with

⊥T => [⊥T] | �T => [�T] |
(Types l) => match l with

[ ] => [�T]|
Ret::t => if Ret=Rt then [s] else [�T]

Predicate wi is instantiated by a predicate Wti that specifies whether instruction
p in bytecode bc is well-typed with respect to function state ss. As for StepT ,
we only give the case related to the return instruction.

(Wti ss p C) :=
match ss[p] with
�T => False | ⊥T => True |
Types l => match bcf[p] with

return => match l with
Ret::t => if Ret = Rt then True else False |
_ => False

It is now mandatory to prove that the hypotheses taken in 3 are fulfilled by
these terms. More precisely, we establish that function StepT is monotone, that
(StepT p C s) does not depend on certificate C, that (σT , >σT ) has the expected
properties, and lastly that Wti coincides with stable on all top-free function
states. Though some of these proofs are long, none is difficult. They will not
be shown here. We have now at our disposal a certified type verifier, program
KildallT, such that:

�T /∈ (KildallT ss) → (∀p : nat) (∀C : p < n), (Wti (KildallT ss) p C) (4)

((∃ ts ≥n ss) (∀p : nat) (∀C : p < n), (Wti ts p)) → �T /∈ (KildallT ss) (5)

We can now establish two kinds of results for programs that have passed suc-
cessfully the type analysis: a well-typedness property on the executions and a
progress property.

Well-typed frames. Let us assume that every function in the program has
passed the type verification, that is:

(H8) ∀~f : function, ~f ∈ functions→ �T /∈ (KildallT ~f (initT ~f))

Then we introduce the notion of well-typed frames. Let f̄ be a frame and f̃
the function retrieved in parameter functions from the function name appear-
ing in f̄ . Frame f̄ is well-typed if and only if the types of the elements in its
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value stack actually are those in the abstract stack of index pcf in the function
state computed by (KildallT f̃ (initT f̃)):

welltyped frame f̄:= stack typing stackf (KildallT f̃ (initT ~f))[pcf]

Well-typed configurations. The notion of well-typedness is extended to con-
figurations. A configuration satisfies predicate welltyped configuration if and
only if:
wt1 : M is a well-formed configuration,
wt2 : the top frame of M is well-typed,
wt3 : for each pair of consecutive frames (f̄ , h̄) in M , frame

mkfr(h, pch, argsf@stackh, argsh)
is well-typed. Remark that this frame is not in the configuration.

As a matter of fact, no frame in a valid configuration, except the top one, is
well-typed. They are in an intermediate state, in which the current instruction
is a function call, but the arguments of the function have been popped out from
the stack. The main results are in the following three lemmas. For lack of space
we do not detail the proofs.
Lemma 3. Predicate welltyped configuration is invariant by reduction.
Lemma 4. All configurations in all executions are well-typed provided the initial
function call occurs on well-typed values.

Lemma 5. (Progress) (∀M:configuration),(welltyped configuration
M)-> (M = [ ]) ∨ (∃v: value), (config result M v) ∨
(∃M’: configuration), (reduction M M’)

4.3 Shape Verification

Shape Instantiation. Since shape verification is done by performing a sym-
bolic execution, it handles algebraic expressions built from variables, function
names and constructor names. We shall consider distinguished expressions called
patterns, in which no function symbol occurs. Fresh variables created by an in-
struction (branch c ) at index p, with a m-ary constructor c, and a stack of height
h, are named xp,h, . . . , xp,h+m−1. Similarly, initial arguments in the symbolic ex-
ecution of a m-ary function are x0,0, . . . , x0,m−1. Set name of constant symbols is
extended to a set Name that contains both constants symbols and variables.

Inductive Name: Set := x : nat→ nat→ Name | symbol: name → Name
Type Expression will be that of trees whose nodes and leaves are marked with
elements of Name. Elementary substitutions (of type subst elem) are records
made of two variable indices and an expression. We will note {xi,j ← expr}
such an elementary substitution. As substitutions are compositions of elementary
substitutions, type Substitution is that of lists of elementary substitutions.
Various functions are defined to handle expressions and substitutions :

– apply elem tree and apply respectively apply an elementary substitution
and a substitution to an expression.
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– (fresh p h m) returns a forest of single-node trees xp,h, . . . , xp,h+m−1.
– (init vars f̃) is the list of expressions [x0,m−1; . . . ; x0,0] with m = |snd sigf |
– init subst:nat->nat->(list value)->(Opt Substitution).

Term (init subst h m args) is the substitution that matches variables
x0,h, . . . , x0,h+m−1 with args, that is the list :

[{x0,h+m−1 ← args[0]}; . . . ; {x0,h ← args[m− 1]}].
It equals None if |args| �= m.

– tree is pattern: Expression -> Prop indicates whether its argument is
a pattern or not.

– make substitution: (forest Name)->(forest name)->
(Opt Substitution)

matches a forest of expressions with a forest of values.

As in section 4.2, all terms introduced in the sequel of this section are implic-
itly parameterized by a given function f̃. Kildall’s algorithm is particularized,
resulting in algorithm KildallS. The new state type σS is defined by:

Inductive σS:Set:= �S : σS | ⊥S : σS |
Shapes: Substitution->(list Expression)->σS.

As for types, relation >σS is the flat order over σS . KildallS will be run on
initial function state

(init S f̃) := (Shapes [ ] (init vars f̃))::[⊥S; . . . ;⊥S ]

Let us now describe function StepS when instruction of index p is a branch
instruction, which is the most interesting case. The formal semantics of instruc-
tion branch is defined by two rules:

pcf < |f | bcf [pcf ] = (branch c ) stackf = c(a1, . . . , am) :: l

(f, pcf , stackf , argsf ) :: M → (f, pcf + 1, [am; . . . ; a1]@l, argsf ) :: M
(6)

pcf < |f | bcf [pcf ] = (branch c j ) stackf = d(. . . ) :: l c �= d

(f, pcf , stackf , argsf ) :: M → (f, j, stackf , argsf ) :: M
(7)

In the definition below, given in a simplified form, c and d are constructor names
and x is a variable.

(StepS p C s) = match bcf[p] with (branch c j ) =>
match s with (Shapes S l) =>
match l with
d(e1, ...,em)::l’ =>

if c = d then
[(Shapes S [em; ...;e1]@l’); ⊥S]
else
[⊥S; s] |

x::l’ =>



132 S. Coupet-Grimal and W. Delobel

if ‘‘c is a constructor name’’ then
let (m = arity c) in
let vars = (fresh p |l| m) in
let subst = {x ← c(vars)} in
let l’’ = (map (apply elem subst subst) l’) in
[(Shapes (subst::S) (reverse vars)@l’’ ; s]

else [�S ; �S] |
_ => [�S; �S]

Lastly, parameter wi is instantiated by Wshi. We describe below the part of its
definition related to instruction branch. One can observe that the definitions of
StepS and Wshi are much alike.

(Wshi ss p ) = match ss[p] with (Shapes S l) =>
match bcf[p] with (branch c j ) =>
match l with
d(e1, ...,em)::l’ =>

if c = d then ss[p+1] = (Shapes S [em;...;e1]@l’)
else ss[j] = ss[p] |

x::l’ =>
if ‘‘c is a constructor name’’ then

let (m = arity c) in
let vars = (fresh p |l| m) in
let subst = {x ← c(vars)} in
let l’’ = (map (apply elem subst subst) l’) in

ss[p+1]= (Shapes subst::S (reverse vars)@l’’)
∧ ss[j] =ss[p]

else False |
_ => False

From section 3.4, we deduce the following two results:

�S /∈ (KildallS ss) → (∀p : nat)(∀C : p < n), (Wshi (KildallS ss) p C) (8)

(∃ ts ≥n ss) (∀p : nat)(∀C : p < n) (Wshi ts p C) → �S /∈ (KildallS ss) (9)

Well-shaped frames. Let us assume that every function in the program has
passed both the type and shape verifications, that is:

(H9): (∀~f : function), (~f ∈ functions) → �S /∈ (KildallS ~f (initS ~f))

We introduce the notion of well-shaped frames. Let f̄ be a frame and f̃ be
the function retrieved in parameter functions from the function name appearing
in f̄ . Frame f̄ is well-shaped if and only if the elements in its value stack ac-
tually match the expressions in the symbolic stack of index pcf in the function
state computed by (KildallS f̃ (initS f̃)). More precisely, assuming that
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(KildallS f̃ (initS f̃))[pcf] = (Shapes S l), there exists a substitution ρ
such that :

– ρ results from the matching of the actual arguments argsf in the function
call and (map (apply S) (init vars f̃)).

– l and stackf are same length.
– For each pattern pj of index j in the symbolic stack l, if vj denotes the value

of same index in the value stack stackf then vj = (apply ρ pj).

Well-shaped configurations. Similarly to what has been done for type verifi-
cation, the notion of well-shapedness is extended to configurations. Configuration
M satisfies predicate wellshaped configuration if and only if:
wsh1 : M is a well-typed configuration,
wsh2 : the top frame of M is well-shaped,
wsh3 : for each pair of consecutive frames f̄ h̄ in M , the frame

(h, pch, argsf@stackh, argsh)
is well-shaped.

We establish the following two lemmas that are the analogous of lemmas 3 and
4 in section 4.2.

Lemma 6. Predicate wellshaped configuration is invariant by reduction.

Lemma 7. All configurations in all executions are well-shaped provided the ini-
tial function call occurs on well-typed values.

Lemma 7 is a straightforward corollary of lemma 6. But proof of lemma 6 is
quite long. It is performed by case analysis on the reduction rule that is applied.
We detail the case of rule 6 in appendix 5.

Let us mention that, as an instruction branch performs a pattern matching
on the top of the current stack, the symbolic analysis only makes sense if the
top of this stack is a pattern. This condition is not too restrictive and is fulfilled
by all the bytecode programs produced by our compiler. In case of untrusted
bytecode, it can be easily checked by scanning the function state computed by
(KildallS f̃ (initS f̃)). Consequently, we will assume that:

(H10) For all function f̃ in the program that passed the shape analysis, the
expression on the top of the symbolic stack on which a branch instruction is
performed is a pattern.

5 Conclusion

In other work, such as those cited in the introduction, the java bytecode verifier
has been described as an instance of a generic DFA. Here, we really make use of
such a generic approach since we apply it to two distinct kinds of static analyses,
and we intend to extend it to a third one. All of them are part of the same system
designed to ensure bounds of the memory used when executing a program.
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Let us point out that Kildall’s DFA is much more powerful than needed for
our language, since it accommodates any state space which is a well-founded
lattice (this is the case of the type lattice for languages with subtyping). In our
work (see [2]), we only deal with flat lattices and the functions’ flow graphs
are supposed to be trees. We intend in the near future to allow bytecode opti-
mizations, code sharing, and to enrich the language with object features. This
is why we have treated carefully the generic part of this work. Moreover, such
a functional specification of the broadly used Kildall’s algorithm is of general
interest. In this field, the work closest to ours is that of Klein and Nipkow’s
[13, 10], and a detailed comparison is given in section 3. Let us also mention the
work of Barthe and al. [4] where an “abstract virtual machine” for the JavaCard
language is specified in the Coq Proof Assistant. More recently, Cachera, Jensen,
Pichardie, and Rusu, have obtained the same kind of certified data flow analyser
by extraction from a Coq proof of Tarski’s theorem [7]. Let us point out that our
analyser can easily be obtained by extraction from our functional description in
Coq. Moreover, we also have extracted a certified VM from the progress lemma
5, and so we fill all the gaps between the programs that are actually run (DFA
and VM) and their specification in Coq. Let us also mention the work of Sălcianu
and Arkoudas: they trust the computation of the DFA as a least fixpoint and
prove by hand that three conditions are sufficient for an analysis to be correct;
then they propose to verify them in Athena [1]. Finally, we refer the reader to a
connected work by Bertot, Grégoire, and Leroy, to appear in these proceedings
[6] and signaled by the editors. Kildall’s algorithm is used to certify in Coq two
compiler optimizations. Kildall’s algorithm is presented quite concisely, which
makes comparisons uneasy.

Our Coq development consists of 14000 lines among which 1900 are related
to the generic Kildall’s algorithm, 2500 to type analysis, 5500 to shape analysis,
and 2600 to dependent lists. This shows in particular that the second verification
is much more complex than the first one. Coq files are available at the URL:
http:://www.cmi.univ-mrs.fr/∼solange/criss.html.
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Appendix : Proof of Lemma 6

Let f̃ be a function having passed the shape analysis and let us define ss =
(KildallS f̃ (initS f̃)). From hypothesis (H9) (section 4.3), we know that ss
does not contain �S, and from proposition (8) (also in section 4.3) we deduce
that

∀p < |f |, (Wshi ss p) (10)

Let M and M ′ be two configurations such that (reduction M M’) holds. Assuming
that M is well-shaped, we have to prove that M ′ is well-shaped. We proceed by
case analysis on the rule applied in the derivation of (reduction M M’). We will
focus on the sole rule reduction (6). We know that:

M = f̄ :: M0, stackf = c(a1, . . . , am) :: l
and M ′ = (f, pcf + 1, [am; . . . ; a1]@l, argsf ) :: M0.

Moreover, bcf [pcf ] = (branch c ). f̄ being well-shaped,
ss[pcf ] = (Shapes S (e :: L))

and there exists a substitution ρ that matches
argsf and (map (apply S)(init vars f̃))

that is :

(map (apply ρ) (map (apply S) (init vars f̃))) = argsf
1 (11)

1 Here, args is the conversion of a list of values into a list of expressions. This is just
syntax, since values can be injected in expressions, and not relevant for the proof.
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Moreover, we also have :
|e :: L| = |stackf | (12)

Lastly, for each pattern pj of index j in the symbolic stack e :: L, if vj denotes
the value of same index in the value stack stackf then

vj = (apply ρ pj). (13)

In particular, since e is a pattern from (H10) (see section 4.3), we have
(apply ρ e) = c(a1, . . . am), and thus, we deduce that:

(e is a variable)∨(e = c(e1, . . . , em)∧∀i ∈ {1, . . . , m} (apply ρ ei) = ai) (14)

From lemma 3, M ′ satisfies wsh1. It can be shown without difficulty that wsh3
is also satisfied by M ′. Let us consider condition wsh2. We have thus to prove
that the frame (f, pcf + 1, [am; . . . ; a1]@l, argsf ) is well-shaped, that is:

(a) ss[pcf + 1] = (Shapes S′ L′)
(b) |L′| = |[am; . . . ; a1]@l|
(c) there exists a substitution ρ′ such that

(map (apply ρ′) (map (apply S′) (init vars f̃))) = argsf .
(d) for each pattern pj of index j in the symbolic stack L′, if vj denotes the value

of same index in the value stack [am; . . . ; a1]@l, then vj = (apply ρ′ pj)

From (10) we know that (Wshi ss pcf ). From (14) and from the definition of
Wshi, we have:

– either e = c(e1, . . . , em), then ss[pcf + 1] = (Shapes S [em; . . . ; e1]@L).
In this case, conditions (a) and (b) are immediately satisfied. Conditions (c)
and (d) are fulfilled by choosing ρ′ = ρ.

– or e is a variable. Let e = x. In this case,

(i) ss[pcf + 1] = (Shapes subst :: S (reverse vars)@SL) where:
(ii) vars = (fresh pcf |e :: L| m). This call to function fresh generates m fresh

variables in the way described in section 4.3. For readability, in this proof
we denote them x1, . . . , xm, and we assume that they are actually fresh. The
freshness of the generated variables is formally proved in Coq in a non trivial
lemma.

(iii) subst = {x← c(x1, . . . , xm)}
(iv) SL = (map (apply elem subst subst) L)

Again, conditions (a) and (b) are trivially satisfied.
Let Σ = [{x1 ← a1}; . . . {xm ← am}] and ρ′ = ρ@Σ. Establishing condition (c)
amounts to prove, from (11), that for all variables y in (init vars f̃):

(apply ρ@Σ@(subst :: S) y) = (apply ρ@S y)
Let us pose (apply S y) = expr[x, y1, . . . , yk] where expr is a context and x,

y1, . . . , yk are the variables occurring in the expression. By definition,
(apply (subst :: S) y) = expr[c(x1, . . . , xm), y1, . . . , yk].
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Since x1, . . . , xm are fresh, we can deduce the following two equalities, that are
proved by using several Coq auxiliary lemmas:
(apply Σ@(subst :: S) y) = expr[c(a1, . . . , am), y1, . . . , yk]
(apply ρ@Σ@(subst :: S) y) = expr[c(a1, . . . , am),(apply ρ y1),. . . , (apply ρ yk)]
= expr[(apply ρ x), (apply ρ y1), . . . , (apply ρ yk)]
= (apply ρ expr[x, y1, . . . , yk] = (apply ρ@S y)

Let us now consider condition (d). By hypothesis (13), substitution ρ matches
all patterns in x :: L with the value of same index in c(a1, . . . , am) :: l. We have to
prove the similar property for substitution ρ@Σ and stacks [xm; . . . ; x1]@L and
[am; . . . ; a1]@l. We can easily conclude from the fact that variables x1, . . . , xm

are fresh.
The proof of the whole lemma in Coq takes approximately 1,000 lines. It uses

a lemma concerning function fresh whose proof takes 2,000 lines.
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Abstract. In the paper we show, based on two problems in general
topology (Kuratowski closure-complement and Isomichi’s classification
of condensed subsets), how typed objects can be used instead of untyped
text to better represent mathematical content understandable both for
human and computer checker. We present mechanism of attributes and
clusters reimplemented in Mizar fairly recently to fit authors’ expecta-
tions. The problem of knowledge reusability which is crucial if we develop
a large unified repository of mathematical facts, is also addressed.

1 Introduction

In the paper we describe a solution of the famous Kuratowski closure-complement
problem, which is more a kind of mathematical puzzle than regular mathematics.
Based on the largeMizarMathematical Library, especially using its well-developed
part devoted to topology, we also construct examples in the topology of the real
line illustrating this exercise. We were surprised by the influence of our solution of
this problem on the improvement of the whole Mizar library.

The problems described in this work are completely formalized by the author
in the Mizar language. We show through advantages and disadvantages of its
type system how general topology can be developed in a feasible formal way in
the repository of mechanically checked mathematical texts.

Mizar is considered to be a hybrid of (at least) three elements: the first part
is the language which was developed to help mathematicians writing their pa-
pers in a form understandable by machines; the second is software for checking
correctness and collecting the results of this work, and last – but definitely not
least – is the Mizar Mathematical Library (MML) which is considered the largest
repository of the computer-checked mathematical knowledge in the world.

Since its beginnings back in 1989, the development of the MML has been
strictly connected and stimulated by the formalization of topology. Now this
tight connection is by no means over: the Bia�lystok team is working to reach
completion of the Jordan Curve Theorem proof, Mizar formalization of the Com-
pendium of Continuous Lattices (CCL, [7]) is still ongoing, and also work on the
proof of the Brouwer fixed point theorem for disks on real euclidean planes has
been finished recently.

In the early years of MML its development was rather an experiment of how
to deal with the system to make it usable not only for computer scientists, but
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also for mathematicians to assist them in their ordinary everyday work, now its
primarily aim is to collect knowledge in a uniform way close to mathematical
vernacular, checkable by computers as well as readable for humans. Clearly then,
such large repositories can also be a kind of a handbook (or a set of handbooks)
for students.

As we have mentioned earlier, the notion of a topological space needed some
preliminary development, such as basic properties of sets and subsets, functions
and families of subsets of a set. Three months after the start of MML, a Mizar
article (only 27th in the collection) defining the notion of a topological space
was accepted, namely PRE TOPC [13] dated on April 14, 1989. This indicates
that topology is a nice subject for formalization, being also one of the main
lectures for students with many good textbooks (but also with many different
approaches) to follow. Due to its many independently developed subtopics it can
be formalized rapidly by a large group of people.

The paper is organized as follows: in Section 2 we briefly introduce the problem
of 14 Kuratowski sets, Section 3 presents the formalization of the elementary
topological notions we used. Section 4 presents how the problem was solved,
Sect. 5 contains an outline of a formal description of the Isomichi’s ideas on
condensed subsets, while in the last sections we present a work related to the
subject and we draw some concluding remarks.

Because in this paper we focus mainly on the data structure and the out-
line of our development rather than on technical details of the proofs, we skip
correctness proofs anywhere Mizar source is quoted. Unabridged articles can be
found at Mizar home page [1] and we will often refer to them by their MML
identifiers (file names).

2 Fourteen Kuratowski Sets

The primary formulation of this problem was stated by Kuratowski in 1922 [11].
It was popularized by Kelley in [10] in the following form:

If A is a subset of a topological space X, then at most 14 sets can be
constructed from A by complementation and closure. There is a subset
of the real numbers (with the usual topology) from which 14 different sets
can be so constructed.

Fig. 1 presents all 14 subsets (arrows denote set-theoretical inclusion).
We can even drop the notion of a topological space to obtain more general

form (in some sense, because actually we have to choose a concrete theory to
work with) of this theorem. This is quite interesting and strong result, but it
has not been formalized in Mizar.

Let A be an ordered set and let f : A −→ A be an increasing, expanding
and idempotent mapping, and let g : A −→ A be a decreasing involution.
Then, the semigroup generated by f and g consists of 14 elements (at
most).
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A′−′ A′−′−′−′

A−′−′

A−′−′− A−

A′−′−

A

A−′ A−′−′−′

A−′−

A′−′−′− A′−

A′−′−′

A′

Fig. 1. Fourteen Kuratowski sets ordered by inclusion

Along these lines, we will use A′ to denote a complement of A and A− instead
of a closure A to make notation more readable.

A full proof of the problem consists of the following two parts:

– no more than 14 sets can be obtained,
– 14 is an accessible number, i.e., there exists an example of a topological space

and its subset A so that exactly 14 different sets are produced by applying
the closure and complement operators.

Although this problem of Kuratowski is of rather elementary character, we
aimed at the possible elegant and maximal reuse of Mizar features. The first
approach to the formalization was written in 1996 by the author, but the con-
struction of an example of a concrete topological space and subset which gen-
erate all 14 sets seemed too work-consuming in those days (as we consider this
as a puzzle rather than a regular contribution to MML). Continuous work on
improving the implementation of the Mizar system and further development of
MML, especially preparatory articles for the proof of the Jordan Curve Theorem
changed the view for certain details of the proof.

3 General Topology in Mizar

In this section we will briefly introduce the state of the formalization of the
topology in MML. The main facts which are encoded in the library are shown
below (we also cite the MML identifiers of articles which contain the results):

– Tychonoff theorem (YELLOW17),
– Fashoda meet theorem (JGRAPH 1),
– Urysohn lemma (URYSOHN3),
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– Jordan Curve Theorem – a version for special polygons (GOBRD12),
– Brouwer fix point theorem for real intervals (TREAL 1) and for disks on the

real euclidean plane (BROUWER),
– Stone–Weierstrass theorem (WEIERSTR),
– Nagata–Smirnov theorem (NAGATA 2).

3.1 Structures and Attributes

The backbone structure for the entire topological part of MML is the imme-
diate successor of 1-sorted, that is TopStruct (extended only by the selector
topology which is a family of subsets of the carrier). Originally it was designed
as a type with non-empty carrier, so many of the theorems are still formulated
for non empty TopStruct. While there are over 100 structure types in the whole
MML, here the formal apparatus is very modest and restricted only to this one
type.1 Properties of a topological space are added to it through the attribute
mechanism, namely TopSpace-like. Since it is very natural (the carrier of the
space belongs to the topology, it is closed also for arbitrary unions of elements
and binary intersections), we will not cite it here. This adjective is used in the
definition of the Mizar type to understand TopSpace simply as TopSpace-like
TopStruct.

3.2 Basic Notions

As mentioned earlier, the main Mizar functors used for our purpose were closure
(which is not formally introduced in MML by four Kuratowski axioms, although
abstract closure operators are also considered in MML, but is of the form below)
and complement (defined naturally for a subset A of a set E as E\A). The closure
A− is defined as the set of those points p of topological space T such that all
open subsets of T to which p belongs, have non-empty intersection with A.

definition let T be TopStruct, A be Subset of T;
func Cl A -> Subset of T means :: PRE_TOPC:def 13
for p being set st p in the carrier of T holds p in it iff

for G being Subset of T st G is open holds
p in G implies A meets G;

end;

To be close to natural notation, we will also use a new postfix synonym for Cl,
namely -. We will retain an original notation formalizing Isomichi’s observations
in Section 5.

The attribute open describes elements which belong to the topology of a given
space. As a standard, a subset is closed if its complementation is open.

3.3 Some Statistics

About one-fifth of the Mizar library (184 out of 912 articles in MML) deals with
topology. Even if calculation is rather rough since there is no classification of
1 The Mizar type system itself is described in detail in [3].
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MML e.g., according to 2000 AMS Subject Classification (and criteria are not
exactly clear; as a rule we counted articles which used any notation2 from [13],
[6] or those dealing with formal topology).

There is an advanced searching tool – MML Query – which is useful for
authors who are rather well acquainted with Mizar syntax (and behaving better
when searching, not when browsing), but due to requests obtained from users to
gather articles in a Bourbaki manner we plan to add AMS classification manually
in the nearest future. We are considering adding the mandatory field to the
bibliography file as AMS 2000 to be filled by the author but we will have to
classify 912 articles by hand.

Some measurements of information flow between articles have been done by
Korni�lowicz. The amount of information that an article A transfers to an article
B is calculated as the sum of information transferred by all theorems from A
which are referred to in B, counted according to the Shannon formula. The article
A is a direct ancestor of B if it transfers the largest quantity of information into
B. Using this criterion, 32 articles are descendants of PRE TOPC in a tree of
dependence of all MML items.

Most of “topological” articles (over 70) are devoted to the proof of the famous
Jordan Curve Theorem (JCT). The first article dedicated to this topic is dated at
the end of 1991. Even if in Mizar there is only a version of JCT for special poly-
gons fully proved, the theorem has had a great impact stimulating the develop-
ment of MML. Statistically, more than five articles devoted to this topic were sub-
mitted yearly (three in a year if we count only JORDAN series), basically written by
the authors of University of Bia�lystok, Poland and Shinshu University, Nagano,
Japan.

One could ask a question, why did it take so long to codify the proof of
the relatively simple theorem? The proof considered by the Mizar team was
designed by Takeuchi and Nakamura [18] to be understandable for engineers,
so it uses methods which are rather not much sophisticated. Furthermore, due
to modular (and this modules – Mizar articles – are relatively big) develop-
ment of MML, authors tend to give thorough (so more time-consuming) de-
scription of introduced notions. MML is not designed especially to develop
a proof of any particular theorem, but aims at helping mathematicians with
their work. The recent projects: C-CoRN [5] library connected with Funda-
mental Theorem of Algebra, FlySpeck – formalization of a proof of Kepler’s
Conjecture as proposed by Hales may differ substantially in dynamics – sim-
ilarly as his proof of JCT did, comparing with that of Mizar. While the
latter project is designed to solve mainly this specific problem, C-CoRN is
created to serve mathematicians in the similar (more general) way the MML
does.

2 As one of the referees pointed out, looking for used notations to determine which
articles are devoted to topology seems risky, because relevant material can be scat-
tered all over the place. It is the case of e.g., arithmetics or Boolean operations on
sets, but in our opinion topology behaves much better due to many revisions done.
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3.4 Topology of the Real Line

To construct a real example we had the possibility of choosing between the two
representations of the real line with the natural topology. We decided to use R^1
which is the result of an application of a functor TopSpaceMetr on the metric
space RealSpace. This functor defines topology as the family of sets V such that
for every point x of V there exists a ball with center in x and positive radius
which is included in V .

The differences between the available representations of a natural topology
on the real line, that is R^1 and TOP-REAL 1 are caused by various approaches
to the points they represent: the ordinary singleton and the one-elemented fi-
nite sequence. This duplication is not a desirable feature of MML, one of these
approaches will probably be eliminated in the future releases of the library. The
main reason that it is not done yet is that the notion of R^1 – which is much sim-
pler (no additional objects such as finite sequences are involved in the definition)
– cannot be easily generalized into spaces with higher dimensions, contrary to
the latter TOP-REAL 1. Both notions are also developed in MML comparatively
well (at least they share similar number of lemmas).

4 The Solution

In this section, we present how the problem of fourteen Kuratowski sets was
expressed in the Mizar language. Although at first glance reusability of this fact
is rather small, the problem itself is well-known in the literature and deserves
to be formalized in MML. Even if many applications in other terms (e.g., group
theory) are available, we decided to code it in a clean topological language.

Presumably, it would be better to have the more abstract form of it by first
proving the theorem in the group-theoretical setting, and then instantiating
that in the topological context. But the main drawback is that although merg-
ing mechanisms work in Mizar quite smoothly, there is no intuitive “forgetful”
functors allowing the user to use e.g., real numbers apart from the field of reals,
but still justifying it in a purely algebraic way.

4.1 The Barrier of Fourteen

When we tried to formulate the whole problem in Mizar, at the beginning we
met one of the low quantitative restrictions of the Mizar language: enumerated
sets can have at most ten elements.3 This constant can be easily extended, but
without changes in the checker itself, eventually we decided to divide Kuratowski
sets into two smaller parts with cardinality seven, and thus we introduced the
definition of the functor Kurat14Set to be a union of these.
3 For some historical limitations the number of arguments in a functor definition can-

not be bigger than 10, otherwise the Mizar verifier reports error number 937. Recently
we asked Mizar developers to move this limitation upwards, hopefully it will be done
in future releases.
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When thinking of the partition of the Kuratowski sets, one can imagine a few
classifications: one of them is for example to distinguish those where variables
occur in positive (i.e., complement operator is applied an even number of times)
or negative (odd number of occurrences, respectively) form. This “7+7” model
is reasonable when we look at the diagram of Fig. 1. The positive part is the
upper one.

The most useful approach however, as we point out later on, was to divide
the family of subsets into its closed and open parts, and the rest (the partition
“6+6+2”). Thanks to the functorial clusters mechanism we obtain immediately,
that the closure of a set is closed, and the complement (‘ in Mizar) of a closed
set is open.

definition let T be non empty TopSpace, A be Subset of T;
func Kurat14ClPart A -> Subset-Family of T equals :: KURATO_1:def 3

{ A-, A-‘-, A-‘-‘-, A‘-, A‘-‘-, A‘-‘-‘- };
func Kurat14OpPart A -> Subset-Family of T equals :: KURATO_1:def 4

{ A-‘, A-‘-‘, A-‘-‘-‘, A‘-‘, A‘-‘-‘, A‘-‘-‘-‘ };
end;

theorem :: KURATO_1:5
Kurat14Set A = { A, A‘ } \/ Kurat14ClPart A \/ Kurat14OpPart A;

This functorial registration assures that the attribute is automatically added
to the functor under consideration. Via this stepwise refinement we can gradually
narrow the type (give an additional specification).

registration let T be non empty TopSpace, A be Subset of T;
cluster Kurat14Set A -> finite;

end;

The registration above is to enable the use of the functor card yielding natural
numbers. This is needed to allow a comparison with numerals, because essentially
the Card functor, of which card is a synonym, yields ordinal numbers. The
following lemma was a rather easily provable property of an enumerated set.

theorem :: KURATO_1:7
card Kurat14Set A <= 14;

The generation of all 14 Kuratowski sets can be treated as the result of a
certain algorithm, so it would be enough to prove that it terminates.

Our algorithm can be roughly described as follows (in one of the simplest
forms): apply the closure operator on a given collection of subsets, enlarge this
collection by the results, reduce modulo set of known equations (that is, leave
only one copy of the equal terms), then apply the complement operator, enlarge
and reduce again; repeat these steps until no new subsets will be generated.
Starting with arbitrary subset A, this algorithm will stop with no more than
fourteen distinct sets. The equations which can be treated as a sort of sos or
hints in Otter theorem prover terminology, are as follows:4

4 For the correspondence of these with the second theorem in Section 2 we refer the
reader to [17].



Solving Two Problems in General Topology Via Types 145

A−− = A− (1)

A′′ = A (2)

A−′−′−′− = A−′− (3)

A similar problem occurred in the case of the famous elegant Rado proof of the
Hall Marriage Theorem [14] when we had to formalize the process of decreasing
the cardinality of any element of the family of subsets. Because still there is no
feasible method of algorithm coding in Mizar (some are coded in MML, e.g.,
various sorting algorithms or that of Euclid, but they are stated in an abstract
computer setting which in our opinion is too complex), we had to handle it in a
different way.

We simply started with the output list of generated subsets, and we showed
that both operators do not map outside this list. To prove this, we had to ref-
erence only a fact numbered (3) in the above set (A-‘-‘-‘- = A-‘- in Mizar
notation). As it turned out to be convenient, equation (1) should be introduced
as a projectivity property in Mizar, similarly as it is in case of (2) with a com-
plement operator (involutiveness), both force automatization of the reasoning
by the unification of underlying terms. To conclude that both operators do not
map outside the given set, we formulated and proved the following theorem.

theorem :: KURATO_1:6
for Q being Subset of T st Q in Kurat14Set A holds

Q‘ in Kurat14Set A & Q- in Kurat14Set A;

registration let T be non empty TopSpace, A be Subset of T;
cluster Kurat14Set A -> Cl-closed compl-closed;

end;

The above cluster uses new attributes, which can be translated (as in fact they
were in the Journal of Formalized Mathematics [1] by the machine) as “closed
for closure operator” and “closed for complement operator”. The registration
has its justification based on KURATO 1:6, which completes the proof of the first
part. As we will see later on, all three implemented types of cluster registrations:
existential, assuring that the radix type with the given cluster of adjectives is
non-empty, conditional – stating that objects possesing properties expressed in
terms of attributes have also other attributes automatically added to their type,
and functorial, were extensively used. The latter two make many justifications
unnecessary to write by human hand, and allowing the Mizar type analyser for
a full work, while the former one allows to use the radix type with underlying
adjectives.

Using methods developed and checked in the case of the closure-complement
problem, we were able to solve analogously the other problem of Kuratowski,
that is closure-interior. The solution was even less problematic because of the
smaller number of sets (below the 10-arguments barrier).
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4.2 The Example of 14-Subset

It is natural to search for an appropriate example in the real line with the natural
topology, as Kuratowski proposed, although frankly speaking, the lemmas for the
real euclidean plane are developed much better. We decided to use the set as
shown below.

A = {1} ∪
(
(2; 4) ∩Q

)
∪ (4; 5) ∪ (5; +∞),

which is translated into Mizar as follows:

definition
func KurExSet -> Subset of R^1 equals :: KURATO_1:def 6

{1} \/ RAT (2,4) \/ ]. 4, 5 .[ \/ ]. 5,+infty.[;
end;

To shorten the notation we had to define intervals of rational numbers (only
open, as RAT(a,b)). It is worth mentioning here that to keep notations for
intervals as compact and close to the mathematical tradition as possible, we
introduced ].a,+infty.[ as a synonym to the previously defined in MML
halfline(a). Both functors have only one argument since obviously +infty
is not an element of the set of reals. For this part of the proof the predicate for
an enumerated list of arguments, namely are mutually different, was also
essential.

Due to the lack of decimal fractions in MML, the calculus of intervals of
numbers was not convenient. We had to state for example a theorem of the
density of the irrational numbers, even the formalization of the proof of the
irrationality of the base of natural logarithms is relatively new. The fact of the
irrationality of the square root of 2, which was advertised well by Wiedijk in
his famous comparison of seventeen provers of the world [19], was also useful.
Too few examples were previously done by others – but MML focuses on the
reusability of introduced theories. The policy, which resulted in a low number of
exercises formalized during the CCL project, caused the necessity of the trivial
calculus on intervals.

Following [15], to show the mutual difference of subsets for each of the fourteen
sets we may create a vector of boolean values 0’s and 1’s indicating whether fixed

Table 1. Incidence of test points in the example set

A = {1} ∪ (2; 4) ∩Q ∪ (4; 5) ∪ (5;+∞)

A = [1, 0, 1, 0, 0, 1] : 41 A′ = [0, 1, 0, 1, 1, 0] : 22
A− = [1, 1, 1, 1, 1, 1] : 63 A′− = [1, 1, 1, 1, 1, 0] : 62
A−′ = [0, 0, 0, 0, 0, 0] : 0 A′−′ = [0, 0, 0, 0, 0, 1] : 1

A−′− = [1, 1, 0, 0, 0, 0] : 48 A′−′− = [0, 0, 0, 1, 1, 1] : 7
A−′−′ = [0, 0, 1, 1, 1, 1] : 15 A′−′−′ = [1, 1, 1, 0, 0, 0] : 56

A−′−′− = [0, 1, 1, 1, 1, 1] : 31 A′−′−′− = [1, 1, 1, 1, 0, 0] : 60
A−′−′−′ = [1, 0, 0, 0, 0, 0] : 32 A′−′−′−′ = [0, 0, 0, 0, 1, 1] : 3
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test points lie in the set or not. We can order these binary numbers by means of
their decimal representation. As Rusin stated, although 24 > 14, the number of
four points is insufficient to show that all 14 sets are different. Table 2 presents
points incidence where the test points were respectively: 1, 2, 3, 4, 5, 6. In our
case all 6 points are needed. We used this intuitive representation only partially
because there is no comfortable method for representing it in Mizar and we
wanted to use the existing type machinery.

4.3 To Type or Not to Type

In order to avoid 14·13
2 = 91 comparisons to check that all 14 sets are different

which would be necessary when developing an untyped form, we decided to use
adjectives. The following lemma was crucial to reduce the complexity of the
second part of the proof.

theorem :: KURATO_1:60
for F, G being

with_proper_subsets with_non-empty_elements Subset-Family of R^1 st
F is open & G is closed holds F misses G;

In words, arbitrary families of subsets F and G of the real line with the natural
topology such that all their members are neither empty nor equal to R and F is
open and G is closed (note that being open for a family of subsets means that
all its elements are open, similarly for the “closed” adjective) are disjoint.

Recalling that Kurat14OpPart A is collectively open (that is, all its elements
are open subsets) and Kurat14ClPart A is collectively closed, and taking into
account that all elements of these families of subsets are both proper and non-
empty (all these properties are automatically added via functorial cluster mech-
anism), we obtain a significantly reduced number of checks (which were done
according to the Rusin’s method of test points). Additionally, because we know
that KurExSet is neither closed, nor open, the final calculation is just summing
the cardinalities of disjoint six-elemented sets and a doubleton.

5 Isomichi’s Classification of Subsets

The original problem of 14 sets have been raised the wider class of questions,
named “problems of Kuratowski type”. Closure and complement can be replaced
by other operators, not only topological (as the interior is), but also of more
general interest (set-theoretical meet, union, difference etc.).

If we recall that for a topological interior the following equation is true

Int A = A′−′,

we can reuse Fig. 1 to have the illustration of closure-interior problem, also being
investigated by Kuratowski, as the diagram of Fig. 2.

The maximal number of different sets we can obtain by applying the interior
and closure operators to any subset A of an arbitrary topological space is seven.
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5.1 Supercondensed and Subcondensed Sets

Sambin [16] points out the following method to find counterexamples for the
other inclusions than those shown on Fig. 2 (or Fig. 1): one can choose a suitable
basic pair, and use the logical expressions for interior and closure to show that
they would give some implications which are not valid intuitionistically.

Int A Int Cl Int A

Int Cl A

Cl Int Cl A Cl A

Cl Int A

A

Fig. 2. Seven Kuratowski sets ordered by inclusion

Although Mizar uses classical logic, we can benefit from this observation in
a similar way. We could try to describe a topological space in which some of
the basic pairs are identified. We can show an example of a subset in the real
line with natural topology such as the diagram at Fig. 2 does not reduce to any
smaller number of distinct sets. This is the same KurExSet as it was considered
in Subsection 4.2, and all the proofs were easily reused.

Following Isomichi [8], we call a subset A of a given topological space subcon-
densed (resp., supercondensed) if and only if Cl Int A = Cl A (Int Cl A = Int A)

definition let T be TopStruct, A be Subset of T;
attr A is supercondensed means :: ISOMICHI:def 1

Int Cl A = Int A;
attr A is subcondensed means :: ISOMICHI:def 2

Cl Int A = Cl A;
end;

In this manner A is a closed (resp., open) domain if and only if A is subcon-
densed (supercondensed) and A is closed (open). The distinction for open and
closed domains is an important topic in the general topology, also considered
by Kuratowski. The lattice of all open (closed) domains of a given topological
space forms a Boolean algebra, which thanks to attributes is a subalgebra of the
lattice of all subsets of a given space.

5.2 Three Classes of Subsets

Going one step further, we can unify some subsets with respect to the relations
of inclusion between them (not arbitrary ones, because e.g., interior of a set is
always contained in its closure). And some of the results given by this method
can be also observed in the literature (usually with no reference for the Kura-
towski problem, though). The connection with the 14 sets is clear if we notice
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that the unification of some of them reduces the diamond formed by Int Cl A,
Cl Int A, Cl Int Cl A, and Int Cl Int A at the diagram of Fig. 2. Neither super-
nor subcondensed subsets cannot give 14 distinct subsets – just from the defini-
tion.

definition let T be TopSpace, A be Subset of T;
attr A is 1st_class means :: ISOMICHI:def 6

Int Cl A c= Cl Int A;
attr A is 2nd_class means :: ISOMICHI:def 7

Cl Int A c< Int Cl A;
attr A is 3rd_class means :: ISOMICHI:def 8

Cl Int A, Int Cl A are_c=-incomparable;
end;

In the above definitions c= stands for the set-theoretical inclusion, c< – for the
proper inclusion (arguments have to be distinct). KurExSet is neither super- nor
subcondensed, and as it can be easily verified, it is of the 2nd class. Any subset of
a given space is an element of a class of this kind, and this classification is unique
(since the classes are disjoint), as it is expressed in the form of a theorem and
three conditional registrations of a cluster assuring that any set which is element
of the one class, cannot be member of any other. The distinction of Cl Int and
Int Cl for KurExSet following just from the definition of 2nd class could result
in shortening of some proofs in Section 4.

theorem :: ISOMICHI:46
A is 1st_class or A is 2nd_class or A is 3rd_class;

Given classification of subsets is also discussion connected with a Sambin’s
question, whether other inclusions in the diagram of Fig. 2 are true.

registration let T be TopSpace;
cluster supercondensed -> 1st_class Subset of T;
cluster subcondensed -> 1st_class Subset of T;

end;

If the only open subsets are the empty set and the carrier X , i.e., we have
anti-discrete topological space, any of its proper subsets A has interior empty
and closure equal to X, so we have

∅ = Cl Int A ⊂ Int Cl A = X.

registration let T be anti-discrete non empty TopSpace;
cluster proper non empty -> 2nd_class Subset of T;

end;

Via conditional cluster registrations we let the Mizar type analyzer automat-
ically add to the type given after an arrow “->” a collection of adjectives before
the arrow.

Both empty set and the whole space are 1st class subsets. We can thus con-
clude that anti-discrete topological spaces with at least two elements contain
subsets of the 2nd class.



150 A. Grabowski

definition let T be TopSpace;
attr T is with_2nd_class_subsets means :: ISOMICHI:def 10

ex A being Subset of T st A is 2nd_class;
end;

Similar adjectives are defined for 1st and 3rd class subsets, although the earlier
can be considered somewhat redundant. Because the empty subset is both super-
and subcondensed, subsets of the first class exist in an arbitrary topological
space.

registration let T be TopSpace;
cluster 1st_class Subset of T;

end;

5.3 Existence Problems

Relatively recent reimplementation of attributes done by Byliński canceled an
issue of the so-called unclusterable attributes5, and now types Subset of T
and Subset of the carrier of T became exactly the same objects. Earlier
registration with the latter type was unacceptable. So now the only problem
with these existential registrations of clusters is whether we can construct an
appropriate example. (Recall that we cite here registrations without proofs.)

Sometimes the objects just cannot exist in general, as it is with 2nd class
subsets, then a type in a locus should be specified more carefully.

registration let T be with_2nd_class_subsets TopSpace;
cluster 2nd_class Subset of T;

end;

Essentially, we could try to enumerate equations identifying certain expres-
sions in Fig. 2 obtaining in this way characterizations of various topological
spaces. Even if the example set from Section 4.2 in this paper is not 3rd class
subset, still the real line is a good testbed for counterexamples; there are even
many more complicated examples in topology constructed in the MML, e.g.,
Sorgenfrey line, Sierpiński space or the Cantor set.

Kuratowski’s problem is very influential, type-free in primary formulation,
raised many questions strictly connected with typed approach to a topological
space. Interesting question which can be formulated is an issue of properties of
subsets to have 14 distinct sets.

This classification is also important because observing some general proper-
ties (top-down clustering of knowledge), we can store the information better.
And due to automatization, we do not need reprove similar theorems again
and again, even if copy-and-paste techniques are still very often used by the
authors of Mizar articles. MML still lacks some solutions which fully reflect ex-
pressive capabilities of the Mizar language – topological metric spaces can now be
5 When defining an attribute, all used variables had to be directly (without additional

functors) accessible, otherwise an existential cluster with this attribute could not be
written.
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considered descendants of metric and topological spaces due to multiple inher-
itance mechanism, but older articles (and hence all which use them) still use a
technique of addition of transforming metric spaces into topological ones.

6 Related Work

From a predicative point of view the definition of a topological space in MML is
unacceptable (quantification over families of subsets of the carrier of a space),
also because of the classical logic standing behind the Mizar system, but its
library could benefit from translation of some results in formal topology (con-
structive proofs can be translated into the Mizar language and positively verified
by the Mizar checker). As a rule, MML developers tend rather to eliminate predi-
cates and use adjectives instead. So the formal topology as introduced in FINTOPO
series has very little in common with the constructive approach which is outlined
well by Sambin in [16] where many interconnections with other disciplines are
studied. Although Mizar’s TopSpace is a concrete space, it was also tied with
posets when codifying [7].

Many recent grand challenges for formalized mathematics deal with general
topology. This choice is reasonable for Mizar as it is based on the set theory and
classical logic. But the proofs of the Kepler Conjecture and the Jordan Curve
Theorem which were chosen by Hales to codify with HOL-Light, as well as the
impressive formalization of the Four Color Theorem done in Coq by Werner and
Gonthier are placed in the topological field.

What should be mentioned here is also a didactical value of this formalized
discipline: five exercise sets in topology were prepared for PC Mizar by Czuba
and Bajguz in 1989–90, ca. 100 pages each. A similar choice for didactical exper-
iments (but without use of Mizar) was made for instance by Cairns and Gow [4].

As we could conclude from successful experiments with lattice theory (solution
of the Robbins problem, equational characterization of lattices in terms of Sheffer
stroke, disjunction and negation, including short single axioms), many proofs
may be retrieved from other specialized proof-assistants. Thanks to a Lisp script
ott2miz (created by Josef Urban) which converts Otter proof object into an
untyped (in some sense, because used objects are of type set) self-containing
Mizar source code which can be simplified by Mizar scripts and verified by the
Mizar checker, the author’s responsibility can be restricted mainly to creating
a proper input and appropriate data structure (placed possibly deeply within
Mizar type hierarchy).

7 Conclusion

The experience with formalization of fourteen sets of Kuratowski and Isomichi’s
paper shows that the Mizar system, in its current state, not only is a good frame-
work for formalization of mathematical structures and their properties, but also,
due to the large repository of mathematical knowledge MML, is capable of being
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used for the construction of examples and counterexamples. The general topol-
ogy delivers many problems which can be challenges for various mathematics
assistance systems.

The main achievement of our work is the formalization of the Kuratowski
problem, its full solution in terms of clean general topology and the construction
of an example of a set generating exactly fourteen Kuratowski sets. We put the
stress not on the brute force proving, but we tried to find a possibly elegant
proof. As a by-product, we obtained the characterization of condensed sets and
improved topological type hierarchy in MML.

Even if the problem itself has been solved completely, during the codification
a number of ideas arose. Essentially, at the second stage of solving Kuratowski’s
problem, when the example set had to be constructed, it soon became apparent
that the Library Committee of the Association of Mizar Users should consider
a massive revision of MML to merge both metric and topological spaces, be-
cause without such a revision one has to recode between different approaches.
We have different representations of the real line with the natural topology,
and this revision should simplify the formal apparatus. It is a question of pol-
icy – on the one hand we give users freedom of choice on their own, but on
the other – abundance of notions can be quite misleading, even if the Mizar
system offers more querying mechanisms than only textual search as it was be-
fore.

Roughly speaking, library revisions are caused by two processess. One of them
is continuous improvement of the system (e.g., strengthening the Mizar checker
or developing new language features). Also formalization projects, especially
broader ones, force library developers to revise other articles in the topic. As
an example we can give here introducing new lemmas which allow to prove
theorems in a more general setting, with the possibility of its further reusing at
the same time. It is often the case that the author does not even know about
connections with other parts of mathematics (from algebraist’s viewpoint, 14 sets
of Kuratowski can be just instantiation of some group theory problem in the
topological context).

Recent projects to split MML into concrete (or classical) and abstract parts
(i.e., using the notion of a structure) have obviously one significant value: in
this way some accidental connections between articles may be removed to make
MML more compact. The larger items are, the smaller the mess in the library –
and consequently knowledge can then be retrieved more effectively. Topology is
now clusterized relatively well; it turns out to be the most promising discipline
to be the most thorough developed in the Mizar library.
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Abstract. We present a tool for automated theorem proving in Agda,
an implementation of Martin-Löf’s intuitionistic type theory. The tool
is intended to facilitate interactive proving by relieving the user from
filling in simple but tedious parts of a proof. The proof search is con-
ducted directly in type theory and produces proof terms. Any proof term
is verified by the Agda type-checker, which ensures soundness of the tool.
Some effort has been spent on trying to produce human readable results,
which allows the user to examine the generated proofs. We have tested
the tool on examples mainly in the area of (functional) program verifi-
cation. Most examples we have considered contain induction, and some
contain generalisation. The contribution of this work outside the Agda
community is to extend the experience of automated proof for intuition-
istic type theory.

1 Introduction

Automated proving in first-order logic is well explored and developed. Systems
based on higher-order logic have in general limited automation. This is in par-
ticular true for proof-assistants based on intuitionistic type theory. There is
strong motivation for working with these formalisms and the tools based on them
have a large user community. As a result, a lot of interactive proving is carried
out to construct proofs or parts of proofs which could conceivably be solved
automatically.

We have developed a tool for automated proving in the Agda system [3]. It is
not a complete proof search algorithm. The aim is to automate the construction
of the parts of a proof which are more or less straightforward. Often such parts
can be tedious to fill in by hand, however significant time could be saved, allowing
the user to spend her effort on the key parts of the proof.

Agda is an implementation of Martin-Löf’s intuitionistic type theory [10],
which, following the paradigm of propositions-as-types and proof-as-objects, can
be used as a logical framework for higher-order constructive logic. Agda is a
type-checker and an assistant for constructing proof terms interactively. The
assistant is not based on tactics. Instead, the user sees a partially completed
proof term during the process. The incomplete parts of the term are represented
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by place-holders, called meta variables. Each step consists of refining one of the
remaining meta variables, which instantiates it to a term that may contain new
meta variables. Refining one meta variable may also instantiate others, as a
result of unification.

The tool does not rely on an external solver. During the proof search, the
problem and the partial solution are represented as Agda terms. The tool is
integrated with the Agda proof assistant, which runs under emacs. When stand-
ing on a meta variable, the user can invoke the tool, which either inserts a valid
proof term or reports failure of finding a solution. Failure is reported if the search
space is exhausted or if a certain amount of steps has been executed without
finding a solution. There is also a stand-alone version of the tool, intended for
development and debugging, where a proof search can be monitored step by step.

Before inserting a proof term, it is always verified by the Agda type-checker.
Therefore, the importance of soundness is limited, and we will not further discuss
this issue. Still, we believe that the basic steps of the proof search are consistent
with the Agda typing rules and moreover that the algorithm is sound.

Since the area of application is within an interactive proof assistant, producing
human readable proof terms is important and has received some attention in our
work.

The tool handles hidden arguments, which is a new feature of Agda. It has
however so far no support for inductive families [7], except for when they are
used for representing equalities.

The fundamental restriction of the tool is that it does not do higher order uni-
fication. Instead, a decidable extension of first-order unification is used. In e.g.
Dowek’s algorithm for term synthesis in pure type systems [5], applying an elim-
ination rule produces a constraint, which is successively solved by higher-order
unification. Our tool instead only applies an elimination rule if the unification
procedure returns a unifier.

In Agda, termination is not verified by the type-checker. There is a sepa-
rate termination-check. In our tool, inductive proofs are restricted to structural
recursion. Determining termination is in general undecidable and defining ad-
vanced criteria is an issue in itself. An alternative approach would be to ignore
termination and let an external verification accept or reject a proof term. How-
ever, the tool is currently designed to produce only one solution, which makes
it inappropriate for that approach. Although the flexibility of induction schemes
is limited, the tool can do nested induction on several variables and also nested
case split on one variable.

Elimination rules are generally only applied when there is a suitable variable in
the context to apply it on. The exception to this is that the tool identifies a couple
of cases of generalisation. In some cases this leads to a necessary strengthening
of the induction hypothesis. The generalisation mechanism is however restricted
to what can be syntactically deduced from the current goal type, like replacing
a repeated subexpression by a fresh variable. There is also no synthesis of new
hypotheses, i.e. the tool is unable to do lemma speculation.
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In addition, there are a number of other restrictions, e.g. that new data types
and recursive functions are not synthesised. This means that, when searching for
a proof of a proposition which is existentially quantified over Set or a function
space, a new data type or a new recursive function will not be synthesised.

Section 2 contains a small survey of related work. Section 3 describes the tool
and contains a few subsections, which are devoted to special features. In section
4 we present a few examples and discuss the limitations of the tool. Section 5
gives conclusions and ideas for how the tool could be improved in the future.

2 Related Work

Although the type inhabitation problem is undecidable for a system like Agda,
it is semi-decidable simply by term enumeration (plus decidability of type-
checking). A complete proof synthesis algorithm for the pure type systems has
been presented by Dowek [5]. Cornes has extended this to a complete algorithm
for the Calculus of Inductive Constructions [4]. Although these algorithms are
of theoretical interest, complete algorithms so far seem too time-consuming to
be of practical use. In her thesis, Cornes elaborates on various enhancements,
but, to our knowledge, there is no implementation available.

We now turn to a quick survey of related implementations, beginning with
a piece of related research in the context of Agda, and then working our way
outwards in wider circles. Smith and Tammet [12] have investigated using a
FOL-solver to mechanically find proofs in Alf [9], the predecessor of Agda.
The goal type together with the typing rules of Alf are encoded in first-order
logic and a solver, Gandalf, is invoked. If a solution is encountered, a proof
term is constructed using the information produced by Gandalf. The authors
managed to generate some inductive proofs, but the approach seems rather
inefficient.

The proof-assistant Coq is based on a language closely related to that of
Agda. Coq has many sophisticated tactics, but the auto tactic, which is the
nearest counterpart of our tool, does not produce any inductive proofs.

Also related to Agda is the Logical Framework, implemented in the system
Twelf. Schürmann and Pfenning [11] have developed a proof search tool and
supporting theory for a metalogic in Twelf, an implementation of the logical
framework LF.

Andrews has successfully explored the area of mechanical proofs in classical
type theory [2]. His work has resulted in TPS, a fully automatic proof system
based on higher-order unification.

ACL2, PVS and Isabelle are other major proof assistants. ACL2 and PVS do
have automation for induction, but none of the systems produces proof objects.

3 Tool Description

Agda has dependently-typed records and algebraic data types. The algebraic
data types can be recursively defined. Function arguments are analyzed by
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case-expressions rather than pattern matching. Functions can be recursively de-
fined freely using self-reference. There is no fixpoint construction. Type-checking
does not include termination check. Although there is a separate termination
checker, the restrictions are not clearly defined in the semantics. Hence, a tool
for automated proving must either ignore termination issues or define its own
criteria for this. With a proof search algorithm capable of producing multiple
solutions, the first approach could be used. For each solution an independent
termination check is consulted. If it rejects the proof term, the search is con-
tinued. Our tool is however designed to come up with only one solution, so it
adheres to the second approach. Proof terms are currently restricted to structural
recursion.

Agda is monomorphic but polymorphism is in recent versions simulated by
argument hiding. Properties and proof terms below are presented with some
type arguments omitted. This is done to improve readability, but the hiding
mechanism is not further discussed.

Just like the Agda proof assistant, the tool uses place holders to denote incom-
plete parts of a proof. Place holders are called meta variables and are denoted
by ‘?’. They can be seen as existentially quantified variables.

The most significant characteristics of the tool are the following:

– Unification is first-order and is not an interleaved part of the proof search.
The search state does not have constraints. Unification is decided immedi-
ately when applying elimination is considered.

– The order in which the meta variables are refined is dictated by depth-
first traversal. After refining a meta variable, its subproofs are recursively
addressed one by one.

– Meta variables are classified as either parameter meta variables or proof meta
variables. Parameter meta variables are those which appear in the type of
some other meta variable, whereas the rest are proof meta variables. The pa-
rameters are the term-like meta variables. Only proof meta variables are sub-
ject to resolution. Parameter meta variables are supposed to be instantiated
when unifying one of the types where they appear. In [5] Dowek pointed out
that variables should be instantiated from right to left. The parameter/proof
distinction is an alternative to this rule and it postpones the instantiation
of term-like variables in a more flexible way. The distinction is also made for
local variables, although not that explicitly.

– A meta variable is refined by an elimination only when there is a suitable ob-
ject in the context. This means that for each meta variable, all possible ways
to eliminate any object in scope are considered. It can be any combination of
function application, record projection and also case split for algebraic data
types. The fact that this applies to disjoint unions makes it necessary to tag
solutions with conditions for which it is valid. As an example, if we have
[h : A + B] �? : A, then a solution is [h → inl a] � a, which means a is a
valid term provided that h is of the form inl a. The idea is that conditional
solutions at some point should pair off to form an unconditional proof of the
full problem.
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The program consists of an algorithm which explores the search space and
the implementations of a set of refinement rules. The proof search algorithm
is presented in subsection 3.1. The refinement rules define the atomic steps of
refining a problem and how to construct the corresponding proof term. The
implementations of the refinement rules will be referred to as tactics. We will
not present a formal description of the rules, since they are closely related to the
typing rules of Agda. There are refinement rules for constructing λ-abstractions,
record objects and algebraic data type objects. There is a rule for elimination,
which combines several eliminations of different kind in the same refinement, as
described above. There is also a special elimination rule for equalities, which uses
transitivity, symmetry and substitutivity in a controlled manner. Then there is
one rule for case analysis and induction and one for generalisation. They are
presented by example in subsections 3.2 and 3.4 respectively. Finally, there is a
rule for case on expression, which combines case analysis and generalisation. It
is presented in section 3.3.

In the tactics which perform elimination and at some other places in the
search algorithm, first-order unification is used to compare types in the presence
of meta variables. Unification is always performed on normalised terms. The tool
uses an extension of normal first-order unification. This enables it to deal with
more problems without resorting to higher-order unification. The extension is
still decidable. However, while a first-order unification problem has either one
or no unifier, a problem of the extended unification can have any number of
unifiers. The extension is presented in subsection 3.5. When doing first-order
unification in the presence of binders, attention must be paid to scope. We
have chosen to solve this by having globally unique identifiers for variables.
Whenever a meta variable is about to be instantiated, its context is checked
against the free variables of the term. If not all variables are in scope, the unifier
is rejected.

When a proof term has been found, the tool does a few things to make it
more readable. This includes using short and relevant names for local variables
and removing redundant locally defined recursive functions.

3.1 Proof Search Algorithm

The search space is explored using iterated deepening. This is necessary since a
problem may in general be refined to infinite depth. It is also desirable since less
complex solutions are encountered first.

We will describe the proof search algorithm by presenting a pseudo program
for the main recursion. The style is a mixture of functional and imperative pro-
gramming, but we hope that the meaning of the program is clear. It refers to
a few subfunctions which are only described informally. To make the presenta-
tion cleaner, unification is assumed to produce only one unifier, i.e. it does not
incorporate the extension described in subsection 3.5.

First we define a few types which describe the basic objects of the algo-
rithm. The elementary entities are denoted by single letters. The same letters are
used both to denote the types and the corresponding objects, hopefully without
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confusion. The general form of a problem of finding an inhabitant of type T in
the variable context Γ is the following:

Δpar, σ, Γ, ρ � T (Prb)

The corresponding type is called Prb. Here, Δpar = [Γi �?i : Ti] is the collection
of parameter meta variables. For each meta variable, its context and type is
given. The next component, σ = [?i := Mi], is the set of current parameter meta
variable instantiations, which should be taken into account when reducing terms.
After the context of the current problem, Γ , we have ρ = [Mi → ci yi,1 · · · yi,ni ].
This is the sequence of conditions which have emerged so far. The conditions
for proof variables should be taken into account in order to avoid clashes when
eliminating disjoint unions. The conditions for parameter variables should be
respected when normalising types.

A solution, Sol, to a problem has the following form:

σ′, ρ′ � M (Sol)

The term M inhabits the target type provided that the meta variable instanti-
ations and conditions of the problem are extended by σ′ and ρ′.

We will also use the notion of refinement, Ref, which specifies how a problem
can be refined to a new set of problems:

Δ′
par , Δprf , σ′, ρ′ � M (Ref)

Just as for a solution, the proof term, M , is an inhabitant assuming the extra
instantiations and conditions, σ′ and ρ′. In general, M contains new meta vari-
ables. The new meta variables are divided into parameters, Δ′

par, and proofs,
Δprf = [Γi, ρi �?i : Ti], according to the classification described above. For proof
meta variables the information supplied is different from that of parameter meta
variables. Instead of the full context, only the extra local variables are given.
Moreover, not only the context and type are given but also a set of extra con-
ditions which should be enforced in the corresponding branch of the proof. This
is needed since parameter variables are treated differently from proof variables.
The distinction is the same as for meta variables – parameters are variables
which appear in some type. While proof variables are eliminated on demand, as
described above, case splits for parameter variables must precede the proof of
its branches as a separate refinement.

Finally, we need to talk about collections of problems, PrbColl, and collec-
tions of solutions, SolColl.

Δpar , σ, Γ, ρ � Δprf (PrbColl)
σ′, ρ′ � σ∗ (SolColl)

A problem collection is a set of common instantiations and a set of common
conditions followed by a list of proof meta variables. A corresponding solution
collection contains the extra sets of common instantiations and conditions as well
as a set of instantiations, σ∗, which gives a term for every proof meta variable
in the problem collection.
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The following functions describe the proof search algorithm:

search : Prb→ [Sol]
search (Δpar, σ, Γ, ρ � T ) =
refs := createRefs (Δpar , σ, Γ, ρ � T )
sols := []
for each (Δ′

par, Δprf , σ′
1, ρ

′
1 �M) in refs

prbcoll := ((Δpar++Δ′
par), (σ++σ′

1), (ρ++ρ′1) � Δprf )
solcolls := searchColl prbcoll
for each (σ′

2, ρ
′
2 � σ∗) in solcolls

case (compose ((σ′
1++σ′

2), (ρ
′
1++ρ′2), M, σ∗)) of

none→ sols := sols
some sol→ sols := addSol (sol, sols)

end case
end for

end for
return sols

searchColl : PrbColl→ [SolColl]
searchColl (Δpar , σ, ρ � []) = ([], [] � [])
searchColl (Δpar , σ, ρ � ((Γi, ρi �?i : Ti) : prbs)) =
prb := (Δpar , σ, (Γ++Γi), (ρ++ρi) � Ti)
sols := search prb
solcolls := searchColl (Δpar, σ, ρ � prbs)
solcolls’ := []
for each (σ′

1, ρ
′
1 �M) in sols

for each (σ′
2, ρ

′
2 � σ∗) in solcolls

case (combine (σ′
1, σ

′
2, ρ

′
1, ρ

′
2)) of

none→ solcolls’ := solcolls’
some σ′

cρ
′
c → solcolls’ := (σ′

c, ρ
′
c � ((?i := M) : σ∗)) : solcolls’

end case
end for

end for
return solcolls’

The types of the auxiliary functions are the following:

createRefs : Prb→ [Ref]
addSol : Sol, [Sol]→ [Sol]
combine : σ, σ, ρ, ρ → σ, ρ option
compose : σ, ρ, M, σprf → Sol option

The function search first invokes createRefs, which generates the list of
refinements which are valid according to the set of refinement rules. Then, for
each refinement it compiles a problem collection consisting of its proof meta
variables. The collection is passed to searchColl which returns a list of solution
collections.
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For each collection, compose is called. This function lifts the parameter in-
stantiations and conditions above the scope of the current refinement. For the
instantiations, this means removing the entries which bind a meta variable in-
troduced by the refinement. When removing such an instantiation, the meta
variable is substituted for its value in M . For the conditions, it means check-
ing whether any of the conditioned variables was introduced by the refinement.
In that case, the solution would not be valid and the function returns nothing.
Otherwise, the values in σ∗ are substituted into M and a solution is returned.

If compose returns a solution, then a call to addSol adds it to the list of
solutions. However, if there is already a better solution present, the new one
is discarded. Conversely, if the new solution is better than some old one, that
one is discarded. A solution A is said to be better then a solution B if A would
combine with a solution C whenever B combines with C. In other words, A is
better when B when its parameter instantiations and conditions are subsets of
those of B.

Moreover, when adding a solution to the list, its conditions are checked against
the conditions of the already present solutions. If there is a collection of solutions
which can be combined with respect to instantiations and conditions, and which
together discharge one condition, the solutions are merged to a single one. The
proof term of this new solution is a case-expression where the case branches
correspond to the proof terms of the constituting solutions. As an example,
assume that there are two solutions,

[h → inl a] � M and [h → inr b] � N .

Then they are merged into the single solution

� case h of {inl a →M ; inr b → N} .

The function searchColl first calls search to generate the solutions for the
first problem in the collection. It then does a recursive call to produce the solu-
tion collections for the rest of the problems. For each solution and each solution
collection it then invokes combine. This function takes a pair of parameter in-
stantiations and a pair of conditions. It merges the instantiations and conditions
while checking that no inconsistency appears. Checking this involves comparing
terms. A term in an instantiation or in a condition may contain meta variables.
Thus, unification is performed rather than comparing and new instantiations
may need to be added. If a combination is possible, the combined sets of in-
stantiations and conditions are returned and the result is used to construct a
collection which includes a solution for the current problem.

3.2 Induction

The tactic which does case split on a variable also adds a locally defined function
around the case expression. The function can in a later refinement be invoked
as an induction hypothesis. Special information is stored to limit the calls to
structural recursion.
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Any variable which is of algebraic data type and is a parameter, i.e. appears
in a type, is a candidate for the tactic.

We will now give an example. The proof steps are presented as refinements.
Unlike the definitions in section 3.1, the meta variable is made explicit in prob-
lems and refinements, in order to clarify the structure of the proof search. Types
are displayed in their normal form, just as they appear at unification. In applica-
tions, some type arguments are omitted to increase readability. Also, in function
definitions, the type of some arguments is omitted for the same reason. Variable
names essentially correspond to what the tool produces.

The problem is commutativity of addition for natural numbers.

[a, b : Nat] � ? : a + b == b + a

Addition is defined by recursion on the first argument. The proof search calls the
case split tactic, which explores analysis on a. This gives the following refinement:

[[a → 0] �?b : b == b + 0, [a → s a′] �?s : s (a′ + b) == b + s a′] �

? :=
(

let r a b : (a + b == b + a) = case a of {0→?b; s a′ →?s}
in r a b

)

The local function is given as arguments all parameters which appear in the
target type and all hypotheses whose types contain the parameters, in this case
parameters a and b. The two new proof meta variables have a condition corre-
sponding to each branch.

The base case is solved by induction on b and appealing to reflexivity, refl,
and substitutivity for equality, cong.

refl (X : Set) : (x : X)→ (x == x)
cong (X, Y : Set) : (f : X → Y )→(x1, x2 : X)→(x1 == x2)→(f x1 == f x2)

The proof for the base case is constructed by the following refinements:

[[b→ 0] �?bb : 0 == 0, [b → s b′] �?bs : s b′ == s (b′ + 0)] �
?b := case b of {0→?bb; s b′ →?bs}

�?bb := refl 0
[�?p : b′ == b′ + 0] �?bs := cong (λx → s x) b′ (b′ + 0) ?p

�?p := r 0 b′

The first refinement is again generated by the case split tactic. The second
and third are generated by the equalities tactics and the last by the normal
elimination tactic.

In the step case, the induction hypothesis corresponding to structural recur-
sion on a is used to rewrite the equality by referring to transitivity, tran.

tran (X : Set) : (x, y, z : X)→ (x == y)→ (y == z)→ (x == z)

The refinement is:
[�?q : s (b + a′) == b + s a′] �

?s :=

⎛
⎝ tran (s (a′ + b)) (s (b + a′)) (b + s a′)

(cong (λx → s x) (a′ + b) (b + a′) (r a′ b))
?q

⎞
⎠
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The equalities tactic combines the use of transitivity with the use of substitu-
tivity and symmetry.

For ?q, case analysis on b will lead to a solution.

[[b → 0] �?sb :s a′ == s a′, [b → s b′] �?ss : s (s (b′ + a′)) == s (b′ + s a′)] �

?q :=

⎛
⎝ let r′ b a′ : (s (b + a′) == b + s a′) =

case b of {0→?sb; s b′ →?ss}
in r′ b a′

⎞
⎠

The following refinements complete the proof term:

�?sb := refl (s a′)
[�?r : s (b′ + a′) == b′ + s a′] �

?ss := cong (λx → s x) (s (b′ + a′)) (b′ + (s a′)) ?r

�?r := r′ b′ a′

The equalities tactic generates the first two refinements, while the elimination
tactic generates the third by using the induction hypothesis (s (b′ + a′) ==
b′ + s a′).

3.3 Case on Expression

There is also a tactic for case-on-expression. This tactic looks at the subex-
pressions of the target type and of the variables in the context. Any data type
subexpression which is an application with undefined head position is subject to
the tactic. All occurrences of the subexpression are replaced by a fresh variable.
Then, case analysis on the new variable is added. This is a special and very
useful case of generalisation. Although the occurrences of the subexpression are
replaced, new instances may appear at a later stage. Therefore, a proof that the
new variable equals the subexpression is supplied.

The following example illustrates the use of case-on-expression. It is about
lists and the functions map, which is defined recursively in the normal way, and
filter. In order to allow filter reducing in two steps it is defined in terms of if.

if true x y = x
if false x y = y

filter f [] = []
filter f (x::xs′) = if (f x) (x::filter f xs′) (filter f xs′)

The reason for defining filter this way is that Agda, when normalising a term,
only unfolds an application when the definition of the function reduces to some-
thing which is not a case expression. This, combined with the fact the first-order
unification is used, makes it necessary to define filter to reduce in two steps. First
it reduces to an if-statement when the list is known to be of the form x::xs.
Then it reduces again when the boolean value of (f x) is known.

The problem is the following:

[X, Y : Set, f : X → Y, p : Y → Bool, xs : List X ] �
? : filter p (map f xs) == map f (filter (λx → p (f x)) xs)
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The proof begins with induction on xs. In the step case, the goal type reduces
to:
if (p (f x)) (f x::filter p (map f xs′)) (filter p (map f xs′)) ==

map f (if (p (f x)) (x::filter (λx→p (f x)) xs′) (filter (λx→p (f x)) xs′))

The tactic identifies p (f x) for generalisation and case analysis. The occurrences
are replaced by the variable pfx. We will not give all refinements, but simply
present the final generated proof term:

let r xs : filter p (map f xs) == map f (filter (λx → p (f x)) xs)
[]→ refl []
x::xs′ →

let g pfx (peq : pfx == p (f x)) :
if pfx (f x::filter p (map f xs′)) (filter p (map f xs′)) ==

map f (if pfx (x::filter (λx→p (f x)) xs′) (filter (λx →p (f x)) xs′))
= case pfx of

true→ cong (λy → f x::y) (filter p (map f xs′))
(map f (filter (λx → p (f x) xs′))) (r xs′)

false→ r xs′
in g (p (f x)) (refId (p (f x)))

in r xs

The case-on-expression tactic generates a refinement where the local function g
is defined to case pfx of {true →?t; false →?f}. Each branch is then solved
by the equalities tactic.

3.4 Generalisation

The generalisation tactic recognises two cases; generalise subexpression and gen-
eralise apart. Generalise apart means replacing multiple occurrences of a single
variable with two different variables. Generalising subexpression means pick-
ing a subexpression and replacing it with a new variable. It is only applied for
subexpressions which occur at least twice, as opposed to the more restricted
generalisation introduced by the case-on-expression tactic.

Generalise subexpression seems to be the more useful of the two. We have only
made use of generalise apart for simple problems like 2 · (s n) == s (s (2 · n)),
where multiplication is defined in terms of addition by recursion on the first
argument.

We give an example to illustrate the strengthening of the induction hypothesis
using generalise subexpression; reversing a list twice.

[X : Set, xs : List X ] � ? : rev (rev xs) == xs

Reversing a list is defined in terms of concatenating two lists.

[]++ys = ys
(x::xs)++ys = x:: (xs++ys)

rev [] = []
rev (x::xs) = rev xs++ (x::[])
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The proof begins by induction on xs. In the step case, where xs → x::xs′, the
goal is rewritten using the induction hypothesis and transitivity, yielding the
type:

rev (rev xs′++ (x::[])) == x::rev (rev xs′)

Here, (rev xs′) is generalised to a new variable, xs′′. The proof then follows by
induction on xs′′. The final proof term is:

let r xs : (rev (rev xs) == xs) = case xs of
[]→ refl []
x::xs′ → tran (rev (rev xs′++ (x::[]))) (x:: rev (rev xs′)) (x::xs′)

(let g xs′′ : rev (xs′′++ (x::[]))==x::rev xs′′ = case xs′′ of
[]→ refl (x::[])
x′::xs0→cong (λx→x++ (x′::[])) (rev (xs0++ (x::[])))

(x:: rev xs0) (g xs0)
in g (rev xs′))
(cong (λy → x::y) (rev (rev xs′)) xs′ (r xs′))

in r xs

3.5 Extension of First-Order Unification

The tool is based on first-order unification. Restricted to this, when unification
is invoked, the tool simply normalises the terms and first-order unification is
applied. The strength of this is obviously limited in a higher-order setting. To
improve this without making the tool too inefficient, we have added an extension
which, in a sense, does first-order unification for function meta variables. Before
the first-order mechanism is called, the terms are examined. Any occurrence of
a function application where the head is a meta variable is replaced by a fresh
meta variable. Then the usual first-order unification is called. If it was successful,
all syntactically possible ways to construct a λ-abstraction and arguments are
generated. The restrictions are that the resulting application should β-reduce to
the correct term and that the arguments should be type correct.

We illustrate this by a simple example. Consider substitutivity for natural
numbers:

[P : Nat→ Set, x1, x2 : Nat] � ? : x1 == x2 → P x1 → P x2

The tool will generate a proof which starts with induction on x1 followed by
induction on x2:

? :=

⎛
⎝ let r (P : Nat→ Set) (x1, x2 : Nat) (p : x1 == x2) (q : P x1) : P x2

= case x1 of {0→?b; s x′
1 →?s}

in r P x1 x2

⎞
⎠

?s := case x2 of {0→?sb; s x′
2 →?ss}

For ?ss the problem is:

[. . . , p : (s x′
1 == s x′

2), q : P (s x′
1)], [x1 → s x′

1, x2 → s x′
2] �?ss : P (s x′

2)
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Applying r will be considered by the elimination tactic. The application (r ?P ?x1

?x2 ?p ?q) has the type (?P ?x2) where ?P : (Nat → Set) and ?x2 : Nat. The
unification problem to consider is thus:

P (s x′
2)

u= ?P ?x2

The application on the right hand side is replaced by a fresh meta variable, ?′.
The standard first-order unification returns the unifier [?′ := P (s x′

2)]. Now the
extended unification produces a unifier for each possible way to partition the
expression (P (s x′

2)) onto the function, ?P , and its argument, ?x2 . These are
the possibilities:

{?P = λx → P (s x′
2)}

{?P = λx → P x, ?x2 = s x′
2}

{?P = λx → P (s x), ?x2 = x′
2}

The third unifier leads to a terminating proof term.

4 Results

We have used the number of generated refinements as a hardware independent
measure for the tool’s effort when solving a problem. On a normal desktop com-
puter, the number of generated refinements per second is around 500. The prob-
lems presented in sections 3.2, 3.3 and 3.4 take between 50 and 100 refinements
to solve.

We will now present some more difficult examples which demonstrate the
limits of the tool. A larger collection of problems with proofs generated by the
tool can be downloaded from [8].

The first three examples are problems in the context of list sorting. The
propositions are about a list being sorted, Sort, a list being a permutation of
another list, Perm, and an element being a member of a list, Member. The
functions are defined as follows:

Sorted [] = �
Sorted (x::[]) = �
Sorted (x::y::xs) = x ≤ y ∧ Sorted (y::xs)

Perm xs ys = ∀x.count x xs == count x ys

Member y [] = ⊥
Member y (x::xs) = x == y ∨Member y xs
count y [] = 0
count y (x::xs) = if (eq x y) (s (count y xs)) (count y xs)

List concatenation and the filter function will also appear. They are defined
in the normal way. The relations ‘≤’ and ‘>’ will be used both to denote the
boolean functions and the correspond propositions.

The first proposition claims commutativity of list concatenation with respect
to permutation:

Perm (xs++ys) (ys++xs)
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The tool can be set to either look for lemmas among all the global definitions or
to just use the local variables. The former mode is often too inefficient. When not
including the globals, the user can give a list of lemmas as hints. The problem
above is solved by giving (a, b : Nat) → a + s b == s (a + b) as a hint and
it takes 4653 refinements. The proof consists of induction on xs and ys, a few
case-on-expressions and some equality manipulation.

The tool has no rewriting system for equalities. The equalities tactic modifies
equalities in a quite undirected way. Due to this, a lot of effort is often spent on
finding relatively small proofs for problems involving equalities.

Another property of the equality reasoning is that simple lemmas are often
needed, like the one for the problem above. Although the tool can easily solve
such lemmas separately, it cannot always invent them as part of another proof.
This is because transitivity is only applied for an equality when there is already
a known fact which can be used to rewrite either the left or the right hand side.
The tool never invents an intermediate value.

The next two examples are lemmas for a correctness proof for a quicksort
algorithm.

Perm xs (filter (x >) xs++filter (x ≤) xs)
Sorted xs→ Sorted ys→ ((x : X)→ Member x xs→ |x ≤ a|)

→ ((x : X)→ Member x ys → |a ≤ x|) → Sorted (xs++ (a::ys))

The first of these is solved in 1173 refinements with two hints, namely the same
as in the previous examples as well as the proposition count x (xs++ys) ==
count x xs + count x ys. The second example is solved in 359 refinements with
no hints. The proof includes double case analysis on xs.

Next example is the problem to show associativity for addition of integers
defined in the following way:

Int = data Zer | Pos (n : Nat) | Neg (n : Nat)

The proposition is

(p + q) + r == p + (q + r) .

The proof takes 11285 refinements and no hint is needed.
Finally, consider the problem

(n : Nat)→ ∃ Nat (λ(m : Nat) → (n == 2 ·m) ∨ (n == s (2 ·m))) .

To solve this the tool needs 2 · s n == s (s (2 · n)) as a hint. The problem is a
very simple example of a program carrying proof, namely division by two.

The tool has a few settings, one of which should be mentioned. There is a
value defining the maximum number of nested case-splits applied to a variable.
In our examples, this is set to two, which is enough for all problems we have
tested.
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5 Conclusion and Future Work

In our opinion, the efficiency of the tool is good enough for it to be useful in a
proof assistant. It can definitely save the user time. If one would consider using
the tool for larger problems and allowing it more time, we think that it would
perform poorly. More advanced techniques to reduce the search space would be
needed. Also, since the tool in written in Haskell, it would probably suffer from
the automatic memory management.

One should also ask whether the tool is versatile enough to be of practical
use. We think this is the case. The tool has some fundamental restrictions, such
as first-order unification. But, apart from this, our goal has been to construct a
general proof search algorithm.

Instead of writing a tool which performs a proof search directly, another ap-
proach is to translate the problem and solve it with a separate first-order solver.
This is currently investigated by e.g. Abel, Coquand and Norell with promis-
ing results [1]. In this approach, the problems are restricted to first-order logic
and no proof term is recovered. On the other hand, it allows making use of the
many highly optimized existing first-order solvers. We believe that this could
be combined with our work to create a more powerful tool. Different parts of a
proof could be addressed by the two components, e.g. induction by the internal
proof-search and equality reasoning by the external prover. Equality reasoning
has turned out to be a major bottleneck for our tool.

One feature of the tool which may not have been such a good idea is the on-
demand elimination of data type objects. This adds the necessity of annotating
solutions with conditions and all administration that it brings along. Another
thing is the parameter/proof classification which seems a bit to rigid.

One way to continue the work could be to restart with a term synthesis
algorithm based on higher-order unification, such as the one presented by Dowek
[6]. This would then be enriched by first-order unification, which would serve as
a short-cut in the proof search. We believe that also in a system for higher-order
logic, most subterms can be resolved by first-order unification, and that it would
be beneficial to have a proof search that is biased in that direction.

Another interesting issue is to deal with a dense presence false subproblems.
A false subproblem may occur already when applying ordinary modus ponens,
but if we would add abilities for lemma speculation and stronger generalisation,
most subproblems would be false. Maybe one could then improve efficiency by
trying to prove the negation of a possibly false subproblem in parallel. If a proof
of the negation is found, the corresponding branch can be pruned.
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Abstract. Surreal Numbers form a totally ordered (commutative) Field,
containing copies of the reals and (all) the ordinals. I have encoded most
of the Ring structure of surreal numbers in Coq. This encoding relies on
Aczel’s encoding of set theory in type theory.

This paper discusses in particular the definitional or proving points
where I had to diverge from Conway’s or the most natural way, like sep-
aration of simultaneous induction-recursion into two inductions, trans-
forming the definition of the order into a mutually inductive definition
of “at most” and “at least” and fitting the rather complicated induc-
tion/recursion schemes into the type theory of Coq.

1 Introduction

Surreal numbers, presented by Conway in [9], form a class of numbers containing
both the real numbers and all ordinals, in a totally ordered (commutative) Field
structure. This, in contrast with the usual four-level construction1 of , happens
with only one (inductive) definition and one addition and one multiplication.
Surreal numbers can be seen as filling the holes between the ordinals in the same
meaning as fills the holes between the natural numbers.

I have formalised the notion, and nearly all of its commutative Ring structure2,
in Coq. One of the motivations for doing so was to test, through Coq, Type
Theory based proof assistants on a set-theoretically defined notion. See section
6.2 for more on that. Unless otherwise specified, “number” refers to “surreal
number”throughout the rest of this article. On is the collection of all ordinals, No
is the collection of all surreal numbers (to be defined) and pCIC is the Predicative
Calculus of Inductive Constructions, the type theory that Coq implements.

We will first briefly describe Surreal Numbers, as presented by Conway. We
will then present their encoding in Coq, discussing the problematic or otherwise
interesting points of this development:

– The natural presentation of Surreal Numbers uses induction-recursion, a
feature absent from most current theorem provers.

1 is constructed from Set Theory, from , from and from (or +

from , + from + and from +), giving four formally different additions and
multiplications that have to be shown equivalent, etc.

2 Associativity of multiplication is currently missing.

J.-C. Filliâtre et al. (Eds.): TYPES 2004, LNCS 3839, pp. 170–185, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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– The induction and recursion schemes used in some proofs and the definitions
of some operations are somewhat delicate to fit into the pCIC. However, they
all fall under a generic class, which I have not formalised yet.

– The definitions show a high level of (anti-)symmetry, but the proofs don’t
satisfyingly take advantage of it. In [9], (anti-)symmetry is exploited by prov-
ing only one case and declaring the other cases “similar”.

– Problems introduced by the lack of universe polymorphism, in particular
that the encoding can cover only an (arbitrary large) subset of the surreal
numbers, not the full proper class. Furthermore, using a product to construct
surreal numbers precludes from considering a pair whose first (or second)
element is the class of surreal numbers and vice-versa.

2 Surreal Numbers

2.1 Definition

Definition 1 (Surreal Numbers, ≥). A surreal number x is a pair of arbi-
trary sets of surreal numbers Lx (the left of x) and Rx (the right of x), such
that

∀xl ∈ Lx,¬∃xr ∈ Rx, xl ≥ xr

where
x ≥ y

def←→ (¬∃xr ∈ Rx, y ≥ xr) ∧ (¬∃yl ∈ Ly, yl ≥ x)

Such an x is denoted {Lx Rx} and reciprocally, x denotes {Lx Rx}, and the
same for y. A left of x is an element of the left of x and denoted xl; the use of
this notation will by itself declare xl to be an element of Lx, this will not always
be repeated. Similarly, a right of x (an element of the right) is denoted xr. An
option of x is a left or a right of x.

Definition 2. Equality (denoted by = in infix position) is defined as the equiva-

lence relation corresponding to the pre-order ≥, namely x = y
def←→ x ≥ y∧y ≥ x.

The usual notations for the order are respected: x ≤ y
def←→ y ≥ x, x > y

def←→
x ≥ y ∧ x �= y and x < y

def←→ y > x.
Set-theoretic equality (double inclusion) is renamed identicality and denoted

by ≡ in infix position. ≡ is strictly more discriminating than =.

A surreal number x is to be interpreted as the “simplest” surreal number lying
strictly between its left and its right, i.e. (∀xl, xl < x) ∧ (∀xr, x < xr):

Lx Rx

x

This explains the necessity of the ¬xl ≥ xr condition in the definition on an
intuitive level: For a number to lie between Lx and Rx, there better not be an
element of Lx that is bigger than or equal to an element of Rx! If there were, it
would contradict the pre-order property of ≥: one would have xl < x < xr ≤ xl.
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A similar intuitive reasoning explains the necessity of the two conditions in
the definition of ≥. If one had an xr such that y ≥ xr, then, because xr > x,
one would have y > x and thus certainly not x ≥ y. If our interpretation is to
hold, then ¬∃xr ∈ Rx, y ≥ xr must be a necessary condition for x ≥ y to hold.
Similarly, yl ≥ x would also bring y > x.

The interpretation given here is similar to Dedekind cuts taken inductively:
The Dedekind cut construction of the reals goes from one level (namely ) to
the next ( ); surreal numbers are constructed by making cuts again from the
results of cuts, thus constructing a tower of levels. These levels are numbered
with the ordinals. Formally:

Definition 3 (birth date). The birth date ρ(x) of a surreal number x is the
smallest ordinal strictly greater than the birth dates of its options, i.e. the supre-
mum of the successors of the birth dates of its options:

ρ ({L R}) def
= sup

i∈L∪R
(ρ(i) + 1)

This is all best seen through examples:

2.2 Well-Known Subcollections of No

On (including ) is injected into No by the ϕ defined recursively by

ϕ (o) def= {{ϕ (n) : n ∈ On, n < o} ∅}

Let’s note that for any ordinal o, ρ (ϕ (o)) = o. Dyadic real numbers3 are injected
into No by extending ϕ with

ϕ
(

x+y
2

) def= {{ϕ (x)} {ϕ (y)}}

for x and y consecutive4 dyadic real numbers. The birth dates of the surreal
numbers constructed by this extension are natural numbers. To cover non-dyadic
real numbers, ϕ can be extended with

ϕ (X) def= {ϕ (x) : x ∈ X} for X a set of dyadic real numbers
ϕ (x) def= {ϕ (L) ϕ (R)} for x a non-dyadic real number and

L, R sets of dyadic real numbers such that
(∀l ∈ L, l < x) ∧ (∀r ∈ R, x < r)∧(
∀ε ∈ +

0 , ∃(l, r) ∈ L×R, x− l < ε ∧ r − x < ε
)

The non-unique choice of L and R above provides us with examples of surreal
numbers that are equal, but not identical. ϕ, adequately restricted, is an ordered
3 Real numbers that admit a finite development in base 2.
4 Let (n, n′, p, p′) ∈ × × × , such that p = 0∨n is odd and p′ = 0∨ n′ is odd.

x := n
2p and y := n′

2p′ are consecutive if and only if x < y and for all dyadic real

numbers z = n′′
2p′′ such that x < z < y, we have p′′ > p ∧ p′′ > p′.
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field morphism. The birth date of the surreal numbers constructed by this ex-
tension is ω, but ω is not a clean delimitation of -in-No: ϕ (ω) also has birth
date ω, as does ε

def=
{
{0}

{ 1
2n : n ∈

}}
. ε is smaller than any strictly positive

real, yet still strictly positive. Actually, the existence of such surreal numbers
was to be expected: in a totally ordered field, if a number is very big (bigger
than any strictly positive real), then its inverse is very small (smaller than any
strictly positive real). And ε is exactly that: ε · ϕ (ω) = ϕ (1) holds.

2.3 In Coq

The definition of surreal numbers given above mutually defines a collection in-
ductively and a predicate over this collection recursively. It may not be clear
to all readers that this is sound mathematical practice and indeed, Conway did
not feel authorised to leave such a construction in his “precise treatment”. While
the validity of such constructions has since been studied for type theory ([11]),
and implemented in some rare proof assistants (such as Lego), Coq does not
allow such constructions and I thus followed the same several-step construction
as Conway, namely first define games by simply dropping the order-condition
from the definition of surreal numbers5, then define the order relation, which is
then a partial preorder, and from that define surreal numbers as a subcollection
of games.

Definition 4 (Games). A game g is a pair of arbitrary sets of games Lg and
Rg (the left and right of g).

Definition 5 (≥ on games).

x ≥ y
def←→ (¬∃xr ∈ Rx, y ≥ xr) ∧ (¬∃yl ∈ Ly, yl ≥ x)

Definition 6 (Surreal numbers as games). A surreal number x is a game
such that all its options are surreal numbers and ∀xl ∈ Lx,¬∃xr ∈ Rx, xl ≥ xr.

Let’s note that games6 could as well have been named bi-sets: They form a notion
of sets with two (left and right) element-of relations; the “normal” sets can be
injected into bi-sets by leaving the right empty. It will thus not be surprising
that my encoding of surreal numbers follows Aczel’s encoding of set theory in
type theory ([1, 2, 3]), as adapted for Coq in [21],

Inductive Ens : Typei+1 := sup : ∀A : Typei, ∀f : (A → Ens), Ens

and not what is called sets in the Coq standard library. The first argument of
the constructor of Ens, sup, is an index type: when a ranges over A, (f a) ranges
over the set represented by (sup A f), possibly with repetitions. In other words,
(sup A f) is {f(a) : a ∈ A}.
5 We reuse the notations and nomenclature introduced for surreal numbers for games.
6 This name stems from game-theoretic interpretations of the structure and operations,

not presented here.
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To form the bisets, I add a second index type and function, for the second
element-of relation.

Inductive Game : Typei+1 :=
Gcons : ∀LI, RI : Typei, ∀Lf : (LI→ Game), ∀Rf : (RI→ Game), Game

The index types of the left and right need to be different to deal with cases where
one, but not both, is empty; the left / right is empty if and only if its index type
is. Let’s note that with this definition, identicality is not the Coq (intentional)
equality, but a strictly weaker equivalence relation.

A naive definition of the order

Inductive ≤ : Game → Game → Prop :=
lte cons : ∀x, y :Game, (∀xl :Lx,¬y ≤ xl)→ (∀yr :Ry,¬yr ≤ x) → x ≤ y

is not accepted by Coq because of the non-positive (under scope of a negation)
occurrences of ≤ in the type of its constructor. This is solved by a method
inspired by [15, 16], namely defining ≤ and �↔ λx y.¬ y ≤ x mutually inductive:

Inductive ≤: Game→ Game → Prop :=
lte cons : ∀x, y : Game, (∀xl : Lx, xl � y)→ (∀yr : Ry, x � yr)→ x ≤ y

Inductive � : Game → Game → Prop :=
ngte consr : ∀x, y : Game, (∃xr : Rx, xr ≤ y)→ x � y
ngte consl : ∀x, y : Game, (∃yl : Ly, x ≤ yl)→ x � y

This definition is proven to be (non-constructively) equivalent to the former. The
transitivity of ≤ is also proven non-constructively, thereby tainting a large part
of the development.

3 Operations and Induction

3.1 Addition

Notation 1. When using the xl or xr notations, the universal quantification
or union over Lx or Rx will be left implicit and the braces around single-
tons left out. In a { } construction, the different components of the left or
right will be separated by commas. For example, for x, y games and f a func-
tion Game → Game, {f xr , yl f xl} will be a lighter and shorter notation for
{{f xr : xr ∈ Rx} ∪ Ly {f xl : xl ∈ Lx}}.

Addition is defined recursively as

x + y := {xl + y, x + yl xr + y, x + yr}

The terms appearing in x+y can be explained on an intuitive basis: The final goal
is to construct an ordered field, which includes compatibility of addition with the
order. In particular, for x, y, z surreal numbers, one wants x < y → x+z < y+z.
As xl < x and x < xr, xl +y < x+y and x+y < xr +y are necessary conditions.
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It is thus natural to force these to be true by putting these into the left and right,
respectively, of x + y. Similarly for x + yl and x + yr.

A straightforward encoding of the definition

Fixpoint GPlus (x y : Game) : Game :=
case x of 〈xLI, xRI, xLf, xRf〉 ⇒
case y of 〈yLI, yRI, yLf, yRf〉 ⇒
Gcons (xLI + yLI) (xRI + yRI)

(λi : (xLI + yLI).case i of
xli : xLI⇒ GPlus (xLf xli) y
yli : yLI⇒ GPlus x (yLf yli))

(λi : (xRI + yRI).case i of
xri : xRI⇒ GPlus (xRf xri) y
yri : yRI⇒ GPlus x (yRf yri))

is not well-typed in the pCIC: the recursion scheme used, while well-founded, is
not recognised as such (it is not guarded ; Coq accepts only guarded recursive
definitions as a way to enforce termination), essentially because no single argu-
ment can justify the well-foundedness by itself: they both occur fully (not as a
structurally smaller term) in the recursive calls. This is addressed by decompos-
ing the recursion on x and the recursion on y in two different functions, + and
+x = λy.x + y:

x + y := let +x z := {xl + z, +x zl xr + z, +x zr} in (+x y)

which, encoded in the pCIC, gives:

Fixpoint GPlus (x y : Game) {struct x} : Game :=
case x of 〈xLI, xRI, xLf, xRf〉 ⇒
let GPlusAux := (fix GPlusAux (z : Game) : Game
case z of 〈zLI, zRI, zLf, zRf〉 ⇒
Gcons (xLI + zLI) (xRI + zRI)

(λi : (xLI + zLI).case i of
xli : xLI⇒ GPlus (xLf xli) z
zli : zLI ⇒ GPlusAux (zLf zli))

(λi : (xRI + zRI).case i of
xri : xRI⇒ GPlus (xRf xri) z
zri : zRI ⇒ GPlusAux (zRf zri)))

in (GPlusAux y)

+x is recognised as terminating because its only argument decreases in every
recursive call, and + because its first argument always does.

3.2 Induction

The same issue arises – as the parallel between induction and recursion suggests –
in the proofs of induction principles used to prove properties of the objects, but
that’s not all: these induction principles also tend to “shuffle around” variables,
like in this example:
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∀P : Game → Game→ Prop,
(∀x, y : Game, (∀yl, (P yl x))→ (∀xr , (P y xr)) → (P x y))→
∀x, y : Game, (P x y)

This is not the induction principle that Coq gives “for free” when defining the
Game type. The parallel recursion scheme, whose well-foundedness proves the
above induction scheme, is:

λP.λH. let (f x y) := (H x y (λyl.f yl x) (λxr .f y xr)) in f

Again, this scheme is well-founded, but this escapes the pCIC. The pCIC works
by comparing the nth argument in the recursive calls to the nth formal parameter
for some n. The nth argument in the recursive calls must then be structurally
smaller than the nth formal parameter. Here, not only for any choice of n one of
the recursive calls yields a whole argument, but the argument (or structurally
smaller term) it yields is the wrong one and incomparable to the parameter being
considered. E.g. for n := 0, the formal parameter is x, but the recursive calls
have yl and y at this position. This is solved by unfolding the definition of f
in the recursion scheme until the arguments are in the right order again (which
always eventually happens). In the example, this means one more time:

λP.λH. let (f x y) := H x y (λyl.H yl x (λxl.f xl yl) (λylr.f x ylr))
(λxr.H y xr (λxrl.f xrl y) (λyr.f xr yr))

in f

Combined with the previous method, this permits us to prove the induction
scheme correct in Coq. This technique works for all induction principles needed,
but, for more complex principles, gives rise to rather large proofs7, the size being
here the amount of text the user has to type. Interestingly enough, we are also
essentially writing the lambda-term that is the proof of the induction principle
directly, without assistance from the tactics mechanism of Coq. Furthermore, it
seems very much that the technique can be automated (and I intend to do so in
the future) and would then cover the whole range of permuting inductions based
on the structural order (where the ≪ below is “structurally smaller than”):

Definition 7 (Permuting inductions). For ≪ a well-founded (strict) order
with respect to equality ≡, for n a natural number, P a predicate with n parame-
ters, a permuting induction is an induction scheme S of the following form:

– S is
(∀(x0, . . . , xn−1), H) → (∀(x0, . . . , xn−1), P (x0, . . . , xn−1))

– H is of the form

P (t0,0, . . . , t0,n−1)→ · · · → P (tp−1,0, . . . , tp−1,n−1)→ P (x0, . . . , xn−1)

7 An example of 100 lines is in the development; it is an induction scheme over three
variables, the variables undergoing a circular permutation in the recursive call.
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– ∀i < p, σi is a permutation of {e ∈ , e < n}, and

∀j, ti,j ≪ xσi(j) ∨ ti,j ≡ xσi(j)

and
∀i,∃j, ti,j ≪ xσi(j)

I have not formalised the notion of permuting induction yet. Its formalisation
may give rise to a direct proof rendering the technique described here (and its
automation) unnecessary for this work.

A survey of techniques to handle general recursion in Coq, presented in
[6, 5, 7, 4], didn’t help. The techniques explained there “reduce” the problem to
another one (such as totality of a certain predicate or well-foundedness of certain
relation), which are essentially equivalent and equally hard to prove in Coq.

I since tried similar things in some other proof assistants, and none of their
released “official” versions seem to be able to handle these kinds of induction
and recursion schemes in a totally straightforward way, although extensions that
could make the situation better are under study.

3.3 Opposition and Multiplication

Negation and subtraction are defined by

−x := {−xr − xl}
x− y := x + (−y)

These definitions do not pose any particular problem in the pCIC and can be
explained intuitively: If x sits between xl and xr, then (in an ordered field, where
addition is compatible with the order) −x is between −xr and −xl. Note that 0
(that is { }) is a fixpoint of negation. The expected properties (such as x−x = 0)
hold. Multiplication is defined by

xy := {xly + xyl − xlyl, xry + xyr − xryr xly + xyr − xlyr, xry + xyl − xryl}

This definition can again be understood intuitively: Compatibility of multiplica-
tion with the order dictates that (x − xl)(y − yl) > 0 hold, because x > xl and
y > yl (remember that addition is compatible with the order). This is equiva-
lent (in an ordered field) to xy > xly + xyl − xlyl, which explains why having
xly + xyl − xlyl as a left of xy is sensible. Similarly for the three other forms of
the options of xy. The encoding in pCIC uses the same technique as for addition.

4 Similarity

Due to the high level of (anti)symmetry in the definitions, the proofs typically
follow a pattern of decomposing into 2n similar cases, one case being the other
with x and y swapped or left swapped with right and ≤ with ≥, or both. The
current development repeats the proofs (as tactic scripts) for all cases, the tactic



178 L.E. Mamane

script for the subsequent cases being generated by a few textual search/replace
operations on the tactic script of the first case.

While this is reasonably efficient, if tedious, for the author writing the proof,
it is suboptimal for someone trying to read it: all trace of the link between
the cases is gone. This becomes particularly critical if one aims at displaying a
formal proof in a way that tries to approximate the style it would have been
written (rigorously) by a human, or the style a human would like to read it in:
in these styles, repeating the proof for every similar case is a significant flaw; it
is expected that one writes something along the lines of “this case is similar to
case 1 above, by switching x and y” instead. It also becomes more annoying to
the author when he needs to modify an already existing proof, for example to
adapt it to a change in the definitions: He has to redo the textual search/replace
operations over and over again.

One would thus like to prove one case completely and for the other cases give
only the transformation that transforms a previously proven case into the one at
hand. This corresponds closely to how the author thinks about the proofs and
it provides the reader exactly the information he needs to be convinced when he
doubts the similarity between the cases.

This could be achieved by the combination of a command to name subproofs,
a language to express term transformations and a command to apply these term
transformations to a previously named proof and provide the result as proof of
the current goal.

Currently, the only way to name a proof in Coq is to make a separate lemma
out of it. This has the significant drawback that the definition must thus be made
in the section environment, no more. In the cases I encountered the distinction
into similar cases was often quite deep into the proof, leading these subproofs
to live in a quite big environment (goal containing a lot of hypotheses) and thus
the lemma would have a long statement full of premises, that would each have
to be instantiated by the same thing at every use. It would be much preferable
to name a subproof within its environment.

As for the term transformation language, using Ltac’s term transformation
language would be a significant first, and possibly sufficient, step. However, one
would ideally like to have the possibility to declare transformation rules at a
higher level. For example, let’s imagine one has defined, in an environment con-
taining x : Game, y : Game the transformation “x 	→ y, y 	→ x” (switching x and
y in a term) under the name SwitchXY. If one does induction or destruction on x
and y (the tactics induction, destruct, case, elim, etc), this particular trans-
formation will become meaningless. Assuming the old x and y are deconstructed
into (Gcons xLI xRI xLf xRf) and (Gcons yLI yRI yLf yRf), respectively,
the transformation is naturally replaced by “xLI 	→ yLI, xRI 	→ yRI, xLf 	→
yLf, xRf 	→ yRf and vice-versa”. One would like this to happen automatically.

There are other techniques that, eventually augmented by some syntactic
sugar, can adequately handle some of the cases this scheme would handle. Their
combined power, however, does not cover all theses cases:
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– Parametric tactic scripts that parametrise everything that is touched by the
transformation.

This technique leads, for example when the proof consists in a long series
of applications of different lemmas that exist in two flavours (for example
one talking about lefts of games and one speaking about rights of games),
to unwieldy large parameter lists to the tactic script. The author is still
applying the transformation by hand, only to a somewhat smaller text body.
And the information of what this transformation is is not available to the
reader.

– Ad-hoc lemmas. Generalising the first case to a lemma that covers all cases
is a fairly natural idea. But it only helps if this generalised lemma can be
proven in essentially the same effort as the one case, or at least less effort
than doing all cases. In particular, if the only way to prove the lemma is to
enter exactly the same case analysis one seeks to escape, no gain is achieved.
This is exactly the situation with Conway games when the cases are linked
by the left-right antisymmetry.

– Abstraction of common patterns. The most elegant and natural way, math-
ematically. This is only useful, though, if the work of introducing (for the
author) or read and understand (for the reader) the abstraction is less than
the work it will save you by using this abstraction later. Specifically, in the
case at hand here, it seems to require quite numerous proofs that the defini-
tions indeed present the (anti)symmetries you want to exploit in your proofs,
which cancel out the advantage of reuse that one would get.

5 Surreal Numbers in the Typei Hierarchy

5.1 The Hierarchy

The type theory that Coq implements, the Predicative Calculus of Inductive
Constructions, has the following sorts8 structure:

– Prop is the sort of propositions
– Set is the sort of “small”data types. “Small”here means inductive definitions

whose constructors do not embed sets or propositions.
– A stratified sort of sorts Type: for any natural number n, a universe sort

Typen. These are organised into a hierarchy by increasing index.

The following relations hold: Prop : Type0, Set : Type0 and Typei : Typei+1.
Moreover, T : Typei implies T : Typei+1. In particular, Typei : Typej if and
only if i < j. In an inductive definition, if a constructor of the type being defined
takes an argument of type Typei, then the inductive type being defined must be
of type at least Typei+1; but if a constructor takes an argument of type A and
A : Typei, the inductive type being defined must be of type at least Typei. See
[18] for more details.
8 Sorts are the types of types; sorts are sometimes called universes; every type has a

sort as its type.
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Coq, however, never deals with the Type indices explicitly; it deals only with
constraints (strict and non-strict inequalities and equalities) between the indices
of the sort of various types. These constraints are hidden from the user, generated
automatically and checked for consistency automatically.

As the constructors of the Game type do, by necessity, embed sets, it cannot
be of sort Set and is pushed in the Typei hierarchy.

5.2 Universe Polymorphism

The pCIC, as nearly all the type theories behind active proof assistants, doesn’t
feature universe polymorphism ([12]). This means that every type sits at one
precise level of the Typei hierarchy and there is no (implicit or explicit) abstrac-
tion over universe levels. I’ll explain by example, with this polymorphic “type
product” (pairing, tuple of length 2) type, from the Coq standard library:

Inductive prodT (A, B : Typei) : Typei := pairT : A→ B → prodT A B

No universe polymorphism means that there is a global scope i such that (prodT
A B) is of sort Typei. This leads to the problem that the pair ( × , ), naively
a perfectly innocuous and reasonable pair to construct, cannot be constructed
because it is ill-typed. That pair is encoded by the term (pairT (prodT nat nat)
nat). I’ll now show that it is ill-typed. Let t be (prodT nat nat). t is of type
Typei, the i being the same one as the one in the inductive definition above.
We are trying to give t as the first argument to pairT. For this to be well-typed,
we must have t : A and A : Typei. We are here instantiating A with Typei and
the condition thus reduces to Typei : Typei, which is equivalent to i < i, which
does not hold. In short, pairs of products cannot be constructed, they are not
well-typed. The same holds for the type theory of most active type theory based
proof assistants.

This problem can be avoided in practical cases by defining as many copies of
prodT (with different names) as necessary. For example, one would define

Inductive prodT (A, B : Typei) : Typei := pairT : A → B → prodT A B
Inductive prodT0 (A, B : Typej) : Typej := pairT0 : A→ B → prodT0 A B

so that one can form the pair (pairT0 (prodT nat nat) nat), whose well-typedness
only requires i < j.

For a type theory with a hierarchy of sorts, such as the pCIC, having universe
polymorphism would mean that the prodT definition would – conceptually – be
like

Inductive prodTi (A, B : Typei) : Typei := pairTi : A→ B → prodTi A B

that is a family of definitions, one for each level in the hierarchy. In this approach,
( × , ) would be (pairT1 (prodT0 nat nat) nat).

In my surreal numbers development, I encounter exactly this problem, in a
somewhat more involved manner:
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Inductive Game : Typeg :=
Gcons : ∀L, R : Typei, ∀Lf : (L → Game), ∀Rf : (R → Game), Game

Inductive prodT (A, B : Typej) : Typep := pairT : A → B → prodT A B

Due to the typing rules, we have g > i and p ≥ j. But in the definition of
multiplication, I use a prodT of indexes of games (thus j ≥ i) as an index for a
new game (thus i ≥ p). To this point, we thus have g > i = p = j.

The use of prodT (or something isomorphic to it) for the definition of mul-
tiplication is hardly avoidable: Let x = Gcons xLI xRI xLf xRf and y = Gcons
yLI yRI yLf yRf, two games. The definition section 3.3 tells us the left of xy is
{xly + xy−xlyl xl ∈ Lx, yl ∈ Ly} ∪ {xry + xyr − xryr xl ∈ Lx, yr ∈ Ry}. It is
made out of two components, it is thus natural to index it by a sum (disjoint
union) of two types AI and BI, each indexing one component. If AI indexes the
left component (the one to the left of the ∪ sign), what should AI look like? The
need is for a type AI such that:

– From each i:AI, one can extract an xli:xLI and a yli:yLI.
– When i ranges over AI, the extraction above ranges over all combinations of

xli:xLI and yli:yLI.

That’s the description of the product of xLI and yLI. Similarly, the natural choice
for BI is the product of xLI and yRI.

Now, let’s suppose one wants to consider the structure of Games equipped
with the pre-order relation ≤. This structure is the pair (Game,≤), i.e. (pairT
Game ≤). The well-typedness of this pair requires j ≥ g, contradicting the g > j
above and making the whole ill-typed. Had I not defined multiplication, that
pair would have been well-typed!

In summary, if a product (of anything) is ever used to construct values of type
A, then A cannot be itself in a pair, and vice-versa.

The “define new copies of prodT with different names” technique worked well
enough for my needs. However, the lack of universe polymorphism has the po-
tential to grow to a significant problem for more complex developments. For
example, if one defines a list type and an extensive library of operations on lists
and lemmas on properties of these operations. Suddenly, because one wants to
use lists on higher-level types, one has to redefine a second copy of the notion
of lists . . . and all its operations and properties. And maybe a third copy, and a
fourth, . . . These can be significant pieces of code, and the number of times they
have to be repeated is potentially unbounded. However, it remains to be seen
whether this number will grow substantially in practice. It is also possible that
this could be tackled through functors, rather than universe polymorphism.

Note that the specific typing rules used here are those of the pCIC, but other
type theories tend to have the same kind of stratification and level ordering
limitations (to define something in universe of level n, one can use only things
of lower level).

5.3 The Game Type and the Collection of All Games

Does the Game type cover all Conway Games / surreal numbers? This essentially
boils down to: Can one for any set X provide as first and second argument of
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the constructor of Game a type T “bigger” than X , meaning such that there is a
surjection from T to X . In classical terms, this means that the Game type can
embed sets of any cardinality.

Indeed, in Gcons LI RI Lf Rf , one can replace the left (or right) index
type by any other type X , as long as there is a surjection f from X to LI :
Gcons X RI (Lf ◦ f) Rf encodes the same game (in terms of identicality).

[21] says that the whole theory of ZFC with n inaccessible cardinals can be
embedded in Typen+2 (plus some axioms). Thus the pCIC, as a whole, can
encode a countable infinity of inaccessible cardinals. The Game type, however,
will be able to use only a finite amount of them and it thus does not cover all
surreal numbers that the pCIC can encode.

If the pCIC had universe polymorphism, it would give us a family of types
(one per Type level) which, taken together, would cover all games.

6 Conclusion

6.1 Future Outlooks

Division and Field Structure. Inversion (and thus indirectly division) is
defined in [9] as follows: Let x := {{0} ∪ Lx Rx} be a positive surreal number
such that ∀xl ∈ Lx, xl > 0. Any positive surreal number is either of this form, or
there is x′ of this form such that x′ = x. Let’s note that then ∀xr ∈ Rx, xr > 0
is automatic. The inverse of x, which we call y, is:{

0,
1 + (xr − x)yl

xr
,
1 + (xl − x)yr

xl

1 + (xl − x)yl

xl
,
1 + (xr − x)yr

xr

}

where xl is an element of Lx, and occurrences of yr or yl are to be understood
as: the first left of y is 0. Every left (respectively right) of y itself generates new
lefts and rights of y, which in turn generate new lefts and rights.

Implementing this on top of the encoding of Surreal Numbers presented here
is delicate, because index types (the first two arguments of Gcons) that would
have the right “structure” to make the index functions (last two arguments of
Gcons) natural are complex, but it can be done.

Sign Sequences. Surreal numbers can be defined as sign sequences (sequences
of ordinal length of elements of {+,−}), rather than with “bisets”, like [9] does.
Sign sequences are introduced in chapter 3, on page 30 of [9]. At first glance,
this looks strikingly similar to de Bruijn’s way of constructing without the
rationals ([10]), formalised in AUTOMATH by J.T. Udding ([20]). It would be
an interesting comparison to see if this construction, which one would think
more “computer-friendly” at first sight (because of the use of sequences instead
of sets), would be simpler to handle than the biset construction.

I have chosen to keep to the biset construction for two reasons:

1. I wanted to “stress-test” Coq precisely on a notion that is opposite to the
foundations of Coq; see section 6.2.
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2. This approach would need a development of the theory of ordinals – or at least
sequences of arbitrary ordinal length – in Coq, which hasn’t been done yet.

6.2 Conclusions

One of my reasons for starting this development is that I wanted to do a“torture
test” of Coq, particularly in the area of dealing with formalisations that are in a
certain sense “opposite” to its viewpoint on mathematics:

– a very set-theoretic definition, while Coq is based on Type Theory, Set The-
ory and Type Theory being competing foundations for mathematics.

– definitions and proofs made classically, that is without particular attention
to constructibility, while the natural logic of Coq is intuitionistic.

I wanted to see how much trouble this would create. I played the role of
a “classical” mathematician (like Conway) that just wants to check formally
whether his nifty, well-developed and mature ideas are correct, with the help of
the computer. I wanted to see how much of my proofs and definitions Coq would
force me to adapt to it instead of it adapting to me. How much did I have to
learn about Type Theory to get the job done?

The answer is, not immensely so, but still significantly. The lack of induction-
recursion is not very damaging to passing the test, but only because Conway
didn’t insist on making use of induction-recursion in the first place. An inductive-
recursive presentation is the most natural one. The forced separation of ≤ into a
mutual induction between ≤ and � is more problematic: to a mathematician not
intimate with type theory and computer mathematics, this requirement looks
totally artificial. And the problem is not only about coming up with this new
definition in the first place: in proofs of properties of ≤ (at least a“starting base”,
up to equivalence with the Conway definition), one keeps getting � and having
to prove a similar property on it.

The way to define the Game type looks natural once one knows of Aczel’s
work, but this, again, requires intimate knowledge of type theory. Trying to get
inspiration from the standard library is counter-productive: the notion of “set” in
the standard library is exactly the approach of sets in type theory that doesn’t
work for this use (it is sets as subsets of a preexisting universe, represented by
their “element of” predicate).

But it still feels relevant to spend the effort of a full formalisation: I did find out
that the proof of transitivity of ≤ in [9] is, at best, presented misleadingly simply,
abusing the word “similarly”: various random active research mathematicians
could not easily fill in the missing details (correctly answer the question “what
is the induction scheme used here, and spell out the induction hypothesis”).

On the good side of things, the version of Coq following version 8.0 does bring
a very positive change: it deals with defined equalities (weaker than Coq’s native
equality) much better, thanks to the work of Sacerdoti-Coen, presented in [17].
Switching to (a pre-release development snapshot of) that version significantly
reduced the size of my proofs.

Note however that the Game type cannot cover all surreal numbers.
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Abstract. We present four constructions for standard equipment which
can be generated for every inductive datatype: case analysis, structural
recursion, no confusion, acyclicity. Our constructions follow a two-level
approach—they require less work than the standard techniques which
inspired them [11, 8]. Moreover, given a suitably heterogeneous notion of
equality, they extend without difficulty to inductive families of datatypes.
These constructions are vital components of the translation from depen-
dently typed programs in pattern matching style [7] to the equivalent
programs expressed in terms of induction principles [21] and as such
play a crucial behind-the-scenes rôle in Epigram [25].

1 Introduction

In this paper, we show how to equip inductive families of datatypes [10] with
useful standard constructions. When you declare an inductive datatype, you
expect the following to be available ‘for free’:

– the ability to write terminating computations by case analysis and structural
recursion;

– proofs that its constructors are injective and disjoint; and
– proofs that cyclic equations are refutable.

We show these expectations to be well-founded by exhibiting constructions which
fulfil them. These constructions may readily be mechanised, so that we may rely
on these intuitive properties of datatypes implicitly as we go about our work.

In prior publications, we have indeed relied implicitly on these properties.
Both the ‘elimination with a motive’ tactic [22] and the Epigram programming
language [25] make heavy use of this equipment, but the constructions themselves
have only appeared in [21]. We hope that this paper will serve as a more accessible
technical reference.

Our approach to all of these constructions is more directly computational
than others in the literature. In effect, our presentation of the structural recur-
sion operator reworks Giménez’s inductive justification of Coq’s fix primitive,
but for us the notion of ‘guarded by constructors’ is expressed by a recursive
computation. Meanwhile, the ‘constructors injective and disjoint’ properties are
captured by a single ‘no confusion’ theorem which computes its conclusion from
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its input. This sidesteps the problems of extending the ‘equality respects pre-
decessors’ method of proving injectivity (automated for simple types by Cornes
and Terrasse [8], and still standard [4]) to inductive families. It is, besides, rather
neater. The ‘refutation of cyclic equations’ is again presented as a single theorem
for each datatype family. To our knowledge, this construction is entirely original.

2 Inductive Datatypes

Before we begin, let us be clear about the data with which we deal and also intro-
duce our notational conventions. We mean the strictly positive inductive families
of datatypes from Luo’s UTT [18]. Modulo technical details, these correspond
to the inductive families found in the Alf system [10], the Coq system [26] and
Epigram [25]. The story we tell here is by no means specific to any one pre-
sentation. Here we follow Epigram’s presentational style, with declarations of
datatype families and their constructors, and the type signatures of function de-
finitions, given by ‘inference rules’ resembling those of natural deduction. As well
as avoiding a cumbersome and scarcely legible linearised notation for dependent
types, we exploit the ability to systematically omit declarations which may be
inferred during typechecking.

The Tree example. We require that a datatype be presented by a formation rule
and constructors—Tree provides the paradigm:

data Tree : �
where leaf : Tree

l , r : Tree
node l r : Tree

and equipped with an induction principle like this (noting here, for example, that
we need no explicit declaration of the arguments l , r : Tree in the hypothesis
typing node ′)

t : Tree P : Tree → � leaf ′ : P leaf
l ′ : P l r ′ : P r

node ′ l r l ′ r ′ : P (node l r)

treeInd t P leaf ′ node ′ : P t

whose computational behaviour is given by reduction schemes like these

treeInd leaf P leaf ′ node ′
� leaf ′

treeInd (node l r) P leaf ′ node ′
� node ′ l r

(treeInd l P leaf ′ node ′)
(treeInd r P leaf ′ node ′)

Another standard practice in Epigram is to make elimination principles (induc-
tive or otherwise) take their arguments in the order they are typically conceived.
The user supplies the target t of the elimination; the machine infers the motive
P for the elimination from the goal at hand [22]; the user supplies the methods
by which the motive is pursued in each case.
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The general form. For each of our constructions, we shall treat Tree as a run-
ning example, then give the general case. We consider inductive families [10]—
mutually defined collections of inductive types, indexed by a given telescope, Θ

data Θ
Fam Θ : �

where · · ·
Δ

· · · Ψi

vi Ψi : Fam �ri
· · ·

con Δ v1 . . . vn : Fam�s · · ·

Telescopes. We use Greek capitals to denote telescopes [9]—sequences of decla-
rations x1 : X1; . . . xn : Xn where later types may depend on earlier variables.
We shall freely write iterated binders over telescopes λΘ ⇒T , and we shall also
use telescopes in argument positions, as in FamΘ above, to denote the sequence
of variables declared, here Fam x1 . . . xn. For brevity, we shall sometimes also
write subscripted sequences x1 . . . xn in vector notation �x .

For any Fam : ∀Θ ⇒�, we write 〈Fam〉 to denote the telescope Θ; x :Fam Θ,
thus capturing in a uniform notation the idea of ‘an arbitrary element from
an arbitrary family instance’. We may declare �y : Θ, the renamed telescope
y1 : X1; . . . yn : [�y/�x ]Xn. We may assert�t : Θ, meaning the substituted sequence
of typings t1 : X1; . . . tn : [�t/�x ]Xn which together assert that the sequence �t is
visible through1 Θ.

Constructors. An inductive family may have several constructors—con, above, is
typical. It has a telescope of non-recursive arguments Δ which, for simplicity, we
take to come before the recursive arguments vi. Only as the family for the return
types of constructors and their recursive arguments may the symbol Fam occur—
that is, our families are strictly positive. None the less, recursive arguments may
be higher-order, parametrised by a telescope Ψi. Note that the indices �s of the
return type and �ri of each recursive argument are arbitrary sequences visible
through Θ.

In addition to the above criteria, some restriction must be made on the relative
position of Fam and its contents in the universe hierarchy of types if paradox is
to be avoided—we refer the interested reader to [18, 6] and leave universe levels
implicit [14].

For any Δ, �v , i and �t : Ψi, we say that vi �t is one step smaller than con Δ �v .
The usual notion of being guarded by constructors is just the transitive closure
of this one step relation.

Induction and Computation. The induction principle for a family is as follows:

�x : 〈Fam〉 P : ∀ 〈Fam〉 ⇒�
· · ·

· · · Ψi

v ′
i Ψi : P �ri (vi Ψi)

· · ·

con ′ Δ �v �v ′ : P �s (con Δ �v) · · ·

famInd �x P . . . con ′ . . . : P �x

It takes a target sequence in 〈Fam〉, a motive abstracting over 〈Fam〉, and a
method for each constructor. Each method abstracts its constructor’s arguments
1 Less is visible through a longer telescope, but we see it in more detail.
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and the inductive hypotheses associated with recursive arguments. Here are the
associated reduction schemes:

· · ·
famInd . . . (con Δ �v) P . . . con ′ . . . �

con ′ Δ �v · · · (λΨi ⇒ famInd �ri (vi Ψi) P . . . con ′ . . .) · · ·
· · ·

The notion of computation captured by these induction principles—higher-
order primitive recursion—yields a system which is strongly normalizing for well
typed terms [13]. Moreover, they support large elimination—the computation of
types by recursion, which we use extensively in this paper. Induction principles
provide a sound and straightforward basis for programming and reasoning with
inductive structures, and whilst not especially attractive, they provide a con-
venient ‘machine code’ in terms of which higher-level programming and proof
notations can be elaborated. There is plenty of scope for exploiting the proper-
ties of indices to optimize the execution of induction principles and, by the same
token, the representation of inductive data [5].

Proofs by Elimination. We present some of our constructions just by writing
out the proof terms schematically. For the more complex constructions, this is
impractical. Hence we sometimes give the higher-level proof strategy rather than
the term to which it gives rise. This is also our preferred way to implement the
constructions, via the proof tools of the host system. We shall not require any
sophisticated machinery for inductive proof [22]—indeed, we are constructing
components for that machinery, so we had better rely on something simpler.
We require only ‘undergraduate’ elimination, where the motive just λ-abstracts
variables already ∀-abstracted in the goal. Let us put induction to work.

3 Case Analysis and Structural Recursion

Coq’s case and fix primitives conveniently separate induction’s twin aspects
of case analysis and recursion, following a suggestion from Thierry Coquand.
By way of justification, in [11] Eduardo Giménez shows how to reconstruct an
individual fix-based recursion in terms of induction by a memoization technique
involving an inductively defined ‘course-of-values’ data structure. Here, we show
how to build the analogous tools ‘in software’, presenting essentially the same
technique in general, and defining course-of-values computationally.

A case analysis principle is just an induction principle with its inductive
hypotheses chopped off. Correspondingly, its proof is by an induction which
makes no use of the inductive hypotheses. For Tree we have

t : Tree P : Tree→ � leaf ′ : P leaf
l , r : Tree

node ′ l r : P (node l r)

treeCase t P leaf ′ node ′ : P t

treeCase t P leaf ′ node ′ ⇒ treeInd t P leaf ′ (λl ; r ; l ′; r ′ ⇒node ′ l r)
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and in general,

�x : 〈Fam〉 P : ∀ 〈Fam〉 ⇒�
· · ·

· · · Ψi

vi Ψi : Fam �ri
· · ·

con ′ Δ �v : P �s (con Δ �v) · · ·

famCase �x P . . . con ′ . . . : P �x

famCase �x P . . . con ′ . . . ⇒
famInd �x P . . . (λΔ;�v ;�v ′ ⇒con ′ Δ �v) . . .

The obvious ‘pattern matching equations’ for famCase hold computationally.

· · ·
famCase . . . (con Δ �v) P . . . con ′ . . . ⇒ con ′ Δ �v
· · ·

The recursion principle captures the notion that to compute a P t , you may
assume that you have a P for every recursive subobject guarded by construc-
tors in t . The computational properties of the system give us a convenient way
to capture this notion: inductions proceed when fed with constructors and get
stuck otherwise. With the assistance of product and unit types, we may ex-
ploit large elimination to define a predicate transformer, capturing the idea
that a given predicate P holds ‘below t ’. Informally, we write a primitive re-
cursive program in pattern matching style, but the translation to induction is
direct:

P : Tree → � t : Tree
P belowTree t : �

P belowTree leaf ⇒ One
P belowTree (node l r)⇒ (P belowTree l ∧ P l)

∧ (P belowTree r ∧ P r)

We may now state the recursion principle:

t : Tree P : Tree → �
t : Tree m : P belowTree t

p t m : P t
treeRec t P p : P t

When we apply this principle, we do not enforce any particular case analysis
strategy. Rather, we install a hypothesis, here the additional argument p, which
will unfold computationally whenever and wherever case analyses may reveal
constructors. At any point in an interactive development, this unfolding hypoth-
esis amounts to a menu of templates for legitimate recursive calls. This is how
recursion is elaborated in Epigram—examples of its use can be found in [25],
including the inevitable Fibonacci function

· · ·
fib (suc (suc n)) ⇒ fib n + fib (suc n)
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Let us now construct treeRec:

treeRec t P p ⇒ p t (below t) where

t : Tree m : P belowTree t
step t m : P belowTree t ∧ P t

step t m ⇒ (m; p t m)

t : Tree
below t : P belowTree t

below leaf ⇒()
below (node l r) ⇒(step l (below l); step r (below r))

In the general case, we construct first belowFam by induction, then famRec,
using the auxiliary functions step and below:

P : ∀ 〈Fam〉 ⇒� �x : 〈Fam〉
P belowFam �x : �

P belowFam �x ⇒
famInd �x (λ 〈Fam〉 ⇒�)
· · ·
(λΔ;�v ; �B ⇒ . . . ∧ (∀Ψi ⇒(Bi Ψi ∧ P �ri (vi Ψi))) ∧ . . .)
· · ·

�x : 〈Fam〉 P : ∀ 〈Fam〉 ⇒�
�y : 〈Fam〉 m : P belowFam �y

p �y m : P �y
famRec �x P p : P �x

famRec �x P p ⇒ p �x (below �x) where
�y : 〈Fam〉 m : P belowFam �y
step �y m : P belowFam �y ∧ P �y

step �y m ⇒ (m; p �y m)

�y : 〈Fam〉
below �y : P belowFam �y

below �y ⇒
famInd �y (P belowFam)
· · ·
(λΔ;�v ;�b ⇒(. . . ; λΨi ⇒(step �ri (vi Ψi) (bi Ψi)) ; . . .)
· · ·

4 Heterogeneous Equality

We shall shortly prove that the constructors of inductive families are injective
and disjoint, but before we prove it, we must first figure out how to state it.



192 C. McBride, H. Goguen, and J. McKinna

Equality is traditionally defined inductively as follows:2

data x , y : T
EqT x y : �

where x : T
reflEqT x : EqT x x

As we have often observed, this notion of equality is unsuitable once dependently
typed functions and data become the object of study, rather than merely the
means to study simply typed phenomena. Even such a triviality as ‘a function
takes equal inputs to equal outputs’ ceases to be a proposition (never mind
being provable) as soon as the output type depends on the input type. Given
a function f : ∀x : S ⇒ T [x ], then we may not equate f x : T [x ] with f y :
T [y]. The first author’s approach to this problem [21, 22] has achieved some
currency—liberalize the formation rule to admit heterogeneous aspirations to
equality whilst retaining a more conservative elimination rule delivering equal
treatment only for homogeneous equations.

x : X y : Y
x = y : �

x : X
refl : x = x

x , x ′ : X q : x = x ′
x ′ : X q : x = x ′

P x ′ q : � p : P x refl
=Elim x x ′ q P p : P x ′ q

=Elim refl p � p

Note that =Elim is not the standard induction principle which we would expect
for such a definition, with a motive ranging over all possible equations 〈=〉, nor is
either derivable from the other. However, it is plainly the structural elimination
principle for the subfamily of homogeneous equations. It is similar in character
to the Altenkirch-Streicher ‘K’ axiom [28]

q : EqT x x P : EqT x x → � p : P (reflEqT x )
K T x q P p : P q

which is plainly the structural elimination rule for reflexive equations. Eq-with-K
is known to be strictly stronger than Eq-without-K [16]. Heterogeneous equality
and Eq-with-K are known have the same strength [21]. We shall not repeat the
whole construction here, but merely observe that one may express a heteroge-
neous equation as a homogeneous equation on type-term pairs (A; a) : ∃A :� ⇒A.
The law Eq∃A:�⇒A (A; a) (A; a′) → EqA a a′ is equivalent to K [28].

The crucial point is this: we can now formulate telescopic equations, and use
them to eliminate subfamilies of general Fam, as in [22, 25]. If �x : Δ and �y : Δ,
then �x = �y is the telescope q1 :x1 = y1; . . . ; qn :xn = yn with �refl : �t = �t .

2 In some systems, propositions inhabit a separate universe from datatypes: this dis-
tinction is unimportant for our purposes.
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5 No Confusion

The standard techniques for proving that constructors are injective and dis-
joint go back to Smith’s analysis of the logical strength of universes in type
theory [27]—‘large elimination’ being the key technical insight; one ‘projection-
based’ approach to their mechanisation may be found in [8]. It is not hard to
construct a predicate which is trivial for leaf and absurd for (node l r)—given
a proof that the two are equal, the substitutivity of equality gives you ‘trivial
implies absurd’. Meanwhile, left and right projections will respect a proof that
node l r = node l ′ r ′, yielding l = l ′ and r = r ′. Of course, projections are not
always definable—here they are locally definable because l and r are available
to use as ‘dummy’ values for the non-node cases. As observed in [4], these tech-
niques work unproblematically for simple types but require more care, not to
mention more work, in the dependent case.

Surely one must be at least a little suspicious of an approach which requires
us to define predecessor projections for a whole family when we intend only
to hit one constructor. Can we not build sharper tools by programming with
dependent types? We propose an alternative ‘two-level’ approach: first, compute
the relevant proposition relating each pair of values, then show that it holds
when the values are equal. The former is readily computed by nested treeCase:

t , t ′ : Tree
TreeNoConfusion t t ′ : �

TreeNoConfusion leaf leaf ⇒ ∀P ⇒ P → P
TreeNoConfusion leaf (node l ′ r ′) ⇒ ∀P ⇒ P
TreeNoConfusion (node l r) leaf ⇒ ∀P ⇒ P
TreeNoConfusion (node l r) (node l ′ r ′)

⇒ ∀P ⇒ (l = l ′ → r = r ′ → P) → P

In each case, the statement of ‘no confusion’ takes the form of an elimination rule.
Given a proof of t = t ′ with constructors on both sides, TreeNoConfusion t t ′

computes an appropriate inversion principle, ready to apply to the goal at hand.
We give an ‘interactive’ presentation of the proof:

?treeNoConfusion : ∀t , t ′ : Tree ⇒ t = t ′ → TreeNoConfusion t t ′

The first step is to eliminate the equation—it is homogeneous—substituting t
for t ′ and leaving the ‘diagonal’ goal:

?treeNoConfDiag : ∀t : Tree ⇒ TreeNoConfusion t t

Now apply treeCase t , leaving problems we can readily solve

?treeNoConfLeaf : TreeNoConfusion leaf leaf
∼= ∀P ⇒ P → P

proof λP ; p ⇒p
?treeNoConfNode : ∀l ; r ⇒TreeNoConfusion (node l r) (node l r)

∼= ∀l ; r ;P ⇒ (l = l → r = r → P) → P
proof λl ; r ;P ; p ⇒p �refl
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It is reassuring that we have no need of specific refutations for the impossible
n2−n off-diagonal cases, nor need we construct these troublesome predecessors.

The generalization is straightforward: firstly, iterating famCase yields the
matrix of constructor cases; for equal constructors, assert that equality of the
projections can be used to solve any goal; for unlike constructors, assert that
any goal holds.

�x , �y : 〈Fam〉
FamNoConfusion �x �y : �

· · ·
FamNoConfusion (con �a) (con �b) ⇒ ∀P ⇒ (�a = �b → P) → P
· · ·
FamNoConfusion (chalk �a) (cheese �b) ⇒ ∀P ⇒ P
· · ·

Now, to prove

?famNoConfusion : ∀�x :〈Fam〉 ;�y :〈Fam〉 ⇒
�x = �y → FamNoConfusion �x �y

first eliminate the equations in left-to-right order—at each stage the leftmost
equation is certain to be homogeneous, with each successive elimination unifying
the types in the next equation. This leaves

?famNoConfDiag : ∀�x :〈Fam〉 ⇒ FamNoConfusion �x �x

which reduces by famCase �x to an easy problem for each case

· · ·
?famNoConfCon : ∀�a ⇒ FamNoConfusion (con �a) (con �a)

∼= ∀�a;P ⇒ (�a = �a → P) → P
proof λ�a ;P ; p ⇒ p �refl
· · ·

We remark that the ‘pattern matching rules’ for famNoConfusion hold
computationally:

· · ·
famNoConfusion �refl refl(con 	a) P p ⇒ p �refl
· · ·

6 Acyclicity

Inductive data structures admit no cycles—this is intuitively obvious, but quite
hard to establish. We must be able to disprove all equations x = t where x is
constructor-guarded in t . It is deceptively easy for natural numbers. This goal,

? : ∀x :Nat⇒ x �= suc (suc (suc x ))
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(where x �= y abbreviates x = y → ∀P ⇒P) is susceptible to induction on x ,
but only because one suc looks just like another. Watch carefully!

? : zero �= suc (suc (suc zero))
? : ∀x :Nat⇒ x �= suc (suc (suc x )) →

suc x �= suc (suc (suc (suc x ) ))

The base case follows by ‘constructors disjoint’. The conclusion of the step case
reduces by ‘constructors injective’ to the hypothesis, but only because the boxed
sucs introduced by the induction are indistinguishable from the sucs arising from
the goal. The proof is basically a ‘minimal counterexample’ argument—given a
minimal cyclic term, rotate the cycle to create a smaller cyclic term—but here
we get away with just one third of a rotation.

In general, suppose given a cyclic equation x = con1(con2(· · · (conn(x )))).
Then x = con1(y) where y = con2(· · · (conn(x ))), and hence by substitution,
y = con2(· · · (conn(con1(y)))) is another cyclic equation, governing a term y
below x in the sub-term ordering. Repeating this trick n times yields a term
z below x satisfying the original cyclic equation z = con1(con2(· · · (conn(z )))).
Well-foundedness of the sub-term ordering then yields the required contradiction.

In order to formalise this intuition, let’s prove

? : ∀x :Tree ⇒ x �= node (node leaf x ) leaf

Proceeding by treeRec, we get

? : ∀x :Tree ⇒ (λy ⇒ y �= node (node leaf y) leaf) belowTree x →
x �= node (node leaf x ) leaf

Now use treeCase twice to dig out the cycle. First we get

? : · · · → leaf �= node (node leaf leaf) leaf
? : ∀l , r ⇒ · · · → node l r �= node (node leaf (node l r)) leaf

We suppress the tuples induced by treeRec for the moment. The first subgoal
is just ‘constructors disjoint’. In the second case, we can follow the ‘cycle-path’,
doing treeCase l . Again, we get a trivial off-path leaf case, and an interesting
node case:

? : ∀ll , lr , r ⇒
(λy ⇒ y �= node (node leaf y) leaf) belowTree (node (node ll lr) r) →

node (node ll lr ) r
�= node (node leaf (node (node ll lr ) r) ) leaf

Now we have exposed the entire cycle-path, taking us to lr . The · · ·belowTree · · ·
computes to a tuple containing a proof of lr �= node (node leaf lr) leaf. Expanding
�= and applying constructors reveals equational hypotheses ll = leaf, r = leaf and
lr = node (node ll lr) r . Substituting the first two in the third allows us to extract
a contradiction from the inductive hypothesis.
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6.1 General Acyclicity

Funny how the · · ·belowTree · · · computes to a tuple containing the contradic-
tion as soon as we expose the cycle-path! Perhaps we can exploit this behaviour
more directly. If we had a proof of

(x �=) belowTree node (node leaf x ) leaf

we should certainly acquire a handy proof of x �= x somewhere in the resulting
tuple. For the sake of brevity, let us write

x �< t for (x �=) belowTree t
x �≤ t for (x �=) belowTree t ∧ x �= t

Note that x �< node l r is definitionally equal to x �≤ l ∧ x �≤ r . We now have the
tools we need to state and prove a general acyclicity theorem for Tree:

? : ∀x , t :Tree ⇒ x = t → x �< t

Eliminating the equation, we get the statement ‘x is unequal to any of its proper
subterms’:

? : ∀x :Tree ⇒ x �< x

Unfortunately, we cannot build this tuple structure the way our below did in
our construction of treeRec—inequality to x is not a hereditary property of
trees! We must do induction.

? : One
? : ∀s , t ⇒ s �< s → t �< t → (node s t �≤ s ∧ node s t �≤ t)

The base case is trivial. The step case splits in two, either following the s-path
or the t -path.

? : ∀s , t ⇒ s �< s → node s t �≤ s
? : ∀s , t ⇒ t �< t → node s t �≤ t

Each of these is an instance of

? : ∀ · · · ⇒ x �< x → δx �≤ x

for some variable x (respectively s and t) and some constructor-form increment3

of it, δx (either (node x t) or (node s x )). The proof is, sad to say, a little crafty:
in each case, fix x and δx , then generalize the bound:

? : ∀b ⇒ x �< b → δx �≤ b

If x is not below b, its increment is certainly neither below nor equal to b.
This goes by induction on b. The base case is trivial, for certainly δx �= leaf
and there is nothing below b. In the step case, we introduce hypotheses and
3 Readers interested in ‘constructor-form increments’ may find [17, 1] useful.
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expand definitions selectively. The boxes and arrows show the way the proof fits
together.

l , r : Tree

Hl :
Hr :

x �< l
x �< r

→
→

δx �≤ l
δx �≤ r

H : (
∧ (

x �< l
x �< r

∧
∧

x �= l
x �= r

)
)

? : (
∧

δx �≤ l
δx �≤ r )

injectivity
∧ δx �=

node l r

For a start, we know that x is not a proper subterm of either l or r , so we
may certainly deduce that δx is not a subterm of either, and hence not a proper
subterm of node l r . However, we also know that x does not equal either l or r ,
hence regardless of whether δx is node x t or node s x , it does not equal node l r .

This construction generalizes readily to inductive families, as soon as we con-
struct telescopic inequality. If �x : Δ and �y : Δ, then let �x �= �y be ∀(�x =
�y) ⇒∀P ⇒P . We may then compare sequences in 〈Fam〉, taking �x �< �y to be
(�x �=)belowFam�y as before, with �x �≤ �y being �x �< �y ∧ �x �= �y. This is a suitably
heterogeneous notion of ‘not a (proper) subterm’, and it is entirely compatible
with the key lemmas—one for each recursive argument vi : ∀Ψi ⇒ Fam �ri of
each constructor con Δ �v : Fam�s .

∀Ψi ⇒ ∀�b :〈Fam〉 ⇒ �ri; (vi Ψi) �< �b → �s ; (con Δ �v) �≤ �b

Note that in the higher-order case, an increment steps from a single arbitrary
x = vi Ψi to the node which contains it δx = con Δ �v . The proof of this lemma
is again by famInd �b, and it goes more or less as before. Once again, x is not
a proper subterm of b’s subnodes, so δx is not a subterm of b; moreover δx is
not equal to b because either b is made with a constructor other than con, or its
subnodes are all distinct from x .

Of course, in the higher-order case—infinitely branching trees—it is not gener-
ally possible to search mechanically for a cycle. However, the theorem still holds,
and any cycle the user can exhibit will deliver an absurdity. In the first-order
case, one need merely search the tuple �x �< �t for a proof of �x �= �x .

7 Conclusions and Further Work

We have shown how to construct all the basic apparatus we need for structurally
recursive programming with dependent families as proposed by Coquand [7] and
implemented in Alf [19]. When pattern matching on an element from a specific
branch of an inductive family, x : Fam�t , one may consider only the cases where
the �t coincide with the indices of a constructor’s return type con Δ �v : Fam�s .

However, where Alf relied on a syntactic criterion for constructor-guarded re-
cursion and an unspecified external notion of unification, we have constructed all
of this technology from the standard induction principles, together with heteroge-
neous equality. We represent the unification constraints as equational hypotheses
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�s = �t and reduce them where possible by the procedure given in [20], which is
complete for all first-order terms composed of constructors and variables.

We have not shown here how to extend these constructions to mutual in-
ductive definitions. These may always be simulated by a single inductive family
indexed over a choice of mutual branch, but it is clear that a more direct treat-
ment is desirable. We expect this to be relatively straightforward. The ‘no con-
fusion’ result should extend readily to coinductive data as it relies only on case
analysis. We should also seek an internal construction of guarded corecursion,
underpinning the criteria in use today [12].

In the more distant future, we should like to see the computational power of
our type systems working even harder for us: we have given the general form of
our constructions, but they must still be rolled out once for each datatype by
a metaprogram which is part of the system’s implementation, manipulating the
underlying data structure of terms and types. However convenient one’s tools
for such tasks [24], it would still be preferable to perform the constructions once,
generically with respect to a universe of inductive families. Research adapting
generic functional programming [15] for programs and proofs in Type Theory is
showing early promise [3, 2].

Moreover, we might hope to exploit reflection to increase the size of each
reasoning step. At the moment our ‘no confusion’ theorem computes how to
simplify a single equation. This is used as a component in a unification tactic,
but we might hope to reflect the entire unification process in a single theorem,
reducing a system of equations to their simplest form.

The main point, however, is that our intuitive expectations of constructors
have been confirmed, so we should no longer need to worry about them. The
Epigram language and system [25, 23] takes these constructions for granted. We
see no reason why the users of other systems should work harder than we do.
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Supérieur. Habilitation Thesis. Université Claude Bernard (Lyon I), 1996.
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2 ETH Zürich, Switzerland

Abstract. Within a framework of correct code-generation from HOL-
specifications, we present a particular instance concerned with the op-
timized compilation of a lazy language (called MiniHaskell) to a strict
language (called MiniML).

Both languages are defined as shallow embeddings into denotational se-
mantics based on Scott’s cpo’s, leading to a derivation of the correspond-
ing operational semantics in order to cross-check the basic definitions.

On this basis, translation rules from one language to the other were
formally derived in Isabelle/HOL. Particular emphasis is put on the op-
timized compilation of function applications leading to the side-calculi
inferring e.g. strictness of functions.

The derived rules were grouped and set-up as an instance of our
generic, tactic-based translator for specifications to code.

1 Introduction

The verification of compilers, or at least the verification of compiled code, is
known to be notoriously difficult. This problem is still an active research area
[3, 4, 12]. In recent tools for formal methods, the problem also re-appears in the
form of code-generators for specifications — a subtle error at the very end of
a formal development of a software system may be particularly frustrating and
damaging for the research field as a whole.

In previous work, we developed a framework for tactic-based compilation [5].
The idea is to use a theorem prover itself as a tool to perform source-to-source
transformations, controlled by tactic programs, on programming languages em-
bedded into a HOL prover. Since the source-to-source transformations can be de-
rived from the semantics of the program languages embedded into the theorem
prover, our approach can guarantee the correctness of the compiled code, provided
that the process terminates successfully and yields a representation that consists
only of constructs of the target language. Constructed code can be efficient, since
our approach can be adopted to optimized compilation techniques, too.

In this paper, we discuss a particular instance of this framework. We present
the semantics of two functional languages, a Haskell-like language and an ML-
like language for which a simple one-to-one translator to SML code is provided.
We apply the shallow embedding technique for these languages [1] into standard
denotational semantics — this part of our work can be seen as a continuation
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of the line of “Winskel is almost right”-papers [8], which formalize proofs of a
denotational semantics textbook [11–chapter 9].

As a standard translation, a lazy language can be transformed semantically
equivalent via continuation passing style [2] into an eager language. While this
compilation is known to produce fairly inefficient code, we also use derived rules
for special cases requiring strictness- or definedness analysis. While we admit
that the basic techniques are fairly standard in functional compilers, we are not
aware of any systematic verification of the underlying reasoning in a theorem
prover. Thus, we see here our main contribution.

The plan of the paper is as follows: After a brief outline of the general frame-
work for tactic based compilation and a brief introduction into the used theories
for denotational semantics, we discuss the embeddings of MiniHaskell and MiniML
into them. These definitions lead to derivations of “classical” textbook opera-
tional semantics. In the sequel, we derive transformation rules between these
two languages along the lines described by our framework. Then we describe the
side-calculus to infer strictness required for optimized compilation; an analogous
calculus for definedness is ommitted here.

2 Background

2.1 Concepts and Use of Isabelle/HOL

Isabelle [9] is a generic theorem prover of the LCF prover family; as such, we
use the possibility to build programs performing symbolic computations over
formulae in a logically safe (conservative) way on top of the logical core engine:
this is what our code-generator technically is. Throughout this paper, we will
use Isabelle/HOL, the instance for Church’s higher-order logic. Isabelle/HOL
offers support for data types, primitive and well-founded recursion, and powerful
generic proof engines based on higher-order rewriting which we predominantly
use to implement the translation phases of our code-generator.

Isabelle’s type system provides parametric polymorphism enriched by type
classes: It is possible to constrain a type variable α :: order to specify that an
operator <= must be declared on any α; this syntactic concept known from
languages such as Haskell is extended in Isabelle by semantic constraints: the
operator must additionally fulfill the properties of a partial order.

The proof engine of Isabelle is geared towards rules of the form A1 ⇒ (. . .⇒
(An ⇒ An+1) . . .) which can be interpreted as “from assumptions A1 to An,
infer conclusion An+1”. This corresponds to the textbook notation

A1 . . . An

An+1

which we use throughout this paper.
Inside these rules, the meta-quantifier

∧
is used to capture the usual side-

constraint “x must not occur free in the assumptions” for quantifier rules; meta-
quantified variables can be considered as “fresh” free variables.
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2.2 The Framework for Code-Generation

Our generic framework [5] is designed to cope with various executability notions
and to provide technical support for them. The following diagram in figure 1
represents the particular instance of the general framework discussed in this
paper.

Fig. 1. Basic Concepts

Here, the left block represents the language MiniHaskell, the center block the
language MiniML, which are both presented as conservative shallow embedding
into a theory of Scott Domains described in Section 2.3. A subset of both lan-
guages are the set of abstract values. The embeddings are mirrored by the corre-
sponding terms of a (concrete) programming language, i.e. SML, and its subset
of (concrete) values like e.g. the integers 1,2,3,. . . . The first two worlds are con-
nected by the translate function, that consists of several tactics that control the
translation process by source-to-source translation rules. The latter two worlds
are connected by the code-generation function convert provided by our frame-
work that is required to be total on the domain of abstract programs.

The three relations →MiniHaskell, →MiniML and →SML represent the operational
semantics of the three languages. We require that they represent partial functions
from programs to values. These operational semantics serve as cross-check of our
denotational definitions of the language; in particular, →SML can be compared
against an (abstracted) version of the real SML semantics [6] in order to validate
convert. Making these two diagrams commute (while the first commutation is
based on formal proofs presented in this paper) constitutes the correctness of
our overall translation process.

2.3 Denotational Semantics in HOL

The cornerstone of any denotational semantics is its fixpoint theory that gives
semantics to systems of (mutual) recursive equations. The well-known Scott-
Stratchey-approach is based on complete partial orders (cpo’s); variants thereof
have also been used in standard semantics textbooks such as [11] to give seman-
tics to the languages we discuss here (cf. chapter 9).
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Several versions of denotational semantics theories are available for Isabelle
[7, 10]. In both, the type class mechanism is used in order to model cpo’s, which
provide a least element ⊥ and completeness on any type belonging to class
cpo. This is essentially captured in the theory [10] underlying this work in the
axiomatic class definition

axclass
cpo < cpo0
least ⊥ ≤ x
complete directed X ⇒ (∃ b. X <<| b)

i.e. completeness means that for any directed set (any non-empty set where two
elements have a supremum) there exists a least upper bound.

Moreover, in this type class a number of key concepts such as definedness and
strictness of a function and making a function strict are defined:

DEF :: α::cpo0 ⇒ bool DEF x ≡ x
=⊥
is_strict :: (α:: cpo0 ⇒ β::cpo0) ⇒ bool

is_strict f ≡ (f ⊥ = ⊥)
strictify :: (α ⇒ β::cpo) ⇒ α ⊥ ⇒ β

strictify f x ≡ if DEF(x) then f(x) else ⊥
Further, a type constructor can be defined that assigns to each type τ a lifted
type τ⊥ by disjointly adding the ⊥-element. All types lifted by this type con-
structor are automatically in the type class cpo but not necessarily vice versa.
The function " # : α → α⊥ denotes the injection, the function $ % : α⊥ → α its
inverse, extended by $⊥% = ⊥.

On cpo’s, the usual fixpoint combinator fix is defined that is shown to posses
the crucial fixpoint property

cont f

fix f = f(fix f)

for all functions f that are continuous. Further, there is the usual induction
principle for all fixpoints of all types belonging to class cpo:

cont f adm P
∧

x.

P (x)....
P (f x)

P (fix f)

where the second-order predicate adm for admissibility captures that a predicate
P holds for a fixpoint if it holds for any approximation of it. adm distributes
over universal quantification, conjunction and disjunction, but not necessarily
over negation. Being defined is an admissible predicate, being total not. As a
consequence of induction, we derived a kind of bi-simulation principle:

cont f cont f ′ ∧
x.

[P x]....
f x = f ′ x

∧
x.

[P x]....
P (f x) adm P

fix f = fix f ′
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which is the key for the proof of several crucial inference principles over recursive
programs to be described in the subsequent sections. If some property P is
invariant through execution of the body f , then P can be assumed for the “inner
call” when proving the bodies f and f ′ equivalent over them.

3 The Semantics of MiniHaskell and MiniML

3.1 The Denotational Semantics of MiniHaskell

Based on the theories of denotational semantics, we define our first contribution
— the formal definition of the lazy language MiniHaskell. The types of basic
operations like Bool were lifted from HOL types

types
Bool = bool⊥ Nat = nat⊥ Unit = unit⊥

and basic constants such as TRUE or ONE are defined accordingly by

TRUE :: Bool TRUE ≡ � True �
ONE :: Nat ONE ≡ �1�

The core of the MiniHaskell semantics consists of the definitions for the abstrac-
tion, application, conditional and the LET-construct. As well-known in the liter-
ature, an important difference between the denotational theory and the object
language has to be made: the abstraction in MiniHaskell is a value — a so-called
closure — and not a function space. Thus, a naive identification of the object
language LAM with the meta language λ results in a completely wrong model
of the operational behaviour: the expression LAM x. ONE DIV ZERO should be
a value, i.e. different from λx. 1 DIV 0, which is just λx.⊥ or just ⊥ in the
function space. Consequently, the lifted function space is used, defined by:

types (α,β) � = (α ⇒ β)⊥

which results in the following definitions for the abstraction

Lam :: (α::cpo ⇒ β::cpo) ⇒ (α � β)
Lam F ≡ �F �

and its inverse, the application

�l :: (α::cpo � β::cpo) ⇒ α ⇒ β
F �l x ≡ �F � x

where we may write LAM x. P x for Lam P . The LET construct is just a syntac-
tical shortcut and defined by the application. The remaining definitions of the
conditional and the recursor are standard:

If :: [Bool , α::cpo , α] ⇒ α
IF x THEN y ELSE z ≡ case x of

�v � ⇒ if v then y else z
| ⊥ ⇒ ⊥

REC :: (α::cpo ⇒ α) ⇒ α
REC f ≡ fix f
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The basic operations of MiniHaskell are just strictified versions of the elementary
operations of HOL. The paradigmatic example for a 1-ary and a 2-ary function
are defined as follows:

SUC :: Nat ⇒ Nat
SUC ≡ strictify (λx. � Suc x�)

^<^ :: [Nat , Nat] ⇒ Bool
(op ^<^) ≡ strictify (λx. strictify (λy. �x<y� ))

An example for a partial function is DIV:

DIV :: [Nat , Nat] ⇒ Nat
DIV ≡ strictify (λx.

strictify (λy. if y=0 then ⊥
else �x div y � ))

As top-level constructs, we introduce the following two program definition con-
structs:

VAL :: [α,α] ⇒ bool
VAL f E ≡ (f = E)

FUN :: [α::cpo , α ⇒ α] ⇒ bool
FUN f F ≡ (f = REC(F)) ∧ cont F

This means that a recursive program is representable by the recursor REC of the
language MiniHaskell under the condition, that the representing functional F is
continuous. The Isabelle syntax engine is set up to parse also mutual recursive
function definitions as a combination of fix and pairing. For example, a mutual
recursive program in the object language MiniHaskell looks as follows:

fun fac x = IF x^=^ ZERO THEN ONE ELSE x*(fac �l (x-ONE))
and add_fac x y = x+fac �l y
and suc_fac a = add_fac �l ONE �l a;

Note, that the operators (op +), (op -) and (op *) are the overloaded (strictified)
variants from MiniHaskell.

3.2 Lazy Operational Semantics of MiniHaskell

In the following, we derive the operational semantics presented in [11] in order
to validate our denotational definitions. The basic concept of this operational
semantics is a notion of terms representing values, called canonical forms. The
judgment t ∈ Cτ states that a term t is a canonical form of type τ . It is defined
by the following structural induction on the type τ :

Ground type: n ∈ Cint = {ZERO, ONE, TWO, . . .} and
b ∈ Cbool = {TRUE, FALSE}

Function type: Closed abstractions are canonical forms, i.e.
(LAM x. t) ∈ Cτ1→τ2 if t is closed

Note, that we can not give an inductive definition for canonical forms since
we use a shallow embedding (the types presented above are represented on the
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meta-level). Nevertheless, by defining the evaluation relation →l as equivalent
to the logical equality (i.e. evaluation must be correct), we can now derive the
rules for the evaluation relation and check that they have the appropriate form
t →l c, where t is a typeable closed term and c is a canonical form, meaning t
evaluates to c. In the following, c, c1, c2 and c3 range over canonical forms:

c →l c
t1 →l c1 t2 →l c2
t1 op t2 →l c1 op c2

t1 →l TRUE t2 →l c2

(IF t1 THEN t2 ELSE t3) →l c2

t1 →l FALSE t3 →l c3

(IF t1 THEN t2 ELSE t3) →l c3

t1 →l LAM x. t t[x := t2]→l c

t1 �l t2 →l c

t2[x := t1]→l c

(LET x = t1 IN t2 →l c)

REC y. (LAM x. t)→l LAM x. t [y := REC y. (LAM x. t)]

As can be expected, the rule for canonical forms expresses that canonical forms
evaluate to themselves. A key rule is that for the evaluation of applications: the
evaluation of an application proceeds by the substitution of the argument into
the function body; the treatment of the LET x = t1 IN t2 is analogously. The
rule for recursive definitions unfolds the recursion REC y. (LAM x. t) once, leading
immediately to an abstraction LAM x. t [y := REC y. (LAM x. t)], and so a canonical
form.

3.3 The Denotational Semantics of MiniML

Our semantic interface to the “real” SML target language, the language MiniML,
differs with two regards from MiniHaskell:

1. syntactically, all constant symbols in MiniML are followed by a prime, e.g.
ZERO’, ONE’, in order to distinguish them from their counterparts in Mini-
Haskell. This is for the sake of presentation only.

2. semantically, the two constructs application and LET differ from their coun-
terparts in MiniML.

In the sequel, we turn to the semantic issues. In most cases, the semantics of
the strict and the lazy constructs are the same. This holds for basic operators like
NOT’ or SUC’ as well as the abstraction, the conditional and the REC’ construct.
This justifies logical equations such as NOT’ ≡ NOT etc.

The crucial difference between the two languages is the strict application. As
usual, its denotational definition in MiniML is given by:

�s :: (α::cpo � β::cpo) ⇒ α ⇒ β
F �s x ≡ if x = ⊥ then ⊥

else if F = ⊥ then ⊥ else �F � x

The LET’ construct is defined as usual in terms of abstraction and strict
application (enforcing the evaluation of the let-expression prior to the evaluation
of its body).
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3.4 Eager Operational Semantics of MiniML

The rules for the strict evaluation relation →s is derived analogously to the lazy
one →l. Therefore, we can focus on the differences to MiniHaskell, which are
just the rules for the different constructs for the strict application and LET’. In
contrast to MiniHaskell, the arguments are first evaluated before performing a
substitution:

t1 →s LAM’ x. t t2 →s c2 t[x := c2]→s c

t1 �s t2 →s c

t1 →s c1 t2[x := c1]→s c

(LET’ x = t1 IN’ t2) →s c

This concludes our definition and validation of the two languages MiniHaskell
and MiniML in terms of a (pre-existing) theory of denotational semantics. In the
following, we turn to the semantic translation between these languages by means
of derived rules.

4 The Semantic Translation

Between the considered languages, the translation of most language constructs
is a trivial rewriting due to semantic equivalence. The challenge, however, is the
translation of the lazy application to the strict one, and, on the larger scale,
the translation of lazy user-defined definition constructs to one or more strict
versions.

The default solution is well-known and simple: each expression is delayed i.e.
converted into a closure, and all basic operations were enabled to apply its ar-
gument first to the unit-element () in order to force the argument closure and to
produce an elementary value only when finally needed. Thus, any lazy applica-
tion can be simulated by an strict one, provided that arguments of applications
have been sufficiently delayed.

However, the default solution is fairly inefficient since it delays any computa-
tion. Therefore, optimizations are mandatory. The principle potentials for such
optimizations are

1. the strictness of the function to be applied to an argument (i.e. the argument
is used under all possible evaluations) or

2. the definedness of the argument (i.e. delaying is inherently unnecessary).

The concepts discussed above were made precise by a number of combina-
tors which serve either as coding primitive (such as the combinator delay and
force) or as combinators such as forcify that represents intermediate states of
the translation. We will derive rules that allow to “push” forcify combinators
throughout a program and thus perform the translation.

In the following, we present these concepts formally. First, we introduce the
type constructor del for representing delayed, i.e. suspended values:

types
α del = Unit � α
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The delay-constructor and the corresponding suspension destructor force can
both be defined completely in terms of our target language MiniML:

delay :: α::cpo ⇒ α del
delay f ≡ (LAM ’ x. f)

force :: (α::cpo)del ⇒ α
force f ≡ (f �s UNIT ’)

Both combinators may remain in final program representations and are treated
as primitive by the translation function convert.

It turns out that from these definitions the characteristic theorem

force (delay e) = e

can be derived as could be expected.
Now we define the forcify combinator that converts a function into its coun-

terpart that deals with delayed values:

forcify :: (α � β::cpo) ⇒ (α del � β)
forcify f ≡ LAM ’ x. �f�(force x)

While the delay and force combinator can be understood as a primitive that
can be coded by the converter, forcify is a combinator that is uncodable. It is
only used internally in the source-to-source translation and has to disappear at
the end.

The overall translation process consists of one language translation calculus
and three side-calculi — forcify-propagation, strictness-reasoning and defined-
ness reasoning, which consist, as mentioned, of derived rules.

4.1 Language Translation Calculus

As mentioned, all but two language constructs have equal semantics can therefore
be converted straight-forward by a trivial rewrite rule such as

SUC = SUC’

The key translation rule for the lazy application has the following form:

(f �l a) = (forcify f) �s (delay a)

This rule states that a lazy application can always be converted into a strict
one; the price is the delay of the argument and the necessary forcification of
the function of the application. This rule represents the default translation rule,
which is — since resulting in inefficient code — avoided whenever possible. The
following two rules represent the optimized alternatives of the default scheme:
a lazy application is identical with a strict application if its function is strict
or if the argument is known to be defined and the function is not the totally
undefined one:

is strict f

(f �l a) = (f �s a)
DEF a DEF f

(f �l a) = (f �s a)
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For the LET’-construct, these three cases are analogously. The Isabelle proofs
of these rules are not very hard but reveal a number of technicalities that are
easily overlooked in paper-and-pencil proofs.

These optimized translation rules lead to side-calculi that attempt to infer the
necessary information. One of them, the strictness calculus, will be discussed in
the following subsections.

4.2 Forcification-Propagation Calculus

In the following, we turn to the key of the default translation to MiniML, the
forcification-propagation. The base cases treat identities and constant abstrac-
tions as well as basic operators. For the latter, we can assume by construction
that they are strict since we only used a particular pattern of their definition
built upon strictify and HOL-functions.

forcify (LAM x. x) = LAM x. force x forcify (LAM x. c) = LAM x. c

f ≡ strictify g

forcify (LAM x. f x) = LAM x. f (force x)

∀f. f ≡ strictify (λx. strictify (g x))
forcify (LAM x. f c x) = LAM x. f c (force x)

The following rules describe the propagation over the core language constructs
for application, abstraction and conditional:

forcify (LAM x. ((f x) �l (g x))) =
LAM x. ( (forcify (LAM x. (f x)) �l x) �l

(forcify (LAM x. (g x)) �l x) )

forcify (LAM x. (LAM y. (f x y))) =
LAM x. LAM y. (forcify(LAM x. (f x y)) �l x)

forcify (LAM x. (IF c x THEN f x ELSE g x)) =
LAM x. ( IF (forcify (LAM x. (c x)) �l x)

THEN (forcify (LAM x. (f x)) �l x)
ELSE (forcify (LAM x. (g x)) �l x) )

Of particular interest is also the rule for the propagation of forcification over
the REC operator, which allows for the generation of recursive program defini-
tions. In particular, applications like forcifyf are mapped to the reference f ′,
where we assume that for f there has been the previous statement fun f x = E
which has been converted to the code-variant fun f ′ = forcify (LAM x. E).
It is automatically proven that this precompiled variant satisfies the property
(forcify f) �s x = (f ′ �s x) which justifies the mapping mentioned above.
Thus, “forcified” calls to previously defined functions were mapped to calls of
“forcified” definitions.

forcify (LAM x. (REC (f x))) =
LAM x. REC (forcify (LAM x. (f x)) �l x)
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For n-ary functions, analogous rules have to be derived. Moreover, since any
function may be strict in the first argument, but not in the second, or vice versa,
or non-strict in all arguments, there are 2(n+1) − 1 rules for potential forcified
code variants for direct recursive functions.

4.3 Strictness Calculus

As already mentioned, optimized applications require the inference of strictness
properties of function bodies. Again, the inference rules follow the cases of our
programming language. The base cases treat the identity, the special case of the
abstraction yielding ⊥ and operations defined upon strictify.

is strict (λx. x) is strict (λx. ⊥)

f ≡ strictify g

is strict f

f ≡ strictify (λx. strictify (g x))
is strict (f c)

Note, that the case for the lambda abstraction is omitted since

is strict (λx. LAM y. (E x y))

simply does not hold: recall that a closure is a canonical form, hence a value
different from ⊥.

Since we suggest a source-to-source translation scheme, the calculus over
strictness must cope with terms in which both strict and lazy applications may
occur. Therefore, rules for both cases are needed. The inference reduces the ap-
plications to semantic functions and substitutes their denotation into it; in the
case of the strict application, the argument must be strict in itself:

is strict (λx. $f x% (a x))
is strict (λx. ((f x) �l (a x)))

is strict (λx. $f x% (a x)) is strict (λx. (a x))
is strict (λx. ((f x) �s (a x)))

Note that the computation of the semantic functions $f x% requires an own (trivial)
side-calculus allowing to “push” $ % inside; this side-calculus is not presented here.

With respect to the conditional, one gets two cases to establish strictness of
the overall construct: either the condition is strict in x or both branches:

is strict f

is strict (λx. (IF (f x) THEN (g x) ELSE (h x)))

is strict g is strict h

is strict (λx. (IF (f x) THEN (g x) ELSE (h x)))

The most technical proofs of this paper are behind the rules for inferring
strictness of recursive schemes and definition constructs. These schemes — which
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perform an implicit induction — are consequences of the bi-simulation briefly
presented in Section 2.3:

cont F
∧

H.

[is strict H ]....
is strict (F H)

is strict (REC F )

This rule performs (for the 1-ary recursive function) a kind of specialized fixpoint
induction proof: If we can establish strictness of the body F provided that a
function H replaced in the recursive call is strict, then the recursor REC F yields
a function that is strict in its first argument. Note, that for the n-ary cases
similar rules are needed that are omitted here.

5 Examples

The calculi are grouped into several sets of rules which were inserted in the Is-
abelle rewriter. As a result, several tactics are available that perform the trans-
lation phases fully automatically.

5.1 Example 1

As a first example, we define a function in MiniHaskell whose body consists of a 2-
ary lambda abstraction which is strict in its second argument. Its first argument
represents an undefined value ⊥:

fun f y = (LAM a b. b) �l (DIV x ZERO) �l y;

The first translation phase is able to derive the strictness in the second argument
and replaces the second lazy application by a strict one:

fun f y = (LAM a b. b) �l (DIV x ZERO) �s y;

The next translation phase replaces the remaining lazy application by our default
translation. Recall that a lazy application can always be converted into a strict
one by delaying the argument and forcifying the function of the application.
Furthermore, a forcification-propagation is performed:

fun f y =
LAM a b. (LAM a. b �s delay a) �s

delay (DIV x ZERO) �s y;

A one-to-one translation is performed by the following translation phase. Each
MiniHaskell construct is replaced by its MiniML counterpart yielding a pure Min-
iML-program:

fun ’ f y =
LAM ’ a b.(LAM ’ a.b �s delay a) �s

delay (DIV ’ x ZERO ’) �s y;

The final translation phase performs an optimization by reducing the MiniML-
program to the identity:

fun ’ f y = y;
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5.2 Example 2

As a second example, we define the factorial function in MiniHaskell representing
a recursive function:

fun fac x =
IF (x ^=^ ZERO) THEN ONE ELSE x * (fac �l (x - ONE ));

Here, the first translation phase deduces that the function fac is strict in its ar-
gument and replaces the lazy application in the recursive call by the strict one:

fun fac x =
IF (x ^=^ ZERO) THEN ONE

ELSE x * (fac �s (x - ONE ));

Finally, the next phase replaces each MiniHaskell-construct by its corresponding
MiniML-counterpart:

fun ’ fac x =
IF’ (EQ’ x ZERO ’)

THEN ’ ONE ’
ELSE ’ TIMES ’ x (fac �s (MINUS ’ x ONE ’));

6 Conclusion

We address a well-known compilation problem of functional programming. We
embed the semantics of both languages into a theory of denotational semantics
and derive — as a check of these definitions — the corresponding operational
semantics of these languages. The resulting strict semantics can be compared
with the semantics of SML [6] and recognized as its abstracted version.

Finally, we derived a couple of rewrite rules that describe the translation of
both languages as a source-to-source translation, which is prototypically imple-
mented as a tactic-based compiler finally yielding executable code in SML.

Since the proofs of the translation rules are surprisingly simple (with few
exceptions that are interesting in themselves), our approach yields a testbed
for the implementation of compilers also for richer languages. Furthermore, it is
feasible to develop typical libraries such as lists and compile them with our tactic-
based compiler once and for all. Further, our approach may also be relevant to
boot-strapping schemes when developing a proven correct compiler.

6.1 Further Work

We see the following issues for an extention of our work:

1. Extending MiniHaskell: a richer language comprising Cartesian products or
lazy data types would help, in particular for the generation of concrete code.

2. Low level target language: In principle, our approach can also be applied for
the generation of machine-code or JAVA byte-code.
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Abstract. Peter Hancock and Anton Setzer developed the notion of
interface to introduce interactive programming into dependent type the-
ory. We generalise their notion and get an even simpler definition for
interfaces. With this definition the relationship of interfaces to games
becomes apparent. In fact from a game theoretical point of view inter-
faces are nothing other than special games. Programs are strategies for
these games. There is an obvious notion of refinement which coincides ex-
actly with the intuition. Interfaces together with the refinement relation
build a complete lattice. We can define several operators on interfaces:
tensor, par, choice, bang etc. Every notion has a dual notion by inter-
changing the viewpoint of player and opponent. Identifying strategies by
some kind of behavioural equivalence we conjecture to receive a linear
category. All results so far can be achieved in intensional Martin-Löf
Type Theory and are verified in the theorem prover Agda (with the ex-
ception of associativity of composition which is only proved on paper
until now).

1 Introduction

In order to reason about interaction and non-termination in dependent type the-
ory Peter Hancock and Anton Setzer developed the notions of (state dependent)
interfaces and interactive programs [8]. Their notion of state independent inter-
face (there is only one state) corresponds to the notion of container of Abbott,
Altenkirch, Ghani, McBride [4, 1, 2, 3]. In this paper we propose a generalisation
of Hancock/Setzer’s notion. A generalised interface or interactive game in our
work is given by two sets and two relations between them. With this definition
the relationship of interfaces to games becomes apparent. In fact generalised
interfaces are nothing other than special games. We can interpret the first set
as players, the second as opponents moves and the relations say which moves
are allowed after any particular move from the opposite side. Programs for this
interfaces are nothing other than strategies for the players.
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We think that our notion of interface is more appropriate for most applica-
tions. Stateless networks like the internet seem to be natural application areas
for this simplified notion since it does not refer to states. It turns out that under
the propositions-as-types interpretation our notion is a generalisation of Han-
cock/Setzer’s notion. States in the definition of Hancock and Setzer can be seen
as labels without influence on the behaviour of programs for the interface.

We further propose a simple notion of refinement which corresponds to the
notion of linear morphism in the work of Hyvernat/Hancock [7]. Generalised
interfaces together with the refinement relation build a complete lattice: Every
family of interfaces has a least common refinement and there is an interface
such that all members of this family refine this interface and this interface is a
refinement for every other interface with this property. A program/strategy on
a refinement of an interface gives a strategy on the interface.

There are several ways to build new interfaces from given ones. We introduce
the operations tensor, negation and a linear implication in a similar way as
in classical game semantics [5, 13]. However whereas in classical game semantics
winning strategies are used to compose total strategies, we deal with this problem
in a more explicit way, which seems more suitable in a predicative setting. In
order to define composition we introduce the notion of fair strategies. A fair
strategy is essentially a pair of a strategy and a proof that this strategy plays
in both games eventually. By a slight restriction of the notion of interface we
are able to define a composition for fair strategies on A � B and B � C. The
obtained strategy is again fair. We can define fair strategies on A � A and A⊗
(A � B) � B. These strategies are versions of copy cat strategies. Identifying
strategies by some kind of behavioural equivalence we get a category. We are
currently working on a proof in intensional Type Theory that this category is
linear.

Unless otherwise stated we work in intensional Martin-Löf Type Theory. How-
ever our results can easily be translated into other frameworks. Although our
work is carried out in intensional Martin-Löf Type Theory we present our re-
sults in an extensional style to improve readability. That means we treat B a0
and B a1 as identical types if we have an identity proof a0

.= a1, i.e. an in-
habitant of the identity type. Further we see a0

.= a1 and a1
.= a0 as identical

types. We use the following notations: t � t′ for t evaluates to t′, t  t′ for
t, t′ evaluate to the same value, A for the type A is inhabited, id : t

.= t′ or
id : t

.=A t′ for id is an inhabitant of Id A t t′. We use the notations Π(A, B),
Π(x : A, B x), (x : A) → B x for the product type and

∑
(A, B),

∑
x : A.B x

and sig m0 : A0 . . . mn : An m0 . . .mn−1 for sigma types where in the latter
case m0, . . . , mn give access to the components. We denote the canonical ele-
ments of this types by (a, b) or struct m0 = a0; . . . ; mn = an and switch freely
between these notations. The sentential connectives ∀, ∃,∧,∨,⇒ for this type
constructors are used in the standard way to emphasise the reading of types
as propositions. We sometimes suppress arguments which can be inferred from
other arguments. We use the notations False and True for the types with zero
and one inhabitant, respectively.
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1.1 Related Work

This paper has many forerunners. In [8] Hancock and Setzer propose a repre-
sentation of interactive systems in dependent type theory by so called worlds
i.e. an interface without a set of states. In [9] the same authors identify interac-
tion systems as coalgebras for certain functors. They investigate the relationship
to predicate transformer semantics and the refinement calculus. In [11, 10] it is
shown that the introduction rules for weakly final coalgebras for the functors
above are a slightly restricted form of guarded induction. In [19] we give a set
theoretic model for the type theory enriched by rules for this weakly final coalge-
bras. Further we define a monadic composition of programs with the possibility
to terminate. The author is preparing a paper where state-dependent coalge-
bras are modelled in intensional type theory. As shown by Hancock/Hyvernat
[7] interfaces (interaction structures) seen as predicate transformers give a close
connection to formal topology [20]. In fact every interface gives a natural ex-
ample for a non distributive topology. There is as well a vague connection to
the notion of safety and liveness properties of programs [16]. In [14, 15] Hyver-
nat uses interfaces to give a model of linear logic. Michael Abbott, Thorsten
Altenkirch, Neil Ghani and Conor McBride developed the notions of container
[4, 1, 2, 3] and its derivative. The derivative of a container is a generalisation of
the zipper [12]. The name is motivated by the fact that the derivative behaves
like the derivation of a formal power series.

In [6] a related notion of interface is given to treat the question when two
software modules are compatible. The authors use pushdown games to model
the behaviour of this interfaces.

2 Generalised Interfaces

In [8] Hancock and Setzer give the following definition of an Interface:
An interface is a quadruple (S, C, R, n) s.t.

– S : Set
– C : S → Set
– R : Πs : S.C s→ Set
– n : Πs : S.Πc : C s.R s c→ S

S is the set of states, C s the set of commands in state s : S, R s c the set of
responses to a command c : C s in state s : S, and n s c r the next state of the
system after this interaction.

A program for this interface starting in state s0 : S is a quadruple
(A, c, next, a0) s.t.

– A : S → Set
– c : Πs : S.A s → C s
– next : Πs : S.Πa : A s.Πr : R s (c s a).A (n s (c s a) r)
– a0 : A(s0)
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A s is the set of programs starting in state s, c s a the command issued by
the program a : A s, and next s a r is the program that will be executed, after
having obtained for command c s a the response r : R s (c s a). See [8] for
further motivations.

Despite the fact that these seem to be quite natural and straightforward
notions there are certain drawbacks to this definition. First of all these notions
turn out to be technically difficult, particularly if we try to work with them in
an intensional setting. What makes working with the interface definition clumsy
is that there are too many dependencies. The commands depend on the states,
the responses on the commands and the next state on the state, the command
and the response. This looks redundant since the information to which state a
command belongs should already be given by the command itself etc. Hence
the responses should only depend on the command and the next state on the
response. This can be achieved by replacing this definition by a more fibration-
like (the index-set appears right) definition:

Definition 1. Interface (intermediate)
An interface is given by sets S, C, R and functions st : C → S, co : R → C,
nxt : R → S.

This definition is used in [18] to prove that there is a final coalgebra for the
functor induced by the definition of programs above. However in this definition
there still appears a set of states S which may be interpreted as the state of
the entire system or the environment. It seems at least questionable if this is an
appropriate definition of an interface for the following reasons:

1. An interface for a system should say what can go into the system and what
comes out. Depending input and output on the environment leads to un-
manageable complex programs.

2. The state of the entire system is often not known and there is no way to
refer to it.

If we analyse how the states influence the behaviour of programs in the definition
above, then it turns out that regardless of the initial state, the states tell us
which commands are available for a program after a certain response. We have
as well a direct relationship between commands and responses, which tells us
what responses may occur after a certain command. If we generalise this we get
the following notion of interface:

Definition 2. A generalised interface G consist of

– C, R : Set
a set of commands (players moves) and a set of responses (opponents moves),

– ≺≺C : R → C→ Set
a relation between R and C,

– ≺≺R: C→ R → Set
a relation between C and R.
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Example 1. Classical Nim
Let n, m : N with m < n and C := R := En where En the type with canonical
elements 0, . . . n− 1. Let diff e0 e1 := (val e0)

.
− (val e1) the modified difference

between the values of e0, e1 : En and e0 ≺≺R e1 :⇔ e0≺≺Ce1 :⇔ 0 < diff e0 e1 <
m.

A strategy tells a player his next move and gives a new strategy for every move
of the opponent. A sound strategy obeys the laws of the game:

Definition 3. A program/strategy is given by

– X : Set
a set X

– a function onestep
giving for every x : X a command command x : C and a function
next x : (r : R)→ c ≺≺R r → X.

A sound strategy is a strategy (X, onestep) such that:

– ∀x : X, r : R.command x ≺≺R r ⇒ r≺≺Ccommand (next x r ).

Example 2. A sound strategy for classical Nim
A well known winning strategy consists of playing multiples of m:
Let X :=

∑
(e : En, m � ((val e) + 1)), command (e, ) := ec, where ec the unique

element with val ec = (val e) − (mod ((val e) + 1) m). Let next (e, ) er fitr :=
(er, q) where q proves m � ((val er) + 1).

The definition above is a generalisation of Hancock/Setzer’s notion. We are
preparing a paper [17] where this statement is made precise.

3 Refinement

There are mainly two ways to understand subsets in type theory. The first is to
see a subset of a set M as S : M → Set. The idea is that an element m of M
belongs to the subset S if S m is inhabited. The second way is to understand a
subset of M as a function f : S →M . The idea is to interpret f : S →M as the
image of S under f . There are obvious ways to switch between both conceptions
see e.g. the discussion about families and predicates in Michelbrink [18]. We
will use the second approach here. A set M is interpreted as subset of M by
idM : M → M . f : S → M is a subset of f ′ : S′ → M iff there is a function
g : S → S′ with f ′ ◦ g = f where equality here means pointwise equal. A subset
g : S′ → S of a subset f : S →M of M gives a subset f ◦ g : S′ →M of M and
the subset relation on subsets of M is the order relation of a complete Heyting
algebra.

The idea of refinement is that one side is more restricted in its behaviour
whereas the other side has more freedom. If we translate the idea into our setting
and decide that the opponent should have more freedom we get the following
notion:
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Definition 4. Given two generalised interfaces A = (CA, RA,≺≺C
A,≺≺R

A) and
B = (CB, RB,≺≺C

B,≺≺R
B). A is a refinement of B is the type which elements

consist of:

– a function
refC : CA → CB,

– a function
refR : RB → RA,

– and proofs for
refR rb ≺≺C

A ca ⇒ rb ≺≺C
B refC ca

and
refC ca ≺≺R

B rb ⇒ ca ≺≺R
A refR rb

for rb : RB, ca : CA.

We write A ( B for A is a refinement of B.

As explicated above CA can be seen as subset of CB by refC and RB as subset of
RA by refR and the weak Galois conditions restrict players and widen opponents
possibilities. So the definition is commensurate to our intuition.

Proposition 1. If A ( B and (XA, commandA, nextA) a sound strategy on A
then there is a sound strategy (XB, commandB, nextB) on B.

Proof. Let XB := XA, commandB x := refC(commandA x) and nextB x rb rfitB :=
nextA x (refR rb) rfitA where we obtain rfitA from rfitB by the refinement. )*

Proposition 2. ( is the order relation of a complete lattice.

Proof: It is clear that ( is transitive. Let Ai = (CAi , RAi ,≺≺C
Ai ,≺≺R

Ai), i : I be a
family of generalised interfaces. Then the infimum A of Ai, i : I is given by

RA =
∑

(I, λi : I.RAi)

CA = (i : I)→ CAi

(i, r) ≺≺C
A f :⇔ r ≺≺C

Ai f i

f ≺≺R
A (i, r) :⇔ f i ≺≺R

Ai r

and the supremum A of Ai, i : I is given by

RA = (i : I)→ RAi

CA =
∑

(I, λi : I.CAi)

f ≺≺C
A (i, c) :⇔ f i ≺≺C

Ai c

(i, c) ≺≺R
A f :⇔ c ≺≺R

Ai f i. )*
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4 Operations on Games

There are many different ways to build new games from given ones. We only
present the operations needed to form the category we are aiming for. All oper-
ations are defined in a way similar to usual game semantics. The dual game A⊥

(negation, cogame) of A is defined by changing the rôle of player and opponent.
In the tensor game A ⊗ B opponent chooses whether to play in A or B. A � B
is defined as (A⊗ B⊥)⊥.

Definition 5. – The cogame A⊥ of a game A is given by

A⊥
C := AR, A⊥

R := AC,≺≺C
A⊥

:=≺≺A
R,≺≺A⊥

R := ≺≺C
A.

– The tensor A⊗ B is given by

(A⊗ B)C = AC × BC

(A ⊗ B)R = (AR × BC) + (AC × BR)

inl(ra, cb) ≺≺C
A⊗B (ca, c′b) :⇔ ra ≺≺C

A ca ∧ cb
.= c′b

inr(ca, rb) ≺≺C
A⊗B (c′a, cb) :⇔ rb ≺≺C

B cb ∧ ca
.= c′a

(ca, c′b) ≺≺R
A⊗B inl(ra, cb) :⇔ ca ≺≺R

A ra ∧ cb
.= c′b

(c′a, cb) ≺≺R
A⊗B inr(ca, rb) :⇔ cb ≺≺R

B rb ∧ ca
.= c′a

– Lolipop A � B := (A⊗ B⊥)⊥.

Note 1. In the definition of tensor above we have a play in A and in B running
all the time. There is also a variant of this definition where opponent may start
with a play in A or B and open a play in the other game later ((A ⊗′ B)C =
AC + (AC × BC) + BC, (A⊗′ B)R = AR + (AR × BC) + (AC × BR) + BR, . . . ).
We think that this variant is needed to receive a linear category. However for
simplicity we work with the definition of tensor above.

Note 2. In A � B player chooses where to play.

Proposition 3. (CopyCatA, commandA, nextA) given by

CopyCatA := AC + AR

commandA (inl ca) := inr (ca, ca) commandA (inr ra) := inl (ra, ra)

nextA (inl ca) (ca, ra) (id, fitr) := inr ra nextA (inr ra) (ca, ra) (fitc, id) := inl ca

is a sound strategy on A � A.

Proof. Immediate. )*
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5 Fair Strategies

Our goal is to define a category where the objects are games and the morphisms
are sound strategies on A � B. Given two sound strategies σ : A � B and
τ : B � C we need to construct a new strategy σ; τ : A � C. The idea is to play
the strategies σ and τ against each other in B. The problem is that this may
result in “infinite chattering”: both strategies may play in B for ever. The usual
solution is to use “winning strategies” which implicate that this composition of
total strategies is again total. However we prefer to use a more explicit solution.
Therefore we demand our strategies to satisfy a certain fairness property, which
says that our strategies play in both games eventually. In a constructive setting
this means that we not only have to say that our strategy will switch to play in
the other game but also when this will happen. And we need to give this informa-
tion for all possible moves of opponent. This means we have to assign to all states
of our strategy σ (elements of the set X) two well-founded trees, which say when σ
will play the next time in A or B respective. We start our construction by defining
these well-founded trees. For c : (A � B)C let ACommand c, BCommand c : Set
be defined by

ACommand (inl ) := BCommand (inr ) := True

ACommand (inr ) := BCommand (inl ) := False.

Definition 6. For A game let

Beginning A := data stop |
fork(c : AC)(f : (r : AR)→ c ≺≺R r → Beginning A)

For games A, B, σ = (X, command, next) strategy on A � B, x : X and beg :
Beginning A � B let

maxvalidABeg beg x

be
BCommand (commandx)

if beg � stop and

ACommand (commandx) ∧ c
.= (commandx) ∧

∀r : (A � B)R, c ≺≺R r ⇒ maxvalidABeg (f r ) (next x r )

if beg � fork c f . maxvalidBBeg beg x is defined similar.

A Beginning is nothing but a well-founded tree which nodes are commands and
which branching is given by the responses to each command. A Beginning of
A � B is a maximal play in A for a strategy σ and x : Xσ if the Beginning is
stop and σ plays in B at x or the top node of the Beginning is the move which
σ plays at x, σ plays in A at x and all subtrees are maximal plays in A for σ at
the corresponding x′ : Xσ. A fair strategy is a strategy σ where we can assign a
maximal play in A and a maximal play in B to every x : Xσ :
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Definition 7. For games A, B a fair strategy on A � B is given by

– a strategy σ = (Xσ, commandσ, nextσ)
– and two functions

maxABegσ, maxBBegσ : X → (Beginning A � B)

– with
maxvalidABeg (maxABegσ x) x

and
maxvalidBBeg (maxBBegσ x) x

Note 3. For sound strategies σ exactly one of maxABegσ x, maxBBegσ x is of
the form stop whereas the other has the form fork c f .

Corollary 1. (CopyCatA, commandA, nextA) is a fair strategy.

6 Composition

The following definition describes the situations when we can run σ against τ .
We need it to define the set Xσ;τ :

Definition 8. For games A, B, C, cab : (A � B)C, cbc : (B � C)C

Link A B C cab cbc

is given by

– Link A B C inl(ra, rb) inl(r′b, rc) = Id BR rb r′b
– Link A B C inl(ra, rb) inr(cb, cc) = False
– Link A B C inr(ca, cb) inl(rb, rc) = (cb ≺≺B

R rb) + (rb≺≺C
B cb)

– Link A B C inr(ca, cb) inr(c′b, cc) = Id BC cb c′b

Definition 9. For fair strategies σ = (Xσ , commandσ, nextσ) : A � B and
τ = (Xτ , commandτ , nextτ ) : B � C let Xσ;τ be the set which elements are triples

– x : Xσ

– y : Xτ

– link : Link A B C (commandσ x) (commandτ y).

We use the abbreviations x =
r

y, x≺≺y, x++y and x =
c

y for (x, y, l) : Xσ;τ

according to the shape of l. The definition above gives the set Xσ;τ of the strategy
σ; τ := (Xσ;τ , onestepσ;τ ). It remains to define the function onestepσ;τ . This is
done by induction on the beginnings maxBBegσ x, maxABegτ y for (x, y, l) : Xσ;τ .
The following pictures illustrate the different cases in the definition.
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x y

ca, cb cb, cc=

ca, cb, rc︸ ︷︷ ︸
x y′

rb, rc cb, c
′
c

x y

ra, rb rb, rc=

ca, rb︸ ︷︷ ︸, rc

x′ y

r′a, rb ca, cb

x y

ca, cb rb, rc++

cb, rc

x y′

r′b, rc cb, ccca, cb ≺≺

x y

ca, cb rb, rc≺≺

ca, rb

x′ y

ra, rb ca, c′b rb, rc++

For cab : (A � B)C, fit : (ca, rb)≺≺C
A�Bcab we define

compLinkL cab fit : Link cab (inl (rb, rc)) by

compLinkL (inl (ra, r′b)) fit := fit.snd

compLinkL (inr (c′a, cb)) fit := inr fit.fst.

compLinkR cbc fit : Link (inr (ca, cb)) cbc is defined analogous for cbc : (B � C)C,
fit : (cb, rc)≺≺C

B�Ccbc

Definition 10. We define onestepσ;τ (x, y, l) by cases:

I. commandσ x = inl (ra, rb).
I.1 commandτ y = inl (rb, rc).

onestepσ;τ (x, y, l) := (inl (ra, rc), nextσ;τ )
nextσ;τ (x, y, l) (ca, rc) (fit, id) := (x′, y, l′)

where x′ := nextσ x (ca, rb) (fit, refl rb), l′ :=
compLinkL (commandσ x′) fit′ & fit′ : (ca, rb)≺≺C

A�B(commandσ x′) is
given by the soundness proof of σ.

I.2 commandτ y = inr (cb, cc).
In this case is l : False.

II. commandσ x = inr (ca, cb).
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II.1 commandτ y = inl (rb, rc).
II.1.a) fitr : cb ≺≺R rb.

onestepσ;τ (x, y, l) := onestepσ;τ (x′, y, l′)

where x′ = nextσ x (ca, rb) (fitr, refl ca),
l′ := compLinkL (commandσ x′) fit′ &
fit′ : (ca, rb)≺≺C

A�B(commandσ x′) is given by the soundness proof
of σ.

II.1.b) fitc : rb≺≺Ccb. Analog to II.1.a).
II.2 commandτ y = inr (cb, cc). Analog to I.1.

Note 4. The definition above is a definition by induction on the maximal plays
in B assigned to x : Xσ and y : Xτ . The induction step is in the cases II.1.a) and
II.1.b). In II.1.a) the beginning assigned to x′ is smaller than the one assigned to
x whereas in II.1.b) the beginning assigned to y′ is smaller than the one assigned
to y.

Lemma 1. Let σ : A � B, τ : B � C be fair and sound strategies.

a) Let commandσx = inr (ca, cb) and commandτy = inl (rb, rc).
Then (ca, rc)≺≺commandσ;τ (x≺≺y).

b) Let commandσx = inr (ca, cb) and commandτy = inl (rb, rc).
Then (ca, rc)≺≺commandσ;τ (x++y).

Proof. We prove a) and b) simultaneously by induction on the beginnings of
x≺≺y, x++y.
a) If commandσx′ = inl (ra, rb) where x′ = nextσ x rb then commandσ;τ (x≺≺y) =
inl (ra, rc) with ca≺≺ra i.e. (ca, rc)≺≺inl (ra, rc).
If commandσx′ = inr (ca, cb) where x′ = nextσ x rb then commandσ;τ (x≺≺y) =
commandσ;τ (x′++y) and by I.H. follows the claim.
b) analog to a). )*

Proposition 4. Let σ : A � B, τ : B � C be fair and sound strategies. Then
σ; τ : A � C is sound.

Proof. Let (x, y, l) : Xσ;τ and uauc : (A � C)R with commandσ;τ (x, y, l)≺≺uauc.
We must show that uauc≺≺commandσ;τ (nextσ;τ (x, y, l)uauc ). The proof is by
induction on the beginnings of x, y.
I. (x, y, l) = (x =

c
y).

Let inr (ca, cb) := commandσ x, inr (cb, cc) := commandτ y. Then we have
inr (ca, cc) = commandσ;τ (x, y, l) & uauc = (ca, rc) with cc≺≺rc. Further we
have

nextσ;τ (x, y, l)uauc = (x =
c

y′) or (1)

nextσ;τ (x, y, l)uauc = (x≺≺y′) (2)
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In case (1) we have commandσ;τ (x =
c

y′) = inr (ca, c′c) with rc≺≺c′c which proves

the claim. In case (2) we have

commandσ;τ (x≺≺y′) = commandσ;τ (x′ =
r

y′) or (3)

commandσ;τ (x≺≺y′) = commandσ;τ (x′++y′) (4)

In case (3) we have commandσ;τ (x≺≺y′) = inl (ra, rc) with ca≺≺ra which proves
the claim. In case (4) the claim follows with Lemma 1.
II. (x, y, l) = (x≺≺y).
Let inr (ca, cb) := commandσ x, inl (rb, rc) := commandτ y. Then we have

commandσ;τ (x≺≺y) = commandσ;τ (x′ =
r

y) and

nextσ;τ (x≺≺y)uauc = nextσ;τ (x =
r

y′)uauc or

commandσ;τ (x≺≺y) = commandσ;τ (x′++y′) and
nextσ;τ (x≺≺y)uauc = nextσ;τ (x′++y)uauc

and the claim follows from the induction hypothesis.
III. (x, y, l) = (x++y). Analog to II.
IV. (x, y, l) = (x =

r
y). Analog to I. )*

Proposition 5. Let σ : A � B, τ : B � C be fair and sound strategies. Then
σ; τ : A � C is fair.

Proof. We only give the construction for maxABegσ;τ (x, y, l).
The definition is by an outer induction on maxABegσ x and an inner induction

on maxBBegσ x and maxABegτ y. Note that the later denotes a maximal play
in B.
I. commandσ x = inl (ra, rb).
I.1. commandτ y = inl (rb, rc).
Then we have commandσ;τ (x, y, l) = inl (ra, rc). Let (ca, rc) : (A � C)R with
inl (ra, rc)≺≺(ca, rc) i.e. ra≺≺Aca. Since σ plays in A maxABegσ x has the
shape fork ra f . After receiving (ca, rc) the strategy σ; τ goes into a state
(x′, y, l′) where x′ = nextσ x ca . Since maxvalidABeg (f ca ) x′ the beginning
maxABegσ;τ (x′, y, l′) is already defined and we get a function

h : (carc : (A � C)R, inl (ra, rc)≺≺carc) → Beginning A � C.

fork (inl (ra, rc)) h gives the desired beginning.
I.2. commandτ y = inr (cb, cc). Then we have l : False.
II. commandσ x = inr (ca, cb).
II.1. commandτ y = inl (rb, rc).
II.1.a) cb≺≺rb. Apply the I.H. on (x′, y, l).
II.1.b) cb++rb. Apply the I.H. on (x, y′, l).
II.2. commandτ y = inr (cb, cc). Then maxABegσ;τ (x, y, l) := stop. )*
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7 Behaviour

In order to get a category we identify strategies which have the same behaviour.
The states x : Xσ of the strategies σ for a game A build a transition system.
The transitions x → x′ are given by responses r : AR with commandσ x≺≺r and
x′ = nextσ r . This transition system is obviously image finite. This means we
can define bisimulation by induction on the natural numbers:

Definition 11. Let σ = (Xσ, commandσ, nextσ) and τ = (Xτ , commandτ , nextτ )
strategies on A. x : Xσ, y : Xτ , n : Nat are n-bisimular (x ∼n y) iff n = 0 or

commandσ x = commandτ y

and for r : AR and rfit : commandσ x ≺≺R r

nextσ x r rfit ∼n−1 nextτ y r rfit.

x : Xσ, y : Xτ are bisimular iff they are n-bisimular for all n : Nat.

Definition 12. Strategies σ = (Xσ, commandσ, nextσ) and τ = (Xτ , commandτ ,
nextτ ) on A are behavioural equivalent (σ ≈ τ) iff there are f : Xσ → Xτ and
g : Xτ → Xσ such that

f x ∼ x and g y ∼ y

for all x : Xσ, y : Xτ .

8 The Category of Games with Sound and Fair Strategies

Lemma 2. Let σ : A � B be fair and sound. Then we have

idA; σ ≈ σ ≈ σ; idB

where idA := CopyCatA and idB := CopyCatB.

Proof. By natural induction follows

x≺≺rb ∼ x′ x =
c

cb ∼ x x =
r

rb ∼ x x++rb ∼ x

where in the first case x′ = nextσ x (ca, rb) and (ca, cb) = commandσ x.
idA; σ ≈ σ follows analogously. )*

Lemma 3. Let σ : A � B, τ : B � C, μ : C � D be fair and sound. Then we
have

(σ; τ); μ ≈ σ; (τ ; μ).
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Proof. We write v  w for onestep v  onestepw. By definition of composition
and reflexivity of ∼ we have

(x≺≺y) =
c

z ∼ (xi =
c

yi) =
c

z (x≺≺y)≺≺z ∼ (xi =
c

yi)≺≺z

(x≺≺y)++z ∼ (xi =
c

yi)++z (x≺≺y) =
r

z ∼ (xi+1 =
r

yi) =
r

z

(x++y) =
c

z ∼ (xi =
c

yi+1) =
c

z (x++y)≺≺z ∼ (xi =
c

yi+1)≺≺z

(x++y)++z ∼ (xi =
c

yi+1)++z (x++y) =
r

z ∼ (xi =
r

yi) =
r

z

x =
c

(y≺≺z) ∼ x =
c

(yi =
c

zi) x≺≺(y≺≺z) ∼ x≺≺(yi+1 =
r

zi)

x++(y≺≺z) ∼ x++(yi+1 =
r

zi) x =
r

(y≺≺z) ∼ x =
r

(yi+1 =
r

zi)

x =
c

(y++z) ∼ x =
c

(yi =
c

zi+1) x≺≺(y++z) ∼ x≺≺(yi =
r

zi)

x++(y++z) ∼ x++(yi =
r

zi) x =
r

(y++z) ∼ x =
r

(yi =
r

zi)

where x≺≺y  xi =
c

yi in the first three cases, x≺≺y  xi+1 =
c

yi in the fourth
etc.
We prove by natural induction

(x =
c

y) =
c

z ∼ x =
c

(y =
c

z) (1)

(x =
c

y)≺≺z ∼ x =
c

(y≺≺z) for commandτ ;μ (y≺≺z) = inr (2)

(x =
c

y)≺≺z ∼ x≺≺(y≺≺z) for commandτ ;μ (y≺≺z) = inl (3)

(x =
c

y)++z ∼ x =
c

(y++z) for commandτ ;μ (y++z) = inr (4)

(x =
c

y)++z ∼ x≺≺(y++z) for commandτ ;μ (y++z) = inl (5)

x =
r

(y =
r

z) ∼ (x =
r

y) =
r

z (6)

x++(y =
r

z) ∼ (x++y) =
r

z for commandσ;τ (x++y) = inl (7)

x++(y =
r

z) ∼ (x++y)++z for commandσ;τ (x++y) = inr (8)

x≺≺(y =
r

z) ∼ (x≺≺y) =
r

z for commandσ;τ (x≺≺y) = inl (9)

x≺≺(y =
r

z) ∼ (x≺≺y)++z for commandσ;τ (x≺≺y) = inr (10)

Ad 1. We have

inr (ca, cd) := command(σ;τ);μ (x =
c

y) =
c

z = commandσ;(τ ;μ) x =
c

(y =
c

z).

Let inr (ca, cd)≺≺(ca, rd) and z′ := nextμ z (cc, rd) .
I.: commandμ z′ = inr (cc, c

′
d).

next (x =
c

y) =
c

z (ca, rd) = (x =
c

y) =
c

z′ ∼n x =
c

(y =
c

z′) I.H.

= next x =
c

(y =
c

z′) (ca, rd)
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II.: commandμ z′ = inl (rc, rd).
II.a):commandτ ;μ (y≺≺z′) = inr .

next (x =
c

y) =
c

z (ca, rd) = (x =
c

y)≺≺z′ ∼n x =
c

(y≺≺z′) I.H.

= next x =
c

(y =
c

z′) (ca, rd)

II.b):commandτ ;μ (y≺≺z′) = inl .

next (x =
c

y) =
c

z (ca, rd) = (x =
c

y)≺≺z′ ∼n x≺≺(y≺≺z′) I.H.

= next x =
c

(y =
c

z′) (ca, rd) .

Ad 6. Analog to 1.
Ad 2.

(x =
c

y)≺≺z  (x =
c

yi) =
c

zi ∼n+1 x =
c

(yi =
c

zi) by 1

 x =
c

(y≺≺z)

where y≺≺z  yi =
c

zi.
Ad 7. Analog to 2.
Ad 3. Let inr (ca, cc) := command (x =

c
y) and z′ := next z (cc, rd) .

I.: command z′ = inl .

(x =
c

y)++z  (x =
c

y)≺≺z′ ∼n+1 x =
c

(y≺≺z′) by 2

 x =
c

(y++z).

II.: command z′ = inr .

(x =
c

y)++z  (x =
c

y) =
c

z′ ∼n+1 x =
c

(y =
c

z′) by 1

 x =
c

(y =
c

z).

Ad 8. Analog to 3.
Ad 4.

(x =
c

y)≺≺z  (x =
c

yi) =
c

zi+1 ∼n+1 x =
c

(yi =
c

zi+1) by 1

 x =
c

(y++z).

Ad 9. Analog to 4.
Ad 5. Let inr (ca, cc) := command (x =

c
y) and z′ := next z (cc, rd) .

(x =
c

y)++z  (x =
c

y)≺≺z′ ∼n+1 x≺≺(y≺≺z′) by 3

 x≺≺(y++z).

Ad 10. Analogue to 5. )*
Theorem 1. Games A together with sound & fair strategies on A � B and the
composition defined above form a category if we identify strategies by the notion
of behavioural equivalence above.
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9 Conclusion

We introduced a generalisation of Hancock/Setzer’s notion of interfaces and in-
vestigated its relationship to game semantic. We pointed out how to understand
this generalised notion as games. We are going to explain in what sense the re-
sulting notion is indeed a generalisation in a forthcoming paper. We proposed
a simple notion of refinement and showed that the refinement relation is the
order relation of a complete lattice. We introduced operations negation, tensor
and lolipop on these games. We developed the notion of sound and fair strategy
for games A � B. By copying moves from one side to the other we defined a
composition for this strategies. We showed that the composed strategy is again
sound and fair. By identifying strategies by a notion of behavioural equivalence
we received a category with games as objects where the morphisms are sound
and fair strategies on A � B. We conjecture that this category can be modified
to yield a model of classical linear logic in intensional type theory, i.e. a linear
category with dualising object.

Acknowledgement

The author thanks Anton Setzer, Peter Hancock and Pierre Hyvernat for fruitful
discussions, two anonymous referees for valuable comments and Ken Johnson for
proof-reading the article.

References

1. Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Categories of Containers.
In Andrew Gordon, editor, Proceedings of FOSSACS 2003, volume 2620 of Lecture
Notes in Computer Science, pages 23–38. Springer-Verlag, 2003.

2. Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Derivatives
of Containers. In Martin Hofmann, editor, Typed Lambda Calculi and Applications,
TLCA 2003, volume 2701 of Lecture notes in Computer Science, pages 16–30.
Springer, 2003.

3. Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. ∂ for data.
Fundamenta Informatica, 65(1 - 2), 2005.

4. Michael Gordon Abbott. Categories of Containers. PhD thesis, University of
Leicester, 2003.

5. Samson Abramsky. Semantics of Interaction: an introduction to Game Semantics.
In P. Dybjer and A. Pitts, editors, Proceedings of the 1996 CLiCS Summer School,
pages 1–31. Cambridge University Press, 1997.

6. Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, Marcin Jurdziński,
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λZ: Zermelo’s Set Theory
as a PTS with 4 Sorts

Alexandre Miquel

PPS & Université Paris 7,
175 rue du Chevaleret, 75013 Paris

Abstract. We introduce a pure type system (PTS) λZ with four sorts
and show that this PTS captures the proof-theoretic strength of Zer-
melo’s set theory. For that, we show that the embedding of the language
of set theory into λZ via the ‘sets as pointed graphs’ translation makes
λZ a conservative extension of IZ + AFA + TC (intuitionistic Zermelo’s
set theory plus Aczel’s antifoundation axiom plus the axiom of transitive
closure)—a theory which is equiconsistent to Zermelo’s. The proof of con-
servativity is achieved by defining a retraction from λZ to a (skolemised
version of) Zermelo’s set theory and by showing that both transforma-
tions commute via the axioms AFA and TC.

1 Introduction

Modern proof assistants based on the Curry Howard correspondence—such as
Agda, Coq, Nuprl or Plastic—basically implement a well-known pure type sys-
tem [7, 3] (PTS) enriched with many extensions such as inductive data-types
and recursive definitions of functions. Traditionally, the proof-theoretic strength
of the implemented formalisms is estimated via the sets-in-types and types-in-
sets encodings [13, 2], that respectively give a lower and an upper bound of the
proof-theoretic strength of the system, expressed as a variant of set theory.

Surprisingly, very little is known about the proof-theoretic strength of the
underlying PTSs themselves. The main reason is that the framework of PTSs
lacks the inductive data-types that are crucial in the definition of the traditional
sets-in-types encoding based on Aczel’s W -trees. Another reason is that there
is currently no simple set-theoretic interpretation of type-theoretic universes
that does not rely on the existence of large cardinals—an assumption which is
definitely too strong to give a reasonable upper bound of a PTS.

The aim of this paper is to initiate a more systematic study of the proof-
theoretic strength of the subsystems of the Calculus of Constructions with uni-
verses (CCω) following the correspondence with extensions of Zermelo’s set the-
ory that was outlined in the author’s thesis [11]. In this direction, we present
a first result by extracting a sub-PTS of the Calculus of Constructions with
universes—the system λZ presented in section 2—that captures the proof-the-
oretic strength of Zermelo’s set theory (without the Foundation Axiom). More-
over, we show that through the sets-as-pointed-graphs encoding (which is re-
called in section 4) the PTS λZ appears to be a conservative extension of a

J.-C. Filliâtre et al. (Eds.): TYPES 2004, LNCS 3839, pp. 232–251, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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very natural extension of Intuitionistic Zermelo’s set theory, namely, the system
IZ + AFA + TC whose classical version as been already considered in [5], and
which is clearly equiconsistent to Z.

Finally, let us mention that the crucial ingredient of the equiconsistency proof
presented in this paper does not come from the type-theoretic side, but from
the set-theoretic side. As we shall see in section 3, introducing an explicitly
Skolemised version of Zermelo’s set theory reveals some unexpected closure
properties of this system that are fruitfully exploited in the definition of the
types-in-sets interpretation presented in section 5.

2 The PTS λZ

In this section, we assume the reader has some familiarity with the theory of
PTS (see [7, 3]).

2.1 The PTS Presentation

Definition 1 (λZ). — λZ is the PTS whose set of sorts S , whose set of axioms
A ⊂ S 2 and whose set of rules R ⊂ S 3 are given by

S = {∗; �1; �2; �3} ,

A = {(∗ : �1); (�1 : �2); (�2 : �3)} ,

R = {(∗, ∗, ∗); (�i, ∗, ∗) | i ∈ {1, 2, 3}} ∪ {(�i, �j , �max(i,j)) | i, j ∈ {1, 2}} .

By construction, the PTS λZ is a sub-system of the calculus of constructions
with universes (CCω), and actually, a subsystem of system Fω with universes
(Fω2, the non-dependent fragment of CCω) which is the PTS defined by:

SFω2 = {∗; �i | i ≥ 1} ,

AFω2 = {(∗ : �0); (�i : �i+1) | i ≥ 1} ,

RFω2 = {(∗, ∗, ∗); (�i, ∗, ∗); (�i, �j , �max(i,j)) | i, j ≥ 1} .

Moreover, if we write Fω.n (for n ≥ 1) the PTS obtained by restricting Fω2 to
the set of sorts {∗; �i | 1 ≤ i ≤ n}, then we have the inclusions:

Fω.2 ⊂ λZ ⊂ Fω.3 ⊂ · · · ⊂ Fω2 ⊂ CCω

Intuitively, the PTS λZ extends Fω.2 with a sort �3, an axiom �2 : �3 and a
unique rule (�3, ∗, ∗), whereas Fω.3 completes the extension by adding all the
‘missing rules’ (�3, �i, �3) and (�i, �3, �3) for i ∈ {1; 2; 3}.

As for any PTS, λZ enjoys many good properties, such as substitutivity and
subject-reduction [7] as well as the property of uniqueness of types up to β-
conversion (since λZ is a functional PTS).

From the inclusions λZ ⊂ Fω2 ⊂ CCω we immediately get [9, 10]:

Fact 1 (Strong Normalisation). — All the well-typed term of λZ are strongly
normalisable terms.
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It is important to notice that this result will not be used in the following, for
that the conservativity result we will present purely relies on syntactic codings
(that involve straightforward conversion steps on the type-theoretic side). On
the other hand, using the normalisation result above—which seems to require
much more proof-theoretic strength than the consistency of Zermelo’s1—would
dramatically weaken the interest of our relative consistency proof.

2.2 Stratified Presentation of Fω2

As for the systems of Barendregt’s cube, the PTS Fω2 (and its subsystems) can
be given a stratified presentation which syntactically distinguishes the terms
whose type has type �i—that represent mathematical objects—from the terms
whose type has type ∗—that represent mathematical proofs.

Formally, we say that in a given context Γ , a term M of type T is an object
term if Γ � T : �i for some i ≥ 1, and a proof term if Γ � T : ∗. Notice that
propositions—that is, terms of type ∗—are a special case of object terms. In the
rest of this presentation, we use capital letters M, N, T, U, A, B, etc. to denote
object terms (and more specifically: T, U for types and A, B for propositions)
whereas lowercase letters t, u, etc. are reserved for proof terms.

Dependent and non-dependent products are stratified according to their for-
mation rule as follows:

– Non-dependent products formed according to the rule (∗, ∗, ∗), which express
logical implication, are written A⇒ B. Notice that non-dependent products
are the only products that can be formed by this rule, since λZ is a non-
dependent logical PTS (following the terminology of [4]).

– Dependent products formed according to the rule (�i, ∗, ∗), which express
universal quantification, are written ∀x : T . A.

– Dependent products formed according to the rule (�i, �i, �i), which express
dependent function spaces, are still written Πx :T . U (or simply T → U in
the non-dependent case, when x /∈ FV (U)).

The stratified presentation of system Fω2 is given in table 1, and the corre-
sponding (stratified) typing rules are recalled in table 2.

Proposition 1 (Stratification Equivalence). — The well-typed terms of sys-
tem Fω2 are exactly the object terms and proof terms that can be expressed in
the syntax given in table 1 and type-checked using the rules of table 2.

2.3 The Stratified Presentation of λZ

In the stratified setting, system λZ naturally appears as the subsystem of Fω2

which is obtained:
1 We conjecture that the (strong) normalisation of λZ has the same proof-theoretic

strength as (the consistency of) IZ plus one Zermelo-universe. This has to be com-
pared to the formalisms CC and Fω, whose strong normalisation properties have ex-
actly the same proof-theoretic strength as higher-order arithmetic (HAω) but whose
consistency can be proved within Heyting arithmetic (HA).
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Table 1. The stratified presentation of Fω2

Object terms M, N, T, U, A, B ::= x | λx : T . M | MN
| Πx : T . U | ∗ | �i (i ≥ 1)
| A ⇒ B | ∀x : T . A

Proof terms t, u ::= ξ

| λξA. t | tu
| λx : T . t | tM

Table 2. Typing rules of Fω2

Context formation

[] �
Γ � T : �i

Γ, x : T �
Γ � A : ∗
Γ, ξ : A �

Object terms

Γ �
Γ � x : T

(x:T )∈Γ
Γ �

Γ � ∗ : �1

Γ �
Γ � �i : �i+1

Γ � Πx : T . U : �i Γ, x : T � M : U

Γ � λx : T . M : Πx : T . U
Γ � M : Πx : T . U Γ � N : T

Γ � MN : U{x := N}

Γ � A : ∗ Γ � B : ∗
Γ � A ⇒ B : ∗

Γ, x : T � A : ∗
Γ � ∀x : T . A : ∗

Γ � T : �i Γ, x : T � U : �j

Γ � Πx : T . U : �max(i,j)

Γ � M : T Γ � T ′ : �i

Γ � M : T ′ T ′=βT

Proof terms

Γ �
Γ � ξ : A

(ξ:T )∈Γ
Γ � t : A Γ � A′ : ∗

Γ � t : A′ A′=βA

Γ, ξ : A � t : B

Γ � λξ : A . t : A ⇒ B
Γ � t : A ⇒ B Γ � u : A

Γ � tu : B

Γ, x : T � t : A

Γ � λx : T . t : ∀x : T . A
Γ � t : ∀x : T . A Γ � N : T

Γ � tN : A{x := N}
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– By restricting the set of sorts to the initial segment S = {∗; �1; �2; �3}
of SFω2 and the set A of axioms accordingly.

– By restricting the formation rule of dependent function spaces to the rules
of the form (�i, �j , �max(i,j)) for i, j ∈ {1; 2}.

On the other hand, system λZ does not further restrict the rules (�i, ∗, ∗) that
are responsible for the formation of universal quantification ∀x : T . A, and that
can be used at any index i ∈ {1; 2; 3}.

To understand the structure of λZ, let us explain the meaning of each uni-
verse �i (for i ∈ {1; 2; 3}) and of each formation rule (�i, ∗, ∗) in terms of the
notions they will correspond to via our translation to set theory:

1. The first universe �1—that contains no provably infinite data-type2—has
to be thought as the universe of finite data-types. Technically, the pres-
ence of a first universe below the universe �2 of sets (see below) is needed
to justify the existence of a provably infinite data-type in �2, and plays
the very same role as the axiom of infinity in set theory. In particular,
universal quantifications ∀x : T . A(x) formed by the rule (�1, ∗, ∗) roughly
correspond to finite quantifications ∀x< t A(x) (where t ∈ ω) in set
theory.

2. The universe �2 has to be thought as the universe of sets, or, more pre-
cisely, as the universe of the carriers of the pointed graphs that we will
use to represent sets. Thus, universal quantifications ∀x : T . A(x) formed by
the rule (�2, ∗, ∗) correspond to bounded quantifications ∀x∈t A(x) in set
theory.

3. The sort �3 is a top sort whose only inhabitant is the universe �2—which is
due to the absence of formation rules of the form (s1, s2, �3). Technically this
sort is needed to type-check the construction ∀x : �2 . A(x)—the only form
of universal quantification induced by the rule (�3, ∗, ∗)—that corresponds
to the unbounded quantification ∀x A(x) in set theory.

The aim of this paper is to formalise the correspondence depicted above to turn
it into a result of proof-theoretic equivalence.

3 Zermelo’s Set Theory

3.1 The Core Language

Zermelo’s set theory (Z) is the classical first-order theory whose language is built
from the two binary relations x = y (equality) and x ∈ y (membership)

Formulæ φ, ψ ::= � | ⊥ | x = y | x ∈ y
| φ ∧ ψ | φ ∨ ψ | φ ⇒ ψ | ∀x ψ | ∃x ψ

2 This will be a consequence of the soundness of the translation ( )† defined in section 5.
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and whose axioms are given in table 3, using the following shorthands:

¬φ ≡ φ ⇒ ⊥ φ ⇔ ψ ≡ (φ⇒ ψ) ∧ (ψ ⇒ φ)
x /∈ y ≡ ¬(x ∈ y) x ⊂ y ≡ ∀z (z ∈ x⇒ z ∈ y)
Zero(x) ≡ ∀z (z /∈ x) Succ(x, y) ≡ ∀z [z ∈ y ⇔ z ∈ x ∨ z = x]

Nat(n) ≡ ∀a [ ∀x (Zero(x) ⇒ x ∈ a) ∧
∀x ∀y (x ∈ a ∧ Succ(x, y) ⇒ y ∈ a) ⇒ n ∈ a]

(Notice that in this presentation of Z, there is no Axiom of Foundation.)

Table 3. Axioms of Zermelo’s set theory

Equality axioms

(Reflexivity) ∀x (x = x)

(Symmetry) ∀x ∀y (x = y ⇒ y = x)

(Transitivity) ∀x ∀y ∀z (x = y ∧ y = z ⇒ x = z)

(Mem-Compat-L) ∀x ∀y ∀z (x = y ∧ y ∈ z ⇒ x ∈ z)

(Mem-Compat-R) ∀x ∀y ∀z (x ∈ y ∧ y = z ⇒ x ∈ z)

Zermelo’s axioms

(Extensionality) ∀a ∀b [∀x (x ∈ a ⇔ x ∈ b) ⇒ a = b]

(Pairing) ∀a1 ∀a2 ∃b ∀x [x ∈ b ⇔ x = a1 ∨ x = a2]

(Comprehension) ∀x1 · · · ∀xn ∀a ∃b ∀x [x ∈ b ⇔ x ∈ a ∧ φ]

for any formula φ such that FV (φ) ⊂ {x1; . . . ; xn; x}.
(Powerset) ∀a ∃b ∀x [x ∈ b ⇔ x ⊂ a]

(Union) ∀a ∃b ∀x [x ∈ b ⇔ ∃y (y ∈ a ∧ x ∈ y)]

(Infinity) ∃a ∀x [x ∈ a ⇔ Nat(x)]

Intuitionistic Zermelo’s set theory (IZ) is the theory based on the same lan-
guage and axioms as Z, but in which reasoning is done in intuitionistic logic.
As shown by [6], there is a double negation translation which maps (classically)
provable formulæ of Z to (intuitionistically) provable formulæ of IZ, so that both
theories IZ and Z are actually equiconsistent.

In what follows, we will mainly work in IZ.

3.2 Skolemising Z

The main drawback of the traditional presentation of set theory is the lack of
notations to express objects (i.e. sets). To define the ‘retraction’ of section 5,
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we first need to enrich—in a conservative way—the term algebra of set theory
(that only contains variables) with notations to express the unordered pairs, the
powersets, the unions, the set of natural numbers and all the sets defined by
using the comprehension scheme.

Formally, we introduce a system called Zsk, whose terms and formulæ are
mutually defined by:

Terms

Formulæ

t, u ::= x | ω | {t1; t2} | P(t) |
⋃

t | {x ∈ t | φ}

φ, ψ ::= t = u | t ∈ u | � | ⊥
| φ ∧ ψ | φ ∨ ψ | φ⇒ ψ | ∀x φ | ∃x φ

(Free and bound occurrences of variables are defined as expected, keeping in mind
that the construction {x ∈ t | φ} binds all the free occurrences of the variable x
in φ, but none of the free occurrences of x in t. The notions of substitutions
t{x := u} and A{x := u} are defined accordingly.)

Although Zsk is not based on a first-order language, the underlying notions
of sequent, inference rule and derivation are defined as in first-order theories.
The axioms of Zsk are the same as in Z, except that the existential axioms of
Zermelo’s system (table 3) are replaced by their Skolemized forms (table 4).

The intuitionistic fragment of Zsk is written IZsk.

Table 4. Skolemised axioms of Zsk

(Pairingsk) ∀a1 ∀a2 ∀x [x ∈ {a1; a2} ⇔ x = a1 ∨ x = a2]

(Comprehensionsk) ∀x1 · · · ∀xn ∀a ∀x [x ∈ {z ∈ a | φ} ⇔ x ∈ a ∧ φ{z := x}]
for any formula φ such that FV (φ) ⊂ {x1; . . . ; xn; z}.

(Powersetsk) ∀a ∀x [x ∈ P(a) ⇔ x ⊂ a]

(Unionsk) ∀a ∀x [x ∈ a ⇔ ∃y (y ∈ a ∧ x ∈ y)]

(Infinitysk) ∀x [x ∈ ω ⇔ Nat(x)]

The theory (I)Zsk is clearly an extension of (I)Z,3 in the sense that for any
formula φ of set theory, (I)Z � φ entails (I)Zsk � φ.

From the axioms of table 4, we easily check that the function symbols { ; },
P( ) and

⋃
are compatible with equality (in IZsk) as well as the construction

{x ∈ t | φ} in the sense that:

IZsk � ∀x1 · · · ∀xn ∀a ∀a′ [a = a′ ⇒ {x ∈ a | φ} = {x ∈ a′ | φ}]
IZsk � ∀x1 · · · ∀xn ∀a [∀x (φ ⇔ φ′) ⇒ {x ∈ a | φ} = {x ∈ a | φ′}]

3 The shorthand (I)Z reads: “Z (resp. IZ)”. And similarly for (I)Zsk.
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(for all formulæ φ, φ′ of Zsk such that FV (φ) ∪ FV (φ′) ⊂ {x1; . . . ; xn; x}), from
which we deduce that Leibniz principle holds, both for terms and formulæ:

Proposition 2 (Leibniz Principle). — For any term t and for any formula φ
of the language of Zsk:

IZsk � x1 = x2 ⇒ t{x := x1} = t{x := x2}
IZsk � x1 = x2 ⇒ φ{x := x1} ⇔ φ{x := x2}

Proof. This result is proved by mutual induction on t and φ. )*

In Zsk (and, actually, in IZsk), most standard mathematical notations such as
∅ (empty set), x∪y (union), x∩y (intersection), x\y (difference), f(x) (function
application), 〈x, y〉 (ordered pair), BA (function space), etc. are easily definable
as macros in the enriched term algebra.

We now have to ensure that (I)Zsk is a conservative extension of (I)Z.

3.3 The Deskolemisation Procedure

The proof of conservativity of (I)Zsk w.r.t. (I)Z relies on a deskolemisation pro-
cedure that is achieved by two transformations:

– A transformation on terms, which maps each pair (t, z) formed by a term t
of Zsk and a variable z to a formula of set theory written z ∈◦ t;4

– A transformation on formulæ, which maps each formula φ of Zsk to a formula
of set theory written φ◦.

Both transformations are defined by mutual induction on t and φ from the de-
skolemisation equations given in table 5.

This process of deskolemisation preserves the meaning of terms and formulæ
in IZsk in the sense that:

Proposition 3 (Translation Equivalence). — For all terms t and formulæ φ
of the language of Zsk, one has:

IZsk � (z ∈◦ t)⇔ z ∈ t and IZsk � φ◦ ⇔ φ

Moreover, if φ is expressed in the core language (=, ∈) of set theory, then:

IZ � φ◦ ⇔ φ .

Proof. The first two items are proved by mutual induction on t and φ. Last item
is proved by induction on φ. )*

Furthermore, we can show:

Proposition 4 (Soundness of Deskolemisation). — If a closed formula φ

is a theorem of (I)Zsk, then φ◦ is a theorem of (I)Z.
4 Notice the conceptual similarity between the design of the deskolemisation procedure

for terms (z ∈◦ t) and the notions of realisability and forcing (t 	 φ).
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Table 5. Deskolemisation equations for terms and formulæ of Zsk

z ∈◦ x ≡ z ∈ x
z ∈◦ ω ≡ Nat(z)
z ∈◦ {t1; t2} ≡ (z = t1)◦ ∨ (z = t2)◦

z ∈◦ P(t) ≡ ∀x (x ∈ z ⇒ x ∈◦ t)
z ∈◦ t ≡ ∃y (y ∈◦ t ∧ z ∈ y)
z ∈◦ {x ∈ t | φ} ≡ z ∈◦ t ∧ φ◦{x := z}

(t = u)◦ ≡ ∀z (z ∈◦ t ⇔ z ∈◦ u)
(t ∈ u)◦ ≡ ∃x ((z = t)◦ ∧ z ∈◦ u)

 ◦ ≡  
⊥◦ ≡ ⊥

(φ ∧ ψ)◦ ≡ φ◦ ∧ ψ◦

(φ ∨ ψ)◦ ≡ φ◦ ∨ ψ◦

(φ ⇒ ψ)◦ ≡ φ◦ ⇒ ψ◦

(∀x φ)◦ ≡ ∀x φ◦

(∃x φ)◦ ≡ ∃x φ◦

From Prop. 3 (last equivalence) and Prop. 4 we easily deduce:

Proposition 5 (Conservativity). — The theory (I)Zsk is a conservative ex-
tension of (I)Z.

Proof. See appendix A.

3.4 A Weak Form of Replacement in Zermelo’s System

Historically, one of the motivations of Fraenkel and Skolem to introduce the
replacement scheme in set theory

(Replacement) ∀a [∀x∈a ∃!y φ(x, y) ⇒ ∃b ∀x∈a ∃y∈b φ(x, y)]

(which fills the gap between Z and ZF) was to justify the notation {t(x) | x ∈ u}
which expresses the image of the set u by the functional relation x 	→ t(x).

Surprisingly, the study of Zsk reveals that the justification of the notation
{t(x) | x ∈ u} does not need any extension of Zermelo’s system when the term
t(x) is expressed in the term language of Zsk.

The reason is that for any term u of Zsk and for any term t(x) of Zsk that
possibly depends on a variable x, we can define a term written B(t(x), x ∈ u)
which uniformly bounds t(x) when x ranges over u. Formally, such a term can
be defined by structural induction on t(x) as follows:

B(x, x ∈ u) = u
B(y, x ∈ u) = P(y) (if y �≡ x)
B(ω, x ∈ u) = P(ω)
B({t1; t2}, x ∈ u) = P

(
B(t1, x ∈ u) ∪ B(t2, x ∈ u)

)
B(P(t), x ∈ u) = P(P(

⋃
B(t, x ∈ u)))

B(
⋃

t, x ∈ u) = P(
⋃⋃

B(t, x ∈ u))
B({y ∈ t | φ}, x ∈ u) = P(

⋃
B(t, x ∈ u))
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Lemma 1. — For all terms t(x) and u of Zsk such that x /∈ FV (u):

IZsk � ∀x [x ∈ u ⇒ t(x) ∈ B(t(x), x ∈ u)] .

Proof. By induction on t(x). )*

Setting {t(x) | x ∈ u} ≡ {y ∈ B(t(x), x ∈ u) | ∃x (x ∈ u ∧ y = t(x))} we
easily check that:

Proposition 6. — For all terms t and u such that x /∈ FV (u) and y /∈ FV (t):

IZsk � ∀y [y ∈ {t | x ∈ u} ⇔ ∃x (x ∈ u ∧ y = t)] .

An important consequence of this result is that we can now define in the
language of Zsk both the notation for function abstraction and the notation for
generalised Cartesian product that are crucial ingredients for any translation of
type theory in set theory:

λx∈ t . u(x) ≡
{
〈x, u(x)〉 | x ∈ t

}
∏

x∈t u(x) ≡
{
f ∈

(⋃
{u(x) | x ∈ t}

)t | ∀x (x ∈ t⇒ f(x) ∈ u(x))
}

(Remember that these notations are not macros, but that they denote the result
of complex transformations in the term language of Zsk.)

4 Sets as Pointed Graphs

In this section, we present the translation ( )∗ of IZ into λZ using the representa-
tion of sets as pointed graphs [1]. This translation is basically the one presented
by the author in [11, 12], except that:

– The target formalism λZ is slightly weaker than the formalism (i.e. Fω.3) in
which this translation was originally presented.

– We also prove the soundness of two additional axioms that are crucial to
achieve the conservativity result (theorem 2) of section 5, namely: the anti-
foundation axiom (AFA) and the axiom of the transitive closure (TC).

Before defining the translation, let us first recall the basic notions of the
theory of pointed graphs (presented in set theory) that are needed to introduce
the axiom of anti-foundation.

4.1 Pointed Graphs and Anti-foundation

In set theory, a pointed graph is a triple 〈X, R, r〉 formed by an arbitrary set X
(the carrier) equipped with a binary relation R ⊂ (X ×X) (the edge relation)
and a distinguished element r ∈ X (the root).

Given a binary relation R (on any set), we say that a function φ (whose domain
is written Dφ) decorates R if for all x ∈ Dφ and for any set z, the relation z ∈ φ(x)
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holds iff there exists x′ ∈ Dφ such that z = φ(x′) and 〈x′, x〉 ∈ R. Finally, we say
that a pointed graph 〈X, R, r〉 pictures a set x when there exists a decoration φ
of R such that r ∈ Dφ and φ(r) = x.

Formally, the relations PGraph(G) (‘G is a pointed graph’), Decor(φ, R) (‘the
function φ decorates R’) and Pict(G, x) (‘G pictures x’) are defined by:5

PGraph(G) ≡ ∃X ∃R ∃r [G = 〈X, R, r〉 ∧ R ⊂ (X ×X) ∧ r ∈ X ]

Decor(φ, R) ≡ ∀x∈Dφ ∀z [z ∈ φ(x) ⇔ ∃x′∈Dφ (z = φ(x′) ∧ 〈x′, x〉 ∈ R)]

Pict(G, x) ≡ ∃X ∃R ∃r ∃φ [G = 〈X, R, r〉 ∧ function(φ) ∧
Decor(φ, R) ∧ r ∈ Dφ ∧ x = φ(r)]

In ZF, it is easy to show that any pointed graph G = 〈X, R, r〉 whose root r
is accessible6 w.r.t. the relation R pictures a unique set.7

In presence of the axiom of foundation [8], this result cannot be extended
further, for the relation Pict(〈X, R, r〉, x) automatically implies the accessibility
of the root r w.r.t. the relation R.

The axiom of anti-foundation (AFA) refutes the axiom of foundation by ex-
tending the latter result of existence and uniqueness to all the pointed graphs:

(AFA) ∀G [PGraph(G) ⇒ ∃!x Pict(G, x)]

Notice that this axiom has two parts: the existence part that allows to build
arbitrarily non well-founded sets (for instance, a set x such that x = {x}), and
the uniqueness part that allows to prove equalities between non-wellfounded
sets (for instance, that any two sets x and y such that x = {x} and y = {y} are
equal).

4.2 The Axiom of Transitive Closure

In ZF it is easy to associate to each set x a pointed graph 〈X, R, r〉 that pic-
tures x—a representation of x—simply by taking X = Cl({x}) the transitive
closure of the singleton {x}, R = {(y′, y) ∈ X | y′ ∈ y} and r = x.

Unfortunately, the latter construction relies on the existence of a transitive
closure, which is not provable in Z [5]. For this reason, we consider the extension
of Zermelo’s system with the following axiom

(TC) ∀a ∃b [a ⊂ b ∧ ∀x (x ∈ b⇒ x ⊂ b)] .

5 Formally, these definitions are expressed in the language of Zsk, but in what follows
we will consider them as definitions expressed in the ordinary language of set theory,
implicitly using the deskolemisation procedure presented in section 3.

6 The accessibility predicate AccR(x) is inductively defined on X by the unique clause:
if AccR(y) for all y ∈ X such that 〈y, x〉 ∈ R, then AccR(x).

7 Actually, the proof does not rely on classical principles and can be done in IZFR

(intuitionistic ZF with replacement). In IZ, only the uniqueness is provable.
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that expresses that any set is included in a transitive set. From this axiom it is
easy to derive the expected representation property

(Repr) ∀x ∃G (PGraph(G) ∧ Pict(G, x))

using the construction described above.8

4.3 The Translation of IZ into λZ

To each variable x of set theory we associate in λZ three object term variables
written x̄ (the carrier), x̃ (the relation) and ẋ (the root), with types

x̄ : �2, x̃ : x̄ → x̄→ ∗, ẋ : x̄ ,

that are intended to represent the set x as a pointed graph (x̄, x̃, ẋ) in λZ. We
also assume that for any pair x and y of distinct variables of set theory, the
variables x̄, x̃, ẋ, ȳ, ỹ and ẏ are pairwise distinct.

Given a finite set X of variables of set theory, we denote by ΓX the well-formed
context of λZ given by

ΓX =
⋃

x∈X

[x̄ : �2; x̃ : x̄→x̄→∗, ẋ : x̄]

(here, the union refers to a concatenation of contexts whose order is irrelevant).
Given two variables x and y of set theory, the relation x = y that expresses

the extensional equality of the sets x and y is interpreted in λZ as the bisimilarity
of the pointed graphs 〈x̄, x̃, ẋ〉 and 〈ȳ, ỹ, ẏ〉, namely, as the proposition written
〈x̄, x̃, ẋ〉 ≈ 〈ȳ, ỹ, ẏ〉 and defined by

(x̄, x̃, ẋ) ≈ (ȳ, ỹ, ẏ) ≡
∃r : (x̄→ȳ→∗) .

[ R ẋ ẏ ∧
∀α, α′ : x̄ .∀β : ȳ .

(
x̃ α′ α ∧ r α β ⇒ ∃β′ : ȳ . (ỹ β′ β ∧ r α′ β′)

)
∧

∀β, β′ : ȳ . ∀α : x̄ .
(
ỹ β′ β ∧ r α β ⇒ ∃α′ : x̄ . (x̃ α′ α ∧ r α′ β′)

)
]

To each formula φ of set theory we associate a proposition φ∗ of λZ by setting

(x = y)∗ ≡ (x̄, x̃, ẋ) ≈ (ȳ, ỹ, ẏ)
(x ∈ y)∗ ≡ ∃z : ȳ . (ỹ z ẏ ∧ (x̄, x̃, ẋ) ≈ (ȳ, ỹ, z))
(φ ∧ ψ)∗ ≡ φ∗ ∧ ψ∗ (�)∗ ≡ �
(φ ∨ ψ)∗ ≡ φ∗ ∨ ψ∗ (⊥)∗ ≡ ⊥

(φ⇒ ψ)∗ ≡ φ∗ ⇒ ψ∗

(∀x φ)∗ ≡ ∀x̄ : �2 . ∀x̃ : (x̄→x̄→∗) . ∀ẋ : x̄ . φ∗

(∃x φ)∗ ≡ ∃x̄ : �2 . ∃x̃ : (x̄→x̄→∗) . ∃ẋ : x̄ . φ∗

It is easy to check that FV (φ∗) =
⋃

x∈FV (x){x̄; x̃; ẋ} and that ΓFV (φ) � φ∗ : ∗.

Theorem 1 (Soundness). — For all formulæ φ of set theory such that IZ +
AFA + TC � φ, there is a proof-term t such that ΓFV (φ) � t : φ∗.

Proof. See appendix B.
8 The proposition (Repr) is actually equivalent to (TC) in IZ + AFA.
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5 Retracting λZ in Zsk + AFA

We now define a converse translation ( )† from λZ to IZsk + AFA, using the
standard types-in-sets interpretation [13, 2]. Notice that here, we only need anti-
foundation (AFA) to justify the existence of the set HF of hereditarily finite sets
(a.k.a. Vω) [8], which is used to interpret the sort �1. 9

5.1 The Translation M �→ M†

Raw object terms of λZ (cf table 1) are translated into terms of Zsk as follows:

x† ≡ x
∗† ≡ P({•})
�

†
1 ≡ HF

�2, �3 no translation
(Πx : T . U)† ≡

∏
x∈T † U †

(λx : T . M)† ≡ λx∈ T † . M †

(MN)† ≡ M †(N †)
(A⇒ B)† ≡ {π ∈ {•} | • ∈ A† ⇒ • ∈ B†}
∀x : �2 . A ≡ {π ∈ {•} | ∀x (• ∈ A†)}
∀x : T . A ≡ {π ∈ {•} | ∀x (x ∈ T † ⇒ • ∈ A†)}

This translation is partial, and associates no term to the sorts �2 and �3. (Notice
that FV (M †) = FV (M) whenever M † is defined.)

Propositions are interpreted in a proof-irrelevant way, as subsets of a single-
ton {•}, where • is any closed term of Zsk. We use here the standard trick by
which any (intuitionistic) formula φ of Zsk can be encoded as a subset φ̂ ⊂ {•}
by setting φ̂ = {π ∈ {•} | φ} whereas any subset p ⊂ {•} naturally decodes to
the formula • ∈ p. This correspondence between propositions and subsets of {•}
is one-to-one,10 in this sense that the equivalence φ ⇔ (• ∈ φ̂) is provable in IZsk

(for all formulæ φ), as well as the implication p ⊂ {•} ⇒ (p = •̂ ∈ p).
Up to this coding trick, the different kinds of universal quantifications are

interpreted exactly as outlined in subsection 2.3. In particular, universal quan-
tifications of the form ∀x : �2 . ... are treated in a separate case, using unbounded
quantification of set theory.

Contexts of λZ are translated as formulæ of Zsk as follows:

([])† ≡ �
(Γ ; x : �2)† ≡ Γ †

(Γ ; x : T )† ≡ Γ † ∧ (x ∈ T †) (if T �≡ �2)
(Γ, ξ : A)† ≡ Γ † ∧ (• ∈ A†)

9 Remember that the existence of the set HF of all hereditarily finite sets cannot be
justified in IZ ([8], p. 238, exercise 10). This is no more the case if we extend the
system with AFA, in which case HF can be reconstructed as the reification of a
universal (and denumerable) pointed graph whose root points to all the finite trees.

10 Classically, this is even more obvious since P({•}) = {∅; {•}}.
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Notice that FV (Γ ∗) ⊂ FV (Γ ). In particular, proof-term variables are system-
atically erased (as well as object term variables declared with type �2.)

Proposition 7 (Soundness). — For any derivable judgment of λZ of the form
Γ � M : T where M and T are object terms such that T is neither �2 nor �3,
one has:

IZsk � Γ † ⇒ M † ∈ T †

Proof. By induction on the derivation of Γ � M : T .

Proposition 8 (Soundness). — For any derivable judgment of λZ of the form
Γ � t : A where t is a proof-term and A and object term, one has:

IZsk � Γ † ⇒ • ∈ A†

Proof. By induction on the derivation of Γ � t : A.

Since the equality (Πx : ∗ . x)† = ∅ is easily provable in IZ, the latter propo-
sition implies that the translation M 	→M † transforms any inconsistency of λZ
(given as a closed proof-term of Πx : ∗ . x) into an inconsistency of IZ + AFA
(expressed as a proof of • ∈ ∅). Combining this with theorem 1 we get:

Proposition 9 (Equiconsistency). — The theories IZ + AFA + TC and λZ
are equiconsistent.

However, this result of equiconsistency can be refined as a result of conserv-
ativity by studying the composition of the translations ( )∗ and ( )†.

5.2 Composing Both Translations

The translation ( )∗ from IZ to λZ rephrases each formula of set theory in graph-
theoretic terms by replacing each variable x (of set theory) by three variables
x̄ : �2, x̃ : x̄→x̄→∗ and ẋ : x̄ that denote a pointed graph representing x.

Via the translation ( )†, each type-theoretic pointed graph (X, R, r) becomes
in turn a set-theoretic pointed graph 〈X†, R†, r†〉, up to this (minor) difference
that the edge relation R† is not given as a subset of X†×X†, but as an element
of the function space X† → X† → P({•}) which is clearly isomorphic to the set
P(X†×X†) using the same coding trick as before. (For the sake of clarity, both
sets X → X → P({•}) and P(X ×X) will be identified in what follows.)

Consequently, the composition ( )∗† of both translations is nothing but the
graph-theoretic rephrasing of non-well founded set theory into set theory itself.
Using the anti-foundation axiom AFA together with TC we easily close the
diagram as follows:

Proposition 10 (Composition). — Let φ be a formula of IZ with free vari-
ables x1, . . . , xn. If y1, . . . , yn are variables such that the variables x1, . . . , xn,
ȳ1, . . . , ȳn, ỹ1, . . . , ỹn and ẏ1, . . . , ẏn are pairwise distinct, then:

IZ + AFA + TC �
( n∧

i=1

Pict
(
(ȳi, ỹi, ẏi), xi

))
⇒ (φ ⇔ • ∈ φ{�x := �y}∗†)
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Proof. By induction on the formula φ. AFA and TC are used to treat the case
of atomic formulæ x = y and x ∈ y as well as quantifiers ∀x ψ and ∃x ψ. )*

When φ is a closed formula, the equivalence φ ⇔ • ∈ φ∗† is thus provable in
IZ + AFA + TC. Consequently:

Theorem 2 (Conservativity). — Via the embedding φ 	→ φ∗, λZ is a con-
servative extension of IZ + AFA + TC.
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10. Paul-André Melliès and Benjamin Werner. A generic normalisation proof for pure
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Appendix :

A Soundness of Deskolemisation (from IZsk to IZ)

The proof of the soundness of the deskolemisation procedure (Prop. 4) actually
involves several intermediate steps that we briefly sketch here.
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Fact 2 . — For all terms t and formulæ φ of the language of Zsk, one has
FV (z ∈◦ t) = FV (t) ∪ {z} and FV (φ◦) = FV (φ).

Proof. By mutual induction on t and φ. )*

To prove that the deskolemisation procedure transforms each theorem φ of
(I)Zsk into a theorem φ◦ of (I)Z, we first check that each term of the extended
language Zsk corresponds to a set whose existence can be proved in Z:

Lemma 2 (Collection). — For each term t of Zsk, one has:

IZ � ∃x ∀z [z ∈ x⇔ z ∈◦ t] (x and z fresh)

Proof. By structural induction on t, using the corresponding existential axiom
of Zermelo’s system for each syntactic construct of the term algebra of Zsk. )*

Lemma 3. — For each axiom φ of Zsk, one has: IZ � φ◦.

Notice that for all axioms φ of Zsk, the proof of φ◦ only relies on the equality
axioms and the axiom of extensionality. In the deskolemisation process, Zermelo’s
existential axioms actually play their role in the deduction rules that involve a
substitution, and whose translation relies on the following lemma:

Lemma 4 (Substitutivity). — For all formulæ φ and for all terms t and u
of Zsk one has the equivalences:

1. IZ � y ∈◦ t{x := u} ⇔ ∃x [y ∈◦ t ∧ ∀z (z ∈ x⇔ z ∈◦ u)] (y �≡ x)
2. IZ � (φ{x := u})◦ ⇔ ∃x [φ◦ ∧ ∀z (z ∈ x ⇔ z ∈◦ u)]

Proof. We first prove by mutual induction on t and φ that:

1. IZ � ∀x [∀z (z ∈ x ⇔ z ∈◦ u) ⇒ ∀z (z ∈◦ t{x := u} ⇔ z ∈◦ t)]
2. IZ � ∀x [∀z (z ∈ x ⇔ z ∈◦ u) ⇒ (φ{x := u}◦ ⇔ φ)]

We then conclude that the desired equivalences hold by using lemma 2, whose
proof relies on Zermelo’s existential axioms. )*

Lemma 5 (Deskolemisation of a Derivation). — Let A be a formula and
Γ a list of formulæ both expressed in the language of Zsk. If Γ � A is classically
(resp. intuitionistically) derivable, then there exists a list Δ of axioms of Z such
that Δ, Γ ◦ � A◦ is classically (resp. intuitionistically) derivable.

Proof. By induction on the derivation of Γ � A. The only interesting cases
correspond to the rules ∀-elim and ∃-intro, whose translation rely on lemma 4.

)*

From lemmas 3 and 5 it is then clear that:

Proposition 11 (Soundness of Deskolemisation). — If a closed formula φ

is a theorem of (I)Zsk, then φ◦ is a theorem of (I)Z.
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B Soundness of the Translation φ �→ φ∗

The translation ( )∗ from IZ (+ AFA+ TC) into λZ depicted in section 4 is ac-
tually a fragment of a translation of IZsk (+ AFA+ TC) into λZ, in which the
pointed graphs associated to sets are explicitly built from the terms of Zsk.

Formally, this translation maps

– Each variable x of set theory to three variables x̄, x̃ and ẋ of λZ, declared
(in this order) as follows: x̄ : �2, x̃ : x̄ → x̄→ ∗, ẋ : x̄.

– Each formula φ of the language of Zsk to a term φ of λZ of type ∗ in the
typing context associated to the free variables of φ.

– Each term t of the language of Zsk to three terms t∗̄ : �2, t∗̃ : t∗̄ → t∗̄ → ∗
and t∗̇ : t∗̄ of λZ (in the typing context associated to the free variables
of t) that respectively represent the carrier, the edge relation and the root
of the pointed graph that represents the set denoted by t in λZ.

B.1 Logic and Data Types

The formal definition of the translation relies on the usual second-order encod-
ings of connectives, existential quantifier and Leibniz equality in λZ:

⊥ ≡ ∀γ : ∗ . γ � ≡ ∀γ : ∗ . (γ ⇒ γ)
A ∧B ≡ ∀γ : ∗ . ((A ⇒ B ⇒ γ) ⇒ γ)
A ∨B ≡ ∀γ : ∗ . ((A ⇒ γ) ⇒ (B ⇒ γ) ⇒ γ)

∃x : T . A(x) ≡ ∀γ : ∗ . (∀x : T . (A(x) ⇒ γ) ⇒ γ)
x =T y ≡ ∀γ : (T → ∗) . (γ x ⇒ γ y)

Given two types X, Y : �2 we define two data-types opt(X) : �2 (‘pseudo option
type’) and sum(X, Y ) : �2 (‘pseudo union type’) as follows:

opt(X) : �2 ≡ (X → ∗) → ∗
some(X, x) : opt(X) ≡ λf : (X→∗) . f x (x : X)
none(X) : opt(X) ≡ λf : (X→∗) .⊥
sum(X, Y ) : �2 ≡ (X → ∗) → (Y → ∗) → ∗
inl(X, Y, x) : sum(X, Y ) ≡ λf : (X→∗) . λg : (Y→∗) . f x (x : X)
inr(X, Y, y) : sum(X, Y ) ≡ λf : (X→∗) . λg : (Y→∗) . g y (y : Y )
out(X, Y ) : sum(X, Y ) ≡ λf : (X→∗) . λg : (Y→∗) .⊥

It can be shown [11] that the constructions some(X, x) and none(X) (for the data
type opt(X)) and the constructions inl(X, Y, x), inr(X, Y, y) and out(X, Y ) (for
the data type sum(X, Y )) behave as constructors in the sense that they enjoy the
expected properties of injectivity and non-confusion. On the other hand, these
data types (that actually contain much more values than the ones introduced by
the constructors) have no associated elimination principle.

The type nat of Church numerals is easily constructed in �2 as shown below.
As usual, this definition is accompanied with a relativisation predicate wf nat(n)
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which captures the induction strength. We also introduce the definition of large
and strict ordering on natural numbers:

nat ≡ ΠZ : �1 . (Z → (Z → Z)→ Z)
0 ≡ λZ : �1 . λz : Z . λf : (Z→Z) . z
S(n) ≡ λZ : �1 . λz : Z . λf : (Z→Z) . f (n Z z f)

n ≤ m ≡ ∀P : (nat→∗) . (P n ⇒ ∀z : nat . (P z ⇒ P S(z)) ⇒ P m)
n < m ≡ S(n) ≤ m wf nat(n) = 0 ≤ n

(assuming n, m : nat). This encoding is sound w.r.t. all principles of Heyting
arithmetic provided all quantifications on the type nat are relativised to the
class defined by the predicate wf nat.

B.2 Translation of Terms and Formulæ

The four transformations φ 	→ φ∗ (proposition), t 	→ t∗̄ (carrier), t 	→ t∗̃ (edge
relation) and t 	→ t∗̇ (root) are defined by mutual induction on φ and t.

Translation of Formulæ. The translation φ 	→ φ∗ is defined by:

(t = u)∗ ≡ (t∗̄, t∗̃, t∗̇) ≈ (u∗̄, u∗̃, u∗̇)
(t ∈ u)∗ ≡ ∃β : u∗̄ . (u∗̃ β u∗̇ ∧ (t∗̄, t∗̃, t∗̇) ≈ (u∗̄, u∗̃, β)
(φ - ψ)∗ ≡ φ∗ - ψ∗ U∗ ≡ U (- = ∧,∨,⇒ U = �,⊥)
(Qx φ)∗ ≡ Qx̄ : �2 . Qx̃ : (x̄→x̄→∗) . Qẋ : x̄ . φ∗ (Q = ∀, ∃)

(where ≈ denotes the type-theoretic expression of the bisimilarity relation, that
has been already given in subsection 4.3).

Translation of Terms. The translations t 	→ t∗̄, t 	→ t∗̃ and t 	→ t∗̇ are defined
in table 6. For the sake of clarity, we omit type parameters X and Y in the
constructors some, none, inl, inr, out and Leibniz equality ‘=’.

B.3 Soundness of the Axioms of IZsk

Lemma 6. — For each axiom φ of IZsk, the proposition φ∗ : ∗ has a closed
proof-term in λZ.

The proof essentially proceeds as in [11], except that the target formalism λZ
is slightly weaker than Fω.3, in which the translation was originally presented.
Technically, the difference appears with the comprehension scheme, whose trans-
lation in Fω.3 benefits from the possibility of encoding class abstraction (using
the rule (�3, �1, �3)) and class quantification (using rule (�3, ∗, ∗)) so that com-
prehension can be expressed as a single proposition.11 In λZ however, class ab-
straction is not possible anymore, and each instance of the comprehension scheme
has to be translated separately.
11 The main reason is that Fω.3 (� λZ) actually captures the strength of IZω (intu-

itionistic higher-order Zermelo’s set theory.
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Table 6. Translation of the terms of Zsk in λZ

Variables

x∗̄ ≡ x̄, x∗̃ ≡ x̃ and x∗̇ ≡ ẋ

Set of von Neumann numerals

ω∗̄ ≡ opt(nat), ω∗̇ ≡ none

ω∗̃ ≡ λβ′, β : opt(nat) .
∃n′, n : nat . wf nat(n′) ∧ β′ = some(n′) ∧

wf nat(n) ∧ β = some(n) ∧ n′ < n
∨ ∃n′ : nat . wf nat(n′) ∧ β′ = some(n′) ∧ β = none

Unordered pair

{t1; t2}∗̄ ≡ sum(t∗̄
1, t

∗̄
2), {t1; t2}∗̇ ≡ out

{t1; t2}∗̃ ≡ λβ′, β : sum(t∗̄
1, t

∗̄
2) .

∃α′, α : t∗̄
1 . β′ = inl(α′) ∧ β = inl(α) ∧ t∗̃

1 α′ α

∨ ∃α′, α : t∗̄
2 . β′ = inr(α′) ∧ β = inr(α) ∧ t∗̃

2 α′ α

∨ β′ = inl(t∗̇
1) ∧ β = out

∨ β′ = inr(t∗̇
2) ∧ β = out)

Powerset

(P(t))∗̄ ≡ sum(t∗̄, t∗̄→∗), (P(t))∗̇ ≡ out

(P(t))∗̃ ≡ λβ′, β : sum(t∗̄, t∗̄→∗) .

∃α′, α : t∗̄ . β′ = inl(α′) ∧ β = inl(α) ∧ t∗̃
1 α′ α

∨ ∃α : t∗̄ .∃p : (t∗̄→∗) . β′ = inl(α) ∧ β = inr(p) ∧ t∗̃ α t∗̇ ∧ p α
∨ ∃p : (t∗̄→∗) . β′ = inr(p) ∧ β = out

Union

( t)∗̄ ≡ opt(t∗̄), ( t)∗̇ ≡ none

( t)∗̃ ≡ λβ′, β : opt(t∗̄) .

∃α′, α : t∗̄ . β′ = some(α′) ∧ β = some(α) ∧ t∗̃ α′ α

∨ ∃α′, α : t∗̄ . β′ = some(α′) ∧ β = none ∧ t∗̃ α′ α ∧ t∗̃ α t∗̇

Comprehension

({x ∈ t | φ})∗̄ ≡ opt(t∗̄), ({x ∈ t | φ})∗̇ ≡ none

({x ∈ t | φ})∗̃ ≡ λβ′, β : opt(t∗̄) .

∃α′, α : t∗̄ . β′ = some(α′) ∧ β = some(α) ∧ t∗̃ α′ α
∨ ∃α : t∗̄ . β′ = some(α) ∧ β = none ∧

t∗̃ α t∗̇ ∧ φ∗{x̄ := t∗̄; x̃ := t∗̃; ẋ := α}
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B.4 Soundness of Anti-foundation

The soundness of AFA in λZ is an exercise of decoding a pointed graph structure
from the type-theoretic representation of a set-theoretic pointed graph.

Let us assume that (X, R, r) is a type-theoretic pointed graph that represents
a set-theoretic pointed graph, that is, three terms

X : �2, R : X→X→∗ and r : X

of λZ such that the proposition PGraph∗(X, R, r) is provable in λZ, where
PGraph is the set-theoretic predicate defined by

PGraph(x) ≡ ∃x1 ∃x2 ∃x3 [G = 〈x1, x2, x3〉 ∧ x2 ⊂ (x1 × x1) ∧ x3 ∈ x1]

From the assumption PGraph∗(X, R, r), we can easily extract three pointed
graphs (X1, R1, r1), (X2, R2, r2) and (X3, R3, r3) representing the three com-
ponents x1, x2 and x3 of the set-theoretic triple represented by (X, R, r). In
particular, we know that x3 ∈ x1 so that there is a vertex α0 : X1 such that the
pointed graphs (X3, R3, r3) and (X1, R1, α0) are bisimilar.

We now have to build in λZ a pointed graph (Y, S, s) that represents the set
pictured by the set-theoretic pointed graph whose carrier, edge relation and root
are represented by the pointed graphs (X1, R1, r1), (X2, R2, r2) and (X3, R3, r3).
This pointed graph (Y, S, s) is constructed from the pointed graph (X1, R1, r1)
by changing the edge relation and root as follows:

Y ≡ X1 s ≡ α
S ≡ λα′, α : X1 . R1 α′ r1 ∧ R1 α r1 ∧

Rel∗((X1, R1, α
′), (X1, R1, α), (X2, R2, r2))

where Rel(x, y, z) is the set-theoretic formlula 〈x, y〉 ∈ z. We then check that
Pict∗((X, R, r), (Y, S, s)) holds in λZ, and that any pointed graph (Y ′, S′, s′)
such that Pict∗((X, R, r), (Y ′, S′, s′)) is bisimilar to (Y, S, s). (The proof is the
type-theoretic transposition of the validity proof of AFA presented in [1].)

B.5 Soundness of Transitive Closure

The transitive closure of a pointed graph (X, R, r) is represented in λZ as the
pointed graph (Y, S, s) whose components are given by:

Y ≡ opt(X) s ≡ none
S ≡ λβ′, β : Y .

∃α′, α : X .
(
β′ = some(α′) ∧ β = some(α) ∧ R α′ α

)
∨ ∃α : X .

(
β′ = some(α) ∧ β = none ∧ R+ α r

where R+ denotes the transitive closure of R (expressed in λZ), namely, the
binary relation on X defined by

R+ ≡ λα1, α2 : X . ∀r : (X→X→∗) .
[∀α′, α : X . (R α′ α ⇒ r α′ α) ∧
∀α′′, α′, α : X . (r α′′ α′ ⇒ r α′ α ⇒ r α′′ α)
⇒ r α1 α2] .



Exploring the Regular Tree Types

Peter Morris, Thorsten Altenkirch, and Conor McBride

School of Computer Science and Information Technology,
University of Nottingham

Abstract. In this paper we use the Epigram language to define the
universe of regular tree types—closed under empty, unit, sum, product
and least fixpoint. We then present a generic decision procedure for Epi-
gram’s in-built equality at each type, taking a complementary approach
to that of Benke, Dybjer and Jansson [7]. We also give a generic defin-
ition of map, taking our inspiration from Jansson and Jeuring [21]. Fi-
nally, we equip the regular universe with the partial derivative which can
be interpreted functionally as Huet’s notion of ‘zipper’, as suggested by
McBride in [27] and implemented (without the fixpoint case) in Generic
Haskell by Hinze, Jeuring and Löh [18]. We aim to show through these
examples that generic programming can be ordinary programming in a
dependently typed language.

1 Introduction

This paper is about generic programming [6] in the dependently typed func-
tional language Epigram [29, 30]. Generic programming allows programmers to
explain how a single algorithm can be instantiated for a variety of datatypes,
by computation over each datatype’s structure. In particular, we construct the
universe of regular tree types—the datatypes closed under empty, unit, sum,
product and least fixpoint. We define a de Bruijn indexed syntax [14] for these
types, but we do not interpret this syntax via a recursive function: rather we give
the elements for a given type as an inductive family [16]. It is Epigram’s support
for dependent pattern matching [13] which makes this approach practicable.

The universe of regular tree types is small compared to others we might
imagine [4, 7], but it is rich in structure. We exploit some of that structure in our
programs: Epigram’s standard equality is decidable for every regular tree type;
every regular tree type constructor has a notion of functorial ‘map’; we also give
the formal derivative of each type expression, including fixpoints, and acquire the
related notion of one-hole context or ‘zipper’ [20]. In the last example McBride’s
observation [27], given its explanation in [3], has finally become a program.

1.1 What Is a Universe?

The notion of a universe in Type Theory was introduced by Per Martin-Löf [26,
34] as a means to abstract over specific collections of types. A universe is given
by a type U : � of codes representing just the types in the collection, and a
function T : U → � which interprets each code as a type. A standard example
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c© Springer-Verlag Berlin Heidelberg 2006



Exploring the Regular Tree Types 253

is a universe of finite types—each type may be coded by a natural number
representing its size. We can declare the natural numbers in Epigram as follows

data Nat : �
where zero : Nat

n : Nat
suc n : Nat

One way to interpret each Nat as a finite type is to write a recursive function
which calculates a type of the right size, given an empty type Zero, a unit type
One and disjoint unions S + T

let n : Nat
fin n : �

fin n ⇐ rec n
fin zero ⇒ Zero
fin (suc n)⇒ One + fin n

Another way is to define directly an inductive family [16] of finite types:

data n : Nat
Fin n : �

where fz : Fin (suc n)
i : Fin n

fs i : Fin (suc n)

Fin n gives a coding of the set {0, . . . ,n − 1}. Fin zero is uninhabited because no
constructor targets it; Fin (suc n) has one more element than Fin n. Below we
tabulate the first few types in this family: we show the ‘n’ arguments to fz and
fs—usually left implicit—as subscripts, and write in decimal to save space.

Fin 0 Fin 1 Fin 2 Fin 3 Fin 4 · · ·
fz0 fz1 fz2 fz3 · · ·

fs1 fz0 fs2 fz1 fs3 fz2
. . .

fs2 (fs1 fz0) fs3 (fs2 fz1)
. . .

fs3 (fs2 (fs1 fz0))
. . .
. . .

In either presentation, Nat acts as a syntax for the finite types which we then
equip with a semantics via fin or Fin. Let us emphasize that Nat is an ordinary
datatype, and hence operations such as plus can be used to equip the finite
universe with structure: Fin (plus m n) is isomorphic to Fin m + Fin n. Universe
constructions express generic programming for collections of datatypes [6, 18, 21]
in terms of ordinary programming with their codes.

The notion of universe brings an extra degree of freedom and of precision to
the business of generic programming. By their nature compiler extensions such
as Generic Haskell [10] support the extension of generic operations to the whole
of Haskell’s type system, but we are free to construct a continuum, from large
universes which support basic functionality to small, highly structured universes
which support highly advanced functionality. Benke, Dybjer and Jansson provide
a good introduction to this continuum in [7]. In fact every family of types,
whether inductive like Fin or computational like fin, yields a universe.
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1.2 From Finite Types to Regular Tree Types

The finite types are closed under ‘arithmetic’ type constructors such as empty,
unit, sum and product. If we also add list formation, we leave the finite universe
and acquire the regular expression types. We can code these (with respect to an
alphabet of size n) by the following syntax

data n : Nat
Rex n : �

where fail, nil, dot : Rex n
i : Fin n

only i : Rex n

S ,T : Rex n
S or T , S then T : Rex n

R : Rex n
R star : Rex n

So for instance we translate the regular expression

(A + BC)� ⊆ {A, B, C}∗

into the code

((only fz) or ((only (fs fz)) then (only (fs (fs fz))))) star : Rex 3

From each regular expression in the syntax, we may then compute a type which
represents the words which match it.

let R : Rex n
Wordsn R : �

Wordsn R ⇐ rec R
Wordsn fail ⇒ Zero
Wordsn nil ⇒ One
Wordsn dot ⇒ Fin n
Wordsn (only i) ⇒ Single i
Wordsn (S or T ) ⇒ Wordsn S + Wordsn T
Wordsn (S then T ) ⇒ Wordsn S ×Wordsn T
Wordsn (R star) ⇒ List (Wordsn R)

Some example Words of the expression above would be represented thus:

BCA 	→ [inr (single (fs fz); single (fs (fs fz)), inl(single fz)]
A 	→ [inl (single fz)]
ε 	→ []

This universe, like the finite types, has much algebraic structure to expose,
and there is plenty of ad hoc work devoted to it, motivated by applications to
document structure [19].

Moving just a little further, we can generalise from lists to trees by replacing
star with a binding operator μ which indicates the least fixpoint of an algebraic
type expression. Closing under μ gives us the universe of regular tree types. In
effect, we acquire the first-order fragment of the datatypes found in Standard
ML [32]. These include the string-like structures such as the natural numbers,
μN. 1 + N and the lists of A’s, μL. 1 + A × L, but also branching structures
such as binary trees μT. 1 + T × T . Nesting μ yields structures like the finitely
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branching trees, whose nodes carry lists of subtrees, μF.μL. 1+F ×L. It is this
class of types together with the structures and algorithms they support, which
we shall study in this paper.

Of course, there are plenty more universes to visit. Altenkirch and McBride
construct the nested datatypes, allowing non-uniform type constructors to be de-
fined by recursion [4]. Benke, Dybjer and Jansson construct the indexed induc-
tive definitions [7, 17], their motivation being that these structures are effectively
those of the Agda system [12] with which they work.

1.3 Programming in Epigram

Epigram [29, 30] is a functional programming language with an interactive editor,
incrementally typechecking source code containing sheds, [ · · · ] , whose contents
are free text which remains unchecked. It supports programming with inductive
families in a pattern matching style, as proposed by Thierry Coquand [13] and
first implemented in the Alf system [25].

However, Epigram programs elaborate into a version of Luo’s UTT [23]. This
is a more spartan and more clearly defined theory than that of Alf, equipping
inductive families only with the induction principles which directly reflect their
constructors. In this respect, Epigram more closely resembles its direct ances-
tor, Lego [24], and also to some extent the Coq system [11]. The design cri-
teria for a good high-level programming language and a good low-level core
often pull in opposite directions, hence we separate them. At present, neither
Agda nor Coq directly supports pattern matching with inductive familes—hand-
coding our constructions in these systems would be possible but unnecessarily
painful.

Epigram’s data structures are introduced by declaring their applied formation
rules and constructors in a natural deduction style. Argument declarations may
be omitted where inferrable by unification from their usage—for example, in
our declarations of Fin’s constructors, fz and fs, there is no need to declare
n : Nat. The resemblance between constructor declarations and typing rules
is no accident. We intend to encourage the view of an inductive family as a
universe capturing a small type system—and that is exactly how we work in this
paper.

Epigram functions are given a type signature, also in the natural deduction
style, then developed in a decision tree structure, shown here by indentation
and representing a hierarchical analysis of the task it performs. Each node in
a decision tree has a left-hand side which shows the information available, in
the form of the patterns into which the arguments have been analysed, and a
right-hand side which explains how to proceed in that case. The latter may take
one of three forms:

⇒ t the function returns t , an expression of the appropriate type, con-
structed over the pattern variables on the left;

⇐ e the function’s analysis is refined by e, an eliminator expression, charac-
terising some scheme of case analysis or recursion, giving rise to a bunch of
subnodes with more informative left-hand sides;
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| w the subnodes’ left-hand sides are then extended with the value of w , some
intermediate computation, in an extra column: this may then be analysed
in addition to the function’s original arguments.

In effect, Epigram gives a programming notation to some constructions which
are more familiar as tactics in proof systems: ⇒ corresponds to Coq’s exact and
| resembles generalize; ⇐ is McBride’s elimination tactic [28]. McBride and
McKinna give a thorough treatment of Epigram elaboration in [30], and begin
to explore the flexibility of the ⇐ construct. In this paper, however, we shall
need only the standard constructor-guarded recursion operators rec x , which we
make explicit, and the standard constructor case analysis operators casex , which
we leave implicit whenever their presence is directly inferable from the resulting
constructor patterns. In general, we are only explicit about case analysis when
its results are empty:

let x : Fin zero
impossible x : Zero impossible x ⇐ case x

Case analyses in Epigram, as in Alf, are constrained by the requirement in each
branch that the indices of the scrutinee—zero for x : Fin zero above—coincide
with those of the constructor pattern in question—above, (suc n) in both cases.
When they concern constructor symbols, these constraints are automatically
simplified by first-order unification: impossible cases are dismissed, as above,
and the possible cases are simplified. The ⇐ construct thus generalises Alf’s
dependent constructor matching ‘in software’.

Before we start work in earnest, we must own up to the notational liberties
we have taken in this paper which the current implementation of Epigram does
not support. At present, neither the | w notation, nor the suppression of obvi-
ous ⇐ case . . . nodes has been implemented: both omissions have simple but
verbose workarounds—expanding the programs here would shed more heat than
light. More trivially, we work in ASCII rather than LATEX and have only prefix
operators thus far—the notation we use here is cosmetically more advanced.

2 The Universe of Regular Tree Types

We define the codes for the regular tree types as follows:

data n : Nat
Reg n : �

where ‘Z’ : Reg (suc n)
T : Reg n

‘wk’ T : Reg (suc n)
S : Reg n T : Reg (suc n)

‘let’ S T : Reg n

‘0’, ‘1’ : Reg n
S ,T : Reg n

S ‘+’ T ,S ‘×’ T : Reg n
F : Reg (suc n)
‘μ’ F : Reg n

This is syntax-with-binding in de Bruijn style—the numeric index gives the
number of free type variables available in the expression. The ‘Z’ refers to the
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most local variable (de Bruijn index zero), where there is one; the weakening
constructor ‘wk’ , read backwards, discards the top variable, allowing access to
the others. We can thus define an embedding from Fin n to the representation
of variables in Reg n

let X : Fin n
‘var’ X : Reg n ‘var’ X ⇐ rec X

‘var’ fz ⇒ ‘Z’
‘var’ (fs X ) ⇒ ‘wk’ (‘var’ X )

Both ‘μ’ (least fixpoint) and ‘let’ (local definition) bind a variable. The latter
clearly introduces redundancy, as does the applicability of ‘wk’ to expressions
other than variables. We could have chosen a redundancy free representation,
making ‘var’ a constructor and dropping ‘Z’, ‘wk’ and ‘let’. Such a syntax could
be equipped with a renaming functor and a substitution monad as in [5] and we
should need this equipment and proofs of its properties to do our work. Definition
and weakening replace just enough of the behavior of substitution for us to avoid
this extra effort.

A similar choice presents itself when we come to interpret this syntax. It
seems natural to interpret only the closed type expressions—the elements of
Reg zero—substituting whenever we go under a ‘μ’ or ‘let’ binder. Some simple
operations, such as our generic equality, become even simpler if we take this
choice, but other operations, such as ‘map’, require us to work with properties
of substitution. We choose to sidestep substitution in the usual way, interpreting
open expressions over an environment. We construct our environments carefully
to support the way we shall use them: they are telescopic [15] in the sense that
each new variable is bound to an expression over the previous variables.

data n : Nat
Tel n : �

where
ε : Tel zero

ts : Tel n t : Reg n
ts::t : Tel (suc n)

We can now interpret every type expression without having to rename de Bruijn
indicies at run time to account for the new context or substituting out to a closed
expression. Notice that the inductive structure of �−�− is not the inductive
structure of Reg—the size of an element is not bounded by the size of its type.

data Γ : Tel n T : Reg n
�T �Γ : �

where t : �T �Γ

top t : �‘Z’�Γ ::T
t : �T �Γ

pop t : �‘wk’ T �Γ ::S
t : �T �Γ ::S

def t : �‘let’ S T �Γ

s : �S �Γ

inl s : �S ‘+’ T �Γ
t : �T �Γ

inr t : �S ‘+’ T �Γ

void : �‘1’�Γ
s : �S �Γ t : �T �Γ

pair s t : �S ‘×’ T �Γ
x : �F �(Γ :: ‘μ’F)

in x : �‘μ’F �Γ

The telescopic environments behave as we promised. The rule for ‘Z’ interprets
the top type T over the remaining Γ—but how did it get there? Either from
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a ‘let’ or a ‘μ’ extending Γ with a type which is defined over it! The rule for
‘wk’ just pops the environment. Most interesting is the definition of in, which
uses the environment to expand the fixpoint—let us show how this behaves by
coding the natural numbers:

let ‘Nat’ : Reg n ‘Nat’ ⇒ ‘μ’ (‘1’ ‘+’ ‘Z’)

let
ze : �‘Nat’�Γ

ze ⇒ in (inl void)

let n : �‘Nat’�Γ

su n : �‘Nat’�Γ

su n ⇒ in (inr (top n))

The in constructor places a recursive copy of ‘Nat’ on top of the telescope, which
su invokes via top. We can program with ‘Nat’ quite easily:

let m,n : �‘Nat’�Γ

plus m n : �‘Nat’�Γ
plus m n ⇐ rec m
plus (in (inl void)) n ⇒ n
plus (in (inr (top m))) n ⇒ su (plus m n)

Note that the patterns on the left correspond to ze and su. These cases are
exhaustive—all the other constructors target types which conflict with the defin-
ition of ‘Nat’, so Epigram dismisses them automatically. The recursive structure
of the whole �−�− family, thus specializes to that of �‘Nat’�Γ .

Our recognizably inductive presentation contrasts with Benke, Dybjer and
Jansson’s recursive definitions of the functor given by each code in a universe,
whose least fixpoint is in turn the coded type. Whilst in all of their examples,
it is clear to us that the computed functors are strictly positive and give rise to
inductive types, they make no apparent attempt to explain this to Agda.

The space efficiency of �−�− is a serious concern: on the face of it, each data
constructor takes an environment and perhaps some type expressions as argu-
ments. Even if sharing is preserved, this is particularly wasteful. Fortunately, as
Brady has shown [8, 9], there is no need to duplicate in the data any information
extractable from the type indices, so all of the Γ ’s, S ’s and T ’s vanish, even
from the open representation we need for partial evaluation in the typechecker.

Further, Brady’s work suggests that we can also remove constructor tags
where these are determined by indices. In our case, this means that only elements
of sums need to be tagged inl or inr, as each of the other type formers has at
most one data former. Hence there is no need for an extra layer of indirection
inside each top, pop, def or in. There is no reason why our explicit definition and
weakening has to lead to a space penalty.

3 Deciding Equality

Every regular tree type can be given a decidable equality in a systematic way.
In this section, we express that system as a program. Equality as a Boolean test
has been a standard example of generic programming from PolyP onwards [21].
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Benke, Dybjer and Jansson replay this construction in Agda [7] and, moreover,
they prove generically that what is being tested really behaves like equality, in
that it is reflexive and substitutive. We take a slightly different approach, given
that Epigram has a built in equality type [28] which is reflexive by construction,
and substitutive by case analysis:

a : A b : B
a=b : � refl : a=a

Rather than proving a Boolean test correct, we can exploit directly the type of
decisions, which packs up either a proof or a refutation for a given proposition:

data P : �
Decision P : �

where y : P
yes y : Decision P

n : P → Zero
no n : Decision P

To decide the equality of x and y , and know that we have done so, we must
show how to compute an inhabitant of Decision (x=y). We can get most of the
way by analysing each element and inspecting the results of the recursive calls
on corresponding subterms—see 1.

Again, dependent pattern matching ensures that we need only consider ele-
ments which have the same type. Fundamentally, all inequalities boil down to
the fact that inl and inr are different: inl s = inr t is an empty type, so case analy-
sis leaves no branches. We have left [ ] s for most of the cases where we must
show that recursive inequality of subterms breaks equality for the whole terms.
Each of these proofs require an auxiliary definition all of which follow the same
pattern. The proof for in is given below.

let x , y : �F �Γ ::(‘μ’ F) n : (x=y) → Zero q : (in x=in y)
notEqInx y n q : Zero

notEqInx x n refl ⇒ n refl

4 Type Constructors and Generic Map

We can represent type constructors in our universe by type expressions with
parameters, much as one does when one defined a polymorphic data structure
in a functional programming language. For example, we can have

let ‘List’ : Reg (suc n) ‘List’ ⇒ ‘μ’ (‘1’ ‘+’ (‘wk’ ‘Z’ ‘×’ ‘Z’))

We can then create specific instances of polymorphic structures by capturing
the free parameter with ‘let’—the type of lists of natural numbers would then
be coded by ‘let’ ‘Nat’ ‘List’. We can also develop polymorphic operations by
working with open type expressions over a nonempty environment:
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let x , y : �T �Γ

decEq x y : Decision (x=y)
decEq x y ⇐ rec x
decEq (def x ) (def y) decEq x y
decEq (def x ) (def x) yes refl ⇒ yes refl
decEq (def x ) (def y) no n ⇒ no [ ]

decEq (top x) (top y) decEq x y
decEq (top x) (top x ) yes refl ⇒ yes refl
decEq (top x) (top y) no n ⇒ no [ ]

decEq (pop x) (pop y) decEq x y
decEq (pop x) (pop x ) yes refl ⇒ yes refl
decEq (pop x) (pop y) no n ⇒ no [ ]

decEq void void ⇒ yes refl
decEq (inl sx) (inl sy) decEq sx sy
decEq (inl s) (inl s) yes refl ⇒ yes refl
decEq (inl sx) (inl sy) no sn ⇒ no [ ]

decEq (inl sx) (inr ty) ⇒ no (λq ⇐ case q)
decEq (inr tx ) (inl sy) ⇒ no (λq ⇐ case q)
decEq (inr tx ) (inr ty) decEq tx ty
decEq (inr t) (inr t) yes refl ⇒ yes refl
decEq (inr tx ) (inr ty) no tn ⇒ no [ ]

decEq (pair sx tx ) (pair sy ty) decEq sx sy
decEq (pair s tx ) (pair s ty) yes refl decEq tx ty
decEq (pair s t) (pair s t) yes refl yes refl ⇒ yes refl
decEq (pair s tx ) (pair s ty) yes refl no tn ⇒ no [ ]

decEq (pair sx tx ) (pair sy ty) no sn ⇒ no [ ]
decEq (in x ) (in y) decEq x y
decEq (in x ) (in x ) yes refl ⇒ yes refl
decEq (in x ) (in y) no n ⇒ no (notEqIn n)

Fig. 1. Decidable Equality

let
nil : �‘List’�Γ

nil ⇒ in (inl void)

let a : �‘Z’�Γ as : �‘List’�Γ

cons a as : �‘List’�Γ
cons a as ⇒ in (inr (pair (pop a) (top as)))

let as , bs : �‘List’�Γ

append as bs : �‘List’�Γ

append as bs ⇐ rec as
append (in (inl void)) bs ⇒ bs
append (in (inr (pair (pop a) (top as)))) bs ⇒ cons a (append as bs)

Of course, to apply these polymorphic operations in specific cases, one must strip
and apply the def constructor.

Let us now develop a generic polymorphic operation—functorial mapping.
Suppose we have two environments Γ and Δ interpreting the free type variables
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in an expression T (‘List’, for example). If we can translate between the values
in the corresponding types in Γ and Δ, then we can map between �T �Γ and
�T �Δ, preserving the structure due to T , but translating the data corresponding
to the free type variables. Here, the fact that we represent the syntax of type
expressions makes this task easy.

Let us define morphisms between environments and then show how to map
them across polymorphic type expressions. We are careful to ensure that we can
readily extend a morphism uniformly when we go under a binder.

data Γ ,Δ : Tel n
Morph Γ Δ : �

where mId : Morph Γ Γ

φ : Morph Γ Δ f : �S �Γ → �T �Δ

mFun φ f : Morph (Γ ::S) (Δ::T )

φ : Morph Γ Δ
mMap φ : Morph (Γ ::T ) (Δ::T )

We can now write our generic gMap operator by structural recursion on data.
Each time we go under a binder, we extend the morphism with mMap, explaining
that the type variable at that point is local. When we reach a variable, we look
up the appropriate translation, using gMap to interpret mMap. In the case of
the identity morphism, the environments are known to coincide, so no further
traversal is necessary.

let φ : Morph Γ Δ x : �T �Γ

gMap φ x : �T �Δ

gMap φ x ⇐ rec x
gMap φ (def x) ⇒ def (gMap (mmap φ) x)
gMap mId (top x ) ⇒ top x
gMap (mFun φ f ) (top x ) ⇒ top (f x )
gMap (mMap φ) (top x ) ⇒ top (gMap φ x)
gMap mId (pop x ) ⇒ pop x
gMap (mFun φ f ) (pop x ) ⇒ pop (gMap φ x)
gMap (mMap φ) (pop x ) ⇒ pop (gMap φ x)
gMap φ (inl x) ⇒ inl (gMap φ x)
gMap φ (inr x ) ⇒ inr (gMap φ x)
gMap φ void ⇒ void
gMap φ (pair x y) ⇒ pair (gMap φ x ) (gMap φ y)
gMap φ (in x) ⇒ in (gMap (mMap φ) x )

Instantiating gMap for our ‘List’ example is straightforward

let f : �S �Γ → �T �Γ as : �‘let’ S ‘List’�Γ

list f as : �‘let’ T ‘List’�Γ

list f (def as) ⇒ def (gMap (mFun mId f ) as)
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Is this functorial mapping? An easy induction on x shows that

gMap mId x = x

but what about composition? Composition may be defined as follows

let φ : Morph Δ Θ : � ψ : Morph Γ Δ : �
φ ◦ψ : Morph Γ Θ

φ ◦ψ ⇐ rec φ
mId ◦ ψ ⇒ ψ
mFun φ f ◦ mId ⇒ mFun φ f
mFun φ f ◦ mFun ψ g ⇒ mFun (φ ◦ψ) (f · g)
mFun φ f ◦ mMap ψ ⇒ mFun (φ ◦ψ) (f · gMap ψ)
mMap φ ◦ mId ⇒ mMap φ
mMap φ ◦ mFun ψ g ⇒ mFun (φ ◦ψ) (gMap φ · g)
mMap φ ◦ mMap ψ ⇒ mMap (φ ◦ψ)

Another easy induction on x then shows that

gMap (φ ◦ψ) x = (gMap φ · gMap ψ) x

5 The Derivative and the Zipper

Formal differentiation of algebraic expressions was one of the first functional
programs ever to be written in pattern matching style and executed on a com-
puter [31]. Thirty-five years later we can run it again, but with a new meaning.
As McBride observed [27], differentiating a regular tree type T with respect to
a free variable X computes the type of one-hole contexts for a value from X in
a value from T . The explanation of the derivative as coding for the linear part
of a polymorphic function space between containers can be found in [3]. Here we
show how this works out as code:

let X : Fin n T : Reg n
∂ X T : Reg n

∂ X T ⇐ rec T
∂ fz ‘Z’ ⇒ ‘1’
∂ (fs X ) ‘Z’ ⇒ ‘0’
∂ fz (‘wk’ T ) ⇒ ‘0’
∂ (fs X ) (‘wk’ T ) ⇒ ‘wk’ (∂ X T )
∂ X (‘let’ S T ) ⇒ ‘let’ S (∂ (fs X ) T )

‘+’ ‘let’ S (∂ fz T ) ‘×’ ∂ X S
∂ X ‘0’ ⇒ ‘0’
∂ X ‘1’ ⇒ ‘0’
∂ X (S ‘+’ T ) ⇒ ∂ X S ‘+’ ∂ X T
∂ X (S ‘×’ T ) ⇒ ∂ X S ‘×’ T ‘+’ S ‘×’ ∂ X T
∂ X (‘μ’ F ) ⇒ ‘μ’ (‘1’ ‘+’ ‘Z’ ‘×’ ‘wk’ (‘let’ (‘μ’ F ) (∂ fz F )))

‘×’ ‘let’ (‘μ’ F ) (∂ (fs X ) F )



Exploring the Regular Tree Types 263

Rules we learned from Leibniz take on a direct visual intuition: ‘an S ‘+’ T
with a hole’ is either ‘an S with a hole’ or ‘a T with a hole’; ‘an S ‘×’ T with
a hole’ is either ‘an S with a hole and a T ’ or ‘an S and a T with a hole’. The
chain rule for ‘let’ must account for each fs X directly in T as well as each X
sitting inside an S via a fz in T—this notion of derivative is thus partial on
the free variables and total on the bound variables. McBride added a new rule,
inspired by Huet [20]—a one hole context inside an inductively defined container
consists of a ‘zipper’ which wraps up the node where the hole is. Let us define a
‘zipper’:

let F : Reg (suc n)
‘Zipper’ F : Reg n

‘Zipper’ F ⇒ ‘μ’ (‘1’ ‘+’ ‘Z’ ‘×’ ‘wk’ (‘let’ (‘μ’ F ) (∂ fz F )))

A ‘Zipper’ F is thus a stack of steps, each giving the context for a ‘Z’ inside an
F , and hence a recursive subtree inside a ‘μ’F . With this definition, we effectively
have that ∂ X (‘μ’ F ) is a node with a hole and a ‘Zipper’ F .

Notice that it is our access to the full syntax of type expressions which en-
ables us to differentiate types with multiple parameters, and hence local de-
finitions and fixpoints. By contrast, programmers in Generic Haskell have no
access to these syntactic details. Often this is a convenience, but here it re-
stricts the treatment given by Hinze, Jeuring and Löh [18] to polynomials in one
variable.

Let us now show how to plug a ‘var’ X into a ∂ X T , and a ‘μ’ F into a
‘Zipper’ F . It is not hard to see that these two tasks are mutually recursive.
We shall therefore need to dodge the problem that Epigram does not currently
support mutually recursive functions. We do this in the obvious way, by turning
the mutual definition into the definition of a family. First, we define the family
of ‘pluggers’ for a type of contexts C with a hole type H , yielding output in O ,

data C ,H ,O : Reg n
Plugger C H O : �

where X : Fin n T : Reg n
X � T : Plugger (∂ X T ) (‘var’ X ) T

F : Reg (suc n)
� F : Plugger (‘Zipper’ F ) (‘μ’ F ) (‘μ’ F )

and then we explain how to interpret pluggers as operators, by recursion over
the context—as long as we consume the context, we are free to ‘change mode’
when we need to. We start like this, by recursion on the task, then case analysis
on the plugger:

let p : Plugger C H O c : �C �Γ h : �H �Γ

c 〈p] h : �O�Γ
c 〈p] h ⇐ rec c
c 〈X � T ] h [ ]
c 〈� F ] h [ ]

Now we can develop the two branches as if we were writing a mutual definition.
We implement 〈X � T ] as follows:



264 P. Morris, T. Altenkirch, and C. McBride

void 〈fz � ‘Z’] h ⇒ h
c 〈fs X � ‘Z’] h ⇐ case c
c 〈fz � ‘wk’ T ] h ⇐ case c
pop c 〈fs X � ‘wk’ T ] pop h ⇒ pop (c 〈X � T ] h)
inl (def tc) 〈X � ‘let’ S T ] h ⇒ def (tc 〈fs X � T ] pop h)
inr (pair (def tc) sc) 〈X � ‘let’ S T ] h ⇒ def (tc 〈fz � T ]

top (sc 〈X � S ] h))
c 〈X � ‘0’] h ⇐ case c
c 〈X � ‘1’] h ⇐ case c
inl sc 〈X � S ‘+’ T ] h ⇒ inl (sc 〈X � S ] h)
inr tc 〈X � S ‘+’ T ] h ⇒ inr (tc 〈X � T ] h)
inl (pair sc t) 〈X � S ‘×’ T ] h ⇒ pair (sc 〈X � S ] h) t
inr (pair s tc) 〈X � S ‘×’ T ] h ⇒ pair s (tc 〈X � T ] h)
pair ff (def fc) 〈X � ‘μ’ F ] h ⇒ ff 〈� F ]

in (fc 〈fs X � F ] pop h)

Meanwhile, ‘zipping out’ iterates ‘plugging in’ tail recursively:

in (inl void) 〈� F ] h ⇒ h
in (inr (pair (top ff ) (pop (def fc)))) 〈� F ] h ⇒ ff 〈� F ]

in (fc 〈‘Z’ � F ] top h)

This may look like a complicated definition, but we had some help to write it.
The Epigram system calculates all the context types, not us: we just apply case
analysis repeatedly on the contexts until the subcontexts appear. The only real
choice we must make is whether 〈� F ] should read its context as ‘hole-to-root’ or
‘root-to-hole’. Here, following Huet, we choose the former, shrinking the context
and growing the subtree as we follow the path.

6 Conclusions and Further Work

In this paper, we have constructed the universe of regular tree types, closed un-
der polynomials and least fixpoints; we equipped its syntax with an inductively
defined semantics. By dependent pattern matching and structural recursion on
data, we implemented a generic decision procedure for equalities on regular types
and functorial mapping. We equipped the regular tree types with their differ-
ential structure, generalising ‘the zipper’. We have given a tractable coding to
these generic tasks without the assistance of any peculiar extensions to Epigram.
Ordinary programming suffices to get us this far, and while it is inevitably harder
work than using tools dedicated to a specific universe, it is undeniably less work
than making those tools. A dependently typed language allows a flexible ap-
proach to programming with universes of many characters, large and small.

Perhaps we should remark on the technology which makes this approach
practicable—dependent pattern matching with inductive families of datatypes.
We have quietly exploited multiple layers of dependency, with equality types in-
dexed by data from interpretations indexed by telescopes and type expressions
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indexed by numbers, for example, and we have not had to lift a finger to push the
pattern matching through. This kind of deep dependency takes us well beyond
the familiar world of inductive relations indexed by simply typed data, but it is
nothing to be frightened of, given suitable tools.

There is a great deal of work yet to do. Whilst we have programmed generically
in a small and ad hoc universe, we have not developed generic programming for
Epigram. We should pursue the agenda set by Pfeifer and Rueß [33] to acquire
generic programs and proofs for the types we use, not just those we model.

This is even more vital for dependently typed programming than it is for
‘ordinary’ functional programming because we tend to tailor data structures
more closely to the specific properties we need for a given task. We might have
sized lists, sorted lists, telescopes or transitive closures where once we just had
lists—the extra detail may be just what we need for a particular problem, but it
should not come at the expense of rebuilding the list library for each variation.
Generic programming can potentially help us in two ways. We can seek to develop
operations which work generically for all list-like types, or all concrete syntaxes,
or whatever classes of structure we can characterise. We can also seek to roll out
structure such as sizing or sortedness across a broad universe of datatypes.

Correspondingly, we need a representation of data structures which directly
and compositionally describes inductive families in Epigram, in much the way
that indexed induction-recursion [17] gives an account of data structures in Agda.
A promising approach is based on the uniform representation of strictly positive
structures as containers [1, 2]. These extend readily to dependent structures, and
are closed under a fixed grammar of combinators including least and greatest
fixpoints. We need the system to automate the quotation of data structures in
this grammar and the maps in and out of their container form—much the way
Generic Haskell [10] relates each Haskell datatype with the ‘structure types’
over which generic programs actually compute. Subsets of this general grammar
then give us codes for smaller universes with more specific structure. If we can
standardise our reflection of data structures in this way, then we really shall have
reduced generic programming to ordinary programming.
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Conf. on Theorem Proving in Higher Order Logics, number 1690 in Lecture Notes
in Computer Science, pages 55–72. Springer-Verlag, September 1999.

34. Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Löf’s
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Abstract. Baaz and Fermueller gave in 2003 an original characteriza-
tion of constructive existence in classical logic [2]. In this note, we give a
simple proof of this result based on cut-elimination in sequent calculus.
The interest of this proof besides its simplicity is that it allows in par-
ticular to generalize the result to other logics enjoying cut-elimination.
We also briefly discuss the significance of the characterization itself.

1 Introduction

In classical logic, proving an existential statement doesn’t ensure having a wit-
ness of this existence. The problem of constructive existence is precisely to ensure
in one way or another that one can get a witness.

The problem of constructive existence can be stated at the level of the logical
framework. Intuitionistic logic is then a possible answer. The intuitionistic logical
framework ensures that if we have proved ∃xA(x), then we have a witness t and a
proof of A(t). But this approach reaches its limit when one works inside theories:
one can have T �i ∃xA(x) without having a term t such that T �i A(t).

The problem can also be stated within any given framework, classical logic in
particular. The problem is then: is there a general method to prove inside the
given logical framework that there exists a term t such that T � A[t], without
exhibiting such a term t?

M. Baaz and C. Fermueller gave an answer to that problem in [2]. Their
characterization of constructive existence uses a syntactic translation of formulas
which can be seen as a degenerated notion of realizability.

Consider a first order language L without equality and function symbols (this
later restriction is only there for simplification and can be removed without any
problem). Capital letters A, B, C, D will always stands for formulas of language
L and T for a theory in this language. Symbols �c and �i denotes respectively
provability in classical and intuitionistic logic.

To each n-ary predicate symbol P of L, we associate a n + 1-ary predicate
symbol P ∗ and we define the language L∗ as {P ∗|P ∈ L}.

The realizability translation is a translation of the formulas of L into formulas
of L∗ defined as follows.

Definition 1. For each formula A of the language L, a formula x 	 A of the
language L∗ is defined as follows:

J.-C. Filliâtre et al. (Eds.): TYPES 2004, LNCS 3839, pp. 268–273, 2006.
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x 	 P (t1, ..., tn) ≡ P ∗(t1, ..., tn, x) for P an n-ary predicate symbol;
x 	 C c D ≡ (x 	 C) c (x 	 D) for C, D formulas and c a connective;
x 	 Qy B ≡ Qy (x 	 B) for B a formula and Q a quantifier.

The notion of realizability is degenerated in the sense that the formula x 	 A
is essentially A: it is simply obtained from A by replacing each atomic formula
of the form P (t1, ..., tn) by P ∗(t1, ..., tn, x), without doing any transformation at
the level of the logical operators..

Theorem 1. (Baaz and Fermueller, 2003). Let T be a theory and A(x) a formula
in first order logic. Then

T �c A(t), for some term t iff ∀x(x 	 T ) �c ∃x(x 	 A(x))

Moreover, there is an algorithm allowing to extract from a proof of ∀x(x 	 T ) �
∃x(x 	 A(x)), a term t and a proof of T � A(t).

M. Baaz and C. Fermueller [2] gave a proof of this result based on properties of
resolution. In the following we give a very simple proof based on cut-elimination,
which allows in particular to generalize the result to other logics enjoying cut-
elimination.

Remark. As pointed in [1], if one wants to deal with equality, one has to treat
it as a predicate symbol among others, i.e. to translate it in =∗, and not as a
logical symbol.

2 Proof of the Theorem

It is obvious that the condition is necessary. From a sequent calculus proof of
the sequent T � A(t), one obtains a proof of the sequent t 	 T � t 	 A(t) by
replacing in each sequent of the proof, each formula B by t 	 B (and possibly
renaming some eigenvariables), and thus a proof of the sequent ∀x(x 	 T ) �
∃x(x 	 A(x)).

In order to prove that the condition is sufficient, one uses the cut-elimination
theorem of sequent calculus and considers a cut-free proof π of

∀x(x 	 T ) � ∃x(x 	 A(x))

From this proof π, one constructs a term t0 and a cut-free proof π0 of

t0 	 T � t0 	 A(t0)

as follows.
First, one can push the contractions on ∀x(x 	 T ) and ∃x(x 	 A(x)) at the

bottom of π and erase weakenings on these formulas. Thus one can assume that
π is a proof of a sequent of the form

∀x(x 	 T ), ...,∀x(x 	 T ) � ∃x(x 	 A(x)), ...,∃x(x 	 A(x))

without contractions and weakenings on ∀x(x 	 T ) and ∃x(x 	 A(x)).
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Note that each subformula of a formula of the form t 	 B is of the form
t 	 C, with C subformula of B. It follows that ∀x(x 	 T ) and ∃x(x 	 A(x)) do
not occur in axioms and all formulas occurring in π are either formulas of the
conclusion or formulas of the form t 	 C, for some term t and formula C.

For t a term occurring in π, we call t-formulas the formulas of the form t 	 C
and the formulas of the conclusion of π ”coming from” formulas of the form
t 	 C. It follows from the previous remark that all formulas occurring in π are
t-formulas for various t’s.

Lemma (splitting).
Let t1 a term, δ a subproof of π and Γ1, Γ � Δ1, Δ the conclusion of δ. Suppose
that

Γ1, Δ1 contain only t1-formulas and
Γ, Δ contain no t1-formulas.

Then there is a proof δ′ (obtained by erasing parts of δ and adding weakenings)
such that

either δ′ is a proof of Γ1 � Δ1
or δ′ is a proof of Γ � Δ.

By an inductive application of this lemma to the conclusion of π, one gets a
cut-free proof of a sequent

∀x(x 	 T ), ...,∀x(x 	 T ) � ∃x(x 	 A(x)), ...,∃x(x 	 A(x))

with only t0-formulas for a certain term t0. By pushing the introduction rules
for ∀x(x 	 T ) and ∃x(x 	 A(x)) to the end of the proof, one gets a cut free
proof of

t0 	 T, ..., t0 	 T � t0 	 A(t0), ..., t0 	 A(t0)

and thus a cut-free proof of

t0 	 T � t0 	 A(t0).

By replacing in each sequent of the proof, each formula t0 	 B by B, one gets a
proof of

T � A(t0).

Comment. The proof rests on the fact that the existential statement ∃xA(x)
is translated into ∃x(x 	 A(x)) with the same x occurring at the two places.

In a classical proof of an existential statement, several witnesses can appear,
whose subproofs cannot be unravelled. But in cut-free classical proof of a state-
ment of the form ∃x(x 	 A(x)), the fact that the witnesses occur in the special
place created by the realizability translation ensures that the subproofs associ-
ated with distinct witnesses cannot mix and thus that the original proof contains
a true subproof associated with one of these witnesses.

Proof of the lemma.

The result is proved by induction on the length of the proof δ of Γ1, Γ � Δ1, Δ.
If the last rule of the proof is an axiom, the result is trivial. Otherwise the
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result is obtained by an immediate application of the induction hypothesis to
the premisses of the last rule. Consider for instance the case where the last rule
is an introduction for the connective ∨.

- The last rule is
Γ1, Γ � A, Δ1, Δ

Γ1, Γ � A ∨B, Δ1, Δ

Note that A ∨B is a t1-formula iff A is a t1-formula.
If A∨B is a t1-formula, then by induction hypothesis, either we have a proof

δ′ of Γ � Δ and we take δ′, or we have a proof δ′ of Γ1 � A, Δ1 and we take the
proof

δ′

Γ1 � A, Δ1

Γ1 � A ∨B, Δ1

If A∨B is not a t1-formula, then by induction hypothesis, either we have a proof
δ′ of Γ1 � Δ1 and we take δ′, or we have a proof δ′ of Γ � A, Δ and we take the
proof

δ′

Γ � A, Δ

Γ � A ∨B, Δ

- The last rule is
Γ1, Γ, A � Δ1, Δ Σ1, Σ, B � Π1, Π

Γ1, Σ1, Γ, Σ, A ∨B � Δ1, Π1, Δ, Π

Note that A ∨B is a t1-formula iff both A and B are t1-formulas.
Assume A ∨ B is a t1-formula. We apply the induction hypothesis to the

premisses.
If the induction hypothesis gives a proof δ′ of Γ � Δ or of Σ � Π , we

add weakenings to get a proof of Γ, Σ � Δ, Π . Otherwise we have proofs δ′1 of
Γ1, A � Δ1 and σ′

1 of Σ1, B � Π1 and we take the proof

δ′1

Γ1, A � Δ1

σ′
1

Σ1, B � Π1

Γ1, Σ1, A ∨B � Δ1, Π1

Assume A ∨ B is not a t1-formula. We apply the induction hypothesis to the
premisses. If the induction hypothesis gives a proof δ′ of Γ1 � Δ1 or of Σ1 � Π1,
we add weakenings to get a proof of Γ1, Σ1 � Δ1, Π1. Otherwise we have proofs
δ′ of Γ, A � Δ and σ′ of Σ, B � Π and we take the proof

δ′

Γ, A � Δ

σ′

Σ, B � Π

Γ, Σ, A ∨B � Δ, Π
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Remark. The notion of realizability used to characterize constructive existence
cannot be customized by restricting the translation to the predicates occurring
in the existential statement. The theory T = {P0 ∨ P1, P0 → Q0, P1 → Q1}
provides a counterexample. We have T � ∃xQx, but for every term t, T � Qt.
Consider the modified notion of realizability 	1, where the predicate P is not
translated: ∀x(x 	1 T ) = {P0 ∨ P1, P0 → ∀x(x 	1 Q0), P1 → ∀x(x 	1 Q1)}.
We have P0 � ∃x(x 	1 Qx), P1 � ∃x(x 	1 Qx) and ∀x(x 	1 T ) � P0 ∨ P1.
Therefore we have ∀x(x 	1 T ) � ∃x(x 	1 Qx), but as remarked before, there is
no t such that T � Qt.

3 Discussion

Two points deserves to be discussed: the significance of the characterization and
the interest of the proof method.

Interest of the proof method. The proof we give in this paper for classical first
order logic is a generic proof. It works for any logical system having a reasonable
cut elimination theorem. It allows in particular to show that the same charac-
terization of constructive existence holds for intuitionistic first order logic.

Note that this characterization of constructive existence in intuitionistic logic
is not meaningless. Intuitionistic logic is constructive in the sense that if �i

∃xA(x), then there is a term t such that �i A(t), which in addition can be
extracted from the intuitionistic proof of ∃xA(x). But this is no more true over
a theory: one can have T �i ∃xA(x) without having a term t such that T �i

A(t). The cases where there exists a term t such that T �i A(t) are precisely
characterized by the fact that ∀x(x 	 T ) �i ∃x(x 	 A(x)).

The proof method can also be extended to characterize constructive existence
in high order logics.

Significance of the characterization. It is not yet clear whether the characteriza-
tion of constructive existence given by Baaz and Fermueller is deep or not. But
it is worth trying to answer the question. This characterization could possibly
lead to a very interesting speed-up result.

The problem can be roughly stated as follows: find a theory T and a statement
A in first order classical logic such that

– there is a short proof of ∀x(x 	 T ) � ∃x(x 	 A(x));
– there are only long proofs of T � A(t).

Our proof seems at first glance to suggest a negative answer, because we have
extracted in a trivial way a term t and a proof of T � A(t) from a proof of
∀x(x 	 T ) � ∃x(x 	 A(x)). However this is only due to the fact that we used
a cut-free proof of ∀x(x 	 T ) � ∃x(x 	 A(x)). It is true that a cut-free proof
of ∀x(x 	 T ) � ∃x(x 	 A(x)) is essentially a cut-free proof of T � A(t), for a
certain term t. But proofs with cuts in the extended language are much richer,
not only because of the cuts as such, but also because these cuts allow to work
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with formulas of the extended language which are not of the form t 	 C, with
C formula of the original language: one can use arbitrary formulas formed over
atomic formulas of that form.
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