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Abstract. We consider the problem of determining the period of a bi-
nary sequence. For sequences with small autocorrelation we prove the
existence of a polynomial time quantum algorithm for the above prob-
lem based on an algorithm of Hales and Hallgren. We apply this result to
several concrete examples for which the autocorrelation can be estimated
using known bounds on character sums.
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1 Introduction

According to Kerckhoff’s principle, the security of a cryptosystem shall not be
based on keeping the encryption algorithm secret but solely on keeping the en-
cryption key secret. The security of many cryptographic sequences is only based
on a secret period. Investigating the vulnerability of the secret key is of great
importance for their choice.

We focus on the most important case of binary sequences and consider the
problem of recovering the period T of a periodic sequence S = (sn)n≥0 over
IF2 = {0, 1} using a quantum algorithm.

Since the mapping n �→ sn, 0 ≤ n < T , is not bijective, T cannot be recovered
by the well-known algorithm of Shor [9]. Here we show that a result of Hales
and Hallgren [4] is quite adequate for our purpose if the given sequence S has a
small autocorrelation, which is an essential feature of cryptographic sequences.

We apply our result to several concrete examples:
– Generalisations of Legendre sequences;
– Generalisations of Sidelnikov sequences;
– Generalisations of trace sequences;
– Elliptic curve trace sequences.

As far as the authors are aware of, no classical algorithms are known that
tackle with the above problems. We remark, however, that most of the results
of this paper can be generalised to nonbinary sequences, see [10].

The main mathematical result of this paper is given in the proof of Theorem 1
in Section 3 and states that if the autocorrelation of a binary sequence is small
then its distance from any sequence of smaller period is large.
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2 Preliminary Results

2.1 Autocorrelation

We recall the definition of the autocorrelation of a periodic binary sequence.
Let S = (sn)n≥0 be a sequence over IF2 and let T > 1 be the period of S.

The autocorrelation function AC of the sequence S with respect to the shift t is
defined by the following relation:

AC(S, t) =
1
T

T−1∑

n=0

(−1)sn+sn+t , 1 ≤ t < T.

We need the following simple lemma.

Lemma 1. Let S = (sn)n≥0 be a sequence over IF2, T the period of S, and let
B ≥ 0 be fixed, such that

max
1≤t<T

|AC(S, t)| ≤ BT−1.

For a given t, 1 ≤ t < T , we denote with Nt the cardinality of the set

{sn | sn = sn+t, 0 ≤ n < T }.

Then, for any t, 1 ≤ t < T , we have
∣∣∣∣Nt − T

2

∣∣∣∣ ≤ B

2
.

Proof. We clearly have that

|2Nt − T | = T · |AC(S, t)| ≤ B,

and the result of the lemma follows immediately.

2.2 Quantum Period Finding Algorithm

Given two periodic sequences S1 = (s1
n)n≥0 and S2 = (s2

n)n≥0 with periods T
and t, respectively, we denote by D(S1, S2) the number of integers n ∈ [0, T t−1]
with s1

n �= s2
n. The following result can be immediately obtained from

[4–Theorem 2].

Lemma 2. For any constant c > 0, there is a quantum algorithm which com-
putes in polynomial time, with probability at least 3/4, the period of any sequence
S1 of period T satisfying

D(S1, S2) ≥ T t

(log T )c
,

for any sequence S2 of period t < T .
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3 Reconstruction of the Period

In this section we state and prove the main theorem of this paper. Given a peri-
odic binary sequence, the theorem below gives a condition which, when fulfilled,
ensures the existence of a quantum algorithm for the reconstruction of the binary
sequence’s period.

Theorem 1. Let S = (sn)n≥0 be a sequence over IF2 and T the period of S, for
which

max
1≤t<T

|AC(S, t)| ≤ 1 − 4
(log T )c

for some c > 0. Then there exists a quantum algorithm which computes T in
polynomial time, with exponentially small probability of failure.

Proof. Let S1 = (s1
n)n≥0 be a sequence of period t < T and let Kt be the set

{sn | sn = s1
n and sn+t = s1

n+t, 0 ≤ n ≤ T t − 1}.

Considering the definition of D(S, S1) we know that

T t − 2D(S, S1) ≤ |Kt|.

Also, for each n ∈ Kt we can write sn = s1
n = s1

n+t = sn+t and thus sn = sn+t.
Using the result of Lemma 1 with the bound B = T (1 − 4(log T )−c), we get

|Kt| ≤ tNt ≤ tT

2

(
2 − 4

(log T )c

)
.

We have now the following sequence of inequalities

T t − 2D(S, S1) ≤ |Kt| ≤ tT

2

(
2 − 4

(log T )c

)
.

From here, we arrive at

D(S, S1) ≥ T t

(log T )c
.

The result of the theorem follows, then, from the application of Lemma 2.

The above theorem ensures us that a quantum algorithm for computing the
period of a binary sequence exists, provided that the maximum autocorrelation
of the sequence is small enough. The concrete description of the actual quantum
algorithm and a proof of its correctness are not in the scope of this paper. We
direct the interested reader to consult [4].

4 Applications

In this section we give some examples how Theorem 1 can be used to give the
existence of quantum algorithms for recovering the period of special families of
binary sequences. For each sequence in the examples below we give a bound for
the maximum autocorrelation of the given sequence and then the condition for
the existence of the quantum algorithm. Each of the corollaries formulated below
follow immediately from Theorem 1.
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4.1 Legendre and Related Sequences

We recall that a Legendre sequence L = (ln)n≥0 is defined by

ln =

{
1 if

(
n
p

)
= −1,

0 otherwise,
n ≥ 0,

where p is an odd prime and
(

.
p

)
denotes the Legendre symbol.

Now, given an odd prime p and a polynomial f(X) over IFp, we define the
generalised Legendre sequence L = (ln)n≥0 of period p, with the polynomial f(X)
as follows:

ln =

{
1, if

(
f(n)

p

)
= −1,

0, otherwise,
n ≥ 0.

The following lemma can be immediately proved using Weil’s bound for mul-
tiplicative character sums; see [6–Theorem 5.41].

Lemma 3. For a generalised Legendre sequence L with a polynomial f(X) ∈
IFp[X ] and period p such that, for any 1 ≤ t < p, f(X)f(X + t) is not a square
we have

max
1≤t<p

|AC(L, t)| ≤ (2 deg(f) − 1)p−1/2 + 2 deg(f)p−1.

Proof. Note that

(−1)ln =
(

f(n)
p

)
if f(n) �= 0

and we have f(n) = 0 or f(n + t) = 0 for at most 2 deg(f) different n, with
0 ≤ n < p. Hence, for 1 ≤ t < p and using the multiplicativity of the Legendre
symbol, we have

p|AC(L, t)| ≤
∣∣∣∣∣

p−1∑

n=0

(
f(n)f(n + t)

p

)∣∣∣∣∣ + 2 deg(f)

and the result follows using the Weil bound.

The above lemma naturally holds for the classical case of Legendre sequences.
This can be easily checked by instantiating the polynomial f(X) with f(X) = X .

We state now the following existence result.

Corollary 1. Let L = (ln)n≥0 be a generalised Legendre sequence of period p,
with the polynomial f(X) ∈ IFp[X ] of degree at most

p1/2

2

(
1 − 4

(log p)c

)

for some c > 0, such that, for any 1 ≤ t < p, f(X)(f(X + t)) is not a square for
any 1 ≤ t < p. Assume that we are given a black-box that outputs ln for every
input integer n. Then there exists a quantum algorithm which computes p with
an exponentially small probability in polynomial time.

The result in the above corollary is an immediate consequence of Theorem 1.
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In the currently available literature, some generalised Legendre sequences for
particular polynomials f have been studied. For example, in the case f(X) =
X + s, where s is a shift, quantum algorithms for finding the period p and the
shift s are given in [2]. In the case p is known then f(X) can be recovered in the
general case using an algorithm of quantum query complexity O(deg(f)); see [8].

For considerations on the autocorrelation for extensions of Legendre sequences
of period q, with q an odd prime power, which are defined over the field IFq which
a special, somewhat natural, ordering of the elements and the quadratic character
of IFq, see [7]. For sequences of period pq with two primes p and q see [1, 3].

4.2 Generalised Sidelnikov Sequences

Classically, a Sidelnikov sequence S = (sn)n≥0 is defined by

sn =
{

1 if η(gn + 1) = −1,
0 otherwise, n ≥ 0,

where g is a primitive element and η denotes the quadratic character of the finite
field IFq of odd order q.

Let q be an odd prime power, f(X) a polynomial over the finite field IFq of
q elements, and g ∈ IFq an element of order T . Then a generalised Sidelnikov
sequence S = (sn)n≥0 of period T , with an element g of order T and a polynomial
f is defined by

sn =
{

1, if η(f(gn)) = −1,
0, otherwise, n ≥ 0,

where η is, as before, the quadratic character of the field IFq.
The following result is again based on the Weil bound.

Lemma 4. Let S be a generalised Sidelnikov sequence of period T , with an el-
ement g ∈ IFq of order T and a polynomial f(X) ∈ IFq[X ] such that, for any
1 ≤ t < T , f(X)f(gtX) is, up to a constant, not a square. Then we have

max
1≤t<T

|AC(S, t)| < 2 deg(f)(q1/2 + 1)T−1.

Proof. The conclusion of the lemma follows immediately from the Weil’s theo-
rem. Namely, we have

T |A(S, t)|

≤
∣∣∣∣∣

T−1∑

n=0

η(f(gn)f(gtgn))

∣∣∣∣∣ + 2 deg(f)

≤ T

q − 1

⎛

⎝

∣∣∣∣∣∣

∑

x∈IFq

η(f(x(q−1)/T )f(gtx(q−1)/T ))

∣∣∣∣∣∣
+ 1

⎞

⎠ + 2 deg(f)

≤ T

q − 1
(2 deg(f)(q − 1)/T − 1)q1/2 + 2 deg(f)

< 2 deg(f)(q1/2 + 1).
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As it was the case for Legendre sequences, Lemma 4 holds also for the classical
case of Sidelnikov sequences. In order to check this we have to take f(X) = X+1.

Corollary 2. Let S = (sn)n≥0 be a generalised Sidelnikov sequence of period T ,
with g ∈ IFq of order T and a polynomial f(X) ∈ IFq[X ] of degree at most

T

2(q1/2 + 1)

(
1 − 4

(log T )c

)

for some c > 0, such that, for any 1 ≤ t < T , f(X)(f(gtX)) is, up to a constant,
not a square. Assume that we are given a black-box which, for every integer
n, outputs sn. Then there exists a quantum algorithm which computes T in
polynomial time with an exponentially small probability of failure.

4.3 Generalised Trace Sequences

Let us now look at generalisations of trace sequences. A trace sequence T =
(tn)n≥0 is defined by

tn = Tr (gn), n ≥ 0,

where g is a primitive element of IF2r and Tr denotes the absolute trace of IF2r ,
for some r ≥ 1.

Let f(X) ∈ IF2r [X ], and g ∈ IF2r an element of order T . We define the
generalised trace sequence T = (tn)n≥0 of period T , with the polynomial f and
element g by

tn = Tr (f(gn)), n ≥ 0.

The following result is based on Weil’s bound for additive character sums;
see, e.g., [6–Theorem 5.38].

Lemma 5. For any generalised trace sequence T = (tn)n≥0 of period T , with
g ∈ IF2r of order T and any polynomial f(X) ∈ IF2r [X ] such that f(X)+f(gtX)
is not of the form h(X)2 + h(X) + c for any 1 ≤ t < T , we have

max
1≤t<T

|AC(T , t)| < deg(f)2r/2T−1.

Corollary 3. Let T = (tn)n≥0 be a generalised trace sequence of period T , with
g ∈ IF2r of order T and any polynomial f(X) ∈ IF2r [X ] of degree at most

T

2r/2

(
1 − 1

(log T )c

)
,

for some c > 0 and such that f(X)+f(gtX) is not of the form h(X)2+h(X)+c,
for any 1 ≤ t < T . Assume that we are given a black-box which, for every
integer n, gives tn. Then there exists a quantum algorithm which computes T in
polynomial time with an exponentially small probability of failure.
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For some certain cases of trace sequences we can recover the period T also
by combining the Berlekamp-Massey and the Shor algorithm. The Berlekamp-
Massey algorithm delivers the coefficients c0, . . . , cL ∈ IF2 of the shortest linear
recurrence relation

L∑

l=0

cltn+l = 0, n ≥ 0,

satisfied by T . For example, if f(X) = X this leads to

Tr

(
gn

L∑

l=0

clg
l

)
= 0, n ≥ 0.

We denote the sum above with b. If g is a defining element of IF2r , i.e.,
{1, . . . , gr−1} is a basis of IF2r , then by the linearity of the trace Tr (bgn) = 0,
0 ≤ n < r, we know that Tr (bx) = 0, x ∈ IF2r , and thus b = 0. A root
finding algorithm can be used to determine g and, finally, Shor’s algorithm can
be applied to calculate T .

4.4 Elliptic Curve Trace Sequences

Let E be an elliptic curve over IF2r and P a rational point on E of order T . For
a function f in the function field IF2r(E) the sequence E = (en)n≥0 defined by
en = Tr (f(nP )), n ≥ 0, has the period T .

The following result follows from [5–Corollary 1].

Lemma 6. For any function f in the function field IF2r (E) such that f(nP ) −
f((n + t)P ) is not constant for 1 ≤ t < T and n ≥ 0, the sequence E = (en)n≥0
satisfies

max
1≤t<T

|AC(E , t)| ≤ 4 deg(f)2r/2T−1.

For example, the function f(Q) = x(Q), where x(Q) is the first coordinate of Q =
(x(Q), y(Q)) ∈ E, satisfies the condition that sn − sn+t = f(nP ) − f((n + t)P )
is not constant, for 1 ≤ t < T .

Corollary 4. Let E = (en)n≥0 be a sequence of period T defined as in Lemma 6
with deg(f) at most

T

4 · 2r/2

(
1 − 4

(log 2r)c

)

for some c > 0. Assume that we are given a black-box which for every inte-
ger n outputs en. Then there exists a quantum algorithm which computes T in
polynomial time with an exponentially small probability of failure.
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