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Abstract. Dirty paper coding are relevant for wireless networks, mul-
tiuser channels, and digital watermarking. We show that the problem of
dirty paper is essentially equivalent to some classes of constrained mem-
ories, and we explore the binary so-called nested codes, which are used
for efficient coding and error-correction on such channels and memories.
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The motivation of this paper is the dirty paper channel introduced by Costa
[3]. This channel has received increased attention [4] in recent years, due to
applications in wireless multiuser networks and digital fingerprinting [5].

We show that the dirty paper channel is practically equivalent to writing on
reluctant memories, and we make a few improvements on the existing results for
such channels. Our interest is mainly in the binary dirty paper channel (BDP).

1 Dirty Paper and Constrained Memory Coding

The dirty paper channel is depicted in Figure 1. There are two independent noise
sources which are added to the transmitted signal to form the received signal.
The first noise vector, which we will call the state of the channel is known to
the sender but not to the receiver. The second noise vector, which we will refer
to as noise is unknown to both.

The sender is subject to a power constraint ||x|| ≤ P on the transmitted
signal. For a binary channel || · || is usually the Hamming norm; for a continuous
channel it is usually the Euclidean norm.

Costa [3] introduced this channel with Gaussian sources for both the state
and the noise. His surprising result was that the channel capacity depends only on
the intensity of the noise; the intensity of the state does not change capacity. In
more recent years, his results have been generalised to other source distributions.
We will consider the binary dirty paper channel (BDP).
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Fig. 1. The dirty paper channel

In a constrained memory, there are restrictions on writing to the memory,
such that starting in one memory state, some states are reachable in one write
operation and others are not. For each memory state, there is a feasible region
of words which may be used to represent the next message. In this case the state
is given by the previous message stored in memory.

Dirty paper coding and constrained memory coding are similar, in fact BDP
channels are practically equivalent to WRM (write reluctant memories) with
error-correction [2]. In WRM, one write operation cannot change more than a
certain number P of bits. This corresponds to the power constraint in BDP; if
s is the state (previous contents), x is the change, and y = s + x is the memory
contents after writing, then w(x) ≤ P .

The state on dirty paper channels is externally given, whereas in constrained
memories it is the old codeword (with possible errors). The state, together with
power constraints, defines the feasible region of vectors y which can be generated.
For BDP/WRM, the feasible region is a Hamming sphere around the state.

Remark 1. Occasionnally, in constrained memories, one assumes that s is a code-
word with few errors, since nobody would write rubbish to the memory. We will
not make this assumption, for two reasons. Primarily, it does not extend to BDP.
Also, we know of no cases where results can be improved due to this assumption.
Furthermore, by avoiding such assumption, the system can recover after an error
pattern which could not be corrected.

Example 1. Another example of constrained memory is the Write Isolated Mem-
ory (WIM), where two consecutive memory bits cannot be changed in the same
operation. In other words, the feasible region is the set {x+ s : x = (x1, . . . , xn),
xi = 1 ⇒ xi−1 = xi+1 = 0}, where s is the memory state and x0 = xn+1 = 0 by
convention.

BDP (WRM) and WIM both fall into a class of channels, where the feasible re-
gions are translation invariant, permitting some common techniques. By this
we mean that if Fs is the feasible region from s, then Fs′ = Fs − s + s′.
Let us call this class CCTIR (constrained channels with translation invariant
regions).

2 Some Coding Theory

An (n,M)q code C is an M -set of n-tuples over a q-ary alphabet. When q = 2
we may suppress the subscript. The Hamming distance d(x,y) is the number of
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positions where the two tuples differ. The minimum distance d = d(C) of C is the
least distance between twodifferent codewords.We say thatC is an (n,M, d)q code.
The covering radius r of C is the largest distance between a vector y ∈ Qn and the
code.

The problem of covering codes amounts to finding codes minimising r given
n and M , whereas the problem of error-correcting codes is about maximising d
given n and M .

We also define normalised measures, which will be useful when moving to
asymptotic codes. We define the rate logq M/n, the distance δ = d/n, and the
covering radius ρ = r/n.

3 Codes for CCTIR

In order to make a successful code for CCTIR, we need for every state s and
every message m, to have at least one codeword x corresponding to m in the
feasible region of s. Furthermore, we require any capability for error-correction
that we may need. We will study e-error correcting CCTIR codes.

Lemma 1. For CCTIR, if x ∈ Fy then y ∈ Fx.

Let Bi be the set of words corresponding to message i. We require that for any
s, Fs ∩ Bi �= ∅. By the lemma above, this is equivalent to

⋃

b∈Bi

Fb = �
n, (1)

i.e. that the feasible regions around the words of Bi cover the space. If the set
of possible messages is i = 1, . . . ,M , then we define

CF =
M⋃

i=1

Bi.

When the feasible regions are spheres of radius ρ, this is to say that Bi must be
a covering code of covering radius ρ or smaller. For other feasible regions it is a
more general covering by F -shapes.

In order to correct up to e errors, we require that if i �= j, then d(Bi, Bj) >
2e. It is sufficient to require that CF has minimum distance 2e+1 or more; i.e.
that CF is e-error correcting. Furthermore as a necessary condition, if there
are two codewords with distance at most 2e apart, they must fall in the same
set Bi.

In a sense, we try to pack the space with coverings Bi such that we maintain
a minimum distance of 2e + 1, a problem studied in [2].

We say that a CCTIR code (B1, . . . , BM ) is linear if CF is a linear e-error-
correcting code, Bj is a subcode satisfying (1) for some j, and the Bi are cosets
of Bj in CF . Clearly by linearity, Bi satisfies (1) whenever Bj does.
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Let an = #F0. For CCTIR, all the feasible regions clearly have the same
size.

Lemma 2. For an (n,M) CCTIR code, we have

M ≤ an

Lemma 3. For dirty paper codes, we have

an = V (n,R) =
n∑

i=0

(
n

i

)

.

In the case of WRM and dirty paper channels, a linear CCTIR code is also
called a nested code. We call CF the fine code and CC ⊆ CF the coarse code.
The nested code is the quotient C = CF /CC , and we say that C is an [n,K; d1, ρ]
code, where K = kF − kC is the dimension of C. The following lemma is well
known.

Lemma 4 (Supercode lemma). For any [n,K; d1, ρ] nested code, we have
ρ ≥ d1.

4 Asymptotic Existence

Definition 1 (Entropy). The (binary) entropy of a discrete stochastic variable
X drawn from a set X is defined as

H(X) = −
∑

x∈X
P (X = x) log P (X = x).

The conditional entropy of X with respect to another discrete stochastic variable
Y from Y is

H(X|Y ) = −
∑

y∈Y
P (Y = y)

∑

x∈X
P (X = x|Y = y) log P (X = x|Y = y).

The following general theorem appears in [2].

Theorem 1. For n large enough, there are θn-error correcting codes for CCTIR
with rate

κ(θ) ≥ κ0 − H(2θ),

where κ0 is the maximum rate for a non-error-correcting code for the same con-
strained channel.

The proof is by greedy techniques, as follows.

Proof. We write
S(B, i) =

⋃

b∈B

{x : d(x,b ≤ i}.



Nested Codes for Constrained Memory and for Dirty Paper 311

First we make a code CC of rate 1 − κ without error-correction. Let S0 =
S(CC , 2θn − 1).

We start with B = {0}, and construct a code CC by the following greedy
algorithm. In each step we take a random vector y ∈ S\S(B + CC , 2θn − 1),
and update B to be the linear span of y and the vectors of B. We proceed until
S\S(B +CC , 2θn− 1) is empty. Since each word included in B excludes at most
#S(CC , 2θn − 1) elements from S0, we get that

#B ≥ 2n

#CC#S({0}, 2θn − 1)
≥ 2κn

#S({0}, 2θn − 1)
.

Assymptotically, we have #B ≈ 2(κ−H(2θ))n, Let CF = B + CC , so that C =
CF /CC ≡ B. Clearly the rate of B and C is κ − H(2θ) as required.

In the case of dirty paper channel, κ0 = 1 − Rρ where Rρ is the minimum rate
for a covering code with appropriate ρ.

Theorem 2. For dirty paper codes with no error-correction, we can obtain rate
κ0 = H(ρ).

Observe that whenever ρ > δ, we get asymptotic codes with non-zero rate from
the above theorems. For ρ = δ, however, the guaranteed rate is just zero.

Problem 1. Are there asymptotic families of nested codes with R>0 and ρ=d?

5 Some Small Constructions

Lemma 5. For any [n,K; 1, 1] nested code with even n, we have K ≤ log n.

Proof. For a [n, kC ]1 covering code, we have kC ≤ n − log n when n is even, and
for an [n, kF , 1] code, we have kF ≤ n. Hence K = kF − kC ≤ log n.

Lemma 6. There is a [2K − 1,K; 1, 1] nested code for any K.

Proof. Let the coarse code be the [2K − 1, 2K − 1 − K, 3]1 Hamming code, and
let the fine code be the [2K − 1, 2K − 1, 1] code.

Table 1. Some nested codes for n = 3

Parameters Coarse code Fine code

[3, 1; 1, 1]
[

110
101

]
⎡

⎣

100
010
001

⎤

⎦

[3, 1; 2, 2]
[

110
]

[

110
011

]

[3, 2; 1, 2]
[

110
]

⎡

⎣

100
010
001

⎤

⎦
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Table 2. Some nested codes for n = 4, 5, 6

Parameters Coarse code Fine code

[4, 2; 1, 1]
[

1110
1001

]

⎡

⎢
⎢
⎣

1000
0100
0010
0001

⎤

⎥
⎥
⎦

[4, 2; 2, 2]
[

1111
]

⎡

⎣

1100
1010
1001

⎤

⎦

[4, 3; 1, 2]
[

1111
]

⎡

⎢
⎢
⎣

1000
0100
0010
0001

⎤

⎥
⎥
⎦

[5, 2; 1, 1]

⎡

⎣

11100
10011
00110

⎤

⎦ [5, 5, 1] full code

[5, 4; 1, 2]
[

11111
]

[5, 5, 1] full code

[5, 2; 2, 2]
[

11111
]

⎡

⎣

11000
10100
10010

⎤

⎦

[6, 2; 2, 2]
[

111000
000111

]

⎡

⎢
⎢
⎣

111000
000111
100100
010010

⎤

⎥
⎥
⎦

[6, 4; 1, 2]
[

111000
000111

]

[6, 6, 1] full code

[6, 4; 2, 3]
[

111111
]

[6, 5, 2] even weight

Lemma 7. There are [2K ,K; 1, 1] and [2K − 1,K; 1, 1] nested codes.

Proof. The fine code is the [n, n, 1] full space. The coarse codes are the Hamming
codes, and the [2K , 2K − K, 1] direct sum of a Hamming code padded with a
zero column, and the code generated by a single word of weight one.

Lemma 8. There are [2K ,K; 2K−1, 2K−1] and [2K − 1,K; 2K−1 − 1, 2K−1 − 1]
nested codes for any positive K.

Proof. Let the coarse code be the [2K , 1, 2K ] repetition code, and let the fine code
be the [2K ,K, 2K−1] Reed-Muller code. The second set of parameters comes from
puncturing the above code.

Lemma 9. If there is an [n,K; d, ρ] code, then there is an [n − 1,K; d − 1, ρ]
code by puncturing and an [n − 1,K; d, ρ + 1] code by shortening.

Proof. This follows easily from the standard results on puncturing and shorten-
ing of error-correcting and covering codes.

Lemma 10 ([2]). The [2m − 1, 2m − 1− 2m, 5] BCH code has ρ = 3 for m ≥ 3.



Nested Codes for Constrained Memory and for Dirty Paper 313

Table 3. Some nested codes for n ≥ 7

Parameters Coarse code Fine code
[7, 3; 1, 1] [7, 4; 3]1 Hamming [7, 7, 1]
[7, 3; 3, 3] [7, 1, 7]3 repetition [7, 4, 3] Hamming

[8, 3; 1, 1]

⎡

⎢
⎢
⎢
⎢
⎣

10001110
01000110
00101010
00010110
00000001

⎤

⎥
⎥
⎥
⎥
⎦

[8, 8, 1]

[8, 3; 4, 4] [8, 1, 8]4 repetition [8, 4, 4] ext. Hamming
[15, 4; 3, 3] [15, 7, 5]3 BCH(2) [15, 11, 3] Hamming
[15, 2; 5, 5] [15, 5, 7]5 BCH(3) [15, 7, 5]3 BCH(2)
[15, 2; 7, 7] [15, 1, 15]7 repetition [15, 3, 7] BCH(3)
[15, 4; 7, 7] [15, 1, 15]7 repetition [15, 5, 7] punctured Reed-Muller
[16, 6; 4, 6] [16, 5, 8]6 RM(1, 4) [16, 11, 4] RM(2, 4)
[16, 4; 8, 8] [16, 1, 16]8 repetition [16, 5, 8] Reed-Muller

[27, 6; 11, 13] [27, 1, 27]13 repetition [27, 7, 11] [1]
[28, 6; 12, 14] [28, 1, 28]14 repetition [28, 7, 12] [1]
[31, 5; 3, 3] [31, 21, 5]3 BCH(2) [31, 26, 3] Hamming
[31, 5; 5, 5] [31, 16, 7]5 BCH(3) [31, 21, 5]3 BCH(2)
[31, 5; 7, 7] [31, 11, 11]7 BCH(4) [31, 16, 7]5 BCH(3)

[31, 5; 11, 11] [31, 6, 15]11 BCH(6) [31, 11, 11]7 BCH(4)
[31, 5; 15, 15] [31, 1, 31]15 repetition [31, 6, 15] punctured Reed-Muller
[32, 5; 2, 2] [32, 26, 4]2 RM(3, 5) [32, 31, 2] RM(4, 5)
[32, 10; 4, 6] [32, 16, 8]6 RM(2, 5) [32, 26, 4] RM(3, 5)
[32, 10; 8, 12] [32, 6, 16]12 RM(1, 5) [32, 16, 8] RM(2, 5)
[36, 20; 4, 13] [36, 8, 16]ρ ρ ≤ 13 [36, 28, 4] C⊥

C

[49, 9; 20, 24] [49, 1, 49]24 repetition [49, 10, 20] [1]
[63, 6; 1, 1] [63, 57, 3]1 BCH(1) [63, 63, 1] full code
[63, 6; 3, 3] [63, 51, 5]3 BCH(2) [63, 57, 3]1 BCH(1)
[63, 6; 5, 5] [63, 45, 7]5 BCH(3) [63, 51, 5]3 BCH(2)
[63, 6; 7, 7] [63, 39, 9]7 BCH(4) [63, 45, 7]5 BCH(3)
[63, 3; 9, 9] [63, 36, 11]9 BCH(5) [63, 39, 9]7 BCH(4)
[64, 15; 4, 8] (u, u + v) construction

[64, 15; 16, 28] [64, 7, 32]28 RM(1, 6) [64, 22, 16] RM(2, 6)

Corollary 1. There is a [2m − 1,m; 3, 3] nested code for every m ≥ 3.

Proof. The coarse code is the [2m − 1, 2m − 1 − 2m, 5]3 BCH(2) code, and the
fine code is the Hamming code.

Lemma 11 ([2]). The [2m − 1, 2m − 1− 3m, 7] BCH code has ρ = 5 for m ≥ 4.

Corollary 2. There is a [2m − 1,m; 5, 5] nested code for every m ≥ 4.
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Proof. The coarse code is the [2m − 1, 2m − 1 − 3m, 7]5 BCH(3) code, and the
fine code is the [2m − 1, 2m − 1 − 2m, 5]3 BCH(2) code.

Lemma 12. There are [22m+1 − 2m, 2m + 2; 22m − 2m, 22m] and [22m+1 − 2m −
1, 2m + 2; 22m − 2m − 1, 22m − 1] nested codes.

Proof. The coarse code is a repetition code. The fine code is a [22m+1−2m, 2m+
3, 22m − 2m] code [1] or a punctured version of it.

Lemma 13. There is no [6, 4; 2, 2] nested code, so the [6, 3; 2, 2], [6, 4; 1, 2] and
[6, 4; 2, 3] codes are optimal.

Proof. The smallest covering code of ρ = 2 and n = 6 has kC = 2, so to get
K = 4, we would need kF ≥ 6, which would give d = 1.

6 Some Upper Bounds on the Nested Code Dimension

Lemma 14. For an [n,K; d, d] nested code, we have

2K ≤
(

n

d

)

+ 1.

Proof. Consider the points of CC and the balls of radius ρ = d around these
points. Because ρ is the covering radius of CC , these balls cover the space. Since
CF has minimum distance d = ρ, it can only contain points on the border of
these balls, besides the points of CC . Hence

#CF ≤ #CC ·
((

n

d

)

+ 1
)

,

and hence
#(CF /CC) ≤

((
n

d

)

+ 1
)

,

as required.

We have seen that this bound can be met with equality for ρ = 1. For ρ > 1
except ρ = n = 2 we have inequality; let’s see this for ρ = 2 first.

Proposition 1. For an [n,K; 2, 2] nested code with n > 2, we have

2K <

(
n

2

)

+ 1.

Proof. Suppose the bound were met with equality. Since CC is a covering code
of ρ = 2, we have

2n ≤ 2kC

(

1 +
(

n

1

)

+
(

n

2

))

≤ 2kC (2K + n) ≤ 2kF + 2kC n.
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For all n > 2, we have

n < 1 +
(

n

2

)

,

which is equal to 2K by assumption. This gives

2n < 2kF +1,

and clearly n ≥ kF , so we get n = kF ; but then d = 1 < 2, giving a contradiction.

We do have degenerate [n, 1;n, n] nested codes for all n. They have only the zero
word for CC , an [n, 1, n] repetition code for CF .

Proposition 2. For an [n,K; d, d] nested code, we have

2K ≤ A(n, d, d) + 1.

It is readily seen that this bound is stronger than Lemma 14 when ρ > 2.

Proof. We start as we did proving Lemma 14 with the balls of radius ρ around
the points of CC . The border of the ball around x are the points x+y where y
has weight ρ. Obeying the distance requirement, the y that we choose for CF

from this ball, will have to form a constant weight code of weight and distance
ρ = d.

Generalising, we get the following proposition, for which we ommit the proof.

Proposition 3. For an [n,K; d, ρ] nested code, we have

2K ≤ 1 +
ρ

∑

w=d

A(n, d, w).

7 Some Constructions

Theorem 3. Let U = UF /UC and V = VF /VC be [n,KU ; dU , ρU ] and [n,KV ;
dV , ρV ] nested codes. Let Ui ◦ Vi denote the (u,u + v) composition of UI and
UV . Then we can form a nested code C = U ◦ V = (UF ◦ VF )/(UC ◦ UF ), and C
is a [2n,KU + KV ; d, ρ] nested code with ρ ≤ ρU + ρV and d = min{2dV , dU}.

The proof is obvious from fundamental results on the parameters of the compo-
nent codes.
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