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Abstract. This paper is the first part of a sequence of two papers that present
algebraic constructions of quasi-cyclic LDPC codes for AWGN, binary random
and burst erasure channels. In this paper, a class of quasi-cyclic LDPC codes for
both AWGN and binary random erasure channels is constructed based on finite
fields and special vector representations of finite field elements.

1 Introduction

LDPC codes, discovered by Gallager in 1962 [1], were rediscovered and shown to form
a class of Shannon capacity approaching codes in the late 1990’s [2, 3]. Ever since
their rediscovery, design, construction, decoding, efficient encoding, and applications
of these codes in digital communication and storage systems have become focal points
of research. Many methods for constructing these codes have been proposed. Based on
the methods of construction, LDPC codes can be classified into two general categories:
(1) random-like codes [4, 5] that are generated by computer search based on certain
design guidelines and required structural properties of their Tanner graphs [6]; and (2)
structured codes that are constructed based on algebraic and combinatorial tools [7, 8,
9, 10, 11, 12, 13, 14, 15, 16].

Most of the proposed constructions of LDPC codes are for the AWGN channel,
however only a few of them for other types of channels. In this and a succeeding papers,
we present two algebraic methods for constructing quasi-cyclic (QC) LDPC codes for
AWGN, binary random and burst erasure channels. QC-LDPC codes have encoding
advantage over the other types of LDPC codes. They can be encoded with simple shift-
registers with linear complexity [17]. It has been shown that well designed QC-LDPC
codes decoded with iterative decoding perform very well over the AWGN channel and
close to the Shannon theoretical limit [10, 14]. In this and next papers, we show that
well designed QC-LDPC codes decoded with iterative decoding also perform well over
binary random and burst erasure channels.
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A binary regular LDPC code [1] is defined as the null space of a sparse parity-check
matrix H over GF(2) with the following structural properties: (1) each row has constant
weight ρ; (2) each column has constant weight γ; (3) no two rows (or two columns)
have more than one 1-component in common; and (4) both ρ and γ are small compared
with the code length. H is said to be (γ,ρ)-regular and the code given by the null space
of H is called a (γ,ρ)-regular LDPC code. Property (3) is referred to as the column-row
(RC) constraint. The RC-constraint ensures that: (1) the minimum distance of the code
is at least γ+1; and (2) the Tanner graph of the code is free of cycles of length 4 [7]. An
LDPC code is said to be irregular if its parity-check matrix has varying column weights
and/or varying row weights. A QC-LDPC code is given by the null space of an array
of sparse circulants [7, 10, 14].

The performance of an LDPC code decoded with iterative decoding is measured by
its bit-error probability, block-error probability, error-floor and rate of decoding conver-
gence, collectively. Structured LDPC codes in general have a lower error-floor which
is important in digital communication and storage systems, where very low error rates
are required. Structured LDPC codes with large minimum distances can be constructed
much easier than computer generated random-like LDPC codes.

The performance of an LDPC code over the AWGN channel with iterative decoding
depends on a number of code structural properties besides its minimum distance. One
such structural property is the girth of the code that is defined as the length of the
shortest cycle in the code’s Tanner graph. For an LDPC code to perform well over
the AWGN channel with iterative decoding, its Tanner graph must not contain short
cycles. The shortest cycles that affect code performance the most are cycles of length
4. Therefore, cycles of length 4 must be prevented in LDPC code construction for the
AWGN channel. For an LDPC code to perform well over the binary random erasure
channel, its Tanner graph must also be free of cycles of length 4 [18, 19].

2 LDPC Codes for the Binary Random Erasure Channel

For transmission over the binary random erasure channel, a symbol, 0 or 1, is either cor-
rectly received with probability 1−p or erased with probability p (called erasure proba-
bility), and there is no transmission error. The output of the binary random erasure chan-
nel consists of three symbols, 0, 1, and ?, where the symbol ”?” denotes a transmitted
symbol being erased, called an erasure. Suppose a codeword x = (x0, x1, . . . , xn−1)
from a binary code C of length n is transmitted and y = (y0, y1, . . . , yn−1) is the cor-
responding received sequence. Let E = {j1, j2, . . . , jt} be the set of locations in y with
0 ≤ j1 < j2 < . . . < jt < n, where the transmitted symbols are being erased. Let
[n] � {0, 1, . . . , n−1}. Define Ē � [n]\E . Then Ē is the set of locations in y where the
transmitted symbols are correctly received, i.e., yi = xi for i ∈ Ē . The set E displays
the pattern of erased symbols in y and is called an erasure pattern. Decoding y is to
determine the value of each erasure in E . An erasure pattern E is said to be recoverable
(resolvable or correctable) if the value of each erasure in E can be uniquely determined.

Consider an LDPC code C of length n given by the null space of a J × n sparse
matrix H. Then a binary n-tuple x = (x0, x1, . . . , xn−1) is a codeword in C if and only
if xHT = 0. Suppose a codeword x is transmitted and y = (y0, y1, . . . , yn−1) is the
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corresponding received sequence. Let E = {j1, j2, . . . , jt} be the erasure pattern con-
tained in y. Let Hε be the submatrix that consists of the columns of H corresponding
to the locations of the erased symbols given in E and Hε̄ be the submatrix that con-
sists of the columns of H corresponding to the locations of the correctly received code
symbols in Ē . Let yε denote the subsequence that consists of the erased symbols in y
and yε̄ denote the subsequence that consists of the known symbols in y at the locations
given in Ē . The symbols in yε are unknown. For y to be a codeword in C, we must have
yHT = 0. This constraint can be put in the form:

yεH
T
ε = yε̄H

T
ε̄ . (1)

The right-hand side of (1) is known and can be computed from yε̄ and Hε̄. The left-hand
side of this equation (or yε̄) is unknown. Then decoding y is to solve (1). An iterative
method for solving (1) was proposed in [18].

Let h1, h2, . . . , hJ be the rows of H. For 1≤ i≤J , let hi = (hi,0, hi,1, . . . , hi,n−1).
Then a codeword y = (y0, y1, . . . , yn−1) must satisfy the condition, si � y0hi,0 +
y1hi,1 + . . . + yn−1hi,n−1 = 0 for 1 ≤ i ≤ J , which is called a check-sum. The code
symbol yj is said to be checked by the sum si if hi,j = 1, i.e., yj is included in the sum
si. Then yj can be determined from other code bits that are checked by hi as follows:

yj =
n−1∑

k=0,k �=j

ykhi,k. (2)

For each erased position jl in an erasure pattern E = {j1, j2, . . . , jt} with 1 ≤ l ≤ t,
if there exists a row hi in H that checks only the erased symbol yjl

and not any of the
other t − 1 erased symbols in E , then it follows from (2) that the value of each erased
symbol in E can be determined by the correctly received symbols in Ē as follows:

yjl
=

∑

k∈Ē
ykhi,k. (3)

Such an erasure pattern is said to be resolvable in one step (or one iteration). However,
there are erasure patterns that are not resolvable in one step but resolvable in multiple
steps iteratively. Given an erasure pattern E , we first determine the values of those erased
symbols that can be resolved in one step using (3). Then we remove the known erased
symbols from E . This results in a new erasure pattern E1 of smaller size. Next we
determine the values of erased symbols in E1 that are resolvable using (3). Removing
the known erased symbols from E1, we obtain an erasure pattern E2 of size smaller than
that of E1. We repeat the above process iteratively until either all the erased symbols in
E are resolved or an erasure pattern Em is obtained such that no erasure in Em can be
resolved using (3). In the latter case, some erasures can not be recovered.

The above decoding process is iterative in nature and can be formulated as an algo-
rithm [18]. To initialize the decoding process, we first set k = 0 and E0 = E . Then we
execute the following steps iteratively:

(1) Determine Ek. If Ek is empty, stop decoding, otherwise go to Step 2.
(2) Form Hεk

, Hε̄k
, yεk

, and yε̄k
.
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(3) Compute yε̄k
HT

ε̄k
.

(4) Find the rows in Hεk
such that each contains only one 1-component. Determine

the erasures in Ek that are checked by these rows. Determine the values of these
erasures by application of (3) and go to Step 5. If there is no row in Hεk

that
contains only one 1-component, stop decoding.

(5) Remove the erasures resolved at the step 4 from Ek. Set k = k+1 and go to Step 1.

If decoding stops at Step 1, all the erasures in the erasure pattern E are resolved and
the decoding is successful. If decoding stops at Step 4, some erasures in E can not be
recovered.

The performance measure of an LDPC code over the binary random erasure chan-
nel is the error probability. Di et. al. [18] have derived the threshold for regular LDPC
codes with given Tanner degree distribution pair (γ, ρ) (or column and row weight pair
of a (γ,ρ)-regular parity-check matrix) using the above iterative decoding algorithm. The
threshold is a small probability ε(γ, ρ) associated with an ensembles of regular LDPC
codes whose Tanner graphs have degree distribution pair (γ,ρ). The implication of thresh-
old ε(γ, ρ) is as follows: over all binary random erasure channels with erasure probability
p smaller than ε(γ, ρ), information can be reliably transmitted by using a sufficiently long
LDPC code with degree distribution pair (γ, ρ). Reliable transmission of information is
not possible if the erasure probability p is larger than the threshold ε(γ, ρ).

The performance of an LDPC code over the binary random erasure channel is deter-
mined by the stopping sets of its Tanner graph T [18]. Let V be a set of variable nodes
in T and S be the set of check nodes in T such that each check node in S is connected
to at least one variable node in V . The nodes in S are called the neighbors of the nodes
in V . A set V of variable nodes is called a stopping set of T if each check node in the
neighbor check set S of V is connected to at least two nodes in V . If an erasure pattern
E corresponds to a stopping set in the Tanner graph of an LDPC code, then a check-
sum that checks an erasure in E also checks at least one other erasure in E . As a result,
no erasure in E can be determined with Eq. (3) (or Eq. (1)) and E is an irrecoverable
erasure pattern.

A set Q of variable nodes in T may contain many stopping sets. It is clear that: (1)
the union of two stopping sets in Q is also a stopping set in Q; and (2) the union of
all the stopping sets in Q gives the maximum stopping set in Q. A set Vssf of variable
nodes in T is said to be stopping-set-free (SSF) if it does not contain any stopping set.
The following theorem [18] characterizes the significance of stopping sets for correct-
ing erasures: Suppose an LDPC code C is used for correcting erasures using iterative
decoding. Let y be a received sequence that contains an erasure pattern E . Then the era-
sures contained in the maximum stopping set of E cannot be recovered. This theorem
says that any erasure pattern E is recoverable if it is SSF.

Let B be a stopping set of minimum size in the Tanner graph of an LDPC code,
called a minimal stopping set (not unique). If the code symbols corresponding to the
variable nodes in B are being erased, it follows from the above theorem that B forms an
irrecoverable erasure pattern of minimum size. Therefore, for random erasure correction
with iterative decoding, it is desired to construct codes with largest possible minimal
stopping sets in their Tanner graphs. A good LDPC code for erasure correction must
have no or very few small stopping sets. A stopping set always contains cycles. In [19],
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it has been proved that the size of a minimal stopping set of a Tanner graph with girth
4 is two. The size of a minimal stopping set of a Tanner graph with girth 6 is γ + 1 and
is 2γ for girth 8, where γ is the degree of a variable node (or the column weight of the
parity-check matrix of the code). Hence for iterative decoding of an LDPC code over
the binary random erasure channel, the most critical cycles in the code’s Tanner graph
are cycles of length 4. Therefore, in code construction for the binary random erasure
channel, cycles of length 4 must be avoided in the Tanner graph of a code. It is proved
in [20] that for a code with minimum distance dmin, it must contain a stopping set of
size dmin. Therefore, in the construction of a code for erasure correction, we need to
keep its minimum distance large. For a regular LDPC code whose parity-check matrix
has column weight γ and satisfies the RC-constraint, the size of a minimal stopping set
in the code’s Tanner graph is at least γ + 1.

3 A Class of QC-LDPC Codes Constructed Based on Finite Fields

Consider the Galois field GF(q) where q is a power of a prime. Let α be a primitive
element of GF(q). Then α−∞ � 0, α0 = 1, α, . . . , αq−2 form all the elements of
GF(q) and αq−1 = 1. The q − 1 nonzero elements of GF(q) form the multiplicative
group of GF(q) under the multiplication operation. For each nonzero element αi with
0 ≤ i ≤ q − 2, we form a (q − 1)-tuple over GF(2), z(αi) = (z0, z1, . . . , zq−2),
whose components correspond to the q − 1 nonzero elements of GF(q), where the ith
component zi = 1 and all the other q − 2 components are equal to 0. This (q − 1)-tuple
z(αi) is referred to as the location vector of αi with respective to the multiplicative
group of GF(q). We call z(αi) the location-vector of αi. The location-vectors of two
different nonzero elements of GF(q) are different. The location vector of the 0 element
of GF(q) is defined as the all-zero (q − 1)-tuple, (0, 0, . . . , 0). Let β be a nonzero
element in GF(q), then the location-vector z(αβ) of αβ is the cyclic-shift (one place
to the right) of the location-vector z(β) of β. Form a (q − 1) × (q − 1) matrix A over
GF(2) with the location-vectors of β, αβ, . . . , αq−2β as rows. Then A is a circulant
permutation matrix.

Form the following (q − 1) × (q − 1) matrix over GF(q):

M =

⎡

⎢⎢⎢⎣

w0
w1
...

wq−2

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

α0 − 1 α − 1 · · · αq−2 − 1
α − 1 α2 − 1 · · · αq−1 − 1

...
...

. . .
...

αq−2 − 1 αq−1 − 1 · · · α2(q−2) − 1

⎤

⎥⎥⎥⎦ . (4)

Matrix M has the following structural properties: (1) any two rows (or two columns)
differ in all positions; (2) all the entries in a row (or a column) are different elements in
GF(q); and (3) each row (or column) contains one and only one zero element.

Lemma 1. For 0 <= i, j, k, l < q − 1 with i �= j, the two (q − 1)-tuples αkwi and
αlwj can not have more than one position with identical components, i.e., they differ in
at least q − 2 positions.

Proof. Suppose there are two different positions, say s and t with 0 ≤ s, t < q − 1,
where αkwi and αlwj have identical components. Then αk(αi+s − 1) = αl(αj+s − 1)
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and αk(αi+t −1) = αl(αj+t −1). These two equalities imply that either i = j or s = t
that contradicts the assumptions that i �= j and s �= t. This proves the theorem.

For each row wi of M given by (4) with 0 ≤ i < q − 1, we form the following
(q − 1) × (q − 1) matrix over GF(q) with wi, αwi, . . . , α

q−2wi as rows:

Mi =

⎡

⎢⎢⎢⎣

wi

αwi

...
αq−2wi

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

αi − 1 αi+1 − 1 · · · αi+q−2 − 1
α(αi − 1) α(αi+1 − 1) · · · α(αi+q−2 − 1)

...
...

. . .
...

αq−2(αi − 1) αq−2(αi+1 − 1) · · · αq−2(αi+q−2 − 1)

⎤

⎥⎥⎥⎦ .

(5)
We label the column of Mi from 0 to q − 2. We readily see that: (1) any two rows differ
in every position, except the (q−1−i)th position, where they both have the 0 element of
GF(q); and (2) the q − 1 entries of each column of Mi form the q − 1 nonzero elements
of GF(q), except the entries of the (q + 1 − i)th column, which are all zeros.

Replacing each entry in Mi by its location-vector, we obtain a (q−1)×(q−1)2 matrix
over GF(2), Bi = [Ai,0Ai,1 . . . Ai,q−2], which consists of a row of q−1 (q−1)×(q−1)
square submatrices, where Ai,j is formed with the location-vectors of the q − 1 entries
of the jth column of Mi, α

i+j − 1, α(αi+j − 1), . . . , αq−2(αi+j − 1), as rows. All the
submatrices of Bi are (q−1)×(q−1) circulant permutation matrices, except Ai,q−1−i,
which is a (q − 1) × (q − 1) zero matrix. All the circulant permutation matrices in Bi

are different. Form the following (q − 1) × (q − 1) array of (q − 1) × (q − 1) circulant
permutation and zero matrices:

H =

⎡

⎢⎢⎢⎣

B0
B1
...

Bq−2

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

A0,0 A0,1 · · · A0,q−2
A1,0 A1,1 · · · A1,q−2

...
...

. . .
...

Aq−2,0 Aq−2,1 · · · Aq−2,q−2

⎤

⎥⎥⎥⎦ , (6)

which is a (q − 1)2 × (q − 1)2 matrix over GF(2) with both column and row weight
q − 2. It follows from Lemma 1 and the structural properties of matrices M and Mi that
H satisfies the RC-constraint.

For any pair of positive integers with 1 ≤ γ, ρ < q, let H(γ, ρ) be a γ × ρ sub-
array of H. H(γ, ρ) is a γ(q − 1) × ρ(q − 1) matrix over GF(2) which also satisfies
the RC-constraint. If H(γ, ρ) does not contain zero submatrices of H, it has constant
column and row weights γ and ρ, respectively. The null space of H(γ, ρ) gives a (γ, ρ)-
regular QC-LDPC code Cqc of length ρ(q − 1), rate at least (ρ − γ)/ρ and minimum
distance at least γ + 1, whose Tanner graph has a girth of at least 6. Since H(γ, ρ) is
an array of permutation matrices, no odd number of columns can be added to the zero
column vector 0, and hence the minimum distance of Cqc must be even. Consequently,
the minimum distance of Cqc is at least γ + 2 for even γ and γ + 1 for odd γ. Since
the girth of the Tanner graph of Cqc is at least 6, the size of a minimal stopping set in
the Tanner graph is at least γ + 1 [19]. If H(γ, ρ) contains some zero submatrices of
H, then H(γ, ρ) has two column weights, γ − 1 and γ, and possibly two row weights
ρ − 1 and ρ. In this case, the null space of H(γ, ρ) gives a near-regular QC-LDPC code
with minimum distance at least γ for even γ and at least γ + 1 for odd γ. The size of a
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minimal stopping set in the code’s Tanner graph is either at least γ or γ + 1. The above
construction gives a class of QC-LDPC codes whose Tanner graph have girth at least 6.

4 An Example

In the following, we use an example to illustrate the method of construction of QC-
LDPC codes described in Section III and to demonstrate the performances of a code
over the AWGN and binary random erasure channels. For the AWGN channel, the code
is decoded with the sum-product algorithm (SPA) [3,4,7], and its performance is com-
pared with the Shannon limit. For the binary random erasure channel, the code is de-
coded with the iterative decoding algorithm given in Section II and its performance is
compared with the threshold ε(γ, ρ) for the degree pair (γ,ρ) of its Tanner graph. We set
the maximum number of decoding iterations to 100. We also assume BPSK signaling.

Let GF(73) be the field for code construction. Using this field, we can construct
a 72 × 72 array H of 72 × 72 circulant permutation and zero matrices. Set γ = 6
and ρ = 72. We take a 6 × 72 subarray H(6, 72) from array H (the first 6 rows of
submatrices of H). Each of the first 6 columns of submatrices of H(6, 72) contains a
single 72 × 72 zero matrix. Hence H(6, 72) is a 432 × 5184 matrix over GF(2) with
constant row weight 71 and two column weights, 5 and 6. The null space of H(6, 72)
gives a (5184, 4752) QC-LDPC code with rate 0.917. The performance and the rate
of decoding convergency of this code over the AWGN channel are shown in Figure 1.
We see that the decoding of this code converges very fast. At the BER of 10−6, the
performance gap between 5 iterations and 100 iterations is within 0.2dB. At BER of
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Fig. 1. Performance and the rate of decoding convergence of the (5184,4752) QC-LDPC code
given in Section 4 over the AWGN channel
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Fig. 3. Performance of the (5184,4752) QC-LDPC code given in Section 4 over the binary random
erasure channel

10−6 with 100 iterations, the code performs 1.3 dB from the Shannon limit. The error-
floor of this code is estimated below the BER of 10−25 and the block-error rate (BLER)
of 10−22 as shown in Figure 2 (using the method given in [21]). The estimated minimum
distance of this code is 19. The error performance of this code for the binary random
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erasure channel is shown in Figure 3. At the BER of 10−6, the code performs 0.002
from the threshold ε(6, 72) = 0.0528. Figures 1 to 3 demonstrates that the (5184,4752)
QC-LDPC code constructed based on GF(73) performs well on both the AWGN and
binary erasure channels.

5 Conclusion

In this paper, we have presented a method for constructing a class of QC-LDPC codes
based on finite fields and location-vector representations of finite field elements. The
Tanner graphs of the codes in this class have girth of at least 6. For a given finite field,
a family of QC-LDPC codes with various lengths, rates, minimum distances and sizes
of minimal stopping sets can be constructed. The proposed construction of QC-LDPC
codes may be regarded parallel to the construction of BCH codes [22]. A QC-LDPC
code was constructed to show that it performs very well over both the AWGN and bi-
nary random erasure channels with iterative decoding. It has a very low error-floor. In a
succeeding paper, we will use the RC-constrained arrays of circulant permutation ma-
trices constructed based on finite fields together with a masking technique to construct
QC-LDPC codes for AWGN, binary random and burst erasure channels.
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