
Low-Floor Tanner Codes Via Hamming-Node
or RSCC-Node Doping�

Shadi Abu-Surra1, Gianluigi Liva2, and William E. Ryan1

1 Electrical and Computer Engineering Department, University of Arizona
ryan@ece.arizona.edu, shadia@ece.arizona.edu

2 Dipartimento di Elettronica, Informatica e Sistemistica, Universita di Bologna
gliva@deis.unibo.it

Abstract. We study the design of structured Tanner codes with low
error-rate floors on the AWGN channel. The design technique involves
the “doping” of standard LDPC (proto-)graphs, by which we mean Ham-
ming or recursive systematic convolutional (RSC) code constraints are
used together with single-parity-check (SPC) constraints to construct a
code’s protograph. We show that the doping of a “good” graph with
Hamming or RSC codes is a pragmatic approach that frequently results
in a code with a good threshold and very low error-rate floor. We focus
on low-rate Tanner codes, in part because the design of low-rate, low-
floor LDPC codes is particularly difficult. Lastly, we perform a simple
complexity analysis of our Tanner codes and examine the performance
of lower-complexity, suboptimal Hamming-node decoders.

1 Introduction

An LDPC code, as first proposed by Gallager in [1], is defined as an (n, k) linear
block code with a low density of non-zero elements in its parity check matrix H .
The m × n matrix H can be represented as a bipartite graph (Tanner graph)
with n variable nodes and m single-parity-check (SPC) nodes. A generalization
of these codes was suggested by Tanner in [2], for which subsets of the vari-
able nodes obey a more complex constraint than an SPC constraint, such as a
Hamming code constraint. There are at least two advantages to employing con-
straint nodes with constraints more complex than a simple parity check. First,
more complex constraints tend to lead to larger minimum distances. Second,
because a complex constraint node can encapsulate multiple SPC constraints,
the resulting Tanner graph will contain fewer edges so that deleterious graphical
properties are more easily avoided. Both of these advantages lead to a lower
error-rate floor. One successful instance of a Tanner code is the turbo product
code (TPC) [3]. Another special case of Tanner codes was studied in [4] and
[5], where the constraint nodes correspond to Hamming codes. Also, in [6] codes
are built by applying BCH or Reed-Solomon code constraints to variable node

� This work was funded by NASA-JPL grant 1264726 and by the University of
Bologna, Progetto Pluriennale.

M. Fossorier et al. (Eds.): AAECC 2006, LNCS 3857, pp. 245–254, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

246 S. Abu-Surra, G. Liva, and W.E. Ryan

subsets, and in [7] recursive systematic convolutional (RSC) codes are used as
constraints. The RSC-LDPC codes in this work are more general in the sense
that different constraint nodes can be used to construct codes and the graph
structure is generally more flexible.

Liva and Ryan in [8], [9] present a more general case of Tanner codes in [5]
called Hamming-doped LDPC codes (HD-LDPCC). This generalization allows
more than one type of constraint node in the graph as well as irregularity among
the node degrees. The doping refers to the fact that the design approach involves
inserting Hamming constraint nodes into a Tanner graph or a protograph [10]
in place of selected SPC nodes. (A protograph will be defined in Section III.)
In this paper, we consider the doping of protographs using either Hamming
nodes or RSC nodes; we will call the latter code type RSC-LDPC codes. When
referring generically to such a code, we will use doped LPDC code and Tanner
code interchangeably. We will also refer to a code that resides at a constraint
node as a component code (in contrast with Tanner’s “subcode”), and we use
constraint node and component-code node interchangeably.

We demonstrate via computer simulations that both HD-LDPC and RSC-
LPDC codes exhibit very low error floors, even for code lengths less than 1000
bits. Of course, since our doping technique replaces SPC nodes of code rate
p/(p+1) by lower-rate codes, the resulting doped LDPC codes are low-rate codes.
Thus, our code design technique provides an approach to designing structured,
short (or long), low-rate graphical codes with very low floors, a difficult task if
one were restricted to standard LDPC codes [11].

The paper proceeds as follows. In the next section, we present an overview
of the construction of Hamming- and RSCC-doped LDPC codes based on pro-
tographs. Section III presents four example code family designs. In Section 4, we
discuss the iterative decoders which are used to decoder the doped LDPC codes,
and analyze their complexity. In Section 5, we present simulation results of the
codes we have designed.

2 Overview of the Design Technique

The graph of a Tanner code has n variable nodes and mc constraint nodes. The
connections between the set of variable nodes and constraint nodes V and C is
given by an mc×n adjacency matrix Γ . For an LDPC code, the adjacency matrix
Γ and the parity-check matrix H are identical. For a Tanner code, knowledge of
the parity-check matrices of the component codes is also required.

In this paper, we consider only Hamming or RSC component codes in addition
to the more common SPC component codes. Because the parity-check matrices
for SPC and Hamming codes are straightforward, we discuss only the parity-
check matrices for (possibly punctured) rate-1/2 finite-length RSC codes which
will be used to dope graphs. For a memory-ν, rate-1/2 RSC code with generator
polynomials g1(D) = g10 + g11D + · · · + g1νDν and g2(D) = g20 + g21D + · · · +
g2νDν , the corresponding parity-check matrix is

H(D) =
[
g2(D) g1(D)

]
. (1)

Low-Floor Tanner Codes Via Hamming-Node or RSCC-Node Doping 247

Because we consider finite block lengths, the binary parity-check matrix for
such a code is given by

H =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

g20 g10 0 0 0 0 · · ·
g20 g10 g20 g10 0 0 · · ·
...

... g20 g10

g2ν g1ν

...
...

0 0 g2ν g1ν

0 0 0 0
. . .

...
...

...
...

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

, (2)

To find the rate of a doped graph with n variable nodes and mc constraint
nodes, note that each component-code contributes (1 − Ri)ni redundant bits,
where ni and Ri are the length and rate of the ith component-code, respectively.
Consequently, the total number of redundant bits in the code cannot exceed
m =

∑mc

i=1(1 − Ri)ni, and so the number of information bits in the code will
be at least n − m. This implies that the code rate satisfies Rc ≥ 1 − m

n , with
equality when the check equations are independent.

The parameters in standard LDPC code design which most affect code per-
formance are the degree distributions of the node types, the topology of the
graph (e.g., to maximize girth), and the minimum distance, dmin. For the design
of Tanner codes, decisions must also be made on the types and multiplicities
of component codes to be used. The choice of component code types and their
multiplicities is dictated by the code rate and complexity requirements. Regard-
ing complexity, we consider only Hamming codes for which the number of parity
bits is (1 − Ri)ni ≤ 4 and only RSC codes for which the number of trellis
states is at most eight. Note that this constraint on the Hamming code fam-
ily limits the number of states in the time-varying BCJR trellis [12] to be at
most 16.

As for LDPC codes, the topology of the graph for a Tanner code should
be free of short cycles. Obtaining optimal or near-optimal degree distributions
for the graphs of Tanner codes can proceed as for LDPC codes, using EXIT
charts [13], for example. In this paper, we instead follow the pragmatic design
approach introduced in [8], [9], which starts with a protograph that is known
to have a good decoding threshold and replaces selected SPC nodes with either
Hamming or RSC nodes. Although we provide no proof, the substitution of
these more complex nodes tends to increase minimum distance as shown by
simulations. Further, it leads to a smaller adjacency matrix since multiple SPC
nodes are replaced by a single component code node. The implication of a smaller
adjacency matrix is that short cycles and other deleterious graphical properties
are more easily avoided.

248 S. Abu-Surra, G. Liva, and W.E. Ryan

3 Example Doped LDPC Code Designs

A protograph [14], [10] is a relatively small bipartite graph from which a larger
graph can be obtained by a copy-and-permute procedure: the protograph is
copied q times, and then the edges of the individual replicas are permuted among
the replicas (under restrictions described below) to obtain a single, large graph.
Of course, the edge connections are specified by the adjacency matrix Γ .

Note that the edge permutations cannot be arbitrary. In particular, the nodes
of the protograph are labeled so that if variable node A is connected to constraint
node B in the protograph, then variable node A in a replica can only connect
to one of the q replicated B constraint nodes. Doing so preserves the decoding
threshold properties of the protograph. A protograph can possess parallel edges,
i.e., two nodes can be connected by more than one edge. The copy-and-permute
procedure must eliminate such parallel connections in order to obtain a derived
graph appropriate for a parity-check matrix.

It is convenient to choose an adjacency matrix Γ as an Mc ×nc array of q × q
weight-one circulant matrices (some of which may be the q × q zero matrix).
We will call each row of permutation matrices a block row which we observe
has q rows and n = qnc columns. We note that there is one block row for each
constraint node of the protograph. We note also that the number of nonzero
permutation matrices in a block row is simultaneously equal to the degree of its
corresponding constraint nodes and the common length of the nodes’ component
codes.

Since there is one matrix Hi for each block row of Γ (for the ith component
code), we need only discuss the ith block row. Let Hi be mi × ni. Then for each
row in the ith block row, replace the ni ones in the row by the corresponding
ni columns of Hi. This expands the ith block row from q × n to qmi × n. (For
the special case of an SPC constraint node, mi = 1 and the row block is not
expanded.) Once this process has been applied to each block row, the resulting
parity-check matrix H for the Tanner code will be

∑
i qmi × n. Because Γ is

block circulant, the resulting matrix H can also be put in a block-circulant form
(thus, the Tanner code will be quasi-cyclic) [9].

For the case when Γ is not an array of circulants, the H matrix can be obtained
via a process analogous to the one above. Γ in this case corresponds to a random
permutation on the edges of the protograph replicas, but two constraints are
taken in considerations: the protograph structure and the girth of the graph.

In the remainder of this section, we present several HD-LDPC and RSC-
LDPC codes whose design relies on doping protographs. In Section 5 we present
selected simulation results for these codes on the AWGN channel.

Code 1: Rate-1/6 HD-LDPC Code. The doped protograph for a rate-1/6
HD-LDPC code is shown in Figure 1. The protograph displays a single infor-
mation bit, u0, five parity bits p0 to p4, two SPC nodes, and a (6,3) shortened
Hamming code. The initial protograph that we doped was a rate-1/4 ARA pro-
tograph [15], but with minor modification.

Low-Floor Tanner Codes Via Hamming-Node or RSCC-Node Doping 249

u0

p0

p1

p2

p3

p4

H

Fig. 1. Rate-1/6HD-LDPCprotograph

1

2

T

2

T RSC

1

Fig. 2. Rate-1/6 RSC-LDPC protograph

The (6,3) Hamming code was selected because it leads to the targeted rate of
1/6, it has a low-complexity BCJR decoder, and its H matrix-based graph is free
of 4-cycles so that belief propagation is an option. Note also that the addition
of the Hamming node has the effect of amplifying the minimum distance of
the eventual code (after copying and permuting). This is because there will be
q copies of the Hamming node whose codewords have a minimum distance of
three. Section 5 presents an example code based on this protograph together
with its performance (a pseudo-random adjacency matrix is used).

Code 2: Rate-1/6 RSC-LDPC Code. The idea of adding a component code
node to amplify weight (hence, dmin) led us to consider RSC nodes, particularly
since RSC codes produce large weight for low-weight inputs. Since a rate-1/2
RSC code can have any even length, we must consider in the design of an RSC-
doped protograph what this length should be. Figure 2 accommodates an un-
terminated (6T , 3T) RSC component code, where T is a design parameter, so
that the overall protograph has T inputs and 6T outputs. The 6T outputs are
represented by all of the circles in Figure 2, some of which are obscured; the RSC
node in Figure 2 has 3T inputs and 3T outputs. Notice that this figure contains
T equivalent sub-protographs. In the copy-and-permute procedure, we ignore the
fact that these were formerly protographs, and apply the copy-and-permute rules
only to the overall protograph.

We point out that codes based on this protograph are turbo-like [16] in the
sense that copies of the information bits are permuted and distributed over
T accumulators, and then part of their outputs together with the remaining
information bits are permuted and fed to the RSC code encoder. One major
difference, however, is that the present code uses multiple short RSC code blocks
rather than one or two long RSC code blocks. The rate-1/6 RSC-LDPC codes
presented in Section 5 utilize (pseudo-)random adjacency matrices.

v1v0 v2 v13 v14

H2H1

Fig. 3. Rate-1/2 HD-LDPC proto-
graph

1RSC

RSC2

0u 0p 1p 2p 3p 1u 4p p5 0u 0p 1p 2p 3p 1u 4p p5

1 8

Fig. 4. Rate-1/4 RSC-LDPC protograph

250 S. Abu-Surra, G. Liva, and W.E. Ryan

Code 3: Rate-1/2 HD-LDPC Code. The protograph in Figure 3 corresponds
to a rate-1/2 HD-LDPC code. It consists of two (15,11) Hamming component
codes and 15 variable nodes. One of the protograph’s variable nodes is punctured
to achieve the desired rate. Further, the two code-components are not identical.
Specifically,

H1 = [M1 M2] =

⎡

⎢
⎢
⎢
⎣

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎦

, (3)

and H2 = [M2 M1], where the definitions of M1 and M2 are evident. The ben-
efit of permuting the bits of identical component codes was pointed out by
Tanner [2].

A rate-1/2 (2044,1022) Tanner code can be constructed from the
protograph of Figure 3 as follows. First, make q = 146 total replicas of the
protograph. This yield a graph with n=(15)(146)=2190 bit nodes and mc =
292 check nodes. The number of parity bits for the code is m = 292(15− 11)
= 1168 so that the resulting code is (2190,1022). For the code presented in
Section 5, Γ is an array of q × q circulants, in which case, the code quasi-
cyclic. A rate-1/2 (2044,1022) quasi-cyclic Tanner code can be obtained by
puncturing the first 146 bits of each codeword (corresponding to the first col-
umn of circulants of Γ).

Code 4: Rate 1/4 RSC-LDPC Code. As depicted in Figure 4, we can
obtain a rate-1/4 RSC-LDPC protograph which resembles the protograph of
Figure 3, with two different rate-1/2 RSC nodes (of length 48) used in place of the
Hamming nodes. Note that the two RSC component-codes form 48 parity check
equations, which necessitate the existence of 64 variable nodes in the protograph
in order to achieve a rate-1/4 code. Moreover, the number of information bits
among these 64 bits is 16 and each 64-bit word must satisfy these 48 check
equations. In Figure 4, we divided the variable nodes into eight similar groups
(enclosed in the dash boxes), with six connections to each RSC code. Each group
contains two information bits, u0 and u1, and six parity bits, p0 to p5, which are
ordered in a sequence relevant to the decoder.

The rate-1/2 RSC component codes have two different polynomial sets; one
has polynomials (17, 15)8 and the other has polynomials (3, 2)8. Assuming that
both have unterminated trellises; the resultant code has rate 1/4. However,
we have to terminate one of the two component codes to obtain good perfor-
mance. (Terminating both of them also works, but at the cost of code rate.)
In this code, the (17, 15)8 RSC code trellis has been terminated. Since ν = 3
and the rate is 1/2 for this component code, 6 code bits are related to these
termination bits.

From Figure 4, the last six bits of each of the RSC component codes include
two information bits. Consequently, trellis termination process reduces the rate

Low-Floor Tanner Codes Via Hamming-Node or RSCC-Node Doping 251

from 16/64 to 14/64. In order to obtain rate 1/4, we puncture eight of the 64
bits, four degree-one variable nodes from each RSC code.

Finally, we constructed a (16352,4088) RSC-LDPC code by making 292 copies
of the above protograph. A block-circulant adjacency matrix was used in our
simulations. In summary, n = 18 688, mc = 584, Mc = 2, and q = 292.

4 Doped-LDPC Code Iterative Decoder

For LDPC codes in this paper, we used the standard sum-product algorithm
(SPA). For the Tanner codes which have more complex constraint nodes, a soft-
input soft-output (SISO) decoder is used to compute the soft-output messages.
The choice of the SISO decoder for non-SPC constraint codes depends on the
code type. For RSC codes we use the BCJR decoder [17].

In HD-LDPC codes, the Hamming constraints can be replaced by their
equivalent SPC equations. However, except for the (6,3) shortened Hamming
code, the large number of 4-cycles the resultant graph degrades the perfor-
mance of the SPA decoder. Alternatively, for the Hamming nodes, we can use
the BCJR decoder applied to the BCJR trellis [12]. We also consider the mod-
ified Chase algorithm [18] and the cyclic-2 pseudo-maximum likelihood (PML)
decoder [19].

The modified Chase and cyclic-2 PML decoders are both SISO list-based
decoders. Cyclic-2 has an advantage over modified Chase in term of complexity
as it uses a list that refers to nearby codewords, which are independent of its
input, resulting in fewer addition operations. The complexity reduction factor
from using either of these decoders instead of the BCJR decoder depends on
the number of the states in the code’s trellis. As an example, in the decoding
of 107 codewords of the (32, 26) extended Hamming code, we observed that the
cyclic-2 decoder was 9 times faster than BCJR decoder, and the modified Chase
decoder was 4.5 times faster than BCJR.

Lastly, to gain insight on the decoding complexity of the HD-LDPC and
RSC-LDPC codes compared with that of standard regular LDPC we consider
the following rate 1/6 codes. The first is an HD-LDPC code constructed from W
copies of the protograph in Figure 1. The second is an RSC-LDPC code based
on one copy of the protograph in Figure 2, using the RSC code polynomials
(5, 7)8. The last code is an LDPC code derived from the previous HD-LDPC
code, where the Hamming constraint is replaced by its SPC constraints.

The number of additions per iteration are 131W , 50W, and 20W for HD-
LDPC, RSC-LDPC, and LDPC codes, respectively. This calculation is based on
the following (η is the relevant block length, Ns,total is the total number of trellis
states in the finite-length trellis): (1) For a standard LDPC codes, the number
of additions equals to the number of ones in its parity-check matrix. (2) The
number of additions in the HD-LDPC BCJR is given by 2Ns,total +4η. (3) For
the RSC-LDPC BCJR, the number of additions is 2Ns,total +5η/2 because the
number of stages in a rate-1/2 RSC trellis is half the block length, but it has to
compute two values at each stage; hence, 5 instead of 4.

252 S. Abu-Surra, G. Liva, and W.E. Ryan

5 Simulation Results

In this section we present several simulation results for different doped-LDPC
codes. First, we designed a (600, 100) HD-LDPC code based on the protograph
in Figure 1 and three (600, 100) RSC-LDPC codes based on the protograph in
Figure 2. The three RSC-LDPC codes correspond to three different values of the
parameter T : T = 2, 4, and 8. All of these codes were constructed using random
permutations on the edges of their protographs, but two constraints are taken
into consideration: the protograph structure and the girth of the graph. The
progressive edge growth construction in [20] is used to give the required girth,
which is eight for all loops that have only SPC nodes. On the other hand, loops
that include Hamming or RSC nodes can be of length less than eight.

A comparison between the frame error rate (FER) curves of these codes and
the (600,100) random coding bound (RCB) is presented in Figure 5. The iterative
decoder described above was used, where BCJR decoders are used to decode the
Hamming and RSC component codes. The maximum number of iterations is
Imax = 50 and 20 error events were collected at each Eb/N0 value on each curve,
except for the point at 4.5 dB of the T = 8 RSC-LDPC curve where only three
error events occurred during the decoding of 7.26 × 108 codewords. Note that
the floor for almost every code is quite low, even though the code length is 600.
Note also the lowest floor occurs for the T = 8 RSC-LDPC code, which shows
no evidence of a floor down to FER ≈ 10−9. This code is about 1.3 dB from the
random coding bound at FER=10−4.

Figure 6 shows the error rate performance curves of the (2044, 1022) quasi-
cyclic HD-LDPC code. The Hamming component codes were decoded using the
BCJR decoder and the overall decoder employed a maximum of Imax = 50
iterations. The code performance is within 1 dB of the random coding bound
and has no floor down to FER ≈ 5 × 10−8.

The performance of the rate-1/4 RSC-LDPC code (Imax = 20) constructed
in Section 2 is presented in Figure 7. Its performance is compared to that of

0 1 2 3 4 5

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No [dB]

F
E

R

HD−LDPC
RSC−LDPC, T=2
RSC−LDPC, T=4
RSC−LDPC, T=8
RCB

Fig. 5. Frame error rate comparison be-
tween (600, 100) HD-LDPCcode and RSC-
LDPC codes at different T , Imax = 50

0 0.5 1 1.5 2 2.5 3
10

−8

10
−6

10
−4

10
−2

10
0

Eb/No [dB]

F
E

R
\B

E
R

FER
BER
RCB

Fig. 6. Performance of (2044, 1022) HD-
LDPC code compared to the random cod-
ing bound. Imax = 50.

Low-Floor Tanner Codes Via Hamming-Node or RSCC-Node Doping 253

−0.5 0 0.5 1
10

−8

10
−6

10
−4

Eb/No [dB]

F
E

R
\B

E
R

RSC−LDPC FER
RSC−LDPC BER
QCRA FER
QCRA BER
RCB, k=4096

Fig. 7. Performance of (16352, 4088)
RSC-LDPC code compared to that of
(16384, 4096) QCRA code. Imax = 20.

0 0.5 1 1.5 2 2.5 3 3.5
10

−8

10
−6

10
−4

10
−2

10
0

SNR in dB

F
E

R
\B

E
R

FER, cyclic−2 PML
BER, cyclic−2 PML
FER , m−Chase
BER , m−Chase
FER, BCJR
BER, BCJR

Fig. 8. Comparison between the perfor-
mance of BCJR decoder, and the other
sub-optimal decoders. The (2048, 1024)
HD-LDPC components are (32, 26) ex-
tended Hamming codes.

the quasi-cyclic repeat-accumulate code (QCRA) in [21] as well as the random
coding bound. The curves show that our code is superior to the QCRA code at
low Eb/N0 values. But at higher Eb/N0 values, the QCRA code has a slightly
better FER than the RSC-LDPC. We noticed that by increasing Imax from 20 to
50 in RSC-LDPC code, the FER at Eb/N0 =0.8 dB reduced to around 2×10−6.

Finally, we examined the performance of a (2048, 1024) HD-LDPC code,
constructed from the (32, 26) extended Hamming code, using the BCJR decoder,
the Chase decoder (radius 6), and the cyclic-2 PML decoder. Note in Figure 8
that the performance curves of the modified Chase and the BCJR decoders are
almost the same, and about 0.5 dB better than that of the cyclic-2 PML decoder.
On the other hand, cyclic-2 PML decoder is about twice as fast as the Chase
decoder and about nine times as fast as the BCJR decoder.

Acknowledgments

We would like to acknowledge Professor Keith Chugg of the University of South-
ern California and Professor Marc Fossorier of the University of Hawaii for help-
ful discussions on finite code length performance bounds, and Prof. Chugg for
his program which computes such bounds.

References

1. R. G. Gallager, “Low-density parity-check codes,” IRE Transactions on Informa-
tion Theory, vol. 8, pp. 21–28, January 1962.

2. R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions
on Information Theory, vol. 27, pp. 533–547, September 1981.

3. P. Elias, “Error free coding,” IRE Transactions on Information Theory, vol. PGIT-
4, pp. 29–37, September 1954.

254 S. Abu-Surra, G. Liva, and W.E. Ryan

4. M. Lentmaier and K. S. Zigangirov, “Iterative decoding of generalized low-density
parity-check codes,” in IEEE International Symposium on Information Theory,
p. 149, August 1998.

5. J. Boutros, O. Pothier, and G. Zemor, “Generalized low density (Tanner) codes,”
in IEEE International Conference on Communications, ICC ’99, pp. 441–445, June
1999.

6. N. Miladinovic and M. Fossorier, “Generalized LDPC codes with Reed-Solomon
and BCH codes as component codes for binary channels,” in IEEE Global Telecom-
munications Conference, GLOBECOM ’05, November 2005.

7. S. Vialle and J. Boutros, “A Gallager-Tanner construction based on convolutional
codes,” in Proceedings of International Workshop on Coding and Cryptography,
WCC’99, pp. 393–404, January 1999.

8. G. Liva and W. E. Ryan, “Short low-error-floor Tanner codes with Hamming
nodes,” in IEEE Military Communications Conference, MILCOM ’05, 2005.

9. G. Liva, W. E. Ryan, and M. Chiani, “Design of quasi-cyclic Tanner codes with low
error floors,” in 4th International Symposium on Turbo Codes, ISTC-2006, April
2006.

10. J. Thorpe, “Low-density parity-check (LDPC) codes constructed from pro-
tographs,” Tech. Rep. 42-154, IPN Progress Report, August 2003.

11. Y. Mao and A. H. Banihashemi, “A heuristic search for good low-density parity-
check codes at short block lengths,” in IEEE International Conference on Com-
munications, ICC 2001, pp. 41–44, June.

12. R. J. McEliece, “On the BCJR trellis for linear block codes,” IEEE Transactions
on Information Theory, vol. 42, pp. 1072–1092, July 1996.

13. S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check
codes for modulation and detection,” IEEE Transactions on Communications,
vol. 52, pp. 670–678, April 2004.

14. I. D. S. Lin, J. Xu and H. Tang, “Hybrid construction of LDPC codes,” in Proc. of
the 40th Annual Allerton Conference on Communication, Control, and Computing,
Illinois, October 2002.

15. A. Abbasfar, D. Divsalar, and K. Yao, “Accumulate repeat accumulate codes,”
in IEEE Global Telecommunications Conference, GLOBECOM ’04, pp. 509–513,
November 2004.

16. D. Divsalar, H. Jin, and R. McEliece, “Coding theorems for “turbo-like” codes,”
in Proc. of 36th Allerton Conf., September 1998.

17. L. R. Bahl, J. cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Transactions on Information Theory, vol. 20,
pp. 284–287, March 1974.

18. R. M. Pyndiah, “Near-optimum decoding of product codes: Block turbo codes,”
IEEE Transactions on Communications, vol. 46, pp. 1003–1010, August 1998.

19. “Block decoding with soft output information,” Patent 5930272, United States
Patent, July 1999.

20. X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Progressive edge-growth Tan-
ner graphs,” in IEEE Global Telecommunications Conference, GLOBECOM ’01,
pp. 995–1001, November 2001.

21. R. M. Tanner, “On quasi-cyclic repeat-accumulate codes,” in Proc. of the 37th An-
nual Allerton Conference on Communication, Control, and Computing, Monticello,
Illinois, September 1999.

	Introduction
	Overview of the Design Technique
	Example Doped LDPC Code Designs
	Doped-LDPC Code Iterative Decoder
	Simulation Results

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

