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Abstract. Perfect decryption has been always assumed in the research
of public key encryption, however, this is not true all the time. For some
public key encryption primitives, like NTRU [9] or Ajtai-Dwork [1], the
decryption process may not obtain the corresponding message even the
encryption and decryption are run correctly. Furthermore, such a kind
of decryption errors will lead to some dangerous attacks against the un-
derlying primitive. Another interesting point is that, those primitives are
not based on the factoring, nor the discrete log problem which are sub-
ject to the Shor’s algorithm [18] with quantum computers. This kind of
primitives may be promising in the post-quantum cryptography. There-
fore, the decryption errors deserve much attention and should be coped
with carefully.

In this paper, our main technique is not to use any error-correcting
codes to eliminate the errors, but to use some padding (transform) to
hide “bad” errors from attacker’s control. We 1) efficiently enhance these
error-prone public key encryption primitives to the chosen ciphertext se-
curity, even in the presence of the decryption errors, and 2) show that
the solution is more generic, rather than some specific padding meth-
ods previously presented, to thwart the decryption errors based attacks
successfully.

1 Introduction

Public key encryption (PKE) is a crucial building block in cryptography, widely
used in many security protocols and schemes. Whilst various PKEs are pro-
posed to fulfill with the requirement in different scenarios, one property of PKE
is always assumed, which is the perfect decryption. It means that any validly en-
crypted ciphertext will lead to the same message corresponding to the ciphertext
for certainty. However, there exists a family of PKE that has good performance
in the implementation, but fails to have perfect decryption sometime, such as
NTRU [9] and Ajtai-Dwork [1] etc.

Even though their decryption errors do not occur often, they do have been
affected greatly. Indeed the decryption errors we care about are not only possible
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to reduce the efficiency of PKE, but might also give additional useful information
to potential attackers, thus lead to a fatal attack, such as secret key exposure [16].

Given a PKE (a randomly generated public and secret key pair), for some
message and randomness pair, the encryption algorithm may lead to a mapping
which is not injective. This would be inevitable if some specific message pairs are
chosen, and further it gives the opportunity for the attacker to know the truth -
some ciphertexts are corresponding to decryption error message, which is never
desired to be known by the attacker with strong power, such as adaptively chosen
ciphertext attacker [17].

Although perfect decryption has not been achieved, this kind of PKE is so
meaningful after the Shor’s factoring algorithm [18]. Its significance lies in that
they are not based on the common number-theoretic problems of factoring or
discrete log, like RSA or ElGamal, but on the lattice problem which is believed
hard to be solved even that the quantum computer is built in the future. Addi-
tionally, since the fast implementation of them can be compared with RSA, this
family may be a promising replacement of the commonly used PKE, if it could
be made immune to the decryption errors.

1.1 Related Work

There are some related work in this context, Goldreich et al [7] proposed a solu-
tion to the decryption problem of Ajtai-Dwork [1], but failed to make the scheme
secure [12]. Later, Dwork et al [5] generalized the theoretical solution to solve
any infrequent decryption errors, using several totally impractical techniques as
parallel repetition, hard core bit and direct product. By these only theoretically
meaningful techniques, the error probability could be found with only a tiny prob-
ability, i.e. the attack using decryption errors is made impossible to run efficiently.

Although some efficient work by Howgrave-Graham et al. [10] provided an
exclusive use padding scheme for NTRU, called NAEP, to enhance the security
of NTRU even in the presence of decryption errors, it was especially designed
and thus not useful for any other PKE. As NAEP did, in the random oracle
model [2] 1, an efficient solution in [5] also used a padding to enhance the secu-
rity practically. However, this transform appears a little complex and not good
at bandwidth overhead, having several padding schemes together, like Fujisaki-
Okamoto [6] combined with PSS-E [4], where a symmetric encryption is also
required.

1.2 Main Contributions

From a practical viewpoint, we expect the padding methods be generic so that
it could deal with many other PKEs, no matter whether there exist decryption
errors or not. In addition, the efficiency is also important, otherwise it will be
too expensive for this kind of error-prone encryptions.
1 A useful tool to design and analyze the cryptosystem, is widely used in both the-

ory and practice.
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Our main method is not to correct the errors, but to hide the errors from
the attacker’s control. We point out that actually, some existed generic padding
may help deterministic primitive immunize the attack from the decryption errors,
such as 3-round OAEP [14]. And we provide a new variant of it to cope with
probabilistic primitive as well. Note that both of them are generic to adapt to
many other PKEs, and very efficient, especially in bandwidth.

Next, we will first explain the security notions and the attack by Proos, then
show that some error-prone PKEs could be enhanced to chosen ciphertext secu-
rity provably when decryption failures occur.

2 Notions and Notations

In the following paper, we define M, R as the message and randomness space
respectively, and C is the ciphertext space, where C = M × R. Pr[operation|·]
represents the probability of event “·” under the corresponding operation. And
we say that negl(k) is negligible, if for any constant c, there exists k0 ∈ N, s.t.
negl(k) < (1/k)c for any k > k0.

2.1 Public Key Encryption

Definition 1. Public key encryption Π is defined by a triple of algorithms, (K,
E, D):

– the key generation algorithm K: on a secret input 1k (k ∈ N), in polyno-
mial time in k, it produces a pair of keys (pk, sk), public and secret known
respectively.

– the encryption algorithm E: on input of message m∈M and public key pk, the
algorithm E(m, r) produces the ciphertext c of m, c∈C. (random coins r∈R).

– the decryption algorithm D: By using a ciphertext c and the secret key sk, D
returns the plaintext m, s.t.

Pr[Dsk(Epk(m, r)) = m] = 1

or when it is an invalid ciphertext, outputs ⊥. This algorithm is deterministic.

Definition 2. Error-prone Public key encryption Π ′ = (K′, E ′, D′)

– K′ is equivalent to K, except that there may exist such a pair (pk, sk), cor-
responding to the D′ but not to D.

– E ′ is equivalent to E, except that there may exist pairs (m, r) which do not
fit the algorithm D.

– D′ decrypt the ciphertext c ∈ C with overwhelming probability, though,

Pr[Dsk(Epk(m, r)) �= m] ≤ negl(k)

Definition 3. A public key encryption scheme is said to be OW-PCA secure,
if any polynomial-time adversary A, with the public data and the help of the
plaintext-checking oracle Opca, can get the whole preimage of the ciphertext with
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at most q queries to Opca, in a time bound t and a winning probability no more
than negligible:

Pr

⎡
⎣

(pk, sk) ← K(1k)
m ← M, r

R← Ω m′ = m
c ← Epk(m; r), m′ ← AOpca(c)

⎤
⎦ ≤ negl(k)

Remark. Naturally, the security of OW-PCA primitive is dependent on the in-
verting the cipher even with the help of plaintext-checking oracle, which is a
polynomial-time turing machine able to decide whether a cipher and a mes-
sage is the corresponding encryption pair, or not, which is firstly introduced by
Okamoto and Pointcheval [13]. The reason why we introduce the notion hereby
is, some famous padding like REACT [13] has been used to enhance the security
of error-prone primitive, e.g. NTRU, without concerning the decryption errors.
The result is rigorously proved though, it loses the security as soon as decryp-
tion error based attack is employed. Furthermore, if we could show that some
transforms are possible to rescue the provable security based on the OW-PCA
even in the presence of decryption errors, we may successfully enhance lots of
the public key encryption primitives, since almost all commonly used PKEs are
in OW-PCA security.

Beyond the one-wayness, the polynomial indistinguishability [8] of the encryp-
tion can make the leakage of any partial information as hard as that of the whole
plaintext. In order to make sense in the strongest attack scenario, the IND should
be considered in the CCA model, called IND-CCA [17], which has become the de
facto requirement of the public key cryptosystem, as follows.

Definition 4. A public key encryption scheme is IND-CCA secure, if there exists
no polynomial-time adversary A = (A1, A2) who, under the help of the decryp-
tion oracle, can distinguish the encryption of two equal-length, distinct plain-
texts, with the probability significantly greater than 1/2 (the only restriction is
that the target ciphertext cannot be sent to the decryption oracle directly). More
formally, the scheme is IND-CCA secure, if with the time bound t, decryption
oracle querying bound q, the following is satisfied:

Pr
b

R←{0,1}

r
R←Ω

⎡
⎢⎢⎣

(pk, sk) ← K(1k)
(m0, m1, s) ← AO

1 (pk)
c ← Epk(mb; r) b̂ = b

b̂ ← AO
2 (c, m0, m1, s, pk)

⎤
⎥⎥⎦ ≤ 1

2
+ negl(k)

Remark. IND-CCA security is such a strong security notion that it is considered
to leak no single bit of the useful information against even very dangerous at-
tack. On the other hand, however, it is subject to the decryption errors as well.
For example, the famous Naor-Yung paradigm [11], which uses two independent
public keys to encrypt one same message, together with some proof that the mes-
sage two ciphertext encrypted is the same, is denied as long as decryption errors
occur. Thus, we can find that the failure of decryption leads to not only efficiency
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lost, but also security flaw. Similarly for Ajtai-Dwork scheme [1], the decryption
errors were claimed to be eliminated by Goldreich et al [7], however, later was
pointed put to be insecure or totally impractical by Nguyen [12]. Very recently,
Proos gave a successful attack based on decryption failure of NTRU, which de-
nied the provable security of many previous transforms, such as REACT-NTRU,
and OAEP-NTRU.

3 Proos’s Attack

In 2003, Proos [16] provided an attack which for an error-prone public key encryp-
tion (K′, E ′, D′), can break the scheme totally, i.e. to find the secret key, whereas
the scheme remains IND-CCA secure, if with perfect decryption(K, E , D).

If an encryption scheme has the perfect decryption, the act of decrypting a
valid ciphertext will provide no useful information to attackers. However, if the
error-prone decryption is employed, the error occurred may give useful informa-
tion for attackers to determine the information of the secret key, such as whether
a valid ciphertext is correctly encrypted or not. Note that even a valid ciphertext
is encrypted correctly, the secret information is still possible to leak due to the
imperfect decryption. Next we will explain the attack by Proos 2.

3.1 Decipherable Ciphertext Attacks

Let Π ′ = (K′, E ′, D′) be an error-prone public key encryption primitive. Given
a randomly generated key pair (pk,sk), and a decipherable oracle, DC(pk,sk) is
an oracle which on input (x, r, y) s.t. Epk(x, r) = y returns whether or not
Dsk(y) = x. That is, a DC oracle can be used to determine if a valid ciphertext
encrypted using pk can be correctly decrypted using sk. An attack using the pub-
lic information and a DC oracle will be named as a decipherable ciphertext attack
(DCA). Since naturally, a DC oracle gives additional information on the decryp-
tion, DCA is stronger than plain chosen plaintext attack. As it is also able to be
simulated by decryption oracle, DCA is no stronger than CCA, obviously. And it
is also adapted to the perfect decryption case, though seems a little redundant.

3.2 Attack on IND-CCA Transform

The encryption primitive may not be IND-CCA secure originally, however, there are
many ways to enhance its security to the “appropriate” level, such as by the Op-
timal Asymmetric Encryption Padding (OAEP) [3], or Rapid Enhanced-security
Asymmetric Cryptosystem Transform (REACT) [13] in the random oracle model.

Unfortunately, by the Proos’s attack [16], guaranteed security for perfect de-
cryption transform is not available any more for imperfect decryption ones. There
exists such a scheme which can be proven secure in the perfect decryption sce-
nario, but fails to hold the security in the imperfect decryption scenario, due to
2 Due to the page limit, we omit the introduction of NTRU. Please refer to [9, 10] for

the details why decryption errors occur.
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leakage of useful information when answering the query of decipherable cipher-
text attack. We will explain it in the following.

Take the OW-PCA secure PKE (K′, E ′, D′) as an example, the enhanced se-
curity ΠR = (KR, ER, DR) as the following:

– KR = K′.
– ER

pk(m, s, r), for a message m, choose randomness s and r, let c1 = Epk(s, r);
and use cryptographic hash functions G and H to compute c2 = G(s) ⊕ m,
with c3 = H(s, m, c1, c2). At last, define the ciphertext c = (c1, c2, c3).

– DR
sk(c1, c2, c3), for a ciphertext c = (c1, c2, c3), s′ = Dsk(c1), m′ = G(s′) ⊕ c2

and c′3 = H(s, m′, c1, c2). If s′ ∈ M and c′3 = c3 then output m′, otherwise
output ⊥.

The above encryption is able to be proven the IND-CCA security without
the presence of the decryption error, due to [13], while we hereby would like to
consider another situation.

It turns out that when ΠR with the decryption errors, the IND-CCA security
loses, due to the fact that OW-PCA PKE will not return ⊥ for all invalid ci-
phertexts, which would provide a convenience for the attacker to break the PKE
totally.

Consider a PKE with decryption errors Π ′ = (K′, E ′, D′), and assume that
the attacker has found k invalid ciphertext y1, y2..., yk of Π ′, then the attacker
could build ΠR′

by using REACT transform as follows:

– KR′
= K′

– ER′

pk (m, r) = E ′
pk(m, r)

–

DR′

sk (y) =

⎧
⎨
⎩

D′
sk(y) if y /∈ {y1, y2, ..., yk}

x if y = yi, and the i-th bit of sk is 1
⊥ otherwise

Clearly, the new ΠR′
and original Π ′ are indistinguishable to a PCA attacker,

thus ΠR′
is also OW-PCA secure.

The following attack could be applied to ΠR′
to recover the secret key. For

1 ≤ i ≤ k form a ΠR′
ciphertext yR′

i with s = x and c1 replaced by yi. The yR′

i

then could be sent to the DCA oracle with the knowledge that yR′

i will decrypt
to ⊥ if and only if the i-th bit of sk is zero. Thus ΠR′

is no more IND-CCA.

4 Generic Transforms

Since the underlying attack seems not able to be prevented by the previous
scheme, [10] presented a new exclusive use padding for NTRU. However, we find
that it is able to employ currently existed generic transform, 3-round OAEP [14]
and its variant for this mission. The merit of the schemes is that they are not
only useful to error-prone PKE, but also applicable to other common PKE;
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furthermore, the 3-round OAEP has a good performance in efficiency, i.e. saves
the bandwidth and is less redundant.

4.1 Concrete Construction

The scheme is described in the following:

Setup. On the security parameter, key generation algorithm randomly output
a pair of (pk,sk). Assume the random oracle family H, and F, G, H

R← H,

F : {0, 1}k �→ {0, 1}n,
G : {0, 1}n �→ {0, 1}k,
H : {0, 1}k �→ {0, 1}n.

“||” represents bit concatenation. Let a sequence of bit zero be k0-bit long, then
the message length will be n − k0.

Construction (3-round OAEP). The transform for deterministic encryption
is defined as the following:

Encryption Enc(m) Decryption Dec(c)
w := [m||0k0 ] ⊕ F (r) Dsk(c) := (s||t)
t := r ⊕ G(w) w := H(t) ⊕ s
s := H(t) ⊕ w r := G(s) ⊕ t
c := Epk(s||t) m′||o := w ⊕ F (r)

If o = 0k0 , then m = m′

otherwise, return ⊥

A New Proposal. When the primitive is a probabilistic encryption scheme,
the transform shall be changed, correspondingly. Use one more random oracle
H ′ R← H, H ′ : {0, 1}n+k �→ {0, 1}k′

, and r′ = H ′(m||r), be used as the required
randomness of the probabilistic encryption. And the sequence of bit zero becomes
not necessary. Others hold the same.

Encryption Enc(m) Decryption Dec(c)
w := m ⊕ F (r) Dsk(c) := (s||t; r′)
t := r ⊕ G(w) w := H(t) ⊕ s
s := H(t) ⊕ w r := G(s) ⊕ t
r′ := H ′(m||r) m′ := w ⊕ F (r)
c := Epk(s||t; r′) If r′ = H ′(m′||r), then m = m′

otherwise, return ⊥

Remark. Actually, 3-round OAEP [14] has been proposed for its nice property of
size efficiency. However, another property of this transform that it is inherently
immune to the attack based on decryption failures, was not carefully studied and
analyzed. Besides, since 2-round OAEP is widely used now, this is a good can-
didate for promoting uses. And we still provide a slight modification of 3-round
OAEP, which adapts to the probabilistic encryption with decryption errors.
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4.2 Security Analysis with Decryption Errors

We first give the explanation that error-prone encryptions combined with trans-
forms will be immune to the decryption errors attack, and then check the chosen
ciphertext security of both transforms.

Thwarting Decryption Errors. The above transforms could be combined with
error-prone PKE Π ′ with sparse distributions of errors, and then decrease the
probability of finding errors by the attacker. For the sake of analysis, we let Π ′ has
an error probability α, where the probability is over the choice of (M, R) message
and randomness pair. Thus, we could define the error probability of M and R as
α where α is negligible when the message and randomness is chosen randomly 3.

Since we are going to reduce the successful probability of attacker to find
such a “bad” pair that leads to the DCA attack, we just analyze that probability
before and after the transform is applied. We start with the 3-round OAEP
transform. Given some message randomness pair, we at first modify the message
gradually, and change the randomness r due to the relation of paddings. The
goal of the attacker is to control the input of Π ′, i.e. (s||t), but only has access
to m. But this is obviously difficult, because F , G, H are random oracles, the
value passing through them becomes randomly. Therefore, the best strategy of
the attacker, rather than randomly guessing, is to query the random oracle and
check all the answers to find appropriate (s||t) and their corresponding (m, r).
We assume the queries to three random oracles are qF , qG, qH respectively.

By analyzing 3-round OAEP, we have the following fact. Let us first see the
t part of the input of Π ′, we have t = r ⊕ G(w), where w = (m||0k0) ⊕ F (r).
For searching the appropriate t, the attacker should use three lists to record the
query and answer to F, G and H , such as (r1, ..., rqF ), (f1, ..., fqF ) of oracle F ,
(w1, ..., wqG), (g1, ..., gqG) of oracle G and (t1, ..., tqH ), (h1, ..., hqH ) of oracle H .
Then, we try to find some “bad” t, where there are corresponding g and h in the
lists, s.t. t = ri ⊕gj, and further choose s = wj ⊕hk, thus get a candidate pair of
(m, r) which leads to an fault decryption. Since the error probability is assumed
as α, we can compute the possible probability is bounded by α · qGqH . From
another view, error probability is fixed at first, then all s||t candidates should fit
the requirement of m||0k0 . Since m||0k0 = fi ⊕ wj , after querying both oracles,
1 − (1 − 1/2k0)qF qG ≈ qF qG/2k0 .

According to our analysis, the 3-round OAEP could decrease the error prob-
ability occurred Pr[Error]1 at most

Pr[Error]1 ≤ α · qGqH +
qF qG

2k0

Note that we are able to adjust the parameter to let the above probability
tiny enough.

On the probabilistic 3-round OAEP, the situation is likely, except that one
more hash oracle is introduced. Hence we have to count this probability as well.
Besides similar analysis as above, the attacker has to make the chosen message
3 Attacker will use a more smart strategy to choose its target.
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passing the check by H ′ hash function. Since it is querying all the possible value
to the H ′ oracle, this probability will be bounded by qH′/2k′

. The total bound
is as the following.

Pr[Error]2 ≤ α · qGqH +
qH′

2k′

On the IND-CCA Security. The proof that 3-round OAEP is fulfilling with
IND-CCA seems quite natural to understand after the work by [14]. We will refer
to their paper. On the second transform, it seems that this modified version has
not been proved yet, although another probabilistic version has been studied
in [15], without achieving the exact IND-CCA security.

We just describe the proof strategy of the second transform, and refer to
the full version of this paper for detailed proof. The original 3-round OAEP is
provable with deterministic one-way permutation, however, it is not possibly to
be proved with the probabilistic encryption. The reason is that for probabilistic
encryption, even the input message is the same, the ciphertext could be different
due to distinct randomness used. Thus for the oracle simulation process, the
exact IND-CCA security (definition 4) will be lost easily. We apply one random
oracle to check the validity of message and randomness pair, then all the possible
pairs from attacker must be contained in the queries of this H ′ oracle (otherwise,
we just simply reject the request). The above problem of original 3-round OAEP
can be overcome. The security of this transform bases on OW-PCA (definition 3)
security.

Remark. From above analysis, it may be raised a question that why not just use
more hash functions and build more rounds. It is obvious that they are redundant
and expensive. More importantly, the 2-round OAEP has been proved insecure
against decryption errors attack [16], thus we naturally conclude that 3-round
is the best efficient in the presence of decryption errors, from the viewpoint of
bandwidth.

5 Conclusion

In this paper (extended abstract), we explain that existing generic transform is
suitable for PKEs without or with imperfect decryption, and propose a new vari-
ant as well. We present the error probability bound, which decreases much capa-
bility of attackers to control the message and ciphertext pair in the CCA attack,
and finally contribute to immunize the decryption failure for error-prone PKEs.
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