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Abstract. This paper describes a linearizing attack with fast calculus
for higher order differential attack. The linearizing attack, proposed by
Shimoyama et al. [13], [15], linearizes the attack equation and determines
the key by Gaussian elimination. The cost of calculating the coefficient
matrix is dominant overhead in this attack. We improve the algorithm
used to calculate the coefficient matrix by applying a bit-slice type im-
plementation [3]. We apply this method to five-round KASUMI and show
that it need 227.5 chosen plaintexts and 234 KASUMI encryptions.

1 Introduction

Higher order differential attack is a well-known attack against block ciphers. It
exploits the properties of the higher order differentials of functions and derives
an attack equation to determine the key. Jakobsen et al. applied it to KN cipher
[8]. They used exhaustive search to solve the attack equation. Shimoyama et al.
proposed an effective method of solving the attack equation [15] and Moriai et
al. generalized it for the attack on CAST cipher [13]. Their method, which we
call linearizing attack in this paper, linearizes the attack equation and solves the
key by using Gaussian elimination. Hatano et al. proposed an optimization for
linearizing attack [6] that is based on linear dependency between unknowns in
the attack equation; it decreases the number of independent variables.

In the linearizing attack, the major computational cost is estimated to be the
cost of calculating the coefficient matrix of unknown variables.1 In this paper, we
propose a fast calculus for an enhanced linearizing attack. We apply the bit-slice
type implementation proposed by Biham [3] to the attack equation to calculate
the coefficient matrix. We analyze elements of the coefficient matrix of unknown
variables and calculate it using the T function proposed in this paper instead of
a round function.

We apply the fast calculus to attack the 64-bit block cipher KASUMI. KA-
SUMI [1] is based on the known block cipher MISTY1 [11] and is optimized for

1 If the size of coefficient matrix is small, this computational cost ignores the com-
plexity of solving the system of equations [13].
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Table 1. Comparison to previous attacks on KASUMI

Cipher Rounds Complexity Comments
Data Time

KASUMI 4∗1 210.5 222.11 Higher Order Differential Attack [18]
5 239.4 2117 Higher Order Differential Attack [19]
5 222.1 260.7 Higher Order Differential Attack [16]
5 227.5 239.9 Higher Order Differential Attack [20]
5 227.5 234 This paper

*1-this attack is on a version of the cipher without FL functions.
Time complexity is measured in encryption units.

implementation in hardware. It is used in the confidentiality and integrity algo-
rithm of 3GPP mobile communications. Table 1 lists the known attacks on KA-
SUMI. Our method needs 227.5 chosen plaintexts and 234 KASUMI encryptions.

2 Preliminaries

2.1 Higher Order Differential [10]

Let F (·) be an encryption function as follows.

Y = F (X ; K) (1)

where X ∈ GF(2)n, Y ∈ GF(2)m, and K ∈ GF(2)s. X , K, and Y denote
a plaintext, a key and a ciphertext, respectively. Let {A1, · · · , Ai} be a set of
linearly independent vectors in GF(2)n and V (i) be the sub-space spanned by
these vectors. The i-th order differential is defined as follows.

∆
(i)
V (i)F (X ; K) =

⊕

A∈V (i)

F (X ⊕ A; K) (2)

In the following, ∆(i) denotes ∆
(i)
V (i) , when it is clearly understood.

In this paper, we use the following properties of the higher order differential.

Property 1. If the degree of F (X ; K) with respect to X equals N , then

degX{F (X ; K)} = N ⇒
{

∆(N+1)F (X ; K) = 0
∆(N)F (X ; K) = const

(3)

Property 2. The higher order differential has linear property on Exclusive-OR
sum.

∆(N){F (X1; K1) ⊕ F (X2; K2)} = ∆(N)F (X1; K1) ⊕ ∆(N)F (X2; K2) (4)
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2.2 Attack of a Block Cipher

Consider an R-round block cipher. Let HR−1(X) ∈ GF(2)m be a part of the
(R−1)-th round output and C(X) ∈ GF(2)m be the ciphertext for the plaintext
X ∈ GF(2)n. HR−1(X) is described as follows.

HR−1(X) = FR−1(X ; K1, · · · , KR−1) (5)

Let Ki be an i-th round key and Fi(·) be a function of GF(2)n × GF(2)s×i →
GF(2)m.

If the degree of FR−1(·) with respect to X is N − 1, we have

∆(N)HR−1(X) = 0 (6)

Let F̃ (·) be a function that outputs HR−1(X) from the ciphertext C(X) ∈
GF(2)m.

HR−1(X) = F̃ (C(X); KR) (7)

where KR ∈ GF(2)s denotes the round key to decode HR−1(X) from C(X).
From Eq. (6), (7) and Property 1, the following equation holds.

0 = ∆(N)F̃ (C(X); KR) (8)

In the following, we refer to Eq. (8) as the attack equation.

2.3 Linearizing Attack

Shimoyama et al. proposed an effective method of solving attack Eq. (8) [13],
[15]. This method, called linearizing attack in this paper, linearizes the attack
equation by treating every higher order variable like kikj with new independent
variables like kij . In the following, we use the term linearized attack equation to
refer to an attack equation that is regarded as a linear equation.

Let L be the number of unknowns in the linearized attack equation of Eq. (8).
Since the attack Eq. (8) is derived by using an m-bit sub-block, we can rewrite
it as follows.

Ak = b , k = t(k1, k2, . . . , k1k2, . . . , k1k2k3, · · ·) (9)

where A, b, and k are the m × L coefficient matrix, the m-dimensional vec-
tor, and the L-dimensional vector over GF(2), respectively. k denotes linearized
unknowns that are expressed as monomials of the R-th round key KR.

We can obtain m linearized attack equations from one N -th order differential
because Eq. (8) is an m-bit equation. Therefore, we need �L/m� sets of the N -th
order differential to determine a unique solution.

Since one set of N -th order differential requires 2N chosen plaintexts, the
number of plaintexts, M , needed to determine the key is estimated as

M = 2N ×
⌊

L

m

⌋
(10)
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If we use the same technique shown in [13], [15], Eq. (9) requires 2N × (L + 1)
times F̃ (·) calculations. Since we have to prepare �L/m� sets of N -th order
differentials to determine k, the computational cost is estimated as

T = 2N × (L + 1) ×
⌊

L

m

⌋
(11)

3 Fast Calculus for the Linearizing Attack

Each element of the matrix A and the vector b in Eq. (9) can be expressed as
a Boolean expression of ciphertext C(X) = (c1, c2, . . . , cm) like c1 + · · · + c1c2 +
· · · + c1c2c3 + · · ·. Let aj (j = 1, 2, · · · , L+ 1) be a m-dimensional column vector
of A and b. aj is calculated by using N -th order differentials, and is defined as
follows.

aj = ∆(N)Ajc , c = t(c1, · · · , c1c2, · · · , c1c2c3, · · ·) (12)

where Aj is an m × D constant matrix determined from Eq. (8) and c is a D-
dimensional vector. The elements of c are ciphertext monomials which include
higher order degrees. We can rewrite Eq. (12) as follows.

aj = Aj∆
(N)c (13)

c is determined from ciphertexts. Since we calculate ∆(N)c for each set of N -th
order differential, we are able to determine aj by calculating Eq. (13) without
using the F̃ (·) function. Therefore, we can determine coefficient matrix A and
vector b from Eq. (13).

Consider the derivation of c by using T function to calculate ciphertexts. We
take T to be a D-bit output function that outputs elements of c and implement
T by using the bit-slice method [3]. Since S-boxes are generally implemented as
tables in an encryption function, we embed T as a table in the same way. If we
implement it on a 32-bit processor, we need �D/32� table look-ups to retrieve
D-bit elements. In this paper, we consider that the computational costs of table
S-box and T function look-ups as being the same.

In the following, we introduce an algorithm for key derivation and estimate
the necessary number of chosen plaintexts and the computational cost.

Algorithm for key derivation
Step 0: Prepare �L/m� sets of N -th order differentials.
Step 1: Calculate ∆(N)c using one set of N -th order differential and repeat the
calculation for �L/m� sets.
Step 2: Calculate aj (j = 1, 2, · · · , L + 1) from Eq. (13).
Step 3: Determine the key by solving Eq. (9) with a method such as Gaussian
elimination.

The necessary number of chosen plaintexts M ′ for key derivation is the same
as Eq. (10).

M ′ = 2N ×
⌊

L

m

⌋
(14)
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We estimate the computational cost for each step of the algorithm for key deriva-
tion as follows.

Step 1: It needs 2N × �D/32� table look-ups to calculate ∆(N)c for each N -th
order differential. Thus Step 1 has computational cost of T ′

Step1 as follows.

T ′
Step1 = 2N ×

⌊
D

32

⌋
×

⌊
L

m

⌋
(15)

Step 2: In calculating Eq. (13), we calculate inner products of m sets of row
vectors of Aj and ∆(N)c. This needs 2×�D/32�×m×(L+1) table look-ups. Since
we prepare �L/m� sets of N -th order differentials, the necessary computational
cost of Step 2 is estimated to be

T ′
Step2 = 2 ×

⌊
D

32

⌋
× m × (L + 1) ×

⌊
L

m

⌋
≈ 2 ×

⌊
D

32

⌋
× L2 (16)

Step 3: Solving Eq. (9) with a method such as Gaussian elimination is generally
estimated to cost about L3. In this paper, since we evaluate computational cost
assuming the use of a 32-bit processor, Step 3 costs T 1Step3 as follows.

T ′
Step3 =

⌊
L3

32

⌋
(17)

Therefore the necessary computational cost, T ′, of this algorithm is evaluated
as follows.

T ′ = T ′
Step1 + T ′

Step2 + T ′
Step3 (18)

4 Higher Order Differential Attack on KASUMI

4.1 KASUMI

KASUMI is a Feistel type block cipher with 64-bit data block and 128-bit se-
cret key. It is based on MISTY1 [11] which has provable security against linear
and differential cryptanalysis [4], [12]. In 2000, the 3rd Generation Partnership
Project (3GPP)2 selected KASUMI as the mandatory cipher in Wideband Code
Division Multiple Access (W-CDMA). It is used in the confidentiality and in-
tegrity algorithm of 3GPP mobile communications. Fig. 1 outlines its block
diagrams with equivalent FO and FI functions; we call it KASUMI hereafter.

4.2 Previous Results

Tanaka et al. proposed the first attack on 5-round KASUMI with a 32-nd or-
der differential by using a bijective round function feature [19]. Sugio et al.
searched for an effective chosen plaintext by computer simulations and reduced
2 3GPP is a consortium that standardize the 3rd Generation Mobile System.
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Fig. 1. KASUMI

the necessary number of plaintexts and computational cost by using a 16-th
order differential [16]. In the following, we introduce the outline of [16].

Let Hi = (hi4, hi3, hi2, hi1) where hi4, hi2 ∈ GF(2)7 and hi3, hi1 ∈ GF(2)9 are
the right half of the i-th round output. With KASUMI, plaintext X is divided
into eight sub-blocks as follows.

X = (X7, X6, . . . , X0) Xi ∈
{

GF(2)9 (i = odd)
GF(2)7 (i = even) (19)

The following plaintext, obtained by computer simulations, is the effective chosen
plaintext that enables us to reduce the necessary number of chosen plaintexts
and computational cost.

X ∈ (C, C, C, C,X2, X1, C, C) X1, X2 : variable, C : fixed sub-block (20)

Using the above chosen plaintext, we have a constant value that denotes ∆(16)h33
= 0 ∈ GF(2)9. Accordingly, we derive the attack equation as follows.

∆(16){FO9
5(FL5(CL; KL5); KO5) ⊕ C9

R} = 0, (21)
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where CL and CR denote the left and right 32-bit ciphertext, respectively, and
FO9

5(·) and C9
R denote the 9-bits corresponding to h33. Eq. (21) has 82-bit equiv-

alent keys3. Sugio et al. estimated the key by combining exhaustive search with
the linearizing attack [16]. It needs 222 chosen plaintexts and 263 (FO+FL) func-
tion operations.

Nambu et al. analyzed unknown variables L = 26, 693 in linearized attack
equations using the computer software REDUCE. They estimated 82 equivalent
key bits by the linearizing attack. It needs 227.5 chosen plaintexts and 242.2

(FO+FL) function operations [20].

4.3 Application of Fast Calculus to an Attack on KASUMI

In the following, we will demonstrate an application of fast calculus to an attack
on KASUMI. We linearize Eq. (21) and express it as follows.

Ak = b (22)

where A, b, and k are the 9 × 26, 693 coefficient matrix, the 9-dimensional
vector, and the 26, 693-dimensional vector, respectively. If we determine the co-
efficient matrix A and the vector b by calculating Eq. (13), we need to analyze
the constant matrixes Aj and the vector c. Therefore, we analyzed Aj and c
by expanding the Boolean expressions of Eq. (21) with the computer software
REDUCE. We show the number of elements of c in Table 2.

Table 2. Analysis of the number of elements of c

bit position # of elements of c
16-th bit 6537
17-th bit 6686
18-th bit 6237
19-th bit 6433
20-th bit 6419
21-th bit 6713
22-th bit 6569
23-th bit 6493
24-th bit 6854

all 9109

’all ’ denotes the number of all elements of c in 9-bits.

As a result, we determined Aj (j = 1, 2, . . . , 26, 694) as the 9 × 9109 ma-
trixes and c as the 9109-dimensional vector. In the following, we estimate the
number of chosen plaintexts needed and the computational cost for the fast
calculus.

3 KL5 = (KL51, KL52) 32 bits and KO5 = (k511, k512, k513, k521, k522, k523) 50 bits.
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Estimation of Complexity
Since unknown variables L = 26, 693 exist in the linearized system of equa-
tions, we need �26, 693/9� sets of 16-th order differentials to determine the key.
Therefore, the necessary number of chosen plaintexts is estimated as follows.

M ′ = 216 ×
⌊

26, 693
9

⌋
≈ 227.5 (23)

We can estimate the computational cost, T ′, by calculating Eq. (15),· · ·,(18).

T ′
Step1 = 216 ×

⌊
9109
32

⌋
×

⌊
26, 693

9

⌋
≈ 235.69 (24)

T ′
Step2 ≈ 2 ×

⌊
9109
32

⌋
× 26, 6932 ≈ 238.56 (25)

T ′
Step3 =

⌊
26, 6933

32

⌋
≈ 239.11 (26)

T ′ = T ′
Step1 + T ′

Step2 + T ′
Step3 = 239.94 (27)

We compare Eq. (27) to the previous results. In Eq. (27), we estimate the
computational cost as the number of table look-ups of the T function and matrix
calculations. According to Fig. 1, each FI function has two S9-boxes and two S7-
boxes and so each FO function has (S9 × 2 + S7 × 2) × 3 = 12 S-boxes.
Therefore, we regard the computational cost of Eq. (27) as 239.94/12 ≈ 236.4

(FO+FL) function operations and this is equivalent to 236.4/5 ≈ 234 KASUMI
encryptions.4 We summarize the results of this fast calculus in Table 1.

5 Conclusion

In this paper we applied higher order differential attack to five-round KASUMI.
We proposed a linearizing attack with fast calculus that can reduce the com-
plexity incurred in calculating the coefficient matrix A and the vector b. Our
attack requires 227.5 chosen plaintexts and 234 encryptions.

In the linearizing attack, we solve the system of linearized equations by using
Gaussian elimination. If the number of unknown variables L is large, we can’t
ignore the computational cost of Gaussian elimination. Therefore, if we decrease
the number of unknown variables, we can diminish the total computational cost,
T ′. We outlined a technique that eliminates unknown variables for the fast cal-
culus in the appendix. We will be able to reduce the computational cost for the
key derivation by using this elimination technique.

4 We discuss here an attack on a 5-round variant.
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A A Technique for Eliminating Unknown Variables for
the Fast Calculus

We will outline an elimination technique of unknown variables for the fast cal-
culus by using lots of the linearized attack equation.

We linearize the attack equation in the same way as Eq. (9) and divide un-
known variables L into L′ and L′′. Let aj (j = 1, 2, . . . , L+1) be a m-dimensional
column vector of A and b, and let the elements of aj (j = 1, 2, . . . , L′) be D′

ciphertext monomials which include higher order degrees and elements of aj

(j = L′ + 1, . . . , L + 1) be the same as those of c. Therefore, we can rewrite
Eq. (13) as

aj =
{

Aj∆
(N)c′i (i = 1, 2, . . . , j = 1 ∼ L′)

Aj∆
(N)ci (i = 1, 2, . . . , j = L′ + 1 ∼ L + 1),

(28)

where c′i is a D′-dimensional vector that is composed of a part of the elements
of D-dimensional vector ci. Therefore, if we prepare Q(> D′) sets of N -th or-
der differentials and calculate each ∆(N)c′i (i = 1, 2, . . . , Q), we can determine
∆(N)c′i = 0 (i = D′ + 1, . . . , Q) by using linear dependency of ∆(N)c′i. In Eq.
(28), if ∆(N)c′i equals 0, we can determine aj = 0. Since aj (j = 1, 2, . . . , L′) that
correspond to unknown variables L′ equals 0, it is not necessary to estimate L′.

If many unknown variables L exist in the linearized attack equation, we will
be able to reduce the computational cost for the key derivation by using this
elimination technique.
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