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Abstract. In this paper we introduce the class of semiprimitive Fermat
curves, for which Weil-Serre’s bound can be improved using Moreno-
Moreno p-adic techniques. The basis of the improvement is a technique
for giving the exact divisibility for Fermat curves, by reducing the prob-
lem to a simple finite computation.

1 Summary of p-Adic Bounds for Curves

In this paper we are going to present new curves satisfying Theorem 1 below
and using it we obtain our improved Weil-Serre’s bound.

In the present section we recall how O. Moreno and C. Moreno combine
Serre’s techniques with the Moreno-Moreno improved Ax-Katz estimate (see
[3])to produce a p-adic version of Serre’s estimate. For Fermat curves con-
sidered here, we can formulate the best possible Moreno-Moreno type p-adic
Serre Bound.

Let
aXd + bY d = cZd, (abc �= 0) (1)

be a Fermat curve over Fpf and let |N | be the number of affine points of aXd +
bY d = cZd over Fpf . Note that the Fermat curves are nonsingular curves. Hence
we can apply to them the Weil’s Theorem.

Now we apply the p-adic estimate of [1] to the curve (1). Note that the genus
of a Fermat equation is less than or equal to (d − 1)(d − 2)/2, where d is the
degree of the Fermat equation.

Theorem 1. Let aXd + bY d = cZd be an equation over Fpf and let µ be a
positive integer satisfying |N(Fpfm)| ≡ 0 mod pµm ∀ m > 0. Then the num-
ber of solutions |Ñ | of aXd + bY d = cZd in P

2(Fpmf ) satisfies the following
bound:

| |Ñ | − (pmf + 1)| ≤ 1
2
(d− 1)(d− 2)pµm[2pmf/2p−µm].
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Remark 1. Note that in order to obtain in the above theorem a non-trivial im-
provement, m and f must both be odd. That is the reason why throughout the
paper, and in particular in Tables 1, 2 and 3, f and m are always odd.

Also note that in order to apply Theorem 1 we need curves where the divisibility
grows upon extensions or |N(Fpfm)| ≡ 0 mod pµm ∀ m > 0.

Remark 2. In general, it is difficult to find curves satisfying the property of
divisibility of Theorem 1. This is to find curves C over Fq and µ > 0 such that
pm µ divides the number of rational points of C over Fqm for m = 1, 2 . . . (Artin-
Schreier’s curves satisfy this property.).

In the following section we are going to present new families of curves satisfy-
ing Remark 2. Hence we obtain an improved p-adic bound for their number of
rational points.

2 Divisibility of Fermat Curves

In this section we are going to reduce the estimation of the divisibility of Fermat
curves to a computational problem. Let |N | be the number of solutions of the
Fermat curve aXd + bY d = cZd over the finite field Fpf . Note that that if
(pf − 1, d) = k, then the number of solutions of aXd + bY d = cZd is equal to
the number of solutions of aXk + bY k = cZk over Fpf . Hence, we assume that d
divides pf − 1.

Let n be a positive integer n = a0 + a1p+ a2p
2 + · · ·+ alp

l where 0 ≤ ai < p
we define the p-weight of n by σp(n) =

∑l
i=0 ai.

Following the techniques of [3, Theorem 22], we associate to equation (1) the
following system of modular equations:

dj1 ≡ 0 mod pf − 1
dj2 ≡ 0 mod pf − 1 (2)
dj3 ≡ 0 mod pf − 1

j1 + j2 + j3 ≡ 0 mod pf − 1,

where 1 ≤ j1, j2, j3 ≤ q − 1.
This modular system of equations determines the p-divisibility of |N |, i.e., if

µ = min
(j1,j2,j3)

is solution of (2)

{σp(j1) + σp(j2) + σp(j3)
p− 1

} − f, (3)

then pµ divides |N |. This implies that any solution of the modular equation
dji ≡ 0 mod pf − 1 is of the form ci · pf−1

d where 1 ≤ ci ≤ d. We are going to
use the following results of [3]: for any positive integer k

σp((pf − 1)k) ≥ σp(pf − 1) = (p− 1)f. (4)

Now we state one of the main theorem of [3, Theorem 25],
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Theorem 2. Consider the family of polynomial equations:

G = {aXd + bY d = cZd | a, b, c ∈ F
×
pf }.

Then there exists a polynomial G ∈ G such that the number of solutions of G is
divisible by pµ but not divisible by pµ+1, where µ is defined in (3).

Now we consider 3-tuples (c1, c2, c3) ∈ N3 satisfying:

c1
d

+
c2
d

+
c3
d

(5)

is a positive integer, where 1 ≤ ci ≤ d. The following Lemma gives a simpler
way to compute µ of (3).

Lemma 1. Let q = pf and d be a divisor of q − 1. Let aXd + bY d = cZd be a
polynomial over Fq. Then µ defined in (3) satisfies

µ = min
(c1,c2,c3)
satisfies (5)

∑3
i=1 σp(ci(q − 1)/d)

p− 1
− f. (6)

Proof. We know that the solutions of (2) are of the form (c1(pf − 1)/d, c2(pf −
1)/d, c3(pf − 1)/d). We obtain from the last congruence of (2) the following:

c1(pf − 1)
d

+
c2(pf − 1)

d
+
c3(pf − 1)

d
= (

c1
d

+
c2
d

+
c3
d

)(pf − 1) = k(pf − 1).

Therefore c1
d + c2

d + c3
d is positive integer.

The following Lemma is the one that allows us to apply Theorem 1.

Lemma 2. Let q be power of a prime and d divides q−1. Then σp(c(qm−1)/d) =
mσp(c(q − 1)/d), where 1 ≤ c ≤ d− 1.

Proof. Note that c(qm − 1) = c(q − 1)(qm−1 + · · · + q + 1). Hence

σp(c(qm − 1)/d) = σp(c q−1
d (qm−1 + · · · + q + 1))

= mσp(
c(q−1)

d )

Combining the above two lemmas, we obtain the following proposition.

Proposition 1. Let q = pf and d be a divisor of q−1. Let aXd +bY d = cZd be
a polynomial over Fqm . Then µ defined in (3) satisfies

µ=( min
(c1,c2,c3)
satisfies (5)

∑3
i=1 σp(ci(qm−1)/d)

p− 1
− f)=m( min

(c1,c2,c3)
satisfies (5)

∑3
i=1 σp(ci(q−1)/d)

p− 1
− f).



A Class of Fermat Curves for which Weil-Serre’s Bound Can Be Improved 131

Remark 3. Note that using Proposition 1, we only need to do one computation
to estimate the divisibility of (1), the smallest q − 1 such that d divides q − 1.
Consequently we have reduced the problem of finding the divisibility of Fermat
Curves to a finite computation. Proposition 1 gives the exact divisibility in the
sense that there are coefficients a′, b′, c′ in Fqm such that the number of solutions
of aXd + bY d = cZd over Fqm is divisible by pµ but not by pµ+1. In some sense
this theorem completely solves the problem of divisibility for Fermat curves.
Furthermore, the property of Lemma 1 is very important since from it we obtain
a best possible Moreno-Moreno’s p-adic Serre bound (see Theorem 1).

Our next theorem shows how or system of modular equations (2) can in some
cases be reduced to a single equation. This considerably lowers the complexity
of our computational problem.

Proposition 2. Let d be a divisor of pf − 1. Consider the diagonal equation
aXd + bY d = cZd over Fpmf . Let

λ = min
1≤c≤d−1

σp(c(pf − 1)/d).

Then p( 3λ
p−1−f)m divides the number of solutions of aXd +bY d = cZd over Fpfm .

Proof. Note that if σp(c(pf − 1)/d) ≥ λ for 1 ≤ c ≤ d. Then σp(j1) + σ2(j2) +
σ(j3) ≥ 3λ.

Remark 4. In many cases we have that min1≤c≤d−1 σp(c(pf − 1)/d) = σp((pf −
1)/d).

Example 1. Let d = 23 and F2f = F211 . In this case we compute

min
1≤c≤22

σ2(c(211 − 1)/23).

We have that σ2(c(211−1)/23) = 4 for c ∈ {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}. Hence
min1≤ci≤22 σ2(c1(211 − 1)/23) + σ2(c2(211 − 1)/23)) + σ2(c2(211 − 1)/23)) = 12
since c1 = 1, c2 = 4 and c3 = 18 gives a solution of (5). Applying Proposition
1 and Theorem 2, we obtain the best divisibility for the families curves G =
{aX23 + bY 23 = cZ23 | a, b, c ∈ F

×
211m}. Hence there is an equation a0X

23 +
b0Y

23 = c0Z
23 ∈ G with exact divisibility 2m.

Example 2. Let d = 151 and F2f = F215 . In this case we compute

min
1≤c≤150

σ2(c(215 − 1)/151).

We have that σ2(c(215 − 1)/151) = 5. Hence min1≤ci≤150 σ2(c1(215 − 1)/151) +
σ2(c2(215 − 1)/151)) + σ2(c2(215 − 1)/151)) = 15 since c1 = 57, c2 = 19 and
c3 = 4(σ2(ci(215 − 1)/151) = 5 for i = 1, 2, 3) gives a solution of (5). Applying
Proposition 1 and Theorem 2, we obtain the best divisibility for the families
curves G = {aX151 + bY 151 = cZ151 | a, b, c ∈ F

×
215m}. Hence there is an equation

a0X
151 + b0Y

151 = c0Z
151 ∈ G where 2 does not divide its number of solutions

over F215m .
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Example 3. Let d = 232 = 529 and F2f = F2253 (The first finite field of charac-
teristic 2 satisfying that 529 divides 2f − 1 is F2253). In this case we compute

min
1≤c≤528

σ2(c(2253 − 1)/529).

We have that σ2(c(2253 − 1)/151) = 92. We have that σ2(c(2253 − 1)/529) = 92
for

c ∈ {23, 46, 69, 92, 138, 184, 207, 276, 299, 368, 414, 500}.
Hence min1≤ci≤529 σ2(c1(2253 − 1)/529) + σ2(c2(2253 − 1)/529)) + σ2(c2(2253 −
1)/259)) = 276 since c1 = 23, c2 = 92 and c3 = 414(σ2(ci(2253 − 1)/529) = 5
for i = 1, 2, 3) gives a solution of (5). Applying Proposition 1 and Theorem
2, we obtain the best divisibility for the families curves G = {aX529 + bY 529 =
cZ529 | a, b, c ∈ F

×
2253m}. Hence there is an equation a0X

529+b0Y 529 = c0Z
529 ∈ G

with exact divisibility 223m.

Example 3 is an example where min1≤c≤d−1 σp(c(pf − 1)/d) �= σp((pf − 1)/d).
Also note that in Example 3 we computed µ for a large finite field.

3 Tables

In the following tables, we are going to calculate µ for the curves aXd + bY d =
cZd over Fpf ,where f is odd, in order to apply Theorem 1.

In Table 1 we compute µ for the first f such that d divides 2f − 1. Recall
that if we know µ for the first f such that d divides 2f − 1, the we know µ for
all the extensions of F2f (see Proposition 1). Note that we can assume that d is
odd since the characteristic of F2f is 2.

Table 1. Best Divisibility of aXd + bY d = cZd over F2f

d smallest f such that d divides 2f − 1. µ

23 11 1

47 23 4

71 35 7

529 253 23

Table 2. Best Divisibility of aXd + bY d = cZd over F3f

d smallest f such that d divides 3f − 1. µ

11 5 1

23 11 1

46 11 1

47 23 4

59 29 10
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In Table 2 we compute µ for the first f such that d divides 3f −1. Recall that
if we know µ for the first f such that d divides 3f − 1, then we know µ for all
the extensions of F3f (see Proposition 1). Note that we can assume that d is not
divisible by 3 since the characteristic of F3f is 3.

Theorem 3. Let aXd + bY d = cZd be a Fermat curve of the tables. Then
aXd + bY d = cZd satisfies Theorem 1, where µ is given by the table.

4 Semiprimitive Fermat Curves

In this section we obtain a general family of Fermat curves satisfying Theorem 1,
generalizing the results of Tables 1,2,3.

Now we are going to consider odd primes l for which p is of order exactly
(l − 1)/2, i.e., the smallest positive integer k for which pk ≡ 0 mod l. We
call p a semiprimitive root for such l. Note that 2 is a semiprimitive root for
l = 7, 23, 47, 71. We would obtain a new family of Fermat curves that satisfy
Theorem 1.

Let g(j) be the Gauss sum defined by:

g(j) =
∑

x∈F
×
q

χ−j(x)ψ(x),

where χ is multiplicative character of order q− 1 and ψ is an additive character
of Fq. In [2], Moreno-Moreno proved that

S(l) =
∑

x∈Fq

(−1)Tr(xl) =
l − 1

2
{g(q − 1

l
) + g(q − 1 − q − 1

l
)}. (7)

This implies that 2λ divides S(l), where l = min{σ2((q−1)/l), σ2((q−1)− ((q−
1)/l))}. They proved the above identity for finite fields of characteristic 2. The
proof for arbitrary characteristic follows from their proof using g(j) = g(paj).

Table 3. Best Divisibility of aXd + bY d = cZd over Fpf

d smallest f such that d divides pf − 1. µ

11 F55 1

38 F59 2

20 F77 2

31 F715 3

37 F79 3

58 F77 1

43 F117 2

23 F1311 1

46 F1311 1

53 F1353 5

19 F179 3

38 F199 2
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Lemma 3. Let q = p(l−1)/2 and let p be a prime for which p is a semiprimitive
root for l. Given aX l + bY l = cZl over Fqm , the µ of (3) is such that µ > 0,
whenever 3 does not divide (l − 1)(p− 1)/2.

Proof. Using Proposition 1, we need only estimates µ of (3) for the finite field
Fq. Let f = (l − 1)/2. First we consider the solutions of aX l + bY l = cZl over
Fq. We have the following modular system associated to aX l + bY l = cZl:

lj1 ≡ 0 mod q − 1
lj2 ≡ 0 mod q − 1 (8)
lj3 ≡ 0 mod q − 1

j1 + j2 + j3 ≡ 0 mod q − 1

By the identity (7), we have that σ2(c(q − 1)/l)) = σ2((q − 1)/l) or σ2(q −
1 − ((q − 1)/l)). Note that σ2((q − 1)/l) + σ2(q − 1 − ((q − 1)/l)) = f(p − 1).
If σ2(jk1 ) �= σ2(jk2), then σ2(jk1 ) + σ2(jk2 ) + σ2(jk3 ) > (p − 1)f . Hence we
can assume that the minimal solution of (8) satisfies σ2(j1) = σ2(j2) = σ2(j3).
Applying the function σ2 to the last modular equation of (8), we obtain σ2(j1)+
σ2(j2) + σ2(j3) ≥ f(p− 1). Therefore

µ = minσ2(j1) + σ2(j2) + σ2(j3) = 3 minσ2(j1) ≥ f(p− 1).

Hence µ ≥ 1 whenever 3 does not divide (l − 1)(p − 1)/2. Hence at least pµ

divides |N(Fq)|. Then by Lemma 2, we obtain that pµm divides |N(Fqm)|.
Now we state a p-adic Serre bound for the Fermat curves of Lemma 3.

Theorem 4. Let q = p(l−1)/2 and let l be an odd prime for which p is a
semiprimitive root for l. Let µ be as defined in (3) for the curve aX l +bY l = cZl

over Fqm . Then

||Ñ | − (qm + 1)| ≤ (p− 1)(p− 2)
2

pµm[qm/2p1−µm],

whenever 3 does not divide (l − 1)(p− 1)/2.
Futhermore, we have µ ≥ 1 by Lemma 3 .

Proof. Combining Lemma 3 and Theorem 1, we obtain the result.

We apply Theorem 4 to some semiprimitive primes.

Example 4. Note 2 is a semiprimitive root for 23 and µ = 1. Applying Theorem 4,
we obtain

||Ñ | − (211m + 1)| ≤ 231 × 2m[2(9m+2)/2].

Example 5. Note 2 is a semiprimitive root for 47 and µ = 4. Applying Theorem 4,
we obtain

||Ñ | − (223m + 1)| ≤ 1035× 24m[2(15m+2)/2].

In particular, for the finite field F269 , Serre improvement to Weil’s bound gives
1035 × [2 × 269/2] = 50292728269650 and our improvement gives 1035 × 212 ×
[247/2] = 50292727418880.
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Example 6. Note 2 is a semiprimitive root for 71 and µ = 7. Applying Theorem 4,
we obtain

||Ñ | − (235m + 1)| ≤ 2415× 27m[2(21m+2)/2].

Remark 5. Using our computations of Table 1 we have obtained the above best
bounds. Notice that each example of µ gives a family of bounds.

5 Conclusion

The main result of this paper is obtaining a general class(the semiprimitive case
presented in the last section) of Fermat curves for which Weil-Serre’s bound
can be improved using Moreno-Moreno p-adic techniques. We also prove that
for each particular case, the best bound µ is computed in a simple computation
which is presented in the second section.
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