
Computing Gröbner Bases for Vanishing Ideals
of Finite Sets of Points

Jeffrey B. Farr1 and Shuhong Gao2

1 Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
jfarr@cecm.sfu.ca

http://www.cecm.sfu.ca/~jfarr/
2 Clemson University, Clemson, SC 29634-0975, USA

sgao@ces.clemson.edu
http://www.math.clemson.edu/~sgao/

Abstract. We present an algorithm to compute a Gröbner basis for the
vanishing ideal of a finite set of points in an affine space. For distinct
points the algorithm is a generalization of univariate Newton interpo-
lation. Computational evidence suggests that our method compares fa-
vorably with previous algorithms when the number of variables is small
relative to the number of points. We also present a preprocessing tech-
nique that significantly enhances the performance of all the algorithms
considered. For points with multiplicities, we adapt our algorithm to
compute the vanishing ideal via Taylor expansions.

1 Introduction

Suppose P1, . . . , Pn are distinct points in the m-dimensional vector space over
a field IF. The set of polynomials in IF[x1, . . . , xm] that evaluate to zero at each
Pi form a zero-dimensional ideal called the vanishing ideal of the points. The
problem that we consider is how to compute the reduced Gröbner basis for the
vanishing ideal of any finite set of points under any given monomial order. This
problem arises in several applications; for example, see [16] for statistics, [13] for
biology, and [18, 11, 12, 6] for coding theory.

A polynomial time algorithm for this problem was first given by Buchberger
and Möller (1982) [2], and significantly improved by Marinari, Möller and Mora
(1993) [14], and Abbott, Bigatti, Kreuzer and Robbiano (2000) [1]. These al-
gorithms perform Gauss elimination on a generalized Vandermonde matrix and
have a polynomial time complexity in the number of points and in the number of
variables. O’Keeffe and Fitzpatrick (2002) [9] studied this problem from a cod-
ing theory point of view. They present an algorithm that is exponential in the
number of variables, and the Gröbner basis which they compute is not reduced.

We present here a variation of the O’Keeffe-Fitzpatrick method. Our approach
does, though, compute the reduced Gröbner basis and is essentially a generaliza-
tion of Newton interpolation for univariate polynomials. Even though the time
complexity of our algorithm is still exponential in the number of variables, its
practical performance improves upon both the O’Keeffe-Fitzpatrick algorithm

M. Fossorier et al. (Eds.): AAECC 2006, LNCS 3857, pp. 118–127, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Computing Gröbner Bases for Vanishing Ideals of Finite Sets of Points 119

and the linear algebra approach if the number of variables is relatively small
compared to the number of points.

The rest of the paper is organized as follows. In Section 2, we present our
algorithm for distinct points. We also show how multivariate interpolation is
a special case of computing vanishing ideals. Section 3 presents experimental
time comparisons along with a sorting heuristic for the points. Finally, Section 4
shows how to handle the case for points with multiplicity. Some of the material
presented here is surveyed in our recent paper [7], which gives a broader view
on how Gröbner basis theory can be used in coding theory.

2 Distinct Points

Throughout this section we fix an arbitrary monomial order (also called term
order by some authors) on the polynomial ring IF[x1, . . . , xm]. Then each polyno-
mial f ∈ IF[x1, . . . , xm] has a leading term, denoted by LT(f), and each ideal has
a unique reduced Gröbner basis. For any subset G ⊂ IF[x1, . . . , xm], we define

B(G) = {xα : α ∈ INm and xα is not divisible by LT(g) for any g ∈ G},

where IN = {0, 1, 2, . . .} and xα = xα1
1 · · · xαm

m for α = (α1, . . . , αm). A basic
theorem in Gröbner basis theory tells us that, for each ideal I ⊂ IF[x1, . . . , xm],
the monomials in B(I) form a basis for the quotient ring IF[x1, . . . , xm]/I as a
vector space over IF (see Section 3 in [4]). This basis is called a monomial basis,
or a standard basis, for I under the given monomial order. For V ⊆ IFm, let I(V)
denote the vanishing ideal of V ; that is,

I(V) = {f ∈ IF[x1, . . . , xm] : f(P) = 0, for all P ∈ V }.

If V = {P1, . . . , Pn}, I(V) is also written as I(P1, . . . , Pn).

Lemma 1. For g1, . . . , gs ∈ I = I(P1, . . . , Pn), {g1, . . . , gs} is a Gröbner basis
for I if and only if |B(g1, . . . , gs)| = n.

Proof. By definition g1, . . . , gs ∈ I form a Gröbner basis for I if and only if
B(g1, . . . , gs) = B(I). One can show by interpolation that dim IF[x1, . . . , xm]/I =
n. But the monomials in B(I) form a basis for the quotient ring IF[x1, . . . , xm]/I
viewed as a vector space over IF. The lemma follows immediately. ��

Lemma 2. Suppose G = {g1, . . . , gs} is a Gröbner basis for I(V), for a finite
set V ⊂ IFm. For a point P = (a1, . . . , am) /∈ V , let gi denote the polynomial in
G with smallest leading term such that gi(P) �= 0, and define

g̃j := gj − gj(P)
gi(P)

· gi, j �= i, and

gik := (xk − ak) · gi, 1 ≤ k ≤ m.

Then
˜G = {g̃1, . . . , g̃i−1, g̃i+1, . . . , g̃s, gi1, . . . , gim}

is a Gröbner basis for I(V ∪ {P}).

120 J.B. Farr and S. Gao

Proof. At least one polynomial in G must be nonzero when evaluated at P since
P /∈ V ; hence, a suitable gi exists.

Certainly, ˜G ⊆ I(V ∪ {P}) as the new and modified polynomials evaluate to
zero at all points in V ∪ {P}. Denote LT(gi) by xα. We claim that

B(˜G) = B(G) ∪ {xα}. (1)

By the choice of i, LT(g̃j) = LT(gj), for all j �= i. Also, since gi was replaced in
˜G by gi1, gi2, . . . , gim, whose leading terms are xαx1, xαx2, . . . , xαxm, we know
that xα is the only monomial not in B(I(V)) that is in B(I(V ∪ {P})). Thus,
(1) is satisfied, and |B(˜G)| = |B(G)|+1. Since G is a Gröbner basis for I(V), we
have |B(G)| = |V |, and the conclusion follows from Lemma 1. ��

Notice that some of the LT(gik) may be divisible by the leading term of another
polynomial in ˜G. In such a case, gik may be omitted from ˜G and ˜G\{gik} is still
a Gröbner basis. In fact, we can check for this property before computing gik

so that we save ourselves needless computation. In so doing, we also guarantee
that the resulting ˜G is a minimal Gröbner basis for I(V ∪ {P}).

To get a reduced Gröbner basis, we still need to reduce the new polynomials
gik. We order the variables in increasing order, say x1 < x2 < . . . < xm, and
reduce the polynomials from gi1 up to gim . Thus, in Algorithm 1 the polyno-
mials in G are always stored so that the leading terms of its polynomials are in
increasing order. This will make sure that each gik need only be reduced once.
Also, Reduce(h, G) is the unique remainder of h when reduced by polynomials
in G.

Algorithm 1

1 Input: P1, P2, . . . , Pn ∈ IFm, and a monomial order
We assume that the variables are labelled so that x1 < . . . < xm.

2 Output: G, the reduced Gröbner basis for I(P1, . . . , Pn), in increasing order.
3
4 G := {1}; /* the ith polynomial in G is denoted gi */
5 FOR k from 1 to n DO
6 Find the smallest i so that gi(Pk) �= 0;
7 FOR j from i + 1 to |G| DO gj := gj − gj(Pk)

gi(Pk) · gi; END FOR;
8 G := G \ {gi};
9 FOR j from 1 to m DO

10 IF xj · LT(gi) not divisible by any leading term of G THEN
11 Compute h := Reduce((xj − aj) · gi, G);
12 Insert h (in order) into G;
13 END IF;
14 END FOR;
15 END FOR;
16
17 RETURN G.

Computing Gröbner Bases for Vanishing Ideals of Finite Sets of Points 121

Lemma 2 and the subsequent remarks imply the following theorem.

Theorem 1. For a finite set V ⊆ IFm and a given monomial order, Algorithm 1
returns the reduced Gröbner basis for I(V).

A related question is multivariate interpolation, and it can easily be solved using
Algorithm 1. The interpolation problem is: given the points P1, . . . , Pn ∈ IFm

and any values r1, . . . , rn ∈ IF, find a “smallest” f so that

f(Pi) = ri, 1 ≤ i ≤ n. (2)

Multivariate polynomial interpolation has been extensively studied in the past
30 years (see the survey [10]). The property of being “smallest” is addressed
by introducing an appropriate monomial order on IF[x1, . . . , xm]. Then there is
a unique polynomial f ∈ SpanIF(B) satisfying (2), and it will be the smallest
such polynomial under the given monomial order. One strategy for finding this
polynomial f is given in [17] that uses separator polynomials. The following
theorem, which follows directly from Lemma 1, tells us that any algorithm for
computing vanishing ideal can be easily used to solve the interpolation problem.

Theorem 2. Let G be the reduced Gröbner basis for I = I(P1, . . . , Pn) under the
fixed monomial order < on IF[x1, . . . , xm], and let B = B(I) be the corresponding
monomial basis. Introduce a new variable z and an elimination order for z that
extends <. Then the reduced Gröbner basis for I((P1, r1), . . . , (Pn, rn)), is of the
form G∪{z − f}, where f is the unique polynomial in SpanIF(B) satisfying (2).

One can easily generalize Theorem 2 to the case when there are more than one
z-coordinate. Also, in the case when m = 1 Theorem 2 appears in the literature
as the “Shape Lemma” (see Exercise 16 in Section 2.4 in [5]).

This same strategy can be modified for multivariate rational function interpo-
lation. In this case the Gröbner basis computation is performed for a submodule
of rank two rather than for an ideal. The major hurdle that has to be overcome
before applying a modified Algorithm 1 is the selection of an appropriate term
order. We refer the reader to [6] for more details.

3 Time Complexity

3.1 The Cost of Reduction

All the steps in Algorithm 1 are straightforward to analyze except the reduction
step in line 11. We use standard Buchberger reduction (i.e., repeated division).
This reduction has a worst-case time complexity that may be exponential in the
number m of variables. It is possible to make this step polynomial time by using
the border-basis reduction technique introduced in [8]. The border Gröbner basis
computed, however, is quite large in general. For example, the reduced Gröbner
basis for the vanishing ideal of a random set of 500 points from IF10

2 under lex
order usually contains around 100 polynomials, while the border basis typically
contains over 2000. So the running time and memory usage of Algorithm 1 using
border-basis reduction are much worse than the original. For these reasons we
ignore the theoretical “improvements” that border-basis reduction provides.

122 J.B. Farr and S. Gao

3.2 Running Time Comparison

As we mentioned earlier, the methods in [1, 2, 14] are based on Gauss elimination
and have a polynomial time complexity O(n3m2). We compare our Algorithm 1
particularly with the algorithm (MMM) of Marinari, Möller and Mora [14]. Al-
though the algorithm of [1] has an excellent implementation in the computer
algebra system CoCoA, it is not appropriate for us to compare this compiled
code with our interpreted code (see specs below).

The Gröbner basis found via the algorithm (O’K-F) of O’Keeffe and Fitz-
patrick [9] is minimal in the sense that the number of polynomials in the basis
is the smallest, but the length of the polynomials computed may grow exponen-
tially in the number m of variables. So, most of the computing time in O’K-F
is taken up with dealing with large polynomials, and most of the time in Algo-
rithm 1 involves the reduction step, i.e., computing Reduce(gij , G).

Table 1 presents running times for the algorithms for various point sets. We
have chosen three high-dimensional vector spaces and three low-dimensional vec-
tor spaces to highlight the significance of the dimension. The times are the
average running times in seconds for randomly chosen point sets from the spec-
ified vector space (based on 100 experiments for n = 250, 10 experiments for

Table 1. Average running times for 250, 500 and 1000 random points from IFm
q

q m MMM Algorithm 1 O’K-F
grlex lex grlex lex grlex lex

11 3 2.440 1.404 1.182 0.356 1.006 0.705
31 3 2.762 1.481 1.418 0.312 1.213 0.395
101 3 2.867 1.423 1.512 0.220 1.289 0.218
2 10 2.542 1.321 2.201 1.142 3.015 9.832
2 12 4.954 1.894 4.207 2.381 4.037 14.43
2 15 7.568 2.875 7.592 7.565 8.066 22.54

q m MMM Algorithm 1 O’K-F
grlex lex grlex lex grlex lex

11 3 14.72 10.50 5.726 1.789 5.126 9.547
31 3 19.33 10.53 9.357 1.688 8.236 3.043
101 3 20.08 10.66 11.16 1.141 9.467 1.371
2 10 12.10 7.773 8.849 4.314 18.81 332
2 12 24.43 11.62 21.68 13.49 31.90 367
2 15 64.69 16.79 63.74 33.42 53.38 522

q m MMM Algorithm 1 O’K-F
grlex lex grlex lex grlex lex

31 3 143 80.98 71.04 10.80 68.05 39.59
101 3 149 86.05 107 6.852 92.92 11.52
2 12 173 75.62 146 74.36 307 10321
2 15 315 117 312 218 471 16609

Computing Gröbner Bases for Vanishing Ideals of Finite Sets of Points 123

n = 500, 1000). The algorithms were implemented in Magma version 2.11 and
run on an Apple Power Macintosh G5 computer, 2.5 GHz CPU, 2 GB RAM.

The timings indicate that Algorithm 1 is faster than MMM—by a factor
of two for grlex, a factor approaching ten for lex—if the dimension m (the
number of variables) is small relative to the number n of points. In compar-
ison to O’K-F, Algorithm 1 takes roughly the same time for small m and n,
but O’K-F slows down somewhat when n increases and slows down quickly
when m increases.

3.3 Sorting the Points

A clever ordering of the points can improve the running time of Algorithm 1,
O’K-F and, somewhat surprisingly, MMM. The significance of improvement de-
pends on both the chosen monomial order and the geometric structure of the
points.

The details of this ordering are quite simple. If x1 < . . . < xm, then group the
points first according to the x1-coordinate; these groups are ordered by the num-
ber of elements, largest to smallest (specifically, nonincreasingly). Within each

Table 2. Running times for 250, 500 and 1000 random points (sorted) from IFm
q

q m MMM Algorithm 1 O’K-F
grlex lex grlex lex grlex lex

11 3 2.004 0.714 1.066 0.277 0.890 0.286
31 3 2.735 0.956 1.418 0.273 1.189 0.264
101 3 2.867 1.076 1.516 0.206 1.277 0.193
2 10 1.557 0.746 1.363 0.575 1.534 0.646
2 12 3.342 1.131 3.257 1.091 2.544 1.158
2 15 5.061 1.802 5.360 3.689 5.283 2.118

q m MMM Algorithm 1 O’K-F
grlex lex grlex lex grlex lex

11 3 10.31 3.558 4.978 1.277 4.426 1.421
31 3 19.017 5.693 9.298 1.418 8.184 1.406
101 3 20.11 6.996 11.158 1.049 9.394 0.962
2 10 5.461 2.498 4.534 1.681 6.308 2.426
2 12 13.70 5.250 13.34 6.022 16.19 7.850
2 15 46.06 8.058 53.42 11.16 34.39 12.39

q m MMM Algorithm 1 O’K-F
grlex lex grlex lex grlex lex

31 3 139 34.41 70.66 8.754 70.35 9.041
101 3 149 47.38 107 6.037 91.97 5.471
2 12 90.44 22.45 88.74 23.63 121 45.02
2 15 169 40.91 182 71.13 217 114

124 J.B. Farr and S. Gao

of the groups, repeat the process, but according to the x2-coordinate. Continue
for x3, . . . , xm.

A comparison of Table 2 with Table 1 indicates the sizable impact of reorder-
ing. Essentially, this sorting decreases the amount of reduction that Algorithm 1
needs to do. Further, although O’K-F does not involve reduction, it is also helped
since the Gröbner basis remains comparatively small. In MMM, reordering the
points corresponds to a favorable reordering of the columns in an implicit matrix
to which Gauss elimination is applied.

Gröbner bases under lex order experience the greatest benefit since they typ-
ically require the most reduction and are prone to exponential growth without
reduction. Gröbner bases under grlex order with points from a low-dimensional
vector space experience little or no speedup.

4 Points with Multiplicities

We now consider the case in which some points in the vanishing set have mul-
tiplicity. A general notion of algebraic multiplicity is described in [14] and [15].
We will adopt a special form used by Cerlienco and Mureddu [3] that is general
enough for most applications.

Let v = (v1, . . . , vm) ∈ ZZm. We define a differential operator Dv by

Dv =
1

v1! · · · vm!
· ∂v1+...+vm

∂x1
v1 · · ·∂xm

vm
.

We note that Dv is a linear map on functions with the m variables x1, . . . , xm.
Let P ∈ IFm and f be any function on x1, . . . , xm. We employ the notation

[Dvf](P) = Dvf |x=P , (3)

where P = (a1, . . . , am) ∈ IFm. Then, under reasonable conditions (analytic or
algebraic) on f , we have

f(x + P) =
∑

v∈INm

[Dvf](P) · xv. (4)

We call the right-hand side of (4) the Taylor expansion of f at P , denoted by
T (f, P). Note that (4) is equivalent to

f(x) =
∑

v∈INm

[Dvf](P) · (x−P)v =
∑

v∈INm

[Dvf](P) · (x1 − a1)v1 · · · (xm − am)vm ,

which is the more typically referred to form of Taylor expansion.
A subset ∆ ⊆ INm is called a delta set (or a Ferrers diagram, or an order

ideal), if it closed under the division order; that is, if u ∈ ∆ then v ∈ ∆ for all
v = (v1, . . . , vm) < u = (u1, . . . , um) componentwise. Define

T (f, P, ∆) =
∑

v∈∆

[Dvf](P) · xv. (5)

Computing Gröbner Bases for Vanishing Ideals of Finite Sets of Points 125

T (f, P) denotes the full (possibly infinite if f is not a polynomial) Taylor ex-
pansion of f , while T (f, P, ∆) is truncated to consider only those coefficients
corresponding to monomials with exponents in ∆. For any nonzero polynomial
f ∈ IF[x1, . . . , xm] = IF[x], a point P ∈ IFm and a delta set ∆ ⊂ INm, f is said
to vanish at P with multiplicity ∆ if T (f, P, ∆) = 0.

On the other hand, f is said to have arithmetic multiplicity m0 at P if
[Dvf](P) = 0 for all v with |v| = v1 + v2 + . . . + vm < m0. In terms of the
algebraic definition, this implies that the multiplicity set ∆ is restricted to a
triangular shape. The algebraic definition clearly subsumes the arithmetic one.

With the algebraic definition of multiplicity in mind, we generalize Algo-
rithm 1 to compute the vanishing ideal of a set of points {P1, . . . , Pn}, each
point having multiplicity defined by the sets ∆1, . . . , ∆n. Denote this ideal by

I ((P1, ∆1), . . . , (Pn, ∆n)) = {f ∈ IF[x1, . . . , xm] : T (f, Pi, ∆i) = 0, 1 ≤ i ≤ n}.

Since the ∆i’s are delta sets, one can show that this set is indeed an ideal in
IF[x1, . . . , xm]. (This is not true if the ∆i’s are not all delta sets.)

Algorithm 2 varies from Algorithm 1 in the following way. Instead of evalu-
ating each f ∈ G at Pi, we need to compute the truncated Taylor expansion
T (f, Pi, ∆i); we denote the set of these expansions by T . The points in each ∆i

must be ordered in nondecreasing order to ensure that these Taylor expansions
may be computed efficiently and to ensure that G at each iteration (i.e., at the
start of line 8) is a Gröbner basis for the vanishing ideal of the points P1, . . . , Pk

with multiplicities ∆1, . . . , ∆k−1 and the subset of points in ∆k up to v.
Like Algorithm 1, Algorithm 2 is an iterative method; in fact, not only does

the algorithm build the Gröbner basis for the vanishing ideal “one point at a
time” but it also builds it “one multiplicity at a time.” That is, when a new point
is introduced, the algorithm updates the Gröbner basis by stepping through the
corresponding multiplicity set element by element. Of course if each multiplicity
set is trivial (|∆i| = 1), then Algorithm 2 is equivalent to Algorithm 1.

The following analogue to Lemma 1 is necessary to establish the correctness
of Algorithm 2. We omit the proof, noting only that the key step that established
Algorithm 1 is the same for this algorithm. Namely, at each step in the algorithm,
we add exactly one element from a multiplicity set and exactly one element to
the monomial basis. This ensures that our basis G is always Gröbner.

Lemma 3. Fix a monomial order on IF[x], and let V = {(P1, ∆1), . . . , (Pn,
∆n)}, where Pi ∈ IFm are distinct and ∆i ⊂ INm are delta sets. Then {g1, . . . , gs}
⊂ I(V) is a Gröbner basis for I if and only if |B(g1, . . . , gs)| =

∑n
j=1 |∆j |.

Proof. We know (Lemma 3.8 in [14]) that g1, . . . , gs ∈ I(V) form a Gröbner basis
if and only if |B(g1, . . . , gs)| = dim IF[x1, . . . , xm]/I(V). We just need to show that
the latter has dimension equal to

∑n
j=1 |∆j |. To see this, let Ij = I(Pj , ∆j), the

vanishing ideal of Pj with multiplicity ∆j . Then I(V) = I1 ∩ · · · ∩ In and

IF[x1, . . . , xm]/I(V) ∼=
n

⊕

j=1

IF[x1, . . . , xm]/Ij ,

126 J.B. Farr and S. Gao

Table 3. Algorithm for computing the reduced Gröbner basis for the vanishing ideal
of a set of points with multiplicities

Algorithm 2

1 Input: P1, . . . , Pn ∈ IFm; ∆1, . . . , ∆n ⊂ INm; and a monomial order.
2 Output: G, the reduced Gröbner basis for I((P1, ∆1), . . . , (Pn, ∆n)),

in increasing order.
3
4 G := {1}; /* gi is the ith polynomial in G, in increasing order */
5 Order the variables so that x1 < x2 < . . . < xm;
6 Order the elements in each ∆k in nondecreasing order under the

division order;
7 FOR k from 1 to n DO
8 Compute T = {Tj = T (gj, Pk, ∆k) : gj ∈ G}, the set of

(truncated) Taylor expansions;
9 FOR v in ∆k DO

10 Find the smallest i so that coeff(Ti,xv) �= 0;
11 FOR j from i + 1 to |G| DO
12 δ := coeff(Tj ,xv) / coeff(Ti,xv);
13 gj = gj − δ · gi;
14 Tj = Tj − δ · Ti;
15 END FOR;
16 G := G \ {gi} and T := T \ {Ti};
17 FOR j from 1 to m DO
18 IF xj · LT(gi) not divisible by any LT of G THEN
19 Compute h := Reduce((xj − aj) · gi, G);
20 Th := xj · Ti (truncated);
21 Insert (in order) h into G and Th into T ;
22 END IF;
23 END FOR;
24 END FOR;
25 END FOR;
26
27 RETURN G.

as rings over IF. Note that {xα : α ∈ ∆j} forms a basis for IF[x1, . . . , xm]/Ij as a
vector space over IF, so its dimension is |∆j |. The lemma follows immediately. ��

5 Final Remarks

Algorithm 1 is included in Maple10 under the command VanishingIdeal in
the PolynomialIdeals package. Maple code for the application of this algo-
rithm to multivariate polynomial and rational function interpolation may be
downloaded from [19]. A GAP implementation of Algorithm 1 by Joyner [20]
is also available.

Computing Gröbner Bases for Vanishing Ideals of Finite Sets of Points 127

References

1. Abbott, J., Bigatti, A., Kreuzer, M., Robbiano, L.: Computing ideals of points. J.
Symbolic Comput. 30 (2000), 341-356

2. Buchberger, B., Möller, H. M.: The construction of multivariate polynomials with
preassigned zeros. Computer algebra, EUROCAM ’82, pp. 24-31, Lecture Notes in
Comput. Sci., vol. 144, Springer, Berlin-New York, 1982

3. Cerlienco, L. and Mureddu, M.: From algebraic sets to monomial linear bases by
means of combinatorial algorithms. Formal power series and algebraic combina-
torics (Montreal, PQ, 1992). Discrete Math. 139 (1995), no. 1-3, 73-87

4. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms, 2nd ed. Under-
graduate Texts in Mathematics, Springer-Verlag, New York, 1997

5. Cox, D., Little, J., O’Shea, D.: Using algebraic geometry. Graduate Texts in Math-
ematics, 185, Springer-Verlag, New York, 1998

6. Farr, Jeffrey B., Gao, Shuhong: Gröbner bases and generalized Padé approximation.
Math. Comp. (to appear)

7. Farr, Jeffrey B., Gao, Shuhong: Gröbner bases, Padé approximation, and decoding
of linear codes. Coding Theory and Quantum Computing (Eds. D. Evans et al.),
3–18, Contemp. Math., 381, Amer. Math. Soc., Providence, RI, 2005

8. Faugere, J., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symbolic Comput. 16 (1993),
329-344

9. Fitzpatrick, P., O’Keeffe, H.: Gröbner basis solutions of constrained interpolation
problems. Fourth special issue on linear systems and control. Linear Algebra Appl.
351/352 (2002), 533-551

10. Gasca, M., Sauer, T.: Polynomial interpolation in several variables, in Multivariate
polynomial interpolation. Adv. Comput. Math. 12 (2000), no. 4, 377-410

11. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-
geometric codes. IEEE Transactions on Information Theory 46 (1999), no. 6, 1757–
1767

12. Koetter, R., Vardy, A.: Algebraic Soft-Decision Decoding of Reed-Solomon Codes.
IEEE Transactions on Information Theory 49(2003), 2809–2825

13. Laubenbacher, R., Stigler, B.: A computational algebra approach to the reverse
engineering of gene regulatory networks. Journal of Theoretical Biology 229 (2004),
523-537

14. Marinari, M. G., Möller, H. M., Mora, T.: Gröbner bases of ideals defined by
functionals with an application to ideals of projective points. Appl. Algebra Engrg.
Comm. Comput. 4 (1993), no. 2, 103-145

15. Marinari, M. G., Möller, H. M., Mora, T.: On multiplicities in polynomial system
solving. Trans. Amer. Math. Soc. 348 (1996), no. 8, 3283-3321

16. Pistone, G., Riccomagno, E., Wynn, H. P.: Algebraic Statistics: Computational
Commutative Algebra in Statistics. Monographs on Statistics & Applied Probabil-
ity 89, Chapman & Hall/CRC, 2001

17. Robbiano, L.: Gröbner bases and statistics. Gröbner bases and applications (Linz,
1998), 179-204, London Math. Soc. Lecture Note Ser., vol. 251, Cambridge Univ.
Press, Cambridge, 1998

18. Sudan, M.: Decoding of Reed Solomon codes beyond the error-correction bound.
J. Complexity 13 (1997), no. 1, 180–193

19. Shuhong Gao’s webpage. http://www.math.clemson.edu/˜sgao/
20. David Joyner’s webpage. http://cadigweb.ew.usna.edu/˜wdj/gap/curves/

	Introduction
	Distinct Points
	Time Complexity
	The Cost of Reduction
	Running Time Comparison
	Sorting the Points

	Points with Multiplicities
	Final Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

