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Abstract. The standard construction of linear error-correcting codes
on algebraic curves requires determining a basis for the Riemann-Roch
space L(G) associated to a given divisor G, often a hard problem. Here
we consider the problem of constructing the code without any knowledge
of such a basis. We interpret the columns of a generator matrix as points
on an embedded copy of the curve, and show that in certain cases these
points can be realized in principle as the images of a set of vector bundles
under a standard map to a class of repartitions.

1 Introduction

Let C denote a smooth projective algebraic curve of genus γ defined over a finite
field k. Fix a divisor D = P1 + · · · + Pn on C, where each point Pi is rational
(over k), and let G be another divisor of degree α with rational support disjoint
from that of D. The algebraic-geometric (AG) code given by these two divisors
is defined to be

C(D, G) = {(f(P1), . . . , f(Pn)) : f ∈ L(G)} .

The code is linear over k, and if α ≥ 2γ − 1 then it has dimension α − γ + 1
by the Riemann-Roch theorem. The minimum distance is at least n − α, since
a non-zero function in L(G) has at most α zeros. AG codes were discovered by
Goppa [5] in the early 1980s, and since that time many important practical and
theoretical advances have been made, including efficient decoding algorithms
(surveyed, for example, in [8]) and polynomial-time constructable codes that
beat the Gilbert-Varshamov bound [15, 6, 13].

Usually the divisor G is taken as a multiple of a single point, and here as
well we let G = αQ for a rational point Q ∈ C. We assume α > 2γ so that the
rational map ϕ : C → IPm (m = α − γ) given by the complete linear system
|αQ| is an embedding [12–Ch. III, Sect. 6.6].

In practice, a linear code is constructed by computing a generator matrix for
it. If {fi} is a basis for L(G), then we get the rows of a generator matrix for
C(D, G) by computing the linearly independent codewords (fi(P1), . . . , fi(Pn)).
Equivalently, we can view the points ϕ(Pi) as columns of this matrix.
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Computing a basis for a Riemann-Roch space, however, is often a difficult
problem. This note describes the theoretical framework for an alternative method
of one-point AG code construction. It applies only for certain choices of the point
Q, but from a coding standpoint the choice of Q is immaterial since the dimension
and distance of an AG code depend only on the degree of the divisors used.

The basic idea is to map extensions of lines bundles determined by Q and the
points Pi into a class of repartitions via standard sheaf cohomology; elements
of the class can be uniquely expressed as a linear combination of certain fixed
repartitions of a very simple form, and the coefficients in that combination are
precisely the coordinates of ϕ(Pi).

The next section reviews some background material and establishes notation.
After proving the main result in the third section, we point out that it can be
used to determine the Weierstrass non-gaps at Q, and we demonstrate this fact
with an example on the Klein curve. The last section looks at computational
aspects of the cohomology maps used in the main result and the algorithmic
details that would need to be worked out for an explicit implementation.

2 Background and Notation

Fix a smooth projective curve C of genus γ over a finite field k for the rest of
the paper. Let k̄ denote the algebraic closure of k. We refer to k-rational points
simply as rational points for brevity.

Fix a rational point Q ∈ C and an integer α > 2γ, and let ϕ denote the
embedding of the curve determined by the complete linear system |αQ|. The
goal is to compute ϕ(P ) for rational points P �= Q on the curve without knowing
a basis for L(αQ). In that way, we get the columns of a generator matrix for
C(D, αQ), where as usual D is the formal sum of all rational points other than
Q. The code has length n = |Supp(D)|, and we assume n > α.

For f ∈ k̄(C) and P ∈ C, νP (f) denotes the order of f at P , and OP denotes
the local ring at P .

We enumerate the Weierstrass non-gaps at Q by µ0, µ1, µ2, . . .

2.1 Extension Spaces

For any rank-2 vector bundle E → C of degree at least γ, there is line bundle
L such that the sequence 0 → OC → E → L → 0 is exact. Here E is called an
extension of L by OC . Another such extension E′ is isomorphic to E if there is
an isomorphism of exact sequences

0 �� OC
�� E ��

∼=
��

L �� 0

0 �� OC
�� E′ �� L �� 0.

We denote by Ext(L, OC) the space of extension classes of L by OC . This has
the structure of a linear space over k̄ [3–Sect. 5.7].
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An extension E ∈ Ext(L, OC) corresponds to an element of H1(L−1) as
follows: twist by L−1 to get an exact sequence 0 → L−1 → E ⊗L−1 → OC → 0,
form the associated long exact sequence and take the image of the identity
element in H0(OC). Some authors actually define first cohomology directly in
terms of extensions, and there is a geometric way of defining a group operation
on them [3–Sect. 5.7].

Now H1(L−1) ∼= H0(ωC ⊗L)∗ by Serre duality, so we have identified the space
Ext(L, OC) (modulo scalers) with projective space IP(H0(ωC ⊗ L)∗).

2.2 The Segre Invariant and Secant Varieties

The s-invariant of a non-split rank-2 vector bundle E on a smooth projective
curve is defined by

s(E) = deg E − 2 max{deg M : M ↪→ E},

where M runs over all line subbundles of E. Let (e) denote the rank-2 extension
E viewed as a point of projective space IP. Lange and Narasimhan [10], following
Atiyah [1], showed that s(E) is determined by the smallest integer j such that
(e) is contained in the j-secant variety of the curve in IP. This picture was also
described by Bertram [2], and later Trygve Johnsen observed that it leads to an
interpretation of decoding AG codes in terms of vector bundles on the underlying
curve [9].

It turns out that (e) = ϕ(P ) if and only if OC(P ) is a quotient line bundle
of E. This fact is really just a special case of [10–Proposition 1.1], made more
explicit by [9–Proposition 2.5]. Summarizing with the notation established at
the beginning of this section, we have:

Proposition 1. Let L = OC(αQ − K). For any point P ∈ C, there is a unique
extension E ∈ Ext(L, OC) with quotient line bundle OC(P ), and E corresponds
to ϕ(P ) as a point of projective space with respect to the embedding ϕ determined
by |αQ|.

2.3 Repartitions

A repartition r associates to each point P ∈ C a function rP ∈ k̄(C), with
rP ∈ OP for all but finitely many points. R denotes the ring of repartitions, and
k̄(C) is viewed as a subring by identifying f ∈ k̄(C) with the repartition that
assigns f to each point of the curve. If f ∈ k̄(C) and Q ∈ C, then we write f/Q
for the repartition that assigns f to Q and zero to every other point.

Given a divisor A, R(A) denotes the additive subgroup of repartitions r ∈ R
satisfying νP (rP ) + νP (A) ≥ 0 for every point P ∈ C. There is a canonical
isomorphism

H1(OC(A)) ∼= R /
(
R(A) + k̄(C)

)
.

Serre proves this fact [14–Proposition II.3] and uses it to prove the duality the-
orem for curves.
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For a divisor G, we therefore have

H0(OC(G))∗ ∼= H1(OC(K − G)) ∼= R /
(
R(K − G) + k̄(C)

)

When G is a multiple of a single point, there is a basis for R/(R(K −G)+ k̄(C))
consisting of repartitions of an especially simple form; using our notation, this
result can be stated as:

Proposition 2. For a local parameter t at Q, define the differential ω = dt in
a neighborhood of Q and let K = (ω). Then the set {tµi−1/Q : 0 ≤ i ≤ m} is a
basis for the vector space R/(R(K − αQ) + k̄(C)) over k̄.

This was used to compute a transition matrix for the rank-2 extension that cor-
responds as a point in projective space to the syndrome of a corrupted codeword
[4–Proposition 1]. The proof is repeated in the appendix of this paper.

3 Constructing a Generator Matrix

Recall that the columns of a generator matrix for C(D, αQ) are given explicitly
by the points ϕ(D), where ϕ is the embedding of C determined by |αQ|.

Theorem 1. For a local parameter t at Q, define the differential ω = dt in a
neighborhood of Q and let K = (ω). Suppose there is a basis S = {f1, . . . , fγ}
for L(K) consisting of functions that have a single non-zero term of degree less
than α when expanded in powers of t. Then for any point P �= Q on the curve,
ϕ(P ) = (c0 : · · · : cm) if and only if the repartition (c0t

µ0−1 + · · · + cmtµm−1)/Q
corresponds to the unique extension E ∈ Ext(OC(αQ − K), OC) with quotient
line bundle OC(P ).

Proof. Since ω is regular and non-zero at Q by definition, any function in L(K) is
regular at Q. Distinct functions fi, fj ∈ S have distinct orders at Q, for otherwise
νQ(fi − fj) ≥ α by the hypothesized property of elements of S, which would not
be possible since fi − fj ∈ L(K) can have at most 2γ − 2 < α zeros.

Let ni = νQ(fi). We will show that tni/Q ∈ R(K −αQ)+ k̄(C) for 1 ≤ i ≤ γ.
Multiplying each fi by a constant if necessary, we can write

fi = ti +
∞∑

j=α

bij · tj

with uniquely determined coefficients bij ∈ k̄. Now for each function fi ∈ S, we
define a repartition ri by

(ri)P =
{

fi − tni : P = Q
−fi : P �= Q.

We have νQ((ri)Q) ≥ α, and since fi ∈ L(K) it follows that ri ∈ R(K − αQ).
Now ri + fi = tni/Q, so tni/Q ∈ R(K − αQ) + k̄(C) as claimed.



112 D. Coles

Let A = {ti/Q : 0 ≤ i ≤ α}. We have just shown that there are γ elements
of A that are zero in the space R/R(K − αQ) + k̄(C)), namely each tni/Q.
On the other hand, Proposition 2 provides a basis for this space consisting of
the remaining m + 1 = α − γ + 1 elements of A. Consequently, any element of
R/R(K −αQ)+ k̄(C)) can be uniquely expressed as a linear combination of the
particular m + 1 elements of A specified in the proposition.

By Proposition 1, there is a unique extension E ∈ Ext(OC(αQ − K), OC)
with quotient bundle OC(P ); the extension corresponds via Serre duality to the
point ϕ(P ) ∈ IP(H0(OC(αQ))∗), and the isomorphism

H0(OC(αQ))∗ ∼−→ R /
(
R(K − αQ) + k̄(C)

)

is realized by (c0, . . . , cm) �→
(
c0t

µ0−1 + · · · + cmtµm−1
)
/ Q. 	


3.1 Computing Weierstrass Non-gaps

Suppose that for some fixed positive integer i < α, the repartition corresponding
to a given point ϕ(P ) is simply ti/Q. This means that ϕ(P ) has a single non-
zero coordinate. But we do not know which coordinate is non-zero unless we also
happen to know where the integer i lies among the exponents µ0 −1, . . . , µm −1,
or in other words, unless we know the Weierstrass non-gaps at Q.

Consider, however, the set of all points ϕ(P1), . . . , ϕ(Pn). It is not possible
that all of them are zero at the same coordinate, for otherwise there would exist
a non-zero function in L(αQ) that vanishes at n > αQ points. We can therefore
think of Theorem 1 as determining the non-gaps at Q. This is illustrated below.
Of course, this observation does not translate directly into an effective algorithm
for computing the non-gaps at certain points since the cohomology maps that
we are using have been described in a completely abstract fashion. Section 4
discusses the algorithmic aspects of Theorem 1.

3.2 Illustration

Let C denote the Klein curve of genus 3 defined by x3y + y3z + z3x = 0. We
will use Theorem 1 with α = 5 (the highest possible non-gap) to compute the
Weierstrass non-gaps at Q1 = (1 : 0 : 0). Let Q2 = (0 : 1 : 0) and Q3 = (0 : 0 : 1).
These latter two points also lie on the curve. Computing the intersection divisors
of the three lines xyz = 0 with the curve, we have:

div(x) = 3Q3 + Q2

div(y) = 3Q1 + Q3

div(z) = 3Q2 + Q1

We can use this information to obtain the order of a monomial at any of the
points Qi. In particular, we see that t = z/x is a local parameter at Q1.

Define the differential ω = dt in the open set U = {(x : y : z) ∈ C : x �= 0},
and let K = (ω).
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Lemma 1. K = 3Q3 + Q2.

Proof. A point P ∈ U has the form P = (1 : b : c). Note that t′ = (z + cx)/x is
a local parameter at P , and dt′ = dt. It follows that ω has no zeros on U , so the
support of K must be contained in C \ U = {Q2, Q3}. A canonical divisor on
a plane quartic is the intersection divisor of a line with the curve, and the only
such divisor supported by Q2 and Q3 is the intersection divisor of the line x = 0
with the curve; that is, 3Q3 + Q2. 	


Lemma 2. The set {1, z/x, y/x} is a basis for L(K).

Proof. The dimension of L(K) is 3 (genus), and we see that the given functions
are contained in L(K) by checking the intersection divisors of the lines xyz = 0
with the curve. For linear independence, note that the functions have distinct
orders at Q1. 	


We want to verify that the basis given by the preceding lemma satisfies the
hypothesis of Theorem 1; that is, the basis functions have a single non-zero term
of degree less than α = 5 when expanded in powers of t = z/x. Obviously, we
only need to look at y/x, which vanishes at Q1 with order 3. The first term in
the expansion of y/x is t3, and to determine the next term we compute

y/x − t3 = (x3y + xz3)/x4 = y3z/x4.

Since νQ1(y3z/x4) = 10, the expansion of y/x in powers of t has exactly one
non-zero term of degree less than α. The basis functions therefore satisfy the
hypothesis of Theorem 1. They vanish at Q1 with orders 0, 1 and 3, and the
proof of Theorem 1 show that in this case

{1/Q1, t/Q1, t3/Q1} ⊂ R /R(K − 5Q1) + k(C)).

On the other hand, {tµi−1 : 0 ≤ i ≤ 2} is a basis for R/(R(K − 5Q) + k(C))
according to Proposition 2, and the values 0, 1 and 3 have been excluded as
possible values for µi−1, leaving -1, 2 and 4. The non-gaps µi at Q1 are therefore
0, 3 and 5.

Indeed, the set {1, x/y, xz/y2} is a basis for L(5Q1), and the functions in
this basis have pole orders 0, 3, and 5 at Q1.

4 Algorithmic Questions

Theorem 1 provides the theoretical framework for computing the points ϕ(P )
via cohomology maps, but three main computational problems must be solved
to apply the theorem in practice:

1. Compute a concrete representation of the unique extension

E ∈ Ext(OC(αQ − K), OC)

with quotient bundle OC(P ) for each rational point P �= Q.
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2. Compute the image of E under the map

ψ : Ext (OC(K − αQ), OC) ∼−→ R /
(
R(K − αQ) + k̄(C)

)
.

3. If ψ(E) ∈ R/(R(K − αQ) + k̄(C)) is not of the form
∑α

i=0 cit
µi−1/Q, then

translate it into the unique representative of its equivalence class having that
form.

We look briefly at each of these questions in turn.

4.1 Concrete Representations of Rank-2 Extensions

The problem is to find the extension E ∈ Ext(OC(αQ − K), OC) with quotient
line bundle OC(P ), or equivalently with line subbundle OC(αQ − K − P ). Here
we quickly review the idea of a vector bundle as an abstract algebraic variety,
and a subbundle as an embedding of varieties. The basic facts can be looked up
in Shafarevich [12–Chap. VI]. Then following the definitions, we translate the
problem of finding the desired rank-2 bundle into a search for rational functions
on the curve satisfying a certain linear relation.

Consider a line bundle L → C, say L = OC(A) for a divisor A. Since the
base space C is a curve, there is a covering by two open sets with L trivial
over each. Fix such a covering (U1, U2), and let U12 = U1 ∩ U2. Then L is
realized as an abstract algebraic variety by glueing the two affine varieties Ui × k̄
along their intersection. In particular, it is represented by a transition function
h ∈ OC(U12)∗ that for each x ∈ U12 identifies the point (x, a) ∈ U1 × k̄ with the
point (x, h(a)) ∈ U2 × k̄. If A has local equations hi in Ui, then we may take
h = h2/h1. Then an extension E ∈ Ext(L, OC) is represented by a transition
matrix

M =
(

1 0
g h

)
,

where g ∈ k̄(C) depends on the class of E. This matrix determines the glueing
relation for the affine varieties U1 × k̄2 and U2 × k̄2.

Considering vector bundles as abstract algebraic varieties, an embedding

ϕ : L → E

is a regular map of varieties that preserves fibers, and on each fiber induces a
linear map k̄ → k̄2. This means that there are regular functions ri and si on Ui

(i = 0, 1) such that ϕ|Ui×k : (x, a) �→ (x, ri(x) · a, si(x) · a), and these functions
preserve the gluing relation of E; in our case, it means

f · (r2, s2) =
(

1 0
g h

) (
r1
s1

)

on the intersection U12, where f is a transition function for L = OC(αQ−K−P ).
We may take f = hp−1, where p is a transition function for OC(P ). Note that for
suitable choices of the trivializing cover {Ui}, it is easy to obtain local equations
for the rational points of the curve, or for any divisor with rational support.
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In summary, we get a transition matrix for E ∈ Ext(OC(αQ − K), OC) with
quotient line bundle OC(P ) by finding g ∈ k̄(C) and ri, si ∈ OC(Ui) that

f · r2 = r1

f · s2 = g · r1 + h · s1

on the intersection U12.

4.2 Cohomology Maps

Our map ψ is a composition of three maps

Ext(OC(αQ − K), OC) −→ Ext(OC , OC(K − αQ)) (1)

−→ H1(OC(K − αQ)) (2)
−→ R/(R(K − αQ) + k̄(C)) (3)

The first map takes an extension of the form 0 → OC → E → OC(αQ−K) → 0
and twists by OC(K −αQ) to obtain 0 → OC(K −αQ) → E′ → OC → 0. What
this means concretely, in terms of transition matrices, is multiplying each entry
of a transition matrix for E by a transition function for OC(αQ − K) to obtain
a transition matrix for E′.

The second map arises by forming the associated long exact sequence and
taking the image of the identity element under H0(OC) → H1(OC(K − αQ)).
But here the picture seems too abstract for direct computation. It may simplify
matters to use the Cech cohomology, but care is needed to choose a suitable open
cover so that the Cech cohomology agrees with the derived functor cohomology;
see Hartshorne [7–Chap. III] on this point.

The map to repartitions (3) is described by Serre [12–Proposition II.3], and
there also one may need to recast the details in terms of Cech cohomology for a
more computationally concrete picture.

4.3 Translating Repartitions

Let us define the support of a repartition r to be the set of points P at which
rP �= 0. We begin by noting that for any divisor A, a repartition with infinite
support is equivalent modulo R(A) to one with finite support: for example, if
r′ ∈ R is defined by

r′P =
{

rp : P �∈ Supp (A) and νP (rp) ≥ 0
0 : otherwise

then r − r′ ≡ r has finite support. Recall that we identify f ∈ k̄(C) with the
repartition that assigns f to every point. If we take f = rQ, then r − f does
not have Q in its support and it is equivalent to r modulo R(K − αQ) + k̄(C).
We may therefore assume that a given repartition r, viewed as an element of
R /(R(K − αQ) + k̄), is supported by finitely many points, Q not among them.
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Proposition 1 says that any r ∈ R is equivalent modulo R(K − αQ) + k̄(C)
to a linear combination of the repartitions tµi−1/Q for 0 ≤ i ≤ m. This means
that there are unique coefficients ci ∈ k̄ and a function f ∈ k̄(C) such that

r − f +

(
∑

i

cit
µi−1/Q

)

∈ R(K − αQ).

Equivalently, assuming rQ = 0 as discussed above, the coefficients ci and the
function f must satisfy:

1. νP (rP − f) ≥ −νP (K) for all P �= Q;
2. νQ(

∑
i cit

µi − f) ≥ α.

The existence of f satisfying (1) is guaranteed by the Strong Approximation
Theorem [11–Chap. 12]; moreover, since α > m, (2) implies that f is regular at
Q and the coefficients ci can be obtained from the initial part of its expansion
in powers of t.
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A The Proof of Proposition 2

This comes directly from [4], with minor rewording.
Applying Serre’s proof of the duality theorem for curves [14–Proposition II.3]

to our situation, we note that Ω1(K − αQ) ∼= H0(αQ) is put in duality with
R/(R(K − αQ) + k̄(C)) by the pairing

〈ω, r〉 =
∑

P∈C

ResP (rP · ω). (4)

Fix a basis {fi} for L(αQ). We may assume νQ(fi) = µi (the i-th Weierstrass
non-gap at Q). Let a(i, j) ∈ k̄ denote the coefficient of tj in the expansion of fi

in powers of t; that is,

fi =
∞∑

r=−µi

a(i, r) · tr.

Now suppose for a moment that there are distinct indices i and j for which
a(i, −µj) �= 0. Thus while fj has a pole of order µj at Q, there is a non-zero
coefficient of t−µj in the expansion of some other function fi with a higher
pole order at Q. Since νQ(fi − a(i, −µj) · fj) = −µi, we may replace fi with
fi − a(i, −µj) · fj to obtain another basis for L(αQ); moreover, the coefficient of
t−µj in the expansion of this new function is zero. We may therefore assume that
a(i, −µj) = 0 if and only if i �= j. Letting ωi = fi · dt in an open neighborhood
of Q, we can write ResQ(tnj−1 · ωi) = a(i, −nj); that is,

ResQ(tnj−1 · ωi) = 0 ←→ i �= j.

Combining this with (4), we have

〈ωi, tnj−1/ Q〉 = 0 ←→ i �= j.

Referring again to (4), we see that every differential ω ∈ Ω1(K − αQ) defines
a linear functional 〈ω, ·〉 on R/(R(K − αQ) + k̄(C)). Indeed, 〈ω, r〉 = 0 for all
r ∈ R(K −αQ) since rP · ω has no poles for any point P ∈ C, and 〈ω, r〉 = 0 for
all repartitions r ∈ k̄(C) by the Residue Theorem.

We have contructed a basis {tµj−1/Q} in the standard way for the space
R/(R(K − αQ) + k̄(C)) in terms of a basis {ωi} for the dual space. That is,
〈ωi, tnj−1〉 = 0 if and only if i �= j. 	
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