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Abstract. Since the introduction of the notions of nonlinearity in the
mid-70’s (the term has been in fact introduced later), of correlation im-
munity and resiliency in the mid-80’s, and of algebraic immunity recently,
the problem of efficiently constructing Boolean functions satisfying, at
high levels, one or several of these criteria has received much attention.
Only few primary constructions are known, and secondary construc-
tions are also necessary to obtain functions achieving or approaching
the best possible cryptographic characteristics. After recalling the back-
ground on cryptographic criteria and making some general observations,
we try to give a survey of all these constructions and their properties.
We then show that a nice and simple property of Boolean functions
leads to a general secondary construction building an n-variable function
from three known n-variable functions. This construction generalizes sec-
ondary constructions recently obtained for Boolean bent functions and
also leads to secondary constructions of highly nonlinear balanced or re-
silient functions, with potentially better algebraic immunities than the
three functions used as building blocks.

Keywords: stream cipher, Boolean function, algebraic degree, resiliency,
nonlinearity, algebraic attack.

1 Introduction

Boolean functions, that is, F2-valued functions defined on the vector space Fn
2 of

all binary words of a given length n, are used in the S-boxes of block ciphers and
in the pseudo-random generators of stream ciphers. They play a central role in
their security. The generation of the keystream consists, in many stream ciphers,
of a linear part, producing a sequence with a large period, usually composed of
one or several LFSR’s, and a nonlinear combining or filtering function f which
produces the output, given the state of the linear part. The main classical cryp-
tographic criteria for designing such function f are balancedness (f is balanced
if its Hamming weight equals 2n−1) to prevent the system from leaking statisti-
cal information on the plaintext when the ciphertext is known, a high algebraic
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degree (that is, a high degree of the algebraic normal form of the function) to
prevent the system from Massey’s attack by the Berlekamp-Massey algorithm,
a high order of correlation immunity (and more precisely, of resiliency, since
the functions must be balanced) to counter correlation attacks (at least in the
case of combining functions), and a high nonlinearity (that is, a large Hamming
distance to affine functions) to withstand correlation attacks (again) and linear
attacks.

The recent algebraic attacks have led to further characteristics of Boolean
functions. These attacks recover the secret key by solving an overdefined system
of multivariate algebraic equations. The scenarios found in [26], under which low
degree equations can be deduced from the knowledge of the nonlinear combining
or filtering function, have led in [48] to a new parameter, the (basic) algebraic
immunity, which must be high. This condition is itself not sufficient, since a
function can have sufficiently high algebraic immunity and be weak against fast
algebraic attacks [25]. A further criterion strengthening the basic notion of al-
gebraic immunity can be defined accordingly.

The problems of designing numerous bent functions (that is, functions with
highest possible nonlinearity) and of efficiently constructing highly nonlinear bal-
anced (or, if necessary, resilient) functions with high algebraic degrees have been
receiving much attention for several years. They are relevant to several domains:
mainly cryptography, but also combinatorics, design theory, coding theory ...
Few primary constructions (in which the functions are designed ex nihilo) are
known, and secondary constructions (which use already defined functions to de-
sign new ones) are also necessary to obtain functions, on a sufficient number of
variables, achieving or approaching the best possible cryptographic characteris-
tics. We can say that research has obtained limited but non-negligible success
in these matters. However, the problem of meeting all of these characteristics
at sufficient levels and, also, achieving high algebraic immunities, with functions
whose outputs can be fastly computed (this is also a necessary condition for
using them in stream ciphers) shows some resistance. The most efficient primary
construction in this matter has been obtained in [29] (the authors present their
result as a secondary construction, but as they observe themselves, their con-
struction is just a direct sum of a function taken as a building block, with a
function that they design and which corresponds to a primary construction). It
leads to functions in any even numbers of variables and with optimal algebraic
immunities. And as shown in [19], their algebraic degrees are very high and their
output can be very fastly computed. They are not balanced, but any function!
can be made balanced by adding one variable. The remaining problem is in their
insufficient nonlinearities, which makes them unusable in cryptosystems. Used
as a secondary construction, their method does not give full satisfaction either,
for the same reason. Hence, this secondary construction represents a very nice
but still partial step towards a good tradeoff between nonlinearity, resiliency and
algebraic immunity.

Most classical primary or secondary constructions of highly nonlinear
functions seem to produce insufficient algebraic immunities. For instance, the
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10-variable Boolean function used in the LILI keystream generator (a submis-
sion to NESSIE European call for cryptographic primitives) is built following
[56] by using classical constructions; see [59]. It has algebraic immunity 4 and is
responsible for the lack of resistance of LILI to algebraic attacks, see [26].

As shown in [48], taking random balanced functions on sufficiently large num-
bers of variables could suffice to withstand algebraic attacks on the stream ci-
phers using them. It would also withstand fast algebraic attacks (this can be
checked with the same methods as in [48]). As shown in [49], it would moreover
give reasonable nonlinearities. But such solution would imply using functions
on large numbers of variables, whose outputs would be computable in much
too long time. This would not allow acceptable efficiency of the corresponding
stream ciphers. It would not allow nonzero resiliency orders either.

The present paper tries to present the state of the art on Boolean crypto-
graphic functions and to suggest several directions for further research. At the
end of the paper, a construction (first presented in [17]) of functions on Fn

2 from
functions on Fn

2 is presented, which combined with the classical primary and
secondary constructions can lead to functions achieving high algebraic degrees,
high nonlinearities and high resiliency orders, and which also allows attaining
potentially high algebraic immunity. The same principle allows constructing bent
functions too.

2 Preliminaries and General Observations

In some parts of this paper, we will deal in the same time with sums modulo
2 and with sums computed in Z. We denote by ⊕ the addition in F2 (but we
denote by + the addition in the field F2n and in the vector space Fn

2 , since
there will be no ambiguity) and by + the addition in Z. We denote by

⊕
i∈...

(resp.
∑

i∈...) the corresponding multiple sums. Let n be any positive integer.
Any Boolean function f on n variables admits a unique algebraic normal form
(A.N.F.):

f(x1, . . . , xn) =
⊕

I⊆{1,...,n}
aI

∏

i∈I

xi,

where the aI ’s are in F2. The terms
∏

i∈I xi are called monomials. The algebraic
degree d◦f of a Boolean function f equals the maximum degree of those mono-
mials with nonzero coefficients in its algebraic normal form. Affine functions are
those Boolean functions of degrees at most 1.

Another representation of Boolean functions is also very useful. The vec-
tor space Fn

2 can be endowed with the structure of the field F2n , since this
field is an n-dimensional F2-vector space. The function (u, v) �→ tr(u v), where
tr(u) = u + u2 + u22

+ · · · + u2n−1
is the trace function, is an inner product

in F2n . Every Boolean function can be written in the form f(x) = tr(F (x))
where F is a mapping from F2n into F2n , and this leads to the trace repre-
sentation: f(x) = tr

(∑2n−1
i=0 βi xi

)
, where βi ∈ F2n . Thanks to the fact that

tr(u2) = tr(u) for every u ∈ F2n , we can restrict the exponents i with nonzero
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coefficients βi so that there is at most one such exponent in each cyclotomic
class {i × 2j [ mod (2n − 1)] ; j ∈ N}.

The Hamming weight wH(f) of a Boolean function f on n variables is the size
of its support {x ∈ Fn

2 ; f(x) = 1}. The Hamming distance dH(f, g) between two
Boolean functions f and g is the Hamming weight of their difference f ⊕ g. The
nonlinearity of f is its minimum distance to all affine functions. Functions used
in stream or block ciphers must have high nonlinearities to resist the attacks
on these ciphers (correlation and linear attacks, see [4, 40, 41, 58]). The nonlin-
earity of f can be expressed by means of the discrete Fourier transform of the
“sign” function χf (x) = (−1)f(x), equal to χ̂f (s) =

∑
x∈F n

2
(−1)f(x)⊕x·s (and

which is called the Walsh transform, or Walsh-Hadamard transform): the dis-
tance dH(f, l) between f and the affine function l(x) = s ·x⊕ ε (s ∈ Fn

2 ; ε ∈ F2)
and the number χ̂f (s) are related by:

χ̂f (s) = (−1)ε(2n − 2dH(f, l)) (1)

and the nonlinearity Nf of any Boolean function on Fn
2 is therefore related to

the Walsh spectrum of χf via the relation:

Nf = 2n−1 − 1
2

max
s∈F n

2

|χ̂f (s)|. (2)

It is upper bounded by 2n−1 −2n/2−1 because of the so-called Parseval’s relation∑
s∈F n

2
χ̂f

2(s) = 22n.
A Boolean function is called bent if its nonlinearity equals 2n−1 − 2n/2−1,

where n is necessarily even. Then, its distance to every affine function equals
2n−1 ± 2n/2−1, according to Parseval’s relation again and to (1).

A Boolean function f is bent if and only if all of its derivatives Daf(x) =
f(x)⊕f(x+a) are balanced, (see [53]). Hence, f is bent if and only if its support
is a difference set (cf. [30]).

If f is bent, then the dual Boolean function f̃ defined on Fn
2 by χ̂f (s) =

2
n
2 χ

�f (s) is bent. The dual of f̃ is f itself. The mapping f �→ f̃ is an isometry
(the Hamming distance between two bent functions is equal to that of their
duals).

The notion of bent function is invariant under linear equivalence and it is in-
dependent of the choice of the inner product in Fn

2 (since any other inner product
has the form 〈x, s〉 = x · L(s), where L is an auto-adjoint linear isomorphism).

Rothaus’ inequality [53] states that any bent function has algebraic degree
at most n/2. Algebraic degree being an important complexity parameter, bent
functions with high degrees are preferred from cryptographic viewpoint.

The class of bent functions, whose determination or classification is still an
open problem, is relevant to cryptography (cf. [47]), to algebraic coding theory
(cf. [45]), to sequence theory (cf. [51]) and to design theory (any difference set
can be used to construct a symmetric design, cf. [1], pages 274-278). More infor-
mation on bent functions can be found in the survey paper [10] or in the more
recent chapter [18].
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The class of bent functions is included in the class of the so-called plateaued
functions. This notion has been introduced by Zheng and Zhang in [62]. A func-
tion is called plateaued if its Walsh transform takes at most three values 0 and
±λ (where λ is some positive integer, that we call the amplitude of the plateaued
function). Because of Parseval’s relation, λ must be of the form 2r where r ≥ n

2 ,
and the suppport {s ∈ Fn

2 / χ̂f(s) �= 0} of the Walsh transform of a plateaued
function of amplitude 2r has size 22n−2r.

Bent functions cannot be balanced, i.e. have uniformly distributed output.
Hence, they cannot be used without modifications in the pseudo-random gen-
erator of a stream cipher, since this would leak statistical information on the
plaintext, given the ciphertext1. Finding balanced functions with highest known
nonlinearities is an important cryptographic task, as well as obtaining the best
possible upper bounds on the nonlinearities of balanced functions. A nice way of
designing highly nonlinear balanced functions is due to Dobbertin [33]: taking a
bent function f which is constant on an n/2-dimensional flat A of Fn

2 and replac-
ing the values of f on A by the values of a highly nonlinear balanced function on
A (identified to a function on F

n/2
2 ). The problem of similarly modifying bent

functions into resilient functions (see definition below) has been studied in [46].
After the criteria of balancedness, high algebraic degree and high nonlinear-

ity, which are relevant to all stream ciphers, another important cryptographic
criterion for Boolean functions is resiliency. It plays a central role in their se-
curity, at least in the case of the standard model – the combination generator
(cf. [57]). In this model, the vector whose coordinates are the outputs to n lin-
ear feedback shift registers is the input to a Boolean function. The output to
the function during N clock cycles produces the keystream (of length N , the
length of the plaintext), which is then (as in any stream cipher) bitwise xored
with the message to produce the cipher. Some divide-and-conquer attacks exist
on this method of encryption (cf. [4, 40, 41, 58]). To withstand these correlation
attacks, the distribution probability of the output to the function must be unal-
tered when any m of its inputs are fixed [58], with m as large as possible. This
property, called m-th order correlation-immunity [57], is characterized by the set
of zero values in the Walsh spectrum [61]: f is m-th order correlation-immune
if and only if χ̂f (u) = 0, for all u ∈ Fn

2 such that 1 ≤ wH(u) ≤ m, where wH(u)
denotes the Hamming weight of the n-bit vector u, (the number of its nonzero
components). Balanced m-th order correlation-immune functions are called m-
resilient functions. They are characterized by the fact that χ̂f (u) = 0 for all
u ∈ Fn

2 such that 0 ≤ wH(u) ≤ m.
The notions of correlation immune and resilient functions are not invariant

under linear equivalence; they are invariant under translations x �→ x + a, since,
if g(x) = f(x + a), then χ̂g(u) = χ̂f (u)(−1)a·u, under permutations of the input
coordinates, and when n is even, under an additional involution (see [38]).

Siegenthaler’s inequality [57] states that any m-th order correlation immune
function on n variables has degree at most n − m, that any m-resilient function

1 However, as soon as n is large enough (say n ≥ 20), the bias 2n/2−1

2n−1 between their
weights and the weight of balanced functions is quite small.
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(0 ≤ m < n−1) has algebraic degree smaller than or equal to n−m−1 and that
any (n − 1)-resilient function has algebraic degree 1. We shall call Siegenthaler’s
bound this property.

Sarkar and Maitra have shown that the Hamming distance between any m-
resilient function and any affine function is divisible by 2m+1 (this divisibility
bound is improved in [11, 23] for functions with specified algebraic degrees). This
leads to an upper bound on the nonlinearity of m-resilient functions (also partly
obtained by Tarannikov and by Zhang and Zheng): the nonlinearity of any m-
resilient function is smaller than or equal to 2n−1 − 2m+1 if n

2 − 1 < m + 1, to
2n−1−2

n
2 −1−2m+1 if n is even and n

2 −1 ≥ m+1 and to 2n−1−2m+1
⌈
2n/2−m−2

⌉

if n is odd and n
2 − 1 ≥ m + 1. We shall call this set of upper bounds Sarkar

et al.’s bound. A similar bound exists for correlation immune functions, but we
do not recall it since non-balanced correlation immune functions present little
cryptographic interest.

Two kinds of constructions, providing resilient functions with degrees and
nonlinearities approaching or achieving the known bounds, can be identified.
Some constructions give direct definitions of Boolean functions. There are few
such primary constructions and new ideas for designing them are currently lack-
ing. Except for small values of the number of variables, the only known primary
construction of resilient functions which leads to a wide class of such functions,
the Maiorana-McFarland’s construction, does not allow designing balanced or
resilient functions with high degrees and high nonlinearities (see e.g. [12, 13]),
for which the trade-off between these parameters achieve the bounds recalled
above. Moreover, the stream ciphers using the constructed functions are subject
to the time-memory-data trade-off attack (see [42]). Modifications and gener-
alizations of this construction have been proposed (see e.g. [12, 16, 50, 55]), but
these generalizations lead to classes with roughly the same properties as the
original class. Secondary constructions use previously defined functions (that we
shall call “building blocks”) to build new ones. Most of them design n-variable
functions from m-variable functions with m < n and lead in practice to recursive
constructions.

Until recently, these criteria were the only requirements needed for the de-
sign of the function f used in a stream cipher as a combining function or as a
filtering one (in the filter model, a single LFSR of greater length is used and
the input to the n-variable Boolean function is given by a subset of n positions
in this LFSR). The recent algebraic attacks [25, 26] have changed this situation
by adding new criteria of considerable importance to this list. Algebraic attacks
exploit multivariate relations involving key/state bits and output bits of f . If one
such relation (or, better, several) is found that is of low degree in the key/state
bits, algebraic attacks are very efficient. It is demonstrated in [26] that low de-
gree relations and thus successful algebraic attacks exist for several well known
constructions of stream ciphers that are immune to all previously known attacks.
These low degree relations are obtained by multiplying the Boolean function f
by a well chosen low degree nonzero function g, such that the product function
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fg (that is, the function which support equals the intersection of the supports
of f and g) has also low degree.

The scenarios found in [26], under which functions g �= 0 and h of degrees at
most d exist such that fg = h, have been simplified in [48] into two scenarios:
(1) there exists a nonzero Boolean function g of degree at most d whose support
is disjoint from the support of f , i.e. such that fg = 0 (such a function g is called
an annihilator of f); (2) there exists a nonzero annihilator, of degree at most d,
of f ⊕ 1 (we write then: g 
 f).

The (basic) algebraic immunity AI(f) of a Boolean function f is the minimum
value of d such that f or f⊕1 admits a nonzero annihilator of degree d. Obviously,
AI(f) is upper bounded by the degree d◦f . It should be high enough (at least
equal to 7).

When the total number 1 + . . . +
(
n
d

)
of monomials of degrees at most d is

strictly greater than 2n−1, these monomials and their products with f cannot
be linearly independent. This proves, as observed in [26], that the algebraic
immunity of any function f satisfies AI(f) ≤ �n/2�. This implies that Boolean
functions used in stream ciphers must have at least 13 variables. In fact, 13 is
very probably insufficient.

Another upper bound on AI(f), which involves the nonlinearity of f , has been
proved in [28]:

∑AI(f)−2
i=0

(
n
i

)
≤ Nf . It is a consequence of the double inequality

∑AI(f)−1
i=0

(
n
i

)
≤ wH(f) ≤

∑n−AI(f)
i=0

(
n
i

)
, which also implies that a function f

such that AI(f) = n+1
2 (n odd) must be balanced.

There is more generally a relationship between AI(f) and the minimum dis-
tance N

(r)
f between f and all Boolean functions of degrees at most r (the so-called

Reed-Muller code of order r), that we shall call the r-th order nonlinearity of f .
We have

∑AI(f)−r−1
i=0

(
n
i

)
≤ N

(r)
f (see [19]). Moreover:

Proposition 1. If AI(f) ≤ r and if f is balanced, then we have N
(r)
f

≤ 2n−1 − 2n−r.

Proof. By hypothesis, there exists a nonzero function g of degree at most r such
that g 
 f or g 
 f ⊕ 1. Since g is nonzero and belongs to the Reed-Muller
code of order r, it has weight at least the minimum distance of this code, that is
2n−r. If g 
 f , then dH(f, g) = wH(f ⊕ g) = wH(f) − wH(g) ≤ 2n−1 − 2n−r. If
g 
 f ⊕1, then dH(f, g⊕1) = wH(f ⊕g⊕1) = wH(f ⊕1)−wH(g) ≤ 2n−1−2n−r.
This implies in both cases that N

(r)
f ≤ 2n−1 − 2n−r. 


This observation opens a direction for research: finding balanced functions with
r-th order nonlinearity strictly greater than 2n−1−2n−r for some high value of r.
A combinatorial argument shows that such functions exist almost surely as soon
as r ≤ .17×n. Indeed, the number of n-variable Boolean functions of algebraic de-
grees at most r equals 21+n+(n

2)+...+(n
r). Such a function h being given, the num-

ber of those Boolean functions f such that the Hamming distance dH(f, h) sat-

isfies dH(f, h) ≤ 2n−1 −R for some positive number R equals
∑

0≤i≤2n−1−R

(
2n

i

)

.

It is known (see [45], page 310) that, for every integer N and every δ < 1/2,



8 C. Carlet

the number
∑

0≤i≤δN

(
N

i

)

is upper bounded by 2NH2(δ), and it is noticed in [15]

that 2NH2(δ) < 2N−2N( 1
2−δ)2 log2 e. Hence,

∑

0≤i≤2n−1−R

(
2n

i

)

is upper bounded

by 22n−2−n+1R2 log2 e, and the number of those Boolean functions such that
N

(r)
f ≤ 2n−1 − R is therefore smaller than 21+n+(n

2)+...+(n
r)+2n−2−n+1R2 log2 e.

According to [45] again, we have: 1+n+
(
n
2

)
+ . . .+

(
n
r

)
≤ 2nH2(r/n). The proba-

bility that a random n-variable Boolean function f satisfies N
(r)
f ≤ 2n−1 − 2n−r

is then smaller than 22nH2(r/n)−2n(1−2r/n)+1 log2 e. It is a simple matter to show
that, when r/n ≤ .17, this probability tends to 0 when n tends to infinity.

A high value of AI(f) is not a sufficient property for a resistance to al-
gebraic attacks, because of fast algebraic attacks [25], in which h can have
a greater degree than g. Indeed, while the complexity of the standard alge-
braic attack is roughly O

((
n

AI(f)

)3
)
, the complexity of the fast algebraic at-

tack, when functions g �= 0 and h have been found such that fg = h, is
roughly O

((
n

d◦g

)(
n

d◦h

)
log2

((
n

d◦h

))
+

(
n

d◦g

)3 +
(

n
d◦h

)
log2

2 ((
n

d◦h

)))
[36]. Similarly

as above, when the number of monomials of degrees at most e, plus the number
of monomials of degrees at most d, is strictly greater than 2n – that is, when
d◦g + d◦h ≥ n – there exist g �= 0 of degree at most e and h of degree at most
d such that fg = h. An n-variable function f is then optimal with respect to
fast! algebraic attacks if there do not exist two functions g �= 0 and h such that
fg = h and d◦g + d◦h < n. Very little research in this direction has been done
already.

3 The Known Constructions of Bent Functions and of
Resilient Functions and the Corresponding Degrees,
Nonlinearities and Algebraic Immunities

3.1 Primary Constructions

Maiorana-McFarland Constructions. Maiorana-McFarland class (cf. [31])
is the set of all the (bent) Boolean functions on Fn

2 = {(x, y), x, y ∈ F
n
2

2 } (n
even) of the form :

f(x, y) = x · π(y) ⊕ g(y) (3)

where π is any permutation on F
n
2

2 and g is any Boolean function on F
n
2

2 .
The dual of f is then f̃(x, y) = y ·π−1(x)⊕ g(π−1(x)). Notice that the degree

of f can be n/2, i.e. be optimal.
In [3] is introduced a generalization leading to balanced and resilient functions:

let m and n = r + s be any integers such that r > m ≥ 0, s > 0, g any Boolean
function on F s

2 and φ a mapping from F s
2 to F r

2 such that every element in φ(F s
2 )

has Hamming weight strictly greater than m, then the function:
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f(x, y) = x · φ(y) ⊕ g(y), x ∈ F r
2 , y ∈ F s

2 (4)

is m-resilient, since we have

χ̂f (a, b) = 2r
∑

y∈φ−1(a)

(−1)g(y)⊕b·y. (5)

The degree of f (which is upper bounded by s + 1) and its nonlinearity have
been studied in [12, 13]. The functions of the form (4), for n

2 − 1 < m + 1, can
have high nonlinearities. However, optimality or sub-optimality with respect to
Siegenthaler’s and Sarkar et al’s bounds could be obtained with this construction
only with functions in which r was large and s was small. These functions having
then low degrees, they are not suitable for practical use. In the case n

2 −1 ≥ m+1,
no function belonging to Maiorana-McFarland’s class and having nearly optimal
nonlinearity could be constructed, except in the limit case n

2 − 1 = m + 1.
It has been shown in [22] that, under an assumption on φ which seems highly

probable, unless r is much greater than s (case that we must exclude for degree
reasons), every highly nonlinear function (4) satisfies AI(f) ≤ s. This has been
also checked by computer experiment. Table 1, from [22], gives the AI of some
resilient functions built by the Maiorana-McFarland. The notation ’Const’ is for
the type of construction used: the classical construction of [3] is denoted by ’a’,
the case where exactly two elements of F s

2 have the same image of weight at
least w but with different values for the function g is denoted by ’b’.

Generalizations of Maiorana-McFarland’s functions have been studied in [12,
16]. They have the respective forms f(x, y) =

⊕�r/2�
i=1 x2i−1x2i ψi(y) ⊕ x · φ(y) ⊕

Table 1. Computation of some characteristics for Boolean functions built by the
Maiorana-McFarland construction

n r s degree Const. w resiliency nonlinearity alg. immunity
8 4 4 5 b 2 2 112 3
9 5 4 5 b 3 3 224 3
9 5 4 5 a 3 2 240 4
10 5 5 6 b 3 3 480 4
10 6 4 5 a 4 3 480 4
11 6 5 6 b 4 4 960 4
11 6 5 6 a 3 2 992 5
12 6 6 7 b 4 4 211 − 26 5
12 7 5 6 a 4 3 211 − 26 5
13 7 6 7 a 4 3 211 − 26 5
13 7 6 7 b 4 4 212 − 27 5
13 8 5 6 a 5 4 212 − 27 5
14 7 7 8 b 4 4 213 − 27 5
14 8 6 7 b 6 6 213 − 28 5
14 8 6 7 a 5 4 213 − 27 5
14 8 6 7 a 5 4 213 − 27 5
14 9 5 6 a 7 6 213 − 28 5
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g(y) and f(x, y) =
∏ϕ(y)

i=1 (x · φi(y) ⊕ gi(y) ⊕ 1)⊕x·φ(y)⊕g(y). The first one has
more or less the same behavior with respect to resiliency and nonlinearity as the
original construction, but allows achieving some particular tradeoffs that seemed
impossible to achieve before. Its degree is upper bounded by s + 2, and, under
the same reasonable assumption on ψ as the one evoked above for φ, we have
AI(f) ≤ s + 1. The degree and the algebraic immunity of the second form have
potential better behavior. Further work on this subject will have to be made in the
future. Modifications have also been proposed (see e.g. [52], in which some affine
functions, at least one, are replaced by suitably chosen nonlinear functions) but
it is shown in [48] that the algebraic immunities of these functions are often low.

Effective Partial-Spreads Constructions. In [31] is also introduced the class
of bent functions called PSap (a subclass of the so-called Partial-Spreads class),
whose elements are defined the following way:
F

n
2

2 is identified to the Galois field F2
n
2

and Fn
2 is identified to F2

n
2

×F2
n
2
; PSap

(or more precisely an extended version of the original one given by Dillon) is the
set of all the functions of the form f(x, y) = g(x y2

n
2 −2) (i.e. g(x

y ) with x
y = 0 if

x = 0 or y = 0) where g is a balanced Boolean function on F
n
2

2 . We have then
f̃(x, y) = g( y

x). The degree of f is optimal, even if g is affine (see e.g. [21]).
An alternative representation of these functions is as follows. F2n equals

F2n/2 +ωF2n/2 , where ω ∈ F2n \F2n/2 . A function f belongs to PSap if and only
if it has weight 2n−1 ± 2n/2−1 and satisfies f(βx) = f(x), for every β ∈ F ∗

2n/2 .
This last condition is equivalent to f(α2n/2+1x) = f(x), where α is a primitive
element of F2n . Indeed, α2n/2+1 is a primitive element of F2n/2 .

It is proved in [35] that, almost surely, any function in this class satisfies
AI(f) = d◦(f) = n/2.

The idea of this construction is used in [9] to obtain a construction of
correlation-immune functions:
Let s and r be two positive integers and n = r + s, g a function from F2r

to F2, φ a linear mapping from F s
2 to F2r and u an element of F2r such that

u+φ(y) �= 0, ∀y ∈ F s
2 . Let f be the function from F2r ×F s

2 ∼ Fn
2 to F2 defined by:

f(x, y) = g

(
x

u+φ(y)

)

⊕ v · y, (6)

where v ∈ F s
2 . If, for every z in F2r , φ∗(z)⊕ v has weight greater than m, where

φ∗ : F2r �→ F s
2 is the adjoint of φ, then f is m-resilient.

The same observations as for Maiorana-McFarland’s construction on the abil-
ity of these functions to have nonlinearities near Sarkar-Maitra’s bound can be
made. This construction generates a small number of functions (compared to the
Mariorana-McFarland construction). But it may be able to reach better algebraic
immunities and it should be studied further for this reason.

Functions with Few Terms in Their Trace Representation. The so-called
Gold function tr

(
αx2r+1

)
(r ∈ N, n even) is bent if and only if α �∈ {x2r+1; x ∈
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F2n}. The Dillon function tr
(
αx2n/2−1

)
is bent if and only if the Kloosterman

sum
∑

x∈F
2n/2

(−1)trn/2(1/x+αx) is null, where trn/2 is the trace function on F2n/2 ,
see [30]. Recent results prove the bentness of other functions with few terms in
their trace representation. Namely, the functions:

– tr
(
αx4k−2k+1

)
, where (k, n)=1, n is not divisible by 3 and α �∈ {x3; x ∈

F2n}, cf. [32];
– tr

(
αx2n/2+2n/4+1+1

)
, where n ≡ 4 [mod 8], α = β5, β4 + β + 1 = 0, cf. [44];

– tr
(
α1x

2n−1+2n/2−1
+ α2x

3(2n/2−1)+1
)
, where n ≡ 4 [mod 8],

(
α1 + α1

2n/2
)2

= α2
2n/2+1 and α2 ∈ {x5; x ∈ F ∗

2n}, cf. [34];

– tr
(
α1x

2n−1+2n/2−1
+ α2x

3(2n/2−1)+1
)
, where

(
α1 + α1

2n/2
)2

= α2
2n/2+1,

α2 ∈ F ∗
2n and n ≡ 0 or 2 or 6 [mod 8], cf. [34];

– tr
(
α1x

2n−1+2n/2−1
+ α2x

(2n/2−1+2n/2−2+1)(2n/2−1)+1
)
, where n ≡ 2 [mod 4],

(
α1 + α1

2n/2
)2

= α2
2n/2+1, cf. [34];

– tr
(
α1x

2n−1+2n/2−1
+ α2x

2n/2−1+1
3 (2n/2−1)+1

)
, where n is divisible by 4 and

(
α1 + α1

2n/2
)2

= α2
2n/2+1, cf. [34].

A last function, with more terms in its trace representation, and that we do not
recall, is given in [43].

Computer experiment has been reported in [22] giving highly nonlinear bal-
anced functions having high AI’s. In Table 2, is computed the algebraic immunity
of the function tr(x2n−2) (recall that the inverse function x2n−2 is used as S-box
in the AES) for 7 ≤ n ≤ 14. This table shows that this fonction, even if good, is
not optimal.

In Table 3 are listed balanced functions of three types: (1) balanced functions
equal to the traces of power functions; (2) functions, denoted by *, obtained

Table 2. Computation of the nonlinearity and algebraic immunity for the inverse
function for 6 ≤ n ≤ 14

n d weight degree nonlinearity alg. immunity
6 -1 32 5 24 3
7 -1 64 6 54 4
8 -1 128 7 112 4
9 -1 256 8 234 4
10 -1 512 9 480 5
11 -1 1024 10 980 5
12 -1 2048 11 1984 5
13 -1 4096 12 4006 6
14 -1 8192 13 8064 6
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Table 3. Computation of the nonlinearity, algebraic degree and algebraic immunity
for certain power functions tr(xd)

n d weight degree nonlinearity alg. immunity
8 31 128 5 112 4
8 39 (Kasami) 128∗ 6 114 4
9 57 (Kasami) 256 4 224 4
9 59 256 5 240 5
9 115 256 5 240 5
10 241 (Kasami) 512 5 480 5
10 362 512 5 480 5
10 31 (Dillon) 512∗ 9 486 5
10 339 (Dobbertin) 512∗ 9 480 5
11 315 1024 6 992 6
12 993 (Kasami) 2048∗ 11 2000 6
12 63 (Dillon) 2048∗ 11 2000 6
12 636 2048∗ 11 2000 6
13 993 (Kasami) 4096 6 4032 6
13 939 4096∗∗ 12 4030 7
14 4033 (Kasami) 8192 7 8064 7
14 127 (Dillon) 8192∗∗ 13 8088 7

from traces of power functions, which are not balanced (they have weight 2n−1−
2n/2−1) and which are made balanced by replacing the first 2n/2−1 0’s by 1’s
(usually this construction leads to a function with a higher algebraic degree
than the starting function); (3) functions, denoted by **, of the same kind as
the previous ones, but for which were additionally inverted a small number of
bits from 0 to 1 and reciprocally from 1 to 0 (this small modification does not
affect too much the nonlinearity but may increase the AI by 1 in the case when
the dimension of the annihilator of the Boolean function f or 1 + f is small).

3.2 Secondary Constructions

We shall call constructions with extension of the number of variables those con-
structions using functions on Fm

2 , with m < n, to obtain functions on Fn
2 .

General Constructions with Extension of the Number of Variables.
All known secondary constructions of bent functions are particular cases of a
general construction given in [8]:
Let m and r be two positive even integers. Let f be a Boolean function on Fm+r

2
such that, for any element x′ of F r

2 , the function on Fm
2 :

fx′ : x → f(x, x′)

is bent. Then f is bent if and only if for any element u of Fm
2 , the function

ϕu : x′ → f̃x′(u)

is bent on F r
2 .
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A particular case of the general construction of bent functions given above is
a construction due to Rothaus in [53]. We describe it because it will be related
to the construction studied at the end of the present paper: if f1, f2, f3 and
f1 ⊕ f2 ⊕ f3 are bent on Fm

2 (m even), then the function defined on any element
(x1, x2, x) of Fm+2

2 by:
f(x1, x2, x) =

f1(x)f2(x)⊕f1(x)f3(x)⊕f2(x)f3(x)⊕ [f1(x)⊕f2(x)]x1 ⊕ [f1(x)⊕f3(x)]x2 ⊕x1x2

is bent.
The classical secondary constructions of resilient functions are the following:

Direct Sums of Functions: if f is an r-variable t-resilient function and if g is an
s-variable m-resilient function, then the function:

h(x1, . . . , xr, xr+1, . . . , xr+s) = f(x1, . . . , xr) ⊕ g(xr+1, . . . , xr+s)

is (t + m + 1)-resilient. This comes from the easily provable relation χ̂h(a, b) =
χ̂f (a) × χ̂g(b), a ∈ F r

2 , b ∈ F s
2 . We have also d◦h = max(d◦f, d◦g) and, thanks

to Relation (2), Nh = 2r+s−1 − 1
2 (2r −2Nf)(2s −2Ng) = 2rNg +2sNf −2NfNg.

We clearly have max(AI(f), AI(g)) ≤ AI(h) ≤ AI(f) + AI(g), since the re-
striction to an affine subspace E of the annihilator of a function is the annihilator
of the restriction to E of the function (note that in the present case, at least
one restriction is actually nonzero if the annihilator is nonzero), and since every
product of an annihilator of f + ε with an annihilator of g + η (ε, η ∈ F2) is an
annihilator of h+ ε+η (and, here, the direct product of a nonzero r-variable an-
nihilator of f with a nonzero s-variable annihilator of g is nonzero since the two
annihilators depend on disjoint sets of variables). The question seems open of de-
termining general conditions under which the inequality AI(h) ≤ AI(f)+AI(g)
can be proved to be an equality (which is clearly false in some cases, e.g. when
AI(f) + AI(g) > max(d◦(f), d◦(g))).

Note that, when the sum is not direct, the inequality AI(f ⊕ g) ≤ AI(f) +
AI(g) can be false: let h be an n-variable Boolean function and let l be an n-
variable nonzero linear function, then the functions f = hl and g = h(l⊕1) have
algebraic immunities at most 1, since f(l ⊕ 1) = gl = 0, and their sum equals h.
If AI(h) > 2, we obtain a counter-example. However, it involves non-balanced
functions. A counter-example with balanced functions is as follows: let h be an
n-variable balanced Boolean function and let l and l′ be two distinct n-variable
nonzero linear functions, such that the functions hll′, hl(l′ ⊕ 1), h(l ⊕ 1)l′ and
h(l ⊕ 1)(l′ ⊕ 1) are balanced. Then the functions f = hll′ ⊕ (h ⊕ 1)l(l′ ⊕ 1) +
(l ⊕ 1)(l′ ⊕ 1) and g = l(l′ ⊕ 1) + h(l ⊕ 1)l′ + (h ⊕ 1)(l ⊕ 1)(l′ ⊕ 1) have algebraic
immunities at most 2, since f(l ⊕ 1)l′ = gll′ = 0, they are balanced and their
sum equals h. If AI(h) > 4, we obtain a counter-example.

The secondary construction recently introduced in [29] consists in the direct
sum of the starting function f and of a function gk on 2k variables.

Siegenthaler’s Construction: Let f and g be two Boolean functions on F r
2 . Con-

sider the function

h(x1, . . . , xr, xr+1) = (xr+1 ⊕ 1)f(x1, . . . , xr) ⊕ xr+1g(x1, . . . , xr)
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on F r+1
2 . Then:

χ̂h(a1, . . . , ar, ar+1) = χ̂f (a1, . . . , ar) + (−1)ar+1 χ̂g(a1, . . . , ar).

Thus, if f and g are m-resilient, then h is m-resilient; moreover, if for every
a ∈ F r

2 of Hamming weight m+1, we have χ̂f (a)+ χ̂g(a) = 0, then h is (m+1)-
resilient. And we have: Nh ≥ Nf + Ng. If f and g achieve maximum possible
nonlinearity 2r−1 − 2m+1 and if h is (m + 1)-resilient, then the nonlinearity
2r − 2m+2 of h is the best possible. If the supports of the Walsh transforms
of f and g are disjoint, then we have Nh = 2r−1 + min(Nf , Ng); thus, if f
and g achieve maximum possible nonlinearity 2r−1 − 2m+1, then h achieves best
possible nonlinearity 2r − 2m+1.

The algebraic immunity of h has been studied in [29]:

– If AI(f) �= AI(g) then AI(h) = min{AI(f), AI(g)} + 1.
– If AI(f) = AI(g) = d, then d ≤ AI(h) ≤ d + 1, and AI(h) = d if and only if

there exist f1, g1 ∈ Bn of algebraic degree d such that {f ∗f1 = 0, g ∗g1 = 0}
or {(1 + f) ∗ f1 = 0, (1 + g) ∗ g1 = 0} and deg(f1 + g1) ≤ d − 1.

We cannot say that Siegenthaler’s construction is good or is bad in terms of
algebraic immunity, since:

– a good construction is supposed to gain 1 (resp k) for the algebraic immunity
when we add 2 (resp 2k) variables, here we add only one;

– the construction is very general since every function can be obtained from it.

In practice, we could not obtain good algebraic immunity with it.
Siegenthaler [57] proposed, as a particular case of its (iterated) construction,

to add to a given function f a linear function on disjoint variables for increasing
its resiliency order. This does not allow achieving good algebraic immunity, since
adding a linear function to f can increase the AI at most by one (an annihilator
of f , multiplied by l + 1 gives an annihilator of f + l).

Tarannikov’s Construction: Let g be any Boolean function on F r
2 . Define the

Boolean function h on F r+1
2 by

h(x1, . . . , xr, xr+1) = xr+1 ⊕ g(x1, . . . , xr−1, xr ⊕ xr+1).

The Walsh transform χ̂h(a1, . . . , ar+1) is equal to

∑

x1,...,xr+1∈F2

(−1)a·x⊕g(x1,...,xr)⊕arxr⊕(ar⊕ar+1⊕1)xr+1

where we write a = (a1, . . . , ar−1) and x = (x1, . . . , xr−1); it is null if ar+1 = ar

and it equals 2 χ̂g(a1, . . . , ar−1, ar) if ar = ar+1 ⊕ 1. Thus: Nh = 2 Ng; If g is
m-resilient, then h is m-resilient. If, additionally, χ̂g(a1, . . . , ar−1, 1) is null for
every vector (a1, . . . , ar−1) of weight at most m, then h is (m + 1)-resilient.
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Generalizations: Tarannikov in [60], and after him, Pasalic et al. in [54] used
this construction to design a more complex one, that we call Tarannikov et
al.’s construction, and which allowed maximum tradeoff between resiliency, al-
gebraic degree and nonlinearity. This construction uses two (n − 1)-variable m-
resilient functions f1 and f2 achieving Siegenthaler’s and Sarkar et al.’s bounds
to design an (n + 3)-variable (m + 2)-resilient function h also achieving these
bounds, assuming that f1 + f2 has same degree as f1 and f2 and that the sup-
ports of the Walsh transforms of f1 and f2 are disjoint. The two restrictions
h1(x1, . . . , xn+2) = h(x1, . . . , xn+2, 0) and h2(x1, . . . , xn+2) = h(x1, . . . , xn+2, 1)
have then also disjoint Walsh supports, and these two functions can then be used
in the places of f1 and f2. This leads to an infinite class of functions achieving
Sarkar et al.’s and Siegenthaler’s bounds. It has been proved in [2] that the n-
variable functions constructed by this method attain Ω(

√
n) algebraic immunity

(which is unfortunately bad).
Tarannikov et al.’s construction has been in its turn generalized (see [14]):

Theorem 1. Let r, s, t and m be positive integers such that t < r and m < s.
Let f1 and f2 be two r-variable t-resilient functions. Let g1 and g2 be two s-
variable m-resilient functions. Then the function h(x, y) = f1(x)⊕ g1(y)⊕ (f1 ⊕
f2)(x) (g1 ⊕ g2)(y), x ∈ F r

2 , y ∈ F s
2 is an (r + s)-variable (t + m + 1)-resilient

function. If f1 and f2 are distinct and if g1 and g2 are distinct, then the algebraic
degree of h equals max(d◦f1, d

◦g1, d
◦(f1 ⊕ f2)+ d◦(g1 ⊕ g2)); otherwise, it equals

max(d◦f1, d
◦g1). The Walsh transform of h takes value

χ̂h(a, b) =
1
2
χ̂f1(a) [χ̂g1(b) + χ̂g2(b)] +

1
2
χ̂f2(a) [χ̂g1(b) − χ̂g2(b)] . (7)

If the Walsh transforms of f1 and f2 have disjoint supports as well as those of g1
and g2, then

Nh = min
i,j∈{1,2}

(
2r+s−2 + 2r−1Ngj + 2s−1Nfi − NfiNgj

)
. (8)

In particular, if f1 and f2 have (optimum) nonlinearity 2r−1 − 2t+1 and have
disjoint Walsh supports, if g1 and g2 have (optimum) nonlinearity 2s−1 − 2m+1

and have disjoint Walsh supports, if f1 + f2 has degree r − t − 1 and if g1 + g2
has degree s − m − 1, then h has degree r + s − t − m − 2 and nonlinearity
2r+s−1 − 2t+m+2, and thus achieves Siegenthaler’s and Sarkar et al.’s bounds.

Note that function h, defined this way, is the concatenation of the four functions
f1, f1⊕1, f2 and f2⊕1, in an order controled by g1(y) and g2(y). The proof of this
theorem and examples of such pairs (f1, f2) (or (g1, g2)) can be found in [14].
This construction being very general since it generalizes all known secondary
constructions, it is difficult to give bounds on the algebraic immunity of the
resulting functions.

Other Constructions: There exists a secondary construction of resilient functions
from bent functions (see [9]): let r be a positive integer, m a positive even integer
and f a function such that, for any element x′, the function: fx′ : x → f(x, x′)
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is bent. If, for every element u of Hamming weight at most t, the function
ϕu : x′ → f̃x′(u) is (t − wH(u))-resilient, then f is t-resilient (the converse is
true).

Rothaus’ construction has been modified in [9] into a construction of resilient
functions: if f1 is t-resilient, f2 and f3 are (t−1)-resilient and f1⊕f2⊕f3 is (t−2)-
resilient, then f(x1, x2, x) is t-resilient (the converse is true). This construction
does not seem able to produce functions with higher algebraic immunities than
the functions used as building blocks.

Constructions Without Extension of the Number of Variables. Such
constructions, by modifying the support of highly nonlinear resilient functions
without decreasing their characteristics, may be appropriate for trying to in-
crease the algebraic immunities of such functions, previously obtained by clas-
sical constructions. There exist, in the literature, four such constructions.

Modifying a Function on a Subspace: Dillon proves in [31] that if a binary func-
tion f is bent on Fn

2 (n even) and if E is an n
2 -dimensional flat on which f is

constant, then, denoting by 1E the indicator (i.e. the characteristic function) of
E, the function f ⊕ 1E is bent too. This is generalized in [6]:

Let E = b ⊕ E′ be any flat in Fn
2 (E′, the direction of E, is a linear subspace

of Fn
2 ). Let f be any bent function on Fn

2 . The function f� = f ⊕ 1E is bent if
and only if one of the following equivalent conditions is satisfied :

1. for any x in Fn
2 \ E′, the function: y �→ f(y) ⊕ f(x ⊕ y) is balanced on E;

2. for any a in Fn
2 , the restriction of the function f̃(x)⊕ b ·x to the flat a⊕E′⊥

is either constant or balanced.

If f� is bent, then E has dimension greater than or equal to r = n/2 and the
degree of the restriction of f to E is at most dim(E)− r+1. If E has dimension
r, then this last condition (i.e., the fact that the restriction of f to E is affine)
is also sufficient and the function f̃�(x) is equal to :

f̃(x) ⊕ 1E′⊥(u ⊕ x),

where u is any element of Fn
2 such that for any x in E : f(x) = u · x ⊕ ε.

This construction has been adapted to correlation-immune functions in [9]: let
t, m and n any positive integers and f a t-th order correlation-immune function
from Fn

2 to Fm
2 ; assume there exists a subspace E of Fn

2 , whose minimum nonzero
weight is greater than t and such that the restriction of f to the orthogonal of E
(i.e. the subspace of Fn

2 : E⊥ = {u ∈ Fn
2 | ∀x ∈ E, u · x = 1}) is constant. Then

f remains t-th order correlation-immune if we change its constant value on E⊥

into any other one.

Hou-Langevin Construction: X.-D. Hou and P. Langevin have made in [39] a
very simple observation: Let f be a Boolean function on Fn

2 , n even. Let σ =
(σ1, · · · , σn) be a permutation on Fn

2 such that
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dH

(

f,

n∑

i=1

ai σi

)

= 2n−1 ± 2
n
2 −1; ∀a ∈ Fn

2 .

Then f ◦ σ−1 is bent.
A case of application of this fact, pointed out in [37], is when f belongs to

Maiorana-McFarland class (3), with π = id and when the coordinate functions
of σ are all of the form xi1yj1 ⊕ . . . ⊕ xik

yjk
⊕ l(x, y) ⊕ h(y), where k < n/2 and

il < jl for every l ≤ k; the function h is any Boolean function on F
n/2
2 and l is

affine.
Another case of application is given in [39] when f has degree at most 3:

assume that for every i = 1, · · · , n, there exists a subset Ui of Fn
2 and an affine

function hi such that:

σi(x) =
∑

u∈Ui

(f(x) ⊕ f(x ⊕ u)) ⊕ hi(x).

Then f ◦ σ−1 is bent.
Only examples of potentially new bent functions have been deduced by Hou

and Langevin from these results.
This idea of construction can be adapted to resilient functions:

If dH(f,
∑n

i=1 ai σi) = 2n−1 for every a ∈ Fn
2 of weight at most k, then f ◦

σ−1 is k-resilient. This secondary construction needs strong hypothesis on the
function used as buiding block to produce resilient functions. Further work seems
necessary for designing functions for stream ciphers by using it.

Two Recent Constructions have been introduced in [24]. They will be recalled
at Subsection 4.3.

4 A New Secondary Construction of Boolean Functions

4.1 A Modification of Rothaus’ Construction

Rothaus’ construction was the first non-trivial construction of bent functions
to be obtained in the literature. It is still one of the most interesting known
constructions nowadays, since the functions it produces can have degrees near
n/2, even if the functions used as building blocks don’t. But the constructed
functions have a very particular form. It is possible to derive a construction
having the same nice property but having not the same drawback, thanks to the
following observation.

Given three Boolean functions f1, f2 and f3, there is a nice relationship be-
tween their Walsh transforms and the Walsh transforms of two of their elemen-
tary symmetric related functions:

Lemma 1. Let f1, f2 and f3 be three Boolean functions on Fn
2 . Let us denote

by σ1 the Boolean function equal to f1 ⊕ f2 ⊕ f3 and by σ2 the Boolean function
equal to f1f2 ⊕ f1f3 ⊕ f2f3. Then we have f1 + f2 + f3 = σ1 + 2σ2. This implies

χ̂f1 + χ̂f2 + χ̂f3 = χ̂σ1 + 2χ̂σ2 . (9)
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Proof. The fact that f1+f2+f3 = σ1+2σ2 (recall that these sums are calculated
in Z and not mod 2) can be checked easily and directly implies χf1 +χf2 +χf3 =
χσ1 +2χσ2 , thanks to the equality χf = 1−2f (valid for every Boolean function).
The linearity of the Fourier transform with respect to the addition in Z implies
then Relation (9). 


4.2 Deduced Constructions of Resilient Functions

We begin with resilient functions because the application of Lemma 1 is easy in
this case. In the following theorem, saying that a function f is 0-order correlation
immune does not impose any condition on f and saying it is 0-resilient means it
is balanced.

Theorem 2. Let n be any positive integer and k any non-negative integer such
that k ≤ n. Let f1, f2 and f3 be three k-th order correlation immune (resp. k-
resilient) functions. Then the function σ1 = f1 ⊕f2 ⊕f3 is k-th order correlation
immune (resp. k-resilient) if and only if the function σ2 = f1f2 ⊕ f1f3 ⊕ f2f3 is
k-th order correlation immune (resp. k-resilient). Moreover:

Nσ2 ≥ 1
2

(

Nσ1 +
3∑

i=1

Nfi

)

− 2n−1 (10)

and if the Walsh supports of f1, f2 and f3 are pairwise disjoint (that is, if at
most one value χ̂fi(s), i = 1, 2, 3 is nonzero, for every vector s), then

Nσ2 ≥ 1
2

(

Nσ1 + min
1≤i≤3

Nfi

)

. (11)

Proof. Relation (9) and the fact that for every nonzero vector a of weight at
most k we have χ̂fi(a) = 0 for i = 1, 2, 3 imply that χ̂σ1(a) = 0 if and only
if χ̂σ2(a) = 0. Same property occurs for a = 0 when f1, f2 and f3 are resilient.
Relation (9) implies the relation

max
s∈F n

2

|χ̂σ2(s)| ≤ 1
2

(
3∑

i=1

(

max
s∈F n

2

|χ̂fi(s)|
)

+ max
s∈F n

2

|χ̂σ1(s)|
)

and Relation (2) implies then Relation (10). If the Walsh supports of f1, f2 and
f3 are pairwise disjoint, then Relation (9) implies the relation

max
s∈F n

2

|χ̂σ2(s)| ≤ 1
2

(

max
1≤i≤3

(

max
s∈F n

2

|χ̂fi(s)|
)

+ max
s∈F n

2

|χ̂σ1(s)|
)

and Relation (2) implies then Relation (11). 

Remark: We have σ2 = f1⊕(f1⊕f2)(f1⊕f3). Hence, another possible statement
of Theorem 2 is: if f1, f1⊕f2 and f1⊕f3 are k-th order correlation immune (resp.
k-resilient) functions, then the function f1 ⊕ f2 ⊕ f3 is k-th order correlation
immune (resp. k-resilient) if and only if the function f1 ⊕ f2f3 is k-th order
correlation immune (resp. k-resilient).
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We use now the invariance of the notion of correlation-immune (resp. resilient)
function under translation to deduce an example of application of Theorem 2.

Proposition 2. Let n be any positive integer and k any non-negative integer
such that k ≤ n. Let f and g be two k-th order correlation immune (resp. k-
resilient) functions on Fn

2 . Assume that there exist a, b ∈ Fn
2 such that Daf ⊕

Dbg is constant. Then the function h(x) = f(x) ⊕ Daf(x)(f(x) ⊕ g(x)), that

is, h(x) =
{

f(x) if Daf(x) = 0
g(x) if Daf(x) = 1 is k-th order correlation immune (resp. k-

resilient). Moreover:

Nh ≥ Nf + Ng − 2n−1 (12)

and if the Walsh support of f is disjoint of that of g, then

Nh ≥ min (Nf , Ng) . (13)

Note that finding hihgly nonlinear resilient functions with disjoint supports is
easy, by using Tarannikov et al.’s construction.

Proof. Let Daf ⊕ Dbg = ε. Taking f1(x) = f(x), f2(x) = f(x+ a) and f3(x) =
g(x), the hypothesis of Theorem 2 is satisfied, since σ1(x) = Daf(x)⊕ g(x) =
Dbg(x) ⊕ ε ⊕ g(x) = g(x + b) ⊕ ε is k-th order correlation immune (resp. k-
resilient). Hence, h(x) = f(x) ⊕ Daf(x)(f(x) ⊕ g(x)) is k-th order correlation
immune (resp. k-resilient). Relation (12) is a direct consequence of Relation
(10). Note that the Walsh support of f2 equals that of f1 = f , since we have
χ̂f2(s) = (−1)a·sχ̂f (s) and that the Walsh support of σ1 equals that of f3 = g.
Hence, if the Walsh support of f is disjoint of that of g, then Relation (9)
implies the relation

max
s∈F n

2

|χ̂h(s)| ≤ max
(

max
s∈F n

2

|χ̂f (s)|, max
s∈F n

2

|χ̂g(s)|
)

and Relation (2) implies then Relation (13). 

Remarks:

1. The notion of resilient function being also invariant under any permutation
of the input coordinates x1, . . . , xn, Proposition 2 is also valid if we re-
place Daf by f(x1, . . . , xn)⊕ f(xτ(1), . . . , xτ(n)) and Dbg by g(x1, . . . , xn)⊕
g(xτ ′(1), . . . , xτ ′(n)), where τ and τ ′ are two permutations of {1, . . . , n}.

2. Computer experiment shows that the secondary construction of Theorem
2 and its particular case given in Proposition 2 can increase the algebraic
immunity, while keeping the same resiliency order and the same nonlinearity.
The reason is in the fact that the support of σ2 (resp. h) is, in general, more
complex than those of f1, f2 and f3 (resp. f and g). It would be nice finding
a provable result illustrating this.
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A Deduced Primary Construction of Resilient Functions

Proposition 3. let t and n = r + s be any positive integers (r > t > 0, s > 0).
Let g1, g2 and g3 be any boolean functions on F s

2 and φ1, φ2 and φ3 any mappings
from F s

2 to F r
2 such that, for every element y in F s

2 , the vectors φ1(y), φ2(y),
φ3(y) and φ1(y) ⊕ φ2(y) ⊕ φ3(y) have Hamming weights greater than t. Let us
denote f1(x) = x · φ1(y) ⊕ g1(y), f2(x) = x · φ2(y) ⊕ g2(y) and f3(x) =
x · φ3(y) ⊕ g3(y). Then the function:

f(x, y) = f1(x) f2(x) ⊕ f1(x) f3(x) ⊕ f2(x) f3(x)

is t-resilient.

Note that, if the sets φ1(F s
2 ), φ2(F s

2 ), and φ3(F s
2 ) are disjoint, Relation (5)

implies that the Walsh supports of f1, f2 and f3 are disjoint. Relation (11)
of Theorem 2 is then satisfied. This implies that f can be (nearly) optimum
with respect to Siegenthaler’s and Sarkar et al.’s bounds. We have seen that a
Maiorana-McFarland (nearly) optimum function has low degree and still lower
AI. But here, the algebraic degree of f and its algebraic immunity may be higher
than those of Maiorana-McFarland’s (nearly) optimum functions. For instance,
we obtained in [22] a balanced 14-variable function with algebraic degree 7,
nonlinearity 7808, order of resiliency 5 and AI 6 by considering φ1, φ2, φ3 from
F 6

2 to F 8
2 such that for any i ∈ {1, 2, 3} and any x ∈ F 6

2 : wH(φi(x)) ≥ 6 and
such that wH(φ1(x) + φ2(x) + φ3(x)) ≥ 6.

Remark: We can also apply Theorem 2 to the class of resilient functions derived
from the PSap construction: Let n and m be two positive integers, g1, g2 and g3
three functions from F2m to F2, φ a linear mapping from Fn

2 to F2m and a an
element of F2m such that a ⊕ φ(y) �= 0, ∀y ∈ Fn

2 .
Let b1, b2 and b3 ∈ Fn

2 such that, for every z in F2m , φ∗(z) ⊕ bi, i = 1, 2, 3
and φ∗(z) ⊕ b1 ⊕ b2 ⊕ b3 have weight greater than t, where φ∗ is the adjoint of
φ, then the function

f(x, y) =
(

g1

(
x

a ⊕ φ(y)

)

⊕ b1 · y

) (

g2

(
x

a ⊕ φ(y)

)

⊕ b2 · y

)

⊕
(

g1

(
x

a ⊕ φ(y)

)

⊕ b1 · y

) (

g3

(
x

a ⊕ φ(y)

)

⊕ b3 · y

)

⊕
(

g2

(
x

a ⊕ φ(y)

)

⊕ b2 · y
) (

g3

(
x

a ⊕ φ(y)

)

⊕ b3 · y
)

is t-resilient. The complexity of the support of this function may permit getting
a good algebraic immunity.

4.3 Constructing Bent Functions by Using Lemma 1

Applying Lemma 1 to the construction of bent functions is slightly less simple
than for resilient functions. Nevertheless, we will deduce here again a secondary
construction (we shall see that it generalizes a secondary construction obtained
recently) and a primary construction.
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Theorem 3. Let n be any positive even integer. Let f1, f2 and f3 be three
bent functions. Denote by σ1 the function f1 ⊕ f2 ⊕ f3 and by σ2 the function
f1f2 ⊕ f1f3 ⊕ f2f3. Then:
1. if σ1 is bent and if σ̃1 = f̃1⊕f̃2⊕f̃3, then σ2 is bent and σ̃2 = f̃1f̃2⊕f̃1f̃3⊕f̃2f̃3;
2. if σ2 is bent, or if more generally χ̂σ2(a) is divisible by 2n/2 for every a (e.g.
if σ2 is plateaued), then σ1 is bent.

Proof. By hypothesis, we have for i = 1, 2, 3 and for every vector a: χ̂fi(a) =
(−1)�fi(a) 2n/2.
1. If σ1 is bent and if σ̃1 = f̃1 ⊕ f̃2 ⊕ f̃3, then we have:

χ̂σ1(a) = (−1) �f1(a)⊕ �f2(a)⊕ �f3(a) 2n/2.

Relation (9) implies:

χ̂σ2(a) =
[
(−1) �f1(a) + (−1) �f2(a) + (−1) �f3(a) − (−1) �f1(a)⊕ �f2(a)⊕ �f3(a)

]
2(n−2)/2

= (−1) �f1(a) �f2(a)⊕ �f1(a) �f3(a)⊕ �f2(a) �f3(a)2n/2.

2. If χ̂σ2(a) is divisible by 2n/2 for every a, then the number χ̂σ1(a), equal to[
(−1) �f1(a) + (−1) �f2(a) + (−1) �f3(a)

]
2n/2 − 2χ̂σ2(a), is congruent with 2n/2 mod

2n/2+1 for every a. This is sufficient to imply that σ1 is bent, according to Lemma
1 of [7]. 

Remark: Here again, it is possible to state Theorem 3 slightly differently. For
instance, if f1, f1 ⊕ f2 and f1 ⊕ f3 are three bent functions such that f1 ⊕ f2f3
has Walsh spectrum divisible by 2n/2, then σ1 = f1 ⊕ f2 ⊕ f3 is bent. Notice
that a sufficient condition for f1 ⊕ f2f3 having Walsh spectrum divisible by
2n/2 is that f2f3 = 0 or that f2 
 f3 (i.e. that the support of f3 includes that
of f2). In particular, if f is a bent function and if E and F are two disjoint
(n/2)-dimensional flats on which f is affine, the function f ⊕ 1E ⊕ 1F is bent.

Theorem 3 and Lemma 1 imply as particular cases two secondary construc-
tions of bent functions, recently obtained in [24]:

Corollary 1. [24] Let f and g be two bent functions on Fn
2 (n even). Assume

that there exists a ∈ Fn
2 such that Daf = Dag. Then the function f(x) ⊕

Daf(x)(f(x) ⊕ g(x)) is bent and has dual f̃(x) ⊕ (a · x)(f̃(x) ⊕ g̃(x)).

Indeed, taking f1(x) = f(x), f2(x) = f(x + a) and f3(x) = g(x), the hypothesis
of Alinea 1 of Theorem 3 is satisfied: σ1(x) = Daf(x) ⊕ g(x) = Dag(x) ⊕ g(x) =
g(x+a) is bent and we have σ̃1(x) = a ·x⊕ g̃(x) = f̃1(x)⊕ f̃2(x)⊕ f̃3(x). Hence,
σ2(x) = f(x) ⊕ Daf(x)(f(x) ⊕ g(x)) is bent (note that the dual of f2 equals
f̃1 ⊕ a · x). 

Remarks:

1. Applying Corollary 1 to the duals of f and g gives that, if f and g are two
bent functions on Fn

2 such that there exists a ∈ Fn
2 such that Daf̃ = Dag̃,

then the function f(x) ⊕ (a · x)(f(x) ⊕ g(x)) is bent.
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2. More generally than in Corollary 1, let L be an affine automorphism of Fn
2 .

We know that, for every bent function f , the function f◦L is bent and admits
as dual f̃ ◦ L∗, where L∗ is the adjoint operator of L−1 (such that, for every
x, y ∈ Fn

2 , we have x ·L−1(y) = L∗(x) ·y). Then if f and g are two bent func-

tions such that
{

f(x) ⊕ f ◦ L(x) ⊕ g(x) ⊕ g ◦ L(x) = 0, ∀x ∈ Fn
2

f̃(x) ⊕ f̃ ◦ L∗(x) ⊕ g̃(x) ⊕ g̃ ◦ L∗(x) = 0, ∀x ∈ Fn
2 ;

, then

the function fg⊕(f ⊕g)(f ◦L) is bent and its dual equals f̃ g̃⊕(f̃ ⊕ g̃)(f̃ ◦L∗).
Indeed, taking f1 = f, f2 = f ◦L and f3 = g, we have σ1 = g◦L and therefore
σ̃1 = g̃ ◦ L∗ = f̃1 ⊕ f̃2 ⊕ f̃3 and σ2 = fg ⊕ (f ⊕ g)(f ◦ L).

Proposition 4. [24] Let n be any positive even integer. Let f and g be two
plateaued functions of the same amplitude 2n/2+1, whose Walsh transform’s sup-
ports Sf and Sg are two distinct cosets of the same vector subspace E of Fn

2 . Let
a be an element of Fn

2 such that the cosets a + Sf and a + Sg are both distinct
of Sf and Sg. Then the function f(x) ⊕ (a · x)(f(x) ⊕ g(x)) is bent.

Proof. Set f1(x) = f(x), f2(x) = f(x) ⊕ a · x and f3(x) = g(x). We have:
σ1(x) = a · x ⊕ g(x). Hence, f1, f2, f3 and σ1 are four plateaued functions of
amplitude 2n/2+1, whose Walsh transform’s supports equal Sf , a + Sf , Sg and
a + Sg . The cosets Sf , Sg, a + Sf and a + Sg constituting a partition of Fn

2
(note that E has necessarily co-dimension 2), Relation (9) implies that σ2(x) =
f(x) ⊕ (a · x)(f(x) ⊕ g(x)) is bent. 


An Example Related to Proposition 4: The Kerdock Code. Partially-
bent functions (see [5]) give a way of constructing plateaued functions2; they are
defined as follows: two vector subspaces E (of even dimension) and F are chosen
in Fn

2 such that their sum is direct and equals Fn
2 ; for every x ∈ E and every

y ∈ F , we define f(x + y) = g(x) ⊕ l(y), where g is bent on E and l is linear
on F . All quadratic functions (that is, functions of algebraic degrees at most 2)
are of this type (F is then the kernel of their associated symplectic form; see
[45, 5]). If F (often called the kernel of f) has dimension 2, then f is plateaued
with amplitude 2n/2+1 and its Walsh transform’s support Sf is a flat (of co-
dimension 2) whose direction equals F⊥. Hence, we can choose two vectors a
and b such that {Sf , a+Sf , b+Sf , a+b+Sf} is a partition of Fn

2 . We define then
f1(x) = f(x), f2(x) = f(x) ⊕ a · x, and f3(x) = f(x) ⊕ b · x. We have (f1 ⊕ f2 ⊕
f3)(x) = f(x)⊕(a+b) ·x and the hypothesis of Lemma 1 (that is, the hypothesis
of Proposition 4 with g(x) = f(x)⊕b·x) is satisfied. We deduce that the function
f(x) ⊕ (a · x)(b · x) is bent. In the sequel, we shall call Kerdock-like construction
this construction (f, a, b) �→ σ2. The fact that it always provides bent functions
is not new, but this is exactly how the bent functions in the Kerdock code are
constructed (see [45]). We show now how (revisiting an observation from [24]).
Denoting m = n − 1 = 2t + 1, the elements of Fn

2 are identified to ordered
pairs (x, ε) with x ∈ F2m and ε ∈ F2. Then we define f(x, ε) = tr(

∑t
i=1 x2i+1),

where tr is the trace function from F2m to F2. This function is quadratic and
its kernel F (more precisely here, the kernel of its associated symplectic form)
2 Another way is by using Maiorana-McFarland construction (4) with φ injective.
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equals (see [45]) the vector space {(x, ε) ∈ F2m × F2/ x + tr(x) = 0} = {0,1} ×
F2, where 0,1 ∈ F2m . This kernel has dimension 2 and the Walsh transform’s
support Sf of f is therefore a flat of dimension n − 2 (whose direction equals
F⊥). So we can apply Kerdock-like construction. Recall that the notion of bent
function is independent of the choice of the inner product. So we can choose
(x, ε) · (y, η) = tr(xy) ⊕ εη. The choice of a = (0, 1), b = (1, 0) in the Kerdock-
like construction shows that the function σ2(x, ε) = tr(

∑t
i=1 x2i+1) ⊕ εtr(x) is

bent. Obviously, for every u ∈ F ∗
2m , the function (x, ε) �→ σ2(ux, ε) is also bent

(note that it is obtained through the Kerdock-like construction from fu(x, ε) =
tr(

∑t
i=1(ux)2

i+1), a = (0, 1) and b = (u, 0)). A property which is specific to
Kerdock codes (and that could not be obtained with non-quadratic functions
until now) is that the sum (x, ε) �→ σ2(ux, ε) ⊕ σ2(vx, ε) of two distinct such
functions is still bent. Let us check this: the quadratic function fu⊕fv has kernel
{(x, ε) ∈ F2m ×F2/ (u2 + v2)x+utr(ux)+ vtr(vx) = 0} = Eu,v ×F2, where Eu,v

has dimension at most 2 (since the equation (u2 + v2)x + utr(ux) + vtr(vx) = 0
has at most 4 solutions). Since we know that the kernel of a quadratic function
must have even co-dimension (and hence, here, even dimension), the dimension
of Eu,v must equal 1. The function σ2(ux, ε) ⊕ σ2(vx, ε) can then be obtained
through the Kerdock-like construction from the function fu ⊕fv and the vectors
a = (0, 1) and b = (u + v, 0). The hypothesis of Proposition 4 is satisfied thanks
to the fact that b does not belong to E⊥

u,v (this can be checked by showing that
E⊥

u,v = {(u2 + v2)y + utr(uy) + vtr(vy); y ∈ F2m}).

A Primary Construction of Bent Functions Deduced from Theorem 3

Proposition 5. Let n be any positive even integer. Let π1, π2, π3 be three per-
mutations on F

n/2
2 such that π1 ⊕ π2 ⊕ π3 is also a permutation and such that

the inverse of π1 ⊕ π2 ⊕ π3 equals π−1
1 ⊕ π−1

2 ⊕ π−1
3 . Then the function

f(x, y) = [x · π1(y)] [x · π2(y)] ⊕ [x · π1(y)] [x · π3(y)] ⊕ [x · π2(y)] [x · π3(y)]

is bent.

The proof is a direct consequence of the first alinea of Theorem 3 and of the
properties of Maiorana-McFarland’s class recalled above. Note that the result is
still valid if an affine function g in y is added to the x · πi(y)’s in the expression
of f(x, y).

It is also easy to apply Theorem 3 to class PSap: the condition on the dual of
σ1 is automatically satisfied if σ1 is bent. But this does not lead to new functions,
since if fi(x, y) = gi(x y2

n
2 −2) for i = 1, 2, 3, then σ1 and σ2 have the same forms.

4.4 A Generalization of Lemma 1

Lemma 1 can be generalized to more than 3 functions. This leads to further
methods of constructions.
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Proposition 6. Let f1, . . ., fm be Boolean functions on Fn
2 . For every positive

integer l, let σl be the Boolean function defined by

σl =
⊕

1≤i1<...<il≤m

l∏

j=1

fij if l ≤ m and σl = 0 otherwise.

Then we have f1 + . . . + fm =
∑

i≥0 2i σ2i . Denoting by f̂ the Fourier transform

of f , that is, f̂(s) =
∑

x∈F n
2

f(x)(−1)x·s, this implies f̂1+. . .+f̂m =
∑

i≥0 2i σ̂2i .
Moreover, if m + 1 is a power of 2, say m + 1 = 2r, then

χ̂f1 + . . . + χ̂fm =
r−1∑

i=0

2i χ̂σ2i
. (14)

Proof. Let x be any vector of Fn
2 and j =

∑m
k=1 fk(x). According to Lucas’

Theorem (cf. [45]), the binary expansion of j is
∑

i≥0

[
2i

((
j
2i

)
[mod 2]

)]
. It is

a simple matter to check that
(

j
2i

)
[mod 2] = σ2i(x). Thus, f1 + . . . + fm =∑

i≥0 2i σ2i . The linearity of the Walsh transform with respect to the addition

in Z implies then directly f̂1 + . . . + f̂m =
∑

i≥0 2i σ̂2i .
If m + 1 = 2r, then we have m =

∑r−1
i=0 2i. Thus, we deduce χf1 + . . . +

χfm =
∑r−1

i=0 2i χσ2i
from f1 + . . . + fm =

∑r−1
i=0 2i σ2i . The linearity of the

Walsh transform implies then relation (14). 


Corollary 2. Let n be any positive integer and k any non-negative integer such
that k ≤ n. Let f1, . . ., f7 be k-th order correlation immune (resp. k-resilient)
functions. If two among the functions σ1 = f1 ⊕ . . .⊕f7, σ2 = f1f2 ⊕f1f3 ⊕ . . .⊕

f6f7 and σ4 =
⊕

1≤i1<...<i4≤7

l∏

j=1

fij is k-th order correlation immune (resp. k-

resilient) then the third one is k-th order correlation immune (resp. k-resilient).

The proof is similar to the proof of Theorem 2.

Corollary 3. Let n be any positive even integer and f1, . . ., fm (m ≤ 7) be bent
functions on Fn

2 .

– Assume that σ1 is bent, and that, for every a ∈ Fn
2 , the number χ̂σ4(a) is

divisible by 2n/2. Then:
• if m = 5 and σ̃1 = f̃1 ⊕ . . . ⊕ f̃5 ⊕ 1 then σ2 is bent;
• if m = 7 and σ̃1 = f̃1 ⊕ . . . ⊕ f̃7, then σ2 is bent;

– Assume that m ∈ {5, 7} and that, for every a ∈ Fn
2 , the number χ̂σ4(a) is

divisible by 2n/2−1 and the number χ̂σ2(a) is divisible by 2n/2, then σ1 is
bent.

Proof. By hypothesis, we have for i = 1, . . ., m and for every vector a �= 0:
χ̂fi(a) = −2f̂i(a) = (−1)�fi(a) 2n/2.
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– If σ1 is bent and, for every a ∈ Fn
2 , the number χ̂σ4(a) is divisible by 2n/2,

then χ̂σ2(a) is congruent with
[
(−1) �f1(a) + . . . + (−1)�fm(a) − (−1)�σ1(a)

]

2n/2−1 modulo 2n/2+1, for every a �= 0.
If m = 5 and σ̃1 = f̃1 ⊕ . . . ⊕ f̃5 ⊕ 1 then, denoting by k the Hamming

weight of the word (f̃1(a), . . . , f̃5(a)), the number χ̂σ2(a) is congruent with
[5 − 2k + (−1)k] 2n/2−1 modulo 2n/2+1.

If m = 7 and σ̃1 = f̃1 ⊕ . . . ⊕ f̃7 then, denoting by k the Hamming
weight of the word (f̃1(a), . . . , f̃7(a)), the number χ̂σ2(a) is congruent with
[7 − 2k − (−1)k] 2n/2−1 modulo 2n/2+1. So, in both cases, we have χ̂σ2(a) ≡
2n/2 [mod 2n/2+1], and σ2 is bent, according to Lemma 1 of [7] (which is
equivalent to saying that a Boolean function f is bent if and only if χ̂f (a)
is congruent with 2n/2 modulo 2n/2+1, for every a �= 0; indeed, a �= 0 is
sufficient thanks to Parseval’s relation).

– If, for every a ∈ Fn
2 , the number χ̂σ4(a) is divisible by 2n/2−1 and the

number χ̂σ2(a) is divisible by 2n/2, then, for every a �= 0, the number χ̂σ1(a)
is congruent with

[
(−1) �f1(a) + . . . + (−1)�fm(a)

]
2n/2 mod 2n/2+1. Since m ∈

{5, 7}, it is then congruent with 2n/2 mod 2n/2+1 and σ1 is bent, according
to Lemma 1 of [7]. 
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